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Abstract

In the biological world, many interactions exist between various species. These interactions

generally consist of predator-prey relationships, competition between species and benefi-

cial relationships. One observed phenomenon, termed the fear effect, occurs when one

species reacts to an increased risk of predation by another species. The fear response causes

the affected species to reproduce and forage for food less. In some cases, the fear response

can be beneficial, while in other times it can be harmful. In this thesis, we consider a four-

compartment food-chain model in which there exists a top-level predator, a mesopredator

and two types of prey who directly compete with one another. The model accounts for each

lesser species’ fear response to the next highest one. We aim to examine how competition

and the fear effect can work together to adjust the structure of the food chain. We used

some standard techniques of dynamical systems to glean some results about the long-term

dynamics of the system. We found that the fear response and competition effects can play

an important part in the long-term dynamics of the system and cause a restructuring in the

food chain itself.

Keywords Predator-prey models, competition models, ordinary differential equa-

tions, systems of ordinary differential equations, mathematical biology, fear effect, fear

response, food chains, intraguild predation models.

ii



Summary for Lay Audience

When we consider species in the natural world, one topic that may be of interest is how

species and animals interact with each other and their environment. There are three basic

interaction types termed predation, competition and mutualism. Predation occurs when

a member of one species eats a member of another species. Competition occurs when

individual entities fight among the same species, or other species for some sort basic needs

which are required for sustenance. Competition can have a negative effect. Mutualism

occurs when one species interacting with another has a beneficial or helpful effect. This

usually culminates when both species are coexisting peacefully, and their interactions are

mutually beneficial. An interesting biological result shows that the threat of predation can

have an indirect effect on prey. This phenomenon is known as the fear effect. Put simply,

when a species is being eaten more by a predator, or when a species perceives an increased

likelihood of being eaten, it will trigger a self-preservation response driven by fear. The

fear response manifests itself as the species at risk reproducing less and foraging for food

less, thus reducing its interaction with predators. This response can have a beneficial effect,

although if too strong a response occurs, it can significantly reduce the population of the

affected species. We can use a food chain to represent the various interactions between

species. It is possible to devise mathematical models that encode the details of a food chain.

We can use these models to study the long-term effects of the various sorts of interactions.

In our model, we study the long-term behaviours of a specific food chain model. The food

chain consists of a top predator which predates on a mid-level predator who in turn predates

on two distinct types of prey. Both preys are in direct competition with each other, and our

model accounts for the fear response driven by the next highest member on the food chain.

We were able to study the long-term behaviours of this system and study how competition

and the fear effect could impact the structure of the food chain.
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Epigraph

”Competition is a sin.”

—John D. Rockefeller
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I would like to dedicate this work to my predecessors. Their derivation of useful theorems

sure makes my job a lot easier.
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Chapter 1

Introduction

1.1 Population Dynamics of Interacting Species

The usage of differential equations in mathematical biology to study population dynamics

is nothing new, nor an exact science given the countless different modelling approaches.

One common application is the study of dynamics of a hierarchical relationship between

predator and prey. We’ve all heard of the classic rabbits and foxes scenario, and could

easily think of countless others. One such model is the well-known Lotka-Volterra equa-

tions. This famous model has served, and still serves as a useful frame work for building

predator-prey models in the literature. As discussed in [12] the original model was devel-

oped separately by A.J. Lotka and V. Volterra during the 1920s. Volterra showed that the

equations admit periodic solutions. In the context of population dynamics, this explains

certain boom-and-bust cycles one sees in predator-prey systems. In [13], Lotka presents

the classic model. In his analysis, he proposes the model:

dNi

dt
= Ni Fi(N1,N2,N3, ...,Ni), i = 1, 2, 3, ..., (1.1)
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where Ni describes the density of each species in the model, Fi describes the per-capita

growth rate, and t represents the time variable. By choosing a suitable Fi function, this

model can serve as a framework to describe population dynamics of interacting species.

Predator-prey interactions, competition and mutualism can all be encoded into a suitable

Fi function. The basic Lotka-Volterra framework has been extensively covered in the liter-

ature, including the books [5], [1], [8], [4].

1.2 Predator-Prey Models

The general Lotka-Volterra equation can be used to represent a whole host of predator-

prey interactions. The most basic form is the special case where i = 2, studied by Lotka

and Volterra. Lotka suggests the scenario could be used to describe a plant and herbivore

relationship, i.e. a specific predator-prey relationship. It is proposed that the rate of change

of each Ni is given by the benefit minus the cost affecting each Ni. This leads to the

equations:

dN1

dt
= N1(a1 − b1N2),

dN2

dt
= N2(a2N1 − b2),

(1.2)

where a1 describes the benefit to N1, and b1 describes the cost to N1 by interacting with

N2. a2 describes the benefit N2 gains by interacting with N1 and b2 describes the costs

affecting N2. When thinking about the possible equilibria, there are four possible cases.

These are extinction, two forms of invasion and coexistence. (1.2) only has two possible

solutions eliminating the invasion cases. The equilibria consist of an extinction case and

a coexistence case. Lotka goes on to show that the extinction case is unstable for positive

model parameters. It is then shown that the coexistence equilibrium is a center, and so

admits periodic solutions.

The basic idea of describing the dynamics by weighing the costs and benefits is a common
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theme in many subsequent models developed. The basic Lotka-Volterra model considers

the general cost-to-benefit value to be described as rate in minus rate out. In a more re-

cent paper, [17], the authors approach the cost and benefit problem by assigning a single

constant to represent the total effects of cost and benefits respectively. They devise a ratio-

based method to measure the effect of cost compared to benefit.

Various extended forms of the basic Lotka-Volterra model exist which will be briefly dis-

cussed in this section. One of the more common modifications to the basic Lotka-Volterra

model is to define some functions which describe the birth-rate and predator-prey interac-

tions. Chapter 2.4 in [5] talks about this to some extent. The birth-rate function defined for

N1 has the notion of a carrying capacity. This puts an upper-bound on the number of enti-

ties that can be sustained in a hypothetical ecosystem. Here, the author proposes a Lotka-

Volterra-type model with a logistic birth-rate function for N1. This ensures the growth of

N1 in the absence of predators is capped by the carrying capacity of the ecosystem.

Another modification that can be added here is a functional response term which mod-

els the rate at which N2 can consume the resources provided by N1. The classic refer-

ence [10] devises the so-called Holling type-I, type-II and type-III functional responses.

Holling derived these equations from biological data using the well-known time-budget ar-

gument. Other forms of functional response exist, most notably the Beddington-DeAngelis

functional response. The dynamics of a classic predator-prey model with Beddington-

DeAngelis functional response are examined in [6]. A more recent paper, [14], studies the

dynamics of a predator-prey system with Beddington-DeAngelis functional response that

incorporates a fear of predators. Alternatively, one may also derive a specific functional

response to the problem on hand.

When a logistic-growth function is defined for N1 and a Holling type-II functional re-

sponse is added to a basic Lotka-Volterra model, the resulting equations are called the

Rosenzweig-MacArthur model. These ideas can be generalized for an arbitrary number



Chapter 1 – Introduction 4

of predators and prey, which leads into some of the literature on the generalized Lotka-

Volterra-type equations. These are explored in [3]. It allows the construction of a food-web

system and permits the modelling different types of interactions between species such as

competition and predation, which will be useful for our model. The dynamics exhibited

are extremely varied. Some other alternatives to the Lotka-Volterra model exist such as

the Arditi-Ginzberg model given in [2]. This model examines the functional response as a

function of the ratio of predators to prey.

Food chain modelling is essentially a combination of some of the techniques of predator-

prey modelling and competition modelling. The basic idea is illustrated in Chapter 2.7 of

[5]. One constructs a state diagram which shows all of the interactions between the various

species, and the rates at which this happens. The most basic models assume constant rates

of interaction, while the most advanced ones will use specific functions to describe them.

This can be anything, such as competition, predation and even interactions with some sort

of external influence. By considering the positive and negative interactions, one may write

down a system of equations to model the specific scenario. It is possible to analyse such a

system to determine the effects that each state variable has on the others. In the context of

a food-chain, one may wish to determine if it is possible for a higher-level species to hunt

a lower-level species to extinction, etc. In the literature, the types of food-chain models

that combine predation and competition are referred to as intraguild predation models. The

model presented in [11] was one of the first to provide a general framework for combining

the effects of competition and predation. The more recent work [15] extends this model

framework to include delay effects.

1.3 Competition Models

Just like predator-prey models, competition models are of a varied sort. The two main

types of competition that can be modelled are intraspecies and interspecies competition.
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The former refers to members of one species competing against themselves for common

resources, e.g. shelter, food, etc. The latter refers to two distinct species competing against

each other. This can manifest itself in different ways, but one example might be two distinct

species at the same level on a food chain competing for shared resources. The simplest

model for intraspecies competition would look something like the following:

dN
dt
= aN − bN2, (1.3)

where N describes the population density of the species, a describes the growth rate of

N, and b describes the intraspecies competition rate. The simplest model for interspecies

competition would look something like the following:

dN1

dt
= aN1 − β1N1N2,

dN2

dt
= bN2 − β2N1N2,

(1.4)

where N1 describes the population of the first species, N2 describes the population of the

second species, a describes the growth rate of N1, β1 describes the rate at which N1 com-

petes with N2, b describes the growth rate of N2 and β2 describes the competition rate of N2

with N1. The papers [9] and [16] explain the dynamics of certain classes of more general

Lotka-Volterra models.

In Chapter 2.5 of [5], some more advanced competition models are discussed. This class

of model is referred to as a competitive Lotka-Volterra model. The idea is fairly straightfor-

ward and consists of starting with a basic Lotka-Volterra model and modifying the growth

term to that of a logistic model. One makes the assumption that the interspecies competition

works the same way as the intraspecies competition. Writing this in a slightly simplified
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manner, one obtains:

dN1

dt
= aN1 − bN2

1 − β1N1N2,

dN2

dt
= cN2 − dN2

2 − β2N1N2,

(1.5)

where a and b describe the growth rate of N1 and N2 respectively, b and d describe the

intraspecies competition rates of N1 and N2 respectively, and β1 and β2 describe the com-

petition rates between N1 and N2. Two important ideas are the notion of strong and weak

competition. Strong competition refers to when the effects of the interspecies competition

are greater than that of the intraspecies competition. Similarly, weak competition refers to

when the effects of intraspecies competition are greater than that of the interspecies compe-

tition. Strong and weak competition often influence the ability of one competitor’s ability

to invade the other and drive it to extinction. This approach assumes that competition is

an effect which can be modelled by a constant. A more recent approach is to replace the

competition constant with a function to model more advanced phenomenon such as the fear

effect. This approach is used in [21], [22], [7], [19], [20].

1.4 Fear Effect

The fear effect is a fairly recent concept to have been studied within the framework math-

ematical models. A biological field study presented in [18] investigated the fear effect

and its impact on food chains. Paraphrasing, the article describes the fear effect as a cer-

tain type of anxiety or stress which affects the lower members in a food chain, usually

mid-level predators and herbivores brought about by the predatory actions of a top-level

predator. The article goes on to describe that this fear can be brought about by either direct

predation (predators eating their prey) or indirect predation (the large presence of a large

carnivore, and resulting increased risk of lower-level members being eaten). A reaction to

this fear is called a fear response. It usually manifests itself as reduced reproduction rates
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in an afflicted species and a decrease in foraging for food. This is done as a means of self-

preservation, but too much of a fear response can have a negative impact on the population

of a species, especially if it reduces the ability of said species to reproduce and feed suffi-

ciently to sustain its existence. In [18], a study was conducted which showed exactly that.

A food-chain consisting of an implied top-level predator, a mid-level predator and some

lower species was studied. Indirect effects of the large predator on the mid-level predator

were studied. This was accomplished by leaving signatures of the large predator’s presence

for the mid-level predator to discover. The mid-level predator’s fear response had a nega-

tive effect and reduced its population. For the lower-level species, this meant there was less

of a predation risk from the mid-level predator, so a population boom soon followed. This

exacerbated the effects of competition at this lower-level, and in a sense changed some of

the arrangements of the food chain, which is referred to as a trophic cascade in the liter-

ature. As the fear effect can have a large effect on a food-chain, mathematicians decided

to investigate the result using models. From the above discussion, the two key elements

which the fear effect has an impact on are birth-rate and predation. Therefore, a modified

growth-term and a functional response will be needed to sufficiently model this behaviour.

[19] and [20] give an overview of the various forms of non-trivial functional responses and

how they can be applied to study the fear effect through the birth-rate function. [22], [21]

and [7] extend this work by using some of these ideas to modify the predation terms to

give a more complete picture. In the next section, the motivation for this model will be

discussed.

