
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-23-2024 3:00 PM 

Impact of Passive Second Language Exposure on Word Impact of Passive Second Language Exposure on Word 

Segmentation and Word Mapping Segmentation and Word Mapping 

Amiya S. Aggarwal, Western University 

Supervisor: Batterink, Laura, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Psychology 

© Amiya S. Aggarwal 2024 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Cognition and Perception Commons 

Recommended Citation Recommended Citation 
Aggarwal, Amiya S., "Impact of Passive Second Language Exposure on Word Segmentation and Word 
Mapping" (2024). Electronic Thesis and Dissertation Repository. 10360. 
https://ir.lib.uwo.ca/etd/10360 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F10360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/407?utm_source=ir.lib.uwo.ca%2Fetd%2F10360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/10360?utm_source=ir.lib.uwo.ca%2Fetd%2F10360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 ii 

 Abstract 

Research in statistical learning using artificial languages has suggested that passive 

exposure to linguistic patterns can guide word segmentation and word mapping. It is 

unknown whether this type of unsupervised learning can scale up to support these aspects 

of learning in a natural language. Our study exposed monolingual English speakers to 

either English or Italian podcasts for an hour daily for 21 days, collecting behavioural and 

EEG data during both the pre- and post-exposure period. Our behavioural measure tested 

if L2 exposure would lead to improved word mapping for words with high phonotactic 

probabilities. Our EEG measure tested whether the L2 exposure would improve word 

segmentation, as indexed by the TRF to word onsets. Neither of these measures detected 

significant changes in L2 processing as a function of passive exposure. Accounting for 

additional baseline acoustic features in the future may clarify the effects of L2 exposure 

on moment-by-moment L2 processing. 

 

Keywords: 

Statistical learning, language acquisition, second language learning, word mapping, word 

segmentation, temporal response functions, encoding models, EEG 
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 Summary for Lay Audience 

It is common for new language learners to take second language classes, learn a large 

number of vocabulary items, and still be unable to pick out the words in fluent, seemingly 

rapid-fire speech produced by a native speaker. However, as many language learning 

applications encourage, listening to a language in the form of podcasts or audiobooks can 

boost comprehension. The goal of this research was to test if passively listening to a 

second language is sufficient to help monolingual English speakers find word boundaries 

and whether familiarity with the sound patterns of the second language makes it easier to 

treat common words from that language as labels for new objects. We asked participants 

to listen to either English or Italian podcasts for an hour a day and compared their 

performance on two distinct measures, a Word Mapping task and a Continuous Listening 

task. The Word Mapping task compared how well participants could make word-object 

associations for three word types – common words (typical sound patterns of Italian), rare 

words (atypical sound patterns for Italian) and non-words (atypical sound patterns for 

Italian). The Continuous Listening task recorded participants’ neural response to word 

onsets in Italian speech. In contrast to our expectations, we did not find a measurable 

impact of the three weeks of exposure to a second language on either the Word Mapping 

or Continuous Listening task. However, on the word mapping measure, we found some 

evidence that all participants became more sensitive to sound patterns in the second 

language from session 1 to session 2. On the Continuous Listening task, it is possible that 

additional analyses which model other features of speech may reveal more subtle changes 

occurring during online speech processing. In the future, this line of research could 

uncover new ways to facilitate second language learning in adults by exploring methods 

other than traditional classroom teaching. 
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 Chapter 1 

1 Introduction  

Studies of language processing have shown that the neural response to continuous speech 

depends on linguistic proficiency (Ihara et al., 2021). Fluent listeners of a language can 

effortlessly extract meaning from speech, whereas listeners who are less familiar with a 

language may not glean any semantic content from the auditory input. However, they 

may still be able to encode some of the acoustic features, such as the speech envelope or 

changes in sound intensity (Brodbeck et al., 2024; Gillis et al., 2021; Zou et al., 2019).  

 

Familiarization with a new language is accompanied by a shift in auditory processing, 

such that surface level acoustic features are thought to become less salient with increased 

proficiency (Brodbeck et al., 2024; Di Liberto et al., 2021; Pérez-Navarro et al., 2024). In 

past studies that have related learners’ neural response to their linguistic proficiency, the 

second language (L2) learners typically had at least some formal classroom training (Di 

Liberto et al., 2021; Ihara et al., 2021). However, it is not known whether mere exposure 

to a spoken L2 is sufficient to induce neural changes during language processing in adult 

learners, or whether neural changes can only result from more intentional, explicit forms 

of learning and instruction. Language proficiency also affects whether listeners are able 

to adapt word segmentation strategies while processing continuous L2 speech (Gilbert et 

al., 2021). Therefore, unfamiliar listeners may not be able to consistently detect word 

boundaries, which is a necessary component for the neural response to word onsets 

(Karunathilake et al., 2023).  

 

At the behavioural level, language exposure enables listeners to develop a sensitivity to 

regularities in sound patterns (phonotactics), eventually supporting the ability to learn 

word-forms and grammar (Kittleson et al., 2010; Plante & Gómez, 2018; Romberg & 

Saffran, 2010). This familiarity with sound patterns and prototypical word structures can 

further influence the ability to associate sound sequences to objects, known as word 
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mapping (Graf Estes et al., 2007; Hay et al., 2011; Mirman, Magnuson, et al., 2008). This 

thesis will investigate the extent to which passive L2 exposure facilitates word 

segmentation in natural L2 speech, and whether generalized word-form knowledge can 

be acquired and further promote the learning of object-label associations.  

1.1 Word Segmentation Through Statistical Learning 

A critical first step to language acquisition is word segmentation – the ability to discover 

individual words in continuous speech (Saffran, Newport, et al., 1996). However, the 

process of word segmentation can be challenging due to the lack of consistent acoustic 

cues that indicate word boundaries. Speech is composed of an overlapping combination 

of language-specific cues to word boundaries, such as lexical stress patterns (indicated 

through higher pitch, longer duration, and increased volume of stressed syllables), and 

language-general cues, such as syllable co-occurrence patterns (i.e. transitional 

probabilities) and utterance boundaries (Sahni et al., 2010). Becoming sensitive to the 

probabilistic regularities of speech across repeated instances may enable the reliable 

extraction of word boundaries through the process of statistical learning (Saffran, Aslin, 

et al., 1996). Statistical learning refers to the process of extracting patterns from the 

environment simply through exposure to input, without explicit training, effort, or 

intention (Plante & Gómez, 2018; Romberg & Saffran, 2010). 

 

Word segmentation through statistical learning is a phenomenon that has been studied 

extensively using miniature artificial languages (e.g., Isbilen & Christiansen, 2022; 

Romberg & Saffran, 2010; Saffran et al., 1997; Saffran, Newport, et al., 1996). Artificial 

language studies have focused on the universal segmentation cue of transitional 

probabilities, which are calculated as the likelihood of a specific syllable occurring 

immediately after the preceding one (Saffran, Newport, et al., 1996). Statistical learning 

studies using artificial languages typically present a continuous stream of syllables made 

up of 4-6 randomly concatenated syllable triplets, or “words” (e.g. 

bidakupadotigolabubidaku…). They are designed such that syllables within a word are 

always found together (TP = 1), but those between words are less likely to be found 
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together (e.g. TP = .33), though this varies depending on the number of words (Isbilen & 

Christiansen, 2022).  

 

Research suggests that infants are able to leverage statistical learning mechanisms to 

become sensitive to language-general cues which then allow them to discover more 

language-specific cues in their native language (Sahni et al., 2010). Through a series of 

seminal studies, Saffran and colleagues (Saffran, Aslin, et al., 1996; Saffran et al., 1997; 

Saffran, Newport, et al., 1996) demonstrated that adults, children and infants are able to 

pick up on regularities in structured input to identify words in a continuous syllable 

stream made up of trisyllabic words, with no pauses or other acoustic cues indicating 

word boundaries. After only 2 minutes of exposure to this artificial language, infants 

were able to differentiate previously heard sequences from new ones. This discrimination 

ability was demonstrated through a novelty preference in a looking-time procedure in 

which the infants spent significantly longer listening to non-words than those that had 

occurred previously in the artificial speech stream (Saffran, Aslin, et al., 1996). Whereas 

infant studies of statistical learning leverage looking-time procedures, studies with adults 

and children typically use explicit measures to assess learning, such as asking participants 

to rate the familiarity of test items on a Likert-type scale (e.g., Batterink & Paller, 2017, 

2019; Liu et al., 2023), or to choose between words and non-words (recombined syllables 

from the language) on a two-alternative forced choice (2AFC) recognition task (e.g., 

Batterink et al., 2015; Elmer et al., 2021; Saffran et al., 1997; Saffran, Newport, et al., 

1996). Based solely on the transitional probabilities between neighbouring syllables, 

participants in these studies were able to rate the syllable sequences making up ‘true’ 

words as more familiar than non-word foil items, and also correctly identify them on the 

2AFC task.  

 

While the previously discussed studies have used explicit measures, statistical learning in 

adults can also be measured through more implicit measures. Researchers have found 

evidence for statistical learning using a target detection task, in which participants are 

required to make keypress responses to target syllables embedded in shortened excerpts 

of the artificial language stream. Participants in this task are thought to be able to predict 
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later syllables in a word using the preceding syllables, and thus responding to later-

occurring syllables (2nd and 3rd positions) faster than word-initial syllables (Batterink et 

al., 2015; Franco et al., 2015; Lukics & Lukács, 2021; Poulin-Charronnat et al., 2017). 

Faster reaction times to later syllables within a word were found even in participants who 

did not show evidence of learning as assessed on the explicit 2AFC recognition task 

(Batterink et al., 2015). Another more implicit measure of statistical learning is neural 

entrainment. EEG studies using artificial languages show that as participants are exposed 

to a syllable stream composed of trisyllabic words, their brain waves reflect a shift from 

processing individual syllables to segmenting trisyllabic units, as revealed by an increase 

in neural entrainment to the word frequency over time (Batterink & Paller, 2017; Buiatti 

et al., 2009; Elmer et al., 2021; Kabdebon et al., 2015; Sjuls et al., 2023). 

