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RESEARCH Open Access

Pannexin 1 inhibition delays maturation
and improves development of Bos taurus
oocytes
Zachary Timothy Dye1, Lauren Virginia Rutledge1, Silvia Penuela2 and Paul William Dyce1*

Abstract

Background: Intercellular exchange between the oocyte and its surrounding cells within the follicular environment
is critical for oocyte maturation and subsequent development. In vertebrates this exchange is facilitated through
gap junctions formed by connexin membrane proteins. Another family of membrane proteins called pannexins are
able to form single membrane channels that allow cellular exchanges with the extracellular environment. The most
ubiquitously expressed and studied member, pannexin 1 (PANX1), has yet to be described thoroughly in female
reproductive tissues or functionally studied during oocyte maturation. Here, we look into the expression of
pannexin 1 in bovine cumulus-oocyte complexes (COCs), as well as, its potential role in oocyte maturation and
development.

Results: We show that pannexin 1 is expressed in bovine COCs and that the expression of PANX1 was significantly
lower in COCs isolated from large antral follicles (> 5 mm) compared to those isolated from small antral follicles (<
2 mm). Supporting this we also found lower expression of PANX1 in oocytes with higher developmental potential
when compared to oocytes with lower developmental potential. We further found that PANX1 channel inhibition
during in vitro maturation resulted in temporarily delayed meiotic maturation and improved in vitro developmental
outcomes while decreasing intercellular reactive oxygen species.

Conclusions: These data suggests PANX1 is differentially expressed at a critical stage of follicular development
when oocytes are acquiring developmental competence, and may play a role in the timing of oocyte maturation.

Keywords: Cumulus, Developmental biology, Early development, In vitro maturation (IVM), In vitro fertilization (IVF),
Oocyte development, Oocyte maturation

Background
During folliculogenesis, communication between the oo-
cyte and its surrounding cells is critical for proper mat-
uration of the oocyte following ovulation. Intercellular
exchange between the oocyte and follicular cells is facili-
tated by gap junctional communication [1]. Gap junc-
tions, in mammals, are formed by the family of
membrane proteins called connexins [2]. Connexins

facilitate the exchange of nutrients, metabolites, and sec-
ondary messengers between neighboring cells [3]. Con-
nexins have also been shown to play an important role
in oocyte maturation and development, with the loss or
reduction of connexin 43 having negative impacts on
fertility in multiple species [4–7].
A more recently identified family of membrane pro-

teins named pannexins (PANX), with limited sequence
homology to the invertebrate gap junction family of
innexin proteins, was discovered by Panchin et al. [8].
The pannexin family of glycoproteins consists of three
members pannexin 1, pannexin 2, and pannexin 3
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(PANX1, PANX2, and PANX3). All three are predicted
to be tetra-spanning membrane proteins with the amino
and carboxy terminal ends present in the cytoplasm, as
well as two extracellular loops that contain two cysteine
residues each and a N-glycosylation site [9, 10]. Though
initially thought to form gap junctions like connexins,
pannexins have also been shown to be structurally differ-
ent and form single membrane channels that provide a
pathway for molecular exchanges between the cell’s
cytoplasm and extracellular environment [10–12].
PANX1, the most extensively studied of the pannexins,

has been found to be ubiquitously expressed in many tis-
sue types. In human tissues, PANX1 is expressed in the
heart, skeletal muscle, testis, ovary, brain, placenta, thy-
mus, prostate, and small intestine [13]. PANX1 is also
highly expressed in central nervous tissues and neuronal
cells in mice [13, 14]. Though shown to be expressed in
both female and male glands, the role of PANX1 in re-
productive cells remains very limited. However, PANX1
has been recently shown to play a role in oocyte health
in humans [15]. A mutation in PANX1 in humans has
been described that results in a loss of control of cellular
functioning [15]. Oocytes having the mutation, following
retrieval, released more adenosine 5′-triphosphate
(ATP) to the extracellular space and degenerated. The
mutation appeared to affect maturation potential in the
oocytes as they were able to collect very few mature oo-
cytes with the majority being immature and all degener-
ating at or very shortly after fertilization [15].
Functionally, Panx1 has been implicated in many

physiological processes including the removal of apoptotic
cells [16, 17], inflammation [18], viral infection [19], ische-
mia [20], and neurological functions [21, 22]. One major
role involves facilitating the release of ATP into the extra-
cellular environment [11, 23, 24]. ATP release is achieved
after pannexon channel activation by way of purinergic re-
ceptors or cytoplasmic calcium [25–27]. PANX1 has also
been linked to functional roles in vasodilation and con-
striction, taste sensation, and HIV infection [19, 28, 29].
Panx1 appears to have different functional roles based
upon stimulation type such as voltage activation or trun-
cation; leading to more potential roles for the channel
[30]. It is important to note that while PANX1 expression
has been found in the gonads of both males and females,
its biological role is not clearly defined as Panx1 knockout
mice appear fertile [31].
While the specific role of pannexins in oocyte matur-

