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 6 

Key Points: 7 

The transition from partial to selective mobility in physical models of gravel-bed braiding 8 

rivers corresponds to the lower threshold of substantial morphological change and 9 

bedload transport and occurs at approximately 50% of peak channel-forming discharge, 10 

or dimensionless stream power of 70. The expansion of the morphological active depth 11 

and morphological active width with increasing discharge is directly related to the 12 

mobilization of the coarsest grain size fractions, indicating that bedload grain size 13 

distributions, while tied to hydraulic forcing, are also related to braiding morphodynamics. 14 
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Abstract 15 

Evolution of bed material mobility and bedload grain size distributions under a range of 16 

discharges is rarely observed in braiding in gravel-bed rivers.  Yet, the changing of 17 

bedload grain size distributions with discharge is expected to be different from laterally-18 

stable, threshold, channels on which most gravel bedload theory and observation are 19 

based. Here, simultaneous observations of flow, bedload transport rate, and 20 

morphological change were made in a physical model of a gravel-bed braided river to 21 

document the evolution of grain size distributions and bed mobility over three 22 

experimental event hydrographs. Bedload transport rate and grain size distributions were 23 

measured from bedload samples collected in sediment baskets. Morphological change 24 

was mapped with high-resolution (~1 mm precision) digital elevation models generated 25 

from close-range digital photogrammetry. Bedload transport rates were extremely low 26 

below a discharge equivalent to ~50 % of the channel-forming discharge (dimensionless 27 

stream power ~70). Fractional transport rates and plots of grain size distributions indicate 28 

that the bed experienced partial mobility at low discharge when the coarsest grains on 29 

the bed were immobile, weak selective mobility at higher discharge, and occasionally 30 

near-equal mobility at peak channel-forming discharge. The transition to selective mobility 31 

and increased bedload transport rates coincided with the lower threshold for 32 

morphological change measured by the morphological active depth and active width. 33 

Below this threshold discharge, active depths were of the order of D90 and active widths 34 

narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-35 

forming discharge, the active depth had a local maximum of 9D90 while active width was 36 

up to 20% of wetted width. The modelled rivers approached equal mobility when rates of 37 
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morphological change were greatest. Therefore, changes in the morphological active 38 

layer with discharge is directly connected to the conditions bed mobility, and strongly 39 

correlated with bedload transport rate.  40 

Introduction 41 

The relationships between bedload grain size distributions (GSD), bed mobility, and 42 

channel morphology in gravel-bed rivers have important implications for the basic 43 

understanding of river dynamics as well as many practical applications. For example, this 44 

data can be used to estimate bedload sediment yield and channel stability, which in turn 45 

are used to inform channel, reservoir, and infrastructure design (Powell et al., 2001b; 46 

Ryan et al., 2002). In addition, GSD and bed mobility data are necessary for the effective 47 

numerical modelling of sediment entrainment and channel morphodynamics (Powell et 48 

al., 2001b; Wilcock and McArdell, 1997a; Williams et al., 2016a, 2016b) and can help 49 

define the disturbance regimes and substrate quality of gravel-bed rivers for benthic 50 

organisms and fish (Haschenburger and Wilcock, 2003; Wilcock and McArdell, 1997a).  51 

Individual grain size fractions in gravel bed rivers are defined as fully mobilized when the 52 

entire population of that grain size available for transport in the bed material is entrained 53 

during a flow event, otherwise the fraction is only partially mobilized (Haschenburger and 54 

Wilcock, 2003; Wilcock and McArdell, 1997b). With regards to the channel bed as a 55 

whole, three main mobility states have been defined for gravel-bed rivers: partial mobility, 56 

selective mobility, and equal mobility (Parker, 2008; Venditti et al., 2017). Partial mobility 57 

occurs when the GSD of the bedload is finer than that of the bed because some coarse 58 

fractions on the bed surface remain immobile, even during high flows. Selective mobility 59 

occurs when all of the grain sizes on the surface are found in the bedload, but not in 60 
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proportion to their availability on the bed, reflecting a mix of fully mobilized and partially 61 

mobilized grain size fractions. Finally, equal mobility occurs when the GSD of the bedload 62 

and bed material are identical (i.e., all grain size fractions are fully mobilized in proportion 63 

to their availability).  64 

While many studies have investigated changes in grain size and bed mobility for single-65 

thread gravel-bed rivers or in narrow, straight-walled flumes, there is comparatively little 66 

research on these processes in braiding rivers (Ashworth et al., 1992; Ashworth and 67 

Ferguson, 1986, 1989; Kociuba and Janicki, 2015; Mao and Surian, 2010). Defined by 68 

their multiple anabranch channels and ephemeral bars, braided rivers have a complex 69 

morphology producing spatially and temporally variable bedload transport rates 70 

commonly observed in the field (Ashworth and Ferguson, 1986; Mao and Surian, 2010; 71 

Powell and Ashworth, 1995; Williams et al., 2015b) and in physical models (Ashmore, 72 

1988; Ashmore and Church, 1998; Hoey, 1992; Hoey and Sutherland, 1991). While there 73 

has been some success characterizing bedload transport functions at the reach scale 74 

using temporal averages (Ashmore, 1988; Bertoldi et al., 2009; Williams et al., 2016a), 75 

the complex morphology and hydraulics as well as rapid morphological change makes 76 

bedload transport rates and bed material mobility in braided rivers inherently difficult to 77 

measure directly, or to predict using classic hydraulically-driven bedload functions 78 

(Bertoldi et al., 2009; Davies, 1987; Kociuba and Janicki, 2015; Mao and Surian, 2010; 79 

