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Abstract

In this thesis, we study complex structures of quantum projective spaces that was initiated

in [19] for the quantum projective line, CP 1
q . In Chapters 2 and 3, which are the main parts

of this thesis, we generalize the the results of [19] to the spaces CP 2
q and CP `q . We consider

a natural holomorphic structure on the quantum projective space already presented in

[11, 9], and define holomorphic structures on its canonical quantum line bundles. The space

of holomorphic sections of these line bundles then will determine the quantum homogeneous

coordinate ring of the quantum projective space as the space of twisted polynomials.

We also introduce a twisted positive Hochschild 2`-cocycle on CP `q , by using the

complex structure of CP `q , and show that it is cohomologous to its fundamental class which

is represented by a twisted cyclic cocycle. This fits with the point of view of holomorphic

structures in noncommutative geometry advocated in [4, 5], that holomorphic structures

in noncommutative geometry are represented by (extremal) positive Hochschild cocycles

within the fundamental class.

In Chapter 4, we directly verify that the main statements of Riemann-Roch formula

and Serre duality theorem hold true for CP 1
q and CP 2

q .

In Chapter 5, a quantum version of the Borel-Weil theorem for SUq(3) is proved and

is generalized to the case of SUq(n).

Finally, in the last chapter the noncommutative complex structure of finite spaces is

investigated. The space of holomorphic functions are determined and it is also proved that

there is no holomorphic structure on the nontrivial vector bundle Ea ⊕ Eb over the space of

two points X = {a, b}, where dim Ea = 2 and dim Eb = 1.

Keywords: Noncommutative geometry, noncommutative complex geometry, positive

Hochschild cocycle.
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Preface

The correspondence between geometry and algebra is not a new idea in mathematics. Classi-

cally, it amounts to a correspondence or duality between commutative algebras and classical

spaces. The classical space appears as the spectrum of the commutative algebra. For ex-

ample, the celebrated theorem of Gelfand and Naimark states that the category of locally

compact Hausdorff spaces is equivalent to the dual of the category of commutative C∗-

algebras. Hence one can regard not necessarily commutative C∗-algebras as representing

noncommutative spaces. In general one seeks an algebraic formulation of geometric notions

based on which one can then try to find their analogues in the noncommutative world.

Tools of (differential) topology such as K-theory, de Rham cohomology and Chern-

Weil theory of characteristic classes have been extended to noncommutative algebras. A

major discovery of Alain Connes, namely cyclic cohomology, can be regarded as the non-

commutative analogue of de Rham homology [6].

During the past thirty years, different aspects of noncommutative differential and

Riemannian geometry have been developed. For instance now it is a well known fact that

the metric information of a Riemannian (spin) manifold can be encoded by a triple of algebra

of smooth functions on the manifold, the Hilbert space of spinors and the associated Dirac

operator. More precisely a spectral triple over a noncommutative unital ∗-algebra A is a

triple (A,H, D) where A is represented by bounded operators in a Hilbert space H and

D is a self-adjoint unbounded operator on H with the following properties. First of all,

the commutator [D, a] must be bounded for any element a ∈ A. Moreover, the resolvent

(D − λ)−1 is a compact operator for any λ /∈ R. To any Riemannian spin manifold M ,

a spectral triple is associated canonically with A = C∞(M), H = L2(M,S) the space of

L2-sections of the spin bundle over M and D is the associated Dirac operator on H. The

geodesic distance can be recovered by a formula of Connes

d(p, q) = sup{|f(p)− f(q)|; || [D, f ] || ≤ 1, f ∈ A}.

1
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There also exists an analogue of volume form and even Yang-Mills action in this set up. A

theorem of Connes assures that every Riemannian spinc manifold can be reconstructed in

this way from a commutative spectral triple satisfying some natural axioms [7].

While there has been much progress in noncommutative geometry, the progress in

noncommutative complex geometry has been very slow and much remains to be done in

this area. A beginning step in this direction was made by Alain Connes, who pointed out

that positive Hochschild 2-cocycles on the algebra A = C∞(M), on the two dimensional

closed oriented surface M , can encode the information needed to define a conformal (or

equivalently, complex) structure on the surface M . More precisely, let ϕ : A⊗3 → C,

defined by

ϕ(f0, f1, f2) := − 1

2πi

∫
M

f0 df1 ∧ df2,

be the cyclic 2-cocycle representing the fundamental class of the 2-dimensional manifold M .

If M carries a conformal structure g, one can define a functional ϕg : A⊗3 → C by

ϕg(f
0, f1, f2) :=

i

π

∫
M

f0∂f1 ∧ ∂f2.

The 2-cocycle ϕ is a cyclic 2-cocycle while ϕg is just a Hochschild 2-cocycle in the same

Hochschild cohomology class of ϕ. The cocycle ϕg has another property which is called

positivity. To be more explicit, the following gives a positive sequilinear form on A⊗2.

〈a0 ⊗ a1, b0 ⊗ b1〉 := ϕ(b∗0a0, a1, b
∗
1).

The 2-cocycle ϕg is the unique point in the convex cone Z2
+∩ [ϕ] with an extremal property.

Here Z2
+ is the space of positive Hochschild 2-cocycles and extremality is with respect to

the following functional. First let

G =

d∑
1

gµν dxµ( dxν)∗ ∈ Ω2(A),
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now define

〈G,φ〉 =
∑

φ(gµν , x
µ, (xν)∗).

This functional takes its minimum in a unique point in Z2
+∩ [ϕ] which is ϕg. Conversely the

complex structure can also be recovered by ϕg. This strategy has been applied by Connes

himself to the case of noncommutative two torus T2
θ and the positive Hochschild 2-cocycle

representing the noncommutative complex structure is given explicitly[4, VI, lemma 9]. On

the other hand Polishchuk and Schwarz have considered the holomorphic vector bundles on

T2
θ and gave a classification of noncommutative holomorphic vector bundles [29, 30]. In [19]

M. Khalkhali, G. Landi and W. van Suijlekom proposed a definition for a holomorphic vector

bundle on an involutive algebra as a finitely generated projective module that admits a flat

∂-connection. They applied the appropriate techniques to the case of quantum projective

line and its canonical quantum line bundles to derive quantum version of some well known

classical results.

To deal with complex structure of some noncommutative spaces, such as quantum

projective spaces, the correspondence of complex structure and positivity must be extended

to twisted positivity of Hochschild cocyles and twisted cyclic cocycles. Here twist is defined

via the modular automorphism of the Haar state on the quantum group SUq(n). So authors

in [19] also defined the notion of twisted positivity and gave an example of twisted posi-

tive Hochschild 2-cocycle in the same cohomology class of fundamental class of quantum

projective line. The paper [19] by itself has given rise to several questions. Among them,

two that took our attention are as following. First, what can we say about higher dimen-

sional quantum projective spaces? The second question is: could we give a classification

of all holomorphic vector bundles on CP 1
q ? In particular, how to formulate and prove a

Grothendieck type theorem for holomorphic vector bundles on CP 1 in our noncommutative

setting.

The complex projective spaces CPn are among the most important complex manifolds

so it is totally natural to work with the noncommutative version of these spaces if we are

willing to investigate the noncommutative complex geometry. The quantum group version of
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the fibration S1 → S2n+1 → CPn, gives the A(CPnq ) as the invariant elements of A(S2n+1
q )

under the action of S1. Here A(CPnq ) denotes the algebra of functions on the quantum space

CPnq . The canonical quantum line bundles LN then is defined by characters of U(1). Each

LN is a A(CPnq )-bimodule. A classical result in complex geometry states that the space

of holomorphic sections of canonical line bundles is isomorphic to homogeneous polynomial

space as a vector space. The homogeneous coordinate ring of these line bundles which is

defined by R :=
⊕

m≥0H
0(CPn,O(m)) is isomorphic to the ring of polynomials in n + 1

variables.

To have a noncommutative complex geometry on A := A(CPnq ) in the sense of [19],

we need a bigraded differential algebra Ω(•,•)(A) together with two differentials ∂ and ∂

with some appropriate properties. The space of forms and differential maps for quantum

projective spaces have been worked out in [9, 12] and in more general case of quantum flag

manifolds in [17].

This thesis is structured as follows. In Chapter 1, we review basic concepts of quantum

groups that will be needed in forthcoming chapters. The notion of noncommutative complex

geometry in the sense of [19] is recalled and the main problem that chapters 2 and 3 are

devoted to is stated.

In Chapter 2, the holomorphic structures on canonical quantum line bundles on the

quantum projective plane are investigated. It is shown that these line bundles admit a flat

∂-connection and the compatibility of this with bimodule structure of line bundles is also

established. This compatibility together with the determination of the space of holomorphic

sections, led us to derive the structure of the quantum homogeneous coordinate ring of CP 2
q

as a twisted polynomial algebra in three variables. We also extended our results from

polynomial holomorphic sections to continuous and L2-sections. In addition we prove the

existence of a positive twisted Hochschild 4-cocycle that represents the fundamental class of

the quantum projective plane. The question of the relation between positivity and complex

structure in complex dimension ≥ 2, even in the classical case, is still open.

Chapter 3 is an extension of our results to higher dimensional quantum projective

spaces where the quantum homogeneous coordinate ring of a projective space is determined
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as a space of twisted polynomials. This result has a perfect analogue in the classical case

as q approaches 1.

In Chapter 4, we determine the Dolbeault cohomology of CP 1
q and CP 2

q as the first

step of seeking an analogue of the Riemann-Roch theorem for quantum projective spaces.

In Chapter 5, we prove a quantum version of the Borel-Weil theorem for SUq(3) and

generalize it to the case of SUq(n). Classically the Borel-Weil theorem gives a concrete

geometric realization of irreducible representations of a compact Lie group as the space of

holomorphic sections of the line bundles on the associated flag manifold.

In the last chapter, we investigate the noncommutative complex structure of finite

spaces and determine the space holomorphic functions of these spaces. We also prove that

there is no nontrivial holomorphic vector bundle on the space of two points.



Chapter 1

A review on quantum groups and noncommutative

complex geometry

1.1 Quantum groups

In this section we review some basic notions of quantum groups following [23].

1.1.1 Hopf algebras

In this thesis, by an algebra we mean an associative algebra over C with unit. More precisely,

an algebra is a vector space A over C with two linear maps m : A ⊗ A → A, called the

product and η : C→ A called the unit such that

m ◦ (m⊗ id) = m ◦ (id⊗m), m ◦ (η ⊗ id) = id = m ◦ (id⊗ η). (1.1)

On the elements of A, equations (1.1) can be written as:

a(bc) = (ab)c, a1 = 1a = a, ∀ a, b, c ∈ A.

A coalgebra is a vector space over C with two maps ∆ : A → A⊗ A and ε : A → C such

that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆. (1.2)

The maps ∆ and ε are called coproduct and counit respectively. A bialgebra is a tuple

(A,m, η,∆, ε) such that A is simultaneously an algebra and a coalgebra and also ε and ∆

are morphisms of algebras.

6
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Definition 1.1.1. A Hopf algebra is a bialgebra (A,m, η,∆, ε) with a linear map S : A →

A, called the antipode, such that

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆. (1.3)

In Sweedler’s notation (i.e. ∆a =
∑
a(1) ⊗ a(2)), formula (1.3) can be written as

∑
S(a(1))a(2) = ε(a)1 =

∑
a(1)S(a(2)).

The map S has the following properties:

S(1) = 1, S(ab) = S(b)S(a), ∀a, b ∈ A,

∆ ◦ S = τ ◦ (S ⊗ S) ◦∆, ε ◦ S = ε.

Here τ : A⊗A → A⊗A is the flip τ(a⊗ b) = b⊗ a.

1.1.2 Dual pairing of Hopf algebras

Definition 1.1.2. A dual pairing of Hopf algebras U and A is a bilinear pairing

〈 , 〉 : U ⊗A → C such that

〈∆(X), a⊗ b〉 = 〈X, ab〉, 〈XY, a〉 = 〈X ⊗ Y,∆(a)〉 (1.4)

〈X, 1〉 = ε(X), 〈1, a〉 = ε(a) (1.5)

for all X,Y ∈ U and for all a, b ∈ A. The pairing is called nondegenerate if 〈X, a〉 = 0 for

all a ∈ A implies X = 0 and if 〈X, a〉 = 0 for all X ∈ U implies a = 0.

For a pairing of Hopf algebras 〈 , 〉, we have

〈S(X), a〉 = 〈X,S(a)〉 ∀X ∈ U , ∀a ∈ A.

Definition 1.1.3. A Hopf ∗-algebra is a Hopf algebra A over C with an involution ∗ on A

such that (ab)∗ = b∗a∗ and ∆(a∗) = ∆(a)∗.
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Note that in any Hopf ∗-algebra we have 1∗ = 1, ε(a∗) = ε(a) and S−1 = ∗ ◦ S ◦ ∗.

Definition 1.1.4. A dual pairing between Hopf ∗-algebras U and A is a dual Hopf pairing

such that

〈X∗, a〉 = 〈X,S(a∗)〉, 〈X, a∗〉 = 〈S(X∗), a〉.

1.1.2.1 Examples of Hopf algebras

• The universal enveloping algebra U(g).

For a Lie algebra g over C, the universal enveloping algebra U(g) is defined to be the

quotient of the tensor algebra T (g) by the two sided ideal I generated by elements

x⊗ y − y ⊗ x− [x, y] for x, y ∈ g. It has the following universal property:

Given a linear map ϕ : g→ A to an algebra A satisfying

ϕ([x, y]) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x), ∀x, y ∈ g,

there is a unique algebra homomorphism Φ : U(g)→ A such that Φ(x) = ϕ(x), x ∈ g.

There exists a unique Hopf algebra structure on U(g) satisfying

∆(x) = 1⊗ x+ x⊗ 1, ε(x) = 0, S(x) = −x, ∀x ∈ g.

In some cases, for example when A(G) is the Hopf algebra of a matrix Lie group G

with Lie algebra g, the elements of U(g) act as left invariant differential operators on

G. For Xi ∈ g, i = 1, 2, · · ·n, the element X = X1X2 · · ·Xn acts on f ∈ C∞(G) as

Xf(g) =
∂n

∂t1 · · · ∂tn

∣∣∣
ti=0

f(g et1X1 · · · etnXn).

The pairing 〈 , 〉 between U(g) and A(G) given by 〈X, f〉 := Xf(e) is a nondegenerate

dual pairing of Hopf algebras. Here e is the identity element of G.

• The group algebra CG.

Let G be a discrete group. The group algebra CG as a vector space has a basis given

by G. The product of G extends linearly to this space and the unit element is the
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unit of G. There is a unique Hopf algebra structure on CG such that

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1, ∀g ∈ G.

• The Drinfield-Jimbo algebras.

In this example g is a complex semisimple Lie algebra. The following theorem by

Serre, characterizes U(g) in terms of generators and relations.

Theorem 1.1.1. Let g be a complex semisimple Lie algebra with Cartan matrix A =

(aij) and simple roots α1, α2, · · · , αl with l =rank g, then Ei = Eαi , Fi = E−αi and

Hi = [Ei, Fi], i = 1, 2, · · · , l, can be chosen in such a way that the universal enveloping

algebra U(g) is generated by Ei, Fi, Hi, subject to the relations

[Hi, Hj ] = 0, [Ei, Fi] = Hi, [Ei, Fj ] = 0, i 6= j,

[Hi, Ej ] = aijEj , [Hi, Fj ] = −aijFj ,

(adEi)
1−aijEj =

1−aij∑
k=0

(−1)k
(

1− aij
k

)
E

1−aij−k
i EjE

k
i = 0, i 6= j,

(adFi)
1−aijFj =

1−aij∑
k=0

(−1)k
(

1− aij
k

)
F

1−aij−k
i FjF

k
i = 0, i 6= j.

We recall that for a complex semisimple Lie algebra, the Cartan matrix A = (aij) is

defined by aij := 2〈αi, αj〉/〈αj , αj〉. Here αi’s are simple roots and 〈, 〉 is the Killing

form. This matrix which is a square integer matrix has the following properties:

– aij ∈ {−3,−2,−1, 0, 2}

– aii = 2.

– aij ≤ 0 if i 6= j

– aij = 0 iff aji = 0

– There exists a diagonal matrix D such that DAD−1 gives a symmetric and

positive definite quadratic form.
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Note. The elements Ei, Fi, Hi produce a PBW basis for U(g).

Let q be a nonzero complex number and let qi = qdi where di := (αi, αi)/2 such that

q2
i 6= 1 for i = 1, 2, · · · , l. Let Uq(g) be the associative unital algebra with generators

Ei, Fi,Ki,K
−1
i for 1 ≤ i ≤ l subject to the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki,

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

1−aij∑
k=0

(−1)k

1− aij

k

E1−aij−k
i EjE

k
i = 0, i 6= j,

1−aij∑
k=0

(−1)k

1− aij

k

F 1−aij−k
i FjF

k
i = 0, i 6= j.

where, n
k

 =
[n]!

[k]![n− k]!
, [n] =

qn − q−n

q − q−1
.

Proposition 1.1.1. There is a unique Hopf algebra structure on the algebra Uq(g)

with product ∆, counit ε and antipode S such that

∆(Ki) = Ki ⊗Ki, ∆(K−1
i ) = K−1

i ⊗K
−1
i ,

∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

ε(Ki) = 1, ε(Ei) = ε(Fi) = 0,

S(Ki) = K−1
i , S(Ei) = −EiK−1

i , S(Fi) = −KiFi.

Definition 1.1.5. The Hopf algebra of the proposition (1.1.1) is called the Drinfeld-

Jimbo algebra corresponding to the Lie algebra g and the complex number q.

There exists another Hopf algebra associated to g, denoted by Ǔq(g) which we will use

in forthcoming chapters. The algebra Ǔq(g) is the algebra generated by Ei, Fi,Ki,K
−1
i
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for 1 ≤ i ≤ l subject to the relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki,

KiEj = q
aij/2
i EjKi, KiFj = q

−aij/2
i FjKi,

EiFj − FjEi = δij
K2
i −K

−2
i

qi − q−1
i

,

1−aij∑
k=0

(−1)k

1− aij

k

E1−aij−k
i EjE

k
i = 0, i 6= j,

1−aij∑
k=0

(−1)k

1− aij

k

F 1−aij−k
i FjF

k
i = 0, i 6= j.

The Hopf algebra structure on the algebra Ǔq(g) is given by

∆(Ki) = Ki ⊗Ki, ∆(K−1
i ) = K−1

i ⊗K
−1
i ,

∆(Ei) = Ei ⊗Ki +K−1
i ⊗ Ei, ∆(Fi) = Fi ⊗Ki +K−1

i ⊗ Fi,

ε(Ki) = 1, ε(Ei) = ε(Fi) = 0,

S(Ki) = K−1
i , S(Ei) = −qiEi, S(Fi) = −q−1

i Fi.

One advantage of this Hopf algebra is the fact that comultiplications of generators

Ei and Fi are given by the same formula. There is a Hopf algebra homomorphism

ϕ : Uq(g)→ Ǔq(g) given on generators by

ϕ(Ei) = EiKi, ϕ(Fi) = K−1
i Fi, ϕ(Ki) = K2

i .

