
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-19-2024 10:30 AM

Continual Learning via Hessian-Aware Low-Rank Perturbation Continual Learning via Hessian-Aware Low-Rank Perturbation

Jiaqi Li, Western University

Supervisor: Boyu Wang, The University of Western Ontario

Co-Supervisor: Charles X. Ling, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Jiaqi Li 2024

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Recommended Citation Recommended Citation
Li, Jiaqi, "Continual Learning via Hessian-Aware Low-Rank Perturbation" (2024). Electronic Thesis and
Dissertation Repository. 10445.
https://ir.lib.uwo.ca/etd/10445

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F10445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F10445&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://ir.lib.uwo.ca/etd/10445?utm_source=ir.lib.uwo.ca%2Fetd%2F10445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Continual learning aims to learn a series of tasks sequentially without forgetting the knowl-

edge acquired from the previous ones. In this work, we propose the Hessian-Aware Low-

Rank Perturbation (HALRP) algorithm for continual learning. By modeling the parameter

transitions along the sequential tasks with the weight matrix transformation, we propose

to apply the low-rank approximation on the task-adaptive parameters in each layer of the

neural networks. Specifically, we theoretically demonstrate the quantitative relationship be-

tween Hessian information and the proposed low-rank approximation. The approximation

ranks are then globally determined according to the marginal change of the empirical loss

estimated by the layer-specific gradient and low-rank approximation error. Furthermore,

we control the model capacity by pruning the less important parameters to diminish the

parameter growth. We conduct extensive experiments on various benchmarks, including a

dataset with large-scale tasks, and compare our method against some recent state-of-the-art

methods to demonstrate the effectiveness and scalability of our proposed method. Empir-

ical results show that our method performs better on different benchmarks, especially in

achieving task order robustness and handling the forgetting issue. The source code is at

https://github.com/lijiaqi/HALRP.

Keywords non-stationary environment, continual learning, task-incremental learning,

Hessian matrix, low-rank approximation

ii

https://github.com/lijiaqi/HALRP

Summary for Lay Audience

Unlike the conventional machine learning paradigm that assumes that there is merely one

task and the training data are provided simultaneously for learning, continual learning fo-

cuses on practical scenarios where the data can be collected from different tasks and will

be learned sequentially. Naturally, the fundamental objective in continual learning is to

achieve good performance in the new task and keep the ability gained from existing ones,

usually termed the stability-plasticity dilemma.

To overcome the catastrophic forgetting issue on previous tasks, task-specific parameters

are usually introduced for each new task to isolate the learned knowledge among tasks.

However, this parameter isolation strategy usually leads to a significant increase in model

size when learning more tasks. Thus, a trade-off between the overall performance and

the model growth control should necessarily be considered. Furthermore, some previous

studies also showed that when facing different orders of the same set of tasks, a learner

sometimes fails to guarantee consistent performance for each individual task, raising con-

cerns with respect to the task-order robustness in continual learning.

In this work, we proposed the Hessian-Aware Low-Rank Perturbation (HALRP) for contin-

ual learning. Specifically, we model the parameter transition among tasks under the form

of residual matrix transformation, then the low-rank approximation on the task-adaptive

parameters in each layer of a neural network. With theoretical support, we show the rela-

tionship between the Hessian matrix and the low-rank approximation error. We proposed

determining the approximation rank in each layer according to the marginal change of the

empirical loss. Thus, a better trade-off between overall performance and model size growth

can be achieved. Furthermore, by adopting the residual form for the weight transformation,

our proposed method is more robust on different task orders. Experiments on common

datasets and network architectures were conducted to demonstrate the effectiveness of our

method.

iii

Co-Authorship Statement

This thesis is mainly based on one paper co-authored with my supervisors, Dr. Charles X.

Ling and Dr. Boyu Wang:

Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning.

by Jiaqi Li, Yuanhao Lai, Rui Wang, Changjian Shui, Sabyasachi Sahoo, Charles X. Ling,

Shichun Yang, Boyu Wang, Christian Gagné, Fan Zhou. In IEEE Transactions on Knowl-

edge and Data Engineering. doi: 10.1109/TKDE.2024.3419449.

I certify that I am the lead author of this article by developing the theory and performing

the experiments. The credit authorship contribution statement of this published paper is

summarized as follows:

Jiaqi Li: Conceptualization, Methodology, Software, Validation, Writing (original draft).

Yuanhao Lai: Conceptualization.

Rui Wang: Computational resources.

Changjian Shui: Computational resources.

Sabyasachi Sahoo: Validation.

Charles X. Ling: Funding acquisition, Supervision.

Shichun Yang: Computational resources.

Boyu Wang: Funding acquisition, Supervision.

Christian Gagné: Supervision, Writing (review & editing), Funding acquisition.

Fan Zhou: Supervision, Validation, Writing (review & editing).

iv

Table of Contents

Abstract ii

Summary for Lay Audience iii

Co-Authorship Statement iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Appendices ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution Summary . 3

1.3 Thesis Outline . 3

2 Background 5

2.1 Preliminary . 5

2.1.1 Continual Learning: Problem Formulation 6

2.1.2 Challenges in Continual Learning 8

2.1.3 Low-Rank Approximation of Matrices 10

2.2 Related Work . 11

3 Hessian-aware Low-rank Perturbation for Continual Learning 15

3.1 Parameter Transition between Tasks: Linear Layers 15

3.2 Parameter Transition between Tasks: Convolutional Layers 18

3.3 Model Increment Control via Low Rank Approximation 19

v

3.4 Rank Selection via Hessian Aware Perturbation 20

3.5 Regularization and Pruning on Parameters 24

3.6 Summary of Proposed Algorithm . 25

4 Experimental Results 27

4.1 Experimental Settings . 27

4.2 Empirical Accuracy . 30

4.3 Robustness on Task Orders . 34

4.4 Handling the Catastrophic Forgetting . 37

4.5 Model Increment Analysis . 37

4.6 Computational Efficiency . 37

4.7 Ablation Studies . 40

5 Conclusion and Future Work 43

5.1 Conclusion . 43

5.2 Future Work . 43

References 44

Appendices 52

A Low-Rank Factorization for Matrix . 52

B Proof to Theorem 1 and Discussion . 53

C Discussion on the Fine-tuning Objective on the New Task 55

D Additional Experimental Results . 56

E Experimental Details . 58

F Copyright Permission . 63

Curriculum Vitae 65

vi

List of Tables

2.1 List of main notations. 5

4.1 Statistics of datasets adopted in the experiments. 28

4.2 Accuracies↑ on CIFAR100-Split/-SuperClass with different percentages of

training data. 31

4.3 Performance on P-MNIST, Five-dataset, Omniglot-Rotation. We ran exper-

iments with five different task orders generated by different seeds. As for

Omniglot-Rotation, we follow [1] to show the scalability under the origi-

nal sequential order. Acc.↑ refers to the empirical accuracy, MOPD↓ and

AOPD↓ refer to the task order robustness as discussed in Section 4.3. Re-

sults with ⋆ are from [2]. 32

4.4 Results on TinyImageNet with different backbones. We ran experiments

with five different task orders generated by different seeds. Acc.↑ refers to

the empirical accuracy, MOPD↓ and AOPD↓ refer to the task order robust-

ness as discussed in Section 4.3. 33

4.5 Accuracies under the IRU [3] setting. Results with ⋆ are reported in [3]. . . 34

4.6 Task order robustness evaluation on CIFAR100-Split/SuperClass with dif-

ferent amounts of training data. 35

4.7 Ablation studies. “Acc.↑” refers to the accuracy; “Size↓” refers to the rela-

tive increment size ratio. 41

D.1 Comparison with low-rank factorization method IBWPF 56

E.1 Hyperparameters for the experiments. n: total epoch. nw: warm-up epochs

for a new task. LR: Learning rate. λ0, λ1: coefficients for the regularization

terms as discussed in Appendix C. Bcsz: training batch size. 62

vii

List of Figures

2.1 Continual Learning: learn from a sequence of tasks {T0,T1, · · · ,TT−1}with

a single model . 6

2.2 Challenges in continual learning . 8

3.1 Overview of the proposed method: an example from T0 to T1 15

3.2 Parameter transition from T0 to T1 . 16

3.3 Low-rank approximation on weights . 20

3.4 Rank selection process (an example for L = 3) 23

4.1 Average Forgetting Statistics on CIFAR100-Splits/-SuperClass/TinyImageNet

Datasets . 36

4.2 (a) Average Capacity Increment ratio on CIFAR100-SuperClass w.r.t. the

base model. (b) Average Time Complexity Ratio on PMNIST. 38

4.3 Empirical statistics of GPU memory usage. The local zone with a red rect-

angle on the left is zoomed in on the right. 39

4.4 Effect of regularization coefficients λ0 and λ1. 42

D.1 Forgetting comparison on CIFAR100-Split with different task orders (A-E)

under different amounts of training data. 56

D.2 Forgetting on CIFAR100-SuperClass with different task orders (A-E) under

different amounts of training data. 57

viii

List of Appendices

Appendix A Low-Rank Factorization for Matrix 52

Appendix B Proof to Theorem 1 and Discussion 53

Appendix C Discussion on the Fine-tuning Objective on the New Task 55

Appendix D Additional Experimental Results 56

Appendix E Experimental Details . 58

Appendix F Copyright Permission . 63

ix

1

Chapter 1

1 Introduction

1.1 Motivation

The conventional machine learning paradigm assumes all the data are simultaneously ac-

cessed and trained. However, in practical scenarios, data are often collected from different

tasks and sequentially accessed in a specific order. Continual Learning (CL) aims to grad-

ually learn from novel tasks and preserve valuable knowledge from previous ones. Despite

this promising paradigm, CL is usually faced with a dilemma between memory stability

and learning plasticity: when adapting among the dynamic data distributions, it has been

shown that the neural networks can easily forget the learned knowledge of previous tasks

when facing a new one, which is known as Catastrophic Forgetting (CF) [4].

One possible reason for this forgetting issue can be the parameter drift from the previous

tasks to the new ones, which is caused by the optimization process with the use of stochastic

gradient descent and its variants [5, 6]. To mitigate the obliviousness to past knowledge,

some works [7–11] proposed to constrain the optimization objective for the knowledge

of new tasks with additional penalty regularization terms. These approaches were shown

as ineffective under the scenarios of a large number of tasks, lacking long-term memory

stability in real-world applications.

To address this problem, some methods choose to expand the model during the dynamic

learning process in a specific way, leading to inferencing with task-specific parameters for

each task. For example, a recent work [2] proposed to decompose the model as task-private

and task-shared parameters via an additive model parameters decomposition. However,

this method only applies an attention vector for the masking of the task-shared parameters.

Furthermore, the private parameters were controlled by a regularization and consolidation

Chapter 1 – Introduction 2

process, which lead to the linear model increment along with the increasing task number,

damaging the scalability for deploying a CL system. Another solution to reduce the pa-

rameter increase is to apply factorization for the model parameters. In this regard, [12]

proposed a low-rank factorization method for the model parameters decomposition with a

Bayesian process inference. However, this approach required a large rank for achieving

desirable accuracy and also suffered from ineffectiveness in some complex data scenar-

ios.

In this work, we propose a low-rank perturbation method to learn the relationship between

the learned model (base parameters) and the parameters for new tasks. By formulating a

flexible weight transition process, the model parameters during the CL scenario are decom-

posed as task-shared ones and task-adaptive ones. The former can be adopted from the base

task to new tasks. The latter conforms to a low-rank matrix, and the number of relevant

parameters can be effectively reduced for every single layer in a neural network across the

tasks. With a simple warm-up training strategy, low-rank task adaptive parameters can be

efficiently initialized with singular value decomposition.

Furthermore, to determine which ranks should be preserved for the low-rank approximation

in different layers in a model, we propose to measure the influences of the introduced low-

rank parameters by the Hessian-aware risk perturbation across layers of the whole model.

This allows the model to automatically assign larger ranks to a layer that contributes more

to the final performance under a specific parameter size budget. We theoretically support

this approach by providing a formal demonstration that the empirical losses derived from

the proposed low-rank perturbation are bounded by the Hessian and the approximation rate

of the decomposition. This leads to a Hessian-aware framework that enables the model to

determine perturbation ranks that minimize the overall empirical error. Lastly, we apply

a pruning technique to control the size of introduced parameters and reduce some less

important perturbation parameters through the aforementioned Hessian-aware framework

Chapter 1 – Introduction 3

by evaluating their importance.

Based on the theoretical analysis, we proposed the Hessian Aware Low-Rank Perturbation

(HALRP) algorithm, which enables the model to leverage the Hessian information to auto-

matically apply the low-rank perturbation according to a certain approximation rate.

1.2 Contribution Summary

To summarize, the contributions of our work mainly lie in three-fold:

• We proposed a Hessian-Aware Low-Rank Perturbation framework that allows effi-

cient memory and computation requests for learning from continual tasks. Based

on a residual learning strategy for the parameter transition process, the performance

robustness can be better achieved under different task orders.

• Theoretical analysis showed that Hessian information can be used to quantitatively

measure the influences of low-rank approximation on the empirical risk. This leads

to an automatic rank selection process to control the model increment.

• Extensive experiments on common benchmarks and comparisons to recent state-of-

the-art baselines (e.g., regularization-based, expansion-based, and rehearsal-based)

were conducted to demonstrate the effectiveness of our method. The results testify

the superiority of our HALRP, in terms of accuracy, computational efficiency, scala-

bility, and task-order robustness.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 described the research back-

ground of this thesis, including the preliminary knowledge of continual learning and the

challenges in this area, the basic knowledge of low-rank approximation for matrices, and a

Chapter 1 – Introduction 4

brief overview of existing studies related to the research topic in this thesis. In Chapter 3,

we described our proposed method HALRP in detail, including the parameter transition

modeling between tasks for continual learning, the low-rank approximation on the parame-

ters, the rank selection method for parameter approximation through Hessian information,

and then a summary of the proposed algorithm. In Chapter 4, we provided extensive em-

pirical verifications to demonstrate the effectiveness of our proposed method compared to

the existing baseline methods, including the performance on different datasets with differ-

ent network architectures, as well as the superiority on different aspects like the robustness

with different task orders, the comparisons of catastrophic forgetting, computational ef-

ficiency, etc. Chapter 5 summarized this thesis and discussed the potential future work.

Furthermore, in Appendices A-E, we attached some supplementary materials, including

the proofs of some contents in the main text, additional experimental results, the detailed

setting of our experiments, etc.

5

Chapter 2

2 Background

2.1 Preliminary

This section introduces the basic knowledge of continual learning and singular value de-

composition. In Table 2.1, we provide a list of the main notations used in this thesis.

Specifically, the bold uppercase (or lowercase) letters indicate the matrices (or vectors) in

the remaining part.

Table 2.1: List of main notations.