1.5 The Model

1.5.1 Motivation

The model presented in this section was inspired by [21], [22], [7] and [18]. In [18],

a group of researchers studied some of the effects that the fear response can have in a
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food chain out in the field. They considered an ecosystem comprised of large predators,

mesopredators and prey of the mesopredator. The researchers played back sounds of large

predators to the mesopredators to see how the large predator’s perceived presence could

affect the overall food chain. They observed that the fear of the large predators drove

the mesopredators to forage for food less, i.e. eating few of their prey. This reduced the

predation level of the mesopredators on the prey, leading to an increased number of prey.

In some instances, this led to some of the prey’s competitors facing increased competition

from the prey. The authors described an instance where one species of prey invaded one of

its competitors. In this case, the fear of large predators caused a shift in the structure of the

food chain. Some more recent references have studied this effect mathematically.

In [7], the authors considered a three-species food chain model with fear effect. The model

consisted of a top-level predator, mesopredator and prey. Their results showed the fear ef-

fect can lead the system to a stable state in the long-term. In [22], the authors considered

a model involving three species. One species is a predator, with two prey who are in com-

petition. Both prey have differing anti-predation strategies. The authors studied how the

differing anti-predation methods can affect the system. In [21], the authors directly con-

sidered some of the results of [18] in two different ways. The first three-component model

studies the indirect effect of playing sounds of top-level predators on the mesopredator. The

fear response level solely effects the birth-rate of the mesopredator. The other two species

are the prey of the mesopredator, and the mesopredator’s prey’s prey. The four-component

model adds in the direct effects of a top-level predator. In both cases, effects on the struc-

ture of the food chain can be noticed, but occur in differing ways.

For our model, we will study the effects of competition in such a three-tier food chain.

[7] studies a three-tier food chain without competition, [22] studies a two-tier food chain

with competition, and [21] considers a three and four-tier food chain with different effects

of fear response. Our model will combine some of these ideas into a three-tier food chain
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with competition at the lowest level. This type of food chain was discussed in some detail

in [18], so it will be interesting to study it mathematically.

1.5.2 Flowchart

The following flowchart summarizes the food web structure and the relationships between

each species.

Top Level Predator N4

Mid Level Predator N3

Low Level Prey One N1 Low Level Prey Two N2

Predation

Predation

Predation

Competition

Intra-species

competition

Intra-species

competition

Intra-species

competition

Intra-species

competition

Birth and Death Processes

Birth and Death Processes

Birth and Death Processes
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1.5.3 Model Derivation and Explanation

Using the above flowchart and assumptions, we may derive the following model. We need

not account for any fear effect in the top level predator’s birth and death processes due to it

being the top-level predator. The model reads as:



dN1

dt
=N1 [B1(α1,N3) − D1 − c1N1 − β1N2] − f1(α1,N1,N3)N3,

dN2

dt
=N2 [B2(α2,N3) − D2 − c2N2 − β2N1] − f2(α2,N2,N3)N3,

dN3

dt
=N3 [B3(α3,N4) − D3 − c3N3] + ε1 f1(α1,N1,N3)N3

+ ε2 f2(α2,N2,N3)N3 − f3(α3,N3,N4)N4,

dN4

dt
=N4 [B − c4N4] + ε3 f3(α3,N3,N4)N4

N1(0) ≥ 0,N2(0) ≥ 0,N3(0) ≥ 0,N4 ≥ 0.

(1.6)

It should be pointed out that some components of the predation terms for N3 and N4 were

absorbed into the fi functions. This point will be important later. The model components

can be nicely summarized in the tables below:

Parameter Explanation
α1 Fear response of first low-level prey due to mid-level predator
α2 Fear response of second low-level prey due to mid-level predator
α3 Fear response of mid-level predator due to top-level predator
B Reproduction rate of top-level predator
βi, i = 1, 2 Competition rates between each i-th low-level prey
ci, i = 1, 2, 3, 4 Intra-species competition level for i-th species
Di, i = 1, 2, 3 Death rate for i-th species
εi, i = 1, 2, 3 Biomass transfer efficiency constants
N1 First low-level prey density
N2 Second low-level prey density
N3 Mid-level predator density
N4 Top-level predator density

Table 1.1: Description of model variables and parameters
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Function Description
Bi(·, ·), i = 1, 2, 3 Per-capita birth rates of each Ni

fi(·), i = 1, 2, 3
Functional response function describing
biomass transfer from Ni to Ni+1

Table 1.2: Description of model functions

1.5.4 Determining the Functional Response and Birthrate Functions

We will need to impose certain conditions on the functions Bi(·) and fi(·) for i = 1, 2, 3 so

that they maintain a certain biological context with respect to the fear effect. These may be

derived from our assumptions regarding the fear effect, as well as consulting [22] for com-

pleteness. The following functions were chosen as they were some of the simplest ones

which met the needed biological criterion. This both simplifies the analysis, but ensures

our model still maintains the needed biological meanings.

We state the following assumptions regarding the birth rate functions:

i) In the absence of a fear response or predators, the birth rate is a positive, fixed constant.

ii) As fear response increases, birth rate decreases. Similarly, as predator population

increases, birth rate decreases.

We may now state this mathematically for each birth rate function, where i = 1, 2, 3, j =

3, 4:

i) Bi(0,N j) = Bi(αi, 0) = γi > 0, where γi is the positive, fixed birthrate constant

ii) limαi→∞ Bi(αi,N j) = limN j→∞ Bi(αi,N j) = 0

iii) ∂Bi(αi,N j)
∂αi

< 0, ∂Bi(αi,N j)
∂N j

< 0

The function:

Bi(αi,N j) =
γi

1 + αiN j
(1.7)



Chapter 1 – Introduction 12

satisfies the above conditions. Those readers familiar with the literature will recognize this

as a Holling Type II functional response. A direct calculation can easily verify that i) and

ii) hold. The derivatives are given by:

∂Bi(αi,N j)
∂αi

= −
γiN j(

N jαi + 1
)2 ,

∂Bi(αi,N j)
∂N j

= −
γiαi(

N jαi + 1
)2 .

(1.8)

Using the fact that each parameter is positive, and that each N j is positive under the condi-

tions of Lemma 2.1, we also see that iii) holds.

Let us now consider the functional response functions. In the manner of [22], let us

consider the special case:

fi(αi,Ni,N j) = fi(αi,Ni) = f̂i(αi)Ni, i = 1, 2, 3, j = 3, 4. (1.9)

In essence, we have a linear functional response with a scaling function f̂i which takes

into account the fear response αi. We impose the following conditions on f̂i(αi), where

i = 1, 2, 3:

i) f̂i(0) = pi > 0, where pi is the positive, fixed predation constant

ii) limαi→∞ f̂i(αi) = 0

iii) d f̂i(αi)
dαi
< 0

We then pick the suitable function:

f̂i(αi) =
pi

1 + αi
(1.10)

to describe the functional response, where pi is the initial predation rate. A direct calcu-
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lation can easily verify that i), ii) and iii) hold. For the rest of this paper, we will use the

above functional response and birthrate functions.

The final model then reads:



dN1

dt
= N1

[
γ1

1 + α1N3
− D1 − c1N1 − β1N2 −

p1

1 + α1
N3

]
,

dN2

dt
= N2

[
γ2

1 + α2N3
− D2 − c2N2 − β2N1 −

p2

1 + α2
N3

]
,

dN3

dt
= N3

[
γ3

1 + α3N4
− D3 − c3N3 + ε1

p1

1 + α1
N1 + ε2

p2

1 + α2
N2 −

p3

1 + α3
N4

]
,

dN4

dt
= N4

[
B − c4N4 + ε3

p3

1 + α3
N3

]
N1(0) ≥ 0,N2(0) ≥ 0,N3(0) ≥ 0,N4 ≥ 0.

(1.11)

This model studies how the fear effect can cascade down the food chain, while also incor-

porating competition and predation effects. As discussed in the motivation, such a model

had not yet been studied in the literature.
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Chapter 2

Well-Posedness of the Model

In this section, we will show that the model admits a unique, positive solution in a posi-

tively invariant set and is bounded. We will start with the following lemma.

Lemma 2.1 R4
+ is a positively invariant set for (1.11). Furthermore, (1.11) admits positive

solutions for positive initial conditions.

Proof The main goal here will be to rewrite (1.11) in a more convenient form, then derive

an expression for a solution. We will then be able to find a positively invariant set based off

of the information encoded in these solutions.

We may rewrite (1.11) as:

dN1

dt
= N1 F1(N1,N2,N3),

dN2

dt
= N2 F2(N1,N2,N3),

dN3

dt
= N3 F3(N1,N2,N3,N4)

dN4

dt
= N4 F4(N3,N4),

(2.1)

recalling that some linear N3 and N4 terms were absorbed into the fi functions, which allows
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us to factor and rewrite the system as above. One may write:

N1(t) = N1(0) exp
( ∫ t

0
F1(N1(τ),N2(τ),N3(τ)) dτ

)
,

N2(t) = N2(0) exp
( ∫ t

0
F1(N1(τ),N2(τ),N3(τ)) dτ

)
,

N3(t) = N3(0) exp
( ∫ t

0
F1(N1(τ),N2(τ),N3(τ),N4(τ)) dτ

)
,

N4(t) = N4(0) exp
( ∫ t

0
F4(N3(τ),N4(τ)) dτ

)
.

(2.2)

From this, it follows that R4
+ is a positively invariant set for (1.11) as claimed, thus, com-

pleting the proof.

It is possible to consider the quantity Ri = γi − Di, i = 1, 2, 3. This can be thought of as

the (intrinsic) growth rates of N1,N2 and N3 in the absence of fear response. These values

will be assumed to be positive. Using the previous result, we can consider the effect of the

intrinsic growth rates R1 and R2 on N1 and N2 respectively in the absence of predation and

interspecies competition.

Proposition 2.1 For i = 1, 2, when Ri < 0, Ni(t)→ 0.

Proof From (1.11), Lemma 2.1 and the comparison theorem, we can obtain the following

comparison system for N1 and N2:

dN1

dt
≤ N1(γ1 − D1 − c1N1) ≤ R1N1,

dN2

dt
≤ N2(γ2 − D2 − c2N2) ≤ R2N2.

(2.3)

Observe that the equations for N1 and N2 may be explicitly solved using standard methods.
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Solving the equations for N1 and N2, we obtain:

N1(t) ≤ N1(0) eR1 t,

N2(t) ≤ N2(0) eR2 t.

(2.4)

If R1 or R2 is negative, it follows that:

lim
t→∞

N1(t) = lim
t→∞

N2(t) = 0. (2.5)

The statement of the theorem follows.

Lemma 2.2 The solutions admitted by (1.11) are bounded.

Proof Using Lemma 2.1 and the fact that (1.11) is of the Gaussian type, there exists a

unique solution to (1.11). The other piece to take care of is the boundedness aspect. Define:

P(t) = ε1ε3N1 + ε2ε3N2 + ε3N3 + N4. (2.6)

From Lemma 2.1, we get that each Ni(t), i = 1, 2, 3, 4 is positive ∀t > 0, and so if P(t) is

bounded, then it implies that each Ni(t) is bounded. Therefore we need only show that P(t)

is bounded. There is not a readily usable, explicit form of P(t) at the moment, so it will be
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best to consider dP
dt . Calculating, one obtains:

dP
dt
= ε1ε3

dN1

dt
+ ε2ε3

dN2

dt
+ ε3

dN3

dt
+

dN4

dt

≤ ε1ε3N1[γ1 − D1 − c1N1] + ε2ε3N2[γ2 − D2 − c2N2] + ε3N3[γ3 − D3 − c3N3]

+ N4[B − c4N4]

= ε1ε3N1[γ1 − D1 − c1N1] + ε2ε3N2[γ2 − D2 − c2N2] + ε3N3[γ3 − D3 − c3N3]

+ N4[2B − B − c4N4]

= −D1ε1ε3N1 − D2ε2ε3N2 − ε3D3N3 − BN4 + ε1ε3N1[γ1 − c1N1] + ε2ε3N2[γ2 − c2N2]

+ ε3N3[γ3 − c3N3] + N4[2B − c4N4]

≤ ε1ε3N1[γ1 − c1N1] + ε2ε3N2[γ2 − c2N2] + ε3N3[γ3 − c3N3] + N4[2B − c4N4] − mP,

(2.7)

where m = min{D1,D2,D3, B} This expression follows from the positivity of Ni(t) for each

i, as well as the fact that each Bi(αi,Ni) ≤ γi, i = 1, 2, 3 due to how it is defined. Each

term is a downwards opening parabola, with one root at zero, and the other at a non-trivial

positive value. The maximum of each term must occur at the midpoint. We may use this

property to greatly simplify our expression for dP
dt . Calculating, we find that:

dP
dt
+ mP ≤

ε1ε3γ
2
1

4c1
+
ε2ε3γ

2
2

4c2
+
ε3γ

2
3

4c3
+

B2

c4

=
c1((c4ε3γ

2
3 + 4B2c3) + c3c4ε2ε3γ

2
2) + ε1ε3γ

2
1c2c3c4

4c1c2c3c4
.

