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Abstract

This thesis is concerned with the study of rationally smooth standard group

embeddings. We prove that the equivariant cohomology of any of these compactifi-

cations can be described, via GKM -theory, as certain ring of piecewise polynomial

functions. Moreover, building on previous work of Renner ([R3]), we show that the

embeddings under consideration come equipped with both a canonical decomposi-

tion into rational cells and a filtration by equivariantly formal closed subvarieties.

The techniques developed in this monograph supply a method for constructing

free module generators on the equivariant cohomology of Q-filtrable GKM -varieties.

Our findings extend the earlier work of Arabia ([Ar]) and Guillemin-Kogan ([GK])

on equivariant characteristic classes.

In the last two chapters of this work, inspired by the papers of Brion ([Br4])

and Renner ([R7]), we compute explicitly the GKM characters associated to any

standard group embedding. Our major result describes the equivariant cohomology

of rationally smooth standard group embeddings in terms of roots, idempotents, and

underlying monoid data.

Keywords: Equivariant cohomology, GKM theory, rationally smooth, algebraic

monoids, group embeddings, filtrable spaces, equivariant Euler classes, J-irreducible

monoids, toric varieties.
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Introduction

It has been proved that a smooth projective variety, upon which an algebraic

torus acts with finitely many fixed points, can be decomposed into invariant affine

cells [BB1]. This method for breaking down a space into pieces, also known as BB-

theory, allows us to compute important topological invariants, especially Betti

numbers. On the other hand, Borel has developed an algebraic method, equiv-

ariant cohomology, to study spaces equipped with group actions. Borel’s method

has dramatically deepened our understanding of how topology interacts with group

theory. The interplay between these two methods is of fundamental importance for

the theory of group embeddings.

A group embedding X is a compactification of an algebraic group G endowed

with a G × G-action that extends the natural two-sided action of G on itself. It

is worth emphasizing that this is a generalization of the notion of toric varieties,

objects that have been studied extensively in algebraic geometry for nearly forty

years ([D, F, DP, BDP, Cox]). One can obtain substantial information about the

topology of a group embedding by restricting one’s attention to the induced action of

a maximal torus T of G. Renner has recently developed a large part of the theory of

rationally smooth standard group embeddings ([R3, R4, R5, R6]). These objects

are characterized by the fact that they satisfy local Poincaré duality (Definition

2.1.1). Furthermore, one can find a canonical cellular decomposition (like the cells

1



2

we obtain from BB-theory) for such spaces. Indeed, it turns out that they can

be decomposed into rational cells (Definition 2.1.8). This is quite relevant since

it allows us to compute topological invariants (e.g. Betti numbers) for standard

group embeddings (Corollary 2.3.3). On the other hand, GKM theory makes it

possible to describe the cohomology of group embeddings in terms of T -fixed points

and weighted T -invariant curves. In fact, it is an ideal method for studying group

embeddings. For a comprehensive overview of why this should be the case, see

[Br2, CS, EG1, GKM, GZ, U, VV].

The main purpose of GKM theory is to identify the image of the functorial map

i∗ : H∗
T (X)→ H∗

T (X
T ),

assuming certain technical conditions are met. These conditions can be verified ex-

plicitly for a large, interesting and growing class of group embeddings. In particular,

using the theory of reductive monoids, we can identify explicitly and combinatorially

the salient GKM data (T -fixed points and weighted T -curves) that are needed to

quantify the sought-after image of i∗ (Theorem 4.3.4).

It was shown by Renner in [R5] that there is a useful combinatorial characteriza-

tion of rationally smooth embeddings. These objects constitute a much larger class

of embeddings than the smooth ones. In fact, most of the techniques used in the

study of smooth varieties have a natural extension to the rationally smooth case,

e.g. BB-decomposition, GKM theory, etc.

This monograph has three main objectives. The primary objective is to verify

that GKM -theory is directly applicable in the study of rationally smooth standard

group embeddings. Previously, this has been carried out only in the case of smooth

embeddings. The second goal is to describe the GKM -graph of a rationally smooth

standard group embedding and use it to calculate its equivariant cohomology. The

final aim is to generalize the aforementioned techniques to the study of more general
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spaces, in particular to spaces which admit a decomposition into rationally smooth

cells (Q-filtrable varieties, Definition 2.3.4). We develop the necessary topological

framework to undertake these tasks. Furthermore, we provide a complete description

of the equivariant cohomology of any rationally smooth standard group embedding;

thus increasing the effectiveness of GKM theory as a tool in embedding theory.

Let K∗
T (X) be the equivariant K-theory of X, that is, the Grothendieck group

of isomorphism classes of T -equivariant (algebraic) vector bundles over X.

The following theorem was inspired on the work of Atiyah ([At3]), Hsiang ([Hs])

and Chang-Skjelbred ([CS]). Its cohomological version is one of the fundamental

results in GKM -theory.

GKM Theorem ([Br2],[VV], [U]). Let X be a smooth complex projective variety

with a torus action containing only a finite number of fixed points and T -invariant

curves. Then K∗
T (X;C) is a free K∗

T (pt;C)-module of rank |XT |. Moreover,

KT (X;C) ' {(f1, . . . , fn) ∈
⊕
x∈XT

Rx | fi ∼= fj mod(1− e−χi,j)},

where Rx is a copy of the representation ring of the torus R[T ], and xi, xj are

the two fixed points in the closure of the one dimensional orbit Ci,j and χi,j is the

character associated to Ci,j.

GKM theory for equivariant Chow rings was implemented by Brion ([Br2]),

building on previous work of Edidin and Graham ([EG1]). Later on, Vistoli and

Vezzosi ([VV]) proved an analogue of GKM theory for the equivariant algebraic K-

theory of smooth projective varieties. Brion ([Br4]) had also described the required

GKM data for a large class of smooth group compactifications, namely, regular

embeddings ([BDP]). Uma ([U]) finally showed that the equivariant K-theory ring

of a regular embedding can be understood as a generalized Stanley-Reisner ring.
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On the other extreme of the spectrum, Rosu and Knutson ([RK]), using a sheaf-

theoretical approach, sucessfully applied GKM -theory to the study of smooth man-

ifolds and topological equivariant K-theory.

The approach taken in this monograph differs from the ones in the literature at

two major points. First, it is more elementary. We work mostly with rational singu-

lar cohomology, avoiding the use of sofisticated sheaf-theoretical devices whenever

possible. Secondly, we use a different cellular decomposition. Our major technical

tool here is the notion of rational cell (Definition 2.1.8). The advantage of this con-

cept relies on the fact that it allows for an equal treatment of singular and smooth

varieties.

To summarize, in this monograph we develop the appropriate setting in which a

cohomological version of the GKM Theorem holds for standard group embeddings,

spaces that are, for the most part, singular. Most importantly, we identify explicitly

the salient GKM -data (i.e. fixed points and invariant curves), and use it to provide

a complete description of the equivariant cohomology ring of any rationally smooth

standard group embedding (Theorem 4.3.4). Our methods also yield a recipe for

finding a suitable set of module generators in terms of equivariant Euler classes

(Theorem 2.6.9).

Thesis Organization

Chapter 1: This chapter is basically a survey of the well-established concepts

and definitions that are relevant to this monograph. The chapter starts with a

quick overview of Equivariant Cohomology, using as a guide the classical references

of Borel ([Bo1]) and Quillen ([Q]). Next, the most important Localization Theorems
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in topological transformation groups are stated ([Hs]). The core of this chapter is

dedicated to GKM -theory and the notions of T -skeletal actions and GKM -varieties

([GKM]). Finally, the equivariant cohomology of flag varieties and simplicial toric

varieties is studied.

Chapter 2: Here we devote ourselves to the study of rational cells, our basic

building blocks. After describing their most remarkable topological properties, we

define Q-filtrable varieties, spaces that come equipped with a paving by rational

cells. Sections 2.1, 2.3 and 2.6 contain new developments. This chapter concludes by

supplying a method for building canonical free module generators on the equivariant

cohomology of any Q-filtrable GKM variety (Theorem 2.6.9). Our findings extend

the earlier works of Arabia([Ar]), Brion ([Br5]), and Guillemin-Kogan ([GK]).

Chapter 3: This chapter begins the study of Standard Group Embeddings

(Definition 3.2.1). We show that they are T ×T -skeletal varieties. Even more so, we

describe the fixed points and invariant curves in terms of the Renner monoid and

certain roots. Notably, our computations do not depend on any special property of

the reductive monoid in consideration. We conclude this Chapter by showing that

rationally smooth standard group embeddings have also a canonical Q-filtration

(Theorem 3.2.13). That is to say, they are GKM -varieties as well. The explicit

calculation of the T × T -characters is done in the next chapter. Most results here

are new, notably, Theorem 3.2.3, Theorem 3.2.7, Theorem 3.2.8 and Theorem 3.2.13.

Chapter 4: The most important chapter of this thesis. In the first two sections,

we compute, in very explicit terms, all the GKM -characters associated to the T×T -

invariant curves of a standard group embedding. Once again, these calculations turn

out to be independent of any particular property of the underlying reductive monoid.

Moreover, we classify these curves and characters in terms of combinatorial monoid

data. In the second half of this chapter, we specify our findings to the case of
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rationally smooth standard embeddings. Our main theorem, Theorem 4.3.4, gives

the ultimate description of the equivariant cohomology of rationally smooth standard

embeddings in terms of roots, idempotents, and the Renner monoid. All the results

in this final chapter, with very few exceptions, are new. The most remarkable results

are Theorem 4.1.1, Theorem 4.3.4, Corollary 4.3.5 and Theorem 4.3.6. As a closing

remark, we illustrate the theory thus developed with some particular examples in

Section 4.4.



Chapter 1

Equivariant Cohomology

This chapter is essentially a recollection of the well-established concepts and

definitions that are relevant to this monograph. The classical references are [Bo1],

[Q], [CS], [Hs], [GKM], [AP] and [Br3].

1.1 The Borel construction

Let G be a compact Lie group and let X be a G-space, that is, a topological

space endowed with a continuous action of G. For the purposes of this section, all

spaces are assumed to be Hausdorff and paracompact.

Let G ↪→ EG→ BG be a universal bundle for G. Consider the diagonal action

of G on EG×X and form the associated fiber space XG := (EG×X)/G over BG

with typical fiber X. It is crucial to notice that although G may not act freely on

X, it acts freely on EG×X, for it does so on EG. Hence, in the following diagram

X
� � // XG

pX // BG ,

the map pX , induced by the canonical projection EG×X → EG, is a fibration. It

is usual to denote XG as EG×G X too, so we will use both notations alike.

7
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The equivariant cohomology of the G-space X is defined by

H∗
G(X; Λ) := H∗(XG; Λ)

where by H∗(−; Λ) we mean singular cohomology with coefficients in the commu-

tative ring Λ. This construction was introduced by Borel in [Bo1]. Notice that

H∗
G(X; Λ) is, via p∗X , an algebra over H∗

G(pt; Λ).

Throughout this monograph cohomology is considered with rational coefficients.

So, for simplicity, H∗
G(X;Q) will be written as H∗

G(X). When X = pt, it is usual to

write H∗
G instead of H∗

G(pt).

It can be shown that H∗
G(X) is independent of the choice of universal bundle

EG → BG, so that equivariant cohomology becomes a contravariant functor from

the category of pairs (G,X) to the category of graded anti-commutative Λ-algebras.

See [Bo1] and [Q] for details.

Example 1.1.1. Let T = (S1)m be a compact torus. Then BT = (CP∞)m, and

consequently H∗
T (pt) = H∗(BT ) = Q[x1, . . . , xm], where deg(xi) = 2. A more

intrinsic description of H∗
T (pt) is as follows. Denote by Ξ(T ) the character group

of T consisting of all continuous group homomorphisms T → S1. Any χ ∈ Ξ(T )

defines a one-dimensional complex representation of T with space Cχ. Here T acts

on Cχ via t · z := χ(t)z. Consider the associated complex line bundle

L(χ) := (ET ×T Cχ → BT )

and its first Chern class c(χ) ∈ H2(BT ). Let S be the symmetric algebra over Q of

the group Ξ(T ). Then S is a polynomial ring on m generators of degree 1, and the

map χ→ c(χ) extends to a ring isomorphism

c : S → H∗
T (pt)
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which doubles degrees. The map c is refered in the literature as the characteristic

homomorphism.

From the copious list of properties of equivariant cohomology, we just mention

briefly a few of them here. The reader is urged to consult [Bo1] or [Q] for a complete

treatment of equivariant cohomology.

One salient property of equivariant cohomology is the induction formula. Let

K be a closed subgroup of G and let X be a K-space. Consider the natural action

of K on G ×X, and form the quotient space G ×K X := (G ×X)/K. Define a G

action on G×K X by putting g[g′, x] = [gg′, x]. Then

H∗
G(G×K X) ' H∗

K(X).

The induction formula is also valid for locally compact Lie groups.

Remark 1.1.2. Let K be a closed subgroup of G, and let Y be a G-space. There is

a homeomorphism between the G-spaces G×K Y and (G/K)×Y given by (g, x) 7→

(g, g−1x). Taking such homeomorphism into account, consider the case when K is

a maximal compact torus, say (S1)n, of an algebraic torus G = (C∗)n. Because

(C∗)n/(S1)n ' (R+)n is contractible, the induction formula then yields

H∗
K(−) ' H∗

G(−).

This equivalence of functors is relevant for our purposes. It states that equivariant

cohomology makes no distinction between actions of compact tori and algebraic tori.

For a concrete application of this observation, see Theorem 1.4.7.

Let H be a closed subgroup of G. Then

(G/H)G = EG×G (G/H) = (EG×G G)/H = (EG)/H = BH;

in other words,

H∗
G(G/H) = H∗(BH),
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for each closed subgroup H ⊂ G.

Equivariant maps between homogeneous G-spaces are given by G/H → G/K,

for pairs of subgroups H ⊂ K. Thus we have equivariant morphisms

H∗
G(G/K) = H∗(BK) −→ H∗(BH) = H∗

G(G/H)

for each pair H ⊂ K.

Remark 1.1.3. Let G be a compact connected Lie group. Let T be a maximal

compact torus of G. Under these assumptions, G/T is connected and admits a

Bruhat decomposition. In fact, G/T is homeomorphic to the flag variety of the

complexification of G. To see this, let GC be the complexification of G; then GC

is a connected reductive group. Let B be a Borel subgroup of GC containing the

compact torus T . Then, by the Iwasawa decomposition, we have GC = GB and

G ∩ B = T . Consequently, the map G/T → GC/B is a homeomorphism. By the

Bruhat decomposition, the flag variety GC/B has a paving by |W | cells, each of

them being isomorphic to a complex affine space. Therefore, H∗(G/T ) vanishes in

odd degrees, and the topological Euler characteristic χ(G/T ) is equal to |W |.

Remark 1.1.4. It follows from the long exact sequence of homotopy groups asso-

ciated to the fibration

T ↪→ ET −→ BT

that BT is simply connected. Likewise, replacing T by G in the fibration above

renders BG as simply connected.

1.2 Spectral sequences

Let G be a compact Lie group and let X be a G-space.
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1.2.1 Leray-Serre spectral sequences

These are the spectral sequences associated to the diagram

BG EG×G X
fX //

pX
oo X/G ,

where pX and fX are the maps induced by the projections of EG×X onto its factors.

(1) The map pX gives rise to the Serre spectral sequence

Es,t
2 = Hs(BG;H t(X)) =⇒ Hs+t

G (X).

(2) In turn, the map fX produces the Leray-Serre spectral sequence

Es,t
2 = Hs(X/G;Ht

G) =⇒ Hs+t
G (X).

The sheaf Ht
G is the sheaf on X/G associated to the presheaf V 7→ H t

G(f
−1
X V ).

One checks that the stalk of Ht
G at [y] ∈ X/G is H t

G(f
−1
X y). See [Q] for the

details.

Remark 1.2.1. Certainly the map pX above is a fibration. On the other hand, the

same cannot be postulated about fX . Indeed, for any [x] ∈ X/G, the fibre f−1
X ([x])

equals EG/Gx, the classifying space of Gx. So there is no canonical fibre, as the

fibres depend on the particular choice of point [x] in X/G. However, some global

properties of fX can still be deduced from this. For instance, if the stabilizer Gx is

finite for any x ∈ X, then fX would be a map with Q-acyclic fibres.

Lemma 1.2.2. Let G be a compact Lie group and X be a G-space. Suppose that G

acts on X with finite isotropy groups. Then,

H∗
G(X) ' H∗(X/G).
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Proof. As it was discussed on Remark 1.2.1, the fibres of map fX : XG → X/G are

the various BGx, for [x] ∈ X/G. Since the isotropy groups Gx are all finite, then

BGx is Q-acyclic. The result now follows from the Leray-Serre spectral sequence

(2) above.

Lemma 1.2.3. If G acts trivially on X, then

H∗
G ⊗Q H∗(X) ∼ // H∗

G(X).

Proof. Since EG×G X = BG×X, this follows from the Künneth formula.

Lemma 1.2.4. Let G be a compact connected Lie group, T be a maximal torus, N

be the normalizer of T in G, and W = N/T be the Weyl group of G. Then

H∗(G/N) ' H∗(G/T )W ' H∗(pt);

that is, G/N is Q-acyclic. In symbols, G/N ∼Q pt.

Proof. Since W ↪→ G/T � G/N is a finite covering, it follows that

H∗(G/N) ' H∗(G/T )W

and, by counting cells, χ(G/T ) = |W | · χ(G/N). Moreover, Remark 1.1.3 asserts

that Hodd(G/T ) = 0 and dimQH
∗(G/T ) = χ(G/T ) = |W |. Consequently,

Hodd(G/N) ' Hodd(G/T )W = 0

together with

dimQH
∗(G/N) = χ(G/N) =

1

|W |
· χ(G/T ) = 1.

In short, G/N ∼Q pt.
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Lemma 1.2.5. Let G be a compact connected Lie group, T be a maximal torus, N

the normalizer of T and W the Weyl group acting as an automorphism group of T .

Then,

H∗(BG) ' H∗(BN) ' H∗(BT )W .

Moreover, BG has vanishing odd cohomology.

Proof. Since the fiber bundle G/N � � // BN
π // BG has Q-acyclic fibres and

π1(BG, ∗) = 0, it follows easily from the Serre spectral sequence that the map

π∗ : H∗(BG)→ H∗(BN) is an isomorphism. Hence,

H∗(BG) ' H∗(BN) ' H∗(BT )W ,

where the second isomorphism comes from the fact that BT → BN is a covering

map, with W acting as deck transformations.

Finally, the explicit description of H∗(BT ) (Example 1.1.1) implies that BT

has no odd cohomology. Given that H∗(BG) = H∗(BT )W , then BG has no odd

cohomology either.

Example 1.2.6. Let G = U(n) be the compact subgroup of GL(n,C) consisting

of unitary matrices. Then T n = {diag(e2πiθ1 , . . . , e2πiθn)} is a maximal torus and

W = Sn acts on T n by permuting the θj’s. Recall that H∗(BT n) ' Q[x1, . . . , xn]

and W acts H∗(BT n) by permutations of the xj’s. Hence

H∗(BG) ' Q[x1, . . . , xn]
W ' Q[c1, . . . , cn]

is exactly the ring of symmetric polynomials, and the universal Chern classes c1, . . . , cn

are respectively the elementary symmetric polynomials.

1.2.2 Eilenberg-Moore spectral sequence

Let X be a given G-space and K be a closed subgroup of G. Then the restriction

of the G-action to K makes X into a K-space. What is the relationship between
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H∗
G(X) and H∗

K(X)?

The following is a commutative diagram of fibrations:

X

��

X

��
G/K // XK

//

��

XG

��
G/K // BK // BG.

Recall that we may assume EK and EG to be the same space.

For any pullback of a fibration, Eilenberg-Moore constructed a spectral sequence

{En, dn} such that

En =⇒ H∗(XK) = H∗
K(X),

Ep,q
2 = Torp,qH∗(BG)(H

∗(BK), H∗(XG))

Example 1.2.7. If K = {id}, then the above spectral sequence reduces to

Ep,q
2 = Torp,qH∗(BG)(H

∗(pt), H∗(XG)) , En ⇒ H∗(X).

Moreover, if H∗
G(X) is a free H∗

G-module, then

Q⊗H∗
G
H∗

G(X) ' H∗(X).

Example 1.2.8. Let X, Y be two G-spaces. Then X×Y is a (G×G)-space and its

restriction to the diagonal subgroup ∆ : G→ G×G makes X × Y into a G-space.

Hence, the spectral sequence gives

Ep,q
2 = Torp,qH∗(BG×BG)(H

∗(BG), H∗(XG × YG)),

along with

En ⇒ H∗
G(X × Y ).

This is the Künneth spectral sequence of equivariant cohomology.
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Proposition 1.2.9. Let G be a compact connected Lie group and let T ⊂ G be

a maximal torus with normalizer N and with Weyl group W = N/T ; let X be a

G-space. When working with rational coefficients, the following hold:

(i) The group W acts on H∗
T (X) and we have an isomorphism

H∗
G(X) ' H∗

T (X)W .

In particular, H∗
G(pt) is isomorphic to SW where S denotes the symmetric algebra of

the character group Ξ(T ) (ocurring in degree 2), and SW the ring of W -invariants

in S.

(ii) The map

S ' H∗
G(G/T ) −→ H∗(G/T )

is surjective and induces an isomorphism S/(SW
+ )→ H∗(G/T ) where (SW

+ ) denotes

the ideal of S generated by all homogeneous W -invariants of positive degree.

(iii) We have an isomorphism

S ⊗SW H∗
G(X) ' H∗

T (X).

In particular, H∗
T (G/T ) is isomorphic to S ⊗SW S.

Proof. The proof is obtained by putting together all the data obtained from our

previous results. First, consider the fibre bundle G/T ↪→ BT → BG. Recall that

both G/T and BG have vanishing odd cohomology, as it can be seen from Remark

1.1.3 and Lemma 1.2.5. Thus, the Serre spectral sequence associated to the given

fibration degenerates and yields

H∗(BT ) ' H∗(BG)⊗H∗(G/T ).

In other words, H∗(BT ) is a free module over H∗(BG). This implies (ii).
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On the other hand, there is a pullback diagram

G/T // XT
//

��

XG

��
G/T // BT // BG

from which it follows at once (due to the Eilenberg-Moore spectral sequence) that

H∗(XT ) ' H∗(BT )⊗H∗(BG) H
∗(XG).