 

Importantly, statistical learning is a powerful mechanism that occurs in response to 

linguistic input even without focused attention to the input or explicit effort to find 

patterns. An artificial language study found that both first grade children and adults 

successfully learned the words while hearing the speech stream in the background 

(Saffran et al., 1997). Participants in this study were asked to create computer 

illustrations while a 21-minute tape of the artificial language was being played in the 

room. Despite not being instructed to pay attention to the stream or being informed that 

the syllables they heard were part of a nonsense language, participants were able to 

recognize ‘true’ words as more like the tape they heard than non-word foils. This study 

led to the conclusion that passive exposure is sufficient for statistical learning of syllable 

sequences, and raises the possibility that incidental learning may play a role in natural 

language acquisition. Likewise, another study by Batterink and Paller (2019)  provides 

further evidence that focused attention is not necessary for statistical learning. In the 

study, participants were exposed to an artificial language stream while engaged in a 

cognitively demanding (visual 3-back) task. Despite divided attention, they still showed 

evidence of word learning on various implicit and explicit measures: faster target 

detection for predictable syllables, higher familiarity ratings for words from the exposure 

stream and a gradual increase over time in neural entrainment to the word frequency. 

These results, which show that passive exposure leads to word segmentation in an 
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artificial language, support the possibility that statistical learning mechanisms may 

benefit natural L2 acquisition from ambient exposure. 

1.2 Word Segmentation Facilitates Word Mapping  

The previously described studies of statistical learning (e.g., Saffran, Aslin, et al., 1996; 

Saffran et al., 1997; Saffran, Newport, et al., 1996) have shown that infants, children and 

adults are capable of segmenting words from continuous speech based on the 

distributional cues (for a review see: Isbilen & Christiansen, 2022). Building on these 

findings, Graf Estes and colleagues (2007) aimed to determine whether statistical word 

segmentation leads to a word-like representation that could potentially facilitate 

subsequent stages of language learning, such as vocabulary acquisition. To investigate 

this question, the authors used an object-label association task, or “word-mapping” task, 

developed by Stager and Werker (1997). They exposed 17-month-old English-learning 

infants to 2.5 minutes of a fluent speech stream composed of bisyllabic words, and then 

tested whether the segmented ‘high probability sequences’ were treated as candidate 

words. In a two-part experiment, words from the stream were compared to either non-

words made up of unfamiliar syllables that were not part of the initial speech stream, or 

part-words containing syllables spanning word boundaries. Infants were habituated to 

two object-label pairings and then tested on how long they looked at trials with the same 

object-label pairing versus a switched one. Longer looking times for switch trials were 

used as an indicator of learning. Results showed that infants more readily mapped words 

to objects than non-words or part-words. The reduced ability of infants to link part-words 

to novel object labels showed that it is not only familiarity to individual syllable units, but 

the predictability of sound sequences that promotes subsequent word learning. Overall, 

these results indicate that statistical segmentation does provide a privileged representation 

of candidate words that can then facilitate subsequent stages of language learning. 

 

A subsequent study aimed to extend these findings to adults, testing whether there is a 

direct link between statistical word segmentation and word learning in adult learners 

(Mirman, Magnuson, et al., 2008). In this study, adult participants were first exposed to 

an artificial language made up of bisyllabic words and then asked to complete an 
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associative learning task. This task required participants to indicate which of two images 

corresponded to an auditorily presented word via a key press response. While participants 

were initially required to guess, over time they could make use of feedback to learn the 

correct object-label pairings. Although participants were able to learn all three word 

types, they were slower to learn the associations of objects to ‘part-words’ – those 

crossing word boundaries – than to words that occurred in the stream, and even to non-

words made up of entirely different syllables. The findings of this study link statistical 

word segmentation to word learning in adults, and demonstrate that labels inconsistent 

with the statistics of the speech stream are harder to map to subsequent referents.  

 

Building on the finding that infants map ‘words’ more readily than ‘part-words’ to 

objects (Graf Estes et al., 2007), researchers tested whether a similar phenomenon is 

observed using natural language stimuli (Hay et al., 2011; Shoaib et al., 2018). In these 

studies, English learning infants were familiarized with infant-directed speech in the form 

of naturally spoken Italian sentences. These sentences contained target words that were 

bisyllabic nouns and had carefully controlled transitional probabilities by ensuring that 

that syllables from high transitional probability words (TP = 1) never occurred elsewhere 

in the corpus, and that only the first and not the second syllable from low transitional 

probability words (TP = 0.33) occurred several times outside the target word. The authors 

found an advantage for word mapping of high transitional probability words compared to 

low transitional probability words, as shown by looking-time differences. This important 

finding suggests that, through either word segmentation or sound sequence familiarity, 

exposure to natural spoken language may facilitate further aspects of word learning. 

1.3 Learning From Natural Linguistic Exposure 

While the evidence supporting the role of statistical learning in speech segmentation is 

robust (Isbilen & Christiansen, 2022), nearly all of this evidence is in the context of 

miniaturized, artificial languages.  Unlike language input in the real world, the artificial 

languages used in these studies make use of an extremely limited stimulus set, contain 

frequent word repetitions, and intentionally contain little variability in word features (i.e. 

parts of speech, number of syllables, etc.) and prosody. This raises the question as to 
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whether statistical learning can scale up to support aspects of natural language learning, 

or whether it is a phenomenon that is observed only in limited and artificial experimental 

contexts.  

 

Some evidence in support of the scalability of statistical word segmentation comes from 

an artificial language learning study in which participants successfully learned words 

from unsegmented input consisting of 1000 novel words (Frank et al., 2013). This study 

required participants to passively listen to audio recordings of the artificial language for 1 

hour daily over the course of 10 days. In addition to using a much larger language set 

than most artificial word segmentation studies (1000 words as opposed to only four or 

six), the authors also introduced additional variability in the language by varying word 

length, the frequency of words (following a Zipfian distribution), and the insertion of 

pauses as indicators of sentence boundaries, thereby mimicking some aspects of natural 

language. Participants in this study were not only able to use distributional cues to 

segment words from this more complicated language, but also were able to remember 

some of these words when tested three years later.  

 

Further evidence that statistical learning mechanisms extend beyond the context of 

limited artificial language studies comes from a study of English-learning 8-month-olds 

(Pelucchi et al., 2009). The infants were familiarized with a series of Italian sentences 

containing bisyllabic target words. When tested later using a looking time paradigm, they 

were successfully able to discriminate familiar words, as shown by longer looking times, 

from novel words that did not occur in the sentences. This demonstrated that infants are 

capable of recognizing words from fluent L2 speech. In a second experiment, syllables 

from the familiar and novel words appeared an equal number of times in the 

familiarization sentences. Results indicated that infants showed a significant preference 

for familiar words over novel words, indicating that they were tracking syllable 

sequences rather than only individual syllables in natural speech. In a final experiment, 

the researchers compared two types of familiar words, those with high transitional 

probabilities and those with low transitional probabilities. Despite both word types 

occurring the same number of times, infants still showed a preference for the high 



 

 

 8 

transitional probability sequences over low transitional probability sequences, indicating 

that they tracked transitional probability information. Taken together, these results 

suggest that statistical learning can allow infants to learn the transitional probabilities of 

syllable sequences in a natural language. 

 

There is also evidence that natural linguistic exposure alone can produce sensitivity to 

some aspects of an L2 in adult learners. In one study, English-speaking adults in New 

Zealand, who had a lifetime of ambient but non-intentional exposure to Māori, showed 

evidence of a proto-lexicon for Māori, as indexed by their ability to distinguish real 

Māori words from Māori-like non-words (Oh et al., 2020). In another test, designed to 

probe generalized phonotactic knowledge, participants were asked to provide well-

formedness ratings for a series of non-words that differed in their ‘word-like-ness’. The 

native Māori-speaking and English-speaking New Zealanders were equally accurate, and 

both significantly outperformed a group of American participants without previous 

exposure to the Māori language. Certain universal aspects of language may have allowed 

even the control group (American English speakers) to identify phonotactically illegal 

sound combinations, but these only accounted for minimal sensitivity to phonotactics. 

This study provides evidence that sensitivity to prototypical aspects of L2 word structure 

can be acquired through ambient exposure.  

 

While the English-speaking New Zealanders had a lifetime of exposure to Māori, other 

studies have shown that participants can demonstrate some word-form knowledge in as 

little as 7 minutes of exposure to a foreign language. A study by Gullberg and colleagues 

(2010) found that exposing Dutch natives to 7-14 minutes of controlled, but naturalistic 

audiovisual input in the form of a Mandarin weather report was sufficient for participants 

to develop some phonotactic knowledge of Mandarin. The authors found that participants 

were better able to recognize familiar bisyllabic words that contain high transitional 

word-internal probabilities, as compared to monosyllabic words that lack any word-

internal transitional probabilities. Word frequency also influenced learning, as 

participants showed better recognition of bisyllabic test items that occurred eight times 

than those that only occurred twice. In addition, participants were able to generalize 
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phonotactic knowledge to new items, correctly rejecting monosyllabic pseudowords that 

contained syllable structure violations. While control participants performed at chance, 

participants exposed to Mandarin showed an increasing ability to reject the illegal 

syllables as exposure increased from 7 to 14 minutes. Most importantly, the test syllable 

type (CVC: e.g., gam) that was illegal in Mandarin is acceptable in Dutch, which shows 

how quickly L2 phonotactic knowledge can be acquired “from scratch”. Another study 

by Kittleson et al. (2010) also showed that adults can acquire knowledge of L2 

phonotactics. In this study, non-Norwegian speaking participants who had recently 

moved to Norway listened to 7.2 minutes of Norwegian sentences containing bisyllabic 

test items and were then tested on their ability to discriminate Norwegian words from 

non-word foils. Across two experimental testing sessions, participants correctly rejected 

non-words, although their actual recognition of true words was at chance levels. 

Importantly, English-speaking control participants who hadn’t been exposed to 

Norwegian were not able to successfully reject non-words, ruling out contributions of 

baseline sensitivity to performance. This study provides further evidence that adults can 

develop a sensitivity to phonotactic regularities from quite brief exposure to fluent L2 

speech. 