The map ϕ is injective so Uq(g) can be considered as a Hopf subalgebra of Ǔq(g). Since

these two Hopf algebra have different number of one dimensional representations, they

are not isomorphic.

In this thesis, we are interested in Uq(sln), its compact real form Uq(sun) and its

irreducible representations. The generators and relations are given in forthcoming

chapters.
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1.1.3 The Haar functional

A linear functional h on A is called invariant if

(id⊗ h) ◦∆ = h = (h⊗ id) ◦∆. (1.6)

Definition 1.1.6. A linear functional h on A which is invariant in the sense of (1.6) is

called a Haar functional of A.

We will see in our case of interest i.e. SUq(n) such a map h exists and is unique with

properties h(a∗a) ≥ 0 and h(1) = 1. Because of these properties h is also called the Haar

state of SUq(n).

Definition 1.1.7. [35] A Hopf ∗-algebra A is called a compact quantum group (CQG), if

there exists a linear functional h on A such that

(id⊗ h) ◦∆(a) = h(a)1, ∀a ∈ A.

1.2 Noncommutative complex geometry

In this section we review the general setup of a noncommutative complex structure on a

given ∗-algebra as introduced in [19].

Let A be a ∗-algebra over C. A differential ∗-calculus for A is a pair (Ω•(A), d), where

Ω•(A) =
⊕

n≥0 Ωn(A) is a graded differential ∗-algebra with Ω0(A) = A. The differential

map d : Ω•(A)→ Ω•+1(A) satisfies the graded Leibniz rule,

d(ω1ω2) = ( dω1)ω2 + (−1)deg(ω1)ω1( dω2)

and d2 = 0. The differential also commutes with the ∗-structure: d(a∗) = ( da)∗.

Definition 1.2.1. A complex structure on an algebra A, equipped with a differential cal-

culus (Ω•(A), d), is a bigraded differential ∗-algebra Ω(•,•)(A) and two differential maps
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∂ : Ω(p,q)(A)→ Ω(p+1,q)(A) and ∂ : Ω(p,q)(A)→ Ω(p,q+1)(A) such that:

Ωn(A) =
⊕
p+q=n

Ω(p,q)(A) , ∂a∗ = (∂a)∗ , d = ∂ + ∂. (1.7)

Also, the involution ∗ maps Ω(p,q)(A) to Ω(q,p)(A).

...
...

...

Ω(0,2)

OO

// Ω(1,2)

OO

// Ω(2,2)

OO

// · · ·

Ω(0,1)

OO

// Ω(1,1)

OO

// Ω(1,2)

OO

// · · ·

Ω(0,0)

∂

OO

∂ // Ω(1,0)

∗
hh OO

// Ω(2,0)

OO

// · · ·

We will use the simple notation (A, ∂) for a complex structure on A.

Definition 1.2.2. Let (A, ∂) be an algebra with a complex structure. The space of holo-

morphic elements of A is defined as

O(A) := Ker{∂ : A → Ω(0,1)(A)}.

By the Leibniz rule one can see that O(A) is an algebra over C.

1.2.1 Holomorphic connections

Suppose we are given a differential calculus (Ω•(A), d). We recall that a connection on a

left A-module E for the differential calculus (Ω•(A), d) is a linear map ∇ : E → Ω1(A)⊗A E

with left Leibniz property:

∇(aξ) = a∇ξ + da⊗A ξ, ∀a ∈ A, ∀ξ ∈ E . (1.8)
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By the graded Leibniz rule, i.e.

∇(ωξ) = (−1)nω∇ξ + dω ⊗A ξ, ∀ω ∈ Ωn(A), ∀ξ ∈ Ω(A)⊗A E , (1.9)

this connection can be uniquely extended to a map, which will be denoted again by ∇,

∇ : Ω•(A)⊗A E → Ω•+1(A)⊗A E .

The curvature of such a connection is defined by F∇ = ∇ ◦ ∇. One can show that,

F∇ is an element of HomA(E ,Ω2(A)⊗A E).

Definition 1.2.3. Suppose (A, ∂) is an algebra with a complex structure. A holomorphic

structure on a left A-module E with respect to this complex structure is given by a linear

map ∇∂ : E → Ω(0,1) ⊗A E such that

∇∂(aξ) = a∇∂ξ + ∂a⊗A ξ, ∀a ∈ A, ∀ξ ∈ E , (1.10)

and such that F∇∂ = (∇∂)2 = 0.

Such a connection will be called a flat ∂-connection. In the case which E is a finitely

generated A-module, (E ,∇∂) will be called a holomorphic vector bundle.

The motivation for this definition comes from the classical case.

Theorem 1.2.1. [16]. Let E be a complex vector bundle on a complex manifold X. A

holomorphic structure on E is uniquely determined by a C-linear operator ∂E : A0(E) →

A(0,1)(E) satisfying the Leibniz rule and the integrability condition ∂
2
E = 0.

In fact there is a one to one correspondence between holomorphic structures on a

complex vector bundle E and flat ∂-connections on E up the gauge equivalence. Two

connections ∇1 and ∇2 are said to be gauge equivalent if there exists an invertible element

g ∈ EndA(E) such that ∇1 = g−1∇2g.

Associated to a flat ∂-connection, there exists a complex of vector spaces

0→ E → Ω(0,1) ⊗A E → Ω(0,2) ⊗A E → ... (1.11)
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Here ∇∂ is extended to Ω(0,q) ⊗A E by the graded Leibniz rule. The zeroth cohomology

group of this complex is called the space of holomorphic sections of E and will be denoted

by H0(E ,∇∂).

1.2.2 Holomorphic structures on bimodules

Definition 1.2.4. Let A be an algebra with a differential calculus (Ω•(A), d). A bimodule

connection on an A-bimodule E is given by a connection ∇ which satisfies a left Leibniz

rule as in formula (1.8) and a right σ-twisted Leibniz property with respect to a bimodule

isomorphism σ : E ⊗A Ω1(A)→ Ω1(A)⊗A E. i.e.

∇(ξa) = (∇ξ)a+ σ(ξ ⊗ da) , ∀ξ ∈ E , ∀a ∈ A. (1.12)

The tensor product connection of two bimodule connections ∇1 and ∇2 on two A-

bimodules E1 and E2 with respect to the bimodule isomorphisms σ1 and σ2 is a map ∇ :

E1 ⊗A E2 → Ω1(A)⊗A E1 ⊗A E2 defined by

∇ := ∇1 ⊗ 1 + (σ1 ⊗ 1)(1⊗∇2).

It can be checked that, ∇ has the right σ-twisted property with σ : E1 ⊗ E2 ⊗ Ω1(A) →

Ω1(A)⊗ E1 ⊗ E2 given by σ = (σ1 ⊗ 1) ◦ (1⊗ σ2).

Definition 1.2.5. A holomorphic structure on a A-bimodule E is a given by a flat ∂-

bimodule connection.

It is worth mentioning that the tensor product of two flat connection is not a flat

connection in general, even in the case of finite dimensional vector spaces [19]. Therefore,

in general we cannot expect that the tensor product of two holomorphic structures (E1,∇∂1)

and (E2,∇∂2) gives a holomorphic structure on E1 ⊗ E2.

Let us recall the results of [19] that in chapters 2 and 3 of this thesis we generalize

them. In [19], beside the general setup of noncommutative complex (NCC) structure on

an algebra and its holomorphic vector bundles, the authors considered the case of CP 1
q as

the quotient space of S3
q = SUq(2) by the action of U(1). The canonical quantum line
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bundles LN are defined by the characters of U(1). For the standard complex structure on

CP 1
q which is induced by the left invariant first order differential calculus (in the sense of

Woronowicz) on SUq(2), they showed that the space of holomorphic sections of line bundles

LN is described as follows. (cf. [19] theorems 4.4, 4.5 and the proposition 5.2)

Theorem 1.2.2. [19] Let N be a positive integer. Then

• H0(LN ,∇) = 0,

• H0(L−N ,∇) ' CN+1.

These results continue to hold when considering continuous sections Γ(LN ) as modules over

C∗-algebra C(CP 1
q ).

Theorem 1.2.3. [19] The space R =
⊕

N≥0H
0(L−N ,∇) carries a ring structure and is

isomorphic to the quantum plane:

R ' C〈a, c〉/(ac− qca).

The following proposition shows the existence of a twisted positive Hochschild co-

cycle which is cohomologous to the fundamental twisted cyclic cocycle defined via smooth

structure of the space CP 1
q .

Proposition 1.2.1. [19] The cochain ϕ ∈ C2(A(CP 1
q )) defined by

ϕ(a0, a1, a2) =

∫
h

a0∂a1∂a2

is a twisted Hochschild 2-cocycle on A(CP 1
q ), that is to say bσϕ = 0 and λ3

σϕ = ϕ; it is also

positive, with positivity expressed as:

∫
h

a0∂a1(a0∂a1)∗ ≥ 0

for all a0, a1 ∈ A(CP 1
q ).



Chapter 2

Noncommutative complex structure of CP 2
q

2.1 The quantum projective plane CP 2
q

In this section, we recall the definition of the quantum enveloping algebra Uq(su(3)), the

quantum group A(SUq(3)) and the pairing between them. We also recall the definition of

the quantum projective plane CP 2
q and its canonical quantum line bundles [12].

2.1.1 The quantum enveloping algebra Uq(su(3))

Let 0 < q < 1. We use the following notation

[a, b]q = ab− q−1ba, [z] =
qz − q−z

q − q−1
,

n
m

 =
[n]!

[m]![n−m]!
,

[j, k, l]! = q−(jk+kl+lj) [j + k + l]!

[j]![k]![l]!
.

The Hopf ∗-algebra Uq(su(3)) as a ∗-algebra is generated by Ki,K
−1
i , Ei, Fi, i = 1, 2

with K∗i = Ki, E
∗
i = Fi subject to the relations

[Ki,Kj ] = 0, KiEi = qEiKi, [Ei, Fi] = (q − q−1)−1(K2
i −K−2

i ),

KiEj = q−1/2EjKi, [Ei, Fj ] = 0, i 6= j ,

and

E2
i Ej + EjE

2
i = (q + q−1)EiEjEi i 6= j .

17
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Its coproduct, counit and antipode are defined on generators as

∆(Ei) = Ei ⊗Ki +K−1
i ⊗ Ei, ∆(Fi) = Fi ⊗Ki +K−1

i ⊗ Fi,

∆(Ki) = Ki ⊗Ki, ε(Ki) = 1, ε(Ei) = ε(Fi) = 0,

S(Ki) = K−1
i , S(Ei) = −qEi, S(Fi) = −q−1Fi.

Let V (n1, n2) be the irreducible finite dimensional ∗-representation of Uq(su(3)) [23]

with the orthonormal basis |n1, n2, j1, j2,m〉, where indices are restricted by

ji = 0, 1, 2, ..., ni,
1

2
(j1 + j2)− |m| ∈ N. (2.1)

The generators of Uq(su(3)) act on this basis as

K1|n1, n2, j1, j2,m〉 = qm|n1, n2, j1, j2,m〉,

K2|n1, n2, j1, j2,m〉 = q
3
4

(j1−j2)+ 1
2

(n2−n1−m)|n1, n2, j1, j2,m〉,

E1|n1, n2, j1, j2,m〉 =

√
[
1

2
(j1 + j2)−m][

1

2
(j1 + j2) +m+ 1]

|n1, n2, j1, j2,m+ 1〉,

E2|n1, n2, j1, j2,m〉 =

√
[
1

2
(j1 + j2)−m+ 1]Aj1,j2 |n1, n2, j1 + 1, j2,m−

1

2
〉

+

√
[
1

2
(j1 + j2) +m]Bj1,j2 |n1, n2, j1, j2 − 1,m− 1

2
〉, (2.2)

where

Aj1,j2 :=

√
[n1 − j1][n2 + j1 + 2][j1 + 1]

[j1 + j2 + 1][j1 + j2 + 2]
, (2.3)

Bj1,j2 :=


√

[n1+j2+1][n2−j2+1][j2]
[j1+j2][j1+j2+1] if j1 + j2 6= 0,

1 if j1 + j2 = 0.

(2.4)
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2.1.2 The quantum group A(SUq(3))

As a ∗-algebra, A(SUq(3)) is generated by uij , i, j = 1, 2, 3, satisfying the following commu-

tation relations

uiku
j
k = qujku

i
k, uki u

k
j = qukju

k
i ∀ i < j,

[uil, u
j
k] = 0, [uik, u

j
l ] = (q − q−1)uilu

j
k ∀ i < j, k < l,

and a cubic relation

∑
σ∈S3

(−q)l(σ)u1
σ(1)u

2
σ(2)u

3
σ(3) = 1.

In the last equation, sum is taken over all permutations σ on three letters and l(σ) is the

length of σ. The involution ∗ is defined as

(uij)
∗ := (−q)j−i(uk1l1 u

k2
l2
− quk1l2 u

k2
l1

), (2.5)

where as an ordered set, {k1, k2} = {1, 2, 3} \ {i} and {l1, l2} = {1, 2, 3} \ {j}. The Hopf

algebra structure is given by

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = (uji )
∗.

There exists a non-degenerate pairing between Hopf algebrasA(SUq(3)) and Uq(su(3)),

which allows us to define a left and a right action of Uq(su(3)) on A(SUq(3)). These actions

make A(SUq(3)) an Uq(su(3))-bimodule ∗-algebra.

The actions are defined as

h . a = a(1)〈h, a(2)〉, a / h = 〈h, a(1)〉a(2).

Here we used Sweedler’s notation. Left and right actions on generators are given by (see
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[9])

Ki . u
j
k = q

1
2

(δi+1,k−δi,k)ujk, Ei . u
j
k = δi,ku

j
i+1, Fi . u

j
k = δi+1,ku

j
i ,

ujk / Ki = q
1
2

(δi+1,j−δi,j)ujk, ujk / Ei = δi+1,ju
i
k, ujk / Fi = δi,ju

i+1
k . (2.6)

A linear basis of A(SUq(3)) corresponding to the Peter-Weyl decomposition is given

by (see [9, 12])

t(n1, n2)l1,l2,kj1,j2,m
:= Xn1,n2

j1,j2,m
. {(u1

1)∗}n1(u3
3)n2 / (Xn1,n2

l1,l2,k
)∗. (2.7)

where Xn1,n2
j1,j2,m

is defined as

Xn1,n2
j1,j2,m

:= Nn1,n2
j1,j2,m

n1−j1∑
k=0

q−k(j1+j2+k+1)

[j1 + j2 + k + 1]!

n1 − j1

k

F 1/2(j1+j2)−m+k
1 [F2, F1]n1−j1−k

q F j2+k
2 .

The coefficients Nn1,n2
j1,j2,m

are defined by

Nn1,n2
j1,j2,m

=
√

[j1 + j2 + 1]

√√√√ [ j1+j2
2 +m]![n2 − j2]![j1]![n1 + j2 + 1]![n2 + j1 + 1]!

[ j1+j2
2 −m]![n1 − j1]![j2]![n1]![n2]![n1 + n2 + 1]!

.

The Peter-Weyl isomorphism Q : A(SUq(3)) →
⊕

(n1,n2) V (n1, n2) ⊗ V (n1, n2) has

the following property for all h ∈ Uq(su(3)):

Q(h . t(n1, n2)l1,l2,kj1,j2,m
) = h|n1, n2, j1, j2,m〉 ⊗ |n1, n2, l1, l2, k〉,

Q(t(n1, n2)l1,l2,kj1,j2,m
/ h) = |n1, n2, j1, j2,m〉 ⊗ θ(h)|n1, n2, l1, l2, k〉, (2.8)

where θ : Uq(su(3)) → Uq(su(3))op is the Hopf ∗-algebra isomorphism which is defined on

generators as

θ(Ki) = Ki, θ(Ei) = Fi, θ(Fi) = Ei,

and satisfying θ2 = id.

We define the quantum projective plane CP 2
q as a quotient of the 5-dimensional
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quantum sphere ([12]). By definition

A(S5
q ) := {a ∈ A(SUq(3))| a / h = ε(h)a , ∀h ∈ Uq(su(2))}.

As a ∗-algebra, A(S5
q ) is generated by elements zj = u3

j , j = 1, 2, 3 ofA(SUq(3)). Abstractly,

this algebra is the algebra with generators zi, z
∗
i i = 1, 2, 3 and subject to the following

relations

zizj = qzjzi ∀ i < j, z∗i zj = qzjz
∗
i , ∀ i 6= j,

[z∗1 , z1] = 0, [z∗2 , z2] = (1− q2)z1z
∗
1 ,

[z3, z3] = (1− q2)(z1z
∗
1 + z2z

∗
2), z1z

∗
1 + z2z

∗
2 + z3z

∗
3 = 1.

Now we define the algebra A(CP 2
q ) of the quantum projective plane as a ∗-subalgebra

of A(S5
q ).

A(CP 2
q ) := {a ∈ A(S5

q )| a / K1K
2
2 = a}.

One can show that [12], A(S5
q ) '

⊕
(n1,n2)∈N2 V (n1, n2) with the basis t(n1, n2)

0
j , where n1

and n2 are non-negative integers. Also A(CP 2
q ) '

⊕
n∈N V (n, n) with the basis t(n, n)

0
j .

Here we have used the multi index notation j = j1, j2,m and indices j1, j2,m are restricted

by (2.1).

For any integer N , we define the space of the canonical quantum line bundle LN on

CP 2
q by

LN := {a ∈ A(S5
q ) : a / K1K

2
2 = qNa}.

These spaces are A(CP 2
q )-bimodules. One can see that [12],

LN =
⊕
n∈N

V (n, n+N) if N ≥ 0, and LN =
⊕
n∈N

V (n−N,n) if N < 0.

The basis elements are given by t(n, n+N)
0
j for N ≥ 0 and t(n−N,n)

0
j for N < 0.
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2.2 The complex structure of CP 2
q

There is a complex structure on CP 2
q defined in [9, 12]. For future use, we give an explicit

description of the spaces Ω(0,0), Ω(0,1) and Ω(0,2):

Ω(0,0) = L0 = A(CP 2
q ), Ω(0,2) = L3,

and as a subspace of A(SUq(3))2, Ω(0,1) contains all pairs (v+, v−) such that the following

conditions hold

(v+, v−) / K1K
2
2 = q

3
2 (v+, v−), (v+, v−) / K1 = (q

1
2 v+, q

− 1
2 v−),

(v+, v−) / F1 = (0, v+), (v+, v−) / E1 = (v−, 0). (2.9)

The complex structure on CP 2
q is given by the maps ∂ : A(CP 2

q ) → Ω(1,0)(CP 2
q ) and ∂ :

A(CP 2
q )→ Ω(0,1)(CP 2

q ), which (up to multiplicative constants) are ∂a = (a/E2, a /E2E1)t,

∂a = (a / F2F1, a / F2)t.

In this section we identify the space of holomorphic functions on CP 2
q and holomorphic

sections of LN .