So (iii) holds.

Now remember that G/N ∼Q pt. Hence the fibration diagram

G/N ↪→ XN → XG

yields H∗
G(X) ' H∗

N(X). Finally, the covering

W → XT → XN

gives

H∗
N(X) ' H∗

T (X)W ,

and (i) is obtained.

Corollary 1.2.10. There is a graded W -submodule R of H∗
T , isomorphic to the

regular representation of W , such that

H∗
T ' R⊗ (H∗

T )
W

as graded (H∗
T )

W -modules.

Proof. Proposition 1.2.9 (ii) asserts that S = H∗
T is a free SW -module. Moreover,

it provides the factorization S = SW ⊗ H∗(G/T ). That is, H∗(G/T ) = S/(SW
+ ).

A well-known result of Leray ([Bo3], Proposition 20.2) now implies that the rep-

resentation of W in H∗(G/T ) is isomorphic to the regular representation. Setting

R = H∗(G/T ) concludes the proof.
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1.3 Localization theorems for torus actions

Given a compact torus K = (S1)n, denote by H∗
K the ring H∗

K(pt). Cohomology

is always considered with rational coefficients.

Proposition 1.3.1 (Borel, [Hs]). Let K be the circle group, X be a finite dimen-

sional K-space, XK be the fixed point set. Then

(i) H∗
K(X,XK) ' H∗((X −XK)/K) is a torsion H∗

K-module.

(ii) the kernel and cokernel of H∗
K(X) → H∗

K(X
K) = H∗

K ⊗Q H∗(XK) are both

torsion H∗
K-modules. �

Let S ⊂ H∗
K be the multiplicative system H∗

K \ {0}. For a given K-space X,

denote by XK the fixed point set. The following is a classical theorem due to Borel

([Bo1]).

Theorem 1.3.2. Let K be a compact torus and X be a paracompact K-space. Sup-

pose H∗
K(X) is a finite H∗

K-module. Then the localized restriction homomorphism

S−1H∗
K(X) −→ S−1H∗

K(X
K) = H∗(XK)⊗Q (S−1H∗

K)

is an isomorphism. �

Localization is explored systematically by Segal ([Seg2]) and by Atiyah and Segal

([ASe1]) in the context of fixed point theorems for equivariant K-theory.

We now focus our attention to the case of a compact torus K acting on a topo-

logical space X satisfying the hypothesis of Theorem 1.3.2.

Denote by X1 the set

X1 = {x ∈ X| codim (Kx) ≤ 1},

that is, X1 is the set of points consisting of 0 and 1 dimensional orbits of K. Let

δ be the connecting homomorphism in the long exact sequence for the equivariant
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cohomology of the pair (X1, X
K). The following is a topological version of the

localization theorem. It was first proved by Chang and Skjelbred ([CS]). Another

proof can be found in [GKM], Theorem 6.3.

Theorem 1.3.3. Suppose H∗
K(X) is a free module over H∗

K. Then the sequence

0 // H∗
K(X)

γ // H∗
K(X

K)
δ // H∗

K(X1, X
K)

is exact, and in particular the equivariant cohomology of X may be identified as

the submodule of the equivariant cohomology of the fixed point set which is given by

ker(δ). Additionally, δ is compatible with the cup product and so the sequence above

determines the ring structure of H∗
K(X). �

1.4 GKM theory

GKM theory is a relatively recent tool that owes its name to the work of Goresky,

Kottwitz and MacPherson [GKM]. This theory encompasses techniques that date

back to the early works of Atiyah ([At3], [ASe1]), Segal ([Seg1]), Borel ([Bo1]) and

Chang-Skjelbred ([CS]).

1.4.1 Equivariant formality

Definition 1.4.1. Suppose a compact torus K = (S1)r acts on a (possibly singular)

space X. Let pX : XK −→ BK be the fibration associated to the Borel construction.

We say that X is equivariantly formal if the spectral sequence

Ep,q
2 = Hp(BK;Hq(X)) =⇒ Hp+q

K (X)

for this fibration degenerates at E2.
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Lemma 1.4.2. Let X be a K-space whose ordinary rational cohomology vanishes

in odd degrees. Then X is equivariantly formal.

Proof. Recall from Example 1.1.1 that the classifying space of K, namely (CP∞)r,

has cohomology only in even degrees. After placing this information in the E2-term

of the Serre spectral sequence, one notices that all the differentials are zero. Hence

the spectral sequence degenerates.

Lemma 1.4.3. Let X be a K-space. Then X is equivariantly formal if and only

if its K-equivariant cohomology is a free module over H∗
K. More precisely, X is

equivariantly formal if and only if

H∗
K(X) ' H∗(X)⊗Q H∗

K

as H∗
K-modules.

Proof. If X is equivariantly formal, the result follows immediately from the degener-

ation of the Leray spectral sequence at its second term. The other direction follows

from the Eilenberg-Moore spectral sequence and was shown in Example 1.2.7.

Example 1.4.4. Let M be a symplectic manifold with a Hamiltonian K-action.

The results of Kirwan ([K]) yield HK(M) ' H∗(M)⊗QH∗
K . So by Lemma 1.4.3, M

is equivariantly formal. Likewise, any space with a K-invariant CW -decomposition

into even cells is equivariantly formal (Lemma 1.4.2).

We will show that the class of equivariantly formal spaces also includes rationally

smooth standard group embeddings (Theorem 3.2.13).

The following result can be found in [GKM], Theorem 1.6.2.

Proposition 1.4.5. Let X be a K-space. Then, X is equivariantly formal if and

only if the edge homomorphism

H∗
K(X) −→ H∗(X)
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is surjective. In this case, the ordinary rational cohomology is given by extension of

scalars,

H∗(X) ' H∗
K(X)⊗H∗

K
Q.

�

Corollary 1.4.6. Let X be a K-space. If X is equivariantly formal, then X is

equivariantly formal with respect to any subtorus K ′ of K.

Proof. Since the map H∗
K(X) −→ H∗(X), induced by restriction to the fibre, is

surjective (Proposition 1.4.5) and factors through H∗
K′(X), the result follows from

applying Proposition 1.4.5 to the map H∗
K′(X) −→ H∗(X).

The theorem below characterizes equivariant formality when the fixed point set

is finite.

Theorem 1.4.7. Denote by T a compact torus or an algebraic complex torus. Let

X be a compact T -space with a finite number of fixed points. Then, the following

are equivalent:

a) X is equivariantly formal.

b) H∗
T (X,Q) is a free H∗

T (pt)-module of rank |XT |, the number of fixed points.

c) The singular rational cohomology of X vanishes in odd degrees.

Proof. Due to our earlier Remark 1.1.2, equivariant cohomology makes no distinc-

tion between actions of compact tori and algebraic tori. Bearing this in mind, one

simply notices that the equivalence between statements (a) and (b) has already been

established in Lemma 1.4.3. As for the claim about the rank, it is enough to use

Theorem 1.3.2.
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For the direction b) ⇒ c) we proceed in two steps. First, since H∗
T (X) is a free

H∗
T (pt)-module, the Eilenberg-Moore spectral sequence implies that

H∗(X) ' H∗(pt)⊗H∗
T (pt) H

∗
T (X),

or, in other words, that we have the identification of rings

H∗(X,Q) ' H∗
T (X,Q)/(H+

T (pt,Q)),

where (H+
T (pt,Q)) denotes the ideal of H∗

T (X,Q) generated by the images of homo-

geneous elements of H∗
T (pt,Q) of positive degree. Second, the freeness of H∗

T (X),

together with the Localization Theorem (Theorem 1.3.3), imply that H∗
T (X) injects

into H∗
T (X

T ) =
⊕

|XT |H
∗
T (pt). Given that H∗

T (pt) = H∗(BT ) = Q[x1, . . . , xrank(T )],

where each xi is a cohomology class in degree 2, it follows that H∗
T (X) is zero in

odd degrees. This observation, together with the first part, leads to Hodd(X) = 0.

Finally, (a) follows readily from (c), as shown in Lemma 1.4.2.

Example 1.4.8 (Non-equivariantly formal space). The circle K = S1 acts on CP1,

the Riemann sphere, by rotation with fixed points at the North and South poles.

Let X be three copies of CP1 joined at these fixed points so as to form a “ring”.

Figure 1.1 depicts the situation.

Figure 1.1: A projective variety which is not equivariantly formal [T].

The space X is a projective variety. To see this, consider CP2 with the C∗-action

given by t[x0 : x1 : x2] := [x0 : tx1 : t2x2]. Then X is isomorphic to the union
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of the canonical lines x0 = 0, x1 = 0, and x2 = 0, with the induced C∗-action.

Notice that X has only three fixed points. Moreover, H1(X) = Q. Indeed, by

excision, H1(X,XT ) = Q3. Whence the long exact sequence of the pair (X,XT )

yields H1(X) = Q. Theorem 1.4.7 now assures that X is not equivariantly formal.

1.4.2 T -Skeletal Actions

Suppose X is a (possibly singular) complex projective algebraic variety with an

algebraic action of a complex torus T = (C∗)n. Let K = (S1)n ⊂ T denote the

compact subtorus. We use complex coefficients throughout this subsection.

The equivariant cohomology H∗
K(X;C) is an algebra: it is a ring under the cup

product and it is a module over the symmetric algebra S = H∗(BK;C) ' C[t∗] of

polynomial functions on the Lie algebra t of K. Furthermore, Remark 1.1.2 allows

to identify the functors H∗
T (−) and H∗

K(−).

Definition 1.4.9. Let X be a projective algebraic T -variety. Let µ : T ×X → X

be the action map. We say that µ is a T -skeletal action if

1. XT is finite, and

2. The number of one-dimensional orbits of T on X is finite.

In this context, X is called a T -skeletal variety.

Let X be a normal projective T -skeletal variety. Then X has an equivariant

embedding into a projective space with a linear action of T ([Su], Theorem 1).

Denote by x1, . . . , xr the fixed points of X and by E1, E2, . . . , E` the one-dimensional

T -orbits. If X is equivariantly formal, there is an explicit formula for its equivariant

cohomology algebra: Each 1-dimensional T -orbit Ej is a copy of C∗ with two fixed

points (called them xj0 and xj∞) in its closure. So Ej = Ej ∪ {xj0} ∪ {xj∞} is
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an embedded Riemann sphere which may be singular at the fixed points. The K-

action rotates this sphere according to some character χj : K → C∗. This character

is uniquely determined up to sign (permuting the two fixed points changes χj to its

opposite). The kernel of χj may be identified with the Lie algebra of the stabilizer

of any point e ∈ Ej. In symbols,

tj = kerχj = Lie(StabK(e)) ⊂ t.

Remark 1.4.10. Since K = (S1)n is a dense subset (in the Zariski topology) of

T = (C∗)n, it follows that XK = XT .

Let us denote byKj ⊂ K the stabilizer of any point in the orbit Ej, for 1 ≤ j ≤ `.

As we have seen, tj = Lie(Kj). For each j define

βj :
r⊕

i=1

C[t∗] −→ C[t∗j ]

to be the map given by

βj(f1, . . . , fr) = fj0|tj − fj∞|tj

where ∂Ej = {xj0 , xj∞}. Reversing the labels will change βj by a sign but the kernel

will be preserved.

Theorem 1.4.11 ([CS], [GKM]). Let X be a normal projective T -skeletal variety.

Suppose that X is equivariantly formal. Then the restriction mapping

H∗
T (X) −→ H∗

T (X
T ) '

⊕
xi∈XT

C[t∗]

is injective, and its image is the subalgebra

H =

{
(f1, f2, . . . , fr) ∈

r⊕
i=1

C(t∗) | fj0 |tj = fj∞ |tj for 1 ≤ j ≤ `

}
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consisting of polynomial functions (f1, f2, . . . , fr) such that for each 1-dimensional

orbit Ej, the functions fj0 and fj∞ agree on the subalgebra tj. In short,

H∗
K(X) '

∩̀
j=1

Ker (βj).

Proof. From the Localization Theorem (Theorem 1.3.3) it follows that H∗
K(X) =

Ker(δ), where δ : H∗
K(X

T ) → H∗
K(X1, X

T ). Here X1 denotes the closure of the

union of the 1-dimensional T -orbits. Let Ej be one of such orbits with closure Ej

containing the fixed points ∂Ej = {x, y}. Let Tj = StabT (z), where z ∈ Ej. Since

T is abelian, Tj does not depend on the choice of point z. From the fibration

EK/Kj
� � // (Ej × EK)/K // Ej/K ' ∗

it follows that

H∗
K(Ej) ' H∗(BKj) ' H∗(BTj) ' C[t∗j ];

that is, H∗
K(Ej) is zero in odd degrees. We can cover Ej by two equivariant open

subsets, namely U1 = Ej − {x} and U2 = Ej − {y}. Notice that U1 ∩ U2 = C∗.

The Mayer-Vietoris exact sequence associated to this covering agrees with the long

exact sequence of the pair (Ej, ∂Ej). Since both H i
K(Ej) and H i

K(Ej) are zero for

odd i, the long exact sequences split into short exact sequences,

0 // H i
K(Ej) // H i

K(x)⊕H i
K(y)

δ // H i+1
K (Ej, x ∪ y) // 0

0 // H i
K(Ej)

'

OO

α// H i
K(U2)⊕H i

K(U1)

OO

β // H i
K(Ej)

'

OO

// 0

where β : C[t∗]⊕ C[t∗]→ C[t∗j ] is given by

β(f, g) = f |tj − g|tj .

Applying this computation to each one-dimensional orbit provides the final result.
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Remark 1.4.12. Let K be a maximal torus of a compact connected Lie group G.

Suppose that X is a G space. Then, by Proposition 1.2.9 (i), the G-equivariant

cohomology of X is given by the invariants under the Weyl group, namely,

H∗
G(X) ' (H∗

K(X))W .

The formula of Theorem 1.4.11 is compatible with the action of W given that W

permutes the fixed points x1, . . . , xr and the one-dimensional orbits E1, . . . , E`. So

Theorem 1.4.11 can be used to calculate the G-equivariant cohomology of X as well.

If X is a normal projective T -skeletal variety, then it is possible to define a

ring PP ∗
T (X) of piecewise polynomial functions. Indeed, let R =

⊕
x∈XT Rx,

where Rx is a copy of the polynomial algebra H∗
T . We then define PP ∗

T (X) as the

subalgebra of R defined by

PP ∗
T (X) = {(f1, ..., fn) ∈

⊕
x∈XT

Rx | fi ≡ fj mod(χi,j)}

where xi and xj are the two fixed points in the closure of the one-dimensional T -orbit

Ci,j, and χi,j is the character of T associated with Ci,j.

Theorem 1.4.11 suggests the next definition.

Definition 1.4.13. Let X be a complex algebraic variety equipped with a torus

action µ : T × X → X. We say that µ is a GKM -action if it is T -skeletal

and X is equivariantly formal. In this situation, we call the pair (X,µ) a GKM -

variety. When the reference to µ is clear from the context, we simply say that X

is a GKM -variety.

In this new terminology, Theorem 1.4.11 reads

Theorem 1.4.14. Let (X,µ) be a normal projective GKM -variety. Then the equiv-

ariant cohomology of X is isomorphic to the ring of piecewise polynomial functions

PP ∗
T (X). �
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Theorem 1.4.15. Let X be a normal projective variety with a T -skeletal action

µ : T ×X → X.

Then (X,µ) is a GKM -variety if and only if the singular rational cohomology of X

vanishes in odd degrees.

Proof. This is a partial translation of Theorem 1.4.7 into our new terminology.

Remark 1.4.16. Smooth projective varieties with T -skeletal actions are GKM -

varieties. See Lemma 2.3.6.

Building on previous work of Edidin and Graham ([EG1]), Brion established

GKM theory for equivariant Chow rings ([Br2]). Later on, Vistoli and Vezzosi

([VV]) proved an analogue of GKM theory for the equivariant algebraic K-theory

of smooth projective varieties. Brion ([Br4]) had also described the required GKM

data for a large class of smooth group compactifications, namely, regular embed-

dings ([BDP]). Uma ([U]) finally showed that the equivariant K-theory ring of a

regular embedding can be understood as a generalized Stanley-Reisner ring. We

aim at a generalization of these results to the case of rationally smooth standard

group embeddings. Besides showing that rationally smooth standard embeddings

are GKM -varieties, we also provide a very explicit description of their equivariant

cohomology (Chapters 3 and 4).

1.5 Examples

1.5.1 Equivariant cohomology of flag varieties

LetG be a connected semisimple algebraic group over C. LetB denote a maximal

connected solvable subgroup of G, i.e. a Borel subgroup. Let T ⊂ B denote a



CHAPTER 1. EQUIVARIANT COHOMOLOGY 27

maximal torus in G. It is well known ([Bo2]) that B can be written as B = TU ,

where U is the unipotent radical of B. Let Ξ(T ) be the character group of T .

Recall that T acts on U by inner automorphisms, u 7→ tut−1. This action induces

an action of T on the tangent space u of U . Consequently, u decomposes into weight

spaces indexed by certain characters Φ+ ⊂ Ξ(T ), known as (positive) roots:

u = ⊕α∈Φ+uα,

where the uα’s are one-dimensional invariant subspaces. We let Φ = Φ+ ∪−Φ+ The

next result appears in [Bo2] and [Hu].

Theorem 1.5.1. a) dim(uα) = 1, for each α ∈ Φ+.

b) There is a unique, closed T -stable subgroup Uα of U whose tangent space at

the identity of U is uα.

c) There is a unique Borel subgroup B−, called the Borel subgroup opposite to B

(relative to T ), such that T ⊂ B− and B ∩B− = T .

d) If U− is the unipotent radical of B−, the set of weights of T on u− is −Φ+.

e) The unipotent radical U of B is isomorphic, as an algebraic variety, to∏
α>0 Uα, where the product may be taken in any order. Analogously, U− '

∏
α<0 Uα.

f) G is generated as a group by the groups Uα, α ∈ Φ, and T .

g) Φ generates a subgroup of finite index in Ξ(T ). �

Example 1.5.2. Let G = SL(n,C). Then B equals the set of upper-triangular

matrices with determinant one. The group T consists of diagonal matrices with

determinant one and U is the group of unipotent upper triangular matrices. In

this setting, the opposite Borel subgroup B− is equal to the set of lower-triangular

matrices with determinant one. One checks that Φ+ = {αi,j | i > j} and Φ− =

{αi,j | i < j}. Here, αi,j(t1, . . . , tn) = tit
−1
j and Ui,j = {In+ aEi,j | a ∈ C}, where Ei,j

is the elementary matrix with one non-zero entry in the (i, j)-position.
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The homogeneous space G/B is called the flag variety of G. It is a projective

variety ([Bo2]). Notice that T acts on G/B with a finite number of fixed points,

namely (G/B)T ' W . It follows from the Bruhat decomposition, G = tw∈WBwB,

that the flag varietyG/B admits a paving by affine cells of the form B[w] = BwB/B,

indexed over w ∈ W . Each one of these cells is isomorphic to an affine space C`(w),

where `(w) is the length of w. Since these cells are even dimensional, then G/B has

trivial cohomology in odd degrees (Lemma 1.2.4). Thus, the hypothesis of Theorem

1.4.7 hold, and we conclude that G/B is equivariantly formal. We will see below that

G/B is actually a GKM -variety (Definition 1.4.13), so to describe its cohomology,

it suffices to collect the necessary GKM -data.

T -invariant curves and the Bruhat graph. The Weyl group is generated by

reflections {sα}α∈Φ, where sα corresponds to reflection with respect to the hyper-

plane defined by α. Let Gsα denote the copy of SL(2,C) in G generated by Uα and

U−α. The following is a result of Carrell ([C]).

Proposition 1.5.3. The flag variety G/B is a GKM -variety. In fact, every closed

T -invariant curve in G/B has the form Gsαw, for some w in W and reflection

sα. Consequently, every T -invariant curve is non-singular. Moreover, (Gsαw)T =

{w, sαw}, so Gsαx ⊂ X(w) if and only if x, sαx ≤ w, where X(w) = BwB/B is a

Schubert variety in G/B. �

Let i : (G/B)T → G/B be the inclusion of the fixed point set, and identify

(G/B)T with W . Let S = H∗
T (pt). Then, H

∗
T ((G/B)T ) identifies with the ring S[W ]

as an S-algebra with compatible action of W .

Theorem 1.5.4 ([C], [Br2]). The image of

i∗ : H∗
T (G/B)→ S[W ]

consists of all
∑

w∈W fww such that fw ∼= fsαw(modα) whenever w ∈ W and α ∈ Φ+.
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Proof. After taking into account the GKM -data collected in Proposition 1.5.3, the

result follows immediately from Theorem 1.4.11.

The previous results have analogues for arbitrary algebraic homogeneous spaces

G/P , where G is a connected reductive group and P a parabolic subgroup. In

particular, one can describe the T -curves in G/P in terms of the reflections sα ∈ Φ.

For a proof of the next Lemma, see [C] or Lemma 2.2 of [CK].

Lemma 1.5.5. Let x be a T -fixed point of G/P . Then every closed irreducible T -

stable curve C passing through x has the form C = Uα x for some α ∈ Φ. Moreover,

CT = {x, sαx}, and each such C is smooth. �

The smoothness follows from the fact that C admits a transitive action of the

subgroup of G generated by Uα and U−α.

Lemma 1.5.5 will be of relevance to the discussion in Chapters 3 and 4.

1.5.2 Equivariant cohomology of simplicial toric varieties

We begin with some notation and results concerning toric varieties. More details

can be found in [D] and [F].

Denote by T a d-dimensional torus, by M = Hom(T,C∗) its character group

and by N = Hom(C∗, T ) the group of one parameter subgroups of T . There is a

natural pairing M ×N → Z: (m,n) 7→ 〈m,n〉, where 〈m,n〉 is the integer such that

m(n(t)) = t〈m,n〉 for all t ∈ C∗.

Let X be a toric variety; that is, X is a normal T -variety with a dense orbit

isomorphic to T . Recall that X is determined by its fan Σ in N ⊗ R. The cones of

Σ parametrize the orbits in X; we denote by σ → Ωσ this parametrization, and by

V (σ) the closure of Ωσ in X. Then Ωσ = T/Tσ where Tσ is the subtorus of T with

character lattice M/M ∩ σ⊥ and with lattice of one-parameter subgroups Nσ (the
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subgroup of N generated by N ∩ σ). In consequence, the dimension of Ωσ is the

codimension of σ. It follows that the T -action on X is T -skeletal.