(2.8)

For better readability, let:

C =
c1((c4ε3γ

2
3 + 4B2c3) + c3c4ε2ε3γ

2
2) + ε1ε3γ

2
1c2c3c4

4c1c2c3c4
. (2.9)
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Solving (2.8), one obtains the solution:

P(t) ≤
e−m t(mP(0) +C(em t − 1))

m
=

(
P(0) −

C
m

)
e−m t +

C
m

(2.10)

where P(0) is the initial value of P(t) (which depends on each Ni(0)). Taking a limit, one

obtains:

lim sup
t→∞

P(t) ≤
C
m
=

c1((c4ε3γ
2
3 + 4B2c3) + c3c4ε2ε3γ

2
2) + ε1ε3γ

2
1c2c3c4

4c1c2c3c4m
(2.11)

As the lim sup of P(t) is finite, then P(t) is clearly bounded above. Lemma 2.1 implies that

each Ni(t) is bounded below, and so P(t) is bounded below. As P(t) is bounded, it suffices

to conclude that each Ni(t) is bounded as well, thus completing the proof.

We conclude that the problem posed by (1.11) is a well-posed problem from the positivity

and boundedness results.
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Chapter 3

Dynamics of Two Subsystems

To better understand the dynamics of the full system, we will study the dynamics of two

subsystems. We will study the relationship between N1 and N2 which is represented by

a competition subsystem, and the relationship between N3 and N4 which is given by a

predator-prey subsystem.

3.1 Dynamics of the N1 − N2 Competition Subsystem

In this section, we will summarize the equilibria and their stability with respect to the of

competition in the absence of predators. In this case, the model becomes:

dN̂1

dt
= N̂1[γ1 − D1 − c1N̂1 − β1N̂2] = N̂1[R1 − c1N̂1 − β1N̂2] = R1N̂1 − c1N̂1

2
− β1N̂1N̂2,

dN̂2

dt
= N̂2[γ2 − D2 − c2N̂2 − β2N̂1] = N̂2[R2 − c2N̂2 − β2N̂1] = R2N̂2 − c2N̂2

2
− β2N̂1N̂2,

(3.1)

where R1 and R2 are the intrinsic growth rates.
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3.1.1 Equilibria and Stability

The equilibria of this system are given by:

Ê0(0, 0) = (0, 0),

Ê1(N̂∗1 , 0) =
(
R1

c1
, 0

)
,

Ê2(0, N̂∗2) =
(
0,

R2

c2

)
,

Ê3(N̂+1 , N̂
+
2 ) =

(
R2β1 − c2R1

β1β2 − c1c2
,

R1β2 − c1R2

β1β2 − c1c2

)
.

(3.2)

The first three equilbria always exist, given the assumption that R1 and R2 are positive. The

existence criteria of the last equilibrium is slightly more involved.

Existence is conditional on both the numerator and denominator being simultaneously

positive or negative. In the case where the denominator is positive, this corresponds to a

condition of strong competition, i.e. the total inter-species competition is greater than the

intra-species competition. Similarly, in the case where the denominator is negative, this

corresponds to a condition of weak competition, i.e. the total intra-species competition is

greater than that of the total inter-species competition. We also require that the denomina-

tor is not equal to zero, in other words, that β1β1 , c1c2.

For the case of strong competition, i.e. β1β2 > c1c2, we require that:

R2β1 > c2R1, R1β2 > c1R2. (3.3)

For the case of weak competition, i.e. β1β2 < c1c2, we require that:

R2β1 < c2R1, R1β2 < c1R2. (3.4)
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Calculating the Jacobian of this system yields:

J(N1,N2) =

R1 − 2c1N1 − β1N2 −β1N1

−β2N2 R2 − 2c2N2 − β2N1

 . (3.5)

Evaluating the Jacobian at Ê0 yields:

J(0, 0) =

R1 0

0 R2

 . (3.6)

The eigenvalues are the product down the diagonal. As R1,R2 are assumed to be positive,

this equilibrium is unstable. Evaluating the Jacobian at Ê1 yields:

J
(
R1

c1
, 0

)
=

−R1 −
R1β1

c1

0 R2 −
β2R1

c1

 . (3.7)

This admits eigenvalues:

λ1 = −R1,

λ2 =
R2c1 − β2R1

c1
.

(3.8)

This equilibrium is stable when the condition:

R2c1 < β2R1 (3.9)

holds. Evaluating the Jacobian at Ê2 yields:

J
(
0,

R2

c2

)
=

R1 −
β1R2

c2
0

−
R2β2

c2
−R2

 . (3.10)
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This yields eigenvalues:

λ1 =
R1c2 − β1R2

c2
,

λ2 = −R2.

(3.11)

This equilibrium is stable when the condition:

R1c2 < β1R2 (3.12)

holds. Evaluating the Jacobian at Ê3 yields:

J(N̂+1 , N̂
+
2 ) =


c1(R1c2−β1R2)
β1β2−c1c2

β1(R1c2−β1R2)
β1β2−c1c2

β2(R1β2−R2c1)
c1c2−β1β2

c2(R1β2−R2c1)
c1c2−β1β2

 . (3.13)

This matrix has the characteristic equation:

λ2 + λ
c2(R1β2 − R2c1) + c1(R2β1 − R1c2)

β1β2 − c1c2
+

(R1β2 − R2c1)(R1c2 − β1R2)
β1β2 − c1c2

= 0. (3.14)

By the Routh-Hurwitz criteria, this equilibrium will be stable when the constant term and

the coefficient of the λ term are both positive. Let us work on the λ term first. In the case

of strong competition (β1β2 > c1c2), equation (3.3) is satisfied. This guarantees that the

numerator will be positive in this term, and so the coefficient of the λ term is positive, sat-

isfying the Routh-Hurwitz criteria. In the case of weak competition (β1β2 < c1c2), equation

(3.4) is satisfied. This guarantees that the numerator of this term will be positive. As the

denominator is negative, this means that the coefficient of the λ term is positive, satisfying

the Routh-Hurwitz criteria again. This means that the coefficient of the λ term is always

satisfied whenever N̂+1 and N̂+2 exist. Therefore, the constant term will govern stability in

this case.
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Referring once again to the case of strong competition, i.e. β1β2 > c1c2, we have that

(3.3) holds. This then implies that the following conditions must hold on the constant

term:

R1β2 > R2c1, R1c2 > β1R2, or,

R1β2 < R2c1, R1c2 < β1R2,

(3.15)

as per Routh-Huriwtz. Note that in both possibilities exactly one inequality is satisfied, as

per (3.3), but one is not satisfied. This suggests that the strong competition case is unstable

when it exists. In the case of weak competition, i.e. β1β2 < c1c2, we have that (3.4) holds.

This then implies that the following conditions must hold on the constant term:

R1β2 < R2c1, R1c2 > β1R2, or,

R1β2 > R2c1, R1c2 < β1R2,

(3.16)

as per Routh-Hurwitz. The second condition in the above condition will fail to hold as

per (3.4). However, the first condition will always hold as long as (3.4) is satisfied. Put

another way, the weak competition case will always be stable when it exists. Due to the

previous conditions failing to be satisfied for the strong competition case, this eliminates

any possible bistable conditions.

The results may be summarized in the following table:

Equilibrium Point Existence Stability
Ê0 = (0, 0) Always Always Unstable
Ê1 =

(
R1
c1
, 0

)
Always R2c1 < β2R1

Ê2 =
(
0, R2

c2

)
Always R1c2 < β1R2

Ê3 =
(

R2β1−c2R1
β1β2−c1c2

, R1β2−c1R2
β1β2−c1c2

)
Given by (3.3) or (3.4)

Strong Competition Case is Unstable
when it Exists.
Weak Competition Case is Stable
when it Exists, Given by (3.4)

Table 3.1: Summary of equilibria and their stability for N1-N2 subsystem



Chapter 3 – Dynamics of Two Subsystems 24

3.2 Dynamics of the N3−N4 Predator-Prey Subsystem

In this section, we will study the equilibria and their stability with respect to the case

in which there are no low-level members of the food chain. In this case, the model be-

comes:

dN̄3

dt
= N̄3

[
γ3

1 + α3N̄4
− D3 − c3N̄3 −

p3

1 + α3
N̄4

]
,

dN̄4

dt
= N̄4

[
B − c4N̄4 +

ε3 p3

1 + α3
N̄3

]
.

(3.17)

3.2.1 Equilibria and Stability

The equilibria of this system are given by:

Ē0(0, 0) = (0, 0),

Ē1(N̄∗3 , 0) =
(
R3

c3
, 0

)
,

Ē2(0, N̄∗4) =
(
0,

B
c4

)
,

Ē3(N̄+3 , N̄
+
4 ) = (C(c4N̄+4 − B), N̄+4 )

(3.18)

where:

A =
p3

1 + α3
, C =

1 + α3

p3ε3
,

s1 = (BCc3 − D3)2α2
3 + 2(BCc3 − D3 + 2γ3)(Cc3c4 + A)α3 + (Cc3c4 + A)2.

(3.19)

The existence of Ē1 follows from the assumption that R3 is always positive. The existence

of Ē0 and Ē2 are trivial. However, the analysis of the existence of Ē3 is not so trivial. The

analysis will parallel a similar case in the full model.
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The equations read:

γ3

1 + α3N̄4
− D3 − c3N̄3 − AN̄4 = 0,

B − c4N̄4 +
N̄3

C
= 0.

(3.20)

Solving the second equation, one obtains:

N̄3 = C(c4N̄4 − B). (3.21)

For N̄3 > 0, we require that:

N̄4 >
B
c4
. (3.22)

One may obtain a quadratic equation in N̄4 by plugging the solution for N̄3 into the first

equation. This reads:

a2N̄2
4 + a1N̄4 + a0, (3.23)

where the coefficients are given by:

a2 = α3(Cc3c4 + A),

a1 = A +Cc3c4 + α3(D3 − BCc3),

a0 = D3 − BCc3 − γ3.

(3.24)

Computing the discriminant, one obtains:

∆ = a2
1 − 4a2a0 = (A+Cc3c4 + (D3 − BCc3)α3)2 + 4α3(Cc3c4 + A)(BCc3 +R3) > 0, (3.25)

per the assumption that R3 > 0. A positive discriminant implies two real solutions. It can

be shown that there is only one positive, and therefore, biologically meaningful solution.

Consider the case when a0 < 0. For a0 = 0, we have that γ3 > D3 − BCc3 ⇐⇒ R3 >

−BCc3, this implies the quadratic always has one positive solution. This will always hold
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per the assumption R3 > 0. For a0 ≥ 0, this implies that 0 < γ3 ≥ D3−BCc3 ⇐⇒ 0 < R3 ≥

−BCc3, which fails to hold per the assumption R3 > 0. Furthermore, when D3 − BCc3 > 0,

we have a1 > 0, which implies there can be no positive solutions for a0 ≥ 0. Solving the

quadratic, we find that the system admits a distinct positive solution:

N̄+4 =
C(Bα3 − c4)c3 − D3α3 − A +

√
s1

2α3(Cc3c4 + A)
, γ3 > max{0,D3 − BCc3}, (3.26)

where the condition comes from solving a0 < 0. Going further with this, we verify the

condition N̄4 >
B
c4

. Calculating, we obtain:

N̄+4 >
B
c4
⇐⇒

C(Bα3 − c4)c3 − D3α3 − A +
√

s1

2α3(Cc3c4 + A)
>

B
c4

⇐⇒ c4
√

s1 > c4(BCc3α3 +Cc3c4 + D3α3 + A) + 2ABα3

⇐⇒ 4α3(Cc3c4 + A)[c2
4γ3 − (AB2α3 + c4(D3c4 + BD3α3 + AB))] > 0

(3.27)

Solving the last line for γ3, one obtains the inequality:

γ3 > D3 +
B[ABα3 + c4(D3α3 + A)]

c2
4

> D3 − BCc3, (3.28)

which always ensures that the condition γ3 > max{0,D3 − BCc3} holds. Therefore, when

(3.28) holds, we get that this equilibrium exists.

The Jacobian matrix corresponding to (3.17) is given by:

J(N3,N4) =


γ3

1+α3N4
− D3 − 2c3N3 −

p3N4
1+α3

−N3

(
γ3α3

(1+α3N4)2 +
p3

1+α3

)
N4ε3 p3
1+α3

B − 2c4N4 +
ε3 p3N3
1+α3

 . (3.29)

Let us consider the extinction case. Evaluating at the trivial equilibrium yields:

J(0, 0) =

γ3 − D3 0

0 B

 =
R3 0

0 B

 . (3.30)
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The eigenvalues are trivially R3 and B, which are both positive constants. Therefore, the

trivial equilibrium is always unstable.