2.2.1 Holomorphic functions

Proposition 2.2.1. There are no non-trivial holomorphic polynomials on CP 2
q .

Proof. Let a =
∑

n,j λn,jt(n, n)
0
j . Then ∂a = 0 implies that a / F2 = 0 and a / F2F1 = 0. A

simple computation shows that a/F2 =
∑
λn,jγnt(n, n)

1,0,− 1
2

j , where γn = A0,0 =
√

[n][n+2]
[2] .

This can be obtained by (2.8), (2.2) and (2.3) because

E2|n, n, 0, 0, 0〉 = A0,0|n, n, 1, 0,−1
2〉.

Since γn = 0 iff n = 0, all coefficients need to be zero except c0,0. Note that the action of

F1 does not put more restrictions on the coefficients. This demonstrates that

Ker{∂ : A(CP 2
q )→ Ω(0,1)(CP 2

q )} = 〈t(0, 0)
0
0〉 = C.
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This preposition, has already been proved in [12] as a result of a Hodge decomposition.

2.2.2 Canonical line bundles

Like [9], we define the connection ∇N on LN by ∇N := q−NΨ†N dΨN , where ΨN is the

column vector with components ψNi,j,k given by

(ψNj,k,l)
∗ =

√
[j, k, l]!zj1z

k
2z

l
3, ifN ≥ 0 and with j + k + l = N,

(ψNj,k,l)
∗ =

√
[j, k, l]!(zj1z

k
2z

l
3)∗, ifN ≤ 0 and with i+ j + k = −N.

Notice that we put an extra coefficient q−N . This is needed for compatibility with the twist

map in section (2.2.3).

The anti holomorphic part of this connection will be ∇∂N = q−NΨ†N∂ΨN . The curva-

ture of ∇∂N can be computed as follows

(∇∂N )2 = q−2NΨ†N (∂PN∂PN )ΨN ,

where PN := ΨNΨ†N is a projection map due to the fact that Ψ†NΨN = 1.

Proposition 2.2.2. The connection ∇∂N is flat.

Proof. We will prove this for N ≥ 0 and a similar discussion will cover the case N < 0.

It suffices to show that

Ψ†N∂PN = Ψ†N (PN / F2F1, PN / F2)t = 0.

The second component

Ψ†N (PN / F2) = Ψ†N ((ΨNΨ†N ) / F2)

= Ψ†N{(ΨN / F2)(Ψ†N / K2) + (ΨN / K−1
2 )(Ψ†N / F2)}

= 0 .
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and this last equality is obtained by ( see [9], section 6)

Ψ†N / F2 = 0 , Ψ†N (ΨN / F2) = 0 . (2.10)

Similar computation shows that Ψ†N (PN /F2F1) also vanishes. For this the following identity

is needed.

Ψ†N (ΨN / F2F1) = 0. (2.11)

Hence (∇∂N )2 = 0.

Alternatively, as it was kindly pointed out to us by Francesco D’Andrea, using Lemma

6.1 in [9], the full connection (holomorphic + antiholomorphic part) has curvature of type

(1, 1). This implies that the square of the holomorphic and antiholomorphic part is zero.

Proposition (2.2.2) verifies that the operator∇∂N satisfies the condition of holomorphic

structure as given in the definition (1.2.3).

Flatness of ∇∂N gives the following complex of vector spaces

0→ LN → Ω(0,1) ⊗A(CP 2
q ) LN → Ω(0,2) ⊗A(CP 2

q ) LN → 0 .

The zeroth cohomology groupH0(LN ,∇∂N ) of this complex is called the space of holomorphic

sections of LN . The structure of this space is best described by the following theorem.

Theorem 2.2.1. Let N be a positive integer. Then

(1) H0(LN ,∇∂N ) ' C
(N+1)(N+2)

2

(2) H0(L−N ,∇∂−N ) = 0.

Proof. First we recall that

∇∂Nξ = q−NΨ†N∂ΨNξ = q−NΨ†N ((ΨNξ) / F2F1, (ΨNξ) / F2)t.
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Using (2.10), (2.11) and the following identities

ΨN / F1 = 0, ΨN / K1 = ΨN , ΨN / K2 = q−N/2ΨN , (2.12)

we prove that ∇∂Nξ = 0 is equivalent to the equations ξ / F2 = 0 and ξ / F2F1 = 0.

First we compute the second component of ∇∂Nξ.

q−NΨ†N ((ΨNξ) / F2) = q−NΨ†N{(ΨN / F2)(ξ / K2) + (ΨN / K−1
2 )(ξ / F2)}

= q−N/2ξ / F2.

In addition to (2.10) and (2.12), here we have used Ψ†NΨN = 1. In a similar manner, one

can show that the first component is

q−NΨ†N ((ΨNξ)/F2F1)

= q−NΨ†N{(ΨN / F2)(ξ / K2) + (ΨN / K−1
2 )(ξ / F2)} / F1

= q−NΨ†N{q
N/2(ΨN / F2)ξ + qN/2ΨN (ξ / F2)} / F1

= q−N/2Ψ†N{(ΨN / F2F1)(ξ / K1) + (ΨN / F2K
−1
1 )(ξ / F1)

+ (ΨN / F1)(ξ / F2K1) + (ΨN / K−1
1 )(ξ / F2F1)}

= q−N/2ξ / F2F1.

Let N ≥ 0. In this case, a basis element of LN is of the form t(n, n + N)
0
j . Similar

computation to the proof of proposition 2.2.1, using (2.8), (2.2) and (2.3), shows that

t(n, n+N)
0
j / F2 = γnt(n, n+N)

1,0,− 1
2

j , where γn = A0,0 = ( [n][n+N+2]
[2] )1/2. If ξ ∈ LN , then

ξ can be written as
∑

n,j λn,jt(n, n + N)
0
j . So ξ / F2 =

∑
λn,jγnt(n, n + N)

1,0,−1/2
j . Since

γn = 0 iff n = 0, ξ / F2 = 0 implies that the set {t(0, N)
0
j} will form a basis for the space of

Ker∇∂N . Remembering that by (2.1), the indices are restricted by j1 = 0, j2 = 0, ..., N , and

j2/2− |m| ∈ N, we will find that dim Ker ∇∂N = (N+1)(N+2)
2 .

When N is a negative integer, γn will be ( [n−N ][n+2]
[2] )1/2 which is nonzero. So dim

Ker ∇∂N = 0.
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2.2.3 Bimodule connections

There exists a A(CP 2
q )-bimodules isomorphism σ : Ω(0,1) ⊗A(CP 2

q ) LN → LN ⊗A(CP 2
q ) Ω(0,1)

which acts as

σ(ω ⊗ ξ) = q−Nξ′ ⊗ ω′,

such that both elements ω⊗ ξ and ξ′⊗ω′ in A(SUq(3))2, after multiplication are the same.

We try to illustrate this in the case of N = 1. More precisely let us define the maps φ1 and

φ2 as follows:

φ1 : Ω(0,1) ⊗A(CP 2
q ) L1 → A(SUq(3))2,

φ1((v+, v−)t ⊗ ξ) = q
1
2 (v+ξ, v−ξ)

t,

and

φ2 : L1 ⊗A(CP 2
q ) Ω(0,1) → A(SUq(3))2,

φ2(ξ ⊗ (v+, v−)t) = q−
1
2 (ξv+, ξv−)t.

We will prove that Im φ1=Im φ2. Therefore σ = φ−1
1 φ2 gives an isomorphism from

L1⊗A(CP 2
q ) Ω(0,1) to Ω(0,1)⊗A(CP 2

q ) L1 which is coming from the multiplication map. Let us

first recall that as a ∗-algebra A(CP 2
q ) is generated by elements pjk = z∗j zk = (u3

j )
∗u3
k.

Lemma 2.2.1. With above notation Imφ1 = Imφ2.

Proof. case1. α ∈ Im φ2 is a basis element.

α = φ2(t(n, n+ 1)
0
i ⊗ prs∂pjk) = q−1/2t(n, n+ 1)

0
i prs

(−q−3/2(u1
j )
∗

q−1/2(u2
j )
∗

)
u3
k

= q−1/2

(−q−3/2t(n, n+ 1)
0
i prs(u

1
j )
∗

q−1/2t(n, n+ 1)
0
i prs(u

2
j )
∗

)
u3
k = q−1φ1(Tirsj ⊗ u3

k),

where

Tirsj = (−q−3/2t(n, n+ 1)
0
i prs(u

1
j )
∗, q−1/2prst(n, n+ 1)

0
i (u

2
j )
∗)t.
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Since u3
k ∈ L1, it is enough to prove that Tirsj ∈ Ω(0,1) . In order to do so, we need to show

that the pair (v+, v−) defined as below, satisfies the properties given in (2.9).

(v+, v−)t = (−q−3/2t(n, n+ 1)
0
i prs(u

1
j )
∗, q−1/2t(n, n+ 1)

0
i prs(u

2
j )
∗)t.

We will check (v+, v−) / E1 = (v−, 0).

v+ / E1 = −q−3/2t(n, n+ 1)
0
i prs(u

1
j )
∗ / E1

= −q−3/2{(t(n, n+ 1)
0
i / E1)((prs(u

1
j )
∗) / K1)

+ (t(n, n+ 1)
0
i / K

−1
1 )((prs(u

1
j )
∗) / E1)}

= −q−3/2t(n, n+ 1)
0
i {(prs / E1)((u1

j )
∗ / K1)

+ (prs / K
−1
1 )((u1

j )
∗ / E1)}

= −q−3/2t(n, n+ 1)
0
i prs(−q)(u

2
j )
∗

= q−1/2t(n, n+ 1)
0
i prs(u

2
j )
∗

= v−.

Here we have used the following identities which are obtained from (2.2), (2.6) and (2.8).

t(n, n+ 1)
0
i / K1 = t(n, n+ 1)

0
i , t(n, n+ 1)

0
i / E1 = 0

pij / E1 = 0, (u1
j )
∗ / K1 = q1/2(u1

j )
∗,

pij / K1 = pij , (u1
j )
∗ / E1 = (−q)(u2

j )
∗.
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Similarly

v− / E1 = q−1/2t(n, n+ 1)
0
i prs(u

2
j )
∗ / E1

= q−1/2{(t(n, n+ 1)
0
i / E1)((prs(u

2
j )
∗) / K1)

+ (t(n, n+ 1)
0
i / K

−1
1 )((prs(u

2
j )
∗) / E1)}

= q−1/2t(n, n+ 1)
0
i {(prs / E1)((u2

j )
∗ / K1)

+ (prs / K
−1
1 )((u2

j )
∗ / E1)}

= 0.

Two more identities which have been used above, are

(u2
j )
∗ / K1 = q−1/2(u1

j )
∗, (u2

j )
∗ / E1 = 0.

The case (v+, v−) / F1 = (0, v+) is similar and the other two cases (v+, v−) / K1 =

(q1/2v+, q
−1/2v−) and (v+, v−)/K1K

2
2 = q3/2(v+, v−) are straightforward, but the following

relations are needed.

t(n, n+ 1)
0
i / K2 = q1/2t(n, n+ 1)

0
i , t(n, n+ 1)

0
i / F1 = 0,

(u1
j )
∗ / K2 = (u1

j )
∗, (u2

j )
∗ / K2 = q1/2(u2

j )
∗,

(u1
j )
∗ / F1 = 0, (u2

j )
∗ / F1 = (−q)−1(u1

j )
∗,

pij / K2 = pij , pij / F1 = 0.
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Case2. α ∈ Im φ2 is a general element.

α = φ2(
∑
n,i

cnit(n, n+ 1)
0
i ⊗

∑
r,s,j,k

drsjkprs∂pjk)

= q−1/2
∑

n,i,r,s,j,k

cnit(n, n+ 1)
0
i drsjkprs

(−q−3/2(u1
j )
∗

q−1/2(u2
j )
∗

)
u3
k

= q−1φ1(
∑
k

{
∑
i,r,s,j

cidrsjkt(n, n+ 1)
0
i prs

(−q−3/2(u1
j )
∗

q−1/2(u2
j )
∗

)
} ⊗ u3

k)

= q−1φ1(
∑
k

Ak ⊗ u3
k),

where

Ak =
∑

n,i,r,s,j

cnidrsjkt(n, n+ 1)
0
i prs

(
q−3/2(u1

j )
∗

q−1/2(u2
j )
∗

)
∈ Ω(0,1).

The proof for Im φ2 ⊂ Im φ1 is similar.

In general the maps φ1 and φ2 will be defined as

φ1 : Ω(0,1) ⊗A(CP 1
q ) LN → A(SUq(3))2,

φ1((v+, v−)t ⊗ ξ) = q
N
2 (v+ξ, v−ξ)

t,

and

φ2 : LN ⊗A(CP 1
q ) Ω(0,1) → A(SUq(3))2,

φ2(ξ ⊗ (v+, v−)) = q−
N
2 (ξv+, ξv−).

Now, we prove that ∇∂N has the right σ-twisted Leibniz property with respect to the

map σ = φ−1
1 φ2.

Proposition 2.2.3. Taking σ as above, the following holds

∇∂N (ξa) = (∇∂Nξ)a+ σ(ξ ⊗ ∂a), ∀a ∈ A(CP 2
q ), ∀ξ ∈ LN . (2.13)
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Proof. By (2.10), (2.12) and the fact that ξ/K2 = qN/2ξ, we compute the second component

of the left hand side as follows

q−NΨ†N ((ΨNξa) / F2)

= q−NΨ†N{(ΨN / F2)((ξa) / K2) + (ΨN / K−1
2 )((ξa) / F2)}

= q−N/2(ξ / F2)a+ q−Nξ(a / F2).

(Note that this actually is φ1∇∂N .) For the second component of the right hand side we will

get

q−N/2(ξ / F2)a+ σ(ξ ⊗ a / F2).

The previous lemma says that q−N will appear after acting σ on the second term. It can

be seen that φ1 of both sides coincides. Computation for the second component will be

similar.

Now we will come up to the analogue of proposition 3.8 of ([19]).

Proposition 2.2.4. The tensor product connection ∇∂N ⊗ 1 + (σ ⊗ 1)(1 ⊗ ∇∂M ) coincides

with the holomorphic structure on LN ⊗A(CP 2
q ) LM when identified with LN+M .

Proof.

∇∂N+M (ξ1ξ2)

= q−(N+M)Ψ†N+M∂ΨN+M (ξ1ξ2)

= q−(N+M)Ψ†N+M

(
(ΨN+Mξ1ξ2) / F2F1

(ΨN+Mξ1ξ2) / F2

)
= q−(N+M)Ψ†N+M

(
{(ΨN+M / F2)((ξ1ξ2) / K2)} / F1

(ΨN+M / F2)((ξ1ξ2) / K2)

)
+q−(N+M)Ψ†N+M

(
{(ΨN+M / K−1

2 )((ξ1ξ2) / F2)} / F1

(ΨN+M / K−1
2 )((ξ1ξ2) / F2)

)
= q−

N+M
2

(
(ξ1ξ2) / F2F1

(ξ1ξ2) / F2

)
= q−

N
2

(
{(ξ1 / F2)ξ2 + (q−N−M/2ξ1(ξ2 / F2)} / F1

(ξ1 / F2)ξ2 + q−N−M/2ξ1(ξ2 / F2)

)
.
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Besides (2.10) and (2.11), we also applied the identities ξi / K1 = 0, ξi / F1 = 0.

On the other hand

((∇∂N ⊗ 1) + (σ ⊗ 1)(1⊗∇∂M ))(ξ1 ⊗ ξ2) =

q−N/2
(
ξ1 / F2F1

ξ1 / F2

)
⊗ ξ2 + (σ ⊗ 1)(ξ1 ⊗ q−M/2

(
ξ2 / F2F1

ξ2 / F2

)
).

Interpreting this expression as an element of Ω(0,1) ⊗ LN+M , after applying the map σ,

which gives us q−N on the second summand, we will get the same result.

Thanks to proposition (2.2.4), the space R :=
⊕
H0(LN ,∇∂N ) has a ring structure

under the natural tensor product of bimodules. In the following, we identify the quantum

homogeneous coordinate ring R with a twisted polynomial algebra in three variables

Theorem 2.2.2. We have the algebra isomorphism

R :=
⊕
N≥0

H0(LN ,∇∂N ) ' C〈z1, z2, z3〉
〈 zizj − qzjzi : 1 ≤ i < j ≤ 3 〉

Proof. The ring structure on R is coming from the tensor product LN1 ⊗A(CP 2
q ) LN2 '

LN1+N2 . The following discussion shows that H0(L1,∇∂1) = Cz1 ⊕Cz2 ⊕Cz3. The explicit

formula for the basis elements of H0(LN ,∇∂N ), i.e. t(0, N)0
j is given by Proposition 3.3 and

Proposition 3.4 of [9] as following

t(0, N)
0
j =

1

[j2]!

√√√√ [ j22 +m]![N − j2]!

[ j22 −m]![N ]!
F

1/2j2−m
1 F j22 . zN3 . (2.14)

We just mention that up to a multiplicative constant this equals to

z
1/2j2−m
1 z

1/2j2+m
2 zN−j23 . In the case N = 1, t(0, 1)

0

0,1,− 1
2

= z1, t(0, 1)
0

0,1, 1
2

= z2 and t(0, 1)
0
0 =

z3. Now the isomorphism follows from the identities zi ⊗A(CP 2
q ) zj − qzj ⊗A(CP 2

q ) zi = 0 in

L2, which can easily be seen.
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2.3 The C∗-algebras C(SUq(3)) and C(CP 2
q )

In this section we extend the results of Proposition (2.2.1) and Theorem (2.2.1) which

are stated for polynomial functions and polynomial sections to L2-functions and sections,

respectively.

Let C(SUq(3)) denotes the C∗ completion of A(SUq(3)), i.e. the universal C∗-algebra

generated by the elements uij subject to the relations given in section 2.1.2. This is a

compact quantum group in the sense of Woronowicz [23]. There exists a unique left invariant

normalized Haar state on this compact quantum group denoted by h. The functional h is

faithful and it also has a twisted tracial property which will be considered in the next

section. We denote the C∗-norm completion of A(CP 2
q )) inside C(SUq(3)) by C(CP 2

q )) and

regard it as the space of continuous functions on the quantum projective plane. Similarly,

we denote the C∗-norm completion of LN inside C(SUq(3)) by Γ(LN ).

We denote the Hilbert space completion of A(SUq(3)) with respect to the inner

product 〈a, b〉 := h(a∗b) by L2(SUq(3)). Since the Haar state on the C∗-algebra C(SUq(3))

is faithful [28], the GNS map η : C(SUq(3))→ L2(SUq(3)) will be injective. An orthogonal

basis of L2(SUq(3)) is given by η(t(n1, n2)
l
j). Similarly, we denote the L2-completion of

Γ(LN ) inside L2(SUq(3)) by L2(LN ), and we have

L2(LN ) = Span{t(n, n+N)
0
j | n ∈ N, j satisfies (2.1) }closure.

Note that the last equality is for N ≥ 0. For N < 0, basis elements are of the form

t(n−N,n)
0
j .