Notation Description
T ,t Total task number, task index
Tt,Dt t-th task, and the related dataset
x, y input/sample, class label
f the model in continual learning, i.e., neural networks
W model weights
R,S,B task private model weights
U,Σ,V SVD decomposition on B shown in Sect. 2.1.3
diag(Σ) the set of diagonal elements of Σ
Diag(σ1, · · · , σn) diagonal matrix with elements {σ1, · · · , σn} as the diagonal
M(k) low-rank approximation of M by keeping k ranks
∥ · ∥F Frobenius norm
L loss function for the task (e.g, cross-entropy)
Lreg regularization loss
H Hessian matrix
α loss approximation rate for rank selection
l layer index in a neural network
gl gradient vector for layer l
rl full rank of layer l
kl approximated rank for layer l
n number of total training epochs
nw number of warm-up epochs

Chapter 2 – Background 6

Task 𝒯0

Train

Test

…

Task 𝒯1 Task 𝒯𝑇−1

Model

…

…

Figure 2.1: Continual Learning: learn from a sequence of tasks {T0,T1, · · · ,TT−1} with a
single model

2.1.1 Continual Learning: Problem Formulation

In continual learning (CL), the model (i.e., neural networks) receives a series of T tasks

(i.e., usually classification tasks) {T0, . . . ,TT−1} sequentially. Assume we have a training

dataset for the t-th task: Dt = {xi
t, y

i
t}

Nt
i=1 ∼ Tt, where xi

t and yi
t correspond to the i-th instance

and the corresponding label within the total of Nt data points. Denoting the input space as

X and the label space of t-th task Tt as Yt. After finishing b + 1 tasks (i.e. T0, . . . ,Tb with

0 ≤ b ≤ T − 1) in the learning process, the overall objective is to find a model (i.e., neural

networks) f : X 7−→ Y0 ∪ Y1 ∪ · · · ∪ Yb such that it can achieve the best performance on

all currently seen tasks:

min
f
E(x,y)∼T0∪···∪Tb

[
I{y , f (x)}

]
(2.1)

where I{·} is the indicator function1.

Based on the relationship among the label spaces Y0, . . . ,YT−1 of different tasks and the

knownness of task identity during training and testing, continual learning is mainly catego-

1Here, we adopt the form of classification task that most of the existing work considered. Thus, the best
performance can be represented by the minimum classification error across all tasks.

Chapter 2 – Background 7

rized as three scenarios:

• Domain Incremental Learning (DIL): all the tasks {T0, . . . ,TT−1} have the same class

space (i.e., Y0 = · · · = YT−1) but follow different data distributions.

• Task Incremental Learning (TIL): the tasks have disjoint label spaces (i.e.,Yi∩Y j =

∅ for i , j) as illustrated in Fig. 2.1, and the task identities are known during both

training and testing procedures. Specifically, the model f maintains a set of disjoint

classification heads C0, . . . ,CT−1 for each task, and during the training or evaluation

process, the samples from a certain task Tt will be merely fed into the associated

classification head Ct to obtain the classification probabilities.

• Class Incremental Learning (CIL): the tasks are also drawn from the disjoint class

spaces as TIL, but the task identities are only accessed during training. That is, train-

ing samples from a certain task Tt are still fed into the associated classifier Ct during

training; however, different from the TIL setting, a test sample does not contain the

task identity information during the evaluation so that the model cannot directly pro-

cess it with a specific classification head. In contrast, the test samples need to be

processed by all the classification heads, and the predicted probabilities from all the

classification heads will be used to determine the task identity and the class label.

The CIL setting is more challenging compared to TIL, as inter-task confusion can

exist during the evaluation.

In all of the above scenarios, the performances on all tasks currently seen (i.e., T0, . . . ,Tb)

need to be evaluated after learning a certain task Tb (with 0 ≤ b ≤ T − 1), as shown in

Fig. 2.1.

This thesis focused mainly on the TIL setting, but our proposed method can be easily

modified to adapt to other incremental learning scenarios.

Chapter 2 – Background 8

Task 𝒯0 Task 𝒯1

(a) Catastrophic Forgetting

Task 𝒯0 Task 𝒯1

(b) Model Size Explosion
Task 𝒯0

…

Task 𝒯1 Task 𝒯𝑇−1

…

…

…

Task 𝒯0 Task 𝒯1Task 𝒯𝑇−1

…

…

(c) Robustness under Different Task Orders

Figure 2.2: Challenges in continual learning

2.1.2 Challenges in Continual Learning

Since the knowledge from different tasks needs to be learned sequentially in continual

learning, a common phenomenon is that the model usually loses the knowledge gained from

the previous tasks after mastering the knowledge in new ones, i.e., catastrophic forgetting

shown in Fig. 2.2a.

To overcome the forgetting issue, some studies proposed to maintain a small set of rep-

resentative samples (i.e., exemplars) for each previous task and then replay them when

learning new tasks, i.e., rehearsal-based methods. Specifically, after learning task Tb, the

exemplar set E is updated such that it contains some representative samples from all cur-

rently seen tasks, i.e., E ⊂ ∪b
t=0Dt, then the learning process on the task Tb+1 is conducted

on not only the current task datasetDb+1 but the exemplars set E:

min
f
E(x,y)∼Db+1∪E

[
ℓ(f (x), y)

]
(2.2)

Chapter 2 – Background 9

where ℓ(·, ·) is the loss function.

However, due to the potential risk of privacy leakage, the applications of this kind of

method can be constrained in real-world scenarios. For example, when building an intelli-

gent medical diagnosis system by continually learning from the sensitive data of different

patients, maintaining such an exemplar set E with the private information of previous iden-

tities can be impractical or even not allowed when processing successive identities. Thus,

it is crucial to investigate continual learning algorithms without accessing the data from

previously learned tasks. In this thesis, we assume that the training dataDb becomes com-

pletely inaccessible after the training process on task Tb and the training data for the next

task are only fromDb+1, i.e., the more challenging rehearsal-free setting with E = ∅.

Another popular strategy to address catastrophic forgetting is to isolate the knowledge from

different tasks by adopting task-shared and task-private parameters in the model. This

stream of approaches is usually termed as expansion-based methods. Specifically, denoting

the task-shared parameters as Ws and the task-private parameters for t-th task Tt as Wpt ,

the learning process gradually expands the model by introducing private parameters wpt for

newly coming tasks:

learn T0
−→ f{Ws}∪{Wp0 }

learn T1
−→ f{Ws}∪{Wp0 ,Wp1 }

−→ · · ·
learn TT−1
−→ f{Ws}∪{Wp0 ,Wp1 ,··· ,WpT−1 }

(2.3)

While this model expansion strategy can effectively diminish the knowledge forgetting on

previous tasks, the size of private parameters within individual tasks {Wp0 ,Wp1 , . . . ,WpT−1}

will significantly increase as the task capacity grows, leading to the undesirable model size

explosion issue (illustrated in Fig. 2.2b). Thus, it is crucial to achieve a good trade-off

between performance and model increment. In this thesis, we adopted the form of residual

learning and low-rank approximation.

Furthermore, some research [2] showed that the performance of each task can be incon-

Chapter 2 – Background 10

sistent when the model receives the task sequence with different task orders, raising the

concern of the robustness on task orders (as shown in Fig. 2.2c). For example, by denot-

ing A1
t , A

2
t , A

3
t the performances of task Tt under three different task orders, the performance

disparity δt = max{A1
t , A

2
t , A

3
t }−min{A1

t , A
2
t , A

3
t } reflects the performance fluctuation on task

Tt. Smaller δt indicates that the continual learning process is more robust. Then enhancing

the task order robustness aims to achieve smaller δt for all tasks t = 0, 1, . . . ,T − 1. This

topic is under-explored in the context of continual learning, but it is crucial to investigate

the robustness of continual learning algorithms from a novel perspective.

In this thesis, we tried to achieve a better trade-off among these challenging requirements.

2.1.3 Low-Rank Approximation of Matrices

The singular value decomposition (SVD) factorizes a rectangular matrix B ∈ RJ×I with

three matrices: B = UΣV⊤, where U ∈ RJ×J, V ∈ RI×I , and Σ ∈ RJ×I . Denote the rank of

B as r (i.e., with r ≤ min{I, J}), then B can be further expressed as B =
∑r

i=1 σiuiv⊤i , where

σi ∈ diag(Σ) is the singular values, ui and vi are respectively the left and right singular

vectors. In this work, we take the property of k-rank approximation of B (with k ≤ r)

by leveraging the Eckart–Young–Mirsky theorem [13], which can be expressed with top-k

leading singular values and singular vectors2:

B(k) = U(k)Σ(k)(V(k))⊤ =
k∑

i=1

σiuiv⊤i (2.4)

with k ≤ r, where U(k), Σ(k), V(k) are the corresponding leading principal sub-matrices3. k

is chosen to tolerate a certain approximation error under the Frobenius norm ∥ · ∥F (See

2In this thesis, we assume the eigenvalues are always sorted with descending order in such SVD decom-
positions, i.e., σ1 ≥ σ2 ≥ ... ≥ σr.

3With a slight abuse of notation, the notation M(k) refers to the k-rank approximation of the matrix M
according to the context: (1) U(k),Σ(k),V(k) indicate the top-k leading submatrices; (2) B(k) means the r-rank
low-rank approximation for B, then same for W(k).

Chapter 2 – Background 11

Appendix A for the proof):

∥B − B(k)∥F =

√
σ2

k+1 + · · · + σ
2
r . (2.5)

2.2 Related Work

In this part, we mainly introduce existing studies in three typical technical streams of con-

tinual learning in the first three paragraphs. Then, in the last two paragraphs, we discuss

the applications of low-rank factorization in continual learning and some relevant deep

learning settings.

Regularization-based approaches This kind of method tried to diminish catastrophic

forgetting by penalizing the parameter drift from the previous tasks using different regular-

izers [7–9]. Batch Ensemble [14] designed an ensemble weight generation method by the

Hadamard product between a shared weight among all ensemble members and an ensemble

member-specific rank-one matrix. [15] indicated that learning tasks in different low-rank

vector subspaces orthogonal to each other can minimize task interferences. [16] applied

a regularizer with decoupled prototype-based loss, which can improve the intra-class and

inter-class structure significantly. Compared to this kind of approach, our method applied

task-specific parameters and introduced an explicit weight transition process to leverage

the knowledge from the previous tasks and overcome the forgetting issue.

Expansion-based methods Studies with model expansion utilize different subsets of

model parameters for each task. [17] proposed to memorize the learned knowledge by

freezing the base model and progressively expanding the new sub-model for new tasks.

In [18], the reuse and expansion of networks were achieved dynamically by selective re-

training, with splitting or duplicating components for newly coming tasks. Some work

(e.g., [19]) tried to determine the optimal network growth by neural architecture search. To

Chapter 2 – Background 12

balance memory stability and learning plasticity, [20] adopted a distillation-based method

under the class incremental scenario. To achieve the scalability and the robustness of task

orders, Additive Parameter Decomposition (APD) [2] adopted sparse task-specific param-

eters for novel tasks in addition to the dense task-shared ones and performed hierarchical

consolidation within similar task groups for the further knowledge sharing. [21] intro-

duced Channel-Wise Linear Reprogramming (CLR) transformations on the output of each

convolutional layer of the base model as the task-private parameters. However, this method

relied on the prior knowledge from a disjoint dataset (e.g., ImageNet-1K). Winning Sub-

networks (WSN) [1] jointly learned the shared network and binary masks for each task.

To address the forgetting issue, only the model weights that had not been selected in the

previous tasks were tendentiously updated during training. But this method still needs to

store task-specific masks for the inference stage and relies on extra compression processes

for mask encoding to achieve scalability.

Rehearsal-based approaches These methods leverage different types of replay buffers

(e.g., [15, 22–27]) to memorize a small episode of the previous tasks, which can be re-

hearsed when learning the novel ones to avoid forgetting. In [27], a dynamic prototype-

guided memory replay module was incorporated with an online meta-learning framework

to reduce memory occupation. [28] proposed to process both specific and generalized in-

formation by the interplay of three memory networks. To avoid the repeated inferences on

previous tasks, Gradient Episodic Memory [29] and its variant [30] projected the new gra-

dients into a feasible region that is determined by the gradients on previous task samples.

Instead, Gradient Projection Memory (GPM) [5] chose to directly store the bases of previ-

ous gradient spaces to guide the direction of parameters update on new tasks. Compared to

these approaches, our proposed method does not rely on extra storage for the data or gra-

dient information of previous tasks, avoiding privacy leakage under some safety-sensitive

scenarios.

Chapter 2 – Background 13

Low-Rank Factorization for CL Low-rank factorization [31] has been widely studied

in deep learning to decompose the parameters for model compression [32, 33] or data pro-

jection [34, 35]. In the context of CL, [12] considers the low-rank model factorization and

the automatic rank selection per task for variational inference, which requires significant

large rank increments per task to achieve high accuracy. GPM [5] applied the singular

value decomposition on the representations and store them in the memory. [15] proposed

to learn tasks by low-rank vector sub-spaces to avoid a joint vector space that may lead to

interferences among tasks. The most similar work is Incremental Rank Updates (IRU) [3].

Compared to the decomposition in IRU, we adopted the low-rank approximation on the

residual representation in the weights transitions. Furthermore, the rank selection in our

work was dynamically and automatically determined according to Hessian-aware pertur-

bations, rather than the manual rank increment in [3].

Low-Rank Adaptation for Foundation Models Some recent work also took advantage

of the low-rank decomposition on adapting the foundation models (e.g., Large Language

Model) pre-trained on large-scale datasets to the downstream tasks. Low-Rank Adapter

(LoRA) [36] was the first and representative work. Different from the full fine-tuning that

needs to update all the parameters in the model, this method proposed to freeze the pre-

trained parameters and plug in a parallel residual branch for each layer (i.e., an attention

block in the Transformer-based model [37]) when adapting to the downstream tasks. This

residual branch consists of a scale-down and a scale-up operations, forming a low-rank bot-

tleneck and aiming to map the feature into a low-dimensional space and then back to the

original feature space. As one of the parameter-efficient fine-tuning strategies, LoRA and

its variants (e.g., [38–40]) adapt the pre-trained models onto the downstream tasks with-

out introducing numerous parameters and efficiently transfer the knowledge. Compared

to these methods, our proposed method mainly focused on the continual learning setting

where there exists a long sequence of tasks and overcoming the forgetting issue is still

Chapter 2 – Background 14

challenging. In addition, the rank numbers within each layer of the deep model were auto-

matically determined through the Hessian information in our proposed method, rather than

being manually set like the above-mentioned low-rank adapters.

15

Chapter 3

3 Hessian-aware Low-rank Perturbation for Continual

Learning

1 Our framework leverages the low-rank approximation of neural network weights. In the

W𝑏𝑎𝑠𝑒 +W1 = B1R1

S1

W𝑏𝑎𝑠𝑒 +W1

V1
𝑘 ⊤

Σ1
(𝑘)

≈ U1
(𝑘)R1

S1

loss

low-rank perturbation

𝒟0 𝒟1

Figure 3.1: Overview of the proposed method: an example from T0 to T1

following parts, we present the methodology for handling the fully connected layers and the

convolutional layers. The analysis herein can be applied to any layer of the model. Without

loss of generality, we omit the layer index l in this section. For simplicity, we illustrate the

learning process using tasks T0 and T1 in Sections 3.1 and 3.2, which can be applied to the

successive new tasks as shown in Section 3.6.

3.1 Parameter Transition between Tasks: Linear Layers

We first consider linear layers of neural networks. We begin by learning task T0 without

any constraints on the model parameters. Specifically, we train the model by minimizing

1A version of this chapter has been published in [41].