Powell and Ashworth, 1995; Recking et al., 2016).  80 

 Though not thoroughly investigated in the past, bedload transport and mobility of bed 81 

material particle size fractions over a range of discharges in braided rivers may behave 82 

differently than laterally stable single-threaded channels for several reasons. First, 83 
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braided rivers are often characterized by high sediment supply relative to bedload 84 

transport capacity (Ferguson, 1987; Mueller and Pitlick, 2013, 2014). High rates of lateral 85 

migration (i.e., bank and bar erosion) and an extensive morphological active layer 86 

(Ashmore et al., 2018) provide locally high rates of sediment input to bedload transport  87 

(Wheaton et al., 2013; Williams et al., 2015b) at the channel scale in combination with 88 

high rates of sediment supply provided at the watershed scale (Guerit et al., 2014; Mueller 89 

and Pitlick, 2014; Piegay et al., 2006).  As a consequence, braided rivers often lack strong 90 

surface armour (Bunte and Abt, 2001; Gardner and Ashmore, 2011a; Gardner et al., 91 

2017; Guerit et al., 2014; Leduc et al., 2015; Mueller and Pitlick, 2013, 2014) and 92 

differences in surface and subsurface GSDs may be small (Carson and Griffiths, 1987; 93 

Laronne et al., 1994; Laronne and Reid, 1993; Lisle, 1995; Lisle et al., 2000; Mueller and 94 

Pitlick, 2013) unlike typical stable, single-thread gravel-bed rivers that often have a 95 

distinct coarse surface layer relative to the subsurface sediment.  At the same time, 96 

braided rivers exhibit a wide range of bed material particle sizes available at the bed 97 

surface due to processes like strong lateral sorting effects around bars  (Ashworth and 98 

Ferguson, 1986; Bluck, 1979; Leduc et al., 2015; Smith, 1974). Furthermore, recent 99 

research has shown no significant vertical sorting within braided river deposits and that 100 

the morphological active depth (i.e. vertical depth of morphological change and bed 101 

material turnover) extends to several multiples of the surface D90, making it possible to 102 

mobilize large portions of the subsurface material during active braiding (Ashmore et al., 103 

2018; Gardner and Ashmore, 2011b; Gardner et al., 2017; Leduc et al., 2015). Second, 104 

and following from this, braided rivers actively rework large areas of the bed over short 105 

time periods (e.g., single flow events) (Ashmore, 2013; Ashmore et al., 2018; Leduc et 106 
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al., 2015; Wheaton et al., 2013; Williams et al., 2015a, 2016a, 2016b). This occurs in part 107 

because the area of the bed that is wetted and experiencing active bedload transport (i.e. 108 

the morphological active width) increases rapidly with discharge in braided rivers 109 

(Ashmore et al., 2011; Lugo et al., 2015; Peirce et al., 2018). The lateral adjustment of 110 

the morphological active width with discharge is a significant component of bed material 111 

transport in braiding rivers (Bertoldi et al., 2009; Peirce et al., 2018; Williams et al., 2015b) 112 

that aids in the accessibility of a wide range of bed material particle sizes, both laterally 113 

and from the subsurface. These processes differ from more-stable, single-threaded 114 

channels, which can have immobile areas of the bed that persist for years 115 

(Haschenburger and Wilcock, 2003) and in which bedload mechanics are dominated by 116 

particle exchange at the bed with limited active layer depth (Church and Haschenburger, 117 

2017). Overall, these differences between braiding and stable single channels may have 118 

important implications for predicting fractional and total transport rates and bed mobility. 119 

While most gravel-bed rivers are restricted to low transport rates and partial mobility due 120 

to surface armour (Church and Hassan, 2002; Venditti et al., 2017), braided rivers may 121 

be able to mobilize large areas and volumes of bed material as well as wide range of 122 

grain sizes (Ashworth and Ferguson, 1986, 1989; Mueller and Pitlick, 2014; Powell et al., 123 

2001a) and consequently may show a different response to discharge than stable, near-124 

threshold channels (see Church, 2006). However, there are very few data available for 125 

bedload particle mobility in gravel braided rivers. Ashworth and Ferguson (1986; 1989) 126 

observed that at the highest flows in a pro-glacial braided outwash, the particle size 127 

distribution of the bedload began to approach that of the braidplain deposits as a whole, 128 

although never reaching true equal mobility, and that mobility was greater in this actively 129 
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braiding river than in two other more-stable rivers (Ashworth and Ferguson, 1989). Lisle 130 

(1995) found that, for a range of gravel bed river types, those with high average active 131 

layer depths (e.g., 4-12 x D84), in which large areas of the streambed are mobilized during 132 

bedload transport events, had the greatest tendency to approach conditions of equal 133 

mobility and a braiding morphology. 134 

Overall, it is expected that gravel-bed braided rivers may evolve towards full mobilization 135 

of coarse grains and equal mobility of the bed differently and at lower discharges (relative 136 

to ‘bankfull’) than more-stable, single-thread gravel-bed rivers. This evolution is likely to 137 

be associated with periods of rapid morphological change, and an extensive 138 

morphological active layer, both laterally and vertically (Ashmore et al., 2018). Yet, due 139 

to the demand for simultaneous measurements of bedload transport flux and 140 

morphological change, which would be practically impossible to collect in the field, these 141 

relationships between bedload and morphological change have not been systematically 142 

investigated in gravel-bed braided rivers. Here, we used a small-scale physical model of 143 

a gravel-bed braided river to obtain measurements of bedload transport rates, bedload 144 

grain size distributions, and morphological change over three experimental hydrographs 145 

reproducing diurnal meltwater discharge variation in a pro-glacial braided river. The use 146 

of a physical model allowed for bedload to be collected in traps at the outlet of the model 147 

while concurrent measurements of morphological change were determined via 148 

differencing of high-resolution and high-frequency digital elevation models (DEMs) 149 

