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Abstract 

For patients with intractable epilepsy the surgical placement of intracranial electrodes can 

better localize the seizure onset zone. Stereoelectroencephalography (SEEG) is one 

technique, where depth electrodes made of multiple contacts record activity in the brain. The 

precise interpretation of recordings requires the anatomical localization of each contact. 

Contact positions can be manually localized or determined using semi-automated algorithms. 

This thesis works towards the automation of SEEG contact localization with a 3D U-Net, a 

deep learning architecture optimized for biomedical image segmentation. The first chapter 

will introduce the clinical workflow for SEEG, available tools, and the potential role of deep 

learning. The second chapter will cover the proposed algorithm and validation methods. The 

last two chapters will present the accuracy of the U-Net in contrast to approaches currently 

employed in the clinic. Overall, the error and accuracy of the proposed method compares 

favorably in an independent set of clinical data. Future work will look to continue to optimize 

performance.  
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Summary for Lay Audience 

Epilepsy is a neurological disorder characterized by abnormal electrical activity known as 

seizures. A subset of patients diagnosed with epilepsy do not respond to medication. For 

some, surgical removal of a part of the brain determined to be the “seizure onset zone” can 

significantly reduce the severity and number of seizures and can be curative. Potential 

candidates for surgery are determined during a pre-surgical evaluation, where diagnostic tests 

aim to determine any structural deficits or abnormal brain activity. When non-invasive 

methods fail to localize the seizure onset zone, the implantation of electrodes directly within 

the brain can be used to record electrical activity. Stereoelectroencephalography (SEEG) is 

one method using depth electrodes made of multiple contacts to simultaneously study 

multiple deep brain regions. Analysis of recordings requires the anatomical position of each 

contact in the brain, as viewed in post-operative imaging. This localization process is 

typically done manually or with semi-automated tools, in a process that can be both time 

consuming and labor intensive. The thesis works towards the automated localization of 

SEEG contacts using a U-Net, a deep learning model that is used in most computer vision 

tasks with medical images.  The first chapter covers the clinical workflow, the prerequisite 

knowledge for medical imaging, image processing, and deep learning, and the current tools 

for SEEG contact localization. The second chapter will outline the implementation of the U-

Net model and how the model will be validated.  Finally, it will compare errors to the current 

tool employed in the clinic.  Overall, the error and accuracy of the proposed method 

compares favorably in an independent set of clinical data, while reducing the amount of 

manual intervention required. Future work will look to continue to optimize performance.  
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Chapter 1  

1 Introduction 

Stereotactic neurosurgery is a subspecialty of neurosurgery concerned with precisely targeting 

brain structures. The most common applications involve the implantation of electrodes or probes 

to deliver electrical stimulation or other therapy (e.g. ablative) in specific regions to provide 

therapeutic relief. In other instances, electrodes serve a diagnostic role and record different areas 

in the brain, including stereoelectroencephalography (SEEG), where depth electrodes are 

implanted to localize seizures in patients with drug-resistant epilepsy.  

SEEG recordings offer superior spatial and temporal resolution compared to noninvasive 

methods such as scalp electroencephalography. Electroencephalography uses electrodes placed 

on the scalp to record the activity from the cortical surface transmitted through the scalp and 

skull (Zijlmans et al., 2019). SEEG electrodes in contrast are implanted directly within the soft 

tissue of the brain. An individual SEEG electrode consists of multiple metallic contacts along a 

shaft between 0.5 and 2 mm in length (Figure 1-1). Contacts record the local field potential 

(LFP), which is the electric potential generated by the synaptic activity from populations of 

neurons. A single SEEG contact records the electrical activities within a 5-mm radius, sampling 

from about 30 mm3 of the brain (Frauscher et al., 2024). 

 



 

2 

 

 

Figure 1-1. Illustrative diagram of an SEEG electrode and contacts, as seen in post-

operative imaging. The first panel makes the distinction between the SEEG electrodes and 

contacts. The second shows how contact length, diameter, and spacing are defined. Captured 

using 3D Slicer version 5.6.1, a medical image viewer (Fedorov et al., 2012). 

An accurate interpretation and understanding of these signals require the anatomical localization 

of each contact as viewed in the post-operative imaging. Traditionally, contacts are manually 

localized by annotating imaging artifacts to confirm their position. Several computational 

toolboxes exist to expedite this process, ranging from mathematical approaches that consider the 

physical properties of each electrode, image processing techniques identifying radiological 

contact artifacts, or machine learning algorithms (Davis et al., 2021; Granados et al., 2021; Lucas 

et al., 2024; Narizzano et al., 2017). These methods are all semi-automated, requiring the manual 

placement of at least two contacts per electrode and a thorough review of localizations. This 

results in an incredibly labor- and resource-intensive task for each subject, prone to human error, 

further making the group-wise analysis across multiple subjects untenable. 

The thesis works towards an approach for the automated localization of SEEG contacts through 

deep learning. It addresses a gap in the literature by contrasting the accuracy with semi-

automated methods used today. This introductory chapter will cover the history of stereotactic 

surgery and SEEG, the role of medical imaging, image processing for stereotactic surgery, an 

overview of deep learning, and current methods of contact localization.   
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1.1 Stereoelectroencephalography (SEEG) 

A discussion around stereoelectroencephalography begins with the origins of stereotactic 

surgery. In 1908, Sir Victor Horsley and Robert Clark developed the first stereotactic frame to 

target and lesion deep cerebellar nuclei in animals (Horsley & Clarke, 1908). Nearly 40 years 

later, Ernest A. Spiegel and Henry T. Wycis designed a stereotactic frame for humans, marking 

the birth of human stereotactic surgery (Spiegel et al., 1947). Jean Talairach of Saint Anne 

Hospital in Paris, France was a contemporary of Spiegel and Wycis, who worked to refine the 

stereotactic methodology. A psychiatrist and neurosurgeon, his goals were to establish precise 

stereotactic definitions for deep-brain structures and improve the accuracy of stereotactic 

surgery. Talairach made several significant contributions to the field, notably defining 

reproducible neuroanatomical landmarks, creating the first human stereotactic atlas (i.e. 

labeling) of deep brain structures, and establishing a proportional grid system for the human 

brain known as the “Talairach coordinate space” (Talairach et al., 1952; Talairach, 1957; 

Talairach, 1967). 

This cartographical exploration of the brain was the precipice for stereoelectroencephalography. 

Jean Bancaud, a neurologist and electroencephalographer, joined Saint Anne Hospital in 1952 

and suggested that Talairach apply his stereotactic principles in treating epilepsy (Zanello et al., 

2022). At this time, Wilder Penfield and Herbert Jasper had established pre-operative cortical 

stimulation for epilepsy surgery in Montreal. Their method of electrocorticography (ECoG) 

provided recordings from the cortical surface. It would use the activity observed between 

seizures (interictal discharges) to define the epileptogenic zone: the brain region that, once 

resected, would produce seizure freedom (Parrent, 2009; Penfield & Jasper, 1954). However, 

Bancaud and Talairach believed that understanding a seizure's origin and organization would 

better localize the epileptogenic focus. Therefore, analyzing network dynamics during a seizure 

or the ictal period would require precisely placing intracerebral electrodes within the structures 

of interest (Kahane et al., 2006). Talairach’s repérage radiologique indirect (indirect radiological 

investigation) enabled the minimally invasive and accurate implantation of depth electrodes. 

Electrodes were implanted through burr holes made in the skull, avoiding the craniotomy 

required for ECoG. Combined with the patient’s clinical symptoms, Bancaud’s meticulous 

analysis of ictal recordings, and Talairach’s atlases, the team could form a surgical plan tailored 
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to the patient’s “anatomo-electro-clinical” correlations. The SEEG procedure was first published 

in 1962, the name referencing the three-dimensional nature and simultaneous recording of 

multiple brain regions (Talairach et al., 1962). 

1.1.1 Clinical workflow for SEEG implantation 

The primary purpose of SEEG implantation is to identify the origin of epileptic activity and 

define the epileptogenic zone. Removing or disconnecting this region during epilepsy surgery 

can be an effective treatment option to reduce seizures (Wiebe et al., 2001). However, the 

epileptogenic zone is a hypothetical area of the brain that is only confirmed by the post-operative 

outcome. Given that the actual location of the epileptogenic zone cannot be determined pre-

operatively, a pre-surgical evaluation is needed to estimate the extent of this area. At this stage of 

the evaluation, several diagnostic tools identify different conceptual regions contributing to the 

epileptogenic network. Overlap of these areas indicates the likely location of the epileptogenic 

zone (Zijlmans et al., 2019). When there is insufficient information from non-invasive tools, 

intracranial electrodes are temporarily implanted to better understand the network. Also referred 

to as intracranial electroencephalography (iEEG), the two techniques for implantation are ECoG 

using subdural strip or grid electrodes and SEEG with depth electrodes.  

Contacts in ECoG are organized along the grid or strip, and activity is recorded from the cortical 

surface (Zijlmans et al., 2019). Subdural grids offer extensive sampling of the cortical surface 

and are implanted through a craniotomy, which requires removing a portion of the skull. Due to 

this craniotomy, common complications with subdural grids include infections (5.3%) and 

intracranial hemorrhages (4.0%), as observed in a systematic review of implantations (Arya et 

al., 2013). Subdural strips can be placed using a smaller incision or burr hole in the skull, but 

samples a much smaller region of the brain (Wu et al., 2024). In contrast, SEEG electrodes are 

implanted to allow the sampling from deep brain structures across multiple layers through burr 

holes made in the skull. In comparison to ECoG, the method of implantations is considered less 

invasive and is associated with fewer intraoperative complications (Joswig, Steven, et al., 2018; 

Joswig et al., 2020). The number of contacts, contact size, and inter-contact spacing along an 

SEEG electrode can vary depending on the manufacturer. Examples include 10-contact (0.86 

mm in diameter) electrodes with 3-, 4-, 5-, or 6-mm contact spacing, and 5-18-contact (0.8 mm 
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diameter) electrodes with 2 mm contact spacing (Dixi Medical, Besançon, France) (Cardinale et 

al., 2016). A visual illustration of a few electrode examples can be seen in Figure 1-2.  

 

 

Figure 1-2. Visual representation of depth electrodes and different inter-contact spacing 

from two manufacturers, AdTech and DIXI medical. 

Traditionally, electrode implantation for SEEG is performed in two steps with the assistance of a 

stereotactic frame. The first step is the répérage or stereotaxic localization through medical 

imaging, outlined by Talairach. Electrode trajectories are safely planned using different imaging 

modalities to visualize the vasculature and soft tissue of the brain. (see Sections 1.2 for more 

detail on specific imaging modalities). The second step is the implantation of electrodes, guided 

by the stereotactic frame. The stereotactic coordinates for each planned trajectory are set using 

the frame before a roughly 2 mm twist drill is used to perforate through the scalp, skull and dura 

mater. Once this hole is made, an anchor bolt is screwed in to avoid the overflow of 

cerebrospinal fluid. A needle is passed through the bolt to establish the path to the desired target 

before the electrode is placed along this trajectory (Cossu et al., 2005; Joswig, Benson, et al., 

2018). At the end of the procedure, patients are transferred to a post-operative anesthetic care 

unit, where additional imaging is acquired to view electrodes and assess for potential 
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complications. Today, advancements in image-guided surgery and robotics have facilitated the 

transition to robot-assisted implantations, where the planning and surgical intervention can be 

performed in a single step. Neuro-navigation software allows for the seamless integration of 

multi-modal/planar imaging, and the robot aligns the drill with the vector of each trajectory 

(Cardinale et al., 2013, 2019).   

1.1.2 The study of epilepsy with SEEG 

The signal recorded by electrode contacts is the local field potential or LFP. The LFP is the 

electric potential generated by the flow of ions across the extracellular and intracellular space in 

the brain. These ionic currents are induced by the firing of neurons, with synaptic activity (i.e. 

communication between neurons) being the main contributor. ECoG records a smoothed version 

of the LFP at the cortical surface, as the signal is propagated through the soft tissue of the brain. 

The “true” LFP from local neuron populations is captured with multiple micro or macro 

electrodes placed directly within the tissue of interest, such as in SEEG (Buzsáki et al., 2012).   

Intracranial recordings are separated into the ictal (during a seizure), interictal (between seizure), 

and postictal (after seizure) periods (Fisher et al., 2014). These segments are analyzed to identify 

the irritative zone and the seizure onset zone. The irritative zone is the origin of interictal spikes 

known as interictal epileptiform discharges (IEDs). Localization of the irritative zone is 

insufficient in predicting the epileptogenic zone or lesion (Paredes-Aragon et al., 2022). The gold 

standard in identifying the epileptogenic zone is the seizure onset zone, defined by the initiation  

of low-voltage fast activity during the ictal period (Jobst et al., 2020). Early research by Bancaud 

and Talairach revealed that seizures originated from several different structures in the brain 

rather than a single area or zone (J. Talairach & Bancaud, 1966). This led to the concept of 

epileptogenic networks, with secondary discharges deemed to be part of the propagation zone. 

Seizure propagation is a complex process dependent on the structural connectivity of cortical and 

subcortical structures.  Defining an epileptogenic network involves the study of individual units 

(i.e. neurons or brain regions) to study the activation and connectivity between them (Bartolomei 

et al., 2017). The implantation of SEEG electrodes in carefully selected regions facilitates this 

investigation and can tailor the resection plan to disrupt these networks (Kreinter et al., 2024). 

This makes the precise anatomical localization of individual contacts essential to accurately 

mapping these networks and understanding seizure dynamics.  
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1.2 Medical imaging for stereoelectroencephalography 

SEEG analysis bridges the study of electrophysiology to neuroanatomy. This requires advanced 

imaging technologies to visualize the implanted deep-brain structures and the locations of 

electrodes, in the form of Computed Tomography (CT) and Magnetic Resonance Imaging 

(MRI). CT uses a rotating X-ray tube to provide a 3-dimensional view of the brain and contrast 

high-density tissues. A CT is typically acquired post-operatively to localize electrodes and their 

contacts but lacks the anatomical contrast to distinguish the soft tissue of the brain. MRI uses the 

magnetic properties of atoms to create an image with superior tissue resolution. It is acquired 

pre-operatively to define the anatomical location of contacts. The following subsections will 

cover the principles behind each modality and their relevance to SEEG.   

