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Abstract
Early response to antipsychotic medications is one of the most important determinants of later symptomatic and functional
outcomes in psychosis. Glutathione and glutamate have emerged as promising therapeutic targets for patients demonstrating
inadequate response to dopamine-blocking antipsychotics. Nevertheless, the role of these neurochemicals in the mechanism
of early antipsychotic response remains poorly understood. Using a longitudinal design and ultrahigh field 7-T magnetic
resonance spectroscopy (MRS) protocol in 53 subjects, we report the association between dorsal anterior cingulate cortex
glutamate and glutathione, with time to treatment response in drug naive (34.6% of the sample) or minimally medicated first
episode patients with schizophreniform disorder, schizophrenia, and schizoaffective disorder. Time to response was defined
as the number of weeks required to reach a 50% reduction in the PANSS-8 scores. Higher glutathione was associated with
shorter time to response (F= 4.86, P= 0.017), while higher glutamate was associated with more severe functional
impairment (F= 5.33, P= 0.008). There were no significant differences between patients and controls on measures of
glutamate or glutathione. For the first time, we have demonstrated an association between higher glutathione and favorable
prognosis in FEP. We propose that interventions that increase brain glutathione levels may improve outcomes of early
intervention in psychosis.

Introduction

Early treatment response has been identified as one of the
most robust predictors of longer-term clinical outcomes in

schizophrenia [1]. In particular, lack of early response
appears to be strongly indicative of subsequent nonresponse
[2], failure to achieve remission [3], and higher rates of
treatment discontinuation [4]. Approximately one third of
patients with schizophrenia are considered to be treatment
resistant [5], with the majority of these (23–34%) failing to
respond appreciably to dopamine-blocking antipsychotic
medications from their first episode of psychosis (FEP)
[6, 7]. Nevertheless, the neurochemical mechanism of early
response is poorly understood, precluding efforts to prevent
or reduce the rates of treatment failure and persistent
disability.

The FEP is characterized by a relative state of glutama-
tergic excess [8, 9]. Elevated anterior cingulate cortex
(ACC) glutamate has been found to be inversely correlated
with striatal dopamine synthesis in patients with FEP [10].
Given that the elevated striatal dopamine synthesis relates to
better treatment response [11] in psychosis, the observed
glutamatergic excess has been considered to be an index of
reduced treatment responsiveness in psychosis [12]. Ele-
vated ACC glutamate has been directly associated with
lack of remission in certain samples of chronic [13–15] or
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first-episode schizophrenia [16, 17] [UK sample], but this
has not been a consistent observation. For example, in a
sample of patients with established schizophrenia, Iwata
et al. [18] reported no difference in dorsal ACC glutamate
levels between treatment responsive and resistant groups.
Similarly, the samples in 2 out of 3 sites in another study
showed no glutamate excess in patients with FEP who did
not achieve remission by 1 month [17]. Nevertheless,
relative glutamatergic excess appears to be specific to early
stages of illness [8], and relates to more severe symptoms at
presentation [17], as well as gray matter decline [19], cog-
nitive [20], and functional [16, 17] impairments. The lack of
dopamine elevation seen in some patients may explain their
lack of response to dopamine blocking medications.

Glutathione (GSH), the brain’s most prominent intra-
cellular antioxidant, has been suspected to play a key pro-
tective role in free-radical-mediated damage to neurons
[21], giving rise to the redox dysregulation hypothesis of
schizophrenia [22]. Magnetic resonance spectroscopy
(MRS) studies have found a small but significant GSH
deficit in the ACC in patients with schizophrenia [23],
indicating the presence of subgroups of patients with dif-
ferent redox profiles [24]. The most prominent reduction in
GSH seems to occur particularly in patients with persistent
residual symptoms, indicating that low levels of GSH may
be associated with poor response to antipsychotics [25].
Furthermore, N-acetyl-cysteine (NAC), a precursor of GSH,
appears to increase the rate of symptomatic response when
used as an adjunct to antipsychotics [26].