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 16

W𝑏𝑎 𝑠𝑒 +W1 = B1R1

S1

𝒟0 𝒟1

Figure 3.2: Parameter transition from T0 to T1

the empirical risk to get the base weights:

Wbase = arg min
W
L(W;D0) (3.1)

where Wbase ∈ RJ×I , J is the output dimension, and I is the input dimension of the layer, L

is the training loss function (e.g., cross-entropy loss).

Then, when the task T1 comes to the learner, we can train the model fully onD1 and get the

updated weights W1 ∈ R
J×I . However, undesired parameter drifts can occur when learning

new knowledge from T1 and lead to worse performance on the previous task T0. Previous

work [7] applied a L2 regularization to ensure that the weights learned on the new model

will not be too far from those of the previous tasks. Although this kind of method only

expands the base model with limited parameters, it can lead to worse performance on both

T0 and T1.

To pursue a better trade-off between the model size increment and overall performance

on both T0 and T1, we assume the unconstrained trained parameters W1 on T1 can be

transformed from Wbase obtained from T0 by the low-rank weight perturbation (LRWP, as

illustrated in Figure 3.1),

W1 = R1WbaseS1 + B1 (3.2)

where B1 ∈ R
J×I is a residual low-rank matrix, R1 = Diag(r1, . . . , rJ), and S1 = Diag(s1, . . . , sI)

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 17

are scaling parameters2 for T1, as illustrated in Fig. 3.2. These introduced parameters will

be determined through Eq. 3.3 in the following part.

The form of the proposed low-rank decomposition in Eq. 3.2 has differences with the ad-

ditive parameter decomposition proposed in [2]. In fact, the task-adaptive bias term B1

conforms to a low-rank matrix, which reduces both the parameter storage and the computa-

tional overhead. Moreover, the task-adaptive mask terms R1 and S1 include both row-wise

and column-wise scaling parameters instead of only column-wise parameters like [2] to

allow smaller and possibly sparser discrepancy: B1 =W1 − R1WbaseS1.

In addition, regarding the parameter estimation, we can substitute B1 with its k-rank ap-

proximation B(k)
1 =

∑k
i=1 σiuiv⊤i in Eq. 3.2 and directly minimize the empirical risk on task

T1 to get the parameter estimation through stochastic gradient descent with the random

initialization of {ui}
k
i=1 and {vi}

k
i=1. However, in practice, we found it challenging to learn a

useful decomposition in this way (i.e., the estimations converge to a local optimum quickly)

and the empirical risk minimization does not benefit from the low-rank decomposition. Due

to the homogeneity among the one-rank components {uiv⊤i }
k
i=1, random initialization cannot

sufficiently distinguish them and hence make the gradient descent ineffective.

To address the aforementioned ineffective training problem, we first train the model fully on

task T1 for a few epochs (e.g., one or two) to get rough parameter estimations Wfree
1 ∈ RJ×I

of the new task, indicating free-trained weights without any constraints. Then, a good

warm-up initialized values for Eq. 3.2 can then be obtained by solving the following least

squared error (LSE) minimization objective,

arg min
R,S,B
∥Wfree

1 − RWbaseS − B∥2F (3.3)

As R,S,B can correlate with each other, minimizing them simultaneously can be difficult.

2We will show later that B can be further approximated by U(k),Σ(k),V(k) with low-rank approximation,
so we can write the task-private weights for task t as either {Rt,St,B(k)

t } or {Rt,St,U(k)
t ,Σ

(k)
t ,V

(k)
t }.

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 18

Thus, we solve the problem in Eq. 3.3 alternately. Specifically, we first fix S,B and solve

R, and then solve S, etc.

Rfree
1 = arg min

R
∥Wfree

1 − RWbase∥2F

Sfree
1 = arg min

S
∥Wfree

1 − Rfree
1 WbaseS∥2F

Bfree
1 =Wfree

1 − Rfree
1 WbaseSfree

1

(3.4)

Remark Obviously, ∥Wfree −RWbase∥2F =
∑I

i=1
∑J

j=1(wfree
ji − r jwbase

ji)2, where wfree
ji and wbase

ji

are the elements of j-th row and i-th column of Wfree and Wbase, respectively. By taking the

derivative of the above expression w.r.t. r j and let it equal 0, we can obtain:

rfree
j =

∑I
i=1 wfree

ji wbase
ji∑I

i=1(wbase
ji)2

(3.5)

After obtaining rfree
j , we can similarly have ∥Wfree − RfreeWbaseS∥2F =

∑I
i=1
∑J

j=1(wfree
ji −

rfree
j wbase

ji si)2. By taking the derivative w.r.t. si and let it equal 0, we can obtain:

sfree
i =

∑J
j=1 rfree

j wfree
ji wbase

ji∑J
j=1(rfree

j wbase
ji)2

(3.6)

Then, we can calculate Bfree by the third equation using the obtained Rfree and Sfree.

3.2 Parameter Transition between Tasks: Convolutional

Layers

In addition, we can decompose the weights of a convolutional layer in a similar way. Sup-

pose that the size of the convolutional kernel is d × d. The base weights of the convolution

layer for task T0 would be a tensor Wbase
conv ∈ R

d×d×J×I . Similar to Eq. 3.2, a low-rank weight

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 19

perturbation for transforming Wbase
conv to Wconv,1 ∈ R

d×d×J×I is,

Wconv,1 = Rconv,1 ⊗Wbase
conv ⊗ Sconv,1 ⊕ Bconv,1 (3.7)

where Rconv,1 ∈ R
1×1×J×1, Sconv,1 ∈ R

1×1×1×I and Bconv,1 ∈ R
1×1×J×I is sparse low-rank tensor

(matrix), ⊗ and ⊕ are element-wise tensor multiplication and summation operators that will

automatically expand tensors to be of equal sizes, following the broadcasting semantics of

some popular scientific computation package like Numpy [42] or PyTorch [43]. Thus, the

number of parameters added through this kind of decomposition is still O(I + J).

To get the estimations of the introduced parameters, we can solve a similar LSE problem as

in Eq. 3.3 to obtain initial estimates Rfree
conv,1 and Sfree

conv,1. Then we take the average of the first

two dimensions to transform the discrepancy tensor (Wfree
conv,1−Rfree

conv,1⊗Wbase
conv⊗Sfree

conv,1) to be a

1×1× J× I tensor, which can then be applied a similar decomposition with the linear layers

to obtain the low-rank estimates of Bfree
conv,1, as described in the following section.

3.3 Model Increment Control via Low Rank Approxima-

tion

Furthermore, with the SVD solver indicated by SVD(·), the values of the low-rank decom-

position for Bfree can be obtained:

Ufree
1 ,Σ

free
1 ,V

free
1 ← SVD(Bfree

1) (3.8)

A k-rank approximation U(k)free
1 , Σ(k)free

1 , V(k)free
1 can be obtained by retaining their corre-

sponding leading principal submatrix of order k ≤ r. So we can obtain a k-rank approxi-

mation to Wfree
1 by

Wfree
1 ≈W(k)free

1 = Rfree
1 WbaseSfree

1 + B(k)free
1 , (3.9)

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 20

W𝑏𝑎 𝑠𝑒 +W1 = B1R1

S1

W𝑏𝑎 𝑠𝑒 +W1

V1
𝑘 ⊤

Σ1
(𝑘)

≈ U1
(𝑘)R1

S1

Figure 3.3: Low-rank approximation on weights

with

B(k)free
1 = U(k)free

1 Σ
(k)free
1 (V(k)free

1)⊤ (3.10)

as illustrated in Fig. 3.3

Remark Note that the number of parameters in the original weights Wfree ∈ RJ×I is

sizeof{Wfree} = JI. After this approximation, we only need to store the weights Rfree,

Sfree, U(k)free, Σ(k)free, V(k)free for a new task, whose parameter number is

sizeof{Rfree,Sfree,U(k)free,Σ(k)free,V(k)free} = J + I + kJ + k + kI = (J + I)(k + 1) + k (3.11)

Thus, the incremental ratio is ρ = (J+I)(k+1)+k
JI ≪ 1 in practice.

Finally, we can initialize the values in Eq. 3.2 with Rfree
1 , Sfree

1 , U(k)free
1 , Σ(k)free

1 and V(k)free
1 , and

then fine-tune their estimates by minimizing the empirical risk on task T1 to achieve better

performance. The proposed training technique not only enables well-behaved estimations

of the low-rank components but sheds light on how to select approximation ranks of differ-

ent layers to achieve an optimal trade-off between model performance and parameter size,

as discussed in Section 3.4.

3.4 Rank Selection via Hessian Aware Perturbation

Sections 3.1 and 3.2 present how the low-rank approximation can be used to transfer knowl-

edge and reduce the number of parameters for a single layer across the tasks in continual

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 21

learning. However, how to select the preserved rank for each layer remains unsolved.

Generally, more ranks can benefit the approximation process introduced in the previous

section. However, keeping more ranks will naturally lead to a higher model increment.

Thus, the preserved rank number for each layer within the model should be selected prop-

erly. In our work, we tackle this problem by measuring how the empirical risk L(W) is

influenced by the introduced low-rank parameters across different layers so that we can

assign a larger rank to a layer that contributes more to the risk.

Inspired by the previous studies [44, 45] about the relationship between Hessian and quan-

tization errors, we establish the following Theorem 1. The full proof is presented in Ap-

pendix B.

Theorem 1. Assume that a neural network of L layers with vectorized weights (ω⋆1 , . . . ,ω
⋆
L)

that have converged to local optima, such that the first and second order optimally condi-

tions are satisfied, i.e., the gradient is zero, and the Hessian is positive semi-definite. Sup-

pose a perturbation ∆ω⋆1 applied to the first layer weights, then we have the loss change

∣∣∣L(ω⋆1 − ∆ω
⋆
1 , . . . ,ω

⋆
L) − L(ω⋆1 , . . . ,ω

⋆
L)
∣∣∣ ≤ 1

2
∥H1∥F · ∥∆ω

⋆
1 ∥

2
F + o

(
∥∆ω⋆1 ∥

2
F

)
, (3.12)

where H1 = ∇
2L(ω⋆1) is the Hessian matrix at only the variables of the first layer weights.

Remark Theorem 1 demonstrated the relationship between the perturbation∆w⋆1 on weights

and the effect on the loss objective ∆L. Specifically, when a weight perturbation ∆w⋆1 is

applied to the related weight matrix w⋆1 , the perturbation introduced on the loss function

is upper bounded mainly by the product of the Frobenius norms of Hessian matrix (i.e.,

∥H1∥F) and weight perturbation (i.e., ∥∆ω⋆1 ∥
2
F). It further inspires us to follow this rule to

select the proper ranks by considering the low-rank approximation in the previous section

as a perturbation to the model weights.

In our low-rank perturbation setting, we assume that Wfree
1 by warm-up training is a local

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 22

optimum. By Theorem 1, we consider the difference between Wfree
1 and its k-rank approx-

imation W(k)free
1 as a perturbation ∆Wfree

1 for the weights. Then the amount of perturbation

can be computed with the low-rank approximation error:

∥∆Wfree
1 ∥F =∥W

free
1 −W(k)free

1 ∥F =

√√
r∑

i=k+1

σ2
i (3.13)

where {σi}
r
i=1 are the singular values of Wfree

1 and r is the matrix rank of Wfree
1 .

Thus, according to Theorem 1, the influence on the loss introduced by this low-rank weight

approximation is given by

∣∣∣L(W(k)free
1) − L(Wfree

1)
∣∣∣ ≤ 1

2
∥H1∥F ·

 r∑
i=k+1

σ2
i

 + o

 r∑
i=k+1

σ2
i

 . (3.14)

where the Hessian matrix H1 can be approximated by the empirical negative Fisher infor-

mation [46], i.e., the outer product of the gradient vector for the layer weights. So ∥H1∥F

can be approximated by ∥g1∥
2
2, where g1 =

∂L
∂W1
|W1=Wfree

1
. Finally, we can quantitatively

measure the contribution of the loss of adding a marginal rank k for a particular layer l

by

∥gl∥
2
2σ

2
l,k (3.15)

where gl is the gradient for the layer-l weights and σl,k is the k-th singular value of the

free-trained layer-l weights, and sort them by the descending order of importance.

For a given loss approximation rate α (e.g., 0.9), we can determine the rank kl (with kl ≤ rl

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 23

𝜎2,2 𝜎2,4

…

𝜎2,1 𝜎2,3 𝜎2,𝑟2

Layer 2 g2

…

𝜎3,2

𝜎3,1 𝜎3,3

𝜎3,4

𝜎3,𝑟3

Layer 3 g3
g1

2𝜎1,2
2 g1

2𝜎1,4
2

g1
2𝜎1,1

2 g1
2𝜎1,3

2 g1
2𝜎1,𝑟1

2…

𝜎1,2

𝜎1,1

𝑘1 = 2

𝜎2,2

𝜎2,1 𝜎2,3

𝑘2 = 3

𝜎3,2

𝜎3,1

𝑘3 = 2

…

𝛼 ⋅ 100%

Model

…

…

…

…

…

𝜎1,2

𝜎1,1 𝜎1,3

𝜎1,4

𝜎1,𝑟1

Layer 1 g1

Figure 3.4: Rank selection process (an example for L = 3)

where rl is the total rank of the layer l) for each layer l = 1, ..., L by solving

min
k1,...,kL

L∑
l=1

kl∑
i=1

∥gl∥
2
2σ

2
l,i

s.t.
L∑

l=1

kl∑
i=1

∥gl∥
2
2σ

2
l,i ≥ α ·

 L∑
l=1

rl∑
i=1

∥gl∥
2
2σ

2
l,i

(3.16)

Specifically, Fig. 3.4 provides an example of Eq. 3.16 for the rank selection process within

a three-layer neural network. Firstly, the gradient information gl and the rank values

σl,1, . . . , σl,rl are obtained as described in the previous sections. Secondly, the contribu-

tions of each rank within each layer of this three-layer model can be measured by the

gradient-weighted singular values ∥gl∥
2σ2

l,k and they can be sorted with the descending or-

der. Then, given a predefined approximation rate α, the ranks are truncated to achieve such

an explanation ratio and the number of preserved ranks kl for each layer can be accordingly

determined (i.e., k1 = 2, k2 = 3, k3 = 2 for three layers in this example, respectively.) Fi-

nally, the parameters of the preserved ranks are adopted to reinitialize the model parameters

for further fine-tuning.

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 24

Remark Eq. 3.16 enables a dynamic scheme for the trade-off between approximation pre-

cision and computational efficiency. For a given approximation rate, the model can auto-

matically select the ranks for all the layers in the model.

3.5 Regularization and Pruning on Parameters

The proposed low-rank perturbation method introduced extra parameters compared to a

single-task model. For these parameters, we can further apply regularizations to avoid

overfitting. To control the model growth, we can further prune the introduced parameters

to improve memory efficiency.

Firstly, by following [2], we can add regularizations on U(k)free, V(k)free, Rfree,Sfree since

second task T1 to enhance the sparsity of the task-private parameters (see Appendix C for

more discussion for this fine-tuning objective):

Lreg(W) =
L∑

l=1

[
λ0

(
∥U(kl)free

t,l ∥ + ∥V(kl)free
t,l ∥

)
+ λ1

(
∥Rfree

t,l ∥
2
2 + ∥S

free
t,l ∥

2
2 + ∥U

(kl)free
t,l ∥22 + ∥V

(kl)free
t,l ∥22

)]
(3.17)

where λ0, λ1 are balancing coefficients, and the subscripts (t, l) indicate the relevant weights

for layer l in task t.