(Brasington et al., 2000; Kasprak et al., 2015; Morgan et al., 2016). Therefore, we can 150 

quantitatively link changes in bedload transport and GSDs with changes in discharge, as 151 

well as the morphological active depth and the morphological active width in a braided 152 
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river. This makes it possible to investigate bed material mobility as a component of the 153 

intrinsically morphological process of bedload transport in braided rivers (Ashmore et al., 154 

2011, 2018; Ashmore and Church, 1998; Bertoldi et al., 2009) and to characterize an 155 

aspect of gravel-bed braiding river dynamics and bedload transport in a manner not 156 

previously accomplished. 157 

Methods 158 

Physical Model 159 

Data were gathered from hydrograph experiments using a Froude-scaled physical model 160 

of a gravel-bed braided river in a large river modelling flume (18.3 m x 3 m) with adjustable 161 

slope and discharge and recirculating water. Froude-scale modelling preserves dynamic 162 

similarity so that fundamental force ratios, particularly non-dimensional bed shear stress, 163 

are preserved and therefore both bedload transport and morphodynamic processes are 164 

modelled (Ashmore, 1982; Young and Warburton, 1996). Reduced scale models of this 165 

kind have been used extensively in research on gravel-bed braiding rivers (Ashmore, 166 

1988, 1982; Warburton and Davies, 1994) and in fundamental research on gravel bed 167 

armoring and bed material mobility (Dietrich et al., 1989; Parker and Klingeman, 1982; 168 

Parker and Toro-Escobar, 2002). The GSD for the model was taken as the average 169 

subsurface GSD measured by sieving volumetric bulk samples from the model (Church 170 

and Hassan, 2002; Guerit et al., 2014). The grain sizes in the model ranged from 0.1-8 171 

mm with D10 = 0.32 mm D50 = 1.18 mm and D90 = 3.52 mm. This is approximately a 1:35 172 

scale of the bulk distribution from the Sunwapta River, a proglacial gravel-bed braided 173 

river in Alberta, Canada (D50 = 41 mm) (Figure 1) (Ashmore et al., 2011; Chew and 174 

Ashmore, 2001). The model distribution was truncated at approximately 0.25 mm 175 

Page 8 of 49

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

(equivalent to 8 mm at full scale) to avoid cohesive grain effects and preserve similarity 176 

in flow resistance and bed morphology between the prototype and the model (Young and 177 

Warburton, 1996). Bedload was collected in five metal sediment baskets, with a mesh 178 

size of 0.1 mm, which spanned the entire width of the model at the outlet. 179 

Experimental Procedure 180 

A generic braided morphology was self-generated from an initially straight channel at a 181 

constant channel-forming discharge of 2.1 Ls-1 (± 5 %) and a slope of 1.5 %, which 182 

approximates the slope of a reach of the Sunwapta River (Chew and Ashmore, 2001). 183 

Following 24 hours of initial evolution to a braided morphology, three event hydrograph 184 

experiments (referred to as A, B, and C) were completed (Figure 2). Discharges were 185 

chosen to cover the range of discharges in a typical daily meltwater hydrograph of the 186 

Sunwapta River so that the channel-forming discharge and peak flow of 2.1 Ls-1 187 

approximates the average diurnal peak discharge (15 m3s-1) in the prototype based on 188 

the 1:35 scaling ratio and Froude scaling of discharge (Ashmore and Sauks, 2006; Egozi 189 

and Ashmore, 2008). Each discharge step was run for at least 1 hour, split into 15 or 30 190 

minute intervals for a total of 117 experimental runs and 27 discharge steps (Figure 2). 191 

The time intervals were chosen to obtain a high temporal frequency of surveying while 192 

still allowing for detectable morphological change to occur (Ashmore and Church, 1998), 193 

so all runs were 15 minutes except for several at the lowest discharge (0.7 Ls-1), which 194 

were 30 minutes. The time base of a typical pro-glacial diurnal hydrograph is not 195 

reproduced in the tests because of the experimental need to keep each step in the 196 

hydrograph similar, at least 15 minutes long, and to focus on particle mobility and braiding 197 

morpho-dynamics across the discharge range.  198 
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At the end of each experimental run, the flow was turned off and once water was no longer 199 

flowing over the downstream end, the bedload trapped in the downstream sediment 200 

baskets was weighed using a load cell (precision ± 0.5 %) and then collected in sampling 201 

bags. The waning flow phase may have introduced very minor amounts of additional 202 

sediment into the baskets but these additions are expected to be negligible and consistent 203 

across all measurements due to the relatively short waning period. Once the model 204 

surface was drained of all standing water, high-resolution images of the dry bed surface 205 

were taken for DEM generation via digital photogrammetry (discussed below). To 206 

preserve the overall sediment balance of the model, a compensating volume of dry 207 

sediment with the same GSD as the model subsurface was fed into the tail tank at the 208 

end of each run to be fed into upstream end by a recirculating sediment pump during the 209 

subsequent run. Therefore, the GSD of the sediment fed into the model during each run 210 

was independent of the bedload collected during the previous run. Once the experiments 211 

were completed, the collected bedload samples were dried and sieved at intervals of 0.5 212 

phi from -2.5 to 2 phi (5.6 - 0.25 mm).  213 

Digital Photogrammetry: DEM Generation and Differencing  214 

Digital photos of the dry model surface were taken using 2 T5i Canon cameras with 20 215 

mm lenses mounted on a movable trolley ~2.9-3 m above the model surface (depending 216 

on exact location above the tilted flume). The camera orientation was slightly oblique so 217 

that the images from each camera were fully-convergent across the flume. Images were 218 

captured at approximately 0.4 m spacing along the flume (approximately 80% overlap of 219 

successive images). Nominal pixel resolution on the sand surface was 0.7mm. Coded 220 

targets (surveyed with sub-millimeter precision using a 2 second total station and 3D 221 
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intersection calculation) in the model allowed for photos to be batch-processed using the 222 