Glutamate is a precursor of GSH while GSH acts as a
neuronal reservoir for glutamate synthesis [27]. As a result,
when neuroglial metabolic integrity is intact, glutamate and
GSH levels remain tightly linked in the brain. Glutamater-
gic excess can result in neurotoxic oxidative stress [28],
while a concomitant elevation of GSH may provide a
neuroprotective “gate-keeping” effect [29], thus a strong
covariance may be a marker of a healthy state. Nevertheless,
repeated or prolonged exposure to excess glutamate can
deplete GSH levels [30]. Furthermore, the GSH-glutamate
homeostasis may also be disrupted in patients with schi-
zophrenia due to deficiencies in GSH synthesis [31], leading
to reduced GSH-glutamate covariance in patients with FEP.

In this study, we use ultrahigh field 7T MRS for the first
time to test the relative contribution of ACC GSH defi-
ciency and glutamatergic excess in predicting early treat-
ment response in FEP. Given the gatekeeper role of GSH in
tackling oxidative stress [31], we expected GSH to be a
more critical determinant of early treatment response in
FEP. We hypothesized that FEP patients with higher GSH
levels would demonstrate faster symptom reduction upon
starting antipsychotic treatment (hypothesis 1). As not all
patients with FEP will be able to increase GSH in accor-
dance with glutamate levels, we expected a reduction in the

strength of correlation between the GSH and glutamate
levels in patients compared with healthy controls (hypoth-
esis 2). Furthermore, in light of the excitotoxic theory of
acute schizophrenia [32], we expected both reduced GSH
and increased glutamate levels to predict impaired Social
and Occupational Functioning at the onset of illness
(hypothesis 3).

Methods

Participants

The sample consisted of 37 new referrals to the PEPP
(Prevention and Early Intervention for Psychosis Program)
at London Health Sciences Center between April, 2017 and
January, 2018 (see Supplementary Fig. 1 for details on the
representativeness of the sample). All potential participants
provided written, informed consent prior to participation as
per approval provided by the Western University Health
Sciences Research Ethics Board, London, Ontario. Inclu-
sion criteria for study participation were as follows: indi-
viduals experiencing FEP, and having received
antipsychotic treatment for less than 14 days in their life-
time. A consensus diagnosis was established using the best
estimate procedure [33] for all participants after ~6 months
by 3 psychiatrists (KD/LP and the primary treatment pro-
vider) based on the Structured Clinical Interview for DSM-5
[34]. Participants meeting criteria for bipolar disorder with
psychotic features, major depressive disorder with psychotic
features, or suspected drug-induced psychoses were exclu-
ded from further analyses. Antipsychotic medications were
chosen by the treating psychiatrist and the patient and/or
their substitute decision maker in a collaborative manner.
There was no specific protocol in place regarding switching
antipsychotic medications in this naturalistic sample. If an
individual did switch medications, this was noted and the
reasons for switching were recorded. Over the course of the
follow-up period for this study, nine individuals switched
antipsychotic medications, and in all cases, the reasons for
switching were related to side effects. In accordance with
current national guidelines for the treatment of FEP, all
individuals were offered the option of treatment with a long
acting injectable at the earliest opportunity [35].

Healthy control subjects were recruited through the use of
posters advertising the opportunity to participate in a neu-
roimaging study involving tracking outcomes following
FEP. Healthy control subjects had no personal history of
mental illness, and no family history of psychotic disorders.
Group matching with the FEP cohort for age, sex, and
parental education was maintained. Exclusion criteria for
both the FEP and healthy control groups involved meeting
criteria for a substance use disorder in the past year
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according to DSM-5 [36] criteria (this was based on self-
report for controls, and in addition clinical assessment and
urine drug screening done at the point of clinical assessment
in suspected cases for patients), having a history of a major
head injury (leading to a significant period of unconscious-
ness or seizures), having a significant, uncontrolled medical
illness, or having any contraindications to undergoing MRI.