1.2.1 Computed Tomography (CT) 

Computed Tomography (CT) was first described by Sir Godfrey Hounsfield in 1973, for which 

he received the Nobel Prize in 1979 (Hounsfield, 1973). A whole-brain CT scan is a three-

dimensional volume, divided into a matrix of volumetric pixels or “voxels.” CT combines 

multiple X-rays at different angles to produce axial (horizontal) slices, in contrast to the anterior 

and lateral views from X-rays. The data from each X-ray projection is fed into a computerized 

algorithm that reconstructs the individual two-dimensional slices (see Natterer, 1986, for a 

detailed explanation of computerized tomography). The nature of X-ray projections avoids 

geometric distortions that could be introduced during image reconstruction, allowing CT to 

provide the most accurate stereotactic coordinates of structures and imaged electrodes (Gorgulho 

et al., 2009).   

The intensity value at each voxel reflects the attenuation or absorption of the x-ray beam by the 

structural content. It is quantitatively scored in Hounsfield units (HU), scaled according to the 

radiodensity of distilled water at standard pressure and temperature (STP), defined as 0 HU, and 

the radiodensity of air at STP as -1000 HU. The formula to calculate the Hounsfield unit of a 

single voxel is as follows: 

𝐻𝑈 = 1000 ×  
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟
. 
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The coefficient μ describes the average attenuation at the voxel, with μwater describing the average 

attenuation of water, and μair the average attenuation of air. Soft tissue generally ranges between 

100 and 300 Hu, cortical bone between 500 and 1900 Hu, and metallic implants exceeding 2500 

Hu.  

The difference in attenuation for the soft tissue of the brain (i.e. the gray and white matter) is 

0.5% in CT, preventing the anatomical labeling of contacts (Peters, 2001). However, CT is 

essential in localizing implanted electrodes and their contacts (Joswig, Benson, et al., 2018; 

Mercier et al., 2022). As seen in Figure 1-3, the attenuation for SEEG contacts and other metallic 

objects starkly contrasts against the rest of the brain. Individual electrode contacts are bright 

hyper-intense regions, with the centroid representing the most accurate localization. Contacts are 

also surrounded by low-intensity voxels in the negative Hu range, forming a “shadow” artifact. 

Contact localization is typically performed using this difference in voxel intensities, either by 

manually inspecting the image or through semi-automated algorithms (more in Section 1.5).  

 

Figure 1-3. Post-operative CT image. Seen on the left is the axial (top-down) view, with the 

right highlighting the different components and corresponding HU. Captured using 3D Slicer 

version 5.6.1, a medical image viewer (Fedorov et al., 2012). 
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1.2.2 Magnetic Resonance Imaging (MRI)   

The human brain primarily consists of fat and water, which are partly made up of hydrogen 

atoms. These atoms have a quantum spin property or angular momentum, analogous to tiny 

spinning magnets (Aston et al., 2017). In the presence of a strong magnetic field (B0), the spin of 

atoms will exist in a superposition between the lower energy state, parallel to B0 and the higher 

energy state anti-parallel to B0. At a given moment, more atoms will align to be parallel, since 

the low-energy state is favored. This creates a net magnetic moment along the direction of B0. 

Atomic nuclei in this state will start to precess; that is, the axis of the atom will spin around the 

axis of B0 (Aston et al., 2017). This precession occurs in a random phase at the Larmor 

frequency (ω) defined as follows: 

𝜔 =  𝛾 ∗ 𝐵0, 

where γ is the gyromagnetic ratio, a property intrinsic to the atom, and B0 is the magnetic field. 

While aligned to B0, applying an oscillating radio-frequency pulse at the Larmor frequency will 

excite these spins to a higher energy state and tip their net magnetic moment perpendicularly, 

where the atoms also precess in phase. After the radio-frequency pulse the system will return to 

equilibrium. As they return to equilibrium, nuclei emit energy “relaxing” along the longitudinal 

and transverse axes (Aston et al., 2017). The relaxation times vary based on the tissue 

composition and are responsible for MRI's superior anatomical contrast. T1-weighted images are 

the most used, reflecting the time for spins to relax to the low-energy state along the longitudinal 

axis. The T1-relaxation time for white matter is shorter in comparison to gray matter, resulting in 

a brighter signal. Despite the superior resolution compared to CT, the nonlinearity of the gradient 

field and the resonance effects from the local magnetic field of the tissue can cause geometric 

distortions or artifacts in the acquired MRI (Chen et al., 2008). 

During SEEG surgery, MRI is acquired pre-operatively for surgical planning (unless there is 

some contraindication) to provide anatomical context to the implanted electrodes visualized in 

post-operative imaging. This is done through image registration (see Section 1.3.3), allowing the 

post-operative scan to be in the same space as the preoperative MRI. While the visualization of 

SEEG contacts is most commonly done with CT, it can also be performed with MRI (Hall & 

Khoo, 2018). In a postoperative MRI, contacts cause signal voids due to magnetic susceptibility 
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artifacts, appearing as “black holes” (Yang et al., 2012). Theoretically, a postoperative MRI 

would provide a better registration to the pre-operative imaging, as the anatomical structures are 

better visualized and can be easily matched. However, the electrode contacts cause significant 

artifacts and image distortions, limiting the anatomical resolution of nearby structures for 

registration. This also limits the spatial accuracy of contact localization. Post-operative CT has 

been shown to have a similar registration quality to post-operative MRI and provides the added 

benefit of an undistorted view of contact positions (Darcey & Roberts, 2010; van Rooijen et al., 

2013). The choice in post-operative imaging modality ultimately varies from center to center. 

1.3 Image processing 

There are several aspects to imaging and image processing that are relevant for SEEG contact 

localization and analysis. The following section will first review the image coordinate system, 

how medical imaging data is represented, and define image resolution. It will then overview 

common pre-processing steps for analysis in image registration and image interpolation. Finally, 

the application of brain atlases/templates and image segmentation in relation to SEEG contact 

localization will be covered. 

1.3.1 Coordinate systems 

In geometry, the physical world can be represented as a three-dimensional Euclidean space 

where any location is described by three Cartesian coordinates. Three axes (x, y, z) make up the 

Euclidean space, intersecting a shared point or origin. An individual coordinate describes the 

distance of said point from the origin along a particular axis. The distance between two points in 

Euclidean space is defined as the Euclidean distance. In three dimensions, the Euclidean distance 

(ED) can be calculated as follows: 

𝑬𝑫(𝒂, 𝒃)  =  √(𝒂𝒙 − 𝒃𝒙)𝟐  +  (𝒂𝒚 − 𝒃𝒚)𝟐 +  (𝒂𝒛 − 𝒃𝒛)𝟐 . 

The concept of Cartesian coordinates is fundamental to imaging, as the raw data (i.e., the 

imaging voxels) and the scanner or “real-world” are two distinct Euclidean spaces or coordinate 

systems. As previously discussed, a digital radiological image (i.e. a CT or MRI scan) is a three-
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dimensional volume composed of volumetric pixels or voxels. The image is indexed as an array 

of voxels, divided into three axes: i, j, and k. The i-axis extends to the right (i.e. which column), 

the j-axis goes to the bottom (which row), and the k-axis extends into the plane (which slice). 

The first voxel in the array is indexed at the coordinate (0, 0, 0). However, the coordinates or 

index do not provide any context of where voxels are positioned in relation to the image scanner 

or the imaged object. This requires a mapping from the image or voxel space to the scanner 

space (i.e. the axes that define the position of the imaged object relative to the scanner). In the 

scanner space, the x axis indicates the left-right direction, the y axis indicates the anterior-

posterior direction, and the z axis the superior-inferior direction. The mapping is typically stored 

as a 4x4 affine matrix (more in Section 1.3.3), allowing us to perform a geometric transformation 

between two spaces. The “RAS” orientation indicates values increase as they go along the Right, 

Anterior, and Superior directions. Another convention is to use an “LPS” orientation, indicating 

the Left, Posterior, and Superior directions. This division also defines three planes anatomically: 

1. The axial plane divides the brain from top-down or superior-inferior (x-y plane) 

2. The coronal plane divides the brain from front-back or anterior-posterior (x-z plane) 

3. The sagittal plane divides the brain from left-right (y-z plane). 

Once in the scanner or patient space, the Cartesian coordinates reflect the distance from the 

scanner iso-center. This can now be used to determine the relative distances in millimeters of 

objects within an image, such as an SEEG contact or brain structures. Different image 

acquisitions or modalities are defined in their own coordinate space that must be transformed 

into one another using image registration. Templates or atlases (more in Section 1.3.5), represent 

another coordinate system. A classic example is the Talairach and Tournoux atlas of 1988, where 

the origin (0,0,0) was originally defined at the anterior commissure with the y-axis being the line 

connecting the anterior and posterior commissure (Brett et al., 2002; J. Talairach & Tournoux, 

1988). Today, references to the Talairach space commonly refer to the origin as the midpoint of 

the line joining the anterior and posterior commissure (Horn et al., 2017).   

1.3.2 Image resolution 

The spatial resolution of the image is the ability to distinguish between different structures and is 

affected by several image acquisition parameters. This is distinct from image resolution, which is 
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defined by the size of the voxel. The voxel dimensions can be calculated from the field-of-view, 

the image matrix, and the slice thickness. The field-of-view (FOV) is the distance (in 

millimeters) over which the image is acquired, and the image matrix divides the FOV into a set 

number of pixels. The slice thickness describes the depth of the voxel in the z-dimension. Image 

voxels can be isotropic (equal-length dimensions) or anisotropic (at least one dimension 

shorter/longer than the others). For MR imaging, the matrix size is typically 256 x 256 with an 

isotropic voxel resolution of approximately one millimetre3 (Perera, 2022). Intraoperative CT for 

stereotactic surgery generally has a matrix size of 512 x 512, with a FOV of 210 mm and a slice 

thickness of 0.8 mm (Cardinale et al., 2013; Furlanetti et al., 2021). This makes the initial voxel 

resolution anisotropic, at approximately 0.41 x 0.41 x 0.8 mm. If scanner resolutions are limited 

or initially anisotropic, images can be resampled to produce the desired voxel dimensions 

(Perera, 2022). Note that the voxel dimensions of a 3D volume are not necessarily the same as 

the spatial resolution, since approaches such as zero-padding in K-space (effectively super-

sampling the image) can be used to decrease the voxel size with no effect on spatial resolution. 

1.3.3 Image registration 

Following image acquisition, a critical processing step in surgical planning is image registration 

(also referred to as image fusion). Image registration is the spatial transformation of one 

coordinate system to another. It can be performed between imaging volumes or between a 

volume and a stereotactic device to guide the implantation (Kall, 2009). Registration identifies 

the geometric transformation that maps points in one image to corresponding points in a second 

image. In neuroimaging, registration is typically used to normalize individual anatomy and allow 

for a group-wise analysis of multiple subjects. Another application involves registering an 

individual image to a brain atlas, enabling the detailed labeling of structures. In stereotactic 

surgery, registration is performed for a single subject, merging images across (e.g., CT and MR) 

or within a modality (e.g., T1-weighted MRI and T2-weighted MRI). The stationary image is 

referred to as the reference or fixed volume; the second is the moving or working volume. The 

possible transformations that take images from one space to another can be divided into rigid or 

non-rigid transformations. This division is characterized by the degrees of freedom (DOF) 

applied to the image. 
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A rigid transformation is restricted to rotations or translations of the reference volume. These 

transformations are considered linear as they preserve the distances between points and the 

straightness of lines (Fitzpatrick et al., 2000). Additionally, a rigid registration preserves all non-

zero angles between lines and assumes that the original images are isotropic in voxel size (i.e. 

not warped, skewed, or distorted) (Kall, 2009). When considering three-dimensional objects, a 

rigid registration has six DOF, representing three translations and three rotations.  The 

transformation of an individual voxel of our moving image indexed by the array (x1, x2, x3) to the 

fixed image space (y1, y2, y3) is as follows: 

 

 

R and T represent the rotation and translation to be applied. For computational efficiency, we can 

express the transformations as a single 4x4 matrix and the image indices as a 4x1 unit vector 

(Hartov & Roberts, 2009): 

 

The transformation can now be described as a matrix multiplication, y = M(x). The benefit of 

describing our transformations as matrices is that several transformations can be combined 

through matrix multiplication. Additionally, we can obtain transformation in the opposite 

direction by simply by applying the matrix inverse (Friston, 2007). Rigid registrations are 

performed between scans acquired from the same patient where the gross anatomy is not 

expected to alter drastically. In stereotaxy, the pre-operative T1 typically acts as the reference 

volume. These matrices can be applied in a similar fashion to points within the image space, to 

transform them between coordinates systems. 
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Rigid registrations are a subset of the more general affine registrations. Affine registrations allow 

global scaling and shearing of the original image. In three dimensions, this provides 12 DOF 

(rotation, translation, shearing, and scaling along three axes). While this transformation can alter 

the angles between lines, it is still considered linear as it preserves parallel lines and the 

straightness between them.  

The discussion above surrounded the transformation model, which are determined using an 

optimizer. The optimization for registration algorithms seeks to minimize a cost function which 

assesses the degree of similarity between the fixed and moving image. Cost functions can be 

broadly categorized according to their method of correspondence (points, surfaces, edges, voxel 

intensities/similarities). A more comprehensive review of registration algorithms is outside the 

scope of this thesis but can be found in the following references (Fitzpatrick et al., 2000; Hartov 

& Roberts, 2009). As part of the image processing workflow for SEEG employed at the London 

Health Sciences Centre (LHSC), the post-operative CT volume was rigidly registered to the pre-

operative T1 image with 6 degrees of freedom, using a block-matching method to establish 

correspondence between the two images and a trimmed least squared optimization (Modat et al., 

2010, 2014). 