Structure-from-Motion software program, Agisoft PhotoScan, which was used to generate 223 

orthophotos and DEMs of each surface with a 1.5 mm cell resolution and a vertical error 224 

estimate of (± 1.15 mm). This error estimate was based on an analysis of range of 225 

elevation differences in stable, flat areas of the model surface across all the DEMs. 226 

Example DEMs from the beginning of each hydrograph can be seen in Figure 3.  227 

The open-source software program Scilab was used for DEM differencing, so that areas 228 

and volumes of topographic change could be quantified from the DEMs of Difference 229 

(DoD). A simple uniform threshold for change detection of 3.6 mm, which corresponds 230 

with 3 standard deviations of the vertical error estimate of the final DEM surfaces (± 1.15 231 

mm), was applied to each DEM of Difference (DoD) followed by a dilation filter, which 232 

created a mask of ‘change’ (1) and ‘no-change’ (0). After the mask was applied to the raw 233 

DoD, a final uniform threshold of 1mm, which corresponds with the approximate D50 of 234 

the model, was applied. Therefore, the dilation method considers the neighbouring cells 235 

of areas with a high probability of ‘real change’, thereby improving connectivity between 236 

areas of morphological change while still reducing noise in the data. Each DoD was 237 

cropped to remove targets and inlet effects, so that the final study area was restricted to 238 

the downstream 14 m of the model. Reach-averaged estimates of the morphological 239 

active depth and morphological active width were derived for each run by dividing the 240 

total volume of change by the total active area, and dividing the total active area by the 241 

reach length (i.e., 14 m), respectively. In addition, reach-averaged wetted widths were 242 

measured from manually digitized orthophotos of the water surface using ArcMap 10.4. 243 

Finally, image texture analysis was used to map bed surface texture as a surrogate for 244 
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bed material particle size at the beginning of each hydrograph, The method used was 245 

based on a technique developed by Carbonneau et al., (2005) and described by Leduc 246 

et al., (2015) for the same flume and bed sediment. The resulting data for “equivalent 247 

texture” (Leduc et al., 2015) was a calibrated equivalent to the median particle size in a 7 248 

x7 pixel moving window that provides a relative measure of differences in bed material 249 

size spatially on the bed of the physical models. 250 

Results 251 

Bedload Transport Rate 252 

Bedload transport rate (Qb) ranged from 0.02- 11.70 gs-1 (Figure 4). The mean bedload 253 

transport rate and variability in transport rates increased with discharge so that the lowest 254 

discharge of 0.7 l s -1 had the lowest mean transport rate of 0.12 gs-1 (standard deviation, 255 

σ = 0.10) and the highest discharge (2.1 Ls-1) had the highest mean transport rate at 3.60 256 

gs-1 (σ = 1.92) (Figure 4b). Abrupt changes in bedload transport rates occur around 1.14 257 

Ls-1, below which transport rates are consistently very low (< 0.40 gs-1), and above which 258 

transport rates increase with discharge (Figure 4a). This threshold discharge of 1.14 Ls-1 259 

serves as a useful tool for describing the shift in bedload transport rates from negligible 260 

to increasing with discharge. Although these experiments were not intended to investigate 261 

the role of hysteresis in gravel-bed braided rivers, separating the bedload transport data 262 

into rising and falling stages reveals no consistent hysteresis with changing discharge 263 

(Figure 4b).  264 
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Fractional Transport  265 

Fractional transport rates were calculated as 𝑞𝑏𝑖 = (𝑝𝑖)𝑞𝑏, where pi is the proportion of 266 

each fraction (i) found in the bedload transported (qb) for each run (Wilcock and McArdell, 267 

1993). Across all discharges, bedload D10 ranged from 0.07- 0.57 mm, D50 ranged from 268 

0.48- 1.41 mm, and D90 ranged from 1.15 to 3.57 mm (Figure 5). Overall, D10 was 269 

relatively constant across all discharges and hydrographs except for runs at the lowest 270 

discharge (0.7 Ls-1), which had a mean D10 (𝑥̅ = 0.28 mm) lower than all the other 271 

discharges (𝑥̅  = 0.35 - 0.41 mm). While the mean D50 increased slightly with discharge 272 

from 0.65 to 1.07 mm it plateaued around a mean value of ~1 mm, which was close to 273 

the bulk D50 of 1.18 mm, above 1.35 Ls-1. Of the three grain sizes investigated in detail, 274 

the D90 was the most responsive to increasing discharge and following the shape of the 275 

hydrograph, with no obvious or systematic hysteresis effect (Figure 5). The mean D90 276 

increased from 1.56 mm at the lowest discharge to 2.9 mm under the peak discharge 277 

conditions, which was still lower than the mean bulk D90 of 3.52 mm.  278 

For all three hydrographs, individual grain sizes were grouped into 6 classes and plotted 279 

as a mean percentage of the total bedload and as mean fractional transport rates for each 280 

discharge in Figure 6. At the lowest discharge (0.7 Ls-1), grains smaller than 1 mm 281 

account for an average of 76 % of the total bedload, while less than 5 % of the bedload 282 

was grains larger than 2 mm. At higher discharges the GSD of the bedload is coarser, so 283 

that at the highest discharges, fine grains (<1 mm) account for ~ 47 % of the bedload and 284 

coarse grains (> 2 mm) account for ~ 20 % of the bedload. Grains between 1-2 mm, which 285 

includes the median of the subsurface (D50 = 1.18 mm), account for ~ 30 % of the total 286 

bedload, regardless of discharge. The only exception is the lowest discharge, for which 287 
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grains of 1-2 mm only account for an average of 19 % of the total bedload. Only above 288 