For each Ωσ there is a unique T -stable open affine subset Xσ of X which contains

Ωσ as a closed subset. In fact, there is a T -equivariant retraction rσ : Xσ → Ωσ

which renders Xσ as T -equivariantly isomorphic to T ×Tσ Sσ, where Sσ is an affine,

Tσ-toric variety with a fixed point.

A toric variety X is called simplicial if each cone of its fan is generated by

linearly independent vectors; equivalently, X has quotient singularities by finite

groups (see [D]). In this case, we will describe the equivariant cohomology ring

H∗
T (X)⊗Q in terms of piecewise polynomial functions.

Remark 1.5.6. It is a well-known result of Danilov ([D]) that any complete simpli-

cial toric variety has zero cohomology in odd degrees. In other words, any complete

simplicial toric variety is a GKM -variety.

Proposition 1.5.7 ([BV]). Notation being as above, the map r∗σ : H∗
T (Xσ) →

H∗
T (Ωσ) ' S∗(MQ/σ

⊥) is an isomorphism of graded algebras over S∗(MQ), the sym-

metric algebra on the character ring of T . In addition, for any face τ of σ, the

diagram

H∗
T (Xσ) //

��

S∗(MQ/σ
⊥)

��
H∗

T (Xτ ) // S∗(MQ/τ
⊥)

commutes, where the left (resp. right) vertical arrow is defined by inclusion of Xτ

in Xσ (resp. by the map MQ/σ
⊥ →MQ/τ

⊥). �

Piecewise polynomial functions. Denote by RΣ the set of all families (fσ)σ∈Σ

such that fσ ∈ S∗(MQ/σ
⊥) and that, for all τ ∈ σ, the image of fσ in S∗(MQ/τ

⊥)

is equal to fτ . Then RΣ is an algebra over S∗(MQ): the algebra of continuous,

piecewise polynomial functions on Σ.
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For f ∈ RΣ, decompose fσ into the sum of its homogeneous components fσ,n.

Then for fixed n, the family (fσ,n)σ∈Σ is inRΣ. This defines a gradingRΣ = ⊕∞
n=0RΣ,n

of the algebra RΣ.

Assume that the fan Σ is simplicial. For σ ∈ Σ, consider the restriction map

H∗
T (X) → H∗

T (Xσ), u 7→ uσ. By Proposition 1.5.7, we can identify uσ with an

element of S∗(MQ/σ
⊥), so that the family (uσ)σ∈Σ is in RΣ. The following result is

due to Brion and Vergne ([BV], [Br2]).

Theorem 1.5.8. Let X = XΣ be a simplicial toric variety. Then

(i) the map

H∗
T (X) // RΣ

u � // (uσ)σ∈Σ

is an isomorphism of graded algebras over S∗(MQ).

(ii) If, besides, X is complete, then the map

H∗
T (X)/MQH

∗
T (X)→ H∗(X)

is an isomorphism. �

Alternatively, the equivariant cohomology of simplicial toric varieties can be

described as a Stanley-Reisner ring ([BDP]). (See also [U] for aK-theory analogue of

this result.) In Chapter 4 we provide yet another description using descent systems.



Chapter 2

Rationally smooth

In this chapter we define our most important topological tool: rational cells.

After describing some of their remarkable features, we define Q-filtrable varieties,

spaces that come equipped with a paving by rational cells. We conclude this chapter

supplying a method for building canonical free module generators on the equivariant

cohomology of any Q-filtrable GKM variety.

Sections 2.2, 2.4 and 2.5 contain, predominantly, known results. In contrast,

Sections 2.1, 2.3 and 2.6 contain new developments. Salient new results are Lemma

2.3.1, Theorem 2.3.5 and Theorem 2.6.9.

2.1 Rational cells

Definition 2.1.1. Let X be a complex algebraic variety of dimension n. We say

that X is rationally smooth at x, if there exists a neighborhood U of x (in the

32
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complex topology) such that for all y ∈ U we have

Hm(X,X − {y}) = (0) if m 6= 2n, and

H2n(X,X − {y}) = Q.

We say that X is rationally smooth if X is rationally smooth at every x ∈ X.

The set of rationally smooth points is open for the complex topology and contains

all smooth points. Quotients of smooth varieties by finite groups are rationally

smooth (Proposition 2.1.4 (iii)). Other examples of rationally smooth varieties are

unibranched curves.

A complex algebraic variety is rationally smooth if and only if it is a rational

cohomology manifold. Rationally smooth projective varieties satisfy the Poincaré

duality theorem with rational coefficients. The interested reader should consult [M],

where McCrory gives a characterization of rational cohomology manifolds.

Example 2.1.2. The singular variety obtained from identifying the points 0 and

∞ in CP1 (that is, the “pinched torus” or projective nodal curve y2z = x2(x+ z) in

CP2) is not rationally smooth. In effect, the cohomology of the pair (X,X − {0})

coincides with the cohomology of the pair (U,U −{0}), where U is the affine variety

xy = 0. For such a pair, it is easily seen that

Hk(U,U − {0}) =


0 if k 6= 1, 2

Q if k = 1

Q2 if k = 2.

Example 2.1.3. By Proposition 2.1.4 (iii) below, any V -manifold or orbifold is

rationally smooth. Examples of this kind are provided by the so called weighted

projective spaces P(q0, . . . , qn), where the qj are non-negative integers, the weights.

Basically, P(q0, . . . , qn) is defined as the quotient of Pn by the coordinate-wise action
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of the product µq0 × . . .×µqn of the qj-th roots of unity µj, j = 0, . . . , n. It can also

be described as the quotient of Cn+1 − {0} by the action of C∗ given by

t · (z0, . . . , zn) = (tq0z0, . . . , t
qnzn).

The natural quotient map is denoted

p : Cn+1 − {0} −→ P(q0, . . . , qn).

Let Uj be the set of all points in Cn+1 subject to the condition zj = 1. It is easy to see

that Uj is isomorphic to Cn. Further, the subgroup µ(qj) ⊂ C∗ leaves Uj invariant.

Consequently, p(Uj) can be identified with the quotient space Vj = Uj/µ(qj). These

Vj’s form the standard open affine covering of P(q0, . . . , qn) as a V -manifold.

Let X be an algebraic variety of dimension n and let x be a point of X. We

say that X is irreducible at x if there is only one irreducible component of X

containing x. The following is a result of Brion [Br5].

Proposition 2.1.4. Let X be an algebraic variety of dimension n and let x ∈ X.

(i) The dimension of the vector space H2n(X,X − {x}) is the number of n-

dimensional irreducible components of X through x.

(ii) If X is rationally smooth at x, then it is irreducible at x.

(iii) Let π : X → Y be the quotient by the action of a finite group G. If X is

rationally smooth at x, then Y is rationally smooth at π(x).

(iv) Let π : X → Y be a smooth morphism. Then X is rationally smooth at x if

and only if Y is rationally smooth at π(x). �

Let T be a complex algebraic torus.

Definition 2.1.5. Let X be an algebraic variety with a T -action and a fixed point

x. We say that x is an attractive fixed point if there exists a one-parameter
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subgroup λ : C∗ → T and a neighborhood U of x, such that lim
t→0

λ(t) · y = x for all

points y in U .

There is an important characterization of attractive fixed points. A proof of the

following result can be found in [Br5], Proposition A2.

Proposition 2.1.6. For a torus T acting on a variety X with a fixed point x, the

following conditions are equivalent:

(i) The weights of T in the tangent space Tx(X) are contained in an open half

space.

(ii) There exists a one-parameter subgroup λ : C∗ → T such that, for all y in a

neighborhood of x, we have lim
t→0

λ(t) y = x.

If (ii) holds, then the set

Xx := {y ∈ X | lim
t→0

λ(t) y = x}

is the unique affine T -invariant open neighborhood of x in X. Moreover, Xx admits

a closed T -equivariant embedding into TxX. �

Lemma 2.1.7. Let X be an irreducible affine variety with a T -action and an at-

tractive fixed point x0 ∈ X. Then X is rationally smooth at x0 if and only if X is

rationally smooth everywhere.

Proof. If X is rationally smooth everywhere, then it is rationally smooth at x0. For

the converse, we use Proposition 2.1.6 (ii) and the affineness of X to guarantee the

existence of a one-parameter subgroup λ : C∗ → T such that

X = {y ∈ X | lim
t→0

λ(t) y = x0}.

In symbols, x0 ∈ C∗ · y, for any y ∈ X. Now consider the complex topology on

X. We claim that any non-empty open T -stable subset of X containing x0 is all of



CHAPTER 2. RATIONALLY SMOOTH 36

X. In effect, let U be a T -stable neighborhood of x0. Then, for any y ∈ X, there

exists sy ∈ C∗, such that sy · y ∈ U . Indeed, because x0 is attractive, one can find

a sequence {tn} ⊂ C∗ such that tn · y converges to x0. That is, there exists N with

the property that tN · y belongs to U . Setting sy = tN yields sy · y ∈ U . However,

U is T -stable, and therefore it contains the entire orbit C∗ · y. In short, y ∈ U or,

equivalently, U = X.

Hence, the non-empty open T -stable subset of rationally smooth points of X is,

a fortiori, equal to X.

Definition 2.1.8. Let X be an irreducible affine variety with a T -action and an

attractive fixed point x0 ∈ X. If X is rationally smooth at x0 (and thus everywhere),

we refer to (X, x0) as a rational cell.

It follows from Definition 2.1.8 and Proposition 2.1.6 that if (X, x0) is a rational

cell, then

X = {y ∈ X | lim
t→0

λ(t) y = x0},

for a suitable one-parameter subgroup λ. Notably, {x0} is the unique closed T -orbit

in X.

Example 2.1.9. Certainly Cn is a rational cell with the usual C∗-action by scalar

multiplication. Here the origin is the unique attractive fixed point.

Example 2.1.10. Let V = {xy = z2} ⊂ C3. The standard C∗-action by scalar

multiplication makes V a rational cell with (0, 0, 0) as its attractive fixed point.

This is clear once we observe that V is the quotient of C2 by the finite group with

two elements, where the non-trivial element acts on (s, t) ∈ C2 via (s, t) 7→ (−s,−t).

So Proposition 2.1.4 (iii) implies that V is rationally smooth. Compare Example

2.1.17.
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Example 2.1.11. A normal variety is not necessarilly rationally smooth. For in-

stance, consider the hypersurface H ⊂ C4 defined by {xy = uv}. Because the

singular locus of H, namely {(0, 0, 0, 0)}, has codimension three, it follows that

H is normal ([Sha], p. 128, comments after Theorem II.5.1.3). Nevertheless, H

is not rationally smooth at the origin. To see this, let T = (C∗)2 act on H via

(t, s) · (x, y, u, v) = (tx, ts2y, su, st2v). Then H has the origin as its unique attrac-

tive fixed point. Moreover, H contains four T -invariant curves (the four coordinate

axes) passing through (0, 0, 0, 0). If H were rationally smooth at the origin, then,

by a result of Brion (Corollary 2.4.6), the dimension of H would equal the number

of its T -invariant curves. This is a contradiction, since H is only three dimensional.

Definition 2.1.12. Let Z be a rationally smooth complex projective variety. Let

n be the (complex) dimension of Z. We say that Z is a rational cohomology

complex projective space if there is a ring isomorphism

H∗(Z) ' Q[t]/(tn+1),

where deg(t) = 2.

The following can be found in [BD], Theorem 1.

Lemma 2.1.13. Let Z be a complex projective algebraic variety of dimension n.

Then H∗(Z) contains a subring isomorphic to H∗(CPn).

Proof. Let j : Z ↪→ CPM be the inclusion mapping and consider ω ∈ H2(CPM) the

canonical generator. Take α = j∗(ω) ∈ H2(Z). Then αn+1 = 0 and αk 6= 0 for all

k ≤ n. To see this, remember that j∗([Z]) ∈ H∗
2n(CPM) is the fundamental class of

Z in CPM and thus non-zero. By Poincaré duality, the Kronecker pairing implies

〈ωn, j∗[Z]〉 = 〈j∗ωn, [Z]〉 6= 0,
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or, said another way, j∗ωn cannot be zero either.

In other words,

Q[α]/(αn+1)

is a subring of H∗(Z).

Corollary 2.1.14. Let Z be an n-dimensional rationally smooth projective variety.

If Z has the same rational homology groups of CPn, then there is a ring isomorphism

H∗(Z) ' Q[α]/(αn+1).

In other words, Z is a rational cohomology complex projective space if and only if Z

has the same Betti numbers of CPn. �

Let (X, x) be a rational cell. Then, by Proposition 2.1.6, X admits a closed

T -equivariant embedding into TxX. Set Ẋ to be X − {x}. Choose an injective

one-parameter subgroup λ : C∗ → T as in Definition 2.1.8. Then all weights of the

C∗-action on TxX via λ are positive. Thus, the quotient

P(X) := Ẋ/C∗

exists and is a projective variety. Indeed, it is a closed subvariety of P(TxX), a

weighted projective space. We can view P(X) as an algebraic version of the link of

X at x.

The following result, except for parts (b) and (c), is due to Brion ([Br5]). The

idea of the proof of part (b) is due to Renner.

Theorem 2.1.15. Let (X, x0) be a rational cell of dimension n. Then,

a) X is contractible.

b) X − {x0} is homeomorphic to S(X) × R+, where S(X) := X − {x0}/R+ is a

compact topological space.
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c) X − {x0} deformation retracts to S(X). In addition, X is rationally smooth at

x0 if and only if X − {x0}, and thus S(X), is a rational cohomology sphere S2n−1.

d) The space P(X) = X−{x0}/C∗ is a rationally smooth complex projective variety

of dimension n − 1. Furthermore, X is rationally smooth if and only if P(X) is a

rational cohomology complex projective space CPn−1.

Proof. a) The action of C∗ on X extends to a map C ×X → X sending 0 ×X to

x0 and restricting to the identity 1×X → X.

b) From Proposition 2.1.6, we know that X admits a closed T -equivariant em-

bedding into Tx0X ' Cd, which identifies x0 with 0. Choosing a one-parameter

subgroup λ : C∗ → T as in Definition 2.1.8 yields a C∗-action on Cd with only

positive weights m1, . . . ,md. Specifically, λ ∈ C∗ acts on Cd via

λ · (z1, . . . , zd) = (λm1z1, . . . , λ
mdzd).

Next, define an R+-equivariant map N : Cd → R by

N(z1, . . . , zd) =

√√√√ d∑
i=1

(zizi)1/mi .

Clearly, for λ ∈ C and z ∈ Cd, the definition favors N(λ · z) = |λ|N(z) (here λ · z

means (λm1z1, . . . , λ
mdzd)).

Since R+ acts freely on X − {0} ⊆ Cd − {0}, the quotient map

X − {0} → S(X)

is a principal R+-fibration. Note that R+ acts transitively on each fibre. We claim

that this fibration is trivial, i.e.

X − {0} ' S(X)× R+.
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To prove the claim, we just need to provide a global section s. In fact, we can

do so canonically. Let s : S(X)→ X − {0} be the map defined by

s([x]) =
1

N(x)
· x.

This map is well defined (given that we are using the C∗-action mentioned above)

and not only defines a global section, but also a homeomorphism between S(X) and

X ∩N−1(1), where N−1(1) is the “unit” sphere. Thus, S(X) is compact.

c) The first claim follows immediately from part b). As for the second assertion,

remember that X is contractible. Thus, the following long exact sequence

. . . −→ H∗(X,X−{x0}) −→ H∗(X) −→ H∗(X−{x0}) −→ H∗+1(X,X−{x0}) −→ . . .

splits into short exact sequences

0 −→ H∗(X − {x0}) −→ H∗+1(X,X − {x0}) −→ 0.

Therefore X is rationally smooth if and only if X − {x0} is a rational homology

sphere of dimension 2n− 1.

d) C∗ acts on X−{x0} with finite stabilizers (since x0 is the unique fixed point).

It follows from Proposition A5 of [Br5] that X − {x0} is covered by C∗-stable open

subsets U admitting an equivariant morphism p : U → C∗/Γ, where Γ ⊂ C∗ is

a finite subgroup (depending on U). Let Y be the fibre of p at the base point of

C∗/Γ. Then, Y ⊂ X is a locally closed Γ-stable subvariety, and U is equivariantly

isomorphic to the quotient

(C∗ × Y )/Γ

where Γ acts diagonally on C∗ × Y . This a version of the slice theorem.

Thus, P(X) is covered by the quotients Y/Γ. Noticeably, C∗ × Y is rationally

smooth, because X − {x0} is rationally smooth and the map C∗ × Y → X sending
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(t, y) to ty is étale (Proposition 2.1.4, (iv)). Thus, Y is rationally smooth (by the

Kunneth formula) and so is the quotient Y/Γ (by Proposition 2.1.4, (iii)). Therefore,

P(X) is rationally smooth.

Finally, since X − {x0}/S1 → X − {x0}/C∗ induces an isomorphism in rational

cohomology, it is enough to work with P̃ = X − {x0}/S1. Observe that S1 acts on

X − {x0} with finite isotropy groups. So the map π : X − {x0} → P̃ is a proper

map with fibres isomorphic to S1. More precisely, each fibre π−1([x]) is of the form

S1/Γx, where Γx is a finite subgroup of S1. Next, the Gysin sequence associated to

π looks as follows

. . . −→ Hm(X − {x0}) −→ Hm−1(P̃ ) −→ Hm+1(P̃ ) −→ Hm+1(X − {x0}) −→ . . .

Therefore, X − {x0} is a rational homology sphere of dimension 2n− 1 if and only

if P̃ (and so P(X)) is a rational cohomology complex projective space of (complex)

dimension n− 1.

Corollary 2.1.16. Keeping the same notation as in Theorem 2.1.15, the rational

cell X is homeomorphic to the open cone over S(X). Moreover, P(X) is equivariantly

formal.

Proof. The first assertion follows at once from Theorem 2.1.15, part (c), and uniform

convergence. As for the second, it is enough to remember that, by Theorem 2.1.15

again, P(X) is a rational complex projective space and thus has no cohomology in

odd degrees. Lemma 1.4.2 concludes the proof.

Example 2.1.17. Let W be the affine variety {(x, y, z) ∈ C3 | z2 = 2xy}. All points

in W can be described by the following parametric equations: x = s2, y = t2 and

z =
√
2st, where t, s ∈ C. This representation, however, is not unique. In fact, (s, t)

and (s′, t′) give the same point if and only if (s, t) = (s′, t′) or (s, t) = (−s′,−t′). In
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other words, W ' C2/{±1}. Hence, W is isomorphic to the variety V of Example

2.1.10. On the other hand, note that

|x|2 + |y|2 + |z|2 = (|s2|+ |t2|)2.

That is, the intersection of W with the unit sphere in C3 is homeomorphic to

S3/(s,t)∼(−s,−t) = RP 3. Equivalently, W \ {(0, 0, 0)}/R+ is homeomorphic to RP 3, a

rational 3-sphere. Next, consider the usual C∗-action on C3 given by scalar multipli-

cation. Because W is an invariant subvariety, we conclude, with the aid of Theorem

2.1.15, that W is a rational cell. Alternatively, this shows that the variety V of

Example 2.1.10 is a rational cell. Neither W nor V are topological manifolds, for

they are cones over RP 3.

Proposition 2.1.18. Let (X, x0) be a rational cell of dimension n. Denote by X+

its one point compactification. Then X+ is simply connected and has the rational

homotopy type of S2n, the Euclidean 2n-sphere.

Proof. First, observe that X+ is path-connected. As a consequence of Theorem

2.1.15, we can write X+ as a union of two open cones D0 and D∞; namely, D0 =

S × [0, 1)/S × {0} and D∞ = S × (ε,∞]/S × {∞}, where S stands for S(X) =

(X \ {x0})/R+, and ε is a positive number less than 1. Given that X − {x0} is

path-connected, the intersection D0 ∩ D∞ = S × (ε, 1) is path-connected as well.

In summary, X+ can be written as the union of two contractible open subsets with

path-connected intersection. Thus, by van Kampen’s theorem, X+ itself is simply

connected. To finish the proof, we need to show that X+ is a rational cohomoloy

2n-sphere. This is a simple exercise, using the Mayer-Vietoris sequence of the the

cover {D0, D∞}.

Example 2.1.19. Rationally smooth torus embeddings ([D]). These are exactly

the simplicial toric varieties (see Section 1.5.2). In fact, rationally smooth torus
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embeddings admit a decomposition into rational cells (see Chapter 3).

Example 2.1.20 (Schubert varieties). Let G be a semisimple group and let G/B

be its flag variety. We know, from Section 1.5.1, that G/B admits a T -invariant

decomposition into affine cells; namely

G/B =
⊔
w∈W

Cw,

where Cw = B[w] = BwB/B is isomorphic to C`(w). Here `(w) is the length of

w. Let Xw be the Zariski closure of Cw in G/B. In this context, Cw is called

a Schubert cell and Xw is the corresponding Schubert variety. In general,

Schubert varieties are far from being smooth or even rationally smooth. However,

there is a fundamental result (see [Hu]) which says that

Xw =
⊔

v∈W, v≤w

Cv,

where v ≤ w in the Bruhat order of W . Based on this result, and Corollary 2.3.3,

one concludes that Schubert varieties have trivial cohomology in odd degrees. They

also contain a finite number of T -invariant curves and fixed points (see [C]), so

Schubert varieties are GKM -varieties (Definition 1.4.13).

Lemma 2.1.21 (One-dimensional rational cells). Let (X, x) be a rational cell of

dimension one. Then

1. X is a cone over a topological circle.

2. X is homeomorphic to C.

3. If, additionally, X is normal, then X is isomorphic to C as an algebraic vari-

ety.
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Proof. Without loss of generality, we can assume that T acts faithfully on X. Thus,

T is isomorphic to C∗. Now assertions (1) and (2) can be proved as follows. Since X

is one-dimensional, then the singular locus is an invariant discrete set. Nonetheless,

x0 is the unique attractive fixed point, and C∗ is connected, so the singular locus

is either empty or consists of only one point, namely, x0. As a result, X \ {x0}

is smooth. Next notice that X has two C∗-orbits: the attractive fixed point x0,

and a dense open orbit of the form C∗/Γ, where Γ is a finite group. Hence, X is

homeomorphic to C and it is a cone over the circle S1/Γ.

Finally, if we also assume that X is normal and one-dimensional, then a fortiori

X is smooth ([Har]). This proves (3).

Lemma 2.1.22. Let (X, x) be a rational cell. Suppose x is a smooth point. Then

X is isomorphic to its tangent space at x.