Clinical measures

While the proportion of FEP patients in remission at any
given time appears to be relatively consistent, it is often not
the same individuals who remain in remission at each time
point [37]. The use of absolute criteria in defining remission
is highly dependent on initial illness severity, with indivi-
duals with a higher initial symptom burden being much less
likely to achieve remission [38]. As a result, we studied the
continuous measure of time to response as the primary
clinical outcome of interest, and used the cross-sectional
remission criterion as a secondary measure of interest.

The eight items of the Positive and Negative Syndrome
Scale capturing the core symptoms critical in defining
remission (PANSS-8 [39]) was administered at baseline,
2 weeks, 4 weeks, and at every clinical encounter thereafter
on a 2–4 weekly basis. The PANSS-8 has acceptable
internal consistency and comparable sensitivity to early
improvement in psychotic symptoms [40] relative to the
PANSS-30 [41]. The time to achieve a 50% PANSS-8
improvement from baseline [42], sustained for at least two
consecutive visits 2 weeks apart, was used as a continuous
measure of treatment response. A 50% symptom improve-
ment from baseline roughly equates to a Clinical Global
Impression-Schizophrenia [43] scale score of “much
improved” thus, is clinically meaningful [44]. Relative
PANSS8 improvement was calculated as (PANSS8baseline−
PANSS8endpoint)/(PANSS8baseline− 8) in order to adjust for
the minimal possible PANSS8 score [45]. All patients were
observed clinically for a period of at least 6 months, and no
patients failed to reach this milestone within this time frame.

We also assessed binary remission status after the first
month of treatment (remission or not in remission). Symp-
tomatic remission was allocated based on remission criteria
proposed by Andreasen et al. [39] which categorize remis-
sion as achieving scores of mild (3) or less on all PANSS8
items, without any stipulation of a duration criteria, in line
with Egerton et al. [16, 17]. Finally, social functioning was
assessed at baseline using the Social and Occupational
Functioning Assessment Scale (SOFAS [46]).

Medication adherence

Individuals were treated with long-acting injectable (LAI)
medications whenever clinically appropriate. Patients taking

LAI’s received their injection from a nurse at the PEPP
clinic and therefore, it was known if an individual had
missed, or was late for their scheduled dose. Assessments of
medication adherence were also recorded at each clinical
encounter, taking into account information provided by the
patient, their family, and/or case manager using a 5-point
rating scale (ranging from 0 for individuals not taking
medication to 4 for those being adherent 75–100% of the
time). This measure has been found to correlate with pill
counts [47]. We only included subjects who had >75%
recorded adherence.

1H-MRS

Metabolite concentrations (glutamate and GSH) were esti-
mated using single-voxel 1H-MRS data acquired with a
Siemens/Agilent MAGNETOM 7.0T head-only MRI (Sie-
mens, Erlangen, Germany; Agilent, Walnut Creek, Cali-
fornia, USA) using an 8-channel transmit/32-channel
receive head coil at the Center for Functional and Metabolic
Mapping of Western University in London, Ontario. A
2.0 × 2.0 × 2.0 cm (8 cm3) 1H-MRS voxel was placed in the
bilateral dorsal ACC (see Fig. 1) using a two-dimensional
anatomical imaging sequence in the sagittal direction
(37 slices, TR= 8000 ms, TE= 70 ms, flip-angle (α)=
120°, thickness= 3.5 mm, field of view= 240 × 191 mm).
The posterior end of the voxel was set to coincide with the
precentral gyrus and the caudal face of the voxel coincided
with the most caudal location not part of the corpus callo-
sum. The angulation of the voxel was determined to be