Let us consider the case where N3 excludes N4. Evaluating the Jacobian at Ē1 yields:

J(N̄∗3 , 0) =

−R3 −
R3(γ3α

2
3+γ3α3+p3)

(1+α3)c3

0 B(1+α3)c3+ε3 p3R3
(1+α3)c3

 . (3.31)

The eigenvalues are given by the characteristic equation:

(−R3 − λ)
(

B(1 + α3)c3 + ε3 p3R3

(1 + α3)c3
− λ

)
= 0

⇐⇒ λ1 = −R3, λ2 =
B(1 + α3)c3 + ε3 p3R3

(1 + α3)c3
.

(3.32)

As we assumed R3 to be positive, λ1 is always negative. On the other hand, λ2 is always

positive. Therefore, this equilibrium is unstable.

Let us consider the case where N4 excludes N3. Evaluating the Jacobian at Ē2 yields:

J(0, N̄∗4) =


γ3

1+ α3B
c4

− D3 −
p3B

(1+α3)c4
0

Bε3 p3
c4(1+α3) −B

 . (3.33)

The eigenvalues are given by the characteristic equation:

(−B − λ)
(
γ3

1 + α3B
c4

− D3 −
p3B

(1 + α3)c4
− λ

)
= 0

λ1 = −B, λ2 =
γ3

1 + α3B
c4

− D3 −
p3B

(1 + α3)c4
.

(3.34)

It’s assumed that B is a positive constant, so λ1 will always be negative. In order for this

equilibrium to be stable, we require that λ2 < 0. Therefore, this equilibrium is locally
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asymptotically stable if and only if:

γ3

1 + α3B
c4

< D3 +
p3B

(1 + α3)c4
(3.35)

Note that when (3.35) holds, it will drive N3 to extinction.

Let us consider the coexistence case. The explicit values of N̄+3 and N̄+4 will be omitted

for now to simplify the analysis. Evaluating the Jacobian at Ē3 and making some simplifi-

cations via (3.17) yields:

J(N̄+3 , N̄
+
4 ) =


γ3

1+α3N̄+4
− D3 − 2c3N̄+3 −

p3N̄+4
1+α3

−N̄+3
(
γ3α3

(1+α3N̄+4 )2 +
p3

1+α3

)
N̄+4 ε3 p3

1+α3
B − 2c4N̄+4 +

ε3 p3N̄+3
1+α3


=

−c3N̄+3 −N̄+3
(
γ3α3

(1+α3N̄+4 )2 +
p3

1+α3

)
N̄+4 ε3 p3

1+α3
−c4N̄+4


=

J11 J12

J21 J22

 .
(3.36)

The eigenvalues are given by the characteristic equation:

λ2 + a1λ + a2 = 0, (3.37)

where:

a1 = −(J11 + J22), (3.38)

and:

a2 = J11J22 − J12J21. (3.39)
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Writing this another way, we have the characteristic equation as:

λ2 − λ tr J(N̄+3 , N̄
+
4 ) + det J(N̄+3 , N̄

+
4 ) = 0. (3.40)

Expanding the trace yields:

tr J(N̄+3 , N̄
+
4 ) = −(c3N̄+3 + c4N̄+4 ) < 0. (3.41)

Similarly, for the determinant, this yields:

det J(N̄+3 , N̄
+
4 ) = J11J22 − J12J21

= (−c3N̄+3 )(−c4N̄+4 ) −
[
− N̄+3

(
γ3α3

(1 + α3N̄+4 )2
+

p3

1 + α3

)]
N̄+4 ε3 p3

1 + α3

= c3c4N̄+3 N̄+4 +
[
N̄+3

(
γ3α3

(1 + α3N̄+4 )2
+

p3

1 + α3

)]
N̄+4 ε3 p3

1 + α3
> 0.

(3.42)

By Theorem B.2 in [5], this equilibrium will be unconditionally stable. This analysis

implies N3 may only exist in conjunction with N4. Otherwise, it will be invaded by N4. The

results may be summarized in the following table:

Equilibrium Point Existence Stability
Ē0 = (0, 0) Always Always Unstable
Ē1 =

(
R3
c3
, 0

)
Always Always Unstable

Ē2 =
(
0, B

c4

)
Always Given by (3.35)

Ē3 = (N̄+3 , N̄
+
4 ) Given by (3.28) Stable, when Ē3 exists

Table 3.2: Summary of equilibria and their stability for N3-N4 subsystem

One may also prove the following results.

Theorem 3.1 (3.17) admits no periodic solutions in the region

R = {(N̄3, N̄4) | N̄3, N̄4 > 0}. (3.43)
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Proof This result can be proven with the Dulac criterion, given as Theorem B.6 in [5]. Let:

B(N̄3, N̄4) =
1

N̄3N̄4
, (3.44)

such that B is defined on the region:

R = {(N̄3, N̄4) | N̄3, N̄4 > 0} (3.45)

B is continuously differentiable on R, as required by the criterion. Referring to (3.17),

define:

dN̄3

dt
= f̃ (N̄3, N̄4) = N̄3

[
γ3

1 + α3N̄4
− D3 − c3N̄3 −

p3

1 + α3
N̄4

]
,

dN̄4

dt
= g̃(N̄3, N̄4) = N̄4

[
B − c4N̄4 +

ε3 p3

1 + α3
N̄3

]
.

(3.46)

Calculating, one obtains:

∂(B f̃ )
∂N̄3

+
∂(Bg̃)
∂N̄4

=
∂

∂N̄3

[
1

N̄3N̄4
f̃ (N̄3, N̄4)

]
+
∂

∂N̄4

[
1

N̄3N̄4
g̃(N̄3, N̄4)

]
=
∂

∂N̄3

[
1

N̄4

[
γ3

1 + α3N̄4
− D3 − c3N̄3 −

p3

1 + α3
N̄4

]]
+
∂

∂N̄4

[
1

N̄3

[
B − c4N̄4 +

ε3 p3

1 + α3
N̄3

]]
= −

c3

N̄4
−

c4

N̄3

= −

[
c3

N̄4
+

c4

N̄3

]
< 0,

(3.47)

as c3 and c4 are positive parameters. Comparing this result to the Dulac criterion, it is

clearly not identically zero and does not change sign in R. Therefore, we may conclude

there exist no periodic solutions of (3.17) in R, by the Dulac criterion.

Theorem 3.2 The coexistence equilibrium, Ē3, is globally asymptotically stable when it

exists.
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Proof By the Poincare-Bendixson Theorem, (Theorem B.5 in [5]), (3.17) will either admit

a periodic solution, or approach a fixed point. In the previous result, we showed that (3.17)

admits no periodic solutions. Therefore, Poincare-Bendixson tells us that the solutions of

(3.17) will either be/approach a fixed point for arbitrary initial conditions. This fixed point

must be the equilibrium point Ē3. Therefore, the solutions of (3.17) will tend towards Ē3,

when it exists, for arbitrary initial conditions. This implies Ē3 is globally asymptotically

stable when it exists, completing the proof.

Dynamical systems theory implies that Ē3 will become stable as Ē2 loses stability, provided

that Ē3 exists.

3.2.2 Impact of the Fear Effect on the Stability of Ē2 and Ē3

Let us examine how the fear effect, α3 can change the sign of (3.35). Rewriting the above

equation as a function of α3, one obtains:

q(α3) =
γ3

1 + α3B
c4

− D3 −
p3B

(1 + α3)c4
. (3.48)

Referring to (3.35) and multiplying through by both terms involving α3, the stability con-

dition reads:

q(α3) < 0

⇐⇒
γ3

1 + α3B
c4

− D3 −
p3B

(1 + α3)c4
< 0

⇐⇒ −aα2
3 + bα3 + c < 0,

(3.49)

where:

a =
BD3

c4
> 0, b = R3 −

BD3

c4
−

B2 p3

c2
4

= R3 −
B
c4

(
D3 +

Bp3

c4

)
, c = R3 −

Bp3

c4
. (3.50)
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Let us consider the roots of the above quadratic to help us find the ranges of α3 such

that (3.35) holds. Applying the quadratic formula, one obtains the solutions to the equa-

tion:

q(α3) = 0 (3.51)

as:

α3 =
b ±
√

b2 + 4ac
2a

. (3.52)

As a > 0, it follows that −a < 0. Therefore, this parabola will always open downwards.

Recall that when:

q(α3) < 0, (3.53)

it is equivalent to saying that (3.35) holds, and that Ē2 is stable. If:

q(α3) > 0 (3.54)

it is equivalent to saying that (3.35) fails to hold, and that this equilibrium is unstable. The

characteristics of a are known, but the signs of b and c may vary. This leads to several

possible cases. We will also have to take into account that α3 > 0 as per our model in this

analysis.

Case i: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0 and c = R3 −

Bp3
c4
> 0

Using the multiplicative and additive properties of the roots of a quadratic equation, one

may deduce that there exist two distinct real roots, one positive and one negative. As

α3 > 0, the positive root is the only one we care about. In this case, the positive root is

given by:

α+3 =
b +
√

b2 + 4ac
2a

. (3.55)

As q opens downwards, it follows that q(α3) < 0 for values of α3 > α
+
3 . Therefore, (3.35)

holds (and Ē2 is stable) when α3 > α
+
3 .



Chapter 3 – Dynamics of Two Subsystems 33

Case ii: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0 and c = R3 −

Bp3
c4
> 0

Using the multiplicative and additive properties of the roots of a quadratic equation, one

may deduce that there exist two distinct real roots, one positive and one negative. As

α3 > 0, the positive root is the only one we care about. In this case, the positive root is

given by:

α+3 =
b +
√

b2 + 4ac
2a

. (3.56)

As q opens downwards, it follows that q(α3) < 0 for values of α3 > α
+
3 . Therefore, (3.35)

holds (and Ē2 is stable) when α3 > α
+
3 .

Case iii: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0 and c = R3 −

Bp3
c4
< 0

In this case, there are two possible sub-cases which follow from the additive and multi-

plicative properties of the roots of a quadratic equation. If the discriminant is positive, i.e.

the condition:

b2 + 4ac > 0

⇐⇒

(
R3 +

BD3

c4
−

B2 p3

c2
4

)2

+
4BD3

c4

(
R3 −

Bp3

c4

)
> 0

(3.57)

holds, then there exist two real positive roots. The roots are given by the equations:

α−3 =
b −
√

b2 + 4ac
2a

, α+3 =
b +
√

b2 + 4ac
2a

. (3.58)

In our case, α3 > 0 and q opens downwards. This suggests that q(α3) < 0 for values of α3

outside the roots. Therefore, (3.35) holds (and Ē2 is stable) when α3 < [α−3 , α
+
3 ].
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In the case when the discriminant is negative, i.e. when the condition:

b2 + 4ac < 0

⇐⇒

(
R3 +

BD3

c4
−

B2 p3

c2
4

)2

+
4BD3

c4

(
R3 −

Bp3

c4

)
< 0

(3.59)

holds, then the roots are complex. Due to the geometry of q, and that α3 > 0 as per our

model, then (3.35) holds (and Ē2 is stable) when α3 > 0.

Case iv: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0 and c = R3 −

Bp3
c4
< 0

In this case, there are two possible sub-cases which follow from the additive and multiplica-

tive properties of the roots of a quadratic equation. If the discriminant is positive, i.e. (3.57)

holds, then there exist two real negative roots. The roots are given by the equations:

α−3 =
b −
√

b2 + 4ac
2a

, α+3 =
b +
√

b2 + 4ac
2a

. (3.60)

As q opens downwards, then q(α3) < 0,∀α3 > α
+
3 . For us, this means that (3.35) holds

(and Ē2 is stable) when α3 > 0.

If the discriminant is negative, i.e. (3.59) holds, then both roots will be complex, and

q(α3) < 0,∀α3. In our case, (3.35) holds (and Ē2 is stable) when α3 > 0.

Case v: b = 0 ⇐⇒ R3 =
B
c4

(
D3 +

Bp3
c4

)
and c = 0 ⇐⇒ R3 =

Bp3
c4

This case occurs only for certain combinations of parameters, namely when:

R3 = γ3 − D3 =
Bp3

c4
, D3 =

−p3(B − c4)
c4

, c4 > B. (3.61)

In this case one obtains:

q(α3) = −
BD3α

2
3

c4
. (3.62)
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This equation has a single root at α3 = 0. As α3 > 0 and using the fact that q opens

downwards, one has that q(α3) < 0 for α3 > 0. Therefore, (3.35) holds (and Ē2 is stable)

when α3 > 0.