Proof. By Proposition 2.1.6, we know that X admits an equivariant closed em-

bedding into TxX. If x is a smooth point, then both X and TxX have the same

dimension. For affine varieties this can only happen if X = TxX.

2.2 Filtrations of topological spaces

2.2.1 Algebraic torus actions

Let X be a projective algebraic variety with a C∗-action. Let XT =
∪r

i=1 Xi be

the decomposition of the fixed point set into irreducible components. Define, for

i = 1, . . . , r, the set

W s
i =

∪
a∈Xi

W s(a),

where W s(a) = {x ∈ X| lim
t→0

t · x = a}. Analogously, define

W u
i =

∪
a∈Xi

W u(a),
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for i = 1, . . . , r, where, this time, W u(a) denotes the set {x ∈ X| lim
t→∞

t · x = a}.

ThenW s
i andW u

i will be called the stable and unstable subvarieties ofX correspond-

ing to Xi, respectively. It follows from [BB1] that {W s
i }, {W u

i } are decompositions

of X into locally closed subvarieties. These decompositions will be called stable and

unstable, respectively. Following the terminology of [BB2], the subvarieties W s
i and

W u
i will be called cells of the decompositions.

Remark 2.2.1. Assume that X is irreducible. Because the stable and unstable

decompositions are locally closed, it follows that there is exactly one i (resp. j) such

that W s
i (resp. W u

j ) is open in X.

Example 2.2.2. In general the BB-decomposition of a projective variety is not a

stratification; that is, it may happen that the closure of a BB-cell is not the union

of cells, even if we assume our T -variety X to be smooth, as the following example

of Bialynicki-Birula ([BB2]) shows. Let C∗ act on CP2 via

t · [x0, x1, x2] = [x0, tx1, t
2x2].

The induced C∗-action on the tangent space Te1CP2 at e1 = [0, 1, 0] is of the form

t · [y1, y2] = [t−1y1, ty2]. Let φ : X → CP2 be the blowing up of e1. Since e1 is

fixed under the action, we have an induced action of C∗ on X. There are exactly

two fixed points of the action contained in φ−1(e1) ' CP1, they correspond to two

invariant one-dimensional subspaces of Te1CP2. Let p1 be the point representing the

subspace spanned by [1, 0] and p2 the one corresponding to the subspace spanned

by [0, 1]. Then, for the C∗-action on X we have:

W u(p2) = {[[y1, y2]] ∈ φ−1(e1) | y2 6= 0},

W s(p1) = {[[y1, y2]] ∈ φ−1(e1) | y1 6= 0}.

Clearly,

W u(p2) = W s(p1) = φ−1(e1)
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together with

W u(p1) = ŷ1,

where ŷ1 is the lifting of the y1-axis of Te1CP2 to X. Needless to say, W u(p1) 6= {p1}.

Hence, W u(p2) = W u(p2) ∪ {p1} and W u(p2) ∩W u(p1) 6= ∅. However, W u(p2) does

not contain W u(p1). Thus, the unstable decomposition of X is not a stratification.

2.2.2 Filtrable spaces

Definition 2.2.3. Let X be a complex algebraic variety endowed with a C∗-action.

A BB-decomposition {W s
i } (resp. {W u

i }) is said to be filtrable if there exists

a finite decreasing sequence X0 ⊃ X1 ⊃ . . . ⊃ Xm of closed subvarieties of X such

that:

a) X0 = X, Xm = ∅,

b) For each j = 0, . . . ,m−1, the “stratum” Xj−Xj+1 is a cell of the decomposition

{W s
i } (resp. {W u

i }).

Remark 2.2.4. If the BB-decomposition is a stratification, then it is filtrable.

The following result is due to Bialynicki-Birula ([BB2]). We include the proof

here for the reader’s convenience.

Theorem 2.2.5. Let X be a normal projective algebraic variety with a torus action.

Then the stable and unstable decompositions are filtrable.

Proof. Since X is normal and projective, Sumihiro’s results ([Su]) imply that there

exists an equivariant embedding of X into CPs with a linear action of C∗. The

decompositions of CPs determined by the action are filtrable. This can be shown

as follows. Without loss of generality, we can assume that the C∗-action on CPs is

diagonal and

t · [x0, . . . , xs] = [tn0x0, . . . , t
nsxs],
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where n0, . . . , ns are integers and nj ≤ nj+1, for j = 0, . . . , s− 1. Let

n0 = . . . = nj1−1 < nj1 = . . . = nj2−1 < nj2 = . . . < njq = . . . = ns,

and let Hi be the projective subspace of CPs defined by equations x0 = . . . =

xj1−1 = 0. Moreover, let Pi be the projective subspace of CPs defined by equations

x0 = . . . = xji−1 = xj(i+1)
= . . . = xs = 0, for i = 0, . . . , q. Then,

∪
Pi = (CPs)C

∗
, Hi ⊃ Hi+1, H0 = CPs, Hq+1 = ∅,

and the difference Hi−Hi+1 is the cell of the stable decomposition of CPs composed

of those points x such that lim
t→0

tx ∈ Pi.

In order to show that the stable decomposition {W s
i } of X is also filtrable notice

first that

XC∗
= (CPs)C

∗ ∩X =
∪

Pi ∩X

and

Pi ∩ Pi′ = ∅,

for i 6= i′. Hence, irreducible components of Pi ∩ X, for i = 1, . . . , q, coincide

with irreducible components of XC∗
. Moreover, the intersection (Hi −Hi+1) ∩X is

composed of all such points x ∈ X that satisfy the condition lim
t→0

tx ∈ Pi∩X. In other

words, (Hi ∩X)− (Hi+1 ∩X) is a union of some cells of the stable decomposition,

say

(Hi ∩X)− (Hi+1 ∩X) = W s
i1
∪ . . . ∪W s

il
.

Since, for j 6= k, we have

(W s
ij
∩ Pi) ∩ (W s

ik
∩ Pi) = ∅

and W s
ij
∩ Pi is closed (as an irreducible component of XC∗

), then the intersection

W s
ij
∩W s

ik
,
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for j 6= k, is contained in Hi+1 ∩X. Therefore, the union

Hi+1 ∩X ∪W s
i1
∪ . . . ∪W s

ir

is closed, for i = 1, . . . , l.

Suppose that we have already defined a sequence X0 ⊃ . . . ⊃ Xp of closed

subschemes of X such that X0 = X, Xp = Hi ∩ X and Xj − Xj+1 is a cell of the

stable decomposition, for j = 0, . . . , p− 1. Then we put

Xp+j = (Hi+1 ∩X) ∪W s
i1
∪ . . . ∪W s

il−j
,

for j = 1, . . . , l. This proves that the stable decomposition {W s
i } of X is filtrable.

The same result also holds for the unstable decomposition.

Remark 2.2.6. Jurkiewicz ([J]) gives an example of a C∗-action on a complete non-

singular toric variety X for which the stable decomposition is not filtrable. Hence,

Theorem 2.2.5 is not applicable to non-projective complete varieties.

2.3 Homology and Betti numbers of Q-filtrable

spaces

Lemma 2.3.1. Let X be an n-dimensional complex projective algebraic variety with

a C∗-action. Suppose X can be decomposed as the disjoint union

X = Y t C,

where Y is a closed stable subvariety and C is an open rational cell containing a

fixed point of X, say c0, as its unique attractive fixed point. Then,

Hk(X, Y ) =

 0 if k 6= 2n

Q if k = 2n.
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Furthermore, if Y has vanishing odd cohomology, then

Hk(X,Q) =

 Hk(Y,Q) if k 6= 2n

H2n(Y,Q)⊕Q if k = 2n.

Proof. Let H∗
c (−) denote cohomology with compact supports. It is well-known that

H∗(X) = H∗
c (X) and H∗(Y ) = H∗

c (Y ), because X and Y are complex projective

varieties. Moreover, by Corollary B.14 of [PS], one has

H∗(X,Y ) ' H∗
c (X − Y ) = H∗

c (C).

Given that C is a rational cell, and a cone over a rational cohomology sphere of

dimension 2n− 1 (Corollary 2.1.16), it follows easily that

H∗
c (C) = H∗(C,C − {c0}) =

 0 if k 6= 2n

Q if k = 2n.

So the first claim is proved.

As for the second assertion, consider the long exact sequence of the pair (X,Y ),

namely,

. . . −→ H∗−1(Y ) −→ H∗(X, Y ) −→ H∗(X) −→ H∗(Y ) −→ H∗+1(X,Y ) −→ . . . .

By our previous remarks, this long exact sequence can be rewritten as

. . . −→ H∗−1(Y ) −→ H∗
c (C) −→ H∗(X) −→ H∗(Y ) −→ H∗+1

c (C) −→ . . . .

If Y has no cohomology in odd degrees, then the long exact sequence splits, yielding

the identifications H i(X) = H i(Y ), when i 6= 2n, and

H2n(X) = H2n(Y )⊕H2n
c (C) = H2n(Y )⊕Q.

The proof is now complete.
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Corollary 2.3.2. Keeping the notation of Lemma 2.3.1, attaching a 2n-dimensional

rational cell produces no changes in cohomology up to degree 2n− 2. Furthermore,

if Y has no cohomology in odd degrees, then X has no odd cohomology either, and

there is a short exact sequence of the form

0 −→ H2n
c (C) −→ H2n(X) −→ H2n(Y )→ 0.

Proof. We simply observe that the long exact sequence of the pair (X,Y ) gives

Hk(X) ' Hk(Y )

for k ≤ 2n− 2. Besides, we also obtain the exact sequence

0 −→ H2n−1(X) −→ H2n−1(Y ) −→ H2n
c (C) = Q −→ H2n(X) −→ H2n(Y ) −→ 0.

So in general H2n−1(X) injects into H2n−1(Y ). In case we assume Y to have van-

ishing odd cohomology, we obtain X with vanishing odd cohomology as well, and a

“lifting of generators” sequence:

0 −→ H2n
c (C) −→ H2n(X) −→ H2n(Y )→ 0.

Corollary 2.3.3. Let X be a normal complex projective variety endowed with a

C∗-action and a finite number of fixed points. Suppose that X can be written as a

disjoint union of rational cells, each one containing a fixed point of X as its unique

attractive fixed point. Then X has vanishing odd cohomology over the rationals, and

the dimension of its cohomology group in degree 2k equals the number of rational cells

of complex dimension k. Furthermore, X is equivariantly formal and χ(X) = |XT |.

Proof. Since the BB-decomposition on X is filtrable, the result follows from the

previous lemma as we move up in the filtration by attaching one rational cell at the

time. This process is systematic and preserves cohomology in lower degrees at each

step.
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Let T be an algebraic torus acting on a variety X. A one-parameter subgroup

λ : C∗ → T is called generic if XC∗
= XT , where C∗ acts on X via λ. Generic

one-parameter subgroups always exist. Note that the BB-cells of X, obtained using

λ, are T -invariant.

Our results in this section suggest the following definition.

Definition 2.3.4. Let X be a projective variety equipped with a T -action. We say

that X is Q-filtrable if

1. X is normal,

2. the fixed point set XT is finite, and

3. there exists a generic one-parameter subgroup λ : C∗ → T for which the

associated BB-decomposition of X consists of T -invariant rational cells.

Theorem 2.3.5. Let X be a normal projective T -variety. Suppose that X is Q-

filtrable. Then

(a) X admits a filtration into closed subvarieties Xi, i = 0, . . . ,m, such that

∅ = X0 ⊂ X1 ⊂ . . . ⊂ Xm−1 ⊂ Xm = X.

(b) each cell Ci = Xi \Xi−1 is a rational cell, for i = 1, . . . ,m.

(c) For each i = 1, . . . ,m, the singular rational cohomology of Xi vanishes in odd

degrees. In other words, each Xi is equivariantly formal.

(d) If, in addition, the T -action on X is T -skeletal, then each Xi is a GKM -variety.

Proof. Assertions (a) and (b) are a direct consequence of Definition 2.3.4 and Propo-

sition 2.2.5. Applying Corollary 2.3.3 and Theorem 1.4.7 at each step of the filtration
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yields claim (c). For statement (d), we argue as follows. Notice that all the Xi’s

have vanishing odd cohomology, as it is guaranteed by (c). Moreover, since the Xi’s

are T -invariant and the T -action on X is T -skeletal, then each Xi contains only

a finite number of fixed points and T -invariant curves. In consequence, Theorem

1.4.15 applied to each Xi gives (d).

Next, we state a result of Bialynicki-Birula ([BB1]).

Lemma 2.3.6. Let X be a smooth projective variety on which a torus acts with

a finite number of fixed points. Then X is filtrable and its integral cohomology is

zero in odd degrees. In particular, smooth projective varieties with a T -skeletal torus

action are GKM -varieties.

Proof. It follows from the results of [BB1] that X can be decomposed into cells

Wi isomorphic to affine spaces Cni . Clearly X is normal, and so it is filtrable by

Theorem 2.2.5. Finally, using Corollary 2.3.3 and Theorem 2.3.5, we verify the

claims.

2.4 Equivariant Normalization Lemma

Let us start with a few technical propositions. For a proof, the reader is invited

to consult [Br5], Propositions A3 and A4.

Proposition 2.4.1. Let X be an affine variety with a C∗-action and an attractive

fixed point x. Then there exists a C∗-module V and a finite equivariant surjective

morphism π : X → V such that π−1(0) = {x}. �

Proposition 2.4.2. Let X be a connected variety with a nontrivial action of a torus

T and a fixed point x. Then there exists a closed irreducible T -stable curve C ⊂ X

which contains x as an isolated fixed point. �
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The following is a result of Brion ([Br5]) on rational smoothness and torus ac-

tions.

Theorem 2.4.3. Let X be an irreducible affine T -variety with an attractive fixed

point x. Then X is rationally smooth at x if and only if the following conditions

hold:

(i) A punctured neighborhood of x in X is rationally smooth.

(ii) XT ′
is rationally smooth at x for each subtorus T ′ ⊂ T of codimension one.

(iii) dim(X) =
∑

T ′ dim(XT ′
), where the (finite) sum runs over all codimension-

one subtori for which XT ′ 6= XT . �

Let X be an affine T -variety with an attractive fixed point x. Then, by Propo-

sition 2.1.6, X admits a closed equivariant embedding into its tangent space TxX.

Notice that there are only a finite number of codimension-one subtori T1, . . . , Tm of

T for which XTj 6= XT . Certainly, each one of them is contained in the kernel of a

weight of T in TxX. On the other hand, T acts on each XTi through its quotient

T/Ti ' C∗. Because x is an attractive fixed point of X, we can assume, without loss

of generality, that x is an attractive fixed point of each XTi , for the induced action

of C∗ ' T/Ti.

We are now ready to state what we call the Equivariant Normalization Theorem

for rational cells. It is due to Brion ([Br3]) and Arabia ([Ar]).

Theorem 2.4.4. Let (X, x) be a rational cell. Then there exists a T -module V and

an equivariant finite surjective map π : X → V such that π(x) = 0 and V T = {0}.

It is worth pointing out that some of the arguments to appear next are well-

known constructions in algebraic geometry.
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Proof of Theorem 2.4.4. We follow closely Brion’s construction ([Br3], Theorem 18).

Since x is an attractive fixed point, there exists an equivariant embedding ι of X

into TxX, its tangent space at x. In other words, all the weights of T in TxX lie

in an open half space of t∗. As it was emphasized before, there is only a finite

collection of codimension-one subtori, say T1, . . . , Tm, for which XTj 6= XT . Let Ti

be one of them. Under the present circumstances, given that x is attractive, we

can also assume that x is an attractive fixed point of XTi , for the induced action of

C∗ ' T/Ti. Hence, by Proposition 2.4.1, there exists a T -equivariant finite surjective

map πi : X
Ti → Vi, where Vi is some T -module with a trivial action of Ti. Notice

that T acts on both XTi and Vi through the same character.

By construction XTi is T -stable and closed in X, so we can extend πi to an

equivariant morphism

πi : X → Vi.

Synchronizing efforts via the product map, we obtain an equivariant morphism

π : X → V,

where V is the direct sum of the Vi, sum taken over all the Ti’s above. Notice

that x, being an attractive fixed point, lies in the closure all the T -orbits in X. In

particular, x is contained in all the irreducible components of π−1(0) (i.e. π−1(0) is

connected).

We now claim that the morphism π is finite. Indeed, {x} = π−1(0). For other-

wise, π−1(0) would contain a T -stable curve upon which T acts through a non-trivial

character (Proposition 2.4.2). Certainly this is impossible, because π restricts to a

finite morphism on each XTi .

To conclude the proof, recall that, by definition, V satisfies

dim (V ) =
∑
Ti

dim (XTi).
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Since X is rationally smooth at x, Theorem 2.4.3 (iii) dictates that X and V must

have the same dimension. In conclusion, π is both dominant and surjective.

Remark 2.4.5. It is clear from the proof of Theorem 2.4.4 that if X is smooth,

then the map π : X → V can be chosen to be an isomorphism.

We now specialize a result of Brion ([Br5]) to rational cells.

Corollary 2.4.6. Let (X, x) be a rational cell. Suppose that the number of closed

irreducible T -stable curves on X is finite. Let n(X, x) be this number. Then

n(X, x) = dim(X).

Proof. Each closed irreducible T -stable curve Ci is the fixed point set of a unique

codimension-one torus, say Ti. Since there are only a finite number of codimension-

one tori, say T1, . . . , Tm, for which XTi 6= XT , then it follows from the proof of

Theorem 2.4.4 that the equality below holds:

dim(X) =
m∑
j=1

dim(XTj) =
m∑
j=1

dim(Cj) = n(X, x).

We are done.

2.5 Equivariant Euler classes

Denote by T an algebraic torus.

Let (Y, y0) be a rational cell of dimension n. Recall that S(Y ) = [Y − {y0}]/R+

is a rational cohomology sphere S2n−1 and that Y is homeomorphic to the (open)

cone over S(Y ) (Theorem 2.1.15 and Corollary 2.1.16).

The Borel construction (Section 1.1) yields the fibration

S(Y ) ↪→ S(Y )T −→ BT.



CHAPTER 2. RATIONALLY SMOOTH 56

Observe that the E2-term of the corresponding Serre spectral sequence consists of

only two lines, namely,

Ep,q
2 = Hp(BT )⊗Hq(S(Y )) 6= 0 only when q = 0 and q = 2n− 1.

Let EuT (y0, Y ) ∈ H2n(BT ) be the transgression of the generator λY ∈ H2n−1(S(Y )).

We call EuT (y0, Y ) the equivariant Euler class of Y at y0.

It follows from [Hs], Theorem IV.6, that EuT (y0, Y ) splits into the product of

linear polynomials, namely

EuT (y0, Y ) = ωk1
1 · · ·ωks

s ,

where wi ∈ H2(BT ) ' Ξ(T ) ⊗ Q. Here Ξ(T ) stands for the character group of T ,

and the isomorphism is given by assigning to each character χ the first Chern class

of the line bundle ET ×T C → BT , where T acts on C by t · z = χ(t)z. Likewise,

the results of Hsiang ([Hs], Chapter V.1) yield the following identification

H∗
T (S(Y )) ' H∗

T (pt)/〈EuT (y0, Y )〉,

where 〈EuT (y0, Y )〉 denotes the principal ideal of H∗
T (pt) generated by EuT (y0, Y ).

Since Y is a cone over S(Y ), then H∗
c (Y ) ' H∗(Y, Y − {y0}) ' Q, where H∗

c (−)

denotes cohomology with compact supports. Using the Serre spectral sequence, one

notices that these isomorphisms are also valid in equivariant cohomology:

H∗
T,c(Y ) ' H∗

T (Y, Y − {y0}) ' H∗
T .

Let TY be canonical generator of H∗
T (Y, Y − {y0}). This generator can be de-

scribed by the commutative diagram

H∗
T (Y, Y − {y0})

i∗ //

∫
[Y ]

��

H∗
T (Y )

res

��
H∗

T (y0)

Φ∗
Y

OO

×(EuT (y0,Y )) //___________ H∗
T (y0),
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where Φ∗
Y is multiplication by TY . In other words, TY is the unique class inH∗

T (Y, Y −

{y0}) whose restriction to H∗
T (pt) coincides with EuT (y0, Y ). It is customary in the

literature to call TY the Thom class of Y . Let us bear in mind that the map Φ∗
Y

raises degree by 2n. Clearly, H∗
T (Y, Y −{y0}) ' H∗

c (Y )⊗H∗
T (pt) and so, Hj

T,c(Y ) = 0

for j < 2n. As for the integral appearing here, it is, by definition, the inverse of Φ∗
Y .

Let QT be the quotient field of H∗
T . If µ ∈ H∗

T,c(Y ), then

EuT (y0, Y ) ∧
∫
[Y ]

µ = µy0 ,

where µy0 denotes restriction of the class µ to y0. Hence, the identity

1

EuT (y0, Y )
=

1

µy0

∫
[Y ]

µ,

holds in QT , for every non-zero µ in H∗
T (Y, Y − {y0}).

More generally, let X be a complex algebraic variety with a T -action and an

isolated fixed point x. Suppose that X is rationally smooth at x and that x is

attractive. By Proposition 2.1.6, there exists an open affine neighborhood Xx of x

such that Xx is a rational cell. Thus one defines

EuT (x,X) := Eu(x,Xx).

In fact, if we only assume that x is a rationally smooth point of X, the previous

definition still makes sense, since we can choose Xx to be a conical neighborhood of

x. When working with complex algebraic varieties, such neighborhoods always exist

([Ar]).

From these remarks, it follows that if x is a rationally smooth point of X, then

EuT (x,X) is a polynomial, and splits into a product of linear factors.

In case the isolated fixed point x ∈ X is not necessarily rationally smooth,

Arabia ([Ar]) has shown that we can still define an Euler class EuT (x,X). The key
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ingredient here is that, by the localization theorem, the map

i∗ : H∗
T (X,X − {x})→ H∗

T (x)

is an isomorphism modulo H∗
T -torsion. Therefore, the function that assigns to a

torsion-free element µ ∈ H∗
T (X,X − {x}) the fraction 1

µx

∫
X
µ ∈ QT is constant.

Definition 2.5.1. Let X be a T -variety. Suppose that x ∈ XT is an isolated fixed

point. The fraction
1

EuT (x,X)
:=

1

µx

∫
X

µ ∈ QT ,

where µ is any torsion-free element of H∗
T (X,X − {x}), is called the inverse of the

equivariant Euler class of X at x. When this fraction is non-zero, we denote its

inverse by EuT (x,X) and call it the Equivariant Euler class of X at x.