Thus, the total optimization objective for the task Tt with t ≥ 1 with the regularization

becomes:

min
W

[
L(W;Dt) +Lreg(W)

]
(3.18)

Secondly, we can also prune the extra parameters by setting zero values for elements whose

absolute values are lower than a certain threshold. The threshold can be selected in the

following three ways:

(1) Pruning via absolute value: a fixed tiny positive value (e.g., 10−5) is set as the thresh-

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 25

Algorithm 1 Hessian Aware Low-Rank Perturbation (HALRP) for Continual Learning
Require: Task data {Dt}

T−1
t=0 ; total epochs for one task n; rank estimation epochs nr; param-

eter increments limitation ratio p, approximation rate α.
Ensure: Base weights Wbase and {W⋆

t }
T−1
t=1 for each task.

1: Obtain Wbase = arg minWL(W;D0) on task T0.
2: for t = 1, · · · ,T − 1 do
3: Warm-up pre-training on task Tt for nw epochs: Wfree

t = arg minWL(W;Dt).
4: Low-rank decomposition for all layers via Eq. 3.2 or Eq. 3.7: Wfree

t = Rfree
t WbaseSfree

t +

Bfree
t .

5: Apply Ufree
t ,Σ

free
t ,Vfree

t ← SVD(Bfree
t).

6: Select the ranks kl for each layer l through Eq. 3.16.
7: Re-initialize the task Tt parameters with Eq. 3.9.
8: Fine-tuning on Tt for (n − nw) epochs with:

W⋆
t = arg min

W

[
L(W;Dt) +Lreg(W)

]
(3.19)

9: If the size of the introduced parameters is larger than a threshold p, apply the pruning
method in Section 3.5.

10: end for
11: return Wbase and {W⋆

t }
T−1
t=1 .

old and parameters less than this threshold will be set as zeros;

(2) Pruning via relative percentile: to control the ratio of increased parameter size over

a single-task model size under γ (e.g., 40%), the pruning threshold is selected as the

(1 − γ)-percentile of the low-rank parameters among all layers of all tasks.

(3) Pruning via mixing absolute value and relative percentile: we set a threshold as the

maximum of the thresholds obtained from the above two methods to prune using

relative percentiles.

3.6 Summary of Proposed Algorithm

In the previous sections, we described the model update from T0 to T1 with an illustrative

example. The overall description of our proposed HALRP3 is shown in Algorithm 1.

3Our source code is at: https://github.com/lijiaqi/HALRP

https://github.com/lijiaqi/HALRP

Chapter 3 – Hessian-aware Low-rank Perturbation for Continual Learning 26

At the start, the learner was trivially trained on the first task T0 to obtain Wbase. As for each

incoming task Tt with t = 1, ...,T −1, we first train the model without any constraints for nw

epochs to get a rough initialization Wfree
t . Secondly, we apply the low-rank decomposition

on all layers with Eq. 3.2 (for linear layers) or Eq. 3.7 (for convolutional layers) by solving

a least square error minimization problem described in Eq. 3.4. Then, we further apply the

singular value decomposition for the residual matrix Bfree
t . With this decomposition, we can

measure the Hessian-aware perturbations and the rank kl for each layer l through Eq. 3.16.

After the rank selection, we can re-initialize the model parameters with the approximated

weights W(k)free
t ≈ Wfree

t and then fine-tune the model for the remaining n − nw epochs to

obtain the optimal weights for Tt. As for the inference stage, the base weights and the

task-specific parameters can be adopted to make predictions for each task.

27

Chapter 4

4 Experimental Results

We first compare the accuracy over several recent baselines with standard CL protocol.

Then, we studied the task order robustness, forgetting, memory cost, training time effi-

ciency, and the ablation study to show the effectiveness further. We briefly describe the

experimental setting herein while delegating more details in Appendix E.

4.1 Experimental Settings

Datasets: We evaluate the algorithm on the following datasets:

• CIFAR100-Split: split the classes into 10 groups; each group is a 10-way classifica-

tion task.

• CIFAR100-SuperClass: it consists of images from 20 superclasses of the CIFAR-

100 dataset; each superclass contains five different class and forms a 5-way classifi-

cation task.

• Permuted MNIST (P-MNIST): obtained from the MNIST dataset [47] by random

permutations of the original MNIST pixels. We follow [48] to create 10 sequential

tasks using different permutations, and each task has 10 classes.

• Five-dataset: It uses a sequence of 5 different benchmarks including CIFAR10 [49],

MNIST [47], notMNIST [50], FashionMNIST [51] and SVHN [52]. Each bench-

mark contains 10 classes.

• Omniglot Rotation [53]: 100 12-way classification tasks. The rotated images in 90◦,

180◦, and 270◦ are generated by following [2].

• TinyImageNet: a variant of ImageNet [54] dataset containing 200 classes. Here,

Chapter 4 – Experimental Results 28

Dataset #Tasks #Classes/Task #Train samples/Task #Test samples/Task
CIFAR100-Split 10 10 5000 1000

CIFAR100-Superclass 20 5 2500 500
PMNIST 10 10 60000 10000

Five-dataset 5 10 50000∼73257 10000∼26032
OmniglotRotation 100 12 720 240

TinyImageNet (20-split) 20 10 5000 500
TinyImageNet (40-split) 40 5 2500 250

Table 4.1: Statistics of datasets adopted in the experiments.

we adopted two settings, one with 20 10-way classification tasks (TiyImageNet

20-split) and another more challenging setting with 40 5-way classification tasks

(TinyImageNet 40-split).

The detailed statistics of the adopted datasets are summarized in Table 4.1.

Baselines: We compared the following baselines by the publicly released code or our re-

implementation:

• STL: single-task learning with individual models for each task.

• MTL: multi-task learning with a single for all the tasks simultaneously [55].

• EWC: Elastic Weight Consolidation method proposed by [7].

• L2: the model is trained with L2-regularizer [7] λ · ∥θt − θt−1∥
2
2 between the current

model and the previous one.

• BN: The Batch Normalization method [56].

• BE: The Batch Ensemble method proposed by [14].

• APD: The Additive Parameter Decomposition method [2]. Each layer of the target

network was decomposed into task-shared and task-specific parameters with mask

vectors.

• APDfix: We modify the APD method by fixing the model parameters while only

learning the mask vector when a new task comes to the learner.

Chapter 4 – Experimental Results 29

• IBPWF: Determine the model expansion with non-parametric Bayes and weights

factorization [12].

• GPM [5]: A replay-based method by orthogonal gradient descent.

• WSN [1]: Introduce learnable weight scores to generate task-specific binary masks

for optimal subnetwork selection.

• BMKP [57]: A bilevel memory framework for knowledge projection: a working

memory to ensure plasticity and a long-term memory to guarantee stability.

• CLR [21]: An expansion-based method by applying Channel-Wise Linear Repro-

gramming transformations on each convolutional layer in the base model. This

method originally relies on a model pre-trained on an extra dataset (i.e., ImageNet-

1K) disjoint with the above task datasets, rather than the train-from-scratch manner

adopted by other baselines. To make a fair comparison, we pre-trained the base

model on the first task of the above task datasets and applied it to all tasks.

• PRD [58]: Prototype-sample relation distillation with supervised contrastive learn-

ing.

• IRU [3]: Furthermore, we also compared our methods with IRU [3], a method

also based on the low-rank decomposition. However, due to the code limitation1 of

IRU [3], we further implemented our method under the dataset protocol and model

architecture setting in [3] and compared our performance with the results reported

in [3]. For the implementation of all the methods, we applied the same hyperpa-

rameters (e.g., batch size, training epochs, regularization coefficient) to realize fair

comparisons. See Appendix E.3 for more details.

Model Architecture: For CIFAR100-Split, CIFAR100-SuperClass, and P-MNIST datasets,

1IRU authors only released the implementation on the multi-layer perception and did not release the code
for convolutional neural networks. See https://github.com/CSIPlab/task-increment-rank-update for more de-
tails.

https://github.com/CSIPlab/task-increment-rank-update

Chapter 4 – Experimental Results 30

we adopted LeNet as the base model. As for Five-dataset and TinyImageNet datasets, we

evaluated with AlexNet and reduced ResNet18 networks wehre the latter has reduced fil-

ters compared to standard ResNet18 (see Appendix E.2). And we followed [1] to use an

extended LeNet model on the Omniglot-Rotation dataset.

Evaluation Metrics: We mainly adopted the average of the accuracies of the final model

on all tasks (we will call “accuracy” or “Acc.” later) for the empirical comparisons. Denote

At,i as the accuracy on task i after training on task t (with i ≤ t). The final average accuracy

(Acc.) can be defined as:

Acc ≜
1
T

T−1∑
i=0

AT−1,i (4.1)

As for the forgetting statistics, we applied backward transfer (BWT) [5] as a quantitive

measure:

BWT ≜
1
T

T−1∑
i=0

(Ai,i − AT−1,i) (4.2)

Especially, we also compared the order-robustness of different methods by calculating the

Order-normalized Performance Disparity that will be introduced later. For each single

experiment (e.g., each task order), we repeat with five random seeds to compute the average

and standard error.

4.2 Empirical Accuracy

We provide the average accuracies on the six benchmarks in Table 4.2, Table 4.3 and Ta-

ble 4.4. From these numerical results, we can conclude our method achieved state-of-the-

art performance compared to the baseline methods.

According to the evaluations on CIFAR100-Split and CIFAR100-SuperClass in Table 4.2,

we can observe that our proposed HALRP outperforms the recent methods (e.g., GPM

(replay-based), APD and WSN (expansion-based)) with a significant margin (e.g., with

Chapter 4 – Experimental Results 31

CIFAR100-Split (with LeNet) CIFAR100-SuperClass (with LeNet)
Method 5% 25% 50% 100% 5% 25% 50% 100%

STL 45.13 ± 0.04 59.04 ± 0.03 64.38 ± 0.06 69.55 ± 0.06 43.76 ± 0.68 56.09 ± 0.07 60.06 ± 0.06 64.47 ± 0.05
MTL 44.95 ± 0.11 60.21 ± 0.28 65.65 ± 0.20 69.70 ± 0.28 40.43 ± 0.15 49.88 ± 0.27 53.83 ± 0.27 55.62 ± 0.41

L2 37.15 ± 0.21 48.86 ± 0.28 53.35 ± 0.34 58.09 ± 0.43 34.03 ± 0.08 43.40 ± 0.27 46.10 ± 0.28 48.75 ± 0.24
EWC 37.76 ± 0.20 50.09 ± 0.38 55.65 ± 0.40 60.53 ± 0.26 33.70 ± 0.32 44.02 ± 0.39 47.35 ± 0.47 49.97 ± 0.39
BN 37.60 ± 0.17 50.70 ± 0.28 54.79 ± 0.28 60.34 ± 0.40 36.76 ± 0.14 48.20 ± 0.16 51.43 ± 0.16 55.44 ± 0.19
BE 37.63 ± 0.15 51.13 ± 0.3 55.37 ± 0.28 61.09 ± 0.33 37.05 ± 0.20 48.48 ± 0.14 51.78 ± 0.17 55.97 ± 0.17
APD 36.60 ± 0.14 54.59 ± 0.07 59.71 ± 0.03 66.54 ± 0.03 32.81 ± 0.29 49.00 ± 0.06 52.64 ± 0.19 60.54 ± 0.23
APDfix 35.66 ± 0.33 54.62 ± 0.11 59.86 ± 0.24 66.64 ± 0.14 24.27 ± 0.22 48.71 ± 0.11 53.42 ± 0.12 61.47 ± 0.16
IBWPF 38.35 ± 0.26 47.87 ± 0.25 53.46 ± 0.13 57.13 ±0.15 33.09 ± 0.50 51.32 ± 0.27 52.52 ± 0.26 55.98 ± 0.33
GPM 32.86 ± 0.35 51.61 ± 0.22 57.60 ± 0.19 64.49 ± 0.10 34.88 ± 0.30 47.31 ± 0.51 51.23 ± 0.55 57.91 ± 0.28
WSN 37.01 ± 0.63 55.21 ± 0.59 61.56 ± 0.42 66.56 ± 0.49 36.89 ± 0.49 52.42 ± 0.62 58.23 ± 0.38 61.81 ± 0.54
BMKP 42.36 ± 0.90 56.81 ± 1.05 62.87 ± 0.60 66.95 ± 0.53 37.26 ± 0.87 53.62 ± 0.59 57.76 ± 0.66 61.97 ± 0.19
CLR 36.46 ± 0.29 51.44 ± 0.35 57.00 ± 0.43 61.83 ± 0.60 37.93 ± 0.25 49.82 ± 0.56 53.86 ± 0.63 57.07 ± 0.60
PRD 31.58 ± 0.29 56.07 ± 0.22 59.61 ± 0.33 62.74 ± 0.45 33.34 ± 0.48 52.99 ± 0.28 55.85 ± 0.45 57.80 ± 0.50

HALRP 45.09 ± 0.05 58.94 ± 0.09 63.61 ± 0.08 67.92 ± 0.17 43.84 ± 0.04 54.93 ± 0.04 58.68 ± 0.11 62.56 ± 0.30

Table 4.2: Accuracies↑ on CIFAR100-Split/-SuperClass with different percentages of train-
ing data.

an improvement about 1% ∼ 3%). Especially, we also evaluated the performances of

all the methods under different amounts of training data (i.e., 5% ∼ 100%) on these two

benchmarks. It was interesting to see that our proposed method had advantages in dealing

with extreme cases with limited data. Compared to other methods, the performance margins

become more significant with fewer training data. For example, on CIFAR100-Split, our

proposed HALRP outperforms APD and WSN with an improvement of 1.28% and 1.36%

respectively, but these margins will dramatically rise to ∼ 8% if we reduce the training set

to 5% of the total data. These results showed that our method can work better in these

extreme cases.

Especially, we also conducted experiments on the Omniglot-Ratation dataset to demon-

strate the scalability of our method. We follow [1] to learn the 100 tasks under the default

sequential order. The average accuracy was shown in Table 4.3b. We demonstrate that our

method is applicable to a large number of tasks and can still achieve comparable perfor-

mance with limited model increment.

On Five-dataset, we adopted two types of neural network, i.e., AlexNet and ResNet18, to

verify the effectiveness of HALRP under different backbones. We can observe that our

Chapter 4 – Experimental Results 32

P-MNIST
LeNet

Method Acc.↑ MOPD↓ AOPD↓

STL 98.24±0.01 0.15 0.09
MTL 96.70±0.07 1.58 0.81
L2 79.14±0.70 29.66 18.94
EWC 81.69±0.86 21.51 12.16
BN 81.04±0.15 19.77 8.18
BE 83.80±0.08 16.76 6.88
APD 97.94±0.02 0.25 0.16
APDfix 97.99±0.01 0.10 0.11
GPM 96.69±0.02 0.45 0.27
WSN 97.91±0.02 0.36 0.22
BMKP 97.08±0.01 3.21 1.04
CLR 88.55±0.20 14.97 7.88
PRD 83.16±0.17 7.91 6.16

HALRP 98.10±0.03 0.47 0.24

(a) Results on P-MNIST.

