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Abstract 

Current prostate cancer detection methods can be costly to obtain, such as magnetic 

resonance imaging, or lack necessary sensitivity or specificity, such as a digital rectal exam. 

Ultrasound elastography, a method that can be developed to output stiffness images that are 

reconstructed using displacement data estimated through ultrasound radio frequency 

readings, offering a potential solution to these challenges. Towards developing an effective 

prostate ultrasound elastography method, an algorithm utilizing dynamic programming and 

analytic minimization estimates the radial and angular displacements from a pre- and post-

compression data set to determine the required material properties. This estimate of 

displacements is then refined through an algorithm where incompressibility, Laplacian 

smoothing, and strain compatibility are enforced. The refined displacement field was used 

to generate a strain image of the prostate. Material properties such as Young’s modulus, 

Poisson’s ratio, and shear modulus were then iteratively reconstructed using finite element 

analysis based algorithm to enhance the diagnostic value of output images. The material 

property calculation process, known for its accuracy, yields informative results to clinicians 

when diagnosing prostate malignancies. 
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Summary for Lay Audience 

Detecting prostate cancer early is one of the best ways of ensuring an individual’s survival, 

and current detection methods, such as an antigen test or MRI, may be non-conclusive or 

too costly to undergo. To avoid these issues, medical imaging techniques with an ultrasound 

system can be used to determine the material properties of human prostate tissue by 

collecting a pre- and post-compression image of the prostate. The initial estimate algorithm 

is responsible for collecting and analyzing data, while the second algorithm refines the 

estimates by enforcing material physics onto them. Enforcing these known properties in 

this process allows researchers to capture accurate and quantifiable stiffness measurements 

of the human prostate in real-time. This allows for rapid analysis of the prostate tissue for 

multiple regions of the prostate. Simulation and tissue-mimicking materials can be used as 

data sources to analyze the algorithms used to compute the stiffness and measure a ground 

truth. The simulated data can be obtained and modified using MATLAB software packages 

to fit the needs of the research goal and provide data sets that are both accurate and 

moderately realistic. 

Tissue-mimicking material, created using gelatin and foam, provides a cheap alternative to 

human tissue. This material can be scanned with an ultrasound system to simulate real 

clinical cases, where the collected data may not be of good quality or contain image regions 

where artifacts exist. In addition, the calculated stiffness can be used to further enhance the 

imaging capabilities of ultrasound data by additional algorithm processes, allowing for 

additional information to be learned from the output images. Overall, this thesis outlines 

the steps taken to develop, quantify, and evaluate the effectiveness of three different 

algorithms in processing ultrasound data to quantify the material properties better. This will 

provide clinicians with a tool that is specific and easily accessible when screening for 

prostate cancer, offering a promising avenue for future research and application.  
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 Chapter 1 

1 Introduction 

Prostate cancer is a prevalent and devastating disease that affects a large portion of the 

population. Current detection methods, including imaging, tissue sampling, and blood 

measurements, are both advantageous and flawed. Increasing the accuracy of minimally 

invasive detection methods may increase the rate of early detection, one of leading 

contributors to beating malignancy. Tissue mechanics of prostate cancer lend Ultrasound 

(US) elastography being a viable and leading candidate for detection. An accurate 

reconstruction of the prostate and its stiffness is developed by leveraging image processing 

and refinement through imposing tissue mechanics. Studies on in silico data and phantom 

studies are used to validate proposed algorithms, as the data can both be validated and tested 

against known ground truths. 

1.1 Prostate Cancer and Detection Methods 

The Canadian Cancer Society estimates the occurrence of prostate cancer among Canadian 

men in 2024 to be 27,900, accounting for 22% of new cancer cases and 5,000 fatalities, 

approximately 11% of all cancer-related deaths in men for the year [1]. The prostate has 

three distinct zones that comprise its tissue anatomy, with two zones, the peripheral and 

transition zones, making up 95% of all cancer cases and the Peripheral zone making up 

70% of all cases [2]. 

The Mayo Clinic reports that several factors increase the risk of developing prostate cancer, 

including advanced age, obesity, and having a family history of prostate cancer. While most 

prostate cancers are slow-growing and do not metastasize quickly, some forms of prostate 

cancer will develop and spread rapidly to nearby organs such as the bladder or colon. 

Additionally, prostate cancer can cause incontinence and erectile dysfunction. Early cancer 

detection dramatically increases men’s chance of survival [3]. Currently, several methods 

are available to clinicians to detect abnormal growths within the prostate tissue. One of the 

most common methods employed to screen individuals for prostate tumors is the Digital 

Rectal Exam (DRE). During the DRE exam, a healthcare provider inserts a lubricated, 
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gloved finger into the patient's rectum to feel abnormalities or changes in the tissues in that 

area. The DRE is low-cost and relatively fast, taking only minutes to complete [4]. 

However, the DRE suffers from specificity and often leads to false negatives [5].  

To combat the lack of specificity related to the DRE, a second test is often conducted, a 

prostate-specific antigen (PSA) test. Blood is taken and analyzed to determine the quantity 

of PSA. An average value of PSA is 4.0 nanograms of PSA per milliliter of blood or lower, 

and levels above this threshold may be indicative of prostate issues, such as cancer or 

abnormal masses [6]. However, a PSA test is not definitive proof of cancer being present 

in the prostate. Blood PSA levels and prostate gland size increase with age [5]. Vigorous 

exercise, such as biking, can lead to elevated PSA levels and conversely, taking medication 

for benign prostate hyperplasia can result in lowered PSA [5].   

If the DRE and PSA tests conclude that there is an enlarged region of the prostate or that 

the PSA levels are higher than average, a biopsy is scheduled to confirm the presence of 

cancerous tissue in the body. A guided needle is inserted into the prostate either through the 

wall of the rectum or through an incision made in the perineum [7]. A biopsy is a definitive 

way of determining if the abnormal mass detected is cancerous and cells can be analyzed 

directly after collection. This method is invasive, can result in bleeding at the collection 

site and, in rare cases, infection [7].  

In contrast to PSA and biopsy, less invasive detection methods are available. Such methods 

focus on imaging the tissue in high quality and can allow for quick, non-invasive diagnosis 

of any present abnormalities. Magnetic Resonance Imaging (MRI) techniques offer a high-

resolution, volumetric image. MRI imaging uses powerful magnetic fields to align protons 

in the body. Radio Frequency (RF) signals pull Protons out of an equilibrium state when 

passed through the body. The speed of realignment with the magnetic field is detected when 

the RF signal is turned off. The time and speed of realignment shows differences in tissues 

including healthy and cancerous tissues. MRI is considered safe and effective in imaging 

the human body, but the imaging modality is time-consuming, taking up to 1 hour for a 

single prostate scan [8]. Additionally, the use of potent magnets, disallows the use of MRI 

for patients with metal implants, pacemakers, or other medical devices containing magnetic 

components as such use would harm the implants, patient, and MR device [9].   
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Finally, ultrasound systems can diagnose prostate cancer using a Trans Rectal Ultrasound 

(TRUS) scan.  The TRUS probe emits a pressure wave into the tissue at high frequencies. 

The signal travels through tissue and reflects to the transducer when the tissue medium 

changes. This reflection is measured and processed to create an image of the tissue. 

Combining the raw information from the ultrasound system, tissue mechanics, and image 

processing, the received data is transformed into accurate tissue property images which can 

be used to localize cancer within the tissue. Ultrasound has a rapid acquisition time, 

allowing for real-time imaging; and dramatically improves viewing tissues or organs that 

change rapidly or repeatedly. TRUS scans are about as invasive as the DRE and are much 

faster than an MRI scan time. [10]. 

1.2 Elastography 

The fundamentals of Elastography consist of measuring deformation, which is induced by 

mechanical stimuli, within the tissue to quantify the change in stiffness that may be present 

in the tissue. The stiffening of tissue is often the result of malignancies or the presence of 

cancerous cells. A distortion must be made to the tissue, such as pressing the tissue with a 

transducer or external object, using acoustic radiation force, or using internal changes, such 

as arteries expanding due to blood pressure, to quantify the stiffness of the tissue [11]. 

Governing equations of materials can be applied to determine the tissue’s strains, stresses, 

or displacements. Hooke’s law, shown in Equation 1.1, requires that the strain and stresses 

in the tissue be known to calculate the stiffness of the tissue effectively.  Hooke’s law 

assumes that the material is under linear elastic loading and does not exceed the yielding 

point. Using Hooke’s law to directly calculate the stiffness in the tissue would be 

advantageous, however, determining the stresses in a live tissue sample is not currently 

possible [12]. 

where 𝜎 and 𝜀 are the stress and strain while E is the tissue Young’s modulus. Several 

iterative-based methods can be used to estimate Young’s modulus. One method involves 

using calculated displacements, strains, and an initial guess of Young’s modulus to 

converge to a solution that satisfies the known strains in the tissue [13] [14]. 

𝜎 = 𝐸𝜀 (1.1) 
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Shear Wave Elastography (SWE) is a method of elastography in which an initial image of 

the tissue is taken. Then, a high-intensity shear wave is transmitted through the tissue and 

tracked by lower-intensity waves. The velocity of the shear wave can be directly related to 

the material stiffness of the tissue [15]. Figure 1 shows a graphic of how the shear wave 

can be used to track the stiffness of the tissue it is propagated in. 

 

Figure 1: SWE wave tracking schema showing the propigation of the shear wave and the displacement tracking. The 

Shear modulus is then calculated according to the calculated speed of the shear wave. 

The Shear wave is generated using acoustic radiation forces generated within the tissue. 

The tissue is then displaced, and the echo reactions are measured. Using the displacements, 

the shear modulus (G) of the tissue, using the tissue density, ρ, and shear wave speed (Cs) 

in the tissue, as seen in Equation 1.2 [16].  

SWE has distinct advantages in imaging organ tissue, such as being highly repeatable, 

directly assessing the tissue’s elastic properties, and collecting data without compressing 

the tissue [15]. However, several issues exist with using SWE in diagnostic scans. Image 

artifacts can lead to over or under-estimating tissue stiffness. Shear waves produced are 

also susceptible to waves generated within the body by pulsating vessels near the imaged 

𝐺 =  𝜌𝐶𝑠
2 (1.2) 
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tissue. If calculated using linear assumptions, tissue stiffness non-linearity can lead to 

erroneous results. And finally, the patient moving during the data collection can produce 

motion artifacts [17].  

Unlike SWE, Quasi-Static Elastography offers a unique approach. It involves a meticulous 

manual deformation of the tissue or organ, either by the transducer or an external object, 

capturing a pre-compression and post-compression image. These images are then 

meticulously processed to determine the tissue's displacements, strains, and stiffness. This 

method, despite requiring additional processing of the image data, allows for the precise 

determination of displacements in two- and three-dimensional directions [18]. However, a 

limitation of quasi-static elastography is its ability to detect abnormalities only in the 

vicinity where the deformation is introduced [12]. Yet, for most cases, this limitation is not 

a concern, as cancers primarily occur in the Peripheral Zone. The Peripheral Zone is the 

volume of prostate tissue close to the contact point between the US transducer and the 

prostate allowing for minimal amounts of tissue to be between the prostate and transducer, 

allowing for reduced depth in scan being used which creates US images that are high 

resolution in comparison to US images generated using deeper scans. Another item 

hindering the use of Quasi-Static Elastography, are challenges in calculating the results, as 

the tissue's boundary conditions must be known to solve for the stresses or strains in the 

tissue [18]. 

To overcome the challenge of unknown boundary conditions, the known properties of 

materials while undergoing deformation are utilized. The Boussinesq equation, allows for 

the assumption that the displacement and stresses tend towards zero in a semi-infinite 

medium under a point load [19]. This assumption holds true when the material is semi-

infinite, homogeneous, and isotropic, the stress-strain relationship is linear, and a point load 

is applied. Applying this theory to tissue mechanics and considering the indentation of the 

tissue as a point load, if the displacement at the contact point is small enough, the organ 

and tissue can be considered semi-infinite. As the displacement and strains will be small, 

the stress-strain relationship of the tissue remains linear. As shown in Figure 2, the point 

load P is applied to the semi-infinite medium, causing displacement and stress. The vertical 
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stress at point O can be estimated using Equation 1.3, and as the value of r approaches the 

fixed points, the vertical stress tends towards 0.   

 

Figure 2: Measuring vertical stress using Boussinesq assumption where the semi-infinite hemi-sphere is indented and 

the resulting stress calculated based on the location of the point of interest. This result can be used to enforce boundary 

conditions for the system. 

This equation can be utilized to estimate the out-of-plane strain which is often assumed to 

be negligible to simplify the tissue volume into a 2D model. With the vertical stress being 

calculated by Equation 1.3, 

where P is the pressure, z, is the vertical distance away from the pressure, r is the 

hypotenuse distance, and 𝜎𝑧 the vertical direction stress. The boundary conditions can now 

be enforced on the calculations, Quasi-Static Elastography is a viable, and powerful tool 

that can be used to calculate stiffness in data collected from prostate tissue. 

Another important aspect of elastography is the concept of strain compatibility, which states 

that when a material is subject to a single continuous displacement, there exist conditions 

which guarantee the field to be continuous [20]. In addition, there exists a relationship 

𝜎𝑧 =
3𝑃

2𝜋𝑧2

1

[1 + (𝑟 𝑧)2]
5
2⁄
 (1.3) 
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between strains in perpendicular directions, and can be related through Equation 1.4, the 

2D compatibility equation, 

where 𝜀𝑥𝑥 is the strain in the x direction, 𝜀𝑦𝑦 is the strain in the y direction, and 𝜀𝑥𝑦 is the 

shear strain. This equation enforces that the sum of the second partial derivative of the 

strains must be equal to twice the shear strains partial derivative, which can be 

geometrically interpreted with Figure 3. 

 

Figure 3: Illustration of how compatibility is enforced through material properties. The Left most image shows the 

original undeformed image. The upper right shows a compatible deformation where the loading results in a continuous 

deformation. The bottom right shows a deformation that is not compatible and results in a non-continuous deformation. 

Figure 3 shows an undeformed triangle on the left and two possibilities after being 

deformed on the right. If it is assumed that the material does not experience a force resulting 

in any plastic deformation, then there should be no change in the connections between the 

vertices. The deformation maintains all initially connected points, making the top deformed 

image compatible. In contrast, the incompatible deformation shows that a self-intersection 

has occurred and would no longer satisfy the compatibility equation. This compatibility can 

be extended to human prostate tissues as a TRUS probe deforms them. The measured 

displacements and strains should adhere to the compatibility equation and, when enforced 

∂2𝜀𝑥𝑥

∂𝑦2
+

∂2𝜀𝑦𝑦

∂x2
= 2

∂2𝜀𝑥𝑦

∂x ∂y
 (1.4) 
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on the collected data, can be used to calculate a refined strain field and better stiffness 

calculation of the internal tissues. 

Finally, it is essential to understand the characterize the ability of tissue to change volume 

while undergoing deformation. This is defined by the material compressibility property 

which is characterized by the Poisson’s ratio (υ). Under 1D loading, it is defined using 

Equation 1.5,  

where 𝜀𝑡𝑟𝑎𝑛𝑠 is the transverse strain, and 𝜀𝑎𝑥𝑖𝑎𝑙 is the axial strain when a material is 

stretched or compressed along only one axis. The range of values for Poisson’s ratio for 

most materials are between 0.0 and 0.50, where 0.0 is perfectly compressible, while 0.5 

represents a completely incompressible material. As most organs are composed of water, 

they tend to have values of 𝜈 close to 0.50, the Poisson’s ratio of water [21]. Additionally, 

Poisson’s Ratio, 𝜈, can be calculated for compressibility in specific directions in 2D, 

Equations 1.6 and 1.7, which are obtained from the 2D Hooke’s law, are used to calculate 

the value of 𝜈 along each axis using the stresses, σ, strains, ε, and Stiffness, E. 

Both equations 1.6 and 1.7 require the material’s Young’s Modulus, internal stresses, and 

strains to be known to calculate the Poisson’s Ratio. As we assume that the tissue is 

isotropic υx and υy, the average value can be considered as a more accurate estimate. To 

calculate the stresses and Young’s Modulus for prostate tissue, a Finite Element Analysis 

(FEA) must be conducted to converge to an acceptable solution for both the stress and 

stiffness of the material. The specifics of this iterative approach will be discussed in further 

detail in Chapter 4. 

𝜈 = −
𝜀𝑡𝑟𝑎𝑛𝑠

𝜀𝑎𝑥𝑖𝑎𝑙
 (1.5) 

𝜈𝑥 =  
𝜎𝑦 − 𝜀𝑦 ∗ 𝐸

𝜎𝑥
 

(1.6) 

𝜈𝑦 =  
𝜎𝑥 − 𝜀𝑥 ∗ 𝐸

𝑦
 

(1.7) 
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1.3 Ultrasound Imaging 

The first recorded use of US imaging was in 1956 by Ian Donald and Tom Brown, who 

used emerging technology to measure the diameter of a human fetus’s head. Since then, 

many advancements in US technology have been developed, including real-time processing 

and visualization, strain mapping, and 3D ultrasound capabilities. These advancements 

have made diagnostic imaging in US a reliable and common practice in the medical field. 

1.3.1 Governing Principles of Ultrasound Operation 

Piezoelectric crystals generate ultrasound waves by expanding and contracting when an 

electric current is applied. These waves create a pressure wave in tissue samples, allowing 

the ultrasonic wave to propagate through the tissue [22]. These generated waves propagate 

through the tissues and can interact through reflection and attenuation.  

Reflection, as the term suggests, is the process where a part of the propagating wave 

bounces back off tissue or bone. This can occur in two ways: specular reflection, when the 

wave reflects due to a large surface interaction; and scattering reflection, when the wave 

reflects due to smaller surface interactions [23]. While the transducer will receive some of 

the reflected pressure waves, the rest will transmit through the material. This interaction is 

significantly amplified when the tissue medium changes, such as a change in tissue type, 

for instance, transitioning from muscle to fat. The acoustic impedance, which is measured 

in Rayls, can be determined by Equation 1.8, 

where Z is the acoustic impedance, ρ is the density of the material, c is the speed of sound 

in the material, and k is the compressibility of the material. Additionally, the reflection and 

transmission of the wave can be characterized by the reflection and transmission 

coefficients, which can be obtained through Equations 1.9 and 1.10, respectively. 

𝑍 =  𝜌𝑐 =  √𝜌 𝑘⁄  (1.8) 

𝑅 =  
𝑃𝑟

𝑃𝑖
=

𝑍2 − 𝑍1

𝑍2 + 𝑍1
 

(1.9) 

𝑇 =  
𝑃𝑡

𝑃𝑖
=

2𝑍2

𝑍2 + 𝑍1
= 1 + 𝑅 

(1.10) 



10 

 

 

where 𝑃𝑟 is the reflected pressure wave, 𝑃𝑖 is the incident wave pressure, 𝑃𝑡 is the 

transmitted pressure wave, and 𝑍1, 𝑍2 represent the acoustic impedance in the first and 

second mediums. A selection of relevant biological materials and their acoustic impedance 

are provided in Table 1. 

Table 1: Biological Materials and their Acoustic Impedance [23]. 

The acoustic impedance of soft tissues ranges from 1.34 to 1.71, while bone in the skull 

has an impedance of 7.8. As US systems measure the reflected pressure waves, the 

measured reflections can show areas where tissue type changes within the body, and as the 

acoustic impedance is dependent on the tissue density and compressibility, the collected 

reflections are based in material properties. 

