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Abstract 

To reduce the cost of complex and long copper wiring, as well as to achieve flexibility in 

signal communications, IEC 61850 part 9-2  proposes a  process bus communication 

network between process level switchyard equipments, and bay level protection and 

control (P&C) Intelligent Electronic Devices (IEDs). After successful implementation of 

Ethernet networks for IEC 61850 standard part 8-1 (station bus) at several substations 

worldwide, major manufacturers are currently working on the development of 

interoperable products for the IEC 61850-9-2 based process bus. The major technical 

challenges for applying Ethernet networks at process level include: 1) the performance of 

time critical messages for protection applications; 2) impacts of process bus Ethernet 

networks on the reliability of substation protection systems.  

This work starts with the performance analysis in terms of time critical Sampled Value 

(SV) messages loss and/or delay over the IEC 61850-9-2 process bus networks of a 

typical substation. Unlike GOOSE, the SV message is not repeated several times, and 

therefore, there is no assurance that each SV message will be received from the process 

bus network at protection IEDs. Therefore, the detailed modeling of IEC 61850 based 

substation protection devices, communication protocols, and packet format is carried out 

using an industry-trusted simulation tool OPNET, to study and quantify number of SV 

loss and delay over the process bus.  

The impact of SV loss/delay on digital substation protection systems is evident, and 

recognized by several manufacturers. Therefore, a sample value estimation algorithm is 

developed in order to enhance the performance of digital substation protection functions 

by estimating the lost and delayed sampled values. The error of estimation is evaluated in 

detail considering several scenarios of power system relaying. The work is further carried 

out to investigate the possible impact of SV loss/delay on protection functions, and test 

the proposed SV estimation algorithm using the hardware setup. Therefore, a state-of-the-

art process bus laboratory with the protection IEDs and merging unit playback simulator 

using industrial computers on the QNX hard-real-time platform, is developed for a 

typical IEC 61850-9-2 based process bus network. Moreover, the proposed SV estimation 
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algorithm is implemented as a part of bus differential and transmission line distance 

protection IEDs, and it is tested using the developed experimental setup for various SV 

loss/delay scenarios and power system fault conditions. 

In addition to the performance analysis, this work also focuses on the reliability aspects 

of protection systems with process bus communication network. To study the impact of 

process bus communication on reliability indices of a substation protection function, the 

detailed reliability modeling and analysis is carried out for a typical substation layout. 

First of all, reliability analysis is done using Reliability Block Diagrams (RBD) 

considering various practical process bus architectures, as well as, time synchronization 

techniques. After obtaining important failure rates from the RBD, an extended Markov 

model is proposed to analyze the reliability indices of protection systems, such as, 

protection unavailability, abnormal unavailability, and loss of security. It is shown with 

the proposed Markov model that the implementation of sampled value estimation 

improves the reliability indices of a protection system.   
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Chapter 1Chapter 1Chapter 1Chapter 1    

1. Introduction 

This chapter provides an overview of the IEC 61850 standard, and a discussion on part-9-

2 of the IEC 61850 standard to introduce the concept of process bus. Based on a detailed 

literature survey, the salient features, major benefits, as well as technical challenges 

related to the IEC 61850-9-2 based process bus for substation protection systems are also 

presented in this chapter. Finally, the specific research objectives inspired by these 

technical challenges, and research work methodology are also discussed.  

1.1 IEC 61850 Standard for Substation Protection and 

Automation 

The success of a substation protection and automation system relies on the use of an 

effective communication system to link  various protection, control, and monitoring 

devices within an electric power substation. The major challenge faced by substation 

automation design engineers is to provide interoperability among the protection, control, 

and monitoring devices from the various manufacturers. Up until recently, all the 

manufacturers are/were using their own proprietary communication protocols for various 

substation protection and automation applications. Huge investment is needed to develop 

costly and complicated protocol converters to interface these substation intelligent 

devices [1]. To address this issue, the International Electro technical Commission (IEC) 

Technical Committee (TC)-57 has published IEC 61850 standard titled  “Communication 

Networks and Systems in Substation” in 2003 [2]. This standard covers not only how to 

communicate, but also what to communicate. IEC 61850 capabilities clearly exceeded 

what former IEC 60870-5-103 [3] , DNP 3.0 [4], MODBUS [5] and most other 

proprietary protocols had to offer [6]. IEC 61850 provides the interoperability by 

defining the communication protocol, data format and the configuration language. 
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Further, this standard specifies the OSI-7 layer based Ethernet communication systems 

[7]. Ethernet provides high flexibility regarding communication architectures, as well as 

the incorporation of fast growing communication technologies [8]. The high-speed 

property of current Ethernet technology together with its dominant position in the LAN 

field, makes Ethernet an appropriate communication technology for substation 

automation usage [9]. IEC 61850 part-8 and part-9 propose Ethernet at station level and 

process level respectively. Furthermore detail on scope of the entire IEC 61850 standard 

is described in the following subsection. 

1.1.1 Scope of IEC 61850 standard 

Recent developments in communication media and networking technology have offered a 

wide range of new opportunities for utilities to improve their electric systems, operations, 

and process automation. One of the major challenges in a Substation Automation System 

(SAS) is the interoperability among the substation IEDs from different manufacturers. 

This is being addressed by the development of IEC61850 as a universal standard for 

SAS. IEC61850 standard is a framework for substation automation that defines the 

following [10], 

i. Standardized object models and naming conventions 

ii. Standardized meaning of data 

iii. Standardized services and device behavior models 

iv. Self-describing devices 

v. Common configuration language 

The work on IEC 61850 started with the Electric Power Research Institute (EPRI) and the 

Institute of Electrical and Electronics Engineers (IEEE) working in an effort to define 

Utility Communications Architecture (UCA) in the early 1990s. The effort was focused 

towards inter-control communications architecture and communication between 

substations and control centers. In 1994, EPRI and IEEE started working on the next 

phase of the UCA (UCA 2.0 [11]), focusing on the station bus. In 1996, technical 

committee 57 of the IEC started work on IEC 61850 standard. In 1997 the two groups 

agreed to work together resulting in the IEC 61850 standards. The standard is a superset 
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of the UCA 2.0, with features of UCA 2.0 and more.  IEC 61850 defines various aspects 

of the substation communications in ten major parts. Parts 3, 4 and 5 identify the different 

general, as well as functional requirements of the substation communication systems, and 

also discuss project management. Part 6 defines the Substation Configuration Language 

(SCL) which is based on Extensible Mark-up Language (XML) to configure different 

multi-vendor devices with minimal human errors and less complexity. The SCL bridges 

the relationship between the SAS system and the substation switchyard. Part 7-1 

introduces the concepts of common data and service modeling adopted by the IEC 61850 

standard. Part 7-2 defines abstract services, and various common data classes are defined 

in Part 7-3.  Whereas, Part 7-4 defines the abstract data objects (Logical Nodes). The data 

objects defined in the standard contain information, such as status, measurements, etc. 

The concept of common data classes was introduced to build larger data objects. IEC 

61850 adopts data and service abstraction, which allows the mapping of data and services 

to any protocol stack that meets the service requirements [12]. Part 8-1 defines the 

mapping of abstract data objects and services into Manufacturing Messaging 

Specifications (MMS). Parts 9-1 and 9-2 define the digitization of signals from 

instrument transformers and mapping them into sampled values packets over Ethernet 

layer. IEC 61850 part-9-2 proposes Ethernet based Local Area Network (LAN)  to 

communicate substation protection and automation messages between process level 

switchyard devices (i.e. CTs/VTs, CBs, and other field sensors) and bay level protection 

and control IEDs. IEC 61850-9-2 based Ethernet communication network should 

facilitate the communication of time critical messages, such as Generic Object Oriented 

Substation Event (GOOSE) and raw data Sampled Values (SVs), within the allowable 

time defined in the standard [13], [14]. 

1.1.2 Function hierarchy and interfaces of IEC 61850 

A complex substation protection, control, monitoring and recording system has a 

hierarchical structure as shown in Figure 1-1. The three levels in the functional hierarchy 

are discussed below (from bottom-up):  
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Figure 1-1 Interface model of a substation automation system with encircled interface type 

Process level: It includes the primary equipment in the substation switchyard, such as 

analog signals from instrument transformers, binary status signals or binary control 

signals from actuators/sensors or other controlling devices, etc.  

Bay level: Bay level is between process bus and station bus, which includes protection 

and control IEDs of different bays of a substation.  Integrated protection and control IEDs 

at the bay level are connected to the process bus network.  Process bus network segments 

of different bays may be connected through communication links.  
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Station level:  At this level the functions are related to the overall operation of 

equipments in a substation. The functions using the data of more than one bay or the 

entire substation are implemented at this level. For example, the triggering of a breaker 

failure relay by a protection device,  tripping multiple breakers by the breaker failure 

relay through the trip outputs of a bus differential protection, etc. The functions of 

interface numbers used in Figure 1-1 are explained in Table 1-1. It can be inferred from 

Figure 1-1 that a station bus network facilitates the communication between the station 

level and bay level. For this communication application interfaces applied between them 

are shown in the figure i.e. IF1, IF3, IF6, IF8 and IF9. Similarly, the process bus network 

is used for the purpose of data exchange between bay level and process level. Interface 

IF4 and IF5 are supported at this level.  

 

Table 1-1Interface types & their function 

Sr. 

No. 

Interface 

Types 
Function 

1 IF 1 Protection-data exchange between bay and station level 

2 IF 2 
Protection-data exchange between bay level and remote protection (beyond 

the scope of IEC 61850 standard) 

3 IF 3 Data exchange within bay level 

4 IF 4 
CT and VT instantaneous data exchange (especially samples) between 

process and bay level 

5 IF 5 Control-data exchange between process and bay level 

6 IF 6 Control-data exchange between bay and station level 

7 IF 7 Data exchange between substation (level) and a remote engineer’s workplace 

8 IF 8 
Direct data exchange between the bays especially for fast functions such as 

interlocking 

9 IF 9 Data exchange within station level 

10 IF 10 
Control-data exchange between substation (devices) and a remote control 

centre (beyond the scope of IEC 61850 standard) 

 



 

 6

1.1.3 OSI-7 layer based IEC 61850 communication system 

IEC 61850 uses OSI-7 layer stack for communication and divides it into three groups as 

shown in Figure 1-2. In the standard, seven types of messages are mapped to different 

communication stacks. The raw data samples (type 4) and GOOSE messages (type1, 1A) 

are time critical and are, therefore, directly mapped to low–level Ethernet layer. This 

improves the performance for time critical messages by shortening the Ethernet frame (no 

upper layer protocol overhead), and reducing the processing time. The medium speed 

message (type 2), the command message with access control (type 7), the low speed 

message (type 3) and the file transfer functions (type 5) are mapped to MMS protocol 

suits, which has a TCP/IP stack on the top of  the Ethernet layer. The time 

synchronization messages based on Simple Network Time Protocol (SNTP) (type 6) are 

broadcasted to all IEDs in a substation using UDP/IP.  

 

Figure 1-2  Message communication OSI -7 layer stack of IEC 61850 [2] 

The features of GOOSE, SV and other (client/server) messages are discussed below: 

1. GOOSE/GSE : 

1. Time critical data, e.g. trip, block, interlock, etc., using this message 

2. Does not use the TCP/IP services, and hence it is less reliable data transfer 

mechanism 
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3. A loss of GOOSE message is  by multicasting (repeated transmission) 

2. Sampled values 

1. Time critical data – sampled values of current / voltage signals from non-

conventional instrument transformers or IEDs 

2. Continuous stream of data, rate determined by the sampling frequency of 

the data 

3. No measures proposed for SV loss/delay  

3. Client-Server communication 

1. Predominantly information exchange, such as fault record, event record, 

measurement values, etc. 

2. Uses the full services of the OSI model, and hence a reliable data transfer 

3. Not time critical data 

1.1.4 Advantages from IEC 61850 based implementation 

The major advantages offered by IEC 61850 are listed below: 

1. Interoperability: Different Seamless communication among multi-vendor 

devices. 

2. Free Configuration: Any possible number of substation protection and control 

functions can be integrated and configured using Substation Configuration 

Language (SCL). 

3. Simple and Future-proof Architecture: As plenty of point-to-point copper 

wires are reduced to just Ethernet communication links based on OSI-7, it is 

possible to integrate many critical functions in an IED and also have OSI-7 layer 

stack compatibility.  

1.2 IEC 61850-9-2 Process Bus Concept 

To reduce the cost of complex and long copper wiring between a switchyard and the 

control room, IEC 61850-9-2  has proposed Ethernet based communication network 

between process level switchyard devices and bay level protection and control IEDs, 

which is referred to as process bus. Instead of providing analog inputs to conventional 
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IEDs with integrated Analog-to-Digital Converters (ADCs) and binary Inputs-Outputs 

I/Os modules, IEC 61850-9 has specified distributed IED architecture, i.e. ADCs and 

binary I/Os modules are installed into the switchyard near to the signal sources. The 

analog signals from CTs/VTs are digitized into the Merging Units (MUs), and then 

digital signals are communicated to the bay level protection IEDs over Ethernet based 

process bus.  The merging unit is the key element of the process bus [13]. As Figure 1-3 

shows, MU gathers information, such as phase voltages and currents from instrument 

transformers, and status information from transducers using proprietary links/copper 

wires. All these analog values are converted to digital, and merged into a standard data 

packet format.  This way, process bus network can carry many digital signals into a 

single communication cable. However, each digital stream of sampled values from 

various MUs should be time synchronized, so that the protection function can utilize 

many such digital signal streams from independent MUs.  MU may have either an 

external time synchronization source (e.g. IRIG-B, GPS clock) or precision time 

synchronization protocol (IEEE 1588/IEEE C37.238), using which it provides the time 

stamp on each data packet. This data packet is sent to corresponding bay level protection 

and control IEDs using standardized Ethernet based communication links. 

 

Figure 1-3 Process bus concepts 
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The IEC 61850-9 standard defines the Specific Communication Service Mapping 

(SCSM) for the transmission of sampled values in two parts. The IEC 61850-9-1 standard 

[15] specifies a serial unidirectional multi-drop point-to-point link carrying a fixed 

dataset in accordance with IEC 60044-8 [16], whereas IEC 61850-9-2 [13] proposes 

bidirectional multicast communication of configurable (user defined) dataset using 

Ethernet LANs (defined in the ISO/IEC 8802-3 or IEEE 802.3 [17]). Due to the 

advantages of fast growth in data rates, zero-collision, and flexible architecture, the 

ISO/IEC 8802-3 or ANSI/IEEE 802.3 based Ethernet switched communication 

(standardized in IEC 61850-9-2) is preferred over serial point-to-point standard links 

(IEC 61850-9-1). Currently, there are implementation guidelines (IEC 61850-9-2 LE 

[14]) that define a base sample rate of 80 samples per power system cycle for basic 

protection and control, and a high rate of 256 samples per power system cycle for high 

frequency applications, such as power quality and high resolution oscillography [14].   

1.3 Major Benefits from Process Bus  

The major benefits offered by IEC 61850-9-2 based process bus communication network 

are discussed below: 

1.3.1 Simple wiring and flexible architecture 

Millions of point-to-point copper wires are laid down from a substation switchyard to 

various bay level devices for the substation protection and control. In conventional 

protection systems, each protective relay has limited access to the few measured signals. 

Therefore, conventional protective functions are optimized to perform the task using 

minimum numbers of input signals. Besides, the substation protection and monitoring 

require their own instrument transformers, which allow either wide dynamic range of 

fault currents or accurate metering of the energy.  As a result, an instrument transformer 

outputs cannot be shared with several devices, and thus dedicated instrument 

transformers and separate cables are required. The simplification of wiring can be 

observed by comparing Figure 1-4 (with traditional copper wires) with Figure 1-5 (with 

process bus communication network) for a typical transmission line protection and bay. It 
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can be inferred from the figures that the process bus facilitates very simple (fewer 

communication fibre) which can be engineered in factory itself (by configuring merging 

unit to corresponding subscribed IEDs). Therefore, this process bus concept can help to 

achieve cost savings as well.  

 

Figure 1-4 Traditional copper wiring architecture of a typical line protection 

In addition to that, with traditional one-to-one copper wiring, the accessibility of current 

and voltage signals are only limited to connect corresponding IEDs. Whereas, in case of 

process bus, any IED at bay level can subscribe to any process level merging unit in order 

to receive SVs without additional costs. This signal flexibility in the architecture can 

provide opportunities to enhance protection functions, which will be discussed in the 

following subsections of this chapter. 
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Figure 1-5 A simple and flexible architecture of a typical line protection process bus 

1.3.2 Cost savings 

It is the cost equation that separates what is technically possible from what is eventually 

manufactured by relaying vendors. The cost analysis of process bus communication has 

already been done in [18], [19]. Business case of applying process bus in a typical 

substation show that a process bus implementation can reduce the total installation cost, 

and savings of approx. 25% can be achieved [18]. Although material cost with process 

bus may increase from 27% to 42% due to the addition of communication network 

devices, the labour cost (which includes engineering, drafting, construction, 

commissioning) is expected to reduce from 73% to 34%. This is because, complex 

copper wiring is a major contributor of the labour cost, and pre-tested and pre-configured 
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process bus can provide less assembly, engineering, and commissioning at site. This can 

be appreciated by comparing Figure 1-4 with Figure 1-5. 

1.3.3 Enhancements of protection functions 

As explained in Figure 1-5, IEC 61850-9-2 process bus provides flexibility in terms of 

information exchange at the process level. This accessibility of any signal from the 

process level to any place at the bay level in a substation opens up tremendous 

opportunities of enhancement for substation protection functions. Enhancement of busbar 

protection using directional comparison concept with the help of IEC 61850-9-2 process 

bus is presented in [20], [21]. Moreover, IEDs could play the role of different protective 

relays, various control and monitoring devices and could be connected to different 

actuators such as circuit breakers or sectionalizers. Trip, blocking, status or any logical 

signals are transferred through the same network using GOOSE, and can support peer-to-

peer applications in a substation [22]. In addition to that, reference [23] presents other 

opportunities, such as failure of any current transformer or an MU can be easily 

compensated by estimating lost signal from other MUs, and installing centralized back-up 

protection system instead of providing individual duplication of each bay level protection 

IED. 

1.3.4 Interoperability  

Different vendors are allowed to provide complete integration of protection functions 

among all bay level IEDs and process level MUs. An abstract representation of 

interoperability at the process level is shown in Figure 1-6, by showing only few of the 

major process bus manufacturers (to demonstrate the concept). This figure shows the 

capability of IEC 61850-9-2 based process bus, and the interoperability vision of this 

standard, i.e. seamless interface of multi-vendor devices for a common goal (or 

application).  
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Figure 1-6 An abstract representation of interoperability at process level 

1.4 Technical Challenges with Process Bus for Substation 

Protection 

After implementation and testing of GOOSE  based on the IEC 61850-8-1standard at 

several substations and test facilities worldwide [24]-[26], major manufacturers are 

currently working on interoperable products for the time critical SV applications based on 

IEC 61850-9-2 [13] over the Ethernet networks to reduce labor cost and complexity of 

the copper wiring between switchyard and control room [27]-[30].  Major manufacturers 

are engaged in developing process bus devices which should be able to fit into any 

substation protection and automation network [31]-[34]. However, for the successful 

implementation of time critical substation protection application over the process bus 

network, the issues, such as performance of time critical messages over Ethernet 

communication network, as well as the reliability and availability of communication 
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architectures, need to be analyzed [6], [35], [36]. The technical challenges for the process 

bus implementation identified in literature are listed as follows:  

1.4.1 Dynamic performance of communication network 

The performance of a communication network is mainly dependent on the end-to-end 

packet delay and packet loss especially for the important piece of information. IEC 

61850-5 standard [37] specifies the allowable message transmission delay requirements, 

and approaches that could be used to study the Substation Automation Systems (SAS) 

network performance. These time delay requirements have to be achieved for the time 

critical messages e.g. GOOSE and sampled values, independent from the network traffic 

load on the process bus communication network. The overall system performance and its 

extensibility cannot be easily solved using this standard, although it does classify the 

message performance class and LAN simulation method. There is no guidance available 

in the standard on how to characterize message delivery performance across the whole 

substation communication network [38]. On the other hand, although the switched 

Ethernet eliminates the problem of collision by making the communication full duplex 

(all the stations connected to the switch can send and receive packets simultaneously), the 

delay bounds cannot be predicted, as the queuing delay is not constant and packet buffers 

have limited size [39]. This results into nondeterministic message delays and/or loss. 

Therefore, for the dynamic performance of a physical SAS network, LAN simulation 

tools must be used. In IEC 61850-5, Section- I.2, an SAS network’s dynamic 

performance was studied using COMNET III simulation program without stating how the 

IEDs are modeled and which worst case scenarios were considered. References [40], [41] 

have demonstrated preliminary simulations of overall substation automation network 

without modeling IEC 61850 based communication stack in OPNET [42].  OPNET is an 

industry-trusted commercial simulation tool for the communication networks, and the 

substation automation analysis using this tool is available in several literatures [38], [40], 

[41]. T. S. Sidhu and Y. Yin in [38], [43]  have proposed IEC 61850 based models for a 

protection and control IED and a merging unit in OPNET. However, it is important to 

consider the impact of various communication network parameters, such as Ethernet 
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switch buffer size and packet service rate, bit error rate of communication port, etc while 

studying dynamic performance of the communication LANs [44], [45].  

1.4.2 Loss/delay of time critical protection messages  

To reduce additional time delay caused by TCP/IP (Transmission Control 

Protocol/Internet Protocol) layers, GOOSE and sampled value messages are directly 

mapped on the Ethernet link layer. However, this elimination of TCP/IP layer reduces the 

reliability of packet communication [46], [47]. Therefore, to enhance the transmission 

reliability of GOOSE, the same GOOSE message is repeated several times according to 

the IEC 61850-8-1 standard. GOOSE is an event triggered message, and generally sent 

fewer times in a second to the network; whereas, sampled value messages are time 

triggered and transmitted at the rate of sampling frequency. Thus, the same sampled 

value message is not repeated, which reduces transmission reliability of sampled value 

messages over the process bus. Although the priority tagging along with Virtual Local 

Area Network (VLAN) is applied to the sampled value packets, this does not ensure the 

determinism of communication delays and packet loss on the network during worst case 

conditions [48]. Therefore, it is important to carry out detailed dynamic analysis of IEC 

61850-9-2 based process bus communication network in order to quantify the  rate of SV 

loss or delay for various protection functions. 

The SV loss or delay applies to entire the sampled value packet, which includes voltages 

and currents obtained at the same time stamp from the corresponding CTs/VTs. 

Therefore, SV loss/delay may have adverse impact on protective relaying. References 

[49], [50] have demonstrated the impact of SV loss on the performance of digital relaying 

protective functions, and presented adaptive filtering for single sampled value loss. The 

digital relaying algorithms of the currently deployed IEDs into the substation are not 

designed for the process bus contingencies, such as, SV packet delay or loss. C. Hoga in 

[51] has stated that the SV loss at the protection relay can have some kind of measuring 

blackout for the entire measuring window. In order to consider process bus 

communication networks for the future digital substation protection and automation, 

there should be a technique to alleviate impact of multiple sampled value loss/delay on 
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substation protection. Therefore, the process bus product developers have shown the need 

of smart algorithms for the treatment of lost/delayed SV data [35], and also re-sampling 

algorithms for the next generation IEDs [28].  

1.4.3 Reliability of IEC 61850 based Ethernet architectures  

IEC 61850-3 standard [52] refers IEC 60870-4 standard [53] for the details of reliability 

requirements, and states that there should be no single point of failure which can cause 

the substation to be inoperable.  However, IEC 61850 does not demand for any 

redundancy, and it is left to substation design engineer [35]. Therefore, it is immensely 

important to analyze the reliability of process bus Ethernet architectures for substation 

protection systems. References [54], [55] presented the impact of process bus Ethernet 

networks on the reliability and availability of protection system using a preliminary 

Reliability Block Diagram (RBD). Safety related availability of an interlocking function 

in IEC 61850 based substation automation system was analyzed using a 3-state Markov 

model in [56]. References [57]-[60] have shown reliability of the different Ethernet 

communication configurations as applied to a substation automation system using the 

RBD and fault-tree methods.  Furthermore, reference [61] included impact of repair rates 

on Mean Time To Failure (MTTF) and Mean Time To First Failure (MTTFF). However, 

there is no literature available to demonstrate the reliability evaluation of protection 

system based on IEC 61850-9-2 process bus, considering time synchronization 

techniques, as well as, various practical Ethernet switched architectures (according to 

IEEE PSRC report [8], these architectures are cascaded, ring, star-ring, and redundant-

ring). Moreover, reliability analysis of process bus Ethernet architecture should be 

applied to a typical substation layout for the purpose of comparison. 

1.4.4 Impact of process bus on reliability indices of digital protection 

functions 

Reliability models for the traditional copper wire based protection systems are proposed 

in various literature sources. J. D. Grimes introduced a method to calculate the 

probability of failure of protective relay systems in [62]. References [63] and [64] 
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presented the reliability assessment of protection systems using fault-tree method; 

whereas, L. Castro Ferreira et al [65], [66] analyzed reliability of protection and control 

systems using event-tree method. The limitation of these combinatorial methods (e.g. 

fault-tree, event-tree, etc.) is that they cannot model more than two states (operational or 

failed) of the system. Additional states, such as degraded, under test, temporary failure, 

reconfiguration, etc., which are important for the detailed modeling of digital protection 

functions are not recognized in most of the cases. Therefore, Markov modeling is used 

for this work. A Markov model in references [67]-[70] defined the reliability indices for 

the protection systems, such as, unavailability of a protection system and abnormal 

unavailability considering various states of protection systems. This work is extended by 

M. F. Firuzabad et. al. in [71]-[73] by considering monitoring and self-checking features 

of digital protective relaying, as well as recognizing software and human errors. 

However, the literature has reported the Markov models of digital protection function 

only with traditional copper wired based protection. Therefore, it is important to extend 

these existing Markov models to consider IEC 61850-9-2 based process bus 

communication network, and also to study the impact of process bus communication 

networks on the proposed reliability indices of substation protection functions. There is 

no such Markov model available in the literature for this analysis. 