The operator Z = /(F2F1, F2), in its original definition, is a densely defined un-

bounded operator on L2(SUq(3)). There is however a natural extension of this operator to

a larger domain that we specify now. First note that the action of Z on basis elements is

given by:

t(n1, n2)
i
j / Z = αin1,n2

(θI1n1,n2
t(n1, n2)

I′1
j

t(n1, n2)I1j

)
+ βin1,n2

(θI2n1,n2
t(n1, n2)

I′2
j

t(n1, n2)I2j

)
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where

I1 = (i1 + 1, i2,m− 1/2), I2 = (i1, i2 − 1,m− 1/2),

I ′1 = (i1 + 1, i2,m+ 1/2), I ′2 = (i1, i2 − 1,m+ 1/2),

αin1,n2
= [1/2(i1 + i2)−m+ 1]1/2Ai1,i2 ,

βin1,n2
= [1/2(i1 + i2) +m]1/2Bi1,i2 ,

θin1,n2
= [1/2(i1 + i2)−m]1/2[1/2(i1 + i2) +m+ 1]1/2.

The coefficients Ai1,i2 and Bi1,i2 are given by (2.3). Suppose that (a
i,j
n1,n2) denote the coef-

ficients of a ∈ L2(SUq(3)) in the given basis, i.e., a =
∑
a
i,j
n1,n2t(n1, n2)

i
j . Now the second

component of a / Z is

∑
n1,n2

∑
i,j

a
i,j
n1,n2α

i
n1,n2

t(n1, n2)I1j +
∑
n1,n2

∑
i,j

a
i,j
n1,n2β

i
n1,n2

t(n1, n2)I2j =

∑
n1,n2

∑
i,j

{ai,jn1,n2α
i
n1,n2

+ a
i′,j
n1,n2β

i′
n1,n2
}t(n1, n2)I1j +

∑
n1,n2

∑
i,j

a
i,j
n1,n2β

i
n1,n2

t(n1, n2)I2j

where

i′ = (i1 + 1, i2 + 1,m).

Note that all sums are subject to admissibility of I1 and I2. Moreover, the last sum is taken

over all indices such that I1 6= I2. With a similar computation for the first component, we

can now define a ∈ Dom(Z) if

∑
n1,n2

∑
i,j

|ai,jn1,n2α
i
n1,n2

+ a
i′,j
n1,n2β

i′
n1,n2
|2 +

∑
n1,n2

∑
i,j

|ai,jn1,n2β
i
n1,n2
|2 <∞
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and

∑
n1,n2

∑
i,j

|ai,jn1,n2α
i
n1,n2

θI1n1,n2
+ a

i′,j
n1,n2β

i′
n1,n2

θI1n1,n2
|2+

∑
n1,n2

∑
i,j

|ai,jn1,n2β
i
n1,n2

θI2n1,n2
|2 <∞.

Here the last summation is over the set of indices such that I1 6= I2. This can be denoted,

with some abuse of notation perhaps, by

Dom(Z) := {a ∈ L2(SUq(3))| (a / F2F1, a / F2) ∈ L2(SUq(3)2)}.

Now Proposition 2.2.1 can easily be generalized to the following proposition.

Proposition 2.3.1. The Kernel of the map Z restricted to L2(CP 2
q ) is C.

Proof. Since any element of L2(CP 2
q ) is a L2-linear combination of the elements t(n, n)

0
j ,

proof is exactly like Proposition 2.2.1.

Corollary 2.3.1. There is no non-constant holomorphic function in C(CP 2
q ).

With a similar discussion, the analogue of 2.2.1 continues to hold if we work with

L2-sections of LN . We give the statement of the theorem and leave its similar proof to the

reader.

Theorem 2.3.1. Let N be a positive integer. Then

(1) H0(L2(LN ),∇∂N ) ' C
(N+1)(N+2)

2 ,

(2) H0(L2(L−N ),∇∂−N ) = 0.

We note that our approach here as well as in [19], is somehow the opposite of the

approach adopted in [1, 2] to noncommutative projective spaces. We started with a C∗-

algebra defined as the quantum homogeneous space of the quantum group SUq(3) and

its natural line bundles, and endowed them with holomorphic structures. The quantum

homogeneous coordinate ring is then defined as the algebra of holomorphic sections of these
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line bundles. This ring coincides with the twisted homogeneous ring associated in [1, 2] to

the line bundle O(1) under a suitable twist.

2.4 Existence of a twisted positive Hochschild 4-cocycle on

CP 2
q

In [4], Section VI.2, Connes shows that extremal positive Hochschild cocycles on the algebra

of smooth functions on a compact oriented 2-dimensional manifold encode the information

needed to define a holomorphic structure on the surface. There is a similar result for

holomorphic structures on the noncommutative two torus (cf. Loc cit.). In particular the

positive Hochschild cocycle is defined via the holomorphic structure and represents the

fundamental cyclic cocycle. In [19] a notion of twisted positive Hochschild cocycle is in-

troduced and a similar result is proved for the holomorphic structure of CP 1
q . Although

the corresponding problem of characterizing holomorphic structures on higher dimensional

(commutative or noncommutative) manifolds via positive Hochschild cocycles is still open,

nevertheless these results suggest regarding (twisted) positive Hochschild cocycles as a pos-

sible framework for holomorphic noncommutative structures. In this section we prove an

analogous result for CP 2
q .

First we recall the notion of twisted Hochschild and cyclic cohomologies. Let A be

an algebra and σ an automorphism of A. For each n ≥ 0, Cn(A) := Hom(A⊗(n+1),C)

is the space of n-cochains on A. Define the space of twisted Hochschild n-cochains as

Cnσ (A) :=Ker{(1 − λn+1
σ ) : Cn(A) → Cn(A)}, where the twisted cyclic map λσ : Cn(A) →

Cn(A) is defined as

(λσφ)(a0, a1, ..., an) = (−1)nφ(σ(an), a0, a1, ..., an−1).

The twisted Hochschild coboundary map bσ : Cn(A)→ Cn+1(A) is given by

bσφ(a0, a1, ..., an+1) =

n∑
i=0

(−1)iφ(a0, ..., aiai+1, ..., an+1)

+ (−1)n+1φ(σ(an+1)a0, ..., an).
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The cohomology of the complex (C∗σ(A), bσ) is called the twisted Hochschild cohomology

of A. We also need the notion of twisted cyclic cohomology of A. It is by definition the

cohomology of the complex (C∗σ,λ(A), bσ), where

Cnσ,λ := Ker{(1− λ) : Cnσ (A)→ Cn+1
σ (A)}.

Now we come back to the case of our interest, that is CP 2
q . Let τ be the fundamental

class on CP 2
q defined as in [9] by

τ(a0, a1, a2, a3, a4) := −
∫
h

a0 da1 da2 da3 da4 , ∀a0, a1, ..., a4 ∈ A(CP 2
q ). (2.15)

Here h stands for the Haar state functional of the quantum group A(SUq(3)) which has a

twisted tracial property h(xy) = h(σ(y)x). Here the algebra automorphism σ is defined by

σ : A(SUq(3))→ A(SUq(3)), σ(x) = K . x / K.

where K = (K1K2)−4. The map σ, restricted to the algebra A(CP 2
q ) is given by σ(x) =

K . x. Non-triviality of τ has been shown in [9]. Now we recall the definition of a twisted

positive Hochschild cocycle as given in [19].

Definition 2.4.1. A twisted Hochschild 2n-cocycle φ on a ∗-algebra A is said to be twisted

positive if the following map defines a positive sesquilinear form on the vector space A⊗(n+1):

〈a0 ⊗ a1 ⊗ ...⊗ an, b0 ⊗ b1 ⊗ ...⊗ bn〉 = φ(σ(b∗n)a0, a1, ..., an, b
∗
n, ..., b

∗
1).

We would like to define a twisted Hochschild cocycle ϕ which is cohomologous to τ

and it is positive. For simplicity, we introduce first the maps ϕi, for i = 1, 2 as follows

ϕ1(a0, a1, a2, a3, a4) = −3

∫
h

a0∂a1∂a2∂a3∂a4,

ϕ2(a0, a1, a2, a3, a4) = −3

∫
h

a0∂a1∂a2∂a3∂a4. (2.16)
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Now we define ϕ ∈ C4(A(CP 2
q )) by

ϕ := ϕ1 + ϕ2 . (2.17)

We will need the following simple lemma for future computations.

Lemma 2.4.1. For any a0, a1, a2, a3, a4, a5 ∈ A(CP 2
q ) the following identities hold:

∫
h

a0(∂a1∂a2∂a3∂a4)a5 =

∫
h

σ(a5)a0∂a1∂a2∂a3∂a4,

∫
h

a0(∂a1∂a2∂a3∂a4)a5 =

∫
h

σ(a5)a0∂a1∂a2∂a3∂a4.

Proof. We give the proof of the first one. The proof for the second equality will be similar.

The space of Ω(2,2) is a rank one free A(CP 2
q )-module. Let ω be the central basis element

for the space of Ω(2,2) and let ∂a1∂a2∂a3∂a4 = xω. Then

∫
h

a0(∂a1∂a2∂a3∂a4)a5 −
∫
h

σ(a5)a0∂a1∂a2∂a3∂a4 =

∫
h

(a0xωa5 − σ(a5)a0xω)

=

∫
h

(a0xa5ω − σ(a5)a0xω)

= h(a0xa5 − σ(a5)a0x) = 0.

The last equality comes from the twisted property of the Haar state.

Proposition 2.4.1. The functional ϕ defined by formula (3.17), is a twisted positive

Hochschild 4-cocycle.

Proof. We first verify the twisted cocycle property. In order to do so, we consider this
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property for each ϕi. We will prove the statement for ϕ1. The proof for ϕ2 is similar.

ϕ1(σ(a0), σ(a1), σ(a2), σ(a3), σ(a4))

= −3

∫
h

σ(a0)∂σ(a1)∂σ(a2)∂σ(a3)∂σ(a4)

= −3

∫
h

(K . a0)(K . ∂a1)(K . ∂a2)(K . ∂a3)(K . ∂a4)

= −3

∫
h

K . (a0∂a1∂a2∂a3∂a4) = −3 ε(K)

∫
h

a0∂a1∂a2∂a3∂a4

= ϕ1(a0, a1, a2, a3, a4).

Now let us prove that bσϕ = 0. Again we just prove for ϕ1 and leave the similar

proof of the other one.

bσϕ1(a0, a1, a2, a3, a4, a5) = ϕ1(a0a1, a2, a3, a4, a5)− ϕ1(a0, a1a2, a3, a4, a5)

+ ϕ1(a0, a1, a2a3, a4, a5)− ϕ1(a0, a1, a2, a3a4, a5)

+ ϕ1(a0, a1, a2, a3, a4a5)− ϕ1(σ(a5)a0, a1, a2, a3, a4)

Using (2.16), this equals to

−3

∫
h

a0a1∂a2∂a3∂a4∂a5 + 3

∫
h

a0∂(a1a2)∂a3∂a4∂a5

−3

∫
h

a0∂a1∂(a2a3)∂a4∂a5 + 3

∫
h

a0∂a1∂a2∂(a3a4)∂a5

−3

∫
h

a0∂a1∂a2∂a3∂(a4a5) + 3

∫
h

σ(a5)a0∂a1∂a2∂a3∂a4.

Using the Leibniz property we get

bσϕ1(a0, a1, a2, a3, a4, a5) = −3

∫
h

(a0a1∂a2∂a3∂a4∂a5 − σ(a5)a0∂a1∂a2∂a3∂a4),

which is zero by the previous lemma.
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Now we will show that all ϕ1 and ϕ2 are positive.

Positivity of ϕ1:

ϕ1(σ(a∗0)a0, a1, a2, a
∗
2, a
∗
1) = −3

∫
h

σ(a∗0)a0∂a1∂a2∂a
∗
2∂a
∗
1

= −3

∫
h

a0∂a1∂a2∂a
∗
2∂a
∗
1a
∗
0

= 3

∫
h

(a0∂a1∂a2)(a0∂a1∂a2)∗.

One can take ∂a1 = (v1, v2) and ∂a2 = (w1, w2), then using the multiplication rule of type

(1,0) forms (c.f. [9] Proposition A.1), we find that

(a0∂a1∂a2)(a0∂a1∂a2)∗ = c2
4[2]−1µµ∗, where µ = q1/2a0v1w2 − q−1/2a0v2w1. Hence

ϕ1(σ(a∗0)a0, a1, a2, a
∗
2, a
∗
1) = h(3c2

4[2]−1µµ∗) ≥ 0.

Positivity of ϕ2:

ϕ2(σ(a∗0)a0, a1, a2, a
∗
2, a
∗
1) = −3

∫
h

σ(a∗0)a0∂a1∂a2∂a
∗
2∂a
∗
1

= −3

∫
h

a0∂a1∂a2∂a
∗
2∂a
∗
1a
∗
0

= 3

∫
h

(a0∂a1∂a2)(a0∂a1∂a2)∗.

Similar to the above discussion, one can take ∂a1 = (v1, v2) and ∂a2 = (w1, w2) and

use the multiplication of type (0,1) forms to find that

ϕ2(σ(a∗0)a0, a1, a2, a
∗
2, a
∗
1) = h(3c2

0[2]−1νν∗) ≥ 0,

where ν = q1/2a0v1w2−q−1/2a0v2w1. Here c0 and c4 are two real constants. This concludes

the positivity of ϕ.
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Now we want to show that the twisted Hochschild cocycle ϕ as defined by formula

(3.17) and the twisted cyclic cocycle τ as in formula (3.15) are cohomologous. To this end,

we need an appropriate twisted Hochschild cocycle ψ such that τ − ϕ = bσψ. Let ψi for ,

i=1,2,3,4 be defined by

ψ1(a0, a1, a2, a3) = −
∫
h

a0∂a1∂a2∂∂a3,

ψ2(a0, a1, a2, a3) = 2

∫
h

a0∂a1∂∂a2∂a3,

ψ3(a0, a1, a2, a3) = 2

∫
h

a0∂a1∂∂a2∂a3,

ψ4(a0, a1, a2, a3) = −
∫
h

a0∂a1∂a2∂∂a3.

and let ψ =
∑4

i=1 ψi. Then we will have the following result.

Proposition 2.4.2. The twisted Hochschild cocycles τ and ϕ are cohomologous.

Proof.

bσψ1(a0, a1, a2, a3, a4) = ψ1(a0a1, a2, a3, a4)− ψ1(a0, a1a2, a3, a4)

+ ψ1(a0, a1, a2a3, a4)− ψ1(a0, a1, a2, a3a4)

+ ψ1(σ(a4)a0, a1, a2, a3)

which equals to

−
∫
h

{a0a1∂a2∂a3∂∂a4 − a0∂(a1a2)∂a3∂∂a4 + a0∂a1∂(a2a3)∂∂a4

− a0∂a1∂a2∂∂(a3a4) + σ(a4)a0∂a1∂a2∂∂a3}.

Applying the Leibniz rule, one can see that in the expanded form, all but two terms
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will cancel. That is

bσψ1 =

∫
h

a0(∂a1∂a2∂a3∂a4 − ∂a1∂a2∂a3∂a4).

Similar computation for ψi, i = 2, 3 and 4 shows that

bσψ2 = 2

∫
h

a0(∂a1∂a2∂a3∂a4 − ∂a1∂a2∂a3∂a4),

bσψ3 = 2

∫
h

a0(∂a1∂a2∂a3∂a4 − ∂a1∂a2∂a3∂a4),

bσψ4 =

∫
h

a0(∂a1∂a2∂a3∂a4 − ∂a1∂a2∂a3∂a4).

Therefore

bσψ = 2

∫
h

a0(∂a1∂a2∂a3∂a4 + ∂a1∂a2∂a3∂a4)

−
∫
h

a0(∂a1∂a2∂a3∂a4 + ∂a1∂a2∂a3∂a4)

−
∫
h

a0(∂a1∂a2∂a3∂a4 + ∂a1∂a2∂a3∂a4). (2.18)

Now from (3.15), (3.17) and (2.18), we can easily find that τ − ϕ = bσψ.



Chapter 3

Noncommutative complex structure of CP `
q

In this chapter we continue the study of complex structures on quantum projective spaces.

In Section 3.1, we review the preliminaries on irreducible representations of quantum

groups Uq(su(` + 1)) and the Gelfand-Tsetlin basis for these representations. We refer to

Chapter 1 for the the definition of a complex structure, holomorphic line bundles and bi-

module connections. In Section 3.3 we recall the definition of the quantum projective space

CP `q , and endow its canonical line bundles with holomorphic connections. We also identify

the space of holomorphic sections of these line bundles. In Section 3.4, we define bimodule

connections on canonical line bundles. This enables us to define the quantum homogeneous

coordinate ring of CP `q and identify this ring with the ring of twisted polynomials. In Sec-

tion 3.5 we introduce a twisted positive Hochschild cocycle 2`-cocycle on CP `q , by using

the complex structure of CP `q , and show that it is cohomologous to its fundamental class

which is represented by a twisted cyclic cocycle. This certainly provides further evidence

for the belief, advocated by Alain Connes [4, 5], that holomorphic structures in noncom-

mutative geometry should be represented by (extremal) positive Hochschild cocycles within

the fundamental class.

3.1 Preliminaries on Uq(su(`+ 1)) and A(SUq(`+ 1))

3.1.1 The quantum enveloping algebra Uq(su(`+ 1))

Let 0 < q < 1. We use the following notation

[a, b]q = ab− q−1ba, [z] =
qz − q−z

q − q−1
, [n]! = [n][n− 1] · · · [1],n

m

 =
[n]!

[m]![n−m]!
, [j1, j2, · · · , jk]! = q−

∑
r<s jrjs

[j1 + j2 + · · ·+ jk]!

[j1]![j2]! · · · [jk]!
.

42
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The quantum enveloping algebra Uq(su(` + 1)), as a ∗-algebra, is generated by elements

Ki,K
−1
i , Ei, Fi, i = 1, 2, · · · , `, with K∗i = Ki and E∗i = Fi, subject to the following

relations for 0 ≤ i, j ≤ ` [23],

KiKj = KjKi EiKi = q−1KiEi

EiKj = q1/2KjEi if |i− j| = 1

EiKj = KjEi if |i− j| > 1 (3.1)

EiFj − FjEi = δij
K2
i −K

−2
i

q − q−1

EiEj = EjEi if |i− j| > 1,

and the Serre relation

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 if |i− j| = 1.

The coproduct, counit and antipode of this Hopf algebra is given by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗Ki +K−1
i ⊗ Ei,

ε(Ki) = 1, ε(Ei) = 0, S(Ki) = K−1
i , S(Ei) = −qEi.