Case vi: b = 0 ⇐⇒ R3 =
B
c4

(
D3 +

Bp3
c4

)
and c , 0 ⇐⇒ R3 ,

Bp3
c4

In this case, one obtains:

q(α3) = −aα2
3 + c = −

BD3α
2
3

c4
+ R3 −

Bp3

c4
. (3.63)

This equation has roots given by:

α3 = ±

√
ac
a
. (3.64)

If c = R3 −
Bp3
c4
> 0, there are two real roots, one positive and negative. As α3 > 0 and q

opens downwards, one has q(α3) < 0 for α3 > α
+
3 =

√
ac
a . Therefore, (3.35) holds (and Ē2 is

stable) when α3 > α
+
3 . If c = R3 −

Bp3
c4
< 0, both roots are complex, and so q(α3) < 0,∀α3.

In our situation, (3.35) holds (and Ē2 is stable) when α3 > 0.

Case vii: b , 0 ⇐⇒ R3 ,
B
c4

(
D3 +

Bp3
c4

)
and c = 0 ⇐⇒ R3 =

Bp3
c4

In this case, one obtains:

q(α3) = −aα2
3 + bα3 = α3(b − aα3) = −

α3(B2 p3 + BD3c4(1 + α3) − R3c2
4)

c2
4

. (3.65)

This equation has roots given by:

α0
3 = 0, α+3 =

b
a
. (3.66)

If b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0, there will be two non-negative roots. As α3 and q opens

downwards, one will find that q(α3) < 0 for α3 > α
+
3 . In our situation, (3.35) holds (and Ē2

is stable) when α3 > α
+
3 . If b = R3 −

B
c4

(
D3 +

Bp3
c4

)
< 0, α0

3 < 0. As α3 > 0 and q opens
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downward, one will find that q(α3) < 0 for α3 > 0. In our situation, (3.35) holds (and Ē2 is

stable) when α3 > α
0
3.

3.2.3 Discussion and Biological Implications

In this section we will discuss the biological meaning of each of the previously discussed

cases. We will endeavour to explain what they represent in the model and how each case

affects N3 and N4 differently. Recall the definitions of b and c:

b = R3 −
BD3

c4
−

B2 p3

c2
4

= R3 −
B
c4

(
D3 +

Bp3

c4

)
, c = R3 −

Bp3

c4
. (3.67)

Each case in the previous section can be better understood once some meaning is given

to each term of b and c. The Bp3
c4

term in c can be thought of as the ”total cost-to-benefit

ratio” for N4. Recall that R3 is just the intrinsic growth rate for N3. Therefore, c may be

thought of as a means to compare the growth of N3 to the growth of N4 expressed as a ratio

cost and benefit. If c < 0, this implies that the intrinsic growth rate of N3 is less than the

cost-to-benefit measure for N4. Similarly, if c > 0, this implies that the growth rate of N3 is

greater than the cost-to-benefit measure for N4.

Let us consider the second term in b, i.e.:

B
c4

(
D3 +

Bp3

c4

)
. (3.68)

The B
c4

component can be thought of as the ratio of the growth of N4 to its competition. The

D3 +
Bp3
c4

component is just the sum of ”total cost-to-benefit ratio” for N4 and the natural

death rate of N3. This can be thought of as a way to measure the total cost-to-benefit of

N4 coupled with loss of N3 through death. Therefore, (3.68) can be thought of as the ratio

of growth of N4 to its competition weighted with respect to the death losses of N3 and to-

tal cost-to-benefit ratio of N4. If b < 0, this implies tha the intrinsic growth rate of N3 is
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less than the weighted cost-to-benefit measure for N4. Similarly, if b > 0, this implies the

growth rate of N3 is greater than this weighted measure.

Now that we have given some meaning to b and c, this will allow us to explain each case

in the previous section in more detail, and relate it to a specific biological scenario.

Case i: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0 and c = R3 −

Bp3
c4
> 0

When b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0 and c = R3 −

Bp3
c4
> 0, this implies that the effect of

R3 (intrinsic growth rate of N3) outweighs the combined cost and benefit measures of N4.

This can occur if p3 (predation) is weaker, or if intra-species competition, c4 is larger. The

following simulations were conducted with model parameters given by:

ε3 = c3 = 1, γ3 = 5,D3 = 1, p3 = 1, B = 1, c4 = 1,N3(0) = N4(0) = 5. (3.69)

Referring to q(α3), this gives values:

b = 3, c = 3, α+3 = 3, (3.70)

where α+3 is the threshold value, i.e. for α3 > α
+
3 , Ē2 becomes stable (N4 drives N3 to

extinction).

Figure 3.1: Graph of q(α3) for Case i
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From the shape of the graph of q(α3), we see that there is a threshold in which the fear

response of N3 to N4, α3, fails to be beneficial, and causes Ē2 to become stable. In this case,

a relatively smaller fear response level is beneficial for coexistence, while a higher level is

harmful for N3.

(a) Taking α3 = 1 results in coexistence (b) Taking α3 = 4 (outside of threshold) results
in N4 excluding N3

Figure 3.2: Simulations of N3-N4 with parameters given by (3.69)

Case ii: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0 and c = R3 −

Bp3
c4
> 0

When b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0 and c = R3 −

Bp3
c4
> 0, this implies that the weighted

measure of cost-to-benefit of N4 has a greater effect than the intrinsic growth-rate of N3,

R3. However, since c = R3 −
Bp3
c4
> 0, this implies that the basic cost-to-benefit measure

is smaller than R3. Overall, we still find ourselves in a similar scenario to Case i, but at

a reduced level. The following simulations were conducted with model parameters given

by:

ε3 = c3 = 1, γ3 = 5,D3 = 1, p3 = 1, B = 2, c4 = 1,N3(0) = N4(0) = 5. (3.71)

Referring to q(α3), this gives values:

b = −2, c = 2, α+3 =

√
5 − 1
2

≈ 0.62. (3.72)
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where α+3 is the threshold value, i.e. for α3 > α
+
3 , Ē2 becomes stable (N4 drives N3 to

extinction).

Figure 3.3: Graph of q(α3) for Case ii

From the shape of the graph of q(α3), we see that there is a threshold in which the fear

response of N3 to N4, α3, fails to be beneficial, and causes Ē2 to become stable. In this case,

a relatively smaller fear response level is beneficial for coexistence, while a higher level is

harmful for N3. Comparing this to Case i, note that the threshold value is smaller. This

suggests that there are increased adverse effects to N3 from N4 reducing the efficacy of the

fear response.

(a) Taking α3 = 0.2 results in coexistence (b) Taking α3 = 1 (outside of threshold) results
in N4 excluding N3

Figure 3.4: Simulations of N3-N4 with parameters given by (3.71)

Case iii: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0 and c = R3 −

Bp3
c4
< 0

When b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0 and c = R3 −

Bp3
c4
< 0, this implies that the cost-
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to-benefit measure of N4 outweighs the effect of R3. However, since b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0, this implies that the weighted measure is adversely affected by either B or c4. In

this case, the predation rate of N4 must have a greater effect. The following simulations

were conducted with differing model parameters corresponding to the discriminant being

positive or negative. For the choice of parameters:

ε3 = c3 = 1, γ3 = 10,D3 = 1, p3 = 22, B = 1, c4 = 2,N3(0) = N4(0) = 1, (3.73)

the discriminant is positive. Referring to q(α3), this gives values:

b = 3, c = −2, α3 ∈ [0.76, 5.24], (3.74)

where the interval denotes the range of α3 in which Ē2 is unstable, i.e. coexistence occurs.

For the choice of parameters:

ε3 = c3 = 1, γ3 = 9,D3 = 1, p3 = 22, B = 1, c4 = 2,N3(0) = N4(0) = 1, (3.75)

the discriminant is negative. Referring to q(α3), this gives values:

b = 2, c = −3. (3.76)

As the roots are complex, Ē2 is stable for all α3.

When the discriminant of q(α3) is positive, there is a range of values in which the fear

response of N3 on N4, α3 is beneficial, and causes Ē2 to become stable. This case is most

realistic, as one expects too little fear response to have no effect, and too much to have a

harmful effect. From the parameter values, this suggests that cost and benefits are more

in-balance compared to some of the other cases.

When the discriminant of q(α3) is negative, the roots are purely complex. This means that
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(a) Graph of q(α3) for Case iii with positive
discriminant

(b) Graph of q(α3) for Case iii with negative
discriminant

Figure 3.5: Graphs of q(α3) for Case iii

the fear response level, α3 has no effect on the system stability. In this case, the negative

effects from N4 on N3 are too great, that the fear response is rendered useless.

Case iv: b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0 and c = R3 −

Bp3
c4
< 0

When b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0 and c = R3 −

Bp3
c4
<, this implies that the cost-to-benefit

measures of N4 outweigh the effect of R3. This could mean that N3 has a low intrinsic

growth rate, relative to the growth and predation rates of N4. The following simulations

were conducted with differing model parameters corresponding to the discriminant being

positive or negative. For the choice of parameters:

ε3 = c3 = 1, γ3 = 5,D3 = 1, p3 = 2, B = 2, c4 = 0.9,N3(0) = N4(0) = 5, (3.77)

the discriminant is positive. Referring to q(α3), this gives values:

b ≈ −8.1, c ≈ −0.44. (3.78)

For the choice of parameters:

ε = c3 = 1, γ3 = 1,D3 = 0.5, p3 = 2, B = 0.5, c4 = 1,N3(0) = N4(0) = 5, (3.79)
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(a) Taking α3 = 5 results in coexistence. The
line for N3 is non-zero and approaches a posi-
tive constant. N3(0) = N4(0) = 0.1

(b) Taking α3 = 0.2 (before interval) results in
N4 excluding N3

(c) Taking α3 = 10 (after interval) results in
N4 excluding N3

Figure 3.6: Simulations of N3-N4 with parameters given by (3.73)

the discriminant is negative. Referring to q(α3), this gives values:

b = −0.25, c = −0.5. (3.80)

Recall that in Case iv, Ē2 is always stable for all α3.

When the discriminant is positive, this causes there to be two negative roots of q(α3).

Biologically speaking, this means that a negative fear response from N3 is needed in order

for Ē2 to be stable. As per the model, this would equate to a substantial increase in the birth-

rate of N3 along with the predation term changing signs. This suggests N3 would essentially

begin predating on N4, reversing the structure of the food chain. When the discriminant is
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(a) Taking α3 = 5 results in N4 excluding N3

Figure 3.7: Simulations of N3 - N4 with parameters given by (3.75)

negative, the fear response has no effect on the persistence of N3. This is caused by the sign

of b and c, discussed earlier.

Case v: b = 0 ⇐⇒ R3 =
B
c4

(
D3 +

Bp3
c4

)
and c = 0 ⇐⇒ R3 =

Bp3
c4

When b, c = 0 ⇐⇒ R3 =
B
c4

(
D3 +

Bp3
c4

)
R3 =

Bp3
c4

, this implies the cost-to-benefit measures

are equal to R3. This occurs as per (3.61). The following simulations were conducted with

model parameters given by:

ε3 = c3 = 1, γ3 = 1,D3 = 0.5, p3 = 1, B = 0.5, c4 = 1,N3(0) = N4(0) = 5. (3.81)

Referring to q(α3), this gives values:

b = 0, c = 0, α+3 = 0, (3.82)

where α+3 is the threshold value. In this case, as α3 > 0 as per our model, it follows that Ē2

is always stable, i.e. N4 excludes N3.

In this case, the only root occurs at α3 = 0, which tells us nothing about the stability of the
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(a) Graph of q(α3) for Case iv with positive
discriminant

(b) Graph of q(α3) for Case iv with negative
discriminant

Figure 3.8: Graphs of q(α3) for Case iv

(a) In the positive discriminant case, taking
α3 = 1 results in N4 excluding N3. Parame-
ters given by (3.77)

(b) Taking α3 = 1 results in N4 excluding N3.
Parameters given by (3.79)

Figure 3.9: Simulations of N3-N4 for Case iv

system. As in Case iv, the fear response, α3, has no effect on helping N3 persist, meaning

Ē2 is always stable. It appears that R3 is too small to counteract the predation from N4.