In contrast to the reflection of the acoustic wave, attenuation is the reduction of the wave 

intensity as it travels through the tissue [23]. The intensity can be calculated using Equation 

1.11 and transformed into a logarithmic scale to show the data in a linearly scaled grid using 

Equation 1.12.  

The intensity, I, is dependent on the applied pressure P, the material density ρ and the speed 

of sound in the material c and has units 𝑚𝑊 𝑐𝑚2⁄ . The log transform requires a known 

reference intensity, 𝐼𝑟𝑒𝑓, for the log transform basis. In practice this value is 10−12𝑊/𝑚2, 

which is the threshold of human hearing [23]. As the wave propagates through a material, 

its intensity diminishes, a phenomenon that can be described as a materials attenuation 

coefficient, α. For soft tissues the attenuation coefficient is of the range 0.5 to 1 

𝑑𝐵 (𝑐𝑚 × 𝑀𝐻𝑧)⁄ . With a material’s attenuation coefficient, the intensity can be calculated 

 Material Z[MRayl]  

 Air 0.0004  

 Fat 1.34  

 Water 1.48  

 Liver 1.65  

𝐼 = 𝑃2 (2𝜌𝑐)⁄  (1.11) 

𝐼𝑑𝐵 = 10 log10(𝐼 𝐼𝑟𝑒𝑓)⁄  (1.12) 
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for any given depth using Equation 1.13, or if using the log transformed intensity Equation 

1.14. 

The intensity of the acoustic wave is dependent on the initial wave intensity 𝐼0, the 

frequency in MHz, 𝑓, and the depth the wave has traveled to in centimeters, 𝑟. The wave 

intensity can also be used to find the intensity of the reflected and transmitted waves in a 

similar way to the pressure wave reflection or transmission. Equation 1.15 can be used to 

calculate the reflection intensity, 𝑅𝐼, and Equation 1.16 can be used to calculate the 

transmitted intensity, 𝑇𝐼 [23], 

where, 𝑃 is the pressure, 𝜌, the density of the medium of transmission, c is the speed of 

sound in the medium, and Z, the medium’s acoustic impedance. From Equations 1.15 and 

1.16, it can be demonstrated that the reflected and transmitted intensity can be calculated 

from the pressure, material density, and medium speed of sound, or through knowing the 

acoustic impedance of each material. As the signal travels deeper into the tissue, more of 

the returning wave intensity is lost. To overcome this issue a time gain compensation maybe 

applied to increase the signal intensity based on the elapsed travel time of the signal [23]. 

Combining information from both the wave reflection and intensity, it is possible to gain 

information about the tissue’s material properties. 

1.3.2 Beam Forming and Acquisition 

Once the signal is received from the tissue reflections, it must be processed to maximize 

data quality. One such way of achieving this is by using envelope detection, which takes 

the original RF signal, rectifies the data, and applies a low-pass filter to smooth the data. 

This has the advantage of being low cost and creates an improved image. However, using 

this approach removes many data features that may be beneficial in determining tissue 

𝐼(𝑟) =  𝐼0exp (−𝛼𝑓 𝑟 4.343⁄ ) (1.13) 

𝐼𝑑𝐵(𝑟) =  −𝛼𝑓𝑟 (1.14) 

𝑅𝐼 =
𝐼𝑟

𝐼𝑖
=

𝑃𝑟
2 (2𝜌1𝑐1)⁄

𝑃𝑖
2 (2𝜌1𝑐1)⁄

= (
𝑃𝑟

𝑃𝑖
)

2

= (
𝑍2 − 𝑍1

𝑍2 + 𝑍1
)

2

 
(1.15) 

𝑇𝐼 =
𝐼𝑡

𝐼𝑖
=

𝑃𝑡
2 (2𝜌2𝑐2)⁄

𝑃𝑖
2 (2𝜌1𝑐1)⁄

=
𝑍1

𝑍2
(

𝑃𝑡

𝑃𝑖
)

2

=
4𝑍1𝑍2

(𝑍1 + 𝑍2)2
= 1 − 𝑅𝐼 

(1.16) 
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mechanics. It's worth noting that modern methods have moved beyond this technique, 

opting to transform the raw RF data into a usable form through advanced digital 

computational methods. These methods represent a significant advancement in medical 

imaging, providing a more comprehensive understanding of tissue mechanics. Another 

concept that enhances data generation is beamforming. This technique allows for several 

modifications to the way a US beam is generated, thereby improving the quality of the data. 

Each alteration made to the beam is designed to enhance one or more image metrics, as 

detailed in Table 2. 

Table 2: Image Metrics for US Imaging and a Brief Description of Each 

Altering how the device forms and calculates the US beam can impact each of these metrics. 

Some critical techniques for altering the beam are linear and phased array beam forming, 

multi-line acquisition (MLA) and multi-line transmission (MLT) beam forming, plane and 

diverging wave beam forming, and synthetic aperture beamforming [24]. 

Linear array beam forming utilizes a subset of the transducer elements for transmitting and 

receiving signals. The A-line signal is shifted across the image utilizing the entire array and 

different phased signals to focus the beam at a region or point in the material volume. This 

ability to focus allows the emission of higher-pressure and smaller beams. These attributes 

contribute to improved SNR, resolution, and penetration depth but impede the field of view 

as more beams are required to image a region, affecting the temporal resolution. Phased 

array imaging also generates images line by line but uses all elements simultaneously with 

varying phases to steer the beam in the desired direction [24]. One downside to this method 

is that increasing the pitch reduces the array aperture, leaving less room for elements on the 

Image Metric Description 

Spatial Resolution Smallest spatial difference two scatterers that can be 

distinguished. 

Temporal Resolution Time interval between two consecutive frames (Frame Rate). 

Contrast Capability to visually distinguish between 2 different objects. 

Penetration Depth Increase to depth while maintaining adequate SNR value. 

Array Aperture Physical size of the transducer plane. 

Field of View Size of area represented by the captured objects. 
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transducer. Lastly, an apodization mask can be used with these two methods. Apodization 

allows for amplitude weighting of the average velocity across the transducer aperture. 

Apodization can lessen the impact of the low-intensity beams in the scan, known commonly 

as side lobes, and their associated artifacts [25]. 

Multi-line Acquisition is possible as it can be transmitted wide into the tissue. Several 

receiver elements can be used simultaneously creating a narrow reception beam and several 

scan lines. This method improves the frame rate by acquiring more simultaneous lines and 

requiring fewer transmit and receive actions than single scan line methods. Additionally, 

averaging consecutive images acquired during the higher frame rate improves the SNR and 

contrast. This method though reduces the lateral spatial resolution [24]. 

In the two previous methods, the transmission and reception alterations focused on 

increasing some imaging metrics while trading off for degradation in others. For in-plane 

and diverging wave beam forming, the primary focus is maximizing the frame rate which 

is necessary for imaging high-frequency changes in tissue displacement or strains, as in 

SWE. Plane and diverging wave beam forming seek to reduce the required transmission 

and reception events to the bare minimum to create an image of the tissue. The idea is to 

create a single homogeneous transmission event that the elements receive and process using 

different phase sets, producing multiple lines simultaneously. This approach cannot achieve 

lower SNR values and suffers from low penetration depth due to the generated decrease in 

overall pressure. Plane beam forming also has poor contrast and spatial resolution [24]. 

Methods exist to improve the SNR, contrast, spatial resolution, and penetration depth such 

as image compounding, which applies an angle to the beam, effectively steering it toward 

the desired region [26]. Improving the metrics degraded under the high temporal resolution 

will heavily impact the method's frame rate, thereby preventing the viewing of shear wave 

effects. The most considerable difference in methodology for plane and diverging wave 

beam forming lies in the beam's focus: where plane beam forming requires a focus; the 

diverging wave does not. Synthetic aperture beamforming utilizes one element excitation 

which is listened for by all remaining elements. The distance between transmitting and 

receptive elements creates a phase set. This method combines the received signals over the 

entire transmission array to create the image. These images suffer from penetration depth 
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reduction and worsening SNR values. Using sub-aperture transmission can improve these 

metrics by segmenting the transducer into groups and utilizing them. However, this 

approach reduces spatial resolution because the method's effectiveness depends on 

receiving signals from all receiver elements and decreasing the array aperture decreases 

spatial resolution [27]. Figure 4 shows a visual representation of the different kinds of 

beamforming. 

 

Figure 4: A Visual representation of the major beamforming techniques. The left most image shows the multi-line 

acquisition, and multi-line transmission. While the second from the right shows a plane wave or diverging wave beam 

forming. Finally, the right most image shows the synthetic aperture beamforming method. 

1.4 Image Processing and Optimization 

All US data collection requires some amount of post processing to transform the raw radio 

frequency data into desirable forms such as strain maps or stiffness reconstructions. To 

accomplish this, image and data processing techniques are used to transform the data. 

 One method of data processing is dynamic programming which is the process of taking a 

complex problem or task and breaking the problem into simpler sub-problems [28]. This 

method of computation in tasks has several advantages when dealing with complex or 

large-scale solutions, that are common in image processing and data set calculations. Figure 

5 shows an example of dynamic programming. 
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Figure 5:Dynamic Programming breaking a complex problem into sub problems. The smallest problems located at the 

bottom of the image are propagated upwards to solve the larger problems above. The DP approach stores previous 

solutions and can increase the speed of calculation by using the stored solution from the smaller problems. 

In Figure 5, we solve the problem represented by the uppermost block labeled F (7), then 

create two smaller sub-problems, continuing this process until reaching the smallest 

possible sub-problems. In this case, F (0), F (1), and F (2) are the smallest possible sub-

problems in the set and appear at the bottom of the image. When the smallest known 

problems are solved, the solution is propagated upwards in the algorithm to compute more 

significant unknown problems. In this example, F (5) and F (6) rely on more minor 

problems already solved. Instead of recomputing the answer for F (0) and F (2) to solve 

these problems, the known answer is propagated, thereby reducing the need for 

recalculations in previously solved problems [28]. 

Analytical minimization minimizes a known cost function to allow the system's solution to 

be known. Several optimization methods, such as gradient descent involve using an 

iterative algorithm to calculate the gradient over a dataset domain and determine the 

minimum value of a function [29]. This can be visualized in Figure 6. 



16 

 

 

 

Figure 6: Gradient Descent Analytic Minimization on a parabolic function. The calculated gradient is used to update 

the next iteration of the cost function. This calculated change, the error and present value are used to determine if a 

minimum cost has been achieved. 

In Figure 6 a known function is to be minimized using gradient descent minimization. This 

method requires an initial guess as to where the minimum might be found, the number of 

iterations to compute, and the size in step to take after each iteration. At each new iteration 

location, the gradient of the function is calculated to determine the change in cost, thus 

allowing the algorithm to determine if the current step direction is decreasing. This method, 

while simple to implement, suffers from the vanishing gradient problem, which can be 

overcome using an adaptive optimizer to help prevent the algorithm from using small or 

non-existent gradient values.  

Additionally, computations in image processing can be efficiently performed using 

convolution. Convolution is a mathematical function that takes as an input, two functions 

and computes a third function which is based in the values of the two original functions 

and can be defined by Equation 1.17,   

𝑓 ∗ 𝑔 = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

 (1.17) 
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where 𝑓 , the input function and 𝑔, the weighting function being convolved, and t is the 

shifting amount and is not necessarily a time domain shift [30]. This can be extended into 

the image processing realm using discrete convolution using Equation 1.18, 

where the image is m x n data points. In this case the weighting function 𝑖𝑛 is commonly 

referred to as the convolution kernel or filter. Kernels are specially designed matrices that 

weigh the base function in such a way to impose a required output. For instance, a blur 

filter may be used on a dataset to help smooth an image an example of this can be seen in 

Figure 7. 

 

Figure 7: An example of image convolution, where the input image was smoothed used a convolutional filter. The 

gaussian blur filter is used implemented as a 3x3 matrix of values. During the numerical convolution this results in the 

right blurred image.  

Finally, it is important to talk about known metrics used to judge the similarities between 

two images. As when developing algorithms for ultrasound elastography (USE) ground 

truth images are often used to judge the accuracy of the output from the algorithm [31]. 

Common metrics are the mean square error (MSE) and image correlation. MSE between 

images compares pixel values of two images, to determine how different they are, thus 

producing a metric that compares a computed value to a known true value as can be seen 

in Equation 1.19 [32], 

(𝑓 ∗ 𝑔)[𝑖, 𝑗] =  ∑ ∑ 𝑓[𝑖 − 𝑘, 𝑗 − 𝑙]𝑔[𝑘, 𝑙]

𝑛

𝑙=0

𝑚

𝑘=0

 
(1.18) 
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where n, is the total number of points, 𝑌𝑖 is the true value and �̂�𝑖 is the predicted value. This 

metric is useful when a true value for a data set is known, and a predictive algorithm has 

been used to estimate the values.  

In addition to the MSE, image correlation, also known as discrete cross correlation, can be 

used to determine if two images are similar, even if the images are rotated, translated or 

warped. This is especially useful for USE datasets as often captured image datasets are not 

perfectly in line with known ground truths [33]. Image correlation was developed initially 

to compute the correlation score using Equation 1.20, 

where 𝑓(𝑚, 𝑛) is the pixel intensity at the point (𝑚, 𝑛) in the original image, and 𝑔(𝑚, 𝑛) 

is the gray scale value at a point in the translated image where 𝑓,̅ �̅� are the mean pixel 

intensity values. This method can also be implemented more quickly using Fourier 

Transform and matrix multiplication [34].  

To calculate image correlation effectively, the two images must first be registered to one 

another. This means that it must be determined if the two images being compared have been 

warped and/or translated, taken from different viewpoints, or if two different sensors have 

been used to capture the image. To determine this, automatic image registration algorithms 

can be used. These algorithms iteratively alter one image in a set of two, to determine the 

applied transformations to the image. Several transformation options are available, but 

typically the rotation, translation, and warping of an image are considered [35]. With image 

correlation and MSE it is possible to use In Silico data to generate results in USE algorithm 

development and verification. 

To determine the clarity of the signal, the signal to noise ratio (SNR) and contrast to noise 

ratio (CNR) provide valuable information on the ratio between the desired signal and the 

noise power. The SNR value is the measure of the signal’s intensity with that of background 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

 
(1.19) 

𝑟𝑖,𝑗 =
∑ ∑ [𝑓(𝑚 + 𝑖, 𝑛 + 𝑗) − 𝑓]̅[𝑔(𝑚, 𝑛) − �̅�]𝑛𝑚

√∑ ∑ [𝑓(𝑚, 𝑛) − 𝑓]̅2 ∑ ∑ [𝑔(𝑚, 𝑛) − �̅�]2
𝑛𝑚𝑛𝑚

 
(1.20) 
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noise. The higher the value, the clearer the signal [36]. The SNR can be calculated with 

Equation 1.21, 

where 𝑆̅ is the spatial signal average, and 𝜎 is the standard deviation in the noise level [36]. 

While the CNR can be calculated using Equation 1.22, where 𝑆𝐴 and 𝑆𝐵 are the signal 

intensities for the producing structures, and 𝜎0 is the standard deviation of the image noise 

[37]. The SNR and CNR both provide a measure of clarity on the image and how easily 

distinguishable it is to background noise. The CNR is useful when there is a bias in an 

image, such as when features of the image are easily distinguishable but may appear to be 

washed out due to noise [37]. 

1.5 Current USE Techniques and Algorithms 

Examining the most significant USE techniques and their efficacy in identifying 

abnormalities in organ tissues allows for a view of the current implementations and the 

strengths that USE has when detecting tissue abnormalities. A study by G. Saloman et al. 

demonstrates that USE could ascertain the presence of an abnormality in the tissue. The 

researchers utilized a Hitachi Medical EUB-6500HV US system with a V53W end-fired 

transrectal probe. The data set comprised of 109 patients with confirmed prostate carcinoma 

from a single institution, after the data was collected and analyzed with the elastography 

function of the US system. The study revealed that the sensitivity and specificity of the 

method are 75.4% and 76.7% respectively for the 451 image cases. One of the drawbacks 

of the current method is that it depends on the Strain Index given by the Hitachi system 

which cause false positives for cases of Benign Prostate Hyperplasia as this condition 

increases the value of the Strain Index for the Hitachi system. The study also concludes that 

the image quality is crucial for the system’s accuracy in calculating the strain found in the 

prostate tissue [38]. 

𝑆𝑁𝑅 =  
𝑆̅

𝜎
 

(1.21) 

𝐶𝑁𝑅 =  
|𝑆𝐴 − 𝑆𝐵|

𝜎0
 (1.22) 
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Several algorithms can estimate the tissue displacement and strains based on obtained RF 

data sets. H. Rivaz has proposed a software approach to calculating the displacements in 

tissue based on Dynamic Programming and 2D Analytic Minimization, called AM2D [39] 

[40]. The proposed method involves collecting two RF data sets for the algorithm, one pre-

compression, and one post-compression. The algorithm tracks pixel displacements and 

calculates the strain from the proposed displacements using an iterative minimization 

technique for each line in the image. This algorithm was used on a data set produced In 

Silico, using Field-ii and Abaqus to simulate the RF data and displacements expected to 

occur due to a displacement from a TRUS probe contact with the prostate tissue. The results 

from this simulated study show that the CNR used to evaluate the strain displacements is 

14.3 in the axial direction and 1.13 in the lateral. After confirming the algorithm’s viability 

through the simulated study, researchers conducted a clinical study on seven patients with 

liver cancer. This study generated displacement and strain maps for each patient using the 

proposed AM2D method. These studies showed the stiffened tissue present in the liver for 

each patient. They reported that the axial displacement and further refinement of the strains 

using a Kalman filter clearly showed the ablation in the liver. In contrast, the lateral strain 

calculated from the displacement field had no advantage in image clarity, thus making it a 

currently under-utilized tool for detecting malignancy [39] [40]. 

Building on the AM2D method, Rivaz proposed a further enhancement to estimate tissue 

displacements using a Global Time Delay Estimation (GLUE) algorithm [41]. This method 

incorporates the analytic minimization technique used in AM2D, with the addition of 

GLUE algorithm computations, with significant improvement. To estimate the time delay 

between frames, a displacement continuity enforcement and the amplitude similarity term 

are included in a non-linear cost function. A key distinction is that GLUE’s cost function is 

applied to the entire image, not just a single scan line. The algorithm was tested against 

three data sets, including a simulated data set, a phantom study, and clinical data. The 

simulated and phantom study data were evaluated using the SNR and CNR values, 

summarized in Table 3. Just as in the AM2D paper, ground truth data was generated using 

a FEA tool to determine the realistic displacements and strains in the tissue material. The 

phantom study was conducted using a CIRS elastography phantom with the RF data being 

captured on an Antares Siemens system with a VF10-5 linear array. 
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Table 3: Summarized results from data sets used to evaluate the GLUE algorithm [41] 

The results from the first simulated data set show that GLUE profoundly enhances the SNR 

and CNR for the axial direction when compared to the NCC and AM2D values. The 

improvement in the lateral direction is minor when comparing the AM2D SNR and CNR 

values to those of the GLUE outputs. This same trend can be seen in the phantom study 

when comparing AM2D to GLUE. The second study enforced a slipping condition between 

the imaged organ and the background material. This may occur in some instances, such as 

between the prostate and the rectal wall [42]. The failure metric is utilized when the SNR 

and CNR values cannot be calculated because the NCC and AM2D methods do not provide 

sufficient information. However, GLUE can calculate the SNR and CNR values even with 

large-scale discontinuities. Four patients underwent US scans for primary or secondary 

liver cancers for a clinical study. Ablation negatively impacted the data quality by 

introducing high-temperature gradients, microbubbles, and pulsations from the hepatic 

vessel, which disturbed the displacements. These results show that GLUE can generate 

results that can help clinicians visualize an accurate representation of the tissue and any 

abnormalities that may be present in the patient, even under poor conditions such as post-

ablation or when large out-of-plane displacement occurs. However, while GLUE can 

 SNR CNR 

Simulated 1 Axial Lateral Axial Lateral 

NCC 2.14 0.52 4.94 7.69 

AM2D 5.29 4.50 14.62 10.87 

GLUE 44.63 4.61 26.31 11.03 

Simulated 2     

NCC Fails Fails Fails Fails 

AM2D Fails Fails Fails Fails 

GLUE 43.70 4.41 17.45 6.72 

Phantom     

NCC 2.20 3.60 1.07 0.39 

AM2D 26.21 4.77 16.01 3.25 

GLUE 29.85 7.22 18.21 4.09 
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produce strong results in the axial direction, higher quality lateral results are required. This 

demonstrates that despite significant improvements in displacement estimation under non-

ideal conditions, high-quality lateral displacements are still necessary. 