 

In addition to acquiring phonotactic knowledge through targeted exposure to L2 input 

(Gullberg et al., 2010; Kittleson et al., 2010), naive listeners also appear to be able to 

extract phonotactic regularities from passively hearing an L2 (Alexander et al., 2023). In 

this study, English-speaking participants completed a familiarity rating task before and 

after a two-week exposure period during which they listened to Italian podcasts (L2 

group) or English podcasts (controls) in the background for an hour a day, while going 

about everyday activities. From the first to the second testing sessions, participants in the 

L2 group significantly improved their ability to discriminate Italian words and non-words 

as compared with controls. This finding indicates that passive exposure to a second 

language leads to word form knowledge of an L2. In principle, this learning may be 

driven by an increase in sensitivity to various word features, including transitional 

probabilities, phonetic patterns, and word-stress patterns.  
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1.4 Modeling Neural Changes in Language Processing 

Natural languages lack the carefully controlled transitional probabilities and word 

frequencies found in artificial languages, and thus natural language processing must be 

studied using different experimental approaches. Predictive modelling is a common 

approach that researchers have used to look at various aspects of natural language 

processing (Hamilton & Huth, 2020; Sassenhagen, 2019). Since behavioural measures of 

learning such as recall or familiarity judgement tasks often take place after learning has 

occurred, it is difficult to determine whether task performance reflects a change in the 

moment-by-moment processing of speech or on “offline” processes that rely on strategic 

processing, introspection or application of first language (L1) knowledge. Temporal 

response functions (TRFs) predict neural data from a set of time-aligned stimulus features 

(Crosse et al., 2016, 2021). By factoring in spatial components and averaging across 

many instances where they may overlap, it is possible to isolate the unique neural 

response elicited by specific stimulus features, such as phoneme onsets, or semantic 

dissimilarity. Compared to traditional ERP studies that require the use of discrete or 

isolated utterances, modeling TRFs to relatively long segments with continuous auditory 

input allows for a response to individual language features in a more ecologically valid 

context of uninterrupted speech (Crosse et al., 2021; Hamilton & Huth, 2020).  

 

Neural tracking refers to the phenomenon in which brain responses synchronize with 

particular properties of sensory input and can be applied to understand speech processing 

(Gillis et al., 2021; Zou et al., 2019). By recording EEG, we can measure the neural 

response to natural speech and then align this neural response to acoustic, lexical, sub-

lexical and other linguistic features in the input. Studies of neural tracking (Brodbeck et 

al., 2018; Di Liberto et al., 2021; Gillis et al., 2021) have shown that the neural response 

to speech can be reliably predicted based on various features, including acoustic features 

(e.g., speech envelope and acoustic onsets) and linguistic features (e.g., phoneme and 

word processing). Linguistic features, such as word- and phoneme-surprisal, have been 

shown to uniquely contribute to the recorded neural signal, beyond contributions of low-

level acoustic processing (Gillis et al., 2021).  
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Using the mTRF approach, researchers have demonstrated that language proficiency 

affects the neural response to different linguistic features. In a study of native Japanese 

speakers with varying levels of L2 proficiency in English (Ihara et al., 2021), researchers 

could reliably decode the participants’ proficiency levels based on their neural response 

to continuous English speech. As familiarity and expertise increased, more complex 

linguistic features, such as word class, became a better predictor of the neural response. 

In contrast, for beginners, or individuals with limited language ability, the basic acoustic 

features were the best predictors of the EEG response (Di Liberto et al., 2021; Pérez-

Navarro et al., 2024). This finding indicates that the complexity of speech processing, as 

assessed through neural measures, varies as a function of language experience.  

 

While some of the previously mentioned studies (Brodbeck et al., 2024; Gillis et al., 

2021) incorporate word onsets into a model of baseline acoustic processing, word onsets 

have their own unique neural representation. In a study that looked at event related brain 

potentials (ERPs) in response to continuous words in an artificial language stream, 

researchers found a greater N100 response to the onset of segmented words after training, 

but only in participants who showed greater behavioural evidence of word learning 

(Sanders et al., 2002). These results show that the N100 response can index word 

segmentation even in the absence of acoustic cues. Supporting the idea that the N100 

response can be used as a marker for word segmentation, an ERP study (Sanders & 

Neville, 2003a) found that word-initial syllables elicited a larger N100 response than 

word-medial syllables, even in sentences lacking semantics or syntactic structure. While 

the previous study was done in native speakers, the researchers also followed up with late 

L2 learners but found that they do not show this effect, indicating that their language 

processing differed from that of native speakers (Sanders & Neville, 2003b).  

 

The neural response to word onsets has also been demonstrated in fully natural 

languages. Using the mTRF approach to model MEG data, Brodbeck and colleagues 

(2018) examined the neural response to word onsets as a measure of word segmentation 

in continuous L1 speech. A strong response to word onsets was observed with a peak at 
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103 ms showing a similar response to the N100 seen in ERP studies. This early response 

is a perceptual feature that is dependent on either top down or automatic linguistic 

processing and requires knowledge of word boundaries. If statistical learning 

mechanisms can facilitate word segmentation in a novel language, we would expect 

sensitivity to word onsets to be especially sensitive to L2 experience as this response is 

an index of linguistic but not acoustic processing (Karunathilake et al., 2023; Romberg & 

Saffran, 2010; Sanders & Neville, 2003). The neural response to word onsets would 

allow us to see if early L2 learners can segment the speech stream at the perceptual level.  

 

In sum, previous research has shown that there is a neural response to the various levels 

of acoustic and language processing, and that these evolve as a function of linguistic 

proficiency (Di Liberto et al., 2021; Ihara et al., 2021). Even when exposed to a 

completely unfamiliar foreign language, individuals are able to track the acoustic features 

of the input (Brodbeck et al., 2024; Zou et al., 2019). In contrast, neural tracking of 

linguistic features such as word onsets depends on speech intelligibility  (Karunathilake 

et al., 2023), and can be used as a measure of the moment-by-moment processing of 

linguistic input. In the current study, we will use the mTRF approach as a tool to 

investigate whether passive L2 exposure can lead to an increased sensitivity to word 

boundaries, as indexed by the neural response to word onsets.  

1.5 The Present Study 

The present study investigates the impact of exposure to a natural, spoken L2 on word 

segmentation, thereby testing whether statistical learning mechanisms extend to real-

world language acquisition. We included two separate tasks – a Word Mapping task and 

a Continuous Listening task – in order to assess the development of phonotactic 

knowledge and sensitivity to word onsets through ambient exposure to spoken language. 

Participants completed the Word Mapping task and Continuous Listening task before and 

after a 3-week listening period. The listening period required them to listen to either 

Italian podcasts (L2 group) or English podcasts (Control group) in the background while 

going about routine activities for 1 hour every day. We hypothesized that even from 

https://www.zotero.org/google-docs/?bxQWtw
https://www.zotero.org/google-docs/?bxQWtw
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limited passive exposure to language stimuli, listeners would extract regularities of the 

language that aid in word segmentation.  

 

The Word Mapping task, previously used with artificial languages and limited natural 

languages (Mirman, Magnuson, et al., 2008), was adapted to our test language - Italian. 

Past studies of word mapping have shown that familiar words, once segmented, are 

mapped faster to their visual referents than non-words (Graf Estes et al., 2007; Hay et al., 

2011; Mirman, Magnuson, et al., 2008; Shoaib et al., 2018). We hypothesized that 

familiarity with L2 specific sound patterns (phonotactics) would facilitate word mapping, 

such that the association between new prototypical L2 words to novel objects would be 

facilitated. Therefore, we predicted that, post exposure, participants in the L2 group 

would more readily map words with L2 consistent phonotactics to their associated objects 

compared to L2 inconsistent words. In contrast, we would not expect a difference 

between word types for participants in the control group.   

 

The Continuous Listening task involved having participants listen to 40 minutes of Italian 

speech. The mTRF approach was used to test if passive L2 exposure facilitates speech 

segmentation, as assessed by participants’ EEG response to word onsets. We 

hypothesized that listeners would not initially be sensitive to word boundaries in 

continuous L2 speech, but that a period of L2 exposure would increase their sensitivity to 

acoustic and phonotactic cues to word boundaries, as supported through statistical 

learning. Therefore, we predicted that at baseline all participants would only track 

acoustic information and not show a significant response to word onsets. Furthermore, 

only participants in the L2 group (exposed to Italian), would develop a sensitivity to word 

onsets post-exposure, as measured by an increase in the prediction correlations for 

encoding models including this feature. 
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 Chapter 2 

2 Methods  

2.1 Participants 

Our final sample consisted of 45 self-reported monolingual English-speaking adults 

between the ages of 17-35 years (M = 21.18, SD = 2.59; 28 female). Participants were 

recruited through emails sent to staff and students associated with Western University 

and through flyers posted in the larger London community.  A total of 59 participants 

were initially recruited and completed the first testing session. However, 14 participants 

were excluded for not complying with the podcast listening protocol (n = 1), for inability 

to complete the second testing session (n = 3), or for missing more than two consecutive 

daily podcast listening surveys (n = 10); this latter group was dropped from further 

participation in the study at this point. We initially recruited 32 participants for the Italian 

listening (L2) group and 27 participants for the English listening (control) group. After 

exclusions, our final sample consisted of 27 participants in the L2 group and 18 in the 

control group. We intentionally oversampled the L2 group in order to prioritize 

examining the effect of L2 exposure on our experimental outcomes (i.e. tests involving 

the effect of session within this group). 

 

In the final sample, participants all spoke English as their primary language and reported 

no significant experience with any other language, although some (n = 6) reported taking 

basic French classes until 9th grade and others (n = 2) also reported some limited 

experience with other languages (e.g., Arabic, Dutch and Portuguese).  