Fig. 1 Dorsal anterior cingulate cortex (ACC) voxel for MRS
glutamate and glutathione estimation. The coronal, sagittal and axial
views of the MRS voxel (red square) are displayed on a single sub-
ject’s T1 structural image.
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tangential to the corpus callosum (see Supplementary
Figs. 2 and 3). A total of 32 channel-combined, water-
suppressed spectra were acquired using a semi-LASER 1H-
MRS pulse sequence (TR= 7500 ms, TE= 100 ms) during
each scan session, while participants were at rest and asked
to stare at a white cross on a black screen for 4 min. Water
suppression was achieved using the VAPOR preparation
sequence [48], and water-unsuppressed spectra were
acquired for spectral quantification and line shape decon-
volution reference. The 32 spectra were corrected for fre-
quency and phase drifts as described in Near et al. [49] prior
to averaging and lineshape deconvolution using QUECC
[50]. Residual water peaks were removed from the averaged
spectrum using HSVD [51] (see Supplementary Fig. 4).
Metabolite quantification was acquired using Barstool [52]
(see Supplementary Fig. 5). Water-subtracted spectra were
modeled using the fitMAN, a-prior-knowledge based
minimization algorithm, and a quantification template
including 17 metabolite spectral signatures derived from
simulation [52]. Our fitting template included 17 metabo-
lites (alanine, aspartate, choline, creatine, GABA, glucose,
glutamate, glutamine, GSH, glycine, lactate, myo-inositol,
N-acetyl aspartate, N-acetyl aspartyl glutamate, phosphor-
ylethanolamine, scyllo-inositol, and taurine). Importantly, at
this long echo time, no macromolecules were included in
the spectra as their signal had decayed below noise level.
Metabolite concentrations were corrected for gray and white
matter volumes using the anatomical MRI images and
previously described methods [53]. All spectra and spectral
fit were inspected visually for quality and Cramer-Rao
lower bounds (CRLB) were assessed for each metabolite.
The MRS metabolite estimates were not known at the time
of clinical outcome characterization. See the Supplementary
for further details on the MRS methods.

Statistical analyses

All statistical tests were performed using IBM SPSS Sta-
tistics version 24. Differences in demographic and base-
line factors between patients and controls were calculated
using t tests for continuous variables, and chi-square
analyses for dichotomous variables. A linear regression
analysis was used to assess the association between
metabolites (glutamate and GSH), and both time to
response, and social functioning (Hypotheses 1 and 3).
Using ANOVA, we then compared glutamate and GSH
measures among patients achieving remission at 1 month,
no remission at 1 month, and healthy controls. Finally,
Pearson correlation coefficients were used to assess the
association between glutamate and GSH in patients and
healthy controls. Differences in the magnitude of these
correlations were then evaluated using Fisher’s r-to-Z
transformation (Hypothesis 2).

Results

Patient characteristics

Thirty seven patients completed baseline scanning. Of
these, 27 met criteria for a schizophrenia spectrum disorder
(SSD: schizophrenia, schizoaffective disorder, or schizo-
phreniform disorder). Follow-up outcome data were not
available for one female patient who was transferred to a
different hospital shortly after scanning. In one male patient,
time to response was not available due to irregular follow-
up however, remission status at 1 month was obtained.
Therefore, the final sample consisted of 26 patients with
SSD, with time to response measures available for 25
patients (Table 1). See Supplementary (SF1) for the repre-
sentativeness of the sample. Based on Egerton et al. [17]
(UK sample) reporting an effect size d= 2.6 for ACC
glutamate difference between 1-month remitters and non-
remitters, we required a sample of at least 22 patients to
demonstrate 50% of the reported effect (d= 1.3), with 5%
type 1 and 20% type 2 error rates.

Nine patients (34.6%) were antipsychotic naive at the
time of scanning, five patients were taking other psycho-
tropic medications at the time of scanning as follows: two
clonazepam, one lorazepam, one escitalopram, and one
sertraline. Of those who had already started antipsychotic
treatment, (17; 65.4%), the median days of treatment was 6
(range of 3–12 days). The mean total defined daily dose-
days (DDD × days on medication) for antipsychotic use was
2.27 days. At 1 month, 12 patients (46.15%) were taking a
long acting injectable medication. In terms of cross-sectional
remission, we observed the rates of 42.31% (n= 11 of 26) a
1-month, 50% (n= 13 of 26) at 3-months, and 60% (n= 15
of 25) at 6 months. We did not stipulate cessation before
scanning to avoid possible withdrawal effects and partici-
pants may have used nicotine on the day of scanning.