Omniglot-Rotation
LeNet

Method Acc.↑ MOPD↓ AOPD↓

STL 80.93±0.18 20.83 3.42
MTL 93.95±0.11 6.25 2.11
L2 69.86±1.23 17.23 6.96
EWC 69.75±1.28 21.39 7.02
BN 77.08±0.86 14.41 5.58
BE 78.24±0.69 17.17 5.53
APD(⋆) 81.60±0.53 8.19 3.78
APDfix 78.14±0.12 6.53 2.63
GPM 80.41±0.16 28.33 13.02
WSN 82.55±0.44 17.09 7.57
BMKP 81.12±2.71 26.53 16.17
CLR 72.75±1.41 24.30 12.27
PRD 74.49±2.78 49.17 18.44

HALRP 83.08±0.73 10.36 3.91

(b) Results on Omniglot.
Five-dataset

AlexNet ResNet-18

Method Acc.↑ MOPD↓ AOPD↓ Acc.↑ MOPD↓ AOPD↓

STL 89.32±0.06 0.74 0.30 94.24±0.05 0.67 0.24
MTL 88.02±0.18 2.08 0.68 93.82±0.06 0.67 0.30
L2 78.24±2.00 35.11 15.35 85.94±2.79 37.03 12.72
EWC 78.44±2.20 33.29 13.18 86.32±2.80 33.84 11.80
BN 82.35±2.45 34.83 12.56 88.36±2.21 30.22 9.55
BE 82.91±2.37 33.91 11.63 88.75±2.14 29.22 8.97
APD 83.70±0.90 4.80 3.45 92.18±0.28 3.50 1.54
APDfix 84.03±1.24 5.50 3.66 91.91±0.48 6.74 1.98
GPM 87.27±0.61 4.54 1.88 88.52±0.28 6.97 2.82
WSN 86.74±0.40 8.54 2.89 92.58±0.39 4.62 1.21
BMKP 84.03±0.55 9.32 3.07 92.57±0.65 9.08 2.13
CLR 86.68±1.41 19.78 7.08 90.04±1.04 14.05 4.51
PRD 74.74±0.69 17.53 9.23 88.45±0.93 14.17 5.37

HALRP 88.81±0.31 4.28 1.31 93.39±0.30 4.39 1.27

(c) Results on Five-dataset with different backbones.

Table 4.3: Performance on P-MNIST, Five-dataset, Omniglot-Rotation. We ran exper-
iments with five different task orders generated by different seeds. As for Omniglot-
Rotation, we follow [1] to show the scalability under the original sequential order. Acc.↑
refers to the empirical accuracy, MOPD↓ and AOPD↓ refer to the task order robustness as
discussed in Section 4.3. Results with ⋆ are from [2].

Chapter 4 – Experimental Results 33

TinyImageNet 20-split TinyImageNet 40-split

AlexNet ResNet18 AlexNet ResNet18

Method Acc.↑ MODP↓ AODP↓ Acc.↑ MODP↓ AODP↓ Acc.↑ MODP↓ AODP↓ Acc.↑ MODP↓ AODP↓

STL 66.78±0.18 6.20 3.43 67.00±0.30 5.87 2.87 74.65±0.17 8.16 4.36 74.08±0.25 8.13 4.08
MTL 71.23±0.54 6.87 3.42 73.64±0.46 6.94 3.31 78.80±0.25 7.74 3.92 80.05±0.22 9.07 4.04
L2 56.33±0.22 11.93 5.72 60.80±0.56 8.27 4.23 63.47±1.35 16.27 7.42 65.59±1.03 14.80 7.00
EWC 56.55±0.22 10.93 5.53 60.88±0.56 7.54 4.63 64.11±1.36 17.87 6.91 66.54±0.94 14.67 6.99
BN 57.20±0.11 12.07 5.37 61.03±0.65 9.73 4.24 64.04±1.15 19.07 7.23 66.17±1.75 15.33 6.92
BE 57.62±0.41 11.80 4.98 61.52±0.68 7.00 4.09 64.70±1.08 23.47 6.97 66.77±1.61 16.94 7.07
APD 67.26±0.38 12.00 5.43 68.76±0.58 9.86 4.33 73.88±0.46 8.53 5.04 73.85±0.40 11.46 5.57
APDfix 63.59±0.25 5.40 3.68 67.69±0.41 6.54 3.64 67.91±1.33 23.47 8.95 58.11±2.11 26.93 11.70
GPM 60.84±0.32 11.00 4.44 48.09±1.07 9.27 4.80 70.14±0.38 10.90 4.52 43.40±7.68 48.80 38.80
WSN 65.73±0.21 5.06 3.31 68.27±0.47 8.40 4.52 73.46±1.27 8.00 4.23 75.29±0.46 12.27 4.75
BMKP 65.01±0.41 5.87 3.37 67.45±0.59 10.60 6.69 73.57±0.21 9.60 4.31 74.84±0.63 12.90 4.95
CLR 57.29±0.39 8.80 4.42 61.77±0.47 10.27 5.42 65.22±0.49 9.86 5.74 67.59±0.92 16.54 9.30
PRD 46.49±0.30 15.40 8.33 49.65±0.57 19.33 11.59 53.54±0.45 19.74 10.02 63.78±0.59 20.27 7.93

HALRP 66.68±0.20 5.60 3.43 70.09±0.29 4.67 3.20 74.01±0.25 7.47 4.12 75.53±0.50 7.87 4.48

Table 4.4: Results on TinyImageNet with different backbones. We ran experiments with
five different task orders generated by different seeds. Acc.↑ refers to the empirical accu-
racy, MOPD↓ and AOPD↓ refer to the task order robustness as discussed in Section 4.3.

method consistently outperforms the other methods under different backbones, indicating

the applicability and flexibility for different model choices. Compared with the analyses in

the following part, we can conclude that our method is also robust under different orders of

tasks.

On TinyImageNet dataset, we evaluated our methods on two settings, one with 20-split and

another with 40-split, and the results are posted in Table 4.4. According to the empirical

results, we can conclude that our proposed method can perform well on this challenging

dataset, with a better trade-off between the average accuracy and task order robustness.

Compared to the previous methods APD and APDfix that aim to address the issue of task

order robustness, our HALRP can perform well in a more consistent manner. Further-

more, our methods also have advantages regarding computational efficiency and memory

consumption that we will discuss later in the following sections.

Additionally, we also provide comparisons with IRU [3] that is also based on low-rank

decomposition. We note that the official code of IRU only contains a demo for multi-layer

perceptron (MLP), and no complete code for the convolutional network (even LeNet) can

be found. Due to this limitation, we cannot implement IRU under our setting. To make fair

Chapter 4 – Experimental Results 34

PMNIST-20
(MLP)

CIFAR100-20
(ResNet18)

CIFAR100-20
(MLP)

Multitask(⋆) 96.8 70.2 16.4
IRU(⋆) 85.60 ± 0.15 68.46 ± 2.52 65.90 ± 2.16
HALRP 92.02 ± 0.04 73.71 ± 0.87 67.21 ± 0.68

Table 4.5: Accuracies under the IRU [3] setting. Results with ⋆ are reported in [3].

comparisons, we re-implement our method under the setting of IRU [3]. We describe the

setting as follows:

(1) Dataset Protocol: [3] generated 20 random tasks on PMNIST, rather than 10 tasks

in this work. Moreover, [3] randomly divided the CIFAR100 dataset into 20 tasks, rather

than the superclass-based splitting in this thesis. Thus, we denote the two datasets in [3] as

“PMNIST-20” and “CIFAR100-20”, to distinguish them from the “PMNIST” and “CIFAR100-

SuperClass” used in the common setting.

(2) Model Architecture: Apart from the architectures we introduced before, we also follow

the MLP used in [3], a three-layer (fully-connected) multilayer perceptron with 256 hidden

nodes.

The results of our method and IRU are listed in Table 4.5. We can conclude that our method

achieved a large performance gain compared to IRU.

In the following parts, we will further investigate the empirical performance under different

aspects, i.e., task order robustness, forgetting statistics, model growth, and time complexity.

We will show that our proposed method can achieve a better trade-off among these realistic

metrics apart from the average accuracy.

4.3 Robustness on Task Orders

We evaluate the robustness of these algorithms under different task orders. Following the

protocol of [2], we assessed the task order robustness with the Order-normalized Perfor-

mance Disparity (OPD) metric, which is computed as the disparity between the perfor-

Chapter 4 – Experimental Results 35

CIFAR100-Split (with LeNet) CIFAR100-SuperClass (with LeNet)
5% 25% 50% 100% 5% 25% 50% 100%

Method MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓ MOPD↓ AOPD↓
STL 1.96 1.38 3.44 2.41 3.68 2.57 4.38 3.13 2.52 1.48 3.64 1.44 2.52 1.48 2.64 1.45
MTL 1.44 0.93 1.34 0.87 1.66 0.71 1.54 0.84 6.96 2.66 12.04 4.89 13.96 5.74 13.48 6.29
L2 11.66 6.13 13.14 6.96 15.02 7.50 15.18 7.15 9.92 4.55 13.24 6.43 13.32 7.04 14.44 6.82
EWC 11.92 6.07 13.20 6.85 13.78 6.96 13.44 6.48 13.24 5.60 10.92 6.53 13.48 8.03 21.60 8.32
BN 11.70 5.95 13.28 7.37 12.40 6.91 13.92 7.90 8.52 3.35 11.20 3.99 11.64 4.05 11.40 4.25
BE 12.12 5.47 12.92 6.13 9.28 5.56 8.50 5.35 9.56 3.46 11.88 4.00 11.80 3.88 10.84 4.03
APD 11.42 7.21 6.48 3.77 8.00 4.10 8.88 4.07 26.56 12.98 8.64 4.39 8.28 4.48 6.72 3.26
APDfix 6.64 4.39 8.32 4.94 8.92 5.54 7.40 4.21 9.04 4.90 10.28 5.68 8.56 5.32 6.04 2.70
IBPWF 4.30 2.84 4.60 2.73 5.40 3.07 3.68 2.68 14.84 7.45 4.44 2.45 5.36 2.86 5.52 3.38
GPM 11.14 6.37 6.32 4.22 6.32 3.69 2.28 1.348 9.32 4.46 10.00 5.53 8.84 5.89 7.68 4.47
WSN 4.16 2.57 4.42 2.71 4.2 2.62 3.56 2.39 5.08 3.14 4.76 3.192 4.00 2.16 3.76 2.36
BMKP 12.98 7.63 13.22 6.50 6.52 4.30 8.34 3.35 11.72 6.03 13.32 5.27 11.08 4.43 3.72 1.99
CLR 13.50 7.14 12.77 6.13 8.90 5.82 9.37 5.34 10.00 4.01 7.67 3.84 6.60 3.71 9.00 4.06
PRD 5.80 3.80 4.60 2.66 4.16 2.63 5.20 3.16 7.47 4.28 8.33 3.95 5.33 3.29 5.00 2.86
HALRP 2.56 1.34 2.58 1.44 2.34 1.71 3.90 2.56 2.96 1.65 3.40 1.91 4.48 1.65 4.34 1.96

Table 4.6: Task order robustness evaluation on CIFAR100-Split/SuperClass with different
amounts of training data.

mance At of task t under R different task orders:

OPDt ≜ max{A1
t , . . . , A

R
t } −min{A1

t , . . . , A
R
t } (4.3)

In our experiments, we take five different task orders (i.e., R = 5. See Appendix E.1).

The maximum OPD (MOPD) and average OPD (AOPD) among all tasks are defined

by

MOPD ≜ max{OPD0, . . . ,OPDT−1}

AOPD ≜
1
T

T−1∑
t=0

OPDt

(4.4)

respectively.

Thus, smaller AOPD and MOPD indicate better task-order robustness. For CIFAR100-Split

and SuperClass datasets, we adopted different orders by following [2]. For the P-MNIST

and Five-dataset, we report the averaged results over five different task orders. The results

on MOPD and AOPD on P-MNIST, Omniglot-Rotation, Five-dataset, TinyImageNet, and

CIFAR100-Splits/-SuperClass are reported in Table 4.3a, Table 4.3b, Table 4.3c, Table 4.4

and Table 4.6, respectively. According to these results, we can conclude that our method

can achieve a better accuracy-robustness trade-off, compared to the baseline APD.

Chapter 4 – Experimental Results 36

The reason why our proposed HALRP achieved better task-order robustness can be credited

by the residual learning with respect to the model parameters. Specifically, the parameters

for each taskTt was represented as Wt = RtWbaseSt+U(k)
t Σ

base
t (V(k)

t)⊤, including the parame-

ters inherited from the task T0 and the residual private parameters of the task Tt. This form

was leveraged to benefit the performance robustness when the tasks come with different

orders.

5% 25% 50% 100%
Amount of data

1

0

1

2

3

Av
er

ag
e

Fo
rg

et
tin

g
(%

) L2
EWC
BE
BN
APD
APDfix
IBPWF
GPM
WSN
BMKP
CLR
PRD
HALRP

(a) Forgetting on 10 tasks in CIFAR100-Splits

5% 25% 50% 100%
Amount of data

0

2

4

6

8

Av
er

ag
e

Fo
rg

et
tin

g
(%

) L2
EWC
BE
BN
APD
APDfix
IBPWF
GPM
WSN
BMKP
CLR
PRD
HALRP

(b) Forgetting on 20 tasks in CIFAR100-SuperClass

20-split,Alex 20-split,Res 40-split,Alex 40-split,Res
split protocol and network

0

5

10

15

Av
er

ag
e

Fo
rg

et
tin

g
(%

) L2
EWC
BE
BN
APD
APDfix
GPM
WSN
BMKP
CLR
PRD
HALRP

(c) Forgetting on TinyImageNet. “Alex” for AlexNet and “Res” for ResNet18

Figure 4.1: Average Forgetting Statistics on CIFAR100-Splits/-SuperClass/TinyImageNet
Datasets

Chapter 4 – Experimental Results 37

4.4 Handling the Catastrophic Forgetting

We then evaluated the abilities of different methods for overcoming catastrophic forgetting.

We illustrate the average forgetting (BWT) on the CIFAR100 Split/SuperClass dataset un-

der different amounts of data in Fig. 4.1. Our proposed method can effectively address the

forgetting issue, comparable with some state-of-the-art methods like WSN. We further pro-

vide detailed forgetting statistics within five different task orders in Appendix D.2.

4.5 Model Increment Analysis

Another potential issue in continual learning is the model size growth as the number of

tasks increases. To compare increased model capacities among different methods, we vi-

sualize the ratio of increased parameters w.r.t to base model on the sequential 20 tasks of

CIFAR100-SuperClass dataset in Fig. 4.2a. We can observe that our proposed HALRP can

better control the model capacity increment. After the first four tasks, the model parameters

increased by around 19% and grow slowly during the last sixteen tasks (finally ≤ 28%).

In contrast, the model parameters of APD grew quickly by around 40% in the first two or

three tasks and kept a high ratio during the following tasks.

4.6 Computational Efficiency

We visualize the average time complexity ratio on the ten tasks of the PMNIST dataset in

Fig. 4.2b. The time complexity ratio is computed by dividing the accumulated time across

the tasks w.r.t. the time cost on the first task of single-task learning. We observe that our

proposed method is also computationally efficient with limited time consumption compared

to most baselines, with a better trade-off between performance and efficiency. Especially,

our method needs less training time compared to WSN, BMKP and APD.