Researchers propose a tissue mechanics-based method to improve the quality of the lateral 

results. Created by Kheirkhah et al. [43], this method seeks to improve the lateral 

displacement and strain calculation through the enforcement of tissue mechanics onto the 

initial estimates of the displacements and strains found from GLUE. The method seeks to 

regularize the displacements using tissue incompressibility with the 3D Boussinesq model, 

deformation compatibility using the compatibility differential equation and finally refine 

the strains produced from this algorithm, known as STREAL [43]. Using the Second Order 

Ultrasound Elastography (SOUL) and GLUE methods as initial estimations for the 

displacement field, STREAL processes the initial displacements using a second-order 

derivative-based regularization approach, where the 2D Laplacian of the displacement 

components is minimized [43]. The advantage of using the Laplacian over other 

regularization methods is its low cost in computation time and its high effectiveness in 

tissue tracking applications [44]. Afterwards, tissue incompressibility is enforced by setting 

the divergence of the displacement field in a 3-dimensional space to zero. Additionally, the 

out-of-plane is estimated using the Boussinesq equation rather than assuming plane strain 

or plane stress, as other displacement algorithms assume. Finally, strain compatibility is 

enforced on the data using Equation 1.22, 

where 𝜀𝑥𝑥 and 𝜀𝑦𝑦 are the lateral and axial strain respectively, and 𝜀𝑥𝑦 is the shear strain. A 

numerical approximation was derived using the finite difference method to implement this 

equation for image processing. To determine the algorithm's effectiveness, an In Silico 

breast phantom was created with segmentation with 3D Slicer and 3D US images of a 

typical breast geometry. A finite element mesh was created from this geometry using IA-

FEMESH software, enabling the addition of a spherical inclusion to the model. Finally, 

Abaqus, a FEA software, was utilized to apply loading to the mesh to mimic contact with 

a transducer. Gaussian noise was added as another step to add realism to the collected 

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝜀𝑦𝑦

𝜕𝑥2
− 2

𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
= 0 (1.22) 
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displacement data from the FEA. After collecting the data, SOUL and GLUE were used to 

generate an initial estimate of the displacements before applying the STREAL algorithm. 

By using the NCC as a similarity metric, the output displacement field is compared to the 

with the noise-free ground truth, summarized in Table 4. 

Table 4: Summarized NCC values for In Silico data from the GLUE Displacement estimation algorithm [43]. 

The NCC value can be improved through refinement imposed by the STREAL algorithm, 

and the lateral direction displacement and strain NCC values can be significantly enhanced 

through this refinement. A tissue-mimicking phantom study was conducted to validate the 

algorithm further, and the Breast Elastography Phantom Model 059 from CIRS was 

utilized. This phantom mimic’s human breast tissue and contains several inclusions ranging 

in size; all data collected from the phantom was analyzed using SNR and CNR values. 

Additionally, the phantoms were simulated using the Abaqus FE solver, and quasi-static 

stimulations were applied in the FEA solver. The SNR and CNR results from the phantom 

case and the NCC result from the ground truth simulation can be seen organized in Table 5 

and Table 6. For the SNR and CNR values generated from GLUE, SOUL, and STREAL, a 

NCC Measure against ground Truth 

Axial Displacement Noisy 0.93 

Refined 1 0.99 

Refined 2 1.00 

Lateral Displacement Noisy 0.87 

Refined 1 0.96 

Refined 2 0.99 

Axial Strain Noisy 0.076 

Refined 1 0.59 

Refined 2 0.59 

Refined 3 0.69 

Lateral Strain Noisy 0.016 

Refined 1 -0.13 

Refined 2 0.20 

Refined 3 0.22 
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consistent improvement is made when STREAL is used to refine any displacement 

estimates made for both the axial and lateral directions, with significant improvements 

being observed in the lateral direction when comparing the STREAL results to GLUE. It is 

also evident from Table 6 that the NCC value between the output data from GLUE and 

SOUL is consistently lower than STREAL, especially when looking at the results in the 

lateral direction displacements. A considerable improvement is seen for the lateral 

direction, which shows that it is possible to improve the lateral direction results beyond 

what is capable in GLUE and SOUL by enforcing known tissue mechanics onto the 

collected datasets, such as the strain compatibility and the Boussinesq model. 

Table 5: SNR and CNR values for STREAL phantom Study [43]. 

 

 

 

 

 SNR CNR 

Phantom Image GLUE SOUL STREAL GLUE SOUL STREAL 

A Axial Strain 8.7 15.9 18.8 5 5.2 10.4 

Lateral 

Strain 

2.7 2.5 13.2 0.8 0.8 12.3 

B Axial Strain 3.9 4.2 7.1 1.1 1 2.1 

Lateral 

Strain 

1.7 2.1 3.2 1.4 1.2 1.9 

C Axial Strain 9.1 8.9 9.1 4.5 3.2 4.6 

Lateral 

Strain 

2.2 1.6 2.6 1 0.8 3.3 

D Axial Strain 8.5 9.3 11.6 3.6 2.4 3.6 

Lateral 

Strain 

3.3 4.2 3.7 0.8 1.2 0.8 



25 

 

 

Table 6: NCC values for Phantom Study and In Silico ground Truths [43]. 

It is important to note that this study was conducted on breast tissue and inclusions and 

collected using a linear probe. While the enforced tissue mechanics still apply to prostate 

and prostate cancer the data type and formatting do not. Changes are required for the same 

study to be replicated on the prostate using a TRUS probe. 

In addition to determining strain and displacement values using the earlier methods, 

researchers can reconstruct additional material properties using the known strains. For 

instance, Samani et al. proposed an FEA-driven algorithm to reconstruct the elastic 

modulus for breast tissue [45]. The method proposes treating tissue as a continuum 

undergoing static loading. This method also assumes that the strains applied as part of the 

elastography imaging are less than 0.05 to maintain linear elasticity.  Using Equation 1.23, 

a stress-strain relationship can be used to determine the stiffness for each point in the tissue. 

A forward solution is determined by establishing displacements and calculating subsequent 

strains and stress using Equation 1.23, 

 NCC  

Phantom Image GLUE SOUL STREAL 

A Axial Displacements 0.99 0.99 0.99 

Lateral Displacements 0.59 0.36 0.88 

B Axial Displacements 0.92 0.92 0.92 

Lateral Displacements 0.43 0.51 0.79 

C Axial Displacements 0.88 0.83 0.88 

Lateral Displacements 0.49 0.37 0.66 

D Axial Displacements 0.95 0.89 0.96 

Lateral Displacements 0.49 0.41 0.52 

Improvements Axial Displacements 0.3 ± 0.5% 4 ± 3%  

Lateral Displacements 44 ± 28% 73 ± 42% 

𝜎𝑖,𝑗 =
𝐸

1 + 𝜈 
(𝜀𝑖,𝑗 +

𝜈

(1 − 2𝜈)
𝛿𝑖,𝑗𝜀𝑖,𝑗) (1.23) 
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where, 𝐸 is the Youngs modulus, 𝜈 is the Poisson’s ratio, 𝜀 is the strain, and 𝛿 is the 

Kronecker delta. Given the inherent complexity of the 3D case, an analytical solution 

remains elusive. In this context, this paper introduces a novel approach proposing the use 

of Equation 1.23 to update the modulus through an iterative numerical process, a departure 

from the costly least-squares method advocated by other researchers [46]. This innovative 

method requires an initial image segmentation and modulus guess to compute the stiffness 

through the iterative FEA method. These initial estimates are then used to calculate the 

stress using the FEA solver. The measured strain is used to update the modulus along with 

the calculated stress, and an averaging is applied to the sample. If the model has converged, 

then the system terminates. If it does not converge, the stress calculation is performed again 

with the new stiffness modulus. This method was rigorously tested on 2D data sets, 

demonstrating its effectiveness even in scenarios where the inclusion has a uniform 

modulus, a Gaussian relative modulus with a mean value of 3, or an inclusion where no 

modulus smoothing was performed. The first two data sets where smoothing was performed 

converged to a final value, showcasing the potential of the approach. 

Further, the 2D plane strain case was contaminated with noise consistent with two different 

levels of SNR magnitude to test its robustness further. Through this experiment, it was 

found that there was no significant change in the noise throughout the FEA’s iterations, 

indicating robustness of the method in handling the noise. Finally, a 3D breast elastography 

was simulated through a Finite Element contact problem model, where a 5mm compression 

was induced. The slice containing the tumor was the target of the FEA’s solution to provide 

the necessary values for the algorithm’s initial values. When the reconstruction algorithm 

was run, the results converged after 11 iterations, indicating a 12% error. This 

reconstruction algorithm can determine the stiffness of the tissue in both the background 

and inclusion with reasonable error but makes assumptions about plane strain, which, as 

mentioned before, are not consistently enforced in contact scenarios such as between the 

prostate and rectal wall. Therefore, it is recommended that a more advanced approach be 

used in determining tissue stiffness, underscoring the need for caution and further research. 

Mousavi et al. introduced an approach to reconstruct prostate stiffness after imaging, which 

has significant implications for prostate cancer diagnosis and treatment. The method 
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utilizes pre- and post-compression images to determine tissue strains, which are then used 

iteratively to calculate tissue stiffness. The method for calculating tissue stiffness is based 

on an inverse relationship derived from Hooke’s law of linear elasticity, as shown in 

Equation 1.24. The researchers employed an FEA method to determine whether the 

iteration converged to the strain image. This study involved a clinical study of 5 patients 

who underwent radical prostatectomy due to the presence of adenocarcinoma of the 

prostate gland. The samples were fixed and a Sonix RP US system with a BPC8-4/10128 

element curvilinear probe was used to capture the strain data [47]. Once the samples were 

obtained, a pathologist examined, localized, and contoured the cancerous regions of the 

prostate gland. Statistical analysis was performed on the tissue stiffness values to determine 

the top 5% stiffest region, which was considered the tumorous region. The highest stiffness 

region was determined by normalizing the stiffness and using a Z-score to determine 

relative stiffness. A Dice similarity coefficient evaluates the overlap between the 

histopathology region and the iterative FEA calculated region. 

The proposed algorithm, while showing promising results, concludes that a larger study be 

conducted. The findings from the study show that the Dice coefficient for the datasets are 

0.74, 0.38, 0.26, 0.63 and 0.34 for the 5 samples. The stiffness reconstruction was able to 

accurately identify the regions for 4 of the 5 samples, with a radius range from 2-7mm for 

the sample tumors. Additionally, 76% ± 28% of the tumor region detected with the iterative 

reconstruction method was inside the area identified with histopathology [47]. The 

reconstruction led to some artifacts close to the rectum and probe contact location; as this 

region is outside of the prostate capsule, it can largely be ignored and does not impact the 

overall effectiveness of the reconstruction [47]. The need for a larger study is crucial to 

conduct statistical analysis and conclude on the effectiveness of the method.  

More information about the tissue is needed to create a higher-accuracy reconstruction 

algorithm. Required data includes other tissue parameters, such as Poisson’s ratio for tissue 

incompressibility and the shear modulus—a paper by Islam et al. proposed a way to image 

Young’s modulus and Poisson’s ratio in vivo [48]. They used 40 simulated 3D datasets with 

1

𝐸
=

𝜀𝑦𝑦

𝜎𝑦𝑦 − 𝜈𝜎𝑥𝑥
 (1.24) 



28 

 

 

varying contrasts and homogeneity. The boundary conditions were also varied to determine 

the effects on the Poisson’s Ratio reconstruction. It was found that even in complex 

boundary conditions, they could reconstruct Young’s Modulus with 90% accuracy. To test 

the proposed reconstruction method further, the group conducted a phantom study on a tofu 

phantom. Selected results are shown in Figure 8. 

 

Figure 8: Reconstruction results from the Tofu Phantom Study [48]. A1 and B1 are the axial strain values, A2 and B2 

the lateral strain values, A3 and B3 are the Young’s modulus and A4 and B4 the Poisson’s ratio of the tofu phantom. 

In Figure 8, A1 and B1 represent the axial strain, A2 and B2 the lateral strain, A3 and B3 

represent the Young’s Modulus in kPa, and A4 and B4 are the Poisson’s ratio images. This 

reconstruction method utilizes an iterative cost function minimization approach to calculate 

Young’s Modulus and Poisson’s ratio. It is crucial to note that this method requires the 

integration of an additional force sensor [48] to measure the applied stress accurately with 

any probe that utilizes it. While accurate, this method is not readily available to all clinical 

settings, as more advanced US systems with integrated force sensors must be available. 

This paper does not attempt to fuse the Poisson’s ratio with other data to generate a shear 

modulus image, which can lead to improved imaging results [49].  
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1.6 Research Objectives 

The research conducted aims at enabling clinicians to have an accurate and fast imaging 

modality capable of detecting prostate cancer. To allow for this several objectives must be 

met and are outlined below.  

1. Alterations to current tissue displacement tracking estimation and refinement software 

algorithms (AM2D and STREAL) must be made and validated. This alteration primarily 

involves redevelopment of these methods in the polar system to make them adaptable to 

data generated with endorectal probes. To validate results, in silico data and a known 

ground truth are used to determine the accuracy of the displacements and strains. The 

additional use of tissue mimicking phantom data to study a more realistic acquisition and 

tissue sample further aids in validating the proposed changes. 

2. A novel approach to image reconstruction, known as Poisson’s ratio image 

reconstruction, can allow for better segmentation of results and enables data fusion as 

calculating the shear modulus is viable with known compressibility and stiffness. Thus, 

allowing for stiffened tissue to be easily identified and quantified by clinicians. This 

algorithm is validated against known in silico data results and against data collected from 

a tissue-mimicking phantom. 

1.7 Overview of Current Issues 

As outlined in Section 1.6, research in elastography is extensive for linear transducer 

acquisitions, however the field is lacking in research in areas related to non-linear 

transducers, such as the ones used in TRUS procedures for prostate cancer detection. 

Displacement tracking algorithms such as AM2D and STREAL can produce high quality 

displacement estimations and strain images but have only been developed for use with 

linear US transducers. To further extend the usefulness of elastography to prostate cancer 

detection, new alterations to the existing methodology must be conducted and tested. These 

alterations will include changes to the fundamental way in which AM2D performs grid 

interpolation and estimation, while STREAL requires alterations to the convolutional 

method of calculating the Laplacian, Boussinesq, and compatibility equations. The 

alterations made to these algorithms need to maintain USE’s real-time processing and 
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display accuracy to help ensure clinicians can continue to utilize US for its largest 

advantage.  

In addition, the current research around Poisson’s ratio reconstruction for tissue mechanics 

seeks to validate the iterative method and show that it is a viable method of determining if 

a tissue’s mechanical properties have changed due to cancer related biological processes. It 

stops short, however, of proposing a use for the acquired data. To help highlight tissue 

stiffening, Poisson’s ratio can be used with the stiffness that is calculated simultaneously, 

to display the shear stiffness of the tissue. This would provide an accurate view of the 

tissues current properties that accounts for the incompressibility of the tissue and the 

stiffness. Combining the information found in the FEA based image reconstruction, while 

taking longer to produce, can provide increased accuracy and clarity when observing 

changes in the tissue mechanics of the prostate leading to better overall understanding of 

the current health of the imaged prostate tissue. 

1.8 Thesis Outline 

This thesis consists of five chapters, with the first being the introduction chapter. The 

remaining chapters will discuss the production of in silico and tissue mimicking phantom 

data sets, the alterations made to AM2D and STREAL, and the results from the test data 

sets. The fourth chapter will consist of the results of the Poisson’s ratio reconstruction and 

discussion around the impact of this algorithm. The final chapter will consist of conclusions 

and recommendations for future work in this area. 

1.8.1 Chapter 2: Data Generation and Acquisition 

Before any displacement tracking algorithm can be developed, a suitable data set for testing 

must be acquired to validate and benchmark the algorithms results. A common way of 

testing algorithms initially is through the creation of completely simulated data sets. This 

way the material properties and geometry are known and controlled for. Additionally, 

displacement fields can be generated and applied to the material such that the outcome of 

the displacements and strains are known prior to evaluation by AM2D or STREAL. After 

validation against known ground truth data, an element of realism can be added by creating 

a tissue mimicking phantom, which aims at mimicking real tissue with the acquisition of 
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data being done by an ultrasound transducer in the same manner that would be conducted 

in a clinical study. 

1.8.2 Chapter 3: AM2D alterations and STREAL Refinement 

The created data sets are useful tools to test the alterations made to AM2D and STREAL. 

Alterations to AM2D aim at converting the underlying mathematical formulations, such 

that a polar grid is used for minimization calculations and dynamic programming. These 

alterations would allow for initial estimates of the displacement field from TRUS probes 

used in prostate cancer biopsy and screenings. The outcome of the initial guess is then 

refined using STREAL’s tissue mechanic enforcement. The data from both the in silico and 

tissue-mimicking phantom (TMP) studies are used to determine the performance of 

AM2D’s initial guess, and the improvements that STREAL can create through its 

refinement algorithm.  

1.8.3 Chapter 4: Poisson’s Ratio Reconstruction Algorithm 

Once the displacement and strain data from AM2D and STREAL is collected, it can be 

used in an iterative FEA based reconstruction algorithm aiming at calculating the material’s 

Poisson’s ratio and Stiffness. These two material properties can lead to better 

understandings of the imaged tissue and any potential current malignancies within the 

tissue. By calculating the Stiffness and Poisson’s ratio, the shear modulus of the tissue can 

also be calculated for the entire data set, allowing for a combined view of the materials 

properties and detection of any areas in the tissue that may be stiffening in the shear 

direction. This will provide clinicians with a tool that can combine the advantages of a 

stiffness reconstruction and a incompressibility construction of the targeted tissue. 

1.8.4 Chapter 5: Conclusions and Future Work 

The final chapter concludes the work that has been completed and reiterates the competency 

of each aspect of the project in its ability to contribute to the completion of this project. It 

also contains several recommendations on future work that will build upon this project, 

such as completing a clinical trial of the algorithms to further learn the capabilities of 

AM2D, STREAL and the final reconstruction algorithms. 
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Chapter 2  

2 In Silico and Phantom Data Generation 

In the development of USE algorithms, known input and output data are essential for 

validation. One of the main ways to develop data sets for validation is through manual 

generation. This involves selecting ideal data that will create perfect input conditions. This 

method is particularly advantageous for novel or untested algorithms as it allows for the 

creation of an ideal output and the assessment of accuracy. Alternatively, there are methods 

of producing more realistic data using advanced software simulations, such as Finite 

Element Analysis (FEA), or In Silico RF data generation software, such as Field-ii or 

MATLAB Ultrasound Toolbox. Additionally, tissue mimicking phantoms are a faster and 

more controlled alternative to clinical studies, as the mimicking material can be created to 

user specifications and will not require ethical clearance, allowing for a rapid way of testing 

algorithms using data collected from a real US system. 