2.2 Tasks and Stimuli 

2.2.1 Listening Podcasts 

A total of 21 Italian podcasts (assigned to the L2 group) and 21 English podcasts 

(assigned to the control group) were compiled for the listening portion of the study. 
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These consisted of segments from various podcast episodes concatenated together using 

the Audacity(R) software and edited to include embedded ‘secret’ words. Each file was 

approximately 1 hour long (mean length: 60.49 minutes, range: 53.6 - 66.5 minutes). The 

variability in segment length allowed for distinct story segments to conclude, creating a 

more natural narrative. Each audio file in both Italian and English listening conditions 

contained 3-5 ‘secret’ everyday English words (e.g. “yellow”, “bridge”) that were used as 

attention and compliance checks. The secret English words were preceded by a chime so 

that participants would be able to easily distinguish them from the main podcast.  

 

The Italian listening stimuli were taken from the ‘Advanced’ podcast series on the 

website News in Slow Italian, a resource for Italian language learners. These podcasts 

consisted of single speakers discussing the news and current events in a rehearsed but 

natural manner. The audio files that were used for the tasks were played at a natural 

speaking rate as confirmed by two native Italian speakers. The English listening podcasts 

were selected to match the Italian stimuli as closely as possible, and also consisted of 

single speakers speaking in a rehearsed but natural manner. The English podcasts 

contained a combination of clips from three podcast series: Times the Brief, The Lazy 

Genius, and Newsworthy. The Newsworthy and Times the Brief series presented news 

stories in a similar rehearsed but natural manner by a female and male speaker 

respectively. One difference in the content of the English podcasts was that The Lazy 

Genius podcast had slightly different subject material, and discussed ways to improve 

productivity rather than current events. A variety of podcasts were included to ensure that 

each hour-long file would have segments with both male and female voices.  

2.2.2 Word Mapping Task 

The Word Mapping task involved learning the associations between 12 words and 12 

images. There were two counterbalanced experiment versions (A, B) to enable distinct 

stimulus sets for the two experimental sessions. Each version was further subdivided into 

12 counterbalanced sub-versions. Across the counterbalanced sub-versions, the 12 target 

words were paired with 12 target images exhaustively to avoid any idiosyncratic word-

image pair effects across participants. 
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Visual Stimuli 

Each experiment version (A/B) had 12 images that were randomly selected from a larger 

stimulus set. Following previous word mapping studies (Graf Estes et al., 2007; Hay et 

al., 2011; Mirman, Magnuson, et al., 2008), no images of real objects were used. 

Nonsense objects adapted from materials developed by Urbain et al. (2013) were used in 

place of the geometric figures used in previous studies. These abstract images were 

converted to grayscale to discourage the use of idiosyncratic verbal strategies that may 

rely on colour, and to better isolate the effect of the word forms themselves on word 

mapping. See Figure 2 for example images. 

Auditory Stimuli 

Each experiment version (A/B) contained 12 target words that were evenly divided into 

three types that varied both on frequency and phonotactic probability: common words, 

rare words, and non-words. Each word type contained 4 bisyllabic nouns. Word types 

were chosen to maximize contrasts, and test whether words typical of Italian – that is, 

high in both frequency and phonotactic probability – would be mapped to objects faster 

than words that were low in both frequency and phonotactic probability. As described 

further below, common words were both frequently occurring and contained high 

phonotactic probabilities, and thus potentially would be more familiar sounding to the L2 

exposure group. The rare words occurred only once throughout the 21 podcasts, and also 

had relatively low phonotactic probabilities. The non-words had extremely low 

phonotactic probabilities and were included to test whether sound combinations that 

violate typical Italian phonotactics would inhibit associative learning. 

 

The frequency categorization and phonotactic probability (quantified as phonotactic 

score) calculations for each item were based on the Italian exposure podcasts. Transcripts 

for the podcasts were directly obtained from the source website, News in Slow Italian. 

The spaCy package, a natural language processing package in Python, was used to 

identify each word’s grammatical category (e.g., noun, verb, article) and number of 

syllables (Honnibal & Montani, 2017). This information was used to compile a list of all 

bisyllabic nouns from the transcript, along with their frequency counts. Once all the 
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bisyllabic nouns from the audio transcript were identified, they were sorted based on the 

total number of occurrences across the 21 podcasts. The 150 most frequent and 150 least 

frequent words were classified as high and low frequency respectively. High frequency 

words occurred between 7 and 252 times and low frequency words occurred only once. 

Non-words were created and the phonotactic scores of target words were determined 

based on a procedure carried out by another graduate student (see Appendix A - excerpt 

from Hoeppner 2024 thesis). Non-words were created by changing up to three phonemes 

from real words which resulted in highly improbable phoneme sequences. Phonotactic 

scores were calculated by generating a trigram model for the entire sequence of 

phonemes from the Italian exposure podcasts and then using the trained model to 

calculate log probabilities of the phonetic sequence of each test item. These scores were 

used as a measure of how prototypical the word structures were in Italian, based on the 

likelihood of their sound combinations.  

 

Audio .wav files for each word were generated with Google cloud console’s text-to-

speech software using a female Italian voice. Both real words and non-words were 

checked by two native Italian speakers to ensure that they sounded natural, and that none 

of the non-words resembled existing Italian words. In addition, we also confirmed that 

none of the test words sounded like English words or were loan words from Italian that 

would be known to non-Italian speakers (e.g., “tempo”, “grande”, “solo”; see Appendix 

B for a complete list with frequencies and phonotactic scores of words and non-words 

used). 

2.2.3 Continuous Listening Task 

Podcasts for the testing session were extracted from the same series, News in Slow 

Italian, as the Italian listening period, but consisted of different podcasts not included as 

part of the listening period. For both experiment versions (A/B), we generated 20 unique 

audio files, each approximately 2 minutes in length that were played contiguously in 

approximately 10-minute segments. Audio files within each segment were from the same 

story and thus formed a coherent narrative. The four segments alternated between male 

and female speakers over the course of the listening task. One 2-minute audio clip from a 
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segment later in the task was played prior to the first segment, presented continuously 

with the first segment. This repeated clip was introduced to help improve the signal to 

noise ratio (SNR) for our models, and as a validity measure, consistent with previous 

research (Crosse et al., 2021; Desai et al., 2021).  

 

After the first 10 participants, a word detection task was introduced in order to ensure that 

participants were adequately attending to the task. Target words were selected for each 

listening segment on the basis of occurring multiple times throughout the segment. 

Version A contained 35 total target word occurrences and Version B contained 23 target 

occurrences. Each 10-minute segment contained an average of 7.25 (range: 5 to 10) 

instances of a target word.   

2.3 Procedure 

2.3.1 General Summary 

An overview of the procedure is shown in Figure 1. Participant performance on identical 

measures was compared before and after a 3-week listening period. The pre-test and post-

test experiments used counterbalanced sets of stimuli. Between the two testing sessions, 

participants listened to either natural speech in Italian (L2 group) or English (control 

group) in the form of daily podcasts.  

 

 
Figure 1: Experiment design 
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2.3.2 Session 1 

After arriving at the lab, participants provided informed consent, and then filled out a 

brief Qualtrics survey asking about general demographic information and their language 

history while being set up for EEG. They then moved to a sound attenuated booth to 

complete three consecutive behavioural tasks while their EEG data were recorded. Each 

task had opportunities for breaks built in at regular intervals. In all experimental tasks, 

audio was played through external speakers at a comfortable volume and visual stimuli 

were presented on a 52 cm by 32 cm computer monitor placed approximately 75 cm in 

front of the participant. Responses were made through keypress of either the spacebar or 

number keys on a keyboard. EEG data were aligned with the auditory stimulus using 

trigger codes sent through the Cedrus Duo Stim tracker. Participants first completed the 

Word Rating task (which will not be discussed as a part of this thesis), followed by the 

Word Mapping task and the Continuous Listening task. After completing the three tasks, 

participants were given information and instructions about the 3-week listening period, 

and were then compensated for their participation in the first testing session.  

2.3.3 Word Mapping Task (Behavioural Task) 

The Word Mapping task, shown in Figure 2, was developed based on previous studies of 

word mapping (Graf Estes et al., 2007; Hay et al., 2011; Mirman, Magnuson, et al., 

2008). This task was designed to compare the rate of learning object-label pairings across 

different word types. Each trial started with the auditory presentation of a test word. 

While the word was played, 500 ms after the start of the trial, two images appeared on 

either side of a fixation cross on the screen, and participants were asked to press 1 for left 

or 2 for right to indicate the appropriate image for the word. Immediately after they 

selected a response, feedback appeared on screen as the word “correct” or “incorrect” for 

1 s. The task is designed such that participants must initially guess which of the images 

corresponded to the word that was played, but eventually acquire the correct associations 

through trial-and-error.  
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Prior to beginning the actual task, participants completed five practice trials, in which 

they heard English words corresponding to images of everyday objects. After each 

practice trial, they were given immediate feedback, ensuring they understood the task. 

  

Experimental trials were divided into 11 blocks, with self-paced breaks between each 

block. Each block consisted of 24 trials, in which 12 words were presented twice in a 

randomized order. Each word was presented with its corresponding target image once on 

the left and the right in every block. The foil images consisted of images corresponding to 

other target words, also presented an equal number of times in each block.  

 

 
Figure 2: Word Mapping Task 

2.3.4 Continuous Listening Task (EEG) 

Participants were then asked to listen to approximately 40 minutes of Italian podcasts. To 

encourage attentive listening, participants were given a comprehension question every 10 

minutes. They were asked: “What was spoken about in the last segment you listened to?” 

and given 3 multiple-choice options on the general topic (e.g., elections, a sporting event, 

etc.). Participants also completed a target word detection task (introduced after the first 

10 participants). A word remained on screen during listening, varying between segments, 

and participants were asked to press the spacebar whenever they thought they heard the 



 

 

 21 

target word. This task was incorporated to increase task engagement, attention to the 

auditory stimuli and general alertness and motivation.  

2.3.5 Listening Period 

Participants were assigned to either the Italian listening (L2) group or the English 

listening (control) group based on a predetermined counterbalancing order. During the 

21-day listening period, participants received daily emails with the link to the podcast 

they were meant to listen to and a survey to confirm they completed the task. The 

podcasts were embedded with ‘secret’ words that participants were asked to report in an 

online survey as a measure of protocol adherence. Each survey asked participants if they 

listened to the podcast for that day, and asked them to select up to six items, three to five 

of which were actually heard in the podcast, with the remainder serving as foil items. 