Chapter 4 – Experimental Results 38

5 10 15 20
Number of tasks

0

50

100

150

200

Av
er

ag
e

In
cr

ea
se

 C
ap

ac
ity

 (%
) MTL

L2
EWC
BE
BN
APD
APDfix
GPM
BMKP
CLR
PRD
HALRP

(a)

1 2 3 4 5 6 7 8 9 10
Number of tasks

0

20

40

60

80

Ti
m

e
Co

m
pl

ex
ity

 R
at

io

MTL
STL
L2
BN
BE
EWC
APD
APDfix
GPM
WSN
BMKP
CLR
PRD
HALRP

(b)

Figure 4.2: (a) Average Capacity Increment ratio on CIFAR100-SuperClass w.r.t. the base
model. (b) Average Time Complexity Ratio on PMNIST.

The major reason that should account for the inefficiency of WSN is that this method needs

to optimize a weight score for each model parameter and then generate binary masks by

locating a certain sparsity quantile among the weight scores in each layer, which is very

time-consuming. Especially, we can observe a non-linear increase in behavior for BMKP

and APD in Fig. 4.2b. In BMKP, the pattern basis of the core knowledge space increases

along the sequential tasks and then the knowledge projection between two memory levels

will cost more time as the tasks pass. A severe drawback of APD method is that when

the task t arrives for learning, it needs to recover the parameters θ⋆i for all previous tasks

i = 0, 1, ..., t − 1 and then apply the regularization Σt−1
i=0∥θt − θ

⋆
i ∥

2
2 between the weights of

current task (i.e., θt) and each previous task (i.e., θ⋆i). This defect becomes more time-

consuming as more tasks arrive. Besides, an extra k-means clustering process is needed for

the hierarchical knowledge consolidation among tasks in APD. The difference of compu-

tational efficiency becomes more significant on the challenging scenarios with more tasks

and complex network architectures. As for PRD, it is inefficient as this method converges

slower than other methods, due to the reason that it adopted supervised contrastive loss

instead of cross-entropy loss.

Chapter 4 – Experimental Results 39

1 20 40 60 80 100
Number of tasks

0

20

40

60

80

GP
U

M
em

or
y

Re
qu

es
te

d
(G

B)

0

MTL
STL
L2
BE
BN
EWC
APD
APDfix
WSN
GPM
BMKP
CLR
PRD
HALRP

1 20 40 60 80 100
Number of tasks

1

2

3

4

5

0

(a) GPU memory usage for Omniglot-Rotation with LeNet

0 1 10 20 30 40
Number of tasks

0

10

20

30

40

GP
U

M
em

or
y

Re
qu

es
te

d
(G

B) MTL
STL
L2
BE
BN
EWC
APD
APDfix
WSN
GPM
BMKP
CLR
PRD
HALRP

0 1 10 20 30 40
Number of tasks

2

4

6

8

(b) GPU memory usage for TinyImageNet 40-split with AlexNet

Figure 4.3: Empirical statistics of GPU memory usage. The local zone with a red rectangle
on the left is zoomed in on the right.

In addition to time efficiency, we also provided some quantitative comparisons to support

the memory efficiency of our proposed HALRP. To compare the GPU memory overhead

among different methods, we visualize the amount of GPU memory requested by each

method along the increase of task numbers during the training process. Specifically, we

tracked the GPU memory usage of two groups of representative and challenging experi-

mental scenarios:

(1) Omniglot Rotation dataset with LeNet, which has 100 tasks in total;

(2) TinyImageNet dataset with AlexNet, which has the largest number of parameters (i.e.,

#parameters ≈ 62 million, FLOPS ≈ 724 million in AlexNet) and the second largest number

of tasks (i.e., 40 tasks).

To make fair comparisons, we adopted the same hyperparameters (i.e., batch size, number

of threads used in the data loader) for all the methods under each scenario, and moved all

training-related operations (i.e., Singular Value Decomposition) onto the GPU devices. To

Chapter 4 – Experimental Results 40

monitor the GPU memory usage, we embedded some snippets with the Python package

GPUtil2 into the training code. The amount of GPU memory requested during the training

process is shown in the following Figure 4.3.

According to the visualization results in Figure 4.3, we can observe that our proposed

HALRP is still memory efficient compared to other baseline methods under these two chal-

lenging scenarios. Specifically, under the scenario for Omniglot Rotation datasets with

LeNet (Fig. 4.3a), we can observe that the amount of GPU memory requested by HALRP

increased along the tasks but finally did not exceed 4GB for these 100 tasks. In contrast,

APD and APDfix needed more GPU memory during training (i.e., maximum 80GB for

APD and 45GB for APDfix), making the related experiments hard to be reproduced un-

less on some specific GPUs like NVIDIA A100 80G. As for TinyImageNet dataset with

AlexNet, our proposed HALRP only requested about 3GB GPU memory at the end of the

40-th task, which is much lower than APD and APDfix that need at least 40GB memory

during training, as well as BMKP that needs up to 8GB.

To summarize, our proposed method HALRP will not introduce heavy memory overhead.

In contrast, it is memory-efficient. The empirical results show that the requirement of

training is easy to be satisfied and the scalability under the above challenging scenarios is

easy to achieve.

4.7 Ablation Studies

In this part, we provide ablation studies about some hyperparameters in our method.

Ablation study about the rank selection We report the additional studies to evaluate the

impacts of hyperparameter selection on the rank selection process. We conduct the follow-

ing ablations: (1) varying the warm-up epochs nw, (2) varying the loss approximation rate

2https://pypi.org/project/GPUtil/

https://pypi.org/project/GPUtil/

Chapter 4 – Experimental Results 41

Ablation Acc.↑ Size↓
α = 0.90, nw = 1 68.39 ± 0.13 0.234
α = 0.90, nw = 2 67.93 ± 0.19 0.234
α = 0.90, nw = 3 67.38 ± 0.12 0.234
α = 0.90, nw = 4 67.04 ± 0.08 0.234
α = 0.95, nw = 1 68.09 ± 0.15 0.234
α = 0.75, nw = 1 68.26 ± 0.11 0.217
α = 0.60, nw = 1 66.87 ± 0.23 0.165
α = 0.45, nw = 1 66.08 ± 0.14 0.100

LRP. 67.49± 0.13 0.234
Random LRP. 61.76 ± 0.18 0.235

Table 4.7: Ablation studies. “Acc.↑” refers to the accuracy; “Size↓” refers to the relative
increment size ratio.

α, (3) LRP: omitting the importance estimation (step 6 of Algorithm 1), and (4) Random

LRP: replacing step 6 of Algorithm 1 with a random decomposition. The relevant results

on CIFAR100-Splits are depicted in Table 4.7. We can observe that the performance will

not significantly rise as nw increases, which indicates that only one epoch is enough for

warm-up training. When decreasing the approximate rate α, the accuracy will decay. Fur-

thermore, if we apply the random decomposition of the model, the accuracy will sharply

drop, indicating the necessity of our Hessian aware-decomposition procedure.

Effect of the regularization coefficients λ0 and λ1 To investigate the effects of the reg-

ularization coefficients introduced in Eq. 3.17, we further conducted experiments on two

datasets: CIFAR100-SuperClass and CIFAR100-Splits. We adopted values from {0, 1e −

6, 1e − 5, 1e − 4, 1e − 3} for λ0 and {5e − 4, 1e − 4, 5e − 5} for λ1. For each combination,

we reported MOPD/AOPD for task order robustness as well as the average accuracy on the

above two datasets, and the results are illustrated in Fig. 4.4. We can see that the regu-

larization coefficients λ0 and λ1 have potential effects on the final accuracy and task order

robustness. In our experiments, we choose the optimal hyperparameters by validation. Fur-

thermore, some selected hyperparameters are also applied to other baselines to realize fair

comparisons, e.g., we set L2-regularizer coefficient λ1 = 1e − 4 for all other methods on

CIFAR100-SuperClass and CIFAR100-Splits. See Appendix E.3 for more details.

Chapter 4 – Experimental Results 42

0.0 1e-6 1e-5 1e-4 1e-3
0

56

58

60

62

Ac
cu

ra
cy

(%
)

1=5e-4
1=1e-4
1=5e-5

0.0 1e-6 1e-5 1e-4 1e-3
0

2.5

5.0

7.5

10.0

12.5

OP
D(

%
)

MOPD: 1=5e-4
AOPD: 1=5e-4
MOPD: 1=1e-4
AOPD: 1=1e-4
MOPD: 1=5e-5
AOPD: 1=5e-5

(a) Accuracy↑ (left) and MOPD↓/AOPD↓ (right) on CIFAR100-SuperClass (20 tasks)

0.0 1e-6 1e-5 1e-4 1e-3
0

55

60

65

Ac
cu

ra
cy

(%
)

1=5e-4
1=1e-4
1=5e-5

0.0 1e-6 1e-5 1e-4 1e-3
0

5

10

15

20

OP
D(

%
)

MOPD: 1=5e-4
AOPD: 1=5e-4
MOPD: 1=1e-4
AOPD: 1=1e-4
MOPD: 1=5e-5
AOPD: 1=5e-5

(b) Accuracy↑ (left) and MOPD↓/AOPD↓ (right) on CIFAR100-Splits (10 tasks)

Figure 4.4: Effect of regularization coefficients λ0 and λ1.

43

Chapter 5

5 Conclusion and Future Work

5.1 Conclusion

In this work, we propose a low-rank perturbation method for continual learning. Specif-

ically, we approximate the task-adaptive parameters with low-rank decomposition by for-

mulating the model transition along the sequential tasks with parameter transformations.

We theoretically show the quantitative relationship between the Hessian and the proposed

low-rank approximation, which leads to a novel Hessian-aware framework that enables the

model to automatically select ranks by the relevant importance of the perturbation to the

model’s performance. The extensive experimental results show that our proposed method

performs better on the robustness of different task orders and the ability to address catas-

trophic forgetting issues.

5.2 Future Work

There are still some under-explored topics about applying our method to complex con-

tinual learning scenarios. For example, this thesis mainly considers the vision datasets

commonly-used in continual learning, neglecting the emerging text data and multi-modality

data in the community. How to improve the training and inference efficiency when adopting

our method on Transformer-based large language models is worthy of exploring. Besides,

some novel learning paradigms relevant to large language models, e.g., prompt tuning,

can also be considered when plugging our current work into the relevant models. We will

explore these problems in our future work.

44

References

[1] H. Kang, R. J. L. Mina, S. R. H. Madjid, J. Yoon, M. Hasegawa-Johnson, S. J. Hwang,

and C. D. Yoo, “Forget-free continual learning with winning subnetworks,” in Inter-

national Conference on Machine Learning. PMLR, 2022, pp. 10 734–10 750.

[2] J. Yoon, S. Kim, E. Yang, and S. J. Hwang, “Scalable and order-robust continual

learning with additive parameter decomposition,” in 8th International Conference on

Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,

2020.

[3] R. Hyder, K. Shao, B. Hou, P. Markopoulos, A. Prater-Bennette, and M. S. Asif,

“Incremental task learning with incremental rank updates,” in European Conference

on Computer Vision. Springer, 2022, pp. 566–582.

[4] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,

and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification

tasks,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7,

pp. 3366–3385, 2021.

[5] G. Saha, I. Garg, and K. Roy, “Gradient projection memory for continual learning,”

in International Conference on Learning Representations, 2021.

[6] M. Farajtabar, N. Azizan, A. Mott, and A. Li, “Orthogonal gradient descent for con-

tinual learning,” in International Conference on Artificial Intelligence and Statistics.

PMLR, 2020, pp. 3762–3773.

[7] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,

K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catas-

trophic forgetting in neural networks,” Proceedings of the national academy of sci-

ences, vol. 114, no. 13, pp. 3521–3526, 2017.

References 45

[8] S. Jung, H. Ahn, S. Cha, and T. Moon, “Continual learning with node-importance

based adaptive group sparse regularization,” Advances in Neural Information Pro-

cessing Systems, vol. 33, pp. 3647–3658, 2020.

[9] M. K. Titsias, J. Schwarz, A. G. d. G. Matthews, R. Pascanu, and Y. W. Teh, “Func-

tional regularisation for continual learning with gaussian processes,” arXiv preprint

arXiv:1901.11356, 2019.

[10] S. Wang, X. Li, J. Sun, and Z. Xu, “Training networks in null space of feature covari-

ance for continual learning,” in Proceedings of the IEEE/CVF conference on Com-

puter Vision and Pattern Recognition, 2021, pp. 184–193.

[11] Y. Kong, L. Liu, H. Chen, J. Kacprzyk, and D. Tao, “Overcoming catastrophic forget-

ting in continual learning by exploring eigenvalues of hessian matrix,” IEEE Trans-

actions on Neural Networks and Learning Systems, pp. 1–15, 2023.

[12] N. Mehta, K. Liang, V. K. Verma, and L. Carin, “Continual learning using a bayesian

nonparametric dictionary of weight factors,” in International Conference on Artificial

Intelligence and Statistics. PMLR, 2021, pp. 100–108.

[13] C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,”

Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[14] Y. Wen, D. Tran, and J. Ba, “Batchensemble: an alternative approach to efficient

ensemble and lifelong learning,” in 8th International Conference on Learning Repre-

sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,

2020.

[15] A. Chaudhry, N. Khan, P. Dokania, and P. Torr, “Continual learning in low-rank or-

thogonal subspaces,” Advances in Neural Information Processing Systems, vol. 33,

pp. 9900–9911, 2020.

References 46

[16] Y. Yang, Z.-Q. Sun, H. Zhu, Y. Fu, Y. Zhou, H. Xiong, and J. Yang, “Learning adap-

tive embedding considering incremental class,” IEEE Transactions on Knowledge and

Data Engineering, vol. 35, no. 3, pp. 2736–2749, 2023.

[17] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv

preprint arXiv:1606.04671, 2016.

[18] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with dynamically ex-

pandable networks,” in Proceedings of International Conference on Learning Repre-

sentations, 2017.

[19] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow: A continual structure

learning framework for overcoming catastrophic forgetting,” in International Confer-

ence on Machine Learning. PMLR, 2019, pp. 3925–3934.

[20] A.-A. Liu, H. Lu, H. Zhou, T. Li, and M. Kankanhalli, “Balanced class-incremental

3d object classification and retrieval,” IEEE Transactions on Knowledge and Data

Engineering, pp. 1–13, 2023.

[21] Y. Ge, Y. Li, S. Ni, J. Zhao, M.-H. Yang, and L. Itti, “Clr: Channel-wise lightweight

reprogramming for continual learning,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2023, pp. 18 798–18 808.

[22] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro, “Learning to

learn without forgetting by maximizing transfer and minimizing interference,” arXiv

preprint arXiv:1810.11910, 2018.

[23] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classi-

fier and representation learning,” in Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2017, pp. 2001–2010.

References 47

[24] B. Zhang, Y. Guo, Y. Li, Y. He, H. Wang, and Q. Dai, “Memory recall: A simple neu-

ral network training framework against catastrophic forgetting,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 33, no. 5, pp. 2010–2022, 2022.