ation remains undefined, connexins and innexins have
been clearly implicated. It has been shown that the re-
sumption of meiotic maturation out of prophase-arrest
is inhibited in cattle and mice if connexin channels are
inhibited or knocked-out [32, 33]. Furthermore, innexin
gap junction channels are required for proper meiotic
maturation to occur in C. elegans [34]. Mechanistically,

gap junctional communication in bovine cumulus-
oocyte complexes (COCs) facilitates the decline in cyclic
adenosine 3′,5′-monophosphate (cAMP) which is one
proposed mechanism of oocyte meiotic resumption [35,
36].
To date there is little information regarding the ex-

pression and functioning of pannexin channels within
ovarian tissues. We hypothesize that PANX1 plays a role
during oocyte maturation. We investigated the expres-
sion of PANX1 in bovine COCs and its potential role in
oocyte maturation and early embryo development, fol-
lowing in vitro fertilization (IVF).

Results
Pannexin 1 expression in bovine cumulus-oocyte
complexes
PANX1 immunoflourescent expression was seen in bo-
vine COCs. PANX1 is localized in cumulus cells with a
ubiquitous expression pattern (Fig. 1a-d). PANX1 ex-
pression was different at different stages of follicular de-
velopment or in COCs with differing developmental
potentials. The level of protein expression was measured
using western blotting to compare the expression of
PANX1 in granulosa cells isolated from small antral fol-
licles (< 2 mm) to those from large antral follicles (> 5
mm). Granulosa isolated from small follicles had a sig-
nificantly higher expression of PANX1 (0.827 ± 0.217)
compared to granulosa isolated from large follicles
(0.394 ± 0.176, p = 0.0211)(Fig. 1e,f). Oocyte quality was
categorized by staining with BCB. COCs containing oo-
cytes that were BCB negative had significantly higher ex-
pression of PANX1 when compared to BCB positive
oocyte containing COCs (2.043 ± 0.314 and 1.000 ± 0.0
respectively, p = 0.0045) (Fig. 1g,h).

Inhibiting the pannexin 1 channel
In order to establish that the 10Panx mimetic peptide in-
hibitor was indeed blocking PANX1 channels, a dye uptake
study was performed using the hemichannel permeable dye
PI. Cultured granulosa cells that had been incubated for 30
min with or without 10Panx were measured for PI uptake.
A significant decrease in dye uptake was found in 10Panx
treated cells compared to the control cells (p = 0.0143). The
relative fold proportion of PI positive cells was greater in
the control with this group having 1.846 ± 0.353 fold more
positive cells than the 10Panx group (Fig. 2, Figure shows
data that was non-transformed ratios, log transformed data
was used for statistics).

Effect of pannexin 1 inhibition on in vitro matured
cumulus-oocyte complexes
Cumulus expansion
To study the initial effects of PANX1 inhibition on the
in vitro maturation of COCs, we measured the
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expansion of cumulus cells in COCs after a maturation
time of 22 h with or without 10Panx supplementation.
The 10Panx treated COCs were found to have less cu-
mulus expansion compared to the vehicle only control
group (152.600 ± 30.460 μm and 193.200 ± 13.890 μm re-
spectively, p = 0.0264)(Fig. 3a, b).

Oocyte meiotic maturation
We next looked into the effects that the inhibition of
PANX1 had on the stage of DNA maturation after 6 and
22 h of maturation. COCs were matured in vitro,

stripped of cumulus cells, stained with Hoechst33342,
and DNA maturation stage was observed under a fluor-
escence microscope. DNA maturation stages were cate-
gorized into GV, GVBD, and MII stages. Following 6 h
of in vitro maturation (IVM), COCs treated with 10Panx
had a significantly higher proportion (0.600 ± 0.094) of
DNA in the GV stage compared to the control group
(0.340 ± 0.073, p < 0.0001). There was a significantly higher
proportion of oocytes in the GVBD stage after 6 h in the
control group compared to the 10Panx treated group
(0.576 ± 0.097 and 0.385 ± 0.083 respectively, p < 0.0001).