Example 2.5.2. When X = Cn, x = 0, and the algebraic torus T acts linearly on

Cn, one proves

EuT(0,Cn) = (−1)n
∏
α∈A

α,

where A is the collection of weights. Furthermore, if the weights in A are pair-

wise linearly independent, then the associated complex projective space P(Cn
A) has

exactly n T -fixed points: the lines Cαi
. One also verifies that

EuT([Cαi
],P(Cn

A)) =
∏
j 6=i

(αi − αj).

See [Ar], Remark 2.4.1-1.

Proposition 2.5.3 (Localization formula, [Ar]). Let X be a complex projective

variety. Suppose that a torus T acts on X with only a finite number of fixed points.

Then ∫
X

µ =
∑
x∈XT

µ|x
EuT (x,X)

,
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for any µ ∈ H∗
T (X). Furthermore, taking µ = 1 yields

∑
x∈XT

1

EuT (x,X)
= 0.

�

Theorem 2.5.4 ([Ar], [Br3]). Let (X, x) be a rational cell of dimension d. Let

π : X → Cn be the equivariant normalization map from Theorem 2.4.4. Then

(a) The induced morphism in cohomology

π∗ : H2d
c (Cn) −→ H2d

c (X)

is an isomorphism and satisfies
∫
Y
π∗(µ) = deg(π)

∫
Cn µ, where deg(π) is the

cardinality of a generic fibre of π. This formula also holds in equivariant coho-

mology, in particular

EuT (0,Cn) = deg(π) · EuT (x0, X).

(b) EuT (X, x) = c
∏
Ti

EuT (X
Ti , x), where c is a positive rational number, and the

product runs over the finite number of codimension-one subtori Ti of T for which

XTi 6= XT .

Proof. By construction, π : X → Cn is an equivariant finite surjective map of affine

varieties. Therefore, it is a covering map outside of a closed subvariety Z ⊂ Cn. Let

U = Cn \ Z. Then π : π−1(U) → U is a covering map. Notice that the dimension

of Z is strictly less than the dimension of Cn, so the long exact sequence of the pair

(X, π−1(Z)) yields H2n
c (π−1(U)) ' H2n

c (X). Now statement (a) follows from the

corresponding statement about the covering map π : π−1(U)→ U .

In order to prove assertion (b), let us keep in mind that the equality

deg(π)EuT (x0, X) = EuT (0,Cn)
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has been granted by part (a). Also, from the proof of Theorem 2.4.4, we know that

there is a finite surjective map πi : X
Ti → Cki associated to each codimension-one

subtorus Ti for which XTi 6= XT . What is more, every XTi is rationally smooth at

x. So applying part (a) on the various XTi yields

EuT (0,Cki) = deg(πi)EuT (x0, X
Ti).

Denote by d the degree of π and by di the degree of πi. Because Euler classes are

multiplicative ([Ar]), it follows that

EuT (0,Cn) =
∏
i

EuT (0,Cki).

But the latter term equals
∏

i diEuT (x0, X
Ti). Matching the expressions above finally

concedes

EuT (x0, X) =

(∏
i di
d

)
·
∏
i

EuT (x0, X
Ti) = c ·

∏
i

EuT (x0, X
Ti).

Corollary 2.5.5. Let (X, x) be a rational cell of dimension n. Suppose that X

contains only a finite number of closed irreducible T -curves Ci, i = 1, . . . , n. Let χi

be the character associated with the action of T on Ci. Then

Eu(x0, X) = c · χ1 · · ·χn,

where c is a positive rational number.

Proof. In this case, XTi = Ci. The result can now be deduced from Theorem 2.5.4

(b) and Example 2.5.2.



CHAPTER 2. RATIONALLY SMOOTH 61

2.6 Module generators for H∗T (X)

LetX be a Q-filtrable GKM -variety. In other words, X is a normal projective T -

variety with only a finite number of fixed points and T -invariant curves. Moreover,

there exists a BB-decomposition of X as a disjoint union of rational cells, say

(C1, x1), . . . , (Cm, xm), each one containing xi ∈ XT as its unique attractive fixed

point. This decomposition induces a filtration of X

∅ = X0 ⊂ X1 ⊂ X2 . . . ⊂ Xm = X

by closed invariant subvarieties Xi, so that each difference Xi \Xi−1 equals Ci, for

i = 1, . . . ,m. The key observation here is provided by Theorem 2.3.5. It states that

every Xi is equivariantly formal and is made up of rational cells. In consequence,

GKM -theory can be applied to each Xi. We will refer to Xi as the i-th filtered piece

of X, and m will be called the length of the filtration.

Denote by x1, . . . , xm the fixed points ofX. The filtration induces a total ordering

of the fixed points, namely,

x1 < x2 < . . . < xm.

Let (Ci, xi) be a rational cell of X. From the previous section, we know that

H∗
T,c(Ci) ' H∗

T (Ci, Ci − {xi}) ' H∗
T (xi),

where the second isomorphism is provided by the Thom class Ti, a well-known

element of H∗
T (Ci, Ci−{xi}). When restricted to H∗

T (xi), the Thom class Ti becomes

a product of linear polynomials: the Euler class Eu(ci, Ci).

In section 2.3 we built non-equivariant short exact sequences of the form

0 // H2k
c (Ci) // H2k(Xi) // H2k(Xi−1) // 0 ,
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for every i. Since the spaces involved have zero cohomology in odd degrees, then

these short exact sequences naturally generalize to the equivariant case, so we also

have equivariant short exact sequences

0 // H2k
T,c(Ci) // H2k

T (Xi) // H2k
T (Xi−1) // 0 ,

for each i. On the other hand, by equivariant formality, the singular equivariant

cohomology of each Xi injects into H∗
T (X

T
i ) = ⊕j≤iH

∗
T (xj).

In summary, for each i, we have the commutative diagram

0 // H∗
T,c(Ci+1) //

��

H∗
T (Xi+1) //

��

H∗
T (Xi) //

��

0

0 // H∗
T (xi+1) // ⊕j≤i+1H

∗
T (xj) // ⊕j≤iH

∗
T (xj) // 0

where the vertical maps are all injective. Indeed, such maps correspond to the

various restrictions to fixed point sets. We will use this diagram to build cohomology

generators. The next two lemmas are inspired in Theorem 2.3 and Proposition 4.1

of [HHH], where Kac-Moody flag varieties are studied.

Lemma 2.6.1. Let X be a Q-filtrable variety. Then there exists a non-canonical

isomorphism of H∗
T -modules

H∗
T (X) '

⊕
xi∈XT

EuT (Ci, xi)H
∗
T (pt),

which is compatible with restriction to the various i-th filtered pieces Xi ⊂ X.

Proof. We argue by induction on the length of the filtration. The case m = 1 is

simple, because it corresponds to X = {x1}, a singleton. Assuming that we have

proved the assertion for m, let us prove the case m + 1. Substitute i = m in the

commutative diagram above. Then

H∗
T (Xm+1) = H∗

T (X) ' H∗
T,c(Cm+1)⊕H∗

T (Xm).
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By induction, H∗
T (Xm) '

∏
i≤m EuT (Ci, xi)H

∗
T (pt). So the claim for m + 1 follows

directly from the equivalence between H∗
T,c(Cm+1) and EuT (Cm+1, xm+1)H

∗
T (pt).

The isomorphism of the previous Lemma is not canonical because the cellular

decomposition of X depends on a particular choice of generic one-parameter sub-

group.

Given a class µ ∈ H∗
T (X), denote by µ(xi) its restriction to the fixed point xi.

Lemma 2.6.2. Let X be a projective T -variety. Assume that X is Q-filtrable and

let x1 < x2 < . . . < xm be the order relation on XT compatible with the filtration of

X. For each i, let ϕi ∈ H∗
T (X) be a class such that

ϕi(xj) = 0 for j < i,

and

ϕi(xi) is a generator of the ideal EuT (i, Ci)H
∗
T .

Then the classes {ϕi} generate H∗
T (X) freely as a module over H∗

T (pt).

Proof. Since X is equivariantly formal, we know that H∗
T (X) injects into H∗

T (X
T )

and is a free H∗
T -module of rank m = |XT |. First, we show that the ϕi’s are

linearly independent. Arguing by contradiction, suppose there is a non-trivial linear

combination such that
m∑
i=0

fiϕi = 0,

with fi ∈ H∗
T . Let k be the minimum of the set {i | fi 6= 0}. Then we have

fkϕk + fk+1ϕk+1 + . . . fmϕm = 0

where fk 6= 0. Let us restrict this linear combination to xk. Then

fkϕk(xk) + fk+1ϕk+1(xk) + . . . fmϕm(xk) = 0.
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But ϕ`(xk) = 0 for all ` > k. Thus we obtain

fkϕ(xk) = 0.

However, ϕ(xk) is a non-zero multiple of the Euler class Eu(xk, Ck) and, as such, it

is non-zero. We conclude that fk must be zero. This is a contradiction.

To conclude the proof, we need to show that the ϕi’s generate H∗
T (X) as a

module. But this is a routine exercise, using induction on the length of the filtration

of X (the base case being trivial). The commutative diagram of page 62 then

disposes of the inductive step.

As for the existence of classes satisfying Lemma 2.6.2, we will show that they

can always be constructed on GKM -varieties. First, we need two technical lemmas.

Lemma 2.6.3. Let X be a normal projective T -variety with finitely many fixed

points. Choose a generic one-parameter subgroup and write X as X = C tY , where

C = {z ∈ X | lim
t→0

tz = x}

is the stable cell of x ∈ XT , and Y is closed and T -stable. Then any closed irreducible

T -stable curve that passes through x is contained in the Zariski closure of C.

Proof. Let ` be a closed irreducible T -stable curve passing through x. Recall that `

is the closure of a one-dimensional orbit Tz. Moreover, ` = Tz has two fixed points,

namely, x and a fixed point yi(`) contained necessarily in Y . We claim that z ∈ C.

For otherwise, lim
t→0

tz = yi(`), which implies that z belongs to the stable subvariety

of yi(`). Since Y is T -invariant and closed, then ` = Tz ⊂ Y . That is, x ∈ ∂` would

belong to Y , which is absurd. Thus z ∈ C.

The fact that C is also T -stable gives the inclusion Tz ⊂ C. We conclude that

` = Tz ⊂ C.
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Lemma 2.6.4. Let X be a normal projective variety on which a torus acts with a

finite number of fixed points and one-dimensional orbits. Suppose X is equivariantly

formal and there is a generic one-parameter subgroup such that X can be written as

a disjoint union X = C t Y , where

C = {z ∈ X | lim
t→0

tz = x}

is a rational cell with unique attractive fixed point x ∈ XT , and Y is closed and

T -stable. Then the cohomology class τ ∈ ⊕w∈XTH∗
T (w), defined by

τ(x) = Eu(x,C) and τ(y) = 0 for all y ∈ Y T ,

belongs to the image of H∗
T (X) in H∗

T (X
T ).

Proof. The hypotheses imply that X is a GKM -variety. As a result, the equivariant

cohomology of X can be described by the GKM -relations of Theorem 1.4.11. So,

to prove the lemma, it is enough to verify that τ satisfies such relations.

Because τ restricts to zero at every fixed point except x, we need only show that

τ(x) = τ(x)− τ(y) = EuT (x,C)

is divisible by χi whenever the fixed points x ∈ C and yi ∈ Y T are joined by a

T -curve `i in X, and T acts on `i through χi. Let p be the total number of `i’s.

By Lemma 2.6.3, the curve `i is contained in the Zariski closure C of C. In fact,

`i \ {x, yi} ⊂ C. Also, it follows from Corollary 2.4.6 that p = dim(C). Thus, using

Corollary 2.5.5, we conclude that EuT (x,C) is a non-zero multiple of the χi’s. In

short, τ belongs to H∗
T (X).

It is noticeable that, in the previous lemmas, no assumption on the irreducibility

of X has been made. Surely we allow for some flexibility in this matter, since the

various filtered pieces Xi of a Q-filtrable space X need not be irreducible.
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Theorem 2.6.5. Let X be a Q-filtrable GKM -variety. Then cohomology generators

{ϕi} of H∗
T (X) with the properties described in Lemma 2.6.2 exist.

Proof. We proceed by induction on m, the length of the filtration of X. If m = 1,

then X = {x1} and the statement is clear, since we can just choose ϕ1 = 1. As-

suming we have proved the statement for varieties with a filtration of length m,

let us prove the case when the length is m + 1. First, notice that Xm+1 = X

and, by the inductive hypothesis, there are classes ϕ1, . . . , ϕm ∈ H∗
T (Xm) which

satisfy the desired properties in H∗
T (Xm). Using the commutative diagram of page

62, we can lift them to classes ϕ̃1, . . . , ϕ̃m which still satisfy the required condi-

tions, though this time they lie in H∗
T (Xm+1) = H∗

T (X). In consequence, we just

need to construct a class ϕm+1 ∈ H∗
T (X) with the sought-after qualities. So set

ϕm+1(xm+1) = Eu(xm+1, Cm+1) and ϕm+1(xj) = 0 for all j ≤ m. By Lemma 2.6.4,

this class surely belongs to H∗
T (X). Thus the result also holds for varieties with a

filtration of length m + 1. This proves the inductive step and concludes the argu-

ment.

Definition 2.6.6. Let X be a Q-filtrable T -variety. Fix an ordering of the fixed

points, say x1 < x2 < . . . < xm. Given µ ∈ H∗
T (X), we define its local index at xi,

denoted Ii(µ), by the following formula:

Ii(µ) =

∫
Xi

p∗i (µ),

where pi : Xi → X denotes the inclusion of the i-th filtered piece into X. It follows

from the definition that assigning local indices yields an H∗
T -linear morphism

Ii : H
∗
T (X)→ H∗

T (pt).

Using the localization formula (Proposition 2.5.3), one can easily prove the fol-

lowing
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Lemma 2.6.7. The local index of µ at xi satisfies

Ii(µ) =
∑
j≤i

µ(xj)

Eu(xj, Xi)
,

where µ(xj) denotes the restriction of µ to xj. �

Corollary 2.6.8. Let xi ∈ XT , be a fixed point. Suppose that µ ∈ H∗
T (X) is a

cohomology class that satisfies µ(xj) = 0 for all j < i. Then

µ(xi) = Ii(µ)Eu(xi, Xi).

�

Our most important result in this Section is the following generalization of the

work of Guillemin and Kogan ([GK]) to Q-filtrable GKM -varieties.

Theorem 2.6.9. Let X be a Q-filtrable GKM -variety. Let x1 < x2 < . . . < xm be

the order relation on XT compatible with the filtration of X. Then there exists a

unique class θi ∈ H∗
T (X) with the following properties:

(i) Ii(θi) = 1,

(ii) Ij(θi) = 0 for all j 6= i,

(iii) the restriction of θi to xj ∈ XT is zero for all j < i, and

(iv) θi(xi) = EuT (i, Ci).

Moreover, the θi’s generate H∗
T (X) freely as a module over H∗

T (pt).

Proof. By Theorem 2.6.5, choose a set of free generators {ϕi} which satisfy the

properties described in Lemma 2.6.2, together with the additional condition ϕi(xi) =

Eu(i, Ci).
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Given i, notice that Ij(ϕi) = 0, for all j < i, and Ii(ϕi) = 1. We will show

that we can modify these ϕi’s accordingly to obtain the generators θi. In fact, given

i ∈ {1, . . . ,m}, the only obstruction to setting θi = ϕi is that Ij(ϕi) can be non-zero

for some j > i.

Let i ∈ {1, . . . ,m}. If Ij(ϕi) = 0 for all j > i, then let θi = ϕi. Otherwise,

proceed as follows. Let k0 be the minimum of all k > i such that Ik(ϕi) 6= 0. Define

Ψi = ϕi − Ik0(ϕi)ϕk0 . Let us compute the local indices of Ψi. Clearly, if j < i,

we have Ij(Ψi) = 0. Also, if j = i, then Ii(Ψi) = 1. It is worth noticing that Ψi

restricts to 0 at each xj with j < i. Now if j satisfies i < j ≤ k0, then Ij(Ψi) = 0.

So, arguing by induction, we can provide a class Ψ̃i such that Ij(Ψ̃i) = 0 for all

j 6= i, and Ii(Ψ̃i) = 1. Thus, set θi = Ψ̃i. Working on each i at a time, we conclude

that there exist classes θi satisfying conditions (i)-(iv) of the Theorem.

Let us now prove uniqueness. Suppose there are classes {θi} and {θ′i} satisfying

all the properties of the theorem. Fix i and let τ = θi − θ′i. It is clear that τ is

an element of H∗
T (X) whose local index Ij(τ) is zero for all j. Suppose that τ is

not zero. Then, since H∗
T (X) injects into H∗

T (X
T ), there should be a k such that

τ(xk) 6= 0. Take the minimum of all k’s for which τ(xk) 6= 0. Denote this minimum

by s. Then, by Corollary 2.6.8, one would have τ(xs) = Is(τ)Eu(xs, Xs) = 0. This is

absurd. Therefore τ = 0. Since i can be chosen arbitrarily, we conclude that θi = θ′i

for all i.

Finally, notice that properties (iii) and (iv) together with Lemma 2.6.2 imply

that the θi’s freely generate H∗
T (X). We are done.
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Standard Group Embeddings

In this chapter we start our study of rationally smooth standard group embed-

dings. We show that they are in fact GKM -varieties with a canonical Q-filtration

(Theorem 3.2.13). Therefore, all the machinery developed previously can be put into

effect to attain a concrete description of their equivariant cohomology. Our results,

in this and the subsequent chapter, increase the applicability of GKM theory in the

study of group embeddings.

Notable new results are Theorem 3.2.3, Theorem 3.2.7, Theorem 3.2.8 and The-

orem 3.2.13.

3.1 Preliminaries

In what follows, all algebraic varieties and groups are considered over the base

field C of complex numbers. Let G be a connected reductive group.

Definition 3.1.1. Let X be an algebraic variety. We say that X is an embedding

of G if

1. X is a G×G-variety.

69
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2. There is a point x ∈ X such that Ox, the G×G−orbit of x, is open and dense

in X and Ox ' (G × G)/∆G; in other words, the two sided action of G on

itself, ((a, b), g) 7→ agb−1, extends to X.

Let X1 and X2 be two embeddings of G. A morphism between them is defined to

be a morphism of G×G-varieties φ : X1 → X2 with the property that the diagram

G
� � //

id

��

X1

φ

��
G

� � // X2

commutes.

A morphism between two G-embeddings, if it exists, is unique. We can give a

structure of partially ordered set to the collection of embeddings of a group G by

setting X1 ≥ X2 if a morphism φ : X1 → X2 exists.

Because of [GKM], it is possible to calculate the equivariant cohomology of

many topological spaces using a combinatorial/numerical apparatus known asGKM

data. This amounts to identifying certain fixed points, curves and characters and

then defining the associated ring PP ∗
T (X) of piecewise polynomial functions (The-

orem 1.4.14). It is useful to determine conditions under which there is a canonical

isomorphism

H∗
T (X;Q) ∼= PPT (X). (∗)

This is certainly the case if X is a smooth, projective variety with a T -skeletal action

(Lemma 2.3.6). But there are other conditions that guarantee an isomorphism as in

(*) above, for example, when X is a GKM -variety (Theorem 1.4.14) or a Q-filtrable,

T -skeletal variety (Theorem 2.3.5).

In the case of group embeddings, it is possible to determine PP ∗
T×T (X) in terms
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of combinatorial data obtained directly from the underlying two-sided action

G×G×X → X.

We will see in Section 3.2 that in many cases this embedding X can be obtained

from a reductive monoid M as X = Pε(M) := [M \ {0}]/C∗, where ε is a central,

attractive, 1-parameter subgroup of the unit group of M . The purpose of this

chapter is to write out the GKM data of X = Pε(M) (i.e. fixed points and invariant

curves) in terms of M (Section 3.2.1).

3.1.1 Algebraic Monoids

Our main reference here is [R8].

Definition 3.1.2. A linear algebraic monoid M is an affine, algebraic variety

together with an associative morphism µ : M ×M → M and an identity element

1 ∈ M for µ. An affine algebraic monoid M is called reductive if it is irreducible,

normal, and its unit group is a reductive algebraic group. A reductive monoid is

called semisimple if it has a zero element, and its unit group has a one-dimensional

center.

Throughout this monograph, all algebraic monoids are assumed to be irreducible

and linear.

Let M be an algebraic monoid. Denote by G its unit group and by T a maximal

torus of G.

An algebraic monoid M comes equipped with a natural G × G-action given by

(g, h) · a = gah−1. Let U(M) be the set of orbits O = GaG which contain an

idempotent. The set of idempotents in M is typically denoted by E(M).

Definition 3.1.3. Let M be an algebraic monoid. We say that M is regular if

M = GE(M).
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The next three results can be found in [R8].

Theorem 3.1.4. Let M be an algebraic monoid with zero. Then the following

conditions are equivalent:

1. M is regular,

2. U(M) is the set of G×G-orbits in M . �

Theorem 3.1.5. Let M be an algebraic monoid with zero. Then, M is reductive if

and only if M is regular. �

Theorem 3.1.6. Let M be a reductive monoid with zero. Let G be its group of

units. Then the set of G × G-orbits is finite, and every G × G-orbit contains an

idempotent. �

From now on, we concentrate on reductive monoids.

Let M be a reductive monoid with 0. The results of Putcha ([Pu]) and Renner

([R8]) provide a characterization of the Zariski closure of T in M , namely,

T = CM(T ) = {x ∈M |xt = tx, ∀t ∈ T}.

Notice that T is a reductive monoid. Furthermore, T is an affine toric variety.

The set of G × G-orbits, U(M), is often called the set of J -classes. In fact,

U(M) is a finite poset:

MaM ≤MbM ⇔ GaG ⊂ GbG.

One defines a partial order on E(T ), the set of idempotents of T , by declaring f ≤ e

if and only if ef = f = fe.

In this context, there are two important results of Putcha ([Pu]) and Renner

([R8]) that we state here.



CHAPTER 3. STANDARD GROUP EMBEDDINGS 73

Theorem 3.1.7. Any idempotent of M is conjugate to one in T , that is,

E(M) =
∪
g∈G

gE(T )g−1.

