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Abstract

Variational Bayesian inference is a method to approximate the posterior distribution under

a Bayesian model analytically. As an alternative to Markov Chain Monte Carlo (MCMC)

methods, variational inference (VI) produces an analytical solution to an approximation of

the posterior but have a lower computational cost compared to MCMC methods. The main

challenge of applying VI comes from deriving the equations used to update the approxi-

mated posterior parameters iteratively, especially when dealing with complex data. In this

thesis, we apply the VI to the context of functional data clustering and survival data analy-

sis. The main objective is to develop novel VI algorithms and investigate their performance

under these complex statistical models.

In functional data analysis, clustering aims to identify underlying groups of curves without

prior group membership information. The first project in this thesis presents a novel varia-

tional Bayes (VB) algorithm for simultaneous clustering and smoothing of functional data

using a B-spline regression mixture model with random intercepts. The deviance informa-

tion criterion is employed to select the optimal number of clusters.

The second project shifts focus to survival data analysis, proposing a novel mean-field VB

algorithm to infer parameters of the log-logistic accelerated failure time (AFT) model. To

address intractable calculations, we propose and incorporate a piecewise approximation

technique into the VB algorithm, achieving Bayesian conjugacy.

The third project is motivated by invasive mechanical ventilation data from intensive care

units (ICUs) in Ontario, Canada, which form multiple clusters. We assume that patients

within the same ICU cluster are correlated. Extending the second project’s methodology, a

shared frailty log-logistic AFT model is introduced to account for intra-cluster correlation

through a cluster-specific random intercept. A novel and fast VB algorithm for model

parameter inference is presented.

Extensive simulation studies assess the performance of the proposed VB algorithms, com-
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paring them with other methods, including MCMC algorithms. Applications to real data,

such as ICU ventilation data from Ontario, illustrate the methodologies’ practical use. The

proposed VB algorithms demonstrate excellent performance in clustering functional data

and analyzing survival data, while significantly reducing computational cost compared to

MCMC methods.

Keywords: Bayesian inference, mean-field variational Bayes, functional data analysis,

mixture models, survival analysis, accelerated failure time models, log-logistic regression,

random e↵ects, ventilation duration analysis
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Summary for Lay Audience

Variational inference (VI) is a statistical technique used to estimate model parameters

within a Bayesian framework. It provides similar accuracy to the traditional Markov Chain

Monte Carlo (MCMC) method but does so more e�ciently. My research explores apply-

ing VI in two key areas: clustering time-varying data (like daily temperature changes) and

analyzing time-to-event data (such as hospital stay durations).

The first study introduces a new approach to group time-varying data into meaningful clus-

ters, helping us identify underlying patterns without prior knowledge of these groups. For

instance, this method could reveal geographical areas with similar weather patterns based

on daily temperature data. We also use an information criterion to determine the optimal

number of clusters.

The second study focuses on time-to-event (or survival time) data. We propose a new

method to analyze the impact of risk factors on the time-to-event and predict survival times.

This is particularly valuable in medical research, where understanding the lifespan of pa-

tients with specific conditions is crucial.

The third study is motivated by data on ventilation duration in intensive care units (ICUs) in

Ontario, Canada. ICU patients often share similar environments, and our method accounts

for these similarities to provide more accurate predictions of survival time (i.e., ventilation

duration).

Each project includes extensive simulation studies that demonstrate the e↵ectiveness of

our proposed methods. We also apply these methodologies to various real-world datasets.

Overall, my research aims to make advanced data analysis tools more accessible and e�-

cient, ultimately supporting better decision-making in fields like healthcare.
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1

Chapter 1
Introduction

As an important technique in statistics, Bayesian inference is widely developed and ap-

plied in a broad range of fields. The main objective of Bayesian inference is to derive the

posterior distribution of parameters under a statistical model. Specifically, Bayesian in-

ference computes the posterior density based on Bayes’ theorem, which incorporates the

prior distribution and the likelihood derived from the observed data. However, for complex

statistical Bayesian models with many parameters, obtaining a closed form of the poste-

rior distribution is usually challenging and even impossible. In such situations, the exact

posterior distribution is intractable. Therefore, the fundamental problem changes to the

approximation of the exact posterior. For decades, Markov Chain Monte Carlo (MCMC)

algorithms such as the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990)

and the Metropolis–Hastings algorithm (Hastings, Hastings) have been the dominant ap-

proximation technique to achieve this goal. As demonstrated in literature (Blei et al., 2017;

Gunapati et al., 2022; Cabral et al., 2024), MCMC-based sampling algorithms are compu-

tationally intensive, particularly when handling large datasets.

1.1 Variational inference as an alternative to MCMC

To address the high computational cost of MCMC algorithms, researchers have begun ex-

ploring alternative methods that aim to achieve comparable posterior approximations with

reduced computational demands. Variational Bayesian inference, developed from machine

learning (Jordan et al., 1999), is utilized as an alternative to MCMC methods to approxi-

mate the posterior distribution under the Bayesian framework. The critical di↵erence be-

tween the two methods is that variational Bayesian inference approximates the posterior

via optimization while MCMC methods provide a numerical approximation by sampling
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(Wainwright et al., 2008). On the one hand, as a Bayesian method, variational inference

can incorporate prior information to accurately approximate the posterior distribution. On

the other hand, many recent applications of variational Bayesian inference show that it can

provide comparable results to sampling techniques but with a lower computational cost

(Blei et al., 2017). However, the main challenge of applying variational Bayesian infer-

ence comes from deriving the set of equations used to update the posterior approximation

parameters iteratively within an algorithm for the optimization problem.

The idea of variational inference (VI) can be traced back to Peterson and Anderson (1987),

where a mean-field theory algorithm was proposed for a neural networks model. By making

connection between variational Bayesian inference and the well-known expectation maxi-

mization (EM) algorithm (Dempster et al., 1977), faster development and broader applica-

tion of variational Bayesian inference emerge in the field of machine learning (Bishop et al.,

1997; Barber and Wiegerinck, 1998; Barber and de van Laar, 1999). Following Wainwright

et al. (2008), Blei et al. (2017) provide a comprehensive review of VI for statisticians, in-

cluding but not limited to the statistical motivations behind VI, particularly VI under the

exponential family models, the coordinate ascent mean-field VI and comparison to MCMC.

Blei et al. (2017) also present a complete example of applying VI to the Bayesian mixture

of Gaussians to help understand the methodology of variational Bayesian inference. More

recently, Lee (2022) provides a theoretical review and comparison of the Gibbs sampler

and coordinate ascent variational inference (CAVI). The CAVI is a commonly utilized vari-

ational Bayesian inference method in which the solution to the optimization problem is

obtained via the coordinate ascent algorithm. Such an interesting connection between the

two essential techniques provides a complementary illustration for Bayesian approximation

inference with practical implications.
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1.2 Mean-field variational Bayes and the CAVI algorithm

Based on Blei et al. (2017), we present the idea of the most commonly used type of varia-

tional Bayesian inference, the mean-field variational Bayes (VB) and the CAVI algorithm

to obtain the approximated posterior distribution. Let ✓ 2 ⇥ be the parameter vector in the

Bayesian model and the observed data be y. The idea of VB is to find a variational den-

sity, denoted by q⇤(✓) coming from a family of possible densities Q, to approximate p(✓|y),

which can be solved in terms of an optimization problem formed by the Kullback–Leibler

(KL) divergence (Kullback and Leibler, 1951) as a minimization criterion. The KL diver-

gence measures the closeness between the possible densities q in the family Q and the exact

posterior density p. The optimization problem can be expressed as

q⇤(✓) = argmin
q2Q

KL(q(✓)kp(✓|y)). (1.1)

Jordan et al. (1999) and Blei et al. (2017) show that minimizing the KL divergence is

equivalent to maximizing the so-called evidence lower bound (ELBO) defined as

ELBO(q) = Eq log p(✓, y) � Eq log q(✓),

where log p(✓, y) is called the complete-data log-likelihood.

Maximizing the ELBO corresponding to a sophisticated variational family can be quite

challenging. However, when we consider the mean-field variational family denoted by Q,

where the sets of parameters and latent variables are assumed to be mutually independent,

and each of them is governed by a distinct factor in the variational density, the optimization

problem then changes to

q⇤(✓) = argmax
q2Q

ELBO(q(✓)) = argmax
q2Q

ELBO
⇣ KY

k=1

qk(✓k)
⌘
, (1.2)
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where we assume there are K sets of parameters and latent variables, ✓ = {✓1, ..., ✓K}.

In what follows, we introduce the coordinate ascent algorithm under the mean-field VB

(Bishop, 2006; Blei, 2011), namely the CAVI algorithm, which makes the variational

Bayesian inference a popular alternative to MCMC methods. As in Equation (1.2), we

aim to maximize the objective function, the ELBO, to find an optimal q(✓) to approximate

the exact posterior. First, we decompose the ELBO

ELBO := L = log p(y) +
KX

k=1

⇢
Eq[log p(✓k|✓1:(k�1), y)] � Eqk[log q(✓k)]

�
, (1.3)

using the following facts of chain rule and mean-field assumption, respectively,

p(✓, y) = p(y)
KY

k=1

p(✓k|✓1:(k�1), y) and Eq[log p(✓)] =
KX

k=1

Eqk[log q(✓k)].

In the next step, we write the ELBO as a function of q(✓k) so that we can find the update

equation for each variational component q(✓k) to maximize the ELBO. To achieve this,

we first consider the variable ✓k as the last variable in the list {✓1, ..., ✓K}, and rewrite the

objective function in Equation (1.3) as follows:

L = Eq[log p(✓k|✓�k, y)] � Eqk[log q(✓k)] + constant, (1.4)

where the term constant is a fixed value with respect to ✓k. Therefore, we have the the

objective function as a function of q(✓k), denoted by Lk:

Lk =

Z
q(✓k)E�k log p(✓k|✓�k, y)d✓k �

Z
q(✓k) log(q(✓k))d✓k. (1.5)

We now take the derivative of Lk with respect to q(✓k) and obtain the coordinate ascent
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update equation for q(✓k), denoted by q⇤(✓k),

q⇤(✓k) / E�k[log p(✓k|✓�k, y)] / E�k[log p(✓, y)], (1.6)

where E�k means that the expectation is taken with respect to the variational density of all

other parameters and latent variables except the one of interest.

There may be challenges when applying the mean-field variational inference using the

CAVI algorithm. First, when the observed data is complicated, the closed form of the up-

date equations in the CAVI algorithm may not be available. The complexity of the observed

data can come from a complex distribution (e.g., outside the exponential family) or have a

specific data scheme (e.g., censoring). In these situations, the complete-data log-likelihood

may not have a closed form, or the expectation over the complete-data log-likelihood is

challenging to compute. As a result, some update equations are intractable, and the model

is non-conjugate. Implementing tractable variational Bayes for non-conjugate models can

be found in Khan et al. (2012); Seeger and Bouchard (2012); Wang and Blei (2013); Wand

(2014); Khan and Lin (2017); Galy-Fajou et al. (2020).

1.3 Thesis contributions

Consisting of three papers, this thesis aims to explore the performance of variational Bayesian

inference under the context of functional data clustering and survival data analysis by de-

veloping novel and fast variational inference algorithms.

Current research in functional data clustering focuses mainly on two-stage models, or the

inference in model-based clustering is conducted via the EM or MCMC algorithms. Our

objective in the first project is to introduce variational Bayesian inference into functional

data analysis and provide a new methodology for smoothing and clustering functional data

simultaneously. We propose a B-spline regression mixture model and develop a two-fold
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scheme to select the optimal number of clusters using the deviance information criterion.

The proposed variational inference algorithm is evaluated and compared with other meth-

ods (k-means, functional k-means and two other model-based methods) via simulation stud-

ies with various scenarios. We compare the posterior estimation results from our proposed

algorithm with the ones from MCMC. We apply our proposed methodology to two pub-

licly available datasets: the Growth data (Tuddenham and Snyder, 1954) and the Canadian

weather data (Ramsay and Silverman, 2005). We demonstrate that the proposed VB algo-

rithm achieves satisfactory clustering performance in both simulation and real data analy-

ses.

As an alternative to the Cox proportional hazard model, the accelerated failure time (AFT)

model also plays an essential role in survival regression analysis. To the best of our knowl-

edge, there was no research or related work on variational Bayesian inference under the

AFT model setting. There are several challenges in applying VB in this context. First, the

distribution of the survival data is usually right-skewed and may not belong to the exponen-

tial family, making it di�cult and intractable to compute the expectation of complete-data

log-likelihood over the variational density. Second, survival data have special data schemes,

such as censoring, under the context of data incompleteness. Third, the survival data may

come from multiple research centers, so that the subjects within the same cluster are no

longer independent.

Therefore, our objective for the second and third projects is to fill the gap of variational

Bayesian inference in the AFT survival regression analysis while addressing some of these

challenges. More specifically, in the second project, we propose a novel VB algorithm

to infer parameters of the log-logistic AFT model. To address intractable calculations, a

piecewise approximation technique is integrated into the VB algorithm to achieve Bayesian

conjugacy. The proposed VB algorithm is evaluated and compared with frequentist and

MCMC techniques using simulated data under various scenarios. A publicly available
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dataset, rhDNASE data (Fuchs et al., 1994; Therneau and Hamilton, 1997), is employed

for illustration. The third project is motivated by invasive mechanical ventilation data from

di↵erent intensive care units (ICUs) in Ontario, Canada, forming multiple clusters. The

survival times from patients within the same ICU cluster are correlated. To address this

association, we introduce a shared frailty log-logistic accelerated failure time model to

account for the intra-cluster correlation through a cluster-specific random intercept. We

present a novel, fast VB algorithm for parameter inference and evaluate its performance

using simulation studies varying the number of clusters and their sizes. We further compare

the performance of our proposed VB algorithm with the h-likelihood (Do Ha et al., 2002)

method and the MCMC algorithm.

1.4 Thesis organization

The remainder of this thesis is organized as follows. In Chapter 21, we present the manuscript

resulting from our first project applying VI to functional data clustering. In Chapter 32, we

present the manuscript resulted from our second project, where we proposed a novel al-

gorithm to infer parameters of the log-logistic AFT model. Chapter 43 presents the paper

corresponding to the analysis of Ontario ICU data via a shared frailty log-logistic AFT

model. A summary of research findings and future work is provided in Chapter 5.

1Chapter 2 has been published in Advances in Data Analysis and Classification (Xian et al., 2024)
2Chapter 3 has been published in Statistics and Computing (Xian et al., 2024)
3Chapter 4 has been submitted for peer review
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Chapter 2
Clustering functional data via variational infer-

ence

2.1 Introduction

Functional data analysis (FDA) 1, term first coined by Ramsay and Dalzell (1991), deals

with the analysis of data that are defined on some continuum such as time. Theoreti-

cally, data are in the form of functions, but in practice they are observed as a series of

discrete points representing an underlying curve. Ramsay and Silverman (2005) establish

a foundation for FDA on topics including smoothing functional data, functional principal

components analysis and functional linear models. Ramsay et al. (2009) provide a guide

for analyzing functional data in R and Matlab using publicly available datasets. Wang

et al. (2016) present a comprehensive review of FDA, in which clustering and classification

methods for functional data are also discussed. Functional data analysis has been applied

to various research areas such as energy consumption (Lenzi et al., 2017; De Souza et al.,

2017; Franco et al., 2023), rainfall data visualization (Hael et al., 2020), income distribution

(Hu et al., 2020), spectroscopy (Dias et al., 2015; Yang et al., 2021; Frizzarin et al., 2021),

and Covid-19 pandemic (Boschi et al., 2021; Sousa et al., 2023; Collazos et al., 2023), to

mention a few.

Cluster analysis of functional data aims to determine underlying groups in a set of ob-

served curves when there is no information on the group label of each curve. As described

in Jacques and Preda (2014), there are three main types of methods used for functional data

clustering: dimension reduction-based (or filtering) methods, distance-based methods, and

1A version of this chapter has been published in Advances in Data Analysis and Classification (Xian et al.,
2024).
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model-based methods. Functional data generally belongs to the infinite-dimensional space,

making those clustering methods for finite-dimensional data ine↵ective. Therefore, dimen-

sion reduction-based methods have been proposed to solve this problem. Before clustering,

a dimension reduction step (also called filtering in James and Sugar, 2003) is carried out

by the techniques including spline basis function expansion (Tarpey and Kinateder, 2003)

and functional principal component analysis (Jones and Rice, 1992). Clustering is then

performed using the basis expansion coe�cients or the principal component scores, result-

ing in a two-stage clustering procedure. Distance-based methods are the most well-known

and popular approaches for clustering functional data since no parametric assumptions are

necessary for these algorithms. Nonparametric clustering techniques, including k-means

clustering (Hartigan and Wong, 1979) and hierarchical clustering (Ward, 1963), are usually

applied using specific distances or dissimilarities between curves (Delaigle et al., 2019;

Martino et al., 2019; Zambom et al., 2019; Li and Ma, 2020). It is important to note that

distance-based methods are sometimes equivalent to dimension reduction-based methods

if, for example, distances are computed using the basis expansion coe�cients. Another

widely-used approach is model-based clustering, where functional data are assumed to

arise from a mixture of underlying probability distributions. For example, in Bayesian hi-

erarchical clustering, a common methodology is to assume that the set of coe�cients in

the basis expansion representing functional data follow a mixture of Gaussian distributions

(Wang et al., 2016).

Chamroukhi and Nguyen (2019) recently provided a comprehensive review for model-

based clustering of functional data. A common model-based approach is to represent func-

tional data as a linear combination of basis functions (e.g., B-splines) and consider a finite

regression mixture model (Grün, 2019) with the matrix of basis function evaluations as

the design matrix and a set of basis expansion coe�cients for each mixture component.

The estimation and inference of the mixture parameters as well as the regression (or basis

expansion) coe�cients are usually conducted via the Expectation-Maximization (EM) al-
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gorithm (Samé et al., 2011; Jacques and Preda, 2013; Giacofci et al., 2013; Chamroukhi,

2016a; Grün, 2019) or Markov Chain Monte Carlo (MCMC) sampling techniques (Ray

and Mallick, 2006; Fruhwirth-Schnatter et al., 2019). An alternative approach to EM and

MCMC is the use of variational inference techniques.

Bayesian variational inference has found versatile applications within the field of FDA.

Variational Bayes for fast approximate inference was applied in functional regression anal-

ysis by Goldsmith et al. (2011). Beyond functional regression, another pivotal facet of FDA

lies in functional data registration, with a growing interest in the joint clustering and reg-

istration of functional data (Zhang and Telesca, 2014). A novel adapted variational Bayes

algorithm for smoothing and registration of functional data simultaneously via Gaussian

processes was proposed by Earls and Hooker (2017). Nguyen and Gelfand (2011) consid-

ered a random allocation process, namely the Dirichlet labelling process, to cluster func-

tional data and inferred model parameters by Gibbs sampling and variational Bayes. In a

recent development, Rigon (2023) extended the work of Blei and Jordan (2006) and pro-

posed an enriched Dirichlet mixture model for functional clustering via a variational Bayes

algorithm. Rigon (2023) considered a Bayesian functional mixture model without random

e↵ects and introduced a functional Dirichlet multinomial process to allow the estimation of

the number of clusters.

In this chapter, we develop a novel variational Bayes algorithm for clustering functional

data via a regression mixture model. In contrast to Rigon (2023), we consider a regression

mixture model with random intercepts and take on a two-fold scheme for choosing the best

number of clusters using the deviance information criterion (Spiegelhalter et al., 2002). We

model the raw data, simultaneously obtaining clustering assignments and cluster-specific

smooth mean curves. We compare the posterior estimation results from our proposed VB

with the ones from MCMC. Our proposed method is implemented in R, and codes are

available at https://github.com/chengqianxian/funclustVI.

https://github.com/chengqianxian/funclustVI
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The remainder of this chapter is organized as follows. Section 2.2 presents our two model

settings and proposed algorithms. In Section 2.3, we conduct simulation studies to assess

the performance of our methods under various scenarios. In Section 2.4, we apply our

proposed methodology to real datasets. A conclusion of our study and a discussion on the

proposed method are provided in Section 2.5.

2.2 Methodology

2.2.1 Overview of variational inference

Variational inference (VI) is a method from machine learning that approximates the pos-

terior density in a Bayesian model through optimization (Jordan et al., 1999; Wainwright

et al., 2008). Blei et al. (2017) provide an interesting review of VI from a statistical per-

spective, including some guidance on when to use MCMC or VI. For example, one may

apply VI to large datasets and scenarios where the interest is to develop probabilistic mod-

els. In contrast, one may apply MCMC to small datasets for more precise samples but

with a higher computational cost. In Bayesian inference, our goal is to find the posterior

density, denoted by p(·|y), where y corresponds to the observed data. One can apply Bayes’

theorem to find the posterior, but this might not be easy if there are many parameters and

non-conjugate prior distributions. Therefore, one can aim to find an approximation to the

posterior. To be specific, one wants to find q⇤ coming from a family of possible densities

Q to approximate p(·|y), which can be solved in terms of an optimization problem with

criterion f as follows:

q⇤ = argmin
q2Q

f (q(·), p(·|y)).

The criterion f measures the closeness between the possible densities q in the family Q

and the exact posterior density p. When we consider the Kullback-Leibler (KL) divergence
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(Kullback and Leibler, 1951) as criterion f , i.e.,

q⇤ = argmin
q2Q

KL(q(·)kp(·|y)), (2.1)

this optimization-based technique to approximate the posterior density is called Variational

Bayes (VB). Jordan et al. (1999) and Blei et al. (2017) show that minimizing the KL diver-

gence is equivalent to maximizing the so-called evidence lower bound (ELBO). Let ✓ be a

set of latent model variables, the KL divergence is defined as

KL(q(·)kp(·|y)) :=
Z

q(✓) log
q(✓)

p(✓|y)
d✓,

and it can be shown that

Z
q(✓) log

q(✓)
p(✓|y)

d✓ = log p(y) �
Z

q(✓) log
p(✓, y)
q(✓)

d✓,

where the last term is the ELBO. Since log p(y) is a constant with respect to q(✓), this

changes the problem in (2.1) to

q⇤ = argmax
q2Q

ELBO(q). (2.2)

We, therefore, derive a VB algorithm for clustering functional data. We consider the mean-

field variational family in which the latent variables are mutually independent, and a distinct

factor governs each of them in the variational density. Finally, we apply the coordinate

ascent variational inference algorithm (Bishop, 2006) to solve the optimization problem in

(2.2).
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2.2.2 Assumptions and model settings

Let Yi, {i = 1, . . . ,N}, denote the observed data from N curves, and for each curve i there

are ni evaluation points, ti1, ..., tini , so that Yi = (Yi(ti1), . . . ,Yi(tini))T . Let Zi be a hidden

variable taking values in {1, . . . ,K} that determines which cluster Yi belongs to. We assume

Z1, . . . ,ZN are independent and identically distributed with P(Zi = k) = ⇡k, k = 1, ...,K,

and
PK

k=1 ⇡k = 1. For the ith curve from cluster k, there is a smooth function fk evaluated

at ti = (ti1, ..., tini)T so that fk(ti) = ( fk(ti1), . . . , fk(tini))T . Given that Zi = k, we consider

two di↵erent models for Yi based on the correlation structure of the errors. In Model 1,

described in Section 2.2.2.1, we assume independent errors, and in Model 2, described in

Section 2.2.2.2, we add a random intercept to induce a correlation between observations

within each curve.

2.2.2.1 Model 1

Let us assume that

Yi | (Zi = k) = fk(ti) + �k✏i, (2.3)

with conditionally independent errors ✏1, ..., ✏N ,where ✏ i = (✏i1, ..., ✏ini) and ✏i ⇠ MVN(0, Ini), i =

1, ...,N, where Ini is an identity matrix of size ni and MVN represents the multivariate nor-

mal distribution. The functions f1, . . . , fK can be written as a linear combination of M

known B-spline basis functions, that is, fk(ti j) =
PM

m=1 Bm(ti j)�km, j = 1, ..., ni, such that

fk(ti) = Bi(ni⇥M)�k(M⇥1), i = 1, ...,N, k = 1, ...,K, Bi is an ni ⇥ M matrix for the ith curve

whose each entry ( j,m) is the mth basis function evaluated at ti j, Bm(ti j), and �k is the basis

coe�cient vector for cluster k. Therefore,

Yi | (Zi = k) ⇠ MVN(Bi�k,�
2
kIni), i = 1, ...,N, k = 1, ...,K.
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The proposed model is within the framework of a mixture of linear models, also known as

the finite regression mixture model (Chamroukhi and Nguyen, 2019). The finite regression

mixture model o↵ers a statistical framework for characterizing complex data from various

unknown classes of conditional probability distributions (Peel and MacLahlan, 2000; Mel-

nykov and Maitra, 2010; Chamroukhi, 2016a; Grün, 2019; Fruhwirth-Schnatter et al., 2019;

McLachlan et al., 2019; Rigon, 2023). In our model, we specifically consider Gaussian re-

gression mixtures to deal with functional data that originate from a finite number of groups

and are represented through a linear combination of B-spline basis functions plus some

Gaussian random noise (Chamroukhi, 2016b). Our model aligns with the classical finite

Gaussian regression mixture model of order K, which can be expressed as follows:

f (Yi|Bi;�1, ...,�K ,�
2
1, ...,�

2
K) =

KX

k=1

⇡k g(Yi; Bi�k,�
2
kIni),

where g is the density function of a MVN(Bi�k,�
2
kIni).

In our proposed models, we employ B-spline basis functions to represent and smooth func-

tional data. However, it is worth noting that alternative basis systems, such as the Fourier

bases, wavelets, and polynomial bases can also be considered for this purpose (Ramsay

and Silverman, 2005). As discussed in Chamroukhi and Nguyen (2019), the B-spline basis

system o↵ers greater flexibility, allowing researchers to tailor their choice of B-spline order

and the number of knots to suit their specific needs. For smoothing functional data, cubic

B-splines, corresponding to an order of four, are su�cient and can provide satisfactory per-

formance (Chamroukhi and Nguyen, 2019). As in previous studies of functional data, we

use cubic B-splines with equally spaced knots and assume that the number of basis func-

tions M is predefined and known (Dias et al., 2009, 2015; Lenzi et al., 2017; Franco et al.,

2023).

Let Z = (Z1, . . . ,ZN)T , � = {�1, . . . ,�K}, ⇡ = (⇡1, . . . , ⇡K)T and ⌧ = (⌧1, . . . , ⌧K)T , where

⌧k = 1/�2
k is the precision parameter. We take on a Bayesian approach to infer Z, �, ⇡ and
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⌧, and assume the following marginal prior distributions for parameters in Model 1:

• ⇡ ⇠ Dirichlet(d0) where d0 is the parameter vector for a Dirichlet distribution;

• Zi|⇡ ⇠ Categorical(⇡);

• �k ⇠ MVN(m0
k , s

0I) with precision v0 = 1/s0 and I an M ⇥ M identity matrix;

• ⌧k = 1/�2
k ⇠ Gamma(a0, r0), k = 1, ...,K.

We develop a novel VB algorithm which, for given data, approximates the posterior dis-

tribution by finding the variational distribution (VD), q(Z,⇡,�, ⌧), with smallest KL di-

vergence to the posterior distribution p(Z,⇡,�, ⌧|Y). Minimizing the KL divergence is

equivalent to maximizing the ELBO given by

ELBO(q) = E
⇥
log p(Y,Z,⇡,�, ⌧)

⇤ � E⇥ log q(Z,⇡,�, ⌧)
⇤
. (2.4)

where log p(Y,Z,⇡,�, ⌧) is the complete data log-likelihood.