Fig. 1 Pannexin1 expression in Bovine Cumulus-Oocyte Complexes, During Different Follicular Stages, and Varying Stages of Oocyte
Developmental Competence. a Representative immunofluorescent images of bovine COCs stained with Hoechst33342 (blue, a) and labeled with
PANX1 antibody (green, b). c A representative image depicting a bovine COC stained with Hoechst33342 and stained with secondary antibody
only (d). Oocyte outlined with dashed circle. Bars = 100 μm. e Representative blot images depicting the levels of PANX1 expression in granulosa
cells isolated from small (< 2 mm) and large (> 5 mm) antral follicles. GAPDH was used as a loading control. f Densitometry results showing the
expression level of PANX1 in granulosa cells isolated from small and large antral follicles. g Representative blot images depicting the levels of
PANX1 in BCB- and BCB+ COCs. h Densitometry results showing the expression of PANX1 in BCB- and BCB+ groups of COCs. *Denotes a
significant difference, p < 0.05. Error bars are ± SD from mean
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The proportion of COCs at the MII stage after 6 h was not
significantly different between the 10Panx and control
groups (0.015 ± 0.030 and 0.084 ± 0.107 respectively). After
22 h of maturation, the proportion of COCs was no
longer significantly different between 10Panx treated
and control groups in the GV stage (0.027 ± 0.034
and 0.023 ± 0.046 respectively). There was also no
significant difference between the proportions of
10Panx treated and control oocytes in the GVBD
(0.140 ± 0.075 and 0.237 ± 0.102 respectively) or MII
(0.833 ± 0.061 and 0.741 ± 0.080 respectively) stages after
22 h of maturation (Fig. 3c).

Intercellular cyclic adenosine monophosphate concentration
of cumulus-oocyte complexes
To further understand the functional role PANX1 has in
the bovine COC during maturation, we studied the
icAMP levels of intact COCs at various time points dur-
ing maturation. COCs were matured in vitro with or
without 10Panx (100 μM) for 3, 6, or 22 h and were re-
moved, washed, and snap frozen. This was followed by a
direct cAMP ELISA to measure icAMP. After 3 h of

maturation, the COC icAMP concentration was not sig-
nificantly different between the 10Panx treated and con-
trol groups (14.330 ± 3.434 pmol/ml and 14.910 ± 1.625
pmol/ml respectively, p > 0.05). After 6 h of maturation,
the COC icAMP concentration was significantly higher
in the 10Panx treated group (18.880 ± 2.052 pmol/ml)
versus the vehicle only control (13.350 ± 1.345 pmol/ml,
p = 0.0175). After 22 h of maturation, the COC icAMP
was no longer significantly different between the 10Panx
treated and control groups (12.690 ± 0.646 pmol/ml and
12.770 ± 2.928 pmol/ml respectively, p > 0.05)(Fig. 3d).

PANX1 inhibition and early embryonic development
To study the effects of PANX1 inhibition during matur-
ation on future preimplantation developmental potential,
COCs were isolated from abattoir sourced ovaries, washed,
matured in vitro with or without 10Panx supplementation.
Matured COCs were then fertilized and cultured in vitro to
the blastocyst stage. The embryonic cleavage rate con-
tained a significant trend with the 10Panx treated
COCs having higher cleavage (82.420±5.201%) com-
pared to the untreated control COCs (71.240±4.391%,

Fig. 2 Effect of Inhibiting the Pannexin 1 Channel on Hemi-channel Function. Representative images depicting PI dye uptake (red) by untreated
granulosa cells (b) and granulosa cells treated with 10Panx (e). Cells were nuclear stained with Hoechst33342 (blue, a & d) and overlayed (c & f).
Bars = 400 μm. g The relative number of PI positive cells in control or 10Panx treated granulosa cells. *Denotes a significant difference, p < 0.05.
Error bars are ± SD from mean
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Fig. 3 ROS and Maturation Effects of Pannexin 1 Inhibition. a Representative images of cumulus expansion after 22 h of IVM in control COCs and
PANX1 inhibited COCs. Magnification was 20x. b Cumulus expansion in the control and 10Panx treated groups. c Meiotic maturation proportions
of oocytes at the GV, GVBD, and MII stages after 6 h and 22 h of IVM with or without PANX1 inhibition. d The average icAMP concentration of
COCs treated with or without 10Panx at 0, 3, 6, and 22 h of IVM. *Denotes a significant difference, p < 0.05. Error bars are ± SD from mean.
Representative images depicting the staining intensity of DCFH-DA showing levels of free radicals within the oocyte after 22 h of IVM without (f)
or with (h) PANX1 inhibition. Cells were nuclear stained with Hoechst33342 (blue, e & g). Bars = 200 μm. i Quantitation of the staining intensity of
DCFH-DA using CTCF. *Denotes a significant difference, p < 0.05. Error bars are ± SD from mean