1.14 Ls-1 are the coarsest grains (>5.6 mm) detected in the bedload. Therefore, based on 289 

the discharge steps investigated during these experiments, 1.14 Ls-1 was the average 290 

threshold discharge between partial and selective mobility. 291 

Comparison with Bed Material 292 

While the D10, D50, and D90 varied within and between the hydrographs, even at the same 293 

discharges (Figure 5), plotting the GSD of all 117 bedload samples together indicates the 294 

steady shift in the grain size distributions as discharge increased (or decreased) between 295 

0.7 Ls-1 to 2.1 Ls-1 (Figure 7). The complete distribution of the bulk subsurface was rarely 296 

reached in the bedload distributions and only at the channel-forming discharge of 2.1 Ls-297 

1 does bedload approach equal mobility with regards the subsurface. This graph confirms 298 

that fine grains (i.e., D10) are essentially fully mobilized regardless of discharge, while 299 

coarser grains transition from a state of immobility at low discharges, through partial 300 

mobilization towards full mobilization at the highest discharge.  301 

Transition towards Equal Mobility  302 

To investigate the changes in bed mobility with changing discharge, a pi/fi ratio was 303 

plotted in Figure 8, where pi is the frequency of grain size i in the total bedload and fi is 304 

the frequency of grain size i in the bulk distribution (Church and Hassan, 2002; Ferguson 305 

et al., 1992). Partial mobility is characterized by the curve dropping towards zero for large 306 

grain size while for selective mobility conditions, pi/fi decreases with grain size but 307 

remains above zero for large grain sizes. For ‘true’ equal mobility, pi/fi  equals 1 for all 308 

grain sizes (Venditti et al., 2017). Figure 8 demonstrates that at higher discharge the 309 

distributions shift from a state of marginal partial mobility present at low discharge, 310 
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through a state of selective mobility around 1.14 Ls-1 (i.e., where the coarsest fractions 311 

are 0 > pi/fi < 1, x̅ = 0.018, σ = 0.037), towards equal mobility, although strict true equal 312 

mobility was never reached. In terms of individual grain sizes, 1 mm (i.e., the approximate 313 

D50) transitions from a pi/fi of 0.4 at 0.7 Ls-1 to 1.0 at the highest discharge. Also, fine 314 

grains (< 0.5 mm) are fully mobilized above a discharge of 0.83 Ls-1. The coarsest grains 315 

(i.e., 5.6 mm) had a maximum pi/fi of 0.9, but even at the highest discharge the average 316 

pi/fi was only 0.27. 317 

Using the ratio in the D90 of the surface (D90S) and bedload (D90L) as an indicator of bed 318 

material mobility, there was a decrease in the mobility ratio with mean dimensionless 319 

stream power (Ω*) as defined by Lisle (1995): 320 

𝛺∗ =
𝜌𝑄𝑆

(𝜌𝑠 − 𝜌)𝑔1/2(𝐷50)
𝑏
5/2

 1 

Where ρ is fluid density, Q is discharge, S is slope, D50 is mean grain size, ρs is sediment 321 

density, 𝑔 is the acceleration due to gravity and b is the average wetted width (Figure 9a). 322 

This plot further demonstrates that true equal mobility generally not achieved with a 323 

minimum average mobility ratio of 1.2 (best fit power function with exponent -0.60). A 324 

similar relationship exists between the mobility ratio and bedload transport rate although 325 

the shape of the function shows stronger non-linearity (Figure 9b) than with dimensionless 326 

stream power.  327 

Linkages to Morphological Active Depth and Active Width 328 

DEMs of difference (DoDs) were used to estimate reach-averaged values of 329 

morphological change for each experimental run (Figure 10). Due to poor image quality, 330 
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3 DEMs were removed from analysis for a total of 113 DoDs across all three hydrographs. 331 

The DoDs demonstrate three emerging trends related to increasing discharge: 1) the 332 

maximum morphological active depth increased; 2) the active area (i.e., total area of 333 

erosion + total area of deposition) increased, and 3) the active areas were more 334 

continuous and contiguous along the channel.  335 

Results for the reach-averaged morphological active depth and morphological active 336 

width can be seen in Figure 11. Across all discharges, the modal morphological active 337 

depth was approximately 2.5 mm (Figure 11a). For the three lowest discharges (0.7- 0.93 338 

Ls-1), the depth of scour was rarely (less than 20% of cases) greater than 3.5 mm (i.e., ~ 339 

D90 of the model subsurface). For the same three discharges, between 90- 99% of the 340 

active area had scour depths less than 2D90 (6 mm). At and above 1.14 Ls-1, each of the 341 

morphological active depth distributions became increasingly positively skewed, 342 

reflecting the greater maximum depths of scour occurring with increasing discharge. At 343 

the peak discharge of 2.1 Ls-1, only 70% of the recorded active depths are below 6 mm, 344 

and the greatest active depths recorded were greater than 25 mm, which is more than 345 

20D50 and 7D90 of the model GSD.  346 

Between 0.7 and 0.93 Ls-1, the reach-average morphological active width was very small 347 

with averages between 0.02 - 0.03 m (s = 0.007 - 0.01) (Figure 11b). At and above 1.14 348 

Ls-1, the active width increased to an average of 0.06 m (σ = 0.036) and continued to 349 

increase with discharge to a mean of 0.38 m at the peak discharge of 2.1 Ls-1 (σ = 0.096). 350 