1.4.5 Other Challenges 

Other technical and non-technical challenges [74] related to the process bus are discussed 

below: 

1.4.5.1 Time Synchronization issues 

IEC 61850 proposes the implementation of time synchronization on LAN using Simple 

Network Time Protocol (SNTP). However, SNTP is able to provide accuracy of about 1 

ms, which is not sufficient for raw data sampled values. One of the solutions is to use 

IRIG-B synchronization signal [75]. Nevertheless, IRIG-B needs an external time 

synchronization source, and accuracy of sampled values depends on the availability and 

quality of time synchronization. One of the solutions to the time synchronization problem 

is proposed in reference [27] using GOOSE message for sampling the analog values into 
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the MUs by using point-to-point communication links between IEDs and MUs. However, 

it is difficult to achieve interoperability using relative time synchronization method.  A 

third potential time synchronization technique is over process bus Ethernet network using 

IEEE 1588 standard [76]. Next revision of IEC 61850 standard may include IEEE 1588 

based time synchronization in order to achieve accuracy in the range of 1 µs.  

1.4.5.2 Data Security issues  

IEC 61850-3 refers IEC 60870-4, Section-3.4 [53] for the details of security 

requirements. An intruder in a power substation can easily cause packet swamping, port 

reservation, etc. which would introduce a large time delay or data loss even for high 

priority messages. This may cause damage to many substation devices. Furthermore, data 

security is even more important while exchanging data with a control centre or other 

substations. Firewalls, encryption (encrypt data at sending end and decrypt data at 

receiving end with secured key), and authentication (authenticating user by security 

password or biometrics) can address data security issue to some extent [44].  Security 

auditing for IEC 61850 based substation automation system is carried out in [77], [78]; 

however, further security measures need to be studied to secure substation 

communication infrastructures. WT15 of TC57 works on security solutions for the 

substation protocol [79].  

 

1.4.5.3  EMI immunity 

Various electromagnetic interferences such as, lightning strikes, switching surges, 

electrostatic discharges, strokes in SF6 circuit breaker, etc. are commonly encountered in 

Air Insulated Substation (AIS). Hence, general EMI immunity requirements used for 

industry are not sufficient for AIS. IEC 61850-3 specifies only the outline of EMI 

immunity requirements. IEC 61850 refers to the requirements and testing procedures 

given in the parts of IEC 6100 series (IEC 61000-6-5 and IEC 61000-4-x) [80] or IEEE 

C37.90.2 [81].  All the SAS devices such as IEDs, MUs, Ethernet switches, and other 

communication devices must be in compliance with these EMI immunity standards 

especially at the process bus level. 
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1.4.5.4 Version upgrade issues 

As discussed earlier, IEC 61850 provides free configuration, which would lead to 

segregation of single zone functions. Hence, single zone operation is dependent on proper 

hardware and software configuration of various devices installed by different 

manufacturers. It is also possible that a version update in any installed IED hardware or 

software may not support co-ordination with the existing versions from different 

manufacturers. This may lead to the need for updating the complete zone of functions 

which includes many devices of various manufacturers [35]. 

1.4.5.5 System expansion planning issues 

IEC 61850 does not suggest any specific architecture and hence, system expansion 

related issues are not addressed in the standard. However, as power demand increases, 

power substations need to be expanded. Therefore, issues related to system expansion 

need to be addressed during the planning stage itself [35]. Addition of more IEDs and 

MUs should not create heavy traffic flows into the communication network. Proper and 

careful design of the process bus network is required to achieve scalability.  

1.4.5.6 Manpower training issues 

Communication network will be the backbone of the SAS. Hence, substation engineers 

will have to acquire complete networking training [35]. This is major issue with utilities 

to train substation engineers and keep updating them with fast growing communication 

technology. 

1.5 Motivation  

IEC 61850 based process bus communication network can offer several advantages, such 

as, interoperability, overall labor cost savings, and flexible architecture. However, it can 

be inferred from the above literature survey that some of the major technical issues, such 

as performance of process bus communication network, especially for time critical SV 

data for substation protection applications; reliability of the process bus communication 
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architectures, and their impact on reliability indices of protection functions are left 

unanswered. Although, IEC 61850-9-2 process bus has proven to be an attractive and 

economical technology, it is important to examine its feasibility for substation protection 

systems, in terms of performance of time critical SV messages over Ethernet switched 

process bus network, as well as, the reliability of a protection function considering 

process bus communication networks.  

1.6 Research Objectives and Methodology 

With these motivations, an exhaustive research work is carried out to investigate the 

impact of process bus communication network on the performance and the reliability of 

substation protection functions. The highlight of research objectives are listed below: 

1. Detailed dynamic modeling and performance analysis of process bus 

communication networks for different protection functions of a typical substation. 

2. Studying the number of sampled values lost/delayed at various substation 

protection IEDs over the process bus, and developing a sampled value estimation 

algorithm which can counteract adverse effects of multiple loss/delay of sampled 

values.  

3. Development of hardware facility based on IEC61850-9-2 process bus network to 

demonstrate the implementation and testing of the proposed sampled value 

estimation algorithm as a part of some of the typical protection functions (e.g. 

biased-differential protection of substation busbar, and distance protection of 

transmission line) within a laboratory environment. 

4. Evaluation of the reliability and availability of the process bus based substation 

protection systems, and also the comparison of the reliability and availability of 

various practical process bus communication networks for a typical substation 

layout. 

5. Extension of Markov model for protection system reliability evaluation by 

considering process bus communication network, and studying the impact of 

process bus on protection reliability indices. 
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The specific research methodology to carry out the above listed research objectives at 

different stages is described below: 

Stage-1. Performance of substation protection over IEC 61850-9-2 based process 

bus communication network 

According to IEC 61850, the maximum acceptable delay for the time critical messages of 

substation protection, such as raw data SVs and GOOSE should be within 3 to 4 msec. 

Therefore, to reduce additional time delay caused by TCP/IP (Transmission Control 

Protocol/Internet Protocol) layers, IEC 61850 has proposed direct mapping of these time 

critical messages over data link layer by eliminating the TCP/IP layers. However, this 

elimination affects reliability of message transmission, i.e. reception of time critical 

messages is not guaranteed. Thus, IEC 61850 proposes repetition of the same GOOSE 

message several times over the communication networks. On the other hand, repetition of 

SV time critical messages cannot be proposed in order to limit the huge traffic over the 

network. Hence, there is no assurance for the SV message communication over the IEC 

61850-9-2 based process bus. Thus, the detailed dynamic performance analysis of the 

process bus for time critical SV messages is carried out using industrial simulation tool, 

OPNET. The models for IEC 61850-9-2 process bus devices, such as protection IED and 

merging unit are developed in the OPNET. Moreover, as suggested in IEC 61850 part-9, 

various communication protocols such as VLAN (IEEE 802.1Q) and QoS (priority 

tagging based on IEEE 802.1p) are implemented in to the process bus model of the 

OPNET. Finally, the sample value packet loss and packet delay are studied for different 

process bus scenarios. 

Stage-2. Sample value estimation algorithm for IEC 61850-9-2 process bus 

To improve the performance of digital substation protection functions in case of SV 

loss/delay, a generic SV estimation algorithm is proposed which can be applicable to any 

digital protection system. To test the performance of the proposed algorithm for various 

scenarios, a typical substation is simulated in PSCAD/EMTDC software to obtain raw 

data SVs, and different scenarios of multiple SVs loss are created with the help of 

MATLAB. Finally, the error analysis is carried out, before applying to digital relaying 



 

 22

algorithms, to study the accuracy of proposed SV estimation algorithm by considering the 

effects of Source Impedance Ratio (SIR) and Point-On Wave (POW) of the fault, noise 

level into power signal, sampling frequency, and instance of SV loss. 

Stage-3. Hardware implementation of sampled value estimation algorithm in the 

laboratory environment 

The proposed sampled value estimation algorithm should be implemented and tested 

before applying to any commercial protective relaying. Therefore, hardware laboratory is 

setup for a typical IEC 61850-9-2 based process bus network with substation protection 

systems. The developed testing facility includes the development of various digital 

protection devices, e.g. protection IEDs, and MU real-time playback simulator over 

industrial embedded systems with a hard-real-time platform; implementation of IEEE 

1588 based time synchronization over the process bus using the GPS signals; and 

configuration of IEC 61850-9-2 based Ethernet networks using the commercial Ethernet 

switches.  The performance improvement of the busbar differential and the transmission 

line distance protections using the proposed sampled value estimation algorithm is 

analyzed with a series of experiments.  

Stage-4. Reliability analysis of process bus communication architectures  

To study the impacts of process bus communication network on the reliability of 

substation protection functions, the analysis is started with the development of Reliability 

Block Diagrams (RBD) for various practical process bus architectures, considering 

Ethernet configurations (e.g. cascaded, ring, star-ring and redundant-ring), as well as, 

time synchronization techniques (e.g. IRIG-B and IEEE 1588). Thereafter, the 

combinatorial reliability of protection system is analyzed using RBD method. Also, the 

failure rates of these process bus architectures obtained from RBD method can be used 

for the further Markov modeling. 

Stage-5. Impact of process bus communication on reliability of substation 

protection   
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After obtaining the failure rates of practically possible process bus communication 

architectures with different time synchronization techniques using the RBD, the existing 

Markov models of protection system (from literature) is extended to accommodate the 

IEC 61850-9-2 based substation protection functions. With this proposed Markov model, 

the reliability indices of protection systems, such as, protection unavailability, abnormal 

unavailability, and loss of security are obtained to compare the traditional protection 

functions with the next generation IEC 61850-9-2 based protection functions. Moreover, 

the impact of SV loss/delay on the reliability indices of a protection system, and 

possibility of improvements with the help of the proposed SV estimation technique is 

studied using the proposed model. In addition to that, the sensitivity analysis of time 

synchronization techniques, process bus network reconfiguration, monitoring 

effectiveness, and failure rate of protection IED on protection reliability indices is carried 

out in detail. 

1.7 Organization of the Thesis 

This thesis is organized in eight chapters and five appendices. 

Chapter 2 discusses salient features of the IEC 61850-9-2 based process bus 

communication network for substation protection systems, including time critical 

messages (SV and GOOSE) for protection, retransmission mechanism of a GOOSE, SV 

multicasting, accurate time synchronization techniques, and fast and flexible Ethernet 

architectures. Moreover, this chapter also provides an overview of the practical Ethernet 

architectures reported by IEEE PSRC Committee for process bus, as well as, potential 

time synchronization methods (IRIG-B and IEEE 1588).  

The performance evaluation of the IEC 61850-9-2 based process bus communication 

network is presented in Chapter 3. Industry-trusted performance analysis tool, OPNET, is 

used to develop detailed models for studying the performance of a process bus. Important 

parameters of a communication network, such as communication link speed, bit-error-

rate, background traffic, Ethernet switch buffer size and its packet service rate, priority 

tagging, and VLAN configuration are considered for the detailed dynamic analysis of 
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IEC 61850-9-2 based network. A typical substation process bus network is considered, 

and analysis in terms of delay and loss of SV is presented in detail.  

In order to counteract the SV loss/delay in a digital protection IED, the SV estimation 

algorithm is proposed in Chapter 4. Moreover, the accuracy of estimated several 

consecutive SVs is analyzed for various Source Impedance Ratios (SIRs), and Point-On-

Waves (POWs) of the power system faults, noise levels, sampling frequency, and SV loss 

instances. The comparison among the estimation techniques up to third order is presented 

with the one without estimation.  

The proposed SV estimation algorithm, a corrective measure for SV loss/delay, should be 

implemented and tested for digital protection systems. Therefore, the work is carried out 

in Chapter 5 to develop IEC 61850-9-2 based process bus network as well as devices.   

The developed IEC 61850-9-2 enabled devices include, protection IEDs, merging unit 

simulator to generate SV packets in real time from the power system simulated in 

PSCAD/EMTDC, traffic generator, and network analyzer. Moreover, time 

synchronization over the network is implemented in this developed lab setup using 

commercial Ethernet switches in compliance with IEEE 1588 standard and GPS 

synchronization source. Finally, this chapter presents the implementation of the proposed 

SV estimation algorithm as a part of a busbar differential protection IED, as well as a 

transmission line distance protection IED. And, the extensive testing is carried out to 

examine the SV estimation algorithm performance for various SV loss/delay scenarios 

and power system fault conditions. 

In addition to the enhancement of the performance of  substation digital protection 

systems with SV estimation algorithm, this work also presents reliability analysis by 

proposing reliability models for the IEC 61850-9-2 enabled digital protection systems. 

Chapter 6 develops the reliability block diagrams in order to analyze combinatorial 

reliability (a reliability analysis method which considers series-parallel combination of 

the components) of the IEC 61850-9-2 based various Ethernet architectures and time 

synchronization techniques. The Extended Markov model of the IEC 61850-9-2 enabled 

protection system is proposed in Chapter 7. And, the different values of communication 
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architecture failure rates used in Markov model are obtained from Chapter 6.  Finally, the 

impact of process bus communication network on substation protection functions, and 

sensitivity analysis is presented by comparing the reliability indices of protection systems 

obtained from the proposed Markov model. 

The major outcomes from the research and conclusions from the entire work are 

highlighted in Chapter 8. This chapter also discusses possible further work from this 

thesis. 

1.8 Summary 

A brief introduction to IEC 61850 standard and its specific part-9-2 for the process bus is 

discussed in this chapter. Major benefits and technical challenges related to the IEC 

61850-9-2 based process bus communication network is described from exhaustive 

literature survey. With the motivation to address the major challenges of the process bus, 

the specific research goals and methodology to achieve these goals are described. The 

next chapter will provide detailed understanding of IEC 61850-9-2 based process bus 

network by discussing practical Ethernet architectures, and suitable time synchronization 

techniques.  
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2. IEC 61850-9-2 Based Process Bus for Digital 

Protection Systems 

This chapter includes the salient features of IEC 61850-9-2 based process bus, such as 

time critical protection messages (GOOSE, SVs), retransmission of GOOSE, SV 

multicasting, time synchronization techniques, and Ethernet switched configurations. 

Thereafter, various process bus architectures considering different Ethernet switched 

architectures (e.g. cascaded, ring, star-ring, redundant ring, etc.), and time 

synchronization techniques (e.g. IRIG-B and IEEE 1588) are discussed in detail.  

2.1 Features of IEC 61850-9-2 Process Bus 

IEC working group TC57 has published IEC 61850 named as “Communication Networks 

and Systems in Substation” in 2003 [2]. Initially, IEC 61850 standard was divided into 

total 10 parts, which covers not only how to communicate but also what to communicate. 

This standard provides the interoperability between two devices of different 

manufacturers in the same substation by defining the communication protocol and 

universal modeling of logical node into SAS functions. The high-speed digital 

communication at process level allows replacing the traditional electrical wiring using 

virtual wiring, which could save a lot of time and cost while implementing substation 

automation system. The major features of IEC 61850-9-2 are discussed below: 

2.1.1 Time critical protection messages over process bus 

There are basically two types of processes: 1) event triggered; 2) time triggered. In case 

of event triggered, message is sent due to occurrence of a certain event e.g. state change. 

The receiving node may perform operations pertaining to that event (e.g. computation of 

algorithms).  For time triggered, message is populated at the specific predefined instance 
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of time.  Since, the period of the time triggered SV message is normally small (approx. 

0.2 msec for 4800Hz sampling frequency), the traffic over the process bus due to SVs 

from various MU occupies large portion of the network channel bandwidth. It may be 

required that the time between the event generation and the computation of the algorithm 

be bounded.  

2.1.2 Retransmission mechanism of GOOSE 

To achieve a highly dependable level of GOOSE message delivery, the IEC 61850-8-1 

specifies a retransmission scheme for GOOSE messages, as shown in Figure 2-1.  

 

 

Figure 2-1 Transmission time of GOOSE messages 

After initiation of any status change, GOOSE messages are published repeatedly. At the 

time of configuration, parameter called maximum time is set in each GOOSE message to 

wait between message publication, and the name of the data set to include in the message. 

In case, maximum time expires or any data set value changes, a GOOSE message is 

published over the network. After a change in the data set elements i.e. some event takes 

place, GOOSE messages are sent repeatedly with incremental periods, to make sure that 

all subscriber IEDs will receive them across non deterministic Ethernet. Each message 

includes the total time to live, which forecasts the time delay before the next message will 

be published so that subscribers can monitor correct data flow. When a new data set event 
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occurs (in this case, a binary change of state or an analog passing through a reporting 

dead band), a new message is created and published. The new data set event information 

is transmitted and repeated in the shortest T1, as shown in Figure 2-1. The retransmission 

time gradually increases from T2 to T3, and eventually settles at a stable retransmission 

time. This stable retransmission time is shortened when the next new event occurs. 

Subscribers constantly calculate time to wait, based on time to live within each message. 

The subscriber considers data “stale” when time to wait expires and they have not 

received a new replacement message from the publisher. If the subscribing IED detects 

expiration of the wait time, it assumes that the communication is lost and modifies its 

relay logic accordingly. The message retransmission scheme is necessary to perform 

transmission from one to many and to allow the subscriber to know that the 

communications channel is healthy. However, depending on the choice of final stable 

retransmission time, it may not be sufficient to guarantee the reliability of time-critical 

tasks [82]. 

2.1.3 Multicasting of time critical messages 

The protection devices over a process bus network, such as protection IEDs and MUs 

should support multicasting of time critical messages (GOOSE and SV). Multicasting 

feature allows sending same messages to multiple destination devices. This works based 

on subscriber/publisher mechanism, in which an IED or an MU multicasts or publishes a 

message to all subscribed IEDs and MUs. Since, the time critical messages are directly 

mapped to data link layer 2, all IEDs and MUs should support Ethernet data link layer-2 

multicasting capability. This can be achieved through Ethernet MAC (Media Access 

Control) source and destination addresses, which are defined in the Ethernet packet 

frame. These addresses have 48 bits each to identify the frames destination and source 

addresses. A destination address either specifies address for single receiver IED or 

multicast address for a group of receiver IEDs. With the help of multicasting of time 

critical messages, the same message need not to be repeated several times to different 

locations, and the traffic over the network reduces considerably.  
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2.1.4 Time synchronization among process bus devices 

The IEC 61850-9 proposes digital process bus, which means digitization of analog 

signals at the switchyard into the MUs. These digital sampled values are communicated 

to bay level IEDs through process bus communication networks.   Sampled values, 

generated from a MU located at different locations of a switchyard, should be 

synchronized to a common reference time stamp for a bay level protection IED. The two 

major solutions available currently to achieve accuracy in the range of 1 µs are: 1) IRIG-

B synchronization signal [75]; 2) IEEE 1588 based PTPv2 [76]. Due to time 

synchronization of all sampled values within a substation, any protection IED can utilize 

SVs from any MU, and this opens up new possibilities of digital protective relaying, as 

discussed in previous chapter. Furthermore details on these time synchronization 

techniques will be provided in following subsections of this chapter.  

2.1.5 Fast and flexible Ethernet architectures 

Ethernet was developed by the Xerox Corporation's Palo Alto Research Centre 

(known colloquially as Xerox PARC) in 1972. It is the most popular and widely deployed 

LAN technology in the world. Ethernet came to play in automation world in 1985. Since 

then, many Ethernet solutions such as Ethernet/IP, Modbus, Profinet, EtherCat are 

proposed and used in the industrial automation world. A modern practice is to use 

Ethernet switch network in substation automation systems. Ethernet switch is layer 2 or 

layer 3 device which has certain benefits compared to layer 1 devices i.e. a hub. Switch 

could read, buffer and forward frames to corresponding MAC address in full-duplex 

mode, as a result there is no need of CSMA/CD protocol. In addition to that, switch has 

following features, which are essential for the high-speed real time performance [83]. 

a. IEEE 802.3x Full-Duplex operation on all ports ensures that no collisions can 

occur over the network.  

b. IEEE 802.1p Priority Queuing which allows frames to be tagged with different 

priority levels in order to ensure that a real-time critical traffic always makes it 

through the network even during high periods of congestion. 
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c. IEEE 802.1Q VLAN which allows the segregation and grouping of specific ports 

into virtual LANs in order to isolate traffics of different applications. 

d. IEEE 802.1w Rapid Spanning Tree Protocol which allows for the creation of 

fault tolerant ring network architectures that will reconfigure in milliseconds as 

opposed to tens of seconds as was the case for the original Spanning Tree 

Protocol 802.1D. 

e. IGMP Snooping / Multicast Filtering that allows for multicast data frames, such 

as GOOSE frames, to be filtered and assigned only to those IEDs which request to 

listen to them. 

f. Various combinations of 100Mbps and 1Gbps ports which facilitate the 

connections between IEDs and the switch. 

2.2 Ethernet Switched (ESW) Architectures for Process Bus 

The basic Ethernet switched architectures include cascaded, star, and ring. The practical 

architectures for SAS may be hybrids of these three basic combinations. In this work, 

following Ethernet communication architectures are considered, as recommended by 

IEEE PSRC report [8] are discussed below.  

2.2.1 Cascaded Ethernet architecture 

A typical cascading architecture is illustrated in Figure 2-2. All four Ethernet switches 

(ESWs) are cascaded without having any loop.  

 

Figure 2-2 Cascaded Ethernet architecture 

This architecture is simple and less expensive, as there is no need for any routing protocol 

in the Ethernet switches. However, the time delay (latency) of this configuration would 

be higher comparatively. 
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2.2.2 Ring Ethernet architecture  

As shown in Figure 2-3, ring architecture is very similar to the cascaded architecture 

except that the loop is closed from the last switch to the first switch. Ethernet switches do 

not support loops. Therefore, it is required to employ managed switches (i.e. those with a 

management processor inside) with the Rapid Spanning Tree Protocol (RSTP) (IEEE 

802.1w). This protocol allows switches to detect loops and internally block messages 

from circulating in the loop and also allows reconfiguration of the network during 

communication network fault within few hundreds of millisecond. This architecture has 

potential to offers the better reliability because it facilitates n-1 redundancy i.e. IEDs can 

still communicate even if any one of the ring connections and/or ESW fails. However, 

this architecture is costly and complex, and does not improve any network latency. 

                     

Figure 2-3 Ring Ethernet architecture 

2.2.3 Star-ring Ethernet architecture  

In star-ring LAN architecture as shown in Figure 2-4, each bay level Ethernet switch is 

connected directly to two redundant main Ethernet switches. Both these main Ethernet 

switches are connected in ring. This provides higher redundancy as well as low latency; 

however, this requires two additional switches to arrange the network in star-ring 

configuration. 
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Figure 2-4 Star-ring Ethernet architecture 

2.2.4 Redundant-ring Ethernet architecture 

Figure 2-5 shows the redundant-ring architecture, which provides two completely 

redundant rings. Further, both these rings are connected again in ring of four main 

Ethernet switches. This kind of architecture provides complete redundant ring network 

with medium latency. However, this architecture requires many managed Ethernet 

switches with rapid spanning tree protocol (IEEE 802.1w). Moreover, all the IEDs have 

to have two Ethernet ports which will again increase the cost. Hence, this network 

provides highest reliability; on the other hand, it suffers from high cost and complexity.  
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Figure 2-5 Redundant-ring Ethernet architecture 

2.2.5 High redundancy protocols  

Above mentioned ring based Ethernet switched architectures utilize RSTP protocol (in 

compliance with IEEE 802.1w) which has sub-second network recovery time. Currently, 

work is going on to develop process bus architectures based on IEC 62439-3 [84] to 

achieve highly reliable Ethernet switched networks with zero network recovery time. IEC 

62439-3 proposes two protocols: 1) Parallel Redundancy Protocol (PRP) and 2) High 

availability Seamless Redundancy (HSR). The architecture of HSR network is almost 

same as ring architecture, whereas, PRP network is similar to redundant-ring architecture 

as discussed in previous subsection. In HSR network, the same message is circulated in 

two different directions, and therefore, destination receives it twice, which provides n-1 
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redundancy to each message transmitted over the network. However, HSR doubles the 

traffic over the ring network, thus speed of networking infrastructure should be very high. 

On the other hand, PRP circulates the same message in two different/redundant ring 

networks, which again result in n-1 redundancy while keeping the same speed of 

networking devices. However, PRP requires two separate communication network 

similar to presented redundant ring architecture. This way, both of these protocols are 

expected to provide seamless zero network recovery time, and networking infrastructure 

supporting this IEC 62439-3 protocol is currently under development [85]. 

2.3 Time Synchronization Methods for Process Bus 

Currently, time synchronization with accuracy of 1µsec (required by protection 

application) can be achieved using two techniques, such as external time synchronization 

source based on IRIG-B protocol, and time synchronization over Ethernet data networks 

using IEEE 1588. 

2.3.1 IRIG-B time synchronization  

Currently one of the established time synchronization technologies which can satisfy the 

time synchronization accuracy requirements is using IRIG-B signal. The IRIG protocol 

was originally developed by the Inter-Range Instrumentation Group (IRIG), part of the 

Range Commanders Council (RCC) of the US Army [75], [86]. First time it was 

published in 1960 and latest version of Protocol was updated in September, 2004. IRIG –

B time code is currently widely used as time synchronization protocol in substation 

automation system. This protocol is simple to implement, and it provides microsecond 

accuracy. IRIG-B time code has a pulse rate of 100 pulses-per-second with an index 

count of 10 milliseconds over its one second time frame.  It contains time-of-year and 

year information in a BCD (Binary Code Decimal) format, and (optionally) seconds-of-

day in SBS (straight binary seconds) [86]. The disadvantage of the IRIG –B is that, it 

requires dedicated/separate cabling infrastructure to implement it. All the devices 

requiring time synchronization are connected in daisy chain or in star topology using 
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coaxial cable.  Also, internal optical isolation is required between devices and master 

clock to prevent ground loops.  

The Figure 2-6 shows the process bus (Ethernet switch network) of a transmission line-1 

protection bay with external Time Synchronization (TS) sources (based on IRIG-B 

standard) connected to all the merging units and protection IEDs. IRIG-B signal source 

may be connected to the individual Merging Units (MUs) and Intelligent Electronic 

Devices (IEDs) or shared between two closely located MUs. It can be observed that this 

architecture would increase the need of TS sources in a process bus. As shown in Figure 

2-6, there can be complete redundancy in process bus architecture, e.g. MU-17, MU-18, 

and MU-29 are connected to redundant Ethernet switch (ESW-11) over the redundant 

network. Redundant line-1 protection IED-B is connected to redundant Ethernet switch 

architecture. The cloud of Ethernet switch is consist of 10 Ethernet switches connected in 

a ring.  