2.1 Field-ii In Silico Data Generation 

Initially developed in 1992 and released in 1996 for general use, Field-ii is a software 

package that seeks to generate high-quality and accurate Silico data sets for US systems. 

Developed and maintained by Jørgen Arendt Jensen [50], Field-ii employs methods to 

allow users to mimic commercial transducers. Any researcher has access to a range of 

parameters and may use available bitmap or DICOM data to generate US RF datasets. 

Field-ii utilizes the spatial impulse response of a system to generate its result; this concept 

was first described by Tupholme and Stepanishen in their papers [50] [51]. These papers 

outline the mathematical foundations of determining the pulsed and continuous wave cases, 

which enable simulating excitation by convolving the spatial impulse response with the 

excitation function used to generate the wave. Dividing the transducer into square sub-

sections, researchers sum the response from these squares to use as a received signal, 

simplifying the application of apodization with a transducer geometry treated as a piston 

[52]. Since the sub-sectioned squares are small, researchers can use a far-field 

approximation, simplifying the simulation and reducing the time cost. With the spatial 

impulse response, the sampling frequency is often in the range of Gigahertz to overcome 
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discontinuities. To allow for Megahertz frequencies typically found in US systems, Field-

ii utilizes precise tracking of the time positions of the response and employs the integrated 

spatial response as an intermediate calculation step [53].  This software allows for a 

practical and straightforward way of generating RF data for realistic results. The MATLAB 

implementation allows users to interact with the software to set parameters for the 

transducer, the desired apodization, focus depth, and the number of scatterers in the image. 

These parameters allow for generating realistic RF data from images of in Vivo organs or 

tissue mimicking phantoms.  

A practical implementation of this can be seen in generating realistic US RF data for a 

kidney scan. The process, which is not only precise but also practical, starts with using a 

scatterer generation algorithm that creates scatterer positions based on the image size and 

desired image dimensions after the scan. This algorithm, designed with practicality in mind, 

ensures that the scatterer positions are generated efficiently. Additionally, the amplitude of 

each scatterer sample is scaled to the pixel's intensity in the bitmap image. For instance, a 

higher pixel intensity value in the original image produces a scaled variance in scatterer 

amplitude. For example, a 1,000,000-scatterer image may be generated with final 

dimensions of 100mm by 100mm by 15mm using the code found in Appendix A1. The 

transducer parameters can be generated once the scatterer positions and amplitudes are 

made. These include the number and size of elements for the transducer, the focal depth, 

the excitation function, and the apodization. An example of a linear transducer with 128 

elements and the code used to generate the transducer can be seen in Appendix A2. From 

this example, a bitmap image of a kidney slice can generate an accurate RF data set that is 

visualized using a brightness mode (B-Mode) image in Figure 9. 
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Figure 9: Original Bitmap image processed by Field-ii to compute a simulated RF dataset [54]. This B-Mode image is 

generated from the simulated RF data collected by the Field-ii software scanner. 

While this example produces a high-quality scan of the kidney, it is computationally 

expensive as the software utilizes single line acquisition techniques to acquire the image 

line by line. The computation time can be decreased by utilizing parallel computing or 

reducing the number of scatterer points. 

2.2 FEA Modelling with Human Anatomy 

In addition to In Silico RF data, realistic displacement and strain measures in deformed 

tissues are often required to determine ground truths to validate USE techniques, as seen in 

numerous papers mentioned in Chapter 1.6. To compute these values, FEM can be used to 

create life-like 2D and 3D models of human anatomy and apply contact simulations with 

geometry-mimicking imaging tools. Abaqus is a well-known and widely used FE software 

that can be programmed to iteratively apply loading conditions to a model while calculating 

desired parameters such as stress, strain, or displacements. Abaqus can help generate 

datasets with Field-2 or as a ground truth to compute metrics from the outputs of 

displacement tracking algorithms such as AM2D or STREAL.  

An example of using FEA of human tissue can be seen in modeling the human breast during 

contact loading. Samani et al. propose a method of simplifying the complex meshes 

required to accurately model the geometry of the breast using a voxel-based meshing 

algorithm. The mesh used is an 8-node hexahedral element with a smoothing technique that 

corrects irregular boundaries. The size of the elements is also considered, as a smaller mesh 

will yield a more accurate geometry and result but at the cost of computation time. The 
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research group decided to increase the mesh size to allow for computational times to remain 

acceptable while still leveraging accurate results from the mesh. In enforcing the method 

described in detail in [55], a finite, multi-tissue model can be created, as seen in Figure 10. 

 

Figure 10:(a) Breast MRI Scan (b) breast tissue segmentation (c) Breast tissue assignment in Abaqus (d) Final Finite 

Element Mesh [55]. 

The meshing can be produced from this slice of MRI data, then segmented and processed 

into a FE mesh that can be loaded in an FEA solver software. This tool may be extended to 

other organs such as the prostate, where the geometry can be modeled, segmented and 

meshed to present an accurate model of the geometry. 
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To model the prostate a FE model was created in Abaqus such that the model contained a 

2D slice of the prostate capsule within a homogeneous background. Once this part was 

created and meshed using a quadrilateral mesh, material properties were assigned for the 

prostate and background material. Element types of CPS4R were used for the prostate and 

the background elements. The prostate material and background material have values of 

0.495 for the compressibility. The Young’s modulus value for the Prostate capsule is 60 

kPa, and 20 kPa for the background material.  The edges of the model were fixed and were 

far enough away from the contact point such that all displacements would be 0 in the 

elements preceding the fixed nodes. This allowed for the model to remain in place during 

contact, while still maintaining the desired trend displacements throughout the tissue. 

Additionally, a 2D transducer was modeled such that the diameter was consistent with a 

TRUS probe. The probe was made rigid such that no deformation would occur during the 

contact. Once both parts were modeled, a job was created such that the rigid probe would 

contact the bottom of the prostate with a frictionless contact, and then move 1mm into the 

tissue, mimicking the compression phase of the scan. The full contact model can be seen in 

Figure 11. 

 

Figure 11: The prostate capsule and Transducer modeled in Abaqus. The model was prescribed boundary conditions for 

the outermost elements and the transducer was made to contact and displace upwards by 1 mm. The material properties 

for the Prostate and Background were applied based on known median values. 
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2.3 In Silico Data Generation Results 

Leveraging the tools described previously, it is possible to generate accurate in-situ RF data 

using Field-ii that can be modified using solutions from an FEA solver such as Abaqus. 

This allows for a pre-and post-compression data set to be formed, facilitating algorithm 

changes to AM2D and STREAL for polar data to be validated against known solutions.  

A bitmap image of a prostate phantom was used to generate the precompression data. This 

phantom was created using the methods outlined in [14] and imaged using an MRI to 

determine the geometry. From the generated Dicom data, bitmap images can be created, 

and values scaled such that the bitmap values are in 16 bits to comply with Field-ii and its 

scatterer function input requirements. This input image for the data set is illustrated in 

Figure 12. 

 

Figure 12: The input bitmap image showing a prostate tissue mimicking phantom for the scatterer dataset. The central 

dark inclusion in the background material is the prostate capsule. This 16-bit depth bitmap can be used to create a 

scatterer map for input into the Field-ii scanner. 

The prostate scatterer data is created using the algorithm outlined in Appendix A4. This 

function takes in the desired bitmap image and the total number of scatterers to be 

generated. The function is an altered form of the one found in Appendix A1, where the size 

of the output image is consistent with the phantom section that was used. Figure 13 shows 

the input bitmap image and Figure 13 the resulting scatterer generation for a one million 

scatterer image.  
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Figure 13: A One Million scatterer plot using the prostate phantom bitmap image as an input bitmap image. The central 

prostate inclusion can be seen. This scatterer map shows the different amplitudes that make up the background and 

prostate tissue. 

After generating the scatterer location and amplitude, the transducer, and its parameters, 

must be generated. Several transducers were created to capture different performances. A 

256-element transducer was created to mimic an Ultrasonix RP scanner. The result of 

generating this transducer can be seen in Figure 14. The algorithm to complete this can be 

found in Appendix A4. 

 

Figure 14: The 256-element transducer used to generate the In Silico Data sets. This scanner is utilized by Field-ii to 

generate the RF data from the scatterer field. 
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After generating the transducer, the excitation, signal apodization, and focus for each 

element is created. The focus shifts as each element are used in the single line acquisition 

method to generate the RF data. A generated RF data set visualized as a B-Mode image, 

seen in Figure 15. 

 

Figure 15: Using the 1-million scatterer data map and the 256-element transducer, RF is produced and visualized here 

as a B-Mode image. 

Once complete it is now necessary to generate the post compression RF data. To realize 

this, the pre compression scatterer data, and a FEA model are utilized to displace the 

scatterers according to the solutions from the FEA model. These displacements can be 

visualized in Abaqus and can be seen in Figure 16. 

 

Figure 16: The measured tissue displacements from Abaqus in the x and y directions. These displacements are extracted 

from Abaqus and converted to the polar coordinate system using MATLAB. 
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The generated displacement data is then extracted and loaded into MATLAB, where 

scatterer points and the related displacement at the point is generated using the scattered 

interpolant method, and the displacement FEA data. The code for this can be seen in 

Appendix A5 and the output data can be visualized in Figure 17. 

 

Figure 17: The R and Theta scatterer displacements extracted from Abaqus and applied to the original scatterer map. 

This process creates a displaced scatterer field that can be used as a post-compression scan. 

Finally, the displaced data set generated through the code in appendix A5, is input into the 

scanning algorithm used in appendix A4 to ensure that the same transducer and settings 

are used to scan the post compression tissue. A final visual of both the pre and post 

compression B-Mode images can be seen in Figure 18, and the RF data for this pair will 

be used as the In-Silico data for AM2D and STREAL in the following chapters. 

 

Figure 18: The Pre- and Post-compression B-Mode images generated from the RF data collected from Field-ii. 
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To compare the output data sets to the known truths, the displacement and strain data 

calculated in Abaqus was extracted using a Python script and visualized in MATLAB. 

The images produced from this method can be seen in Figure 19. 

 

Figure 19: The output data from Abaqus for the Radial Displacement and Strains, as well as the Angular displacement 

and strains. 

The visualizations from Figure 19 show that the radial displacement and strains are 

symmetric about the center vertical line, whereas the angular displacement and strains are 

anti-symmetric about the same axis. This is the expected result from the FEA as the 

displacements from the curved transducer would create a symmetric outward 

displacement in the radial direction and would deform in opposite directions along the 

angular direction. The exact displacements and deformations can be described using the 

Hertzian contact model as the surfaces in contact are continuous frictionless elastic half 

spaces, with small strains, and the surfaces are non-conforming [56]. This leads to the 

expected numerical solutions using FEA and which are visualized by Figure 19. 
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2.4 Tissue Mimicking Phantom Data 

Following confirmation of the algorithm with established benchmarks, a broader study is 

necessary to evaluate the system's performance with data that better reflects real-world 

conditions. Data may be collected through a clinical trial, or by conducting a Tissue 

Mimicking Phantom (TMP) study. In clinical trials, patient data is collected and acts as the 

input data set. Clinical data exposes algorithm imperfections such as image artifacts or 

scans that show abnormal anatomical structures. The most considerable downside to 

conducting the study is the time it takes to both gain approval from regulatory bodies and 

collect the data once approved. TMP studies offer a quicker alternative to clinical trials. 

Researchers construct a volume of material with similar properties as the tissue where 

internal anatomy mimics the intended human anatomy. Through the introduction of 

different materials, TMP allows for quick construction and control over the types of 

artifacts or abnormalities in scans. Therefore, TMP study offers a rapid and controlled 

environment for algorithm testing, providing high confidence in the results. 

Researchers must control conditions to ensure TMP properties resemble those of human 

tissue. For accuracy it is essential that the speed of sound, acoustic impedance, and 

attenuation within both the background and inclusion medium closely resemble those in 

human tissue, while the background material and inclusion's density should replicate 

human tissue's density. M. Culjat et al. [57] provide a comprehensive review of tissue 

substitutes for use in TMPs in their literature on material options. This research intends to 

measure sound speed, attenuation, backscatter coefficient, and material nonlinearity to 

facilitate better TMP design for various tissue types [57]. As the prostate and surrounding 

tissue do not contain hard tissues that interfere with the imaging process, only soft tissue 

replacements are considered. The measured properties of interest for the prostate and 

surrounding tissue are a sound velocity of 1561m/s, density of 1670 kg/𝑚3, attenuation of 

0.8 dB/cm MHz, and an acoustic impedance of 1.65 MRayl.  

The average soft tissue has a speed of sound of 1540m/s, a density of 1043 kg/𝑚3, an 

acoustic impedance of 1.63MRayl, and an attenuation of 0.54 dB/cm MHz [58]. Table 7 

summarizes the acoustic properties of several tissue alternatives. From Table 7, the gelatin-

based tissue phantom has the most similar acoustic properties to the average soft tissues. In 
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their review, Culjat states that gelatin is a commonly used TMP material and, when 

combined with a preserving agent such as alcohol or formaldehyde, can last for several of 

weeks if stored under the right conditions [57].  

Table 7: List of Acoustic properties of common TMP materials [57]. 

To enhance the tissue model's realism, a scattering element is added as gelatin alone does 

not mimic the heterogeneous nature of human tissue under ultrasound. Scattering agents 

such as graphite or silica beads may act as a scattering agent [57]. The material properties 

for gelatin can be found in Table 8. 

Table 8: Material properties of Gelatin [59]. 

Material 
Velocity 

(m/s) 

Density 

(kg/𝒎𝟑) 

Attenuation 

(dB/cm 

MHz) 

Impedance 

(MRayl) 

Agarose - based 1498-1600 1016-1100 0.04-1.40 1.52-1.76+ 

Gelatin – based 1520-1650 1050 1.60-1.73 1.60-1.73 

Magnesium Silicate – 

based 
1458-1520 - - - 

Oil Gel – based 1480-1580 1040-1060 1.54-1.67 1.54-1.67 

Open Cell Foam – based 1540 - - - 

Polyacrylamide Gel - 

based 
1540 1103 1.7 1.70 

Polyurethane 1468 1130 1.66 1.66 

Polyvinyl Alcohol - based 1520-1610 - 1.60-1.77 1.60-1.77 

Tofu 1520 1059 1.61 1.61 

Water - based 1518-1574 1000+ 1.48-1.60 1.48-1.60 

Urethane Rubber  1460 900 1.31 1.31 

PROPERTY VALUE 

POISSON’S RATIO 0.5 

YOUNG’S MODULUS 67 - 73.4 kPa 

SHEAR MODULUS 22.3 – 24.47 kPa 
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The prostate capsule is made of a material that allows it to be clearly distinguished from 

the background gelatin. This material can consist of any material with properties like the 

prostate. R. Lerski et al. propose reticulated foam as an alternative to human or animal 

tissue [60]. By using reticulated foam, lead times for sourcing human or animal tissue 

samples are avoided. Reticulated foam allows for increased phantom preservation time and 

does not require a preserving agent to maintain its material properties. The foam may be 

cut to any shape to mimic a desired organ. The Researchers then soak the foam in a saline 

solution prior to placing it in the gelatin solution to better match the speed of sound in 

human organs. Further studies conducted by the research group found that the attenuation 

coefficient of the foam to be like the attenuation coefficient of water [60].  

A TMP was created to develop a more realistic dataset for evaluating the AM2D and 

STREAL polar algorithms for prostate cancer detection. A gelatin background with a foam 

prostate capsule was determined to be the optimal selection where the gelatin fulfills the 

acoustic property requirements for the background material, and the foam meets the 

necessary conditions for simulating the prostate while it enabled varying tissue 

incompressibility. The latter was necessary in the validation of the proposed Poisson’s ratio 

reconstruction technique. The phantom was primarily constructed of gelatin, where the 

exact mixture is approximately 10g of gelatin set in 500ml of water, with 30g of #10 100-

170 grit silica glass beads added to the gelatin. The mixture was stirred constantly until the 

gelatin began setting to ensure an even distribution of the scattering agent. The foam 

prostate was cut to the approximate dimensions of the prostate, about 3cm x 3cm x 5cm 

[61], and allowed to briefly soak in a saline solution to avoid total saturation, as the goal 

was to produce a large difference in incompressibility between the inclusion and 

background material. To avoid movement of the prostate capsule during the curing process 

and ensure it remained under the gelatin surface, the capsule was added to the gelatin 

mixture after it began to set without disturbing the material continuity of the phantom. A 

plastic tube was inserted into the mixture to create a cavity to simulate a rectal cavity where 

a TRUS procedure would occur, with the location of the cavity being alongside the prostate. 

After the mixture was fully set, the plastic tube was removed, leaving a small cavity for 

inserting the probe. The completed phantom is seen in Figure 20.  
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Figure 20: The TMP foam inclusion (left), and Gelatin background with cavity and inserted foam inclusion (Right). 

2.5 Ultrasound Settings for the Imaging of TMP 

To collect the RF data from the constructed phantoms, an Ultrasonix RP scanner was used 

with two ultrasound scanners, a Ultrasonix L9-4/38 linear transducer and a BPC8-4/10 side-

fired TRUS probe. The transducer and system settings were set according to the depth of 

the prostate phantom and the desired region of focus. The exact settings used during the 

data collection process can be found in Table 9. Settings are consistent for all samples 

gathered for both pre- and post-compression acquisitions. 
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Table 9: Parameters used for data collection with Linear and TRUS Probes. 

2.6 Collected Data and Quality Analysis 

The ultrasound system collects the data in an RF file format. Files are processed using Reza 

Zahiri Azar’s MATLAB function found in Appendix B1, initially created out of the 

University of British Columbia in 2008. This process yields MATLAB formatted files for 

each data frame from the scan. The MATLAB files can be quickly loaded and manipulated 

by displacement estimation or quality analysis algorithms. To validate displacement 

algorithm changes for polar transducer displacement estimation, researchers calculate the 

MSE, and correlation score obtained from a frame pair of pre- and post-compression data 

sets with its corresponding “ground truth” to ensure their quality. The correlation score is 

tabulated to determine the best, average, or worst set of pre- and post-compression data. 

Best-case data may be used for further validation against artifact-free data. Average data 

sets can be used to assess algorithm performance on realistic data that may include minor 

artifacts or decorrelation between the post-compression data. The worst-case pairs show 

how the algorithms perform on low quality images with respect to the SNR, CNR, 

decorrelation, or significant obtrusive artifacts in the image data. The algorithm outlined in 

Appendix B2 is used to analyze the collected data against all pre- and post-compression 

scan frames. This method utilizes AM2D to quickly determine the displacement field 

between a pre- and post-compression data set. This displacement field is used to create the 

reverse and forward functions to warp the first frame. The warped frame is then compared 

to the second compressed frame to determine the correlation and MSE, where lower 

combined scores are preferred. When testing the displacement algorithms, this method is 

repeated for each pre- and post-compression frame to classify each pair for usage. Table 10 

 LINEAR PROBE TRUS PROBE 

DEPTH (CM) 5 4 

FOCUS DEPTH (CM) 2.5 3 

FREQUENCY (MHZ) 7 5 

FRAME RATE (FPS) 14 12 

GAIN (%) 57 52 
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contains some selected quality scores from the TRUS probe data collections, where the 

MSE summed with (1 − 𝐶𝐶) used to determine the overall score for the pair. 

Table 10: Selected Data points from the data quality analysis done on Phantom scans. 