1.3.4 Image interpolation 

During any image transformation (e.g., registration or resampling), we can imagine that the 

intensity values for each voxel are pulled from the original image to a new grid. Determining the 

values for the new voxel intensity requires some form of image interpolation. Image 

interpolation transforms a discrete matrix of numbers into a continuous image. There are several 

methods for interpolation in medical imaging analysis. The simplest method is a nearest neighbor 

interpolation, which assigns the new value based on the closest voxel. This preserves the original 

voxel intensities, but results in a blurred image. Other examples include bilinear interpolation 

using a weighted average of the nearest voxels and bicubic interpolation, which applies cubic 

polynomials. More complex methods apply a sinc function or linear combination of basis 

functions to produce a higher-quality image (Friston, 2007).  
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1.3.5 Brain atlases and templates 

Brain atlases label anatomical structures or features within a stereotactic space. The labeling of 

structures in an atlas allows for the investigation of specific regions and the connectivity between 

them (Evans et al., 2012). The term stereotactic space is used interchangeably with template or 

reference space and refers to the description of imaging data using Cartesian coordinates (Lau, 

2022). Brain templates can be derived using an average of multiple brain scans from a single 

subject or a population. Templates can also be defined used histological sections as seen in the 

original Talairach or Schaltenbrand atlases. Templates act as a standard coordinate system for the 

alignment or normalization of individual subjects. For SEEG, registering patient imaging with a 

template projects the contact coordinates to a normalized space. This allows for comparisons 

across multiple subjects. Contacts can also be classified according to the atlas label for a refined 

look at contact positions (Mercier et al., 2022).   

1.3.6 Image segmentation 

Image segmentation is a computer vision task where each voxel is identified as belonging to the 

background or a specified target. This is distinct from image classification where a label is 

applied to the entire image or object detection where a bounding box denotes the location of the 

target. Segmentation can be categorized as semantic or instance segmentation. Semantic 

segmentation classifies all instances of a target as one class in the image. Instance segmentation 

assigns a different label to each distinct instance of a class. In neuroimaging segmentation 

traditionally refers to tissue classification, where tools such as Freesurfer or other cortical 

thickness algorithms label areas belonging to the classes of gray matter, white matter, or 

cerebrospinal fluid (Fischl, 2012). Further distinctions can be made between healthy or 

pathological, different cortical and subcortical structures.  

At a basic level, segmentations can be generated through thresholding, region growing, or edge-

detection techniques. These approaches generate discrete segmentations where each label has a 

unique integer value. However they can perform sub-optimally in more complex scenarios, such 

as if there is noise present or if the image intensities are non-uniform (Withey & Koles, 2008). 

Advanced methods for automatic segmentation work to tackle these problems, based on image-
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derived features. Examples include knowledge-driven methods, probabilistic-based methods, and 

deformable template-based methods (Khan et al., 2008). Knowledge-driven methods use prior 

anatomical knowledge to guide the segmentation. Probabilistic-based methods frame image 

segmentation as a classification problem, where each class has a unique statistical distribution of 

features constrained using a probabilistic atlas. The class for each voxel is determined by 

maximizing the a posteriori probability. Deformable template-based methods determine the 

affine registration between an atlas and an image using intensity-based metrics and concordant 

landmarks (Khan et al., 2008). Today deep learning approaches have vastly grown in popularity 

and shown to be quite successful in a variety of segmentation tasks (more in Section 1.4). These 

advanced methods generate probabilistic segmentations, where each voxel is assigned a 

probability of belonging to the label. Probabilistic segmentations are thresholded to create 

discrete segmentations.  

The segmentation quality is assessed by determining the degree of overlap between the 

prediction and the ground truth. The two most common assessment methods are the Dice-

Sørensen similarity coefficient (DSC) or Dice Score and the Jaccard Index (Dice, 1945; Jaccard, 

1912). For a predicted segmentation A about the ground-truth segmentation B, the DSC can be 

calculated as follows: 

𝐷𝑆𝐶 =  
2 |𝐴 ∩ 𝐵|

|𝐴| + |𝐵| 
.    

The numerator (A ∩ B) represents the intersection or the degree of overlap between the predicted 

and ground-truth segmentation.  Alternatively, the Jaccard Index or Jaccard similarity coefficient 

can be used: 

𝐽(𝐴, 𝐵)  =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 
. 

Here the denominator (A ∪ B) indicates the union of the predicted segmentation (A) and the 

ground-truth (B).  The Dice coefficient is related to the Jaccard index as follows: 

𝐷𝑆𝐶 =  
2𝐽

1 + 𝐽.
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SEEG contact localization can be framed as a semantic image segmentation task, identifying 

which voxels belong to a contact. Low-level techniques such as thresholding or edge detection 

could separate contact artifacts. However, the presence of bolts and other artifacts outside the 

skull can lead to misclassification errors. A sophisticated deep learning approach could be better 

suited for the task of contact localization. An introduction to deep learning will be provided in 

the next section.   

1.4 Deep learning for image segmentation 

Machine learning describes the use of statistical models to predict outcomes or patterns in data. 

Most machine learning tasks are supervised learning tasks, where a model is trained on raw input 

data paired with labeled targets. The predictions are compared to the target using an objective or 

loss function. A model learns by adjusting a set of internal parameters known as weights to 

minimize the error of the loss function. After training over a set number of epochs or until 

reaching a minimum loss, the model is assessed on an unseen test dataset to assess the final 

performance. 

For data such as medical images, variations to the input that do not account for changes to the 

target class (i.e. shift position of the head in the scanner, individual anatomical differences, etc.) 

can significantly change the values at the voxel level. This leads to poor mapping between the 

input and target, causing inaccurate predictions by most machine learning algorithms. Their 

performance can be improved with hand-crafted feature extractors that create representations of 

the input insensitive to these variations. However, the engineering of feature extractors requires a 

significant amount of time, domain expertise, and is biased towards the training data (LeCun et 

al., 2015). Automating the design of these extractors with machine learning can save time and 

improve their generalizability to unseen datasets (Goodfellow et al., 2016; LeCun et al., 2015).     

Deep learning trains multi-layered networks (“deep” referring to the number of layers) to 

automatically generate feature extractors. These networks are known as Artificial Neural 

Networks (ANN), in reference to the structure of biological neurons. The data is vectorized at an 

initial set of input nodes or “neurons” before propagating through a series of interconnected 

hidden layers. Each layer has a set of weights that are adjusted (learned) during model training, 



 

18 

 

enabling the model to create increasingly complex and higher-level representations of the input 

(LeCun et al., 2015).  

While generally effective, ANNs are not suited to handle the complexity of larger images or 

high-dimensional data types such as medical imaging. For instance, a patch from a medical 

image that is 64x64x64 voxels would be summarized as a vector of 262, 144 features. This can 

be computationally impractical as a single neuron in the network would need to train 262, 144 

weights at the first layer. Convolutional neural networks (CNN) are a deep learning architecture 

designed to address this problem and work with data organized in arrays. The following section 

will provide an overview of CNNs. 

1.4.1 Convolutional neural networks (CNNs) 

CNNs are one of the more easily trainable and widely used models in deep learning (LeCun et al., 

2015). Inspired by the visual cortex, CNNs are designed with neurons that connect only to small 

regions of the input, defining their “receptive field.” Neurons are also organized to match the 

depth of the input data, allowing for the processing of multi-dimensional arrays. For example, in 

volumetric images (such as in medical imaging), neurons are organized in three dimensions 

corresponding to the data's height, width, and depth. This local connectivity allows neurons to 

learn a small set of weights within their receptive fields that are shared across the depth of the 

image.  

CNNs consist of two primary layers: convolutional and pooling layers. In convolutional layers, a 

set of kernels or filters are applied to the input using a convolution. A kernel acts as a feature 

detector to identify specific patterns in the input. Mathematically, a kernel is an array smaller in 

height and width than the original input but shares the same depth. Convolutions are the element-

wise multiplication and summation as the kernel slides across the input. This operation 

transforms the original image into a new representation known as a feature map. The values of 

the kernel are individual weights learned during the training phase. Therefore the kernel learns to 

detect features at different locations of the image that minimize the loss function (O’Shea & 

Nash, 2015).  
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A CNN will consist of multiple convolutional layers that each have multiple kernels. Kernels in 

the earlier layers effectively have a smaller receptive field, and thus become tuned to lower-level 

features, such as edges or boundaries. In contrast, later layers identify more abstract or global 

characteristics, since they effectively have a much larger receptive field, and thus become tuned 

to entire shapes or specific objects. Convolutional layers reduce the parameters for the model to 

learn in two ways.  First, the kernel size or “receptive field” restricts the connectivity of a neuron 

to focus on local patterns. Secondly, weight sharing (the reuse of the same kernel across the 

entire input) introduces translational invariance, allowing the model to detect features regardless 

of their position within the input (Chollet, 2017; LeCun et al., 2015).  

Pooling layers downsample the feature maps generated by convolutional layers. Pooling is 

typically done after a convolution operation, using a smaller kernel to summarize the most 

essential features. Rather than performing a matrix multiplication, a pooling kernel can take the 

feature map's maximum, minimum, or average values. Typically, max-pooling or average 

pooling is employed in most CNNs (L. Zhao & Zhang, 2024). Pooling further reduces the size of 

the feature map and the number of parameters for the model to learn, preventing overfitting of 

the network to the training data. Pooling also provides some translational invariance, allowing 

features to be detected even if they are slightly shifted or translated in the input.  

1.4.2 Loss functions 

CNNs are highly effective for computer vision tasks such as image classification and 

segmentation, outperforming traditional methods (Krizhevsky et al., 2017; LeCun et al., 2015; 

Szegedy et al., 2015). The selection of a loss function is vital to the success of a CNN, acting as 

the mathematical representation of the desired task. In medical image segmentation, loss 

functions must address the particular issue of class imbalance since the desired segmentations are 

smaller in volume than the entire image (Ma et al., 2021).  

Loss functions for segmentation tasks can be categorized as distribution-based, region-based, 

boundary-based, or combination loss functions (Jadon, 2020; Ma et al., 2021). Distribution-based 

loss functions look to minimize the dissimilarity between two distributions of classes. Cross 

entropy is fundamental to these methods and is used in many machine learning and optimization 

algorithms. Cross entropy is derived from statistics and for this thesis, can be described as a 
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measure of how one probability distribution differs from a reference. In binary cross entropy 

(CE), the segmentation is binarized to indicate the presence of a class label. In image 

segmentation, the image I can be represented as a domain of real numbers in 2 or 3 dimensions. 

N is the number of voxels in the image, while C is the number of classes. If we define A to be our 

predicted segmentation and B to be the target or ground-truth segmentation, the equation for 

binary cross entropy in a CNN-based segmentation task is as follows (Ma et al., 2021); 

𝐿𝐶𝐸  =  −
1

𝑁
∑ ∑ 𝐵𝑖

𝑐𝑙𝑜𝑔𝐴𝑖
𝑐

𝑁

𝑖 = 1

𝐶

𝑐 = 1

 

Here 𝐵𝑖
𝑐 and 𝐴𝑖

𝑐 indicate the class label c at the voxel i for the ground-truth and predicted 

segmentations. Weighted cross entropy (WCE) can also be used, where classes more frequent in 

the ground-truth segmentation are penalized in the loss. Here wc denotes the weight for each 

class. 

𝐿𝑊𝐶𝐸  =  −
1

𝑁
∑ ∑ 𝑤𝑐𝐵𝑖

𝑐𝑙𝑜𝑔𝐴𝑖
𝑐

𝑁

𝑖 = 1

𝐶

𝑐 = 1

 

Region-based loss functions look to maximize the areas of overlap between the prediction 

segmentation and the ground-truth (or minimize the mismatch). The most well-known of these 

methods is the Dice loss function, which optimizes the Dice Coefficient. Unlike cross-entropy 

loss functions, Dice loss does not require class re-weighting. The equation for the Dice loss 

function is as follows (Ma et al., 2021); 

𝐿𝐷𝑖𝑐𝑒  =  1 −  
2∑𝑐 = 1

𝐶 ∑𝑖 = 1
𝑁 𝐵𝑖

𝑐𝐴𝑖
𝑐

∑𝑐 = 1
𝐶 ∑𝑖 = 1

𝑁 𝐵𝑖
𝑐  + ∑𝑐 = 1

𝐶 ∑𝑖 = 1
𝑁  𝐴𝑖

𝑐 

Boundary-based loss functions look to minimize the distance between the ground truth and 

predicted segmentations. It is worth noting that boundary-based loss functions determine the 

boundaries of segmentations in a region-based way. They are therefore closely related to other 

region-based loss functions such as Dice loss (Ma et al., 2021).  
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Finally, compound losses are functions that consider a weighted combination of the 

aforementioned methods. A common example is the Dice Cross Entropy (DiceCE) loss, also 

referred to as a combo loss, which is a sum of the cross entropy and Dice loss.  

𝐿𝐷𝑖𝑐𝑒𝐶𝐸  = 𝐿𝐶𝐸  + 𝐿𝐷𝑖𝑐𝑒    

The addition of cross entropy loss is thought to regulate the trade-off between false positive 

(voxels incorrectly labeled as a target) and false negative (voxels mislabeled in multi-class 

segmentations or incorrectly labeled as background) predictions (Taghanaki et al., 2021). 

1.4.3 U-Net for medical image segmentation 

The success of CNN models in computer vision can partially be attributed to the availability of 

training data. For example, the heavily-cited AlexNet paper in 2017 used 1 million images to 

train a CNN for image classification i.e. assigning a single class to the entire image (Krizhevsky 

et al., 2017). In medical imaging, obtaining a comparable number of curated labels for training is 

impractical. Furthermore, most CNNs such as AlexNet are used for image classification. Medical 

image segmentation requires the localization of classes, assigning a class label to each voxel 

(Ronneberger et al., 2015). The U-Net was developed to address these issues by combining the 

core elements of CNNs with other advances in deep learning. Today it is one of the more popular 

and best-performing architectures for medical image segmentation (Isensee et al., 2021; 

Ronneberger et al., 2015; Siddique et al., 2021). 

