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Rates of planimetric change in a proglacial gravel-bed braided river: field measurement 

and physical modeling 

L. Middleton*1, P. Ashmore1, P. Leduc1, D. Sjogren2 

1 Department of Geography, University of Western Ontario, London, Ontario, Canada, 

N6A5C2 

*Corresponding author: lmiddle7@uwo.ca 

2 Department of Geography, University of Calgary, Calgary, Alberta, Canada 

Key Points 

• In a proglacial, gravel-bed, braided river the measured areas of planimetric 

change increases in relation to peak and total daily meltwater discharge above a 

threshold. 

• A physical model of the field site had very similar planimetric change area and 

threshold discharge as the field data and showed that the threshold discharge for 

gravel bedload is almost the same as the planimetric change threshold. 

• Morphological change and total bedload transport for a hydrograph correlate with 

planimetric change, and this raises the possibility that rate of planimetric change 

may be used as surrogate for bedload monitoring while also providing 

measurements of braiding dynamics over the full range of discharge.  
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Short Title: 8 

Rates of planimetric change in a braided river 9 

Key Points 10 

• In a proglacial, gravel-bed, braided river the measured areas of planimetric 11 

change increases in relation to peak and total daily meltwater discharge above a 12 

threshold. 13 

• A physical model of the field site had very similar planimetric change area and 14 

threshold discharge as the field data and showed that the threshold discharge for 15 

gravel bedload is almost the same as the planimetric change threshold. 16 

• Morphological change and total bedload transport for a hydrograph correlate with 17 

planimetric change, and this raises the possibility that rate of planimetric change 18 

may be used as surrogate for bedload monitoring while also providing 19 

measurements of braiding dynamics over the full range of discharge. 20 

  21 
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Abstract 22 

Planimetric change was measured on daily hydrographs over two meltwater seasons 23 

using time-lapse images of the proglacial, gravel, braided, Sunwapta River, Canada. 24 

Significant planimetric change occurred on 10-15 days per year. Area of planimetric 25 

change correlated with peak and total daily meltwater hydrograph discharge. A clear 26 

threshold discharge can be identified below which no planform activity occurs, an 27 

intermediate range over which change occurs conditionally, and a peak flow range at 28 

which significant change always occurs. Field conditions were reproduced in a physical 29 

model in a laboratory flume. Photogrammetric DEMs of bed morphology and 30 

measurements of bedload output were made for each hydrograph experimental run. 31 

The physical model results for planimetric change had a threshold discharge for 32 

change, and trend with discharge, similar to the field data. The model data also show 33 

that planimetric change correlates strongly with volumes of erosion/deposition 34 

measured from successive DEMs, and with bedload transport rate. The relation 35 

between planimetric change and topographic change is also apparent from previous 36 

cross-section surveys at the field site. The results highlight the planimetric dynamics of 37 

braiding rivers in relation to discharge forcing, and the relationship between planimetric 38 

change, morphological change, and bedload transport in braided rivers. This also points 39 

to the potential use of measurements of planimetric change from time-lapse imagery as 40 

a low-cost method for high-frequency monitoring for braiding dynamics and also a 41 

surrogate for bedload transport measurement.  42 

Keywords: braided river, planimetric change, bedload transport, experimental 43 

modelling  44 
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Introduction 45 

Gravel-bed braided river planform is characterized by rapid reconfiguration at high 46 

discharge related to highly active unit processes of bar formation, migration and 47 

erosion, local scour, channel bifurcation and avulsion (Ashmore, 1982, 2013). While the 48 

processes of braiding have been well-described, the quantification of rates of channel 49 

planform change over a range of discharges to characterise braiding dynamics has not 50 

been quantitatively documented. Time-lapse monitoring has provided useful insights 51 

into braiding processes over a range of discharge (Hicks et al., 2000; Bertoldi et al., 52 

2010) but planimetric changes have seldom been explored systematically. To date, 53 

studies monitoring braided planform have focussed on detailed bar-scale elements at 54 

high frequency (Arscott et al., 2002; Bertoldi et al., 2012), or more general large-scale 55 

changes at a low frequency over years/decades to document channel changes 56 

(Warburton et al., 1993; Luchi et al., 2007; East et al., 2017).  57 

Channel changes over multiple years/decades have also been used to construct long-58 

term sediment budgets (Martin and Church, 1995; McLean and Church, 1999; Ham and 59 

Church 2000; Gaeuman et al., 2003). These studies have mapped wandering and low-60 

intensity braided channels over multiple year time intervals to infer bedload volumes 61 

using aerial imagery and topographic surveys. Short-term planform dynamics of gravel-62 

bed braided rivers related to single-events have not been documented and measured in 63 

detail with repeated, systematic observations over a range of known event discharge. 64 

Recent advances in high resolution mapping of river morphology have been applied to 65 

braiding rivers to document reach-scale volumetric sediment budgets along with 66 

information on planform dynamics and extended to estimates of bedload transport rate 67 
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and its spatio-temporal variation (Ashmore and Church, 1998; Bertoldi et al., 2010; 68 

Wheaton et al., 2013; Williams et al., 2015; Mao et al., 2017; Vericat et al., 2017). 69 

These data sets are beginning to form a basis for analysis of braided river 70 

morphodynamics and for computational model development (Ziliani et al., 2013; 71 

Williams et al., 2013, 2016; Javernick et al., 2014, 2016). However, hyper-resolution 72 

mapping of full topographic change in a braided river reach remains a time-consuming 73 

and technically challenging exercise (Vericat et al., 2017) and data sets are still limited 74 

in number and temporal frequency.  75 

The studies of morphological change and reach-scale budgets demonstrate the close 76 

association of these processes with the local bedload flux. This provides an alternative 77 

to direct measurement or prediction of braided river bedload transport rate that has long 78 

been problematic (Recking et al., 2016). Davies (1987, p. 794) encapsulated the 79 

problem by describing braided river channels as a varying number of single channels, 80 

each with its own high degree of variability in geometry and bedload transport rate, and 81 

each with a flow rate that is an interdependent and time-varying proportion of the total 82 

river flow. Davies (1987) suggested that planimetric properties of braided channels are 83 

an easily measured and monitored aspect of braided river morphology, and that 84 

bedload may correlate with planform configuration and dynamics. Braided channels are 85 

laterally unstable and mobile, and this lateral mobility makes morphological change and 86 

associated bedload transport detectable as a planimetric change. This idea seems not 87 

to have been systematically pursued over a short temporal frame in braided rivers. 88 