2.2.2.2 Model 2

We extend Model 1 by adding a curve-specific random intercept ai which induces correla-

tion among observations within each curve. The model now becomes:

Yi j | (Zi = k) = ai + fk(ti j) + �k✏i j, (2.5)

where ✏i j ⇠ N(0, 1) and ai ⇠ N(0,�2
a) with ai and ✏i j independent for all i and j. We can

write Model 2 in a vector form as

Yi | (Zi = k) = ai1ni + fk(ti) + �k✏i, i = 1, 2, ...,N,

in which 1ni is a column vector of length ni with all elements equal to 1, and further as-

sume that ✏i ⇠ MVN(0, Ini) and ai ⇠ N(0,�2
a). This model can be rewritten as a two-step
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model:

Yi | (Zi = k, ai) ⇠ MVN(Bi�k + ai1ni ,�
2
kIni),

and ai ⇠ N(0,�2
a), i = 1, 2, ...,N. Let a = (a1, . . . , aN)T and ⌧a = 1/�2

a. We assume the

following marginal prior distributions for parameters in Model 2:

• ⇡ ⇠ Dirichlet(d0);

• Zi|⇡ ⇠ Categorical(⇡);

• �k ⇠ MVN(m0
k , s

0I) with precision v0 = 1/s0;

• ⌧k = 1/�2
k ⇠ Gamma(b0, r0), k = 1, ...,K;

• ⌧a = 1/�2
a ⇠ Gamma(↵0, �0);

• ai|⌧a ⇠ N(0,�2
a) with ⌧a = 1/�2

a.

As in Model 1, we develop a VB algorithm to infer Z, �, ⇡, ⌧, a and ⌧a. The ELBO under

Model 2 is given by

ELBO(q) = Eq⇤
⇥
log p(Y,Z,⇡,�, ⌧, a, ⌧a)

⇤ � Eq⇤
⇥
log q(Z,⇡,�, ⌧, a, ⌧a)

⇤
. (2.6)

2.2.3 Steps of the VB algorithm

This section describes the main steps of the VB algorithm under Model 2 for inferring Z,

�, ⇡, ⌧, a and ⌧a. The proposed VB is summarized in Algorithm 1. The VB algorithm’s

main steps and the ELBO calculation for Model 1 can be found in Appendix A.

First, we assume that the variational distribution belongs to the mean-field variational fam-

ily, where Z, �, ⇡ ⌧, a and ⌧a are mutually independent and each governed by a distinct
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factor in the variational density, that is:

q(Z,⇡,�, ⌧, a, ⌧a) =
NY

i=1

q(Zi) ⇥
KY

k=1

q(�k) ⇥
KY

k=1

q(⌧k)

⇥q(⇡) ⇥
NY

i=1

q(ai) ⇥ q(⌧a). (2.7)

We then derive a coordinate ascent algorithm to obtain the VD (Jordan et al., 1999; Blei

et al., 2017). That is, we derive an update equation for each term in the factorization

(2.7) by calculating the expectation of log p(Y,Z,⇡,�, ⌧, a, ⌧a) (the joint distribution of

the observed data Y, hidden variables Z and parameters ⇡,�, ⌧, a, ⌧a, which is also called

complete-data log-likelihood) over the VD of all random variables except the one of inter-

est, where

log p(Y,Z,⇡,�, ⌧, a, ⌧a) = log p(Y|Z,�, ⌧, a) + log p(Z|⇡) +

log p(�) + log p(⌧) + log p(⇡) +

log p(a|⌧a) + log p(⌧a). (2.8)

So, for example, the optimal update equation for q(⇡), q⇤(⇡), is given by calculating

log q⇤(⇡) = E�⇡
�

log p(Y,Z,⇡,�, ⌧, a, ⌧a)
�
+ constant,

where �⇡ indicates that the expectation is taken with respect to the VD of all other latent

variables but ⇡, i.e., Z,�, ⌧, a and ⌧a. In what follows we derive the update equation

for each component in our model. For convenience, we use
+⇡ to denote equality up to a

constant additive factor.

2.2.3.1 VB update equations

i) Update equation for q(⇡)
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Since only the second term, log p(Z|⇡), and the fifth term, log p(⇡), in (2.8) depend on ⇡,

the update equation q⇤(⇡) can be derived as follows.

log q⇤(⇡)
+⇡ E�⇡

�
log p(Y,Z,⇡,�, ⌧, a, ⌧a)

�

+⇡ E�⇡
�

log p(Z|⇡)� + E�⇡
�

log p(⇡)
�

= E�⇡
h NX

i=1

KX

k=1

I(Zi = k) log ⇡k

i
+ log p(⇡)

+⇡
KX

k=1

log ⇡k

h NX

i=1

Eq⇤(Zi)
�
I(Zi = k)

�i
+

KX

k=1

[d0
k � 1] log ⇡k

=

KX

k=1

log ⇡k

h⇣ NX

i=1

Eq⇤(Zi)
�
I(Zi = k)

�
+ d0

k

⌘
� 1

i
.

Therefore, q⇤(⇡) is a Dirichlet distribution with parameters d⇤ = (d⇤1, . . . , d
⇤
K), where

d⇤k = d0
k +

NX

i=1

Eq⇤(Zi)
�
I(Zi = k)

�
. (2.9)

ii) Update equation for q(Zi)

log q⇤(Zi)
+⇡ E�Zi

�
log p(Y,Z,⇡,�, ⌧, a, ⌧a)

�

+⇡ E�Zi

�
log p(Y|Z,�, ⌧, a)

�
+ E�Zi

�
log p(Z|⇡)�. (2.10)

Note that we can write log p(Y|Z,�, ⌧, a) and log p(Z|⇡) into two parts, one that depends

on Zi and one that does not, that is:

log p(Y|Z,�, ⌧, a) =
KX

k=1

I(Zi = k) log p(Yi|Zi = k,�k, ⌧k, ai)

+
X

l:l,i

KX

k=1

I(Zl = k) log p(Yl|Zl = k,�k, ⌧k, al),
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log p(Z|⇡) =
KX

k=1

I(Zi = k) log ⇡k +
X

l:l,i

KX

k=1

I(Zl = k) log ⇡k.

Now when taking the expectation in (2.10), the parts that do not depend on Zi in log p(Y|Z,�, ⌧, a)

and log p(Z|⇡) will be added as a constant in the expectation. So, we obtain

log q⇤(Zi)
+⇡

KX

k=1

I(Zi = k)
nni

2
Eq⇤(⌧k)(log ⌧k)

�1
2
Eq⇤(⌧k)(⌧k)Eq⇤(�k)·q⇤(ai)

⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤

+Eq⇤(⇡)(log ⇡k)
o
.

Therefore, q⇤(Zi) is a categorical distribution with parameters

p⇤ik =
e↵ik

PK
k=1 e↵ik

, (2.11)

where

↵ik =
ni

2
Eq⇤(⌧k)(log ⌧k)

�1
2
Eq⇤(⌧k)(⌧k)Eq⇤(�k)q⇤(ai)

⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤

+Eq⇤(⇡)(log ⇡k).

iii) Update equation for q(�k)

Only the first term, log p(Y|Z,�, ⌧, a), and the third term, log p(�), in (2.8) depend on �k.

In addition, similarly to the previous case for q⇤(Zi), we can write log p(Y|Z,�, ⌧, a) and

log p(�) in two parts, one that depends on �k and the other that does not. Therefore, we

obtain
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log q⇤(�k)
+⇡ E��k

�
log p(Y|Z,�, ⌧, a)

�
+ E��k

log p(�)

+⇡ Eq⇤(⌧k)(log ⌧k)
NX

i=1

ni

2
Eq⇤(Zi)[I(Zi = k)]

� 1
2
Eq⇤(⌧k)(⌧k)

NX

i=1

n
Eq⇤(Zi)[I(Zi = k)]

⇥Eq⇤(ai)[(Yi � Bi�k � ai1ni)
T (Yi � Bi�k � ai1ni)]

o
(2.12)

+
M
2

log v0 � 1
2

v0(�k �m0
k)T (�k �m0

k). (2.13)

All expectations are defined in Section 2.2.3.2, but note that, for example, Eq⇤(Zi)[I(Zi =

k)] = p⇤ik and

Eq⇤(ai)[(Yi � Bi�k � ai1ni)
T (Yi � Bi�k � ai1ni)]

+⇡ (Yi � Bi�k � µ⇤ai
1ni)

T (Yi � Bi�k � µ⇤ai
1ni),

where µ⇤ai
is the posterior mean of q⇤(ai) which is derived later. We focus on the quadratic

forms that appear in (2.12) and (2.13). Let Y⇤i = Yi � µ⇤ai
1ni , we can write:

log q⇤(�k)
+⇡ �1

2
Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ik(Y⇤i � Bi�k)
T (Y⇤i � Bi�k) �

1
2

v0(�k �m0
k)T (�k �m0

k)

= � 1
2
Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ik
⇥
Y⇤Ti Y⇤i � 2Y⇤Ti Bi�k + �

T
k BT

i Bi�k
⇤

�1
2

v0⇥�T
k �k � 2(m0

k)T�k + (m0
k)T m0

k
⇤

+⇡ �1
2
�T

k

h
v0I + Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ikBT
i Bi

i
�k

+
h
v0(m0

k)T + Eq⇤(⌧k)(⌧k)
NX

i=1

p⇤ikY⇤Ti Bi

i
�k. (2.14)
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Now let

⌃⇤k =
h
v0I + Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ikBT
i Bi

i�1
. (2.15)

We can then rewrite (2.14) as

�1
2
�T

k⌃
⇤�1
k �k �

1
2

(�2)
h
v0(m0

k)T + Eq⇤(⌧k)(⌧k)
NX

i=1

p⇤ikY⇤Ti Bi

i
⌃⇤k⌃

⇤�1
k �k.

Therefore, q⇤(�k) is MVN(m⇤k,⌃⇤k) with ⌃⇤k as in (2.15) and mean vector

m⇤k =
⇥
v0(m0

k)T + Eq⇤(⌧k)(⌧k)
NX

i=1

p⇤ikY⇤Ti Bi
⇤
⌃⇤k. (2.16)

iv) Update equation for q(⌧k)

Similarly to the calculations in iii) we can write

log q⇤(⌧k)
+⇡ log ⌧k

NX

i=1

ni

2
p⇤ik

�1
2
⌧k

NX

i=1

p⇤ikEq⇤(�k)·q⇤(ai)
⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤

+ (b0 � 1) log ⌧k � r0⌧k.

Therefore, q⇤(⌧k) is a Gamma distribution with parameters

A⇤k = b0 +

NX

i=1

ni

2
p⇤ik, (2.17)

and

R⇤k = r0 +
1
2

NX

i=1

n
p⇤ik ⇥ Eq⇤(�k)·q⇤(ai)

⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤o
. (2.18)
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v) Update equation for q(ai)

log q⇤(ai)
+⇡ E�ai

�
log p(Y,Z,⇡,�, ⌧, a, ⌧a)

�

+⇡ E�ai

�
log p(Y|Z,�, ⌧, a)

�
+ E�ai

�
log p(a|⌧a)

�

+⇡ E�ai

⇥ KX

k=1

I(Zi = k) log p(Yi|Zi = k,�k, ⌧k, ai)
⇤
+ E�ai

⇥ KX

k=1

I(Zi = k) log p(ai|⌧a)
⇤

+⇡
KX

k=1

p⇤ik
�ni

2
Eq⇤(⌧k) log ⌧k

�1
2
Eq⇤(⌧k)⌧kEq⇤(�k)

⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤

�1
2

a2
i Eq⇤(⌧a)⌧a

 

+⇡
KX

k=1

p⇤ik
� � 1

2
Eq⇤(⌧k)⌧k

⇥
(Yi � Bim⇤k � ai1ni)

T (Yi � Bim⇤k � ai1ni)
⇤ � 1

2
a2

i Eq⇤(⌧a)⌧a
 
.

Let Y⇤ik = Yi � Bim⇤k, then

log q⇤(ai)
+⇡

KX

k=1

p⇤ik
� � 1

2
Eq⇤(⌧k)⌧k

⇥
(Y⇤ik � ai1ni)

T (Y⇤ik � ai1ni)
⇤ � 1

2
a2

i Eq⇤(⌧a)⌧a
 

+⇡ �ni

2
a2

i

KX

k=1

p⇤ikEq⇤(⌧k)⌧k + ai

KX

k=1

p⇤ikEq⇤(⌧k)⌧k1T
ni

Y⇤ik �
1
2

a2
i Eq⇤(⌧a)⌧a

= �1
2

a2
i
⇥
ni

KX

k=1

p⇤ikEq⇤(⌧k)⌧k + Eq⇤(⌧a)⌧a
⇤
+ ai

KX

k=1

p⇤ikEq⇤(⌧k)⌧k1T
ni

Y⇤ik.

Let

�2⇤
ai
=

�
ni

KX

k=1

p⇤ikEq⇤(⌧k)⌧k + Eq⇤(⌧a)⌧a
��1, (2.19)

and

µ⇤ai
= �2⇤

ai

KX

k=1

p⇤ikEq⇤(⌧k)⌧k1T
ni

Y⇤ik. (2.20)

Then q⇤(ai) is N(µ⇤ai
,�⇤2ai

).
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vi) Update equation for q(⌧a)

log q⇤(⌧a)
+⇡ E�⌧a

�
log p(a|⌧a) + log p(⌧a)

�

+⇡ E�⌧a

⇣ NX

i=1

log p(ai|⌧a)
⌘
+ (↵0 � 1) log ⌧a � �0⌧a

+⇡ N
2

log ⌧a �
1
2
⌧a

NX

i=1

Eq⇤(ai)a
2
i + (↵0 � 1) log ⌧a � �0⌧a

=
�
↵0 +

N
2
� 1

�
log ⌧a �

⇣
�0 +

1
2

NX

i=1

Eq⇤(ai)a
2
i

⌘
⌧a.

Let

↵⇤ = ↵0 +
N
2
,

and

�⇤ = �0 +
1
2

NX

i=1

Eq⇤(ai)a
2
i . (2.21)

q⇤(⌧a) is Gamma(↵⇤, �⇤).

2.2.3.2 Expectations

In this section, we calculate the expectations in the update equations for each component

in the VD.

Let  be the digamma function defined as

 (x) =
d
dx

log�(x), (2.22)

which can be easily calculated via numerical approximation. The values of the expectations

taken with respect to the approximated distributions are given as follows.

Eq⇤(Zi)[I(Zi = k)] = p⇤ik, (2.23)
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Eq⇤(⌧k)(⌧k) =
A⇤k
R⇤k
, (2.24)

Eq⇤(⌧k)(log ⌧k) =  (A⇤k) � log R⇤k, (2.25)

Eq⇤(⇡)(log ⇡k) =  (d⇤k) � 
⇣ KX

k=1

d⇤k
⌘
, (2.26)

Eq⇤(⌧a)(⌧a) =
↵⇤

�⇤
, (2.27)

Eq⇤(⌧a)(log ⌧a) =  (↵⇤) � log �⇤, (2.28)

Eq⇤(ai)a
2
i = �

⇤2
ai
+ µ⇤2ai

. (2.29)

In addition, using the fact that E(XT X) = trace[Var(X)] + E(X)TE(X), we obtain

Eq⇤(�k)
⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤

= trace
�
Bi⌃

⇤
kBT

i
�
+ (Yi � Bim⇤k � ai1ni)

T (Yi � Bim⇤k � ai1ni), (2.30)

and

Eq⇤(�k)·q⇤(ai)
⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤

= Eq⇤(ai)

h
Eq⇤(�k)

⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤i

= Eq⇤(ai)

h
trace

�
Bi⌃

⇤
kBT

i
�
+ (Yi � Bim⇤k � ai1ni)

T (Yi � Bim⇤k � ai1ni)
i

= trace
�
Bi⌃

⇤
kBT

i
�
+ ni�

⇤2
ai
+ (Yi � Bim⇤k � µ⇤ai

1ni)
T (Yi � Bim⇤k � µ⇤ai

1ni). (2.31)
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2.2.4 ELBO calculation

In this section, we show how to calculate the ELBO under Model 2, which is the conver-

gence criterion of our proposed VB algorithm and is updated at the end of each iteration

until convergence. Equation (2.6) gives the ELBO:

ELBO(q) = Eq⇤
⇥
log p(Y,Z,⇡,�, ⌧, a, ⌧a)

⇤ � Eq⇤
⇥
log q(Z,⇡,�, ⌧, a, ⌧a)

⇤
,

where

Eq⇤
⇥
log p(Y,Z,⇡,�, ⌧, a, ⌧a)

⇤
= Eq⇤

⇥
log p(Y|Z,�, ⌧, a)

⇤
+ Eq⇤

⇥
log p(Z|⇡�]

+Eq⇤
⇥
log p(�)] + Eq⇤

⇥
log p(⌧)]

+Eq⇤
⇥
log p(�)] + Eq⇤

⇥
log p(a|⌧a

�
]

+Eq⇤
⇥
log p(⌧a)],

and

Eq⇤
⇥
log q(Z,⇡,�, ⌧, a, ⌧a)

⇤
= Eq⇤

⇥
log q(Z)

⇤
+ Eq⇤

⇥
log q(�)

⇤
+ Eq⇤

⇥
log q(⇡)

⇤

+Eq⇤
⇥
log q(⌧)

⇤
+ Eq⇤

⇥
log q(a)

⇤
+ Eq⇤

⇥
log q(⌧a)

⇤
.

Therefore, we can write the ELBO as the summation of 7 terms:

ELBO(q) = Eq⇤
⇥
log p(Y|Z,�, ⌧, a)

⇤
+ di f fZ + di f f�

+ di f f⌧ + di f f⇡ + di f fa + di f f⌧a , (2.32)

where,

di f fZ = Eq⇤
⇥
log p(Z|⇡)⇤ � Eq⇤

⇥
log q(Z)

⇤
.
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Specifically,

di f fZ =

NX

i=1

KX

k=1

p⇤ikEq⇤(⇡)(log ⇡k) �
NX

i=1

KX

k=1

p⇤ik log p⇤ik. (2.33)

The other terms in (2.32) are calculated as follows:

di f f� = �
1
2

KX

k=1

v0
k{trace

�
⌃⇤k

�
+ (m⇤k �m0

k)T (m⇤k �m0
k)} + 1

2

KX

k=1

log |⌃⇤k|,

di f f⌧ =
KX

k=1

{(b0 � 1)Eq⇤(⌧k)(log ⌧k) � r0Eq⇤(⌧k)(⌧k)}

�
KX

k=1

{A⇤k log R⇤k � log�(A⇤k)

+ (A⇤k � 1)Eq⇤(⌧k)(log ⌧k) � R⇤kEq⇤(⌧k)(⌧k)}, (2.34)

di f f⇡ ⌘
KX

k=1

(d0
k � d⇤k)Eq⇤(⇡)(log ⇡k),

di f fa = �
1
2
Eq⇤(⌧a)⌧a

NX

i=1

Eq⇤(ai)a
2
i +

NX

i=1

log�⇤ai
,

di f f⌧a = (↵0 � 1)Eq⇤(⌧a)(log ⌧a) � �0Eq⇤(⌧a)⌧a

�↵⇤ log �⇤ � (↵⇤ � 1)Eq⇤(⌧a)(log ⌧a) + �⇤Eq⇤(⌧a)⌧a

= (↵0 � ↵⇤)Eq⇤(⌧a)(log ⌧a) � (�0 � �⇤)Eq⇤(⌧a)⌧a � ↵⇤ log �⇤,

and

Eq⇤
⇥
log p(Y|Z,�, ⌧, a)

⇤
=

NX

i=1

KX

k=1

p⇤ik
nni

2
Eq⇤(⌧k)(log ⌧k)

�1
2

A⇤k
R⇤k
Eq⇤(�k)·q⇤(ai)

⇥
(Yi � Bi�k � ai1ni)

T (Yi � Bi�k � ai1ni)
⇤o
.
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Therefore, at iteration c, we calculate ELBO(c) using all parameters obtained at the end of

iteration c. Convergence of the algorithm is achieved if ELBO(c) � ELBO(c�1) is smaller

than a given threshold. It is important to note that we use the fact that lim
p⇤ik!0

p⇤ik log p⇤ik = 0 to

avoid numerical issues when calculating (2.33). Numerical issues also exist in calculating

the term {A⇤k log R⇤k � log�(A⇤k) + (A⇤k � 1)Eq⇤(⌧k)(log ⌧k) � R⇤kEq⇤(⌧k)(⌧k)} in (2.34), so we will

approximate it by the following digamma and log-gamma approximations. Note that we

use (2.24) and (2.25) for Eq⇤(⌧k)(⌧k) and Eq⇤(⌧k)(log ⌧k), respectively.

(1) digamma approximation based on asymptotic expansion:

 (A⇤k) ⇡ log A⇤k � 1/(2A⇤k).

(2) log-gamma Stirling’s series approximation:

log�(A⇤k) ⇡ A⇤k log(A⇤k) � A⇤k �
1
2

log(A⇤k).

Therefore, plugging in these two approximations, we obtain

A⇤k log R⇤k � log�(A⇤k) + (A⇤k � 1)Eq⇤(⌧k)(log ⌧k) � R⇤kEq⇤(⌧k)(⌧k)

= A⇤k log R⇤k � log�(A⇤k) + (A⇤k � 1)( (A⇤k) � log R⇤k) � R⇤k
A⇤k
R⇤k

⇡ 1
2

log A⇤k +
1

2A⇤k
� 1

2
+⇡ 1

2
log A⇤k +

1
2A⇤k
=

1
2

(log A⇤k +
1
A⇤k

).
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Algorithm 1: Clustering functional data via variational inference with random
intercepts

Data: N original curves with ni evaluation points for the ith curve and the Bi

matrix containing the evaluation values of the basis functions, i = 1, ...,N;
number of clusters K; values of hyperparameters: d0, m0

k , k = 1, ...,K, s0, b0,
r0, ↵0, �0; convergence threshold and maximum number of iterations

Result: VB estimated mean curves for each cluster and the cluster index for each
original curve

1 Initialization: initialize R⇤k, µ⇤a and �⇤ with arbitrary values (e.g., R⇤k = r0, µ⇤a = 0,
�⇤ = �0) and p⇤ik from k-means, and set c = 0;

2 while c < maximum number of iterations and di↵erence of ELBO > convergence
threshold do

3 ↵⇤ = ↵0 + N
2 ;

4 repeat
5 c = c + 1;
6 update A⇤(c)

k using p⇤(c�1)
1k , . . . , p⇤(c�1)

Nk with equation (2.17);
7 update ⌃⇤(c)

k using A⇤(c)
k , R⇤(c�1)

k and p⇤(c�1)
1k , . . . , p⇤(c�1)

Nk with equations (2.15)
and (2.24);

8 update m⇤(c)
k using ⌃⇤(c)

k , A⇤(c)
k , R⇤(c�1)

k , µ⇤(c�1)
a and p⇤(c�1)

1k , . . . , p⇤(c�1)
Nk with

equations (2.16) and (2.24);
9 update �⇤2(c)

ai using A⇤(c)
k , R⇤(c�1)

k , ↵⇤, �⇤(c�1) and p⇤(c�1)
ik , . . . , p⇤(c�1)

iK with
equations (2.19), (2.24) and (2.27) ;

10 update µ⇤(c)
ai using �⇤2(c)

ai , A⇤(c)
k , R⇤(c�1)

k and p⇤(c�1)
ik , . . . , p⇤(c�1)

iK with equations
(2.20) and (2.24);

11 update R⇤(c)
k using m⇤(c)

k , ⌃⇤(c)
k , �⇤2(c)

ai , µ⇤(c)
ai and p⇤(c�1)

1k , . . . , p⇤(c�1)
Nk with

equations (2.18) and (2.31);
12 update �⇤(c) using �⇤2(c)

ai and µ⇤(c)
ai with equations (2.21) and (2.29);

13 update d⇤(c) using p⇤(c�1)
1k , . . . , p⇤(c�1)

Nk with equations (2.9) and (2.23);
14 update p⇤(c)

1k , . . . , p
⇤(c)
Nk using A⇤(c)

k , R⇤(c)
k , d⇤(c), �⇤2(c)

ai , µ⇤(c)
ai , m⇤(c)

k and ⌃⇤(c)
k with

equations (2.11), (2.24), (2.25), (2.26) and (2.31);
15 calculate the current ELBO, ELBO(c) using equation (2.32) ;
16 calculate di↵erence of ELBO = ELBO(c) � ELBO(c�1);
17 until maximum iteration is achieved or the ELBO converges;
18 end

2.3 Simulation studies

In Section 2.3.1, we present the metrics used to evaluate the performance our proposed

methodology. Sections 2.3.2 and 2.3.3 present the simulation scenarios and results for
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Model 1 and Model 2, respectively.

2.3.1 Performance metrics

We evaluate the clustering performance of our proposed algorithm by two metrics: mis-

matches (Zambom et al., 2019) and V-measure (Rosenberg and Hirschberg, 2007). Mis-

match rate is the proportion of subjects misclassified by the clustering procedure. In our

case, each subject corresponds to a curve in our functional dataset. V-measure, a score

between zero and one, evaluates the subject-to-cluster assignments and indicates the ho-

mogeneity and completeness of a clustering procedure result. Homogeneity is satisfied if

the clustering procedure assigns only those subjects that are members of a single group

to a single cluster. Completeness is symmetrical to homogeneity, and it is satisfied if all

those subjects that are members of a single group are assigned to a single cluster. The

V-measure is one when all subjects are assigned to their correct groups by the clustering

procedure. One may also consider alternative metrics to evaluate clustering performance,

such as the Rand index (Rand, 1971) and the mutual information (Cover, 1999). The Rand

index measures the similarity between two data partitions by counting the number of pairs

of observations that are either correctly grouped together (i.e., true positives) or correctly

separated (i.e., true negatives) in both partitions. Mutual information, on the other hand,

quantifies the information shared between two data partitions. Along with the V-measure,

these metrics are commonly used for clustering and partition evaluation, but they each have

di↵erent mathematical formulations and emphasize di↵erent aspects of clustering perfor-

mance.

For comparison purposes, we also investigate the performance, in terms of mismatch and V-

measure, of the classical clustering algorithms including k-means for raw data (discrete ob-

served points), and k-means for functional data (referred to as functional k-means, Febrero-

Bande and de la Fuente (2012)), and two other model-based algorithms: funFEM (Bou-

veyron et al., 2015) and SaS-Funclust (Centofanti et al., 2023). The funFEM method was
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proposed for the inference of the discriminative functional mixture model to cluster func-

tional data via the EM algorithm. The SaS-Funclust method, short for sparse and smooth

functional clustering, was developed to facilitate sparse clustering for functional data via a

functional Gaussian mixture model and penalized maximum likelihood estimation.

To further evaluate the performance of the proposed VB algorithm in terms of the esti-

mated mean curves, we calculate the empirical mean integrated squared error (EMISE) for

each cluster in each simulation scenario. For simplicity, we generate curves with equal

number of observed values, that is n, in our simulation study. The EMISE is obtained as

follows:

EMISEk =
T
n

nX

j=1

EMSEk(t j), (2.35)

where T is the curve evaluation interval length, n is total number of observed evaluation

points, and the empirical mean squared error (EMSE) at point t j for cluster k, EMSEk(t j),

is given by

EMSEk(t j) =
1
S

SX

s=1

⇥
fk(t j) � f̂ s

k (t j)
⇤2,

in which s corresponds to the sth simulated dataset among S datasets in total, fk(t j) is the

value of the true mean function in cluster k evaluated at point t j and f̂ s
k (t j) is its correspond-

ing estimated value for the sth simulated dataset. The estimated value f̂ s
k (t j) is calculated

using the B-spline basis expansion with coe�cients corresponding the to posterior mean

(2.16) obtained at the convergence of the VB algorithm.

2.3.2 Simulation study on Model 1

In Sections 2.3.2.1 and 2.3.2.2, we first conduct simulation studies for Model 1 which

comprises six di↵erent scenarios, five of which have three clusters (K = 3) while the

last scenario has four clusters (K = 4). For each simulation scenario, we generate 50
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datasets and apply the proposed VB algorithm to each dataset, considering the number of

basis functions to be six except for Scenario 5, which uses 12 basis functions. The ELBO

convergence threshold is 0.01, with a maximum of 100 iterations. We use the clustering

results of k-means to initialize p⇤ik in our VB algorithm.

We further conduct simulation studies on Model 1 to investigate the performance of the VB

algorithm, including a prior sensitivity analysis in Section 2.3.2.3, choice of the number of

clusters in Section 2.3.2.4 and misspecification of the type of basis functions in Section

2.3.2.5. We compare the posterior estimation results from VB to the ones from MCMC in

Section 2.3.2.6.