3.1.2 The quantum group A(SUq(`+ 1))

As a ∗-algebra, A(SUq(`+1)) is generated by (`+1)2 elements uij , where i, j = 1, 2, ..., `+1

subject to the following commutation relations

uiku
j
k = qujku

i
k, uki u

k
j = qukju

k
i ∀ i < j,

[uil, u
j
k] = 0, [uik, u

j
l ] = (q − q−1)uilu

j
k ∀ i < j, k < l,

and ∑
π∈S`+1

(−q)||π||u1
π(1)u

2
π(2) · · ·u

`+1
π(`+1) = 1,
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where the sum is taken over all permutations of the `+ 1 elements and ||π|| is the number

of simple inversions of the permutation π. The involution is given by

(uij)
∗ = (−q)j−i

∑
π∈S`

(−q)||π||uk1π(n1)u
k2
π(n2) · · ·u

k`
π(n`)

with {k1, · · · , k`} = {1, 2, · · · , ` + 1} \ {i} and {n1, · · · , n`} = {1, 2, · · · , ` + 1} \ {j} as

ordered sets, and the sum is over all permutations π of the set {n1, · · · , n`}. The Hopf

algebra structure is given by

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = (uji )
∗.

3.1.3 Irreducible representations of Uq(su(`+ 1)) and the related

Gelfand-Tsetlin tableaux

The finite dimensional irreducible ∗-representations of Uq(su(`+1)) are indexed by `−tuples

of non-negative integers n := (n1, n2, ..., n`). We denote this representation by Vn. A basis

for Vn is given by Gelfand-Tsetlin (GT) tableaux that we denote it here by

|m〉 :=



m1,`+1 m2,`+1 . . . m`,`+1 m`+1,`+1

m1,` m2,` . . . m`,`

...
...

m1,2 m2,2

m1,1


where ni = mi,`+1 − mi+1,`+1 and mi+1,j+1 ≤ mij ≤ mi,j+1 for i = 1, 2, ..., `. Fixing ni

fixes mi,`+1 up to an additive constant. It is also known that two tableaux |m〉 and |m′〉

correspond to the same basis vector if there is a constant c (independent of i and j) such

that mij −m′ij = c. The action of generators on this basis is given by (see [23]),

Kk|m〉 = q
ak
2 |m〉,



45

where

ak =

k∑
i=1

mi,k −
k−1∑
i=1

mi,k−1 −
k+1∑
i=1

mi,k+1 +

k∑
i=1

mi,k (3.2)

= 2
k∑
i=1

mi,k −
k−1∑
i=1

mi,k−1 −
k+1∑
i=1

mi,k+1,

and the action of Ek is given by

Ek|m〉 =
k∑
j=1

Ajk|m
j
k〉, (3.3)

where |mj
k〉 is obtained from |m〉 when mj,k is replaced by mj,k + 1 and

Ajk =
(
−

Πk+1
i=1 [li,k+1 − lj,k]Πk−1

i=1 [li,k−1 − lj,k − 1]

Πi 6=j [li,k − lj,k][li,k − lj,k − 1]

)1/2
. (3.4)

Here li,j = mi,j − i, and the positive square root is taken. For the inner product 〈m′|m〉 :=

δm′,m this will be a ∗-representation and the matrix coefficients of ρn : Uq(su(` + 1)) →

End(Vn) will be ρnm′,m(h) = 〈m′|h|m〉. Note that the basic representation of Uq(su(`+ 1))

is given by σ : Uq(su(`+ 1))→M`+1(C) where

σij(Kr) = δijq
1
2

(δr+1,i−δr,i), σij(Er) = δir+1δ
r
j ,

and the Hopf pairing 〈 , 〉 : Uq(su(`+ 1))×A(SUq(`+ 1))→ C is defined by 〈h, uij〉 := σij(h).

Therefore

〈Kr, u
i
j〉 = σij(Kr) = δijq

1
2

(δr+1,i−δr,i),

〈Er, uij〉 = σij(Er) = δir+1δ
r
j . (3.5)

Using the Peter-Weyl decomposition theorem, we have A(SUq(`+ 1)) '
⊕

n Vn⊗Vn, where

the sum is over all irreducible representations of Uq(su(`+ 1)). For any basis elements |m′〉

and |m〉 of Vn, |m′〉⊗ |m〉 corresponds to a basis element tnm′,m. The action of Uq(su(`+ 1))
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on tnm′,m under the Peter-Weyl isomorphism is given by

h . tnm′,m = h|m′〉 ⊗ |m〉, tnm′,m / h = |m′〉 ⊗ θ(h)|m〉,

where θ : Uq(su(`+1))→ Uq(su(`+1))op is the Hopf ∗-algebra isomorphism which is defined

on generators as

θ(Ki) = Ki, θ(Ei) = Fi, θ(Fi) = Ei,

and satisfying θ2 = id. The basis {tnm′,m} forA(SUq(`+1)) is implicitly given by 〈h, tnm′,m〉 =

ρnm′,m(h). For later use it is worth mentioning here that for n = (0, 0, ..., 0, 1) these basis

tnm′,m are just generators uij . In order to show this, it is enough to compute ρnm′,m(h) for

generators of Uq(su(` + 1)). Indeed for n = (0, 0, ..., 0, 1) a basis element |m〉 takes the

following form

|m〉 :=



m m . . . m m m− 1

m m . . . m ml

...
...

m m2

m1


where each of the mi’s is either m or m− 1 such that m1 ≥ m2 ≥ ... ≥ ml. So |m〉 can be

parametrized just by one integer i. Let us denote |m〉 by |i〉 when mj = m for j ≤ i − 1

and mj = m− 1 for j ≥ i.

ρni,j(Kr) = 〈i|Kr|j〉 = q
ar
2 〈i|j〉 = q

ar
2 δi,j .

where

ar = 2

r∑
k=1

mk,r −
r−1∑
k=1

mk,r−1 −
r+1∑
k=1

mk,r+1.

So for our case we will end up with

ρni,j(Kr) = 〈i|Kr|j〉 = qα/2〈i|j〉 = qα/2δi,j ,
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where

α =


0 if r ≥ j or r ≤ j − 2

1 if r = j − 1

−1 if r = j.

One can easily see that α = δr+1,j − δr,j and we get the same answer as (3.5). Also we have

ρni,j(Er) = 〈i|Er|j〉 = δrj 〈i|r + 1〉 = δi,r+1δ
r
j = 〈Er, uij〉,

which can be obtained from (3.3) and (3.4) since

Er|r〉 = Arr|r + 1〉

and

Arr =
(
−

Πr+1
i=1 [li,r+1 − lr,r]Πr−1

i=1 [li,r−1 − lr,r − 1]

Πi 6=j [li,r − lr,r][li,r − lr,r − 1]

)1/2
.

The fact that only Arr contributes in the summation (3.3) is simply because of the form of |r〉.

We also have Er|j〉 = 0 if j 6= r. The value of this fraction is one since both the numerator

and the denominator are equal to [r]![r − 1]!. In particular we have tn`+1,j = u`+1
j = zj , the

generators of the quantum sphere A(S2`+1
q ) to be defined in the next section.

3.2 The complex structure of CP `
q

In this section we shall define a complex structure on CP `q and its canonical line bundles

following closely [11]. For a review on general setup of noncommutative complex geometry,

we refer the reader to the first chapter.
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3.3 Noncommutative complex geometry of CP `
q

In this section we recall the definition of the quantum projective space CP `q as the quantum

homogeneous space of the quantum group SUq(`+1) and its quantum subgroup Uq(`) from

[11].

3.3.1 CP `q and the associated quantum line bundles

Let K̂ := (K1K
2
2 · · ·K`

` )
2/`+1 and Lha := a / S−1(h). Then we define the quantum 2` + 1

sphere as

A(S2`+1
q ) := {a ∈ A(SUq(`+ 1))| Lh(a) = ε(h)a, ∀h ∈ Uq(su(`))}.

The invariant elements of this space under the action of K̂ will provide the coordinate

functions of the quantum projective space

A(CP `q ) := {a ∈ A(S2`+1
q )|LK̂a = a}.

The space of sections of the canonical line bundles LN , N ∈ Z, are defined by

LN := {a ∈ A(S2`+1
q )|LK̂a = q

N`
`+1a}. (3.6)

Let

Mjk := [Ej , [Ej+1, ..., [Ek−1, Ek]q...]q]q for 1 ≤ j < k ≤ `,

and

Njk := (KjKj+1...K`).(Kk+1Kk+2...K`).K̂
−1 for 1 ≤ j < k ≤ `.

Let Xi := Ni`M
∗
i` for i = 1, ..., `. We will also use a right black action defined by h I a :=

a / θ(h).
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For any r-dimensional ∗-representation of Uq(u(`)) like σ, we define the A(CP `q )-

bimodule M(σ) := {v ∈ A(SUq(` + 1))r | v / h = σ(h)v, ∀h ∈ Uq(u(`))} [11, 12]. Suppose

that σN1 is obtained from the basic representation σ1 : Uq(su(`)) → End(C`) lifted to a

representation of Uq(u(`)) by σN1 (K̂) = q1− `N
`+1 IdC` . Then the space of anti-holomorphic

1-forms is given by Ω(0,1) := M(σ0
1). Hence, any anti-holomorphic 1-form is a `-tuple

v := (v1, ..., v`) such that v / h = σ0
1(h)v. The complex structure of CP `q is given by

∂ :=
∑
LK̂Xi ⊗ eLei .

Here ei’s are elements of the standard basis and eL
ei

is the left exterior product by ei. We

show that on A(CP `q ) we have

∂a = −
(
a / F`F`−1...F1, a / F`F`−1...F2, ..., a / F`F`−1, a / F`

)
. (3.7)

In fact,

LXia = a / S−1
(
K̂K`K`−1 · · ·KiK̂

−1[...[[F`, F`−1]q, F`−2]q, ..., Fi]q

)
= (−q−1)`−i(−q)`−i+1a / F`F`−1 · · ·FiK̂K−1

i K−1
i+1...K

−1
` K̂−1

= (−1)2(`−i)+1a / K̂K−1
i K−1

i+1...K
−1
` K̂−1F`F`−1...Fi

= −a / F`F`−1...Fi

Here we used the commutation relations (3.1). The only order of Fj ’s in the commu-

tators that takes part in computation is F`F`−1...Fi and others vanish because a / Fj = 0

for j < `, a ∈ A(CP `q ). Note that, all elements of A(CP `q ) are fixed under the of action of

all Ki’s.

We would like to find a basis for the space of sections of the canonical quantum line

bundles LN . Note that L0 = A(CP `q ). By (3.6), the conditions that must hold are as follows

Ki I a = a, Ei I a = Fi I a = 0, i = 1, 2, ..., `− 1,

K1K
2
2 ...K

`
` I a = q−N`/2a. (3.8)
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Proposition 3.3.1. Let N be an integer. The set equations (3.8) forces the tableaux |m〉,

corresponding to the element a = tnm′,m, be of the form of



m1,`+1 m . . . m 2m−m1,`+1 +N

m m . . . m

...
...

m m

m


or



2k +N k . . . k 0

k k . . . k

...
...

k k

k


.

Proof. K1 I a = a and E1 I a = 0 give the equality for m11 = m12 = m22. We know

that Kk I a = q
ak
2 a, where ak is given by (3.2). For instance a1 = 2m11 −m12 −m22 and

a2 = 2(m12 +m22)−m11 − (m13 +m23 +m33) and so on. By (3.3) and (3.4) we have

E1|m〉 =
(
− [m11 −m12][m11 −m22 + 1]

)1/2
|m1

1〉

E2|m〉 =
( [m13 −m12][m23 −m12 − 1][m33 −m12 − 2][m12 −m11 + 1]

[m12 −m22 + 1][m12 −m22 + 2]

) 1
2 |m1

2〉

+
( [m13 −m22 + 1][m23 −m22][m33 −m22 − 1][m11 −m22]

[m12 −m22 + 1][m12 −m22]

) 1
2 |m2

2〉.

and

F2|m〉 =
( [m13 −m12 + 1][m23 −m12][m33 −m12 − 1][m11 −m12 − 1]

[m12 −m22][m12 −m22 + 1]

) 1
2 |m−1

2 〉

+
( [m13 −m22 + 2][m23 −m22 + 1][m33 −m22][m11 −m22 − 2]

[m12 −m22 + 1][m12 −m22 + 2]

) 1
2 |m−2

2 〉.

Now it is not difficult to see that K1|m〉 = |m〉 and E1|m〉 = 0, imposing

2m11 −m12 −m22 = 0,

m11 −m12 = 0.
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So m11 = m12 = m22. In the same manner K2|m〉 = |m〉, E2|m〉 = 0 and F2|m〉 = 0 give

2m12 + 2m22 −m11 −m13 −m23 −m33 = 0,

m12 −m13 = 0,

m22 −m33 = 0.

So we have m11 = m12 = m22 = m13 = m23 = m33. Suppose that rows 1 to k with

k + 1 < ` + 1, have been found equal to m. Let us prove that Ek|m〉 = 0 and Fk|m〉 = 0

will make the equality of all elements up to and including row k+ 1. First note that in row

k + 1, we have m2,k+1 = ... = mk,k+1 = m. Let us look at A1
k.

A1
k =

(
−

Πk+1
i=1 [li,k+1 − l1,k]Πk−1

i=1 [li,k−1 − l1,k − 1]

Πi 6=j [li,k − l1,k][li,k − l1,k − 1]

)1/2

=
(
−

[l1,k+1 − l1,k]...[lk+1,k+1 − l1,k][l1,k−1 − l1,k − 1]...[lk−1,k−1 − l1,k − 1]

Πi 6=1[li,k − l1,k][li,k − l1,k − 1]

)1/2
.

It is not hard to see that A1
k = 0 if [l1,k+1−l1,k] = [m1,k+1−m1,k] = 0. So m1,k+1 = m1,k = m

and by a similar observation the action of Fk gives the equality mk,k+1 = mkk = m. But to

get to the very top row we need to use the action of K`. We have

a` = 2
∑̀
i=1

mi,` −
`−1∑
i=1

mi,`−1 −
`+1∑
i=1

mi,`+1

= 2`m− (`− 1)m−m1,`+1 − (`− 1)m−m`+1,`+1

= 2m−m1,`+1 −m`+1,`+1.

Since `a`/2 = −N`/2, we see that m1,`+1 = 2m−m`+1,`+1 +N .

So we will find a Peter-Weyl basis for line bundles LN as 〈tn0,m〉, where

n = (n1 +N, 0, ..., 0, n1)
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and

|0〉 =



2m−m`+1,`+1 +N m . . . m m`+1,`+1

m m . . . m

...
...

m m

m


. (3.9)

Assuming k = m −m`+1,`+1, this tableaux is equivalent to the following tableaux already

presented in [8].



2k +N k . . . k 0

k k . . . k

...
...

k k

k


. (3.10)

Therefore we have

LN '
⊕
k≥0

V(k+N,0,...,0,k); N > 0, LN '
⊕
k≥−N

V(k+N,0,...,0,k); N ≤ 0.

Theorem 3.3.1. Let N be an integer. Then

dimKerE`

∣∣∣
LN

=

(
|N |+ `

`

)
if N ≤ 0,

dimKerE`

∣∣∣
LN

= 0 if N > 0.

Proof. First, one can see that E` I tnm′,m = γnm′,mt
n
m′,m′′ , where,

γnm′,m =

√
[k +N ][k + `]

[`]
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Indeed,

E`|m〉 =
∑

Aj` |m
j
`〉 = A1

` |m1
` 〉

Other Aj` vanish because of the existence of the factor Π`+1
i=1 [li,`+1−lj,`]. For each j = 2, · · · , `,

one of the brackets would be zero. For the coefficient A1
` , we have

A1
` =

(
−

Π`+1
i=1 [li,`+1 − l1,`]Π`−1

i=1 [li,`−1 − l1,` − 1]

Πi 6=j [li,` − l1,`][li,` − l1,` − 1]

)1/2

=
(
−

[l1,`+1 − l1,`]...[l`+1,`+1 − l1,`][l1,`−1 − l1,` − 1]...[l`−1,`−1 − l1,` − 1]

Πi 6=1[li,` − l1,`][li,` − l1,` − 1]

)1/2

=

√
[k +N ][l − 1]!2[k + `]

[l − 1]![l]!
=

√
[k +N ][k + `]

[`]

Now, let ξ =
∑
cnm′,mt

n
m′,m ∈ LN ,

Eξ = E
∑

cnm′,mt
n
m′,m =

∑
cnm′,mγ

n
m′,mt

n
m′,m′′ .

Here, |m′〉 = |0〉, as given by (3.9) or (3.10). For N > 0, γnm′,m is never zero, but for N ≤ 0,

γnm′,m = 0 iff k = −N . This implies that

|m′〉 =



−N −N . . . −N 0

x1,` x2,` . . . x`,`
...

...

x1,2 x2,2

x1,1


=



−N −N . . . −N 0

−N −N . . . x`
...

...

−N x2

x1


with xi = xi,i. The question turns into a simple combinatorial problem of counting the

number of non-decreasing sequences −N ≥ x1 ≥ x2 ≥ ... ≥ x` ≥ 0, which is
(|N |+l

`

)
.

Corollary 3.3.1. There are no non-constant holomorphic polynomials in A(CP `q ).

Proof. By (3.7) it is obvious that ∂a = 0 iff E` I a = 0. Now the previous lemma for N = 0

gives the result.
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3.3.2 Holomorphic line bundles

An anti-holomorphic connection on the line bundle LN is given by

∇∂N : LN → Ω(0,1) ⊗A(CP `q ) LN

∇∂N (ξ) := Ψ†N∂ΨN ,

where ΨN is a column vector [11], given by ΨN := (ψNj1,...,j`+1
) with

ψNj1,...,j`+1
:= [j1, ..., j`+1]!1/2(zj11 ...z

j`+1

`+1 )∗, ∀ j1 + ...+ j`+1 = N, for N ≥ 0,

which are a generating family of LN for N ≥ 0 as one-sided and as bimodule [10]. For

N ≤ 0 a generating family of LN is given by

ψNj1,...,j`+1
:= [j1, ..., j`+1]!1/2q

∑`+1
r=1 rjrzj11 ...z

j`+1

`+1 , ∀ j1 + ...+ j`+1 = −N, for N ≤ 0.

This is a flat connection as can be verified directly with a computation as previous

chapter. This gives us the following Dolbeault complex

0→ LN → Ω(0,1) ⊗A(CP `q ) LN → · · · → Ω(0,`) ⊗A(CP `q ) LN → 0 .

The structure of the zeroth cohomology group H0(LN ,∇∂N ) of this complex which is called

the space of holomorphic sections of LN , is best described by the following theorem.

Corollary 3.3.2. For any integer N , the space of holomorphic sections of the canonical

line bundles of CP `q is


H0(LN ,∇∂N ) ' C(|N|+`` ), if N ≤ 0

H0(LN ,∇∂N ) = 0, if N > 0

Proof. It is not difficult to see that the kernel of ∇∂N coincides with the kernel of E` I (.).

Now the result is an obvious consequence of theorem (3.3.1).
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Alternative proof of the Corollary 3.3.2 without Theorem 3.3.1.

By Lemma 6.1. [11], we know that ∇∂N = ∂|Ω0
N

, where Ω0
N = LN . From [12] Prop.

6.4 and ∂
†|Ω0

N
= 0, we have:

H0(LN ,∇∂N ) = ker ∂
†
∂|Ω0

N
.