Therefore, both the morphological active depth and width had a similar discharge 351 

threshold as the transition from partial to selective mobility ~1.14 Ls-1 (Ω*~70). 352 
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Plots of D10, D50, and D90 as a function of the bedload transport rate, reach-averaged 353 

morphological active depth, and the reach-averaged morphological active width are 354 

shown in Figure 12. Here the morphological active depth has been averaged for the entire 355 

14 m study reach, so there is one mean observation for each experimental run. Both D50 356 

and D90 have a positive power relationship with bedload transport rate, morphological 357 

active depth, and active width, but based on a least squares regression, D90 was more 358 

sensitive to changes in transport rate and morphology with R2 values between 0.656-359 

0.681 compared to the D50 (R2 = 0.509 -0.604). As expected, D10 was not sensitive to 360 

either measure of morphological change (R2 = 0.0837 -0.152), or bedload transport rate 361 

(R2 = 0.150) because fine grains were fully mobilized under all discharge conditions 362 

(Figure 5). Furthermore, at very low discharges, when the bed was only partially mobile, 363 

the morphological active depth and active width are small, confirming that the finer tail of 364 

the gravel bed material moving over the bed results in little detectable morphological 365 

change. Separating rising and falling stage data shows no systematic hysteresis effect in 366 

the data (Figure 12). 367 

To investigate differences between the three hydrographs, the initial bed hypsometry (see 368 

also Redolfi et al., 2018) and bed texture was plotted for each hydrograph (Figure 13 and 369 

see also Figure 3). The hypsometry analysis indicates that the initial topography of 370 

hydrographs A and C were nearly identical, but differed for B, although all three lie within 371 

the overall range of variability for the entire dataset. In terms of equivalent bed texture, 372 

the three hydrographs began with nearly identical distributions, all of which fall within the 373 

range of variability across all observations (Figure 13b). In addition to indicating that there 374 

was no apparent effect from running hydrograph A following a period of constant 375 
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discharge evolution, these results highlight the inherent complexity and variability of 376 

braided river processes.  377 

Discussion  378 

In the physical model of a generic gravel-bed braided river, fractional transport rates, grain 379 

size distributions, and pi/fi ratios transition from a state of partial mobility to selective 380 

mobility at relatively low discharges and gradually approach near-equal mobility at peak 381 

channel-forming discharges and highest rates of morphological change.  382 

In terms of individual grain sizes, the results showed that while D10 was essentially fully 383 

mobile across all experimental discharges, both D50 and D90 increased with discharge. 384 

D50 levelled off as it approached D50 of the model subsurface bulk sediment, indicating 385 

full mobilization of those fractions above discharges of 1.35 Ls-1. D90 increased with 386 

discharge but did not level off, even at the channel-forming discharge of 2.1 Ls-1, 387 

indicating only partial mobilization of coarse grains and therefore selective mobility of the 388 

bed. It is possible that with slightly higher discharges that the coarse grains would become 389 

more frequently fully mobilized. The results are similar to Ashworth et al. (1992) in a 390 

braided chute-bar structure, who found that while D50 was relatively constant, both 391 

spatially and temporally, Dmax was sensitive to increasing flow strength through a single 392 

braided anabranch in the field. This is also consistent with earlier observations of 393 

Ashworth and Ferguson (1986, 1989) in a braided gravel outwash channel. 394 

Looking at the complete GSD of the hydrographs demonstrated that the transition from 395 

partial mobility towards equal mobility was gradual and variable for each hydrograph. 396 

Since the peak flows modelled here were the same, differences in the GSDs likely reflect 397 
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inherent variability in braiding processes and bedload response. In all cases, active 398 

braiding occurred for much of the hydrograph duration so that bed configuration and bed 399 

texture constantly varied. Local scour, channel shifting, bar development, and avulsion 400 

may all cause temporal variation in bedload transport rates and sources of bedload even 401 

at constant discharge (Ashmore, 1988; Bertoldi et al., 2009; Hoey, 1992; Peirce et al., 402 

2018). For instance, there was a decrease in the D90 of hydrograph B (Figure 5) after the 403 

first four runs at peak discharge, possibly indicating a temporary decrease in the 404 

availability of coarse grain. This decrease in D90 in hydrograph B was also associated 405 

with ~23% decrease in both the morphological active depth and active width, highlighting 406 

the additional possible effect of morphological effects on particle mobility. During the 407 

subsequent hydrograph, hydrograph C, the morphology had shifted (Figure 3) through 408 

braiding processes, providing a fresh source of coarse grains.  409 

These results follow previous research that suggests that there is a range of ‘formative’ 410 

or morphologically significant discharges over which bedload is transported depending 411 

on the morphological units (e.g., primary and secondary channels, bars etc.) being 412 

considered, which could also contribute to the overlapping GSDs for different discharges 413 

(Figure 7) (Mao and Surian, 2010; Surian et al., 2009). The differences in the three 414 

hydrographs highlight the importance of sampling multiple hydrographs, even over a 415 

similar morphology and small range of discharges, to capture the variability in GSDs and 416 

antecedent conditions of flow and channel morphology (Kociuba and Janicki, 2015; 417 