Additionally, if e, f ∈ E(T ) are conjugate under G, then they are also conjugate

under W . �

Theorem 3.1.8. Let M be a reductive monoid with zero. Suppose e and f are

idempotents of M . Then GeG = GfG if and only if e and f are conjugate under

G. �

All the structures just described are strongly intertwined, as the following theo-

rem shows.

Theorem 3.1.9. Let M be a reductive monoid. Then, there are bijections

U(M)←→ E(M)/G←→ E(T )/W

given by

GeG←→ {geg−1 | g ∈ G} ←→ {wew−1 |w ∈ W}

for e ∈ E(T ), where E(M)/G denotes the set of G-conjugacy classes in E(M) and

E(T )/W denotes the set of W -conjugacy classes in E(T ).

Proof. It follows from Theorems 3.1.6 and 3.1.7 that any G×G-orbit can be written

as GeG, for some idempotent e ∈ E(T ). Now the map on the left is both well-

defined and bijective in virtue of Theorems 3.1.7 and 3.1.8. Finally, the map on the

right is a well-defined bijection due to Theorem 3.1.7.

Fix a Borel subgroup B of G. Define Λ, the cross section lattice of M relative

to T and B, by the following formula

Λ := {e ∈ E(T ) |Be = eBe}.
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It turns out that Λ can be identified with the set of G×G-orbits inM . Therefore,

M =
⊔
e∈Λ

GeG

and WeW has a unique minimal element: there exists a unique ν ∈ WeW for which

Bν = νB.

On the other hand, because of Theorem 3.1.10, we can also identify Λ with the

set of W−orbits in E(T ) = {e ∈ T | e2 = e}.

Let R = NG(T ) ⊂M . Then, for all x ∈ R, one has xT = Tx and x = wt, where

w ∈ NG(T ) and t ∈ T . Concisely, R = {x ∈M |Tx = xT}.

The Renner monoid, R, is defined to be R := R/T . It is a finite regular

monoid. More concretely, any x ∈ R can be written as x = fu, where f ∈ E(T )

and u ∈ W . Besides,

R =
⊔
e∈Λ

WeW,

where Λ is the cross-section lattice. See [R8] for the details.

We should also emphasize that the Renner monoid R corresponds to the set of

B × B-orbits in M . In fact, there is an analogue of the Bruhat decomposition for

reductive monoids:

M =
⊔
r∈R

BrB.

Denote by Rk the set of elements of rank k in R, that is,

Rk = {x ∈ R | dimTx = k }.

Analogously, one defines Λk ⊂ Λ and Ek ⊂ E(T ).

For any given idempotent e ∈ E(M), one can define the following opposite

parabolic subgroups of G:

Pe = Cr
G(e) = {g ∈ G | ge = ege},
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and

P−
e = C`

G(e) = {g ∈ G | eg = ege},

they are called right and left centralizer of e, respectively. Their intersection,

CG(e) = {g ∈ G | ge = eg},

is called the centralizer of e in G. It can be shown ([Pu]) that CG(e) is a common

Levi factor of Pe and P−
e ; so CG(e) is a connected reductive subgroup of G.

Theorem 3.1.10 ([R8]). Let M be a reductive monoid with unit group G and cross

section lattice Λ. Let e ∈ Λ.

1. Define eMe = {x ∈ M |x = exe}. Then eMe is a reductive algebraic monoid

with unit group He := e · CG(e) and unit element e. A cross section lattice of

eMe is

eΛ = {f ∈ Λ | ef = f}.

2. Define Me = {x ∈ G | ex = xe = e}◦. Then Me is a reductive algebraic monoid

with zero e ∈M and unit group Ge = {x ∈ G | ex = xe = e}◦. A cross section

lattice for Me is

Λe = {f ∈ Λ | fe = e}.

�

The following is a result of Rittatore ([Ri]).

Theorem 3.1.11. Reductive monoids are exactly the affine embeddings of reductive

groups. The commutative reductive monoids are exactly the affine embeddings of

tori. �
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3.2 Monoids and Standard Group Embeddings

Definition 3.2.1. LetM be a reductive monoid with unit group G and zero element

0 ∈ M . There exists a central one-parameter subgroup ε : C∗ → G with image Z,

that converges to 0 ([Br7], Lemma 1.1.1). Then C∗ acts attractively on M via ε,

and hence the quotient

Pε(M) = [M \ {0}]/C∗

is a normal projective variety. See Section 1.3 of [Br5]. Notice also that G×G acts

on Pε(M) via

G×G× Pε(M)→ Pε(M), (g, h, [x]) 7→ [gxh−1].

Furthermore, Pε(M) is a group embedding of the reductive group G/Z. In the

sequel, X = Pε(M) will be called a Standard Group Embedding.

Let B be a Borel subgroup of G. Recall that M contains a finite number of

G × G-orbits and B × B-orbits, indexed by Λ and R, respectively. It is clear that

X = Pε(M) inherits such property as well. Indeed, the set of G × G-orbits of X is

indexed by Λ \ {0}. Similarly, the B ×B-orbits of X are indexed by R \ {0}.

When M is semisimple (in which case ε is essentially unique), we write P(M)

for Pε(M). Indeed, for such a monoid, Z ' C∗ is the connected center of the unit

group G of M . Thus, a semisimple monoid with unit group G can be thought of

as an affine cone over some projective embedding P(M) of the semisimple group

G0 = G/Z.

For an up-to-date description of these and other embeddings, see [AB].

Example 3.2.2. Let G0 be a semisimple algebraic group over the complex numbers

and let ρ : G0 → End(V ) be a representation of G0. Define Yρ to be the Zariski

closure of G = [ρ(G0)] in P(End(V )), the projective space associated with End(V ).
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Finally, let Xρ be the normalization of Yρ. By definition, Xρ is an standard group

embedding of G. Notice that Mρ, the Zariski closure of C∗ρ(G0) in End(V ), is a

semisimple monoid whose group of units is C∗ρ(G0). Embeddings of this type will

be studied in more detail in Section 4.4.

The purpose of this section is to write out the GKM data of X = Pε(M) (i.e. the

T×T -fixed points and T×T -invariant curves) in terms of the standard combinatorial

invariants of M . In fact, we will show that any standard group embedding

X = Pε(M)

contains only a finite number of T ×T -fixed points and T ×T -invariant curves. This

calculation does not depend on any special property of M . Thus there is no harm

in such a calculation even though it does not always yield a recipe for H∗
T (Pε(M)).

Later on, we specialize it to the case of a rationally smooth embedding.

3.2.1 GKM Data of a Standard Group Embedding

Let M be a reductive monoid with unit group G and zero element 0 ∈ M . Let

ε : C∗ � Z be an attractive one-parameter subgroup in the center of G. Consider

the standard group embeddingX = Pε(M). Our first step is to identify the following

two sets.

1. {x ∈M | dimTxT = 1}.

2. {x ∈M | dimTxT = 2}.

The first class will determine the set XT×T of T × T -fixed points and the second

one will determine the set C(X,T × T ) of T × T -fixed curves.
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Fixed Points

As always, let R = {x ∈ M | Tx = xT}/T = NG(T )/T be the Renner monoid

and let R1 = {x ∈ R | dim(Tx) = 1} be the set of rank-one elements of R. We will

identify R1 with its image in Pε(M) and simply write R1 ⊆ Pε(M).

Theorem 3.2.3. R1 ⊆ Pε(M) is the set of fixed points of T × T acting on Pε(M).

Hence, there is only a finite number of T × T -fixed points in X = Pε(M).

Proof. The set of fixed points of T × T on Pε(M) corresponds to

{x ∈M | dim(TxT ) = 1}.

Notice that if dim(Tx) = 1 then Tx = Zx. Similarly, if dim(xT ) = 1 then xT = Zx.

These remarks, together with the fact that Tx ∪ xT ⊆ TxT , yield the equality

{x ∈M | dim(TxT ) = 1} = {x ∈M | Tx = xT and dim(Tx) = 1},

where the latter set is precisely R1.

Fixed Curves

Proposition 3.2.4. Let x ∈ M and assume that x 6= 0. Then the following are

equivalent.

1. dimTxT = 2.

2. Either dim(xT ) = 2 and Tx ⊆ xT , xT = TxT ; or dim(Tx) = 2 and xT ⊆ Tx,

Tx = TxT ; or dim(TxT ) = 2 and Tx = xT = TxT .

Proof. It is simple to check that 2. implies 1. For the converse, assume that 1.

holds. Now Tx ∪ xT ⊆ TxT . If dim(Tx) = dim(xT ) = 1 then Tx = Zx = xT ,

where Z ⊆ T is the given attractive one-parameter subgroup of the center of G.
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But then dim(TxT ) = 1, a contradiction. Hence at least one of Tx or xT is two-

dimensional. If dim(Tx) = 2 then Tx ⊆ TxT yet they have the same dimension.

Thus Tx = TxT . If dim(xT ) = 2 then we end up with xT = TxT .

Corollary 3.2.5. Exactly one of the following assertions is true for x ∈ M such

that dim(TxT ) = 2.

1. xT ⊂ Tx = TxT and dim(xT ) = 1.

2. Tx ⊂ xT = TxT and dim(Tx) = 1.

3. xT = Tx = TxT . �

The following is a result of Renner ([R3]). We include a proof for the convenience

of the reader.

Lemma 3.2.6. Let M be a reductive monoid with zero and unit group G. Let

T ⊆ G be a maximal torus. Choose a central one-parameter subgroup ε : C∗ → G,

with image Z, that converges to 0. Then

{x ∈M\{0} | Zx = Tx} =
⊔

e∈E1(T )

eG.

Consequently, if X = Pε(M) = (M\{0})/C∗ and eX = (eM\{0})/C∗ ' eG/Z then

XT =
⊔

e∈E1(T )

eX

for the action T ×X → X given by (t, [x]) [tx]. Similar results hold for the right

action ([x], t) [xt] of T on X.

Proof. We reproduce Renner’s argument ([R3]). Let x ∈ M \ {0} be such that

Zx = Tx. Since x 6= 0 by Theorem 3.4 of [R3] there is an e ∈ E1 such that ex 6= 0

(that M is semisimple is not needed here). By the monoid Bruhat decomposition
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[R1] we can write x = brb′ where b, b′ ∈ B and r ∈ R. Then we let y = xb′−1 = br.

Write r = fw where f ∈ E(T ) and w ∈ W . Then fy = fbr = fbfr = fcr = fcw for

some c ∈ CB(f). In particular fy ∈ fG. Thus, by Proposition 3.22 of [R8], if f 6∈ E1

then dim(Tfy) > 1. Thus Zfy ( Tfy. Thus Zy ( Ty since dim(Ty) ≥ dim(Tfy).

This is impossible. We conclude that f = e ∈ E1. Thus, if t ∈ T and tbe = be,

then tebe = etbe = ebe. In particular te = e. But dim{t ∈ T | tbe = be} =

dim{t ∈ T | te = e} = dimT − 1. In particular Te ⊆ {t ∈ T | tbe = be}, and

consequently e ∈ {t ∈ T | tbe = be}. Thus ebe = be. Therefore y ∈ eM , and finally

x = yb′ ∈ eM .

Theorem 3.2.7. Notation being as above, there are three types of closed irreducible

T × T -curves in X = Pε(M).

1. Uαew, sα /∈ CW (e) and w ∈ W (fixed pointwise by T on the right).

2. weUα, sα /∈ CW (e) and w ∈ W (fixed pointwise by T on the left).

3. Tx = xT where x ∈ R2 = {x ∈ R | dim(Tx) = 2}.

Thus, there is only a finite number of T × T -invariant curves in X = Pε(M).

Proof. Keeping the numeration of Corollary 3.2.5, we know that the T × T−curves

of X = Pε(M) fall into three classes. The first two types correspond, as Lemma

3.2.6 dictates, to curves that are fixed pointwise by T on either the left or the right.

The former collection lies on XT =
⊔

e∈E1(T ) eG/Z. Moreover, due to the Bruhat

decomposition, for each e ∈ E1(T ) the following identity holds

eG/Z = G/Pe =
⊔

r∈eW

[r]Bu,

where Bu is the unipotent radical of B.

Our task is to find all the T -curves of eG/Z, where e varies over all the rank-one

idempotents of T . So fix an idempotent e ∈ E1(T ). It follows from the results
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of Carrell (Lemma 1.5.5), that the T -curves of eG/Z are of the form [r]Uα, for

some root α such that sα /∈ CW (f) and f = w−1ew. Indeed, since f is a rank-one

idempotent, then sα ∈ CW (f) if and only if Uαf = fUα = {f} ([R1], Lemma 5.1).

Because there is no essential difference between e and f , we conclude that a T × T -

curve, TxT , is fixed pointwise on the left by T if and only if TxT = wfUα, where

α /∈ CW (f), f ∈ E1(T ), and w ∈ W . A similar argument disposes of the case when

a T × T -curve is fixed pointwise by T on the right.

Finally, if Tx = xT = TxT and dim(Tx) = 2, then x ∈ R2. Identifying x ∈ R2

with its image [x] in X = Pε(M), it is clear that T [x]T is a T × T -curve in X.

Let us state Theorem 3.2.3 and Theorem 3.2.7 in a more compact form.

Theorem 3.2.8. Let X = Pε(M) be a standard group embedding. Then its natural

T × T -action

µ : T × T × Pε(M)→ Pε(M), (s, t, [x]) 7→ [sxt−1]

is T × T -skeletal. �

So it is quite relevant to ask whether µ is a GKM -action. We will show that

this is in fact the case for rationally smooth standard group embeddings, the theme

of our next section.

3.2.2 GKM Theory of Standard Group Embeddings

Let M be a reductive monoid with zero element 0 ∈M and unit group G ⊆M .

Let Z ⊆ G be a central one-parameter-subgroup with 0 ∈ Z. As before, define

Pε(M) = [M \ {0}]/Z.

The next result was first proved in [R5].
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Theorem 3.2.9. The following are equivalent.

1. X = Pε(M) is rationally smooth.

2. M \ {0} is rationally smooth.

3. For any minimal, nonzero, idempotent e of M , Me is rationally smooth.

4. For any maximal torus T of G, T \ {0} is rationally smooth. �

Notice, in particular, that the condition does not depend on Z. Theorem 3.2.8

provides a combinatorial/numerical description of rationally smooth embeddings.

See [R5].

Let us recapitulate. We know, from the previous section, that X = Pε(M)

admits a T × T -skeletal action. Our goal is to determine when this action is also

a GKM -action. Since X contains only a finite number of fixed points, Theorem

1.4.7 asserts that our task consists on finding a subclass of group embeddings with

vanishing odd cohomology.

In Chapter 2, we worked with an important class of spaces with no odd coho-

mology: Q-filtrable spaces. We will show in this section that if Pε(M) is rationally

smooth, then it is Q-filtrable. Put simply, rationally smooth standard group em-

beddings admit BB-decompositions into rational cells.

Let X = Pε(M) be a standard group embedding. Renner has shown that X

comes equipped with the following “cell” decomposition:

X =
⊔
r∈R1

Cr,

where R1 = XT×T . Even more is true, as the next theorem asserts.
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Theorem 3.2.10. The decomposition

Pε(M) =
⊔
r∈R1

Cr

is the BB-decomposition associated to a generic one-parameter subgroup. Moreover,

if Pε(M) is rationally smooth, then the Cr’s are rational cells.

Proof. We need only verify the second assertion, because the first one has been

established in [R3] (Theorem 3.4) and [R7] (Theorem 4.3). With this purpose in

mind, we call the reader’s attention to the fact that, in the terminology of [R3], M

is quasismooth (Definition 2.2 of [R3]) if and only if M \ {0} is rationally smooth.

The equivalence between these two notions follows from Theorem 2.1 of [R3] and

Theorems 2.1, 2.3, 2.4 and 2.5 of [R5].

Next, by Lemma 4.6 and Theorem 4.7 of [R3], each Cr equals

U1 × C∗
r × U2,

where the Ui’s are affine spaces. Moreover, if we write r ∈ R1 as r = ew, with

e ∈ E1(T ) and w ∈ W , then Cr = C∗
ew. So it is enough to show that C∗

e is

rationally smooth, for e ∈ E1(T ).

By Theorem 5.1 of [R3], it follows that, if X = Pε(M) is rationally smooth, then

C∗
e = [feM(e)]/C∗,

for some unique fe ∈ E(T ), where M(e) = MeC∗ and Me is rationally smooth (The-

orem 2.5 of [R5]). Furthermore, the proof of Theorem 5.1 of [R3] also implies that

[e] is the zero element of the rationally smooth, reductive, affine monoid M(e)/C∗.

Additionally,

C∗
e = {x ∈M(e)/C∗ | lim

s→0
sx = [e]},

for some generic one-parameter subgroup. Using Lemma 3.2.11 below, one concludes

that C∗
e is rationally smooth.
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Lemma 3.2.11. Let M be a reductive monoid with zero. Suppose that zero 0 is a

rationally smooth point of M . Let f ∈ E(M), be an idempotent of M . Then 0 ∈ fM

is a rationally smooth point of the closed subvariety fM .

Proof. By Lemma 1.1.1 of [Br7], one can find a one-parameter subgroup λ : C∗ → T ,

with image S, such that λ(0) = f . Notice that

fM = {x ∈M |λ(t)x = x , ∀ t ∈ C∗}.

That is, fM is the fixed point set of the subtorus S of T . Thus, by Theorem 1.1 of

[Br5], one concludes that 0 is also a rationally smooth point of fM .

Corollary 3.2.12. Let X = Pε(M) be a standard group embedding. If X is ratio-

nally smooth, then X is Q-filtrable and so it has no cohomology in odd degrees.

Proof. Under the given assumptions, X is projective, normal, and admits a BB-

decomposition into rational cells (Theorem 3.2.9). We have compiled all the neces-

sary data to appeal to Corollary 2.3.3 and conclude that X is Q-filtrable.

In consequence, GKM -theory works for rationally smooth standard group em-

beddings. Furthermore, since rationally smooth standard embeddings areQ-filtrable,

i.e. they can be filtered by closed subvarieties

∅ = X0 ⊂ X1 ⊂ . . . ⊂ Xm = X,

where Xi is obtained from Xi−1 by attaching a rational cell, one obtains the applica-

bility of GKM -theory at each step of the filtration; even though the various Xi’s are

not necessarily rationally smooth. This approach is more flexible than the general

approach (by comparing singular cohomology with intersection cohomology), used,

for instance, in the proof of Theorem 3.3.3. Such flexibility should have become

apparent from our study of these filtrations in Section 2.6.

To conclude this section, let us summarize our results.
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Theorem 3.2.13. Let M be a reductive monoid with zero. Let ε : C∗ → Z be an

attractive one-parameter subgroup in the center of G. Suppose that the standard

group embedding X = Pε(M) is rationally smooth. Then the action µ of T × T on

X, given by

µ : T × T ×X → X, (s, t, [x]) 7→ [sxt−1],

is a GKM -action. Furthermore, X admits a filtration by closed invariant subvari-

eties

∅ = X0 ⊂ X1 ⊂ . . . ⊂ Xm = X,

where each Xi is a GKM -variety, and each difference Xi \Xi−1 is a rational cell.

Proof. By Corollary 3.2.12 and Theorem 3.2.8, X is a Q-filtrable, GKM -variety.

An straightforward application of Theorem 2.3.5 gives the rest.

3.3 Vanishing of odd cohomology.

The H-polynomial approach

The following is a collection of results due to Renner. See [R3] and [R5] for

details. We include them here for the sake of completeness. Basically, Theorem

3.3.3 gives an alternative proof of the fact that any rationally smooth standard

embedding P(M), where M is semisimple, has zero cohomology in odd degrees.

Definition 3.3.1. Let M be a semisimple monoid with monoid R of B ×B-orbits.

Define H(R), the H-polynomial of R, as follows.

H(R) =
∑
x∈R

(t− 1)r(x)tl(x)−r(x)
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where r(x) = dim(Tx) is the rank of x and l(x) = dim(BxB) is its length. We then

let

H(M) = (t− 1)−1(H(R)− 1).

H(M) is called the H-polynomial of M . If M = Mρ = K∗ρ(G), for some irreducible

representation of G, we sometimes write Hρ for H(Mρ).

Remark 3.3.2. This is indeed a polynomial since, for any x ∈ R \ {0}, r(x) > 0.

The other thing to notice here is that H(M) depends only on the projective variety

P(M) = [M \ {0}]/K∗. So if P(M) ∼= P(N) then H(M) = H(N). Furthermore, if

there is morphism M1 →M2 which is finite and dominant, then H(M1) = H(M2).

Theorem 3.3.3. Let M be a semisimple algebraic monoid such that M \ {0} is

rationally smooth. Then

H(M)(t2) = PX(t)

where X = [M \ {0}]/K∗.

Proof. By our assumptions on M , X is rationally smooth. Hence by the results of

McCrory in [M], H∗(X) ∼= IH∗(X). Thus IPX(t) = PX(t). So it suffices to show

that H(M)(t2) = IPX(t).

Let x ∈ X. Then, without loss of generality, x = [e], where e ∈ M \ {0} is an

idempotent. Then from Theorem 1.1 of [BJ]

IPX,x(t) = τ≤dx−1((1− t2)IPP(Sx)(t))

where Sx is the appropriate slice and dx = dim(Sx). One checks, using the lo-

cal structure of reductive monoids [Br7], that Sx = Me. By the results of [R5],

Me ∼0 ΠMni
(K), which is a rational cell. Hence, by Lemma 1.3 of [Br5], P(Sx)

is a rational homology projective space of dimension dx − 1. Thus IPX,x(t) =

τ≤dx−1((1 − t2)IPP(Sx)(t)) = 1. Consequently, the formula in Theorem 1.1 of [BJ]
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simplifies to a summation with summands of the form P(G×G)x(t), as in (5.1.5) of

[BJ]. Thus

IPX(t) =
∑
x

P(G×G)x(t),

where the sum is taken over a set of representatives of the G×G-orbits of X. But

this is the same formula that one obtains by combining the B × B-orbits into one

summand for each G×G-orbit, in the formula for H(M)(t2).



Chapter 4

GKM data of a Rationally Smooth

Standard Group Embedding

It has been shown in Theorem 3.2.13 that the equivariant cohomology of a ratio-

nally smooth standard group embedding can be described in terms of GKM -theory.

In this chapter, for each T × T -invariant curve, we obtain the associated GKM -

character explicitly. Theorem 4.3.4 gives the ultimate description of H∗
T×T (Pε(M))

in terms of certain characters and the Renner monoid, a finite combinatorial invari-

ant associated to the monoid M .