Fig. 4 Embryo Development Post Pannexin 1 Inhibition. a Cleavage rate at day 2 post IVF with or without 10Panx treatment during IVM. b
Blastocyst rate at day 7 post IVF with or without 10Panx treatment during IVM. *Denotes a significant difference, p < 0.05. +Denotes a significant
trend, p < 0.055. Error bars are ± SD from mean
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p = 0.0529). This was followed by a significantly
higher blastocyst rate in 10Panx treated fertilized
COCs (41.080±1.599%) compared to untreated fertilized
COCs (20.210±2.906%, p = 0.0005) (Fig. 4, Figure shows
data that was non-transformed percentages, arcsine
transformed data was used for statistics).

PANX1 inhibition and intra-oocyte ROS levels
In order to measure the levels of free radicals in the oo-
cytes following maturation in the presence of 10Panx we
compared the DCFH-DA staining level in oocytes fol-
lowing treatment to untreated controls (Fig. 3e-h). The
level of reactive oxygen species (ROS) in the oocytes cul-
tured in the presence of 10Panx was found to be signifi-
cantly lower (144,418 ± 23,134) when compared to the
untreated vehicle only controls (177,665 ± 32,725,
p = 0.0486)(Fig. 3i).

Discussion
In this study, we describe the expression of PANX1 in
bovine oocyte cumulus cells. Interestingly, the expres-
sion is differential with higher expression in smaller an-
tral follicles when compared to larger antral follicles.
This is consistent with our findings that cumulus cells
from BCB+ oocytes have a lower expression level of
PANX1 when compared to less developmentally compe-
tent BCB- oocytes. BCB staining is used to determine
glucose-6-phosphate dehydrogenase (G6pDH) activity,
with more developmentally advanced and competent bo-
vine oocytes staining positive [37]. This suggests that
during folliculogenesis, and the development of compe-
tence in oocytes, the expression of PANX1 decreases
in vivo. This is consistent with the findings of Sang et al.
who described a mutation in humans that resulted in a
loss of control of PANX1 cellular functioning [15]. In
that case oocytes having the mutation released more
ATP to the extracellular space and following retrieval
degenerated. One described mutation appeared to affect
maturation potential in the recovered oocytes as very
few mature oocytes were obtained with the majority be-
ing immature and all degenerating at or very shortly
after fertilization [15]. Ours and their findings suggest
an important role for PANX1 during oocyte maturation.
In order to explore this further we studied the matur-

ation rate of oocytes exposed to the PANX1 inhibitor
10Panx [38]. We initially found that treatment of oocytes
with 10Panx following maturation for 22 h did not
change the number of oocytes reaching the MII stage.
However, when we looked at the stage of maturation at
6 h we found a significantly higher number of treated
oocytes were at the GV stage. These results suggest that
the inhibition of the PANX1 hemichannel effectively de-
lays oocyte maturation. Moreover, following exposure to
10Panx the oocytes had higher cleavage and blastocyst