Some previous studies have found qualitatively that temporal fluctuations in bedload 89 

relate to particular morphological processes such as bar migration and planform 90 
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switching, that are expected to have clear planimetric signals, especially in braided 91 

rivers (Ashmore, 1991; Hoey and Sutherland, 1991; Bertoldi et al., 2009). This shows a 92 

possible association between planform change, morphologic change, and bedload flux 93 

in a gravel-bed braided river. Planimetric changes may be monitored much more easily 94 

than bed topography, even with the new technologies available for the latter. Therefore, 95 

Davies’ proposition that planimetric change may be useful surrogate for bedload 96 

transport measurement is worth pursuing in more detail and doing so would, in the 97 

process, build observations on braided river planform processes and rates of change 98 

dynamics over a range of discharge. Understanding the intrinsic relationships among 99 

discharge and planform change and extending them to topographic change and 100 

bedload would help further understanding of braiding morphodynamics.  101 

Gravel-bed braided rivers are common in proglacial environments and some of the 102 

existing understanding of braided river morphodynamics and bedload comes from such 103 

rivers (Goff and Ashmore 1994; Meunier et al., 2006; Liu et al., 2007). The regular 104 

diurnal hydrographs of proglacial rivers provide frequent bed mobilizing events during 105 

summer meltwater periods. This provides a useful setting for natural experimental 106 

investigation of braided river planform dynamics in general, and in relation to proglacial 107 

flow regimes in particular. In this paper we investigate planform dynamics in a proglacial 108 

gravel-bed braided river using high frequency (half-hour) field monitoring of planform 109 

dynamics and discharge. We connect planform dynamics to morphological change 110 

(following usage of Williams et al. (2012) we use ‘morphological change’ to refer to the 111 

full 3D river bed dynamics and the associated morphological units) and bedload by 112 

extending the study using physical modeling of representative hydrographs from the 113 
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field site in a laboratory river tray. The field monitoring had three objectives: 1. develop 114 

a relationship between rate of planimetric change and discharge over many daily 115 

hydrographs in a proglacial gravel braided river; 2. assess the frequency and time 116 

sequence of planimetric change during two, summer meltwater seasons, and 3. 117 

compare the extent of planimetric change (active width) at the field site with 118 

measurements of topographic active width from previous studies at the same site 119 

(Ashmore et al., 2011). 120 

In the physical model, morphological change and bedload transport data were acquired 121 

that could not be collected at a daily frequency, over an extended period in the field 122 

setting. The physical experiments were run to extend our inquiry to three further 123 

objectives: 4. compare areas of planimetric change between field and model settings 124 

and assess the possible discrepancy between planimetric change and the areas and 125 

volumes of erosion and deposition measured from high resolution DEMs of the model; 126 

5. assess whether planimetric change correlates with bedload transport rate and if there 127 

is any significant ‘background’ bedload flux occurring in the absence of planimetric and 128 

morphological change and consequently 6. assess the potential for using planimetric 129 

change as a surrogate for bedload transport rate in field monitoring of gravel-bed 130 

braiding rivers. 131 

Data Collection 132 

Field Site 133 

Field data were collected on the Sunwapta River in Jasper National Park, Alberta, 134 

Canada. At the study site, the Sunwapta River is a small (approximately 120 m overall 135 

river width) proglacial, gravel-bed braided river with a braiding intensity of 3-5 at 136 
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morphologically active discharges. The Sunwapta originates at the outlet of Sunwapta 137 

Lake, draining the Athabasca Glacier (Figure 1). The study reach has a surface grain 138 

size D50 of 41 mm and D90 of 85 mm. The surface and subsurface grain size 139 

distributions are very similar based on 19 aggregated surface and subsurface samples 140 

(truncated at 8 mm) taken across the river with 2500 stones in the surface sample and 141 

bulk subsurface sample with total mass of approximately 1500 kg. River gradient is 142 

approximately 1.5% (Chew and Ashmore, 2001). Previous studies at this site beginning 143 

in the early 1990s (Goff and Ashmore, 1994; Chew and Ashmore, 2001; Chandler et al., 144 

2002; Ashmore and Sauks, 2006; Ashmore et al., 2011) provide background on the 145 

river morphology and comparative data on river topography, hydraulic geometry, 146 

channel planform processes, and morphodynamics. 147 

The bulk of the annual flow, and the annual maximum flows, of Sunwapta River occur 148 

during the summer melt-water period from late June to early September. The overall 149 

channel planform and bed topography change over this time period, especially during 150 

peak flow periods in July and August based on repeat daily cross-section re-surveys 151 

and daily imagery for periods of 10-20 days in 1989, 1993, 1999 and 2003 (Goff and 152 

Ashmore, 1994; Ashmore et al., 2011). 153 

Study Reach Discharge 154 

Planimetric change was measured throughout the summer meltwater season from June 155 

to September 2012 and 2013. The diurnal ice and snow melt cycle during this period 156 

produces a consistent daily hydrograph repeated on a regular cycle each with a 24-hour 157 

time base. Individual daily hydrographs could therefore be viewed as separate flow 158 

events, each capable of producing planimetric change. Observed flows during 2012 and 159 
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2013 were representative of the typical summer melt-water flows on record for the 160 

Sunwapta River, dating back to 1948 (Figure 2a), and cover the full range of discharge 161 

in the river. The regular diurnal discharge cycles are superimposed on longer period 162 

(multiple days) phases of higher and lower flows related to synoptic weather events 163 

during the summer (Figure 2a).  164 

The Water Survey of Canada (WSC) operates a gauging station (07AA007) at the outlet 165 

of Sunwapta Lake (Figure 1), which provided a continuous stage and discharge record 166 

at 15-minute intervals, seasonally from May – October. The braided study reach 167 

receives an additional input of flow from the Dome Glacier meltwater stream (Figure 1), 168 

which is not accounted for in the WSC gauge record. To account for the additional input, 169 

a total of 175 discharge measurements collected downstream of the Dome confluence 170 

were correlated with WSC discharge. Discharge was measured through velocity-area 171 

gauging, conducted in the meltwater seasons of 2015 and 2016 using flow meters at a 172 

confined section of the study reach and at the Dome Glacier meltwater stream. 173 

Additionally, a time-lapse camera was installed to monitor the Dome Glacier melt-water 174 

stream during the entire melt-water season of 2015. Timing of flow variation over both a 175 

diurnal and weekly temporal scale coincides between the Dome melt-water stream and 176 

Sunwapta River (Leduc et al., 2017). Using the discharge analysis of Ashmore and 177 

Sauks (2006) for this site, and additional discharge measurements from 2015 and 2016, 178 

the rating curve from the combined data gives a continuous discharge record (± 0.50 m3 179 

s-1) for the summer meltwater season (Figure 2b).  180 
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Time-Lapse Image Collection  181 