The “U” refers to the encoder-decoder framework shown in Figure 1-4. The first half of the “U” 

is the encoder or contracting portion, where the model progressively generates more feature 

maps from the input data using a series of convolutional and max-pooling layers. In the original 

U-Net paper, each level of the encoder had two convolutional layers followed by a max-pooling 

operation. The number of convolutional filters and resulting feature maps double at each level, 

while pooling operations “downsample” these maps by halving their spatial size. This process is 

repeated for a specified depth, reaching the bottom portion of the “U” or the bottleneck layer. At 

this stage, repetitive convolutional operations are performed to compress the data and capture the 

most critical features. 
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Figure 1-4.  Standard 2-D U-Net Architecture, adapted from Ronneberger et al., 2015. The 

blue boxes represent the feature maps of the image, with the width representing the number of 

feature maps and the height representing the spatial size.    

The data is now upsampled through the second half of the “U” known as the decoder or 

expanding path. The primary goal of the decoder is to increase the spatial size of the new feature 

maps to match the dimensions of the original input and determine the predicted segmentation. 

Upsampling is used to increase the spatial size to match the original input, by interpolating 

unknown voxel values. This is followed by two convolution operations to learn relevant 

information from the newly formed feature maps. Skip connections (in green) at each level 

concatenate feature maps (in white) from the encoder to the upsampled representations of the 

decoder. This step allows the model to “remember” high resolution feature maps of the encoder 

and prevent overfitting of the model. At the final layer (top-right of the “U”) a 1x1 convolution 

(1 indicating the size of the kernel) is applied to summarize the feature maps and create the 

prediction (Ronneberger et al., 2015). 

The initial U-Net architecture was implemented for cell segmentation from microscopy images 

and used a pixel-weighted cross entropy loss. To solve the issue of limited training data, the 

authors applied “excessive” data augmentations in the form of elastic deformations  

(Ronneberger et al., 2015). The 2-D U-Net architecture was extended for volumetric imaging by 
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another group, with batch normalization and drop-out added as regularization techniques to 

speed up model training (Çiçek et al., 2016). Batch normalization normalizes the inputs to 

convolutional layers, adjusting the distribution of weights (Ioffe & Szegedy, 2015). Dropout 

turns off a random subset of neurons within the convolutional layers, forcing the model to learn 

new features and not over-rely on a particular subset (Srivastava et al., 2014).  

The U-Net is a promising tool to be applied to the task of SEEG contact segmentation. As 

discussed in Section 1.2.1, metallic artifacts in CT are hyper-intense regions, starkly contrasting 

from the rest of the scan. Simple image processing techniques such as thresholding or edge 

detection would separate the individual contacts in the image, but the presence of bolts and wires 

in a similar Hu range limits the effectiveness of this method. Masking the CT to only include the 

intracranial volume could address this issue; however, there are instances where contacts are 

localized at the level of the skull. Additionally, the implantation of electrodes along the superior-

inferior direction can blur the radiological artifacts of contacts, such that they appear as a single 

“fused” electrode (more details on the challenges for contact localization will be covered in 

Section 1.5.1). For these reasons, a more advanced computer vision approach such as the U-Net 

could encapsulate these nuances and provide an accurate segmentation of contact positions. The 

next sections will cover the current approaches for contact localization, the current applications 

of deep learning in contact segmentation, and present the motivations and objectives of the 

thesis.   

1.5 Current approaches for SEEG contact localization 

As previously discussed, the precise anatomical localization of each electrode and its contacts is 

crucial to interpreting SEEG data. Given their millimetric size, localization errors must exist 

within a small margin. Inaccurate placements can misidentify the type of tissue (gray matter vs. 

white matter) sampled or, on a larger scale, the anatomical subregion. Contact localization was 

traditionally performed by visually reviewing and annotating post-operative imaging (either CT 

or MRI) for each contact. CT is used in most centers, as localizations represent the most accurate 

stereotactic coordinates (relatively free of geometric distortions), and contacts are clearly 

visualized as bright regions of hyper-intensity (Darcey & Roberts, 2010). 
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Today, many computational toolboxes aim to automate the process for post-implantation CT 

data. Each follows a similar pattern. First, the CT is thresholded to identify the high-intensity 

voxels within the image. These voxels are associated with SEEG contacts, bolts, wires, and other 

metal artifacts. From here, the voxels belonging to contacts are identified by excluding any 

objects found outside the brain. This is typically done by creating a mask of the intracranial 

space (Aslam et al., 2024; Blenkmann et al., 2024; Cai et al., 2022; Granados et al., 2018; Janca 

et al., 2023; Medina Villalon et al., 2018; Qin et al., 2017; Wong et al., 2024; B. Zhao et al., 

2023). Alternatively, artifacts can be categorized by geometric features (ex., how spherical or 

circular they are) or by the distances between objects (artifacts belonging to contacts would 

presumably be closer together than those outside the brain) (Centracchio et al., 2021; Ervin et al., 

2021). Once filtered, the contact coordinates are obtained by determining the center of mass for 

each artifact (Arnulfo et al., 2015; Davis et al., 2021; Ervin et al., 2021; Granados et al., 2018; 

Monney et al., 2024; Qin et al., 2017; Wang et al., 2023; Wong et al., 2024). The extracted 

contacts must then be grouped by electrode. Semi-automated approaches use two points along 

the electrode trajectory or iteratively select the nearest contact from a manually defined point at 

the electrode tip (Davis et al., 2021; Ervin et al., 2021; Groppe et al., 2017; Janca et al., 2023; 

Monney et al., 2024; Narizzano et al., 2017; Wang et al., 2023). Other toolboxes propose 

clustering of identified contacts to achieve full automation (Cai et al., 2022; B. Zhao et al., 

2023). Table 1.1 summarizes the currently published literature for SEEG contact localization, the 

programming language, and the reported accuracy either as the displacement from the manually 

localized coordinate or the number of correctly localized contacts.  

Table 1-1 Toolboxes for SEEG contact localization using CT. Proprietary software or tools 

without open-access code were not hyperlinked. N/A indicates there was no reported accuracy. 

*N/A for iElvis from Groppe et al., 2017, indicates a reported error for ECoG contacts, but no 

measure for SEEG. *N/A for BrainQuake indicates error was assessed based on the degree 

contact positions deviated from the planned trajectory and how closely the predicted inter-

contact distance matched the known spacing of the electrode. *N/A for CranialVault indicates 

that the tool is proprietary, with the details regarding test size, programming language, and 

reported accuracy not openly available. 
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Authors Tool Availability 

(Hyperlinked) 

Language n for Testing Reported 

Accuracy 

Aslam et al., 

2024 

DELRecon MATLAB 8 subjects, 

1196 contacts 

98% 

(1173/1196) 

Blenkmann et 

al., 2024 

iElectrodes MATLAB 20 subjects, 

779 contacts 

0.46 ± 0.18 

mm 

Monney et al., 

2024 

voxelLoc MATLAB 5 subjects, 812 

contacts 

<1 mm 

inter/intra-user 

reliability 

Wong et al., 

2024 

SEEGLoc Python 20 subjects, 

196 electrodes 

0.25 ± 0.51 

mm 

Lucas et al., 

2024 

voxTool Both 

Python and 

MATLAB 

N/A N/A 

Janca et al., 

2023 

SEEG contact 

detection and skull 

measurement 

MATLAB 54 subjects, 

8745 contacts 

0.43 ± 0.84 

mm 

Wang et al., 

2023 

Your Advanced 

Electrode 

Localizer (YAEL) 

R/Python N/A N/A 

Zhao et al., 2023 DELLO MATLAB 7 subjects, 80 

electrodes, 

1030 contacts 

N/A 

Cai et al., 2022 BrainQuake Python 8 subjects, 743 

contacts 

*N/A 

Rockhill et al., 

2022 

Intracranial 

Electrode 

Location and 

Analysis in MNE-

Python 

Python N/A N/A 

https://github.com/aslamshameer165/DELRecon
https://sourceforge.net/projects/ielectrodes/files/ielectrodes/
https://github.com/HumanNeuronLab/voxeloc
https://github.com/gmilab/seegloc
https://github.com/penn-cnt/ieeg-recon/tree/main/voxTool
https://github.com/EpiReC-ISARG/SEEG-contact-detection-and-skull-measurement
https://github.com/EpiReC-ISARG/SEEG-contact-detection-and-skull-measurement
https://github.com/EpiReC-ISARG/SEEG-contact-detection-and-skull-measurement
https://github.com/beauchamplab/rave
https://github.com/beauchamplab/rave
https://github.com/beauchamplab/rave
https://github.com/zhaobaotian/DELLO
https://github.com/HongLabTHU/Brainquake
https://mne.tools/1.2/auto_tutorials/clinical/10_ieeg_localize.html
https://mne.tools/1.2/auto_tutorials/clinical/10_ieeg_localize.html
https://mne.tools/1.2/auto_tutorials/clinical/10_ieeg_localize.html
https://mne.tools/1.2/auto_tutorials/clinical/10_ieeg_localize.html
https://mne.tools/1.2/auto_tutorials/clinical/10_ieeg_localize.html
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Davis et al., 

2021 

LeGUI MATLAB 38 subjects, 

3726 contacts 

0.23 mm 

(0.00–1.37) 

Ervin et al., 

2021 

FASCILE Python 35 subjects, 

4661 contacts 

0.73 ± 0.15 

mm 

Li et al., 2019 iEEGview MATLAB 22 subjects, 

3158 contacts 

N/A 

Lin et al., 2019 ContactSegmentat

ion_SYSU 

MATLAB 12 subjects, 

135 electrodes, 

1812 contacts 

1.055 ± 0.449 

mm 

Medina Villalon 

et al., 2018 

GARDEL MATLAB 30 subjects, 

4590 contacts 

0.59 mm 

Granados et al., 

2018 

N/A C++ 

(ITK/MIT

K) 

224 electrodes, 

1843 contacts 

0.37 mm (n = 

109 contacts) 

Groppe et al., 

2017 

iElvis MATLAB *N/A *N/A 

Narizzano et al., 

2017 

SEEG Assistant 

(SEEGA) 

Python 40 subjects, 

9626 contacts 

0.50 ± 0.06 

mm 

D’Haese et al., 

2012 

CranialVault and 

CRAVE 

(CRAnialVault 

Explorer) 

*N/A *N/A *N/A 

1.5.1 Existing challenges for contact localization 

SEEG Assistant (SEEGA) is a semi-automated toolbox validated in over 500 electrodes, with a 

reported error of 0.5 mm (Narizzano et al., 2017). SEEGA is currently implemented as part of 

the image reconstruction workflow for intracranial electrode implantation at LHSC and can be 

viewed as the current state-of-the art tool for contact localization. However, SEEGA requires the 

manual tuning of several parameters to achieve optimal results. 

https://github.com/rolston-lab/legui
https://mega.nz/folder/lsRkwb5b#J6Ro_uD6X8kEXp1Vw-3UZA
https://github.com/GuangyeLiGit/iEEGview
https://github.com/BrainNetworks/ContactSegmentation
https://github.com/BrainNetworks/ContactSegmentation
https://meg.univ-amu.fr/wiki/GARDEL:presentation
https://github.com/iELVis/iELVis/tree/master
https://github.com/mnarizzano/SEEGA
https://github.com/mnarizzano/SEEGA
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1. Users must move the points defined by the electrode trajectory, to be at the start and end 

of the radiological electrode artifact.  

2. Users manually set the inter-contact distance of each electrode  

3. Users must set the number of contacts present in each electrode. 

Additionally, SEEGA assumes contacts to not deviate from the electrode axis (defined by the 

entry and target points of the electrode trajectory) by more than 10 degrees. In actuality, the 

degree of bending for electrodes is dependent on the properties of the soft tissue and interactions 

with the physical electrode (Granados et al., 2021). This can significantly alter the expected 

contact positions from the trajectory and must be manually corrected to account for this 

deviation.  

The manual interventions involved with SEEGA are common to most contact localization 

algorithms and performed to address the inherent challenges of automating the task. The first is 

that localized contacts must be grouped into their electrodes and assigned a unique label. The 

most intuitive method is to use the two points from the planning trajectory; that is the point of 

entry at the skull and the target of the brain. Contacts are iteratively labeled from the deepest 

contact to the point closest to the skull. This naming scheme for SEEG is in large part due to the 

bipolar reference scheme used to analyze recordings, where the signal represents the activity of 

two adjacent contacts (Mercier et al., 2022). Alternatively, some papers attempt to automate 

localization without the placement of two points along the trajectory. These approaches generally 

rely on a clustering algorithm initialized by the number of electrodes implanted (Aslam et al., 

2024; B. Zhao et al., 2023). However clustering approaches are highly dependent on the initial 

selection of centroids and can fail if done improperly. To combat this, other groups have 

proposed applying a Hough transform to detect line-shaped trajectories or to initialize clustering 

using the planned electrode trajectories (Cai et al., 2022; Janca et al., 2023). 

The key challenge for all algorithms is the presence of electrodes implanted vertically (i.e. going 

along the superior-inferior direction) with a smaller inter-contact spacing. Algorithms relying on 

traditional image processing techniques will fail since at oblique angles (perpendicular to the in-

plane slice), the individual contacts are indistinguishable in the image. Generally, these tools rely 

on the manual correction of points from the post-implantation trajectory to be at the start and end 
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of the electrode artefact. The remaining contact positions are then interpolated from these two 

points, using the inter-contact spacing and the number of contacts in an electrode (Monney et al., 

2024; Narizzano et al., 2017; Qin et al., 2017; Wong et al., 2024). Other tools such as EpiTools 

propose an additional erosion of these electrodes to segment contacts. However this can be an 

imprecise method of determining positions and likely do not accurately represent the true 

position of contacts (Medina Villalon et al., 2018). Figure 1-5 provides a visual example of some 

of these difficult electrode configurations.  