Powell et al., 2001b). It also points to the need for further model experiments to evaluate 418 

the effects of hydrograph duration and shape, as well as the related inherent variability in 419 

braiding morpho-dynamics. 420 
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The fractional transport analysis indicated the largest grain sizes (> 5.6 mm) only became 421 

transported above 1.14 Ls-1 (Ω∗ = ~70) in the model. This discharge, which would 422 

represent approximately 8 m3s-1 in the prototype river, is only ~ 50 % of the channel-423 

forming (i.e., peak discharge) of 2.1 Ls-1 in the flume or ~15 m3s-1 in the prototype. These 424 

results align with observations by Surian et al. (2009) and Mao and Surian (2010) who 425 

found that substantial morphological change and bed material mobilization occurred in 426 

the primary and secondary channels of gravel-bed rivers at discharges as low as 20-50% 427 

of bankfull. Together, these results demonstrate that some gravel-bed braided rivers may 428 

transition to selective mobility (i.e., the mobilization of coarse grains) at lower discharges 429 

than single-threaded gravel-bed rivers which may need discharges as high as 80 % of 430 

the bankfull discharge before gravel grains are mobilized, due to the need to mobilize the 431 

coarser grains in the  surface layer (Ryan et al., 2002). In braiding rivers, the wide range 432 

of bed shear stress (Nicholas, 2000; Bertoldi et al., 2009) and local scour may produce 433 

high mobility at relatively low discharge in particular areas of the bed. Furthermore, as the 434 

threshold discharge between partial and selective mobility here was defined as 435 

approximately half of the channel-forming flow, the braided rivers modelled were 436 

dominated by selective mobility over almost all bed-mobilizing discharges. This is in 437 

contrast to the rather ubiquitous characterization  of gravel-bed rivers as being only 438 

partially mobile due to a large population of immobile coarse grains that may only be 439 

mobilized at very high flows (Haschenburger and Wilcock, 2003; Venditti et al., 2017) 440 

falling into Church’s (2006) category of “threshold channel 0.04+”.  441 

The relation between bed mobility and morphological active layer dimensions has not 442 

been thoroughly investigated for braiding rivers. In stable single-thread rivers, Wilcock 443 
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and McArdell (1997) and Haschenburger and Wilcock (2003) found that full surface 444 

mobilization (i.e. selective mobility) of a gravel-bed was associated with active layer depth 445 

of ~2D90. Similarly, Lisle (1995) found that the convergence of the bedload and bed 446 

material grain size was associated with large active layer thicknesses (e.g., 4-12D84) and 447 

mobilization of large portions of the streambed area. The results here agree well with 448 

Wilcock and McArdell (1997) so that below 1.14 Ls-1, when the bed is only partially 449 

mobilized and coarse grains are essentially immobile, the average morphological active 450 

depth was rarely (< 10 % of observations) greater than the 2D90 of 6 mm. Once 1.14 Ls-1 451 

was reached, the morphological active depth increased with discharge so that scour 452 

depths greater than 25 mm (7D90) were common above discharges of 1.65 Ls-1, 453 

promoting full mobilization of the coarse bed material with increasing flow strength, similar 454 

to the results of Lisle (1995). Furthermore, the modal scour depth during bedload 455 

transport was close to 2.5 mm regardless of discharge. This suggests that transitions 456 

towards selective mobility and increases in bedload are not just due to increases in local 457 

maximum scour depth, but also the increase in the total morphologically active area of 458 

the bed (i.e., the morphological active width). This idea is supported with recent findings 459 

by Gardner et al. (2017) who found that confluence scours, which are commonly the 460 

locations of deepest scour, only occupied 21 % of the active area of a modelled braided 461 

gravel river bed.  462 

From a visual inspection of the DoDs, the morphological active width expands and 463 

becomes more continuous along the channel with increasing flow strength (and see 464 

Peirce et al., 2018). Plots of the active width against discharge show a general threshold 465 

of 1.14 Ls-1, below which the active with is narrow (< 3% of the wetted width) and relatively 466 
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constant, and above which the active width expands linearly with increasing discharge to 467 

over 20% of the wetted width at high discharge. Overall, the results on morphological 468 

change indicate that areas of the bed do not remain immobile for long periods of time, so 469 

that the surface and subsurface are continuously being accessed and mobilized at 470 

relatively low discharges (> 1.14 Ls-1 in this case). Furthermore, increases in shear stress, 471 

while important for grain entrainment, may not be the only driver of bedload transport in 472 

morphologically-driven rivers like braided rivers. Again, a modal scour depth around 2.5 473 

mm regardless of discharge suggests that it is not just an increase in shear stress at 474 

higher discharges but the increase in the area experiencing shear stresses above critical 475 

that is important (Bertoldi et al., 2009). This idea complements the findings of 476 

Haschenburger and Wilcock (2003) who described the transition of a gravel-bed river 477 

from partial to selective mobility as active areas of the bed expanded, and Ashmore & 478 

Sauks (2006) and Bertoldi et al. (2009) who found that braided rivers accommodate 479 

increases in discharge by increasing wetted width (and therefore morphological active 480 

width) with less change in mean water depth and mean velocity.  481 

Finally, for the first time in braided river research, the relationship between morphological 482 

measurements of the morphological active depth and active width were compared to 483 

different grain size parameters for a large dataset. The results confirm that the movement 484 

of large grains, like D90, are directly linked to changes in morphology in response to 485 

discharge forcing, specifically the vertical expansion of active depth and lateral expansion 486 

of the active width. This is consistent with greater braiding activity occurring at higher 487 

discharges during which lateral bank erosion, bar migration, bed scour at anabranch 488 

confluences, avulsion, and other braiding processes are more active (Wheaton et al., 489 
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2013). Also, the increased area of active layer turnover, as shown in the morphological 490 

change data, differs from the largely vertical exchange and limited bed scour observed in 491 

stable single channels and straight-walled flumes (Ashmore et al., 2018). These results 492 

suggest that in morphologically dynamic gravel-bed braided rivers, increases in bedload 493 

transport and the coarse grain mobilization above the threshold discharge is mediated by 494 

the availability of a wide range of sizes at the surface and subsurface as well as and the 495 

constant changes in the morphological active layer providing access to new sediment 496 

sources, laterally and vertically within the channel.   497 

While these experiments provide interesting insights into the linkages between discharge, 498 

bedload grain size distributions and transport rates, and channel morphology in braided 499 

rivers, there are other considerations that should be investigated in the future. For 500 

example, while scale models have been vital for investigating grain size distributions and 501 

bed mobility relationships in gravel-bed rivers (e.g., Parker et al., 1982; Dietrich et al., 502 