[25] H. Chen, Y. Wang, and Q. Hu, “Multi-granularity regularized re-balancing for class

incremental learning,” IEEE Transactions on Knowledge and Data Engineering,

vol. 35, no. 7, pp. 7263–7277, 2023.

[26] G. Sun, Y. Cong, Y. Zhang, G. Zhao, and Y. Fu, “Continual multiview task learning

via deep matrix factorization,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 32, no. 1, pp. 139–150, 2021.

[27] S. Ho, M. Liu, L. Du, L. Gao, and Y. Xiang, “Prototype-guided memory replay for

continual learning,” IEEE Transactions on Neural Networks and Learning Systems,

2023.

[28] L. Wang, B. Lei, Q. Li, H. Su, J. Zhu, and Y. Zhong, “Triple-memory networks:

A brain-inspired method for continual learning,” IEEE Transactions on Neural Net-

works and Learning Systems, vol. 33, no. 5, pp. 1925–1934, 2021.

[29] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,”

Advances in neural information processing systems, vol. 30, 2017.

[30] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learn-

ing with a-gem,” International Conference on Learning Representations, 2019.

[31] C. Tai, T. Xiao, X. Wang, and W. E, “Convolutional neural networks with low-rank

regularization,” in 4th International Conference on Learning Representations, ICLR

2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Y. Ben-

gio and Y. LeCun, Eds., 2016.

References 48

[32] Y. Idelbayev and M. A. Carreira-Perpinán, “Low-rank compression of neural nets:

Learning the rank of each layer,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 8049–8059.

[33] A.-H. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavskỳ, V. Glukhov,

I. Oseledets, and A. Cichocki, “Stable low-rank tensor decomposition for compres-

sion of convolutional neural network,” in European Conference on Computer Vision.

Springer, 2020, pp. 522–539.

[34] L. Wang, M. Rege, M. Dong, and Y. Ding, “Low-rank kernel matrix factorization

for large-scale evolutionary clustering,” IEEE Transactions on Knowledge and Data

Engineering, vol. 24, no. 6, pp. 1036–1050, 2012.

[35] X. Zhu, S. Zhang, Y. Li, J. Zhang, L. Yang, and Y. Fang, “Low-rank sparse subspace

for spectral clustering,” IEEE Transactions on Knowledge and Data Engineering,

vol. 31, no. 8, pp. 1532–1543, 2019.

[36] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,

and W. Chen, “LoRA: Low-rank adaptation of large language models,” in

International Conference on Learning Representations, 2022. [Online]. Available:

https://openreview.net/forum?id=nZeVKeeFYf9

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, 2017.

[38] L. Zhang, L. Zhang, S. Shi, X. Chu, and B. Li, “Lora-fa: Memory-efficient low-rank

adaptation for large language models fine-tuning,” arXiv preprint arXiv:2308.03303,

2023.

[39] Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao,

“Adaptive budget allocation for parameter-efficient fine-tuning,” in The Eleventh

https://openreview.net/forum?id=nZeVKeeFYf9

References 49

International Conference on Learning Representations, 2023. [Online]. Available:

https://openreview.net/forum?id=lq62uWRJjiY

[40] B. Zi, X. Qi, L. Wang, J. Wang, K.-F. Wong, and L. Zhang, “Delta-lora: Fine-

tuning high-rank parameters with the delta of low-rank matrices,” arXiv preprint

arXiv:2309.02411, 2023.

[41] J. Li, Y. Lai, R. Wang, C. Shui, S. Sahoo, C. X. Ling, S. Yang, B. Wang, C. Gagné, and

F. Zhou, “Hessian aware low-rank perturbation for order-robust continual learning,”

IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 11, pp. 6385–

6396, 2024.

[42] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-

peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.

van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-

Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.

Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–

362, Sep. 2020.

[43] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-

son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in Proceedings

of 31st Conference on Neural Information Processing Systems, 2017.

[44] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq: Hessian

aware quantization of neural networks with mixed-precision,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019, pp. 293–302.

[45] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq-v2:

Hessian aware trace-weighted quantization of neural networks,” Advances in neural

information processing systems, vol. 33, pp. 18 518–18 529, 2020.

https://openreview.net/forum?id=lq62uWRJjiY

References 50

[46] F. Kunstner, P. Hennig, and L. Balles, “Limitations of the empirical fisher approxima-

tion for natural gradient descent,” Advances in neural information processing systems,

vol. 32, 2019.

[47] L. Deng, “The mnist database of handwritten digit images for machine learning re-

search,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[48] S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach, “Uncertainty-guided contin-

ual learning with bayesian neural networks,” arXiv preprint arXiv:1906.02425, 2019.

[49] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0, 2009. [Online].

Available: https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

[50] Y. Bulatov, “Notmnist dataset. google (books/ocr),” Tech. Rep.[Online]. Available:

http://yaroslavvb. blogspot. it/2011/09 . . . , Tech. Rep., 2011.

[51] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms.

[52] N. Yuval, W. Tao, C. Adam, B. Alessandro, W. Bo, and N. Andrew Y., “Reading

digits in natural images with unsupervised feature learning,” in In Proceedings of

NIPS Workshop on Deep Learning and Unsupervised Feature Learning. PMLR,

2011, pp. 522–539.

[53] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning

through probabilistic program induction,” Science, vol. 350, no. 6266, pp. 1332–1338,

2015.

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in 2009 IEEE conference on computer vision and

pattern recognition. Ieee, 2009, pp. 248–255.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

References 51

[55] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586–5609, 2022.

[56] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” in International conference on machine learning.

PMLR, 2015, pp. 448–456.

[57] W. Sun, Q. Li, J. Zhang, W. Wang, and Y.-a. Geng, “Decoupling learning and remem-

bering: A bilevel memory framework with knowledge projection for task-incremental

learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2023, pp. 20 186–20 195.

[58] N. Asadi, M. Davari, S. Mudur, R. Aljundi, and E. Belilovsky, “Prototype-sample

relation distillation: towards replay-free continual learning,” in International Confer-

ence on Machine Learning. PMLR, 2023, pp. 1093–1106.

[59] V. K. Verma, K. J. Liang, N. Mehta, P. Rai, and L. Carin, “Efficient feature trans-

formations for discriminative and generative continual learning,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.

13 865–13 875.

52

Appendices

A Low-Rank Factorization for Matrix

Proof of Eq. 2.5. Here, we provide more background knowledge about the low-rank matrix

factorization.

In this work, we leverage the Eckart–Young–Mirsky theorem [13] with the Frobenius norm.

In this part, we provide background knowledge for the self-cohesion of the thesis.

Denote by B ∈ Rm×n a real (possibly rectangular) matrix. Suppose that B = UΣV⊤ is the

singular value decomposition (SVD) of B, then, we can claim that the best rank k approxi-

mation (k ≤ min{m, n}) to B under the Frobenius norm ∥ · ∥F is given by Bk =
∑k

i=1 σiuiv⊤i ,

where ui and vi denote the ith column of U and V, respectively. Then,

∥B − Bk∥
2
F =
∥∥∥∥ n∑

i=k+1

σiuiv⊤i
∥∥∥∥2

F
=

n∑
i=k+1

σ2
i

Thus, we need to show that if Ak = XY⊤ where X and Y has k columns

∥B − Bk∥
2
F =

n∑
i=k+1

σ2
i ≤ ∥B − Ak∥

2
F

.

By the triangle inequality, if B = B′+B′′ then σ1(B) ≤ σ1(B′)+σ1(B′′). Denote by B′k and

B′′k the rank k approximation to B′ and B′′ by the SVD method, respectively. Then, for any

i, j ≥ 1,

Appendix – Proof to Theorem 1 and Discussion 53

σi(B′) + σ j(B′′) = σ1(B′ − B′i−1) + σ1(B′′ − B′′j−1)

≥ σ1(B − B′i−1 − B′′j−1)

≥ σ1(B − Bi+ j−2)

= σi+ j−1(B)

where the last inequality comes from the fact that rank(B′i−1 + B′′j−1) ≤ rank (Bi+ j−2).

Since σk+1(Bk) = 0, when B′ = B − Ak and B′′ = Ak we conclude that for i ≥ 1, j = k + 1

σi(B − Ak) ≥ σk+i(B)

Therefore,

∥B − Ak∥
2
F =

n∑
i=1

σi(B − Ak)2 ≥

n∑
i=k+1

σi(B)2 = ∥B − Bk∥
2
F

Thus, we can get Eq. 2.5.

B Proof to Theorem 1 and Discussion

We recall Theorem 1:

Theorem 1. Assume that a neural network of L layers with vectorized weights (ω⋆1 , . . . ,ω
⋆
L)

that have converged to local optima, such that the first and second order optimally condi-

tions are satisfied, i.e., the gradient is zero, and the Hessian is positive semi-definite. Sup-

pose a perturbation ∆ω⋆1 applied to the first layer weights, then we have the loss change

∣∣∣L(ω⋆1 − ∆ω
⋆
1 , . . . ,ω

⋆
L) − L(ω⋆1 , . . . ,ω

⋆
L)
∣∣∣ ≤ 1

2
∥H1∥F · ∥∆ω

⋆
1 ∥

2
F + o

(
∥∆ω⋆1 ∥

2
F

)
, (3.12)

Appendix – Proof to Theorem 1 and Discussion 54

where H1 = ∇
2L(ω⋆1) is the Hessian matrix at only the variables of the first layer weights.

Proof. Denote the gradient and Hessian of the first layerω⋆1 as g1 and H1. Through Taylor’s

expansion, we have

L(ω⋆1 − ∆ω
⋆
1 , . . . ,ω

⋆
L) − L(ω⋆1 , . . . ,ω

⋆
L)

= −gT
1∆ω

⋆
1 +

1
2
∆ω⋆T

1 H1∆ω
⋆
1 + o(∥∆ω⋆1 ∥

2
F).

Using the fact that the gradient is zero at the local optimum ω⋆1 as well as the sub-additive

and sub-multiplicative properties of Frobenius norm, we have,

∣∣∣L(ω⋆1 − ∆ω
⋆
1 , . . . ,ω

⋆
L) − L(ω⋆1 , . . . ,ω

⋆
L)
∣∣∣

= |
1
2
∆ω⋆T

1 H1∆ω
⋆
1 + o(∥∆ω⋆1 ∥

2
F)|

≤ ∥
1
2
∆ω⋆T

1 H1∆ω
⋆
1 ∥F + o(∥∆ω⋆1 ∥

2
F)

≤
1
2
∥H1∥F∥∆ω

⋆
1 ∥

2
F + o(∥∆ω⋆1 ∥

2
F).

Furthermore, Algorithm 1 implies that the Hessian information can be used to quantita-

tively measure the influences of low-rank perturbation on the model’s empirical losses.

In practice, we can approximate the Hessian by the negative empirical Fisher informa-

tion [46]. This enables a dynamic scheme for the trade-off between the approximation

error and computational efficiency. For a given loss approximation rate, the model can

automatically select the rank for all the layers.

Appendix – Discussion on the Fine-tuning Objective on the New Task 55

C Discussion on the Fine-tuning Objective on the New Task

In the proposed algorithm, we finally fine-tune the model on the new task with Eq. 12 in

the manuscript, which is also listed below,

min
Wt
L(Wt;Dt) +Lreg(Wt) (1)

where

Lreg(Wt) =
∑

l

[
λ0 (∥U(kl)free

i ∥ + ∥V(kl)free
i ∥)︸ ︷︷ ︸

L1−regularization

+λ1 (∥Rfree
i ∥

2
2 + ∥S

free
i ∥

2
2 + ∥U

(kl)free
i ∥22 + ∥V

(kl)free
i ∥22)︸ ︷︷ ︸

L2−regularization

]
(2)

The fine-tuning objective mainly consists of three parts, the general cross-entropy loss on

the new task Tt, a L1 regularization term on ∥U(kl)free
i ∥ + ∥V(kl)free

i ∥, and the L2 regularization

terms on ∥Rfree
i ∥

2
2 + ∥S

free
i ∥

2
2 and ∥U(kl)free

i ∥22 + ∥V
(kl)free
i ∥22, respectively.

As mentioned in the thesis, we apply the L1 regularization on U(kl)free
i and V(kl)free

i . Besides,

as discussed in Section 3.5 of the thesis, we also apply to prune Ufree
i and V(kl)free

i , which

further encouraged the sparsity.

Our method keeps Wbase as unchanged for new tasks for knowledge transfer, while the

Rfree
i , Sfree

i , U(k)free
i and V(k)free

i are left as task-adaptive parameters. Since Rfree
i and Sfree

i are

diagonal matrices, plus the fact that U(k)free
i and V(k)free

i are sparse, thus the model only needs

to learn a small number of parameters. Unlike some regularization methods (e.g. EWC [7]),

which constrain the gradient update and require to re-train a lot of parameters, our method

can update the model more efficiently. In addition, the empirical results reported in the

thesis show that our method can also achieve better performance with less time and memory

cost.

Appendix – Additional Experimental Results 56

P-MNIST

Acc.↑ MOPD↓ AOPD↓

IBWPF 78.12 ± 0.83 12.69 6.65
HALRP 98.10 ± 0.03 0.47 0.24

Five-dataset

Acc.↑ MOPD↓ AOPD↓

IBWPF 84.62 ± 0.36 5.06 1.72
HALRP 88.81 ± 0.31 4.28 1.31

Table D.1: Comparison with low-rank factorization method IBWPF

-3

-2

-1

0

1

2

3

A B C D E

CIFAR100-Split 5%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(a) 5% of training data

-2

-1

0

1

2

3

4

5

6

A B C D E

CIFAR100-Split 25%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(b) 25% of training data

-2

-1

0

1

2

3

4

5

A B C D E

CIFAR100-Split 50%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(c) 50% of training data

-1

0

1

2

3

4

A B C D E

CIFAR100-Split 100%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(d) 100% of training data

Figure D.1: Forgetting comparison on CIFAR100-Split with different task orders (A-E)
under different amounts of training data.

D Additional Experimental Results

D.1 Comparing with other low-rank methods

Our work also shares some similarities with the low-rank-decomposition-based method

IBPWF [12]. As discussed in [3] and in our thesis (Section 1.1), this method requires larger

ranks to accept higher accuracy. Furthermore, as pointed out by [59], IBPWF leverages

Bayesian non-parametric to let the data dictate expansion, but the benchmarks considered

in Bayesian methods have been limited to smaller datasets, like MNIST and CIFAR-10.

Appendix – Additional Experimental Results 57

-1

0

1

2

3

4

5

6

7

8

A B C D E

CIFAR100-Superclass 5%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(a) 5% of training data

-3

-2

-1

0

1

2

3

4

5

6

7

A B C D E

CIFAR100-Superclass 25%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(b) 25% of training data

-2

0

2

4

6

8

A B C D E

CIFAR100-Superclass 50%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(c) 50% of training data

-2

0

2

4

6

8

10

12

A B C D E

CIFAR100-Superclass 100%

L2 EWC APD APDfix IBPWF WSN LRP HALRP

(d) 100% of training data

Figure D.2: Forgetting on CIFAR100-SuperClass with different task orders (A-E) under
different amounts of training data.

In addition to the experimental comparisons with IBPWF reported in the thesis, we further

report more results in Table D.1. We can observe that our method outperforms IBPWF with

a large gap in terms of Accuracy and MOPD↓ & AOPD↓. Furthermore, we observe that

IBPWF cannot perform well on P-MNIST, which is 10× the number of data of MNIST.