2.3.2.1 Simulation scenarios

Scenarios 1 and 2 are adopted from Zambom et al. (2019). Each dataset is generated from

3 possible clusters (k = 1, 2, 3) with N = 50 curves per cluster. For each curve, we assume

there are n = 100 observed values across a grid of equally spaced points in the interval

[0, ⇡/3].

Scenario 1, K = 3:

Yik(t j) = ai + bk + ck sin(1.3t j) + t3
j + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, ai ⇠ U(�1/4, 1/4),

�i j ⇠ N(0, 0.42), b1 = 0.3, b2 = 1, b3 = 0.2, c1 = 1/1.3, c2 = 1/1.2, and c3 = 1/4.

Scenario 2, K = 3:

Yik(t j) = ai + bk exp(ckt j) � t3
j + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, ai ⇠ U(�1/4, 1/4),



Chapter 2 – Clustering functional data via variational inference 36

�i j ⇠ N(0, 0.32), b1 = 1/1.8, b2 = 1/1.7, b3 = 1/1.5, c1 = 1.1, c2 = 1.4, and c3 = 1.5.

In Scenarios 3 and 4, each dataset is also generated considering three clusters (k = 1, 2, 3)

with 50 curves each. The mean curve of the functional data in each cluster is generated

from a pre-specified linear combination of B-spline basis functions. The number of basis

functions is the same across clusters but the coe�cients of the linear combination are dif-

ferent, one set per cluster (see Table 2.1). We apply the function create.bspline.basis in

the R package fda to generate six B-spline basis functions of order 4, Bl(·), l = 1, ..., 6,

evaluated on equally spaced points, t j, j = 1, ..., 100, in the interval [0, 1].

Scenarios 3 and 4, K = 3:

Yik(t j) =
6X

l=1

Bl(t j)�kl + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k and �i j ⇠ N(0, 0.42).

Table 2.1 presents the vector of coe�cients for each cluster k, �k = (�k1, . . . , �k6)T , used

in Scenarios 3 and 4. Figure 2.1 illustrates the true mean curves for the three clusters and

their corresponding basis functions for Scenarios 3 and 4.

Table 2.1: Coe�cient vectors of six B-spline basis functions for each cluster in Scenarios
3 and 4

Scenario 3 Scenario 4

�k �k1 �k2 �k3 �k4 �k5 �k6 �k1 �k2 �k3 �k4 �k5 �k6

k = 1 1.5 1 1.8 2 1 1.5 1.5 1 1.6 1.8 1 1.5
k = 2 2.8 1.4 1.8 0.5 1.5 2.5 1.8 0.6 0.4 2.6 2.8 1.6
k = 3 0.4 0.6 2.4 2.6 0.1 0.4 1.2 1.8 2.2 0.8 0.6 1.8

Scenario 5 (K = 3) is based on one of the simulation scenarios used in Dias et al. (2009) in

which the curves mimic the energy consumption of di↵erent types of consumers in Brazil.

There are 50 curves per cluster and for each curve we generate 96 points based on equally

spaced time points, t j, j = 1, ..., 96 in the interval [0, 24] (corresponding to one observation
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Figure 2.1: Cluster true mean curves (solid curves) and their corresponding six B-splines
basis functions (dashed curves) for simulation scenarios 3 (left) and 4 (right).

every 15 minutes over a 24-hour period).

Scenario 5, K = 3:

Yi1(t j) = 0.1(0.4 + exp(�(t j � 6)2/3)

+ 0.2 exp(�(t j � 12)2/25)

+ 0.5 exp(�(t j � 19)2/4)) + �i j,

Yi2(t j) = 0.1(0.2 + exp(�(t j � 5)2/4)

+ 0.25 exp(�(t j � 18)2/5)) + �i j,

Yi3(t j) = 0.1(0.2 + exp(�(t j � 3)2/4)

+ 0.25 exp(�(t j � 16)2/5)) + �i j,

where Yik(t j) denotes the value at time t j of the ith curve from cluster k, i = 1, ..., 50,

j = 1, ..., 96, k = 1, 2, 3, and �i j ⇠ N(0, 0.0122).
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Scenario 6 also corresponds to one of the simulation scenarios considered by Zambom et al.

(2019), where there are K = 4 clusters with 50 curves each. Each curve has 100 observed

values based on equally spaced points, t j, j = 1, ..., 100, in the interval [0, ⇡/3].

Scenario 6, K = 4:

Yik(t j) = ai + bk � sin(ck⇡t j) + t3
j + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3, 4,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, ai ⇠ U(�1/3, 1/3),

�i j ⇠ N(0, 0.42), b1 = 0.2, b2 = 0.5, b3 = 0.7, b4 = 1.3, c1 = 1.1, c2 = 1.4, c3 = 1.6 and

c4 = 1.8.

2.3.2.2 Simulation results for Model 1

Figure 2.2 shows the raw curves (color-coded by cluster) from one of the 50 generated

datasets for each simulation scenario. In addition, the true mean curves ( fk(t), k = 1, . . . ,K)

and the estimated smoothed mean curves ( f̂k(t) = Bm⇤k, k = 1, . . . ,K) are shown in black

and red, respectively. We can observe that the true and estimated mean curves almost

coincide within each cluster in all scenarios.

Table 2.2 displays the mean and standard deviation of mismatch rates (M) and V-measure

values (V) across 50 simulated datasets for each scenario. For the sake of completeness,

we have included the results from Scenario 7 in Section 2.3.2.4 and Scenario 8 in Section

2.3.2.5 in Table 2.2 as they pertain to the study of Model 1. The proposed VB algorithm

performs the best in all scenarios except for Scenario 5 where we simulate the curves that

mimic daily energy consumption. Across Scenarios 1 to 6, VB demonstrates impressive

results with a mean mismatch rate of 5.13% and a mean V-measure of 88.06%. Notably, the

mean mismatch rate achieved by VB is 55.71%, 83.6%, 85.86%, and 73.41% lower than

that of classical k-means, functional k-means, funFEM, and SaS-Funclust, respectively.

Meanwhile, VB’s mean V-measure surpasses the compared methods by 5.36%, 38.75%,
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85.9%, and 8.46%, respectively. In Scenarios 3 and 4, where data is simulated through

a linear combination of six predefined basis functions, VB exhibits perfect classification,

with M = 0 and V = 1, which aligns with expectations since the raw data in these scenarios

share the same structure as the proposed model. Comparatively, classical k-means generally

outperforms functional k-means, funFEM, and SaS-Funclust in Scenarios 1, 2, 3, and 6, as

similarly found in Zambom et al. (2019). The SaS-Funclust method excels in Scenario 5,

with a slightly (0.0067) lower mismatch rate and a marginally (0.0053) higher V-measure

than VB. Functional k-means also demonstrates competitive performance in Scenario 5,

comparable to VB and SaS-Funclust.

In terms of computational e�ciency, the run times for the proposed VB algorithm of Model

1 across the 50 simulated datasets from Scenarios 1 to 6 are as follows: 1.97 minutes, 5.41

minutes, 1.41 minutes, 1.61 minutes, 3.60 minutes, and 5.32 minutes. For comparison,

SaS-Funclust required significantly longer computation times: 60.16 minutes, 68.94 min-

utes, 65.04 minutes, 68.19 minutes, 72.26 minutes, and 129.47 minutes for the respective

scenarios. On average, the proposed VB algorithm demonstrates exceptional speed, being

approximately 20 times faster than SaS-Funclust. The algorithm was implemented in R

version 3.6.3 on a computer using the Mac OS X operating system with a 1.6 GHz proces-

sor and 8 GBytes of random access memory, same for the simulation study for Model 2 in

Section 2.3.3.

Table 2.3 presents the EMISE for each cluster in each Scenario. We can observe small

EMISE values, which are consistent with the results shown in Figure 2.2, where there

is a small di↵erence between the red curves (i.e., the estimated mean functions) and the

black curves (i.e., the true mean functions). A plot of EMSE values versus observed points

for each cluster in Scenario 1 is presented in Figure 2.3 while plots of EMSE values for

Scenarios 2, 3, 4, 5 and 6 are provided in Figure B.1 in Appendix B.
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Figure 2.2: Simulation results for Model 1. Example of simulated data under each proposed
scenario. Raw curves (di↵erent colors correspond to di↵erent clusters), cluster-specific true
mean curves (in black) and corresponding estimated mean curves (in red).
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Table 2.3: Simulation results for Model 1. The empirical mean integrated squared error
(EMISE) for the estimated mean curve in each cluster in each scenario.

Scenario Cluster EMISE Scenario Cluster EMISE

1
1 0.00096

2
1 0.00164

2 0.00077 2 0.00246
3 0.00080 3 0.00169

3
1 0.00031

4
1 0.00023

2 0.00045 2 0.00034
3 0.00042 3 0.00033

5

1 0.00001

6

1 0.00076
2 0.00114 2 0.00419
3 0.00022 3 0.00472

4 0.00130

Cluster 1 Cluster 2 Cluster 3
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The plot of EMSE versus the observed time point (x) in Scenario 1

Figure 2.3: Simulation results for Model 1. Empirical mean squared error (EMSE) versus
each evaluation point x for each cluster in Scenario 1.

2.3.2.3 Prior sensitivity analysis

In Bayesian analysis, it is important to assess the e↵ects of di↵erent prior settings in the

posterior estimation. In this section, we carry out a sensitivity analysis on how di↵erent

prior settings may a↵ect the results of our proposed VB algorithm. Our sensitivity analy-

sis focuses on the prior distribution of the coe�cients �k of the B-spline basis expansion

of each cluster-specific mean curve. We assume �k follows a multivariate normal prior

distribution with a mean vector m0
k and s0I as the covariance matrix. We simulated data

according to Scenario 3 in Section 2.3.2.1 and four di↵erent prior settings as follows:
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• Setting 1: use the true coe�cients as the prior mean vector and consider a small

variance (s0 = 0.01).

• Setting 2: use the true coe�cients as the prior mean vector but consider a larger

variance than in Setting 1 (s0 = 1).

• Setting 3: use a prior mean vector that is di↵erent than the true vector of coe�cients

with a small variance (s0 = 0.01).

• Setting 4: set the prior mean vector of coe�cients to a vector of zeros with a small

variance (s0 = 0.01).

Setting 1 has the strongest prior information among these four prior settings, while setting

4 is the most non-informative prior case. In setting 3, the prior mean vector of coe�cients

is generated from sampling from a multivariate normal distribution with a mean vector cor-

responding to the true coe�cients and covariance matrix �2I, with �2 = 0.5. For each prior

setting, we simulate 50 datasets as in Scenario 3, obtaining the average mismatch rate and

V-measure, which are displayed in Table 2.4. First, we can observe that all the curves are

correctly clustered under Setting 1, which has the strongest prior information. Then, as we

relax the prior assumptions in two possible directions (i.e., more considerable variance or

less informative mean vector), the mismatch rate increases, and the V-measure decreases.

However, the clustering performance does not decrease much, only 4.67% higher in mis-

matches and 3.73% lower in V-measure.

Table 2.4: Simulation results for Model 1. Mean mismatch rate and V-measure value from
prior sensitivity analysis in Scenario 3

Setting 1 2 3 4

M1 0.0000 0.0067 0.0067 0.0467
V2 1.0000 0.9947 0.9947 0.9627

aM: mean mismatch rate from 50 runs.
bV: mean V-measure from 50 runs.
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2.3.2.4 Choosing the number of clusters

Choosing an appropriate number of clusters, denoted as K, holds paramount importance

within clustering procedures. This decision aligns with determining the number of mixture

components in a regression mixture model. One of the most widely applied methodologies

to deal with uncertainty in the cluster numbers is the two-fold scheme that one first fits the

mixture model with di↵erent predefined numbers of mixtures and then use some informa-

tion criteria to select the best one (Chen et al., 2012; Nieto-Barajas and Contreras-Cristán,

2014; Wang and Lin, 2022). Alternatively, one can explore concurrent approaches for op-

timal cluster number selection, including techniques such as overfitted Bayesian mixtures,

tailored to address scenarios with large unknown K (Rousseau and Mengersen, 2011), se-

lection through penalized maximum likelihood (Chamroukhi, 2016b), and the application

of infinite mixture models such as Dirichlet process mixture models (Escobar and West,

1995; Ray and Mallick, 2006; Petrone et al., 2009; Rodrı́guez et al., 2009; Angelini et al.,

2012; Heinzl and Tutz, 2013; Rigon, 2023).

In our study, we employ the afterward model selection (i.e., two-fold) scheme to determine

the most suitable number of clusters. Assuming some prior knowledge of K, we establish a

clustering model for a range of integers based on this prior information, employing the VB

algorithm for each K. For model comparison, we utilize the deviance information criterion

(DIC) (Spiegelhalter et al., 2002), which can be applied to select the optimal number of

clusters within a comparable Bayesian clustering framework (Gao et al., 2011; Anderson

et al., 2014; Komárek, 2009). DIC is built to balance the model fitness and complexity

under a Bayesian framework, and a lower DIC indicates a better model. Nonetheless, the

DIC is not an integral component of the core methodology and can be substituted with

alternative model selection criteria such as the WAIC (Watanabe and Opper, 2010) and

LPML (Geisser and Eddy, 1979) when someone’s concern is predictive goodness-of-fit. In
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our Model 1 setting, the DIC can be obtained as follows:

DIC = �4Eq⇤
⇥
log p(Y|Z,⇡,�, ⌧)⇤ + 2D,

where Eq⇤
⇥
log p(Y|Z,⇡,�, ⌧)⇤ can be computed after the convergence of our proposed VB

algorithm based on the ELBO. The term D corresponds to the log-likelihood log p(Y|Z,⇡,�, ⌧)

evaluated at the expected value of each parameter posterior. For example, when we calcu-

late the term log ⌧k in log p(Y|Z,⇡,�, ⌧), we replace it by log (Eq⇤(⌧k)(⌧k)).
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Figure 2.4: Simulation results for Model 1, Scenario 7, K = 6. Left: boxplots of DIC
values under di↵erent K 2 {1, 2, ..., 10}. The best number of clusters is six which has the
smallest DIC. Right: the clustering results for K = 6 for one of the simulated data sets.
Raw curves (di↵erent colors correspond to di↵erent clusters), cluster-specific true mean
curves (in black) and corresponding VB estimated mean curves (in red).

We consider a more complex scenario, namely Scenario 7, where K = 6 in this simula-

tion study which was also analyzed in Zambom et al. (2019). The data are generated as

follows:

Scenario 7, K = 6:

Yik(t j) = ai + cos(bk⇡t j) � t2
j + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, ..., 6,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, ai ⇠ U(�1/4, 1/4),
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�i j ⇠ N(0, 0.32), b1 = 1, b2 = 1.2, b3 = 1.4, b4 = 1.6, b5 = 1.8 and b6 = 2.

We assume a prior information of the number of clusters that K is around 6. Accordingly,

we evaluate a range of potential K values, specifically {2, 3, ..., 10}. For each K, we apply

the VB algorithm to cluster the observed functional data and calculate the resulting DIC.

Within this scope, for each K 2 {2, 3, ..., 10}, we repeat the simulation analysis for 50

times utilizing di↵erent random seeds to generate data. The left plot in Figure 2.4 displays

a boxplot representation of the DIC values for each K. It is evident that our DIC-based

approach adeptly identifies the correct K (in this case, K = 6), yielding the lowest DIC.

The accompanying right plot in Figure 2.4 showcases the clustering results for one of the

simulated data sets under Scenario 7, demonstrating a highly satisfactory estimation of the

true mean curves.

The quantitative evaluation of VB clustering performance in Scenario 7, along with a com-

parison to the other methods, is presented in Table 2.2. The VB algorithm performs the best

among the others with a mean mismatch rate of 0.3001 and a mean V-measure of 0.7528.

The mean mismatch rate of VB is 0.03%, 61.33%, 63.33%, and 58.13% lower than that

of the classical k-means, functional k-means, funFEM and SaS-Funclust methods, while

the mean V-measure is 0.41%, 36.25%, 1393.65%, and 21.83% higher, respectively. It is

important to note that Scenario 7, characterized by a more complex structure with multiple

groups of curves and overlapping patterns, poses a greater challenge for all methods, lead-

ing to overall reduced performance compared to other scenarios. FunFEM, in particular,

encounters significant di�culties, with a V-measure approaching 0 due to the misclassifi-

cation of more than 80% of curves.

2.3.2.5 Misspecification of the type of basis functions

This section illustrates the performance of the VB algorithm in case of misspecification

of the type of basis functions via a simulation study, namely Scenario 8. We generate

seven Fourier basis functions with equally spaced points on the interval [0, 1], which are
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shown in Figure 5(b), and simulate the data for three clusters (k = 1, 2, 3) with 50 curves

(i = 1, 2, ..., 50) and 100 values (t j, j = 1, 2, ..., 100) on each curve in each cluster using a

linear combination of these Fourier basis functions as follows:

Scenario 8, K = 3:

Yik(t j) =
7X

l=1

Gl(t j)�kl + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j for the ith curve from cluster k, Gl(t j) is the lth

Fourier basis function evaluated at point t j, �kl is the corresponding basis function coe�-

cient, and �i j ⇠ N(0, 4). In this simulation study, the vectors of basis function coe�cients

for each cluster are:

�1 = (�11, �12, ..., �17)T = (0.75, 0.50, 0.90, 1.25, 0.90, 0.50, 0.40)T ,

�2 = (�21, �22, ..., �27)T = (0.40, 0.70, 0.90, 0.25, 0.75, 1.25, 1.50)T , and

�3 = (�31, �32, ..., �37)T = (0.10, 0.30, 1.20, 1.30, 0.05,�0.20,�0.30)T .

Figure 2.5(c) presents the raw curves with each cluster distinguished by a unique color. No-

tably, when compared to the B-spline bases, the Fourier bases exhibit a more intricate curve

structure, suggesting the potential need for an increased number of B-spline basis functions

to adequately represent these functional curves, as observed in Sousa et al. (2023). Con-

sequently, we have generated 15 B-spline bases from the interval [0, 1], as illustrated in

Figure 2.5(a), to cluster the curves derived from a linear combination of the Fourier bases.

The resulting VB estimated mean curves (solid lines) are juxtaposed with the true mean

curves (dashed lines) in Figure 2.5(d) from one of the simulated data sets.

While a minor discrepancy is observable between the true and estimated mean curves at

the left boundary for the red and green groups, it is evident that the VB algorithm achieves

highly accurate estimations of the true mean curves across all clusters. As shown in Table

2.2, the computed mean mismatch rate (sd) and mean V-measure (sd) from clustering 50

di↵erent simulated datasets are 0.067 (0.135) and 0.947 (0.108), respectively. In compari-



Chapter 2 – Clustering functional data via variational inference 48

son to classical k-means, functional k-means, and funFEM, the mean mismatch rate from

VB is 30.52%, 71.26%, and 87.65% lower, while the mean V-measure is 2%, 49.72%, and

711.92% higher. Unfortunately, SaS-Funclust struggles to cluster the curves, resulting in a

V-measure of zero. This simulation illustrates the robustness of the VB algorithm in clus-

tering functional data, even when confronted with the misspecification of basis function

types.
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Figure 2.5: Simulation results for Model 1, Scenario 8, K = 3. (a) B-spline basis functions
for model fit. (b) Fourier basis functions for data generation. (c) Raw curves from three
clusters (distinct colors for each cluster). (d) Cluster-specific true mean curves (dashed)
and corresponding VB estimated mean curves (solid).
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2.3.2.6 Comparison with MCMC posterior estimation

In our simulation study on Model 1, VB is shown to yield accurate mean curve estimates

and satisfactory outcomes in clustering functional data. Although mean-field VB, as an

alternative to MCMC, boasts a lower computational cost, it may potentially underestimate

the posterior variance (Wang and Titterington, 2005). To investigate this concern in the

context of clustering functional data through a B-spline regression mixture model, we em-

ploy the MCMC-based Gibbs sampling algorithm for simulated data under Scenario 1. The

resulting posterior distribution from Gibbs is based on 9000 MCMC samples following a

1000-sample burn-in and with a thinning of 1 from one chain. The convergence of the

MCMC algorithm was well assessed and checked by the trace plot. Figure 2.6 illustrates

the marginal posterior density of each basis coe�cient �km, k = 1, 2, 3, m = 1, . . . , 6, and

the precision parameter ⌧k, k = 1, 2, 3, for each cluster, organized by columns. In each

plot, the dashed red line represents the corresponding posterior density from VB, while the

solid blue line is derived from MCMC. We observe a robust consistency in the estimated

posterior distributions between MCMC and VB. A similar consistency between VB and

MCMC in posterior estimation under a regression setting was found by Faes et al. (2011);

Luts and Wand (2015); Xian et al. (2024).

To elucidate the uncertainty from the estimated mean curves, we utilize Scenarios 1 and 3

as illustrative examples. We construct 95% credible bands, both from MCMC and VB, for

the true mean curves based on the posterior distribution of the B-spline coe�cients. Figure

2.7 presents the results, with the first row corresponding to Scenario 1 and the second row to

Scenario 3. In each plot, the solid colored lines depict the estimated mean curves from VB

or MCMC, while the black solid lines represent the true mean curves. The 95% credible

bands are shown as dashed lines, with di↵erent colors for di↵erent clusters. In Scenario 1,

VB provides comparable point and interval estimation results with MCMC. In contrast, in

Scenario 3, VB provides more accurate estimated mean curves, particularly at the left tails.
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Importantly, we observed no substantial di↵erences in the resulting credible bands between

VB and MCMC. In terms of computational cost for one simulation, VB took 5.5 seconds to

produce the results, while the Gibbs sampler took 2.9 minutes for Scenario 1. In Scenario

3, VB took 5.8 seconds, while MCMC took 2.6 minutes. Overall, VB was more than 20

times faster than MCMC.
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Figure 2.6: Simulation results for Model 1, Scenario 1, K = 3. Posterior distributions of
the B-spline basis coe�cients and the precision parameter for each cluster (one column for
each cluster). In each plot, the dashed red line is from the VB algorithm and the solid blue
line from MCMC.
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Figure 2.7: Simulation results for Model 1, Scenarios 1 and 3. The 95% credible bands for
the true mean curves from VB (the left column) and MCMC (the right column). The solid
colored lines represent the estimated mean curves, with the true mean curves depicted by
black solid lines. The 95% credible bands are illustrated by the corresponding dashed lines.

2.3.3 Simulation study on Model 2

2.3.3.1 Simulation scenarios

We also investigate the performance of our proposed VB algorithm under Model 2 using

simulated data. We consider the simulation schemes of Scenario 1 and Scenario 3 in Sec-

tion 2.3.2.1, but add a random intercept to each curve, to construct four di↵erent scenarios

namely Scenario 9, Scenario 10, Scenario 11, and Scenario 12.

Scenario 9, K = 3:
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Scenario 9 is constructed based on Scenario 1. The data are simulated as follows.

Yik(t j) = aik + bk + ck sin(1.3t j) + t3
j + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, aik ⇠ N(0, 0.42),

�i j ⇠ N(0, 0.22), b1 = �0.25, b2 = 1.25, b3 = 2.50, c1 = 1/1.3, c2 = 1/1.2, and c3 =

1/4.

Scenario 10, K = 3:

Scenario 10 is developed based on Scenario 3. In this scenario, we consider a very small

variance for the random intercept which almost resembles the case without a random inter-

cept. Data are generated as follows.

Yik(t j) = aik +

6X

l=1

Bl(t j)�kl + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, aik ⇠ N(0, 0.052),

�i j ⇠ N(0, 0.42). The B-spline coe�cients, �kl, remain the same and are presented in Table

2.1, which are also used in Scenarios 9 and 10.

Scenario 11, K = 3:

Scenario 11 is similar to Scenario 10, but with larger variance for the random intercept but

smaller variance for the random error. Data are generated as follows.

Yik(t j) = aik +

6X

l=1

Bl(t j)�kl + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, aik ⇠ N(0, 0.32),

�i j ⇠ N(0, 0.152).

Scenario 12, K = 3:



Chapter 2 – Clustering functional data via variational inference 54

Scenario 12 is similar to Scenario 10, but with larger variance for the random intercept. In

this scenario, we use larger variance for the random error compared with that in Scenario

11, indicating a more complex case. Data are generated as follows.

Yik(t j) = aik +

6X

l=1

Bl(t j)�kl + �i j; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j) denotes the value at point t j of the ith curve from cluster k, aik ⇠ N(0, 0.62),

�i j ⇠ N(0, 0.42).

2.3.3.2 Simulation results for Model 2

Figure 2.8 shows the curves from one of the 50 simulated datasets for Scenarios 9 and 11.

Due to the similarity among Scenarios 10, 11 and 12, the curves for Scenarios 10 and 12

are presented in Figure B.2 of Appendix B. In Figure 2.8, we can observe a slight di↵er-

ence between each cluster’s true mean curve and the estimated mean curve. Furthermore,

more variation occurs after adding the random intercept. Especially in Scenario 12, with

large variances, there is a more substantial overlap among curves from di↵erent clusters,

resulting in a more complex scenario for clustering than the corresponding Scenario 3 in

Section 2.3.2.

Table 2.5 presents the numerical results, including the mean mismatch rate and the mean

V-measure with their corresponding standard deviations from the 50 di↵erent simulated

datasets under each scenario considered. In Scenario 9, where the true mean curves ex-

hibit relative parallelism, we do not observe a significant di↵erence in the mean mismatch

rate (approximately 10%) and the mean V-measure (approximately 0.7) among our VB

model, the classical k-means, and SaS-Funclust. In contrast, in Scenario 9, the functional

k-means and funFEM methods exhibit a larger mean mismatch rate and an 18.78% lower

mean V-measure than VB. In Scenario 10, where the true mean curves intersect, our pro-

posed model achieves a significantly lower mean mismatch rate of 0.0299, in contrast to
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the other methods: 0.1404 for classical k-means, 0.2799 for functional k-means, 0.1845 for

funFEM, and 0.3333 for SaS-Funclust. Moreover, the mean V-measure obtained from VB

is 0.9767, which is 9.28%, 69.33%, 34.09%, and 33.12% higher than the results from the

aforementioned methods, respectively.

When the random intercept variance becomes larger in Scenario 11, even with a smaller

random error variance, clustering curves via our proposed model becomes more challeng-

ing. The mean mismatch rate increases to 0.1453 from 0.0299, while the mean V-measure

drops to 0.7923 from 0.9767 in Scenario 10. Nonetheless, our model continues to out-

perform the other considered methods, with di↵erences in mismatch rates of 0.0118 for

classical k-means, 0.1974 for functional k-means, 0.0576 for funFEM, and 0.0519 for SaS-

Funclust. In Scenario 12, where there is a further increase in variance in the random in-

tercept, we observe that the clustering performance of all methods deteriorates, leading to

higher mismatch rates and lower V-measure values. Nevertheless, the VB algorithm still

stands out by achieving the lowest mean mismatch rate and the highest mean V-measure

compared to the other methods. The larger standard deviation of mismatch rates and V-

measure of VB compared to other methods happen because, among the 50 di↵erent runs,

there are 11 runs where our method can 100% correctly assign each curve to the cluster it

belongs to, resulting in a mismatch rate of zero and a V-measure of one. At the same time,

using the classical k-means as an example, there is no run where the classical k-means pro-

vides such perfect clustering results. Besides, among the 50 di↵erent runs, there are 41 runs

where our method provides lower mismatch rates and higher V-measures than the classical

k-means.

Table 2.6 shows the EMISE for each cluster in Scenarios 9, 10, 11 and 12 based on Model

2. Small EMISE values once again indicate that the true mean curves and the corresponding

curves have a small di↵erence. We also find that compared with Table 2.3 based on Model

1, the EMISE values based on Model 2 are larger. This is in our expectation since adding
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a random intercept to each curve will bring more variation to the curves, and as a result,

more variation in the estimated mean curves, in Scenario 12 especially when we have a

larger variance for generating random intercepts. Plots of EMSE values in Scenarios 7, 8,

9, and 10 based on Model 2 are provided in Figure B.3 in Appendix B.