The first two rows of Table 10 show a low combined score between the data sets, 

corresponding to the best data quality; the second two rows show an average score for the 

data, and the last two rows show results from poor data quality pairs. Figure 21 shows a 

visualization of these data sets. In Figure 21 a), the B-Mode image shows the prostate 

capsule in the center of the image with minimal artifacts. The combined quality score of 

the original on the left and the displaced image on the right is high due to the similarity 

between the two images and the likeness when warped according to the displacement field. 

Figure 21 b) shows the average case, where some artifacts are present in the image and 

evident in the post-compression image to the right of the capsule. This will not significantly 

impact the displacement algorithms as the artifacting is outside the capsule. In Figure 21 

c), a poor case can be seen; high image artifacts make distinguishing the prostate capsule 

difficult, especially in the pre-compression image on the left. Using this data to calculate 

the displacements may lead to erroneous prostate capsule displacement estimation and 

refinement results. 

Pre scan 

frame 

Post Scan 

frame 

Combined 

MSE and CC 

Score 

CC Score MSE Score 

126 26 2.53 0.0035 1.54 

80 25 2.54 -0.0042 1.54 

17 2 3.35 0.039 2.39 

26 1 3.35 0.043 2.40 

64 55 4.62 0.0072 3.63 

44 126 4.62 0.038 3.66 
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Figure 21: B-Mode images of the a) good quality pair b) average quality and c) worst quality compression correlation 

pair. 

Using the data collected from the TMP, realistic data sets can be generated and used to 

analyze the accuracy and processing speed of tissue displacement tracking algorithms while 

utilizing a real US system where imaging artifacts, inconsistencies and poor data quality 
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can be used to determine how the algorithm behaves in non-perfect data. The good quality 

pair will be used throughout the thesis as the basis for the TMP results. 
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Chapter 3 

3 Polar Implementation of 2D Analytical Minimization 

Following the completion of data set generation, the potential to modify existing algorithms 

for use with TRUS probes for the collected polar data was apparent. AM2D, developed by 

Hasan Rivaz [39] [40], employs a Dynamic Programming and 2-dimensional minimization 

approach to estimate the pixel displacements between two images, a pre-compression and 

post-compression pair. This method's rapid estimation capabilities enable the algorithm to 

be used in real-time, allowing US systems to maintain their competitive advantage over 

other imaging modalities in the field of prostate cancer diagnosis.  

3.1 AM2D Displacement Estimation Algorithm 

AM2D was selected for the initial estimate of the displacement for its ability to compute 

the displacement field between two input RF data sets while allowing the system to 

maintain its real time framerate [39]. When compared to other displacement methods it can 

be seen that the additional processing computed in GLUE or other algorithms such as 

OVERWIND [62] or SOUL [63] greatly diminishes the speed in which the displacement 

field can be generated. It was also found during a comparative study that the AM2D 

algorithm provides the best initial guess for STREAL to refine [64] as many of the lateral 

displacements become oversmoothed in OVERWIND and SOUL due to higher order image 

processing. Finally, AM2D has the fewest hyper parameters used in calculating the 

displacement field, making tuning the algorithm for each patient the most efficient.  

To calculate the displacement field AM2D utilizes DP and Analytic Minimization. The 

dynamic programming method calculates the displacement for each scan line across the 

image by employing a regularized cost function that includes terms for both displacement 

continuity and amplitude similarity. The continuity term for a single scan line, j, with data 

at point i, down the scan line is seen in Equation 3.1 and the cost function is seen in Equation 

3.2 [39], 

𝑅𝑗(𝑎𝑖. 𝑙𝑖, 𝑎𝑖−1, 𝑙𝑖−1) = 𝛼𝑎(𝑎𝑖 − 𝑎𝑖−1)2 + 𝛼𝑙(𝑙𝑖 − 𝑙𝑖−1)2 (3.1) 
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where 𝑅𝑗 is the regularization term depending on regularization coefficients 𝛼𝑎 and 𝛼𝑙, with 

displacements in the axial and lateral directions at the specific point (i, j), 𝑎𝑖 and 𝑙𝑖. The 

cost function 𝐶𝑗, depends on the data from Image 1 and Image 2, 𝐼1 and 𝐼2 along with the 

regularization term and previous cost function value. The process is repeated, line by line, 

until every scan line has been computed for all images. An integer pixel size displacement 

is provided for each direction. With displacements in elastography being very small, it is of 

interest to calculate sub-pixel estimations for each sample. Rivaz et al. propose using a 

method of 2D minimization from DP to obtain these sub sample results. To do this for both 

directions simultaneously an initial seed line is chosen, the center scan line in most cases, 

and the results calculated for this line are then propagated to the left and right of the image 

using the previous line to calculate the new sub sample values. Equation 3.2 is modified 

such that the cost equation now includes the subsample changes to the displacements, seen 

in Equation 3.3, 

where 𝛼, 𝛽𝑎, and 𝛽𝑙
′ are regularization coefficients set by the user. These coefficients affect 

how close the axial displacements are in relation to each other, the lateral displacements 

proximity in relation to the axial direction and the lateral direction respectively. ∆𝑎 and ∆𝑙 

are the subpixel displacements calculated by the 2D minimization. A Taylor series 

expansion is written around the image data term, the first term in the summation. The Taylor 

series expansion is used to calculate the gradient at a given point, which is essential for 

verifying if the function is moving towards minimization appropriately. Since this 

expansion is done on non-grid points some interpolation of the values of ∆𝑎 and ∆𝑙 are 

𝐶𝑗(𝑎𝑖, 𝑙𝑖, 𝑖) = [𝐼1(𝑖, 𝑗) − 𝐼2(𝑖 + 𝑎𝑖, 𝑗 + 𝑙𝑖)]2 + 

min
𝑑𝑎,𝑑𝑙

{
𝐶𝑗(𝑑𝑎, 𝑑𝑙, 𝑖 − 1) + 𝐶𝑗−1(𝑑𝑎, 𝑑𝑙 , 𝑖)

2
+ 𝑅𝑗(𝑎𝑖, 𝑙𝑖, 𝑑𝑎, 𝑑𝑙)} 

(3.2) 

𝐶𝑗(∆𝑎1, … , ∆𝑎𝑚, ∆𝑙1, … , ∆𝑙𝑚) = 

∑ {[𝐼1(𝑖, 𝑗) − 𝐼2(𝑖 + 𝑎𝑖 + ∆𝑎𝑖, 𝑗 + 𝑙𝑖 + ∆𝑙𝑖)]2 +
𝑚

𝑖=1
 

𝛼(𝑎𝑖 + ∆𝑎𝑖 − 𝑎𝑖−1 − ∆𝑎𝑖−1)2 + 

𝛽𝑎(𝑙𝑖 + ∆𝑙𝑖 − 𝑙𝑖−1 − ∆𝑙𝑖−1)2 + 𝛽𝑙
′(𝑙𝑖 + ∆𝑙𝑖 − 𝑙𝑖,𝑗−1)2} 

 

(3.3) 
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required. Inverse gradient estimation may be employed to interpolate off-grid values in the 

second image, using initial grid positions from the first image without requiring 

interpolation of the image gradients. This allows for image gradients to be calculated on 

grid positions in Image 1 without the need for the gradient estimate. A visual representation 

of this can be seen in Figure 22. 

 

Figure 22: The inverse gradient estimation approach used by AM2D to calculate off grid points for the Cartesian 

system [39]. This approach eliminates the need for interpolation of the off-grid points. 

AM2D accounts for the attenuation, biasing, time gain, error measurement, and weighted 

regularization based on residuals and image displacement gradient. AM2D applies the 

minimized displacements and these parameters to the image data to calculate the 

displacement field. This governing equation can be seen in Equation 3.4, 

where W is the weight constant, 𝐼1
′  is the pre compression image, Z is the attenuation 

compensation matrix, 𝐷1 is the regularization coefficient matrix for the axial direction, 𝐷2 

the matrix for the lateral regularization coefficient, ∆𝑑 are the unknown displacements, e is 

the error, d is the current displacement estimate, and S is the bias term [39]. 

This algorithm assumes a linear transducer such that all acquired images are found in a 

Cartesian system with the scan lines running perpendicular to one another. This is the case 

with most linear transducer acquisitions; however, this algorithm cannot accurately 

compute the displacements for a transducer of curvilinear nature such as those that are used 

for TRUS procedures.  

(𝑊𝐼1
′2 + 𝒁𝐷1 + 𝒁𝐷2)∆𝑑 = 𝑊𝐼1

′𝑒 − 𝒁𝐷1𝑑 + 𝑠 (3.4) 
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3.2 Alterations to AM2D for Polar System Imaging 

The grid calculation and Taylor series expansion must be altered to consider polar 

expansion. The altered Taylor series expansions are implemented in the same structure as 

the original AM2D to recover performance when computing the initial estimates for the 

displacement field. Equation 3.3 is altered such that the coordinate system is polar, and the 

coordinate derivatives are taken in the polar system resulting in Equation 3.5. Taking the 

Taylor series expansion around the data term of Equation 3.5 yields Equation 3.6 with the 

optimal displacement values appearing at the points where the partial derivatives of the cost 

equation are equal to 0. The final equation used to calculate pixel displacements is 

constructed in the same way as in Equation 3.4, except estimations occur on a polar grid,  

where r is the radial displacement, 𝜃 is the angular displacement, I is the image data 

matrices for the first and second images, and 𝛼, 𝛽𝑟, and 𝛽𝜃
′ , are the user defined 

regularization parameters. The expansion around the data term allows for the inverse 

gradient estimation to be used in the polar system. A visualization of this is seen in Figure 

23. 

𝐶𝑗(∆𝑟1, … , ∆𝑟𝑚, ∆𝜃1, … , ∆𝜃𝑚) = 

∑ {[𝐼1(𝑖, 𝑗) − 𝐼2(𝑖 + 𝑟𝑖 + ∆𝑟𝑖, 𝑗 + 𝜃𝑖 + ∆𝜃𝑖)]2 +
𝑚

𝑖=1
 

𝛼(𝑟𝑖 + ∆𝑟𝑖 − 𝑟𝑖−1 − ∆𝑟𝑖−1)2 + 

𝛽𝑟(𝜃𝑖 + ∆𝜃𝑖 − 𝜃𝑖−1 − ∆𝜃𝑖−1)2 + 𝛽𝜃
′ (𝜃𝑖 + ∆𝜃𝑖 − 𝜃𝑖,𝑗−1)2} 

 

(3.5) 

𝐼2(𝑖 + 𝑟𝑖 + ∆𝑟𝑖, 𝑗 + 𝜃𝑖 + ∆𝜃𝑖) ≈ 𝐼2(𝑖 + 𝑟𝑖, 𝑗 + 𝜃𝑖) + ∆𝑟𝑖𝐼2,𝑟
′ + ∆𝜃𝑖𝐼2,𝜃

′  (3.6) 
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Figure 23: Grid displacement calculation through polar tangent gradient estimation. This also utilizes a gradient 

estimation method to avoid interpolation for the off-grid points. 

The first image in Figure 23 shows the initial location of the pixels. The second image 

shows the true and estimated pixel displacements. The estimated values can be determined 

through the inverse gradient estimation and Equation 3.4. The estimation of the gradient 

off the grid for the pixel points is equivalent to the on-grid points, eliminating the need to 

interpolate the gradient values for the off-grid points in the polar system. Once the polar 

formulation of Equation 3.4 is determined, it is implemented in the existing C++ 

architecture to achieve the same speed in calculation and displacement accuracy as the 

original AM2D algorithm. 

3.3 Results and Discussion 

After implementing the changes to AM2D in the polar system, the in-silico data set can be 

used to measure the accuracy of the displacement estimations made by AM2D. For this 

purpose, the hyperparameters 𝛼, 𝛽𝑟, and 𝛽𝜃
′  must be set for a usable output displacement 

estimation. A search algorithm was used to set these parameters, where an initial estimate 

of the parameters is used to compute the displacement field. From this the MSE and CC 

scores are computed against the FEA data and stored as the best if the MSE or CC scores 

are better than the current best score. The parameters are then increased, and the process 

repeats itself. This is the same method used to evaluate the output quality using the method 

seen in Appendix B2 and update the parameters as appropriate and the code for the 

algorithm is found in Appendix B3. The algorithm utilizes a patience count to limit the 

number of iterations that the algorithm will search and a learning rate to limit the change 

in parameter value such that a vanishing gradient or overshoot of the optimal value does 

not occur. It was found that during testing, the MSE score was the best indicator in 



55 

 

 

determining if the angular regularization value was improving, and the combined score of 

MSE and correlation was best at determining radial regularization. The optimized values 

of 𝛼, 𝛽𝑟, and 𝛽𝜃
′  used are 41.1448, 9.7017, and 0.097 for the in-silico data and for the tissue-

mimicking phantom data 14.421, 9.7017, and 0.097. In addition, Table 11 shows the 

remaining AM2D parameters, such as the attenuation coefficient and dynamic 

programming coefficient.   

Table 11: Parameters used in the AM2D algorithm to determine initial tissue displacements 

The IRF and IA values are used to constrain the range in which the displacements are 

expected to be found. For both the simulated and tissue-mimicking phantom data, a range 

of -100 to 0 was used to align with the expected pixel displacements range. The 

displacement is purely compressive; hence the minimum possible displacement value is a 

negative and the maximum is zero. The IA value varied from negative to positive due to 

the uncertainty of whether lateral displacements would happen in just one direction. The 

delta between the simulated and phantom datasets for the IA is attributed to the expectation 

that the tissue-mimicking phantom dataset will showcase greater displacement values, 

given that the 1mm probe movement in the simulated dataset is less than the probe 

movement executed during the phantom study. The middle line number is the center A-line 

that is used in the first line calculated during the AM2D algorithm. The DP regularization 

coefficient is the same for both the simulated and phantom data sets as the regularization 

Parameter In Silico Phantom 

IRF (variation range of radial displacement) [-100 0] [-100 0] 

IA (variation range of angular displacement) [-4 4] [-6 6] 

Middle A-line number 108 108 

𝜶𝑫𝑷 (Dynamic programming regularization) 0.15 0.15 

T (Threshold for iterated reweighted least 

squares) 
.2 .2 

𝑨𝑻 (Attenuation coefficient) 0.63 

dB/cm*MHz 

1.6 

dB/cm*MHz 

𝒇𝟎 (Center frequency) 7 MHz 7 MHz 

𝒇𝒔 (Sampling Frequency) 40 MHz 20 MHz 
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between integer samples is similar. The T value for both data sets was 0.2 as the outlier data 

used in the iterative reweighted least squares method is expected to remain the same 

between data sets. The attenuation coefficient for the in-silico data is 0.63 dB/cm*MHz 

which is used for lipid tissue, and 1.6 dB/cm*MHz which is the attenuation coefficient for 

gelatin found in Table 7. Finally, the center and sampling frequencies are reflective of the 

frequencies used to acquire the RF data sets. From these parameters and the AM2D 

algorithm, results can be generated representing the in silico and tissue-mimicking phantom 

data sets. The in silico results are shown below in Figure 24. 

 

Figure 24: In silico Results from a 256-scan line transducer, with displacements generated from a FEA solver. 

The in silico results indicate that the output can be generated in 0.072 seconds, allowing an 

output frequency of 13 frames per second. This speed result was calculated on a machine 

with an Intel Core i7 9th generation, 8 GB Ram and an NVIDIA GeForce RTX 2060 
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graphics card. Upon visual evaluation of the B-Mode scans, it is evident that both the pre-

and post-compression images are highly correlated, with the prostate capsule and 

background material visible, and minimal out of plane imaging occurring. It is observed 

that the highest displacements occur around the peripheral zone of the prostate capsule for 

the radial displacements, and along the central scan line for the angular directions. This 

result is consistent with what is seen in the FEA outputs. The finite difference method for 

strain calculation reveals that the prostate capsule is reasonably well visualized for the 

radial direction, showing large amounts of compressive strain in the lower region. However, 

while the visualization of the of the angular strain still shows the prostate capsule geometry, 

it is hindered by substantial noise inside and surrounding the capsule. A comparison of the 

displacements and strains with the FEA output and the generation of the MSE value for the 

normalized images yields the results presented in Table 12. 

Table 12:MSE Values for the In Silico data sets. 

From Table 12, the MSE values for both the radial displacement and strain are lower than 

the angular direction displacements and strains. This is expected from AM2D as only sub 

pixel displacements are calculated for the radial direction due to computation time 

constraints [40]. This limitation results in displacements that are only integer values from 

the angular direction, which is also carried over to the reconstruction of the strain image.  

The cross-correlation values between the ground truth FEA data and the outputs of AM2D 

are calculated using Equation 1.20. These results are organized in Table 13. It is seen that 

the Cross Correlation scores for the radial directions displacement and strains are higher 

than those for the angular directions. The difference in cross correlation scores is due to the 

additional sub-pixel estimation in the radial direction that AM2D computes using Analytic 

Minimization. The magnitude of the values shows there is a positive correlation between 

the images being compared and that the produced images fit well with the ground truth 

 MSE VALUE 

RADIAL DISPLACEMENT 888.59 

RADIAL STRAIN 918.42 

ANGULAR DISPLACEMENT 1632.30 

ANGULAR STRAIN 1690.42 
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data. The lower correlation scores for the Angular direction results are largely due to the 

noise in the system, lowering the overall SNR and CNR values. The removal of this noise 

and refining the images will improve the MSE and correlation scores for the radial, and 

angular directions.   

Table 13:Cross Correlation scores for the In Silico data set. 

A pair of compression frames identified using the data quality analysis algorithm outlined 

in Chapter 2.6 were used to apply the alterations made to AM2D to best tested on the TMP 

data. The visualized displacements and strains for the phantom data set are shown in Figure 

25.  

 

Figure 25:The Displacements and Strains calculated from the phantom data set processed by the AM2D algorithm. 

 CROSS CORRELATION SCORE 

RADIAL DISPLACEMENT 0.83 

RADIAL STRAIN 0.84 

ANGULAR DISPLACEMENT 0.68 

ANGULAR STRAIN 0.65 
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The strains are calculated using a finite difference method, where the difference in 

displacement is taken for each point and divided by the depth of the image to get a strain 

measurement in 𝑚𝑚 𝑚𝑚⁄ . The finite difference algorithm used can be seen in Appendix 

B4 where the strain is calculated for each row for the angular direction and each column in 

the radial direction. As the phantom data does not have a known ground truth, a visual 

determination of the quality of the displacements and strains is required. The data 

visualization of the displacements shows that the radial displacement is high close to the 

transducer at the bottom of the image and trend towards 0, which is consistent with the 

known behaviour of the displaced tissue. There are some high spots in the upper regions of 

the image, which can be a result from out of plane movement of the tissue creating some 

discontinuities in the AM2D calculations. The angular displacement displaces away from 

the central point of the image as expected with the direction of the movement of the tissue 

being consistent with what is expected and seen with both the FEA and In Silico data, 

lending further support for the quality of the displacements calculated. The radial strain 

somewhat shows the prostate capsule in the center of the image, with a slight change in the 

amount of noise present towards the center of the image, however the strain image quality 

can be much improved. The angular strain, as expected with AM2D is not as accurate, and 

the prostate capsule is hard to distinguish. The strain refinement algorithm of STREAL can 

be used in strain imaging to further refine the input displacement data into better images. 

3.4 Tissue Mechanics enforcement of STREAL 

After processing the initial displacement calculations using AM2D, it is possible to further 

refine these results by enforcing tissue mechanics onto the initial displacements. Originally 

developed by Kheirkhah et al. [43], the mechanics of incompressibility, compatibility, and 

known boundary conditions allow for improvements in the direction perpendicular to the 

scan line. In the Cartesian case this is the lateral direction, or when referring to the polar 

system, the angular direction. These enforcements onto the initial displacements and strain 

calculations can be computed rapidly, and just like AM2D allow for the algorithm to be 

computed in real time.  