Time-lapse images were taken with a Reconyx Hyperfire 650 camera, installed on a cliff 182 

ledge approximately 90 m above and 190 m horizontally away from the middle of the 183 

river bed (Figure 1). This camera location and geometry gave images covering the full 184 

width of the river and channel length of about 100 m on the river bank closest to the 185 

camera. The camera was programmed to take a picture every 30 minutes beginning at 186 

0600 hours and ending at 2200 hours each day, capturing the daily minimum and peak 187 

flow (which occur at approximately 08:00 and 19:00 respectively), but portions of the 188 

falling stage occurred at night. The high frequency of images allowed the river planform 189 

to be captured at a comparable stage on successive days. 190 

Planform Measurement 191 

Analysis of images was used to produce daily planimetric change measurements for 192 

each daily hydrograph. Each diurnal discharge cycle was analyzed as an individual flow 193 

event. It was apparent that any planform change occurred over a limited time each day 194 

and not during the daily low flow, even during the highest flow periods. Therefore, these 195 

diurnal hydrographs are separate planform change events. 196 

The oblique images were ortho-rectified using ten ground control targets, visible in the 197 

initial photographs for each year, surveyed with high-precision dGPS (cm-dm, Model: 198 

Trimble R8, Real-time Kinematic surveying, CGG2013, NAD83 [CSRS], Orthometric 199 

Heights). The number of pixels between each of the target points in an oblique 200 

photograph was used to derive a pixel-meter (distance) relationship for the entire image. 201 

Distances between each of the ten ground control points in the rectified images and 202 
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ground distances (45 measurements) are strongly correlated (R2: 0.99), with a standard 203 

error of estimate of 0.014 m. 204 

Planimetric change measurement for a given diurnal hydrograph was based on 205 

selecting pairs of photographs on successive days at the lowest recorded comparable 206 

discharge during the morning low flow period. Using images at low flows minimized 207 

apparent effects of stage differences (which could mask real planform changes) and 208 

maximized the area of river bed visible for planform mapping. Five day-to-day 209 

comparisons with no similar discharge on the two days were removed from analysis. 210 

Visual assessment and measurement of daily planimetric changes gave rates of 211 

planimetric change and information on typical processes of change: lateral and mid-212 

channel bar formation, accretion, migration and erosion; bank retreat and accretion; and 213 

channel avulsion and migration. A 96 x 120 m grid, with 6 x 6m grid squares 214 

superimposed on the rectified images aided in digitizing visible changes in the river 215 

planform. Individual polygons of planimetric change were mapped using ImageJ 216 

software (Schneider et al. 2012) and summed to determine the total area of planimetric 217 

change. Repeat measurements from 20 diurnal hydrographs to check reliability and 218 

precision had a high degree of similarity between the original and re-measured areas of 219 

change (R2: 0.90, with a standard error of estimate of 0.019 m2). 220 

Peak daily discharge is used in the analysis of planimetric change. Some previous work 221 

on event scale morphological change has used total flow volume. (Haschenburger, 222 

2013; Wheaton et al., 2013; Papangelakis and Hassan, 2016) but the daily meltwater 223 

hydrographs all have a similar shape and time base, and consequently peak discharge 224 

and total discharge are strongly correlated (R2: 0.94 and 0.91 for the two years, with a 225 
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standard error of estimate of 0.016 m3 s-1 and 0.029 m3 s-1). The maximum daily 226 

discharge is therefore a measure of peak stream power and a reliable indicator of total 227 

daily energy expenditure driving channel planform change. 228 

Time-lapse imagery allowed changes in the river planform to be documented 229 

continuously throughout the meltwater season, across the full range of known flows. As 230 

an example of the raw image series and planform dynamics, see the supplementary 231 

information for this paper showing a time-lapse video of a 15 day flow period on the 232 

Sunwapta River from July 7-22, 2012. Time and date are in the top, right hand corner of 233 

the video. 234 

Physical Model 235 

The model experiments were completed after the collection and analysis of the field 236 

data using a river-modelling flume and based on a Froude-scaled physical model with a 237 

length scale of approximately 1:33 of the Sunwapta River reach, based on geometric 238 

scaling of the grain size distribution. Froude-scale modelling is used in gravel-bed 239 

braided river research to preserve geometric and dynamic similarity in the model 240 

relative to the full-scale river (Ashmore and Parker, 1983; Ashmore, 1988; Young and 241 

Davies, 1990; Hoey and Sutherland, 1991). In particular non-dimensional bed shear 242 

stress is the same in model and full scale river which preserves bed particle mobility 243 

and related morphodynamic processes (Ashmore, 1982; Peakall et al., 1996; Young 244 

and Warburton, 1996; McKenna Neuman et al., 2013; Redolfi et al., 2016). The lower 245 

limit of the grain size distribution was truncated so that grains smaller than 0.18 mm 246 

(equivalent to approximately 8 mm in the field) were excluded because the scaled-down 247 

portions of the finer field grain sizes may affect bedform and dynamic similarity of the 248 
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model (Young and Warburton, 1996; McKenna Neuman et al., 2013). The median grain 249 

size of the flume sand was 1.18 mm and the D10 and D90 were 0.32 mm and 3.52 mm 250 

respectively. The model dimensions were 18.3 x 3 m with the gradient set to 1.5%, 251 

equivalent to the slope at the study reach. The initial channel configuration was a single, 252 

straight, channel from which a braided morphology self-formed under a constant 253 

discharge (see also Peirce et al., 2018). A series of 3 different hydrograph experiments, 254 

each with a peak of 2.1 l s-1, were run prior to the hydrographs described in this paper. 255 

The model is not an exact replica of the channel pattern in the field at any particular 256 

time (which varies in any case) but is expected to give braiding morphology and 257 

dynamics that model the characteristics of the field site. 258 

The scaled model hydrographs reproduced daily hydrographs from the Sunwapta River, 259 

with peak discharges above the threshold for planimetric change. A sequence of four 260 

daily hydrographs with different peak discharges was run three times, for a total of 12 261 

hydrograph experimental runs (Figure 3). The 1:33 Froude-scaled model yields a 262 

discharge scale of 1:6250 giving peak discharges of the four hydrograph experiments of 263 