1H-MRS data quality

The mean glutamate CRLB percentages did not differ
between healthy controls and patients (mean (SD) in %=
3.36 (1.02) in controls; 3.72 (1.19) in FEP; t= 1.16, p=
0.25). Mean GSH CRLBs were (mean (SD) in %= 10.46
(3.88) in controls; 11.47 (4.92) in FEP; t= 0.81, p= 0.42).
The percent coefficient of variation (%CV), calculated as
the standard deviation divided by the mean of a sample, was
20.4% and 24.1% for healthy control and FEP glutamate
measurements, respectively, and 24.8% and 22.6% for
healthy control and FEP GSH measurements, respectively
(control vs. FEP—p > 0.6 for both metabolites). The aver-
age line width of the water-unsuppressed spectra did not
differ between the two groups (mean (SD)= 7.62 (1.17) in
controls; 7.48 (1.42) in FEP; t= 0.39, p= 0.7). The NAA
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peak-area signal-to-noise ratio was also not different (mean
(SD)= 109.88 (18.37) in controls (range= 79.52–142.06);
102.19 (24.53) in FEP (range= 60.11–145.72); t= 1.29,
p= 0.20) (see Supplementary Table 1), where the NAA
peak-area SNR is defined as the ratio of the time-domain
amplitude of the NAA CH3 singlet divided by the standard
deviation of the noise measured in the last 32 points of the
time-domain signal.

GSH, glutamate, and time to response

Multiple regression analysis was used to test if GSH and
glutamate significantly predicted the time taken by patients
with FEP to respond to antipsychotic treatment. The results
of the regression indicated the two predictors explained
31% of the variance (R2= 0.0.31, F(2, 24)= 4.86, p=
0.018). Higher levels of GSH predicted a shorter time to
response (β=−0.65, p= 0.017) while glutamate was not a
significant predictor (β= 0.15, p= 0.563) (see Fig. 2a).
A very low level of multicollinearity was present (VIF=
1.98 for both GSH and glutamate). Results remained

unchanged after controlling for age, sex, and daily dose of
antipsychotics.

GSH, glutamate, and social functioning

Multiple regression analysis was used to test if GSH and
glutamate significantly predicted the SOFAS scores in
patients with FEP. The results of the regression indicated
the two predictors explained 33% of the variance (R2=
0.0.33, F(2, 24)= 5.33, p= 0.013). Higher levels of glu-
tamate predicted lower SOFAS scores (β=−0.70, p=
0.008), while GSH was not a significant predictor (β= 0.22,
p= 0.376) (see Fig. 2b). A very low level of multi-
collinearity was present (VIF= 1.89 for both GSH and
glutamate). Results remained unchanged after controlling
for age, sex, and daily dose of antipsychotics.

Correlations between metabolite levels

The association between glutamate and GSH was tested
using Pearson correlation coefficients. There was a positive

Table 1 Sample demographic
and clinical characteristics.

Characteristic Patient group
(N= 26)

Healthy controls
(N= 27)