rates when compared to untreated controls. This is con-
sistent with others showing that delaying maturation ef-
fectively improves the developmental competence of
aspirated oocytes. Delaying meiotic maturation has been
shown to improve developmental competence using dif-
ferent techniques. Ligand/receptor supplementation has
been recently studied as a method to delay spontaneous
maturation in vitro to better mimic in vivo conditions. It
was found that supplementing culture media with the
physiologic ligand/receptor reagents C-type natriuretic
peptide (CNP), estradiol, follicle stimulating hormone,
and bone morphogenic protein 15 (BMP15) before
standard IVM delayed maturation and improved oocyte
developmental competence [39]. Cyclic AMP modula-
tion has been the major focus for improving the IVM
system. Cyclic AMP modulation has been implemented
in different studies to either prevent the spontaneous
drop in cAMP (phosphodiesterase (PDE) inhibitors) or
stimulate the production of cAMP (adenylate cyclase ac-
tivators) [40]. When used in culture before standard
IVM, adenylate cyclase activators, and/or phospho-
diesterase inhibitors have been shown to delay matur-
ation and improve embryo development [41–45]. Cyclic
AMP modulation in culture has also been implemented
in a proposed culture system termed simulated physio-
logical oocyte maturation (SPOM) which aims to mimic
in vivo maturation conditions in vitro to generate better
developmental competence for clinical applications such
as infertility management, though results have varied by
lab and species [46, 47]. We found the inhibition on
PANX1 channels during maturation resulted in signifi-
cantly higher cAMP concentrations following 6 h of mat-
uration. Consistent with this finding, we found at 6 h of
maturation a significantly higher number of treated oo-
cytes remained at the GV stage. This suggests that inhi-
biting the PANX1 channels delayed maturation though
it appears temporary as by 22 h a similar level of cAMP
and number of mature oocytes were seen. Though, this
delay appears to benefit the developmental competence
of the oocytes as a higher proportion of treated oocytes
successfully cleaved and developed to the blastocyst
stage following maturation in the presence of 10Panx.
Further evidence of delayed maturation can be seen fol-
lowing treatment with cAMP modulators. Treatment of
COCs with cAMP modulators during IVM lengthens
that time of cumulus-oocyte gap junctional communica-
tion [48, 49]. Our findings that cumulus expansion is de-
creased with 10Panx treatment suggests prolonged gap
junctional communication similar to that during cAMP
modification since cumulus expansion is a signal for gap
junction communication loss [50]. Pannexins have been
shown to play a major role as a conduit for the release
of ATP by cells to the extracellular environment [51–
53]. Interestingly, the activation of PANX1 hemichannels
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has been shown to result in higher cellular cAMP levels,
in some cell types, as ATP has been shown to activate
P2RY11 receptors [51, 54]. Conversely, the release of
ATP through pannexin channels has been shown to re-
sult in decreased cellular cAMP concentrations [52].
This leaves two possibilities for the results we observed:
One that the blockage of PANX1 channels decreases
ATP release and results in a maintenance of cAMP
levels in the oocyte delaying meiotic progression. Or
two, that the PANX1 channels are playing a role in the
programmed cumulus cell death occurring during mei-
osis and leading to decoupling of the cumulus cells from
the oocyte. This is consistent with studies showing ATP
release results in increased cellular cAMP levels and the
activation of Caspase-3 [53, 55]. The blockage of
10PANX may limit the release of ATP preventing the
programmed death of the cumulus cells and prolonging
the maturation process. This is consistent with the de-
layed cumulus expansion we observed. Which mechan-
ism is responsible for the delay in meiotic progression
observed, following inhibition of the PANX1 channels,
remains the subject of future research. These studies
help support that PANX1 channels play a role in oocyte
maturation; in that inhibition of these channels causes a
delay in maturation and improved developmental com-
petence by way of cAMP modulation and ATP release.
Finally, to determine a potential functional result to

impairing PANX1 channel function we compared the
level of ROS in the oocytes following maturation with
exposure to 10Panx. We found that oocytes matured
while inhibiting PANX1 channels had significantly less
ROS when compared to our untreated controls. It has
been well established that ROS buildup in oocytes is
detrimental to continued embryo development. ROS
have been implicated in causing negative developmen-
tal outcomes in embryos in vitro [56, 57]. ROS cause
many different types of damage to developing em-
bryos including a rise in lipid peroxides, increase in
protein oxidation, and DNA strand breaks [56, 58,
59]. It has been shown that high levels of ROS in the
in vitro culture environment are detrimental to bo-
vine embryo development [60]. A more recent study
by Li et al. showed the effects of cAMP modulation
during IVM on ROS defense. They found that imple-
menting a pre-IVM culture period with forskolin (an
adenylate cyclase activator) and IBMX (PDE inhibitor)
not only delayed maturation and improved embryo
developmental outcomes, but also increased the levels
of antioxidant glutathione (GSH) and decreased the
intra-oocyte concentration of the ROS hydrogen per-
oxide [41]. This study could lead to experiments that
connect inhibited PANX1 channels during IVM and
cAMP modulation, with improved in vitro oocyte de-
velopmental competence and lower ROS.

In conclusion, we have found that PANX1 is expressed
in bovine cumulus cells. It is also expressed at higher
levels in the cumulus cells of less developed oocytes.
PANX1 channel inhibition during IVM leads to a delay
in meiotic maturation and greater developmental com-
petence following IVF. Functionally, PANX1 inhibition
during IVM potentially delays maturation by maintain-
ing elevated cAMP levels, keeping spontaneous matur-
ation from occurring as quickly, which in turn can lead
to improved developmental outcomes. ROS levels were
also decreased in the oocyte with PANX1 inhibition.
These findings support that PANX1 channels are im-
portant in oocyte maturation and development and can
be manipulated to provide better developmental out-
comes during in vitro settings.

Methods
All reagents were purchased from VWR (Radnor, PA)
unless otherwise noted.