 

Figure 1-5 Example of challenging contact localizations, with the manual “ground-truth” 

placements in green. The first panel from the left shows a vertically implanted electrode, where 

the contact artifacts appear to be “fused” together. The second panel shows an example of both 

a vertically implanted electrode and an example of where contacts are at the level of the skull.  

The bottom panel demonstrates an example of where electrodes curve from the planned 

trajectory and must be manually adjusted for most contact localization algorithms.   
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1.5.2 Deep learning for SEEG contact segmentation 

Two papers have trained U-Nets for SEEG contact segmentation using post-operative CT. The 

first paper aimed to segment the entire electrode trajectories and the intracranial space. The 

architecture was a 3D Cascade U-Net and Dice Cross-Entropy as the loss function (Vlasov et al., 

2021). The cascade U-Net hierarchically uses two connected U-Nets; the first network aims to 

predict coarse or more global features and is fed into the second network to refine predictions. In 

their design, the first model was trained on a low-resolution whole-brain CT volume, while the 

second U-Net was trained on 160x160x80 voxel-size patches. To increase the training data and 

generalize the model to other stereotactic surgeries, the authors included postoperative scans 

from deep brain stimulation (DBS) surgeries. DBS is a stereotactic procedure where 2 electrodes 

(4-8 contacts) are permanently implanted to deliver electrical stimulus. In total, 35 DBS CT and 

45 CT volumes were selected as part of their training set, randomly split into five cross-

validation sets. The network was also trained on an external test set of 10 images (5 DBS, 5 

SEEG) with a Dice Coefficient of 0.897 ± 0.043. 

The second paper combined outputs from a 2-D and 3-D U-Net to segment contacts (Pantovic et 

al., 2022). Their model was trained on scans from 18 patients and 18 augmented volumes. The 

augmentations included random rotation and flipping of the original CT volume. The authors 

employed leave-one-out cross-validation, where 1 original image and the corresponding 

augmentation were left out for testing. Contacts were clustered into electrodes using a Gaussian 

Mixture Model. The model was validated using a connected components count to identify the 

number of segmented instances and determine the number of true positives (correctly identified 

contacts), false positives (artifacts incorrectly labeled as a contact), and false negatives (missed 

contacts). They report an average of 183.0 true positives, 1.1 false positives, and 2.0 false 

negatives across all cross-validation folds, with an average Dice coefficient of 0.867. The authors 

mention that vertically implanted electrodes or electrodes with an uninterrupted shape could not 

be segmented into individual contacts and would require additional post-processing steps. It is 

unclear whether these contacts were included in the results. 

Despite the examples of U-Nets in the literature, there are no openly available models to 

determine their generalizability to data from other centers or compare performance. Additionally, 
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they are limited in their train and test size and fail to address the challenge of localizing contacts 

for vertically implanted electrodes.  

1.6 Open science and reproducibility for SEEG contact 

segmentation 

The recruitment of patients implanted with intracranial electrodes (both SEEG and ECoG) for 

research studies offers a unique and privileged opportunity combining medical imaging with 

electrophysiological recordings precisely localized in different brain regions. The organization of 

these large datasets is essential in ensuring accessibility and reproducibility of these studies. The 

Brain Imaging Data Structure (BIDS) was first developed to standardize neuroimaging data 

(Gorgolewski et al., 2016). This was later extended to encompass intracranial EEG data, with the 

anatomical contact localizations being provided in an “_electrodes.tsv” file, the 

corresponding coordinate system in a  “_coordsystem.json” and the associated imaging 

(Holdgraf et al., 2019). To date, only four tools have incorporated BIDS specification as part of 

their workflow in iElvis, VoxelLoc, iEEG-recon/voxTool, and the manual tool provided through 

MNE-python (Groppe et al., 2017; Lucas et al., 2024; Monney et al., 2024; Rockhill et al., 

2022). This limits the reusability of potentially effective tools created by other centers and 

presents an additional hurdle for most contact localization algorithms.  

1.7 Thesis overview 

The challenges with semi-automated approaches for SEEG contact localization and the 

millimetric sampling radius of contacts illustrate the need for an automated tool capable of 

providing precise localizations. Current tools for contact localization all require a degree of 

manual user intervention, from the placement of two contacts per electrode, knowledge of the 

number of contacts in an electrode, and the inter-contact spacing. In addition, vertically 

implanted electrodes are unsolvable without manually inspecting the post-operative imaging and 

having prior information regarding the inter-contact spacing and number of contacts. For a 

typical SEEG implant where 12 electrodes and 150 contacts are implanted, these manual steps 

can add an additional 1-3 hours of labor to the clinical workflow. Deep learning models for 

image segmentation such as the 3-D U-Net present a potential solution for automatic 

localization.  
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The objectives of the thesis are as follows: 

1. Work towards the automation of intracranial depth or SEEG electrode and contact 

localization using a 3-Dimensional U-Net. Specifically, the proposed approach would 

eliminate the need to define the inter-contact spacing, the number of contacts per 

electrode, and the manual placement/correction of points. 

2. Compare the millimetric accuracy of the automatic contact localizations from the 3-D U-

Net, the semi-automatic localizations of SEEG Assistant (the current state-of-the art 

tool), and a traditional image processing approach to the manually localized contact 

coordinates.  

The thesis is the first to quantify the millimetric accuracy of deep learning approaches and 

compare them to traditional image processing methods for contact localization. The proposed 

algorithm also reduces the number of manual steps required for contact localization, reducing the 

cognitive load for clinicians and facilitating the group-wide analysis of iEEG datasets.  
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Chapter 2  

2 U-Net Implementation Methods 

The following chapter will cover the dataset, image pre-processing workflow, the U-Net model 

architecture, and how the model will be validated. 

2.1 Patient Data 

2.1.1 CT imaging 

Postoperative CT volumes were acquired from 191 patients who underwent SEEG surgery at the 

London Health Sciences Centre (LHSC). The CT scans were acquired with the following 

parameters: tube voltage, 120 kV; tube current, 145 mA; data acquisition diameter, 1,331 mm; 

reconstruction diameter, 320 mm; matrix size, 512×512 voxels; pixel spacing, 0.625 × 0.625 

mm2; axial slices, 96; slice thickness, 0.625 mm; gantry tilt, 0o. Many patients were implanted 

with 10-contact Ad-Tech Medical Instrument Corporation electrodes with 3-, 4-, 5-, or 6-mm 

spacing (0.86-mm diameter, 2.29-mm length). 14 patients were implanted with other SEEG 

electrodes. This included 3 patients with Dixi Medical electrodes (Besançon, France), 8 patients 

with 8 macro contacts spaced 5mm apart and 8 micro wires, and 3 patients with Behnke-Fried 

electrodes made up of 9 macro contacts.  These 14 patients and 5 patients who had re-

implantations (i.e. 2 CT scans), were held-out from the data split. From here, the remaining data 

from 172 patients was randomly split using scikit-learn to include 70% for training (120 

patients), ~10% for validation (17 patients), and ~20% as a test dataset (35 patients) (Pedregosa 

et al., 2011).   

2.1.2 Ground truth semi-automatic contact localization 

For SEEG electrode and contact localization an in-house image processing pipeline which 

involves electrode contact detection, brain tissue segmentation and atlas fitting 

(https://github.com/greydongilmore/ieegProc). A workflow of this pipeline can be found in 

Figure 2-1. Semi-automatic contact localization was performed in 3D Slicer using the SEEG 

Assistant (SEEGA) module (Narizzano et al., 2017). The entry and target points of each 

https://github.com/greydongilmore/ieegProc
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electrode were manually defined on the post-operative CT image. The CT was rigidly registered 

to the pre-operative T1w-MRI using NiftyReg (Modat et al., 2010, 2014). These labels were then 

provided to the SEEGA algorithm, for semiautomatic segmentation of the electrode contacts. 

Following the procedure, each contact position was visually inspected and manually corrected to 

be at the center of a contact by a trained clinical electrophysiologist, neurosurgeon, or technician 

(1-3 hours/subject). These coordinates were then retrospectively reviewed by two raters forming 

the ground-truth localizations. The localizations were later used for training the deep-learning 

model and to assess the final performance.  
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Figure 2-1 Flowchart diagram for SEEG imaging pre-processing workflow. 
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2.2 Pre-processing workflow for U-Net  

The 3-D U-Net model was trained on patches from a resampled CT and a target image of the 

individual contacts. Using a bicubic interpolation, the original CT was resampled to be 0.4 mm 

isotropic. The target image was a mask generated from the localized contact coordinates in the 

space of the resampled CT. Individual contacts were represented as a 1 mm sphere dilated from 

the coordinate position using the convert3d command-line tool (Yushkevich et al., 2006). 3-D 

isotropic patches of 64 and 96 voxels were then taken for the resampled CT and the target 

contact mask. These sizes were chosen as larger patch sizes are known to improve the 

performance of convolutional neural networks in medical image segmentation (Hamwood et al., 

2018). At 0.4 mm isotropic resolution, this corresponded to 25.6 mm and 38.6 mm isotropic 

patch. Considering the length of an SEEG contact at ~2 mm and a diameter of ~0.8 mm, the 

selected patch sizes encompass multiple contacts from different trajectories. In comparison, 

smaller patch sizes of 16 or 32 voxels would only include a single contact. It can be hypothesized 

that a model trained on smaller patches might be unable to distinguish contacts from some of the 

other high-intensity artifacts found in the image (ex. bolts, wire artefacts), resulting in a larger 

number of over-predictions. Examples of patches taken at 32, 64, and 96 voxels can be seen in 

Figure 2-2.  
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Figure 2-2. 3-D patches of various sizes taken from post-operative CT. Sagittal views are 

shown with the voxel sizes listed above.  

Patches were made according to the overlap between the input CT, the target contact mask, and a 

third cylindrical mask representing the electrode trajectory. The third mask was created to ensure 

enough patches were sampled with contacts present. Briefly, Bresenham’s Algorithm was used 

to first draw a line from two contact coordinates at the entry of the electrode at the inner table of 

the skull and the electrode tip in the CT space. This line was then dilated to be a 3-dimensional 

cylinder with a radius of 4 mm and smoothed with a Gaussian kernel using the scikit-image and 

scipy libraries (van der Walt et al., 2014; Virtanen et al., 2020). The radius was chosen to include 

the soft tissue surrounding the contacts. To augment the data for training, patches were randomly 

rotated at angles within 30 st.dev of a normal distribution. 

The number of randomly sampled patches from the training set (n = 120) and validation set (n = 

17) are summarized below: 

- 64x64x64 Voxel Patches: 7626 for training, 957 for validation 

- 96x96x96 Voxel Patches: 6201 for training, 768 for validation 
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2.3 U-Net model architecture 

A 3D U-Net (monai.networks.nets.UNet()) was implemented using the Medical Open 

Network for AI (MONAI) (version 1.2, development 2316). MONAI is a PyTorch based 

framework for deep learning in medical imaging (Cardoso et al., 2022). Training was done on 

two NVIDIA Tesla P100 Pascal GPUs with 12 GB of memory. Each level of the network 

consisted of two convolution layers followed by a pooling layer, increasing from 64, 128, 256, 

and 512 filters. The decoder block used the same number of filters, instead decreasing from 512, 

256, 128, and 64. Strided convolutions were used in the encoder path and transpose convolutions 

were used in the decoder path. A kernel size of (3,3,3) was used for both convolutional and 

pooling filters. Regularization techniques included a dropout of 20% and batch normalization. 

The Adam optimizer was used, with an initial learning rate of 0.001 and default parameters 

(Kingma & Ba, 2017). A combination Dice + Cross-Entropy Loss was used, where the Dice and 

Cross Entropy losses were equally weighted. An evenly weighted Dice + Cross-Entropy loss is 

standard and has shown to outperform models trained with just the Dice Loss function on 

external test data (as assessed by the Dice Coefficient) (Galdran et al., 2023; Ma et al., 2021; 

Taghanaki et al., 2021). A batch size of 8 was used for training, as this was the number of 

96x96x96 patches that could fit into GPU memory. The same architecture and hyperparameters 

were trained for the two patch sizes (64 and 96 isotropic). Early-stopping was implemented if no 

reduction to the average Dice CE Loss was observed in the validation set for over 50 epochs. If 

50 epochs were not reached, models would be trained for a maximum of 200 epochs.     

2.4 Post-processing 

The U-Net predicts a probability map from the input CT data, which corresponds to the locations 

of SEEG contacts (represented as a binary mask of 1 mm spheres). This output is typically 

thresholded or transformed using an activation function to generate the final binary segmentation 

mask. The coordinate for each contact can then be found from the centroid of each discrete 

segmentation. As mentioned in Section 1.6, contact localization algorithms determine the contact 

coordinate from the center of mass of the radiological artifact. However, this approach will fail 

for electrodes implanted vertically, as the artifact encapsulates the entire electrode (see Figure 2-

3). Similarly, a U-Net will predict connected segmentations in most cases rather than individual 

https://pypi.org/project/monai-weekly/1.2.dev2316/
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contacts. For this reason, model outputs must undergo additional image processing (ex., erosion 

or additional segmentation) to extract individual contacts from the connected electrode. 

 

Figure 2-3. CT of an electrode implanted vertically, with the U-Net model prediction in 

blue. On the right are the “ground-truth” coordinates for each contact in green. Individual 

contacts cannot be separated in the electrode artifact or by the deep learning model. 

Once the final contact locations are determined, they also must be labeled according to the target 

region and their position along the electrode.  The traditional naming scheme in other algorithms 

labels electrodes by the targeted structure, with the deepest contact along the electrode (i.e. the 

contact farthest from the skull) as the first contact. Therefore, the predictions from the deep-

learning model must undergo three post-processing steps: separating connected segmentations 

into individual contacts, extracting the coordinates of each contact, and labeling each contact 

with their position along the electrode. The first subsection will cover the probabilistic non-max 

suppression algorithm used to separate “connected” contacts and obtain the coordinate locations. 