Case vi: b = 0 ⇐⇒ R3 =
B
c4

(
D3 +

Bp3
c4

)
and c , 0 ⇐⇒ R3 ,

Bp3
c4

When b = 0 ⇐⇒ R3 =
B
c4

(
D3 +

Bp3
c4

)
and c = R3 −

Bp3
c4
> 0, this implies that R3 is

in-balance with the weighted cost-to-benefit measure of N4, but that R3 is greater than the

standard cost-to-benefit ratio. This represents a situation in which the predation rate of N4

is weaker. If c = R3 −
Bp3
c4
< 0, this implies that R3 is weaker than both cost-to-benefit
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Figure 3.10: Graph of q(α3) for Case v

(a) Taking α3 = 1 results in N4 excluding N3

Figure 3.11: Simulations of N3-N4 for Case v with parameters given by (3.81)

measures. This is caused by a stronger predation rate. The following simulations were

conducted with differing model parameters depending on if c was positive or negative. For

the choice of parameters:

ε1 = c3 = 1, γ3 = 3,D3 = 1, p3 = 1, B = 1, c4 = 1,N3(0) = N4(0) = 5, (3.83)

c is positive. Referring to q(α3), this gives values:

b = 0, c = 1, α+3 = 1, (3.84)

where α+3 is the threshold at which Ē2 becomes stable for α3 > α
+
3 . For the choice of
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parameters:

ε3 = c3 = 1, γ3 = 7,D3 = 1, p3 = 22, B = 1, c4 = 2,N3(0) = N4(0) = 5, (3.85)

c is negative. Referring to q(α3), this gives values:

b = 0, c = −5. (3.86)

When c = R3 −
Bp3
c4
< 0, the roots are complex, meaning that Ē2 is stable for all α3.

(a) Graph of q(α3) for Case vi with c > 0 (b) Graph of q(α3) for Case vi with c < 0

Figure 3.12: Graphs of q(α3) for Case vi

When c = R3 −
Bp3
c4
< 0, we note that there is a threshold at which the fear response, α3

becomes harmful to the persistence of N3, meaning Ē2 becomes stable. This corresponds

to the weaker predation, similar to Case i.

When c <= R3 −
Bp3
c4
< 0, we note that both roots are complex. This corresponds to a

stronger predation rate that cannot be countered by the fear response rate, α3.

Case vii: b , 0 ⇐⇒ R3 ,
B
c4

(
D3 +

Bp3
c4

)
and c = 0 ⇐⇒ R3 =

Bp3
c4

When b = R3−
B
c4

(
D3+

Bp3
c4

)
> 0 and c = 0 ⇐⇒ R3 =

Bp3
c4

, this implies that R3 is in-balance

with the cost-benefit ratio of N4 through c. As b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0, this suggests

that the intra-species competition, c4 is larger than the growth-rate of N4, B, suggesting the
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(a) Taking α3 = 5 results in N4 excluding N3 (b) Taking α3 = 0.5 results in coexistence

Figure 3.13: Simulations of N3-N4 for Case vi with parameters given by (3.83)

(a) Taking α3 = 1 results in N4 excluding N3

Figure 3.14: Simulations of N3-N4 for Case vi with parameters given by (3.85)

predation rate, p3 provides more of a benefit to N4 than B. This could help strengthen the

effect of the fear response. If b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0, this implies the benefits of N4 are

stronger, whether through predation or growth-rate, which could weaken the effect of the

fear response. The following simulations were conducted with differing model parameters

depending on if b was positive or negative. For the choice of parameters:

ε3 = c3 = 1, γ3 = 12,D3 = 1, p3 = 22, B = 1, c4 = 2,N3(0) = N4(0) = 5., (3.87)

b is positive. Referring to q(α3), this gives values:

b = 5, c = 0, α+3 = 10, (3.88)
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where α+3 is the threshold at which Ē2 becomes stable for α3 > α
+
3 . For the choice of

parameters:

ε3 = c3 = 1, γ3 = 3,D3 = 1, p3 = 1, B = 2, c4 = 1,N3(0) = N4(0) = 5, (3.89)

b is negative. Referring to q(α3), this gives values:

b = −4, c = 0. (3.90)

Recall that when b = R3 −
B
c4

(
D3 +

Bp3
c4

)
< 0, that both roots are negative, meaning that Ē2

is stable for all α3 > 0.

(a) Graph of q(α3) for Case vii with b > 0 (b) Graph of q(α3) for Case vii with b < 0

Figure 3.15: Graphs of q(α3) for Case vii

When b = R3 −
B
c4

(
D3 +

Bp3
c4

)
> 0, note the threshold at which the fear response harms the

persistence of N3. This is in line with what we saw in some of the other cases, and from the

previous discussion.

When b = R3−
B
c4

(
D3+

Bp3
c4

)
< 0, a positive fear response has no effect on the persistence of

N3. This is similar to Case iv when the discriminant is positive due to the increased benefits

to N4.
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(a) Taking α3 = 15 results in N4 excluding N3 (b) Taking α3 = 5 results in coexistence. The
value of N3 increases slightly above the hori-
zontal axis and approached a constant positive
value. N3(0) = 0.5,N4(0) = 0.25

Figure 3.16: Simulations of N3-N4 for Case vii with parameters given by (3.87)

(a) Taking α3 = 1 results in N4 excluding N3

Figure 3.17: Simulations of N3-N4 for Case vii with parameters given by (3.89)
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Chapter 4

Analysis of the Full Model

4.1 Equilibrium Point Analysis

We proved in Section 3 that (1.11) admits a positive, unique and bounded solution for

positive initial conditions. Therefore, an analysis of the system at its equilibria is justified.

Recalling the definition of an equilibrium point, we get that the equilibrium points of (1.11)

are given by the solutions of the equations:



N1

[
γ1

1 + α1N3
− D1 − c1N1 − β1N2 −

p1

1 + α1
N3

]
= 0,

N2

[
γ2

1 + α2N3
− D2 − c2N2 − β2N1 −

p2

1 + α2
N3

]
= 0,

N3

[
γ3

1 + α3N4
− D3 − c3N3 + ε1

p1

1 + α1
N1 + ε2

p2

1 + α2
N2 −

p3

1 + α3
N4

]
= 0,

N4

[
B − c4N4 + ε3

p3

1 + α3
N3

]
= 0.

(4.1)

In order for the equilibria to maintain a biological meaning, we wish to only consider the

solutions of (4.1) which are positive. The equilibria and their existence criteria will be

studied and derived in this section.
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For E0(0, 0, 0, 0)

From (4.1), we obtain:

E0(0, 0, 0, 0) = (0, 0, 0, 0) (4.2)

Existence is trivially unconditional.

For E1(N∗11, 0, 0, 0)

From (4.1), we obtain:

E1(N∗11, 0, 0, 0) =
(
γ1 − D1

c1
, 0, 0, 0

)
=

(
R1

c1
, 0, 0, 0

)
. (4.3)

Existence is unconditional due to our assumption that (??) holds.

For E2(0,N∗22, 0, 0)

From (4.1), we obtain:

E2(0,N∗22, 0, 0) =
(
0,
γ2 − D2

c2
, 0, 0

)
=

(
0,

R2

c2
, 0, 0

)
. (4.4)

Existence is unconditional due to our assumption that (??) holds.

For E3(N∗31,N
∗
32, 0, 0)

From (4.1), we obtain:
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E3(N∗31,N
∗
32, 0, 0) =

(
(D2 − γ2)β1 − c2(D1 − γ1)

c1c2 − β1β2
,

(D1 − γ1)β2 − c1(D2 − γ2)
c1c2 − β1β2

, 0, 0
)

=

(
R2β1 − c2R1

β1β2 − c1c2
,

R1β2 − c1R2

β1β2 − c1c2
, 0, 0

) (4.5)

Existence is conditional on both the numerator and denominator being simultaneously pos-

itive or negative. This follows the analysis of Ê3 in Chapter 3. Please refer to equations

(3.3) and (3.4).

For E4(0, 0,N∗43, 0)

From (4.1), we obtain:

E4(0, 0,N∗43, 0) =
(
0, 0,
γ3 − D3

c3
, 0

)
=

(
0, 0,

R3

c3
, 0

)
. (4.6)

Existence is unconditional due to our assumption that (??) holds.

For E5(0, 0, 0,N∗54)

From (4.1), we obtain:

E5(0, 0, 0,N∗54) =
(
0, 0, 0,

B
c4

)
. (4.7)

Existence is trivially unconditional.

For E6(0, 0,N∗63,N
∗
64)
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The analysis here is parallel to a case in Chapter 3. Define:

A =
p3

1 + α3
, C =

1 + α3

p3ε3
,

s1 = (BCc3 − D3)2α2
3 + 2(BCc3 − D3 + 2γ3)(Cc3c4 + A)α3 + (Cc3c4 + A)2.

(4.8)

We then have:

N∗63 = C(c4N∗64 − B), N∗64 =
C(Bα3 − c4)c3 − D3α3 − A +

√
s1

2α3(Cc3c4 + A)
. (4.9)

The equilibrium exists when the condition:

γ3 > D3 +
B[ABα3 + c4(D3α3 + A)]

c2
4

(4.10)

holds.

For E7(0,N∗72,N
∗
73, 0)

The analysis of this equilibrium parallels that of the work done in Chapter 3. Define:

J =
p2

1 + α2
, K =

1 + α2

ε2 p2
,

s2 = (R3Kc2 − D2)2α2
2 + 2(R3Kc2 − D2 + 2γ2)(Kc2c3 + J)α2 + (Kc2c3 + J)2.

(4.11)

We obtain:

N∗72 = K(c3N∗73 − R3),

N∗73 =
K(R3α2 − c3)c2 − D2α2 − J +

√
s2

2α2(Kc2c3 + J)
.

(4.12)
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The existence condition is given by:

γ2 > D2 +
R3[JR3α2 + c3(D2α2 + J)]

c2
3

. (4.13)

For E8(0,N∗82, 0,N
∗
84)

From (4.1), we obtain:

E8(0,N∗82, 0,N
∗
84) =

(
0,
γ2 − D2

c2
, 0,

B
c4

)
=

(
0,

R2

c2
, 0,

B
c4

)
. (4.14)

Existence is unconditional due to our assumption that (??) holds.

For E9(N∗91, 0, 0,N
∗
94)

From (4.1), we obtain:

E9(N∗91, 0, 0,N
∗
94) =

(
γ1 − D1

c1
, 0, 0,

B
c4

)
=

(
R1

c1
, 0, 0,

B
c4

)
(4.15)

Existence is unconditional due to our assumption that (??) holds.

For E10(N∗101, 0,N
∗
103, 0)

The analysis of this equilibrium parallels the work done in Chapter 3. Define:

H =
p1

1 + α1
, I =

ε1 p1

1 + α1
,

s3 = (R3Ic1 − D1)2α2
1 + 2(R3Ic1 − D1 + 2γ1)(Ic1c3 + H)α1 + (Ic1c3 + H)2.

(4.16)
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We obtain:

N∗101 = I(c3N∗103 − R3),

N∗103 =
I(R3α1 − c3)c1 − D1α1 − H +

√
s3

2α1(Ic1c3 + H)
.

(4.17)

The existence condition is given by:

γ1 > D1 +
R3[HR3α1 + c3(D1α1 + H)]

c2
3

. (4.18)

For E11(N∗111,N
∗
112,N

∗
113, 0)

As E11 is always unstable when it exists, we may omit its existence criterion since it will

never be stable to begin with.

For E12(0,N∗122,N
∗
123,N

∗
124)

From (4.1), we obtain:

γ2

1 + α2N123
− D2 − c2N122 −

p2

1 + α2
N123 = 0,

γ3

1 + α3N124
− D3 − c3N123 +

ε2 p2

1 + α2
N122 −

p3

1 + α3
N124 = 0,

B − c4N124 +
ε3 p3

1 + α3
N123 = 0.

(4.19)

Rearranging the second and third equation in terms of N∗123 yields:

N∗123 =
1 + α3

ε3 p3
(c4N∗124 − B),

N∗123 =
1
c3

[
γ3

1 + α3N∗124
− D3 +

ε2 p2N∗122

1 + α2
−

p3N∗124

1 + α3

]
.

(4.20)



Chapter 4 – Analysis of the Full Model 56

In order for these to be positive, the following inequalities must hold:

N∗124 >
B
c4
,

γ3

1 + α3N∗124
+
ε2 p2N∗122

1 + α2
> D3 +

p3

1 + α3
N∗124.

(4.21)

Setting the two equations equal yields:

G1(N∗124) =
1 + α3

ε3 p3
(c4N∗124 − B) −

1
c3

(
γ3

1 + α3N∗124
− D3 −

p3N∗124

1 + α3

)
=
ε2 p2N∗122

c3(1 + α2)
. (4.22)

Plugging the first equation for N∗123 into the first equation of the original system yields:

G2(N∗124) =
1
c2

[
γ2

1 + α2(1+α3)(c4N∗124−B)
ε3 p3

− D2 −
p2(1 + α3)(c4N∗124 − B)
ε3 p3(1 + α2)

]
= N∗122. (4.23)

Let us treat N∗122 as a function of N∗124. E12 is given by the intersections of G1 and G2,

ensuring that the constraints in (4.21) hold true.

For E13(N∗131, 0,N
∗
133,N

∗
134)

From (4.1), we obtain the system of equations:

γ1

1 + α1N133
− D1 − c1N131 −

p1

1 + α1
N133 = 0,

γ3

1 + α3N134
− D3 − c3N133 +

ε1 p1

1 + α1
N131 −

p3

1 + α3
N134 = 0,

B − c4N134 +
ε3 p3

1 + α3
N133 = 0.