In vitro maturation and in vitro fertilization
COCs were collected from abattoir-sourced, mixed
breed Bos taurus ovaries. COCs underwent maturation
and IVF followed by culturing to the blastocyst stage as
previously described [61], with modifications. Briefly, fol-
licles ranging from 2 to 5 mm were aspirated using a 10
ml syringe and 18-gauge, short-beveled needle. COCs,
granulosa cells, and follicular fluid were collected into
50ml conical tubes at room temperature. COCs with a
uniform cytoplasm and at least three layers of cumulus
cells were collected into TCM-199 supplemented with
8.3 mM sodium bicarbonate, 20 mM Hepes, 10% fetal
bovine serum, 50 μg/ml gentamicine, and 22 μg/ml pyru-
vate. COCs were matured in TCM-199 supplemented
with 8.3 mM sodium bicarbonate supplemented with
10% FBS, 50 μg/ml gentamicine, 22 μg/ml pyruvate, 1.1
mM glutamine, and 10 ng/ml EGF. Selected COCs were
placed in groups of 20–25 per 90 μl microdrops consist-
ing of oocyte maturation media either supplemented
with 100 μM 10Panx (Tocris, Bristol, United Kingdom)
or the vehicle only, under mineral oil (Sigma Life Sci-
ence, Darmstadt, Germany) and cultured for 22 h. COCs
were then used for experiments or fertilized in groups of
200 in 1.9 ml of fertilization media containing 106

spermatozoa/ml for 18–22 h. To eliminate variation due
to the male component, semen from a single ejaculation
from a bull with proven in vitro fertility was used.
Fertilization media consists of synthetic oviductal fluid
(SOF, 1.17 mM CaCl22H2O, 0.49 mM MgCl26H2O, 1.19
mM KH2PO4, 7.16 mM KCl, 107.7 mM NaCl, 25.07 mM
NaHCO3, and 5.3 mM Na-lactate) supplemented with
50 μg/ml gentamicine, 22 μg/ml pyruvate, 10 μg/ml hep-
arin, 194.2 μg/ml caffeine, and 6mg/ml BSA fraction V
essentially fatty acid free (EFAF). Following fertilization,
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the presumptive zygotes were denuded by gently pipet-
ting them up and down with a glass pipette. The pre-
sumptive zygotes were then cultured in groups of 25 in
50 μl culture media under mineral oil. Culture media
consisted of 5 ml SOF supplemented with 6 mg/ml BSA
fraction V EFAF, 1.1 mM glutamine, 2.8 mM myo-
inositol, 0.57 mM sodium citrate, 22 μg/ml pyruvate,
50 μg/ml gentamicin, 1X essential amino acids, and 1X
nonessential amino acids. Presumptive zygotes were then
cultured in 5% CO2, 5% O2, and 90% N2 at 38.5 °C.
Forty-eight hours after fertilization, cleavage rates were
recorded based on the initial total number of oocytes.
On day 7 after fertilization, morula/blastocyst rates were
recorded based on the initial total number of oocytes.
COCs in all experiments in this study were cultured at
38.5 °C and 5.0% CO2. All experiments were repeated at
least 3 times.

Immunocytochemistry of cumulus-oocyte complexes
COCs were aspirated from bovine ovarian follicles using
a syringe and 18 gauge needle. This was followed by
their collection under a stereoscope and washing in
TCM199. Selected COCs were washed in phosphate
buffered saline (PBS) then fixed for 15 min in 4% para-
formaldehyde (PFA), blocked 30min with PBS contain-
ing 3% bovine serum albumin (BSA) and 0.5% Triton-X,
incubated overnight with a primary antibody (1:500
Rabbit anti-PANX1 CT-412; Western University,
London, Ontario [62, 63]) (Supplementary Table 1),
washed with blocking solution, and incubated 1 h with a
secondary antibody (1:500, Goat anti-Rabbit FITC;
ImmunoReagents Inc., Raleigh, NC) (Supplementary
Table 1). Cells were counterstained with Hoechst 33342.
A Nikon A1 Confocal Scanning Laser Microscope
(Nikon Instruments, Melville, NY) was used to randomly
image a single plane of the cumulus cells with or with-
out the oocyte present. The anti-PANX1 CT-412 anti-
body was produced using a human epitope that has
86.67% homology with the bovine protein (unpublished
results) [62].

Brilliant cresyl blue staining of oocytes
Oocytes were aspirated from bovine ovarian follicles ran-
ging from 2 to 5mm in size using a syringe and 18-
gauge needle. This was followed by their collection
under a stereoscope and washing in TCM199. Oocytes
with at least three continuous layers of surrounding cu-
mulus cells and a homogeneous cytoplasm were then se-
lected for brilliant cresyl blue (BCB) staining. Selected
COCs were then washed three times in TCM199 and
cultured 90 mins in TCM199 supplemented with 26 μM
BCB. After staining COCs were washed in PBS and ex-
amined under a stereoscope. They were classified into
different groups, high and low, according to the level of

BCB coloration in the ooplasm. The categorized COCs
were then pelleted and resuspended in radioimmunopre-
cipitation assay (RIPA) Lysis and Extraction buffer con-
taining proteinase inhibitors.