The gap is consistent with observations in [59].

D.2 Performance on Alleviate Forgetting on Different Task Orders

In the main thesis, we report the forgetting performance on the average of five task orders

(A-E) on CIFAR100 Splits and SuperClass. In this part, we provide the performance on

forgetting under each task order in Fig. D.1 and Fig. D.2, under different amounts (i.e.,

5% ∼ 100%) of training data.

Appendix – Experimental Details 58

E Experimental Details

E.1 Dataset Preparation

CIFAR100 Splits/SuperClass We used the CIFAR100 Splits/SuperClass dataset follow-

ing the evaluation protocol of [2], and follow the task order definition of [2] to test the

algorithms with five different task orders (A-E).

For the CIFAR100 Split, the task orders are defined as:

• Order A: [0,1,2,3,4,5,6,7,8,9]

• Order B: [1, 7, 4, 5, 2, 0, 8, 6, 9, 3]

• Order C: [7, 0, 5, 1, 8, 4, 3, 6, 2, 9]

• Order D: [5, 8, 2, 9, 0, 4, 3, 7, 6, 1]

• Order E: [2, 9, 5, 4, 8, 0, 6, 1, 3, 7]

For the CIFAR100 SuperClass, the task orders are:

• Order A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

• Order B: [15, 12, 5, 9, 7, 16, 18, 17, 1, 0, 3, 8, 11, 14, 10, 6, 2, 4, 13, 19]

• Order C: [17, 1, 19, 18, 12, 7, 6, 0, 11, 15, 10, 5, 13, 3, 9, 16, 4, 14, 2, 8]

• Order D: [11, 9, 6, 5, 12, 4, 0, 10, 13, 7, 14, 3, 15, 16, 8, 1, 2, 19, 18, 17]

• Order E: [6, 14, 0, 11, 12, 17, 13, 4, 9, 1, 7, 19, 8, 10, 3, 15, 18, 5, 2, 16]

Furthermore, as discussed in the thesis, we demonstrate the performance when handling

limited training data. In this regard, we randomly select 5%, 25%, 50% training data from

each task and report the corresponding accuracies.

P-MNIST We follow [1] to evaluate the algorithms’ performance on the P-MNIST dataset.

Appendix – Experimental Details 59

Each task of P-MNIST is a random permutation of the original MNIST pixel. We follow [1,

48] to generate the train/val/test splits and to create 10 sequential tasks using different

permutations, and each task has 10 classes. We randomly generate five different task orders

with five different seeds.

• seed 0: [6, 1, 9, 2, 7, 5, 8, 0, 3, 4]

• seed 1: [2, 9, 6, 4, 0, 3, 1, 7, 8, 5]

• seed 2: [4, 1, 5, 0, 7, 2, 3, 6, 9, 8]

• seed 3: [5, 4, 1, 2, 9, 6, 7, 0, 3, 8]

• seed 4: [3, 8, 4, 9, 2, 6, 0, 1, 5, 7]

Five dataset It uses a sequence of 5 different benchmarks including CIFAR10 [49], MNIST [47],

notMNIST [50], FashionMNIST [51] and SVHN [52]. Each benchmark contains 10 classes.

We follow [1] to generate the train/val/test splits and to create 10 sequential tasks using dif-

ferent permutations, and each task has 10 classes. We randomly generate five different task

orders with five different seeds.

• seed 0: [2, 0, 1, 3, 4]

• seed 1: [1, 0, 4, 2, 3]

• seed 2: [2, 4, 1, 3, 0]

• seed 3: [3, 4, 1, 0, 2]

• seed 4: [0, 3, 1, 4, 2]

Omniglot-rotation We split this dataset [53] into 100 12-way classification tasks. We fol-

low the train/val/test split of [1]. The five task order adopted in our experiments are:

• seed 0: [26, 86, 2, 55, 75, 93, 16, 73, 54, 95, 53, 92, 78, 13, 7, 30, 22, 24, 33, 8, 43,

62, 3, 71, 45, 48, 6, 99, 82, 76, 60, 80, 90, 68, 51, 27, 18, 56, 63, 74, 1, 61, 42, 41, 4,

Appendix – Experimental Details 60

15, 17, 40, 38, 5, 91, 59, 0, 34, 28, 50, 11, 35, 23, 52, 10, 31, 66, 57, 79, 85, 32, 84,

14, 89, 19, 29, 49, 97, 98, 69, 20, 94, 72, 77, 25, 37, 81, 46, 39, 65, 58, 12, 88, 70,

87, 36, 21, 83, 9, 96, 67, 64, 47, 44]

• seed 1: [80, 84, 33, 81, 93, 17, 36, 82, 69, 65, 92, 39, 56, 52, 51, 32, 31, 44, 78, 10,

2, 73, 97, 62, 19, 35, 94, 27, 46, 38, 67, 99, 54, 95, 88, 40, 48, 59, 23, 34, 86, 53, 77,

15, 83, 41, 45, 91, 26, 98, 43, 55, 24, 4, 58, 49, 21, 87, 3, 74, 30, 66, 70, 42, 47, 89,

8, 60, 0, 90, 57, 22, 61, 63, 7, 96, 13, 68, 85, 14, 29, 28, 11, 18, 20, 50, 25, 6, 71, 76,

1, 16, 64, 79, 5, 75, 9, 72, 12, 37]

• seed 2: [83, 30, 56, 24, 16, 23, 2, 27, 28, 13, 99, 92, 76, 14, 0, 21, 3, 29, 61, 79, 35,

11, 84, 44, 73, 5, 25, 77, 74, 62, 65, 1, 18, 48, 36, 78, 6, 89, 91, 10, 12, 53, 87, 54,

95, 32, 19, 26, 60, 55, 9, 96, 17, 59, 57, 41, 64, 45, 97, 8, 71, 94, 90, 98, 86, 80, 50,

52, 66, 88, 70, 46, 68, 69, 81, 58, 33, 38, 51, 42, 4, 67, 39, 37, 20, 31, 63, 47, 85, 93,

49, 34, 7, 75, 82, 43, 22, 72, 15, 40]

• seed 3: [93, 67, 6, 64, 96, 83, 98, 42, 25, 15, 77, 9, 71, 97, 34, 75, 82, 23, 59, 45, 73,

12, 8, 4, 79, 86, 17, 65, 47, 50, 30, 5, 13, 31, 88, 11, 58, 85, 32, 40, 16, 27, 35, 36,

92, 90, 78, 76, 68, 46, 53, 70, 80, 61, 18, 91, 57, 95, 54, 55, 28, 52, 84, 89, 49, 87,

37, 48, 33, 43, 7, 62, 99, 29, 69, 51, 1, 60, 63, 2, 66, 22, 81, 26, 14, 39, 44, 20, 38,

94, 10, 41, 74, 19, 21, 0, 72, 56, 3, 24]

• seed 4: [20, 10, 96, 16, 63, 24, 53, 97, 41, 47, 43, 2, 95, 26, 13, 37, 14, 29, 35, 54,

80, 4, 81, 76, 85, 60, 5, 70, 71, 19, 65, 62, 27, 75, 61, 78, 18, 88, 7, 39, 6, 77, 11, 59,

22, 94, 23, 12, 92, 25, 83, 48, 17, 68, 31, 34, 15, 51, 86, 82, 28, 64, 67, 33, 45, 42,

40, 32, 91, 74, 49, 8, 30, 99, 66, 56, 84, 73, 79, 21, 89, 0, 3, 52, 38, 44, 93, 36, 57,

90, 98, 58, 9, 50, 72, 87, 1, 69, 55, 46]

TinyImageNet This dataset contains 200 classes. In our experiments, we adopted two split

settings: 20 split and 40 split.

Appendix – Experimental Details 61

Each task in the 20-split setting consists of 10 classes. We adopted five random tasks orders

as follows:

• seed 0: [10, 18, 16, 14, 0, 17, 11, 2, 3, 9, 5, 7, 4, 19, 6, 15, 8, 1, 13, 12]

• seed 1: [11, 5, 17, 19, 9, 0, 16, 1, 15, 6, 10, 13, 14, 12, 7, 3, 8, 2, 18, 4]

• seed 2: [7, 6, 17, 8, 19, 15, 13, 0, 3, 9, 14, 4, 10, 12, 16, 5, 11, 18, 2, 1]

• seed 3: [8, 3, 6, 5, 15, 16, 2, 12, 0, 1, 13, 10, 19, 9, 14, 11, 4, 17, 18, 7]

• seed 4: [17, 19, 10, 14, 5, 18, 16, 11, 4, 8, 6, 0, 13, 1, 2, 15, 12, 3, 9, 7]

Each task in the 40-split setting consists of 5 classes. We adopted five random task orders

as follows:

• seed 0: [22, 20, 25, 4, 10, 15, 28, 11, 18, 29, 27, 35, 37, 2, 39, 30, 34, 16, 36, 8, 13,

5, 17, 14, 33, 7, 32, 1, 26, 12, 31, 24, 6, 23, 21, 19, 9, 38, 3, 0]

• seed 1: [2, 31, 3, 21, 27, 29, 22, 39, 19, 26, 32, 17, 30, 36, 33, 28, 4, 14, 10, 35, 23,

24, 34, 20, 18, 25, 6, 13, 7, 38, 1, 16, 0, 15, 5, 11, 9, 8, 12, 37]

• seed 2: [27, 9, 14, 0, 2, 30, 13, 36, 17, 37, 38, 29, 24, 12, 16, 1, 33, 23, 25, 19, 32,

10, 4, 6, 3, 34, 5, 28, 20, 26, 39, 21, 35, 31, 7, 11, 18, 22, 8, 15]

• seed 3: [29, 16, 9, 27, 4, 18, 28, 38, 15, 26, 25, 11, 30, 32, 13, 34, 39, 37, 5, 1, 31, 2,

22, 17, 14, 7, 12, 20, 36, 6, 23, 35, 33, 10, 19, 21, 0, 8, 3, 24]

• seed 4: [28, 39, 4, 15, 26, 20, 31, 7, 16, 11, 19, 33, 12, 18, 38, 13, 10, 22, 32, 25, 17,

36, 29, 14, 2, 24, 27, 6, 35, 34, 21, 37, 0, 3, 30, 9, 8, 23, 1, 5]

E.2 Model Architecture

In the experimental evaluations, we implement various backbone architectures to demon-

strate our perturbation method for different deep models. We introduce the model architec-

tures used in the thesis:

Appendix – Experimental Details 62

Dataset CIFAR100 Split CIFAR100 Super PMNIST Five dataset Omniglot TinyImageNet 40-split TinyImageNet 20-split
Network LeNet LeNet LeNet AlexNet ResNet18 extended LeNet AlexNet ResNet18 AlexNet ResNet18
n 20 20 12 12 12 20 50 50 50 50
nw 1 1 1 1 3 1 20 25 25 25
α 0.9 0.9 0.9 0.9 0.95 0.99 0.9 0.9 0.9 0.9
LR 1e-3 1e-3 1e-3 1e-3 1e-3 5e-3 1e-3 5e-4 1e-3 5e-4
λ0 1e-4 1e-4 1e-6 1e-6 1e-6 9e-5 5e-4 5e-4 1e-5 5e-4
λ1 1e-4 1e-4 1e-3 1e-4 1e-4 1e-4 1e-4 1e-4 5e-4 1e-4
Bcsz 128 128 128 128 128 16 32 32 32 32

Table E.1: Hyperparameters for the experiments. n: total epoch. nw: warm-up epochs for
a new task. LR: Learning rate. λ0, λ1: coefficients for the regularization terms as discussed
in Appendix C. Bcsz: training batch size.

LeNet We implement two kinds of LeNet models: 1): For CIFAR100 Splits/SuperClass

and P-MNIST, we implement the general LeNet model with neurons 20-20-50-800-500.

2): For Omniglot-Rotation, we follow [1, 2] to implement the enlarged LeNet model with

neurons 64-128-2500-1500.

AlexNet For the experiments on Five-dataset and TinyImageNet, we implement AlexNet

model by following [1, 5].

ResNet-18 We adopted the reduced ResNet-18 model (i.e., reduce half of the filters in each

convolutional layer from the standard Resnet18) on the Five-dataset and TinyImageNet by

following [1].

E.3 Training Hyperparameters

We reimplement the baselines by rigorously following the official code release or publicly

accessible implementations and tested our proposed algorithm with a unified test-bed with

the same hyperparameters to get fair comparison results. The training details for our exper-

iments are illustrated in Table E.1. The hyperparameters are selected via grid search. We

also provide descriptions of the hyperparameters in the source code.

Appendix – Copyright Permission 63

F Copyright Permission

JL

© 2024 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Data Security and Privacy

| For California Residents | Terms and Conditions

Hessian Aware Low-Rank Perturbation for Order-Robust Continual
Learning

Author: Jiaqi Li

Publication: IEEE Transactions on Knowledge and Data Engineering

Publisher: IEEE

Date: November 2024

Copyright © 2024, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., �gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted �gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

Comments? We would like to hear from you. E-mail us at

customercare@copyright.com

Privacy - Terms

65

Curriculum Vitae

Name: Jiaqi Li

Post-Secondary University of Western Ontario
Education and London, ON, Canada

2021 - 2024, M.Sc of Computer Science

Beihang University
Beijing, China
2016 - 2019, M.Eng of Computer Science

Beihang University
Beijing, China
2012 - 2016, B.Sc of Math and Applied Math

Related Work Teaching Assistant
Experience: The University of Western Ontario

2021 - 2024

Publications:

Jiaqi Li, Yuanhao Lai, Rui Wang, Changjian Shui, Sabyasachi Sahoo, Charles X. Ling,
Shichun Yang, Boyu Wang, Christian Gagné, Fan Zhou. (2024). Hessian Aware Low-Rank
Perturbation for Order-Robust Continual Learning. [Accepted]. In IEEE Transactions on
Knowledge and Data Engineering. doi: 10.1109/TKDE.2024.3419449.

	Continual Learning via Hessian-Aware Low-Rank Perturbation
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Co-Authorship Statement
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Introduction
	Motivation
	Contribution Summary
	Thesis Outline

	Background
	Preliminary
	Continual Learning: Problem Formulation
	Challenges in Continual Learning
	Low-Rank Approximation of Matrices

	Related Work

	Hessian-aware Low-rank Perturbation for Continual Learning
	Parameter Transition between Tasks: Linear Layers
	Parameter Transition between Tasks: Convolutional Layers
	Model Increment Control via Low Rank Approximation
	Rank Selection via Hessian Aware Perturbation
	Regularization and Pruning on Parameters
	Summary of Proposed Algorithm

	Experimental Results
	Experimental Settings
	Empirical Accuracy
	Robustness on Task Orders
	Handling the Catastrophic Forgetting
	Model Increment Analysis
	Computational Efficiency
	Ablation Studies

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Appendices
	Low-Rank Factorization for Matrix
	Proof to Theorem 1 and Discussion
	Discussion on the Fine-tuning Objective on the New Task
	Additional Experimental Results
	Comparing with other low-rank methods
	Performance on Alleviate Forgetting on Different Task Orders

	Experimental Details
	Dataset Preparation
	Model Architecture
	Training Hyperparameters

	Copyright Permission

	Curriculum Vitae