1.3, 1.6, 2.2 and 2.9 l s-1, equivalent to a peak of 8, 10, 14, and 18 m3 s-1 respectively, 264 

on the Sunwapta. The time base of the hydrographs assumes a Froude time scale of 265 

the square root of the length scale. Bedload output at the downstream end was 266 

continuously recirculated to the upstream end of the model river, maintaining an overall 267 

sediment balance during each experimental run. 268 

Planform Measurement 269 

Planform and bed topography were surveyed using two digital SLR cameras mounted 270 

on a trolley on the rails about 2.9 m above the flume. The convergent geometry of the 271 
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cameras across the flume on either side of the trolley gave ~80 % lateral overlap 272 

between images from the two cameras. Surveys of the whole flume used a longitudinal 273 

overlap of 60% resulting in an average of 100 photos (50 from each camera) to cover 274 

the entire length of the flume with a pixel resolution of approximately 1 mm on the model 275 

river bed. Planimetric measurements used a stitched orthomosaic of a 9.5 x 3 m area of 276 

the model river processed in Agisoft Photoscan 1.0.0.1 Standard (Version 1.2.6) 277 

(Software) (2016*) during the rising and falling stage, and peak discharge of each 278 

hydrograph. Measurement of the area of planimetric change used a method equivalent 279 

to that used in the field images.  280 

During experimental runs, time-lapse images were also taken with two Olympus C5060 281 

cameras with wide angle lenses, located in a fixed position 3 m vertically above the 282 

central axis of the flume and 6m apart. These images provided a high frequency (1 283 

minute) time lapse record of each experiment which is included in the supplementary 284 

information for this paper. 285 

Morphological Measurement 286 

Agisoft PhotoScan was also used to generate DEMs from images of the drained bed at 287 

the beginning and end of each hydrograph (Kasprak et al., 2015; Morgan et al., 2016; 288 

Peirce et al., 2018). DEMs of Difference (DoD) of successive DEMs gave 289 

measurements of areas and volumes of morphologic change during each hydrograph. 290 

DoD processing began with application of a simple threshold with all elevation change 291 

values less than the threshold (3σ) removed. Application of a dilation filter modified the 292 

simple threshold map by reducing noise and increasing continuity between areas of 293 

change. The dilation filter used a binary mask from the threshold analysis to include 294 
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areas of change of less than 3σ that are within a radius of 15 cells (22.5mm) (based on 295 

trials with different radii) adjacent to change areas above the threshold (see also Peirce 296 

et al., 2018). 297 

Bedload Transport Measurement 298 

Bedload samples were collected in five baskets at the downstream end of the flume, 299 

accumulating sediment for one minute at each hydrograph step, for a total of 141 300 

samples. Samples were dried, weighed and sieved to obtain bedload transport rates 301 

and particle size distributions of bedload. The total bedload weight transported during a 302 

hydrograph was calculated by multiplying the weight from each one-minute sample over 303 

the total time at the hydrograph stage and summed over the hydrograph.  304 

Results 305 

Field Data, Sunwapta River 306 

Daily peak discharges ranged from under 1.5 m3 s-1 to over 21 m3 s-1, covering the full 307 

range of observed historical meltwater peaks on the river. Measurable and variable 308 

planform change occurred on multiple days each year (Figure 4). Of the 216 daily 309 

planimetric measurements made in the two years (113 in 2012 and 103 in 2013), 158 310 

daily hydrographs showed no observable planimetric change. In both years the most 311 

pronounced areas of planimetric change were activated in the first high flow period of 312 

the season in early to mid-July, even though equivalent flows also occurred later in the 313 

season (Figure 4). Planimetric change tended to occur in groups of sequential days 314 

(typically between 5-7) all having daily high flows near the upper range for the season. 315 

The bulk of significant planform change occurred on those 10-15 days each year 316 

(Figure 4). 317 
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Measured areas of daily planform change increased in relation to discharge above a 318 

daily peak discharge of approximately 11 m3 s-1 (Figure 5). Less than 10% (10 days 319 

total) in which peak flow was 11 m3s-1 or lower showed any observable change and 320 

these were all very minor, with a maximum area of change, less than 1% (80 m2) of the 321 

wetted area of the channel. 322 

Above a peak daily flow of 11 m3 s-1 planimetric change increased with increasing 323 

discharge (Figure 5). For hydrographs with daily peak discharge between 11 and 17 m3 324 

s-1 occurrence of planimetric change was inconsistent, with extensive areas of planform 325 

change on some days but none on others. Daily peaks exceeding 17 m3 s-1 always 326 

produced large areas of planform change but the total area of change was variable 327 

(Figure 5).  328 

The scatter in the relationship between planimetric change and-discharge may be partly 329 

the result of secular variability within groups of days. Planimetric change tends to be 330 

more pronounced during the initial two or three days of rising flow sequences, and also 331 

high flows near the beginning of the meltwater season appear to produce more 332 

planform change than equivalent flows later in the season (Figure 4). Planimetric 333 

change therefore seems to be partly contingent on timing and the braiding pattern 334 

changes rapidly during initial high flow phases but then settles into a more stable phase. 335 

This also partly reflects the inherent variability in braiding dynamics in which temporal 336 

variability in process rates occur even under experimental constant-forcing discharge 337 

(Ashmore, 2013). 338 

The style of planimetric change differs with discharge conditions. Planimetric changes 339 

below a daily peak of 14 m3 s-1 were minor; primarily small areas of bar and bank 340 
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erosion potentially leading to the local lateral migration of the channel or minor 341 

modification to bars (Figure 6a). Above 14 m3 s-1, larger scale changes in river planform 342 

occur, including planform shifting across the entire river width from channel avulsion, 343 

confluence migration, channel expansion and migration, and large areas of bar erosion 344 

and deposition (Figure 6b). This is clearly seen in the time-lapse video from the field site 345 

in the Supplementary Material. 346 

The use of time-lapse imagery in the field made it possible to analyze the entire four-347 

month meltwater flow season. Measurements of planimetric change and areas of 348 

change from this study could then be compared with previous surveys of topographic 349 

change at this site. Cross-section surveys done in 1999 and 2003 at this site allowed a 350 

comparison between daily topographic change and areas of planimetric change at 351 

different discharges. The previous topographic measurements consist of 10-12 repeat 352 

cross-sections per day in the same reach as the time-lapse planimetric changes 353 

reported above (Ashmore et al., 2011). The active width (lateral extent of bed elevation 354 

change) was measured for each daily hydrograph over 2-3-week periods in 1999 and 355 

2003. Areas of planform change were made non-dimensional using the average wetted 356 

width at the daily peak. Dimensionless stream power (ω∗) was used to develop a 357 

potential universal relationship across different scales and types of braided rivers. 358 

Dimensionless stream power was calculated as defined by Bertoldi et al. (2009):  359 

�∗ =
��

���∆
��


 