Lemma 6.3 and 6.5 of [11] gives:

q`+1∂
†|Ω0

N
= q

2N
`+1Cq +

qN−`[N ]− q
N
`+1 [ N`+1 ][`+ 1]

q−1 − q
,

where Cq is the Casimir. Prop. 5.5 of [11] gives the following decomposition for Ω0
N .

Ω0
N '

⊕
m≥0

V(m+N,0,...,0,m); N > 0, Ω0
N '

⊕
m≥−N

V(m+N,0,...,0,m); N ≤ 0.

The operator ∂
†
∂ is constant on each subspace V(m+N,0,...,0,m) and its value can be obtained

from Prop. 3.3 [11] or Lemma 3.4 ( for k = 1, n1 = m + N and n` = m in the formula

(3.17)). For example, if q = 1 we have

∂
†
∂|V(m+N,0,...,0,m)

= (m+ `)(N +m),

This vanishes if and only if m = −N , which holds ony if N ≤ 0. If q 6= 1 the formula is

more complicated but the same result holds. Therefore

dimH0(LN ,∇∂N ) =


0 if N > 0,

dimV(0,0,...,0,−N) =
(−N+`

`

)
if N ≤ 0.

Here we would like to establish the fact that for any integers N and M we have a bimodule

isomorphism LN ⊗A(CP `q ) LM ' LN+M . The multiplication map from left to right is an

injective A(CP `q )-bilinear map. Indeed, it is enough to show that LN ⊗L0 L1 ' LN+1 for
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all N ∈ Z and L1 ⊗L0 L−1 ' L0. Let

φ : LN+1 →, LN ⊗ L1, φ(η) =
∑
k

ηzk ⊗ z∗k,

χ : L0 →, L1 ⊗ L−1, χ(a) =
∑
k

q6−2kaz∗k ⊗ zk

Now one can see that,

m ◦ φ(η) = m(
∑
k

ηzk ⊗ z∗k) = η
∑
k

zkz
∗
k = η,

m ◦ χ(a) = m(
∑
k

q6−2kaz∗k ⊗ zk) = a
∑
k

q6−2kz∗kzk = a.

Elements zi (resp. z∗i ) are generating family of L1 (resp. L−1), so any element η ∈ LN ⊗L1

can be written as
∑
ηi ⊗ z∗i with ηi ∈ LN , and any element ξ ∈ L1 ⊗L0 L−1 can be written

as ξ =
∑
ξi ⊗ zi, with ξi ∈ L1.

φ ◦m(η) = φ(
∑

ηiz
∗
i ) =

∑
i,k

ηiz
∗
i zk ⊗ z∗k =

∑
i,k

ηi ⊗ z∗i zkz∗k =
∑
i

ηi ⊗ z∗i = η,

χ ◦m(ξ) = χ(
∑

ξizi) =
∑
i,k

q6−2kξiziz
∗
k ⊗ zk =

∑
i,k

q6−2kξi ⊗ ziz∗kzk =
∑
i

ξi ⊗ zi = ξ.

Here we used the fact that ziz
∗
k and z∗i zk belong to L0 and also

∑
k

zkz
∗
k = 1,

∑
k

q6−2kz∗kzk = 1.

Alternatively, using generating elements ψj and ψ∗j one can define

φ : LN+M → LN ⊗ LM

φ(η) =
∑
k

η(ψMk )∗ ⊗ ψMk , M ≥ 0, k1 + ...+ k`+1 = M.

Here, one uses
∑

k(ψ
M
k )∗ψMk = 1. The same idea works for M ≤ 0 and k1 + ...+k`+1 = −M .

To see that the map m is a surjection, we use a PBW -basis for A(S2`+1
q ) generated
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by

{zs11 z
s2
2 · · · z

s`
` (z∗1)t1(z∗2)t2 · · · (z∗`−1)t`−1 , zs11 z

s2
2 · · · z

s`−1

`−1 (z∗1)t1(z∗2)t2 · · · (z∗` )t`},

for non-negative integers si and ti. Since

Kj I zi = zi, Kj I z∗i = z∗i , j < `

and

K` I zi = q1/2zi, K` I z∗i = q−1/2z∗i ,

we have

K1K
2
2 · · ·K`

` I Z = q`/2{
∑
si−

∑
ti}Z,

where

Z = zs11 z
s2
2 · · · z

s`
` (z∗1)t1(z∗2)t2 · · · (z∗`−1)t`−1

or

Z = zs11 z
s2
2 · · · z

s`−1

`−1 (z∗1)t1(z∗2)t2 · · · (z∗` )t` .

It is obvious that Z ∈ LN iff
∑
si −

∑
ti = −N .

Now suppose that Z = zs11 z
s2
2 · · · z

s`
` (z∗1)t1(z∗2)t2 · · · (z∗`−1)t`−1 ∈ LN+M and suppose

k is the first positive integer such that
∑k

i=1 si > N . Then take a partition of N as∑k
i=1 ri = N , such that si − ri ≥ 0. Now the following is a preimage of Z.

qR
(
zr11 z

r2
2 · · · z

rk
k ⊗ z

s1−r1
1 zs2−r22 · · · zsk−rkk z

rk+1

k+1 · · · z
s`
` (z∗1)t1(z∗2)t2 · · · (z∗`−1)t`−1

)
,

where

R = rk{(sk−1−rk−1)+· · ·+(s1−r1)}+rk−1{(sk−2−rk−2)+· · ·+(s1−r1)}+· · ·+r2(s1−r1).

By the above discussion it is obvious that Z1 := zr11 z
r2
2 · · · z

rk
k ∈ LN and

Z2 := zs1−r11 zs2−r22 · · · zsk−rkk z
rk+1

k+1 · · · z
s`
` (z∗1)t1(z∗2)t2 · · · (z∗`−1)t`−1 ∈ LM .
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The result is obtained by noting that the product Z1Z2 = q−RZ.

For later use we would like to mention here that Ω(0,`) ⊗A(CP `q ) LN ' L−`−1 ⊗A(CP `q )

LN ' LN−`−1. In order to see this we recall the definition of Ω(0,`) := M(σ0
` ), where σ0

k

is obtained from the representation σk : Uq(su(`)) → End(Wk) lifted to a representation

of Uq(u(l)) by σ0
k(K̂) = qkIdWk

[11]. We define the A(CP `q )-bimodule M(σ) := {v ∈

A(SUq(`+1))r | v/h = σ(h)v, ∀h ∈ Uq(u(`))}, where σ is an r-dimensional ∗-representation

of Uq(u(`)). So in our case σ0
` will be a 1-dimensional ∗-representation of Uq(su(`)). Hence,

any anti-holomorphic `-form is an element like v such that v / h = σ0
` (h)v. The conditions

that must hold are:

Ki I a = a, Ei I a = Fi I a = 0, i = 1, 2, ..., `− 1.

K1K
2
2 ...K

`
` I a = q`(`+1)/2a.

This gives us Ω(0,`) ' L−`−1.

3.4 Bimodule connections

In this section we would like to show that line bundles LN accept a bimodule connection in

the sense of [19]. This means that there exists an isomorphism λN : LN ⊗A(CP `q ) Ω(0,1) →

Ω(0,1) ⊗A(CP `q ) LN such that

∇∂N (ξa) := (∇∂Nξ)a+ λN (ξ ⊗ a).

Let us define

Ω
(0,1)
N := {ω = (ω1, · · · , ω`)} | ω / h = σN1 (h)ω, ∀h ∈ Uq(u(`))},

where Uq(u(`)) and σN1 are introduced in Section 3.3. One can prove that the multiplication

map mN : Ω(0,1) ⊗L0 LN → Ω
(0,1)
N , where mN ((v1, · · · , v`) ⊗ ξ) = (v1ξ, · · · , v`ξ), gives an

isomorphism of A(CP `q )-bimodules. The same is true for m′N : LN ⊗L0 Ω(0,1) → Ω
(0,1)
N given

by m′N (ξ ⊗ (v1, · · · , v`)) = (ξv1, · · · , ξv`). We just give the proof of the former case for
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N ≥ 0. One can easily check that the map

φN : Ω
(0,1)
N → Ω(0,1) ⊗L0 LN ,

defined as

φN (ω1, · · · , ω`) = (
∑
k

ω1(ψNk )∗ ⊗ ψNk , · · · ,
∑
k

ω`(ψ
N
k )∗ ⊗ ψNk )

is the inverse of mN . Now we define the map λN : LN ⊗A(CP `q ) Ω(0,1) → Ω(0,1) ⊗A(CP `q ) LN

as follows:

λN := qNφ′NmN ,

where, φ′N is the inverse of multiplication map m′N . In fact

λN (ξ ⊗ v) = qNφ′N (ξv) = qN
∑
k

(ξv)(ψNk )∗ ⊗ ψNk .

Let us mention that why we put the factor qN in the definition of λN . A simple computation

shows that

∇∂Nξ = −Ψ†N

(
(ΨNξ) / F` · · ·F1, · · · , (ΨNξ) / F`

)
= −qN/2

(
ξ / F` · · ·F1, · · · , ξ / F`

)
.

Hence,

∇∂N (aξ) = −qN/2
{
a
(
ξ / F` · · ·F1, · · · , ξ / F`

)
+ q−N/2

(
a / F` · · ·F1, · · · , a / F`

)
ξ
}

= −
{
qN/2a

(
ξ / F` · · ·F1, · · · , ξ / F`

)
+
(
a / F` · · ·F1, · · · , a / F`

)
ξ
}

= a∇∂N (ξ) + ∂aξ,
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which is the left Leibniz property. On the other hand

∇∂N (ξa) = −qN/2
{(
ξ / F` · · ·F1, · · · , ξ / F`

)
a+ qN/2ξ

(
a / F` · · ·F1, · · · , a / F`

)}
= −

{
qN/2

(
ξ / F` · · ·F1, · · · , ξ / F`

)
a+ qN

(
a / F` · · ·F1, · · · , a / F`

)
ξ
}

= ∇∂N (ξ)a+ qN∂aξ, (3.11)

Indeed for the ` th component we have

Ψ†N ((ΨNξa) / F`) = Ψ†N

{
(ΨN / F`)((ξa) / K`) + (ΨN / K−1

` )((ξa) / F`)
}

= qN/2(ξa) / F` (3.12)

= qN/2
{

(ξ / F`)a+ qN/2ξ(a / F`)
}
.

Here we used ξ /K` = q−N/2ξ and ΨN /K` = q−N/2ΨN . Other components can be obtained

as follows:

Ψ†N ((ΨNξa) / F`F`−1 · · ·Fi)

= Ψ†N

{
(ΨN / F`)((ξa) / K`) + (ΨN / K−1

` )((ξa) / F`)
}
F`−1 · · ·Fi

= qN/2
{

(ξ / F`)a+ qN/2ξ(a / F`)
}
F`−1 · · ·Fi

= qN/2(ξ / F` · · ·Fi)a+ qNξ(a / F` · · ·Fi).

In fact (3.11) says that ∇∂ does not satisfy a right Leibniz rule, instead it enjoys a λN -

twisted right Leibniz property.

Proposition 3.4.1. Taking λN as above, the following holds

∇∂N (ξa) = (∇∂Nξ)a+ λN (ξ ⊗ ∂a), ∀a ∈ A(CP `q ), ∀ξ ∈ LN ,

i.e. ∇∂N is a bimodule connection on LN .

Proof. By the above discussion, the proof is obvious.

Now we can prove that the two holomorphic structures on LN⊗A(CP `q )LM and LN+M
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are identical after the canonical isomorphism of these two spaces.

Proposition 3.4.2. The tensor product connection ∇∂N ⊗ 1 + (λN ⊗ 1)(1⊗∇∂M ) coincides

with the holomorphic structure on LN ⊗A(CP `q ) LM when identified with LN+M .

Proof. We will look at the last component first.

{
∇∂N+M (ξ1ξ2)

}
`

= q
N+M

2 (ξ1ξ2) / F`

= q
N
2 (ξ1 / F`)ξ2 + qN+M/2ξ1(ξ2 / F`). (3.13)

On the other hand

{
((∇∂N ⊗ 1) + (λN ⊗ 1)(1⊗∇∂M ))(ξ1 ⊗ ξ2)

}
`

= qN/2ξ1 / F` ⊗ ξ2 + (λN ⊗ 1)(ξ1 ⊗ qM/2ξ2 / F`)

= qN/2ξ1 / F` ⊗ ξ2 + qN+M/2
∑
k

ξ1(ξ2 / F`)(ψ
N
k )∗ ⊗ ψNk . (3.14)

Interpreting the expression (3.14) as an element of Ω
(0,1)
N+M , one can see that (3.14) coincides

with left hand side. The same argument as previous proposition gives the result for other

components.

Now the quantum homogeneous coordinate ring R :=
⊕

N≤0H
0(LN ,∇∂N ) of the

quantum projective space can be described as follows. This result was first obtained for

` = 1, 2 in [19] and the previous chapter where its relation with the work in [1, 2] is also

explained.

Theorem 3.4.1. We have the algebra isomorphism

⊕
N≤0

H0(LN ,∇∂N ) ' C〈z1, z2, ..., z`+1〉
〈 zizj − qzjzi : 1 ≤ i < j ≤ `+ 1 〉

Proof. The ring structure on R is coming from the tensor product LN1 ⊗A(CP `q ) LN2 '

LN1+N2 . Since the basis elements t
(0,...,0,1)
0,j of H0(L1,∇∂1), as shown in section 2 are zj for

j = 1, 2, ..., `+ 1, one can easily see that H0(L1,∇∂1) = Cz1 ⊕ Cz2 ⊕ · · · ⊕ Cz`+1. Now the

isomorphism follows from the identities zi ⊗A(CP `q ) zj − qzj ⊗A(CP `q ) zi = 0 in L2, which is
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obvious.

3.5 Existence of a twisted positive Hochschild cocycle for

CP `
q

We refer to section for a review on twisted Hochschild and cyclic cohomology. In [4],

Section VI.2, Connes shows that extremal positive Hochschild cocycles in the sense of [5]

on the algebra of smooth functions on a compact oriented 2-dimensional manifold encode

the information needed to define a holomorphic structure on the surface. In [19] a notion

of twisted positive Hochschild cocycle is introduced and a similar result is proved for the

holomorphic structure of CP 1
q and CP 2

q in [19] and chapter 2. Although the corresponding

problem of characterizing holomorphic structures on higher dimensional (commutative or

noncommutative) manifolds via positive Hochschild cocycles is still open, nevertheless these

results suggest regarding (twisted) positive Hochschild cocycles as a possible framework for

holomorphic noncommutative structures. In this section we prove an analogous result for

CP `q for all `.

Now we come back to the case of our interest, that is CP `q . Let τ be the fundamental

class on CP `q defined as in [9] by a twisted cyclic cocycle

τ(a0, a1, a2, · · · a2`) :=

∫
h

a0 da1 da2 · · · da2` , ∀ai ∈ A(CP `q ). (3.15)

Here h stands for the Haar state functional of the quantum group A(SUq(`+ 1)) which has

a twisted tracial property h(xy) = h(yσ(x)). Here the algebra automorphism σ is defined

by

σ : A(SUq(`+ 1))→ A(SUq(`+ 1)), σ(x) = K−1 . x / K−1.

where K = (K`
1K

2(`−1)
2 · · ·Kj(`−j+1)

j · · ·K`
` )

2, see[11]. The map σ, restricted to the algebra

A(CP `q ) is given by σ(x) = K−1 . x. Non-triviality of τ has been shown in [9]. Now we

recall the definition of a twisted positive Hochschild cocycle as given in [19].
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Definition 3.5.1. A twisted Hochschild 2n-cocycle φ on a ∗-algebra A is said to be twisted

positive if the following map defines a positive sesquilinear form on the vector space A⊗(n+1):

〈a0 ⊗ a1 ⊗ ...⊗ an, b0 ⊗ b1 ⊗ ...⊗ bn〉 = φ(σ(b∗n)a0, a1, ..., an, b
∗
n, ..., b

∗
1).

3.5.1 A twisted positive Hochschild cocycle on CP `q .

We recall that the set of (`, `)-shuffles (denoted by S`,`) is set of all permutations π ∈ S2`

such that π(1) < π(2) < · · · < π(`) and π(` + 1) < π(` + 2) < · · · < π(2`). Here we would

like to look at a shuffle π as an increasing function from {`+ 1, · · · , 2`} to {1, 2, · · · 2`}. Let

us define θπ : {1, 2, · · · , 2`} → {±} by θπ|Imπ = − and θπ|(Imπ)c = +. For any π ∈ S`,`

define

ϕπ(a0, a1, · · · a2`) :=

∫
h

a0(∂θ
π
1 a1)(∂θ

π
2 a2) · · · (∂θπ2`a2`). (3.16)

Here ∂+ = ∂, ∂− = ∂ and θπi = θπ(i). Now suppose that π and π′ are two shuffles that are

just different in their values on a single value i such that |π′(i) − π(i)| = 1. We define a

cochain ψπ,π′ by

ψπ,π′(a0, a1, a2, · · · , a2`−1) :=

∫
h

a0(∂θ
π
1 a1)(∂θ

π
2 a2) · · · (∂θ

π
j ∂θ

π′
j aj)(∂

θπj+2aj+1) · · · (∂θπ2`a2`−1).

Here j = min{π(i), π′(i)}. It is then easy to prove that bσψπ = ±(ϕπ − ϕπ′). The proof is

based on the following easy observation.

∂∂(ab) = a∂∂b+ ∂a∂b− ∂a∂b+ (∂∂a)b.

The term ∂θ
π
j ∂θ

π′
j is either ∂∂ or ∂∂ simply because of our choice of π and π′.

Now we recall an easy combinatorial fact. The number of permutations of 2` letters

including ` letter A and ` letter B is
(

2`
`

)
= (2`)!

`!`! . All permutations can be grouped in two

groups and in each group there exists an order on permutations {π1, ..., πr} and {π′1, ..., π′r}

with r = 1
2

(
2`
`

)
, such that πi+1 (respectively π′i+1), can be obtained from πi (resp. π′i) just

with replacing the two letters in the spots j and j + 1 where 1 ≤ j ≤ r − 1. In addition we
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can always choose π1 = AA · · ·ABB · · ·B and π′1 = BB · · ·BAA · · ·A. The permutation

πr has the above mentioned property with respect to one of π′i’s.

Now we come back to the case CP `q . We consider a complex structure (Ω(•,•)(A), ∂, ∂)

on the ∗-algebra A(CP `q ) with ∗ : Ω(p,q) → Ω(q,p) such that ∂a∗ = (∂a)∗. We have seen that

Ω(0,1) = M(σ0,1), where σ0,1 restricted to Uq(su(`)) is the fundamental representation of

Uq(su(`)) in C` and σ0,1(K1K
2
2 · · ·K`

` ) = q
`+1
2 I. The representation σ1,0 can be obtained

from σ0,1 by conjugation. Define

∂a := /(E`, E`E`−1, · · · , E` · · ·E2E1), ∂a := /(F` · · ·F2F1, · · ·F`F`−1, F`).