 

Participants were encouraged to listen to the podcasts for an hour while doing other 

“everyday”, nonverbal tasks (e.g. housework, commuting, exercising). They were 

instructed to listen to each day’s podcast in a single uninterrupted session at any time 

within 24 hours from receiving their daily email. They were also explicitly told that to be 

eligible for the second testing session, they would be required to listen consistently and 

correctly report the multiple ‘secret’ words in the survey.  

2.3.6 Session 2 

Session 2 was almost identical to the first testing session. Participants filled out a survey 

asking about which activities they completed while listening to podcasts during the 

exposure phase. After being capped for EEG, they completed the three remaining 

experimental tasks (Word Rating task, Word Mapping task, and Continuous Listening 

task) using the alternate counterbalanced versions to those used in session 1. Following 

completion of the final task, participants were debriefed and compensated for their 

participation.   
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2.4 Data Analysis 

2.4.1 Word Mapping Task 

For each trial, each participant’s image selection was scored as either correct or incorrect. 

Learning was steepest in the initial blocks of the experiment with mean accuracy 

reaching close to ceiling performance (88.2%) by block 3 (Figure 4). Therefore, each 

participant’s mean accuracy was averaged across the initial three blocks of trials as a 

measure of initial learning and also across all 11 blocks as a performance measure across 

the entire experiment. 

 

For both analyses (early learning and entire task), a 2x3x2 repeated-measures ANOVA 

was conducted on mean accuracy scores with group (control, L2) as a between-subjects 

factor and word type (common, rare, non-word) & session (1, 2) as within-subjects 

factors. If L2 exposure influences word mapping accuracy, we would expect to see a 

significantly stronger increase in accuracy from session 1 to session 2 in the L2 group, 

relative to the control group, as revealed by a group x session interaction. If L2 exposure 

has a selective benefit on mapping words more typical of the L2, we would also expect a 

significant interaction with word type such that all word types are learned equally at 

session 1 and by controls, but that at session 2 participants in the L2 group would have 

significantly higher accuracy for common words than for the rare words or non-words. 

Such an effect would be revealed by a significant word type x session x group interaction.  

 

For two of the participants (one from each group), the Word Mapping task program 

unexpectedly malfunctioned, resulting in them only completing the first half of the trial 

blocks during one of the testing sessions. These two participants’ data were excluded 

from the analyses of all 11 blocks, but retained in the analyses of initial learning.  
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2.4.2 Continuous Listening Task 

EEG Data Analysis 

The purpose of the EEG analysis was to test the impact of three weeks of L2 exposure on 

listeners’ neural response to natural L2 speech. Using the mTRF toolbox (Crosse et al., 

2016), neural data was mapped to two stimulus features: the acoustic envelope and word 

onsets.  

EEG Acquisition and Preprocessing 

EEG was recorded at a sampling rate of 512 Hz using a 64-channel Active-Two Biosemi 

system (Biosemi, Amsterdam), set up according to the 10/20 system. Additional 

electrodes were placed on the left and right mastoids, on the outer canthus of each eye, 

and below the left eye. Signals were recorded relative to the Common Mode Sensor 

active electrode and then re-referenced offline to the average of the left and right mastoid 

electrodes. DC offsets were maintained at ±20mV.  

 

All EEG analyses were conducted using EEGLAB (Delorme & Makeig, 2004) and the 

mTRF Toolbox (Crosse et al., 2016). Data was converted to continuous neural data 

(CND) format as per CNSP guidelines (Di Liberto et al., 2023). In order to time lock the 

stimulus features to the EEG response, trigger codes were sent through the Cedrus 

StimTracker Duo as an indicator of when each audio file started. Neural data 

corresponding to each 2-minute audio file was extracted relative to a trigger code 

indicating the start of the file. The alignment was adjusted further by ensuring that audio 

onset timings (as detected by the StimTracker) corresponded to utterance onsets timings 

relative to the beginning of each file. Each participant’s neural data underwent minimal 

preprocessing as is typical for continuous neural data analyses using the mTRF approach 

(Crosse et al., 2021). The segmented data was downsampled from 512 to 128 Hz, 

bandpass filtered from 0.5-15 Hz, and any bad channels were removed and replaced with 

a spline interpolation of all other channels. Bad channels were considered those with a 

standard deviation three times greater than that of the other channels. 



 

 

 24 

Stimulus Feature Extraction 

The auditory envelope of the podcast stimuli was extracted using the mTRFenvelope 

function from the mTRF toolbox (Crosse et al., 2016). This function computes the 

resampled temporal envelope of the audio signal using the Hilbert transform method 

providing a measure of the instantaneous signal amplitude. The root-mean-square (RMS) 

of the audio signal was computed over a window of samples and the resulting RMS 

intensity was raised to the power of 0.3 to model human hearing (Crosse et al., 2021; 

Lalor & Foxe, 2010). The envelope was downsampled to 128 Hz and then normalized 

and trimmed to match the length of the corresponding neural data for each trial.  

 

The word onsets were extracted using a 2-step process. First word onset timings were 

extracted using the BAS WebMAUS aligner set to Italian (Kisler et al., 2017), by 

aligning the individual audio transcripts (taken from the News in Slow Italian website) 

and audio files for each 2-minute trial. The BAS WebMAUS aligner is a web service that 

aligns the phonological transcript to the speech signal and outputs phonetic segmentation 

and labeling. The word onset timings were then converted to a stimulus vector with a 

sampling rate of 128 Hz consisting of zeros and ones (with one indicating the start of a 

word), corresponding to the length of the audio file.  

Removal of Bad Trials  

Before modeling the data, any 2-minute trials with large EEG artifacts (e.g., out of range 

values) that impacted all channels were removed using a simplified cross-validation 

procedure, as follows. The neural response to the envelope was modelled using the 

mTRFcrossval function (Crosse et al., 2016) with no regularization (λ = 0). Error values 

were generated for the model fit to each trial at each electrode and then averaged across 

all channels. Trials with outliers – prediction errors greater than 3 standard deviations 

away from the mean – were removed at the participant level prior to further analysis. For 

each participant, no more than 6 trials were removed (M = 1.13, SD = 1.52). 
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Fitting Encoding Models 

Temporal response functions (TRFs) were generated in the forward modeling direction, 

predicting the neural response from the stimulus. The TRF is a regularized ridge 

regression that maps stimulus features to each recording channel over a range of time 

lags. The regression weights reflect the strength of the stimulus-EEG mapping at 

individual time latencies (Di Liberto et al., 2021). In order to best assess the auditory 

response, the time window was set from -100 ms to 500 ms. The TRF was optimized 

using ridge regression to prevent overfitting of the stimulus to data-specific noise. The 

optimal lambda value (ridge parameter) was determined using a leave-one-out cross-

validation approach. The best lambda value in the range of 10-6 to 106 was then used to 

train the forward models using the mTRFtrain function and obtain model parameters and 

prediction correlations (Crosse et al., 2016).  

 

These models were generated using all trials at the participant level, producing prediction 

correlations generated for each electrode, which were then averaged together to give a 

model fit at the individual level. Results were combined across both stimulus versions 

(A/B) and all participants at the group level to give average model fit for three different 

models: (1) the acoustic envelope, (2) the word onsets and (3) a combined model 

including both the envelope and the word onsets as predictive features.  

Analyzing Models 

These three models were tested to see whether each one could predict the neural response 

significantly above chance (t-test compared to zero) across all subjects and sessions. 

Next, a repeated measures ANOVA with group (control, L2) as a between-subjects factor 

and session (1, 2) as a within-subjects factor was conducted for each of the models. These 

comparisons were made to test the impact of L2 exposure on lexical segmentation in L2 

speech. We would expect reliable tracking of the acoustic envelope by all participants 

across both sessions (model 1), but a significant session x group interaction for both the 

word onset model (2) and the combined model (3), with these models predicting the 

neural response better for participants in the L2 group post-exposure. Such an effect 

would show up in a significantly higher prediction correlation of the word onset and 
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combined models at session 2 for the L2 group as compared to session 1 and controls.  In 

order to test whether word onsets have a unique contribution to the neural representation 

beyond the acoustic envelope alone, we subtracted the mean prediction correlation of the 

envelope model (1) from the combined model (3) for each participant. If our hypothesis 

that L2 exposure facilitates word segmentation is supported, we would expect a 

significant group by session interaction such that the prediction correlations for this 

difference model (4) would only improve for the L2 group at their second testing session.  

Behavioural Data Analysis 

For each participant, performance on the four multiple-choice questions was computed as 

the proportion of questions answered correctly. Performance was then assessed using a 

repeated measures ANOVA with condition (control group, L2 group) as a between-

subjects factor and session (1, 2) as a within-subjects factor.  

 

Target detection data was available for 34 participants. Hit rate was calculated as the 

number of times the spacebar was pressed within 2 seconds of a target word divided by 

the total target occurrences. Descriptive statistics are reported for the overall hit rate and 

number of false alarms. 
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 Chapter 3 

3 Results 

3.1 Podcast Exposure Period 

The three most frequently reported activities that participants engaged in while listening 

to the podcasts were cleaning (74%), commuting (74%) and cooking/eating (65%). All 

reported activities are summarized in Appendix C. 

 

Participants in the control group reported listening to an average of 20.4 podcasts (range: 

17 - 21) out of which they correctly identified 89.9% of hidden words (range: 64% - 

99%) and incorrectly selected 1.25% of distractor items (range: 0 - 9.5%). Participants in 

the L2 group reported listening to an average of 20.7 podcasts (range: 18 - 21) out of 

which they correctly identified 88.1% of hidden words (range: 52.9% - 100%) and 

incorrectly selected 2.64% of distractor items (range: 0 - 29.4%). These results confirm 

that participants in both groups showed good compliance with the experimental protocol.  