(Eq1) 

where Q is the discharge, S is the slope, b is the average wetted width, g is the 360 

acceleration due to gravity and D50 is the median grain size.  361 
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The results show a threshold dimensionless stream power for active width, and 362 

variability in the correspondence between planimetric and cross-section topographic 363 

change (Figure 7). In both cases, there is variability around the relatively small range of 364 

dimensionless stream power, and the planimetric data extend the existing relationship 365 

to lower stream power while showing a slightly lower threshold condition compared to 366 

the topographic change. This is possibly related to a higher change detection threshold 367 

in the topographic surveys. 368 

Physical Model Results 369 

The model data cover the full width of the river and a length equivalent to 2.7 times that 370 

in the field images. To compare how representative the shorter reach measurements in 371 

the field are relative to the longer reach possible in the lab, planimetric measurements 372 

were also made over three smaller blocks, equivalent to the reach length in the flume. 373 

Measurements were scaled by the reach length to provide a metric independent of 374 

reach length. 375 

The physical model results are closely comparable with the field data when scaled 376 

(Figure 8). Hydrographs with peak discharges of 1.6 l s -1 (equivalent to 10 m3 s-1) and 377 

less showed very limited planimetric change (less than 5% of the total surveyed area) in 378 

the model, so that the range of threshold discharge for detectable planimetric change 379 

was very similar to that in the field. Types of planform changes were similar in character 380 

to those observed in the field, being mainly minor isolated areas of bank or bar erosion 381 

along the primary channel. The hydrograph experiments with a peak discharge of 2.22 l 382 

s -1 (equivalent to 14 m3 s-1) and higher produced larger areas of planimetric change. As 383 

in the field results, these changes occurred across the entire length and width of the 384 
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river area. The model results tend to be at the higher end of the range of planform 385 

measurements observed and one reason may be that the clear water in the model 386 

allowed identification of change areas that would be submerged by the turbid water in 387 

the field. The greatest difference is seen in the range of 11-16 m3 s-1 (Figure 8) where 388 

no planimetric change occurs in some cases but not in the smaller sample size in the 389 

model experiments in this discharge range. 390 

Bedload Transport Rates vs Planform and Morphological Change 391 

Total bedload transport mass for a hydrograph event increases with peak discharge 392 

(Figure 9a) with a threshold discharge for bedload transport similar to that for the 393 

planimetric change. The result shows that there is negligible bedload transport for the 394 

gravel size fraction independent of measurable planimetric change. Consequently, there 395 

is also a close correlation between the area of planform change and bedload transport 396 

rate (or mass) for a hydrograph (Figure 9b, c). Planimetric change alone therefore may 397 

be a reliable approximation of bedload transport for an event hydrograph. This 398 

relationship may be modified however, in circumstances when the main channel is 399 

confined against the flume wall (or equivalent condition in the field) and the erosion-400 

deposition exchange of active braiding is modified by pronounced local scour. This was 401 

the case for the two highest points on Figure 9b so that the planform-bedload 402 

relationship, including the bedload discharge threshold, appears to change in these 403 

circumstances. 404 

Volumes of morphological change (from DEMs of difference) and bedload transport 405 

showed a threshold discharge of ~1.6 l s-1 (equivalent to 10 m3 s-1) similar to that of 406 

planimetric change, below which morphological change and bedload flux were 407 
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negligible. Volumes of morphological change and the total bedload transport mass both 408 

were found to have a positive, significant relationship with simultaneous measurements 409 

of the area of planform change (Table 1). 410 

Total volume of morphological change also shows a strong correlation with peak 411 

hydrograph discharge and threshold discharge, similar to that for the planimetric change 412 

and bedload (Figure 10a). The areas of morphological change measured from DEMs of 413 

Difference for each hydrograph (Figure 10b) show coherent spatial patterns that are 414 

distributed over the entire channel area along the main anabranches of the braided 415 

channel. As peak hydrograph discharge increases (Figure 10b), the few small scattered 416 

areas of change apparent only along the main channel at low peak discharge (Runs 4 417 

and 5, Figure 10b), expand along the main channel, with areas of alternating erosion 418 

and deposition. At the two higher peak discharges the areas of change also expand 419 

laterally, enlarge (reflecting larger scale bar and bank erosion), become more 420 

continuous along the channel, and activate secondary channels in the braided network 421 

as full active braiding begins to occur in the entire channel. 422 

The extent and spatial pattern of areas of change measured from planimetry and DEMs 423 

of Difference correlate closely, as do areas and volumes of change (Figure 11). 424 

However, there are some differences in detection of planimetric and morphological 425 

change, such that planimetric changes tend to be underestimated relative to change 426 

areas from the DEMs of Difference. The planimetric measurements underestimate the 427 

area of change from a DoD by an approximate factor of 2, even though they are well 428 

correlated (Figure 11b). A major source of difference appears to be that the DoD area 429 

included areas of erosion and deposition along the channel bed, under the water 430 
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surface that do not appear as obvious planimetric shifts in the orthoimages from which 431 

planimetric change was measured. 432 

One approach to using planimetric (or morphologic) change data to estimate bedload in 433 

braided rivers is to combine the mass of material mobilized with the path length 434 

(distance of movement from erosion to deposition site during a transporting event) to 435 

derive an event bedload transport rate (Ashmore and Church, 1998; Church 2006; 436 

Kasprak et al., 2015, Mao et al., 2017). Path length is usually assessed using tracer 437 

particles, but data and general predictions of path length are sparse. An alternative to 438 

direct tracing of particles is to invert the bedload equation to yield the path length 439 

necessary for the known relation between mobilized sediment mass and bedload 440 

transport rate. With a known bedload transport rate, and volume of erosion, the 441 

equation can be rearranged to determine estimates of the path length: 442 

��=�� �/��   

 

(Eq2) 

Where �� is the estimated path length (m), �� is the known transport rate (g/min), � is the 443 

reach length multiplied by time (m*min) and �� is the volume of erosion (m3). Figure 12 444 

shows this path length value for the hydrographs from the physical model. The range of 445 

path lengths is similar for each of the three lowest hydrographs of 0.5–2 m but is higher 446 

(3-5 m) for the highest peak discharge at which morphological and planimetric change is 447 

most extensive. The higher values are similar to the length of the largest braid bars in 448 

the physical model braided channel and this supports the idea that under active braiding 449 

path length may be similar to bar spacing (Pyrce and Ashmore, 2003; Church, 2006; 450 

Hundey and Ashmore, 2009; Kasprak et al., 2015). 451 
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Particle size analyses for the bedload samples also allows an assessment of particle 452 

mobility at different transport rates and planimetric change rates. Bedload transport was 453 

concentrated during the highest flow periods within each hydrograph (as was 454 

planimetric and morphological change) and was markedly higher in the three 455 

hydrographs with the highest peak flow (C) (Figure 13a). The exception was the final 456 

hydrograph at the lowest peak (D), during which the channel scoured deeply against the 457 

flume wall close to the flume outlet and produced substantial bedload locally at the 458 

outlet (see above). The median grain size of individual bedload samples showed no 459 

clear trend in relation to discharge or the mass of bedload transported but shows a 460 

slight tendency to increase at peak flow and higher transport rate (Figure 13a, lowest 461 

panel and 13b) and matches the D50 of the bed material in the model (i.e. full mobility). 462 