(4.24)
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Rearranging the second and third equation in terms of N∗133 yields:

N∗133 =
1 + α3

ε3 p3
(c4N∗134 − B),

N∗133 =
1
c3

[
γ3

1 + α3N∗134
− D3 +

ε1 p1N∗131

1 + α1
−

p3N∗134

1 + α3

]
.

(4.25)

In order for these to be positive, the following inequalities must hold:

N∗134 >
B
c4
,

γ3

1 + α3N∗134
+
ε1 p1N∗131

1 + α1
> D3 +

p3

1 + α3
N∗134.

(4.26)

Setting the two equations equal yields:

G1(N∗134) =
1 + α3

ε3 p3
(c4N∗134 − B) −

1
c3

(
γ3

1 + α3N∗134
− D3 −

p3N∗134

1 + α3

)
=
ε1 p1N∗131

c3(1 + α1)
. (4.27)

Plugging the first equation for N∗133 into the first equation of the original system yields:

G2(N∗134) =
1
c1

[
γ1

1 + α1(1+α3)(c4N∗134−B)
ε3 p3

− D1 −
p1(1 + α3)(c4N∗134 − B)
ε3 p3(1 + α1)

]
= N∗131. (4.28)

Let us treat N∗131 as a function of N∗134. E13 is given by the intersections of G1 and G2,

ensuring that the constraints in (4.26) hold true.

For E14(N∗141,N
∗
142, 0,N

∗
144)

This case is nice combination of E3 and E8. Combining the results, we obtain:

E14(N∗141,N
∗
142, 0,N

∗
144) =

(
R2β1 − c2R1

β1β2 − c1c2
,

R1β2 − c1R2

β1β2 − c1c2
, 0,

B
c4

)
. (4.29)

The B
c4

term always exists, so existence is then dependent on a case of strong or weak
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competition. The existence criteria for this equilibrium is identical to the criteria for

E3(N∗31,N
∗
32, 0, 0), given by (3.3) and (3.4).

For E15(N+1 ,N
+
2 ,N

+
3 ,N

+
4 )

The study of E15 through analytic means will be omitted in this thesis.

Theorem 4.1 The equilibria E0, E1, E2, E5, E8 and E9 always exist. The equilibria E3, E4,

E6, E7, E10, E11, E12, E13 and E14 exist conditionally.

Proof These results follow from the above analysis.

The results may be succinctly summarized in the following table:
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Equilibrium Point Existence Stability
E0(0, 0, 0, 0) Always Always Unstable
E1(N∗11, 0, 0, 0) Always Always Unstable
E2(0,N∗22, 0, 0) Always Always Unstable
E3(N∗31,N

∗
32, 0, 0) Given by (3.3) or (3.4) Unstable when Exists

E4(0, 0,N∗43, 0) Always Always Unstable
E5(0, 0, 0,N∗54) Always Always Unstable
E6(0, 0,N∗63,N

∗
64) Given by (4.10) Conditions Given by (4.50)

E7(0,N∗72,N
∗
73, 0) Given by (4.13) Unstable when Exists

E8(0,N∗82, 0,N
∗
84) Always Conditions Given by (4.55)

E9(N∗91, 0, 0,N
∗
94) Always Conditions Given by (4.58)

E10(N∗101, 0,N
∗
103, 0) Given by (4.18) Unstable when Exists

E11(N∗111,N
∗
112,N

∗
113, 0) Conditional Unstable when Exists

E12(0,N∗122,N
∗
123,N

∗
124) Conditional Conditions Given by (4.70)

E13(N∗131, 0,N
∗
133,N

∗
134) Conditional Conditions Given by (4.76)

E14(N∗141,N
∗
142, 0,N

∗
144) Given by (3.3) or (3.4) Conditions Given by (4.83)

E15(N+1 ,N
+
2 ,N

+
3 ,N

+
4 ) Omitted Omitted

Table 4.1: Summary of equilbria and their stability

4.2 Stability of the Equilibria

In this section, we will study some of the equilibrium points derived in Section 4.2. The

Jacobian matrix corresponding to (1.11) is given by:

J(N1,N2,N3,N4) =



J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44


, (4.30)
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where:

J11 =
γ1

1 + α1N3
− D1 − 2c1N∗1 − β1N2 −

p1N3

1 + α1
,

J12 = −β1N1,

J13 = −N1

(
γ1α1

(1 + α1N3)2 +
p1

1 + α1

)
,

J14 = 0,

J21 = −β2N2,

J22 =
γ2

1 + α2N3
− D2 − 2c2N2 − β2N1 −

p2N3

1 + α2
,

J23 = −N2

(
γ2α2

(1 + α2N3)2 +
p2

1 + α2

)
,

J24 = 0,

J31 =
ε1 p1N3

1 + α1
,

J32 =
ε2 p2N3

1 + α2
,

J33 =
γ3

1 + α3N4
− D3 − 2c3N3 +

ε1 p1N1

1 + α1
+
ε2 p2N2

1 + α2
−

p3N4

1 + α3
,

J34 = −N3

(
γ3α3

(1 + α3N4)
+

p3

1 + α3

)
,

J41 = 0,

J42 = 0,

J43 =
ε3 p3N4

1 + α3
,

J44 = B − 2c4N4 +
ε3 p3N3

1 + α3
.

(4.31)

Let us now consider the stability of the various equilibrium points. Some were previously

studied in the context of various subsystems, but now we will factor in the coupling that
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occurs in the four component model. Evaluating the Jacobian at E0 yields:

J(0, 0, 0, 0) =



γ1 − D1 0 0 0

0 γ2 − D2 0 0

0 0 γ3 − D3 0

0 0 0 B


=



R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 B


. (4.32)

The eigenvalues are given by the characteristic equation:

(R1 − λ)(R2 − λ)(R3 − λ)(B − λ) = 0

⇐⇒ λ1 = R1, λ2 = R2, λ3 = R3, λ4 = B.
(4.33)

As we assumed R1, R2 and R3 to be positive, λ1, λ2 and λ3 are always positive. Further-

more, B is a positive constant. Therefore, the trivial equilibrium is always unstable.

Evaluating the Jacobian at E1 yields:

J
(
R1

c1
, 0, 0, 0

)
=



−R1 −
R1β1

c1
−

R1(γ1α
2
1+γ1α1+p1)

c1(1+α1) 0

0 R2 −
β2R1

c1
0 0

0 0 R3 +
ε1 p1R1

c1(1+α1) 0

0 0 0 B


. (4.34)

The eigenvalues are given by:

λ1 = −R1,

λ2 =
R2c1 − β2R1

c1
,

λ3 =
c1R3(1 + α1) + ε1 p1R1

c1(1 + α1)
,

λ4 = B.

(4.35)
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B is always a positive constant, so λ4 is always positive. Therefore, this equilibrium is

unstable.

Evaluating the Jacobian at E2 yields:

J
(
0,

R2

c2
, 0, 0

)
=



R1 −
β1R2

c2
0 0 0

−
R2β2

c2
−R2 −

R2(γ2α
2
2+γ2α2+p2)

c2(1+α2) 0

0 0 R3 +
ε2 p2R2

c2(1+α2) 0

0 0 B


. (4.36)

The eigenvalues are given by:

λ1 =
R1c2 − β1R2

c2
,

λ2 = −R2,

λ3 =
R3(1 + α2)c2 + ε2 p2R2

c2(1 + α2)
,

λ4 = B.

(4.37)

B is a positive constant, so λ4 is always positive. Therefore, this equilibrium is unstable.

Evaluating the Jacobian at E3 yields and making simplifications using (4.1) yields:

J(N∗31,N
∗
32, 0, 0) =



−c1N∗31 −N∗31β1 N∗31

(
− α1γ1 −

p1
1+α1

)
0

−N∗32β2 −c2N∗32 N∗32

(
− α2γ2 −

p2
1+α2

)
0

0 0 R3 +
ε1 p1N∗31

1+α1
+
ε2 p2N∗32

1+α2
0

0 0 0 B


. (4.38)
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The eigenvalues are given by:

λ1 =
−c1N∗31 − c2N∗32 +

√
(N∗31)2c2

1 − 2N∗32(c2c1 − 2β1β2)N∗31 + (N∗32)2c2
2

2
,

λ2 =
−c1N∗31 − c2N∗32 −

√
(N∗31)2c2

1 − 2N∗32(c2c1 − 2β1β2)N∗31 + (N∗32)2c2
2

2
,

λ3 =
α1(R3α2 + ε2 p2N∗32 + R3) + α2(ε1 p1N∗31 + R3) + ε2 p2N∗32 + ε1 p1N∗31 + R3

(1 + α1)(1 + α2)
,

λ4 = B.

(4.39)

λ3 is always positive when N∗31 and N∗32 exist, and B is a positive constant, so λ4 is always

positive. Therefore, this equilibrium is unstable.

Evaluating the Jacobian at E4 yields:

J
(
0, 0,

R3

c3
, 0

)
=

γ1

1+ α1R3
c3

− D1 −
p1R3

c3(1+α1) 0 0 0

0 γ2

1+ α2R3
c3

− D2 −
p2R3

c3(1+α2) 0 0

R3ε1 p1
c3(1+α1)

R3ε2 p2
c3(1+α2) −R3 −

R3
c3

(
γ3α3 +

p3
1+α3

)
0 0 0 B + ε3 p3R3

c3(1+α3)


.

(4.40)

The eigenvalues are given by:

λ1 = −
c3α

2
2R3D2 + c3α2R3D2 + c2

3α2D2 + R2
3α2 p2 − γ2c2

3α2 + c2
3D2 + R − 3c3 p2 − γ2c2

3

c3(α2
2R3 + α2R3 + α2c3 + c3)

,

λ2 = −
D1R3α

2
1 + D1R3α1c3 + D1α1c2

3 + R2
3α1 p1 − α1c2

3γ1 + D1c2
3 + R3c3 p1 − c2

3γ1

c3(R3α
2
1 + R3α1 + α1c3 + c3)

,

λ3 = −R3,

λ4 =
Bα3c3 + R3 p3ε3 + Bc3

c3(1 + α3)
.

(4.41)
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As we assumed R3 to be positive, λ4 is always positive. Therefore E4 is always unstable.

Evaluating the Jacobian at E5 yields:

J
(
0, 0, 0,

B
c4

)
=



R1 0 0 0

0 R2 0 0

0 0 γ3

1+ α3B
c4

− D3 −
p3B

c4(1+α3) 0

0 0 Bε3 p3
c4(1+α3) −B


. (4.42)

The eigenvalues are given by:

λ2 = R1,

λ3 = R2,

λ4 = −
BD3α

2
3c4 + B2α3 p3 + BD3α3c4 + D3α3c2

4 − γ3c2
4α3 + Bc4 p3 + D3c2

4 − γ3c2
4

c4(Bα2
3 + α3B + α3c4 + c4)

,

λ4 = −B.

(4.43)

As we assumed R1 and R2 to be positive, it follows that λ1 and λ2 are positive as well.

Therefore, E5 is always unstable.

Evaluating the Jacobian at E6 yields:

J(0, 0,N∗63,N
∗
64) =

γ1
1+α1N∗63

− D1 −
p1N∗63
1+α1

0 0 0

0 γ2
1+α2N∗63

− D2 −
p2N∗63
1+α2

0 0
N∗63ε1 p1

1+α1

N∗63ε2 p2

1+α2
−c3N∗63 −N∗63

(
γ3α3

(1+α3N∗64)2 +
p3

1+α3

)
0 0 N∗64ε3 p3

1+α3
−c4N∗64


.

(4.44)
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Expanding along the first row, the first eigenvalue is given by:

λ1 =
γ1

1 + α1N∗63

− D1 −
p1N∗63

1 + α1
. (4.45)

The remaining eigenvalues are determined by the minor:


γ2

1+α2N∗63
− D2 −

p2N∗63
1+α2

0 0
N∗63ε2 p2

1+α2
−c3N∗63 −N∗63

(
γ3α3

(1+α3N∗64)2 +
p3

1+α3

)
0 N∗64ε3 p3

1+α3
−c4N∗64

 . (4.46)

Expanding along the first row once again gives the second eigenvalue as:

λ2 =
γ2

1 + α2N∗63

− D2 −
p2N∗63

1 + α2
. (4.47)

The remaining eigenvalues may be characterized by the matrix:

−c3N∗63 −N∗63

(
γ3α3

(1+α3N∗64)2 +
p3

1+α3

)
N∗64ε3 p3

1+α3
−c4N∗64

 . (4.48)

This matrix has the characteristic equation:

λ2 + λ(c3N∗63 + c4N∗64) +
c3c4ε3 p3(N∗63 N∗64)2

1 + α3

(
γ3α3

(1 + α3N∗64)2 +
p3

1 + α3

)
= 0. (4.49)

The Routh-Hurwitz criterion for a second degree polynomial says that the constant term

and the constant on the λ term must both be positive in order to have eigenvalues with

negative real part. Note that both of these constants are always positive when N∗63 and N∗64

exist. Therefore, λ1 and λ2 determine the stability of this equilibrium point, and so need to
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be negative to guarantee stability. This gives the following:

γ1

1 + α1N∗63

< D1 +
p1N∗63

1 + α1
,

γ2

1 + α2N∗63

< D2 +
p2N∗63

1 + α2
.