 

Figure 2-6 External TS using IRIG-B signal 

2.3.2 IEEE 1588 based time synchronization  

IEEE 1588, a standard for “Precision Clock Synchronization Protocol for Networked 

Measurement and Control Systems”, is modified by IEEE in March 2008, also known as 
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PTPv2 (Precision Time Protocol version 2) [76]. This improved protocol offer better 

accuracy and scalability compared to the currently used time synchronization 

technologies such as the Network Time Protocol (NTP) and IRIG-B (a high-precision 

serial protocol). It is designed to synchronize distributed clocks with an accuracy of sub-

microsecond across a packet switched communication network, with relatively low 

network and computing capacity. Traditional synchronization technologies distribute 

only a common frequency, revised PTP also facilities distribution of common frequency, 

common phase-alignment, and common time-of-day (TOD). This IEEE 1588 PTPv2 is 

important for substation automation purpose, as it fulfills the timing accuracy 

requirements of current substation automation applications. Moreover, unlike IRIG-B, 

there is no need for dedicated cabling infrastructure network for time synchronization 

information. However, the Ethernet switches used for data communication should have 

IEEE 1588 PTP V2 capability.   

The Ethernet switch network with IEEE 1588 based time synchronization is shown in 

Figure 2-7. The redundant time synchronization sources TS-1 and TS-2 basically 

provides the time synchronization signal in compliance with IEEE 1588 over the entire 

process bus using Ethernet switches. The compatibility with IEEE 1588 can be 

implemented in all devices using hardware and/or software.  

 

Figure 2-7 Time synchronization over the process bus network using IEEE 1588 
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2.4 Summary 

This chapter discusses the major features of process bus proposed in IEC 61850-9-2 

standard. Various process bus mechanisms, such as event and time triggered 

communication, GOOSE retransmission, SV multicasting, time synchronization are 

explained in detail. Furthermore, the flexibility of Ethernet switched architectures is 

presented by considering practical architectures discussed by IEEE PSRC committee 

report. Two potential time synchronization techniques, IRIG-B and IEEE 1588, suitable 

for substation protection applications (1µs accuracy) are described in detail. Next chapter 

will provide a detailed dynamic performance evaluation of the IEC 61850-9-2 based 

substation protection over a process bus communication network using the OPNET 

simulation tool.      
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3. Performance Evaluation of IEC 61850-9-2 

Process Bus Using OPNET 

This chapter presents the performance analysis of substation protections over the IEC 

61850-9-2 process bus network using the industry-trusted communication network 

simulation tool, OPNET [42]. For this, first of all the performance requirements (in terms 

of transfer time) suggested by the IEC 61850 standard is discussed. Thereafter, the efforts 

are put in this work to develop  the dynamic models for several communication 

mechanisms and protocols, e.g. bit-error-rate on the communication channel and bit error 

correction mechanism at communication port; Ethernet switch packet buffer and buffer 

overflow mechanism; priority queuing mechanism for time critical packets, etc. In 

addition to that, dynamic models of Ethernet switch (ESW), fiber cables, transceiver 

ports, other IEC 61850 message traffics, etc. have also been developed to analyze more 

realistic scenarios for the IEC 61850-9-2 process bus performance evaluation. As 

discussed in the previous chapters, SV messages are not repeated as GOOSE, and 

therefore, it is important to analyze the loss/delay of SV over a process bus 

communication network. The results for the sampled value packet loss and delay are 

obtained by considering the impact of various process bus network parameters, such as, 

speed of the communication link, sampling frequency of the MUs, Ethernet switch buffer 

size and packet service rate, Bit Error Rate (BER) of the communication channel, and 

network background traffic. 

3.1 IEC 61850 Communication Performance Requirements  

As per IEC 61850, a transfer time is the time from the moment the sender (IED) puts the 

data content on the top of its transmission stack up to the moment the receiver (IED) 

extracts the data from its transmission stack. This is illustrated in Figure 3-1. 
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Figure 3-1 Transfer time definition 

Piece of Information over Communications (PICOMs) refer to information transfer based 

on a single dedicated functionality, and include source and sink. The messages types are 

based on a grouping of the performance related PICOM attributes, and therefore, they 

define the performance requirements to be supported. The performance requirements are 

independent of the size of the substation, and are defined according to the application. 

According to IEC 61850-5 and IEC 61850-8, messages are classified into 7 categories 

based on the performance requirements. Table 3-1 summarizes these messages and 

transfer time requirements based on IEC 61850 standard. It can be observed from the 

table that the raw data samples (type 4) and GOOSE messages (type1, 1A) are time 

critical and are, therefore, directly mapped to data link or Ethernet layer, refer Figure 1-2. 

The medium speed message (type 2), low speed message (type 3), file transfer functions 

(type 5), and command message with access control (type 7) are not very time critical, 

and therefore, mapped to over TCP/IP stack above the Ethernet layer as shown in Figure 

1-2. The time synchronization messages (type 6) based on NTP protocol are broadcasted 

to all IEDs in substation using UDP/IP. The UDP is connection-less networking protocol, 

whereas, TCP is connection-oriented protocol. Therefore, TCP/IP provides more 

reliability of message transmission, as compared to other UDP/IP or direct mapping over 

Ethernet [47]. 
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Table 3-1 Message types & performance requirement in SAS 

Sr. No. Message Type Application 
Transfer Time Limit 

(ms) 

1 
Type 1 

1a – Trip 
1b – Others Message 

Trigger 10-100 

Complex block or release 10-100 

Fast broadcast Message 1 

Process State Changed 1-10 

Trip 1 

2 
Type 2 

Medium Speed Message 

Process value in r.m.s 50-1000 

Request for syn. check 
interlocking 

10-100 

Process State 1-100 

Calculated State 1-100 

External Condition 1-100 

3 
Type 3 

Low Speed Message 

Measured value 100-1000 

Meter value 100-1000 

Non – electrical Process value 1000-5000 

Fault value 1000-5000 

4 
Type 4 

Raw Data Message 
Process value 
(Sample voltage & Current) 

0.1-10 

5 
Type 5 

File Transfer 

Report e.g. Energy list 1000-5000 

Mixed fault info. 1000-5000 

Mixed fault data 5000 

Event/Alarm List 100-1000 

ID data, Setting 1000-5000 

Diagnostic data 5000 

6 
Type 6 

Time Synchronization 
Message 

Synchronization pulse 0.1-10 

7 
Type 7 

Command Message with 
Access Control Message 

Command 
(From local to remote HMI) 

1-1000 

 

3.2 OPNET Modeler Simulation Tool 

The OPNET Modeler tool facilitates the design and study of communication networks, 

devices, protocols, and applications with complete flexibility [42]. OPNET Modeler 

provides Proto-C (OPNET’s modeling language developed using C/C++) based object-

oriented modeling approach, with many editors (Project editor, Node editor, Process 

editor, Packet editor) for detailed customization of the design as shown in Figure 3-2. 
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And hence, it is possible to develop any communication protocol or a device model with 

the OPNET code process, and node editors. 

 

 

Figure 3-2 OPNET graphic editors 

OPNET has four hierarchical editors as shown in the figure above: 

1. Project editor: It represents the topology of a communication network using nodes 

2. Node editor: It represents the architecture of network devices using modules 
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3. Process editor: It provides the implementation of any protocol logical flow using 

state-transition diagram. It defines the module process in response to events using 

transitional conditions and executives. 

4. Code editor: It facilitates the programming environment, and can be opened from 

any module of the state-transition diagram in process editor.  

OPNET offers the object-oriented modeling approach for the simulation of any computer 

network and its devices [42]. It facilitates the design and study of: 

� Communication networks 

� General or Vendor’s devices 

� Protocols 

The following subsection presents modeling of IEC 61850-9-2 based process bus devices 

in OPNET. 

3.3 Modeling of IEC 61850-9-2 Process Enabled Protection 

and Control Devices  

3.3.1 Protection and control IED 

The modeling of an IED shall be based on the communication stack specified in IEC 

61850, (refer Figure 1-2). Protection and Control (P&C) IED has to communicate with 

MU IED, as well as other P&C IEDs. Hence, the P&C IED should have capability of 

interfacing directly at “mac” layer and with all the OSI-7 layer stacks. That is because, 

the P&C IED would send GOOSE message by directly mapping it to “mac” layer, 

whereas, for client-server communication (where there is no time critical-message), the 

P&C IED uses all the seven layers. As Figure 3-3 shows, the GOOSE message is directly 

mapped on the data link layer and other application messages are mapped using all 7 

layers are present. 
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Figure 3-3 OPNET model for protection IED 

3.3.2 Merging unit model 

As the MU IED generate raw data packets, which are  very time critical packets, the 

mapping of these packets is done directly on data link layer  (unlike all OSI-7 layers).  As 

Figure 3-4 shows that raw_data_source (raw packet generator), directly maps the SV 
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packets on mac module. Eth_mac_intf is the interface module between application layer 

and mac layer. eth_tx0 and eth_rx0 are the Ethernet transceiver, and it does the function 

of PHY layer. 

 

 

Figure 3-4 OPNET model for merging unit  

Above models are used to model IEC 61850 based substation communication network in 

OPNET simulation environment. 

3.3.3 VLANs and priority tagging 

IEC 61850-9-2 recommends the implementation of VLAN/priority tagging based on the 

IEEE 802.1Q to achieve the Quality of Service (QoS) in process bus. As shown in Figure 

3-5, the SV packets will have Tag Protocol Identifier (TPID) and Tag Control 
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Information (TCI) (defined in IEEE 802.1Q) fields between source MAC address and 

Ethertype fields. The value of TPID is 0x8100 (in hex). The 3-bits of the user priority in 

TCI allow total eight class of services (as defined in IEEE 802.1p), and this field can be 

set between 0 (i.e. lowest priority) and 7 (i.e. highest priority). The VLAN/priority 

tagging is implemented in SAS models with the help of Proto-C (C/C++) based object 

modeling using process model editor in the OPNET. The user priority field is set to 

higher priorities for SV and GOOSE messages, whereas, low priority for client/server 

based file transfer applications. Canonical Format Indicator (CFI) has 1 bit. And, 12-bits 

of VID (VLAN ID) allow total 4094 VLANs (excluding 0x000 and 0xFFF as a reserved) 

to be implemented into a SAS network. In this SAS network, for each bay automation 

devices, individual VLAN is configured. This means, all devices (P&C IEDs and MUs) 

corresponding to same bay will have same VID, whereas, VID would be different for any 

two different protection function devices. This way, the broadcast domains are separated 

according to bays of the SAS. 

 

Figure 3-5 IEEE 802.1Q based VLAN/priority tagging 

3.3.4 Packet format for the sampled values 

The modeling of the standard sampled value packet using an OPNET packet editor is 

illustrated in Figure 3-6. The sampled values of three-phase-and-neutral voltages and 

currents, i.e. 8 signals, are merged in Application Protocol Data Unit (APDU) at the 

MUs. More detail on packet format fields can be found in Appendix C. 
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Figure 3-6 Sampled value Ethernet packet format in OPNET 

 

 

3.3.5 Ethernet switch model 

The OPNET provides Ethernet switch models from authorized manufacturers, which are 

already validated with commercially available Ethernet switches [87]. Figure 3-7 shows 

the node model of layer-3 Ethernet switch with 10 fiber optic ports for full duplex 

(10Mbps and 100Mbps) communication. A layer-3 (IP layer) ESW is required to support 

the traffic flows among the VLANs, i.e. inter-bay communications. A “Store-and-

forward” mechanism is used for this model according to Ethernet standard. Therefore, 

each receiving packet is stored first until the entire packet is received at the receiver of 

corresponding port. Then, each stored packet is checked for the data integrity (bit errors). 

Bit errors are corrected at certain level (according to bit error correction mechanism 

supported by the ports), and send to central processor module. Processor reads the 

destination MAC address and selects the corresponding output port for each packet at 

packet service rate of the ESW. Finally, the packet is queued in to the ESW buffer 

according to the priority tagged on the packet. Packets are transmitted from output port 

transmitter according to priority level of the queue, i.e. highest priority queue emptied 

first (strict priority algorithm). 
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Figure 3-7 Ethernet switch node model in OPNET 

 

3.3.6 Ethernet switch buffer size and packet service rate  

Commercially available Ethernet switches has limited buffer size and packet service rate. 

These constraints of the practical network are modeled in Ethernet switch attributes: 

Packet Service Rate (packets/sec), subqueue bit and packet capacity, as shown in Figure 

3-8. Moreover, this figure also demonstrates incorporation of RSTP (IEEE 802.1W) 

protocol, and VLAN configuration, etc. 
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Figure 3-8 Buffer size and packet service rate attributes of Ethernet switch model in OPNET 

3.3.7 Communication links and ports with BER  

For a process bus communication, optical fiber based communication links would be 

preferable, due to its EMI immunity feature. Therefore, two full duplex fiber optic 

communication links are considered for the process bus communication, 10 Mbps (based 

on 10BaseFL standard) and 100Mbps (based or 100BaseFX standard). Moreover, the bit-

error-rate on the communication links should also be considered for the packet loss study. 

Figure 3-9 highlights the communication link model attributed with BER settings. 
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According to these settings, the errors in the bits transmitted through these fiber links are 

generated. 

 

Figure 3-9 Models for BER of communication links in OPNET 

Communication ports have capability to correct the bit errors from the packet using error 

correction (ecc) model, as shown in Figure 3-9. The commercially available ecc model is 

used in the OPNET.   

3.3.8 Traffic modeling for process bus 

There are basically three types of traffic models  configured for IEC 61850-9-2 based 

process bus application: 1) high priority sporadic traffic, i.e. event triggered GOOSE 

messages; 2) high priority periodic traffic, i.e. time triggered raw data SV messages; 3) 

low priority background (or best effort) traffic, i.e. event triggered client-server 

applications among the IEDs. The event triggered (e.g. GOOSE, client/server) messages 

depends upon the number of events occurring during the simulation time, and hence, 

memory-less exponential distribution of an event scheduler would be more appropriate. 
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Whereas, for time triggered (e.g. raw data SV messages), constant packet generating 

source should be used. 

 

3.4 Simulation of IEC 61850-9-2 Process Bus using OPNET  

Figure 3-10 shows a dynamic Ethernet switch based process bus communication network 

simulated for a typical 345/230 kV substation. Detail of this substation is presented in 

Appendix B.  According to number of IEDs and MUs, total four 10-port Ethernet 

switches are configured in a ring, which is one of the practical substation automation 

architecture [8].  Process bus configuration of total 8 bays with corresponding MUs is 

tabulated in Figure 3-10. To achieve a better traffic load distribution by separating the 

broadcast domains, total 8 VLANs are  configured for this network, i.e. each protection 

bay has the separate VLAN, including two P&C IEDs for protection-A and B, and 

corresponding MUs. 

 

Figure 3-10 Process bus network for the sample substation simulated in OPNET 
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3.5 Results and Discussion 

The performance of this process bus network is analyzed using various parameters, and 

the impacts of all these parameters are observed from the packet delay and loss of 

sampled value packets. To study the impact of each parameter separately, one of the 

parameter is varied within the commercially available range, by keeping other parameters 

to its nominal values, as tabulated in Table 3-2. 

 

Table 3-2 Parameters for OPNET simulation 

Parameters Default value 

Communication link Data rate 
100 Mbps  

(Mega bits per second) 

Sampling frequency 4800 Hz 

BER 1.00E-09 

Background Traffic 
250KBps 

(kilo bytes per second) 

Buffer size 
2Mbit  

(Mega bits) 

ESW packet service rate 
0.5 Mpps 

(Mega packets per 
seconds) 

 

The performance of sampled values is analyzed for the two different cases:  the Line-3 

P&C IED, which has corresponding MUs connected to the same Ethernet switch; and the 

Bus-1 P&C IEDs, which require sampled values from remote MUs connected to other 

Ethernet switches.  

3.5.1 Impact of communication link data rate and MU sampling rate 

The most likely used data rates for substation communication links are: 10 Mbps and 100 

Mbps; and sampling frequencies are 1920 Hz and 4800 Hz. Rest of the parameters are 

considered same as shown in Table 3-2. It can be observed from the Table 3-3 that 

sampled value packet delays are high for 10 Mbps network, where as packet delays for 

100 Mbps network are within the allowable range.  
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Table 3-3 Impact of data and sampling rates 

Protection 
Functions 

Data rate 
(Mbps) 

Sampling 
rate (Hz) 

Sampled value 
packet delay 

(ms) 

Average 
number of 

consecutive 
SV loss per 

second 
Avg.  Max.  

Line-3 

10 
1920 6.4 12 3 

4800 16 25 4 

100 
1920 0.7 1.1 1 

4800 1.7 3.65 2 

Bus-1 

10 
1920 6 12.5 4 

4800 15 25.7 5 

100 
1920 0.77 1.2 2 

4800 1.8 4 3 

 

Moreover, as the sampling rate increases from 1920 Hz to 4800 Hz, the sampled value 

packet traffic increases. Hence, it causes more sampled value packet delays and average 

consecutive packet loss per second. 

3.5.2 Impact of bit error rate (BER) of the communication channel 

As it can be perceived from Table 3-4 that bit error rate of the communication channel 

has more impact on the average number of consecutive sampled value packet loss per 

second and almost negligible impact on the packet delays. Actually, the network interface 

card at the device receiver has threshold value of allowable bit-errors in the received 

packet. If the received packet has higher bit-errors than threshold, the packet is discarded 

at the receiver. Higher BER over the network causes more bit-errors into the packet 

communicated over the network, and hence the probability of packet rejection at the 

receiver increases. On the other hand, higher BER does not cause any significant impact 

on packet delay, and hence, it can be observed from the table that BER has negligible 

impact on SV delays.   
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 Table 3-4 Impact of communication channel BER 

Protection 

Functions 

Bit Error 

Rate 

Sampled value 

packet delay (ms) 

Average 

number of 

consecutive 

SV loss per 

second 

Avg. Max. 

 

Line-3 

1.00E-08 1.72 3.9 4 

1.00E-09 1.7 3.65 2 

1.00E-10 1.7 3.9 1 

 

Bus-1 

1.00E-08 1.83 3.9 6 

1.00E-09 1.8 4 3 

1.00E-10 1.85 4.2 2 

 

3.5.3 Impact of process bus background traffic 

It can be discovered from Table 3-5 that as background traffic (client/server application 

packets) increases from 250 KBps (kilo bytes per second) to 350 KBps, the sampled 

value packet delay, as well as the average number of consecutive packet loss per second 

would increase, even though the sampled value packets have higher priorities as 

compared to the client/server applications. This is due to the fact that if the transmission 

of a large client/server packet has started (in the absence of higher priority packet in 

buffer); a higher priority packet will have to wait in a queue until this large packet has 

been completely transmitted [48].  

 

Table 3-5 Impact of background traffic 

Protection 
Functions 

Background 
Traffic 
(KBps) 

Sampled 
value packet 
delay (ms) 

Average 
number of 

consecutive 
SV loss per 

second 
Avg.  Max.  

Line-3 
250 1.7 3.65 2 

350 5 10.1 3 

Bus-1 
250 1.8 4 3 

350 5.5 10.3 4 

 

3.5.4 Impact of Ethernet switch buffer size and packet service rate 

Due to the “store and forward” mechanism, packets are always stored into the buffer first, 

and then forwarded. Therefore, as the buffer size reduces from 2Mbit to 0.5Mbit, the 
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sampled value packet delay increases, however, it has a negligible impact on the sampled 

value packet loss, as shown in Table 3-6.  

Furthermore, as Ethernet switch packet service rate decreases from 0.5 Mpps (mega 

packets per second) to 0.15 Mpps, the sampled value packet delay is more affected 

because the sampled value packets have to wait more, before they are forwarded to the 

corresponding output port. The slow rate of packet service rate does not cause overflow 

of any buffer, and hence it has little impact on sampled value packet loss, as shown in 

Table 3-7. 

 

 

Table 3-6 Impact of ESW buffer size 

Protection 
Functions 

Buffer 
size 

(Mbit) 

Sampled 
value packet 
delay (ms) 

Average 
number of 

consecutive 
SV loss per 

second Avg.  Max.  

Line-3 
0.5 3.3 6.7 3 

2 1.7 3.65 2 

Bus-1 
0.5 3.6 6.8 3 

2 1.8 4 3 

 
 

Table 3-7 Impact of ESW packet service rate 

Protection 
Functions 

ESW 
packet 
service 

rate 
(Mpps) 

Sampled 
value packet 
delay (ms) 

Average 
number of 

consecutive 
SV loss per 

second Avg.  Max.  

Line-3 
0.15 6.6 10 2 

0.5 1.7 3.65 2 

Bus-1 
0.15 7 10.2 4 

0.5 1.8 4 3 

 

It is also important to note that these results would change according to the size of a 

substation, and it may be even worse for a larger process bus communication network 

with the same communication parameters. Therefore, the possible corrective measures 

have to be taken in order to accommodate the sampled value packet delay and loss. 
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3.6 Summary 

The performance of the IEC 61850-9-2 process bus is evaluated for the Ethernet switched 

ring architecture of a typical 345kV/230kV substation. Using the OPNET simulation tool, 

dynamic models of IEC 61850 based process bus devices and communication protocols 

are developed to analyze the packet delay and  loss for the sampled value packets by 

considering various communication parameters, such as speed of the communication data 

link, sampling frequency of the merging units, network background traffic, Ethernet 

switch buffer size, packet services rate, and the communication channel bit error rate. It is 

demonstrated that these process bus parameters have influence on the sampled value 

packet loss and delays. For this particular process bus network, the observed maximum 

sampled value delay is up to 26 ms; whereas, the average number of consecutive sampled 

value loss per second are 6. This chapter has quantified the average number of SV loss 

and delay. Next chapter will propose a corrective measure to counteract any impact of SV 

loss/delay on substation protection functions.  
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4. Proposed Algorithm to Counteract Effect of 

SV Loss/Delay  

With the help of detailed dynamic analysis, the SV loss and delay is analyzed for a 

typical digital substation. This SV loss and delay have detrimental impact on different 

substation protection system. Reference [49], [50] have shown the impact of sampled 

value loss on the performance of digital relaying protective functions. This concern has 

also been recognized by protection devices manufacturing industry. In [51], C. Hoga has 

stated that the SV loss at the protection relay can have some kind of measuring blackout 

for the entire measuring window. Moreover, process bus product developers [28], [35] 

have also shown the need of a smart algorithm for the treatment of SV loss data, which 

also should be compatible to any (time and/or frequency based) digital relaying 

algorithm. This chapter presents a technique to compensate for the delayed or lost 

sampled values for the digital relaying algorithms. And, based on this technique, this 

chapter proposes a sampled value estimation algorithm which can be implemented to 

work with any digital protection functions. Finally, the proposed algorithm is examined 

for various scenarios using PSCAD/EMTDC and MATLAB simulation tools. 

4.1 Corrective Measures for IEC 61850-9-2 Process Bus 

Performance  

Traditional digital relaying algorithms are working satisfactorily since few decades using 

analog signals between bay level and process level over the copper wires. The 

performance of these tested robust relaying algorithms should not be affected by digital 

ESW based process bus network in any possible worst case scenarios. Hence, there is 

need for some kind of corrective measures which can counteract with SV packet loss. 
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One of the methods is to use adaptive filtering, as discussed in reference [49], [50]. 

However, this method has few limitations as discussed below: 

1. The proposed adaptive filtering is based on phasor estimation using LES and hence, 

it is limited to those digital relaying algorithms which use LES. 

2. Adaptive filtering is feasible only for 1 sample loss with low sampling rate (it was 

tested up to 32 samples per cycle). This is because it stores the filter coefficients for 

all possible sequence of lost samples. With multiple SV packet delay or loss and 

sampling rate of 80 samples per cycle, it would require large storage for the filter 

coefficients.  

Therefore, there is need for general (applicable to all digital relaying algorithm), simple, 

easy to implement algorithm for next generation P&C IEDs. To achieve these qualities, 

this chapter proposes a numerical estimation technique for the SV loss or delay. The 

major requirements for the SV estimation algorithm are as follows: 

1. Accurate estimation algorithm even for several consecutive sampled value losses. 

2. Algorithm should be able to work for almost all the digital relaying algorithm 

already existing in the multi-vendor protection IEDs of the SAS. 

3. Simple and easy to implement into the protection IEDs. 

The SV estimation algorithm to enhance process bus performance by satisfying all above 

mentioned requirements is explained in the following section. 

4.2 Numerical Theories for Estimation 

There are several numerical theories available for the estimation or approximation in the 

reference books on numerical analysis [88], [89]. Some of the key methods are listed as 

follows: 

1. Curve-fitting techniques 

2. Polynomial approximation 

3. Piecewise spline 

Curve fitting techniques (e.g. using least square method) may not be appropriate to apply 

for SV estimation. This is because curve fitting techniques give a best fitted curve 
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function which may not necessarily passing through all the given sampled values. These 

techniques are more suitable for data smoothing problem to obtain the function, which is 

not the case with SV estimation problem. Another suitable method is polynomial 

approximation, which is also referred to as polynomial interpolation technique. It is 

basically used to obtain polynomial (of any desired degree) passing through the given set 

of values. And then, this polynomial function can be used to obtain a set of values at any 

desired point. Polynomial approximation is simple; however, the estimation error should 

be analyzed. Similar goal can be achieved using piecewise spline technique, which 

further divides set of values into many intermediate values and obtain sub-polynomials 

from all the intermediate points. Hence, piecewise spline has higher accuracy as 

compared to polynomial approximation technique. However, the computations 

requirements for piecewise spline is quite higher than the polynomial approximation 

technique, and hence, piecewise spline is more suitable for highly dispersed set of given 

points. For SV estimation, the given sets of SVs would be uniform in time (as all the SV 

has time stamp or sample count into the each SV packet) and also due to the fact that the 

sampling frequency would be as high as 4800 Hz, polynomial approximation technique 

can give sufficient accuracy. Moreover, as mentioned earlier, the SV estimation 

algorithm has to be easily accommodated in existing processor with least additional 

processing requirements. Therefore, SV estimation algorithm based on polynomial 

approximation technique is selected for this work. 