Western blotting
COCs or follicular fluid content were washed in PBS,
pelleted, and frozen at − 80 degrees Celsius. When
selecting for different antral follicle stages of develop-
ment, follicles were aspirated separately from small an-
tral (< 2 mm) and large antral (> 5 mm) follicles. Protein
from the frozen samples was isolated using RIPA Lysis
and Extraction buffer supplemented with protease inhib-
itors. Protein samples were quantified using a Qubit
fluorometer (ThermoFisher, Waltham, MA). Samples
were combined with loading dye, heated at 95 °C for 5
min, and ran through a 10% sodium dodecyl sulfate
polyacrylamide (SDS) page gel, followed by transfer to a
polyvinylidene difluoride (PVDF) membrane (Invitrogen,
Carlsbad, CA). The membrane was blocked with tris-
buffered saline (TBS) containing 5% BSA fraction V,
washed with TBS containing 0.5% Tween-20, incubated
overnight with primary, washed with TBS-Tween, incu-
bated 1 h with a secondary antibody, washed with TBS-
Tween, and exposed with enhanced chemiluminescence
(ECL) for 4 min followed by chemiluminescent detection
on an Azure c400 (Azure Biosystems, Dublin, CA). For
PANX1 staining, a rabbit anti-PANX1 CT-412 (1:1 K,
Western University, London, Ontario [61–63]) (Supple-
mentary Table 1) primary and goat anti-rabbit horserad-
ish peroxidase (HRP) (1:2 K, Columbia Biosciences,
Frederick, MD) (Supplementary Table 1) secondary were
used. GAPDH staining used a mouse anti-GAPDH (1:1
K, Sigma Life Science) (Supplementary Table 1) primary
and a goat anti-mouse HRP (1:10 K, Novagen, Darm-
stadt, Germany) (Supplementary Table 1) secondary.
The blots were densitometry analyzed and normalized to
GAPDH using ImageJ analysis software. Tissues were
derived from bovine samples.

Propidium iodide dye uptake
Dye uptake studies were performed on bovine granulosa
cells derived from follicular fluid collections (described
above). Granulosa cells were collected from the follicular
fluid by pelleting the cell content and washing with Dul-
becco Modified Eagle Medium: Nutrient Mixture F-12
(DMEM/F12) media (D-MEM/F12 base powder (Gibco,
ThermoFisher Scientific, Waltham, MA), 0.24% sodium
bicarbonate). Isolated granulosa were plated in 6-well
culture plates and incubated at 38.5 °C with 5% CO2.
The media was changed every 24 h. 10Panx (100 μM) or
vehicle control was added to the appropriate wells fol-
lowing 48 h of culture and incubated at 38.5 °C and 5%
CO2 for 30 min. A propidium iodide (PI) dye uptake
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protocol was utilized using methods previously described
[64], with modifications. Basal dye uptake was measured
by adding PI (1 mM) to all wells and placing the dish
back into the incubator for 30 min. Cells were then
washed in PBS and fixed for 25 min in 4% PFA protected
from light. Cells were washed with 3% PBS-BSA and nu-
clei were stained with NucBlue Live Cell Stain
Hoechst33342 (Life Technologies, ThermoFisher Scien-
tific, Waltham, MA) for 10 min protected from light. Im-
ages were captured using an Evos FL Cell Imaging
System (ThermoFisher Scientific, Waltham, MA) using
the RFP fluorescent filter, and PI positive cells quantified
using ImageJ software. Three repetitions were con-
ducted, and counting was performed by the same re-
searcher for each repetition.

Cumulus expansion measurement
To determine the expansion distance of the cumulus
around the maturing oocyte, COCs were matured in
groups of ~ 20–25 with or without 10Panx treatment
(100 μM) for 22 h using methods described above. Cul-
ture plates with droplets were removed from incubation
and and bright light images were taken using an Evos FL
Cell Imaging System (ThermoFisher Scientific, Waltham,
MA). Only completely visible COCs, where the distance
from the center of the oocyte to the edge of the ex-
panded cumulus could be measured, were included.
Three repetitions were conducted with a total of n = 84
and n = 82 COCs for control and 10Panx groups respect-
ively. ImageJ analysis software was used for
measurements.