For an anti-holomorphic 1-form ω = (ω1, ω2, · · · , ω`) we define

ω∗ := (−qω∗` , q2ω∗`−1, · · · , (−q)`−1ω∗2, (−q)`ω∗1).

The property ∂a∗ = (∂a)∗ holds simply because

(a∗ / F`F`−1 · · ·Fi)∗ = a / S(F`F`−1 · · ·Fi)∗ = (−q)−(`−i+1)a / E`E`−1 · · ·Ei.

One can define ∗ on anti-holomorphic forms such that (ω∧qω′)∗ = (−1)deg(ω)deg(ω′)ω′∗∧qω∗,

then extend it to all holomorphic and anti-holomorphic forms with ∂a∗ = (∂a)∗. Note that

we can extend ∧q to holomorphic forms as [11]. One can see that

∂a1∂a2 · · · ∂a`∂a∗` · · · ∂a∗2∂a∗1 = ∂a1∂a2 · · · ∂a`(∂a`)∗ · · · (∂a2)∗(∂a1)∗

= −∂a1∂a2 · · · ∂a`(∂a1∂a2 · · · ∂a`)∗.

We will need the following simple lemma for future computations.

Lemma 3.5.1. For any a0, a1, a2, · · · , a2`+1 ∈ A(CP `q ) the following identities hold:

∫
h

a0(∂a1 · · · ∂a`∂a`+1 · · · ∂a2`)a2`+1 =

∫
h

σ(a2`+1)a0∂a1 · · · ∂a`∂a`+1 · · · ∂a2`.

Proof. The space of Ω(`,`) is a rank one free A(CP `q )-module. Let ω be the central basis



65

element for the space of Ω(`,`) and let ∂a1 · · · ∂a`∂a`+1 · · · ∂a2` = xω. Then

∫
h

{
a0(∂a1 · · · ∂a`∂a`+1 · · · ∂a2`)a2`+1 − σ(a2`+1)a0∂a1 · · · ∂a`∂a`+1 · · · ∂a2`

}
=

∫
h

(a0xωa2`+1 − σ(a2`+1)a0xω)

=

∫
h

(a0xa2`+1ω − σ(a2`+1)a0xω)

=h(a0xa2`+1 − σ(a2`+1)a0x) = 0.

The last equality comes from the twisted property of the Haar state.

Using d = ∂ + ∂, we have

τ =
∑
π∈S`,`

ϕπ,

where ϕπ is given by (3.16). Let π1 = id, i.e. π1 is the shuffle that keeps every letter at the

same spot. Define the Hochschild cocycle

ϕ := −2rϕπ1 , (3.17)

where r = 1
2

(
2`
`

)
.

Theorem 3.5.1. The 2`-cocycle ϕ defined by (3.17), is a twisted positive Hochschild cocycle

and it is cohomologous to the fundamental twisted cyclic cocycle τ .

Proof. We first verify the twisted cocycle property.

ϕ(σ(a0), σ(a1), σ(a2), · · · , σ(a2`))

= 2r

∫
h

σ(a0)∂σ(a1) · · · ∂σ(a`)∂σ(a`+1) · · · ∂σ(a2`)

= 2r

∫
h

K . (a0∂a1 · · · ∂a`∂a`+1 · · · ∂a2`)

= 2r ε(K)

∫
h

a0∂a1 · · · ∂a`∂a`+1 · · · ∂a2`

= ϕ(a0, a1, a2, · · · , a2`).
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For positivity one can see that

ϕ(σ(a∗0)a0, a1, a2, · · · , a`, a∗` , · · · , a∗2, a∗1) = −2r

∫
h

σ(a∗0)a0∂a1∂a2 · · · ∂a`∂a∗` · · · ∂a∗2∂a∗1

= −2r

∫
h

a0∂a1∂a2 · · · ∂a`∂a∗` · · · ∂a∗2∂a∗1a∗0

= 2r

∫
h

(a0∂a1∂a2 · · · ∂a`)(a0∂a1∂a2 · · · ∂a`)∗.

One can take ∂ai = (vi1, v
i
2, · · · , vi`), then using the multiplication rule of type (1,0) forms

(for (0,1) forms c.f. [11]), we find that (a0∂a1∂a2 · · · ∂a3)(a0∂a1∂a2 · · · ∂a3)∗ = µµ∗, where

µ = a0

∑
π∈S`

(−q−1)||π||v1
π(1)v

2
π(2) · · · v

`
π(`).

Hence

ϕ(σ(a∗0)a0, a1, a2, · · · , a`, a∗` , · · · , a∗2, a∗1) = 2r h(µµ∗) ≥ 0.

Here we used the positivity of the Haar functional h.

Now we would like to find the coefficients m, k such that mτ − kϕπ1 = bσψ for

a suitable (2` − 1)-cocycle ψ. Here we order all ϕπ’s as explained at the beginning of the

section, i.e. we use the order for permutations of ∂ and ∂ to make two sets {ϕπ1 , ϕπ2 , ..., ϕπr}

and {ϕπ′1 , ϕπ′2 , ..., ϕπ′r}, where r = 1
2

(
2`
`

)
. For instance we give the formula for one choice of

ϕπ2 .

ϕπ2(a0, a1, ..., a2`) :=

∫
h

a0∂a1∂a2 · · · ∂a`−1∂a`∂a`+1∂a`+2 · · · ∂a2`.
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One can show that there exist 2r − 1 twisted cochains ψπ,π′ such that

bσψπ1,π2 = ϕπ1 − ϕπ2 ,

bσψπ2,π3 = ϕπ2 − ϕπ3 ,
...

bσψπr−1,πr = ϕπr−1 − ϕπr ,

bσψπr,π′k = ϕπr − ϕπ′k ,

bσψπ′1,π′2 = ϕπ′1 − ϕπ′2 ,

bσψπ′2,π′3 = ϕπ′2 − ϕπ′3 ,
...

bσψπ′r−1π
′
r

= ϕπ′r−1
− ϕπ′r (3.18)

For instance ψπ1,π2 (up to a ± sign) is defined by

ψπ1,π2(a0, a1, ..., a2`−1) :=

∫
h

a0∂a1...∂a`−1(∂∂a`)∂a`+1...∂a2`−1.

Define

ψ :=

r−1∑
i=1

xiψπi,πi+1 + xrψπi,π′k +

r−1∑
i=1

xr+iψπ′i,π′i+1
,

with constants xi’s i = 1, 2, · · · , 2r− 1 have to be determined. We find the following linear
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system of equations for mτ − kϕπ1 = bσψ.



m− k − x1 = 0

m+ x1 − x2

...

m+ xr−1 − xr = 0

m+ xr+1 = 0

m+ xr+1 − xr+2 = 0

...

m+ xr+k−1 − xr+k = 0

m+ xr − xr+k−1 − xr+k = 0

m+ xr+k − xr+k+1 = 0

...

m+ x2r−2 − x2r−1 = 0

m+ x2r−1 = 0

This system has the one parameter family of solutions given by

xi = −(2r − i)m for i ∈ {1, 2, · · · , 2r − 1} − {r + 1}, xr+1 = −m, k = 2rm.

For m = 1, we have τ − 2rϕ1 = bσψ. Note that ψi’s are defined up to sign.

3.5.2 A positive cocycle ϕ on CP 3
q

In this subsection we would like to delve into the case of CP 3
q in details. We consider the

complex structure on (Ω•,•(A), ∂, ∂) on the ∗-algebra A. There exists ∗ : Ω(p,q) → Ω(q,p)

such that ∂a∗ = −(∂a)∗.

We have seen that Ω(0,1) = M(σ(0,1)), where the representation σ(0,1) on Uq(su(3)) is

the fundamental representation of Uq(su(3)) in C3 and on the generator of U(1) is given by
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σ(0,1)(K1K
2
2K

3
3 ) = q2I. Here the representation on the basis is given by

E1 =


0 1 0

0 0 0

0 0 0

 , E2 =


0 0 0

0 0 1

0 0 0

 ,

K1 =


q1/2 0 0

0 q−1/2 0

0 0 1

 , K2 =


1 0 0

0 q1/2 0

0 0 q−1/2

 .

The representation σ(1,0) can be obtained from σ(0,1) by conjugation. Define

∂a := /(E3, E3E2, E3E2E1), ∂a := /(F3F2F1, F3F2, F3).

For ω = (ω1, ω2, ω3) ∈ Ω(0,1), let define

ω∗ := q2(qω∗3,−ω∗, q−1ω∗1).

One can see that

(a∗ / F3F2F1, a
∗ / F3F2, a

∗ / F3)∗

= q2(q−1a / S(F3F2F1)∗, −a / S(F3F2)∗, qa / S(F3)∗)

= q2(−q1−3a / E3E2E1, −q−2a / E3E2, −q−1−1a / E3)

= −(a / E3E2E1, a / E3E2, a / E3).

Hence

∂a∗ = −(∂a)∗.

For η = (η1, η2, η3) ∈ Ω(0,2) we define

η∗ := q4(qη∗3,−η2, q
−1η∗1).
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One can prove that for anti-holomorphic 1-forms we have

(ω ∧q ω′)∗ = (−1)deg(ω)deg(ω′)ω′∗ ∧q ω∗,

Then one can extend ∗ to all holomorphic and anti-holomorphic forms with ∂a∗ = −(∂a)∗.

Note that we can extend ∧q to holomorphic forms as [11]. One can see that

∂a1∂a2∂a3∂a
∗
3∂a
∗
2∂a
∗
1 = −∂a1∂a2∂a3(∂a3)∗(∂a2)∗(∂a1)∗ = ∂a1∂a2∂a3(∂a1∂a2∂a3)∗.

We will need the following simple lemma for future computations.

Lemma 3.5.2. For any a0, a1, a2, · · · , a7 ∈ A(CP 3
q ) the following identity hold:

∫
h

a0(∂a1∂a2∂a3∂a4∂a5∂a6)a7 =

∫
h

σ(a7)a0∂a1∂a2∂a3∂a4∂a5∂a6,

Proof. The space of Ω(3,3) is a rank one free A(CP 3
q )-module. Let ω be the central basis

element for the space of Ω(3,3) and let ∂a1∂a2∂a3∂a4∂a5∂a6 = xω. Then

∫
h

a0(∂a1∂a2∂a3∂a4∂a5∂a6)a7 −
∫
h

σ(a7)a0∂a1∂a2∂a3∂a4∂a5∂a6 (3.19)

=

∫
h

(a0xωa7 − σ(a7)a0xω)

=

∫
h

(a0xa7ω − σ(a7)a0xω)

= h(a0xa7 − σ(a7)a0x) = 0.

The last equality comes from the twisted property of the Haar state.

Theorem 3.5.2. The 6-cocycle ϕ defined by

ϕ(a0, a1, a2, a3, a4, a5, a6) := 20

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6

is a twisted positive Hochschild cocycle on A(CP 3
q ) and is cohomologous to τ .
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Proof. We will give ϕ’s and ψ’s explicitly for this case, i.e. CP 3
q . We first introduce cocycles

ϕi, i = 1, · · · , 20

ϕ1(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ2(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ3(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ4(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ5(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ6(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ7(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ8(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ9(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ10(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,
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ϕ11(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ12(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ13(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ14(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ15(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ16(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ17(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ18(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ19(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

ϕ20(a0, a1, a2, a3, a4, a5, a6) :=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6.



73

We also define twisted cochains ψi’s as follows

ψ1(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂∂a3∂a4∂a5,

ψ2(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂a2∂a3∂∂a4∂a5,

ψ3(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂a3∂a4∂∂a5,

ψ4(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂∂a2∂a3∂a4∂a5,

ψ5(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂a3∂a4∂∂a5,

ψ6(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂a2∂∂a3∂a4∂a5,

ψ7(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂a3∂a4∂∂a5,

ψ8(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂a2∂a3∂∂a4∂a5,

ψ9(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂∂a1∂a2∂a3∂a4∂a5,

ψ10(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂∂a2∂a3∂a4∂a5,

ψ11(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂∂a3∂a4∂a5,

ψ12(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂a2∂a3∂∂a4∂a5,

ψ13(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂a3∂a4∂∂a5,

ψ14(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂∂a2∂a3∂a4∂a5,

ψ15(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂a3∂a4∂∂a5,

ψ16(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂a2∂∂a3∂a4∂a5,

ψ17(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂a1∂a2∂a3∂a4∂∂a5,

ψ18(a0, a1, a2, a3, a4, a5) :=

∫
h

a0∂a1∂a2∂∂a3∂a4∂a5,

ψ19(a0, a1, a2, a3, a4, a5) := −
∫
h

a0∂∂a1∂a2∂a3∂a4∂a5.



74

Now let us define the map ψ =
∑19

i=1 xiψi and ϕ := −kϕ1. One can check that for

all i = 1, 2 · · · , 19 except i = 10, 11, we have

bσψi = ϕi − ϕi+1,

and

bσψ10 = ϕ10 − ϕ12, bσψ11 = ϕ12 − ϕ11.

We only show the computation for bσψ1 = ϕ1 − ϕ2 and the rest can be proven in a similar

way.

bσψ1(a0, a1, a2, a3, a4,a5, a6) = ψ1(a0a1, a2, a3, a4, a5, a6)

− ψ1(a0, a1a2, a3, a4, a5, a6) + ψ1(a0, a1, a2a3, a4, a5, a6)

− ψ1(a0, a1, a2, a3a4, a5, a6) + ψ1(a0, a1, a2, a3, a4a5, a6)

− ψ1(a0, a1, a2, a3, a4, a5a6) + ψ1(σ(a6)a0, a1, a2, a3, a4, a5)

Hence

bσψ1(a0, a1, a2,a3, a4, a5, a6) =

−
∫
h

a0a1∂a2∂a3∂∂a4∂a5∂a6 +

∫
h

a0∂(a1a2)∂a3∂∂a4∂a5∂a6

−
∫
h

a0∂a1∂(a2a3)∂∂a4∂a5∂a6 +

∫
h

a0∂a1∂a2∂∂(a3a4)∂a5∂a6

−
∫
h

a0∂a1∂a2∂∂a3∂(a4a5)∂a6 +

∫
h

a0∂a1∂a2∂∂a3∂a4∂(a5a6)

−
∫
h

σ(a6)a0∂a1∂a2∂∂a3∂a4∂a5

=

∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6 −
∫
h

a0∂a1∂a2∂a3∂a4∂a5∂a6,

= ϕ1(a0, a1, a2, a3, a4, a5, a6)− ϕ2(a0, a1, a2, a3, a4, a5, a6).

Here we applied Leibniz rule several times. Solving the equation τ − ϕ = bσψ with respect
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to coefficients is equivalent to the following system.



m+ k − x1 = 0

m+ x1 − x2 = 0

m+ x2 − x3 = 0

...

m+ x8 − x9 = 0

m+ x9 − x10 = 0

m+ x11 = 0

m+ x10 − x11 − x12 = 0

m+ x12 − x13 = 0

...

m+ x18 − x19 = 0

m+ x19 = 0.

This system has the following solution

xi = −(20− i)m for i ∈ {1, 2, · · · , 19} − {11}, x11 = −m, k = −20m.

For m = 1, we have τ − 20ϕ1 = bσψ. For positivity, one can see that

ϕ(σ(a∗0)a0, a1, a2, a3, a
∗
3, a
∗
2, a
∗
1) = 20

∫
h

σ(a∗0)a0∂a1∂a2∂a3∂a
∗
3∂a
∗
2∂a
∗
1

= 20

∫
h

a0∂a1∂a2∂a3∂a
∗
3∂a
∗
2∂a
∗
1a
∗
0

= 20

∫
h

(a0∂a1∂a2∂a3)(a0∂a1∂a2∂a3)∗.

One can take ∂ai = (vi1, v
i
2, v

i
3), then using the multiplication rule of type (1,0) forms (for
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(0,1) forms c.f. [11]), we find that (a0∂a1∂a2∂a3)(a0∂a1∂a2∂a3)∗ = µµ∗, where

µ = a0(v1
1v

2
2v

3
3 − q−1v1

2v
2
1v

3
3 − q−1v1

1v
2
3v

3
2 + q−2v1

2v
2
3v

3
1 + q−2v1

3v
2
1v

3
2 − q−3v1

3v
2
2v

3
1.

Hence

ϕ(σ(a∗0)a0, a1, a2, a3, a
∗
3, a
∗
2, a
∗
1) = 20h(µµ∗) ≥ 0.

Here we used the positivity of the Haar functional h.



Chapter 4

The Riemann-Roch theorem for CP `
q , ` = 1, 2

First recall that, for classical projective space CPn, its sheaf (or equivalently Dolbeault)

cohomology with coefficients in the sheaf of holomorphic sections of line bundles O(m) are

given by

H i(CPn,O(m)) =



C[z0, z1, ..., zn]m if i = 0, m ≥ 0,

0 if


i = 0, m < 0

0 < i < n

i = n, m > −n− 1

H0(CPn,O(−m− n− 1))∗ if i = n, m ≤ −n− 1.

Therefore for the holomorphic Euler characteristic of O(m), we get

χ(CP 1,O(m)) : = dimH0(CP 1,O(m))− dimH1(CP 1,O(m)) = m+ 1.

4.0.3 The case of CP 1
q

This last formula has an analogue in the case of CP 1
q . The zeroth cohomology has been

computed in [19], but for completeness we recall it here again. First let us recall that finite

dimensional irreducible representations of Uq(su(2)) are given by vector spaces Vl, where

2l ∈ N with basis |l,m〉, m ∈ {−l, ..., l}. The action on generators are given by

K|l,m〉 = qm|l,m〉,

E|l,m〉 =
√

[l −m+ 1][l +m] |l,m− 1〉,

F |l,m〉 =
√

[l +m+ 1][l −m] |l,m+ 1〉.
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We will have the isomorphism A(SUq(2)) =
⊕
Vl⊗V ∗l and under this isomorphism the space

of canonical quantum line bundle LN := {a ∈ A(SUq(2))| h . a = qN/2a} corresponds to

{|l, N/2〉 ⊗ |l,m〉| l ≥ |N/2|, m = −2l, ..., 2l}. From now on we will use the notation

|l, n,m〉 = |l, n〉 ⊗ |l,m〉.

The anti-holomorphic part of the connection on LN is given by∇∂ |l, N2 , n〉 := E|l, N2 , n〉.

Consider the Dolbeault complex of CP 1
q

0→ LN → Ω(0,1) ⊗ LN → 0,

or equivalently

0→ LN → LN−2 → 0.

One can easily see that ∇∂ξ = E|l, N2 ,m〉 =
√

[l − N
2 + 1][l + N

2 ]|l, N2 −1,m〉. To find

the holomorphic Euler characteristic χ(CP 1
q , LN ), we will consider the following three cases.

• N ≥ 2.

In this case, the kernel of ∇∂ is zero, simply because l + N
2 cannot be zero and l − N

2 + 1

is zero only if l = N
2 − 1, which is impossible in this case, since by assumption l ≥ N

2 . The

Image of ∇∂ will be generated by the basis elements |l, N2 − 1,m〉 with l ≥ N
2 . But it dif-

fers from basis of LN−2 by elements |N2 −1, N2 −1,m〉 which can be counted as N−1 elements.