4.3 Sampled Value Estimation Technique 

There are several numerical methods available for the estimation e.g. polynomial 

approximation, spline techniques, curve fitting, etc. [88]. However, implementations of 

any of these complex numerical methods require additional computational capability. 

This chapter provides the coefficients for estimation techniques using the Lagrange 

polynomial method, which is easy to implement as compared to other available methods, 

and also applicable to any digital relaying algorithm.  

According to Lagrange polynomial method, a unique polynomial, pn(t) of degree ≤ n, can 

be obtained from the given n+1 distinct sampled values. SV estimation techniques utilize 
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this polynomial function to estimate the lost or delayed sampled values at a given time tk, 

as shown below:  
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where,  fk,est is the estimated sampled value at kth instant;  Ci,n  is the coefficient of n-order 

polynomial  at ith instant; fi  is the sampled value at ith instant;  ti is the time at ith instant. 

4.3.1 First order (linear) SV estimation 

The simplest form of polynomial is linear in which two SVs need to be known (t0,f0) and 

(t1,f1) as shown in Figure 4-1. The following equation (derived from (4-1)) can be used to 

obtain SV at time tk, with known SVs (t0,f0) and (t1,f1). 

This equation can also be re-arranged in the Lagrangian form as follows: 
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Figure 4-1 Sampled values for linear SV estimation technique: scenario-(a) next sample is not available; 

scenario-(b) next sample is available 

As illustrated in Figure 4-1, there are two possible conditions for the SV loss: 1) next 

sample at t1 (i.e. sampled at k+1) has not arrived; 2) next sample at t1 (i.e. sample at k+1) 

has arrived. According to these two scenarios, both the coefficients (C01 and C11) can be 

obtained for (4-4). The values of these coefficients are tabulated in Table 4-1. The set-1 

coefficients belong to the scenario when next sample has not arrived (as shown in Figure 

4-1 (a)); whereas, set-2 coefficients are derived for the scenario when next sample is 

available (as shown in Figure 4-1 (b)). 

 

Table 4-1 Sets of coefficients for linear SV estimation method 

Sets of 
Coefficients 

C01 C11 

set-1 -1 2 

set-2 
2

1  2
1  
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4.3.2 Second order (quadratic) SV estimation 

Second order SV estimation technique is explained as follows. Second order polynomial, 

i.e. p2(tk) as shown in (4-5), can be used to estimate the lost or delayed sampled value by 

selecting three appropriate known sampled values f0, f1 and f2, for a given set of stored 

coefficients C02, C12,  and C22.  

( ) 2221120022, fCfCfCtpf kestk ++==                      (4-5) 

where, 

))((

))((

2010

21
02

tttt

tttt
C kk

−−

−−
= ; ))((

))((

2101

20
12

tttt

tttt
C kk

−−

−−
= ; ))((

))((

1202

10
22

tttt

tttt
C kk

−−

−−
=

 

The set of second order SV estimation technique coefficients (C02, C12, C22) need to be 

derived by considering all the appropriate scenarios. As demonstrated in Figure 4-2, there 

are total three possible scenarios for the second order SV estimation technique: a) next 

samples have not arrived (set-1); b) next one sample at k+1 (i.e. t2)has arrived (set-2); c) 

next two samples at k+1 (t1) and k+2 (t2) and tk+2 have arrived (set-3). Three sets of 

coefficients corresponding to each scenario of Figure 4-2 can be obtained for second 

order SV estimation, as tabulated in Table 4-2. 

 

 
Figure 4-2 Sampled values for second order SV estimation technique: scenario-(a) next samples are not 

available; scenario-(b) only one next sample is available; scenario-(c) two next samples are available 
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Table 4-2 Sets of coefficients for second order SV estimation method 

Sets of 
Coefficient 

Selected sampled 
values 

C02 C12 C22 

set-1 
f0=fk-3;  

f1=fk-2; 

 f2=fk-1 
+1 -3 +3 

set-2 
f0=fk-2;  

 f1=fk-1 

f2=fk+1 
- 3

1  
+1 3

1  

set-3 
f0=fk-1;  

 f1=fk+1 

f2=fk+2 
3

1  +1 - 3
1  

  

As the order of polynomial (n) increases, accuracy of the estimated sampled value 

increases, however, the computational complexity increases too. The implementation of 

quadratic SV estimation algorithm in conjunction with already existing traditional digital 

relaying algorithm is explained in the following subsection. 

4.3.3 Third order (cubic) SV estimation 

If manufacturers are interested in increasing further accuracy of SV estimation by 

providing additional processing speed, cubic polynomial coefficients can be obtained as 

follows:  

 

( ) 3332231130033, fCfCfCfCtpf kestk +++==
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It is important to note here that there will be a total of four possibilities for SV loss, and 

hence, there will be a total of four sets of coefficients that need to be derived using above 

equations as shown in Table 4-3. 

 

Table 4-3 Sets of coefficients for cubic SV estimation method 

Sets of 

Coefficients 
C03 C13 C23 C33 

set-1 - 1 - 4 - 6 4 

set-2 
4

1  -1 
2

3
 

 

4
1

 

set-3 - 6
1  3

2  3
2  - 6

1  

set-4 4
1  2

3  - 1 4
1  

4.4 The Proposed Sampled Value Estimation Algorithm 

Figure 4-3 shows the flow diagram of second order SV estimation algorithm, it starts 

with the loop when the processor of P&C IED is expecting the sampled value packet for 

the corresponding MU at kth instant.  If sampled value packet arrives, it will be stored 

into the buffer and traditional digital relaying algorithms will use it from the buffer. 

However, if the sampled value packet does not arrive, IED is supposed to wait for short 

duration, i.e. twait. The value of twait can be set around two to three sampling intervals, i.e. 

0.417 ms to 0.625 ms for 4800 Hz sampling frequency. Even after waiting, if sampled 

value packet does not arrive, SV estimation will be initiated, and check for the conditions 

whether next samples have arrived or not. According to the availability of next samples, 

the set of coefficients (C02, C12, and C22) will be selected from the Table 4-2, and the 

assignment of corresponding sampled values to the f0, f1, f2 will be done accordingly. The 

selection of these values in the algorithm is carried out in order to minimize the 

estimation error. These selected values (C02, f0, C12, f1, and C22, f2) will be used in (4-5) to 

solve for fk,est. The counter count calculates the total number of consecutive sampled 

value packets lost or delayed. 
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Figure 4-3  Flow diagram of proposed second order SV estimation algorithm 
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The utilization of estimated sampled value for the consecutive packet loss should be 

within some limit (max. count). Therefore, if the number of consecutive packet loss is 

higher than max. count, IED should ALARM the condition, as this may be due to failure 

of communication link, Ethernet switch, merging unit, or any damage in process bus 

LAN network.   Furthermore, the value of max. count also depends upon the required 

estimation accuracy, which is explained in following subsection. Finally, if the 

consecutive SV estimation is less than the max. count, it will store the estimated value 

into the sampled value buffer, so that traditional digital relaying algorithm can utilize this 

value. If delayed sample value packets arrive at any time, the estimated sampled value 

should be replaced with the actual value arrived in the buffer. Moreover, if protection is 

executed at every few sets of sampling interval, this estimation procedure should also be 

carried out with same set of sampling interval in order to achieve higher estimation 

accuracy by utilizing the latest sampled values. 

It can be noticed that SV estimation algorithm can be implemented to work with any 

traditional digital relaying algorithm from any IED manufacturer. Furthermore, it is 

comparatively easy to implement in the IEDs and requires very less computations and 

memory space. Figure 4-3 shows SV estimation using second order estimation technique, 

however, the same concept of SV estimation algorithm can be applied to any order SV 

estimation techniques by including the corresponding sets of coefficients and known 

sampled values. 

4.5 Estimation Accuracy Analysis of the Proposed Algorithm 

To analyze the overall performance of SV estimation algorithm, a typical 345kV/230kV 

substation (as shown in Figure B-1) is simulated using PSCAD/EMTDC simulation tool. 

The proposed SV estimation algorithms for the substation P&C IEDs are developed using 

MATLAB simulation tool. The COMTRADE recorder in PSCAD/EMTDC resembles the 

function of MU at process level, as it samples the analog signal collected from the 

secondary of CTs/CCVTs. The MATLAB extracts the sampled value streams of each 
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signal from corresponding COMTRADE file. The MATLAB code has also been 

developed to incorporate various sampled value losses and delay scenarios obtained from 

the OPNET. It can be observed from Table 3-3 to Table 3-7 that the maximum number of 

SV packet loss occurring is 6 and sampled value packet delay varies between 16 ms to 26 

ms. Therefore, in order to analyze the worst case scenario, up to 10 simultaneous sampled 

values packet loss are examined coinciding with the time of fault inception (A-G fault 

created at in line-3 of the Figure B-1). This worst case scenario (up to 10 simultaneous 

SV packets loss coinciding with the time of fault inception) is examined on A-phase CT 

secondary current by considering various source impedance ratios, point-on-wave for 

faults, noise level in the signal, sampling frequency, and different instances on the wave. 

For all these different scenarios, the maximum absolute errors in estimating simultaneous 

SV loss from first, second, and third order SV estimation algorithms are compared with 

the actual values, which is the maximum absolute error incurred without SV estimation 

algorithm. Since estimation of each SV has some error from actual value, the maximum 

absolute error shows the maximum out of all multiple lost/delayed SVs estimation errors.  

4.5.1 Effect of SIR of the system and POW of the fault  

Table 4-4 shows the comparison of maximum absolute error in CT secondary current 

with different SV estimation algorithms and the actual values of the lost samples (or the 

maximum absolute error incurred without SV estimation algorithms) for various system 

SIR and fault POW by considering different number of sampled values loss at the fault 

inception. The POW at zero, mid and peak refers to the points at 0
o
, 45

o
, and 90

o
 

respectively, on the A-phase voltage. It can be observed from the table that for the overall 

maximum absolute error of 14.806 A, the second order SV estimation technique 

estimates the sampled values with maximum absolute error of 0.9541A (6.5%), whereas, 

first order and third order techniques have error of 2.179A (14.71%) and 3.617 A 

(24.43%) respectively. For 10 consecutive SV loss scenario, the errors of estimation are 

high, and it does not drop as SV estimation technique order increases. Although, the 

maximum absolute error for first, second, and third order techniques varies with SIRs and 

POW, these maximum sampled value estimation errors are considerably less compared to 
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the error incurred without estimating the sampled values, i.e. actual value of the lost 

sample. 

 

 

Table 4-4 Effect of various SIRs and POW 

No. of 
consecut-ive 
sample loss 

SIR POW 

Actual 
value of 
the lost 
sample 

Max. absolute ∆Isec.  
(Amp) 

First 
order 

Second 
order 

Third 
order  

2 

0.2 

Zero 1.4015 0.0154 0.008 0.0347 

Mid 6.2553 0.0499 0.0034 0.0113 

Peak 8.5656 0.0973 0.0885 0.0326 

1 

Zero 0.3463 0.0181 0.0044 0.0189 

Mid 5.6964 0.0379 0.0013 0.0011 

Peak 7.0156 0.0713 0.0132 0.0148 

5 

0.2 

Zero 1.4015 0.0776 0.1132 0.3634 

Mid 9.0387 0.4607 0.0057 0.2993 

Peak 10.2597 0.8684 0.7804 0.3378 

1 

Zero 0.9821 0.0656 0.071 0.2179 

Mid 7.8944 0.3708 0.005 0.0106 

Peak 8.8497 0.7641 0.0512 0.3501 

10 

0.2 

Zero 2.7074 0.103 1.0561 0.6125 

Mid 13.0562 1.8414 0.4154 0.7682 

Peak 14.806 2.179 0.9541 3.617 

1 

Zero 2.8882 0.1768 1.4416 1.1479 

Mid 11.8434 1.3423 0.349 0.2304 

Peak 11.9592 2.37 0.8526 1.6402 

 

4.5.2 Effect of noise in the power signal 

It is also important to examine the effect of possible noise levels present in the received 

sampled values. Figure 4-4 presents the maximum estimation error incurred from the SV 

estimation algorithms and compares with the maximum absolute error without estimating 

SV. for different Signal-to-Noise Ratios (SNRs) in dB. The noise is added on the actual 

values used for the estimation using MATLAB, and then SVs are estimated using these 

previous sampled values. The figure demonstrate that the error incurred from SV 

estimation is around 0.05 A with 3.8 A actual values at 2 consecutive SV loss; whereas, 

estimation error is around 0.4 A for 5.7 A of actual values. It can be seen from the figure 

that even for 10 consecutive sampled values loss with 40 dB SNR, the maximum absolute 
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error without sampled value estimation is 9.466 A; whereas, the maximum percentage 

errors from first, second and third order estimation techniques are 16.11%  (1.52 A) , 6% 

(0.567 A), and 0.7% (0.06 A) respectively. If further higher levels of noise are expected, 

it is recommended to use a specific filter to attenuate the noise before the SV estimation. 

 

Figure 4-4 Effect of different noise levels (SNR) 

4.5.3 Effect of sampling frequency  

The effect of different sampling rate of the MUs on the proposed estimation algorithm for 

1920 Hz and 4800 Hz is tabulated in Table 4-5. The tabulated result shows that for 1920 

Hz sampling frequency with 10 consecutive sampled value loss, the first, second and 

third order estimation techniques have maximum estimation error as high as 27%, 21%, 

and 8% respectively. Whereas, for 4800 Hz sampling frequency, the maximum absolute 

error using first, second and third order estimation techniques are 15%, 2.5%, and 9% 

respectively. Therefore, it is recommended that the allowable maximum number of 

sampled values for the estimation should be selected based on sampling frequency too. 
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Table 4-5 Effect of various sampling frequencies 

No. of 
consecut-
ive sample 

loss 

Sampling 
Freq. 

Actual 
value of 
the lost 
sample 

Max. absolute ∆Isec. (Amp) 

First 
order 

Second 
order 

Third 
order 

2 
1920 5.0273 0.1473 0.1213 0.0916 

4800 4.3978 0.0383 0.0092 0.0029 

5 
1920 10.6647 1.913 1.6529 1.0588 

4800 6.3998 0.3825 0.0912 0.0579 

10 
1920 18.1478 4.8479 3.7811 1.388 

4800 10.2637 1.5765 0.2656 0.9644 

 

4.5.4 Effect of actual value of signal at particular instance on the wave 

Figure 4-5 shows the different instances considered to calculate the maximum absolute 

error incurred using SV estimation technique. 

 

Figure 4-5 Sampled value loss at different instances during the fault 
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Figure 4-6 shows that maximum absolute error incurred due to sampled values loss also 

depends upon the actual value of the signal at particular instant. This is because the wave-

shape of the voltages and currents (immediately after the fault) are close to linear at zero 

crossings (especially at the instance of fault) and non-linear (curvature) at the peak, as 

shown in the figure. The estimation error reduces as the order increases up to 5 

consecutive SVs estimation. However, for the ten consecutive SVs loss, the estimation 

error may not reduce with the order. For example, at instant-1 the estimation error with 

second order technique is less than third order technique. This is may be due to the fact 

that wave-shape is close to linear at instant-1, and third-order polynomial accumulates 

more error for ten consecutive SVs estimation. The estimated sampled values using 

second and third order SV estimation techniques have low maximum absolute error as 

compared to the first order for 10 consecutive sampled value losses. 

 

 
Figure 4-6 Effect of different instances on the wave 

 

The above tabulated results from various scenarios show that the accuracy of estimated 

sampled value does not improve always with the higher order of the SV estimation 

techniques in all cases. This is due to the non-linear characteristic of voltage and current 

signals with decaying DC component and/or noise at the time of fault inception. If more 

accuracy is required or large number of consequent sampled value packet loss is 
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expected, the higher order or other more complex estimation techniques, such as spline, 

curve fitting, etc. have to be used by adding more processing power. 

4.6 Summary 

In order to alleviate the impacts of the lost and delayed sampled values on a digital 

protective relaying, the corrective measure, i.e. sampled value estimation technique has 

been presented in this chapter. Using this SV estimation technique, this work proposes 

the SV estimation algorithm with the sets of coefficients. To examine the accuracy of the 

proposed SV estimation algorithm, the same 345kV/230kV substation is simulated in 

PSCAD/EMTDC, and the sampled value estimation algorithm is programmed in the 

MATLAB, for the various scenarios, such as system SIRs, fault POW, noise levels in the 

received signal, and instances on the wave. Moreover, the rare worst case scenarios are 

presented by considering up to 10 consecutive sampled values loss, coinciding with the 

fault inception. For various SIRs and POW scenarios, the maximum estimation errors are 

8.5%, 7.6%, and 3.2% incurred to estimate up to 5 consecutive sampled values lost or 

delayed of the maximum actual value using first, second, and third order SV estimation 

techniques, respectively. In case of different noise levels, the maximum absolute errors 

from first, second and third order SV estimation are 7%, 5% and 1.1% respectively, up to 

5 consecutive samples lost. Moreover, if the sampling frequency reduces from 4800 Hz 

to 1920 Hz, the maximum absolute error would increase up to 17% for 5 consecutive 

sampled values lost. For the same scenarios with 10 consecutive sampled values lost, the 

maximum estimation errors are 25% or more. However, up to 5 consecutive sampled 

values loss at 4800 Hz sampling frequency, the proposed sampled value estimation 

algorithm not only offers the reasonable accuracy, but also less computational 

requirements, and compatibility with any traditional digital relaying algorithm. If even 

more estimation accuracy is needed, higher order SV estimation techniques or more 

complex numerical methods can be implemented using the same concept of SV 

estimation algorithm presented here. It is recommended that the corrective measure 

techniques (first order, second order, third order, or any other techniques) should be 

selected considering required estimation accuracy (selectivity constraints) and available 

processing capability (speed and cost constraint) for a particular protection IED. 
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Investigation of the proposed SV estimation technique using a laboratory hardware setup 

is presented in the next chapter.  



 

 

73

73

Chapter Chapter Chapter Chapter 5555    

5. Laboratory Investigation of the Proposed 

Algorithm  

One of the concerns raised by the protection devices developers from the process bus 

communication network is the impact of SV loss and delay on protection functions. 

Therefore, SV estimation algorithm is proposed, and the error analysis is demonstrated in 

the previous chapter. In addition to SV estimation accuracy analysis, it is also important 

to carry out hardware testing of the proposed algorithm as a part of substation protection 

functions, and investigate its performance over a digital process bus network in a 

laboratory environment. Thus, this chapter starts with the hardware development of the 

protective relaying over a process bus communication network, which includes protection 

IEDs, merging units, Ethernet switches, traffic generator, network analyzer, etc. to test 

the sampled value estimation algorithm as a part of two important substation protection 

functions: 1) biased differential of busbar, and 2) transmission line distance protection 

IEDs. Thereafter, the detailed testing of these protection functions over the process bus 

network is carried out considering various SV loss/delay scenarios and power system 

fault conditions. 

5.1 Development of Process Bus Lab Devices 

The hardware implementation of process bus devices is achieved using hard-real time 

operating system, QNX platform [90] over the industrial embedded computer system. 

Moreover, the process bus communication network devices used for this investigation are 

commercially available, and designed for substation environment, from Ruggedcom [91]. 
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5.1.1 Merging unit simulator 

Merging unit is implemented as a real time data playback using QNX. Figure 5-1 

illustrates the real time data playback functional diagram. Various scenarios of a typical 

power system can be simulated using the PSCAD/EMTDC simulation tool to obtain 

signals of 3-phase to neutral currents and voltages using the COMTRADE recorder. 

Special file conversion code is developed using C/C++ programming, which converts 20 

kHz COMTRADE data to the IEC 61850-9-2 compliant SV messages at 4800 Hz in a SV 

data file. This SV data file is sent to a real time data playback, working as a merging unit, 

in offline. With the help of the hard-real time timers of the operating system [90], the IEC 

61850-9-2 compliant sampled value messages are sent to all subscribed protection IEDs 

over a process bus network at a regular interval (according to 4800 Hz sampling 

frequency). Moreover, this developed MU has capability to create various SV loss and 

delay scenarios over the IEC 61850-9-2 process bus, as well as to capture and read 

configured IEC 61850 GOOSE messages. The SV loss or delay applies to entire the 

sampled value packet, which includes voltages and currents obtained at the same time 

stamp from the corresponding CTs/VTs. 

 

Figure 5-1 Merging unit implementation as a real-time data playback developed in a laboratory 
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5.1.2 Protection IED 

Figure 5-2 shows the basic function block diagram of an implemented protection IED 

using industrial embedded systems with the real time operating system. The hard-real 

time operation of the protection IED is achieved with the help of various capabilities of 

the real time platform, such as, hard-real time timers, multi-threads, input/output packet 

(io-pkt), etc. To avoid complexity, the figure only illustrates the major function blocks 

related to digital relaying. It is desired that the SV estimation algorithm should work 

independent of a digital protection function. Therefore, functions related to SV capturing 

and buffering are grouped as independent process-1; and traditional protection functions 

(logical nodes as per IEC 61850) with GOOSE messaging are grouped as independent 

process-2. Real-time multi-threads are used to perform protection functions 

simultaneously with the SV packet buffering by executing both independent process 

threads in parallel. As the SV estimation algorithm is implemented as a part of SV buffer, 

it is independent of protection functions. This way, SV estimation can be implemented in 

an IED to work with any traditional digital relaying algorithm. Although, the SV 

estimation algorithm is simple and easy to implement in digital protection IEDs, it will 

require additional processing. 

As illustrated in Figure 5-2, IEC 61850-9-2 enabled protection IED receives and filters 

various types of messages from Ethernet network port. SV data dissect function is 

developed to read voltage and current values from the standard IEC 61850-9-2 packet 

format; as well as to store these values in a circular SV buffer. The sampled value buffer 

is filled in sequence. The delayed or lost sampled value packets will be estimated using 

the proposed SV estimation algorithm, as explained in Appendix. The protection IED 

also has capability to configure, encapsulate and multicast the IEC 61850-8-1 GOOSE 

messages to the subscribed MUs and other IEDs. 



 

 

76

76

 

Figure 5-2 Function block diagram of the IEC 61850-9-2 enabled protection IED developed in a laboratory 

5.1.3 Implementation of the SV estimation algorithm 

The implementation of a first order SV estimation technique is discussed in this appendix 

to avoid complexity. Figure 5-3 shows the flow diagram of the SV estimation algorithm 

for the IEC 61850-9-2 enabled protection IED.  

The digital values of voltage and current signals obtained from the SV packet are stored 

in the Sampled Value Buffer (SVB), as shown in Figure 5-2. To store received sampled 

values in sequence and to detect sample value loss in SVB, the sampled value estimation 

algorithm uses two pointers: 1) sampled value buffer pointer (SVB_ptr); and 2) previous 

sampled value buffer pointer (SVB_ptr_prev). The value of SVB_ptr would be the same 

as the value of Sample Count data field defined in IEC 61850-9-2 standard. If the 

received sampled value is the delayed one, the previously estimated sampled value is 

replaced by this received actual value in the SVB. In case, if difference between SVB_ptr 

and SVB_ptr_prev is higher than maximum count, this condition will initiate ALARM 

without estimating sampled values and this may be due to loss of communication link. If 
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the lost/delayed SV packets are less than the maximum count, which implies that there is 

SV loss or delay, and therefore, the algorithm selects coefficients as well as estimates the 

lost sampled values. Further details can be obtained from reference [92]. 

 

 
Figure 5-3 Implementation of sampled value estimation algorithm 
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5.1.4 Traffic generator 

A traffic generator is implemented to generate different types of IEC 61850 traffic within 

the Virtual LAN (VLAN) of a particular protection system using the real time platform. 

In this work, the traffic streams used over the process bus are GOOSE, GSSE (Generic 

Substation Status Event), and client server applications. The traffic configuration with 

total traffic in Mbps is listed in Table 5-1. 

 

Table 5-1 Traffic generator configuration 

Sr. 
No. 

Types of 
Messages 

Ethernet 
Interfaces 

Packet 
size 

(byte) 

Inter-
arrival 
time 

Total 
Traffic 
(Mbps) 

1 GOOSE 2 162 
500 
µsec 

5.184 

2 GSSE 2 281 1 msec 4.49 

3 
Client/server 
applications 

2 1456 1 msec 23.296 

Total 32.97 

5.1.5 Network analyzer 

WireShark software is used as a network analyzer in a windows PC [93]. The network 

analyzer is configured in promiscuous mode to sniff all the packets from the entire IEC 

61850-9-2 process bus network. It captures all the data packets from the network, and 

displays the content/structure of a packet in detail. In this hardware set-up, network 

analyzer is used to confirm the number of lost or delayed SVs, as well as to analyze the 

total traffic on the process bus. 

5.2 IEEE 1588 based Precision Time Protocol (PTP) in a 

Laboratory  

In order to implement IEEE 1588 [76] based PTP in a laboratory environment, SEL 2407 

GPS receiver with antenna is used to connect it with process bus Ethernet switches. 

Ruggedcom Ethernet switches RSG 2288 has IEEE 1588-2008 capabilities to act as 

various clocks defined in the standard. Figure 5-4 illustrates the IEEE 1588 configuration 

in IEC 61850 process bus laboratory. 
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Figure 5-4 IEEE 1588-2008 over process bus network 

Figure 5-5 shows the basic function block diagram of the IEC 61850-9-2 enabled 

protection IED with IEEE 1588-2008 (PTPv2) based time synchronization feature [76]. 

Protection IEDs are basically end nodes in the process bus network, and these devices 

receive IEEE 1588 defined time synchronization packets, as explained in Appendix D. 

Packet capture and filter receives these time synchronization packets from IEC 61850-9-2 

network, and this function identifies IEEE 1588 packets (EtherType field of IEEE 1588 

packet is 0x88F7 in hexa) and sends it to Independent Process-3 as shown in the figure. 