Once the initial displacement estimations have been estimated by AM2D, it is possible to 

refine these results by enforcing tissue mechanics onto the results. The first step in this 



60 

 

 

enforcement is to apply a second order derivative-based smoothing to the displacement 

fields using a convolutional Laplacian filter. This filter, when convolved with the 

displacement data, suppresses sudden intensity transitions. Points can then be smoothed 

with Equation 3.7.  

Where 𝑈𝑛𝑒𝑤, and 𝑈𝑚 are the new and initial displacements, I is the identity matrix, L is a 

matrix with finite difference coefficients of the Laplacian operator and, 𝜆 is the 

regularization weight coefficient, which can be found through an L-curve method such that 

the bend in the graph of ‖𝑈𝑛𝑒𝑤 − 𝑈𝑚‖ and ‖𝐿𝑈‖ is at a knee point in the curve [43].  

Following regularization tissue incompressibility is enforced on the displacement field. To 

enforce this mathematically, the divergence of the displacement field is set to zero, and 

since US data does not normally provide out of plane data, plane strain is assumed, leading 

to Equation 3.8. 

Where U is the displacement at the point of measure. However, plane strain cannot be 

assumed for non-homogenous tissue regions, such as the breast or prostate [43]. To remove 

this assumption and provide more accurate results, the Boussinesq model is applied to 

generate three equations that will describe the stress in the x, y, and z directions respectively. 

These calculated stress values can then be used to calculate the strains in the x and y 

directions, and are seen in Equations 3.9, 3.10 and 3.11. Once these strains are determined 

the ratio of the out plane to axial strains, k, can be calculated, creating the modified 

compressibility Equation 3.12,  

𝑈𝑛𝑒𝑤 = (𝐼 + 𝜆2𝐿𝑇𝐿)−1𝑈𝑚 (3.7) 

𝜕𝑈𝑥

𝜕𝑥
+

𝜕𝑈𝑦

𝜕𝑦
= 0 (3.8) 

𝜎𝑥 =
𝑃

2𝜋
{

3(𝑦0 − 𝑦)(𝑥0 − 𝑥)2

𝑟5
 

− (1 − 2𝜈) [
(𝑥0 − 𝑥)2 − (𝑧0 − 𝑧)2

𝑟[𝑟2 − (𝑦0 − 𝑦)2](𝑟 + (𝑦0 − 𝑦)

−
(𝑧0 − 𝑧)2(𝑦0 − 𝑦)

𝑟3(𝑟2 − (𝑦0 − 𝑦)2)
]} 

(3.9) 
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where 𝜎 is the stress, P is the pressure, r is the distance from the point of pressure to the 

measurement point, 𝜈 is the Poisson’s ratio, x, y, and z are the Cartesian directions. Finally, U is 

the displacement measure, and k is the incompressibility ratio. This process is repeated for 

each point in the field of view, such that a k value is found for every possible pixel position 

from the displacement data to form a K-matrix [43].  

The final step implemented in STREAL is to enforce the strain compatibility. Equation 3.13 

shows the compatibility equation in terms of its tensor components. 

Equation 3.13 was utilized to create a numerical solution for each 4-node element in the 

computational grid [43]. The complete outline of this process can be visualized in Figure 

26. 

  

𝜎𝑦 =
3𝑃

2𝜋

(𝑦0 − 𝑦)3

𝑟5
 (3.10) 

  

𝜎𝑥 =
𝑃

2𝜋
{

3(𝑦0 − 𝑦)(𝑧0 − 𝑧)2

𝑟5

− (1 − 2𝜈) [
(𝑧0 − 𝑧)2 − (𝑥0 − 𝑥)2

𝑟[𝑟2 − (𝑦0 − 𝑦)2](𝑟 + (𝑦0 − 𝑦)

−
(𝑥0 − 𝑥)2(𝑦0 − 𝑦)

𝑟3(𝑟2 − (𝑦0 − 𝑦)2)
]} 

(3.11) 

  

𝑘 =
𝜕𝑈𝑧

𝜕𝑍
+ (𝑘 + 1)

𝜕𝑈𝑦

𝜕𝑌
 (3.12) 

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝜀𝑦𝑦

𝜕𝑥2
− 2

𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
= 0 (3.13) 
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Figure 26: Process flow of the Strain Refinement Algorithm (STREAL). The initial estimates from the RF data are 

filtered by a Laplacian operation, before incompressibility and compatibility are enforced on the results. 

This method, while accurate, can suffer from longer computational times. By using 

convolution and the above approach, a faster implementation can be achieved. Applying 

Laplacian and finite difference kernels to acquire the strains, incompatibility, and 

smoothing, STREAL can be quickened to allow real time processing. Additionally, the K-

matrix and Lamé parameters can be pre-computed for the image processing network, so 

that the weights do not have to be regenerated for each new patient. Instead, the system has 

been tuned using the input displacement data to determine the optimal values for the 

weighting parameters. 

To implement this algorithm for polar data, alterations must be made to the system, 

including the K-matrix formulation, gradient calculations computed in the convolutional 

method, and the image formatting. As the discovery that these alterations would be required 

occurred late in the development timeline, it was determined that the Cartesian system 

displacements would be used by transforming the polar coordinate displacement data, into 

Cartesian form using Equation 3.14 and 3.15, 

Where U is the displacement in the specified direction, and 𝜃 is the angle between the 

vertical axis and the point of measure. While maintaining the use of STREAL is important 

𝑈𝑥 = 𝑈𝑟 cos 𝜃 − 𝑈𝜃 sin 𝜃 (3.14) 

𝑈𝑦 = 𝑈𝑟 sin 𝜃 + 𝑈𝜃 cos 𝜃 (3.15) 
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in providing results for further reconstruction algorithm accuracy, this approach increases 

system processing due to the additional calculations. 

3.5 Potential STREAL polar alterations 

If given more time to develop STREAL in an entirely polar system, the K-matrix 

formulation from Equation 3.8 and the stress calculations derived from the Boussinesq 

model must be altered to the polar coordinate system. The x and y coordinates from the 

Cartesian derived stress equations become θ and r directions respectively. Y remains the 

out of plane direction in a cylindrical coordinate system. Seen in Equations 3.16 and 3.17 

are the polar forms of the stress calculations which utilize a change of variable to alter the 

existing Cartesian system equations [65], 

where 𝜎 is the stress in a specified direction, 𝜏𝑥𝑦 is the shear stress, and 𝜃 is the angle 

between the central axis and the stress measurement point. It is possible to develop a K-

matrix in the polar system that describes the out of plane behaviors of the material at every 

point in the matrices. A visualization of the generated polar image is seen in Figure 27. 

Where the image shows a TRUS probe at the bottom of the image, and the ratio between 

the out of plane and axial stresses. 

𝜎𝑟 = 𝜎𝑥 cos2 𝜃 + 𝜎𝑦 sin2 𝜃 + 𝜏𝑥𝑦 sin 𝜃 cos 𝜃 (3.16) 

𝜎𝜃 = 𝜎𝑥 sin2 𝜃 + 𝜎𝑦 cos2 𝜃 + 𝜏𝑥𝑦 sin 𝜃 cos 𝜃 (3.17) 
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Figure 27: K-Matrix visualization in the polar form generated using hertzian contact mechanics and integration of the 

pressure equations in the polar form. 

In addition to the alterations to the K-matrix, there is evidence behind the convolutional 

kernels used in STREAL contributing to erroneous operation within the algorithm. 

According to Kim et al., there exist differences in the outputs when convolving images in 

the polar system and in the Cartesian system, and the use of polar images with kernels 

developed for use with Cartesian images may produce unexpected or erroneous results [66]. 

This is due to inconsistencies in kernel weights in the polar system, as the divergence in 

spacing between the radial rows of data is unequally spaced as the kernel travels along the 

image. An example of this is seen in Figure 28. 
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Figure 28: Image convolution of a miss matched polar kernel with Cartesian image [66]. This shows that the weighting 

of the kernel must change due to the change in the coordinate system. 

Where the image on the left shows that the polar kernel is being utilized on a Cartesian 

image with inconsistency in kernel weight as it progresses through the image. The right 

image shows the opposite scenario, where the kernel is unfit to capture the polar data 

effectively through its equal weighing, even as the image becomes inconsistently spaced in 

the radial direction. This same principle can be applied to the polar data captured by the 

TRUS probe, where convolution of this data in the polar form with a Cartesian image kernel 

will result in incorrect weighting and processing of the input data. 

To remedy this a polar version of the Laplacian and finite difference kernels utilized in the 

STREAL functionality would have to be re-worked into appropriate polar versions of the 

kernels. This would involve computing the numerical solution to the Laplacian of Gaussian 

and determining the appropriate size of filter to use in STREAL with the input data. 

Additionally, the finite difference kernel needs to be altered to consider the changing angle 

of the radial lines for each successive RF row when computing the finite difference along 

lateral scan lines.  

3.6 Results and Comparison to AM2D Polar 

To show the improvements of STREAL the polar estimates from AM2D were converted to 

Cartesian data displacements, and the output results were compared to those of AM2D, for 

both the in silico and TMP data sets. The STREAL output from the simulated data set can 

be seen in Figure 29, and the output results from the TMP data set are seen in Figure 30. 
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Figure 29: In silico results from the refinement algorithm STREAL. Showing the radial and angular direction 

displacements and strains. 

From the initial B-Mode images, the prostate capsule is at the center of the image, with the 

background material present on both the pre- and post-compression images. Looking at the 

results in the radial direction, the improvement in clarity for the displacements experience 

by the prostate capsule and background material is minimally improved over AM2D. 

Improvements in AM2D are largely attributed to AM2D providing good sub-pixel 

estimates for the radial direction. However, the strain image is greatly improved, especially 

for the tissue outside of the prostate capsule where much of the noise is removed and the 

image is smoothed from the Laplacian filtering and strain compatibility enforcement. The 

angular direction displacements and strain are both improved in comparison to the outputs 

from AM2D. The strain image from AM2D showed mostly noise in the image, whereas the 

refined image is smoothed, and the prostate capsule can begin to be seen at the center of 

the image. 
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With the visual results displayed, it is also possible to determine the MSE value between 

the computed values and the ground truth values from the FEA model. The computed MSE, 

as well as the % change in error between the AM2D MSE results is seen in Table 14. 

Table 14: The MSE values from AM2D and STREAL, produced from the output displacements and strains. 

From Table 14 both the displacement in the radial and angular direction has small 

differences, with the radial direction being slightly better than the AM2D results, and the 

angular displacement improving by about 40%. The small change in radial displacement is 

expected, as AM2D focuses primarily on estimating and improving the radial direction 

through its DP and minimization process as outlined in Chapter 3.2. Enhancements in 

displacements along the lateral direction achieved with STREAL can be attributed to the 

application of tissue mechanics that permit finer estimation of sub-pixel displacement and 

promote smoother results. This creates a smoother image for the displacement, and the 

strain. The largest improvement is the angular strain, where the improvement gained is just 

over 59%. This improvement in both the radial and angular directions is important for using 

the resulting strain calculation in other algorithms, such as iterative reconstructive 

algorithms which require a strain map for stiffness reconstruction. Overall STREAL can 

maintain, or greatly improve the results provided by AM2D, and can provide high quality 

strain images for use as a diagnostic tool or in reconstructive algorithms which provide 

further insight about prostate tissue health. Additionally, the Cross Correlation scores are 

calculated between the STREAL outputs and the ground truth FEA model to determine the 

improvement over the AM2D outputs and are shown in Table 15. 

 

AM2D MSE STREAL MSE % Improvement 

Radial 

Displacement 
888.59 Radial Displacement 843.55 5.07 

Radial Strain 918.42 Radial Strain 543.33 40.84 

Angular 

Displacement 
1632.30 Angular Displacement 756.02 53.68 

Angular Strain 1690.55 Angular Strain 691.27 59.11 
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Table 15: Cross Correlation scores from the in silico Data for AM2D and STREAL. 

The improvement for each of the radial and angular components is seen in the right most 

column of Table 15. Angular displacements and strain have the most improvement with 

STREAL while the radial direction has only minor improvement over the AM2D results. 

This is expected as STREAL aims to impose the mechanical properties of the tissue to 

better smooth and calculate the strains. AM2D does this well for the radial direction, 

applying the subsample analytic minimization method, but is weaker in the angular 

direction as AM2D does not compute the angular directions subsample displacements to 

reduce computational time. The improvement in the cross correlation shows that the outputs 

from STREAL are highly correlated to the ground truth found in the FEA model and 

provide a good indication of the tissue displacements and strains within the prostate.  

In Figure 30, which illustrates results of the TMP case, the radial and angular displacements 

have been greatly smoothed when compared to the AM2D outputs due to the 

incompressibility and Laplacian smoothing. The displacement fields are also used in tissue 

strain measure calculation, as the strain is a finite difference of the displacements calculated 

through convolution with a difference kernel. Looking at the strain images, some of the 

information around the edges of the image is lost during the calculation of the initial 

estimate displacement in AM2D when the outer lines on either side of the image are skipped 

to down sample the data. In addition, data is lost for each RF data row as calculating the 

edge values using convolution without padding will result in a smaller output matrix. This 

loss of information is acceptable for this case as the area of interest is usually centered 

during data collection. The B-Mode image is displayed during data acquisition to enable 

the correct placement of the transducer. With this loss of information, the prostate capsule 

AM2D STREAL % improvement 

Radial Displacement 0.83 Radial Displacement 0.87 4.82 

Radial Strain 0.84 Radial Strain 0.89 5.95 

Angular 

Displacement 

0.68 Angular 

Displacement 

0.78 14.71 

Angular Strain 0.65 Angular Strain 0.80 23.08 
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Figure 30: TMP outputs from STREAL refinement showing the radial displacement and strain, and angular direction 

displacement and strain. 

moves closer to the top of the image, as seen in the radial strain reconstruction, where the 

dark patch can be seen as the lower strain foam inclusion, compressed less than the gelatin 

background. Looking at the angular strain the image is smooth and is no longer noisy as 

seen in the AM2D output in Chapter 3.3. This increased smoothness is desired, as this 

output strain image is used to iteratively reconstruct other material parameters, that are 

outlined in the following chapter, where any errors within the strain image can lead to 

erroneous results being propagated throughout the reconstructed images. 

To further test the capabilities of AM2D and STREAL a clinical study should be performed, 

where data is obtained from patients with known carcinoma. Clinical studies will allow the 

system to be tested on cancer tissue specific material properties and additional artifacting 

resulting from clinician or patient movement during the procedure. Testing the robustness 

of the system on the real, imperfect data will allow for a greater understanding of the 
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capabilities of AM2D’s estimations, and STREAL’s ability to refine these results in usable 

images and data sets. 
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Chapter 4 

4 Poisson’s Ratio Image Reconstruction 

Upon obtaining the displacement and strain measurements from the USE pairing, it is 

possible to reconstruct the tissue's properties, including strain and stiffness. An iterative 

approach using FEA is used to compute the tissue properties allowing for the stiffness to 

be estimated for each pixel in the output image. This method is universally accepted and 

used in a variety of USE methods; however, it can be improved by calculating additional 

material properties such as Poisson’s ratio. This reconstruction method utilizes the same 

iterative process in a FEA solver to converge to a solution for the Poisson’s ratio. The 

Poisson’s ratio calculation allows the Shear Modulus to be determined which provides 

imaging of the tissue with a complete view of the stiffness and incompressibility. Shifts in 

Poisson’s ratio and Shear Modulus are two indicators of abnormal tissue within the prostate. 

4.1 Stiffness, Poisson’s Ratio and Shear Modulus Imaging 

To further enhance the image output, both the Poisson’s ratio and the shear modulus are 

determined from the stiffness calculation. The Poisson’s ratio is described as the ratio 

between the transverse strain and the lateral strain, as seen in Equation 4.1. 

Using the 2-dimenesional Hooke’s law, the directional components can be calculated using 

the stresses, strains and Young’s modulus of the material as shown in Equations 4.2 and 

4.3.  

Since the tissue is assumed to be isotropic and linear elastic, the above two υ values can be 

leveraged to obtain a reliable Poisson’s ratio estimate. In Equations 4.2 and 4.3, the stresses, 

𝜎𝑧 and 𝜎𝑥, and Young’s Modulus, E, are iteratively calculated and confirmed against the 

𝜈 = −
𝜀𝑡𝑟𝑎𝑛𝑠

𝜀𝑎𝑥𝑖𝑎𝑙
 (4.1) 

𝜈𝑥 =
𝜎𝑧 − 𝜀𝑧 ∗ 𝐸

𝜎𝑥
 (4.2) 

𝜈𝑧 =
𝜎𝑥 − 𝜀𝑥 ∗ 𝐸

𝜎𝑧
 (4.3) 
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known strains as an error measurement. Iterative stiffness reconstructions are common in 

elastography and have been developed with different algorithms in place [45] [46] [55]. 

Once Equation 4.2 and 4.3 converge to an acceptable result, the Poisson’s ratio image 

reconstruction can be plotted and additional parameters such as the shear modulus 

calculated. The equation to calculate shear modulus is included as Equation 4.4, 

where G is the shear modulus, E is the Young’s Modulus, and 𝜈 is Poisson’s ratio. The shear 

modulus is used to describe a material’s ability to resist motion in the shear plane, and for 

tissue mechanics of organs this can provide additional information pertaining to the tissue 

that may be used as extra pathological signature. In other words, Poisson’s ratio and shear 

modulus provide additional information on the tissue mechanics present in the image data 

and provides another option in diagnosing malignant tissue within the prostate, or other 

tissues that are imaged using ultrasound. 

An iterative FEA process can be used to calculate more tissue mechanic properties. Using 

the strains and displacements as a ground truth for the iterative process, the stress and 

Poisson’s ratio are calculated in the tissue. If the estimated strain is close to the ground truth 

strain from STREAL, then the system has converged, and the process is terminated. A flow 

chart of this exact process can be seen in Figure 31. 

 

Figure 31: Flow chart of the FEA Poisson's ratio and Stiffness reconstruction algorithm. This shows the iterative nature 

of the algorithm where the convergence of the system is dependent on the input strains and reconstructed values. 

𝐺 =  
𝐸

2(1 + 𝜈)
 (4.4) 



73 

 

 

4.2 In Silico Poisson’s Ratio Reconstruction 

To conduct the initial investigation into the Poisson’s ratio reconstruction, three in silico 

phantoms were used to ensure that the displacements were known prior to calculating 

material properties such as the strains or stresses. The first phantom is a background 

material with a single large central inclusion, which is referred to as the benign data set. 

The second phantom is a bifocal data set with three inclusions inside a background material. 

The displacements for both phantoms are defined for each point within the phantom to 

ensure that the displacement field is continuous and realistic. These two data sets are 

visualized in in Figure 32. The final data set is the Rivaz Phantom, which is visualized in 

Figure 35. 

 

Figure 32: Visualizations of the meshed FE models used for the Poisson’s ratio reconstruction algorithm. The Benign 

inclusion data set(left) has a single large benign tumor that is highlighted in the image. The Trifocal Data set has three 

inclusions, the two larger inclusions are benign and the smaller central is malignant. 