For the computational cost, the run times of the proposed VB algorithm of Model 2 for

50 simulated datasets from Scenarios 9, 10, 11 and 12 are 40.96 min, 1.52 min, 10.46

min, and 11.52 min, respectively. For comparison, SaS-Funclust takes longer computation

times: 45.06 min, 65.17 min, 64.35 min and 64.2 min for the respective scenarios.
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Figure 2.8: Simulation results for Model 2. Example of simulated data under Scenario 9
(left) and Scenario 11 (right). Raw curves (di↵erent colors correspond to di↵erent clusters),
cluster-specific true mean curves (in black) and corresponding estimated mean curves (in
red).

Table 2.6: Simulations results for Model 2. The empirical mean integrated squared error
(EMISE) for the estimated mean curve in each cluster in each scenario.

Scenario Cluster EMISE Scenario Cluster EMISE

9
1 0.07666

10
1 0.00498

2 0.03109 2 0.00203
3 0.06953 3 0.00316

11
1 0.05171

12
1 0.25312

2 0.01938 2 0.13287
3 0.02638 3 0.12465
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2.4 Application to real data

In this section, we apply our proposed method in Section 2 to the growth and the Canadian

weather datasets, which are both publicly available in the R package fda.

The Growth data (Tuddenham and Snyder, 1954) includes heights (in cm) of the 93 children

over 31 unevenly spaced time points from the age of one to eighteen. Raw curves without

any smoothing are shown in Figure 2.9, where the green curves correspond to boys and

blue curves to girls. In this case, we apply our proposed method to the growth curves

considering two clusters and compare the inferred cluster assignments (boys or girls) to the

true ones.

The Canadian weather data (raw data are presented in Figure B.4 in Appendix B) contains

the daily temperature at 35 di↵erent weather stations (cities) in Canada, averaged out from

the year of 1960 to 1994. However, unlike the growth data, we do not know the true number

of clusters in the weather data. Therefore, in order to find the best number of clusters, we

apply the DIC for model comparison.

The number of B-spline basis functions is fixed and known within the VB algorithm. As

discussed in Rossi et al. (2004), a low number of basis functions can be applied to get rid

of the measurement noise. Another feature of the B-spline basis system is that increasing

the number of B-spline bases does not always improve certain aspects of the fit to the data

(Ramsay and Silverman, 2005). Based on Liu and Yang (2009), ten B-spline basis functions

are relatively reasonable for clustering the Growth data with two clusters. The Canadian

weather data presents a higher variation (larger noise) than the Growth data. Therefore,

curves with a moderate smoothing, rather than with more roughness, may more accurately

reflect the underlying functional structures, and the underlying clusters. So, we use six B-

spline basis functions to represent the weather data within the VB algorithm. It is important

to note that we do not have a strong prior knowledge of these real datasets but still need
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to provide appropriate prior hyperparameters for the VB algorithm. As a solution, we

randomly select one underlying curve in each dataset and fit a B-spline regression to obtain

a vector of coe�cients which is then modified across di↵erent clusters resulting in the prior

mean vectors m0
k for k = 1, ...,K. We set s0 = 0.1, corresponding to a precision of 10, as the

prior variance of these coe�cients which provides a useful information as assumed in real

world. For the Dirichlet prior distribution of ⇡, we use d0 = (1/K, ..., 1/K), indicating that

for each curve, the probability of assignment to each cluster is a priori equal across clusters.

For the Gamma prior distribution of the precision, ⌧k = 1/�2
k , we prefer a large prior mean

(e.g., 10) and a small prior variance (e.g., 0.1) which serve as informative prior knowledge,

and therefore, we set a0 = 2000 and r0 = 100 for the growth data, and a0 = 1000 and

r0 = 800 for the weather data. The ELBO convergence threshold is 0.001.

Since we know there are two clusters (boys and girls) in the growth dataset, K = 2 is preset

for the clustering procedure. We apply the proposed VB algorithms under Models 1 and 2

to cluster the growth curves with 50 runs corresponding to 50 di↵erent initializations. The

classical k-means method is also applied to the raw curves for performance comparison

purposes. Figure 2.9 presents the estimated mean curves for each cluster corresponding

to the the best VB run (the one with maximum ELBO after convergence) along with the

empirical mean curves from both models (left graph for Model 1 while right for Model 2).

The empirical mean curves are calculated by considering the true clusters and calculating

their corresponding point-wise mean at each time point. Some di↵erence between the

estimated and the empirical curves can be observed for the girls due to a potential outlier.

Regarding clustering performance, the mean mismatch rates for the VB algorithms under

Model 1 and Model 2, and k-means are 33.33%, 20.47% and 34.41%, respectively. V-

measure is more sensitive to misclassification than mismatch rate and, therefore, we obtain

low mean V-measure values of 7.75% for VB under Model 1, 33.75% for VB under Model

2, and 6.37% for k-means. We can see the clustering performance significantly improved

after adding a random intercept to each curve. Compared with Model 1, the mean mismatch
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rate from Model 2 is lower by 12.86% , and the mean V-measure is higher by 26%.

For the Canadian weather dataset analysis, we considered temperature data from all sta-

tions except those located in Vancouver and Victoria because they present relatively flat

temperature curves compared to other locations. We applied the proposed VB algorithm

under Model 1 to the weather data. The left plot in Figure 2.10 shows the DIC values for

di↵erent possible numbers of clusters (K = 2, 3, 4, 5). We can observe that the best num-

ber of clusters for separating the Canadian weather data is three, which corresponds to the

smallest DIC. Finally, we present the clustering results with K = 3 on a map of Canada in

the right plot in Figure 2.10. As can be seen, when K = 3, we have three resulting groups

in three di↵erent colors. In general, most of the weather stations in purple are located in

northern Canada. In contrast, stations in southern Canada are separated into two groups

color-coded in blue and red on the map of Canada. Although some stations may be incor-

rectly clustered, we can still see a potential pattern that makes sense geographically.
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Figure 2.9: Raw curves (dashed curves) from the Growth dataset where green curves refer
to the boys’ heights while the blue ones are for the girls’, with empirical mean curves (in
solid black) and our VB estimated mean curves (in solid red). The left graph is resulted
from Model 1 while the right is from Model 2.
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Figure 2.10: Left: DIC values for di↵erent clusters (K = 2, 3, 4, 5) in Canadian weather
data. The best number of clusters is three which has the smallest DIC. Right: Clustering
results under Model 1 (cities with same color are predicted in the same cluster) for Canadian
weather data with preset three clusters (K = 3).

2.5 Conclusion and Discussion

This chapter develops a new model-based algorithm to cluster functional data via Bayesian

variational inference. We derive a mean-field Variational Bayes (VB) algorithm. Next,

the coordinate ascent variational inference is applied to update each term in the variational

distribution factorization until convergence of the evidence lower bound. Finally, each

observed curve is assigned to the cluster with the largest posterior probability.

We build our proposed VB algorithm under two di↵erent models. In Model 1, we assume

the errors are independent, which may be a strong assumption. Motivated by the Growth

data for the children’s heights, which show a parallel structure indicating a shift among

curves, we extended our approach to Model 2, which includes more complex variance-

covariance structures by adding a random intercept for each curve.

The performance of our proposed VB algorithm in clustering functional data is supported

by simulations and real data analyses. In simulation studies, VB accurately estimates mean

curves, closely aligning with true curves, resulting in minimal empirical mean integrated
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squared errors and demonstrating a good fit. In most scenarios, VB consistently outper-

forms other considered methods (classical k-means, functional k-means, funFEM, and SaS-

Funclust) with the highest V-measure and the lowest mismatch rate. We provide insight into

the selection of the number of clusters (mixture components) through a two-fold scheme

based on DIC. Robustness is assessed via a sensitivity analysis across di↵erent prior set-

tings and a study involving a misspecified type of basis functions. In our simulations,

the proposed VB algorithm demonstrated computational e�ciency, averaging 4 seconds to

cluster each simulated dataset. In particular, for simulated data under Scenarios 1 and 3, VB

is over 20 times faster than MCMC (Gibbs sampler). Moreover, VB demonstrates strong

consistency with MCMC in estimating the marginal posterior distribution of B-spline ba-

sis coe�cients and precision parameters. In addition to simulation studies, applying the

VB algorithm to the Growth data reveals that Model 2 with a random intercept surpasses

Model 1 in both mean curve estimation and clustering performance when the curves from

the same cluster show a parallel structure.

The main advantage of our proposed VB algorithm is that we model the raw data and obtain

clustering assignments and cluster-specific smooth mean curves simultaneously. In other

words, compared to some previous methods where researchers first smooth the data and

then cluster the data using only the information after smoothing (e.g., the coe�cients of

B-spline basis functions); our model, as a regression mixture model, directly uses the raw

data as input, performing smoothing and clustering simultaneously. In addition, as we take

a Bayesian inference approach, we can measure the uncertainty of our proposed clustering

using the obtained cluster assignment posterior probabilities.

While our study has introduced the VB algorithm to cluster functional data using a B-spline

regression mixture model, it is important to recognize its limitations. Although our Model

2, which includes a random intercept, provides a more flexible dependence structure, one

could explore more intricate Gaussian processes for modeling the random errors. Addi-
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tionally, it is worth noting that VB is not the sole method for clustering functional data

with regression mixtures; alternatives like Gibbs sampler (as used for comparison here)

or other MCMC-based algorithms can also be considered. In this work, we focus on the

case where, for each curve, the number of basis functions is smaller than the number of

evaluation points (M < n). So, future work may include investigation and further extension

of the proposed VB under high-dimensional settings (M >> n), paying special attention

to the issue of underestimation of the variability of the posterior estimates (Mukherjee and

Sen, 2022; Devijver, 2017). For large datasets (large number of curves, N), the coordi-

nate ascent variational inference algorithm, which considers all data points, may result in

a high computational cost. Therefore, one may consider scalable algorithms such as the

stochastic variational inference (Ho↵man et al., 2013) for approximating the posterior dis-

tributions.

Furthermore, our approach relies on the assumption that the number of B-spline basis func-

tions (M) is known prior to applying the VB algorithm. This assumption aligns with prac-

tical scenarios where researchers may subjectively determine M based on their expertise

and/or visual inspection of the curves (Franco et al., 2023; Günther et al., 2021; Lenzi

et al., 2017). However, to enhance the model’s adaptability and automate the selection pro-

cess, future investigations could explore the integration of a mechanism for selecting the

number of B-spline bases directly within the VB algorithm itself. Relevant approaches and

references for the selection of the number of basis functions include Sousa et al. (2023);

Devijver et al. (2020); Gálvez et al. (2015); Yuan et al. (2013); Dias and Garcia (2007), and

DeVore et al. (2003).
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Samé, A., F. Chamroukhi, G. Govaert, and P. Aknin (2011). Model-based clustering and

segmentation of time series with changes in regime. Advances in Data Analysis and

Classification 5(4), 301–321. ! page 14

Sousa, P. H. T. O., C. P. E. de Souza, and R. Dias (2023). Bayesian adaptive selection of

basis functions for functional data representation. Journal of Applied Statistics, 1–35. !

page 12, 47, 63

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde (2002). Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 64(4), 583–639. ! page 14, 44

Tarpey, T. and K. Kinateder (2003). Clustering functional data. Journal of Classifica-

tion 20(1), 93–114. ! page 13



Chapter 2 –REFERENCES 72

Tuddenham, R. D. and M. M. Snyder (1954). Physical growth of California boys and

girls from birth to eighteen years. Publications in Child Development. University of

California, Berkeley 12, 183–364. ! page 58

Wainwright, M. J., M. I. Jordan, et al. (2008). Graphical models, exponential families, and

variational inference. Foundations and Trends® in Machine Learning 1(1–2), 1–305. !

page 15

Wang, B. and D. M. Titterington (2005). Inadequacy of interval estimates corresponding

to variational Bayesian approximations. In International Workshop on Artificial Intelli-

gence and Statistics, pp. 373–380. PMLR. ! page 49

Wang, J.-L., J.-M. Chiou, and H.-G. Müller (2016). Functional data analysis. Annual

Review of Statistics and Its Application 3, 257–295. ! page 12, 13

Wang, W.-L. and T.-I. Lin (2022). Model-based clustering via mixtures of unrestricted

skew normal factor analyzers with complete and incomplete data. Statistical Methods &

Applications, 1–31. ! page 44

Ward, J. (1963). Hierarchical grouping to optimize an objective function. J Am Stat As-

soc 58, 236–244. ! page 13

Watanabe, S. and M. Opper (2010). Asymptotic equivalence of Bayes cross validation and

widely applicable information criterion in singular learning theory. Journal of Machine

Learning Research 11(12). ! page 44

Xian, C., C. P. de Souza, W. He, F. F. Rodrigues, and R. Tian (2024). Variational Bayesian

analysis of survival data using a log-logistic accelerated failure time model. Statistics

and Computing 34(2), 67. ! page 49

Xian, C., C. P. E. de Souza, J. Jewell, and R. Dias (2024). Clustering functional data via

variational inference. Advances in Data Analysis and Classification, 1–50. ! page 12



Chapter 2 –REFERENCES 73

Yang, Y., Y. Yang, and H. L. Shang (2021). Feature extraction for functional time series:

Theory and application to NIR spectroscopy data. ! page 12

Yuan, Y., N. Chen, and S. Zhou (2013). Adaptive B-spline knot selection using multi-

resolution basis set. Iie Transactions 45(12), 1263–1277. ! page 63

Zambom, A., J. Collazos, and R. Dias (2019). Functional data clustering via hypothesis

testing k-means. Computational Statistics 34(2), 527–549. ! page 13, 33, 35, 38, 40,

45

Zhang, Y. and D. Telesca (2014). Joint clustering and registration of functional data. arXiv

preprint arXiv:1403.7134. ! page 14



74

Chapter 3
Variational Bayesian analysis of survival data us-

ing a log-logistic accelerated failure time model

3.1 Introduction

As an alternative to Cox proportional hazards model (Cox, 1972) 1, the accelerated failure

time (AFT) model has been widely utilized in survival analysis recently (Webber et al.,

2022; Longo et al., 2022; Xu et al., 2022) due to its intuitive interpretation (Wei, 1992).

Estimation of parameters and inference under an AFT model are usually likelihood-based

under a frequentist framework (Kalbfleisch and Prentice, 2002; Lawless, 2003). Recent de-

velopments have made Bayesian estimation and inference for an AFT model an attractive

alternative to likelihood-based methods (Ibrahim et al., 2001). Implementations of the AFT

model under the framework of Bayesian survival analysis can be found in di↵erent scenar-

ios; see, for example, Lambert et al. (2004); Komárek and Lesa↵re (2008); Zhang and

Lawson (2011) and Tang et al. (2022). As for the distributions considered in the paramet-

ric AFT model, common choices include log-logistic, Weibull, log-normal, and Gamma

distributions. The log-logistic distribution, exhibiting a non-monotonic hazard function,

is commonly used in survival analysis when the hazard function presents an inverse U-

shape. Empirical analyses in various applications show that the log-logistic distribution

is well-suited to model a variety of survival data (Patel et al., 2006; Weng et al., 2014;

Thiruvengadam et al., 2021; Rivas-López et al., 2022).

Variational inference (VI), a method developed from machine learning, is used to approx-

imate the posterior distribution of a Bayesian model via optimization (Jordan et al., 1999;

1A version of this chapter has been published in Statistics and Computing (Xian et al., 2024).
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Bishop, 2006). Blei et al. (2017) presented a comprehensive review of VI from a statisti-

cal perspective. As an alternative to Markov Chain Monte Carlo (MCMC) algorithms in

Bayesian analysis, the main advantage of VI is its much lower computational cost (Blei

et al., 2017). In addition, as a Bayesian approach, VI can make use of prior information

obtained from similar studies, which are commonly available in survival analysis. Another

advantage of VI is that it enables us to conduct inference for small sample sizes since it does

not rely on asymptotics (Ibrahim et al., 2001), although asymptotic properties for VI meth-

ods may still be obtained in some scenarios. For example, Wang and Blei (2019) provided

a study on the frequentist consistency of VI when the Kullback–Leibler (KL) minimizer

(Kullback and Leibler, 1951) of a normal distribution is considered.

Variational Bayes (VB) is a variational inference method when the KL divergence is used

as a criterion to measure the closeness between an approximated posterior density and the

exact posterior density in the optimization. VB has been utilized in regression analysis

for di↵erent statistical problems, such as parametric and nonparametric regression with

missing data (Faes et al., 2011), nonparametric regression with measurement error (Pham

et al., 2013), semiparametric regression for count response (Luts and Wand, 2015), high-

dimensional linear regression with sparse priors (Ray and Szabó, 2022), clustering of func-

tional data via a regression mixture model (Xian et al., 2024) and regression analysis of

right censored survival data from the exponentiated-Weibull distribution (Abubakar et al.,

2023).

In this chapter, we consider the AFT survival model with survival times following a log-

logistic distribution and being right censored. We take on a Bayesian approach and develop

a VB algorithm to infer the model parameters. In our approach, we employ the coordi-

nate ascent algorithm and introduce a piecewise approximation technique when computing

expectations involving the complete-data log-likelihood to overcome the intractability of

deriving update equations for the variational density. The purpose of the piecewise approx-
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imation is to attain a closed-form solution for variational inference while avoiding reliance

on methods such as black-box variational inference (Ranganath et al., 2014) or stochastic

variational inference (Ho↵man et al., 2013; Murphy, 2023). To the best of our knowledge,

we are the first to build and investigate a VB approach for the log-logistic AFT survival

regression analysis. Our proposed method is implemented in R and codes are available at

https://github.com/chengqianxian/vbaft.

The remainder of this chapter is organized as follows. Section 3.2 presents a background of

the log-logistic AFT model and the VB inference. We present our methodology including

the proposed VB algorithm in Section 3.3. In Section 3.4, we conduct simulation studies to

evaluate the performance of our method under various scenarios and compare the analysis

results with both frequentist analysis and the MCMC analysis. In Section 3.5, we apply

our proposed method to a real dataset. A discussion on the proposed method is provided in

Section 3.6.

3.2 Background

3.2.1 Log-logistic accelerated failure time model

Let Ti be the survival time and Ci be the censoring time of the ith subject in the sample,

i = 1, ..., n. Let ti = min(Ti,Ci) and �i = (Ti  Ci) be the observed time and the indicator

for right censoring of the ith subject, respectively. Then the log-logistic AFT model can be

expressed as follows:

log(Ti) = XT
i � + bzi, (3.1)

where Xi is a column vector with length p, p � 2, containing p � 1 fixed e↵ects (covari-

ates) and a constant one to incorporate the intercept (i.e., Xi = (1, xi1, ..., xi(p�1))T ), � is the

corresponding vector of coe�cients for the fixed e↵ects, zi is a random variable following

a standard logistic distribution, and b is a scale parameter. The survival time Ti and cen-

https://github.com/chengqianxian/vbaft
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soring time Ci are assumed independent given the covariates Xi. For the standard logistic

distribution, the survival function and density are

S 0(z) =
1

1 + ez , f0(z) =
ez

(1 + ez)2 , �1 < z < 1.

Then the log-likelihood for � and b is

l(�, b) = �r log b +
nX

i=1

⇥
�i log f0(zi) + (1 � �i) log S 0(zi)

⇤
, (3.2)

where r =
Pn

i=1 �i is the number of observed survival times, and zi = (yi � XT
i �)/b, yi =

log(ti).

3.2.2 Elements of variational Bayes inference

In a generic Bayesian model, the posterior density of the parameters is of interest to conduct

statistical inference. Consider a Bayesian model with parameter vector ✓ 2 ⇥ and observed

data D. Using the Bayes’ theorem, we can obtain the posterior density function by

p(✓|D) =
p(✓,D)
p(D)

. (3.3)

However, calculating the posterior density in (3.3) might not be feasible if there are many

parameters and no conjugate prior distributions exist. Therefore, one may alternatively

find an approximation to the posterior. While for many years MCMC has stood as the

conventional method for attaining this objective, the subsequent paragraphs introduce the

elements of variational Bayes inference.

The idea of variational Bayes is to find a variational density q⇤(✓) from a family of pos-

sible densities Q to approximate p(✓|D), which can be solved in terms of an optimization

problem using the Kullback-Leibler (KL) divergence as a minimization criterion. The KL

divergence measures the closeness between the possible densities q in the family Q and the
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exact posterior density p. The KL divergence is defined as

KL(qkp) = Eq(✓)[log q(✓)] � Eq(✓)[log p(✓|D)].

It can be shown that

Eq(✓)[log q(✓)] � Eq(✓)[log p(✓|D)] =
Z

⇥

q(✓) log
q(✓)

p(✓|D)
d✓

= log p(D) �
Z

⇥

q(✓) log
p(✓,D)

q(✓)
d✓,

where the last term is the so-called evidence lower bound (ELBO). Since log p(D) is a

constant with respect to q,

q⇤ = argmin
q2Q

KL(qkp) = argmax
q2Q

ELBO(q) = argmax
q2Q

�
Eq log p(✓,D) � Eq log q(✓)

�
. (3.4)

That is, minimizing the KL divergence is equivalent to maximizing the ELBO (Jordan et al.,

1999; Blei et al., 2017).

The complexity of the variational family, Q, determines the complexity of such an opti-

mization problem. It is a great challenge to solve a complex optimization problem cor-

responding to a complicated variational family. However, when we restrict Q to be the

mean-field variational family, QMF , where the parameters and the latent variables are all

assumed to be mutually independent and each of them is governed by a distinct factor in

the variational density, q(✓) =
QK

k=1 qk(✓k) for q(✓) 2 QMF , the optimization problem in

(3.4) is then changed to

q⇤(✓) = argmax
q2QMF

ELBO(q(✓)) = argmax
q2QMF

ELBO
⇣ KY

k=1

qk(✓k)
⌘
, (3.5)

where we assume there are K sets of parameters, ✓ = {✓1, ..., ✓K}.

The coordinate ascent algorithm under the mean-field variational inference (Bishop, 2006),
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namely coordinate ascent variational inference (CAVI), can be utilized to solve the opti-

mization problem in (3.5). The CAVI algorithm iteratively updates each mean-field vari-

ational density factor while keeping the other factors fixed, which makes the variational

Bayesian inference a popular alternative to MCMC methods. As shown in Bishop (2006)

and Blei et al. (2017), the update equation for the kth factor (k = 1, ...,K) in the variational

density can be obtained by calculating

log q⇤k(✓k) = E�✓k[log p(✓,D)] + constant, (3.6)

where the constant refers to a term which does not depend on ✓k, and log p(✓,D) is the log

of the joint density of the observed data D, the parameters and the latent variables, which

is also called the complete-data log-likelihood. The expectation is taken with respect to the

variational density of all other parameters and latent variables except the one of interest.

The update equation indicates that the expectation on the right-hand side does not involve

the kth factor, and therefore can be considered as a coordinate update. With the aid of the

CAVI algorithm, the optimization problem (3.5) can be solved by climbing the ELBO to a

local optimum (Blei et al., 2017).

3.3 Methodology

For the log-logistic AFT model specified in (3.1), we estimate the model parameters, � and

b, using a Bayesian framework by further assuming the following prior distributions for �

and b:

� ⇠ Np(µ0,�
2
0Ip⇥p) with precision v0 = 1/�2

0, b ⇠ Inverse-Gamma (↵0,!0),

where µ0, v0,↵0 and !0 are known hyperparameters (Gelman et al., 2004; Faes et al.,

2011).
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Our goal is to derive a VB algorithm to approximate p(�, b |D), the posterior joint distri-

bution of � and b given the data D := {(ti, �i,Xi), i = 1, ..., n}, with q⇤ 2 QMF . That is, we

assume that q(�, b) = q(�) q(b). The complete-data log-likelihood is then

log p(D,�, b) = log p(D |�, b) + log p(�) + log p(b),

where

log p(D |�, b) = �r log b +
nX

i=1

"
�i

yi � XT
i �

b
� (1 + �i) log

n
1 + exp

�yi � XT
i �

b
�o
#
. (3.7)

By maximizing the ELBO, we have the following solutions (Bishop, 2006):

log q⇤(�)
+⇡ Eq(b)[log p(D |�, b) + log p(�)],

and

log q⇤(b)
+⇡ Eq(�)[log p(D |�, b) + log p(b)],

where we use
+⇡ to denote equality up to a constant additive factor for convenience. How-

ever, due to the complexity of the logistic distribution and the right censoring scheme, the

expectation over the complete-data log-likelihood is challenging to compute. To achieve

conjugacy and tractable expectation calculation of log p(D |�, b) in (3.7), we propose piece-

wise approximations of the function, f (x) = log(1 + exp(x)), x 2 (�1,1), embedded

in deriving the update equations of q(�) and q(b). More specifically, taking the deriva-

tion for the update equation of q⇤(�) as an example, we need to calculate the expectation,

Eq(b)[log p(D |�, b)+ log p(�)]. To obtain the conjugate posterior distribution for � which is

a multivariate normal distribution allowing a quadratic form of �, we propose a quadratic
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piecewise approximation:

log
⇣
1 + exp

�yi � XT
i �

b
�⌘ ⇡ ⇢i

yi � XT
i �

b
+ ⇣i

 
yi � XT

i �

b

!2

,

where ⇢i and ⇣i are the corresponding piecewise approximation coe�cients depending on

the value of yi � XT
i �/b. We present more details for the derivation of update equations in

Appendix C) and the illustration of the proposed piecewise approximations in Appendix

D).

3.3.1 Update equations and the VB algorithm

The optimal variational densities of � and b, q⇤(�) and q⇤(b), which are the corresponding

approximated posterior distributions, are given as follows:

q⇤(�) is a Np(µ,⌃) density function, and

q⇤(b) is an Inverse-Gamma(↵,!) density function,

where the parameters µ,⌃,↵ and ! are obtained or updated according to Algorithm 2 (see

derivation details in Appendix C) and ⇢i, ⇣i and 'i are the piecewise approximation coe�-

cients with formulas provided in Appendix D).

3.3.2 ELBO calculation

Our goal is to find q⇤(·) by maximizing the ELBO. The ELBO in our model can be derived

as follows:

ELBO(q) = Eq[log p(D,�, b)] � Eq[log q(�, b)],

where log p(D,�, b) = log p(D |�, b) + log p(�) + log p(b) and log q(�, b) = log q(�) +

log q(b).
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Algorithm 2: Variational Bayes Inference of Survival Data using a Log-logistic
AFT Model

Data: a sample of independent log observed time yi, their corresponding covariate
vectors Xi and the right censoring indicator �i, i = 1, 2, · · · , n, where n is the
sample size; values of hyperparameters: µ0,�

2
0, ↵0 and !0; convergence

threshold � and maximum number of iterations M
Result: posterior distributions of � and b and their parameters: ⌃,µ,↵,!

1 Initialization: initialize ! = !0 and µ = µ0, set m = 0 and ELBO = 0;
2 Calculation: obtain ↵ by ↵ = ↵0 + r with r =

Pn
i=1 �i;

3 while iteration m < M and di↵erence of ELBO > � do
4 m = m + 1;

5 ⌃(m)  

v0I + 2Eq(b)

⇣
1
b2

⌘Pn
i=1(1 + �i)⇣iXiXT

i

��1
;

6 µ(m)  
"(

v0 µT
0 +

Pn
i=1

 
Eq(b)

⇣
1
b

⌘⇣
� �i + (1+ �i)⇢i

⌘
XT

i + 2Eq(b)

⇣
1
b2

⌘
(1+ �i)yi⇣iXT

i

!)
⌃(m)

#T

;
7 !(m)  !0 �

Pn
i=1

⇣
�i � (1 + �i)'i

⌘⇣
yi � XT

i µ
(m)

⌘
;

8 calculate the current ELBO, ELBO(m) ;
9 calculate the di↵erence of ELBO = ELBO(m) � ELBO(m�1);

10 end

Let di↵� = Eq[log p(�)] � Eq[log q(�)] and di↵b = Eq[log p(b)] � Eq[log q(b)], then

ELBO(q) = Eq[log p(D |�, b)] + di↵� + di↵b. (3.8)

With some algebraic manipulations (see details in Appendix A), we have

Eq[log p(D |�, b)]
+⇡ �rEq(b)

⇣
log b

⌘
+ Eq(b)

⇣1
b

⌘ nX

i=1

�
�i � (1 + �i)'i

� �
yi � XT

i µ
�
,

di↵�
+⇡ �1

2
v0[trace(⌃) + (µ � µ0)T (µ � µ0)] +

1
2

log(|⌃|),

di↵b
+⇡ (↵ � ↵0)Eq(b)(log b) + (! � !0)Eq(b)

�1
b
� � ↵ log!.
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3.3.3 Expectations

In what follows, we calculate the expectations in the update equations in Algorithm 2

in Section 3.3.1 and the ELBO calculations. All the expectations are taken with respect

to the approximated variational distributions. Since q(b) is an Inverse-Gamma(↵,!), we

have

Eq(b)

⇣1
b

⌘
=
↵

!
,

Eq(b)

⇣ 1
b2

⌘
= Eq(b)

h⇣1
b

⌘2i
= Varq(b)

h
(
1
b

)
i
+

h
Eq(b)(

1
b

)
i2
=

↵

!2 +
↵2

!2 =
↵ + ↵2

!2 ,

Eq(b)(log b) = log(!) �  (↵),

where  is the digamma function defined as  (x) = d
dx log�(x).