Process-3 is responsible for synchronizing hard-real time clock of the QNX operating 

system. Since, all process are independent, they all are running simultaneously.  
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Figure 5-5 Implementation of IEEE 1588 in developed IEC 61850-9-2 enabled protection IED 

IEEE 1588 Dissect function identifies the message types, and also obtains precision time 

stamp (10 byte) information from the appropriate packet field. Thereafter, this precision 

time information is sent to delay compensate function block. This function compensates 

all delays incurred over the IEC 61850-9-2 process bus network. Network delays on the 

path can be compensated using the working principle of IEEE 1588 standard, which is 

explained in Appendix D. Since the independent process-3 utilizes the time stamp at the 

Ethernet network port, the receiving packet time is accurate.  

5.3 Laboratory Set-up  

To examine the impact of SV loss/delay on bus differential and line distance protection 

functions, a typical 230 kV four feeder power system model is simulated using 

PSCAD/EMTDC, as shown in Figure 5-6. Bus differential protection is implemented for 

four feeders, as two feeders is too simple, and four feeders allow to study effectiveness of 

the SV algorithm in identifying feeder with lost and/or delayed SVs. More than four 

feeders may result in unnecessary complexity. A bus differential protection function 
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requires currents from all connected feeders (COMTRADE recorders 1 to 4); whereas, a 

distance protection function needs voltages and currents from corresponding feeder 

(COMTRADE recoder-5 for Line-3). The signal values collected in COMTRADE file are 

used in the merging unit simulator as shown in Figure 5-1. 

 

Figure 5-6 A typical power system simulated in PSCAD/EMTDC 

Figure 5-7 shows the hardware test set-up of IEC 61850-9-2 based process bus 

communication network for the typical power substation (illustrated in Figure 5-6). All 

four merging units for the bus differential protection are implemented in a single 

embedded platform using a quad-port network interface card to avoid requirements of 

synchronization without compromising hard-real-time requirements. Commercial 

Ethernet switches designed for the substation environment are used for laboratory set-up. 

A single Ethernet switch is connected to station PC at station level to configure and 

monitor protection IEDs for various testing scenarios. The protection IEDs, merging 

units, traffic generator, and network analyzer are connected to two cascaded Ethernet 
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switches at the process level. The traffic generator injects various types of IEC 61850 

messages over the process bus network. And, the network analyzer sniffs all kinds of 

packets in process bus using a port mirroring, and confirms a SV lost/delayed testing 

scenario for a particular IED [93]. The priority tagging and Virtual-LAN (VLAN) are 

setup in Ethernet switches to achieve a better quality of service. VLAN IDs used for 

distance protection system is 100 and for busbar differential, it is 200. Three bits of user 

priority in the TCI (Tag Control Information) field of the SV packet allow for eight 

classes of services (as defined in IEEE 802.1p), and this field can be set between 0 (i.e. 

lowest priority) to 7 (i.e. highest priority).  

 

Figure 5-7 Laboratory set-up 
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Table 5-2 below shows the user priority levels considered in this setup. GOOSE 

messages are event triggered and therefore given higher priority, compared to time 

triggered SV messages. GSSE and other TCP/IP packets are given lower priority 

respectively, as they are less time critical messages comparatively. 

 

Table 5-2 Priority levels of IEEE 802.1Q for IEC 61820-9-2  

Sr. 

No. 
Types of Messages 

User 

priority 

level 

1 GOOSE 7 

2 Sampled value 6 

3 GSSE 4 

4 
Client/server application 

packets over TCP/IP 
1 

 

5.4 Impact of SV Loss on Phasor Estimation  

A DFT-based phasor estimation algorithm [94] is developed using MATLAB tool to 

understand the impact of SV loss. The MATLAB extracts the sampled value streams of 

each signal from the corresponding COMTRADE file. Figure 5-8 shows the window of 

CT-6 for A-phase secondary current during an A-G fault on Line-3 at 0.3 sec with 70 km 

distance from the relay location (as illustrated in Figure 5-6).   With the help of a detailed 

dynamic simulation of IEC 61850-9-2 based process bus communication network in 

Chapter 3, it is shown that on average 1 to 6 consecutive SVs can be lost over the IEC 

61850-9-2 based Ethernet switched process bus. In addition to the total number of SV 

loss, another parameter, i.e. number of sampling intervals between each SV loss is also 

considered (as shown in Figure 5-8) to understand the impact of SV loss in furthermore 

details. The figure shows the total of 4 SVs loss with a 3 sampling interval between each 

SV loss. The phasor magnitude of CT secondary current samples estimated using the full-

cycle DFT technique is depicted in Figure 5-9.  
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Figure 5-8 CT secondary current for the total 4 SVs loss with 3 sampling interval between each SV loss 

 

Figure 5-9 A-phase phasor magnitude with and without SV estimation 

With the help of the MATLAB tool, the loss of total four SVs is simulated with 1, 3, and 

5 sampling intervals between each SV loss, after a half cycle of fault inception. The 
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figure also shows the phasor magnitudes without SV loss/delay, as well as with the SV 

estimation algorithm. Traditional protection IEDs are not equipped with any corrective 

measures for SV loss/delay, and therefore, lost or delayed samples are neglected 

considering their values to be zero for the phasor estimation. Figure 5-9 shows that the 

magnitude of the phasor can be affected by the number of total SVs loss, as well as 

number of sampling intervals between each SV loss. On the other hand, the simple SV 

estimation algorithm can estimate the lost or delayed SV using few additional 

computations with enough accuracy. It can be observed from the Figure 5-9  that the 

value of phasor magnitude exactly follows the original value without SV loss. The 

detailed analysis on the accuracy the SV estimation technique is presented in Chapter 4. 

5.5 Laboratory Testing Results and Discussion  

Two protection functions are considered for the testing: 1) bus differential element; and 

2) line distance element. The SV estimation algorithm is implemented as a part of the SV 

buffer, as explained in Figure 5-2. Merging units playback the SV packets in real time, 

and also, simulate various scenarios of SV loss/delay, as illustrated in Figure 5-1. Two 

parameters are selected to study various SV loss/delay conditions: 1) total number of SVs 

loss, and 2) number of sampling intervals between each SV loss, as explained in Figure 

5-8. In Chapter 3, loss of up to 6 SVs is observed considering various dynamic scenarios; 

on the other hand, less than 3 SVs loss/delay may not have significant impact on a 

protection element. Therefore, the loss/delay of 3 to 6 SVs are considered at various 

sampling intervals after a half cycle (8.333 msec) from fault inception, and tested with 

and without SV estimation algorithm implementation. SV delay scenarios of 3 msec and 

12 msec (less than a cycle) are tested to analyze the capability of SV estimation algorithm 

to substitute estimated values with the delayed one. This replacement may enhance 

accuracy of SV estimation for any further SV loss/delay. Furthermore, the testing is 

carried out considering low, medium, and high Source Impedance Ratios (SIRs) {0.2, 1, 

5}; L-G (with fault resistance of 10 Ω) and L-L (without fault resistance) faults; different 

Points-on-Wave (POWs) {zero, mid, peak} with respect to A-phase voltage. The testing 

results and discussion on the protection elements are presented as follows: 
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5.5.1 Busbar differential protection element  

Biased differential element of the busbar protection based on full-cycle DFT is developed 

using [94], [95] and implemented in the protection IED. For biased differential 

characteristic, the sum of the current magnitudes from all corresponding CTs is 

considered for restraint; whereas, the magnitude of the geometric sum of currents from all 

corresponding CTs is used for operation. The value of biased factor/slope (k) is set to 0.6, 

and the threshold of pick-up is fixed at 1 p.u. of CT secondary current rating. Figure 5-10 

and Figure 5-11 show the performance of biased differential protection element for an 

external L-G fault (on Line-3) with total 3 SVs loss (at five sampling intervals between 

each SV loss) and total 5 SVs loss (at one sampling interval between each SV loss) 

respectively, from merging unit corresponding to CT-1. The SV loss causes drop in the 

magnitude of CT-1 current, which results in not only the rise of operating current, but 

also fall of the restraining current. The operating current with 3 SVs loss at 5 sampling 

intervals between each SV loss is not high enough to pick-up the element; whereas, with 

5 SVs loss at one sampling interval between each SV loss, the locus of points enters into 

the operating region, and stays there for almost one cycle, which results into mis-

operation of the busbar differential protection element. Operating time of the busbar 

differential protection is shown in Table 5-3. With the help of the SV estimation, the lost 

SVs are estimated, and the magnitude of the CT-1 current is maintained. As a result, 

restraining current remains higher and operating current is almost negligible during the 

external fault, which can be observed in the figures.  
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Figure 5-10 Biased differential element performance during an external fault with total of 3 SVs loss at five 

sampling intervals between each SV loss 

 

Figure 5-11 Biased differential element performance during an external fault with total of 5 SVs loss at one 

sampling interval between each SV loss 
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Table 5-3 depicts the operating time of busbar biased differential protection element for 

various SV loss scenarios, considering cases with and without the SV estimation 

algorithm. SV loss is carried out in one of the four merging units, and SV loss conditions 

include loss of 3 to 6 SVs at an interval of 1, 3 and 5 sampled values. Both, L-G and L-L 

faults are simulated on the Bus-1 (internal fault) as well as on the Line-3 (external fault).  

 

Table 5-3 Bus differential operating times for various SV loss scenarios 

Tota
l No. 

of 
SV 

Loss 

No. of 
sampling 
interval 
between  
each SV 

loss 

Bus Differential Relay Operating Time (in msec) 

LG Fault 
(Rf=10 Ω) 

LL Fault 
(Rf=0 Ω) 

Internal Fault 
(on Bus-1) 

External Fault 
(on Line-3) 

External Fault 
(on Line-3) 

Without 
SV Esti. 

With SV 
Esti. 

Without 
SV Esti. 

With SV 
Esti. 

Without SV 
Esti. 

With SV Esti. 

3 

1 10.52 9.05 13.80 NO 15.47 NO 

3 10.13 8.87 14.20 NO NO NO 

5 10.05 8.52 NO NO NO NO 
        

4 

1 10.34 9.14 13.9 NO 14.60 NO 

3 10.11 8.94 14.80 NO 16.07 NO 

5 10.01 8.68 14.70 NO NO NO 
        

5 

1 10.48 9.11 14.10 NO 16.51 NO 

3 10.13 8.56 14.40 NO 16.74 NO 

5 10.12 8.41 15.64 NO 25.73 NO 
        

6 

1 10.67 9.21 13.40 NO 15.21 NO 

3 10.41 8.73 14.00 NO 16.84 NO 

5 10.12 8.58 16.8 NO 26.35 NO 

NO : No Operation of protection element 

Normally, the operating time of busbar differential relay without any SV loss is observed 

around 8-10 msec. It can be observed from the table that even due to SV loss busbar 

protection IED clears fault in 8-10 msec for L-G fault at the Bus-1 which is same as the 

operating times without any SV loss/delay. It is tested that the busbar differential element 

does not pick-up for any external faults during normal operating condition. However, in 

case of sampled value loss at different sampling intervals, the biased differential element 

mis-operates for the Line-3 (external) fault within 13-26 msec as shown in the table. 

Further, it can be observed from the table that biased differential relay remains secure 
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(did not operate for any external fault), if the SV estimation algorithm is implemented in 

the protection IED.  

The performance of the biased differential element during the external fault with 6 SVs 

delayed by 12 msec is shown in Figure 5-12. The figure shows that with six sampled 

value delay, the operating current increases enough to mis-operate the protection. 

Furthermore detailed testing results for various SV delay scenarios are tabulated in Table 

5-4. 

 

 

Figure 5-12 Biased differential element performance during external fault with 6 SVs delayed by 12 msec 

Table 5-4 illustrates the operating time of the bus differential IED for 3 to 6 SVs delayed 

by 3 and 12 msec. The tabulated results show that the bus differential protection element 

does not mis-operate if the lost SVs arrived within 3 msec delay; whereas, for 12 msec 

delay, the protection element mis-operates within 13-15 msec. Furthermore, the mis-

operation of the protection element with SV delays is prevented with SV estimation 

algorithm. 
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Table 5-4 Bus differential protection operating times for various SV delays  

Total 

No. 

of SV 

Delay

-ed 

Time of 

delayed 

SV 

arrival 

(msec) 

Bus Differential Relay Operating Time (msec) 

LG Fault 

(Rf=10 Ω) 

LL Fault 

(Rf=0 Ω) 

Internal Fault 

(on Bus-1) 

External Fault 

(on Line-3) 

External Fault 

(on Line-3) 

Without 

SV Esti. 

With 

SV 

Esti. 

Without 

SV Esti. 

With SV 

Esti. 

Without 

SV Esti. 

With SV Esti. 

3 
3 10.9 9.05 NO NO NO NO 

12 10.3 8.97 13.76 NO 14.72 NO 
 

       

4 
3 10.61 8.83 NO NO NO NO 

12 10.63 9.08 13.99 NO 15.01 NO 
 

       

5 
3 10.12 8.34 NO NO NO NO 

12 10.53 8.56 14.23 NO 15.13 NO 
 

       

6 
3 10.9 8.67 NO NO NO NO 

12 10.98 9.05 14.31 NO 15.25 NO 

NO : No Operation of protection element 

 

Table 5-5 demonstrates the operating time of the bus differential element for various 

SIRs, fault types, POWs, with 4 SV loss at a 1 sampling interval. It can be observed from 

the table that the busbar differential relay can lose security even during the external fault 

with SV loss. On the other hand, with the SV estimation algorithm, the protection 

remains secure. 
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Table 5-5 Bus differential protection operating times for various scenarios  

System scenarios for  the External 

faults on Line-3 
POW 

Operating time (msec) 

Without SV Esti. With SV Esti. 

SIR=0.2 

LG fault 

(Rf=10 Ω) 

Zero 14.60 NO 

Mid 13.47 NO 

Peak 12.25 NO 

Avg. 13.44 NO 

    

LL fault 

(Rf=0 Ω) 

Zero 15.10 NO 

Mid 13.03 NO 

Peak 12.11 NO 

Avg. 13.41 NO 

     

SIR=1 

LG fault 

(Rf=10 Ω) 

Zero 13.74 NO 

Mid 16.72 NO 

Peak 12.01 NO 

Avg. 14.16 NO 

    

LL fault 

(Rf=0 Ω) 

Zero 15.72 NO 

Mid 13.39 NO 

Peak 15.25 NO 

Avg. 14.79 NO 
     

SIR=5 

LG fault 

(Rf=10 Ω) 

Zero 19.19 NO 

Mid 14.73 NO 

Peak 11.81 NO 

Avg. 15.24 NO 
    

LL fault 

(Rf=0 Ω) 

Zero 15.06 NO 

Mid 19.77 NO 

Peak 11.98 NO 

Avg. 15.60 NO 

NO : No Operation of protection element 
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5.5.2 Distance protection  

Mho characteristic with the phase comparator using the memory polarization is 

developed as a protection element using references [94], [96]. If the angle difference 

between the polarizing quantity (Vpol) and operating quantity (IZ-V) is less than 90o, a 

corresponding distance protection element will pick-up. The transmission line distance 

protection IED is set to protect 80% of 100km long Line-3 in zone-1. Line-to-ground (L-

G) and line-to-line (L-L) faults are applied at 70km of the Line-3 from the relay location, 

as shown in Figure 5-6. The angle difference between phase comparator quantities with 

total of 3 SVs loss (at five sampling intervals between each SV loss) and total of 5 SVs 

loss (at one sampling interval between each SV loss) respectively, from the merging unit 

corresponding to COMTRADE recoder-5, is shown in Figure 5-13 and Figure 5-14 

respectively.  

 

Figure 5-13 Phase comparator angle of Zone-1 distance protection element with total of 3 SVs loss at five 

sampling intervals between each SV loss 

It can be observed from the figures that the locus of angle difference with a total 3 SVs 

loss at five sampling intervals enters into the operating region with very small delay; 
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whereas, with total 5 SV loss at one sampling interval, the locus of phase comparator 

angle remains outside of the operating region for almost one cycle, and this causes a 

delay in operation of zone-1 protection. 

 

 

Figure 5-14 Phase comparator angle of Zone-1 distance protection element with total of 5 SVs loss at one 

sampling interval between each SV loss 

Figure 5-15 shows the operating time of the distance protection IED, considering end-to-

end communication delays over IEC 61850-9-2 process bus. Without any SV loss or 

delay, the average operating time of the distance protection element is around 23 msec 

for the scenarios considered here. It can be observed from the figure that the SV loss can 

cause an operating time of zone-1 as high as 41 msec; whereas using the SV estimation, 

the relay can operate normally (in 23-25 msec).  
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Figure 5-15 Transmission line distance protection IED operating times for various SV loss scenarios: (a) 

for L-G fault, (b) for L-L fault 
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Figure 5-16 illustrates the operating times of Line-3 distance protection for 3 to 6 SVs 

delayed by 3 and 12 msec. Results in the figure show that the SVs causes delay in zone-1 

pick-up. And, this delay can be eliminated using the SV estimation algorithm 

implemented within the line distance IED. 

 

Figure 5-16 Transmission line distance protection IED operating times for various SV delay scenarios: (a) 

for L-G fault, (b) for L-L fault 
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Figure 5-17 shows the testing results of the distance protection for various SIRs, fault 

types, and POWs. For this investigation, 4 SVs loss at one sampling interval between 

each SV loss is considered. It can be observed from the figure that zone-1 element pick-

up is delayed up to 43 msec due to SV loss without SV estimation algorithm.  

 

Figure 5-17 Distance protection operating times for various SIR and POW: (a) for L-G fault, (b) for L-L 

fault 
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Table 5-6 illustrates the results of testing distance protection for various fault locations 

over Line-3. The comparison of the results for SV loss and delay shows that zone-1 

element operation is not affected by the SV loss/delay, if the SV estimation algorithm is 

implemented as a part of the protection IED. Moreover, the zone-1 distance protection 

element remains secure in all cases during the fault in zone-2. The SV estimation 

algorithm for distance protection with 10 consecutive SVs is presented in [97]. 

 

Table 5-6 Distance protection operating times for various fault locations on line-3 

Fault Locations 

on Line-3 

(%) 

Distance Zone-1 Element Operating Time (msec) 

Without SV 

Loss/ 

Delay 

3 SV delayed for 5 msec 
4 SV loss with an interval 

of 1 SV 

Without SV 

Esti. 

With SV 

Esti. 

Without 

SV Esti. 

With SV 

Esti. 

0 19.26 25.14 20.05 37.05 20.86 

10 20.35 25.63 20.17 37.78 21.24 

25 20.87 26.03 20.91 38.24 21.07 

40 21.49 26.42 21.56 38.72 21.88 

65 22.57 27.09 23.34 39.84 23.08 

75 23.05 28.54 23.12 40.15 23.25 

90 NO NO NO NO NO 

100 NO NO NO NO NO 

NO : No Operation of protection element 

 

5.6 Summary 

To investigate the performance of the proposed SV estimation algorithm, IEC 61850-9-2 

enabled protection IEDs and merging unit simulator are developed in a laboratory 

environment using industrial embedded systems over hard-real time platform. Moreover, 

a typical process bus communication network is set-up using a network analyzer, traffic 

generator, and commercial Ethernet switches. Implementation of the SV estimation 

algorithm is proposed as a part of sampled value buffer in a protection IED, in such a way 

that it does not interfere with any existing protection functions. And therefore, it is 
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compatible with any well established traditional digital relaying elements in a protection 

IED. The impact of sampled value loss/delay on full-cycle DFT based protections is 

analyzed using MATLAB. From this behavior analysis, it is inferred that in some worst 

conditions, the phasor used for the protective relaying is affected due to multiple SVs 

loss. To counteract this adverse effect, the SV estimation algorithm is investigated as a 

part of busbar differential protection and transmission line distance protection IEDs for 

various SV loss/delay scenarios in a laboratory environment. With the help of the 

hardware setup, it is demonstrated that the busbar differential element in the protection 

IED may lose security, and mal-operates during external fault due to SV loss/delay in 

certain conditions. Moreover, distance relay zone-1 protection is delayed by 15-20 msec, 

due to SV loss/delay. It is demonstrated with extensive testing that with implementation 

of the SV estimation algorithm, the bus differential protection element remains secure 

during external fault, as well as, the line distance protection element operates correctly in 

time. It is important to note that the performance of the protection elements may not be 

affected for various other SV loss/delay scenarios. However, the presented investigation 

shows that the corrective measure for SV loss/delay can certainly help in improving 

performance of digital protection functions in IEC 61850-9-2 based environment. The 

next chapter will analyze the system reliability of the process bus communication 

networks using a reliability block diagram (RBD) method. 
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Chapter 6Chapter 6Chapter 6Chapter 6    

6. Combinatorial Reliability Analysis of Process 

Bus Architectures for Protection Systems 

This chapter presents the reliability and availability calculations of various process bus 

communication architectures, considering the practical Ethernet switched networks, e.g. 

cascaded, ring, star-ring, redundant-ring, as well as, the time synchronization techniques: 

1) external TS using IRIG-B, and 2) TS over network using IEEE 1588. The results of 

reliability and availability are compared for a typical substation layout.  

6.1 Reliability and Availability Analysis for Process Bus 

Architectures 

The reliability and availability evaluation of the future process bus architectures with the 

different possible time synchronization configurations is important to evaluate before 

studying their impacts on various protection reliability indices. Ethernet communication 

devices can be connected in various combinations using Ethernet switched LANs [6]. In 

addition to this, the time synchronization can be employed using different techniques, 

such as external time synchronization source (using IRIG-B protocol [75]), time 

synchronization on LAN (using IEEE 1588 [76]). The comparison of all these different 

process bus architectures is carried out using a sample electric power substation layout. 

The quantitative values of reliability and availability for these different process bus 

architectures are obtained using the reliability block diagram technique [98]. 

The reliability and availability analysis using the Reliability Block Diagram (RBD) 

method are explained in reference [98]-[100]. Although, the reliability analysis using 

other methods, such as fault tree, cut set, path set, etc. have different formal 

presentations, they all may give similar results as RBD [98]. For qualitative and 
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quantitative analyses, RBD is more preferable, as it is easy to understand, and hence it is 

used for this work. Basic reliability and availability calculations using RBD method are 

discussed in Appendix E in detail. 

Although, the method to calculate reliability of Ethernet architectures is presented 

considering a typical transmission substation, these developed models are general and can 

be applied to any power substation. The practical Ethernet switched architectures 

suggested by the IEEE PSRC report (as discussed in Chapter 2), such as cascaded, ring, 

star-ring, redundant-ring are studied here considering two time synchronization 

techniques: 1) external time synchronization using IRIG-B [75]; 2) time synchronization 

over the same Ethernet switched network using IEEE 1588-2008 [76].  

The reliability block diagrams representation is divided in three subsections: 1) reliability 

of an Ethernet switched communication network; 2) reliability of the entire substation 

process bus architecture with the IRIG-B based time synchronization; 3) reliability of the 

entire substation process bus architecture with the IEEE 1588 based time 

synchronization. Reliability of the Ethernet switched communication networks is 

analyzed to obtain failure rate of communication network (λcomN) between two extreme 

ends of the network. Moreover, the sender ESW is considered separately in series with 

MUs, to obtain failure rate of communication devices (λcomD) pertaining to a specific 

protection. This calculated failure will be used in the following chapter. 

6.2 Parameters for the Analysis 

Reliability can be represented as a Mean Time To Failure (MTTF), which is the average 

time between system breakdowns or loss of service. The MTTF values for reliability 

calculations are considered from references [7], [35], and are tabulated in Table 6-1. The 

basic assumption is applied here that the failure modes are independent from each other 

[98]. Further, using Mean Time To Repair (MTTR) of 24 hours from the reference [35], 

availability of individual components is calculated (according to Appendix E), as shown 

in Table 6-1.  
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Table 6-1 MTTF considered for each SAS components 

SAS component MTTF 

(in years) 

Availability       

Prot. IED with communication interface 150 0.999981735 

MU with communication interface 150 0.999981735 

TS with communication interface 150 0.999981735 

Ethernet Switch 50 0.999945208 

Fiber cables 500 0.999994521 

 

Using these tabulated individual component values, the MTTF and availability are 

calculated for various process bus architectures of a typical power substation described in 

Appendix B. It can be observed from the Appendix B that this sample substation has total 

8 protections which include 4 transmission lines; 2 transformers; and 2 bus protections. 

All 8 protection system has two protection IEDs: main protection IED-A, and redundant 

protection IED-B. Moreover, each line protection IED is connected to 3 MUs; each 

transformer protection IED is connected to 4 MUs; and each bus protection IED is 

configured with 2 MUs.  

  

6.3 Analysis of Cascaded Process Bus Architecture 

In cascaded architectures, all four Ethernet switches are connected in a daisy chain (with 

open loop) configuration as shown in Figure 6-1.  This architecture has only one path for 

the data communication. The figure only shows the time synchronization over the 

communication network using IEEE 1588. In external time synchronization architecture, 

all MUs located in close vicinity are synchronized with the common time synchronization 

source through external IRIG-B signals. Time synchronization over the network is 

provided using GPS antenna connected to one of the Ethernet switch (acting as grand 

master) according to IEEE 1588-2008 standard. 
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Figure 6-1  Cascaded process bus architecture of 345/230kVsubstation 

 

6.3.1 Reliability and availability of a cascaded Ethernet switched 

network 

The reliability block diagram of the above four cascaded Ethernet switched architecture is 

shown in Figure 6-2. To communicate from an Ethernet switch to another Ethernet switch 

over the process bus, receiving side Ethernet switch, as well as, two Ethernet network 

switches are required. Moreover, all three fiber cables connecting all four Ethernet 

switches are important for the communication. Therefore, three Ethernet switches and 

fiber cables would be in series for the reliability analysis. It can be observed from the 

RBD that this architecture is not fault tolerant, and any failure can cause loss of 

communication. 

 

 

Figure 6-2 Reliability block diagram of a cascaded Ethernet architecture 
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6.3.2 Cascaded process bus architecture with IRIG-B  

A general reliability block diagram for cascaded process bus architecture with external 

IRIG-B based time synchronization is shown in Figure 6-3. Time synchronization source 

are considered in series with protection IEDs as well as MUs. Moreover, Ethernet switch 

of a specific protection should be working to facilitate communication between IEDs and 

MUs, and therefore, it is connected in series. Protection IEDs-A and B are redundant, and 

therefore connected in parallel.  