The second will cover how the final coordinates were labeled and filtered for over-predictions.    

2.4.1 Probabilistic non-max suppression 

Non-max suppression is a technique used in object detection and computer vision tasks to reduce 

the number of overlapping segmentations. A probabilistic non-max suppression algorithm from 

the MONAI library was implemented to identify relevant contacts (Cardoso et al., 2022).  
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Briefly, the algorithm iteratively selected the voxel with the highest probability from the 

predicted map.  The coordinate for that voxel was recorded before neighboring voxels in a 

10x10x10 cube were suppressed to 0. This process was repeated until the remaining probabilities 

were below 0.5.   

2.4.2 Contact labeling 

During the surgical workflow for SEEG, two coordinates are placed to mark the electrode 

trajectory. The first is where the electrode enters the dura mater and inner table of the skull, 

termed the entry point. The second is at the tip of the intended target in the brain. This trajectory 

is first defined during the pre-surgical plan and later confirmed post-operatively to assess the 

accuracy of implantation (Cardinale et al., 2013). The placement of these two points was used to 

label predicted contacts along the electrode. This algorithm also served to filter out over-

predictions or false positives in the model (i.e. instances where the probabilistic non-max 

suppression algorithm outputs two coordinates for a single contact). A diagram of the workflow 

can be found below in Figure 2-4. Unlabeled contacts provided by the U-Net and non-max 

suppression algorithm are iteratively labeled along the electrode trajectory. The first contact for 

an electrode is identified as being the point closest to the target point within an arbitrary search 

space of 2 mm from the target point. The next contact belonging to that electrode is selected 

based on a restricted search space of 35° from the electrode trajectory and 2 mm from the first 

contact. Once two contacts in an electrode are found, the average distance between these 

localizations is used to restrict the search space. When at least three contacts have been found, 

the trajectory is also adjusted to be the line of best fit between these points. Following a first pass 

of the labelling algorithm, the number of contacts identified for each electrode trajectory is 

recorded. The most frequently occurring contact number, was used in a second pass of the 

algorithm to indicate when to stop the labelling of contacts along an electrode. 
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Figure 2-4 Flowchart of contact labelling for U-Net predictions. 

2.5 Model validation 

The accuracy was assessed in two ways; by the number of correctly localized contacts and the 

distance from the manually localized coordinates, which acted as our ground-truth. The model 

prediction at each contact was determined as a true positive if the prediction was within 1 mm of 

the manually localized coordinates. The remaining predictions were labeled false positives and 
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missed contacts as false negatives. This can be used to assess the accuracy of the model by 

defining the precision, recall, and F1-score, which are standard metrics in binary classification 

tasks. These measures were first used to assess the effect of patch size on model performance in 

the validation set. They were then used to assess the final localizations for the best performing 

U-Net model and the traditional image processing approach. The formulas for each are shown 

below:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙 
 

The second measure of the model's accuracy uses the Euclidean distance (described in Section 

1.3.1) between the model predictions (a) and the manually localized contact coordinate (b). The 

Euclidean distance represents the linear distance between the two points in Cartesian space. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎, 𝑏)  =  √(𝑎𝑥 − 𝑏𝑥)2  + (𝑎𝑦 − 𝑏𝑦)2  +  (𝑎𝑧 − 𝑏𝑧)2  

The absolute difference along the x (lateral), y (anteroposterior), and z (superoinferior) directions 

was also determined for each predicted position. 

𝛥𝑋 =  |𝑎𝑥 − 𝑏𝑥| 𝛥𝑌 =  |𝑎𝑦 − 𝑏𝑦| 𝛥𝑍 =  |𝑎𝑧 − 𝑏𝑧| 

Statistical comparisons for the Euclidean distance and absolute difference between the methods 

was assessed using a Wilcoxon signed-rank test using the 

scipy.stats.wilcoxon()function from the statsmodel package (Charlier et al., 2022; 

Seabold & Perktold, 2010). 

2.5.1 Traditional image processing for contact localization 

The effectiveness of the deep learning model was also compared to a traditional image 

processing algorithm for subjects within the test set (n = 35). The post-operative CT images were 
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thresholded at 2500 Hu to include contact, electrode and bolt artifacts, before being masked by 

the intracranial volume. The mask was generated using the MNI152NLin2009cSym template 

(Fonov et al., 2009). The pre-operative T1w MRI was first non-linearly registered to the 

template, to determine the transformation. The template was then binarized to create a mask, 

before applying the inverse transform with the antsApplyTransforms algorithm from Advanced 

Normalization Tools 2.2.0 (Avants et al., 2008). The number of discrete objects with 3-

dimensional connectivity within this thresholded image were identified with the 

skimage.morphology.label() function. The skimage.measure.regionprops() 

function extracted the centroid and volume for each unique object (van der Walt et al., 2014). 

The extracted objects were filtered to include volumes between 1 mm3 and 40 mm3 (slightly 

larger than the volume of a sphere with a radius of 2.5 mm). This range eliminates objects that 

could be mistaken as a contact and instances where multiple contacts can appear “fused” in the 

post-operative imaging (ex., electrodes implanted vertically). The centroids from the remaining 

segmentations formed the localizations for this image processing approach. The threshold, 

volumetric range and a similar masking approach was used in the SEEGLoc tool (Wong et al., 

2024). These points were transferred to the T1w space using the previously computed 

registration and labeled by electrode according to the post-operative target and entry points. 

2.5.2 Comparison to uncorrected SEEG Assistant (SEEGA) placements 

The SEEG Assistant (SEEGA) tool was also run on the external test set (n = 35) to assess 

performance before the localizations are manually corrected. This allowed for a comparison 

between the U-Net method and the tool implemented clinically.  SEEGA builds off the DEETO 

algorithm previously published by their group in 2015, requiring two points, the inter-contact 

spacing, and the number of contacts for each electrode (Arnulfo et al., 2015). For this 

comparison, the entry and target points for each electrode from the post-operative trajectory were 

used. The entry points were manually corrected to be at the start of the electrode artifact closest 

to the inner table as viewed in 3D Slicer. SEEGA uses these points to first estimate the electrode 

axis. From here the algorithm identifies the image artifacts falling along the axis that match the 

inter-contact spacing of the electrode. This search is also restricted to artifacts that deviate 10 

degrees from the original axis. Contact positions are then placed according to these parameters, 
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representing the unadjusted outputs from SEEGA.  These were also compared to the manually 

corrected “ground-truth” coordinates to determine the localization error of the tool. 
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Chapter 3  

3 U-Net Implementation Results 

Chapter 3 compares the outputs of two U-Net models trained with different patch sizes on the 

validation set. To review, the U-Net model only required as input the CT volume resampled to 

0.4mm isotropic. The contact localizations for the best-performing model will be compared to 

the manual annotation for each contact in the test set. Finally, the U-Net error will be compared 

to the semi-automated SEEG Assistant (SEEGA) tool and a traditional image processing 

approach.    

3.1 Effect of patch size on model prediction 

Two models were trained on 64 and 96 isotropic voxel patches to assess whether an increased 

patch size would improve the final performance. Table 3.1 summarizes the training metrics for 

the models using a patch size of 64 voxels and 96 voxels. Each model was trained for a 

maximum of 200 epochs with early stopping implemented at 50 epochs if no change was 

observed to the validation DiceCE loss. Figures 3-1 and 3-2 show the training curves for the 64 

isotropic voxel patches and 96 isotropic voxel patches. Both models appear to have converged at 

a similar epoch number, with similar metrics for the training and validation loss, as well as the 

final Dice Coefficient for predictions in the validation set. Figure 3-1 shows the model trained 

with 64 isotropic voxel patches to have overfit to the training set, in comparison to the model 

trained with 96 voxel patches.  

Table 3-1 Training Summary and Loss Metrics 

Model Patch 

Size (Voxels) 

Training 

Time 

(hh:mm) 

Epochs Before 

Early Stopping 

Training 

DiceCE 

Loss 

Validation 

DiceCE Loss 

Validation 

Dice 

Coefficient  

64x64x64 07:05 190 0.181 0.248 0.725 

96x96x96 17:50 200 0.206 0.243 0.736 
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Figure 3-1 Training and validation loss curve for U-Net trained with 64 voxel isotropic 

patch sizes. Dice + Cross Entropy loss values shown on the y axis, with the epoch number on 

the x axis. 

 

Figure 3-2  Training and validation loss curve for U-Net trained with 96 voxel isotropic 

patch sizes. Dice + Cross Entropy loss values shown on the y axis, with the epoch number on 

the x axis. 
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The effect of patch size was also compared following the use of the probabilistic non-max 

suppression algorithm. The coordinates provided by this post-processing step represent the 

model’s prediction for the most likely location of a contact (i.e. a 1 mm sphere). This was used to 

compare the number of contacts localized in the validation set (n = 1910 contacts). The 

precision, recall and F1-score were determined as described in Section 2.5 and summarized in 

Table 3.2. These metrics were taken before the predictions were filtered by the labeling 

algorithm. The goal was to assess how effective each model was in accurately detecting contact 

positions, without being aided by knowledge of the electrode trajectory. The precision score 

indicates what proportion of predictions are relevant (true localizations of contacts vs noise). The 

recall can be viewed as the accuracy of the model, while the F1-score is a weighted balance of 

both measures. The deep learning models were also compared to the number of localized 

contacts found by thresholding the CT image at 2500 Hu, masking for the intracranial volume, 

and extracting the weighted centroids from the remaining artifacts. 

Table 3-2 Contact localization accuracy of the U-Net model in the validation set, based on 

patch size (n = 1910 contacts). Compared to weighted centroids of artifacts with 3-D 

connectivity from thresholded CT at 2500 Hu. 

Model Patch 

Size (Voxels) 

# of 

Contacts 

Total 

TP 

Total 

FP 

Total 

FN 

Precision Recall F1-score 

64x64x64 1910 1823 569 87 0.762 0.954 0.848 

96x96x96 1910 1818 634 92 0.741 0.952 0.834 

Thresholded 

CT (2500 Hu)  

1910 1279 139 631 0.902 0.670 0.769 

Patch sizes of 64 and 96 voxels provided similar performance metrics for precision, recall and 

F1-score, with the 64-patch model slightly out-performing the 96-patch model. While the 

traditional image processing approach of thresholding the CT limited the number of false 

positives, it was unable to resolve a large portion of contacts positions (631/1910) resulting in 

lower recall and F1-score. These corresponded to electrodes implanted vertically and with a 

smaller inter-contact spacing.  
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The contact-labelling algorithm was then applied to reduce the number of false positives and 

label the model predictions by the electrode trajectory. The number of true positives, false 

positives, and false negatives in the validation set after the algorithm are summarized in Table 3-

3.    

Table 3-3 Contact localization accuracy of the U-Net model in the validation set, following 

the contact-labelling algorithm (n = 1910 contacts).  

Model Patch 

Size (Voxels) 

# of 

Contacts 

Total 

TP 

Total 

FP 

Total 

FN 

Precision Recall F1-score 

64x64x64  1910 1816 63 94 0.966 0.951 0.959 

96x96x96  1910 1809 44 101 0.976 0.947 0.961 

The contact-labelling algorithm worked to filter a large portion of the “false positive” identified 

by the U-Net model, specifically in cases where multiple coordinates were predicted for a single 

contact or where the bolt/wires were incorrectly identified. Following this post-processing step, 

both models again achieve similar metrics as defined by the precision, recall and F1-score. The 

64-patch model localized slightly more true positives as evident by the recall score when 

compared to model trained on 96 voxel patches. These results from the validation set appear to 

demonstrate that increasing the spatial context for the model from 64 to 96 voxels did not 

substantially change model performance. The 64-voxel model was also faster to train and 

required less computational resources. Considering this performance on the validation set, the 

64-voxel model was used for the test set.       

3.2 Localization accuracy of U-Net approach 

The remaining sections of this chapter will focus on the results from the test set (n = 35 patients, 

402 electrodes, 4020 contacts). To reiterate, true positive localizations were within 1 mm of the 

ground-truth contact localization, false positive localizations were greater than 1 mm from the 

ground-truth contact position, and false negatives were contacts missed by the model. The 

accuracy by subject for the U-Net is summarized in appendix A. The total accuracy of the 

original model predictions and those filtered by the labelling algorithm in the test set of 35 

subjects is summarized in Table 3-3. This was compared to a traditional image processing 
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approach, where the CT was thresholded at 2500 Hu and then masked by the intracranial 

volume. Contact localizations were determined by extracting the centroids for the remaining 

objects between 1 mm3 to 40 mm3 in volume. 

Table 3-4 Contact localization accuracy of the U-Net model on the test set. (n = 35 subjects, 

4020 contacts, 402 electrodes). Compared to a traditional image processing approach of 

thresholding the CT at 2500 Hu and masking the intracranial volume. 

Description # of 

Contacts 

TP FP FN Precision Recall F1-score 

U-Net without 

post-processing  

(64 voxel patches) 

4020 3858 1076 162 0.782 0.960 0.862 

U-Net with post-

processing  

(64 voxel patches) 

4020 3837 84 183 0.979 0.954 0.966 

Thresholded CT 

(2500 Hu) 

4020 2545 86 1475 0.967 0.633 0.765 

The image processing approach achieves a high precision of 0.967, indicating the thresholded 

contact localizations match the manually corrected or ground-truth position.  However, the recall 

score of 0.633 shows that a large proportion of contacts are missed using this approach. In 

comparison the U-Net predictions using a probabilistic non-max suppression algorithm and 

filtered by the electrode trajectories displayed high precision and recall scores of 0.979 and 

0.954. From the test set, six subjects achieved a perfect F1-score, indicating that all contacts 

were within 1 mm of the manually localized coordinate, with no false positive or negative 

predictions. Figure 3-3 shows the contact localizations for subject 126. Figure 3-4 shows the 

locations of all missed contacts or false negatives by the deep learning model in the 

MNI152NLin2009cSym template space (Fonov et al., 2009). Note that contacts that are outside of 

the brain in the following plots represent contacts found at the level of the skull or near the bolt 

of the electrode, where the bony and metal artifacts obscure the contact.   