1989; Wilcock and McArdell, 1993), models often require simplifications that might not 503 

perfectly reflect the natural prototype. In this case, the grain size distribution of the model 504 

was truncated below 0.25 mm to avoid cohesion effects. Additional studies should 505 

investigate the role of fine grains on the GSD and bedload transport rates in braided 506 

rivers, as fines are known to enhance the mobilization of coarse grains and rates of 507 

bedload transport (Iseya and Ikeda, 1987; Venditti et al., 2010). Furthermore, given the 508 

possible impacts of different hydrograph structures on experimental outcomes, additional 509 

work should be done investigating more hydrograph structures as well as long-term (e.g., 510 

seasonal and annual) hydrologic regimes with a larger range of discharges. While the 511 

data show no clear hysteresis in bedload, morphological change which is consistent with 512 
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recent hydrograph experiments of Redolfi et al., (2018), or bedload grain size, there is a 513 

possibility to examine the consistency and reasons for this effect in braiding rivers in more 514 

detail in the future. Finally, this research may be able to improve the numerical modelling 515 

of bedload transport and river morphodynamics rates in braided rivers (e.g., Williams et 516 

al., 2016b; Javernick et al., 2018). For instance, recent results from numerical morpho-517 

dynamic modeling of braiding suggest that bed mobility may have a substantial effect on 518 

braiding morphology and dynamics (Sun et al., 2015) and data like those collected in 519 

these experiments could be used for validation and testing of these fundamental 520 

processes. On the basis of the current results this could be extended to understanding 521 

the role of surface coarsening (or lack of it) and bed material grain size distribution on 522 

morphological active layer dimensions and bedload grain size distributions in gravel 523 

braiding rivers.  524 

Overall, the results point to a fundamental relationship between bed material mobility and 525 

morphological dynamics at varying discharge in some gravel braiding rivers. In order for 526 

significant morphological change to occur, as it does even at moderate discharges, much 527 

of the bed material needs to be mobilized. Therefore, the magnitude and frequency of 528 

morphological change are an indication of bed material mobility and without it active 529 

braiding would not occur (Ashmore et al., 2018). Specifically, the results of these 530 

experiments show that in braiding, full mobility of the median size occurs at moderate 531 

discharge but that large morphological change is associated with mobility of the coarse 532 

fractions. Limiting the mobility of the coarse fractions is then expected to reduce 533 

morphological dynamics and stabilize active braiding as shown recently by Mackenzie 534 

and Eaton (2017).  535 
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Conclusions 536 

Physical model experiments were used to explore the evolution of grain size distributions 537 

and bed mobility in gravel-bed rivers in complex multi-threaded braided systems. Given 538 

the challenges to collecting simultaneous bedload transport and topographic data in the 539 

field, a physical model made it possible to measure bedload transport rates and changes 540 

in morphology over three event hydrographs similar to those found in a pro-glacial gravel-541 

bed braided river. The model braided rivers transitioned from partial mobility to selective 542 

mobility at discharges above ~50% of peak discharge, and approached equal mobility at 543 

the highest (i.e., diurnal peak/channel-forming) discharges. This contrasts with stable, 544 

single-threaded gravel-bed rivers, which are normally dominated by partial mobility, even 545 

at bankfull discharges. The transition from partial mobility to selective mobility 546 

corresponded to the lower threshold for detectable morphological change and a 547 

substantial increase in bedload transport rates at approximately 50% of peak discharge, 548 

or dimensionless stream power (Lisle, 1995) of 70. Morphological change and bed 549 

material transport and mobility are closely connected as discharge changes. With 550 

increasing (decreasing) discharge the morphological active layer progressively expands 551 

(contracts) both vertically and laterally, with active layer depth reaching maximum values 552 

up to 9 times D90. The highest particle mobility states are associated with the highest 553 

discharge and the most intense rates and greatest extents of morphological change; the 554 

most active braiding occurs when coarse grains are mobilized and vice versa.  555 

These results contribute to the overall understanding of braided river morphodynamics by 556 

demonstrating the strong linkages between the thresholds for detectable morphological 557 

change, bedload transport rates, and coarse grain mobilization. Until now, there have 558 

Page 25 of 49

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

been no studies, in the field or flume, that have been able to link discharge variation and 559 

channel morphology with grain size distributions in gravel-bed braided rivers in this way. 560 

In turn, these results will have implications for assessing and modelling bedload transport 561 

and channel stability in braiding rivers, and show the importance of extending analyses 562 

of bedload dynamics to a wider range of channel types..  563 
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Graphical Information 

Title: Evolution of Grain Size Distributions and Bed Mobility during Hydrographs in Gravel-Bed 

Braided Rivers 

Authors: S. Peirce*, P. Ashmore, and P. Leduc 

Key findings: Investigation in a physical model of gravel-bed braided river indicated that 

bed mobility transitioned from partial mobility to selective mobility at discharges ~50% of 

peak discharge, and approached equal mobility at the highest (i.e., diurnal 

peak/channel-forming) discharges. The threshold between partial mobility and selective 

mobility coincided with a threshold for detectable morphological change and substantial 

increases in bedload transport rates.  
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