The D90 showed clearer trends with an increase during the peak flow phases (Figure 463 

13a, lower panel) and with larger sample mass (transport rate) (Figure 13b) increasing 464 

from 1.5 mm to almost 4 mm between the lowest and highest discharges and transport 465 

rates. At the highest transport rate, D90 is very close to that of the bulk size distribution 466 

of the bed material, so that this coarse fraction is also at or close to full mobility during 467 

the most active planimetric change periods (see Mueller and Pitlick, 2014; Peirce et al., 468 

in press). 469 

Discussion 470 

The results demonstrate, using high frequency time-lapse imagery over two years, that 471 

the rate of planimetric change in a proglacial gravel-bed braided river increased 472 

progressively with peak (and total) diurnal hydrograph discharge. A distinct threshold of 473 

peak daily discharge is apparent below which planimetric change was negligible. 474 
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Physical model experiments reproducing a sequence of hydrographs from the field site 475 

showed the same relationship between planimetric change and discharge, including a 476 

very similar threshold for detectable change. Threshold discharge for bed elevation 477 

change mapped from photogrammetric DEMs, and the bedload transport rate in the 478 

model is very similar to the threshold discharge of planimetric change. There may be 479 

small areas of bed erosion-deposition that are not detectable in planimetric mapping. 480 

The results from this study provide a larger data set, and experimental data, supporting 481 

the study of Bertoldi et al. (2010) showing associations between discharge, planform 482 

change, topographic change, and relative bedload flux in the gravel-bed, braided 483 

Tagliamento River, Italy.  484 

Bertoldi et al. (2010) identified two different scales of planform and morphological 485 

change associated with low and high discharge events on the Tagliamento River. Small 486 

amounts of localized bank erosion and bar deposition, primarily in the main channels, 487 

occurred during events with small amounts of morphological change. Much larger 488 

events triggered river-wide planform reconfiguration through avulsion and major bar 489 

shifts. The study of Hicks et al. (2002) also noted two different scales of planimetric and 490 

morphological change associated with bankfull floods and the following reworking by 491 

smaller floods on the Waimakariri River, New Zealand. Time-lapse imagery, taken every 492 

20 minutes, was used to continuously monitor planform dynamics, highlighting the 493 

difference between large-scale changes and transport of large gravel sheets at high 494 

floods, and smaller changes within the channel as the flow receded and during smaller 495 

flow events. The Tagliamento River and the Waimakariri River are larger-scale braided 496 

rivers (braid plains are 1.5 km and 1 km wide respectively) and experience a different 497 
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flow regime, dominated by larger rainfall floods (highest peaks analyzed: ~ 1700 m3 s-1 498 

and 840 m3 s-1 respectively). Our results suggest a similar change in planform 499 

processes between lower magnitude and higher magnitude events, but the data on 500 

planimetric change indicate no clear break in rates of planform change across a range 501 

of discharge above the threshold discharge for initiating planimetric change.  502 

The results add considerably to previous attempts to study discharge-related changes in 503 

braided river planform and bed morphology and extend the results to demonstrating the 504 

relationship between planimetric change and bedload transport rate. This supports 505 

Davies’ (1987) proposition that a relationship might exist between bedload transport and 506 

planimetry of braided rivers. The outcome is also consistent with expectation from 507 

previous work that bedload transport can be estimated in gravel braided rivers (and 508 

other gravel-bed river morphologies) using morphological change (Ashmore and Church 509 

1998; Church, 2006; Vericat et al., 2017) but importantly demonstrates that planimetric 510 

change alone may give reliable estimates of bedload along with analysis of processes, 511 

patterns, and rates, and their spatio-temporal variation. The concept is analogous to 512 

that of using bend migration rates for estimation of long-term bedload transport rates in 513 

meandering rivers (see Ashmore and Church, 1998).  514 

In some previous work, planform change has been used as part of interpretation of 515 

morphological change from cross-sections or DEM data (Goff and Ashmore 1994; 516 

Bertoldi et al., 2010; Williams et al., 2014). Recent research has focussed mainly on 517 

defining detailed bed morphology and morphological bedload budgeting related to 518 

technical developments for field measurement from ‘hyper resolution’ DEMS for bedload 519 

budgeting and as a basis for numerical model assessment (Wheaton et al., 2013; 520 
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Williams et al., 2014; Vericat et al, 2017). Combining these kinds of studies with 521 

planimetric measurements may yield valuable insights and reliable predictions of the 522 

morphodynamics of gravel braided rivers. This requires more extensive data sets and 523 

generalisation of empirical relationships, but planimetric change monitoring, possibly 524 

combined with predictions of reach-scale active layer depth (McLean and Church, 1999; 525 

Ashmore et al., 2018) presents one possible practical approach for surrogate bedload 526 

monitoring measurements. The empirical correlation between planimetric change and 527 

bedload has a physical basis because the planimetric change and total mobilized mass 528 

of bed material are correlated through coincident areas of change and related active 529 

layer depth (Ashmore et al., 2018, Peirce et al., 2018). Mobilized mass (volume), 530 

combined with path length, is a formal definition of bedload flux (see e.g. McLean and 531 

Church, 1999; Church, 2006). 532 

If planimetric change is adequate for bedload prediction then topographic cross-section 533 

or DEM-based morphological surveys may not be needed for monitoring bedload 534 

transport (although obviously important for other reasons), and much larger data sets 535 

could be collected more rapidly because of the relative ease of planimetric mapping, 536 

especially with new aerial platforms provided by UAVs (Westoby et al., 2012; Woodget 537 

et al., 2014; Tamminga et al., 2015; Kelleher et al., 2018). Alternatively, planimetric data 538 

could be a useful source of data for filling time or spatial gaps in full morphological 539 

surveys. In any of these cases there is still a need to investigate the ‘throughput’ 540 

component of bedload during planform change events (Ashmore and Church, 1998) but 541 

there are indications that path length of transport may be of the order of the length scale 542 

of major braid bars which then sets the minimum length for monitoring without 543 
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significant throughput. In addition, the data from the physical model experiments 544 

indicate that there is no missing ‘background’ gravel bedload flux occurring below the 545 

planimetric change threshold.  546 

The planimetric change data are based on manual measurement (as is the case with 547 