3.4 Simulation studies

We conduct simulation studies under various scenarios with di↵erent sample sizes and cen-

soring percentages to assess the performance of the proposed VB algorithm (i.e., Algorithm

2 in Section 3.3.1).

3.4.1 Simulation scenarios and performance metrics

We generate the log of survival time for the ith subject, log(Ti), i = 1, ..., n, as follows:

log(Ti) = 0.5 + 0.2xi1 + 0.8xi2 + 0.8zi,
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where xi1, xi2, and zi are mutually independently generated with xi1 ⇠ N(1, 0.22), xi2 ⇠

Bernoulli(0.5) and zi ⇠ logistic(0, 1). The censoring time for the ith subject, Ci, is gener-

ated from a uniform distribution, uniform(0, u), where u is a positive value controlling the

percentage of censoring. Then ti = min(Ti,Ci) and �i = (Ti  Ci). Take u = 48 to achieve

a 15% censoring rate and u = 17 to achieve a 30% censoring rate in our simulations.

In the first study, we consider sample sizes of n = 300 and n = 600, and varying censoring

percentages of 0%, 15%, and 30%. These combinations yield a total of six distinct scenar-

ios. We consider a prior setting with µ0 = (0, 0, 0)T , v0 = 0.1, ↵0 = 11 and !0 = 10, which

indicates no strong prior information on the parameters. The ELBO convergence threshold

is set as 0.01 which is the default recommendation (Yao et al., 2018), and the maximum

number of iterations is 100. The performance of our VB algorithm are compared against

that from the likelihood-based survival regression, survreg in the R package survival (Th-

erneau and Grambsch, 2000; Therneau, 2023) and from the MCMC-based algorithm, the

Hamiltonian Monte Carlo (HMC) sampling in the R package rstan (Stan Development

Team, 2023).

The second study is designed to assess the performance of the proposed VB algorithms

when the sample size is small. When the sample size is small, the likelihood-based es-

timation methods may fail to achieve satisfactory results. We change the sample size to

n = 30 from n = 300 or 600 in the previous study to evaluate the proposed method for

the performance with a small sample size. We also consider a di↵erent prior setting with

µ0 = (0.3, 0.1, 1.0)T , v0 = 0.15, ↵0 = 11 and !0 = 8, which indicates partial informa-

tion about the hyperparameters is known, although they do not precisely match the true

parameter values.

We conduct N = 500 runs (replicates) for each scenario. In each of the 500 replicates,

we apply our proposed method to derive an approximate posterior distribution for each

parameter. The mean of the posterior distribution serves as our parameter estimate. The
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empirical bias and sample standard deviation (SD) as well as the empirical mean squared

error (MSE) for each estimate are obtained, where

MSE =
PN

i=1(✓0 � ✓̂i)2

N
,

and ✓̂i is the estimate of parameter ✓ in the ith replicate, and ✓0 is the true value.

In Bayesian statistics, we also assess estimation accuracy by comparing the advertised cov-

erage of approximate credible intervals to their true proposed coverage. We compute 95%

credible intervals for each parameter in 500 replicates. We prefer equal-tailed intervals

(ETI) for fixed e↵ects (�) and highest density intervals (HDI) for the scale parameter (b)

due to the Inverse-Gamma distribution’s asymmetry, as suggested by Kruschke (2015). We

also calculate the average interval length from these replicates to gauge estimation preci-

sion. For comparison, we contrast the empirical credible interval coverage obtained through

VB and MCMC with the empirical confidence interval coverage derived from likelihood

estimations using the survreg method.

High computational cost is a common issue in MCMC-based Bayesian inference algo-

rithms. We compare the performance of our VB algorithm with the MCMC-based HMC

algorithm with respect to total run time of 500 replicates. The HMC algorithm in rstan

(Ashraf-Ul-Alam and Ali Khan, 2021) is employed to produce four chains with 2000 iter-

ations for each chain. MCMC summaries are based on 4000 MCMC samples after a 1000

sample burn-in for each of the four chains and with the default thinning of 1. Both the VB

and HMC algorithms are implemented within R version 4.2.2 on a computer running the

Mac OS X operating system with 1.6 GHz CPU and 8 GB RAM.

3.4.2 Simulation results

The numerical results from the first study are presented in Table 3.1. The empirical bias,

SD and MSE pertaining to parameters �2 and b exhibit notable similarity among all three
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methods in all the scenarios. The proposed VB algorithm has smaller empirical standard

deviation but similar bias, and, therefore, smaller MSE for parameters �0 and �1 than those

of survreg under all considered scenarios. The empirical MSEs from the VB method are

approximately 5.8% smaller for �0 and 6.1% smaller for �1 than that of survreg. This ad-

vantage is sustained even when compared to MCMC with a sample size of 300, exhibiting

empirical MSE reductions of approximate 9.6% for �0 and 10.5% for �1. When the sam-

ple size is 600, the proposed VB algorithm provides similar MSEs for parameters �0 and

�1 with MCMC in each scenario with di↵erent censoring percentages. The 95% coverage

rates yielded by all three methods exhibit remarkable consistency and closely align with

the expected credible or confidence level of 0.95, ranging from 0.93 to 0.96.

Table 3.2 presents the run time required in minutes for 500 replicates for the proposed VB

method and MCMC under each scenario. We see that the VB algorithm is approximately

300 times faster than MCMC.

As expected, the sample size and censoring percentage a↵ect the MSEs. The MSE expe-

riences an increase with higher censoring percentages and a decrease as the sample size

increases. Through empirical observation, the proposed VB algorithm exhibits analogous

asymptotic properties when compared to both MCMC and the likelihood-based method.

To visually capture the distribution of parameter estimates across the three methods, we

present side-by-side boxplots in Figure 3.1 for each parameter, considering sample sizes of

n = 300 and n = 600.
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Table 3.2: Results for the first simulation study. Times in minutes for 500 replicates from
the VB and MCMC algorithms, respectively, under scenarios with di↵erent sample sizes
(n) and censoring percentages (p). The corresponding ratio of MCMC’s time to VB’s is
also calculated and presented.

n 300 600

p 0% 15% 30% 0% 15% 30%

VB 1.72 1.96 2.07 2.81 3.09 3.18
MCMC 544.53 549.64 581.22 1064.22 1071.30 1109.06
Ratio 317 280 281 379 347 349

When the sample size is small, as we considered in the second study, the MCMC provides

similar estimation results as the VB method but is substantially more time-intensive in

contrast to VB. We focus on the comparison between the likelihood-based survreg method

and the VB algorithm, shown in Table 3.3. We observe in Table 3.3 that when the sample

size is 30, VB consistently yields smaller MSEs across both weak and strong prior settings

when contrasted with survreg. Specifically, within the weak prior setting, VB achieves

reductions in MSEs of approximately 46.6% for �0, 46.5% for �1, 8.2% for �2, and 42.2%

for b, relative to the corresponding estimates obtained via survreg. In the strong prior

setting, the reductions in MSEs are more substantial, amounting to approximately 63.4%

for �0, 63.5% for �1, 15.1% for �2, and 39.1% for b. We see that both VB and survreg

exhibit similar empirical bias for each parameter. However, estimates derived from the

survreg method are characterized by greater sample SDs, consequently leading to larger

MSEs. Compared with the results in the weak prior setting, the VB method with useful

prior information exhibits superior performance in estimating the regression coe�cients

(i.e., �’s) with smaller MSEs.
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Figure 3.1: Results for the first simulation study. A comparison of results from our VB
method, the survreg and MCMC via boxplots. The horizontal dashed line on each plot
represents the true value of the corresponding parameter.
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3.5 Application to real data

In this section, we apply our proposed VB algorithm in Section 3.3.1 to a real data set,

rhDNASE, which is publicly available in the R package survival. The data, first intro-

duced in Fuchs et al. (1994) and further analyzed in Therneau and Hamilton (1997), were

used to investigate the e↵ect of recombinant human deoxyribonuclease I (rhDNase) on

pulmonary function among patients with cystic fibrosis. The rhDNase can digest extracel-

lular DNA released by leukocytes that accumulate in the airways in response to chronic

bacterial infection. Therefore, administering rhDNase would reduce the incidence of ex-

acerbation and improve lung function. Among 645 subjects, 324 were randomly assigned

to the Placebo group, and the rest were assigned to the treatment group (i.e., the rhDNase

group). The event time, T , was defined as the time until the first pulmonary exacerbation,

and the follow-up period was 169 days. The forced expiratory volume (FEV) at enrollment

was considered a risk factor (i.e., covariate) measuring lung capacity. In Lawless (2003),

a log-logistic AFT model was applied to this data set, and estimates were obtained by

maximizing the likelihood. Model diagnostic in Lawless (2003) shows that the parametric

assumption that the event time follows a log-logistic distribution was satisfied. Therefore,

we want to fit the AFT regression model:

log(T ) := Y = �0 + �1x1 + �2x2 + bz,

where x1 = (treatment = rhDNase) with being an indicator function, x2 is the FEV, and

z follows a standard logistic distribution with a scale parameter b. We follow the Bayesian

paradigm to make inference about the unknowns in the AFT model, and the approximation

to the posterior distribution is performed following the proposed VB algorithm.

Unlike simulation studies, we do not have informative priors in this real data set. However,

we can choose priors using historical data and similar analyses on this type of data. In
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a similar study by Shah and Hodson (1996) on the e↵ect of rhDNase on improving lung

function, researchers found that daily treatment of rhDNase could reduce the risk of devel-

oping an exacerbation by 28%. That is, a daily administration of rhDNase can prolong the

occurrence of an exacerbation by 28%. Therefore, we can choose log(1.28) ⇡ 0.25 as the

prior mean of �1. Similarly, based on Block et al. (2006), the odds ratio of developing an

exacerbation with one unit increase of FEV is 0.96, which indicates the corresponding time

to an exacerbation occurrence increase by 4%. Therefore, we can choose log(1.04) ⇡ 0.04

as the prior mean of �2. For the mean of the intercept (i.e., �0) prior distribution, we can

choose the log of half of the follow-up period length, log(169/2) ⇡ 4.4. For the precision

hyperparameter v0, we use a low precision, with v0 = 1, to obtain a flat prior. For the prior

of the scale parameter, we use ↵0 = 501 and !0 = 500 to have a mean scale of one. To

summarize, we consider the following prior distributions for the model parameters:

• � ⇠ Np(µ0,�
2
0Ip⇥p) with µ0 = (4.4, 0.25, 0.04)T and v0 = 1/�2

0 = 1

• b ⇠ Inverse-Gamma (↵0,!0) with ↵0 = 501 and !0 = 500.

We compared the estimation results obtained using our proposed VB algorithm to those

from the MCMC-based HMC algorithm and the likelihood-based survival regression, survreg,

as shown in Table 3.4. The convergence of the MCMC algorithm was well assessed and

checked by the trace plot and autocorrelation plot (Ashraf-Ul-Alam and Ali Khan, 2021).

Remarkably, all three methods exhibited a strong agreement in both point and interval es-

timations of each parameter. Figure 3.2 depicts the approximated posterior densities of

each parameter obtained from MCMC and VB, further confirming a strong agreement in

the estimation of regression coe�cients and the scale parameter. Notably, the computa-

tional e�ciency of the proposed VB algorithm was outstanding, completing in only 0.88

seconds, whereas the MCMC method took 2.56 minutes, making it over 170 times slower

than VB.

Based on the results from our VB method, the estimated coe�cient of the treatment, rhD-
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Nase, is 0.416 with a 95% credible interval of [0.139, 0.692], indicating that rhDNase can

significantly prolong the time to the first pulmonary exacerbation. Furthermore, the ac-

celeration factor is exp(0.416) ⇡ 1.516 with a 95% credible interval of [1.1491.998] for

a patient treated with rhDNase. The time to the first pulmonary exacerbation of a patient

treated with rhDNase is therefore delayed by a factor of about 1.5 compared to a patient

from the placebo group with the same FEV under a log-logistic AFT model. Besides, FEV

is a significant risk factor on the event time, with an estimated coe�cient of 0.021 (95%

credible interval [0.016, 0.027]). The acceleration factor of FEV is exp(0.021) ⇡ 1.021,

meaning that one unit increase in FEV would delay the event time by 2.1% with a 95%

credible interval of [1.6%, 2.7%]. Our results from the VB algorithm highly agree with the

results obtained by survreg and the MCMC algorithm.
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Figure 3.2: Results from analysis on rhDNASE data. Approximated posterior density for
each parameter (dashed red line for VB and solid blue line for MCMC).
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3.6 Discussion

This chapter introduces a novel inference approach for the log-logistic AFT model, o↵er-

ing an alternative to the MCMC-based Bayesian algorithm for modeling survival data. The

study utilizes mean-field variational Bayes (VB) and applies coordinate ascent variational

inference to formulate update equations within the VB framework. To achieve conjugacy

under the Bayesian paradigm, the linear and quadratic piecewise approximations are em-

bedded in the update equations for parameters. Simulation studies and the application to a

real data set show that our proposed VB algorithm provides satisfactory results.

Our proposed VB approach presents several notable advantages. Similar to other Bayesian

methods, our proposed VB technique accommodates the integration of prior information

obtained from historical data or related studies, which is more particular in clinical re-

search. Our VB algorithm is particularly prominent in the small sample scenario where the

typical likelihood-based methods may not work well. The proposed VB algorithm performs

well under a large sample size and a weak prior setting, while also having a significantly

lower computational cost compared to MCMC.

In principle, VB can be applied to the AFT regression model with other di↵erent censoring

schemes, including left censored and interval censored data. However, such adaptations for

a log-logistic AFT model with di↵erent censoring schemes necessitate adjustments to the

likelihood function and thus to the update equation for each variational density. We antici-

pate that more extensive modification or a di↵erent approach altogether may be required if

we consider alternative parametric distributions for survival data, for example, such as the

log-normal distribution, which lacks a closed-form survival function.

It is important to note that, while closed-form update equations are obtained through the

CAVI algorithm with a piecewise approximation technique, alternative variational infer-

ence procedures such as the stochastic variational inference (Ho↵man et al., 2013) and the
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black-box variational inference (Ranganath et al., 2014; Murphy, 2023) may be consid-

ered. These types of variational inference are gradient-based which can be implemented

stochastically, for example, using the automatic variational inference algorithm (Kucukel-

bir et al., 2015). However, potential challenges associated with large variance in such

gradient-based algorithms need to be addressed. For instance, in the black-box variational

inference, Ranganath et al. (2014) applied a variance-control method to reduce the variance

of the score function estimator of the ELBO gradient. A more comprehensive discussion

can be found in Murphy (2023). Numerical calculations of the gradients when implement-

ing the gradient-based variational inference are available via some autograd based Python

libraries such as Pyro (Bingham et al., 2019) and Tensorflow (Dillon et al., 2017).

To the best of our knowledge, our work stands as a pioneering e↵ort in the application of

Bayesian variational inference to model survival data via a log-logistic AFT regression. In

addition, we introduce a piecewise approximation technique within the VB algorithm to ob-

tain closed-form update equations. The piecewise approximations have been widely used in

other optimization problems to overcome the issue of intractable calculations (Stein, 1995;

Powell et al., 2004; Rewieński and White, 2006; Zhou et al., 2020; Asghari and Fathollahi-

Fard, 2022). The piecewise polynomial approximation in the update equations is shown to

work well based on our simulation studies. This approximation provides a new insight to

apply Bayesian variational inference under complex models to achieve conjugacy.
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Chapter 4
Fast variational Bayesian inference for correlated

survival data: an application to invasive mechan-

ical ventilation duration analysis

4.1 Introduction

Correlated survival data are commonplace in various research contexts and have been ex-

tensively studied in the literature (Luo et al., 2013; Honerkamp-Smith and Xu, 2016; Liu

et al., 2017) 1. One such context of correlated survival data is observed in clustered survival

data, which are derived from multiple entities such as families or hospitals. Within each

cluster, survival data exhibit correlation because of the shared environmental factors, and

random e↵ects are often introduced to capture the shared characteristics within the clus-

ter. Conditional on the random e↵ects (frailty), the survival times within a cluster can be

assumed independent, which leads to a shared frailty model to account for cluster-level

uncertainty (Hougaard, 1995; Hanagal, 2011; Gorfine and Zucker, 2023).

Our research is motivated by data from intensive care units (ICUs) across multiple clinical

centers in Ontario, Canada. The ICU data were provided by the Critical Care Information

System (CCIS) Ontario database. In Canadian ICUs, invasive mechanical ventilation is

prevalent, with approximately one third of patients requiring ventilation during their ICU

stay (Canadian Institute for Health Information, 2020). The duration of ventilation has

significant implications for clinical outcomes and is associated with an increased risk of

complications (Canadian Institute for Health Information, 2020). Analysis on the ventila-

tion duration for ICU patients utilizing the associated risk factors, such as patient categories

1A version of this chapter has been submitted (Xian et al., 2024b).
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(e.g., medical or surgical), admission diagnoses, and patient severity, can help determine

the number of beds with ventilators and therefore, support capacity planning and e↵ective

clinical resource management. The severity of patients in ICU is often assessed using the

Multiple Organ Dysfunction Score (MODS) (Marshall et al., 1995) that evaluates organ

function. Kobara et al. (2023) conducted a study on ventilation duration for ICU patients

from Ontario using a survival analysis framework. In their study, patient ventilation dura-

tion is considered as a time-to-event (survival) outcome and parametric accelerated failure

time (AFT) models are applied to predict the ventilation time. If a patient is transferred

to another facility without subsequent follow-up information, the ventilation time is con-

sidered right censored. Kobara et al. (2023) found that the log-logistic AFT model well

describes the association between risk factors and patients’ ventilation duration in Ontario

ICUs. However, Kobara et al. (2023) did not consider a possible correlation of ventilation

duration times among patients within the same ICU. Previous studies have indicated that

patient outcomes within the same ICU site may be correlated, and ignoring this hierarchi-

cal structure can result in flawed prediction models (Burgess Jr et al., 2000; Glance et al.,

2003).

As aforementioned, shared frailty can be used to accommodate cluster-level association

among patients within the cluster. Gorfine and Zucker (2023) recently provided a compre-

hensive review of shared frailty methods for complex survival data. To incorporate risk

factors in survival data, the Cox proportional hazards (PH) model with a multiplicative

shared frailty on the hazard rates has been widely developed (Gorfine and Zucker, 2023).

As an alternative to the Cox PH model, AFT models o↵er an intuitive interpretation of co-

variate e↵ects on survival time. Lambert et al. (2004) developed shared frailty AFT models

with di↵erent parametric distributions assumed for the survival time and conducted max-

imum likelihood estimation by integrating out the unobserved frailties. They empirically

found that the choice of distribution for the shared frailty is not critical, recommending

the normal distribution. Do Ha et al. (2002) considered a shared frailty log-normal AFT
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model and used the hierarchical-likelihood (h-likelihood) approach to estimate the model

parameters. The h-likelihood method obtains fixed e↵ects estimates by maximizing the

h-likelihood, while utilizing the restricted maximum likelihood estimate for the estima-

tion of the variance of the shared frailty (Do Ha et al., 2017). An R package, frailtyHL

(Do Ha et al., 2012) has been developed to implement the h-likelihood estimation in the

shared frailty log-normal AFT model. Building on this, Park and Do Ha (2019) introduced

a penalized variable selection technique for the shared frailty log-normal AFT model. Ad-

ditionally, Zhou et al. (2017) developed a Markov chain Monte Carlo (MCMC)-based al-

gorithm, called survregBayes, to estimate the shared frailty AFT model, and an R package,

spBayesSurv (Zhou et al., 2020), is available for its implementation. To our knowledge,

there is no work on variational Bayesian inference for shared frailty AFT models.

As an alternative to MCMC methods, which are the gold standard for obtaining posterior

distributions under a Bayesian framework, variational inference (VI) has gained popularity

due to its favourable results and lower computational cost than MCMC. Recently, sev-

eral types of VI algorithms have been developed, including mean-field VI (Bishop, 2006),

stochastic VI (Ho↵man et al., 2013), and black-box VI (Ranganath et al., 2014). A special

case of mean-field VI, called mean-field variational Bayes (VB), arises when the Kull-

back–Leibler (KL) divergence is utilized to quantify the dissimilarity between exact and

approximated posterior distributions. In addition, the approximated posterior distribution,

referred to as the variational posterior, is assumed to belong to a mean-field variational

family. Under the mean-field VB framework, the solutions to minimizing the KL diver-

gence can be obtained by utilizing the coordinate ascent algorithm (Bishop, 2006; Jordan

et al., 1999). Mean-field VB has been widely applied to regression models such as the gen-

eralized additive model (Neville et al., 2011), nonparametric regression with measurement

error (Pham et al., 2013), count response semiparametric regression (Luts and Wand, 2015),

high-dimensional linear regression (Ray and Szabó, 2022), multilevel regression modelling

(Lee and Wand, 2016a), B-spline regression mixture model for functional data clustering
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(Xian et al., 2024), basis selection for functional data representation (da Cruz et al., 2024),

among others. Applications of other types of VI can be found in a comprehensive review

of VI from a statistical perspective by Blei et al. (2017).

In this study, we propose a shared frailty log-logistic AFT model to account for the correla-

tion among patient ventilation durations within the ICU sites. We develop a novel and fast

mean-field VB algorithm to infer the model parameters. By applying the piece-wise ap-

proximation techniques proposed by Xian et al. (2024a) to avoid intractable calculations,

we obtain closed-form posterior distributions. We conduct extensive simulation studies

with various numbers of clusters and cluster sizes to evaluate the performance of the pro-

posed method, and compare the performance of our VB algorithm with the h-likelihood

method (Do Ha et al., 2017) and the MCMC-based algorithm survregBayes (Zhou et al.,

2020). Finally, we apply our methodology to investigate ventilation duration for ICU pa-

tients using the same dataset as Kobara et al. (2023). This study was approved by the Re-

search Ethics Review Committee at King’s University College at Western University.

The remainder of this chapter is organized as follows. Section 4.2 presents the log-logistic

AFT model with a shared frailty under the Bayesian framework. We introduce our proposed

VB algorithm in Section 4.3. In Section 4.4, simulation studies are conducted to evaluate

the performance of our VB algorithm. Section 4.5 illustrates the application of the proposed

method to the ICU ventilation duration data. A discussion is provided in Section 4.6.

4.2 Bayesian log-logistic AFT model with a shared frailty

Let Ti j and Ci j be the survival and censoring times, respectively, of the jth subject from

the ith group (i.e., cluster) in a sample, i = 1, ...,K and j = 1, ..., ni. Let ti j = min(Ti j,Ci j)

and �i j = (Ti j  Ci j) be the subject’s observed time and the indicator for right censoring,

respectively. We consider a log-logistic AFT model with shared frailty (a random intercept)
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specified as follows:

log(Ti j) = �i + XT
i j � + b✏i j, (4.1)

where Xi j is a column vector with length p, p � 2, containing p�1 fixed e↵ects (covariates)

and a constant one to incorporate the constant intercept (i.e., Xi j = (1, xi j1, ..., xi j(p�1))T ), � is

the corresponding vector of coe�cients for the fixed e↵ects, where �i is a random intercept

for the ith cluster and ✏i j is a random variable following a standard logistic distribution, and

b is a scale parameter. We further assume that �i
iid⇠ N(0,�2

�) representing the discrepancy

between clusters with iid denoting identically and independent distributed. The survival

time Ti j and censoring time Ci j are assumed independent given the covariates Xi j. Our

model follows a structure similar to one presented by Robinson (1991) and Nolan et al.

(2020) for a Gaussian linear mixed e↵ect model.

In our proposed Model (4.1), we incorporate the unknown and unobserved shared risk

through cluster-specific random intercepts and estimate the model parameters, �, b, and �2
�

using a Bayesian framework by further assuming the following independent marginal prior

distributions:

• � ⇠ Np(µ0,�
2
0Ip⇥p) with precision v0 = 1/�2

0 and Ip⇥p being a p ⇥ p identity matrix

• b ⇠ Inverse-Gamma (↵0,!0)

• �i|�2
�

iid⇠ N(0,�2
�), i = 1, ...,K

• �2
� ⇠ Inverse-Gamma (�0, ⌘0)

where µ0, v0,↵0, !0, �0 and ⌘0 are known hyperparameters (parameters of the prior distri-

butions).
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4.3 Variational Bayes algorithm

In what follows, we outline our methodology for deriving a mean-field VB algorithm for

Model (4.1). We summarize the resulted VB algorithm in Algorithm 3.

Given the observed data D := {(ti j, �i j,Xi j), i = 1, ...,K, j = 1, ..., ni}, we denote the com-

plete data log-likelihood by log p(D,�,�, b,�2
�), where � = (�1, ..., �K). Our objective is to

derive a VB algorithm to approximate the exact posterior joint distribution of �, b, � and

�2
� given the data D by maximizing the evidence lower bound (ELBO) defined as

ELBO(q) = Eq[log p(D,�,�, b,�2
�)] � Eq[log q(�, b,�,�2

�)], (4.2)

where q(�, b,�,�2
�) is the approximated posterior joint distribution, which is also called

the variational density, and the expectation is taken with respect to the variational den-

sity (Blei et al., 2017). We consider the mean-field variational family which assumes

that q(�, b,�,�2
�) = q(�) q(b) q(�2

�)
QK

i=1 q(�i), and apply the coordinate ascent varia-

tional inference (CAVI) algorithm (Bishop, 2006) to obtain each variational component

(e.g., q(�)) in q(�, b,�,�2
�)). Under our Model (4.1), the complete data log-likelihood

log p(D,�,�, b,�2
�) can be obtained by

log p(D,�,�, b,�2
�) = log p(D |�,�, b) + log p(�) + log p(b)

+

KX

i=1

log p(�i |�2
�) + log p(�2

�), (4.3)

where

log p(D |�,�, b) = �� log b +
KX

i=1

niX

j=1

"
�i j

yi j � XT
i j� � �i

b
� (1 + �i j)

log
n
1 + exp

�yi j � XT
i j� � �i

b
�o
#
, (4.4)
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with � =
PK

i=1
Pni

j=1 �i j being the number of observed uncensored times and yi j = log(ti j), i =

1, ...,K, j = 1, ..., ni, being the log observed survival time.

By maximizing the ELBO, the following solutions are provided by the CAVI algorithm:

log q⇤(�)
+⇡ E��[log p(D |�,�, b) + log p(�)],

log q⇤(�i)
+⇡ E��i

h
log p(D |�,�, b) +

KX

i=1

log p(�i |�2
�)
i
,

log q⇤(b)
+⇡ E�b[log p(D |�,�, b) + log p(b)],

log q⇤(�2
�)

+⇡ E��2
�

h KX

i=1

log p(�i |�2
�) + log p(�2

�)
i
,

where we use
+⇡ to denote equality up to a constant additive factor for convenience, and ��

indicates the expectation is taken with respect to the variational density of other latent vari-

ables but �, same for other solutions. To achieve conjugacy and tractable expectation calcu-

lation of log p(D |�,�, b) as specified in (4.4), we apply the proposed method by Xian et al.

(2024a), piecewise approximations of the function, f (x) = log(1 + exp(x)), x 2 (�1,1),

embedded in deriving the update equations for each parameter. As in Nolan et al. (2020)

and Lee and Wand (2016b), we are also interested in the posterior distribution of the ran-

dom e↵ects, q⇤(�i), i = 1, ...,K, in our proposed VB framework.