3.2 Word Mapping task 

3.2.1 Overall Analysis 

In contrast to our hypotheses, we did not find a significant 3-way interaction between 

group, session, and word type, indicating that the two groups did not differ significantly 

in word-mapping rates between the three types of words from session 1 to session 2 

(F(2,84) = 0.044, p = .957; Figure 3). In addition, we also did not find a significant 2-way 

interaction between group and session (F(1,42) = 0.451, p = .506), indicating that any 

change in performance from session 1 to session 2 was similar between the two groups. 

We did not find any main effects of session (F(1,42) = 1.052, p = .311) or word type 

(F(1,42) = 2.139, p = .124), nor did we find a main effect of group (F(1,42) = 1.378, p = 

.247).  
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A marginally significant session x word type interaction (F(2,84) = 2.619, p = .079; 

Figure 4) was revealed, indicating  that across both groups, the word types were learned 

differently between sessions. Although only marginally significant, we ran post-hoc 

contrasts using the emmeans package in R to better understand this trend. Contrasts 

showed that there were no significant differences between the word types at session 1 (all 

p > .294). In comparison, at session 2, there was a significant difference in accuracy 

between common and rare words (t(162) = 2.602, p = .027), with common words being 

mapped more accurately. There were no significant differences between common words 

and non-words (t(162) = 0.973, p = .595) or between rare words and non-words (t(162) = 

-1.629, p = .236).   

 
Figure 3: Box plot of word mapping accuracy across the entire experiment by 

group, session and word type. 
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Figure 4: Box plot of word mapping accuracy over all blocks by word type and 

session, across both groups. 
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Figure 5: Line graph showing the mean word mapping accuracy at each block by 

group, session and word type.  

3.2.2 Early Learning Analysis 

Contrary to our hypotheses, we did not find a significant 3-way interaction between 

group, session, and word type (F(2,86) = 0.387, p = .680; Figure 6), nor did we find a 

group x session interaction (F(1,43) = 0.061, p = .805). These results indicate that both 

groups showed a similar level of change from the first to the second session across all 

word types. 

 

As in the overall analysis, we again did not find a main effect of group (F(1,43) = 0.567, 

p = .456) or word type (F(1,43) = 1.354, p = .264). However, the mean accuracy over the 

first three blocks of trials differed between sessions (Effects of Session: F(1,43) = 4.089, 

p = .049; Figure 7). Post-hoc contrasts showed that, overall, across word types and 
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groups, accuracy at session 2 (M = 79.5%, SD = 11.5%) was significantly greater than 

accuracy at session 1 (M = 76.2%, SD = 12.5%; t(134) = -2.69, p = .008).  

 

 
Figure 6: Boxplot of word mapping accuracy over the first three blocks by group, 

session and word type.  
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Figure 7: Boxplot of word mapping accuracy for the first three blocks by session, 

across all participants and word types.  

3.3 Continuous Listening Task 

3.3.1 EEG Results 

The prediction correlations for each of the tested models are shown in Figure 8. The 

corresponding TRFs and topoplots are shown in Figure 9.  

Acoustic Envelope 

The prediction correlations for the acoustic envelope model (M = 0.048, SD = 0.020) 

were significantly greater than zero (t(87) = 22.23, p < .001), indicating that this feature 

can reliably predict the neural response to continuous L2 speech across all participants 

and both sessions.  
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The acoustic envelope predicted the neural response equally well across both sessions 

(F(1,42) = 2.89, p = .096) and groups (F(1,42) = 1.55, p = .220). We did not find a 

significant group x session interaction (F(1,42) = 0.644, p = .427), indicating that 

acoustic envelope tracking did not change as a function of L2 exposure. 

Word Onsets 

The prediction correlations for the word onset model (M = 0.023, SD = 0.014) were 

significantly greater than zero (t(87) = 15.13, p < .001), indicating that this feature can 

reliably predict the neural response to continuous L2 speech in all participants and across 

both sessions.  

 

Contrary to our hypothesis, prediction correlations for the word onset model did not 

differ significantly between sessions (F(1,42) = 1.63, p = .209), nor was there a 

significant group by session interaction (F(1,42) = 0.712, p = .404). We also did not find 

any group differences (F(1,42) = 1.52, p = .224). These findings indicate that the neural 

response to word onsets did not improve after L2 exposure, and word onsets predicted the 

neural response of all participants equally well at both sessions. 

 

Based on prior literature we would expect the acoustic envelope, which is reliably tracked 

regardless of attention or linguistic proficiency, to capture more sound features, and 

therefore give higher prediction correlations than the word onset model (Gillis et al., 

2021; Zou et al., 2019). As expected, the acoustic envelope model predicted the neural 

response better than the word onset model (Mdiff = 0.0253; t(87) = 21.86, p < .001).  

Combined Model (Acoustic Envelope + Word Onsets) 

The prediction correlations for the combined model (M = 0.049, SD = 0.021) were 

significantly greater than zero (t(87) = 21.81, p < .001), which is expected given that the 

two features that went into it, the acoustic envelope and word onsets, were both tracked 

reliably by all participants across both sessions.  

 



 

 

 34 

The combined acoustic envelope and word onset model also predicted the neural 

response equally well across both sessions (F(1,42) = 2.720, p = .107) and groups 

(F(1,42) = 1.513, p = .226). We did not find any significant session by group interactions 

(F(1,42) = 0.444, p = .509).  

Difference Model (Combined - Acoustic Envelope) 

The prediction correlations of the combined model were significantly greater than the 

envelope only model (t(87) = 6.0, p < .001), indicating that across both sessions and 

groups, word onsets predicted the neural response significantly beyond any variability 

accounted for by the acoustic envelope.  

 

Given that the combined and envelope model did not show any effects of group or 

session, we did not expect the prediction correlations of the difference model to vary as a 

function of the L2 exposure. Nonetheless, we confirmed this idea by calculating the 

difference between models at the participant level and conducting a repeated measures 

ANOVA on the differences in prediction correlations. Comparing the difference between 

the combined model and acoustic envelope model showed that word onsets uniquely 

predicted the neural response equally across sessions (F(1,42) = 0.196, p = .660) and 

groups (F(1,42) = 0.208, p = .650), and did not show any significant session by group 

interactions (F(1,42) = 0.250, p = .619). This indicates that, counter to our original 

hypothesis, participants in the L2 group did not show an increased neural response to 

word onsets in the L2. 
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Figure 8: Boxplots comparing the mean prediction correlation for each model as a 

function of group and session.  
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Figure 9: TRFs and topoplots  

For each group and session, the top and bottom rows of the figure show the acoustic 

envelope model (1) and word onset model (2) respectively. All TRF weights and 

prediction correlations were averaged across participants for each session and group. 

Scalps maps plot the prediction correlations at each channel. 

3.3.2 Behavioural Results 

Participants performed reasonably well on the comprehension questions, answering an 

average of 75.2% of the 3AFC questions accurately (SD = 22.5%; chance is ~33%). An 

ANOVA comparing question accuracy found that accuracy on this measure was not 
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significantly impacted by group, (F(1,42) = 0.258, p = .614), testing session (F(1,42) = 

0.947, p = .336), nor their interaction (F(1,42) = 0.001, p = .981). 

 

For the target detection component of the Continuous Listening task, participants 

performed relatively poorly, with an overall hit rate of 33.4% (range: 0 - 81%). This 

relatively poor performance may be attributed to the difficulty of the task. False alarms, 

defined as any click that did not occur within 2 s of a target word, occurred an average of 

15.9 times (range: 0 - 53) throughout the 40-minute task.  
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 Chapter 4 

4 Discussion 

The purpose of this study was to test the extent to which statistical learning mechanisms 

extend to real-world language acquisition through a passive L2 exposure paradigm. We 

hypothesized that three weeks of passive L2 exposure would enable adult listeners to 

become sensitive to phonotactic patterns that further aid in word segmentation and 

subsequent word mapping. To investigate this question, we tested participants on two 

different tasks. The first task was the Word Mapping task, which provided a behavioural 

measure that allowed us to compare the rates at which participants could learn object-

label pairings for words that varied in frequency and phonotactic probabilities. The 

second task was the Continuous Listening task, which provided an EEG measure of the 

neural response specific to word onsets in natural L2 speech. As phonotactic probabilities 

are known to play a role in both word segmentation and word mapping ability, these two 

measures together provide an indicator of learners’ sensitivity to phonotactic structure. 

We were interested in quantifying any changes in these measures that take place over 

time as a result of passive L2 exposure. Results of the two measures are discussed in turn 

in the following sections. 

4.1 Word Mapping Task 

The Word Mapping task was designed to test whether passive exposure to an L2 

facilitates subsequent vocabulary mapping of words that are consistent with L2-specific 

phonotactic probabilities. While there are numerous important aspects of word learning, 

word mapping is an essential step in the acquisition of a new language (Wojcik et al., 

2022). Based on previous studies of word mapping (Graf Estes et al., 2007; Hay et al., 

2011; Mirman, Magnuson, et al., 2008), we expected acquisition of L2 phonotactics to 

facilitate learning object-label associations for L2 consistent words and inhibit learning 

object-label associations for L2 inconsistent words. By testing three word types – 

common words with both high frequency and high phonotactic probabilities, rare words 

with both low frequency and low phonotactic probabilities and non-words with extremely 
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low phonotactic probabilities – we expected that participants familiar with L2 word 

structures would learn common words faster than rare or non-words and thus also 

perform more accurately on the task as a whole. 

 

In contrast to our hypothesis, results from the task did not show the expected effects of 

the experimental manipulation, with participants in both the L2 and control group 

performing equally well across all word types, and showing similar improvements from 

session 1 to session 2. This indicates that three weeks of passive L2 exposure did not 

provide a measurable advantage to the L2 group for mapping L2 consistent words to 

object referents. Across all experimental blocks, there was a marginally significant 

interaction between session and word type. Participants in both the L2 group and the 

control group were more accurate at mapping common words than rare words in the 

second session. While this is an interesting numerical trend, it may not reflect a 

meaningful difference given the marginal interaction. Collecting the full sample will 

provide additional power to evaluate the robustness of this finding and potentially reveal 

a group  interaction . We did not anticipate the differential mapping of word types in our 

control group, but it is possible that the 40 minutes of L2 exposure from the first testing 

session was sufficient to induce generalizable knowledge of L2 phonotactic regularities, 

leading to an overall session 2 benefit in mapping the common words. Previous studies 

have shown that as little as 7 minutes of L2 exposure can lead to some phonotactic 

knowledge (Gullberg et al., 2010; Kittleson et al., 2010). In addition, analyses of the 

initial learning blocks found that participants in both groups demonstrated an 

improvement from session 1 to session 2 across all word types. This improvement may 

be attributed to general task practice effects, as the initial session provided an opportunity 

for participants to become more skilled at the task overall.  