 

λλ
 

Figure 6-3 RBD for cascaded process bus architecture with TS using IRIG-B 

 

6.3.3 Cascaded process bus architecture with IEEE 1588 

Figure 6-4 shows the RBD of the cascaded process bus architecture with the IEEE 1588 

based time synchronization over the network. Unlike IRIG-B (of Figure 6-3), the time 

synchronization source based on IEEE 1588 is connected to one of the Ethernet switch as 

a part of communication network to synchronize all IEDs and MUs of the process bus. 

And therefore, IEDs and MUs do not require any external time synchronization source. 

λ λ
 

Figure 6-4 RBD for cascaded process bus architecture with TS using IEEE 1588 
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6.3.4 Reliability and availability results for cascaded process bus 

architecture  

Sample calculations to calculate reliability (MTTF) and availability from reliability block 

diagram is explained in Appendix E. The reliability and availability of various zones of 

protections with the cascaded process bus architecture (as shown in Figure 6-1) is 

tabulated in Table 6-2 considering both IRIG-B and IEEE 1588 based time 

synchronization techniques. Figure 6-3 and Figure 6-4 are general RBDs for all various 

protections of the substation, such as line, transformer, and bus. The only difference in 

RBD of these protections is the number of MUs, e.g. line protections need 3 MUs, 

transformer protections require 4 MUs, and bus protections demand 2 MUs. Therefore, it 

can be observed from the table that bus protection has the higher reliability and 

availability, followed by line protection, and finally the transformer protection (as it has 

higher requirement for MUs). In addition to that, the reliability and availability of the 

IEEE 1588 based TS over network has higher reliability and availability as compared to 

the IRIG-B based external TS technique, as the number of TS devices required for IEEE 

1588 technique is less.   

 

Table 6-2 Reliability and availability results for a cascaded process bus architecture 

Zones of Protection 

Cascaded Architecture 

External TS 

(using IRIG-B) 

TS over network  

(using IEEE 1588) 

MTTF 

(years) 
Availability 

MTTF 
(years) 

Availability 

Line-1, 2, 3, 4 8.08 0.999671294 8.54 0.999689553 

XFMR-1,2 7.67 0.999653035 8.08 0.999671294 

Bus-1, 2 8.54 0.999689553 9.05 0.999707812 
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6.4 Analysis of Ring Process Bus Architecture  

In ring architecture, all four managed Ethernet switches are connected in a single loop, as 

shown in Figure 6-5. In order to prevent messages from circulating in the network loop, 

the Ethernet switches should support IEEE 802.1w RSTP.  

 

Figure 6-5  Ring process bus architecture of 345/230kVsubstation 

 

6.4.1 Reliability and availability of a ring Ethernet switched network 

Figure 6-6 represents the reliability block diagram of the ring Ethernet switch 

architecture. For the successful message transfer from a sender Ethernet switch to other 

(receiving) end Ethernet switch, any 1-out-of-2 remaining network Ethernet switches, 

plus any 3-out-of 4 fiber cable connections should be working properly, as shown in 

Figure 6-6. This n-1 redundancy is achieved with the implementation of RSTP into the 

managed Ethernet switches, which can reconfigure the ring network in case of any one 

switch and/or a communication cable connection failure. 

 

Figure 6-6 Reliability block diagram of a ring Ethernet architecture 
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6.4.2 Ring process bus architecture with IRIG-B 

The RBD of the ring process bus architecture synchronized using IRIG-B is illustrated in 

Figure 6-7. As mentioned in the previous section of this chapter, external time 

synchronization source would be connected to IEDs and MUs. Moreover, the sender end 

Ethernet switch will be connected in series as a part of communication devices for a 

specific protection.  

 

λλ
 

Figure 6-7 RBD for ring process bus architecture with IRIG-B 

 

6.4.3 Ring process bus architecture with IEEE 1588 

Figure 6-8 presents the RBD of ring process bus architecture with time synchronization 

over the network using IEEE 1588 protocol. In this configuration, time synchronization 

source, TS, should be connected in series with communication network instead of IEDs 

and MUs, as shown in the figure. 

 

λ λ  

Figure 6-8 RBD for ring process bus architecture with IEEE 1588 
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6.4.4 Reliability and availability results for ring process bus 

architecture  

Table 6-3 compares the reliability and availability results for the ring process bus 

architecture of various zones of protection considering external TS, and TS over the 

network. Comparison of Table 6-3 with the results of cascaded process bus architecture 

(from Table 6-2) shows that the overall reliability and availability of ring architecture is 

improved, as ring architecture provides n-1 redundancy for Ethernet switches and fiber 

cables. As explained earlier, the difference in reliability of various zones of protection is 

mainly due to the number of MUs required for a particular protection. Moreover, the 

IRIG-B based TS has lower reliability and availability than the IEEE 1588 based TS over 

a network. 

 

Table 6-3 Reliability and availability results for ring process bus architecture 

Zones of Protection 

Ring Architecture 

External TS 

(using IRIG-B) 

TS over network  

(using IEEE 1588) 

MTTF 

(years) 
Availability 

MTTF 
(years) 

Availability 

Line-1, 2, 3, 4 10.64 0.999780847 11.45 0.999799108 

XFMR-1,2 9.93 0.999762586 10.64 0.999780847 

Bus-1, 2 11.45 0.999799108 12.40 0.999817369 

 

6.5 Analysis of Star-ring Process Bus Architecture 

As shown in Figure 6-9, the star-ring architecture requires two additional redundant 

Ethernet switches connected in a ring. Both these Ethernet switches will be connected to 

the rest of the four Ethernet switches in a star configuration with redundant connections. 

This configuration requires two additional ESWs as compared to the previous process bus 
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architectures. On the other hand, only the main and redundant station ESWs (from Figure 

6-9) should be management type Ethernet switches (i.e. supporting IEEE 802.1w RSTP).  

      

Figure 6-9 Star-ring process bus architecture of 345/230kVsubstation 

6.5.1 Reliability and availability of a star-ring Ethernet switched 

network 

The reliability block diagram of the star-ring Ethernet architecture is illustrated in Figure 

6-10. Main and redundant ESWs are in parallel (as any one of these two ESWs should be 

working), plus the receiving end ESW should be in series. 1-out-of-2 fiber cables 

between main and redundant ESWs; and 2-out-of-4 fiber cables between protection 

ESWs should be working to facilitate the message transfer over the network.  

 

Figure 6-10 Reliability block diagram of a star-ring Ethernet architecture 
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6.5.2 Star-ring process bus architecture with IRIG-B  

Figure 6-11 shows the reliability diagram for the star-ring architecture with the external 

time synchronization to IEDs and MUs using the IRIG-B. Devices pertaining to a specific 

protection, e.g. protection IED with TS, MUs with TS and Ethernet switch will be in 

series with blocks of communication network, as shown in the figure.  

 

λλ
 

Figure 6-11  RBD for star-ring process bus architecture with IRIG-B 

 

6.5.3 Star-ring process bus architecture with IEEE 1588 

With IEEE 1588 based time synchronization technique, time synchronization source will 

be part of communication, instead of external connection to IEDs and MUs, as shown in 

Figure 6-12. 

 

λ
λ  

Figure 6-12  RBD for star-ring process bus architecture with IEEE 1588 
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6.5.4 Reliability and availability results for star-ring process bus 

architecture  

Using the calculations of the series-parallel combinations from the Appendix-E, MTTF 

and availability of star-ring architecture are tabulated in Table 6-4. It can be observed 

from the results that star-ring architecture has not improved reliability and availability 

with respect to the previous ring architecture. This is due to the fact that the process bus 

has only four Ethernet switches. As the number of Ethernet switches increases the star-

ring architecture reliability and availability will improve as compared to ring architecture.  

 

Table 6-4 Reliability and availability results for star-ring process bus architecture 

Zones of Protection 

Star-Ring Architecture 

External TS 

(using IRIG-B) 

TS over network  

(using IEEE 1588) 

MTTF 

(years) 
Availability 

MTTF 
(years) 

Availability 

Line-1, 2, 3, 4 10.63 0.999780847 11.44 0.999853891 

XFMR-1,2 9.93 0.999762586 10.63 0.999835629 

Bus-1, 2 11.44 0.999799108 12.38 0.999872153 

 

6.6 Analysis of Redundant-Ring Process Bus Architecture  

As shown in Figure 6-13, all the SAS IEDs are connected to both redundant ring 

configurations. Both the networks are independent with each other, and support IEEE 

802.1w RSTP protocol.  
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Figure 6-13  Redundant-ring process bus architecture of 345/230kVsubstation 
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6.6.1 Reliability and availability of a ring Ethernet switched network 

Reliability block diagram for the redundant-ring architecture is shown in Figure 6-14. It 

can be observed from the figure that unlike the previous process bus architectures (i.e. 

cascaded, ring, star-ring), redundant ring provides redundancy at communication network 

level. As the figure shows, there are redundant ESWs at any receiving end, as well as 

over the network where 1-out-of-2 ESWs are required. Moreover, fiber cables with 3-out-

of-4 combination would be in parallel too. 

 

 

Figure 6-14 RBD of a redundant-ring Ethernet architecture 

 

6.6.2 Redundant-ring process bus architecture with IRIG-B  

There are redundant ESWs connected to each specific protection devices, as shown in 

RBD of redundant-ring process bus architecture with IRIG-B in Figure 6-15. Therefore, 

there will be a parallel Ethernet switches connected to IEDs and MUs, unlike the 

previous process bus architectures. 

 

λλ  

Figure 6-15  RBD for redundant-ring process bus architecture with IRIG-B 
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6.6.3 Redundant-ring process bus architecture with IEEE 1588 

Figure 6-16 shows the RBD for the redundant ring process bus architecture in series with 

the redundant IEEE 1588 based time synchronization sources. It is important to note that 

since both rings are independent, each has its own time synchronization from the 

network. IEDs and MUs can switch to redundant network if it detects any failure in the 

main network. 

λ λ  

Figure 6-16  RBD for redundant-ring process bus architecture with IEEE 1588 

6.6.4 Reliability and availability results for redundant-ring process bus 

architecture  

Reliability (MTTF) and availability of redundant ring architecture are depicted in Table 

6-5. Comparing the tabulated results of redundant-ring architecture with the previous 

architecture, certainly there are improvements in reliability and availability of zones of 

protection. This is due to the fact that redundant architecture offers complete redundancy 

in Ethernet switched network at a higher cost & complexity.  

 

Table 6-5 Reliability and availability results for redundant-ring process bus architecture 

Zones of Protection 

Redundant-Ring Architecture 

External TS 

(using IRIG-B) 

TS over network  

(using IEEE 1588) 

MTTF 

(years) 
Availability 

MTTF 

(years) 
Availability 

Line-1, 2, 3, 4 13.29 0.999835632 15.07 0.999853894 

XFMR-1,2 12.21 0.999817371 13.69 0.999835632 

Bus-1, 2 14.58 0.999853894 16.75 0.999872156 
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6.7 Summary 

Four practical Ethernet architectures with different time synchronization techniques are 

discussed for the substation protection systems from the reliability point of view. With 

the help of reliability block diagram techniques, MTTFs and availability is calculated for 

a typical 345/230 kV transmission substation. Further, the reliability block diagrams are 

demonstrated for practical Ethernet switch architectures, such as cascading, ring, star-

ring, and redundant ring. The comparison among these architectures is presented using 

MTTF, availability and additional component requirements. It is found that the separate 

network of external time synchronization based on the IRIG-B affects the MTTF and 

availability of the bay, as compared to the IEEE 1588 based time synchronization over 

the same communication network. Moreover, the reliability and availability of star-ring 

and redundant-ring are high as compared to cascaded and ring architecture. However, 

these architectures are costly and complex due to the fact that it requires additional 

Ethernet switches. 

The comparison of MTTF for the external TS, and the TS over network is tabulated in 

Table 6-6. These failure rates from the table can be obtained for the further detailed 

analysis in Markov model, which is presented in the next chapter. 

 

Table 6-6 MTTF comparison of process bus components 

Components ExtTS TS over NW 

MTTFied  

(a single protective IED) 
75 150 

MTTFcomD 30 37.5 

MTTFcomN 

Cascaded 15.15 13.76 

Ring 27.61 23.32 

Star-Ring 27.55 23.27 

Redun-Ring 41.42 34.98 
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Chapter 7Chapter 7Chapter 7Chapter 7    

7. Extended Markov Model for Digital Protection 

Functions with Process Bus 

Most of the literatures available on reliability analysis of the IEC 61850-9-2 process bus 

communication network are based on combinatorial reliability models, which include 

Reliability Block Diagram (RBD), fault tree, event tree, etc. This is because the 

combinatorial reliability models are simple and easy to understand. However, these 

combinatorial reliability models (i.e. RBD, fault tree, event tree) cannot be used to model 

system repairs or dynamic reconfiguration of the system. That means, in these modeling 

schemes, we are assuming that the system components are limited to operational or failed 

states, and the system configuration does not change during the system operation. 

On the other hand, a Markov model can consider various system states (e.g. degraded, 

under test, temporary failure, reconfiguration, etc.), and the possible transitions among 

these states. A Markov model using a state transition diagram is more accurate than 

combinatorial reliability techniques, because it can represent more system states and 

components failure dependency. Therefore, the proposed reliability models in the 

literature for traditional protective relaying system are based on the Markov modeling 

[67]-[73]. Also various reliability indices of a protection system, e.g. abnormal 

unavailability, un-readiness, protection system unavailability, etc. are derived using the 

Markov model. However, there is no literature available to look at the impact of IEC 

61850-9-2 based communication network on the protection function reliability.  

Therefore, this chapter presents an extended Markov model of a protection system, 

considering the IEC 61850-9-2 based process bus communication architectures. The 

proposed Markov model includes the impact of communication devices (λcomD) and time 

synchronization architectures for a protection. Also, the model recognizes the effect of 



 

 

116

116

the proposed SV estimation algorithm by estimating lost/delayed SVs, and a network 

interface monitoring mechanism, the feature offered by digital process bus. Sensitivity 

analysis of the protection reliability indices are presented considering various parameters 

such as, failure and repair rates of a protection IED (λied, µied), failure rate and recovery 

time of communication networks (λcomN, µcomN), and SV lost/delayed (λsvl). 

7.1 Reliability of Protection Functions 

The reliability of protective relaying is usually separated into two different aspects: 1) 

dependability; 2) Security [99]. Dependability is defined as the probability that a 

protection IED will operate correctly. In other words, dependability is a measure of the 

protection IED’s ability to operate correctly when required. Whereas, security is defined 

as the probability that a protection IED will not operate in those situations when tripping 

is not desired. Therefore, if a protection IED mis-operates in any undesired conditions 

(e.g. external fault) it is referred to as lack of security of a protection function. 

Considerable amount of work is available in the literature to analyze the reliability of 

protection functions using Markov model. Reference [62] introduced a method to 

calculate the failure probability of power system protection relays. C. Singh and A. D. 

Patton have introduced unreadiness probability for protection functions in [70]. This 

work is further extended in [67] to obtain unavailability of protection function by 

considering effect of back-up protection, inspection rate of protective relays, etc. 

Reference [69]  modified the previously available models to accommodate self-testing 

capability of modern protective relays. This work is extended by R. Billinton et. al. in 

reference [71] in order to obtain optimum routine test and self-checking intervals 

considering monitoring and self-checking effectiveness, mal-operation of protection, etc. 

More complex Markov models proposed in [73] recognizes software failure, human 

errors, and ancillary equipment failures. 
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7.2 Considerations and Assumptions of Proposed Markov 

Model 

Proposed model considerations and assumptions are listed below: 

7.2.1 Considerations 

Following items are considered in the extended Markov model: 

I. Failure rate of IEC 61850-9-2 based process bus communication network 

including Ethernet switches, fiber cables, merging units, and time synchronization 

source 

II. Recovery/ reconfiguration rate of Ethernet switched process bus network 

III. Time synchronization architectures 

IV. Sampled value loss due to degradation of communication network and/or devices 

V. Self-checking and monitoring features of digital protection IEDs 

VI. Enhancement in monitoring of protection IED due to network port monitoring 

feature. 

7.2.2 Assumptions 

The assumptions for simplifying the model are listed below: 

i. Failure rates and repair rates are constant, and all failures are mutually 

independent. This is a valid assumption, since all switching rates are 

exponentially distributed for the electronic devices [98]. 

ii. Only a portion of the relay failure will be detected by routine test inspection 

which has not been detected by self-checking or monitoring facilities. And, during 

inspection, self checking or repair, the entire protective system will be taken out 

of service. 

iii. Potential mal-trip due to human or software errors, as well as failure of 

switchyard components CT, VTs, and Breakers, are not considered for the 

simplicity. 
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iv. Only a portion of the relay failure can be detected by routine test that had not been 

revealed by monitoring or self-checking. 

v. Reconfiguration communication protocols, such as STP, RSTP, etc. are 

considered to be fully reliable. 

vi. Communication network delays are within the allowable range during normal 

operating condition. However, SV loss/delay over the process bus network is 

modeled in this work. 

vii. Common mode of (simultaneous) failure of protective IEDs and communication 

network/device is neglected for simplification. 

7.3 Proposed Markov Model 

A detailed Markov model to determine the reliability of protection functions based on 

IEC 61850-9-2 process bus is shown in Figure 7-1. The component in the figure 

represents any of the power system elements which need to be protected, such as 

transmission line, transformer, busbar, generator, etc. The letters C and P in the each state 

of the figure refer to the component to be protected and corresponding IEC61850-9-2 

based protection system of the protected component, respectively. Protection system in 

this work includes protection IED, MUs and IEC 61850 based process bus 

communication network. All the states are numbered in the state transition diagram of 

Figure 7-1. Description of all transition rates used for the model is listed in the following 

subsection-7.3.1. 

State-1 represents the normal operating condition where component is energized (C UP), 

and the corresponding protecting system is also operating properly (P UP). When a fault 

occurs in a component, the model transits to state-2 and component goes to down state (C 

DN). In this state, protection system is healthy, and hence, it detects the fault and 

operates normally to switch the circuit breaker. This normal switching isolates the faulty 

component and model transits to state-3. During the routine test of the protection system, 

the model transits to state-4, and the protection system is unready to respond if 

component goes down. Moreover, the protection IED has self-checking feature, in which 

the protection is inhibited. This phenomenon is represented by the transition from state-1 
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to state-5. If a failure is detected during the self-check, the system will transit to state-6; 

and if a failure is detected by the monitoring of the IED, model transfers from state-6 to 

state-8. If failure of IED is not detected by self-check or monitoring, then it will be 

detected by routine test for which system transit to state-7. If during unavailability of 

protection system, component fails, back-up protection will clear the fault by isolating 

additional portion X, i.e. total isolation of C+X components. This phenomenon is 

represented by transitions from all the states in protection down (component up) to state-

9, and then, to state-10. After identifying isolation of an additional portion, a manual 

switching will restore portion X, and this way model will transit from state-10 to state-11. 

From the state-11, model can transit to either state-3 if the protection system is repaired 

or state-8 if the component is repaired before the protection system. The protection IED 

may mis-operate during external faults. This is represented by direct transition from state-

1 to state-12. The protected component is isolated, and model is moved to state-13. Re-

energizing the protected component may cause model to transit to state-8 from state-13, if 

protection system is not healthy, model return back to state-1. Also, the protection system 

moves to state-12 from state-4, due to mal-operation of protection system caused by 

human error occurring during the routine test inspection. 

With implementation of IEC 61850-9-2, it is important to consider the process bus 

communication network, as well as communication devices, such as merging unit and 

time synchronization source as a part of the protection system. The failure of any 

communication device, i.e. one of the MUs or time synchronization source of the 

protection system, transits the model from state-1 to state-14. Whereas, the failure of the 

communication network (process bus Ethernet network switches connected with fiber 

cables), causes model to move from state-1 to state-15. The failure of a communication 

device (followed by communication network) transits model from state-15 to state-14. 

Earlier in this work, two important studies are presented: 1) the loss/delay of multiple 

sampled values due to degradation of communication network and/or components is 

studied with the help of detailed dynamic simulations in OPNET tool; 2) the impact on 

protection functions during sampled value loss/delay is demonstrated using hardware set-

up. In case of sampled value loss/delay (due the degradation of communication network 

and/or devices), the model transit to state-16 from the normal operating state-1. The 
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model may enter to state-12, if the sampled value loss causes any mis-operation during an 

external fault, else model return back to state-1. 

 

 

Figure 7-1 Markov model for protective relaying based on process bus 
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7.3.1 Description of proposed Markov model transition rates 

λc      failure rate of the protected component (C)         

µc      repair rate of the protected component  

λp      failure rate of the protective system (P)   

µp      repair rate of the protective system 

λcc     common cause of failure rate of C and P 

Ψn     normal switching rate of the protective system 

Ψb     back-up protective system switching 

Ψm     manual switching rate to isolate only faulty component 

Ψitc    manual switching rate to restore component C           

Өrt     routine inspection rate of the protective system 

µrt     number of IEDs inspected per time period 

λied    failure rate of the protective system (P)   

µied    repair rate of the protective system 

Өied,sc self-checking rate of protection IED  

 µied,sc number of IEDs self-checked per time period 

λied,sc   portion of IED failure rate detected by self-checking 

λied,mn  portion of IED failure rate detected by monitoring 

λied,rt      portion of IED failure rate detected only by routine inspection 

λcomN   failure rate of communication required for P 

µcomN   repair or reconfiguration rate of communication required for P 

λcomD   failure rate of communication device required for P 

µcomD   repair rate of communication device required for P 

λsvl       rate of SV loss/delay over the process bus 

µsvl      recovery rate of protection IED from the effect of SV loss/delay 

λrt,op     rate of relay mal-operation revealed during routine test 

λc,ext     rate of external (other adjacent components in a substation) faults 

 

7.3.2 Reliability indices for substation protection systems 

Based on the proposed Markov model of Figure 7-1, the individual state probabilities (Pi) 

can be obtained, as explained in Appendix E. An improved Markov model in [67], [68] 

defined the reliability indices for the protection systems, such as, unavailability of a 

protection system (ProtUn), and abnormal unavailability (AbUn). This work is extended 

by R. Billinton, et. al. in [71] and introduced a reliability indice for the loss of security 

(Lsecu) in protective relaying. This work considers all these three reliability indices: 1) 

Protection system (ProtUn), 2) Abnormal unavailability (AbUn), and 3) Loss of security 

(LSecu). These three parameters can be obtained from individual state probabilities obtain 

from the proposed model as follows: 
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Protection system (ProtUn): Probability that the component to be protected (C) is up, but 

protection system (P) is down. Therefore, 

ProtUn=P4 + P5 + P6 + P7 + P8 + P14 + P15 + P16 

Abnormal unavailability (AbUn): Probability that the component to be protected (C) as 

well as protection system (P) both are down. 

AbUn=P9 + P10 + P11 

Loss of security (LSecu): Probability that the component to be protected is up, but 

protection function has operated incorrectly. 

LSecu=P12 + P13 

These reliability indices are studied in the following subsection. 

7.4 Results and Discussion 

The values of Markov state model transition rates, and the analysis based on these values 

are discussed in this subsection. 

7.4.1 Values of transition rate  

The common transition rates obtained from [67], [71] are listed below: 

λc = 1 fault/year          

λcc = 1 failure/million hour 

µc = 0.5 repair/hour                 

Ψn = 43200 operations/hour (5 cycle)     

Ψb = 21600 operations/hour (10 cycle) 

Ψm = 0.5 operations/hour                  

Өied,sc = 1 test/ 48 hour             

µied,sc = 720 test/hour (5sec/test)    

µrt = 1 test/hour   

µp = 1 repair/hour  

λp =1 failure/100 years (only for traditional protection systems)  

    

Transition rates for protection system, repair rate of 61850-9-2 process bus based IED, 

MU, and ESW are obtained from [7]. Their values are as follows: 
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µied = 1 repair/1 hour  

µcomD= 1 repair/24 hour  

 

Failure rates of protection IED, communication devices (TS, MU, and ESW), and 

communication network are obtained from reliability block diagram method (as 

explained in Chapter 6), and are listed in Table 7-1. 

 

 
Table 7-1 Transition rates of various process bus architectures 

Failure rates 
ExtTS  

(using IRIG-B) 
TS over NW 

(using IEEE 1588) 

λied  
0.01333 

failure/year 
0.006667  

failure/year 

λcomD 
0.0333 

failure/year 
0.026667  

failure/year 

λcomN 

Cascaded 
0.066 

failure/year 
0.07267 

failure/year 

Ring 
0.0362 

failure/year 
0.04288 

failure/year 

Star-Ring 
0.0363 

failure/year 
0.043 

failure/year 

Redundant-
Ring 

0.02414 
failure/year 

0.02859 
failure/year 

 

The impact of various parameters (belongs to process bus communication network) on 

substation protection (reliability indices) is presented below. Ring architecture with TS 

over process bus network is considered for the following analysis, until it is specified. 

7.4.2 Impact of process bus communication on protection reliability 

Figure 7-2 to Figure 7-4 show the impact of process bus communication network on the 

reliability indices of protection systems, such as, protection unavailability, abnormal 

unavailability, and loss of security, respectively. It can be observed from Figure 7-2 that 

the protection unavailability increases from 0.00118 to 0.001378, due to the addition of 

communication devices and process bus communication network. On the other hand, the 

optimum routine test interval increases from 2101 hours to 6501 hours with the help of 

process bus communication. This is due to the fact that a process bus base protection 

system has higher monitoring effectiveness as compared to traditional protection system. 

The abnormal unavailability (Figure 7-3) and loss of protection security (Figure 7-4) 

increase by a small value due to the communication devices and network.  
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Figure 7-2 Impact of process bus communication on protection unavailability (ProtUn) 

 

Figure 7-3 Impact of process bus communication on abnormal unavailability (AbUn) 
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Figure 7-4 Impact of process bus communication on loss of protection security (LSecu) 

 

7.4.3 Impact of process bus time synchronization techniques on 

protection reliability 

As described in the previous chapter, there are mainly two time synchronization 

techniques appropriate for protection applications: 1) External TS based on IRIG-B; 2) 

TS over the network using IEEE 1588 capabilities. For both of these time 

synchronization techniques, the failure rates of protection system components including 

process bus devices considered for the analysis are tabulated in Table 7-1. Figure 7-5 

presents protection unavailability with the IRIG-B and the IEEE 1588 architectures. With 

the IRIG-B based TS technique, ProtUn is 2.079x10-3 with routine test interval of 3900 

hours; whereas, for IEEE 1588 base TS technique, ProtUn is 1.378x10-3 with routine test 

interval of 6501 hours. The protection unavailability increases with lower routine test 

interval for IRIG-B based TS due to the fact that the external TS based on the IRIG-B has 

higher number of TS components, as compare to the IEEE 1588 based TS technique. 
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Figure 7-5 Impact of process bus time synchronization techniques on protection unavailability (ProtUn) 

Comparison of abnormal unavailability of different TS techniques is shown in Figure 7-6. 