 

49 

 

 

 

Figure 3-3 U-Net model contact localizations (in red) and ground-truth manual placements 

(in green) for subject P126, plotted in MNI152NLin2009cSym template space (n = 120 

contacts). Side (right hemisphere), front, and top views are shown.  The model achieved a 

perfect F1-score, indicating all contacts were found within 1 mm with no false positives or 

negatives. 
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Figure 3-4 False negatives or contacts missed by the U-Net model, plotted in 

MNI152NLin2009cSym template space (n = 183/4020). From left to right, side (right 

hemisphere), top, and front views are shown.    

3.3 Localization error for U-Net compared to SEEG Assistant  

The localization error for each contact predicted by the U-Net model can be quantified using the 

Euclidean distance from the manually annotated contact, which acts as our “ground-truth”.  This 

same error was calculated for the points provided by the semi-automated SEEGA tool (Section 

2.1.2). The following subsections will compare the localization error between the two 

approaches by subject and contact-spacing within an electrode. It will then compare the absolute 

difference by each approach along the x, y, and z planes. 
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3.3.1 Distribution of errors 

The error distribution for the U-Net model was contrasted against the unadjusted SEEGA 

localizations within the test set. This analysis included 3912 contacts by the U-Net that had a 

matching label to the SEEGA label. The mean error for the automated U-Net model was 0.54 ± 

0.53 mm, with a median of 0.46 mm. For these same points, the mean error of SEEGA was 0.57 

± 0.76 mm and a median of 0.43 mm. It is worth noting that the ground-truth or manually 

localized points were derived from corrections to SEEGA outputs. This introduces some bias for 

the unadjusted SEEGA, as there is a potential for the manually placed points to be identical to 

the outputs from SEEGA lowering the localization error for the unadjusted points. In contrast, 

the U-Net errors represent an unbiased assessment or prediction of contact localizations. 

 

Figure 3-5  Distribution of Euclidean error (in mm), comparing the semi-automated (SEEG 

Assistant) localizations to those matched by the automated U-Net method. n = 3912 

contacts. Dashed lines represent the median error, while curves indicate the cumulative 

frequencies. U-Net median = 0.46 mm, SEEGA median = 0.43 mm. 
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Figure 3-6 Bland-Altman plot of Euclidean error (in mm), comparing the U-Net method to 

the SEEGA localizations. Thresholded at 2 mm for both methods, n = 35 subjects, 3757 

contacts. Upper and lower limits were set at ± 1.96 * 1 standard deviation.   

Figure 3-6 is a Bland-Altman plot contrasting the U-Net and SEEGA error for paired contacts. 

Errors for both methods greater than 2 mm were removed for this analysis, reducing the number 

of contacts for comparison to 3757 contacts. The U-Net matches with SEEGA for most contact 

positions, as indicative by the low mean difference at -0.0009 mm. Interestingly, the U-Net 

appears to slightly outperform SEEGA as the average error of both methods increases. 

3.3.2 Localization error due to electrode bending 

SEEGA restricts contact localizations to deviate 10 degrees from the electrode axis, which can 

arise in larger errors if contacts bend from the electrode trajectory (Narizzano et al., 2017). To 

assess the effect of electrode bending on localization performance, the bending of an electrode 

was quantified as the distance of the actual contact position (i.e. the “ground-truth contact 

localization) from the line joining the target and entry points (i.e. the electrode trajectory). Figure 

3-7 visually shows a visual schematic of the determination of this distance. Briefly, this distance 

was determined from two vectors: the first (a) being the vector from the entry point to the 

individual contact and the second (b) being the vector from the entry to the target point. The 
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distance was the magnitude of the vector perpendicular to the projection vector of a onto b, seen 

in red and green respectively.  

 

Figure 3-7 Visual schematic of the perpendicular distance between the manual contact 

position and electrode axis used to quantify the degree of electrode bending. a represents 

the vector between the entry point and SEEG contact, while b represents the vector 

between the entry and target points. 

The larger the magnitude of this perpendicular component, the further away the contact was from 

the electrode axis indicative of electrode bending. Figure 3-8 examines the relation between the 

localization error (the Euclidean distance from the predicted contact position and the ground-

truth) and this perpendicular axis distance. Interestingly as this perpendicular component 

increases beyond 1 mm, the localization error for SEEGA also increases. In contrast, the error for 

the U-Net model remained relatively consistent and at sub-millimetric values. This trend 

quantitatively suggests that SEEGA performs worse as contacts bend or deviate away from the 

electrode trajectory, while there is a weaker correlation for the U-Net localization.  
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Figure 3-8 Perpendicular distance of each contact’s position from the electrode trajectory 

and the contact localization error for both the U-Net and SEEGA methods. Pearson’s 

correlations are included for both methods (r = 0.36 for SEEGA, 0.01 for the U-Net). Linear 

regression lines for both methods are also plotted with a 95% CI band.  

3.3.3 Localization error at a subject level 

Next, the localization error by subject was reviewed for both methods. Errors for both methods 

were thresholded at 2 mm. This reduced the number of contacts for comparison to 3757.  The 

localization for 6 subjects by the U-Net model outperformed SEEGA and reached significance 

(p<0.05). A summary can be found in Figure 3-9. 
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Figure 3-9 Localization error by subject for the U-Net model and SEEGA, thresholded at 2 

mm. Ordered by the mean error for the U-Net model (increasing from left to right). Significance 

was assessed using a Wilcoxon signed-rank test with Bonferroni correction. n = 35 subjects, 

3757 contacts. 

3.3.4 Error by inter-contact spacing 

The localization error for each approach was compared based on the spacing of contacts within 

an electrode. As mentioned in Section 2.1.1, the model was trained on patients implanted with 

10-contact Ad-Tech electrodes, with 3-mm, 4-mm, 5-mm, 6-mm or 7-mm contact spacing. The 

localization error for the automated U-Net and SEEGA for each electrode model is shown in 

Figure 3-10 and Table 3-5. This was compared for errors less than 2 mm by both methods.  
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Figure 3-10 Error by electrode inter-contact spacing for U-Net and SEEGA methods. 

Significance was assessed using a Wilcoxon signed-rank test, with Bonferroni correction. N = 35 

subjects. 

 

 

 

 



 

57 

 

Table 3-5 Average Euclidean error by contact, where n indicates number of contacts for 

each electrode type. Matched localizations for both the U-Net and SEEGA methods, where both 

errors were below 2 mm. 

Error (Mean ± SD mm) by Electrode Inter-Contact Spacing 

Method  3 mm  

(n = 1404) 

4 mm 

(n = 1094) 

5 mm  

(n = 948) 

6 mm  

(n = 192) 

7 mm  

(n = 10) 

U-Net 0.471 ± 0.215 0.473 ± 0.192 0.470 ± 0.198   0.593 ± 0.196  0.433 ± 0.139 

SEEGA 0.439 ± 0.266 0.469 ± 0.303 0.490 ± 0.266 0.462 ± 0.340 0.520 ± 0.224  

3.3.5 Absolute error in x, y, and z dimensions 

The absolute error in each dimension from the manually localized contact coordinate was also 

calculated for both the U-Net and SEEGA tools. Figure 3-11 and Table 3-6 show the absolute 

error between the semi-automated SEEGA and the U-Net model. Despite reaching significance 

both the U-Net and SEEGA models appear to display a similar distribution of error. 
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Figure 3-11 Error in each dimension by contact for the U-Net approach compared to 

SEEGA. Significance was assessed using a Wilcoxon signed-rank test with Bonferroni 

correction. n = 35 subjects, 3757 contacts. 

Table 3-6 Mean absolute error in each dimension by contact and method. n = 35 subjects, 

3757 contacts. 

Mean Absolute Error ± SD (mm) 

Method x y z 

U-Net 0.244 ± 0.178 0.230 ± 0.166 0.240 ± 0.180 

SEEGA  0.237 ± 0.203 0.211 ± 0.203 0.255 ± 0.203  
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3.4 Localization error of traditional image processing approach 

The following section compares the error of a traditional image processing approach that 

extracted the centroids from the post-operative CT thresholded at 2500 Hu. The localization error 

for the image processing approach was calculated using the Euclidean distance to the manually 

annotated contact, which acts as our “ground-truth”. This was compared to the contacts with the 

same label predicted by the U-Net model in Figure 3-12.  A similar comparison was performed 

for the SEEGA tool in Figure 3-13. Despite the low number of contacts localized, the weighted 

centroid from the image processing achieved a lower average error of 0.14 mm when compared 

to corresponding localizations from the U-Net and SEEGA methods.   

 

Figure 3-12 Distribution of Euclidean error (in mm), comparing the automated (U-Net) 

approach to the matched localizations by the traditional image processing algorithm. 

Thresholded for errors below 2 mm, n = 2501 contacts. Median U-Net = 0.45 mm (dashed red 

line), Median Thresholded CT = 0.14 mm (dashed green line). 
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Figure 3-13 Distribution of Euclidean error (in mm), comparing the semi-automated SEEG 

Assistant (SEEGA) tool to the matched localizations by the traditional image processing 

algorithm. n = 2604 contacts. SEEGA median = 0.44 mm (dashed red line), Thresholded CT 

median = 0.14 mm (dashed green line). 

 

 

 

 

 

 

 

 

 



 

61 

 

Finally, a comparison of the false negatives for both the U-Net and traditional image processing 

approach can be seen in Figure 3-14.  

 

Figure 3-14 Contacts missed (false negatives) by the traditional image processing approach 

and the U-Net.  In red are the false negatives by the U-Net model, with blue representing the 

false-negatives by the outlined image processing approach.   
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Chapter 4  

4 Discussion 

In summary, the use of a 3-D U-Net in combination with a probabilistic non-max suppression 

algorithm could extract most contact coordinates and perform comparably to the semi-automated 

method used in clinical practice (SEEGA). The approach was tested on an independent sample of 

35 subjects (i.e. not used for training or validation) and achieved a similar localization accuracy 

to the current literature. The trained model and the post-prediction labeling algorithm were 

implemented in Python, building towards open-science infrastructure. Model predictions could 

be obtained in ~40 seconds, with the only input being a postoperative CT scan resampled to 0.4 

mm isotropic. Labeling and filtering were achieved using the target and entry coordinates from 

the post-implantation electrode trajectory. These two points are defined in electrode trajectories 

as part of most SEEG workflows to assess implantation accuracy (Cardinale et al., 2013; 

Vakharia et al., 2017). In comparison, the SEEGA algorithm employed at LHSC required 

manually inspecting each image, correcting the entry and target points based on the imaging 

artifact, and configuring the inter-contact spacing and the number of contacts per electrode, 

culminating in a 1–3 hour process for each subject by a trained expert. The original SEEGA 

paper reports an accuracy of 87.57% (8429/9626 contacts) using the pre-implantation trajectory 

and these priors; with manual correction this improved to 97% (9366/9626 contacts) (Narizzano 

et al., 2017). In comparison, the U-Net model with the post-processing algorithm had a 

localization accuracy of 95.4% (3837/4020 contacts), with 6 subjects achieving a perfect F1-

Score (no false positives or false negatives). Of the 183 contacts missed by the U-Net, a majority 

(107/183) corresponded to the most superficial contacts in the electrode, obscured by the bony 

artefacts of the skull or bolt artefacts of the electrode. 21 contacts responded to the 9th contact 

from the electrode tip, while 86 responded to the 10th contact found near the bolt of the electrode. 

The histogram and Bland-Altman plot in Figures 3-5 and 3-6 demonstrate that the localization 

errors compare favorably for both the U-Net and SEEGA methods across the test set. There are a 

few notable trends that can be observed. The first is that SEEGA has a larger portion of errors 

above 1 mm (n = 277) compared to the U-Net model (n =137). Figure 3-8 examines the errors in 

relation to electrode bending and shows that the SEEGA performance worsens as the contact 
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position deviates from the electrode axis. In contrast, the U-Net performance is relatively 

consistent as the degree of electrode bending increases. Specific examples of electrode bending 

within the test set include subjects D149 in Figure 4-1. The U-Net achieved a perfect F1-Score (0 

FP or FN), with a mean Euclidean error of 0.498 ± 0.179 mm. In comparison the error for 

SEEGA was 1.492 ± 1.459 mm (p < 0.05).  

 

Figure 4-1 Examples of three bending electrodes in subject D149. In red are the U-Net 

model predictions, green are the manual localizations, and blue are the SEEGA 

predictions. The CT electrode/contact segmentation artifact can be seen in yellow (thresholded 

at 2500 HU). Captured with 3D Slicer, version 5.6.1 (Fedorov et al., 2012). 

The larger errors by the U-Net model (> 1mm) are observed when the model misses a contact 

along an electrode or assigns multiple coordinates to a single contact. This results in an incorrect 

labeling of contacts that does not reflect the manual or ground-truth position; examples include 

subjects D133 and P057. The distribution of errors in Figure 3-5 also shows that there is a higher 

proportion of errors <0.3 mm for SEEGA. This can be attributed to the fact that the “gold-

standard” manual localizations are based on the SEEGA outputs. In cases where SEEGA 

provides an “adequate” localization, the reviewer was unlikely to manually edit the contact 

position, creating an inherent bias towards the SEEGA performance. 

Examining the error by the electrode model or the inter-contact spacing, the U-Net outperformed 

the semi-automated SEEGA for contacts with 5 mm and 6 mm spacing. The performance for the 
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5 mm electrode did not reach significance. In contrast, SEEGA outperformed the U-Net for 

electrodes with 3 and 4 mm spacing. Error by axis or dimension showed SEEGA to outperform 

the U-Net along both the x (0.237 mm for SEEGA, 0.244 mm for the U-Net) and y axes (0.211 

mm compared to 0.230 mm), reaching significance. The U-Net had a lower absolute error along 

the z axis (0.240 mm), but this result did not reach significance. 