Where each white point is a coordinate for which a corresponding displacement has been 

determined for both the lateral and axial direction. From the benign data set the strains in 

the axial, lateral, and shear directions are calculated, and used to iteratively calculate the 

Poisson’s ratio and stresses within the phantom. The results from the benign data set are 

seen in Figure 33. 
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Figure 33: Benign Data results, showing the Displacement and strains from AM2D and STREAL, as well as the 

reconstructed Poisson’s ratio, Stiffness and Shear modulus values for the phantom. The central inclusion is easily seen 

in the reconstructed images. 

The Axial and Lateral displacements of the phantom are known prior to the algorithm in 

this phantom case and are seen in Figure 33. The strain in both the axial and lateral direction 

are calculated using a finite difference of the displacements in the relevant direction. These 

strains are then used as confirmation for the iterative FEA solution of the calculated 

stiffness and Poisson’s ratio. The Young’s modulus value ranges from 0.2MPa in the 

background to 0.8MPa inside the singular inclusion. The Poisson’s ratio from the 

reconstructed values, shows a ring of lower compressibility around the central inclusion. 

This ring occurs in the same region as the larger compressive strain seen in the Axial strain 

image. This correlation is described by the relationship between strain and Poisson’s ratio 

where the higher the axial strain in a region of the material, the lower the value of Poisson’s 

ratio. By combining the Young’s modulus and Poisson’s ratio in Equation 4.4, the shear 

modulus is computed. This data’s shear modulus graph trends similarly to that of the 

Young's modulus, with values for tissue shear modulus spanning from 0.05 MPa to 0.25 

MPa and peaking within the inclusion. This response to the applied displacement is a 

dilatational and deviatoric response. As the material is deformed the tissue, acting as a 

dense granular material, tends to expand in its volume as the interlocking and compact state 

of the cells and tissue restricts the ability to move around one another. This leads to the 

increase in volume, often leading to expansion in the out of plane direction of the system. 

Additionally, the deviatoric response of the system shows that the stress induced on the 

system from the transducer displacement will contribute to the change in shape of the tissue 
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and its tendency to try and resist the change in its shape. These two mechanics are seen at 

work in Figure 33 as the benign tumor’s shape remains largely unchanged, as its deviatoric 

response is to resist the change in shape, while the dilatational response is to increase the 

volume as the shear increases, leading to a higher stress value within the tissue and the 

occurrence of out of plane strain that may occur. This can help explain why the displaced 

tissue is able to generate these results during the reconstruction and are evident throughout 

the phantom data sets. The advantage to calculating the Poisson’s ratio and shear modulus 

is not immediately evident in the benign data set as the inclusion is readily seen in all result 

images with the images appearing like one another. The advantages of calculating the 

Poisson’s ratio and Shear modulus of the material can be seen when analyzing the results 

from the bifocal data set, which are illustrated in Figure 34. 

 

Figure 34: The results from the Trifocal phantom data set. showing the Displacement and strains from AM2D and 

STREAL, as well as the reconstructed Poisson’s ratio, Stiffness and Shear modulus values for the phantom. The small 

benign inclusion is easily seen in the reconstructed images along with the two larger malignant tumors. 

In Figure 34 the displacements in both the axial and lateral displacements show the two 

larger inclusions but fail to show the small inclusion located in the central bottom portion 

of the image at all. Calculating the axial and lateral strains, the small inclusion becomes 

visible, but at the cost of producing high and low strain artifacts around the inclusions, 

which may be mistaken for malignant tissue due to its deviation from the background 

material’s properties. Iterative reconstruction of Poisson’s ratio and Young’s modulus 

provide additional information about the inclusions. The Poisson’s ratio again shows the 
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ring around the inclusions, and as discussed with the benign data set, can demonstrate that 

there is high axial strain present at the boundaries of the inclusions and background 

material, which may be causing out of plane strain to occur, resulting in less calculated 

incompressibility around the edges of the inclusions. Additionally, the Young’s modulus 

shows that the areas of strain that deviate from the average tissue strain in the axial and 

lateral directions are not caused by an increase in stiffness typically associated with 

malignant tissue. Finally, the Shear modulus is the fusion of the Poisson’s ratio and the 

Young’s modulus and combines the increased smoothness of the Young’s modulus and the 

easily identifiable outlining of the inclusions within the background material. Noting that 

benign lesions tend to have small degree of bonding with background tissue compared to 

malignant tumors, the shear modulus of the ring area can be essentially used as valuable 

diagnostic information to distinguish benign lesions from malignant tumors.   

To show the potential of Poisson’s ratio reconstruction a FE model created by Rivaz et al. 

[39] was used as an initial data set to show the outputs of the reconstruction that can be 

compared against values calculated from the Abaqus FEA. The Rivaz Phantom consists of 

isotropic and homogeneous background and central circular inclusion. The model is 

meshed using triangular plane stress elements for both the inclusion and background. The 

inclusion in the background material is assigned material properties to that of blood. While 

not following a cancer model, the phantom allows for differing incompressibility to be 

modeled and will utilize a compressibility value of 0.49 for the central inclusion, 0.48 for 

the background, and sets the stiffness to be 40 kPa for the inclusion and 20 kPa for the 

background [39]. The meshed phantom can be seen in Figure 35. A contact is simulated 

between a transducer and the model such that the material is deformed under the contact 

load. 
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Figure 35: The FE mode used to generate the displacement and strain data for use in the Poisson’s ratio reconstruction 

algorithm. The model consists of a background material and the inner inclusion mimicking a blood vessel where the 

incompressibility is high. 

Processing the displacement initially with AM2D and STREAL allow for the generation of 

the refined strain field, which is visualized in Figure 36. 

From the strains the reconstruction algorithm is initiated, and the Poisson’s ratio and 

stiffness are iterative calculated using Abaqus FEA. The Shear modulus is then directly 

calculated from these values using Equation 4.4 as done previously. The results of the 

reconstruction are seen in Figure 37. 
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Figure 36: The displacements and strains of the Rivaz phantom. The original estimates were calculated using AM2D 

and then refined using STREAL. The strains will be used as a convergence check for the reconstruction algorithm. 

 

Figure 37: The Reconstruction results showing the Poisson's ratio (Left), Stiffness (center) and Shear modulus (Right) 

The results show that the Poisson’s ratio shows that the central inclusion has a Poisson’s 

ratio of approximately 0.48, while the background has a Poisson’s ratio closer to 0.47. The 

Young’s modulus and Shear modulus both show similar patterns, with the inclusion having 

a higher value for the stiffness and shear modulus in comparison to the background 

material. This is also consistent with the FEA model as the background materials stiffness 
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is set to 20 kPa and the inclusion to 50 kPa in the FEM. The reconstruction shows that it 

can generate results within the expected range of values for the stiffness consistently. The  

4.3 Tissue Mimicking Phantom Results and Discussion 

Moving beyond the in silico data sets and utilizing the TMP outlined in Chapter 3, this 

iterative reconstruction can be tested on more realistic data. The data collection required 

scanning the TMP with a TRUS probe from the Ultrasonix RP scanner, which utilized the 

Ultrasonix BPC8-4/10 side-fired TRUS probe. This transducer is designed to image internal 

organs, such as the prostate, and therefore has a small, curved array that allows for internal 

imaging and data collection during a quasi-static TRUS procedure.  

Data collected from the TMP and US probe seen in Chapter 3 is used as the basis for the 

reconstruction algorithm, with the initial displacements calculated by AM2D Polar, and 

refined using the STREAL algorithm. The B-mode images of the pre- and post-compression 

images, the radial displacement and strain, and the angular displacement and strain, are 

seen in Figure 38. As in Chapter 3, the displacements and strains display some information 

about the inclusion, which can be seen in the lower center of the strain images. While the 

strain images provide information proving that the strain is lower throughout the foam 

inclusion, they do not provide information about the overall stiffening of the tissue, an 

indication of cancer, especially in the prostate.  
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Figure 38: Radial displacement and strain, and angular displacement and strain found with AM2D and refined by 

STREAL that will be used to calculate the Poisson's ratio and Material Stiffness. 

Using the FEA iterative process to calculate the stiffness and Poisson’s ratio, will yield the 

results seen in Figure 39. Using the information from this process, the shear modulus is 

also calculated. 

 

Figure 39: The Poisson's ratio, Young's modulus and shear modulus of the TMP. 

From the Poisson’s ratio reconstruction, the foam inclusion has a higher compressibility 

than that of the background material. There are some areas of lower Poisson’s ratio seen at 
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the edges of the image, which can be attributed to slippage in the gelatin used for the TMP. 

Gelatin slippage induces the appearance of a greater strain as the material is displacing 

much more than under non-slipping conditions. Looking at the Young’s modulus 

reconstruction of the TMP the foam inclusion is seen in the large section of low stiffness, 

in the lower center of the image. The minimum value for this section is 17.29 kPa with the 

highest value occurring in a small section shown as a yellow dot in the lower left corner of 

the image, with a value of 66.82 kPa. This value for the gelatin lies just under the expected 

stiffness of the gelatin and may be caused by noise that was propagated through AM2D and 

STREAL’s calculation of the strains and displacement field. To eliminate this noise from 

the system, additional smoothing or constraints can be placed on the outputs of STREAL 

to ensure that points that lie outside the expected tissue range are normalized. Using the 

Young’s modulus values, and Poisson’s ratio with Equation 4.4, the shear modulus is 

calculated for each point in the image. The shear modulus uses the Poisson’s ratio along 

with the Young’s modulus to show a detailed view of the stiffness and compressibility of 

the tissue in one image. The Shear modulus shows the high spot in a much larger area and 

shows a gradient of stiffness around the bounding edge of the inclusion, that is not seen in 

the Young’s modulus reconstruction. Shear modulus shows additional high spots towards 

the center of the image, that are not present in either the Poisson’s reconstruction or the 

Young’s modulus reconstruction. The fusion of the data sources can highlight previously 

hidden changes in stiffness which aid in the diagnosis of stiffened cancerous prostate tissue. 

The reconstruction algorithms proposed iteratively refine the stresses and incompressibility 

of the imaged tissue. The additional tissue mechanic information calculated with this 

method improves the visibility in the resultant images of areas with material properties that 

indicate malignant tissue. This process, while slightly more time consuming in comparison 

to the displacement and strain calculations computed in AM2D and STREAL, provides 

data that can be fused to calculate the shear modulus of the tissue, which allows for another 

source of information available in diagnosis of problematic tissue.  
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Chapter 5 

5 Conclusion and Future Work 

The implementation of USE achieves enhanced prostate cancer diagnostics, offers high 

precision, specificity, and reduced time expenditure. The growing application of 

displacement tracking algorithms like AM2D and STREAL represents a significant 

advancement within the field of USE. These algorithms, building upon the basic 

foundations of tissue tracking with DP and analytic minimization, enforce realistic tissue 

properties and regularization to improve results. Incorporating additional post-processing 

to calculate tissue properties such as stiffness, incompressibility, and shear modulus 

enhances the visibility of cancerous tissue within the prostate.  

Employing in silico data to evaluate displacement data algorithms offers a powerful and 

accurate method of determining the error between an estimated output and a known ground 

truth. Field-ii uses a mathematically derived solution for the spatial impulse response of a 

field to generate accurate and realistic RF data from a bitmap image. Researchers can use 

this data generation to construct RF data with any inclusion or anatomy that may be 

observed during US imaging. By utilizing an FEA model to calculate tissue displacements 

on realistic geometry, it is possible to quantify and store this data for use in the Field-ii 

software, generating a compressed data set. Post-compression data combines pre-

compression data and the known displacement field. The in silico validation data sets 

consistently depict the prostate capsule within a background environment, with an 

equivalent quantity of scattering agents present in both the input and output images. 

By using Field-ii to develop in silico data sets, it is possible to create realistic data sets 

using images or matrices containing image information. This system can produce and 

process several realistic scans for use in developing new displacement tracking algorithms 

without the need for a real US machine, thus lowering the entry cost into USE. Field-ii 

allows for any number of inclusions, image artifacts, or material types depending on the 

image data created and supplied to the algorithm. This again allows for the creation of low-

cost realistic data. As Field-ii employs single line acquisition for the simulated data sets, it 

takes a considerable amount of time to complete the simulation. Further adaptations can be 
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made to the parallel computer implementations, or the number of scatterers supplied to the 

calculation algorithm reduced to decreased computation time. In parallel computing, the 

entire set of scatters is dispatched to each algorithm call for calculation, with several threads 

simultaneously processing the lines in parallel instead of one after the other. This provides 

the opportunity to increase the speed of data acquisition and can provide researchers with 

larger quantities of datasets. An alternative to parallel computing is the reduction in the 

number of scatters sent to the calculation algorithm. The reduction in scatters means that a 

smaller number of matrix calculations will need to be done for each line in the acquisition, 

leading to an increase in calculation speed. The number of scatters can be reduced based 

on the size of the beam focus and the overall field of view of the transducer. An analysis 

would be required to determine the minimal percentage of scatters to send, while still 

maintaining high quality data acquisition. It may also prove useful to conduct a study on 

the quality of the data when both the parallel computing and minimal scatter calculation 

speed improvements are applied for the purpose of generating curved transducer data sets. 

In addition to the data generated by Field-ii, a real TRUS probe was utilized to generate RF 

data. Researchers created a TMP using gelatin and foam to form a background material 

with an accurately sized prostate capsule to accomplish this. This phantom utilizes silica 

beads as a scattering agent. The Ultrasonix RP US system can be utilized with a TRUS 

probe to gather precise RF data by using material that will respond to the produced pressure 

wave. While not having a ground truth as seen in the Field-ii generated data, the TMP is 

valuable as the imaging quality is that of an actual clinical use case, where artifacts and 

lower-quality images are generated. Several different scans of the TMP were taken, with 

both pre-and post-compression datasets being generated. The Phantom study also enables 

the use of materials that have different material properties to that of human tissue. For 

instance, foam can be used as an alternative to animal tissue when completely soaked in a 

saline solution but deviates from human tissue properties as the foam becomes unsaturated. 

This foam with reduced saturation differs from the properties of human tissue as it has more 

compressibility and stiffness. This distinction is valuable for assessing the extent to which 

an algorithm is applicable or able to identify values that are subject to testing. By altering 

the material present in the phantom’s inclusion, different aspects of the algorithm’s 

capability can be studied. The steps outlined for constructing the TMP can be altered such 
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that algorithms, such as the Poisson’s ratio reconstruction, are tested for various attributes. 

Future research may examine the reconstruction algorithm’s usefulness when tissue 

properties are similar, such as when the inclusion and background material are close in 

compressibility or stiffness. The study may explore shortcomings of the algorithm or 

consider limitations that can be addressed with future iterations. 

Following data acquisition with both a ground truth data set and the TMP data, the 

alterations required for AM2D to work with a polar dataset were developed. This process 

involved creating a new cost function that utilized the Taylor series expansion of the data 

term for a polar grid, consistent with the TRUS probes used in clinical prostate 

examinations. The creation of AM2D polar allows for rapid processing of sub-pixel 

displacements for the radial direction and integer values for the angular direction. Results 

for both the in silico and phantom showed a frame rate consistent with real-time scanning, 

allowing for real-time processing of the displacements and strains seen in the tissue. 

Additionally, the quality of the radial direction is consistent with the Cartesian version, 

showing quality radial direction displacement data. However, the angular direction 

displacement and strain data for both the simulated and TMP datasets are low and require 

additional processing to rectify the noisy appearance. 

To address the quality issues in the angular directions and increase the accuracy of the radial 

direction, tissue mechanics are utilized. STREAL, for instance, enforces Laplacian 

filtering, strain compatibility enforcement, and incompressibility in real-time using 

convolutional filtering and matrix operations. This process significantly refines the angular 

direction displacement and strains, reducing the error seen in the simulated data sets and 

increasing the visibility of the prostate capsule in the TMP output images. This practical 

application of STREAL as a powerful tool increases the amount of information available 

to clinicians when diagnosing malignant tumors within the prostate.  

For further information about the tissue health within the prostate, reconstructions of the 

prostate’s stiffness, incompressibility, and shear modulus can be made. Using the FEA tool 

Abaqus, Young’s modulus and Poisson’s ratio can be estimated using the strain images 

generated by STREAL and an inverse relationship between the stiffness and stress in the 

system. Once the iterative process is complete, estimates for Young’s modulus and 
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Poisson’s ratio are imaged. Poisson’s ratio combined with the Young’s modulus is used to 

reconstruct the tissue’s shear modulus, with the potential of showing the amount of shear 

deformation in the tissue around the inclusion due to compressive loading. Assessment of 

this deformation may provide further clues about the abnormal tissue malignancy. 

Continued development of the STREAL and Poisson’s ratio reconstruction algorithms is 

imperative as it holds the potential to improve the accuracy of US scans for prostate cancer 

detection. Clinical trials are needed to ensure that the AM2D polar, STREAL, and Poisson’s 

ratio reconstruction algorithms are suitable to use on clinical data and provide meaningful 

results both for clinicians and for future studies. Validating the results on clinical trials 

requires a lengthy ethical approval process which will ensure that several participants and 

research groups are found and informed of the procedures extent to ensure that a statistically 

significant value is obtained within an ethical study.  