We also describe the relation between H∗
T×T (Pε(M)) and H∗

T (Pε(T )), the associ-

ated torus embedding. Finally, we provide a few concrete examples.

The most remarkable new results in this Chapter are Theorem 4.1.1, Theorem

4.3.4, Corollary 4.3.5 and Theorem 4.3.6.

88
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4.1 Classification of GKM-curves

Let M be a reductive monoid with zero and unit group G. Let T be a maximal

torus and ε : C∗ → Z be an attractive one-parameter subgroup in the center of G.

Consider the standard group embedding X = Pε(M). Most of the calculations here

do not depend on whether Pε(M) is rationally smooth.

Recall that the set of T × T -fixed points in X corresponds to

R1 = {x ∈ R | dim(Tx) = dim(xT ) = 1}.

From Theorem 3.2.7, we also know that there are three types of T ×T -curves in

X:

1. Curves that are fixed pointwise by T on the right: Uαew, e ∈ E1(T ), sα /∈

CW (e), and w ∈ W .

2. Curves that are fixed pointwise by T on the left: weUα, e ∈ E1(T ), sα /∈ CW (e),

and w ∈ W .

3. Tx = xT = TxT where x ∈ R2 = {x ∈ R | dim(Tx) = 2}.

But which pair of fixed points, i.e. elements of R1, is joined by each of these

curves? Preserving the given order, we obtain

1. ew and sαew

2. we and wesα

3. The two elements r, s ∈ R1 such that r, s ∈ TxT .

Theorem 4.1.1. The set of T × T - curves in X = Pε(M) is identified as follows,

by pairs of T × T -fixed points. Here Ref(W ) refers to the set of reflections of W

and we assume there is an ambient Borel subgroup (to get the ordering on R).
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1. {(x, sx) | x ∈ R1, s ∈ Ref(W ) and x < sx}.

2. {(x, xs) | x ∈ R1, s ∈ Ref(W ) and x < xs}.

3. R2
∼= {A ⊆ R1 | |A| = 2 and A = {ex, fx} for some e, f ∈ E1(T ) and some x ∈

R2}.

Proof. First we recall that the Renner monoid R is partially ordered by the relation

x ≤ y if BxB ⊆ ByB. This is a generalization of the Bruhat-Chevalley order from

group theory to the case of reductive monoids. See [R8], Definition 8.32. Bearing this

in mind, Assertions 1. and 2. follow from the fact that if x 6= sx and s ∈ Ref(W ),

then either x < sx or else sx < x ([R8], Section 8.6). For 3. we proceed as follows.

Recall that any x ∈ R2 can be written as x = fu, where f ∈ E2(T ) is a rank-two

idempotent, and u ∈ W . Since u is invertible, it is enough to prove the statement for

x = f . Now notice that (fT \{0})/C∗ is isomorphic to CP1 ([Br5], Corollary 1.4.1).

Thus there are exactly two fixed points, they correspond to the unique rank-one

idempotents e, e′ ∈ E1(T ) such that ef 6= 0 and e′f 6= 0.

Any T ×T -fixed point is contained in a closed G×G-orbit. The curves identified

in 1. and 2. of Theorem 4.1.1 are the ones that are contained in closed G×G-orbits.

The curves identified in 3. of Theorem 4.1.1 are those that are not contained in any

closed G×G-orbit. In [Br4] these curves are further separated into whether or not

the corresponding fixed points are in the same closed G×G-orbit. This distinction

will become relevant in the next section when we identify the character associated

with each T × T -curve of type 3.

Notice that the description in 3. above is just a convenient, indirect way of

identifying the elements of R2 as pairs of T × T - fixed points. Notice also that,

for each x ∈ R2, there are exactly two elements e, f ∈ E(R1) such that ex 6= 0 and

fx 6= 0.
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Example 4.1.2. We illustrate Theorem 4.1.1 with the example M = Mn(K). Let

Ei,j denote an elementary matrix. We then obtain (with the ordering as in Theorem

4.1.1)

1. {(Ei,j, Ei,k) | j 6= k}.

2. {(Ei,j, Ek,j) | i 6= k}.

3. {(Ei,j, Ek,l) | i 6= k and j 6= l}.

In each case the associated curve is the T × T -orbit of the sum of the given pair of

elementary matrices. In case 1. the two elementary matrices are in the same row.

In case 2. the two elementary matrices are in the same column. Case 3. determines

the remaining cases.

4.2 The Associated Characters

We now identify the character θx = (λx, ρx) of T ×T associated with the T ×T -

curve c = [TxT ] ∈ C(X,T ). Recall that this character, unique up to sign, has been

described in Definition 1.4.9.

As discussed previously (Theorems 3.2.7 and 4.1.1), there are three different

types of T × T -curves. In this section we focus mainly on the third type, that is,

when c = [TxT ] and x ∈ R2. The other T × T -curves (where either Tx = TxT or

xT = TxT ) will also be discussed, but recall that these are essentially T -curves on

the complete homogeneous space G/Pe, with e ∈ E1 (Lemma 1.5.5).

So let x ∈ R2. Since we are working on the monoid level, the initial step in our

discussion is to calculate the map

mx : T × T → TxT, (s, t) sxt.
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We then compose mx with the canonical map πx : TxT → TxT/Z ∼= C∗ to obtain

θx = πx ◦mx

where Z ⊆ G is the given central, attractive, 1-parameter subgroup of the unit group

G of M . Notice that θx depends on the choice of isomorphism TxT/Z ∼= C∗. The

other isomorphism TxT/Z ∼= C∗ yields θ−1
x . In the calculation of θx it is important

to keep track of this ambiguity. It is also useful to consider the map

tx : T → Tx, t tx

and the character λx = πx ◦ tx. Notice that TxT = Tx, so we wish to express

θx : T × T → C∗ as a composition

T × T → T × T → T → Tx→ C∗

involving the multiplication T × T → T , the action of W on T , and these other

quantities: tx, πx, λx.

Also we assess the effect of the W ×W -action

W ×W × C(X,T × T )→ C(X,T × T ) , (v, w, c) vcw−1

on the associated characters. This will effectively reduce the calculation of θx, with

x ∈ R2, to calculating θx for a set of representatives of the W ×W -orbits of R2.

Explicit computations

Denote by Ξ(T ) the character group of T .

Let x ∈ R2. Then we can write x = fu = ug, where u ∈ W and f, g ∈ E2(T ).

An elementary calculation yields that

mx : T × T → TxT = xT, (s, t) sxt
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is given by mx(s, t) = stux where, by definition, tu = utu−1. Recall that λx = πx◦tx,

where tx : T → Tx, t tx, and πx : TxT → TxT/Z ∼= K∗.

Lemma 4.2.1. Write θx = (λx, ρx) ∈ Ξ(T × T ) = Ξ(T )⊕ Ξ(T ). Then

1. λx = λf .

2. ρx = λg = λf ◦ int(u), where int(u)(t) = utu−1.

Proof. Consider m : T × T → Tf, (s, t) stuf . Then m(s, t) ∈ Zf if and only if

mx(s, t) ∈ Zx. Thus ker(πf ◦m) = ker(πx ◦mx). So λx = λf and ρx = λf ◦ int(u).

But m is also the product of (s, 1)  sf and (1, t)  tuf . The first of these is λf

and the second of these is λf ◦ int(u). But tuf ∈ Zf if and only if tg ∈ Zg since

ugu−1 = f . Thus ker(λx ◦ int(u)) = ker(λg). We conclude that θx = (λx, ρx) =

(λf , λg) = (λf , λf ◦ int(u)).

Notice that we can also write it as mx : T × T → TxT = xT, mx(s, t) =

sxt = xsu
−1
. The resulting calculation then yields θx = (λx, ρx) = (λf , λg) =

(λg ◦ int(u−1), λg).

Notice that either θx = (λx, λx ◦ int(u)) or θx = (λ−1
x , λ−1

x ◦ int(u)) depending on

the orientation.

Lemma 4.2.2. Let x ∈ R2, so that x = fu = ug where u ∈ W and f, g ∈ E2(T ),

and write θx = (λf , λg) with λg = λf ◦ int(u) (as in Lemma 4.2.1).

1. Let y = xw, where w ∈ W . Then θy = (λf , λg ◦ int(w)) = (λx, ρx ◦ int(w)).

2. Let y = wx, where w ∈ W . Then θy = (λf ◦int(w−1), λg) = (λx◦int(w−1), ρx).

Proof. Assume that y = xw, and let h = (uw)−1fuw. Then θy = (λf , λh) where

λh = λf ◦ int(uw) = λf ◦ int(u) ◦ int(w) = λg ◦ int(w).

Assume that y = wx, and let h = wfw−1. Then θy = (λh, λg) where λh =

λf ◦ int(w−1) (since h = wfw−1).



CHAPTER 4. GKM DATA 94

Let x ∈ R2, and write x = fu, where f ∈ E(T ) and u ∈ W . The H-class of x,

denoted by Hx, is defined to be Hx := {sx | s ∈ CW (f)}. See [R8].

Lemma 4.2.3. The following are equivalent for x ∈ R2.

1. The H-class of x contains two elements.

2. The two T × T -fixed points in X = Pε(M), in the closure of TxT , are in the

same W ×W -orbit.

Proof. Let x ∈ R2 and let a, b ∈ TxT be the two T × T -fixed “points” in TxT .

Assume that Hx = {x, y}. Then there exist s, u ∈ W and f, g ∈ E2(T ) such that

x = fu = ug and y = fsu = sug. In particular, sf = fs 6= f , and s2 = 1 (for

otherwise, fs2u = s2ug would be another element in the H-class of x). Notice also

that y = fut = utg where t = u−1su. In any case, the two fixed points a, b ∈ TxT

are a = f1x = f1u and b = f2x = f2u where f1, f2 are the two rank-one idempotents

below f . One checks that b = sat and a = sbt. Indeed, sat = sf1ut = sf1uu
−1su =

sf1su = f2u = b. Notice that sf1s = f2 since sf = fs 6= f .

Now let x = fu ∈ R2 and assume that f1x = f1u and f2x = f2u are in the same

W ×W -orbit. Then f1 and f2 are in the same W ×W -orbit. That is, f1 and f2 are

conjugate (Theorem 3.1.8). Furthermore, Corollary 8.9 and Proposition 10.9 of [Pu]

assert that f1 and f2 are conjugate by an element s ∈ CW (f) = {v ∈ W | vf = fv}.

One then checks that y = sx is the other element in the H-class of x.

Remark 4.2.4. In the proof of the Lemma above we mentioned that s2 = 1. In

fact, in this situation we can claim more: s is a reflection. For that let’s look at the

induced action of int(s) on fT − {0}/Z ' CP1. Since int(s) is an automorphism,

the induced map is either z 7→ z or z 7→ z−1. The former is impossible because,

as we saw above, sf = fs 6= f and sf1s = f2, that is, int(s) permutes the points
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0 = f1 and ∞ = f2 of CP1. Therefore, by looking at the commutative diagram

Tf
int(s) //

π
��

Tf

π

��
Tf/Z

z 7→z−1
// Tf

we conclude that s, when restricted to Tf , is a reflection. Finally, given that the

natural map T → Tf is s-equivariant, it follows that s itself is a reflection in W .

So s = sαf
, for some root αf in Φ ⊆ Ξ(T ).

Lemma 4.2.5. Let x, y ∈ R2 be distinct and assume that Hx = {x, y}. Write

x = fu and y = fsαf
u, as in the proof of Lemma 4.2.3 and Remark 4.2.4. Then

λf ◦ int(sαf
) = λ−1

f . Consequently,

θx = (λx, ρx) =⇒ θy = (λx, ρ
−1
x ).

Furthermore, λx = αf and ρx = αf ◦ int(u) are roots of G with respect to T .

Proof. From Lemma 4.2.1 we obtain λg = λf ◦ int(u), as well as λg = λf ◦ int(sαf
u).

But int(sαf
u) = int(sαf

) ◦ int(u). Thus, either λf = λf ◦ int(sαf
) or else λ−1

f =

λf ◦ int(sαf
) since these characters are unoriented. We must rule out the former

case. This amounts to looking at the map induced on fT/Z from the restriction

int(sαf
) : fT → fT . By the remark above, int(sαf

)[ft] = [ft−1], for all t ∈ T . Thus,

λ−1
f = λf ◦ int(sαf

). Finally, by Remark 4.2.4 again, it follows that λx = λf = αf

and ρx = αf ◦ int(u) are roots.

Example 4.2.6. Let M = Mn(K) and let T be the set of invertible, diagonal

matrices. One checks that

R2 = {Ei,j + Ek,l | i 6= k and j 6= l}.

where Ei,j denotes the elementary matrix with a one in the (i, j)-position and and

zeros elsewhere. Let s = (s1, ..., sn) ∈ T denote the obvious diagonal matrix. A
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simple calculation yields that, for s, t ∈ T and x = Ei,j + Ek,l,

θx(s, t) = sis
−1
k tjt

−1
l .

The other element y ∈ R2, in the H-class of x = Ei,j +Ek,l, is y = Ek,j +Ei,l. Thus,

θy(s, t) = sis
−1
k tlt

−1
j .

In the terminology of Lemma 4.2.1, θx = (λx, ρx) where λx = αi,k and ρx = αj,l.

Similarly, λy = αi,k and ρx = αl,j.

We now discuss the remaining cases (where either Tx = TxT or xT = TxT ).

Again our treatment is somewhat terse because the whole issue reduces to the well-

documented situation discussed in [C].

Lemma 4.2.7. Let x = ew ∈ R1 and let α ∈ Φ be such that Uαx 6= {x}. Then, for

s, t ∈ T and u ∈ Uα,

suxt−1 = sus−1zx(s, t)x

where zx : T × T → Z. Thus, the character of the action of T × T on

C(x, α) = Uαx ⊆ Pε(M)

is the root (α, 1).

Proof. Starting from suxt−1, one obtains suxt−1 = sus−1sewt−1w−1w. Since the

quantities (t−1)w := wt−1w−1 and e commute, then the term on the right hand

side of the identity above becomes sus−1(s(t−1)w)ew. This latter expression is,

quite simply, equal to sus−1s(t−1)wex. On the other hand, observe that Te = Ze,

because e is a rank-one idempotent of T . In other words, s(t−1)we = zx(s, t)e where

zx(s, t) ∈ Z. From this, it follows that

suxt−1 = sus−1zx(s, t)x = sus−1xzx(s, t).
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Hence,

s(uxZ)t−1 = sus−1xZ,

and the result follows.

4.3 GKM-graph

Let Λ be the cross section lattice ofM . Recall that Λ corresponds to the partially

ordered set of G×G-orbits in M . Under this identification, closed G×G-orbits in

Pε(M) correspond to idempotents e ∈ Λ1. See the comments after Definition 3.2.1.

Proposition 4.3.1. Let M be a reductive monoid with zero and G be its unit group.

Let e 6= 0 be an idempotent of E(T ). Consider Pε(M) as above. Then the G × G

orbit of [e] in X fits into the fibration sequence

He/C∗ � � // G[e]G π // G/Pe ×G/P−
e .

Here He := e · CG(e). In particular, if e has rank one, then

G[e]G ' G/Pe ×G/P−
e ,

for, in this case, eMe ' C, He ' e× C∗ and Pe · e = C∗ · e.

Proof. Notice that StabG×G(e), the G × G-stabilizer of e ∈ M , is contained in the

subgroup Pe × P−
e . To see this, let (g, h) ∈ StabG×G(e). Then geh−1 = e, that is

egeh−1 = e2, but e is an idempotent, so egeh−1 = e. The latter yields ege = eh,

and the term on the right hand side equals ge, by assumption. We conclude that

ege = ge. Analogously, eh = ehe.
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Since StabG×G(e) ⊂ Pe × P−
e , the map π is the natural map of homogeneous

spaces, and therefore it is a fibration with fibre (Pe × P−
e )/StabG×G(e). But the

fibre it is easily seen to be isomorphic to e · CG(e), where

CG(e) = {g ∈ G | ge = eg}.

After taking the quotient by the C∗-action, we obtain the result.

Proposition 4.3.2. Let G[e]G be a closed G×G orbit in X (in other words, e ∈ Λ1).

Then H∗
T×T (G[e]G) consists of all maps ϕ : WeW → H∗

T ⊗H∗
T such that

i) ϕ(ew) ∼= ϕ(sαew) mod (α, 1) for sα /∈ CW (e).

ii) ϕ(we) ∼= ϕ(wesα) mod (1, α) for sα /∈ CW (e).

Proof. It follows from Proposition 4.3.1 that G[e]G is isomorphic to the complete

homogeneous space G/Pe×G/P−
e with vanishing odd cohomology. The T ×T -fixed

points of G[e]G are then given by WeW . By Lemma 1.5.5, the T × T -curves of

G[e]G are given by Uαew, with sα /∈ CW (e) and weUα, with sα /∈ CW (e). Curves of

the former type join the fixed points ew and sαew. As for the latter type, they join

we to wesα. Theorem 1.4.11 now yields the result.

Recall the notation of Lemma 4.2.5.

Lemma 4.3.3 ([R8]). Let x = fu be an element of R, the Renner monoid of M .

Denote by Hx its H-class. If x ∈ R2, then either Hx has two elements or Hx = {x}.

In the former case, Hx = {x, y}, where y = sαf
x and sαf

∈ CW (f) is the reflection

for which sαf
f = fsαf

6= f . In the latter case, any element s ∈ CW (f) satisfies

sf = fs = f . �

We now state the major result of this monograph. For the analogous result in

the case of (smooth) regular compactifications, see Theorem 3.1.1 of [Br4].
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Theorem 4.3.4. Let X = Pε(M) be a rationally smooth standard group embedding.

Then the following hold:

1. X is equivariantly formal for singular cohomology. Indeed, X has no odd

cohomology over Q and the map induced by restriction to the fixed point set,

H∗
T×T (X) −→ H∗

T×T (X
T×T ),

is injective.

2. The natural map H∗
T×T (X) −→ H∗

T×T (
⊔

e∈Λ1
G[e]G) =

⊕
e∈Λ1

H∗
T×T (G[e]G) is

injective. In fact, its image consists of all tuples (ϕe)e∈Λ1, indexed over Λ1 and

with ϕe ∈ H∗
T×T (G[e]G), subject to the additional conditions:

(a) If f ∈ E2(T ) and Hf = {f, sαf
f}, with sαf

f = fsαf
6= f , then

ϕef (f1u) ≡ ϕef (f2u) mod (αf , αf ◦ int(u)),

for all u ∈ W . Here, f1 and f2 = sαf
· f1 · sαf

are the two idempotents in

E1(T ) below f , the root αf corresponds to the reflection sαf
, and ef ∈ Λ1

is the unique element of Λ1 which is conjugate to f1.

(b) If f ∈ E2(T ) and Hf = {f}, then

ϕe1(f1u) ≡ ϕe2(f2u) mod (λf , λf ◦ int(u)),

for all u ∈ W . Here, λf is the character of T defined in Lemma 4.2.1,

the idempotents f1, f2 are the unique idempotents below f , and ei ∈ Λ1 is

conjugate to fi, for i = 1, 2.

Proof. Claim 1. is simply a restament of Theorem 3.2.13. So we now focus on

Assertion 2.
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First, notice that all the T × T -fixed points of X are contained in the (disjoint)

union of the closed orbits. So we have a commutative triangle

H∗
T×T (X) i∗ //

j∗

((QQQQQQQQQQQQQ
H∗

T×T (X
T×T )

⊕
e∈Λ1

H∗
T×T (GeG)

k∗
55kkkkkkkkkkkkkk

where all maps are induced by inclusions. The injectivity of i∗ yields at once the

injectivity of j∗.

We can say even more. Since GeG ' G/Pe × G/P−
e (Proposition 4.3.1), we

conclude that each closed orbit is equivariantly formal. What is more, XT×T = R1

is also the fixed point set of L =
⊔

e∈Λ1
GeG. Thus, k∗ is injective. Now notice that

L contains all the curves of type 1 and 2 in X. These curves, in addition, describe

the equivariant cohomology of L (Proposition 4.3.2).

To conclude the proof, we just need to show that the curves of type 3 give

assertions 2(a) and 2(b). So let x = fu ∈ R2 be one of these curves. By Lemma

4.3.3, the H-class Hx of x contains either one or two elements.

If Hx = {x, sαf
x}, then Lemma 4.2.3 implies that the two fixed points of [TxT ],

namely f1x and f2x, lie in the same closed G × G-orbit. Here recall that f1, f2

are the two idempotents below f . Moreover, f2 is conjugate to f1 via sαf
, namely,

f2 = sαf
· f1 · sαf

. We now use Lemma 4.2.5 to write the associated character θx as

θx = (αf , αf ◦ int(u)),

where αf is the root associated to the reflection sαf
. Since Λ1 indexes all closed

G×G-orbits in X, there exists a unique ex ∈ Λ1 such that f1 and ex are conjugate.

Assertion 2 (a) is now proved.

Finally, if Hx = {x}, then f1 and f2 are not conjugate (Lemma 4.2.3). That is,

f1x and f2x lie in different closed G×G-orbits. Since x = fu, Lemma 4.2.1 finishes

the proof.
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Together with Proposition 2.6.9, the result above provides a complete combina-

torial description of the equivariant cohomology of any rationally smooth standard

embedding.

As it was pointed out before, Brion ([Br4], Theorem 3.1.1) has obtained a result

analogous to Theorem 4.3.4 for regular compactifications of G. These compactifica-

tions are characterized, among other properties, by the fact that they are smooth

varieties and possess a finite number of closed G×G-orbits, all of them isomorphic

to G/B × G/B. There are three main differences between the embeddings studied

by Brion in [Br4] and our standard group embeddings. First, standard group em-

beddings are, in general, singular. Second, the closed G × G-orbits of a standard

group embedding are usually of the form G/Pe × G/P−
e , where Pe and P−

e are op-

posite parabolic subgroups (Proposition 4.3.1). Such homogeneous spaces are not

necessarily isomorphic to G/B × G/B. Finally, the results of Renner ([R2], Corol-

lary 3.4) assert that any normal projective group embedding of a semisimple group

G is standard. That is, standard group embeddings form a very natural class from

the viewpoint of embedding theory. This class is larger than the class of regular

compactifications. In particular, our Theorem 4.3.4 implies Theorem 3.1.1 of [Br4]

for the case of projective regular embeddings.

These observations should help the reader to not only understand the importance

and scope of our main Theorem 4.3.4, but also put our results in perspective.