The U-Net models presented here were trained with a patch size of 64 and 96 isotropic voxels, 

with Dice scores of 0.725 and 0.736 respectively, on the validation set. The two previously 

published U-Nets trained for SEEG contact segmentation in Section 1.5.2 report higher scores 

than our model. Pantovic et al., report an average of 0.867 from their hybrid U-Net (concatenated 

outputs of 2-D and 3-D models). The 2-D U-Net model (trained on slices of the CT) and 3-D U-

Net model report average Dice scores of 0.850 and 0.810 respectively. The improved Dice score 

could be due to the use of larger patch sizes (144x144x135) for training (Pantovic et al., 2022). 

Vlasov et al., report an average Dice score of 0.897 ± 0.043 for 10 subjects using a 3-D Cascade 

U-Net mode. However, the performance of their model includes the intracranial volume and the 

entire electrode trajectories as part of the target segmentation. 

The general application of setting an initial threshold and masking for the intracranial space to 

extract relevant contact artifacts is applied in a majority of contact localization algorithms 

(Aslam et al., 2024; Blenkmann et al., 2024; Cai et al., 2022; Davis et al., 2021; Janca et al., 

2023; Medina Villalon et al., 2018; Qin et al., 2017; Wong et al., 2024; B. Zhao et al., 2023). 

The U-Net’s performance was also compared to a similar image processing approach. The CT 

for each patient in the test set was thresholded at 2500 Hu and masked by the intracranial space. 

Contact positions were then determined from a weighted centroid including radiological artifacts 

between 1 mm3 and 40 mm3. The average localization error from the manually annotated 

position appeared to outperform both U-Net and SEEGA in localization error but was limited in 

accuracy (2579/4020 contacts). As seen in Figure 3-14, the contacts missed by this approach 

were found within the midbrain, near the insular regions. These correspond to the tightly packed 

contacts (3-4 mm spacing) found in vertically implanted electrodes, which appear as a 

continuous artifact in the post-operative image (see Section 1.5.2). Determining the contact 

localizations for these electrodes is typically done by interpolating the remaining contacts using 

the inter-contact spacing, the number of contacts for that electrode, and two points placed at the 
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start and end of the radiological artifact (Narizzano et al., 2017; Wong et al., 2024). In 

comparison the use of a probabilistic non-max suppression algorithm was able to identify most 

contacts within said electrodes. The U-Net was agnostic to any information regarding the 

electrode model (i.e. the number of contacts or inter-contact spacing). A higher threshold (ex. 

3000 or 3500 Hu) could improve the number of contacts localized by the image processing 

approach particularly for vertically implanted electrodes, but also risks reducing the number of 

true positives. Combining the outputs from a range of thresholds could reduce the missed 

contacts by this approach and should be explored for a more accurate comparison. 

The application of the U-Net in this thesis still required a degree of manual intervention to label 

the predicted coordinates, in the form of the post-implantation electrode trajectory. However, 

given that the placement of coordinates at the entry and target is necessary as part of the surgical 

planning of each trajectory in an SEEG case, this data can reasonably be acquired when working 

with the neurosurgeons performing the implantations. These points also serve the dual purpose of 

labeling individual electrodes by the target region and are used in the referencing scheme to 

analyze recordings (Mercier et al., 2022). Other papers propose alternatives in the form of 

clustering of points into electrodes (Aslam et al., 2024; Blenkmann et al., 2024; B. Zhao et al., 

2023). Unsupervised clustering provides a potential solution but requires the number of 

electrodes implanted as a prior and the eventual labelling of each individual electrode cluster by 

target region. Additionally, an improper initialization of centroids can lead to sub-optimal results 

or missed electrodes. For these reasons, it could be argued that the post-implantation trajectories 

represent the most intuitive method of labelling SEEG contacts. Future work could compare the 

localization accuracy of a fully automated approach through unsupervised clustering. 

4.1 Limitations 

The thesis presents a potential approach toward automated SEEG contact localization, but 

several challenges and limitations remain. A summary of these can be found below: 

1. Limited to post-operative CT for SEEG contact localization 

The U-Net model presented in this thesis was trained on post-operative CT scans for 

contact localizations, limiting the use for other centers where a post-operative MRI is 
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acquired to determine contact positions. Acquiring datasets with post-operative MRI 

would allow for the training of a multi-modal model optimized to work with said images.   

2. Euclidean distance as an error metric 

While the Euclidean distance provides a scalar value representing the distance between 

two points in 3-D space, it does not indicate the directionality of that distance. Within the 

thesis, the Euclidean distance was chosen as the error metric to compare the accuracy of 

both models (SEEGA and the U-Net model). However, given that this is a scalar quantity 

this metric does not represent the directionality of the error. Instead, representing these 

errors within a normalized point cloud would help to tease out this directionality for both 

the U-Net and SEEGA methods. Future work will look to explore this method. 

3. Selection of patch size 

As outlined in Chapter 2, the model was trained on 3D isotropic patches 64 and 96 

voxels, a size that includes the contacts along an electrode as well as multiple electrode 

trajectories. Larger patch sizes provide more spatial context to the model and are known 

to improve performance for deep learning models, while requiring a larger number of 

computational resources to train. In the context of contact segmentation, a smaller patch 

size (16 or 32 voxels) would only include a single contact; it is likely that a model would 

overpredict the number of contacts, when considering the other high-intensity artifacts 

found in the image (ex. bolts, wire artefacts). A larger patch size would likely help the 

model differentiate between the individual contact positions and the other high-intensity 

artifacts or noise found in the image, such as the bolts or wires. However, the specific 

selection at 64 and 96 voxels (compared to 80 voxels or an increased size) is arbitrary. 

Future work should further explore and look to quantify the effect of more patch sizes on 

model performance within the validation set.  

4. Thorough comparison of hyperparameters for the current U-Net model 

The number of filters and depth of the current model was chosen to represent the 

traditional U-Net architecture. Since the segmentation task is relatively simple, a generic 

model was thought to be the best first approach. However, changing these specific hyper-

parameters, along with larger patch sizes, or different batch sizes could drive towards 

improved performance. Future work will look to quantitatively compare the assessment 

of different hyper-parameters to determine the best approach.   



 

67 

 

5. Exploring the effects of different loss functions 

While the Combo loss function of an equally weighted Dice and Cross Entropy losses is 

effective for most segmentation tasks, the development of a loss function tailored to the 

specific task of contact localization (taking close care to more difficult use cases such as 

bending or vertically implanted electrodes) could improve performance. Additionally, 

different weightings of Dice and Cross-Entropy should be explored to determine the 

optimal combination. Examples in the literature include “soft” fine-tuning where the full 

weight is given to the Cross-Entropy Loss, and the weight of the Dice Loss is linearly 

increased at each epoch or “hard” fine-tuning where Dice Loss is only minimized for the 

last 10% of the total training epochs (Galdran et al., 2023). Future work could 

quantitatively compare the effect of the weighting of Dice and Cross-Entropy in the 

Combo loss, different loss functions, as well as work towards the development of a 

custom loss function for contact localization.  

6. Testing different deep learning architectures 

There is good reason to believe that a well-configured U-Net should outperform other 

deep learning or CNN models (Isensee et al., 2021). However, variants of the U-Net such 

as a cascaded U-Net and a more comprehensive look at model hyperparameters could 

improve performance. Recent work in the space of vision transformers should also be 

explored to assess any changes to performance (Shamshad et al., 2023).  

7. Validation in external test sets (i.e. different electrode models and data from 

different groups) and model generalizability 

The current model was trained on patients implanted with AdTech electrodes that had 10 

contacts spaced 3, 4, 5, or 6 mm apart. As previously mentioned, other manufacturers 

produce electrodes that contain 5-18 electrodes and have smaller contact spacings of 2.5 

mm or incorporate macro and micro electrodes. Additionally, the generalizability of the 

U-Net model has not been tested to data from other centers and different CT acquisition 

parameters. Future work will look to assess the generalizability of the current model to 

external datasets, along with electrodes with different inter-contact spacing and varying 

number of contacts. 

8. Addressing instances where model fails to predict a contact 
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While achieving relatively high accuracy, the number of false negatives is still a concern. 

To address this issue, the outputs of the model could be provided additional information 

regarding the number of contacts present in the electrode or the inter-contact spacing to 

interpolate the remaining points. Previous discussion around the selection of 

hyperparameters, different model architectures, or loss functions could also lead to 

improved segmentations.    
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Chapter 5  

5 Conclusion 

The use of a U-Net and probabilistic non-max suppression algorithm localized most 

contact positions with a similar accuracy to the current tool, SEEG Assistant (SEEGA), 

employed in the clinic. The model did not require the manual correction of points from 

the post-implantation trajectory or information regarding the contact spacing and number 

of contacts present in the electrode. This provides evidence suggesting that deep learning 

models such as the 3-D U-Net can address some of the inherent challenges associated 

with contact localization and semi-automated algorithms. Future work will assess the 

performance of the model on different electrode models, explore alternative methods of 

representing the accuracy, and optimize performance, all while building this 

infrastructure in an open and reproducible way. 
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Appendices 

Appendix A: Summary of localization accuracy and error for 3-D U-Net by subject, 

alongside the error from SEEG Assistant (SEEGA) in the test set. 

 Mean Euclidean Error ± SD 

(mm) 

subject Total # 

of 

Contacts 

TP FN FP Precision Recall F1-score U-Net SEEGA 

sub-

D110 

90 86 4 1 0.989 0.956 0.972 0.455 ± 

0.183 

0.468 ± 0.25 

sub-

D111 

150 136 14 4 0.971 0.907 0.938 0.516 ± 

0.245 

0.43 ± 0.307 

sub-

D133 

140 136 4 2 0.986 0.971 0.978 0.729 ± 

0.836 

0.606 ± 0.325 

sub-

D135 

130 120 10 2 0.984 0.923 0.952 0.497 ± 

0.419 

0.438 ± 0.259 

sub-

D149 

60 60 0 0 1.000 1.000 1.000 0.498 ± 

0.179 

1.492 ± 1.459 

sub-

D155 

110 108 2 1 0.991 0.982 0.986 0.474 ± 

0.165 

1.036 ± 1.961 

sub-

D164 

70 70 0 1 0.986 1.000 0.993 0.489 ± 

0.184 

0.398 ± 0.212 
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sub-

P004 

130 126 4 2 0.984 0.969 0.977 0.46 ± 0.184 0.357 ± 0.2 

sub-

P006 

80 77 3 2 0.975 0.962 0.969 0.635 ± 

0.676 

0.429 ± 0.308 

sub-

P011 

120 115 5 4 0.966 0.958 0.962 0.47 ± 0.354 0.455 ± 0.408 

sub-

P012 

120 103 17 7 0.936 0.858 0.896 0.575 ± 

0.266 

0.675 ± 0.437 

sub-

P013 

80 75 5 4 0.949 0.938 0.943 0.561 ± 

0.272 

0.52 ± 0.245 

sub-

P014 

120 108 12 7 0.939 0.900 0.919 0.534 ± 

0.247 

0.6 ± 0.401 

sub-

P017 

110 105 5 5 0.955 0.955 0.955 0.599 ± 

0.366 

0.477 ± 0.179 

sub-

P021 

100 95 5 1 0.990 0.950 0.969 0.475 ± 

0.221 

0.448 ± 0.212 

sub-

P026 

120 118 2 1 0.992 0.983 0.987 0.607 ± 

0.661 

0.482 ± 0.272 

sub-

P029 

90 82 8 4 0.953 0.911 0.932 0.575 ± 0.56 0.388 ± 0.268 

sub-

P031 

140 130 10 1 0.992 0.929 0.959 0.487 ± 

0.382 

0.346 ± 0.185 
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sub-

P039 

140 127 13 7 0.948 0.907 0.927 0.595 ± 

0.241 

0.435 ± 0.198 

sub-

P041 

130 119 11 3 0.975 0.915 0.944 0.525 ± 

0.397 

0.358 ± 0.187 

sub-

P054 

80 77 3 2 0.975 0.962 0.969 0.53 ± 0.202 0.422 ± 0.178 

sub-

P057 

110 106 4 4 0.964 0.964 0.964 0.859 ± 

1.365 

0.453 ± 0.252 

sub-

P066 

100 89 11 7 0.927 0.890 0.908 0.819 ± 

0.725 

0.976 ± 1.621 

sub-

P069 

140 135 5 3 0.978 0.964 0.971 0.455 ± 

0.157 

0.412 ± 0.234 

sub-

P072 

140 132 8 3 0.978 0.943 0.960 0.487 ± 

0.283 

0.533 ± 0.579 

sub-

P081 

100 89 11 0 1.000 0.890 0.942 0.429 ± 

0.164 

0.426 ± 0.181 

sub-

P102 

130 125 5 2 0.984 0.962 0.973 0.892 ± 

1.359 

0.486 ± 0.264 

sub-

P105 

120 120 0 0 1.000 1.000 1.000 0.405 ± 

0.142 

0.398 ± 0.261 

sub-

P108 

130 129 1 2 0.985 0.992 0.989 0.423 ± 

0.146 

0.616 ± 0.467 
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sub-

P109 

130 130 0 0 1.000 1.000 1.000 0.378 ± 

0.153 

0.476 ± 0.232 

sub-

P110 

100 100 0 0 1.000 1.000 1.000 0.387 ± 

0.132 

0.588 ± 0.192 

sub-

P120 

140 140 0 1 0.993 1.000 0.996 0.403 ± 

0.112 

0.605 ± 0.257 

sub-

P125 

140 139 1 1 0.993 0.993 0.993 0.685 ± 

1.033 

0.526 ± 0.235 

sub-

P126 

120 120 0 0 1.000 1.000 1.000 0.412 ± 

0.143 

1.23 ± 1.826 

sub-

P135 

110 110 0 0 1.000 1.000 1.000 0.416 ± 

0.154 

1.35 ± 2.11 
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