similar data in Bertoldi et al., 2010). If larger areas and longer time periods are to be 548 

monitored, a more automated approach to change detection would be valuable. While 549 

separation of water and exposed gravel is easily accomplished by image analysis on a 550 

single image, the daily and hourly variation in lighting, reflection and water colour 551 

complicate the parameter selection. Apart from these image selection issues, the 552 

primary difficulty in automated analysis is reliably separating apparent changes due to 553 

water redistribution or slight local water level differences (which can occur on 554 

successive days even for the same discharge) from genuine changes in planform and 555 

bed morphology. In general, this is likely to cause systematic over-estimation relative to 556 

real change measured from careful visual assessment (Middleton, 2017). A general 557 

solution to this problem would enable much larger data sets to be collected and 558 

analyzed and so expand the empirical basis for these relationships of planform 559 

dynamics and bedload in braided rivers. 560 

While the proglacial setting allows for a large number of daily measurements to be 561 

made in a short time period, the relatively small range of discharge in this setting means 562 

that the applicability to other types of flow regime remains to be assessed. Much larger 563 

magnitude, and longer duration events may change the morphodynamic regime and bar 564 

dynamics during large floods, for example in the case of the Waimakariri or Tagliamento 565 

(Hicks et al., 2002; Bertoldi et al., 2010), so changing the planform dynamics-bedload 566 
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relationship. Sustained high discharge may also hamper planimetric measurements and 567 

cause more extensive and variable morphological changes during a single event. The 568 

planform-bedload relationship may potentially also be modified by the current condition 569 

of the river system more broadly, whether it is aggrading or degrading, but this is not 570 

known. Further observations across a range of settings and braided river types are 571 

needed to understand these possible differences in morphodynamics related to 572 

hydrological regime, river scale, river conditions, bed material mobility and 573 

morphodynamic regime. 574 

Significant morphological changes are limited to 10-15 days during the four month 575 

meltwater season in the proglacial flow regime and occur in two or three small groups of 576 

successive days separated by periods of inactivity. This observation can be linked to 577 

classical discussions of magnitude and frequency of channel-forming events and 578 

effective discharge for bedload transport in rivers (Schmidt and Potyondy, 2004). 579 

Discharges greater than 11 m3 s-1 that produced planform change occur less than 20% 580 

of the time based on all seasonal flows on record and therefore less than 10% of the 581 

year. More investigation of the types of braiding processes occurring at different peak or 582 

event discharge is needed to develop a descriptive and quantitative magnitude-583 

frequency analysis of braiding morphodynamics, in different hydrological regimes. 584 

Extended time lapse monitoring has obvious potential as a method for building 585 

observational data sets for doing this. 586 

Grain size data for the bedload in the physical model also indicate events of a particular 587 

magnitude and rates of planimetric change may be associated with different gravel bed 588 

material mobility conditions. All discharges high enough to cause planimetric change 589 
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showed selective mobility (all sizes are mobile but not in the same proportion as the bed 590 

material grain size distribution) and events with extensive planimetric and morphological 591 

change had bedload close to equal mobility (bed load size distribution very similar to 592 

that of the bed material) including having D90 of the bed load very similar to that of the 593 

bulk bed material (Mueller and Pitlick, 2014). This is similar to results from other 594 

experiments in the same braided river model as was used here (Peirce et al., 2018) and 595 

is consistent with the recent suggestion of Mackenzie et al. (2017) that there is a close 596 

and sensitive association of bed material particle size distribution and mobility with 597 

braiding morphodynamics. If further experimentation proves this relationship to be 598 

reliable, then the relative magnitude of the planimetric change may be used to infer 599 

information on bedload grain size distribution and bed material mobility as well as 600 

bedload transport rate.  601 

Conclusion 602 

The prediction of both planform change processes and bedload transport are key issues 603 

in fluvial geomorphology and the study of braided rivers specifically (Davies, 1987; 604 

Gomez, 1991; Church, 2006; Luchi et al., 2007). Analysis of an extensive set of time-605 

lapse images over two years of planform change in a proglacial braided gravel-bed river 606 

showed that areas of planform change have a continuous positive relationship with daily 607 

meltwater hydrograph peak discharge and total flow volume, and a clear threshold 608 

discharge below which no detectable planform change occurred. Significant planimetric 609 

change was limited to 10-15 days each meltwater season of about four months. 610 

Topographic measurements collected from previous studies at the same site showed a 611 

similar threshold for change and a similar variability in rates of change at different 612 
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discharges. Complementary physical model experiments for the field site confirmed this 613 

relationship and also demonstrated a correlation between planimetric change, volume 614 

and area of morphological change from photogrammetric DEMs of the model, and event 615 

bedload transport. Bedload transport and morphological change had threshold 616 

discharges very similar to the planimetric change data. Very little bedload transport of 617 

the gravel size fraction occurred without measurable planimetric change. The major 618 

types of braiding planform processes (avulsion, major channel migration, braid bar 619 

formation/erosion etc.) were associated with larger magnitude discharge and planimetric 620 

changes and higher bedload transport rates, while smaller events accomplished local 621 

bank and bed erosion/deposition and bar accretion. Bed material particle mobility 622 

increased with increasing rates of bedload transport, planimetric, and morphological 623 

change, approaching equal mobility at the highest rates of morphological change.  624 

The physical model results also show the close relationship between the rates of 625 

planimetric change, morphological change (erosion-deposition volumes) and rates of 626 

bedload transport in a proglacial system. Consequently, it may be possible to use 627 

continuous monitoring of planimetric change as a method for understanding planform 628 

dynamics of braiding, while also producing an associated record of bedload transport 629 

rate and its temporal and spatial variability. This would allow these changes to be 630 

continuously monitored more easily, cost-effectively, extensively and continuously in 631 

time and so would complement analysis of detailed morphological change from hyper-632 

scale topography, provide important data for helping to develop improved understanding 633 

and prediction of several important aspects of braided river morphodynamics, and 634 

support validation of numerical modeling of braiding morphodynamics and bedload. 635 
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With further observational data and generalization to other rivers, planimetric change 636 

monitoring can be an important source of data for investigating braiding river 637 

morphodynamics, and has the potential to be a valuable surrogate for bedload transport 638 

measurement in gravel-bed braided rivers and perhaps in other laterally-active river 639 

types. 640 
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Table 1: The Pearson’s Correlation computed between the area of planform change in 882 

relation to both volumes of morphological change and total bedload transport mass. 883 

PCC= Pearson’s Correlation Coefficient, n= number of observations.  884 

PCC 
Morphological Change Total Bedload Transport  

0.928 0.586 

Significance (p-value) <0.0001 0.004 

n 12 12 

 885 
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Supporting Information 1 