• N = 1.

Here we have ∇∂ξ =
√

[l − 1
2 + 1][l + 1

2 ]|l, 1
2 − 1,m〉. So E|l, 1

2 ,m〉 = [l + 1
2 ]|l,−1

2 ,m〉 and

it is not hard to see that Im∇∂ = LN−2. The same argument as case N ≥ 2 shows that

Ker∇∂ = 0. Hence χ(CP 1
q , LN ) = 0.

• N ≤ 0.

If N ≤ 0, l+N
2 = 0 when l = −N

2 and this gives the set {|−N
2 ,

N
2 ,m〉|m = N

2 ,
N
2 + 1

2 , ...,−
N
2 }
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as a basis for the space of holomorphic sections of LN . So dim Ker ∇∂ = |N | + 1. In a

similar manner to case N = 1 one can show that the map ∇∂ is surjective. Therefore we

will come to the following result

χ(CP 1
q , LN ) = −N + 1.

Note that there is a switch between N and −N with respect to the classical case.

4.0.4 Serre duality for CP 2
q

There exists a non-degenerate pairing 〈 , 〉 : LN × L−N → C, given by

〈ξ, η〉 := h(ξη), ∀ξ ∈ LN , ∀η ∈ L−N . (4.1)

Here h is the Haar state of the quantum group A(SUq(3)). The map is obviously bilinear

and the nondegeneracy comes from the facts that L∗N ⊂ L−N and h is faithful. Now consider

the (0, q)-Dolbeault complex of CP 2
q

0→ LN → Ω(0,1) ⊗ LN → Ω(0,2) ⊗ LN → 0. (4.2)

We would like to state an analogue of Serre duality theorem for this complex as

Proposition 4.0.1. There exists a non-degenerate pairing defined by

〈 , 〉 : H2(∇, LN )×H0(∇, L−N−3)→ C

〈[ξ], [η]〉 := h(ξη), ∀ξ ∈ LN+3, ∀η ∈ L−N−3.

Proof. First note that H2(∇, LN ) is a quotient of LN+3 and H0(∇, L−N−3) is a subspace

of L−N−3. We show that this map is well defined. For this, suppose that ξ and ξ′ are in the

same cohomology class. Hence h(ξη)−h(ξ′η) = h((ξ−ξ′)η) = h(∂αη) = h(∂(αη)−α∂η) = 0,

by noting that η ∈ Ker∂ and h has invariance property with respect to the map ∂. Now

non-degeneracy is obvious by the above discussion.
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The above result easily can be lifted to the general case of CP `q in the following way.

The pairing

〈ξ, η〉 := h(ξη), ∀ξ ∈ LN , ∀η ∈ L−N . (4.3)

is a nondegenerate pairing and hold true passing to the cohomology

〈 , 〉 : H`(∇, LN )×H0(∇, L−N−`−1)→ C

〈[ξ], [η]〉 := h(ξη), ∀ξ ∈ LN+`+1, ∀η ∈ L−N−`−1.

In the following we will compute the (0, q)-Dolbeault cohomology of CP 2
q . The result

is analogue of the classical case. i.e.

Theorem 4.0.3. With the above notations

H i(∇∂ , LN ) =



C〈z1, z2, z3〉N if i = 0, N ≥ 0,

0 if


i = 0, N < 0

i = 1, N = 0

i = 2, N > −3

C〈z1, z2, z3〉∗−N−3 if i = 2, N ≤ −3.

Proof. The zeroth-cohomology has been computed in Chapter 2 and the second cohomology

comes from the Serre duality. So we just have to prove that the triviality of the first

cohomology. In order to do so, we will calculate the Im ∂1 and the Ker ∂2 and show the

equality.

∂1(t(n, n+N)0
j ) = (E1E2 I t(n, n+N)0

j , E2 I t(n, n+N)0
j )

= (t(n, n+N)
1,0,1/2
j , t(n, n+N)

1,0,−1/2
j )

For Ker ∂2 we will use the ∂2(v+, v−) = −E2 I v+ − E2E1 + 2[2]−1E1E2 I v− . Applying
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v+ = t(n, n+ 3)
1,0,1/2
j and v− = t(n, n+ 3)

1,0,−1/2
j we will have

− E2 I t(n, n+ 3)
1,0,1/2
j

= −

√
[n][n+ 3 + 2]

[2][3]
t(n, n+ 3)1,1,0

j −

√
[n+ 2][n+ 3]

[2]
t(n, n+ 3)

0
j ,

− E2E1 I t(n, n+ 3)
1,0,−1/2
j = −E2 I t(n, n+ 3)

1,0,1/2
j

= −

√
[n][n+ 3 + 2]

[2][3]
t(n, n+ 3)1,1,0

j −

√
[n+ 2][n+ 3]

[2]
t(n, n+ 3)

0
j ,

and

2[2]−1E1E2 I t(n, n+ 3)
1,0,−1/2
j =

2[2]−1E1 I (
√

[2]

√
[n][n+ 3 + 2]

[2][3]
t(n, n+ 3)1,1,−1

j ) = 2

√
[n][n+ 5]

[2][3]
t(n, n+ 3)1,1,0

j

Hence

∂2(t(n, n+ 3)
1,0,1/2
j , t(n, n+ 3)

1,0,−1/2
j ) = −2

√
[n+ 2][n+ 3]

[2]
t(n, n+ 3)

0
j

This shows that H1 = Ker ∂2
Im∂1

= 0 in the case of N = 0.

By a similar but lengthier calculation, one can prove that H0(∇∂ , LN ) = 0 for all

N 6= 0.



Chapter 5

A q-analogue of the Borel-Weil theorem

5.1 The Borel-Weil theorem

Let G be a compact matrix Lie group with Lie algebra g. Suppose that gC = g⊗ C is the

complexification of g and GC is the corresponding Lie group. The Cartan decomposition is

gC = tC ⊕ n+ ⊕ n−,

where

n+ =
⊕
α∈R+

gα, n− =
⊕
α∈R−

gα.

Here R+ and R− are the space of positive and negative roots. The Borel subalgebra of gC

is defined by b = tC ⊕ n+. Let B be its associated Lie group, which is called the Borel

subgroup. Then one can see that G/T = GC/B. The right one is a complex manifold. It is

known that associated to a weight λ on G (i.e. an irreducible representation of a maximal

torus T inside G), there exists a line bundle Lλ on G/T defined by

Lλ := {(g, c) ∈ G× C : (g, c) ∼ (gh, h−1c)}, (5.1)

and the space of sections of this line bundle is given by

Γ(Lλ) = {f : G→ C| f(gh) = λ(h−1)f(g), ∀h ∈ T, ∀g ∈ G}. (5.2)

The holomorphic sections are defined by

Γhol(Lλ) = {f : G→ C| f(gh) = λ(h−1)f(g), ∀h ∈ B, ∀g ∈ G}

= {f : G→ C|X I f = 0, ∀X ∈ n−}.
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The last equality is because for any X ∈ n−, [34]

X I f =
d

dt
f(ge−tX)

∣∣∣
t=0

.

The group G acts on Γ(Lλ) by (g, f)(g′) = f(g−1g′), for all g and g′ in G.

The classical Borel-Weil theorem gives a geometric characterization of all irreducible

representations of G.

Theorem 5.1.1. For a dominant weight λ of G, the space Γhol(Lλ) is a non trivial irre-

ducible representation of G with the highest weight λ and all irreducible representations can

be obtained in this way.

In the case of G = SU(2), the maximal torus is U(1) and all weights are indexed by

integers n ∈ Z. The space of sections of line bundle Ln on the projective line SU(2)/U(1) =

CP 1 can be also given by

Γ(Ln) = {f : SU(2)→ C| H I f = nf}. (5.3)

The holomorphic sections are

Γhol(Ln) = {f : SU(2)→ C| f(gh) = λ(h−1)f(g), ∀h ∈ B, ∀g ∈ G}

= {f : SU(2)→ C| H I f = nf, E I f = 0}.

Let us look at the case SU(3). In this case weights are indexed by a pair of integers λ =

(m1,m2) ∈ Z2 and the associated line bundles on the flag manifold Fl(3) := SU(3)/S(U(1)×

U(1)) are given by

Γ(Lλ) = {f : SU(3)→ C| Hi I f = mif, i = 1, 2}. (5.4)

and the holomorphic sections are

Γhol(Lλ) := {f : SU(3)→ C| Hi I f = mif, Ei I f = 0, i = 1, 2}. (5.5)
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In the quantum case this definition changes to

Γhol(Lλ) := {f ∈ A(SUq(3))→ C|Ki I f = qmi/2f, Ei I f = 0, i = 1, 2}. (5.6)

Now suppose that λ is a dominant weight for SUq(3), that is a pair of non-negative integers,

then we want to show that the space of holomorphic sections Γhol(L(m1,m2)) is an irreducible

representation of SUq(3) of dimension 1
2(m1 + 1)(m2 + 1)(m1 +m2 + 2).

Lemma 5.1.1. With the above notation dimΓhol(L(m1,m2)) = 1
2(m1 +1)(m2 +1)(m1 +m2 +

2).

Proof. Taking a basis element |m′〉 ⊗ |m〉 where |m〉 is a GT-basis element of Uq(su(3)).

These set of four conditions gives the following restrictions on

|m〉 =


m13 m23 m33

m12 m22

m11


m11 = m12 = m13 := m, m22 = m−m1, m23 +m33 = 2m− 2m1 −m2.

A combinatorial argument then will complete the proof. We must have m−m1 −m2/2 ≤

m23 ≤ m, but among these values just m23 = m − m1 and m33 = m − m1 − m2 are

acceptable. For the obvious reason of restriction on weights. Now we find the possibilities

for the following matrix 
m m−m1 m−m1 −m2

m12 m22

m11

 .
The number of possible values for the m11, m12 and m22 is

m1∑
j=0

m2+1∑
i=0

(i+ j) =
1

2
(m1 + 1)(m2 + 2)(m1 +m2 + 2).

Case m12 = m: In this case we will have the total (m1 + 1) + (m1 + 2) · · ·+ (m1 +m2 + 1)

solutions. If m12 = m− 1 : m1 + (m1 + 1) · · ·+ (m1 +m2) and so on until m12 = m−m1 :
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0 + 1 + 2 + · · ·+ (m2 + 1).

Let us show the case (0, 1) and (1, 0). In case (1, 0) the only possibility for m23 is

m− 1 and then we will have the following options

|m′〉 ⊗ |m〉 =


m m− 1 m− 1

m12 m22

m11

⊗

m m− 1 m− 1

m m− 1

m


which there exists exactly 3 solutions for this case. The same argument shows options for

the case (0, 1) are of the form of

|m′〉 ⊗ |m〉 =


m m m− 1

m m22

m11

⊗

m m m− 1

m m

m


which again just gives us dim= 3.

Theorem 5.1.2. (The q-analogue of the Borel-Weil theorem) If λ = (m1,m2) is a dominant

weight for SUq(3), the space of holomorphic sections Γhol(Lλ) of the associated line bundle

over the quantum flag manifold Flq(3) is an irreducible representation of SUq(3) of the

highest weight λ. If λ is not dominant Γhol(Lλ) = 0. All the irreducible representations of

SUq(3) will be obtained in this way.

Proof. It is shown that for a dominant λ, the space Γhol(Lλ) is finite dimensional. It is easy

to see that SUq(3) coacts on Γhol(Lλ) since Uq(su(3)) acts on Γhol(Lλ). The fact that this

is an irreducible representation can be seen by the existence of the highest weight vector v

given by

v =


m m−m1 m−m1 −m2

m m−m1

m

⊗


m m−m1 m−m1 −m2

m−m1 m−m1 −m2

m−m1 −m2
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It is not hard to see that Ei I v = 0 and Ki I v = qmi/2v. Using the highest weight

theorem one can see this is the only irreducible representation of SUq(3).

This theorem can be generalized to the following case.

Theorem 5.1.3. If λ = (m1,m2, · · · ,ml) is a dominant weight for SUq(l+ 1), the space of

holomorphic sections Γhol(Lλ) of the associated line bundle over the quantum flag manifold

Flq(l+ 1) is an irreducible representation of SUq(l+ 1) of the highest weight λ. If λ is not

dominant Γhol(Lλ) = 0. All the irreducible representations of SUq(l+ 1) will be obtained in

this way.



Chapter 6

Noncommutative complex structures of finite

spaces

6.1 Complex structures on
⊕k

i=1 Mni

Let (A,H, D) be the spectral triple associated to X = {a, b} by A = C⊕C acting diagonaly

on Ha ⊕ Hb i.e. f →

f(a) 0

0 f(b)

. The Dirac operator is given by the matrix D =

 0 m

m 0

. So df := [D, f ] = (f(b) − f(a))

 0 m

−m 0

. We would like to define a complex

structure on A by ∂f := [D(1,0), f ] and ∂f := [D(0,1), f ] where D(1,0) :=

 0 0

m 0

 and

D(0,1) :=

0 m

0 0

. It is easy to see that d = ∂ + ∂, ∂f∗ = (∂f)∗ and ∂f = 0 iff f is

constant.

The next case that we consider is A = M2(C)⊕ C. In this case

D(1,0) =

 0 0

m 0

 , D(0,1) =

0 m

0 0


where m is a column vector. Define ∂ and ∂ as above. An element f ∈ A has the form

f =

A 0

0 λ

, where A is a 2× 2 matrix and λ is an scalar. Let χA(x) = A− xI.

Proposition 6.1.1. With the above notation f is holomorphic iff rows of χA(λ) are orthog-

onal to the vector m. In particular if f is holomorphic then λ is an eigenvalue of A.
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Proof. A direct calculation shows that ∂f =

0 m1(λ− a11)−m2a12

0 m2(λ− a22)−m1a21

. So f is holomor-

phic if and only if


m1(λ− a11)−m2a12 = 0

−m1a21 +m2(λ− a22) = 0

Hence two vectors (λ− a11,−a12) and (−a21, λ− a22) are orthogonal to the vector m, since

they must be colinear and det

λ− a11 −a12

−a21 λ− a22

 = 0.

This result could be generalized easily to the following.

Proposition 6.1.2. If A = Mn(C) ⊕ C, f=

A 0

0 λ

 is holomorphic iff rows of χA(λ) are

orthogonal to the vector m. In particular, if f is holomorphic then λ is an eigenvalue of A.

Here A is a n× n matrix and m is column vector in Cn.

Proof. With the same argument we end up with the following system



m1(λ− a11)−m2a12 − ...−mna1n = 0

−m1a21 +m2(λ− a22)− ...−mna2n = 0

...

−m1an1 −m2an2 − ...+mn(λ− ann) = 0.

The result is obvious now.

If A = Mn(C)⊕Mk(C), we can formulate the following.
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Proposition 6.1.3. If f=

A 0

0 B

 is holomorphic then

det



χB(a11) a12I · · · a1nI

a21I χB(a22) · · · a2nI

...

an1I · · · an−1,1I χB(ann)


= 0. (6.1)

Proof. Easy.

Notation. We say det(χB(A)) = 0 if (6.1) holds.

On the space of k points if we take the A =
⊕k

i=1Mni(C) and we define

D(0,1) =



0 M1,2 M1,3 · · · M1,k

0 0 M2,3 · · · M2,k

...

0 0 · · · Mk−1,k−1

0 0 · · · 0


,

where Mi,j is of order ni × nj .

Proposition 6.1.4. With the above notation if an element f=diag(A1, A2, · · · , Ak) ∈ A is

holomorphic, then the conditions det(χAi(Aj)) = 0 for 1 ≤ j < i ≤ k must hold.

Proof. Easy.

6.2 Holomorphic vector bundles on the space of two points

Let E = Ea ⊕ Eb be a nontrivial vector bundle on the space X = {a, b} with dimension 2

and 1 respectively as in [4]. We have E = fA2, where f =

1 0

0 e

. The Grassmannian
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connection is given by

∇0σ = f dσ = f(∂σ + ∂σ),

Any other connection will be ∇ = ∇0 +ρ where ρ ∈M2(Ω1
D(A)) [4]. To have a holomorphic

structure on E , we must have (∇(0,1))2 = 0.

∇2 = (f d + ρ)2 = f df d + f dρ+ ρf d + ρ2

= f df df + f dρ+ ρ2. (6.2)

In fact, since dξ = dfξ = ( df)ξ + f dξ, then

f d(f dξ) = f d(f( df)ξ + f dξ) = f df dfξ − f df dξ + f df dξ,

which gives the first term in 6.2. We also have f d(ρξ) + ρf dξ = f d(ρ)ξ − fρdξ + fρdξ =

f dρξ, which gives the second term.

We recall from ([4], chapter 6) that ρ∗ = ρ and fρ = ρf = ρ, which implies:

ρ11 = −Φ1e de+ Φ1(1− e) de, ρ21 = Φ2ede ρ12 = ρ∗21, ρ22 = 0.

Suppose that ρ = (ρij), then the curvature F is given by

0 0

0 ede de

+

 dρ11 ( dρ12)e

e( dρ21) 0

+

ρ2
11 + ρ12ρ21 ρ11ρ12

ρ21ρ11 ρ21ρ12

 .
Now it is not hard to find the (0, 2) part of the curvature. Let F (0,2) = (aij), then

a11 = (−Φ1 − Φ1 − |Φ1|2)∂e∂e− |Φ2|2(1− e)∂e∂e,

a12 = Φ2(1 + Φ1)e∂e∂e,

a21 = Φ2(1 + Φ1)e∂e∂e,

a22 = (1− |Φ2|2)e∂e∂e
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One can easily see that there are no complex numbers Φ1 and Φ2 such that the entries aij

vanish. Therefore,

Theorem 6.2.1. With the above notation there is no holomorphic structure on Ea ⊕ Eb.
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[15] I.M. Gelfand and M.L. Tsetlin, Finite-dimensional representations of the group of uni-

modular matrices, I.M. Gelfand: Collected papers, vol. II, Springer-Verlag, 1988, pp.

653-656, English translation of the paper: Dokl. Akad. Nauk SSSR 71 (1950) 825-828.

[16] D. Huybrechts, Complex Geometry, an introduction, Springer, 2005.

[17] I. Heckenberger, S. Kolb, De Rham Complex for quantized irreducible flag manifolds,

arXiv:math/0307402.

[18] M. Khalkhali, Basic noncommutative geometry. European Mathematical Society. 2009.

[19] M. Khalkhali, G. Landi, W. van Suijlekom, Holomorphic structures on the quantum

projective line. Int. Math. Res Notices, doi:10.1093/imrn/rnq097. arXiv:0907.0154v2.

[20] M. Khalkhali, A. Moatadelro, The quantum homogeneous coordinate ring of projective

plane, J. Geom. Phys. Volume 61, Issue 1, January 2011, 276-289, arXiv:1007.3255.

[21] M. Khalkhali, A. Moatadelro, Noncommutative complex geometry of the quantum pro-

jective spaces, arXiv:1105.0456.

[22] M. Khalkhali, A. Moatadelro, The Borel-Weil-Bott theorem and quantum flag mani-

folds, preprint.
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