4.3.1 Update equation for each variational density

The update equations to obtain the optimal variational densities of �, �i, b and �2
� denoted

by q⇤(�), q⇤(�i), q⇤(b) and q⇤(�2
�), respectively, which are the corresponding approximated
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posterior distributions, are presented as follows within the chapter while their derivations

are given in the Appendix E.1. The calculation of expectations in the update equations are

given in Section 4.3.2. In the update equations, 'i j, ⇣i j, and ⇢i j represent the piece-wise

approximation coe�cients proposed by Xian et al. (2024a) for the jth subject in the ith

cluster. Detailed information regarding these coe�cients is also provided in the Appendix

E.1.

(1) Update equation for q⇤(�)

q⇤(�) is an Np(µ⇤,⌃⇤) where

⌃⇤ =

v0Ip⇥p + 2Eq(b)

� 1
b2

� KX

i=1

niX

j=1

(1 + �i j)⇣i jXi jXT
i j

��1
,

and

µ⇤ =

"⇢
v0 µ

T
0 +

KX

i=1

niX

j=1

✓⇣
Eq(b)

�1
b
�⇣ � �i j + (1 + �i j)⇢i j

⌘

+2Eq(b)
� 1
b2

�
(1 + �i j)⇣i j

�
yi j � Eq(�i)(�i)

�⌘
XT

i j

◆�
⌃⇤

#T

.

(2) Update equation for q⇤(�i)

q⇤(�i) is an Nl(⌧⇤i ,�
2⇤
i ) where

⌧⇤i = �
2⇤
i

niX

j=1

h
Eq(b)(

1
b

)
� � �i j + (1 + �i j)⇢i j

�
+ 2Eq(b)(

1
b2 )(1 + �i j)⇣i j

�
yi j � XT

i jEq(�)�
�i
,

and

�2⇤
i =

⇥
Eq(�2

�)
� 1
�2
�

�
+ 2Eq(b)

� 1
b2

� niX

j=1

(1 + �i j)⇣i j
⇤�1.

(3) Update equation for q⇤(b)
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q⇤(b) is an Inverse-Gamma (↵⇤,!⇤) where ↵⇤ = ↵0 + � and

!⇤ = !0 �
KX

i=1

niX

j=1

⇣
�i j � (1 + �i j)'i j

⌘⇣
yi j � XT

i jEq(�)(�) � Eq(�i)�i

⌘
.

(4) Update equation for q⇤(�2
�)

q⇤(�2
�) is an Inverse-Gamma (�⇤, ⌘⇤) where �⇤ = �0 + K/2 and

⌘⇤ = ⌘0 +
1
2

KX

i=1

Eq(�i)�
2
i .

4.3.2 ELBO calculation

The ELBO under Model (4.1) is defined in (4.2) with the complete-data log-likelihood

calculated by (4.3) and note that q(�, b,�,�2
�) = q(�) q(b) q(�2

�)
QK

i=1 q(�i). Let

di↵� = Eq[log p(�)] � Eq[log q(�)],

di↵� = Eq

h KX

i=1

log p(�i |�2
�)
i
� Eq

h KX

i=1

log q(�i)
i
,

di↵b = Eq[log p(b)] � Eq[log q(b)],

di↵�2
�
= Eq[log p(�2

�)] � Eq[log q(�2
�)].

We can calculate the ELBO as follows with proof details provided in the Appendix E.2.

ELBO(q) = Eq[log p(D |�,�, b)] + di↵� + di↵� + di↵b + di↵�2
�
, (4.5)
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where

Eq[log p(D |�,�, b)]
+⇡ ��Eq(b)(log b)

+Eq(b)
�1
b
� KX

i=1

niX

j=1

⇣
�i j � (1 + �i j)'i j

⌘⇣
yi j � XT

i jEq(�)(�) � Eq(�i)�i

⌘
,

di↵�
+⇡ �1

2
v0[trace(⌃⇤) + (µ⇤ � µ0)T (µ⇤ � µ0)] +

1
2

log(|⌃⇤|),

di↵�
+⇡ �K

2
Eq(�2

�)(log�2
�) �

1
2
Eq(�2

�)
� 1
�2
�

� KX

i=1

Eq(�i)(�
2
i ) � 1

2

KX

i=1

�
log�2⇤

i
�
,

di↵b
+⇡ (↵⇤ � ↵0)Eq(b)(log b) + (!⇤ � !0)Eq(b)

�1
b
� � ↵⇤ log!⇤, and

di↵�2
�

+⇡ (�⇤ � �0)Eq(�2
�)(log�2

�) + (⌘⇤ � ⌘0)Eq(�2
�)
� 1
�2
�

� � �⇤ log ⌘⇤.

We now present the calculation of the expectations in the update equations and the ELBO

calculation. All the expectations are taken with respect to the approximated variational

distributions. Since q⇤(b) is an Inverse-Gamma(↵⇤,!⇤), we have Eq(b)(1/b) = ↵⇤/!⇤,

Eq(b)

⇣ 1
b2

⌘
= Eq(b)

h⇣1
b

⌘2i
= Varq(b)

h⇣1
b

⌘i
+

h
Eq(b)

⇣1
b

⌘i2
=
↵⇤

!⇤2
+
↵⇤2

!⇤2
=
↵⇤ + ↵⇤2

!⇤2
,

and Eq(b)(log b) = log(!⇤) �  (↵⇤), where  is the digamma function defined as  (x) =

d
dx log�(x). Similarly, Eq(�2

�)(1/�2
�) = �⇤/⌘⇤ and Eq(�2

�)(log�2
�) = log(⌘⇤) �  (�⇤).
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Algorithm 3: Variational Bayesian inference of correlated survival data using a
shared frailty log-logistic AFT model

Data: a sample of independent log observed time yi j, their corresponding covariate
vectors Xi j and the right censoring indicator �i j, i = 1, ...,K, j = 1, ..., ni for
the jth observation from the ith group; values of hyperparameters: µ0, v0, ↵0,
!0, �0 and ⌘0; convergence threshold � and maximum number of iterations
M

Result: posterior distributions of �, �i, i = 1, ...,K, b and �2
�, and their parameters:

⌃,µ,�2
i , ⌧i,↵,!, �, ⌘

1 Initialization: initialize ! = !0, µ = µ0, ⌧i = 0 and ⌘ = ⌘0, set m = 0 and
ELBO = 0 ;

2 Calculation: obtain ↵ by ↵ = ↵0 + � with � =
PK

i=1
Pni

j=1 �i j and � by � = �0 + K/2;
3 while iteration m < M and di↵erence of ELBO > � do
4 m = m + 1;

5 ⌃(m)  

v0Ip⇥p + 2Eq(b)

� 1
b2

�PK
i=1

Pni
j=1(1 + �i j)⇣i jXi jXT

i j

��1
;

6 µ(m)  
"⇢

v0 µT
0 +

PK
i=1

Pni
j=1

✓⇣
Eq(b)

�1
b
�⇣ � �i j + (1 + �i j)⇢i j

⌘
+ 2Eq(b)

� 1
b2

�
(1 +

�i j)⇣i j
�
yi j � Eq(�i)(�i)

�⌘
XT

i j

◆�
⌃(m)

#T

;

7 �2(m)
i  ⇥

Eq(�2
�)
� 1
�2
�

�
+ 2Eq(b)

� 1
b2

�Pni
j=1(1 + �i j)⇣i j

⇤�1, i = 1, ...,K;

8 ⌧(m)
i  �2(m)

i
Pni

j=1

h
Eq(b)( 1

b )
� � �i j + (1 + �i j)⇢i j

�
+ 2Eq(b)( 1

b2 )(1 + �i j)⇣i j
�
yi j �

XT
i jEq(�)�

�i
, i = 1, ...,K ;

9 !(m)  !0 �
PK

i=1
Pni

j=1

⇣
�i j � (1 + �i j)'i j

⌘⇣
yi j � XT

i jEq(�)(�) � Eq(�i)�i

⌘
;

10 ⌘(m)  ⌘0 +
1
2
PK

i=1 Eq(�i)�
2
i ;

11 calculate the current ELBO, ELBO(m) ;
12 calculate the di↵erence of ELBO = ELBO(m) � ELBO(m�1);
13 end

4.4 Simulation study

4.4.1 Design of simulation

We conduct simulation studies to evaluate the performance of our proposed VB algorithms

across di↵erent scenarios by varying the number of clusters and the number of observations

within each cluster.
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We generate the log of survival time for the jth subject in the ith cluster, log(Ti j), i = 1, ...,K

and j = 1, ..., ni as follows:

log Ti j = 0.5 + �1xi j1 + �2xi j2 + �i + b✏i j,

where xi j1, xi j2, and ✏i j are mutually independently generated with xi j1 ⇠ N(1, 0.22), xi j2 ⇠

Bernoulli(0.5) and ✏i j ⇠ logistic(0, 1). The values of �1, �2 and b are chosen as 0.2, 0.8 and

0.8, respectively. The random intercept for the ith cluster, �i, is generated from N(0,�2
�)

with �2
� = 1. The censoring time for the jth subject in the ith cluster, Ci j, is generated from

a uniform distribution, uniform(0, d), where d is a positive value controlling the percentage

of censoring. Then ti j = min(Ti j,Ci j) and �i j = (Ti j  Ci j). Take d = 48 to achieve a

15% censoring rate in our simulations. Investigation of the e↵ect of censoring rates can

be found in Xian et al. (2024a) where they show that as the censoring rate increases, an

increase in mean squared error (MSE) of estimating parameters in an AFT model using a

VB algorithm was observed.

We explore various scenarios by varying the number of clusters, K, and the number of

observations within each cluster, ni = n for all i = 1, ...,K. Across the experiments, we

consider K values from the set {15, 30, 50, 80} and n values from {5, 15, 30, 50}, resulting

in a total of 16 unique scenarios. Our objective is to assess the estimation performance of

the VB algorithm concerning the variations in K and n. We consider a prior setting with

µ0 = (0, 0, 0)T , v0 = 0.1, ↵0 = �0 = 3, and !0 = ⌘0 = 2, which indicates no strong prior

information on the parameters. The ELBO convergence threshold is set as 0.01 which is

the default recommendation (Yao et al., 2018), and the maximum number of iterations is

100.

We conduct N = 500 runs (replicates) in each considered scenario and apply our proposed

VB algorithm to derive the approximated posterior distribution of each parameter to each

run. The mean of each approximated posterior distribution is used as the parameter estimate
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for the corresponding parameter. The empirical bias and sample standard deviation (SD)

as well as the empirical MSE for each estimate are obtained, where

MSE =
PN

i=1(✓0 � ✓̂i)2

N
,

and ✓̂i is the estimate of parameter ✓ in the ith replicate, and ✓0 is the true value. In addition,

for each parameter of interest, we report the empirical 95% coverage rate (CR) calculated

as

CR =
PN

i=1 Ii

N
,

where I is the indicator variable which takes 1 if the true parameter value ✓0 falls into the

95% credible interval.

4.4.2 Simulation results

The empirical bias, sample SD, empirical MSE and empirical CR of estimating �1, �2, b,

and �2
� from 500 replicates are summarized in Table 4.1. Considering �1, �2, and b, we

observe that when the number of clusters K is fixed, increasing the cluster size n from 5 to

50 does not always significantly a↵ect the empirical bias. However, there is a noticeable

decrease in the sample SD, leading to a pronounced reduction in the empirical MSE. A

similar trend is observed when the cluster size is fixed while increasing K. Figure 4.1

visually illustrates this asymptotic property through boxplots. Our primary focus lies in

understanding the impact of K and n on estimating the variance of the random intercept,

denoted as �2
�. In most of the scenarios, when the number of clusters K is fixed, we observe

that the bias of estimating �2
� decreases as the cluster size increases, while the sample

SD remains relatively stable. However, when K is increased, both the empirical bias and

the sample SD decrease noticeably, except for the case when n = 30 as K grows from

15 to 30. Particularly noteworthy is the scenario with K = 80 and n = 50, where we

achieve a less biased and less variable estimation of the variance of the random intercept.



Chapter 4 – Fast variational Bayesian inference for correlated survival data: an
application to invasive mechanical ventilation duration analysis 116

In addition, the empirical CRs corresponding to a 95% credible interval for each parameter

across all scenarios are close to the nominal level of 95%, with a mean of 94.1% and

a standard deviation of 0.014. Furthermore, based on a nominal level of 95% with 500

replicates, the coverage with two standard deviations is 95%±2SD = [93.1%, 97.0%] since

SD =
p

0.95 ⇥ 0.05/500 ⇡ 0.0097. We observe that the majority of our empirical CRs are

within the range of [93.1%, 97.0%].

The left part of Figure 4.2 presents the computational run time of 500 replicates in minutes

against the number of clusters (K) with di↵erent colors for di↵erent cluster sizes n. Fixing

K, as n increases, the used time increases. The scatter plot in the right of Figure 4.2 shows

the run time against the sample size (K ⇥ n). As anticipated, the computational cost rises

with increasing sample size.
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Figure 4.1: Boxplots of parameter estimates using posterior means from 500 replicates
under various scenarios with di↵erent number of clusters K and cluster sizes n based on
our proposed VB algorithm. The horizontal dashed line on each plot represents the true
value of the corresponding parameter used when generating the data.

Furthermore, among those considered 16 scenarios, we select three scenarios (K = 30 with

n = 5, K = 50 with n = 15, and K = 80 with n = 30) and conduct a comparative analysis

of estimation results obtained from the proposed VB algorithm with those from two alter-
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native methods which we introduced in Section 4.1: the h-likelihood method proposed by

Do Ha et al. (2017) and the MCMC-based survregbayes developed by Zhou et al. (2017).

Summaries from the MCMC-based survregbayes algorithm with adaptive Metropolis sam-

plers are derived from one Markov chain, subsampled every 5 iterates to achieve a final

chain size of 2,000 after a burn-in period of 5,000 iterates (Zhou et al., 2017). We further

refer to our VB method and the h-likelihood method as survregVBfrailty and survregHL,

respectively. Numerical estimation results are presented in Table 4.2, where we focus on

the comparison of estimation for �1, �2 and �2
� since the MCMC-based survregbayes does

not directly return the estimate for b. In the scenario with K = 30 and n = 5, the pro-

posed survregVBfrailty exhibits a larger empirical bias compared to both the survregHL

and survregbayes methods. However, as K and n increase, the discrepancy in empirical

bias among the three methods becomes negligible. In terms of the sample SD, on average,

across the three parameters �1, �2, and �2
�, survregVBfrailty yields a 16.5% smaller sam-

ple SD when K = 30 and n = 5, a 7.6% smaller sample SD when K = 50 and n = 15,

and a 3.7% smaller sample SD when K = 80 and n = 30, compared to survregHL. Com-

pared with the survregBayes algorithm, we observe a decrease in sample SD of 7.8% in

the K = 30, n = 5 scenario, mainly due to �1, and only 2.0% in the K = 50, n = 15 sce-

nario. However, in the scenario with K = 80, n = 30, no average di↵erence in sample SD

is observed between VB and MCMC. Therefore, the survregVBfrailty algorithm generally

yields a smaller SD, resulting in a lower MSE compared to the other two methods in most

cases. On average, across the three parameters �1, �2, and �2
�, survregVBfrailty achieves a

27.2% lower MSE when K = 30, n = 5, a 12.0% lower MSE when K = 50, n = 15, and a

13.4% lower MSE when K = 80, n = 30, compared to survregHL. Compared with survreg-

Bayes, we observe a reduction in MSE of 12.4% in the K = 30, n = 5 scenario, mainly

because of �1, and only 3.0% in the K = 50, n = 15 scenario. However, in the scenario with

K = 80, n = 30, no di↵erence in MSE is observed between VB and MCMC. In addition,

we compare the posterior densities for �1, �2, and �2
� obtained from both survregVBfrailty
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and the MCMC-based survregBayes using a simulated dataset with K = 50 and n = 15.

These densities present a strong consistency between the VB and MCMC algorithms as

illustrated in Figure 4.3, which is also reflected in the results presented in Table 4.2.
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Figure 4.2: Left: the run time in minutes used for 500 replicates under various scenarios
with di↵erent number of clusters K and cluster sizes n based on our proposed VB algorithm.
Right: the run time in minutes used for 500 replicates in di↵erent sample sizes based on
VB.
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Figure 4.3: A comparison of posterior densities of �1, �2 and �2
� obtained from our VB

method survregVBfrailty and MCMC-based survregbayes from a simulated data set in the
scenario with K = 50 and n = 15.

To assess the computational e�ciency of the proposed VB algorithm, we compare the

run times in minutes for 500 replicates in these three scenario across survregVBfrailty,

survregHL, and survregbayes methods and present the results in Table 4.3. In Table 4.3, we

observe that in the scenario with a small sample size (K = 30 and n = 5), there is minimal

di↵erence in the run times between the VB and h-likelihood methods. However, as both K

and n increase, the h-likelihood method requires progressively longer computation times to
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obtain estimates. Particularly in the scenario with K = 80 and n = 30, the computational

time is over 10 times longer than that required by the VB algorithm. Comparatively, the

VB algorithm demonstrates significantly higher computational e�ciency when contrasted

with the MCMC-based survregbayes algorithm. Notably, in the scenario with K = 80

and n = 30, the survregVBfrailty algorithm runs approximately 150 times faster than the

survregbayes algorithm. All algorithms were implemented within R version 4.3.2 and sim-

ulations were conducted on a computer operating the Mac OS X platform, equipped with a

4.05 GHz CPU and 8 GB RAM.
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Table 4.2: A comparison of numerical estimation results including the empirical Bias,
sample SD and MSE, from our VB method survregVBfrailty, the h-likelihood method
survregHL and MCMC-based survregbayes method in each scenario (K: number of clus-
ters, n: number of observations in each cluster).

survregVBfrailty survregHL survregbayes

Scenario Bias SD MSE Bias SD MSE Bias SD MSE

K = 30, n = 5
�1 0.004 0.589 0.346 0.001 0.664 0.440 0.001 0.664 0.440
�2 -0.015 0.257 0.066 -0.002 0.270 0.073 -0.002 0.266 0.071
�2
� -0.092 0.274 0.084 0.001 0.412 0.170 -0.042 0.300 0.092

K = 50, n = 15
�1 0.003 0.253 0.064 0.001 0.268 0.072 -0.005 0.259 0.067
�2 -0.001 0.104 0.011 0.007 0.107 0.011 -0.004 0.104 0.011
�2
� -0.033 0.203 0.042 0.011 0.237 0.056 -0.001 0.211 0.044

K = 80, n = 30
�1 0.008 0.141 0.020 0.009 0.143 0.021 -0.009 0.142 0.020
�2 -0.005 0.058 0.003 0.001 0.060 0.004 0.001 0.058 0.003
�2
� 0.003 0.161 0.026 0.007 0.172 0.029 0.001 0.160 0.026

Table 4.3: Times in minutes for 500 replicates from our VB algorithm survregVBfrailty,
the h-likelihood method survregHL and the MCMC-based survregbayes algorithm, respec-
tively, under each scenario.

Scenario survregVBfrailty survregHL survregbayes

K = 30, n = 5 0.61 0.67 47.65

K = 50, n = 15 1.70 9.59 232.31

K = 80, n = 30 8.47 124.53 1302.80

4.5 Application to ventilation duration analysis

In this section, we apply the shared frailty log-logistic AFT model with the proposed VB

algorithm to the ICU data as we descried in the Introduction section and conduct a retro-

spective study on the ventilation duration time. We aim to investigate the ICU site-specific

random e↵ect on patient’s ventilation duration. We extend the work by Kobara et al. (2023)

by incorporating the uncertainty from the ICU sites via a group-specific random intercept

under a Bayesian analysis framework.

The CCIS ICU data were collected between July 2015 and December 2016 and contained

49,467 patients receiving invasive mechanical ventilation upon arrival to ICU. About 3%
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of these patients were discharged/transferred to a Complex Continuing Care Facility, other

hospitals, the Level 3 Unit, and Outside the ICU while still on a ventilator, and therefore,

their ventilation time were considered as right-censored data (Kobara et al., 2023). The

data were from 66 ICU sites (centers) and each site has a unique site code, for example,

3970. In the CCIS dataset, the average number of ventilated patients per ICU site over the

study period of about 1.5 years is 749.5. We consider the significant covariates investigated

by Kobara et al. (2023) as fixed e↵ects which are admission source (e.g., from operation

rooms), admission diagnosis, patient type (medical or surgical), scheduled admission (yes

or no), scheduled surgery (yes or no), referring physician specialty, other interventions (yes

or no), central venous line (CVL, yes or no), arterial line (AL, yes or no), intra-cranial

pressure monitor (IPM, yes or no), extracorporeal membrane oxygen (EMO, yes or no),

intra-aortic balloon pump (IABP, yes or no), age group (18-39, 40-80 or above 80 years of

age), pre-LOS (no more than 1 day, between 2 and 7 days, or no less than 7 days), and the

MODS score (none with MODS  1, minimal with 1 � 4 scores, mild with 4 � 8 scores,

moderate with 8 � 12 scores or, severe with scores > 12).

To apply our proposed VB algorithm in real data analysis, we consider the same weak prior

setting in our simulation study described in Section 4.4.1: µ0 = 0, v0 = 0.1, ↵0 = �0 = 3,

and !0 = ⌘0 = 2. Table 4.4 displays the estimated regression coe�cients from the fitted

shared frailty log-logistic AFT model. For comparative analysis, we also employed the

h-likelihood method survregHL and the MCMC-based survregbayes to model the data in-

corporating shared frailty. In the absence of shared frailty, we used the likelihood-based

survreg from the survival package in R, and the VB method survregVB proposed by Xian

et al. (2024a). Furthermore, for the Bayesian methods (survregVBfrailty, survregVB, and

survregbayes), we report the 95% credible intervals, whereas for the likelihood-based meth-

ods, we provide the 95% confidence intervals. In Table 4.4, we first observe that there is no

significant di↵erence in the estimated regression coe�cients between survregVBfrailty and

survregbayes. However, some of the estimated coe�cients from survregHL, such as sched-
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uled surgery, CVL, AL, IPM and EMO, are di↵erent from those based on survregVBfrailty

and survregbayes, which is further discussed in Section 4.6. In comparison to the models

with frailty, the survregVB and survreg methods, which do not account for frailty, exhibit

some di↵erences in estimating certain coe�cients. However, they maintain a strong overall

consistency in estimating the regression coe�cients with the results from the frailty mod-

els. This consistency is expected, as the inclusion of frailty does not a↵ect the fixed e↵ects,

implying that the regression lines from models with or without frailty should be parallel.

To illustrate the di↵erence in interval estimation between models with and without frailty,

we calculated the mean overlap percentage of the two 95% credible intervals from VB with

or without frailty. Using the 95% credible intervals from VB without frailty (survregVB) as

references, we found a 77.3% overlap on average. This means that if we fit a model using

VB without considering the ICU site as a shared frailty, about 77% of the credible interval

will fall within the corresponding credible interval obtained from the model that includes

the shared frailty.

In what follows, we summarize the fixed e↵ects on ventilation duration based on estimates

from our proposed VB algorithm, survregVBfrailty. Regarding the admission source, pa-

tients arriving from the emergency department (ED), operating room (OR), or ward have

ventilation times that are (1 � exp(�0.134))100% = 12.54% shorter (credible interval

(CI): [9.24%, 12.72%]), 27.89% shorter (CI: [25.62%, 30.02%]), and 13.06% shorter (CI:

[9.70%, 16.31%]), respectively, compared to patients admitted from a downstream unit

(baseline). Conversely, patients admitted from home or another hospital have ventilation

durations that are 10.63% (CI: [-10.40%, 23.49%]) and 10.30% (CI: [7.04%, 13.54%])

longer, respectively. Since the CI for patients admitted from home includes zero, we con-

clude that admission from home is not a statistically significant factor. Additionally, pa-

tients from other sources, such as from outside the province, have ventilation durations that

are 12.98% longer (CI: [5.13%, 21.29%]).
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Compared to cardiovascular patients, those with gastrointestinal, neurological, and trauma

diagnoses experience significantly longer ventilation times. Specifically, ventilation du-

ration increases by 29.69% (CI: [25.36%, 34.18%]) for gastrointestinal patients, 33.11%

(CI: [29.05%, 37.44%]) for neurological patients, and 77.71% (CI: [69.72%, 86.08%]) for

trauma patients. Patient categories (surgical or medical) do not show significant di↵er-

ences in ventilation time. However, scheduled ICU admissions or surgeries are important

factors. Patients with a scheduled ICU admission have a 24.95% longer ventilation time

(CI: [21.89%, 27.82%]), while those with a scheduled surgery have a 13.32% shorter ven-

tilation time (CI: [9.70%, 16.81%]) compared to patients without scheduled admissions

or surgeries. The referral physician service is also a significant risk factor. Compared

with medical referrals, surgical referrals result in a 5.82% shorter ventilation time (CI:

[8.97%, 2.57%]), while respirology referrals result in a 16.77% longer ventilation time

(CI: [11.29%, 22.51%]).

Specific treatment interventions upon ICU arrival significantly impact ventilation duration.

Patients receiving a CVL, AL, IPM, EMO, or IABP have increased ventilation times by

20.20% (CI: [17.82%, 22.51%]), 21.90% (CI: [19.36%, 24.48%]), 70.40% (CI: [60.16%,

81.48%]), 148.93% (CI: [127.50%, 172.10%]), and 40.92% (CI: [32.45%, 49.78%]), re-

spectively. Age is also a significant factor. Compared to patients aged 18 to 39, those

aged 40 to 80 and those over 80 have longer ventilation periods, increasing by 14.22% (CI:

[11.29%, 17.23%]) and 7.79% (CI: [4.50%, 11.18%]), respectively.

Both pre-ICU LOS and patients’ severity scores, as measured by MODS, are significant

risk factors for longer ventilation duration. Longer pre-ICU LOS correlates with longer

ventilation times. Patients with a pre-ICU LOS of 2-7 days or � 7 days experience increases

in ventilation duration by 3.87% (CI: [1.71%, 6.08%]) and 12.98% (CI: [10.52%, 15.60%]),

respectively, compared to those with  1 day pre-ICU LOS. Compared to patients with a

MODS score  1, those with minimal (1-4), mild (4-8), moderate (8-12), or severe (>
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12) MODS scores experience increases in ventilation duration by 10.63% (CI: [7.90%,

13.54%]), 23.49% (CI: [20.56%, 26.49%]), 30.34% (CI: [26.49%, 34.31%]), and 14.22%

(CI: [7.47%, 21.53%]), respectively.

We now turn to the analysis of variance in terms of the variations from individual patients

and from ICU sites. Using the mean of the posterior distribution for �2
�, the estimated

variance (�2
�) for the shared ICU site e↵ect from survregVBfrailty is 0.1, with a square root

of 0.316, which indicates that the average spread of the ventilation time among ICU sites

is exp(0.316), or 1.372. The estimated scale parameter b is 0.444, resulting in an estimated

variance of the logarithms of individual patient ventilation times of 0.4442⇥⇡2/3, or 0.649,

where ⇡2/3 is the variance of a standard logistic distribution. To measure the strength of the

correlation between patients within the same ICU site, the intra-class correlation coe�cient

between the logarithms of ventilation time can be estimated using the plug-in method as

follows: 0.1/(0.1 + 0.649) ⇡ 0.134.
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Figure 4.4: Real data analysis. Left: Posterior distribution of the variance of the random
intercept from VB and MCMC. Right: Estimated ICU site specific random e↵ects with
their 95% credible interval from the proposed VB algorithm. The random e↵ects have
been ranked in an increasing order.

In the left of Figure 4.4, we observe a strong consistency in estimating the variance of the

ICU-site specific random e↵ect between survregVBfrailty and the MCMC-based survreg-

bayes. We further visualize the estimated ICU-site random e↵ects with the 95% credible



Chapter 4 – Fast variational Bayesian inference for correlated survival data: an
application to invasive mechanical ventilation duration analysis 126

intervals based on their posterior distributions obtained from survregVBfrailty, as shown

in the right of Figure 4.4, where the random e↵ects are ranked from smallest to largest.

Wider credible intervals correspond to ICUs with larger numbers of patients. As discussed

in Lambert et al. (2004), if the intervals overlap, there are no significant center random ef-

fects. We observe that some of the intervals do not overlap, indicating that these ICU sites

perform di↵erently in terms of patient ventilation duration.