Abnormal unavailability of external TS using IRIG-B increases from 2.31 x10-6 to 

2.468x10-6. Figure 7-7 shows that TS techniques do not have significant impact on 

protection security. This is because TS technique does not cause any mis-operation to the 

protection system. 
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Figure 7-6 Impact of process bus time synchronization techniques on abnormal unavailability (AbUn) 

 

Figure 7-7 Impact of process bus time synchronization techniques on loss of protection security (LSecu) 
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7.4.4 Impact of sampled value loss/delay over the process bus on 

protection reliability 

As it is explained in the proposed Markov model, loss or delay of multiple sampled 

values may cause the protection system to mis-operate during an external fault condition. 

During normal operation, multiple SVs are lost or delayed only during worst case 

scenario of the traffic, which is assumed to be occurring once in a day. However, in 

degraded network, i.e. either an Ethernet switch or a fiber link has failed, the event of 

multiple SVs loss or delay may assumed to be occurred every second. In all cases, the 

protection functions recover from the impact of multiple SV loss or delay in 16.667 msec 

(one power cycle for 60Hz system).  During this one cycle, protection may mis-operate 

during external faults.  

It can be inferred from Figure 7-8 and Figure 7-9 that the phenomena of sampled value 

loss and delay has less impact on ProtUn and AbUn, as SV loss or delay fast recovery 

rate (within one power system cycle). On the other hand, loss or delay of multiple 

sampled values has significant impact on protection system security. It can be observed 

from the  

Figure 7-10 that loss of security (LSecu) probability increases to 2.62 x10-8 from 5.1 x10-

9. 
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Figure 7-8 Impact of sampled value loss/delay on protection unavailability (ProtUn) 

 

Figure 7-9 Impact of sampled value loss/delay on abnormal unavailability (AbUn) 
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Figure 7-10 Impact of sampled value loss/delay on loss of protection security (LSecu) 

7.4.5 Sensitivity to process bus architecture reconfiguration 

This subsection presents the sensitivity analysis of the protection system based on process 

bus architecture reconfiguration rate (µcomN). With cascade Ethernet switched 

architecture, reconfiguration of the network is not automatic. Therefore, process bus 

network need to be repaired manually. Therefore, the value of µcomN is considered to be 

same as repair or replacement rate of an Ethernet switch, which is 24 hours. On the other 

hand, ring based architectures, e.g. ring, star-ring, etc. has reconfiguration time of 100 

msec. It can be inferred from the Figure 7-11 that protection unavailability increases from 

0.001385 to 0.001576 while taking more time to reconfigure the process bus. It can also 

be observed from the figure that process bus architecture reconfiguration does not have 

any impact on optimum routine test interval, as it is same (6501 hours) in both the 

scenarios. 

Figure 7-12 shows that process bus architecture reconfiguration has modest impact on 

abnormal unavailability, as the value increases from 2.36 x10-6 (for cascaded architecture) 

to 2.31 x10-6 (for ring based architecture). 
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Figure 7-11 Sensitivity of protection unavailability (ProtUn) to process bus architecture reconfiguration 

 

Figure 7-12 Sensitivity of abnormal unavailability (AbUn) to process bus architecture reconfiguration 

Figure 7-13 shows that there is negligible impact of process bus architecture 

reconfiguration on protection system security, as the reconfiguration doesn’t cause mis-
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operation.

 

Figure 7-13 Sensitivity of loss of protection security (LSecu) to process bus architecture reconfiguration 

7.4.6 Sensitivity to process bus monitoring effectiveness (MNE) 

The protection devices with fiber connections over the process bus communication 

network may have higher MoNitoring Effectiveness, (MNE) as compare to the traditional 

copper connections. This is because a communication port can continuously monitor the 

process bus network connection, as well as, it can alarm any failure in the communication 

link. Normally, the effectiveness of protective relay self-monitoring is 10%; however, it 

may increase with the process bus communication network based protection. Therefore, 

sensitivity of the protection system reliability indices are studied for various MNE values. 

It can be observed from Figure 7-14 that the values of protection unavailability are 

0.001434, 0.001132, and 0.0007327 for the MNE of 10%, 20%, and 30%, respectively. 

At the same time, abnormal unavailability improves from 2.323 x10-6 to 2.25 x10-6 and 

2.16 x10-6, as shown in Figure 7-15. Moreover, Figure 7-16 shows that the enhancement 

in monitoring does not have any effect on the security of the protection system. 
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Figure 7-14 Sensitivity of protection unavailability (ProtUn) to process bus monitoring effectiveness 
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Figure 7-15 Sensitivity of abnormal unavailability (AbUn) to process bus monitoring effectiveness 

 

Figure 7-16 Sensitivity of loss of protection security (LSecu) to process bus monitoring effectiveness 
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7.4.7 Sensitivity to failure rate of protection IED 

In order to study the sensitivity of the reliability indices of the protection system, three 

different failure rates of protection IED are considered, 1/100 year, 1/150 year, and 1/200 

year. Figure 7-17 shows the protection system unavailability are 0.001748 at 4700 hour 

of routine test interval, 0.001378 at 6501 hour of routine test interval, and 0.0016 at 8000 

hour of routine interval for the λied of 1/100 year, 1/150 year, and 1/200 year respectively. 

This shows that ProtUn increases with decreasing λied at the same time routine test 

interval decreases, which is consistent with the traditional protection system Markov 

models available in the literature [67], [69]. In addition to that, AbUn decreases with the 

rise in the failure rate of protection IED, as illustrated in Figure 7-18. The values of AbUn 

are 2.394 x10-6, 2.31 x10-6, 2.261 x10-6, for the λied of 1/100 year, 1/150 year, and 1/200 

year, respectively. Figure 7-19 shows that the failure rate of protection IED has negligible 

impact on the protection system security.  

 

Figure 7-17 Sensitivity of protection unavailability (ProtUn) to failure rate of protection IED 
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Figure 7-18 Sensitivity of abnormal unavailability (AbUn) to failure rate of protection IED 

 

Figure 7-19 Sensitivity of loss of protection security (LSecu) to failure rate of protection IED 
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7.5 Summary 

The extended Markov model is proposed in this chapter by considering the IEC 61850-9-

2 based process bus communication networks, as a part of digital substation protection 

systems. The proposed Markov model recognizes the impact of communication devices 

(λcomD) and the time synchronization techniques on protection. Also, it includes the effect 

of network interface monitoring mechanism, recovery time of communication networks 

(λcomN, µcomN), and the estimation lost/delayed SVs (λsvl) over the network.  

Reliability indices of protection systems from literature, such as protection unavailability 

(ProtUn), abnormal unavailability (AbUn), and loss of protection security (LSecu), are 

analyzed in this work. It is presented that these reliability indices are slightly affected due 

to the addition of process bus communication components, as a part of protection 

systems. However, routine test interval is improved from 2101 hours to 6501 hours, due 

to higher monitoring effectiveness of communication devices. Moreover, it is studied 

from the analysis that ProtUn and AbUn are affected more with external time 

synchronization technique (IRIG-B), as compared to time synchronization over the 

network (IEEE 1588). On the other hand, SV loss/delay has significant detrimental effect 

on protection security (LSecu), and has minor impact on ProtUn and AbUn. This is 

because the SV loss/delay may cause mis-operation of a protection function, (as 

demonstrated in Chapter 5 using hardware set-up). With the proposed SV estimation 

algorithm, the effect of SV loss/delay on protection function reliability indices can be 

alleviated. Furthermore, the  sensitivity analysis shows that the ProtUn and AbUn indices 

are more sensitive to process bus architecture reconfiguration rate, process bus 

monitoring effectiveness, and failure rate of protection IED, however, LSecu is 

comparatively very less sensitive to these process bus transition rates. 
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Chapter 8Chapter 8Chapter 8Chapter 8    

8. Research Outcomes and Conclusions 

This research work focuses on addressing the major technical challenges related to IEC 

61850-9-2 process bus for substation protection systems. The detailed performance and 

reliability analysis of substation protection functions, in presence of next generation 

process bus communication network are presented. The specific research outcomes, as 

well as summary and conclusion of the research work are discussed in this chapter. 

8.1 Research Outcomes 

Unique contributions of this research to the area of power system protection are as 

follows: 

1. A platform for the detailed dynamic analysis of IEC 61850-9-2 process bus 

network applying to substation protection systems is provided using OPNET. 

The developed  work can recognize various constraints of the practical Ethernet 

networks, e.g. bit error rate on the communication channel; bit error correction 

mechanism at communication ports, Ethernet switch packet buffer and service 

rate, different priority queuing mechanism for time critical messages; IEC 61850 

based message traffic flows; and VLAN configuration. This work will provide the 

perfect platform/tool to analyze the dynamic performance of any typical 

substation process bus network considering effect of various communication 

parameters, and also help to design process bus networks during the planning 

stages of substation automation projects. 

2. Sampled value estimation algorithm is proposed in this work, which can be 

implemented with any traditional well-established digital protection algorithm. 

This estimation technique is generic and can increase order of estimation for 
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achieving higher levels of accuracies. This algorithm is also tested as a part of 

protection IEDs over the hardware setup. 

3. IEC 61850-9-2 compliant process bus laboratory, including: 1) substation 

protection IEDs; 2) merging unit real time playback simulator; 3) IEEE 1588 

based time synchronization; 4) Ethernet switched network with implemented 

VLAN, RSTP, priority queuing, etc. mechanisms according to IEC 61850-9-2; 5) 

IEC 61850 based network traffic generator; 6) open source network analyzer 

suitable for IEC 61850 standard message types, etc. is developed. Using these 

developed laboratory facilities, the implementation of the proposed SV estimation 

algorithm is demonstrated as a part of busbar biased differential and line distance 

protection IEDs. This way, the testing of any developed algorithm can be carried 

out for various power system fault scenarios, as well as communication network 

discrepancies using the developed merging unit simulator. The developed 

laboratory at University of Western Ontario is a unique state-of-the-art facility, 

which can facilitate implementation of any indigenously developed protection and 

control algorithms, and also testing in various (power system and communication 

network) scenarios. 

4. Reliability models of process bus networks using reliability block diagrams 

are developed to analyze various practical process bus communication networks, 

including different Ethernet switched architectures and time synchronization 

techniques. These developed reliability models are suitable to analyze 

combinatorial reliability of protection systems of any electric power substation 

with the process bus communication infrastructures. Moreover, the failure rates of 

various process bus architectures can be obtained from the developed models, in 

order to carry out furthermore detailed reliability analysis of protection functions 

using Markov modeling.  

5. Extended Markov model to analyze impact of process networks on protection 

reliability indices is proposed in this work. The traditional protection reliability 

indices, such as protection unavailability, abnormal unavailability, and loss of 

protection security are obtained from the proposed Markov model. The developed 
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model can recognize various parameters of process bus networks, e.g. addition of 

communication devices and networks, reconfiguration of Ethernet switched 

networks, time synchronization techniques, and effect of sampled value 

loss/delay, as well as improvements in presence of SV estimation algorithm. 

8.2 Summary and Conclusions 

To achieve the labor cost reduction in wiring and engineering of long and complex 

copper wires between switchyard and substation control room, IEC 61850 standard part-9 

-2 proposes the Ethernet communication network, which is referred to as process bus. In 

addition to the cost savings, process bus also offers simple and flexible architecture, 

enhancement in protection functions, interoperability, etc. Tremendous work is going on 

from various relaying manufacturers to develop process bus products by addressing 

technical challenges related to this technology. The issues for process bus implementation 

studied from extensive literature survey, including relaying manufacturer’s technical and 

white papers, discussion papers based on pilot project experiences, international journals, 

publications by standard developer committee, international conferences and magazines, 

etc., are listed in Chapter 1. The identified major technical challenges in this chapter 

include the dynamic performance (loss/delay) of SV messages over process bus 

communication network, and the impact of SV loss/delay in IEC 61850-9-2 enabled 

protection IEDs installed for substation protection; and impact of process bus 

communication network on the reliability of protection systems. The work is carried out 

in this thesis to address these major issues. 

Chapter 2 discusses the salient features of the IEC 61850-9-2 process bus, such as time 

critical protection messages and their multicasting, retransmission of GOOSE, time 

synchronization over the process bus, and fast Ethernet switched networks. Moreover, 

this chapter also provides brief overview of practical Ethernet switched architectures 

suggested by the IEEE PSRC report, including cascaded, ring, star-ring and redundant-

ring, as well as potential time synchronization techniques, such as the IRIG-B for 

external time synchronization to each process bus device, and the IEEE 1588 based time 

synchronization over the Ethernet network.  
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The performance of the IEC 61850-9-2 process bus is evaluated for the Ethernet switched 

ring architecture of a typical 345kV/230kV substation in Chapter 3. Using the OPNET 

simulation tool, the dynamic models of IEC 61850 based process bus devices and 

communication protocols are developed to analyze the delay and packet loss for the 

sampled value packets by considering various communication parameters, such as speed 

of the communication data link, sampling frequency of the merging units, network 

background traffic, Ethernet switch buffer size, packet services rate, and the 

communication channel bit error rate. It is demonstrated that these process bus 

parameters have influence on the number of sampled value packet loss and end-to-end 

maximum delays.  

In order to alleviate the impact of lost and delayed sampled values on digital protection 

functions, the corrective measure, i.e. sampled value estimation technique is also 

presented in Chapter 4. Using this SV estimation technique, the SV estimation algorithm 

with the sets of coefficients is proposed in this chapter. To examine the accuracy of the 

proposed SV estimation algorithm, the same 345kV/230kV substation is simulated in 

PSCAD/EMTDC and the sampled value estimation algorithm is programmed in 

MATLAB, for the various scenarios, such as system SIRs, fault POW, noise levels in the 

received signal, and instances on the wave. Moreover, the rare worst case scenarios are 

presented by considering up to 10 consecutive sampled values loss, coinciding with the 

fault inception. Results shows that up to 5 consecutive sampled values loss at 4800 Hz 

sampling frequency, the proposed sampled value estimation algorithm not only offers the 

reasonable accuracy, but also less computational requirements, and compatibility with 

any traditional digital relaying algorithm.  

To investigate the performance of the proposed sampled value estimation algorithm, 

Chapter 5 presented laboratory development of IEC 61850-9-2 process bus, including 

protection IEDs and merging unit simulator using industrial embedded systems over 

hard-real time platform, implementation of IEEE 1588 based time synchronization over 

the network, IEC 61850 based network traffic generator, etc. Moreover, a typical IEC 

61850-9-2 based process bus communication network is set-up using a network analyzer, 

traffic generator, and commercial Ethernet switches. The implementation of the SV 
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estimation algorithm is proposed as a part of sampled value buffer in a protection IED, 

such a way that it does not interfere with any existing protection functions. And therefore, 

it is compatible with any well established traditional digital protection functions in a 

protection IED. The impact of sampled value loss/delay on full-cycle DFT based phasor 

estimation is analyzed using MATLAB. From this behavior analysis, it is inferred that in 

some worst conditions, the operation of traditional protection elements may have adverse 

effects due to multiple SVs loss. Therefore, the SV estimation algorithm is investigated 

as a part of busbar differential protection and transmission line distance protection IEDs 

for various SV loss/delay scenarios in a laboratory environment. With the help of the 

hardware setup for IEC 61850-9-2, it is demonstrated that the busbar differential element 

in a protection IED may lose security, and it mis-operates during external fault due to SV 

loss/delay in certain conditions. Moreover, the distance relay zone-1 protection is delayed 

by 15-20 msec, due to the SV loss/delay. It is demonstrated with extensive testing that 

with the implementation of the SV estimation algorithm, the bus differential protection 

element remains secure during external fault, as well as, the line distance protection 

element operates correctly in time. It is important to note that the performance of the 

protection elements may not be affected for various other SV loss/delay scenarios. 

However, the presented investigation shows that the corrective measure for the SV 

loss/delay can certainly enhance the security and reliability of digital protection functions 

in IEC 61850-9-2 based environment. 

In addition to that, Chapter 6 starts with the reliability analysis of the practical Ethernet 

switched architectures and time synchronization techniques of the process bus. With the 

help of the reliability block diagram method, MTTFs and availability is calculated for 

process bus communications networks of a typical transmission substation layout. 

Further, the reliability block diagrams are developed for the practical Ethernet switch 

architectures, such as cascading, ring, star-ring, and redundant ring. The comparison 

among these architectures is presented in terms of MTTF and availability indices. It is 

found that the time synchronization over the network based on IEEE 1588 improves the 

reliability of the process bus, as compared to IRIG-B based external time synchronization 

architecture. The addition of merging unit with time synchronization source, the MTTF 

and availability of the bay are affected. Also, Ethernet architectures, star-ring and 
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redundant-ring provide high reliability and availability as compared to cascaded and ring 

architecture. However, these architectures are costly and complex due to the fact that it 

requires additional managed Ethernet switches. The failure rates obtained from this 

analysis can be used for the detailed Markov model analysis. 

The extended Markov model is proposed in Chapter 7, which includes the failure rates of 

process bus communication devices (λcomD) and time synchronization techniques for 

substation protection functions. Also, it includes the model of network interface 

monitoring mechanism and the estimation of lost/delayed SVs over the network. 

Sensitivity of reliability indices (protection unavailability, abnormal unavailability, loss 

of protection security) are presented considering various parameters such as,  

reconfiguration time of communication networks (µcomN), failure rate of a protection IED 

(λied), monitoring effectiveness of the protection function. From this detailed analysis, it 

can be inferred that protection reliability is affected due to addition of process bus 

communication network components, but at the same time, reliability indices can be 

improved by implementing the proposed sampled value estimation algorithm in a 

protection IED; deploying fast reconfiguration of process bus network (using RSTP); 

enhancing monitoring of communication ports to detect any failure in the communication 

link; using IEEE 1588 based time synchronization over the network. 

8.3 Recommendations for Future Research  

Some of the potential areas for further research are recommended below: 

• Development of new or enhancement of existing digital protection functions can 

be carried out using the developed IEC 61850-9-2 laboratory facilities. The 

implementation of state-of-the-art process bus lab can open up vast range of 

opportunities for new developments in this area. 

• Fault-tolerant time synchronization techniques can be studied for IEC 61850 

based substation communication networks, and developed process bus laboratory 

can also be used for this evaluation. The ongoing work in the area of IEEE 1588 
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based time synchronization is to create synchronization with at least N-1 

redundancy. 

• Optimum protection and automation functions allocation considering Logical 

Nodes (LNs) proposed by IEC 61850 can be obtained using optimization 

techniques. This work can utilize the flexibility of function allocation proposed in 

IEC 61850 standard to devise different optimum process bus architectures. 
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Appendix A Development of IEC 61850 Enabled 

Devices Using OPNET Tool 

There are some major modifications required in the standard OPNET workstation 

model to design IEDs with IEC 61850 features, i.e. priority tagging, GOOSE message 

etc. These modifications are incorporate in to the workstation model by changing source 

code of standard process modules. This appendix list out the major modification 

incorporated into mac module to achieve the desired features.  

A.1  Implementation of IEC 61850-8-1 GOOSE Message Stack in 

Protection IED 

 

Figure A-1 Ethernet_mac process model 
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The OPNET workstation mac module only receives packets from arp module. The 

following modification is incorporated into mac_ethernet_V2 module of the protection 

and control IED shown in Figure A-1, which facilitates GOOSE message reception 

directly at Ethernet layer.  

static void 
eth_mac_fdx_pkt_send (Packet* pkptr) 
 { 
 double   current_time = 0; 
 double   tx_delay = 0; 
 double   pksize = 0; 
 int   out_strm; 
 int   num_assoc_out; 
 int               tx_index; 
 Objid   out_strm_objid;  
 Packet*  tmp_pkptr; 
 
 
/* Computes delay equal to the transmission and   */ 
/* interframe gap delay and send the packet.   */ 
FIN (eth_mac_fdx_pkt_send (pkptr)); 
 
/* Set current time.      */ 
current_time = op_sim_time (); 
 
/* Compute transmission delay.     */ 
pksize = (double) op_pk_total_size_get (pkptr); 
tx_delay = pksize / ethernet_state_info_ptr->bit_rate; 
 
/* Compute the total time the next packet has to wait   */ 
/* in the queue before it is sent.     */ 
ethernet_state_info_ptr->next_transmission = current_time + tx_delay +  INTERFRAME_GAP; 
  
/* obtain the number of outgoing streams connected to the mac module. */ 
num_assoc_out = op_topo_assoc_count (my_objid,       OPC_TOPO_ASSOC_OUT, 
OPC_OBJTYPE_STRM); 
 
/* Loop through all the outgoing streams.    */ 
for (tx_index = 0; tx_index < num_assoc_out; ++tx_index) 
  { 
/* Obtain ObjectId of the outgoing stream connected to ethernet mac*/ 
out_strm_objid = op_topo_assoc (my_objid, OPC_TOPO_ASSOC_OUT, OPC_OBJTYPE_STRM, 
tx_index); 
 
/* Fetch the outgoing stream number from the stream Objid    */ 
op_ima_obj_attr_get (out_strm_objid, "src stream", &out_strm); 
 
/* Make sure that the stream is not going to higher layer.    */ 
if ((out_strm != ethernet_state_info_ptr>strm_to_higher_layer) && (out_strm != ethernet_state_info_ptr-
>strm_to_ipx)&&(out_strm != ethernet_state_info_ptr->strm_to_eth_layer)) 
   {     
  
/* Store the outstream to the transmitter.   */ 
ethernet_state_info_ptr->strm_to_lower_layer = out_strm; tmp_pkptr = op_pk_copy (pkptr); 
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op_pk_send (tmp_pkptr, out_strm); 
} 
    } 
   
op_pk_destroy (pkptr); 
 
FOUT  
 } 
 

A.2  Implementation of Priority Tagging 

The following code is added in to the FDX_Exit_exec and mac_function block module to 
support priority tagging features.  
 
FDX_Exit_exec: 

 
switch (intrpt_type) 
 { 
  case OPC_INTRPT_STRM: 
  { 
   intrpt_strm = op_intrpt_strm (); 
 
  /* If the event is an arrival from the higher */ 
  /* layer, accept the packet and enqueue it. */ 
   
if ((intrpt_strm == ethernet_state_info_ptr->strm_from_ipx) || (intrpt_strm == ethernet_state_info_ptr-
>strm_from_higher_layer)||(intrpt_strm == ethernet_state_info_ptr->strm_from_eth_layer)) 
    

{ 
if(intrpt_strm == ethernet_state_info_ptr->strm_from_eth_layer) 
           { 
   goose=1; 
   } 
ethernet_mac_llc_pk_accept (); 
   } 
  else 
   { 
   /* If the event was an arrival from the physical */ 
   /* layer, accept the packet and decapsulate it. */ 
 
  ethernet_mac_phys_pk_accept (); 
 
   } 
  break; 
   } 
 

 
mac_function block: 

 
/* Create an Ethernet frame in which to encapsulate the */ 
 /* LLC data.       */ 
 



 

 

156

156

eth_pkptr = op_pk_create_fmt ("ethernet_v2"); 
   
  if (eth_pkptr == OPC_NIL) 
   { 
ethernet_mac_error ("Unable to create Ethernet frame for encapsulation.", OPC_NIL,OPC_NIL); 
   } 
  
tag_ptr = oms_vlan_mac_pk_tagstruct_create (); 
   

if(goose==1) 
   { 
      tag_ptr->priority=user_priority_1; 
     tag_ptr->VID = vid_1; 
     goose=0; 
   } 
  else 
   { 
   tag_ptr->priority=user_priority_2; 
   } 
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Appendix B A Typical Substation Configurations 

In this appendix, a typical substation configuration used for the analysis purpose in this 

thesis is explained.  

B.1  Test System 

Figure B-1 shows a typical 345/230kV transmission substation considered for the 

analysis. This ring-bus with 1 
��  circuit-breaker configuration is selected, because this is 

one of the most common substation layouts in the North-America [35]. Moreover, 

process bus case study of this particular substation is also discussed in literature [27]. 

This way, this substation layout is more suitable for process bus analysis. However, the 

performance and reliability analysis presented in this work is independent of substation 

layout, and can be applicable to any typical substation. 

This substation has total 20 CTs and 8 VTs for the protection and control of total eight 

substation bays. Furthermore, it is considered that one merging unit can be configured 

with 8 analog signals from 2 three-phase instrument transformers (CTs/CCVTs), and also 

with one circuit breaker. Therefore, there will be need of total 14 MUs into the 

switchyard for this substation.  The assignment of primary equipment signals to the 

particular MU is illustrated in Figure B-1. This sample substation is simulated in 

PSCAD/EMTDC software, and communication network of this substation is modeled 

using OPNET. 
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Figure B-1 A typical 345kV/230kV transmission substation layout used for testing 
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B.1.1  Transmission line 

Line Model: Frequency Dependent (Phase) Model 

 

  

 

Figure B-2 Tower configuration 

Table B-1 Transmission line characteristics 

 

SEQUENCE 

RESISTANCE Rsq 

[ohm]/ 100km 

SEQUENCE 

REACTANCE Xsq 

[ohm]/100km 

SEQUENCE 

SUSCEPTANCE Bsq 

[mho]/100km 

+ Seq. 3.63 50.86 3.2712e-04 

0 Seq. 36.36 132.73 2.3227e-04 

30 [m]

10 [m]

C1

C2

C3

10 [m]

Ground_Wires: 1/2"HighStrengthSteel

Conductors: chukar

Tower: 3H5

10 [m]

0 [m]

5 [m]

G1 G2

100.0 [ohm*m]

Relative Ground Permeability:

Ground Resistivity:

1.0

Earth Return Formula: Analytical Approximation
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Appendix C IEC 61850 Message Formats Used in 

Hardware Setup 

IEC 61850 provides standardized packet formats for Ethernet, GOOSE and Sample value 

packets. Packet formats of all three types are explained in this appendix. Sample packets 

of GOOSE and Sample value capture with the help of ethereal are also included along 

with standardized packet formats.  