 2 

Rates of planimetric change in a proglacial gravel-bed braided river: 3 

field measurement and physical modeling 4 

 5 

L. Middleton*1, P. Ashmore1, P. Leduc1, D. Sjogren2 6 

 7 

1 Department of Geography, University of Western Ontario, London, Ontario, Canada, 8 

N6A5C2 9 

*Corresponding author: lmiddle7@uwo.ca 10 

 11 

2 Department of Geography, University of Calgary, Calgary, Alberta, Canada 12 

 13 

The supporting information consists of two videos of diurnal hydrographs in the field and 14 

scaled down in the laboratory setting. 15 

The field video (Sunwapta_Video_2012) shows a high flow period during the 2012 study 16 

period from July 7-22. The flow direction is from left to right and spans a distance of 17 

100m at the bottom of the camera frame. The time and date of each image can be seen 18 

in the top right-hand corner with an image taken every half hour from 0600 to 2000 19 

everyday. The first two diurnal hydrographs from July 7-9 (0:00:00-0:00:10) can be seen 20 

to produce either no, or minor, planimetric changes. As discharge increases on July 9th, 21 

large planimetric changes can be observed through the erosion of, and development of 22 

new braid bars and lateral migration of the primary channels. Large scale planimetric 23 

change can be observed until the morning of July 14th (0:00:10-0:00:30) when rates of 24 

planimetric change decrease for a few days. The river planform changes significantly 25 

again from the 16th to the 21st of July (0:00:40-00:01:00).  26 
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The laboratory video (Flume_Hydrograph_Video) shows the entire sequence of 27 

hydrograph experiments run in the physical model, seen in Figure 12. The flow direction 28 

if from left to right and cover a longitudinal distance of approximately 10m. Images were 29 

taken each minute during experimental runs and document both the rising and falling 30 

limb of the hydrograph, not possible in the field due to the night-time loss of images on 31 

the falling stage. The two lowest peak discharges (hydrograph experiments 1, 4, 5, 8, 9, 32 

and 12) produce very minor, if any, planimetric changes. As the peak discharge 33 

increases to the second highest peak (hydrograph experiments 2, 6 and 10) we observe 34 

limited areas of planform change, including secluded areas of bank erosion and 35 

deposition around the primary channel. The highest peak (hydrograph experiments 3, 7 36 

and 11) can be seen to produce large-scale planimetric changes as channels shift and 37 

laterally migrate, drastically altering the planform position. 38 
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Figure 1 (a) The location of the study reach along the Icefields Parkway and in relation 
to the WSC gauge. The Sunwapta River begins at the outlet of Sunwapta Lake, flowing 
North-West. The camera locations identified in (a) can be seen in (b), flow direction is 
towards the camera. 
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Figure 2 (a)15-minute discharge (Q) readings during the meltwater seasons of 2012 and 
2013 (June 1-September 30, Day of the Year- DOY- 153-274) in relation to the daily 
historical 90th percentile flow. (b) The rating curve developed to determine the discharge 
at the site based on the WSC discharge with the linear regression plotted in red (model) 
and the 95% confidence interval shown. (c) The relationship between maximum daily 
discharge and total daily discharge over a diurnal hydrograph (08:00-07:45) and the linear 
regression line plotted for both 2012 and 2013.  
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Figure 3 Selected representative hydrographs from the Sunwapta River in blue, showing 
the typical meltwater cycle from 8 am – 8 am. The replicated physical model hydrograph 
experiments are in black, with the equivalent discharge (Q) and time scaled down.  
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Figure 4 The (a) 2012 and (b) 2013 meltwater seasons studied from June-September 
(Day of the Year- DOY- 153-274) with the relationship between maximum daily discharge 
(Q) and area of planimetric change throughout the season. 
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Figure 5 The relationship between measured areas of planimetric change over a daily 
hydrograph and daily peak discharge (Q) for the 2012 (red) and 2013 (blue) meltwater 
seasons. Vertical dashed lines indicate the two thresholds discussed.  
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Figure 6 An example of planimetric changes measured seen in (a) smaller areas of bank 
erosion highlighted in red, peak daily discharge of 15.9 m3 s-1 and (b) large scale channel 
change, peak daily discharge of 17.3 m3 s-1. Flow direction is left to right and river width 
is ~ 120 m.  
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Figure 7 The relationship between previous morphological measurements made in the 

field in 1999 and 2003 and dimensionless stream power () compared to planimetric 
measurements completed for this study. Days with no morphological or planimetric 
change detected have not been plotted.  
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Figure 8 The relationship between the planimetric width and discharge (Q) in the field 
and equivalent measurements in the physical model based on both a longer, and an 
equivalent reach length to the field. Physical model peak hydrograph discharge has been 
scaled up to field equivalent.  
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Figure 9 (a) The relationship between peak hydrograph discharge (Q) and total bedload 
transport. The grey, dashed line represents the power function through all observations. 
(b)The overall relationship between simultaneous measurements of bedload transport 
and areas of planimetric change over a hydrograph experiment with the analogous 
conditions of runs 11 and 12 in red. (c) The relationship between simultaneous bedload 
and areas of planimetric change plotted without experiments 11 and 12.The linear 
regression model and 95% confidence interval is plotted in both (b) and (c), highlighting 
the difference to the planform-bedload relation when the primary channel hits a hard 
boundary, reducing the ability to braid, compared to freely-mobile channels. 
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Figure 10 (a) Volumes of morphological change increased in relation to peak hydrograph 
discharge (Q). The linear regression model is plotted with the equation and 95% confident 
interval shown. (b) The area of change as well as the amplitude of topographic change 
(active layer thickness- Ashmore et al. 2018) increased, shown in a series of DEMs of 
Difference generated from four consecutive hydrograph experiments with increasing peak 
discharges. Flow is from left to right. 
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Figure 11 (a) A series of planimetric change maps with increasing discharge from top to 
bottom. Visual planimetric change is outlined in the black dotted line. Areas of 
morphological change from the DoDs are seen in blue (deposition) and red (erosion). 
Flow is from left to right. The relationship between simultaneous measurements of manual 
measured areas of planimetric chance and (b) the area over which morphological change 
was mapped on the DoD and (c) the volume of morphological change from the DoD. The 
linear regression model of both (b) and (c) is plotted with the equation and 95% confident 
interval.  
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Figure 12 The relationship between particle path length and peak hydrograph discharge 
(Q). 
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Figure 13 (a) The temporal relationship between bedload sample mass and grain size 
distribution throughout all hydrograph experimental runs. (b) The relationship between 
the mass of 1 minute bedload transport samples and the D10, D50, D90 of the sample. 
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