For reference on computational e�ciency, the run times in minutes for each method are as

follows: survregVBfrailty took 1.45 minutes, h-likelihood took 106.18 minutes, MCMC-

based survregbayes took 267.04 minutes, survreg took 0.02 minutes, and survregVB took

0.13 minutes.
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4.6 Discussion

In this chapter, we have proposed a fast variational Bayesian algorithm, called survregVBfrailty,

for statistical inference using a shared frailty log-logistic AFT model, which can be applied

to analyze clustered survival data. We demonstrated that our proposed survregVBfrailty

algorithm achieves satisfactory estimation performance through simulation studies under

various scenarios with di↵erent numbers of clusters and cluster sizes. A strong consistency

in the estimated posterior distributions was observed between VB and MCMC methods

in both the simulation study and the application to ICU ventilation data. Moreover, the

survregVBfrailty algorithm is significantly more computationally e�cient, running over

150 times faster than the MCMC-based survregbayes algorithm.

The h-likelihood method proposed by Do Ha et al. (2002) for analyzing clustered survival

data in a log-normal AFT model has been shown to be robust against violations of the nor-

mality assumption (e.g., extreme value distribution) for the logarithm of survival time. In

our simulation study, we investigated the performance of the h-likelihood method when the

survival data, given the covariates in a specific cluster, follow a log-logistic distribution.

We compared its estimation results to those obtained using VB and MCMC algorithms.

We found that the h-likelihood method, survregHL, results in higher mean squared er-

rors (MSEs) compared to VB and MCMC algorithms. Specifically, survregHL produced a

49.1% higher MSE than VB and a 41.2% higher MSE than MCMC for estimating the vari-

ance of the random intercept in our simulation study. Additionally, in our application to

ICU ventilation duration analysis, we observed significant di↵erences in some regression

coe�cients between h-likelihood and VB or MCMC methods. Therefore, our proposed

shared frailty log-logistic AFT model using variational Bayes can be viewed as a better

approach to the shared frailty log-normal AFT model using h-likelihood.

Our application of the proposed method to the CCIS ICU data for ventilation duration anal-
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ysis reveals a moderate correlation of 0.134 among patients within the same ICU site. By

incorporating the ICU site-specific random e↵ect as an unknown shared frailty, we further

validate the significant risk factors including the patient severity score MODS identified in

the study by Kobara et al. (2023) based on the 95% credible intervals obtained from the

posterior distributions of each regression coe�cient. We observe a similar trend regarding

the e↵ect of MODS on ventilation duration as reported by Kobara et al. (2023). Specifi-

cally, when MODS reaches a severe level, the increase in ventilation duration becomes less

pronounced. This may be due to patient mortality, which warrants further investigation

in future studies. We demonstrate that di↵erent ICU sites have varying e↵ects on patient

ventilation duration, as observed through di↵erences in the estimated ICU site-specific ran-

dom e↵ects. Our research provides valuable insights and practical implications for clinical

practice and resource management. Specifically, ICUs with smaller estimated random in-

tercepts tend to have shorter overall ventilation durations compared to other ICUs. Under-

standing the patient characteristics and ventilation practices within these ICUs may help

improve clinical performance. For ICUs with larger estimated random intercepts, equip-

ping more ventilators could enhance the overall e�ciency of the ICU ventilation proce-

dures.

We present several open problems and directions for future work related to our proposed

methodology. As discussed, we assume that the survival time from a specific cluster fol-

lows a log-logistic distribution. The robustness of the proposed shared frailty log-logistic

AFT model to other distributions remains unknown and warrants further study and com-

parison with the shared frailty log-normal AFT model. Additionally, extending the current

VB algorithm to accommodate other survival distributions, such as the Weibull distribu-

tion, could be an interesting avenue of research. In our current framework, we account

for cluster-level uncertainty using a random intercept. This approach could be extended

to a more general model that includes cluster-level covariates (e.g., the ICU type, general

or specialized), resulting in a mixed-e↵ects model. Such a general model can be used to
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better assess di↵erences in performance across ICU sites regarding the duration of inva-

sive mechanical ventilation. Another potential area for development is the integration of

variable selection techniques within the VB algorithm, see Park and Do Ha (2019) as a

reference.



133

References

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer. ! page 105,

108

Blei, D. M., A. Kucukelbir, and J. D. McAuli↵e (2017). Variational inference: A review

for statisticians. Journal of the American Statistical Association 112(518), 859–877. !

page 106, 108

Burgess Jr, J. F., C. L. Christiansen, S. E. Michalak, and C. N. Morris (2000). Medical

profiling: improving standards and risk adjustments using hierarchical models. Journal

of Health Economics 19(3), 291–309. ! page 104

Canadian Institute for Health Information (2020). Care in Canadian ICUs. Technical report,

Canadian Institute for Health Information, Canada. ! page 103

da Cruz, A. C., C. P. E. de Souza, and P. H. T. O. Sousa (2024). Fast Bayesian basis

selection for functional data representation with correlated errors. arXiv. ! page 106

Do Ha, I., J.-H. Jeong, and Y. Lee (2017). Statistical modelling of survival data with

random e↵ects. Statistics for Biology and Health. ! page 105, 106, 117

Do Ha, I., Y. Lee, and J.-K. Song (2002). Hierarchical-likelihood approach for mixed linear

models with censored data. Lifetime Data Analysis 8, 163–176. ! page 104, 130

Do Ha, I., M. Noh, and Y. Lee (2012). frailtyHL: A package for fitting frailty models with

h-likelihood. R J. 4(2), 28. ! page 105

Glance, L. G., A. W. Dick, T. M. Osler, and D. Mukamel (2003). Using hierarchical

modeling to measure ICU quality. Intensive Care Medicine 29(12), 2223–2229. ! page

104



Chapter 4 –REFERENCES 134

Gorfine, M. and D. M. Zucker (2023). Shared frailty methods for complex survival data:

a review of recent advances. Annual Review of Statistics and Its Application 10, 51–73.

! page 103, 104

Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models. Springer. ! page

103

Ho↵man, M. D., D. M. Blei, C. Wang, and J. Paisley (2013). Stochastic variational infer-

ence. Journal of Machine Learning Research. ! page 105

Honerkamp-Smith, G. and R. Xu (2016). Three measures of explained variation for cor-

related survival data under the proportional hazards mixed-e↵ects model. Statistics in

Medicine 35(23), 4153–4165. ! page 103

Hougaard, P. (1995). Frailty models for survival data. Lifetime Data Analysis 1, 255–273.

! page 103

Jordan, M. I., Z. Ghahramani, T. Jaakkola, and L. Saul (1999). Introduction to variational

methods for graphical models. Machine Learning 37, 183–233. ! page 105

Kobara, Y. M., M. Wismer, F. F. Rodrigues, and C. P. E. de Souza (2023). Invasive me-

chanical ventilation duration prediction using survival analysis. International Journal of

Healthcare Management, 1–11. ! page 104, 106, 121, 122, 131

Lambert, P., D. Collett, A. Kimber, and R. Johnson (2004). Parametric accelerated fail-

ure time models with random e↵ects and an application to kidney transplant survival.

Statistics in Medicine 23(20), 3177–3192. ! page 104, 126

Lee, C. Y. Y. and M. P. Wand (2016a). Streamlined mean field variational Bayes for lon-

gitudinal and multilevel data analysis. Biometrical Journal 58(4), 868–895. ! page

105



Chapter 4 –REFERENCES 135

Lee, C. Y. Y. and M. P. Wand (2016b). Variational methods for fitting complex Bayesian

mixed e↵ects models to health data. Statistics in Medicine 35(2), 165–188. ! page 109

Liu, X.-R., Y. Pawitan, and M. S. Clements (2017). Generalized survival models for corre-

lated time-to-event data. Statistics in Medicine 36(29), 4743–4762. ! page 103

Luo, S., M. Yi, X. Huang, and K. K. Hunt (2013). A Bayesian model for misclassified

binary outcomes and correlated survival data with applications to breast cancer. Statistics

in Medicine 32(13), 2320–2334. ! page 103

Luts, J. and M. P. Wand (2015). Variational inference for count response semiparametric

regression. Bayesian Analysis 10(4), 991 – 1023. ! page 105

Marshall, J. C., D. J. Cook, N. V. Christou, G. R. Bernard, C. L. Sprung, and W. J. Sibbald

(1995). Multiple organ dysfunction score: a reliable descriptor of a complex clinical

outcome. Critical Care Medicine 23(10), 1638–1652. ! page 104

Neville, S. E., M. Palmer, and M. Wand (2011). Generalized extreme value additive model

analysis via mean field variational Bayes. Australian & New Zealand Journal of Statis-

tics 53(3), 305–330. ! page 105

Nolan, T. H., M. Menictas, and M. P. Wand (2020). Streamlined variational inference with

higher level random e↵ects. Journal of Machine Learning Research 21(157), 1–62. !

page 107, 109

Park, E. and I. Do Ha (2019). Penalized variable selection for accelerated failure time

models with random e↵ects. Statistics in Medicine 38(5), 878–892. ! page 105, 132

Pham, T. H., J. T. Ormerod, and M. Wand (2013). Mean field variational Bayesian inference

for nonparametric regression with measurement error. Computational Statistics & Data

Analysis 68, 375–387. ! page 105



Chapter 4 –REFERENCES 136

Ranganath, R., S. Gerrish, and D. Blei (2014). Black box variational inference. In Artificial

Intelligence and Statistics, pp. 814–822. PMLR. ! page 105
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Chapter 5
Summary and Future Work

In this thesis, we demonstrate the satisfactory performance of variational Bayesian infer-

ence in clustering functional data via a B-spline regression mixture model and modeling

survival data via a log-logistic AFT model.

In Chapter 2, we develop a novel VB algorithm for clustering and smoothing functional

data simultaneously via a B-spline regression mixture model with random intercepts. We

employ the deviance information criterion to select the best number of clusters. The pro-

posed VB algorithm is evaluated and compared with k-means, functional k-means, and

two additional model-based methods through simulation studies under various scenarios.

Our results demonstrate that the proposed VB algorithm achieves satisfactory clustering

performance in both simulation and real data analyses. Furthermore, VB shows strong

consistency with MCMC in estimating the marginal posterior distribution of B-spline basis

coe�cients and precision parameters, while o↵ering a lower computational cost.

There are several promising directions for future work in Chapter 2. First, we currently

employ a two-stage procedure to select the optimal number of clusters using the deviance

information criterion. It would be valuable to develop a more comprehensive VB algo-

rithm that enables the automatic selection of the optimal number of clusters via a Dirichlet

process mixture model (Rigon, 2023). Additionally, as discussed in Section 2.5, extend-

ing our model to incorporate a more flexible dependence structure on the random errors is

another potential avenue for exploration. For instance, we could assume that the errors in

Model 1 (Section 2.2.2) follow a Gaussian process with mean zero and covariance function

�2 (t, s), where t and s are two observed points on a functional curve. Specifically, the

correlation function of an Ornstein–Uhlenbeck process,  (t, s) = exp(�!|s� t|) with ! > 0

(Williams and Rasmussen, 2006; Dias et al., 2013; da Cruz et al., 2024), could be consid-
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ered. Another significant area for future work is the development of integrated software

to implement the VB algorithm for functional data clustering, such as a user-friendly R

package.

In Chapter 3, we develop an alternative approach to MCMC methods and infer the param-

eters of the log-logistic AFT model via a mean-field VB algorithm. A piecewise approx-

imation technique is embedded in deriving the VB algorithm to achieve conjugacy. The

proposed VB algorithm is evaluated and compared with frequentist and MCMC techniques

using simulated data under various scenarios. We have demonstrated that our proposed

VB algorithm consistently produces satisfactory estimation results and, in most scenarios,

outperforms the likelihood-based method in terms of empirical MSE. When compared to

MCMC, similar performance was achieved by our proposed VB, and, in certain scenarios,

VB yielded the lowest MSE. Furthermore, the proposed VB algorithm o↵ers a significantly

reduced computational cost compared to MCMC, with an average speedup of 300 times. A

publicly available dataset is employed to illustrate our proposed methodology.

In Chapter 4, motivated by invasive mechanical ventilation data from di↵erent ICUs in

Ontario, Canada, we introduce a shared frailty log-logistic accelerated failure time model

that accounts for intra-cluster correlation through a cluster-specific random intercept. We

present a novel and fast VB algorithm for parameter inference and evaluate its performance

using simulation studies that vary the number and sizes of clusters. Additionally, we com-

pare the performance of our proposed VB algorithm with the h-likelihood method and a

MCMC algorithm. The proposed algorithm delivers satisfactory results and demonstrates

computational e�ciency, being over 150 times faster than a MCMC algorithm. We apply

our method to the ICU ventilation data from Ontario to investigate the ICU site random

e↵ect on ventilation duration. We demonstrate that ICU sites perform di↵erently regarding

patient ventilation duration, as shown by the observed di↵erences in the estimated site-

specific random e↵ects. Our research o↵ers insights and implications for clinical practice
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and resource management. For example, ICUs with smaller estimated random intercepts

perform better in ventilation operations, as patient ventilation durations in these ICUs are

shorter than in others. Other ICUs can learn from these high-performing ICUs to improve

their ventilation practices.

We identify several open problems and future research directions related to our proposed

methodology in Chapters 3 and 4. As noted, we assume that survival time follows a log-

logistic distribution. However, the robustness of the proposed (shared frailty) log-logistic

AFT model with VB algorithm to alternative distributions remains unexplored and requires

further examination. Extending the current VB algorithm to accommodate other survival

distributions, such as the Weibull and log-gamma distributions, could be interesting. An-

other promising area for advancement is the integration of variable selection techniques

within the VB algorithm, as studied in Park and Do Ha (2019). In our existing framework

presented in Chapter 4, we address cluster-level uncertainty using a random intercept. This

method could be extended to a more general model that includes cluster-level covariates,

resulting in a mixed-e↵ects model.
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This thesis contains five appendices, each covering di↵erent supplementary materials. Ap-

pendix A presents the VB algorithm for Model 1, discussed in Chapter 2, detailing the

main steps of the algorithm and the ELBO calculation. Appendix B includes additional

plots from the simulation study and the raw curves of the Canadian weather data refer-

enced in the real data analysis section of Chapter 2. Appendix C provides the derivation

details of the VB algorithm for the log-logistic AFT model in Chapter 3. The details of the

piecewise approximation proposed in Chapter 3 are presented in Appendix D. Appendix E

gives the details of the VB algorithm for the shared frailty log-logistic AFT model proposed

in Chapter 4.
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A Chapter 2: VB algorithm for Model 1

A.1 Main steps

This section describes the main steps of the VB algorithm for inferring Z, �, ⇡ and ⌧ in

Model 1 in Section 2.2.2.1, which is summarized in Algorithm 4.

1. VD factorization:

q(Z,⇡,�, ⌧) =
NY

i=1

q(Zi) ⇥
KY

k=1

q(�k) ⇥
KY

k=1

q(⌧k) ⇥ q(⇡). (A.1)

2. Complete data log-likelihood:

log p(Y,Z,⇡,�, ⌧) = log p(Y|Z,�, ⌧) + log p(Z|⇡)

+ log p(�) + log p(⌧) + log p(⇡). (A.2)

3. Update equations:

i) Update equation for q(⇡)

Since only the second term, log p(Z|⇡), and the last term, log p(⇡), in (A.2) depend on ⇡,

the update equation q⇤(⇡) can be derived as follows.

log q⇤(⇡)

+⇡ E�⇡
�

log p(Y,Z,⇡,�, ⌧)
� +⇡ E�⇡

�
log p(Z|⇡)� + E�⇡

�
log p(⇡)

�

= E�⇡
h NX

i=1

KX

k=1

I(Zi = k) log ⇡k

i
+ log p(⇡)

+⇡
KX

k=1

log ⇡k

h NX

i=1

Eq⇤(Zi)
�
I(Zi = k)

�i
+

KX

k=1

[d0
k � 1] log ⇡k

=

KX

k=1

log ⇡k

h⇣ NX

i=1

Eq⇤(Zi)
�
I(Zi = k)

�
+ d0

k

⌘
� 1

i
.
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Therefore, q⇤(⇡) is a Dirichlet distribution with parameters d⇤ = (d⇤1, . . . , d
⇤
K), where

d⇤k = d0
k +

NX

i=1

Eq⇤(Zi)
�
I(Zi = k)

�
. (A.3)

ii) Update equation for q(Zi)

log q⇤(Zi)
+⇡ E�Zi

�
log p(Y,Z,⇡,�, ⌧)

�
. (A.4)

When taking the expectation above we just need to consider the first term, log p(Y|Z,�, ⌧),

and the second term, log p(Z|⇡), in (A.2). Note that we can write log p(Y|Z,�, ⌧) and

log p(Z|⇡) into two parts, one that depends on Zi and one that does not.

log p(Y|Z,�, ⌧) =
KX

k=1

I(Zi = k) log p(Yi|Zi = k,�k, ⌧k)

+
X

l:l,i

KX

k=1

I(Zl = k) log p(Yl|Zl = k,�k, ⌧k),

log p(Z|⇡) =
KX

k=1

I(Zi = k) log ⇡k +
X

l:l,i

KX

k=1

I(Zl = k) log ⇡k.

Now when taking the expectation in (A.4) the parts that do not depend on Zi in log p(Y|Z,�, ⌧)

and log p(Z|⇡) in (A.2) will be added as a constant in the expectation. So, we obtain

log q⇤(Zi)
+⇡

KX

k=1

I(Zi = k)
nni

2
Eq⇤(⌧k)(log ⌧k)

�1
2
Eq⇤(⌧k)(⌧k)Eq⇤(�k)

⇥
(Yi � Bi�k)

T (Yi � Bi�k)
⇤

+Eq⇤(⇡)(log ⇡k)
o
.
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Therefore, q⇤(Zi) is a categorical distribution with parameters

p⇤ik =
e↵ik

PK
k=1 e↵ik

, (A.5)

where

↵ik =
ni

2
Eq⇤(⌧k)(log ⌧k) �

1
2
Eq⇤(⌧k)(⌧k)Eq⇤(�k)

⇥
(Yi � Bi�k)

T (Yi � Bi�k)
⇤

+Eq⇤(⇡)(log ⇡k).

iii) Update equation for q(�k)

Note that only the first term, log p(Y|Z,�, ⌧), and the third term, log p(�), in (A.2) depend

on �k. Similarly to the previous case for q⇤(Zi), we can write log p(Y|Z,�, ⌧) and log p(�)

in two parts, one that depends on �k and the other that does not. Therefore, we obtain

log q⇤(�k)
+⇡ E��k

�
log p(Y,Z,⇡,�, ⌧)

�

+⇡ Eq⇤(⌧k)(log ⌧k)
NX

i=1

ni

2
Eq⇤(Zi)[I(Zi = k)]

� 1
2
Eq⇤(⌧k)(⌧k)

NX

i=1n
Eq⇤(Zi)[I(Zi = k)](Yi � Bi�k)

T (Yi � Bi�k)
o

(A.6)

�M
2

log v0 � 1
2

v0(�k �m0
k)T (�k �m0

k). (A.7)

All expectations will be later defined, but note that, for example, Eq⇤(Zi)[I(Zi = k)] = p⇤ik.
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First, we will focus on the quadratic forms that appear in (A.6) and (A.7).

�1
2
Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ik(Yi � Bi�k)
T (Yi � Bi�k)

� 1
2

v0(�k �m0
k)T (�k �m0

k) =

� 1
2
Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ik
⇥
YT

i Yi � 2YT
i Bi�k + �

T
k BT

i Bi�k
⇤

�1
2

v0⇥�T
k �k � 2(m0

k)T�k + (m0
k)T m0

k
⇤ +⇡

�1
2
�T

k

h
v0I + Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ikBT
i Bi

i
�k

� 1
2

(�2)
h
v0(m0

k)T + Eq⇤(⌧k)(⌧k)
NX

i=1

p⇤ikYT
i Bi

i
�k. (A.8)

Now let

⌃⇤k =
h
v0I + Eq⇤(⌧k)(⌧k)

NX

i=1

p⇤ikBT
i Bi

i�1
. (A.9)

We can then rewrite (A.8) as

�1
2
�T

k⌃
⇤�1
k �k �

1
2

(�2)
h
v0(m0

k)T + Eq⇤(⌧k)(⌧k)
NX

i=1

p⇤ikYT
i Bi

i
⌃⇤k⌃

⇤�1
k �k.

Therefore, q⇤(�k) is MVN(m⇤k,⌃⇤k) with ⌃⇤k as in (A.9) and mean vector

m⇤k =
⇥
v0(m0

k)T + Eq⇤(⌧k)(⌧k)
NX

i=1

p⇤ikYT
i Bi

⇤
⌃⇤k. (A.10)

iv) Update equation for q(⌧k)

Similarly to the calculations in i) and ii) we can write

log q⇤(⌧k)
+⇡ log ⌧k

NX

i=1

ni

2
p⇤ik �

1
2
⌧k

NX

i=1

p⇤ikEq⇤(�k)

h
(Yi � Bi�k)

T (Yi � Bi�k)
i

+ (a0 � 1) log ⌧k � r0⌧k.
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Therefore, q⇤(⌧k) is a Gamma distribution with parameters

A⇤k = a0 +

NX

i=1

ni

2
p⇤ik, (A.11)

and

R⇤k =
⇣
r0 +

1
2

NX

i=1

p⇤ikEq⇤(�k)

h
(Yi � Bi�k)

T (Yi � Bi�k)
i⌘
. (A.12)

4. Expectations:

Next, we calculate the expectations in the update equations for each component in the VD.

Let  be the digamma function defined as

 (x) =
d
dx

log�(x), (A.13)

which can be easily calculated via numerical approximation. The values of the expectations

taken with respect to the approximated distributions are given as follows.

Eq⇤(Zi)[I(Zi = k)] = p⇤ik, (A.14)

Eq⇤(⌧k)(⌧k) =
A⇤k
R⇤k
, (A.15)

Eq⇤(⌧k)(log ⌧k) =  (A⇤k) � log R⇤k, (A.16)

Eq⇤(⇡)(log ⇡k) =  (d⇤k) � 
⇣ KX

k=1

d⇤k
⌘
. (A.17)
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In addition, using the fact that E(XT X) = trace[Var(X)] + E(X)TE(X), we obtain

Eq⇤(�)

h
(Yi � Bi�k)

T (Yi � Bi�k)
i

= trace
�
Bi⌃

⇤
kBT

i
�
+ (Yi � Bim⇤k)T (Yi � Bim⇤k). (A.18)

A.2 ELBO calculation

In this section, we show how to calculate the ELBO, which is the convergence criterion

of our proposed VB algorithm and will be updated at the end of each iteration until it

converges. Equation (2.4) gives the ELBO:

ELBO(q) = Eq⇤
⇥
log p(Y,Z,⇡,�, ⌧)

⇤ � Eq⇤
⇥
log q(Z,⇡,�, ⌧)

⇤
,

where

Eq⇤
⇥
log p(Y,Z,⇡,�, ⌧)

⇤
= Eq⇤

⇥
log p(Y|Z,⇡,�, ⌧)⇤ + Eq⇤

⇥
log p(Z|⇡�] +

Eq⇤
⇥
log p(�)] + Eq⇤

⇥
log p(⌧)] + Eq⇤

⇥
log p(�)],

and

Eq⇤
⇥
log q(Z,⇡,�, ⌧)

⇤
= Eq⇤

⇥
log q(Z)

⇤
+ Eq⇤

⇥
log q(�)

⇤

+Eq⇤
⇥
log q(⇡)

⇤
+ Eq⇤

⇥
log q(⌧)

⇤
.

Therefore, we can write the ELBO as the summation of 5 terms:

ELBO(q) = Eq⇤
⇥
log p(Y|Z,⇡,�, ⌧)⇤ + di f fZ + di f f�

+ di f f⌧ + di f f⇡, (A.19)
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where,

di f fZ = Eq⇤
⇥
log p(Z|⇡)⇤ � Eq⇤

⇥
log q(Z)

⇤
.

Specifically,

di f fZ ⌘
NX

i=1

KX

k=1

p⇤ikEq⇤(⇡)(log ⇡k) �
NX

i=1

KX

k=1

p⇤ik log p⇤ik. (A.20)

The other terms in (A.19) are calculated as follows:

di f f� ⌘ �
1
2

KX

k=1

v0
k{trace

�
⌃⇤k

�
+ (m⇤k �m0

k)T (m⇤k �m0
k)} + 1

2

KX

k=1

log |⌃⇤k|,

di f f⌧ ⌘
KX

k=1

{(a0 � 1)Eq⇤(⌧k)(log ⌧k) � r0Eq⇤(⌧k)(⌧k)}

�
KX

k=1

{A⇤k(log R⇤k � 1) � log�(A⇤k)

+ (A⇤k � 1)Eq⇤(⌧k)(log ⌧k)}, (A.21)

di f f⇡ ⌘
KX

k=1

(d0
k � d⇤k)Eq⇤(⇡)(log ⇡k),

and

Eq⇤
⇥
log p(Y|Z,⇡,�, ⌧)⇤ =

NX

i=1

KX

k=1

p⇤ik
nni

2
Eq⇤(⌧k)(log ⌧k) �

1
2

A⇤k
R⇤k

Eq⇤(�)

h
(Yi � Bi�k)

T (Yi � Bi�k)
io
. (A.22)

Therefore, at iteration c, we calculate ELBO(c) using all parameters obtained at the end of

iteration c. Convergence of the algorithm is achieved if ELBO(c) � ELBO(c�1) is smaller

than a given threshold. It is important to note that we use the fact that lim
p⇤ik!0

p⇤ik log p⇤ik = 0

to avoid numerical issues when calculating (A.20).
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Algorithm 4: Clustering functional data via variational inference
Data: N original curves with ni evaluation points for the ith curve and the Bi

matrix containing the evaluation values of the basis functions, i = 1, ...,N;

number of clusters K; values of hyperparameters: d0, m0
k , k = 1, ...,K, s0, a0,

r0; convergence threshold and maximum number of iterations

Result: VB estimated mean curves for each cluster and the cluster index for each

original curve

1 Initialization: initialize R⇤k with arbitrary values (e.g., R⇤k = r0) and p⇤ik from

k-means, and set c = 0;

2 while c < maximum number of iterations and di↵erence of ELBO > convergence

threshold do

3 repeat

4 c = c + 1;

5 update A⇤(c)
k using p⇤(c�1)

1k , . . . , p⇤(c�1)
Nk with equation (A.11);

6 update ⌃⇤(c)
k using A⇤(c)

k , R⇤(c�1)
k and p⇤(c�1)

1k , . . . , p⇤(c�1)
Nk with equations (A.9)

and (A.15);

7 update m⇤(c)
k using ⌃⇤(c)

k , A⇤(c)
k , R⇤(c�1)

k and p⇤(c�1)
1k , . . . , p⇤(c�1)

Nk with equations

(A.10) and (A.15);

8 update R⇤(c)
k using m⇤(c)

k , ⌃⇤(c)
k and p⇤(c�1)

1k , . . . , p⇤(c�1)
Nk with equations (A.12)

and (A.18);

9 update d⇤(c) using p⇤(c�1)
1k , . . . , p⇤(c�1)

Nk with equations (A.3) and (A.14);

10 update p⇤(c)
1k , . . . , p

⇤(c)
Nk using R⇤(c)

k , d⇤(c), m⇤(c)
k and ⌃⇤(c)

k with equations (A.5),

(A.15), (A.16), (A.17) and (A.18);

11 calculate the current ELBO, ELBO(c) using formulas in section A.2;

12 calculate the di↵erence of ELBO = ELBO(c) � ELBO(c�1);

13 until maximum iteration is achieved or the ELBO converges;

14 end
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B Chapter 2: Plots
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Figure B.1: EMSE versus the observed evaluation point for each cluster in Scenarios 2, 3,
4, 5 and 6. In Scenario 5, the straight line in cluster one does not mean there is no EMSE.
This is because compared to cluster two and three, the EMSE in cluster one is very small
(the median is 1.41 ⇥ 10�11).