t/χ2 P value

Gender (male/female) 21/5 17/10 2.07 0.150

Diagnosis (S/SA/SF) 21/2/3

Marital status (Mar/S) 3/23 1/26 1.17 0.280

Inpatient (Y/N) 13/13

Family Hx (Y/N/DN) 10/12/4

AP Dur (M/SD, days) 6.94/3.3

Total DDD-days at scan (M/SD) 2.27/2.7

DUP (weeks) (M/SD/median) 28.34/65.03/10

Ethnicity (Black/White/Other) 2/20/4 0/18/9 0.68 0.41a

Age (M/SD) 24.04/5.4 21.48/3.57 −2.05 0.045b

SOFAS (M/SD) 38.12/10.29 80.56/4.41 19.07 0.000b

PANSS-8 total (M/SD) 25.23/5.08

Time to res (M/SD; weeks) 6.6/5.4

On LAI 1 month (Y/N) 12/14

AP 1 month (O/A/P/B/M/S/C/NM) 7/2/3/1/4/7/1/1

Smoker (yes/no) 0/27 9/17 8.94 0.001b

Cannabis user (yes/no) 18/8 8/19 8.31 0.004

Glutamate (M/SD) 8.51/2.05 8.35/2.30 −0.266 0.791

Glutathione (M/SD) 1.74/0.39 1.68/0.52 −0.412 0.682

P values for differences between groups were calculated using chi-square analyses for categorical variables,
and independent t tests for continuous variables.

S schizophrenia, SA schizoaffective disorder, SF schizophreniform disorder, Mar married, S single, Hx
history, Y yes, N no, DN don’t know, AP antipsychotic, Dur duration, DDD defined daily dose, M mean, SD
standard deviation, DUP duration untreated psychosis, res response, O olanzapine, A Aripiprazole, P
paliperidone, B brexpiprazole, M Aripiprazole LAI, S paliperidone LAI, C risperidone LAI, NM not
taking meds.
aWhite vs non-White comparison.
bChi-square with Yates continuity correction.
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association between levels of ACC glutamate and GSH in
both healthy control subjects (r= 0.91, p < 0.001), and in
patients with FEP (r= 0.69, p < 0.001). We then used
Fisher’s r-to-z transformation to test the significance of
difference between the correlations, and found that the
correlation between glutamate and GSH was significantly
weaker in patients compared to the healthy control subjects
(Z= 2.26, p= 0.023) (see Fig. 3).

Group differences in GSH and glutamate

One-way ANOVAs were conducted to evaluate the differ-
ences in metabolite levels among patients in remission or
nonremission at 1 month and healthy control subjects. There
were no significant difference between groups for glutamate
(F(2, 50)= 0.134, p= 0.875) or GSH (F(2, 50)= 0.712,
p= 0.496) (see Table 2). There were no significant

Fig. 3 Correlation between glutamate and glutathione in patients
and healthy controls. Left panel (circles): Relationship between the
estimated concentration of glutathione in millimolar units and gluta-
mate in millimolar units among healthy control subjects. Right panel

(diamonds): Relationship between the estimated concentration of
glutathione in millimolar units and glutamate in millimolar units
among patients with first-episode psychosis.

Fig. 2 Association of dorsal anterior cingulate metabolites with
outcome measures. a Relationship between the estimated con-
centration of glutathione in millimolar units and the time taken to
reach 50% reduction in the Positive and Negative Syndrome Scale
(PANSS-8 items) score among patients with first-episode psychosis.

b Relationship between estimated concentration of glutamate in
millimolar units and baseline functioning assessed using Social and
Occupational Functioning Assessment Scale (SOFAS) score among
patients with first-episode psychosis.
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differences between patients (as a single group) and controls
on measures of glutamate (t (51)=−0.266, p= 0.791) or
GSH (t (51)=−0.412, p= 0.682.

The effects of recreational substance use and types of
antipsychotics are presented in the Supplementary.

Discussion

This is the first study to use ultrahigh-field 7T MRS to
investigate the role of glutamate and GSH in early treatment
response, and the first 7T MRS study on minimally medi-
cated FEP subjects. A previous 7T MRS study included
FEP subjects with an average of 55 weeks of antipsychotic
exposure [54], compared with 6 days of median exposure in
our sample. A more recent study [23] included FEP subjects
with up to 2 years of illness duration, while we recruited all
subjects during the acute first episode (mean SOFAS score
of 38.1). We report three major findings: (1) patients with
FEP with higher GSH levels in ACC show a rapid symptom
reduction upon starting antipsychotic treatment, (2) when
compared with healthy controls, GSH levels in patients are
dissociated from glutamate levels, and (3) Glutamate excess
predicts the degree of Social and Occupational dysfunction
seen at the time of presentation with FEP. Taken together,
these results indicate that markers of cortical redox integrity
influence the putative glutamatergic toxicity and early
treatment response in psychosis.