 

There are a number of possible reasons why the results of the present study do not show 

conclusive evidence that L2 exposure leads to an advantage in learning L2 consistent 

object-labels. One key difference between the current task and previous experiments 

using this paradigm (Hay et al., 2011; Mirman, Magnuson, et al., 2008) is that the word 

types in the current study differ on phonotactic probabilities, rather than transitional 
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probabilities. While both measures are highly related and make similar use of the 

distributional cues in the language input, even the rare words with a low phonotactic 

score are still valid words and do not explicitly violate expectations for what a word 

should be in the same way that ‘part-words’ used in past studies do. Therefore, the 

inhibition of word mapping for words with low transitional probabilities may not extend 

to those with low phonotactic probabilities, leading to similar word mapping rates across 

word types despite L2 exposure. 

 

Another explanation is that adults may be better equipped to process and subsequently 

map words with lower phonotactics compared to infants. Research has shown that by 2 

years of age, toddlers are able to learn words with high transitional probabilities, low 

transitional probabilities and even words that violate low transitional probabilities equally 

well. They only show a disadvantage for words that violate high transitional probabilities 

(Lany et al., 2024). In addition, a study looking specifically at the impact of phonotactic 

probabilities found that they becomes less influential as infants develop; while younger 

infants are only able to learn words consistent with the phonotactics of their native 

language, older infants and infants with larger vocabularies are able to learn words with 

lower phonotactic probabilities (Gonzalez-Gomez et al., 2013). This leads to the 

possibility that the impact of phonotactics on learning rate in adult participants may be 

too subtle to be detected by the present accuracy measure.  

 

The non-words used in our study, while they had highly unlikely sound combinations for 

the Italian language, could possibly have been treated as neutral non-words for native 

English speakers. Despite being designed to have a very low phonotactic score and to 

theoretically inhibit subsequent mapping, they may have possibly been so different from 

words that they were treated neutrally. Previous word mapping studies using artificial 

languages have shown that words that violate specific expectations (part-words consisting 

of syllables spanning word boundaries) are difficult to map, but other words made up of 

entirely new sounds (syllables that did not occur in the speech stream) can be mapped 

just as easily as ‘true’ words with high transitional probabilities (Graf Estes et al., 2007; 

Karaman et al., 2024; Lany et al., 2024; Mirman, Magnuson, et al., 2008). In the present 
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study, the phoneme substitution method used to generate non-words may have introduced 

unfamiliar syllables that were no longer constrained by the same expectancy effects as 

real words with low transitional probabilities. To better understand whether the non-

words had the intended perception, we would also need to know how likely their sound 

combinations were for participants’ native language, English. Although the sound 

combinations were unlikely in our test L2 (Italian), it is well known that one's native 

language has a strong influence on language processing (Brodbeck et al., 2024). Another 

way to better understand this measure would be to compare the word mapping rates for 

the different word types among native Italian speakers. Unlike our current participants, 

Italian speakers would already be familiar with even the ‘rare’ Italian words so we would 

not expect them to differ in their ability to map common versus rare words. In contrast, 

we would expect Italian speakers to map words with inconsistent phonotactics (non-

words) less well than words that are already a part of their vocabulary. 

4.1.1 Limitations and Future Directions 

An important factor is that we have not yet met the intended sample size of 40 

participants in the L2 group and 30 participants in the control group for the project. With 

the various experiment versions and individual differences in word learning ability, the 

power provided by our current sample was inadequate to reveal significant effects of our 

key experimental manipulation. While the effects are not significant, there are numerical 

differences in how participants in the L2 group learned common versus rare words, as 

shown in Figure 3 and Figure 6. Recruiting additional participants will allow us to 

determine whether these numerical trends reflect true yet small effects or the lack of any 

reliable differences. 

 

A limitation of the current study design is that we cannot distinguish the effect of 

frequency from the effect of differences in phonotactic probability. Although the word 

types for the Word Mapping task were selected to maximize any effects of L2 exposure, 

there were no non-words with high phonotactics. Including these would have helped 

clearly show the effects of the manipulation and disentangle the effects of familiarity 

with specific words from more general learning of sound patterns. By intentionally 
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selecting words high/low in both frequency and phonotactic probability we limit our 

understanding of which factor(s) are driving changes in accuracy. The impact of both 

word frequency and phonotactic probabilities on word mapping ability could potentially 

be explored further by conducting the same study on native speakers to see how they 

process the different word types. We could also further assess the neural response to 

these different word types by deriving ERPs from the current data.  

 

Another possibility is that our task was too easy for our participants, with many 

participants reaching ceiling performance quite quickly. If the reason our measure did not 

show a specific effect of word types is that adults are too good at the Word Mapping task, 

increasing task complexity might lead to slower learning and subsequently highlight 

differences in the ‘learnability’ of specific word types.  Increasing the number of total 

words to learn or drawing distractor items from a separate stimulus set may potentially 

lead participants to take longer to reach ceiling performance.  

 

Finally, there are other analysis methods that might be more sensitive to subtle 

differences in the learning trajectory. Once our full sample is collected, data from this 

task could be further analyzed using logistic regression based growth curves, as 

developed by Mirman and colleagues (Mirman, Dixon, et al., 2008) to analyze data for 

this specific type of task.  

4.2 Continuous Listening Task 

The Continuous Listening task was conducted to test whether three weeks of passive L2 

exposure  changes participants’ neural response to natural L2 speech. We specifically 

compared how well an acoustic envelope model, a word onset model, and a combined 

(acoustic envelope + word onset) model would predict the neural response before and 

after exposure. Overall, we found that the ability of these stimulus features to predict the 

neural response was not enhanced by L2 exposure. We also did not see any significant 

changes between the two testing sessions.  
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For the acoustic envelope model, we expected all participants to successfully track the 

envelope, which reflects bottom up sensory level processing (Brodbeck et al., 2024; Di 

Liberto et al., 2021; Gillis et al., 2021). Although the spatio-temporal profiles of the TRF 

may shift depending on language proficiency, the acoustic envelope can still be reliably 

tracked by L2 listeners (Di Liberto et al., 2021; Zou et al., 2019). Results show that all 

participants were sensitive to low level acoustic features of the speech signal, as revealed 

by prediction correlations for the acoustic envelope model that were significantly greater 

than zero.  

 

The word onset model was used as a measure of lexical segmentation as per Brodbeck 

and colleagues (2018). Since word onsets often coincide with periods of no sound to 

sound, as is the case at utterance boundaries, we would expect word onsets to reliably 

predict the neural response to a certain extent, when considering word onsets as an 

independent feature (i.e., when the acoustic envelope is not included in the model). 

Therefore, it is not surprising that for all participants at both session 1 and session 2, the 

word onsets predict the neural response significantly above chance. However, in this 

word onset only model, the response to word onsets in this model may reflect acoustic 

properties that are correlated with word onsets, rather than “true” sensitivity to word 

boundaries per se.  

 

To determine the unique contribution of word onsets, we used the difference between the 

combined model and the acoustic envelope to factor out the variance accounted for by the 

acoustic envelope, thereby better capturing sensitivity to word onsets that occur in the 

absence of salient acoustic cues.  We had hypothesized that participants with no prior 

knowledge of or exposure to Italian would not be able to detect word onsets in 

continuous speech beyond the acoustic changes that would be reflected in the acoustic 

envelope. However, contrary to our expectations, even at session 1, the combined model 

performed better than the model with only the acoustic envelope. This result suggests that 

all participants showed some ‘baseline’ sensitivity to word onsets in L2 speech. We did 

not find any interactions with group or session for these difference values, indicating that 
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the contribution of word onsets beyond that of the envelope did not change significantly 

in response to exposure, in contrast to our main experimental hypothesis.  

 

If, as our results suggest, participants are able to reliably track word onsets at baseline, 

this may be due to several reasons. For one, over the course of 40 minutes of listening, 

the participants are no longer completely naïve listeners. It is possible that relatively brief 

exposure to L2 speech is sufficient to support some learning of language-specific cues to 

word boundaries, in line with previous studies that have shown sensitivity to language 

patterns after as little as 7 minutes (Gullberg et al., 2010; Kittleson et al., 2010). If the 

tracking of word onsets in session 1 was driven by L2 exposure during the earlier parts of 

the listening task, this could potentially be tested by comparing model fit for the initial 

trials to the later trials at the group level. This may reveal changes in neural tracking over 

the 40 minutes of exposure. Alternatively, there is also a possibility that even before the 

initial 40 minutes of exposure, English speakers are sensitive to word onsets in Italian. 

This may be facilitated by a combination of congruent language-specific strategies used 

for L1 segmentation (i.e. overlap between the L1 and L2) and universal language general 

cues that can be applied to L2 input (Gilbert et al., 2021). Language general cues include 

various overlapping segmentation cues such as stress patterns, utterance boundaries and 

cognates or other anchor words found in natural speech (Cunillera et al., 2010; Sahni et 

al., 2010; Sohail & Johnson, 2016).  