Overall, the development of USE in diagnosing carcinoma and other tissue stiffening 

related malignancies shows the power in creating and improving upon the existing 

algorithms. AM2D provides a useful and fast approximate view of the tissue’s overall 

displacement and strain, while STREAL can refine the results into accurate representations 

of the strain within the tissue. Utilizing the information gathered from AM2D and STREAL 

allows for additional post-processing of the information into new material properties, such 

as the stiffness and incompressibility of the tissue. Fusing these results into the shear 

modulus allows for additional parameters to be gleaned from the tissue displacement 

acquired during the Quasi-static USE procedure. Studying the overall effectiveness of these 

algorithms and expanding on their accuracy and speed will allow for the continued and 

rapid diagnosis of prostate cancer without the need for lengthy acquisition time, such as 

with MRI, or with possible false outcomes, possible in DRE and PSA tests. 
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Appendix A – Field-ii RF Data Generation for Kidney Phantom 

Appendix A1 – Kidney Scatterer Generation 

function [positions, amp] = human_kidney_phantom (N) 
 
    % Load the bitmap image 
     
    [liv_kid, ~]=bmpread('kidney_cut.bmp'); 
     
    % Define image coordinates 
     
    liv_kid=liv_kid'; 
    [Nl, Ml]=size(liv_kid); 
     
    x_size = 100/1000 ;    %  Size in x-direction [m] 
    dx=x_size/Nl;          %  Sampling interval in x direction [m] 
    z_size = 100/1000 ;    %  Size in z-direction [m] 
    dz=z_size/Ml;          %  Sampling interval in z direction [m] 
    y_size = 15/1000;      %  Size in y-direction [m] 
    theta = 0; 
    z_start = 2/1000; 
     
    % Calculate position data 
     
    x0 = rand(N,1); 
    x = (x0-0.5)* x_size; 
    z0 = rand(N,1); 
    z = z0*z_size+z_start; 
    y0 = rand(N,1); 
    y = (y0-0.5)* y_size;  
     
    %  Find the index for the amplitude value 
     
    xindex = round((x + 0.5*x_size)/dx + 1); 
    zindex = round((z - z_start)/dz + 1); 
    inside = (0 < xindex)  & (xindex <= Nl) & (0 < zindex)  & (zindex <= Ml); 
    index = (xindex + (zindex-1)*Nl).*inside + 1*(1-inside); 
     
    % Amplitudes with different variance must be generated according to the the  
    % input map. 
    % The amplitude of the liver-kidney image is used to scale the variance 
     
    amp=exp(liv_kid(index)/100); 
    amp=amp-min(min(amp)); 
    amp=1e6*amp/max(max(amp)); 
    amp=amp.*randn(N,1).*inside; 
     
    %  Generate the rotated and offset block of sample 
     
    xnew=x*cos(theta)+z*sin(theta); 
    znew=z*cos(theta)-x*sin(theta); 
    znew=znew-min(min(znew)) + z_start; 
     
    positions=[xnew y znew]; 
end 
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Appendix A2 – Kidney Ultrasound Data Generation 

%  Generate the transducer apertures for send and receive 
f0=7e6;                  %  Transducer center frequency [Hz] 
fs=100e6;                %  Sampling frequency [Hz] 
c=1540;                  %  Speed of sound [m/s] 
lambda=c/f0;             %  Wavelength [m] 
width=lambda/2;          %  Width of element 
element_height=5/1000;   %  Height of element [m] 
kerf=lambda/10;          %  Kerf [m] 
focus=[0 0 90]/1000;     %  Fixed focal point [m] 
N_elements=128;          %  Number of physical elements 
 
%  Set the sampling frequency 
set_sampling(fs); 
set_field ('show_times', 5) 
 
%  Generate aperture for emission 
xmit_aperture = xdc_linear_array (N_elements, width, element_height, kerf, 1, 5, 
focus); 
 
%  Set the impulse response and excitation of the xmit aperture 
impulse_response=sin(2*pi*f0*(0:1/fs:2/f0)); 
impulse_response=impulse_response.*hanning(max(size(impulse_response)))'; 
xdc_impulse (xmit_aperture, impulse_response); 
 
excitation=sin(2*pi*f0*(0:1/fs:2/f0)); 
xdc_excitation (xmit_aperture, excitation); 
 
%  Generate aperture for reception 
receive_aperture = xdc_linear_array (N_elements, width, element_height, kerf, 1, 5, 
focus); 
 
%  Set the impulse response for the receive aperture 
 
xdc_impulse (receive_aperture, impulse_response); 
 
%   Load the computer phantom 
load pht_data 
 
%  Set the different focal zones for reception 
focal_zones=[5:1:150]'/1000; 
Nf=max(size(focal_zones)); 
focus_times=(focal_zones-10/1000)/1540; 
z_focus=60/1000;          %  Transmit focus 
 
%  Set the apodization 
apo=hanning(N_elements)'; 
xdc_apodization (xmit_aperture, 0, apo); 
xdc_apodization (receive_aperture, 0, apo); 
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Appendix A3 – Phased Array Imaging of the Kidney 

%   Do phased array imaging 
no_lines=128;                  %  Number of lines in image 
image_width=90/180*pi;         %  Size of image sector [rad] 
dtheta=image_width/no_lines;   %  Increment for image 
 
% Do imaging line by line 
for i=1:128 
     
    if ~exist(['rf_data/rf_ln',num2str(i),'.mat']) 
        cmd = ['save rf_data/rf_ln',num2str(i),'.mat i']; 
        eval(cmd) 
         
        %   Set the focus for this direction 
        theta= (i-1-no_lines/2)*dtheta; 
        focalZones = [focal_zones*sin(theta), zeros(max(size(focal_zones)),1),...  
            focal_zones*cos(theta)]; 
        xdc_focus (xmit_aperture, 0, [z_focus*sin(theta) 0 z_focus*cos(theta)]); 
        xdc_focus (receive_aperture, focus_times, focalZones); 
         
        %   Calculate the received response         
        [rf_data, tstart]=calc_scat(xmit_aperture, receive_aperture, ... 
            phantom_positions, phantom_amplitudes); 
         
        %  Store the result 
        cmd = ['save rf_data/rf_ln',num2str(i),'.mat rf_data tstart']; 
        eval(cmd) 
    end 
 
end 
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Appendix A4 – Prostate Ultrasound Data Generation 

function [positions, amp] = human_prostate_phantom (N,BMP_Name) 
     
    % Load the bitmap image preDeformed_crop 
    %[bmpData, ~,~] = bmpread(BMP_Name); 
    [bmpData, ~] = bmpread(BMP_Name); 
     
    % Define image coordinates 
    bmpData = bmpData'; 
    [Nl, Ml] = size(bmpData); 
     
    x_size = 60/1000;     %  Size in x-direction [m] 100/1000 
    dx = x_size/Nl;        %  Sampling interval in x direction [m] 
    z_size = 60/1000;     %  Size in z-direction [m] 100/1000 
    dz = z_size/Ml;        %  Sampling interval in z direction [m] 
    y_size = 5/1000;      %  Size in y-direction [m] 
    theta = 35/180*pi;     %  Rotation of the scatterers [rad] 0 
    theta = 0; 
    z_start = 2/1000;      %  Starting z position [m] 
     
     
    %Calculate position data 
    x0 = rand(N,1); 
    x = (x0-0.5) * x_size; 
    z0 = rand(N,1); 
    z = z0 * z_size+z_start; 
    y0 = rand(N,1); 
    y = (y0) * y_size; 
 
    %Find the index for the amplitude value 
    xindex = round((x + 0.5*x_size)/dx + 1); 
    zindex = round((z - z_start)/dz + 1); 
    inside = (0 < xindex)  & (xindex <= Nl) & (0 < zindex)  & (zindex <= Ml); 
    index = (xindex + (zindex-1)*Nl).*inside + 1*(1-inside); 
     
    %Amplitudes with different variance must be generated according to the input map. 
    %The amplitude of the image is used to scale the variance. 
    amp = exp(bmpData(index)/100); 
    amp = amp - min(min(amp)); 
    amp = 1e6*amp/max(max(amp)); 
    amp = amp.*randn(N,1).*inside; 
 
    %Generate the rotated and offset block of sample. 
    xnew = x*cos(theta) + z*sin(theta); 
    znew = z*cos(theta) - x*sin(theta); 
    znew = znew - min(min(znew)) + z_start; 
 
    positions = [xnew y znew]; 
 
    figure(); 
    scatter(positions(:,1), positions(:,3), 3, amp,"filled"); 
 
end 
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f0 = 7e6;                    %  Transducer center frequency [Hz] 
fs = 40e6;                   %  Sampling frequency [Hz] 
c = 1540;                    %  Speed of sound [m/s] 
lambda = c/f0;               %  Wavelength [m] 
width = lambda;              %  Width of element 
element_height = 10/1000;    %  Height of element [m] 
kerf = width/2;              %  Kerf [m] 
Radius_convex = 25/1000;     %  Convex radius [m] 
focus = [0 0 30]/1000;       %  Fixed focal point [m] 
N_elements = 216;            %  Number of physical elements 
 
%   Set the sampling frequency 
set_sampling(fs); 
set_field ('show_times', 5); 
 
%   Generate aperture for emission 
emit_aperture = xdc_convex_array(N_elements, width, ... 
    element_height, kerf, Radius_convex, 1, 5, focus); 
 
%   Set the impulse response and excitation of the xmit aperture 
impulse_response = sin(2*pi*f0*(0:1/fs:2/f0)); 
impulse_response = impulse_response.*hanning(max(size(impulse_response)))'; 
xdc_impulse(emit_aperture, impulse_response); 
 
excitation = sin(2*pi*f0*(0:1/fs:2/f0)); 
xdc_excitation(emit_aperture, excitation); 
 
%   Generate aperture for reception 
receive_aperture = xdc_convex_array(N_elements, width, ... 
    element_height, kerf, Radius_convex, 1, 5, focus); 
 
%   Set the impulse response for the receive aperture 
xdc_impulse(receive_aperture, impulse_response); 
 
%   Load the computer phantom 
load pht_data 
 
%   Set the different focal zones for reception 
focal_zones = [0:1:60]'/1000; 
Nf = max(size(focal_zones)); 
focus_times = (focal_zones-10/1000)/1540; 
z_focus = 40/1000;          %  Transmit focus 
 
%   Set the apodization 
apo = hanning(N_elements)'; 
xdc_apodization(emit_aperture, 0, apo); 
xdc_apodization(receive_aperture, 0, apo); 
 
%   Do phased array imaging 
no_lines = N_elements; 
image_width = (90/180)*pi;                  %  Size of image sector [rad] 
dtheta = image_width/no_lines;              %  Increment for image 
startLine = 1; 
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for i = startLine:no_lines 
        file_name = ['rf_ln',num2str(i),'.mat']; 
 
        %   Set the focus for this direction 
        theta = (i-1-no_lines/2)*dtheta; 
        focal_zones_x = focal_zones*sin(theta); 
        xdc_focus(emit_aperture, 0, [z_focus*sin(theta) 0 z_focus*cos(theta)]); 
         xdc_focus(receive_aperture, focus_times, ... 

           [focal_zones*sin(theta) zeros(max(size(focal_zones)),1)... 
                focal_zones*cos(theta)]);  
 
 
        % calculate the received rf signals 
        [rf_data, tstart] = calc_scat(emit_aperture, ... 
            receive_aperture, truncated_positions, truncated_amplitudes); 
         
        %  Store the result 
        save(path + file_name, 'rf_data', 'tstart', '-mat'); 
         
end 
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Appendix B – TMP Data processing and Quality Analysis 

Appendix B1 – Open and Process RF Data Frames 

 
[header, ~] = readRFframe(path, filename, upSample, frameN); 
 
% process all frames into matlab data files 
for i=1:header.frames 
    [~, RFframe] = readRFframe(path, filename, upSample, i); 
 
    Im = RFframe(:,:); 
    Name = "TRUS_Pre_" + i + ".mat"; 
    save(path + '\' + Name,"Im",'-mat'); 
 
end 
 
function [header, RFframe] = readRFframe(path, filename, upSample, frameN) 
% Author: Reza Zahiri Azar, March 2008, University of British Columbia 
 
fid = fopen(path + '\' + filename, 'r'); 
% pars the file name for info 
hdr = fread(fid, 19, 'int32'); 
header = struct(  'type', {hdr(1)}, ... 
                    'frames', {hdr(2)}, ... 
                    'width', {hdr(3)}, ... 
                    'height', {hdr(4)}, ... 
                    'samplesize', {hdr(5)}, ... 
                    'upperleftx', {hdr(6)}, ... 
                    'upperlefty', {hdr(7)}, ... 
                    'upperrightx', {hdr(8)}, ... 
                    'upperrighty', {hdr(9)}, ... 
                    'bottomrightx', {hdr(10)}, ... 
                    'bottomrighty', {hdr(11)}, ... 
                    'bottomleftx', {hdr(12)}, ... 
                    'bottomlefty', {hdr(13)}, ... 
                    'probe', {hdr(14)}, ... 
                    'txfrequency', {hdr(15)}, ... 
                    'samplefrequency', {hdr(16)*upSample}, ... 
                    'framerate', {hdr(17)}, ... 
                    'linedensity', {hdr(18)}, ... 
                    'extra1',{hdr(19)},... 
                    'upSamp', upSample); 
 
nLines   = header.width;       % number of lines 
lLength  = header.height;      % length of each line in samples 
% jump to the frame 
frameTagSize = 4;               % There is a 4 byte frame index for each frame 
fseek( fid, (frameN-1) * ( frameTagSize + nLines *  lLength * header.samplesize/8), 
'cof'); 
 
% read the frame 
disp( fread(fid, 1, 'int32') );   % read the frame index 
% up sample as well if requested 
RFframe       = resample( fread(fid, [lLength, nLines], 'int16' ) , 
header.upSamp,1,4);   % the actual frame 
fclose(fid); 
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Appendix B2 – Data Analysis Algorithm 

for k = 1:numPreFolders 
    for l = 1:numPostFolders 
        preFolder = k; 
        postFolder = l; 
        bestCorrScore = -1.01; % just below lowest correlation score 
        bestMSEScore = 100000; % arbitrary high number 
        bestCombinedScore = 100000; 
        bestCorrScoreIms = [0, 0]; % index markers for best scores 
        bestMSEScoreIms = [0, 0]; 
        bestCombinedScoreIms = [0, 0]; 
         
        % automatically gets number of files from path 
        a = dir(fullfile(pathPre, '*.mat')); 
        endingValPre = numel(a); 
 
        b = dir(fullfile(pathPost, '*.mat')); 
        endingValPost = numel(b); 
 
        for i = 1:endingValPre 
            for j = 1:endingValPost 
                preFrame = i; 
                postFrame = j; 
                Im1 = load(pathPre + '\' + filenamePre + i + ".mat"); 
                Im1 = Im1.Im; 
                Im2 = load(pathPost + '\' + filenamePost + j + ".mat"); 
                Im2 = Im2.Im; 
 
                if size(Im2,1) ~= size(Im1,1) | size(Im2,2) ~= size(Im1,1) 
                    Im2 = resize(Im2, size(Im1)); 
                end 
 
                [radial, angular, ~, ~] = AM2D_func(Im1, Im2, B_mode, AM2D_params); 
                [corr_score, MSE_score, combined_score] = AssessDataQuality(Im1, ... 
                    Im2, radial, angular); 
                if corr_score > bestCorrScore 
                    bestCorrScore = corr_score; 
                    bestCorrScoreIms = [i j]; 
                end 
         
                if MSE_score < bestMSEScore 
                    bestMSEScore = MSE_score; 
                    bestMSEScoreIms = [i j]; 
                end 
                 
                if combined_score < bestCombinedScore 
                    bestCombinedScore = combined_score; 
                    bestCombinedScoreIms = [i j]; 
                end 
                allScores(count, :) =  [preFolder postFolder preFrame postFrame  
                    combined_score corr_score MSE_score]; 
                count = count + 1; 
            end 
        end 
    end 
end  



102 

 

 

function [corr_score, MSE_score, combined_score] = AssessDataQuality(frame1, frame2, 
...axial_displacement, lateral_displacement) 
 
    inverse_func = @(xy) reverse_displacement([xy], axial_displacement, 

 lateral_displacement); 
    forward_func = @(xy) apply_displacement([xy], axial_displacement,  

lateral_displacement); 
     
    tform = geometricTransform2d(inverse_func, forward_func); 
    regenerated = imwarp(frame1, tform); 
    regenerated = resize(regenerated,size(frame2),"Side","trailing"); 
     
    corr_score = dot(frame2(:)/norm(frame2(:)), regenerated(:)/norm(regenerated(:))); 
    MSE_score = sqrt(mean((frame2 - regenerated).^2,"all"))/mean(abs(frame2),"all"); 
    combined_score = (1 - corr_score) + MSE_score; 
 
end 
 
function out = reverse_displacement(xy, axial_displacement, lateral_displacement) 
 
    out = zeros(size(xy)); 
    axRes = size(axial_displacement,1); 
    latRes = size(axial_displacement,2); 
    [X,Y] = meshgrid(linspace(0.5,latRes+0.5,latRes),linspace(0.5, axRes+0.5, 
axRes)); 
 
    axial_displacements = interp2(X,Y,axial_displacement, xy(:,1), xy(:,2), "cubic"); 
    axial_displacements(isnan(axial_displacements)) = 0; 
 
    lateral_displacements = interp2(X,Y,lateral_displacement, xy(:,1), xy(:,2), 

 "cubic"); 
    lateral_displacements(isnan(lateral_displacements)) = 0; 
 
    out(:,2) = xy(:,2) - axial_displacements; 
    out(:,1) = xy(:,1) - lateral_displacements; 
 
end 
 
function out = apply_displacement(xy, axial_displacement, lateral_displacement) 
 
    out = zeros(size(xy)); 
    axRes = size(axial_displacement,1); 
    latRes = size(axial_displacement,2); 
    [X,Y] = meshgrid(linspace(0.5,latRes+0.5,latRes),linspace(0.5, axRes+0.5, 

 axRes)); 
 
    axial_displacements = interp2(X,Y,axial_displacement, xy(:,1), xy(:,2), "cubic"); 
    axial_displacements(isnan(axial_displacements)) = 0; 
 
    lateral_displacements = interp2(X,Y,lateral_displacement, xy(:,1), xy(:,2), 

 "cubic"); 
    lateral_displacements(isnan(lateral_displacements)) = 0; 
    out(:,2) = xy(:,2) + axial_displacements; 
    out(:,1) = xy(:,1) + lateral_displacements; 
end  
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Appendix B3 – User-defined Optimization Algorithm 

function [best_alfa, best_beta, best_gamma] = AM2D_Param_finder(Im1, Im2, params) 
    lr_radial = 1/10; % learning rates for paramter growth 
    lr_angular = 1/10;     
    iter = 1; 
    max_iter = 50; 
    patience_count = 5; 
    patience = true; 
    best_score_radial = 100000; % arbitrary large numbers 
    best_score_angular = 100000; 
    B_mode = 0; 
    IRF = [params(1,1) params(1,2)]; 
    IA = [params(1,3) params(1,4)]; 
    alfa_DP = params(1,5); 
    midA = (size(Im1,2)/2); 
    curr_alfa = params(1,6); 
    curr_beta = params(1,7); 
    curr_gamma = params(1,8); 
    T = params(1,9);  
    a_t = params(1,10); 
    f_0 = params(1,11); 
    f_s = params(1,12); 
    max_depth = params(1,13); 
    FoV_angle = params(1,14); 
    num_a_line = params(1,15); 
     
    while (iter < max_iter) && (patience == true) 
        AM2D_params = [IRF, IA, alfa_DP, curr_alfa, curr_beta, curr_gamma, T, a_t,  

f_0, f_s, max_depth, FoV_angle, num_a_line]; 
        [radial, angular, strain1, strain2] = AM2D_func(Im1, Im2, B_mode, 

 AM2D_params); 
        [corr_score, MSE_score, combined_score] = AssessDataQuality(Im1, Im2, radial, 

 angular);     
        if combined_score < best_score_radial 
            best_score_radial = combined_score; 
            best_alfa = curr_alfa; 
            patience_count = 5; 
        end 
        if MSE_score < best_score_angular 
            best_score_angular = combined_score; 
            best_beta = curr_beta; 
            best_gamma = curr_gamma;     
            patience_count = 5; 
        end 
        curr_alfa = curr_alfa + ((lr_radial)*curr_alfa); 
        curr_beta = curr_beta + ((lr_angular)*curr_beta); 
        curr_gamma = curr_gamma + ((lr_angular)*curr_gamma);     
        iter = iter + 1; 
        patience_count = patience_count - 1; 
        if patience_count <= 0 
            patience = false; 
        end     
    end 
end 
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Appendix B4 – Strain Calculation from AM2D displacements 

function [rad_strain, ang_strain] = finite_diff_strain(Radial_displacement, 
Angular_displacement, max_depth, FoV_Angle, num_a_line) 
    %Finite_diff_strain Uses the finite difference between two points in the 
    %displacement estimations. Difference is between either rows for radial 
    %strain, or columns for angular strain 
     
    rad_strain = zeros(size(Radial_displacement)); 
    ang_strain = zeros(size(Angular_displacement)); 
 
    num_Rows = size(Radial_displacement,1); 
    num_Columns = size(Radial_displacement,2); 
 
    dTheta = FoV_Angle/(num_a_line-1); 
    dRadius = max_depth/size(Radial_displacement, 1); 
 
    for i = 1:num_Rows - 1 
        for j = 1:num_Columns 
            %if Radial_displacement(i+1, j) ~= 0 
                diff = (Radial_displacement(i, j) - Radial_displacement(i+1, j)); 
                rad_strain(i, j) = diff; 
            %end 
        end 
    end 
    rad_strain = rad_strain * (1/dRadius); 
     
    for i = 1:num_Rows  
        for j = 1:num_Columns - 1 
            if Angular_displacement(i, j+1) ~= 0 
                diff = Angular_displacement(i, j + 1) - Angular_displacement(i, j); 
                ang_strain(i, j) = diff; 
            end 
        end 
        dArc = (57 + i) * dTheta; 
        ang_strain(i,:) = ang_strain(i,:) * (1/dArc); 
    end 
 
end 
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