It follows from Proposition 1.2.9 (i) that the G × G-equivariant cohomology of

X is obtained by means of the following formula

H∗
G×G(X) ' (H∗

T×T (X))W×W .

For the case in hand, we can be more precise, as the following result shows.
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Corollary 4.3.5. Let X = Pε(M) be a rationally smooth standard group embedding.

Then the ring H∗
G×G(X) consists of all tuples (Ψe)e∈Λ1, where

Ψe : WeW → (H∗
T ⊗H∗

T )
CW (e)×CW (e),

such that

(a) If f ∈ E2(T ) and Hf = {f, sαf
f}, then

Ψe(f1) ≡ Ψe(f2) mod (αf , αf ),

where e ∈ Λ1 is conjugate to f1, f2 = sαf
· f1 · sαf

, the reflection sαf
∈ CW (f) is

associated with the root αf , and fi ≤ f .

(b) If f ∈ E2 and Hf = {f}, then

Ψe(f1) ≡ Ψe′(f2) mod (λf , λf ),

where λf ∈ Ξ(T ), and f1, f2 ≤ f are conjugate to e and e′, respectively.

Proof. Let e ∈ Λ1. The closed orbit G[e]G is isomorphic to G/Pe × G/P−
e . Since

Pe = CG(e)oUe, where CG(e) is the centralizer of e in G, and U(e) is the unipotent

part of Pe. Moreover, U(e) = Ru(P (e)) and CG(e) is a closed connected reductive

subgroup, called the Levi subgroup of P (e). It follows, by the results of Brion ([Br3])

that

H∗(BPe) ' H∗(BCG(e)) ' H∗(BT )CW (e).

Consequently,

H∗
G×G(G[e]G) ' H∗(BPe)⊗H∗(BPe)

' H∗(BCG(e))⊗H∗(BCG(e))

' H∗(BT )CW (e) ⊗H∗(BT )CW (e)

= (H∗
T ⊗H∗

T )
CW (e)×CW (e).
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Notice that (u, v) ∈ W ×W acts on a tuple (fr) in H∗
T×T (R1) = ⊕r∈R1H

∗
T×T via

(u, v) · (fr) := ((u, v) · fu r v−1).

Since restriction of Ψe to (u, v) · e = uev−1 is equal to (u, v) · Ψe(e), for all

(u, v) ∈ W × W , then relations 2(a) and 2(b) from Theorem 4.3.4 reduce to the

proposed descriptions (a) and (b).

Associated to X = Pε(M), there is a standard torus embedding Y of T/Z,

namely,

Y = Pε(T ) = [T \ {0}]/C∗.

By construction, Y is a normal projective torus embedding and Y ⊆ X.

Our next theorem allows to compare the equivariant cohomologies of X = Pε(M)

and the associated torus embedding Y ⊆ X. The situation here contrasts deeply

with the corresponding one for regular embeddings ([Br4], Corollary 3.1.2; [U],

Corollary 2.2.3). It is worth emphasizing that the idea of comparing the embed-

dings Y and X goes back to [LP].

Theorem 4.3.6. The inclusion of the associated torus embedding ι : Y ↪→ X induces

an injection:

ι∗ : H∗
G×G(X) � � // H∗

T×T (Y)W ' (H∗
T (Y)⊗H∗

T )
W ,

where the W -action on H∗
T×T (Y) is induced from the action of diag(W ) on Y. Fur-

thermore, ι∗ is an isomorphism if and only if CW (e) = {1} for every e ∈ Λ1.

Proof. Since X is rationally smooth, then Y is rationally smooth as well (Theorem

3.2.9). Therefore, we have the following commutative diagram

H∗
T×T (X) � � //

ι∗

��

H∗
T×T (X

T×T )

ι∗

��
H∗

T×T (Y) � � // H∗
T×T (YT×T ),
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where the horizontal maps are injective, because both standard group embeddings

are equivariantly formal.

On the other hand, recall that Λ1 provides a set of representatives of both the

W × W -orbits in XT×T = R1 and the W -orbits in YT×T = E1(T ). Thus, after

taking invariants, we obtain an injection

H∗
T×T (R1)

W×W =
⊕
e∈Λ1

(H∗
T×T )

CW (e)×CW (e) ↪→ H∗
T×T (E1(T ))

W =
⊕
e∈Λ1

(H∗
T×T )

CW (e).

Placing this information into the commutative diagram above shows that the re-

striction map

ι∗ : (H∗
T×T (X))W×W −→ H∗

T×T (Y)W

is injective.

Observe that H∗
T×T (Y)W ' (H∗

T (Y) ⊗ H∗
T )

W . Truly, we have a split exact se-

quence

1 // diag(T ) // T × T
(t1,t2)7→t1t

−1
2 // Tjj ifc_\X

// 1,

where the splitting is given by t 7→ (t, 1). It follows that T × T is canonically

isomorphic to diag(T )× (T × 1). Furthermore, by definition, diag(T ) acts trivially

on Y . As a consequence, we have a ring isomorphism H∗
T×T (Y) ' H∗

diag(T )⊗H∗
T (Y).

This isomorphism is further W -invariant since the W -action on the cohomology

rings is induced from the action of diag(W ) on Y .

To prove the second part of the Theorem, we adapt to our situation an argument

of Littelmann and Procesi ([LP], Theorem 2.3).

Firstly, assuming that i∗ is also surjective, we need to show that CW (e) = {1}

for all e ∈ Λ1. Since X is equivariantly formal, then H∗
G×G(X) is a free (H∗

T×T )
W×W -

module. And H∗
T×T (Y) is a free H∗

T×T -module, for the same reason. By Corollary

1.2.10 one can choose a graded W ×W -submodule R of H∗
T×T , isomorphic to the
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regular representation of W ×W , such that

H∗
T×T ' R⊗ (H∗

T×T )
W×W

as graded (H∗
T×T )

W×W -module. Accordingly, H∗
T×T (Y)W×W is in a natural way a

free (H∗
T×T )

W×W -module.

Notice that the rank of H∗
G×G(X), as a H∗

G×G-module, equals |R1|, the number

of T × T -fixed points. This is just a consequence of the fact that X has no odd

cohomology (Proposition 1.4.5). Since, by assumption, ι∗ is a graded isomorphism of

free (H∗
T×T )

W×W -modules, we conclude that the ranks of H∗
G×G(X) and H∗

T×T (Y)W

must be the same. The next step consists in finding out a more intrisic formula for

the rank of the latter module, so as to compare it with |R1|.

Let I denote the ideal in (H∗
T×T )

W×W of elements of strictly positive degree.

Recall that we can find a graded W -stable submodule U of H∗
T×T (Y) such that the

morphism

U ⊗H∗
T×T −→ H∗

T×T (Y)

is a W -equivariant isomorphism of graded H∗
T×T -modules. Because Y is equivari-

antly formal, we can actually set U to be H∗(Y) (Lemma 1.4.3). The dimension of U

is the Euler characteristic of Y , and hence equal to |E1|, the number of T × T -fixed

points in Y . So

H∗
T×T (Y)W/IH∗

T×T (Y)W

is isomorphic to (U ⊗R)W as W -representation. Since R decomposes into the direct

sum of |W |-copies of the regular representation ofW , then Lemma 4.3.7 below shows

that dim (U ⊗R)W = |E1||W |. Consequently,

dimH∗
T×T (Y)W/IH∗

T×T (Y)W = |E1||W |,

which, by the graded Nakayama Lemma, also coincides with the rank of H∗
T×T (Y)W

as a free (H∗
T×T )

W×W -module.
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In summary, the surjectivity of ι∗ implies that |R1| = |E1||W |. Now Lemma

4.3.8 below finally yields CW (e) = {1} for all e ∈ Λ1.

For the converse, suppose that CW (e) = {1} for all e ∈ Λ1. We need to show

that i∗ is surjective. To achieve our goal, we modify slightly an argument of [LP],

Section 4.1, and Brion [Br4], Corollary 3.1.2. Define the variety

N =
∪
w∈W

wY .

We claim that this union is, in fact, a disjoint union. Indeed, observe thatN contains

all the T × T -fixed points of X. That is, N has |R1| fixed points. On the other

hand, each wY has |E1| fixed points (for its corresponding T -action). Now, if it were

the case that there is a pair of distinct subvarieties wY and w′Y with non-empty

intersection, then this intersection should also contain T ×T -fixed points. But then

a simple counting argument would yield |R1| < |E1||W |. This is impossible, by our

assumptions and Lemma 4.3.8. Hence,

N =
⊔
w∈W

wY .

Clearly, N is rationally smooth and equivariantly formal (because each wY is

so, for w ∈ W ). Moreover, since N contains all the T × T -fixed points of X, then

the restriction map

H∗
T×T (X)→ H∗

T×T (N )

is injective.

It follows from Theorem 4.1.1 that all the T ×T -curves of X are contained either

in closed G×G-orbits (curves of type 1. and 2.) or in N (curves of type 3.).

As a consequence, Theorem 1.4.11 can also be applied toN . After takingW×W -

invariants (compare Corollary 4.3.5), we see that the restriction to N induces an
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isomorphism

H∗
T×T (X)W×W ' H∗

T×T (N )W×W '

(⊕
w∈W

H∗
T×T (Y)

)W×W

' H∗
T×T (Y)W .

The proof is now complete.

Lemma 4.3.7 ([LP]). If N is a finite group, and U and V are two finite dimensional

representations of N such that V is the sum of copies of the regular representation

of N ,then

dim (V ⊗ U)N =
dimV · dimU

|N |
.

�

Lemma 4.3.8. Let R1 be the set of rank one elements of the Renner monoid R.

Then |R1| = |E1| · |W | if and only if CW (e) = 1 for every e ∈ Λ1.

Proof. We know, by Theorem 3.1.10, that Λ1 can be identified with a set of rep-

resentatives of the W ×W -orbits in R1. Likewise, Λ1 also corresponds to a set of

representatives of theW -orbits in E1. Let k be the cardinality of Λ1 and let e1, . . . , ek

be a complete list of the elements of Λ1. Since we are dealing with elements of rank

one, it is easy to see that WeiW ' (W/CW (ei))× (W/CW (ei)), for all i = 1, . . . , k.

Thus

|R1| =
∑
i

|WeiW | =
∑
i

|W/CW (ei)|2.

On the other hand, the orbit Wei ⊂ E1 satisfies Wei ' W/CW (ei). This implies

the following formula

|E1| =
∑
i

|Wei| =
∑
i

|W/CW (ei)|.

Now recall that R1 = E1W = WE1. In other words, |R1| ≤ |E1||W | and so∑
i

|W/CW (ei)|2 ≤
∑
i

|W/CW (ei)||W |.
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Therefore, |R1| = |E1||W | if and only if∑
i

(
|W/CW (ei)||W | − |W/CW (ei)|2

)
= 0.

Notice that the latter condition is equivalent to having |W/CW (ei)| = |W | for every

i, because |W | − |W/CW (ei)| ≥ 0. It is now clear that |R1| = |E1||W | if and only if

|CW (ei)| = 1 for all i = 1, . . . , k.

4.4 Examples

Recall that if (W,S) is a Weyl group and J ⊂ S, then W J is the set of minimal

length representatives for the cosets of WJ in W , where WJ is the subgroup of W

generated by J . In particular, the canonical composition

W J → W → W/W J

is bijective.

4.4.1 J-irreducible Monoids

A reductive monoid M with 0 ∈M is called J-irreducible if M\{0} has exactly

one minimal G × G-orbit. Any J-irreducible monoid is also semisimple. See [PR],

or Section 7.3 of [R8] for a systematic discussion of this important class of reductive

monoids, and for a proof of the following Theorem.

Theorem 4.4.1. Let M be a reductive monoid. The following are equivalent.

1. M is J-irreducible.

2. There is an irreducible rational representation ρ : M → End(V ) which is finite

as a morphism of algebraic varieties.
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3. If T ⊆M is the Zariski closure in M of a maximal torus T ⊆ G then the Weyl

group W of T acts transitively on the set of minimal nonzero idempotents of

T .

By the results of Section 4 of [PR], if M is J-irreducible, there is a unique,

minimal, nonzero idempotent e1 ∈ E(T ) such that e1B = e1Be1, where B is the

given Borel subgroup containing T . That is, Λ1 = {e1}. If M is J-irreducible we

say that M is J-irreducible of type J if, for this idempotent e1,

J = {s ∈ S | se1 = e1s},

where S is the set of simple involutions relative to T and B. The set J can be

determined in terms of any irreducible representation satisfying condition 2 of The-

orem 4.4.1. See [PR] for the details.

As above we let S ⊆ W be the set of simple involutions of W relative to T and

B. We can regard S as the set of vertices of a graph with edges {(s, t) | st 6= ts}.

Thus we may speak of the connected components of any subset of S.

The following result was first recorded in [PR]. It describes the G × G-orbit

structure of a J-irreducible monoid of type J ⊆ S.

Theorem 4.4.2. Let M be a J-irreducible monoid of type J ⊆ S.

1. There is a canonical one-to-one order-preserving correspondence between the

set of G × G-orbits acting on M and the set of W -orbits acting on the set of

idempotents of T . This set is canonically identified with Λ = {e ∈ E(T ) | eB =

eBe}.

2. Λ \ {0} ∼= {I ⊆ S | no connected component of I is contained entirely in J}

in such a way that e corresponds to I ⊆ S if I = {s ∈ S | se = es 6= e}. If we

let Λ2 = {e ∈ Λ | dim(Te) = 2} then this bijection identifies Λ2 with S \ J .
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3. If e ∈ Λ\{0} corresponds to I, as in 2 above, then CW (e) = WK where K =

I ∪ {s ∈ J | st = ts for all t ∈ I}.

In fact, Λ is completely determined by J . See [R8] for a systematic discussion of

J-irreducible monoids, in particular Lemma 7.8 of [R8]. Notice also that part 1 of

Theorem 4.4.2 is true for any reductive monoid (compare Theorem 3.1.10 and the

remarks following it).

Let M be a J-irreducible monoid of type J ⊆ S and let T be the closure in M of

a maximal torus T of G. By part b) of Theorem 5.4 of [R8], T is a normal variety.

Define

X(J) = [T\{0}]/C∗.

The terminology is justified since X(J) depends only on J and not onM or λ ([PR]).

Rationally smooth embeddings obtained from J-irreducible monoids have been

classified by Renner in [R5]. The reader will find there a detailed list of all the

subsets J for which X(J) is rationally smooth.

Definition 4.4.3. Let (W,S) be a Weyl group and let J ⊆ S be a proper subset.

Define

SJ = (WJ(S \ J)WJ) ∩W J .

We refer to (W J , SJ) as the descent system associated with J ⊆ S.

Proposition 4.4.4. There is a canonical identification

SJ ∼= {g ∈ E2 | ge1 = e1}.

For a proof, see [R4].

The following table, first recorded in [R4], provides the reader with a summary-

translation between the monoid jargon and the Bruhat poset jargon.
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Reductive Monoid Jargon Bruhat Order Jargon

e1 ∈ Λ1 = {e1} 1 ∈ W J

e = ev ∈ E1 The v ∈ W J with e = ve1v
−1

ev ≤ ew in E1, i.e. evBew 6= 0 w ≤ v in W J

(u, v) ∈ W J ×W J such that

E2 = {g ∈ E | dim(gT ) = 2} u < v and u−1v ∈ SJWJ

{g ∈ E2 | gB = gBg} S \ J

{g ∈ E2 | ge1 = e1 } SJ = (WJ(S \ J)WJ) ∩W J

{g ∈ E2 | ge1 = e1, g ∼ gs} SJ
s = (WJsWJ) ∩W J

E2(ew) = {g ∈ E2 | gew = ew} {v ∈ W J | w−1v ∈ SJWJ}

Γ(ew) = {g ∈ E2(ew) | ge′ = e′ for some e′ <

ew}

AJ(w) = {r ∈ SJ | w < wr}

Γs(ew) = Γ(ew) ∩ {g ∈ E2 | g ∼ gs } AJ
s (w) = {r ∈ SJ

s | w < wr}

For X = P(M), where M is a J-irreducible monoid, there are no GKM -curves

satisfying the properties of Theorem 4.3.4 (2b), since curves of that type join neces-

sarily fixed points in different closed G×G-orbits. We can make our Theorem 4.3.4

more precise in this context.

Theorem 4.4.5. Let X = P(M) be a J-irreducible rationally smooth standard group

embedding of type J . Let e1 be the unique rank-one idempotent for which Λ1 = {e1}.

Then the natural morphism H∗
T×T (X) → H∗

T×T (G[e1]G) is injective. Furthermore,

the image consists of all maps ϕ ∈ H∗
T×T (G[e1]G), subject to the condition that, for

every g ∈ SJ = {g ∈ E2(T ) | ge1 = e1g}, and (u, v) ∈ W ×W , the following holds:

ϕ(u e1 u
−1 v) ≡ ϕ(uαg e1 αg u

−1 v) mod (αg ◦ int(u−1), αg ◦ int(u−1) ◦ int(v)),

where αg is the root associated to the reflection sα for which sαg = gsα 6= g.
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Proof. Since there is only one closed G × G-orbit, namely G[e1]G, then the first

assertion is a direct consequence of Theorem 4.3.4 (2). Also, recall that there are no

curves of type 3, so we just need to focus on translating Theorem 4.3.4, (2a), into our

situation. Let f ∈ E2(T ). Then there are exactly two rank-one idempotents f1, f2,

such that f1f = f1, f2f = f2 and f2 = sαf1sα, where sαf = sαf 6= f . On the other

hand, because Λ1 = {e1}, then f1 = ueju
−1, for some u ∈ W . The latter implies

that g = u−1fu is an idempotent of T such that ge1 = e1. Using the Bruhat-Monoid

jargon chart, one easily concludes that g ∈ SJ . In short, any f ∈ E2(T ) such that

fe = e for some e ∈ W J ' E1(T ) is conjugate to an element of SJ . This observation

and Theorem 4.3.4, (2a), yield the result.

Corollary 4.4.6. Let X = P(M) be a J-irreducible rationally smooth standard group

embedding of type J . Let e1 be the unique rank-one idempotent for which Λ1 = {e1}.

Then the ring H∗
G×G(X) consists of all tuples Ψ, where

Ψ : We1W ' W J ×W J −→ (H∗
T×T )

WJ×WJ ,

such that

ϕ(e1) ≡ ϕ(αg e1 αg) mod (αg, αg),

for every g ∈ SJ .

Proof. Simply translate Corollary 4.3.4 into this situation, making use of Theorem

4.4.5.

The wonderful compactification

The wonderful compactification ([DP]) corresponds to taking J = ∅. Let Λ1 =

{e}. In this case, our Theorem 4.4.5 yields a different proof of the results of [Br4]

and [U].
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Theorem 4.4.7. Let X = P(M) be the wonderful compactification of a semisimple

group G. Then H∗
T×T (X) consists of all maps ϕ ∈ H∗

T×T (G/B ×G/B) such that

ϕ(u e u−1 v) ≡ ϕ(uα eα u−1 v) mod (α ◦ int(u−1), α ◦ int(u−1) ◦ int(v)),

for every root α ∈ S and (u, v) ∈ W ×W .

Proof. For the wonderful compactification, we haveGeG ' G/B×G/B. In addition,

since J = ∅, then Λ2 = S and SJ = S. These observations and Theorem 4.4.5 finally

imply the result.

A familiar object: P(n+1)2−1(C)

This corresponds to the case when (W,S) is of type An. In fact, for this case,

one has M = Mn+1, G = GLn+1, G/C∗ = SLn+1, W ' Sn+1 and J = {s2, . . . , sn}.

Thus, X = P(n+1)2−1 and so X is rationally smooth.

In this case, e1 = (aij), with a11 = 1 and aij = 0 for any (i, j) 6= (1, 1).

Let

W =< s1, ...sn >

be the Weyl group of type An (so that W ∼= Sn+1), and let

J = {s2, ..., sn} ⊆ S = {s1, ..., sn}.

Then J ⊆ S is combinatorially smooth. One checks that

W J = {1, s1, s2s1, s3s2s1, ..., snsn−1 · · · s2s1}.

Notice that

1 < s1 < s2s1 < ... < snsn−1 · · · s1.

In this very special example we obtain that SJ = W J\{1}. Besides, G[e]G = Pn×Pn.

Considering the previous remarks, Theorem 4.4.5 reads as follows:
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Theorem 4.4.8. H∗
T×T (P(n+1)2−1) injects into H∗

T×T (Pn × Pn) and it consists of

all maps ϕ ∈ H∗
T×T (Pn × Pn) subject to the condition that, for every g ∈ SJand

(u, v) ∈ Sn × Sn, the following holds:

ϕ(ue1u
−1v) ≡ ϕ(uαge1αgu

−1v) mod (αg ◦ int(u−1), αg ◦ int(u−1) ◦ int(v)).

Here αg = t1 · t−1
j+1 is the root α1 ◦ int(s2) ◦ . . . ◦ int(sj), for each g = sj · · · s1 with

j ≥ 1, g 6= 1, and α1 = t1t
−1
2 . �

4.4.2 Rationally smooth torus embeddings X(J)

Let M be a J-irreducible monoid of type J . We denote by X(J) the associated

projective torus embedding, that is,

X(J) = (T − {0})/Z.

Since X(J) is a torus embedding, all closed T×T -orbits are isomorphic to points.

In fact, T [e]T ' [e] for every e ∈ E1(T ).

The T × T -fixed points in X(J) correspond to W J ' E1(T ).

The collection of T ×T -curves of X(J), say C(X(J), T ×T ), corresponds to the

set of rank-two idempotents E2(T ). Furthermore, C(X(J), T × T ) can be identified

with the set

{(u, v) ∈ W J ×W J |u < v and u−1v ∈ SJWJ}.

In this case, there are no T ×T -curves joining fixed points in the same closed T ×T -

orbit.

This information together with Theorem 4.3.4 yield the following result.

Theorem 4.4.9. Let X(J) be the projective torus embedding associated to a ratio-

nally smooth standard group embedding P(M), where M is a J-irreducible monoid
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of type J . Then H∗
T×T (X(J)) ' H∗

T ⊗H∗
T (X(J)). Moreover, H∗

T (X(J)) consists of

all maps

ϕ : W J → H∗
T

such that ϕ(u) ≡ ϕ(v) mod (χu,v), whenever u < v and u−1v ∈ SJWJ . Here χu,v

equals λfu,v , where fu,v is the unique idempotent in E2(T ) such that both u · fu,v 6= 0

and v · fu,v 6= 0. �
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