Appendix B – Chapter 2: Plots 152

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

x

f(x
)

True Mean Curves
VB Estimated Mean Curves

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

2
4

x

f(x
)

True Mean Curve
VB Estimated Mean Curves

Figure B.2: Example of simulated data under Scenario 10 (left) and Scenario 12 (right)
for Model 2. Raw curves (di↵erent colors correspond to di↵erent clusters), cluster-specific
true mean curves (in black) and corresponding estimated mean curves (in red).
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Figure B.3: EMSE versus the observed evaluation point for each cluster in Scenarios 9, 10,
11 and 12.
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Figure B.4: Raw curves of the Canadian weather data. Di↵erent curves have di↵erent
colors.
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C Chapter 3: Update equations and ELBO calculation

In this appendix, we derive the update equation for each component and the ELBO clac-

ulation in our model. We use
+⇡ to denote equality up to a constant additive factor for

convenience.

C.1 VB update equations

(1) Update for q⇤(�)

log q⇤(�)
+⇡ Eq(b)[log p(D |�, b) + log p(�)] = Eq(b)[log p(D |�, b)] + Eq(b)[log p(�)],

where

Eq(b)[log p(D |�, b)]

= Eq(b)

"
� r log b +

nX

i=1

 
�i

yi � XT
i �

b
� (1 + �i) log

⇣
1 + exp

�yi � XT
i �

b
�⌘
!#

= �rEq(b)(log b) +
nX

i=1

 
�i(yi � XT

i �)Eq(b)

⇣1
b

⌘

�(1 + �i)Eq(b)


log

⇣
1 + exp

�yi � XT
i �

b
�⌘�

!
. (C.1)

To calculate the last expectation in (C.1) and achieve conjugacy, we then propose and apply

a quadratic piecewise approximation of log(1 + exp(x)) (see Equation (D.1) in Appendix

D) to log
⇣
1 + exp

� yi�XT
i �

b
�⌘

obtaining:

log
⇣
1 + exp

�yi � XT
i �

b
�⌘

⇡ 0⌫i1 ⇥ 0.1696⌫i2 ⇥ 0.5⌫i3 ⇥ 0.8303⌫i4 ⇥ 11�P4
j=1 ⌫i j

yi � XT
i �

b

+ 0⌫i1 ⇥ 0.0189⌫i2 ⇥ 0.1138⌫i3 ⇥ 0.0190⌫i4 ⇥ 01�P4
j=1 ⌫i j

 
yi � XT

i �

b

!2

,
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where

⌫i1 =

8>>>>>><
>>>>>>:

1 if yi�XT
i �

b  �5

0 otherwise
, ⌫i2 =

8>>>>>><
>>>>>>:

1 if � 5 < yi�XT
i �

b  �1.7

0 otherwise
,

⌫i3 =

8>>>>>><
>>>>>>:

1 if � 1.7 < yi�XT
i �

b  1.7

0 otherwise
and ⌫i4 =

8>>>>>><
>>>>>>:

1 if 1.7 < yi�XT
i �

b  5

0 otherwise
.

Let ⇢i := 0⌫i1 ⇥0.1696⌫i2 ⇥0.5⌫i3 ⇥0.8303⌫i4 ⇥11�P4
j=1 ⌫i j and ⇣i := 0⌫i1 ⇥0.0189⌫i2 ⇥0.1138⌫i3 ⇥

0.0190⌫i4 ⇥ 01�P4
j=1 ⌫i j , we obtain

log
⇣
1 + exp

�yi � XT
i �

b
�⌘ ⇡ ⇢i

yi � XT
i �

b
+ ⇣i

 
yi � XT

i �

b

!2

.

More details about the proposed quadratic piecewise approximation can be found in Ap-

pendix D. Therefore, we can write Equation (C.1) as

Eq(b)[log p(D |�, b)]

+⇡ �rEq(b)[log b] +
nX

i=1

 
�i(yi � XT

i �)Eq(b)
�1
b
�

� (1 + �i)Eq(b)

h
⇢i

yi � XT
i �

b
+ ⇣i

⇣yi � XT
i �

b

⌘2i!

+⇡
nX

i=1

 
� �iXT

i �Eq(b)
�1
b
� � (1 + �i)

⇣
� ⇢iXT

i �Eq(b)
�1
b
�

+⇣i(�2yiXT
i � + �

T XiXT
i �)Eq(b)

� 1
b2

�⌘
!

=

nX

i=1

 
Eq(b)

�1
b
�⇣ � �i + (1 + �i)⇢i

⌘
XT

i + 2Eq(b)
� 1
b2

�
(1 + �i)yi⇣iXT

i

!
�

��T
 
Eq(b)

� 1
b2

� nX

i=1

(1 + �i)⇣iXiXT
i

!
�, (C.2)
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and note that

Eq(b)[log p(�)]
+⇡ p

2
log v0 �

1
2

v0(� � µ0)T (� � µ0)
+⇡ v0 µ

T
0� �

1
2

v0�
T�. (C.3)

Combining Equations (C.2) and (C.3), we have

log q⇤(�)
+⇡

"
v0 µ

T
0 +

nX

i=1

 
Eq(b)

⇣1
b

⌘⇣
� �i + (1 + �i)⇢i

⌘
XT

i + 2Eq(b)

⇣ 1
b2

⌘
(1 + �i)⇣iyiXT

i

!#
�

� 1
2
�T


v0I + 2Eq(b)

⇣ 1
b2

⌘ nX

i=1

(1 + �i)⇣iXiXT
i

�
�.

Let

⌃⇤ :=

v0I + 2Eq(b)

⇣ 1
b2

⌘ nX

i=1

(1 + �i)⇣iXiXT
i

��1
, (C.4)

and

µ⇤ :=
"(

v0 µ
T
0 +

nX

i=1

 
Eq(b)

⇣1
b

⌘⇣
� �i + (1 + �i)⇢i

⌘
XT

i + 2Eq(b)

⇣ 1
b2

⌘
(1 + �i)yi⇣iXT

i

!)
⌃⇤

#T

.(C.5)

Then, q⇤(�) is N(µ⇤,⌃⇤). Therefore, we have the conjugate multivariate normal posterior

distribution of � after applying the piecewise approximation to log
⇣
1+exp

� yi�XT
i �

b
�⌘

.

(2) Update for q⇤(b)

log q⇤(b)
+⇡ Eq(�)[log p(D |�, b) + log p(b)] = Eq(�)[log p(D |�, b)] + Eq(�)[log p(b)].
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First, we can show that,

Eq(�)[log p(D |�, b)]

= Eq(�)

"
� r log b +

nX

i=1

 
�i

yi � XT
i �

b
� (1 + �i) log

⇣
1 + exp

�yi � XT
i �

b
�⌘
!#

= �r log b +
nX

i=1

Eq(�)

"
�i

yi � XT
i �

b
� (1 + �i) log

⇣
1 + exp

�yi � XT
i �

b
�⌘
#
. (C.6)

We then propose and apply a linear piecewise approximation of log(1 + exp(x)) (see Equa-

tion (D.1) in Appendix D) to log
⇣
1 + exp

� yi�XT
i �

b
�⌘

obtaining:

log
⇣
1 + exp

�yi � XT
i �

b
�⌘ ⇡ 0⌘i1 ⇥ 0.0426⌘i2 ⇥ 0.3052⌘i3 ⇥ 0.6950⌘i4

⇥ 0.9574⌘i5 ⇥ 11�P5
j=1 ⌘i j

yi � XT
i �

b
,

where

⌘i1 =

8>>>>>><
>>>>>>:

1 if yi�XT
i �

b  �5

0 otherwise
, ⌘i2 =

8>>>>>><
>>>>>>:

1 if � 5 < yi�XT
i �

b  �1.701

0 otherwise
,

⌘i3 =

8>>>>>><
>>>>>>:

1 if � 1.701 < yi�XT
i �

b  0

0 otherwise
, ⌘i4 =

8>>>>>><
>>>>>>:

1 if 0 < yi�XT
i �

b  1.702

0 otherwise
and

⌘i5 =

8>>>>>><
>>>>>>:

1 if 1.702 < yi�XT
i �

b  5

0 otherwise
.
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Let

'i := 0⌘i1 ⇥ 0.0426⌘i2 ⇥ 0.3052⌘i3 ⇥ 0.6950⌘i4 ⇥ 0.9574⌘i5 ⇥ 11�P5
j=1 ⌘i j , (C.7)

we obtain

log
⇣
1 + exp

�yi � XT
i �

b
�⌘ ⇡ 'i

yi � XT
i �

b
.

More details about the proposed linear piecewise approximation can be found in Appendix

D. Therefore, we can write Equation (C.6) as

Eq(�)[log p(D |�, b)]
+⇡ �r log b +

nX

i=1

Eq(�)

"
�i

yi � XT
i �

b
� (1 + �i)'i

yi � XT
i �

b

#

+⇡ �r log b +
1
b

nX

i=1

⇣
�i � (1 + �i)'i

⌘⇣
yi � XT

i Eq(�)(�)
⌘
, (C.8)

and note that

Eq(�)[log p(b)]
+⇡ �(↵0 + 1) log b � !0

b
. (C.9)

Combining Equations (C.8) and (C.9), we have

log q⇤(b)
+⇡ �(↵0 + r + 1) log b � 1

b

✓
!0 �

nX

i=1

⇣
�i � (1 + �i)'i

⌘⇣
yi � XT

i Eq(�)(�)
⌘◆
.

Let

↵⇤ = ↵0 + r and !⇤ = !0 �
nX

i=1

⇣
�i � (1 + �i)'i

⌘⇣
yi � XT

i Eq(�)(�)
⌘
,

then q⇤(b) is Inverse-Gamma(↵⇤,!⇤).
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C.2 ELBO calculation

Since our goal is to find q(·) that maximizes the ELBO, the ELBO is used as the conver-

gence criterion of our VB algorithm, which is defined as follows:

ELBO(q) = Eq[log p(D,�, b)] � Eq[log q(�, b)],

where

log p(D,�, b) = log p(D |�, b) + log p(�) + log p(b) and log q(�, b) = log q(�) + log q(b).

Let

di↵� = Eq[log p(�)] � Eq[log q(�)] and di↵b = Eq[log p(b)] � Eq[log q(b)],

then we can write the ELBO as

ELBO(q) = Eq[log p(D |�, b)] + di↵� + di↵b. (C.10)

We next present how to calculate each term in Equation (C.10) with expectations taken with

respect to the approximated variational distributions denoted by q⇤(·). When calculating

the first term, Eq⇤[log p(D |�, b)], we apply the linear piecewise approximation to log(1 +

exp(x)) again.
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Eq⇤[log p(D |�, b)]

= Eq⇤

"
� r log b +

nX

i=1

 
�i

yi � XT
i �

b
� (1 + �i) log

⇣
1 + exp

�yi � XT
i �

b
�⌘
!#

⇡ Eq⇤

"
� r log b +

nX

i=1

 
�i

yi � XT
i �

b
� (1 + �i)'i

yi � XT
i �

b

!#

+⇡ �rEq⇤(b)

⇣
log b

⌘
+

nX

i=1

h
�i � (1 + �i)'i

i
Eq⇤(b)

"
Eq⇤(�)

yi � XT
i �

b

#

= �rEq⇤(b)

⇣
log b

⌘
+ Eq⇤(b)

⇣1
b

⌘ nX

i=1

�
�i � (1 + �i)'i

� �
yi � XT

i Eq⇤(�) (�)
�
,

where 'i is defined as Equation (C.7). Let  be the digamma function defined as  (x) =

d
dx log�(x), which can be easily calculated via numerical approximation. Then Eq⇤(b) log b

can be calculated by Eq⇤(b) log b = log(!⇤) �  (↵⇤). For di↵�, we derive its calculation as

follows, using the fact that E(XT X) = trace[Var(X)] + E(X)TE(X) where X is a column

vector:

di↵� = Eq⇤[log p(�)] � Eq⇤[log q(�)]

+⇡ Eq⇤[�
1
2

v0(� � µ0)T (� � µ0)] � Eq⇤[�
1
2

log(|⌃⇤|) � 1
2

(� � µ⇤)T (⌃⇤)�1(� � µ⇤)]
+⇡ �1

2
v0[trace(⌃⇤) + (µ⇤ � µ0)T (µ⇤ � µ0)] +

1
2

log(|⌃⇤|).

Note that

Eq⇤[
1
2

(� � µ⇤)T (⌃⇤)�1(� � µ⇤)] = p
2
,

which is always a constant at each iteration and therefore we ignore it.

For di↵b, we have
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di↵b = Eq⇤[log p(b)] � Eq⇤[log q(b)]

+⇡ Eq⇤
h
� (↵0 + 1) log b � !0

b

i
� Eq⇤

h
↵⇤ log!⇤ � log(�(↵⇤)) � (↵⇤ + 1) log b � !

⇤

b

i

= (↵⇤ � ↵0)Eq⇤(b)(log b) + (!⇤ � !0)Eq⇤(b)
�1
b
� � ↵⇤ log!⇤.

Since ↵⇤ does not change at each iteration, we remove log(�(↵⇤)) in the calculation of the

ELBO.
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D Chapter 3: Piecewise approximations of log(1+exp(x))

This section presents the idea and details of the piecewise approximations of log(1 +

exp(x)). In order to have the conjugacy in our variational Bayes algorithm, we apply piece-

wise approximations to log(1 + exp(x)), which are used in Section 3.3.1. We know that

log(1 + exp(x)) is monotonically increasing in (�1,1), and when x is approaching �1,

log(1+exp(x)) approaches 0, while when x is approaching1, log(1+exp(x)) approaches x.

Furthermore, when x  �5, log(1+ exp(x)) ⇡ 0, and when x � 5, log(1+ exp(x)) ⇡ x since

log(1 + exp(�5)) = 0.0067 and log(1 + exp(5)) = 5.0067. Therefore, our goal is to find

appropriate piecewise approximations of log(1 + exp(x)) in [�5, 5] whose plot is presented

in Figure D.1 Left. To do this, we apply the method introduced by Muggeo (2003) imple-

mented in R with a package called segmented which can help find the optimal piecewise

linear approximation using regression.
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Figure D.1: Left: Plot of log(1+exp(x)) versus x for x 2 [�5, 5]. Right: The plot of the sum
of squared errors (SSE) versus the number of breakpoints in linear piecewise approximation
via regression modelling.

First, we generate 10, 000 data points from log(1 + exp(x)) at equally spaced grid xi, i =

1, ..., 10000 in [�5, 5]. One, two, three, four, and five breakpoints are considered, which

correspond to two, three, four, five, and six pieces. The sum of squared error (SSE) is

used to evaluate the performance of the fitted model on the generated data. Finally, the
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optimal number of breakpoints is chosen at the knee of the plot of SSE versus the number

of breakpoints. From Figure D.1 Right, the best number of breakpoints is three with an

SSE of 3.3527 and an R2 of 0.9999. A comparison of the fitted lines on the true curves

with 2, 3, and 4 breakpoints is shown in Figure D.2. The optimal fitted model with three

break points using the segmented method proposed by Muggeo (2003) (those three optimal

breakpoints are -1.701, 0, and 1.702), f̂ (x) is

f̂ (x) = 0.1938 + 0.0426x + 0.2626(x � (�1.701))+

+ 0.3898(x � 0)+ + 0.2624(x � 1.702)+, x 2 [�5, 5],

where (x � a)+ := max(x � a, 0) for any a 2 (�1,1).

Therefore, we can approximate log(1 + exp(x)) in (�1,1) by

f̂ (x) = dlog(1 + exp(x)) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 if x  �5,

0.1938 + 0.0426x if � 5 < x  �1.701,

0.6405 + 0.3052x if � 1.701 < x  0,

0.6405 + 0.6950x if 0 < x  1.702,

0.1939 + 0.9574x if 1.702 < x  5,

x if 5 < x.

(D.1)

We ignore the two minor jumps at x = �5 and x = 5 since we focus on the approximation

of the function, and manually changing the structure of the piecewise approximations will

a↵ect the optimum of the approximation.

We construct the quadratic piecewise approximation, Equation (D.2), based on the linear

piecewise approximation. We also ignore the discontinuity (minor jump) at each break-

point. The SSE using quadratic piecewise approximation is 0.1188, and the R2 of the fitted
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models is 1.

f̂ (x) = dlog(1 + exp(x)) =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

0 if x  �5,

0.3893 + 0.1696x + 0.0189x2 if � 5 < x  �1.7,

0.6962 + 0.5000x + 0.1138x2 if � 1.7 < x  1.7,

0.3894 + 0.8303x + 0.0190x2 if 1.7 < x  5,

x if 5 < x.

(D.2)
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Figure D.2: A comparison of the fitted lines on the true curves using 2, 3, and 4 break
points with sum of squared errors (SSE) and R squared added to the plots.
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E Chapter 4: Update equations and ELBO calculation

In this appendix, we derive the update equation for each component and the ELBO clacu-

lation in the shared frailty log-logistic AFT model.

E.1 VB update equations

(1) Update equation for q⇤(�)

log q⇤(�)
+⇡ E��[log p(D |�,�, b)] + E��[log p(�)],

where

E��[log p(D |�,�, b)]

= E��

"
� � log b +

KX

i=1

niX

j=1

(
�i j

yi j � XT
i j� � �i

b
� (1 + �i j)

log
n
1 + exp

�yi j � XT
i j� � �i

b
�o
)#
, (E.1)

with � =
PK

i=1
Pni

j=1 �i j being the number of observed survival times, and

E��[log p(�)]
+⇡ p

2
log v0 �

1
2

v0(� � µ0)T (� � µ0)

+⇡ �1
2

v0
⇥
�T� � 2µT

0�
⇤
= v0 µ

T
0� �

1
2

v0�
T�.

In Equation (E.1), we use the quadratic piece-wise approximation proposed by Xian et al.

(2024) to approximate 1 + exp
� yi j�XT

i j���i

b
�
:

1 + exp
�yi j � XT

i j� � �i

b
� ⇡ ⇢i j

yi j � XT
i j� � �i

b
+ ⇣i j

�yi j � XT
i j� � �i

b
�2, (E.2)
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where ⇢i j := 0⌫i j1 ⇥ 0.1696⌫i j2 ⇥ 0.5⌫i j3 ⇥ 0.8303⌫i j4 ⇥ 11�P4
k=1 ⌫i jk and ⇣i j := 0⌫i j1 ⇥ 0.0189⌫i j2 ⇥

0.1138⌫i j3 ⇥0.0190⌫i j4 ⇥01�P4
k=1 ⌫i jk with ⌫i j1 =

� yi j�XT
i j���i

b  �5
�
, ⌫i j2 =

��5 <
yi j�XT

i j���i

b 

�1.7
�
, ⌫i j3 =

� � 1.7 <
yi j�XT

i j���i

b  1.7
�
, and ⌫i j4 =

�
1.7 <

yi j�XT
i j���i

b  5
�
. Then, we

obtain,

log q⇤(�)
+⇡

"
v0 µ

T
0 +

✓ KX

i=1

niX

j=1

⇣
Eq(b)

�1
b
�⇣ � �i j + (1 + �i j)⇢i j

⌘

+2Eq(b)
� 1
b2

�
(1 + �i j)⇣i j

�
yi j � Eq(�i)(�i)

�⌘
XT

i j

◆#
�

�1
2
�T

✓
v0I + 2Eq(b)

� 1
b2

� KX

i=1

niX

j=1

(1 + �i j)⇣i jXi jXT
i j

◆
�.

Let

⌃⇤ :=

v0I + 2Eq(b)

� 1
b2

� KX

i=1

niX

j=1

(1 + �i j)⇣i jXi jXT
i j

��1
,

and

µ⇤ :=
"⇢

v0 µ
T
0 +

KX

i=1

niX

j=1

⇣
Eq(b)

�1
b
�⇣ � �i j + (1 + �i j)⇢i j

⌘

+2Eq(b)
� 1
b2

�
(1 + �i j)⇣i j

�
yi j � Eq(�i)(�i)

�⌘
XT

i j

�
⌃⇤

#T

.

Then, q⇤(�) is Np(µ⇤,⌃⇤).

(2) Update equation for q⇤(�i)

log q⇤(�i)
+⇡ E��i

h
log p(D |�,�, b)

i
+ E��i

h KX

i=1

log p(�i |�2
�)
i
,



Appendix E – Chapter 4: Update equations and ELBO calculation 167

where

E��i

h
log p(D |�,�, b)

i

+⇡ E��i

" niX

j=1

n
�i j

yi j � XT
i j� � �i

b
� (1 + �i j) log

⇣
1 + exp

�yi j � XT
i j� � �i

b
�⌘o

#
, (E.3)

and

E��i

h KX

i=1

log p(�i |�2
�)
i
+⇡ �1

2
�2

i Eq(�2
�)
� 1
�2
�

�
.

We again apply the quadratic approximation in (E.2) to (E.3), and obtain

log q⇤(�i)
+⇡ �i

 niX

j=1

h
Eq(b)(

1
b

)
� � �i j + (1 + �i j)⇢i j

�
+ 2Eq(b)(

1
b2 )(1 + �i j)⇣i j

�
yi j � XT

i jEq(�)�
�i
!

�1
2
�2

i

✓
Eq(�2

�)
� 1
�2
�

�
+ 2Eq(b)

� 1
b2

� niX

j=1

(1 + �i j)⇣i j

◆
.

Let

�2⇤
i =

⇥
Eq(�2

�)
� 1
�2
�

�
+ 2Eq(b)

� 1
b2

� niX

j=1

(1 + �i j)⇣i j
⇤�1,

and

⌧⇤i = �
2⇤
i

niX

j=1

h
Eq(b)(

1
b

)
� � �i j + (1 + �i j)⇢i j

�
+ 2Eq(b)(

1
b2 )(1 + �i j)⇣i j

�
yi j � XT

i jEq(�)�
�i
.

Then, q⇤(�i) is Nl(⌧⇤i ,�
2⇤
i ).

(3) Update equation for q⇤(b)

log q⇤(b)
+⇡ E�b[log p(D |�,�, b)] + E�b[log p(b)],
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where

E�b[log p(D |�,�, b)]

= E�b

"
� � log b +

KX

i=1

niX

j=1

(
�i j

yi j � XT
i j� � �i

b
� (1 + �i j)

log
n
1 + exp

�yi j � XT
i j� � �i

b
�o
)#
, (E.4)

and E�b[log p(b)]
+⇡ �(↵0+1) log b�!0/b since we assume the prior, b ⇠ Inverse-Gamma (↵0,!0).

In Equation (E.4), we apply the linear piece-wise approximation proposed by Xian et al.

(2024) to approximate 1 + exp
� yi j�XT

i j���i

b
�

to achieve conjugacy:

1 + exp
�yi j � XT

i j� � �i

b
� ⇡ 'i j

yi j � XT
i j� � �i

b
,

where 'i j = 0⌘i j1 ⇥ 0.0426⌘i j2 ⇥ 0.3052⌘i j3 ⇥ 0.6950⌘i j4 ⇥ 0.9574⌘i j5 ⇥ 11�P5
k=1 ⌘i jk with ⌘i j1 =

� yi j�XT
i j���i

b  �5
�
, ⌘i j2 =

��5 <
yi j�XT

i j���i

b  �1.701
�
, ⌘i j3 =

��1.701 <
yi j�XT

i j���i

b  0
�
,

⌘i j4 =
�
0 <

yi j�XT
i j���i

b  1.702
�
, and ⌘i j5 =

�
1.702 <

yi j�XT
i j���i

b  5
�
.

Then, we obtain

log q⇤(b)
+⇡ �(↵0 + � + 1) log b � 1

b

h
!0 �

KX

i=1

niX

j=1

⇣
�i j � (1 + �i j)'i j

⌘⇣
yi j � XT

i jEq(�)(�) � Eq(�i)�i

⌘i
.

Let ↵⇤ = ↵0 + � and

!⇤ = !0 �
KX

i=1

niX

j=1

⇣
�i j � (1 + �i j)'i j

⌘⇣
yi j � XT

i jEq(�)(�) � Eq(�i)�i

⌘
,

we have q⇤(b) is Inverse-Gamma (↵⇤,!⇤).



Appendix E – Chapter 4: Update equations and ELBO calculation 169

(4) Update equation for q⇤(�2
�)

log q⇤(�2
�)

+⇡ E��2
�

h KX

i=1

log p(�i |�2
�)
i
+ E��2

�

h
log p(�2

�)
i
,

where

E��2
�

h KX

i=1

log p(�i |�2
�)
i
= E��2

�

 KX

i=1

log
⇣ 1
q

2⇡�2
�

exp(� 1
2�2

�

�2
i )
⌘�

+⇡ �K
2

log�2
� �

1
2�2

�

KX

i=1

Eq(�i)�
2
i ,

and E��2
�

⇥
log p(�2

�)
⇤
= �(�0 + 1) log�2

� � ⌘0/�2
�.

Therefore,

log q⇤(�2
�)

+⇡ �(�0 +
K
2
+ 1) log�2

� �
⇥
⌘0 +

1
2

KX

i=1

Eq(�i)�
2
i
⇤
/�2

�.

Let �⇤ = �0 + K/2 and

⌘⇤ = ⌘0 +
1
2

KX

i=1

Eq(�i)�
2
i ,

q⇤(�2
�) is an Inverse-Gamma (�⇤, ⌘⇤).
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E.2 ELBO calculation

We now present details of calculating di↵� + di↵� + di↵b + di↵�2
�

in the ELBO defined in

(4.5).

di↵� = Eq[log p(�)] � Eq[log q(�)]

+⇡ Eq[�1
2

v0(� � µ0)T (� � µ0)] � Eq[�1
2

log(|⌃⇤|) � 1
2

(� � µ⇤)T (⌃⇤)�1(� � µ⇤)]
+⇡ �1

2
v0[trace(⌃⇤) + (µ⇤ � µ0)T (µ⇤ � µ0)] +

1
2

log(|⌃⇤|).

Note that

Eq[
1
2

(� � µ⇤)T (⌃⇤)�1(� � µ⇤)] = p
2
,

which is always a constant at each iteration and therefore we ignore it.

di↵� = Eq
⇥ KX

i=1

log p(�i |�2
�)
⇤ � Eq

⇥ KX

i=1

log q(�i)
⇤

+⇡ �K
2
Eq(�2

�)(log�2
�) �

1
2
Eq(�2

�)
� 1
�2
�

� KX

i=1

Eq(�i)(�
2
i )

�1
2

KX

i=1

⇥
log�2⇤

i �
1
�2⇤

i

�
Eq(�i)(�

2
i ) � µ⇤2i

�⇤

+⇡ �K
2
Eq(�2

�)(log�2
�) �

1
2
Eq(�2

�)
� 1
�2
�

� KX

i=1

Eq(�i)(�
2
i ) � 1

2

KX

i=1

�
log�2⇤

i
�
.

Since
�
Eq(�i)(�2

i ) � µ⇤2i
�
/�2⇤

i = 1 for i = 1, ...K, and therefore,

⇣ KX

i=1

�
Eq(�i)(�

2
i ) � µ⇤2i

�⌘
/(2�2⇤

i ) = K/2,

which is a constant, and we can ignore it.
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di↵b = Eq[log p(b)] � Eq[log q(b)]

+⇡ Eq

h
� (↵0 + 1) log b � !0

b

i

�Eq

h
↵⇤ log!⇤ � log(�(↵⇤)) � (↵⇤ + 1) log b � !

⇤

b

i

= (↵⇤ � ↵0)Eq(b)(log b) + (!⇤ � !0)Eq(b)
�1
b
� � ↵⇤ log!⇤.

Since ↵⇤ does not change at each iteration, we remove log(�(↵⇤)) in the calculation of the

ELBO.

di↵�2
�
= Eq[log p(�2

�)] � Eq[log q(�2
�)]

+⇡ Eq

h
� (�0 + 1) log�2

� �
⌘0

�2
�

i

�Eq

h
�⇤ log ⌘⇤ � log(�(�⇤)) � (�⇤ + 1) log�2

� �
⌘⇤

�2
�

i

= (�⇤ � �0)Eq(�2
�)(log�2

�) + (⌘⇤ � ⌘0)Eq(�2
�)
� 1
�2
�

� � �⇤ log ⌘⇤.

Since �⇤ does not change at each iteration, we remove log(�(�⇤)) in the calculation of the

ELBO.
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