C.1  Ethernet Message of IEEE 802.3/IEC8802-3  

IEC 61850 provides packet format for the IEEE 802.3/IEC8802-3 protocol. Standardized 

Ethernet packet frame format is shown in Figure 3-6.  

Preamble: It is 56-bits field that contains alternating pattern of ones and zeroes, used for 

synchronization of the receiving physical layers with the incoming but stream. 

State-of-Frame:  It is the 8 bits value indicating the end of preamble of the Ethernet 

frame. 

Destination MAC Address: It is a 48-bits address that specifies the station(s), to which 

packet should be sent. 

Source MAC Address: It is a 48-bits field which contains address of the transmitting 

station. 

Length Type: Indicates either the number of MAC-client data bytes that are contained in 

the data field of the frame, or the frame type ID if the frame is assembled using an 

optional format. 

MAC Client Data: A sequence of n bytes (46=<n=<1500) of nay value. ( The total frame 

minimum is 64 bytes). The pad contains (if necessary) extra data bytes in order to bring 

the frame length up to its minimum size. A minimum Ethernet frame size is 64 bytes 

from the Destination MAC address field through the Frame Check Sequence. 
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C.1.1  Multicast address selection   

Multicast address used within IEC 61850 standard shall have the following structure: 

The first three octets are assigned by IEEE with 01-0C-CD. The fourth octet shall be 01 

for GOOSE, 02 for GSSE, and 04 for multicast sampled values. The last two octets shall 

be used as individual addresses assigned by the range defined in Table C-1. 

 

Table C-1 Recommended multicast addressing example 

Service Recommended address range assignments 

Starting address 

(hexadecimal) 

Ending address 

(hexadecimal) 

GOOSE 01-0C-CD-01-00-00 01-0C-CD-01-01-FF 

GSSE  01-0C-CD-02-00-00 01-0C-CD-02-01-FF 

Multicast  sampled values 01-0C-CD-04-00-00 01-0C-CD-04-01-FF 

 

C.1.2  Priority tagging/virtual LAN   

According to IEEE 802.1Q priority tagging is used to separate time critical and high 

priority traffic form low priority bus load. Table C-2 shows packet fields for priority 

tagging and VLAN.  Below is the explanation of those fields, and values defined by IEC 

61850. 

TPID (Tag Protocol Identifier) Field: It indicates the Ethertype assigned for 802.1Q 

Ethernet encoded frames. This value shall be 0x8100. 

TCI (Tag Control Information) Fields:  

• User Priority: It should be set by configuration to separate sampled values and 

time critical GOOSE messages from low priority load. If it is not configured then 

the default values mention in the Table C-2 should be used. 

• CFI (Canonical Format Indicator): BS1[0]; a single bit flag value. For this 

standard the CGI bit value shall be reset (value = 0) 
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• VID (VLAN Identifier): If virtual LAN mechanism is used , then the VID shall be 

set by configuration. Otherwise it shall be set to zero.  

Table C-2 Default VLAN IDs and priorities 

Service Default VID Default priority 

GOOSE 0 4 

GSE 0 1 

Sampled Values 0 4 

 

C.1.3  Ethertype, and other header information:  

GSE, GOOSE, and sampled values shall be directly mapped to the reserved Ethertypes 

and the Ethertype PDU. The assigned values shall be as defined in Table C-3. APPID 

(application identifier):  It is used to select ISO/IEC 8802-3 frames containing GSE 

Management and GOOSE messages and to distinguish the application association. 

 

Table C-3 Assigned Ethertype values for IEC 61850 standard Messages 

Use 
Ethertype value 

(hexadecimal) 
APPID type 

IEC 61850-8-1 GOOSE 88-B8 00 

IEC 61850-8-1 GSE Management 88-B9 00 

IEC 61850-9-2 Sampled Values 88-BA 01 

 

Length: Number of octets including the Ethertype PDU header starting at APPID, and the 

length of the APDU (Application Protocol Data Unit). Therefore, the value of Length 

shall be 8 + m, where m is the length of the APDU and m is less than 1492. 

C.1.4  Frame check sequence  

The Frame Check Sequence is error checking field contains 32-bits Cyclic Redundancy 

Check (CRC) field.  The CRC is generated based on the destination address, type and 

data fields. Receiving MAC recalculates the CRC to check for any damage frame.  
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C.2  SV Message Application Protocol Data Unit (APDU) 

The sampled value APDU defined by IEC61850-9-2 is shown in Figure C-1 . This APDU 

includes various fields with a specific tag. For example, start of SV is with tag 60; 

number of ASDUs (Application Specific Data Unit) within an APDU has tag 80, and so 

on. One APDU can include multiple ASDUs. ASDU includes: sampled value ID, sample 

control, revision, synchronization number, which is followed by  sequence of voltage and 

current signal data. More details on SV data field can be obtained from [13], [14]. 

 

Figure C-1 Application protocol data unit of IEC 61850-9-2 sampled value message 
 
 

C.2.1  A typical sampled value message used for hardware set-up 

Following is the description of SV message used for the laboratory set-up in this work. 

This message is captured using network analyzer as discussed in Chapter 5.  
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No.       Time            Source                         Destination                              Protocol Info 
1        0.000000   00:50:c2:4f:90:b2       01:0c:cd:04:00:00                     IECSMV SMV 9-2 
Publish 
 
Frame 1 (121 bytes on wire, 121 bytes captured) 

Arrival Time: Dec 14, 2009 12:58:20.019265000 
Time delta from previous packet: 0.000000000 seconds 
Time since reference or first frame: 0.000000000 seconds 
Frame Number: 1 
Packet Length: 121 bytes 
Capture Length: 121 bytes 
Protocols in frame: eth:iecsmv 

Ethernet II, Src: 00:50:c2:4f:90:b2 (00:50:c2:4f:90:b2), Dst: 01:0c:cd:04:00:00 
(01:0c:cd:04:00:00) 

Destination: 01:0c:cd:04:00:00 (01:0c:cd:04:00:00) 
     Address: 01:0c:cd:04:00:00 (01:0c:cd:04:00:00) 
     .... ...1 .... .... .... .... = Multicast: This is a MULTICAST frame 
     .... ..0. .... .... .... .... = Locally Administrated Address: This is a 

FACTORY DEFAULT address 
Source: 00:50:c2:4f:90:b2 (00:50:c2:4f:90:b2) 
       Address: 00:50:c2:4f:90:b2 (00:50:c2:4f:90:b2) 
       .... ...0 .... .... .... .... = Multicast: This is a UNICAST frame 
       .... ..0. .... .... .... .... = Locally Administrated Address: This is a 

FACTORY DEFAULT address 
Type: IEC 61850/SV (Sampled Value Transmission (0x88ba) 

 
IEC 61850 SMV 

AppID*: 0x4000 
PDU Length*: 107 
Reserved1*: 0x0000 
Reserved2*: 0x0000 

PDU 
        SMV 9-2 
    { 
        Number of ASDUs: 1 
        Start of ASDUs 
      { 

ASDU 
{ 

ID*:  000MU0001 
Sample Count: 461 

Config Rev*:  1 
Sample Synched*:  TRUE 
Samples { 
  Voltages and Current Data sets. 
 
                                } 
                         } 
                  } 
          } 
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C.3  GOOSE Message APDU  

Figure C-2 shows the APDU of GOOSE message. The fields of the message is explained 

below: 

 

Figure C-2 Application protocol data unit of IEC 61850-8-1 GOOSE message 
 

gocbRef: It specifies control block reference. 

timeALlowedtoLive: It provides information about the time allowed to live the….. 

dataset: This parameter contains the ObjectReference of the DATA_SET taken from the 

GOOOSE Control reference block. 

goID: This is the identifier of the LOGICAL-DEVICE ( taken from the GoCB)  in which the 

GoCB is located. 

T: The timestamp contains the time at which the attribute StNum was incremented. 

StNum: The state number parameter contains the counter that increments each time a 

value change had been detected within the DATA-SET specified by DataSET and a 

GOOSE message is sent. 
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SqNum: The sequence number parameter SqNum contains the counter that increments 

each time a GOOSE message is sent. 

Test: The test parameter indicates with the value of TRUE that the values of the message 

shall not be used for operational purpose, but only for testing. 

ConfRev: The configuration revision parameter ConfRev (taken from the GoCB) contains 

the count of the number of times that the configuration of the DATA-SET referenced by DatSet is 

changed. 

NdsCom:  The parameter needs commissioning contains the attribute NdsCom (taken 

from the GoCB) of the GoCB and is used to indicate that the GoCB requires further 

configuration. 

numDatSetEntries: 

Data: Data contains the user defined information (of the members of DATA-SET) to be 

included in a GOOSE message. The parameter Value contains the value of a member of 

the DATA-SET referenced in the GoCB 

C.3.1  A typical sampled value message used for hardware set-up 

Following is the description of GOOSE message used for the laboratory set-up in this 

work. This message is captured using network analyzer as discussed in Chapter 5. 

 

No.          Time                Source                      Destination                             Protocol Info 
5           0.325599     00:30:a7:00:12:8b      01:0c:cd:01:00:00                 IECGOOSE GOOSE 
Request 
 
Frame 5 (134 bytes on wire, 134 bytes captured) 

Arrival Time: Dec 15, 2009 10:51:48.643353000 
Time delta from previous packet: 0.325308000 seconds 
Time since reference or first frame: 0.325599000 seconds 
Frame Number: 5 
Packet Length: 134 bytes 
Capture Length: 134 bytes 
Protocols in frame: eth:iecgoose 

Ethernet II, Src: 00:30:a7:00:12:8b (00:30:a7:00:12:8b), Dst: 01:0c:cd:01:00:00 
(01:0c:cd:01:00:00) 

Destination: 01:0c:cd:01:00:00 (01:0c:cd:01:00:00) 
     Address: 01:0c:cd:01:00:00 (01:0c:cd:01:00:00) 
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     .... ...1 .... .... .... .... = Multicast: This is a MULTICAST frame 
     .... ..0. .... .... .... .... = Locally Administrated Address: This is a 

FACTORY DEFAULT address 
Source: 00:30:a7:00:12:8b (00:30:a7:00:12:8b) 
     Address: 00:30:a7:00:12:8b (00:30:a7:00:12:8b) 

              .... ...0 .... .... .... .... = Multicast: This is a UNICAST frame 
       .... ..0. .... .... .... .... = Locally Administrated Address: This is a 
FACTORY DEFAULT address 

Type: IEC 61850/GOOSE (0x88b8) 
IEC 61850 GOOSE 

AppID*: 0 
PDU Length*: 120 
Reserved1*: 0x0000 
Reserved2*: 0x0000 
PDU 

IEC GOOSE 
{ 
   Control Block Reference*: SEL_421_1CFG/LLN0$GO$DSet14 
   Time Allowed to Live (msec): 2000 
   DataSetReference*: SEL_421_1CFG/LLN0$DSet14 
  GOOSEID*: SEL_421_1 
   Event Timestamp: 2009-12-15 17:29.57.956707 Timequality: bf 
   StateNumber*:  2 
   SequenceNumber*:           Sequence Number: 64560 
  Test*: FALSE 
  Config Revision*: 1 
  Needs Commissioning*: FALSE 
  Number Dataset Entries: 2 
  Data 
{ 
   BOOLEAN: FALSE 
   BITSTRING: 

BITS 0000 - 0015: 0 0 0 0 0 0 0 0 0 0 0 0 0 
} 

       } 
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Appendix D IEEE 1588 based Time 

Synchronization for IEC 61850-9-2 

With the Precision Time Protocol (PTP) described in IEEE 1588, it is possible to 

synchronize distributed clocks with an accuracy of less than 1 microsecond via Ethernet 

networks [101], [102]. Working principle of PTP is explained in detail in this appendix. 

This appendix also includes the message formats of the main PTP messages and sample 

capture packets for these messages.  

D.1  IEEE 1588 PTP Message-Based Time Synchronization 

Precision time protocol acts based on Master to Slave mechanism.  PTP defined three 

types of clock, i.e. grand master, transparent clock, and ordinary clock. At the beginning 

of synchronization process, each clock participating in synchronization process exchange 

the identity and properties with other clocks using special message called 

“ANNOUNCE”. Once all clocks know each other’s information, master/slave hierarchy 

is created using Best Master Clock (BMC) algorithm.  BMC algorithm runs continuously 

to quickly adjust for changes in network configuration [103], [104]. Every slave clock 

synchronizes with the master clock, so that events and timestamps in all nodes uses the 

same timer values. A time difference between the master clock and a slave clock is due to 

a combination of the clock offset and message transmission delay, so process of 

synchronization is divided in to two phases; offset correction and delay correction. 

Figure D-1 shows the message exchange sequence between the master and slave clock 

during synchronization process. There are four types of message - Sync, Follow Up, 

Delay Request, Delay Response. The sequence of message exchanges is repeated at a 

certain fix rate, typically between 8 per second to 64 per second.  
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Figure D-1 PTP working principle 

 

The master node initiates offset correction using a sync and follow up message. Follow 

up message is optional. In the two step mode offset correction method, master node sends 

Sync message – with essential time information to slave node. And parallel to this 

accurate time stamp information at which message leaves the master node is send to the 

slave node in Follow-up message. While, in case of one step mode, accurate time stamp 

is inserted on-the-fly in to sync message itself by hardware. When the master node sends 

a sync message, a slave uses its local clock to timestamp (T2) the arrival of the sync 

message. The slave compares it to the actual sync transmission timestamp (T1) in the 

master clock’s follow up message/ or time stamp inserted into sync message. The slave 

clock then calculated the offset with reference to master clock using T1 and T2. In the 

initial phase, when delay is unknown factor, slave clock is corrected by the (T2 – T1) 

correction factor.  

The second phase of the synchronization process, the delay correction, calculates the 

delay between slave and master. Slave clock time stamp (T3) the Delay_req packet and 
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sends to master clock.  Then, master clock timestamps (T4)  the arrival of the Delay_req 

message. It then sends a Delay_resp message with the Delay_req arrival timestamp. From 

the local timestamp of T3 and time stamp reception provided by master clock T4, the 

slave calculates the delay between slave and master.  Because the master and slave clocks 

drift independently, periodic offset and delay correction are performed to maintain clock 

synchronization [103].  

Using this synchronization process, timing fluctuations in the PTP elements especially 

the protocol stack and the latency time between the master and slave are eliminated [76]. 

D.2  IEEE 1588 PTP Clocks  

The function of IEEE 1588 clocks are described below: 

Grand Master Clock/ Master Clock: This is the primary reference source within a PTP 

sub domain, the “ultimate source of time for clock synchronization using the PTP 

protocol” [76]. It is very high precision time source. Master clock is controlled by high 

precision time source such as GPS receiver or Atomic clock, and used to synchronize the 

slaves connected to it. 

Transparent Clock: The path delay measurement process of PTP involves the precision 

timing of two messages — a sync message and a delay request. The average path delay of 

the two messages gives the one-way delay. This however, assumes that the 

communication path is completely symmetric. This assumption does not hold in a 

switched network however, largely due to the buffering process within Ethernet switches. 

To overcome this, transparent clocks are added into the revised version of 1588 standard 

as an improved method of forming cascaded topologies. There are two types of 

transparent clocks, 1) End to End 2) Peer to Peer. Peer-to-peer transparent clocks can 

allow for faster reconfiguration after network topology changes. The end-to-end 

transparent clock forwards all messages just as a normal switch [103]. 
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Ordinary Clock: An ordinary clock is formally defined as a PTP clock with a single PTP 

port. It is generally used as the end nodes with the synchronization network. It can come 

in various forms and with different interfaces [103]. 

D.3  IEEE 1588 PTP Message Formats  

 

D.3.1  IEEE 1588 PTP EtherType and multicast addresses 

EtherType: 

The specification in this annex shall apply to all PTP implementations directly using 

Ethernet formet packets with the 88F716 Ethertype as a communication service. 

Multicast MAC addresses: 

By default PTP messages shall use MAC addresses as specified in Table D-1 .  

Table D-1 Multicast MAC addresses 

Message types Address (hex) 

All except peer delay mechanism messages 01-1B-19-00-00-00 

Peer delay mechanism messages 01-80-C2-00-00-0E 

 

 

D.3.2  IEEE 1588 PTP general header specifications 

The common header for all PTP messages is specified in Table D-2. 

Table D-2 Common message header 

Bits 
Octets Offset 

7 6 5 4 3 2 1 0 

transportSpecific messageType 1 0 

reserved versionPTP 1 1 

messageLength 2 2 

domainNumber 1 4 

reserved 1 5 

flagField 2 6 

correctionField 8 8 

Reserved 4 16 

sourcePortIdentity 10 20 

sequenceId 2 30 

controlField 1 32 

logMessageInterval 1 33 
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transportSpecific: This field may be used by a lower layer transport protocol. 

messageType: The value of messageType shall indicate the type of the message as 
defined in Table D-3  

 

Table D-3 Values of message type field 

Message Type Message class Value (hex) 

Sync Event 0 

Delay_Req Event 1 

Follow_Up General 8 

Delay_Resp General 9 

Announce General B 

 

versionPTP: The value of the versionPTP filed shall be the valur of the 

portDS.versionNumber member of the data set of the originating node.  

messageLength: The value of the messageLength shall be the total number of octets that 

form the PTP message.  

domainNumber: For ordinary clocks, the value of domain Number shall be the value of 

the defaulDS.domainNumber member of the data set of the originating ordinary clock. 

For peer-to-peer transparent clock, the value shall be the value define in standard. 

flagField: It is used to determine the circumstance in which the bad block was detected. 

correctionField: The correctionField is the value of the correction measured in 

nanoseconds and multiplied by 216. 

sourcePortIdentity: The value of the sourcePortIdentity field shall be the value of the 

portDS.portIdentity member of the data set of the port that originated this message.  

sequenceId: The value of the sequenceId field shall be assigned  by the originator of the 

message in conformance with 7.3.7 except in case of Follow_Up, Delay_Resp, 

Pdelay_resp, and Pdelay_Resp_Follow_Up and management messages.  

controlField: The value of the controlField depends on the message type defined in the 

messageType filed (Table D-3 )  and shall have the value specified in Table D-4 . 
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Table D-4 controlField enumeration 

Message Type 
controlField value 

(hex) 

Sync 00 

Delay_Req 01 

Follow_Up 02 

Delay_Resp 03 

Management 04 

All others 05 

Reserved 06-FF 

logMessageInterval: The value of the logMessageInterval field is determined by the type 

of the messages. 

 

D.3.3  IEEE 1588 PTP Sync and Delay_Req messages format 

Sync and Delay_Req message fileds are shown in Table D-5. Header field of the 

messages follow the format of the PTP common message header format explained in 

Section D.2.2. 

Table D-5 Sync and Delay_Req message fields 

Bits 
Octets Offset 

7 6 5 4 3 2 1 0 

header (see Table- D-2) 34 0 

originTimestamp 10 34 

The originTimestamp field of the Sync message shall be 0 or an estimate no worse than 

±1 s of the <syncEventEgressTimestamp>. The correctionField of the Sync message shall 

be set to 0. 

 

D.3.4  A typical Sync message used for hardware set-up 

A typical synchronizing message (Sync_msg) used in the laboratory for the 

implementation of IEEE 1588 is shown below: 

 
No. Time           Source            Destination          Protocol Info 
41 10.010524 00:0a:dc:44:39:e4    01:1b:19:00:00:00          0x88f7 
Ethernet II 
 
Frame 41 (60 bytes on wire, 60 bytes captured) 

Arrival Time: Aug 9, 2010 14:57:46.212070000 
Time delta from previous packet: 0.264402000 seconds 
Time since reference or first frame: 10.010524000 seconds 
Frame Number: 41 
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Packet Length: 60 bytes 
Capture Length: 60 bytes 
Protocols in frame: eth:data 

Ethernet II, Src: 00:0a:dc:44:39:e4 (00:0a:dc:44:39:e4), Dst: 
01:1b:19:00:00:00 (01:1b:19:00:00:00) 

Destination: 01:1b:19:00:00:00 (01:1b:19:00:00:00) 
    Address: 01:1b:19:00:00:00 (01:1b:19:00:00:00) 
    .... ...1 .... .... .... .... = Multicast: MULTICAST frame 
    .... ..0. .... .... .... .... = Locally Administrated Address: This is a FACTORY DEFAULT address 
Source: 00:0a:dc:44:39:e4 (00:0a:dc:44:39:e4) 
    Address: 00:0a:dc:44:39:e4 (00:0a:dc:44:39:e4) 
    .... ...0 .... .... .... .... = Multicast: UNICAST frame 
     .... ..0. .... .... .... .... = Locally Administrated Address: This is a FACTORY DEFAULT address 
Type: Unknown (0x88f7) 

Data (46 bytes) 
 
 

D.3.5  IEEE 1588 PTP Follow_Up message format 

Table D-6 shows the PTP Follow-up message format. Header field of the Follow_up 

message is explained in the PTP common message header format of section D.2.2. 

Table D-6 Follow_Up message fields  

Bits 
Octets Offset 

7 6 5 4 3 2 1 0 

header (see Table- D-2) 34 0 

preciseOriginTimestamp 10 34 

 

The preciseOriginTimestamp field of the Follow_Up message shall be an estimate no 

worse than ±1 s of the <syncEventEgressTimestamp> of the associated Sync message 

excluding any fractional nanoseconds. 

 

D.3.6  A typical Follow_Up message used for hardware set-up 

A typical follow-up message (Follow_UP) used in the laboratory for the implementation 

of IEEE 1588 is shown below: 

 

No.  Time         Source           Destination      Protocol Info 

38 9.011116  00:0a:dc:44:39:e4  01:1b:19:00:00:00     0x88f7 

Ethernet II 

Frame 38 (60 bytes on wire, 60 bytes captured) 

Arrival Time: Aug 9, 2010 14:57:45.212662000 

Time delta from previous packet: 0.001574000 seconds 

Time since reference or first frame: 9.011116000 seconds 
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Frame Number: 38 

Packet Length: 60 bytes 

Capture Length: 60 bytes 

Protocols in frame: eth:data 

Ethernet II, Src: 00:0a:dc:44:39:e4 (00:0a:dc:44:39:e4), Dst: 

01:1b:19:00:00:00 (01:1b:19:00:00:00) 

Destination: 01:1b:19:00:00:00 (01:1b:19:00:00:00) 

    Address: 01:1b:19:00:00:00 (01:1b:19:00:00:00) 

    .... ...1 .... .... .... .... = Multicast: MULTICAST frame 

    .... ..0. .... .... .... .... = Locally Administrated Address: This is a FACTORY DEFAULT address 

Source: 00:0a:dc:44:39:e4 (00:0a:dc:44:39:e4) 

    Address: 00:0a:dc:44:39:e4 (00:0a:dc:44:39:e4) 

    .... ...0 .... .... .... .... = Multicast: UNICAST frame 

    .... ..0. .... .... .... .... = Locally Administrated Address: This is a FACTORY DEFAULT address 

Type: Unknown (0x88f7) 

Data (46 bytes) 
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Appendix E Basics of Reliability Analysis 

Basic formulas of the reliability and availability used for reliability block diagram 

methods are explained in this appendix.   

E.1  Reliability Functions 

One of the most extensively used reliability functions is failure rate function λ (t). Failure 

rate is the measure of the rate at which failure occurs. shows the typical failure rate 

function of electronic components, which is also referred to as bathtub curve [98].  

  

Figure E-1 Typical failure rate function of SAS components 

It can be observed from the that during normal operation or useful life (region-II), the 

failure rate function remains constant. During region-I and III, failure rate is higher 

comparatively due to manufacturing errors and fatigue because of ageing respectively. 

This is true for most of the advanced power system protection devices which are based on 

electronic components. Hence, Poisson or exponential distribution is valid for the 

reliability and availability analysis of SAS components, as the failure rate remains 

constant during normal operating period (region-II) [98]. 
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For exponential distribution, reliability function R(t) will be, 

t

i
ietR

λ−=)(
         (E-1) 

Mean value for exponential distribution is designated as MTTF, 

           (E-2) 

 

Availability of a component for a given MTTRi, 

                                                        (E-3)                

   

E.2  MTTF and Availability using Reliability Block Diagram 

Reliability block diagram (RBD) shows the logical connections of functioning 

components needed to fulfill a specific system function. As shown in Figure E-2 

Reliability block diagram for simple systems RBD is consists of components with series-

parallel combinations.  

 

Figure E-2 Reliability block diagram 
 

E.2.1  MTTF and availability calculations for series components 

From the reliability point of view, the components are connected in series if they all must 

work for the successful functioning of the system or only one need to fail for the system 

failure as shown in Figure E-3 Simple series system with two components. 
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Figure E-3 Simple series system with two components 

Reliability function of the series system, 
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Hence, MTTF of the series system, 
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Availability of the series system, 
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E.2.2  MTTF and availability calculations for parallel components 

In contrast, the components are connected in parallel from the reliability point of view (as 

shown in Figure E-4 Simple parallel system with two components 

), if only once needs to be working for successful functioning of the system or all must 

fail for the system failure, 

 

 

Figure E-4 Simple parallel system with two components 

For parallel systems with two components, 
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MTTF of the parallel system, 
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Availability of the parallel system, 
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E.3  Solution Method for Markov Model 

This subsection of the appendix describes how to solve Markov model (state-transition 

diagram). First step is to obtain transition rates of the entire Markov model. Transition 

rates are mainly due to one of these conditions: failure, repair, reconfiguration, switching, 

etc. Second step is to construct a stochastic transitional probability matrix ‘T’ as 

explained in [98]. Using vector of the state probabilities ‘v’, the probabilities associated 

with individual state can be obtained as follows: 

v T = v          (E-10)                

where,  

v=[P1 P2 …Pn]; 

Pi=individual state probabilities, and i=1 to n; 

n= total number of states in Markov model; 
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pi,j = transitional probabilities. 
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