Meiotic maturation of denuded oocytes
To determine the stage of nuclear maturation, COCs
were matured with 10Panx treatment (100 μM) or ve-
hicle control for 6 or 22 h using the previously de-
scribed methods. Each treatment group and time
point was removed from incubation when appropriate,
washed in PBS, and placed in 0.25% trypsin for 10
min at 38.5 °C. The trypsinized COCs were then vor-
texed and denuded mechanically using a glass pipet.
Denuded oocytes were selected and washed in PBS,
then fixed in 4% PFA for 15 min. Fixed oocytes were
permeabilized in 0.5% PBS-Triton for 15 min, washed
in 3% PBS-BSA, and the nuclei were stained with
NucBlue Live Cell Stain Hoechst 33342 (Life Tech-
nologies, ThermoFisher Scientific, Waltham, MA) for
10 min protected from light. Stained oocytes were
mounted with coverslips on Superfrost microscope
slides (Fisher Scientific, ThermoFisher Scientific, Wal-
tham, MA) using VectaShield antifade mounting
medium (Vector Laboratories, Burlingame, CA). Oo-
cytes nuclear maturation state was recorded using the
Evos FL Cell Imaging System (ThermoFisher

Scientific, Waltham, MA) set to the DAPI fluorescent
filter. Oocytes were classified as being in the germinal
vesicle (GV), germinal vesicle breakdown (GVBD), or
meiosis II (MII) stage of DNA meiotic maturation.
Four repetitions were conducted with n = 73, n = 93,
n = 120, and n = 114 oocytes for 6 h control, 6 h
10Panx, 22 h control, and 22 h 10Panx groups
respectively.

Direct cyclic adenosine monophosphate enzyme-linked
immunosorbent assay
To determine the intercellular concentration of 3′,5′-
cyclic adenosine monophosphate (icAMP) in COCs,
COCs were matured with or without 10Panx treatment
(100 μM) for 0, 3, 6, or 22 h using methods described
above. Each treatment group and time point was re-
moved from incubation when appropriate, and placed
into maturation media supplemented with 0.5 mM 3-
isobutyl-1-methylxanthine (IBMX). COCs were then
washed again in maturation media supplemented with
0.5 mM IBMX, followed by a wash in maturation media
without IBMX. The COCs were moved to PBS and then
snap frozen in a 1.7 ml conical tube. Samples were
stored at − 80 °C until the assay. The icAMP concentra-
tion of the COCs was determined using the Enzo Direct
cAMP enzyme-linked immunosorbent assay (ELISA) kit
(Enzo Life Sciences, Farmingdale, NY, Cat# ADI-900-
066) using the acetylation protocol according to the
manufacturer’s instructions. Optical density was then
measured at 405 nm using an EMax Plus Microplate
Reader (Molecular Devices, San Jose, CA) and icAMP
concentration was calculated. Three experimental repli-
cates were repeated with samples collected for each time
point and treatment with n = 10 COCs per sample.

2′-7′-Dichlorodihydrofluorescein diacetate staining of
oocytes
Following 22 h of maturation oocytes were mechanically
denuded using a glass pipette. The denuded oocytes
were then collected under a stereoscope and cultured
for 30 min in PBS supplemented with 3% BSA, 10 μg/ml
Hoechst 33342, and 10 μM 2′-7′-dichlorodihydrofluor-
escein diacetate (DCHF-DA). The stained oocytes were
then washed briefly three times in PBS and immediately
imaged for fluorescence under an Evos FL Cell Imaging
System (ThermoFisher Scientific, Waltham, MA) using
the DAPI and GFP fluorescent filters. Staining intensity
was quantified using ImageJ analysis software by calcu-
lating the corrected total cell fluorescence (CTCF) of five
areas of an individual oocyte and averaging them. The
individual averaged CTCFs between 10Panx treated and
vehicle only controls were then used to compare the
DCFH-DA staining.

Dye et al. Journal of Ovarian Research           (2020) 13:98 Page 9 of 11



Statistics
Statistical analysis was conducted using GraphPad Prism
software (v6.01). Unpaired two-tailed Student t-tests
were performed for all data sets besides meiotic matur-
ation data, in which a one-way ANOVA was imple-
mented per time point with Tukey’s post hoc testing for
multiple comparisons. Data for PI dye uptake studies
were log transformed for statistical analysis, however
graphical representation is shown using non-
transformed data. Data for developmental outcomes
were arcsine transformed for statistical analysis, however
graphical representation is shown with non-transformed
data. Results are reported using standard deviation from
the mean. Comparisons were considered statistically sig-
nificant if p < 0.05 and contained a significant trend if
p < 0.055.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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