Neither glutamate nor GSH were associated with binary
remission status at one month. The lack of association is in
contrast with the overall results reported by another study
[17], but consistent with the observation reported by 2 out
of the 3 sites in that study. These differences can be
attributed to methodological variations (the use of 7T
spectra, more dorsal voxel placement in our study) as well
as notable differences in the clinical samples (the use of
injectables and the inclusion of both inpatients and out-
patients, and the exclusion of patients with low adherence in
our study). Egerton et al. [17] noted that higher glutamate
levels correlated with greater symptom severity as well as
poor functioning at baseline. Individuals, who are more
severely ill, may be less likely to adhere to antipsychotic
medications, with resulting ongoing symptom burden, and
subsequent lack of remission. More recently, Iwata et al.

[18] found no differences in glutamate levels in the dorsal
ACC between treatment resistant vs. responsive patients.
Despite the above clinical and methodological differences,
we observed a significant relationship between higher glu-
tamate levels and lower social/occupational functioning, in
line with Egerton et al. [17] as well as prior observations
from our center [19, 20]. A low level of social functioning
at FEP is reported to be a robust and independent predictor
of later treatment [55]. This finding adds strength to the
prevailing notion that glutamatergic excess plays a critical
role in shaping the poor outcome trajectory in psychosis.

We found no significant differences in GSH levels
between patients and healthy controls. This is not surpris-
ing, given that meta-analytic pooling of ACC GSH studies
in schizophrenia reveal a small overall effect size [24],
suggesting the possibility of heterogeneity in the GSH
levels and thus redox status among patients. Our results
suggest that such heterogeneity may map onto antipsychotic
responsiveness, resulting in the conflicting findings of GSH
levels reported to date in schizophrenia [23].

We found evidence that despite their significant within-
group correlation, when compared with healthy controls,
glutamate and GSH levels were less tightly correlated
among patients with FEP. A similar dissociation was also
reported by Xin et al. [56], especially among patients with a
GCLC-risk genotype affecting GSH synthesis. These results
indicate that in a subset of patients with FEP, concomitant
GSH response fails to occur when demands arise due to
glutamatergic excess. Such patients are likely to be vul-
nerable to neurotoxic damage [57], poor treatment response,
and greater functional decline as a result of unchecked
neuronal/glial damage [58]. Interestingly in healthy con-
trols, when glutamatergic synapses are active due a task
demand, GSH levels appear to increase concomitantly with
glutamate [59].

There are several strengths to the current study. First, the
use of a 7T MR scanner, with higher specificity in identi-
fying the glutamate resonance [60], is a considerable
strength. Second, our increased use of LAI’s may have
improved adherence rates in our sample. Third, patients
were followed frequently (weekly) over the course of their
early illness trajectory. Finally, our sample is unique in that
we recruited patients before antipsychotic treatment was
established.

Table 2 ACC glutamate and
GSH levels in patients in
remission, not in remission, and
healthy controls.

Metabolite All Patients (M/SD)
(N= 26)

Remission (M/SD)
(N= 11)

No Remission(M/SD)
(N= 15)

HC (M/SD)
(N= 27)

Glutamate (mM) 8.51/2.05 8.73/2.30 8.34/1.91 8.35/2.30

GSH (mM) 1.74/0.39 1.85/0.48 1.65/0.30 1.68/0.52

Remission status was calculated at 1 month.