 

Research has shown that in order to effectively model the neural response to linguistic 

features, participants must be actively attending to it (Brodbeck et al., 2018; Crosse et al., 

2021; Vanthornhout et al., 2019). To encourage attention, we included comprehension 

questions as a behavioural measure, in which participants had to report what the segment 

was about. Participants in both groups showed above chance performance on this task, 

potentially by making use of cognates or loan words in the speech in order to determine 

the overall content. Results for the target detection task show that although participants 

did detect some words (33.4%), they missed many as well. Despite the low hit rate and 

relatively high false alarm rate for this task, the task achieved its purpose of keeping 

participants on task and giving them something to focus on.  
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4.2.1 Limitations and Future Directions 

It is possible that the current analyses may not show any changes in the word onset 

response because we averaged across all scalp channels across a relatively large time 

window. From prior studies (Brodbeck et al., 2018; Karunathilake et al., 2023), we know 

that the response to word segmentation is typically found around 100 ms post stimulus 

onset, so limiting our time lags to a smaller, a priori defined window may help more 

closely align the EEG response to word segmentation specifically. In future analyses, 

selecting a subset of electrodes (e.g., frontocentral channels that typically show the 

largest responses to auditory and speech processing) and reducing the maximum time lag 

may be a more sensitive approach to investigate potential differences as a function of our 

experimental manipulation. 

 

In the current thesis, the only measure of word segmentation that we analyzed was word 

onsets. However, there may be other lexical or sublexical features that are better able to 

capture any changes in language processing that take place during early stages of 

language acquisition. Future research could further investigate the temporal response 

function to other stimulus features such as phoneme-surprisal, word-surprisal, and 

different word classes (e.g., content words vs function words). As the previous study by 

Alexander and colleagues (2023) showed, passive L2 exposure for 2 weeks can enable 

some generalized word form knowledge, as assessed through an explicit behavioural task. 

Looking at these additional features would allow for a more holistic assessment of any 

changes at the neural level that may accompany these behavioural effects. In addition to 

assessing the impact of other stimulus features, it may also be useful to generate more 

complex models that simultaneously account for other acoustic features such as phoneme 

or syllable onsets. These would allow us to more definitively isolate any unique 

contribution of word onsets to the neural response to continuous speech.  

 

In both the Word Mapping and Continuous Listening tasks, the lack of significant group 

differences could also be attributable to the limited and unbalanced sample size. We 

found that more participants dropped out of the control group (n = 9/27; 33%) than the L2 

group (n = 5/32; 15.6%). This may be due to the additional motivation that comes with 
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listening to or learning a new language. Anecdotally, participants in the control condition 

found listening to the content-matched English podcasts to be monotonous. The 

consequence is that the participants that completed the study – listening consistently for 

the full three weeks – were likely more motivated than those that dropped out, as the 

subjective experience of listening to English podcasts was relatively unpleasant. Future 

studies could address this issue by introducing more variable podcast content. In the 

current study, by recruiting an additional 25 participants to reach our intended sample 

size of 70, we may compensate for the selective attrition of control participants and 

achieve a more representative sample across both groups.  

4.3 General Discussion and Conclusions 

Across the two tasks, we did not find any significant effects of the 3-week L2 exposure, 

but we did find indicators that participants in both groups have some sensitivity to the 

phonotactic regularities of the L2. Participants in both the control group and L2 exposure 

group were sensitive to word boundaries across both sessions, and at the second testing 

session, showed improved word mapping ability for test items with high phonotactics as 

compared to those with low phonotactics. As none of our participants received any form 

of training or explicit L2 instruction, this improvement in word mapping for common L2 

words provides some evidence that statistical learning mechanisms can extend to real 

world language acquisition.  

 

In the Word Mapping task, equal performance across word types at session 1 was 

followed by higher word mapping accuracy for common versus rare words at session 2, 

providing evidence of phonotactic knowledge acquisition in both the L2 and control 

group. This improvement could potentially be due to the ~40 minutes of L2 exposure 

presented in the first testing session during the Continuous Listening task, despite the 3-

week delay. However, as the interaction between word type and session was only 

marginally significant, it is also possible that these changes can be explained by some 

pre-existing knowledge or shared linguistic features between English and Italian. If we 

find a significant interaction between word type and session even after reaching our 

intended sample size of 70 participants, we would be able to rule out any baseline 
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phonotactic knowledge of Italian. On the Continuous Listening task, if there was rapid 

learning of phonotactic regularities and acquisition of word boundaries within the initial 

listening segments, this may have been masked by averaging across the relatively long 

duration of the audio stimuli to generate the encoding models. This might explain why 

contrary to our expectations, we found that word onsets could reliably predict the neural 

response to continuous speech even at session 1. The current pattern of findings suggests 

that the 40 minutes of L2 exposure from session 1 was sufficient for participants to 

become sensitive to some L2 phonotactic regularities, and to maintain this knowledge 

over a 3-week delay.  

 

As there is evidence of phonotactic knowledge being acquired even before the start of the 

3-week listening period, it is possible that any further changes in speech processing 

induced by L2 exposure would be undetectable by the current measures. In addition, as 

just previously mentioned, the interaction between session and word type for the word 

mapping task was only marginally significant. Therefore, a plausible alternative 

explanation is that English speakers have some sensitivity to word boundaries in Italian 

without any prior exposure. In order to test whether learning occurred during the first 

testing session, we could potentially run another control group of participants who do not 

receive any L2 exposure at session 1.  

 

Although the current investigation did not result in any conclusive evidence that passive 

language exposure facilitates word segmentation, there may still be differences in other 

aspects of word learning that are not captured by tracking word onsets. Further testing 

may show improvements in word mapping ability after exposure or changes in the 

processing of other linguistic features which would make a clearer case for the benefits of 

ambient L2 exposure. 
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 Appendix A: Excerpt from Rae Hoeppner’s Thesis 

Model Training and Calculating Phonotactic Score.  

To calculate the phonotactic probability of each word, the exposure transcripts were 

converted into their phonetic components in IPA and concatenated into a single dataset. 

Punctuation, including hyphens, was removed to treat the transcript as a continuous, 

unsegmented stream, except for paragraph breaks denoting speaker or podcast changes. 

Phonotactic models were trained on the Italian exposure podcasts using the SRI 

Language Modeling Toolkit (SRILM), a specialized toolkit for statistical language 

models (Stolcke, 2002). A trigram model with Whitten-Bell smoothing and no 

tokenization was trained on the exposure podcast dataset, containing the sequence of 

phonemes of all the exposure podcasts. This was used to then generate log probabilities 

of the phonetic sequence of each test item using the trained model. The resulting log 

probabilities of the phonetic sequence of each word were then normalized by dividing 

them by the number of phonemes in the sequence plus one, accounting for the end-of-

word symbol (Oh et al., 2020). This normalization process yielded the phonotactic score 

of each word.  A higher (less negative) score signifies a higher likelihood of the phonetic 

sequence occurring in Italian. Finally, our two frequency conditions were segregated into 

low and high phonotactic score conditions based on median split by phonotactic score. 

This resulted in a 2x2 design for items in the word category, corresponding to high and 

low frequency by high and low phonotactic scores in which each cell held a total of 60 

items (Table 1) for a total of 240 words.  

Nonword Creation.  

Non-words were generated following the non-tokenization method outlined by Oh et al. 

(2020). Nonwords were found neither within the exposure podcast, nor the actual Italian 

language. This approach involved selecting words from our real word condition and 

changing up to 3 phonemes within the sequence. All nonwords had a corresponding word 

that was chosen at random. These alterations were made to produce words with lower 

phonotactic scores than all real words, resulting in phonetic sequences with an extremely 

low probability of occurring in the Italian language, particularly in bisyllabic words. 



 

 

 59 

Text-to-Speech Procedure.  

The phonetic transcripts of each word and non-word were converted into orthographic 

transcripts using the BAS Web Services Pho2Syl service (Reichel, 2012). This service 

translates phonological transcripts into syllables, which were then concatenated to create 

the orthographic representation of each word. Subsequently, these orthographic 

representations were adjusted to ensure correct pronunciation by the text-to-speech 

program.  Audio files for each word were then generated using the Google Cloud 

Console's text-to-speech functionality. The audio files were saved in WAV format at a 

sampling rate of 48000 Hz. Finally, a phoneme-to-speech website, the IPA Reader with 

the setting “Carla [Italian]” (Linero, 2018) which uses Amazon’s Polly text-to-speech 

service, was utilized to verify the accuracy of the Cloud Console’s generated words. The 

Google Cloud Console words were auditorily checked against the IPA reader for all test 

items and the orthography of nonwords were changed to fit the phonetic representation. 

This step was necessary because Google Cloud Console software requires orthographic 

input, and thus, the phonetic transcripts needed to be converted into their corresponding 

orthographic representations. However, the generated orthographic input did not always 

suitably represent the nonword, or the software could not suitably pronounce the 

nonword, and therefore the orthography was changed to reflect the phonetic 

pronunciation. 

 

To ensure that the created non-words did not inadvertently resemble real Italian words, 

all nonword audio files were reviewed by a native Italian speaker. Within this step, the 

native Italian speaker confirmed that nonwords resembled natural Italian. Any nonword 

that was accidently a real Italian word, or sounded similar to real Italian words was 

flagged and subsequently replaced with another nonword. This step ensured the integrity 

of the nonword stimuli.  
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 Appendix B: Word Mapping Task Stimuli  

Version A Word Type Phonotactic Score Frequency 
zanne rare -1.72881 1 
ceppo rare -1.7223 1 
stuoie rare -1.79374 1 
doccia rare -1.33171 1 
anno common -0.61672 81 
festa common -0.78779 19 

centro common -0.78647 71 
maggio common -0.74985 40 
chispo non-word -3.14435 0 
gliona non-word -2.43645 0 
djagna non-word -2.39455 0 

irlo non-word -2.23535 0 
 

Version B Word Type Phonotactic Score Frequency 
ghiaccio rare -1.45243 1 
mappe rare -1.26506 1 
righe rare -1.40363 1 
targhe rare -1.27331 1 
mare common -0.70774 32 
posto common -0.72419 46 
tratti common -0.79291 7 
volta common -0.6984 91 
camlo non-word -2.36862 0 
gnevu non-word -4.18534 0 
srellio non-word -2.4507 0 
tjutse non-word -2.86532 0 
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 Appendix C: Self-reported participant activities during listening 

period 

 

Total greater than 100% because some participants reported multiple activities.  

Self-Reported Activity Percentage of Participants 

Cleaning 76.74% 

Cooking/Eating 65.12% 

Commuting 76.74% 

Consuming Media 9.30% 

Getting Ready/Showering 9.30% 

Exercising 6.98% 

Art 4.65% 
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