HC healthy controls.
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Limitations

Participants in our study were treated with various anti-
psychotics; we cannot rule out variations in response pat-
terns based on differential medication treatment. Secondly,
we could not recruit a completely antipsychotic-naive
sample for obvious ethical reasons. While it is possible
that metabolite levels were affected by antipsychotic med-
ication, our sample is comprised of the least-treated subjects
of all MRS glutamate and GSH studies in schizophrenia
reported to date (median treatment duration= 2.27 DDD-
days). Animal studies have shown that neuroleptic admin-
istration in rodents, even over 2 days, can affect D2-receptor
occupancy [61]; such rapid effects in human striatum may
indirectly affect prefrontal glutamate levels, given the
relationship between striatal dopamine and prefrontal glu-
tamate [10]. While the effect of antipsychotics on cerebral
GSH is still unknown, Ivanova et al. [62] suggest that serum
GSH is affected by typical but not atypical antipsychotics.
None of our patients were exposed to typical antipsychotics
at the time of scanning. Similarly, other psychotropic
medications (although taken in small numbers, including
three on benzodiazepines) may have influenced spectro-
scopic results. Henry et al. [63] found no acute effect on
glutamate in healthy volunteers treated acutely with ben-
zodiazepines, though glutamine levels increased. See the
Supplementary for the statistical effect of adjustment for
dose and type of antipsychotic medication.

A further limitation is that our spectroscopic analysis was
limited to the dorsal ACC and did not include more anterior/
ventral portions of the medial prefrontal cortex. We cannot
completely rule out the effect of recreational substances on
the observed results (see Supplementary). One study [64]
found that ACC glutamate levels were decreased in indi-
viduals who used cannabis regularly, while these results
were not replicated in another study [65]. To our knowl-
edge, no studies have investigated the association of GSH
with cannabis use and none have examined the effects of
cannabis on metabolite levels specifically in a FEP sample.
Finally, our patient sample consisted primarily of males,
limiting generalization of the results.

A promising implication is that interventions that
increase GSH levels early in FEP may have the potential to
alter the prognostic trajectory of psychosis (See Supple-
mentary—Translational Relevance for further details). A
prospective sequential treatment trial [66] in first episode
patients has indicated that merely switching antipsychotics
may not boost treatment response in early nonresponders,
and second level treatments such as clozapine may be
warranted even before the conventional clinical threshold of
Treatment Resistant Schizophrenia (i.e., two treatment
failures) is met. While early nonresponse is considered to be
an indicator of later nonresponse and subsequent treatment

resistance in schizophrenia [67], to our knowledge, the
association between early nonresponse in first-episode
samples and later sequential treatment failures and the sta-
tus of conventionally defined TRS is yet to be established.
One of the challenges in this regard is the high degree of
responsiveness to treatment seen in first-episode patients
[68] (also observed in the current study), compared to those
with acute exacerbation of chronic schizophrenia [67]. In
this context, caution is warranted in extrapolating the phy-
siological correlates of early treatment response as indica-
tors of the emergence of categorical treatment resistance at
later stages of schizophrenia. Given that GSH levels have a
significant impact on the speed of response, we urge further
experimental trials that manipulate GSH levels to observe
the predicted gain in trajectory of treatment outcomes
in FEP.

Preliminary results have demonstrated that NAC, a GSH
precursor, may be beneficial in psychotic disorders [69].
NAC has been shown to be efficacious in reducing the
symptom burden [70], especially negative [71] and cognitive
symptoms [72], and has the potential to alleviate treatment
resistance in schizophrenia [73]. Our results suggest that
treatments such as NAC may be efficacious particularly in
patients who demonstrate an early poor response to anti-
psychotic medication, as they are likely to have a lower
ability to synthesize GSH in response to glutamatergic
excess. While MRS indices are indirect measures of tissue
metabolite concentrations [74], given the evidence that oral
NAC administration in patients with schizophrenia increases
GSH content in the ACC [69], we consider MRS as a viable
tool for translational investigations into the redox abnorm-
alities of schizophrenia. More speculatively, we suggest that
the association of ACC GSH levels at baseline and eventual
clozapine-eligibility would be worth investigating in the
future, given the lack of objective predictors of clozapine
requirement in schizophrenia.
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