(4.50)

Therefore, E6 is stable when the above conditions hold.

Evaluating the Jacobian at E7 yields:

J(0,N∗72,N
∗
73, 0) =

γ1
1+α1N∗73

− D1 − β1N∗72 −
p1N∗73
1+α1

0 0 0

−β2N∗72 −c2N∗72 −N∗72

(
γ2α2

(1+α2N∗73)2 +
p2

1+α2

)
0

N∗73ε1 p1

1+α1

N∗73ε2 p2

1+α2
−c3N∗73 −N∗73

(
γ3α3 +

p3
1+α3

)
0 0 0 B + ε3 p3N∗73

1+α3


.

(4.51)

Expanding along the bottom row, one of the eigenvalues is apparently obvious. This is

given by:

λ4 = B +
N∗73 p3ε3

1 + α3
, (4.52)

which is always positive when N∗73 exists. Therefore, E7 is unstable.

Evaluating the Jacobian at E8 yields:

J
(
0,

R2

c2
, 0,

B
c4

)
=



R1 −
β1R2

c2
0 0 0

−
R2β2

c2
−R2 −

R2
c2

(
γ2α2 +

p2
1+α2

)
0

0 0 γ3

1+ α3B
c4

− D3 +
ε2 p2R2

c2(1+α2) −
p3B

c4(1+α3) 0

0 0 Bε3 p3
c4(1+α3) −B


. (4.53)
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The eigenvalues are given by:

λ1 =
R1c2 − β1R2

c2
,

λ2 = −R2,

λ3 =
γ3

1 + α3B
c4

− D3 +
ε2 p2R2

c2(1 + α2)
−

p3B
c4(1 + α3)

,

λ4 = −B.

(4.54)

Note that λ1 and λ3 are always negative. When λ1 and λ3 are negative, the equilibrium is

stable. This occurs when:

R1c2 < β1R2,

γ3

1 + α3B
c4

+
ε2 p2R2

c2(1 + α2)
< D3 +

p3B
c4(1 + α3)

.
(4.55)

Therefore, when the above conditions hold, E8 is stable.

Evaluating the Jacobian at E9 yields:

J
(
R1

c1
, 0, 0,

B
c4

)
=



−R1 −
R1β1

c1
−

R1
c1

(
α1γ1 +

p1
1+α1

)
0

0 R2 −
β2R1

c1
0 0

0 0 γ3

1+ α3B
c4

− D3 +
ε1 p1R1

c1(1+α1) −
p3B

c4(1+α3) 0

0 0 Bε3 p3
c4(1+α3) −B


. (4.56)
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The eigenvalues are given by:

λ1 = −R1,

λ2 =
R2c1 − β2R1

c1
,

λ3 =
γ3

1 + α3B
c4

− D3 +
ε1 p1R1

c1(1 + α1)
−

p3B
c4(1 + α3)

,

λ4 = −B.

(4.57)

Note that λ1 and λ4 are always negative. When λ2 and λ3 are negative, the equilibrium is

stable. This occurs when:

R2c1 < β2R1,

γ3

1 + α3B
c4

+
ε1 p1R1

c1(1 + α1)
< D3 +

p3B
c4(1 + α3)

(4.58)

Therefore, when the above conditions hold, E9 is stable.

Evaluating the Jacobian at E10 and making simplifications using (4.1) yields:

J(N∗101, 0,N
∗
103, 0) =

−c1N∗101 −β1N∗101 −N∗101

(
γ1

(1+α1N∗103)2 +
p1

1+α1

)
0

0 γ2
1+α2N∗103

− D2 − β2N∗101 −
p2N∗103
1+α2

0 0
N∗101ε1 p1

1+α1

N∗103ε2 p2

1+α2
−c3N∗103 −N∗103

(
γ3α3 +

p3
1+α3

)
0 0 0 B + ε3 p3N∗103

1+α3


.

(4.59)

Expanding along the bottom row, one of the eigenvalues is apparently obvious. This is

given by:

λ4 = B +
N∗103 p3ε3

1 + α3
, (4.60)
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which is always positive when N∗3 exists. Therefore, E10 is unstable.

Evaluating the Jacobian at E11 and making simplifications using (4.1) yields:

J(N∗111,N
∗
112,N

∗
113, 0) =

−c1N∗111 −β1N∗111 −N∗111

(
γ1α1

(1+α1N∗113)2 +
p1

1+α1

)
0

−β2N∗112 −c2N∗112 −N∗112

(
γ2α2

(1+α2N∗113)2 +
p2

1+α2

)
0

N∗113ε1 p1

1+α1

N∗113ε2 p2

1+α2
−c3N∗113 −N∗113

(
γ3α3 +

p3
1+α3

)
0 0 0 B + ε3 p3N∗113

1+α3


.

(4.61)

Expanding along the bottom row, one of the eigenvalues is apparently obvious. This is

given by:

λ4 = B +
ε3 p3N∗113

1 + α3
, (4.62)

which is always positive when N∗113 exists. Therefore, E11 is unstable. This implies that

competition and the fear response to N∗3 makes it impossible for N∗3 and the lowest mem-

bers to coexist. We showed in the first subsystem that N111 and N112 may coexist in certain

conditions. However, the coupled system prevents this from happening.

Evaluating the Jacobian at E12 and making some simplifications using (4.1) yields:

J(0,N∗122,N
∗
123,N

∗
124) =

γ1
1+α1N∗123

− D1 − β1N∗122 −
p1N∗123
1+α1

0 0 0

−β2N∗122 −c2N∗122 −N∗122
( γ2α2

(1+α3N∗124)2 +
p2

1+α2

)
0

ε1 p1N∗123
1+α1

ε2 p2N∗123
1+α2

−c3N∗123 A34

0 0 ε3 p3N∗124
1+α3

−c4N∗124


,

(4.63)

where:

A34 = −N∗123

(
γ3α3

(1 + α3N∗124)2 +
p3

1 + α3

)
(4.64)
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Expanding along the top row, one may obtain the first eigenvalue as:

λ1 =
γ1

1 + α1N∗123
− D1 − β1N∗122 −

p1N∗123

1 + α1
. (4.65)

The remaining eigenvalues are characterized by the minor:


−c2N∗122 −N∗122

(
γ2α2

(1+α3N∗124)2 +
p2

1+α2

)
0

ε2 p2N∗123
1+α2

−c3N∗123 −N∗123

(
γ3α3

(1+α3N∗124)2 +
p3

1+α3

)
0 ε3 p3N∗124

1+α3
−c4N∗124

 (4.66)

We may apply the Routh-Hurwitz Criterion to the characteristic equation of this matrix.

The characteristic equation is given by:

λ3 + a1λ
2 + a2λ + a3 = 0, (4.67)

where:

a1 = c2N∗122 + c3N∗123 + c4N∗124 > 0,

a2 = c2N∗122(c3N∗123 + c4N∗124) +
ε2 p2N∗122N∗123

1 + α2

(
γ2α2

(1 + α2N∗123)2 +
p2

1 + α2

)
+ c3c4N∗123N∗124+

ε3 p3N∗123N∗124

1 + α3

(
γ3α3

(1 + α3N∗124)2 +
p3

1 + α3

)
> 0,

a3 = c2c3c4N∗122N∗123N∗124 +
c2ε3 p3N∗122N∗123N∗124

1 + α3

(
γ3α3

(1 + α3N∗124)2 +
p3

1 + α3

)
+

c4ε2 p2N∗122N∗123N∗124

1 + α2

(
γ2α2

(1 + α2N∗123)2 +
p2

1 + α2

)
> 0.

(4.68)

The Routh-Hurwitz criterion for third degree polynomials as given in [5] states that if the

conditions:

a1, a3 > 0, a1a2 > a3, (4.69)
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hold, then the eigenvalues will have negative real part. From (4.68), we see that a1, a3 > 0

when N∗122,N
∗
123 and N∗124 exist. Therefore, when:

a1a2 > a3,
γ1

1 + α1N∗123
< D1 + β1N∗122 +

p1N∗123

1 + α1
(4.70)

holds, then E12 will be stable.

Evaluating the Jacobian at E13 and making some simplifications using (4.1) yields:

J(N∗131, 0,N
∗
133,N

∗
134) =

−c1N∗131 −β1N∗131 −N∗131
( γ1α1

(1+α3N∗133)2 +
p3

1+α3

)
0

0 γ2
1+α2N∗133

− D2 − β2N∗131 −
p2N∗133
1+α2

0 0
N∗133ε1 p1

1+α1

N∗133ε2 p2

1+α2
−c3N∗133 B34

0 0 N∗134ε3 p3

1+α3
−c4N∗134


,

(4.71)

where:

B34 = −N∗133

(
γ3α3

(1 + α3N∗134)2 +
p3

1 + α3

)
. (4.72)

Expanding along the second row, one may obtain the second eigenvalue as:

λ2 =
γ2

1 + α2N∗133
− D2 − β2N∗131 −

p2N∗133

1 + α2
. (4.73)

The remaining eigenvalues are characterized by the minor:


−c1N∗131 −N∗131

( γ1α1
(1+α3N∗133)2 +

p3
1+α3

)
0

N∗133ε1 p1

1+α1
−c3N∗133 −N∗133

( γ3α3
(1+α3N∗134)2 +

p3
1+α3

)
0 N∗134ε3 p3

1+α3
−c4N∗134

 . (4.74)
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This matrix is almost identical to the one for E12, save for some subscripts. Utilizing this

previous work, we have:

b1 = c1N∗131 + c3N∗133 + c4N∗134 > 0,

b2 = c1N∗131(c3N∗133 + c4N∗134) +
ε1 p1N∗131N∗133

1 + α1

(
γ1α1

(1 + α3N∗133)2 +
p3

1 + α3

)
+ c3c4N∗133N∗134+

ε3 p3N∗133N∗134

1 + α3

(
γ3α3

(1 + α3N∗134)2 +
p3

1 + α3

)
> 0,

b3 = c1c3c4N∗131N∗133N∗134 +
c1ε3 p3N∗131N∗133N∗134

1 + α3

(
γ3α3

(1 + α3N∗134)2 +
p3

1 + α3

)
+

c4ε1 p1N∗131N∗133N∗134

1 + α1

(
γ1α1

(1 + α3N∗133)2 +
p3

1 + α3

)
> 0.

(4.75)

Using our previous analysis, it follows that E13 is stable when the conditions:

b1b2 > b3,
γ2

1 + α2N∗133
< D2 + β2N∗131 +

p2N∗133

1 + α2
(4.76)

hold.

Evaluating the Jacobian at E14 and making some simplifications using (4.1) yields:

J(N∗141,N
∗
142, 0,N

∗
144) =

−c1N∗141 −β1N∗141 −N∗141
(
γ1α1 +

p1
1+α1

)
0

−β2N∗142 −c2N∗142 −N∗142
(
γ2α2 +

p2
1+α2

)
0

0 0 γ3

1+ Bα3
c4

− D3 +
ε1 p1N∗141

1+α1
+
ε2 p2N∗142

1+α2
−

p3B
c4(1+α3) 0

0 0 Bε3 p3
c4(1+α3) −B


.

(4.77)

Expanding along the bottom row, one may obtain the final eigenvalue as

λ4 = −B. (4.78)



Chapter 4 – Analysis of the Full Model 73

The remaining eigenvalues are characterized by the minor:


−c1N∗141 −β1N∗141 −N∗141

(
γ1α1 +

p1
1+α1

)
−β2N∗142 −c2N∗142 −N∗142

(
γ2α2 +

p2
1+α2

)
0 0 γ3

1+ Bα3
c4

− D3 +
ε1 p1N∗141

1+α1
+
ε2 p2N∗142

1+α2
−

p3B
c4(1+α3)


(4.79)

Expanding along the fourth column gives the third eigenvalue as:

λ3 =
γ3

1 + Bα3
c4

− D3 +
ε1 p1N∗141

1 + α1
+
ε2 p2N∗142

1 + α2
−

p3B
c4(1 + α3)

. (4.80)

The remaining to eigenvalues are characterized by the minor:

−c1N∗141 −β1N∗141

−β2N∗142 −c2N∗142

 (4.81)

This matrix has the characteristic equation:

λ2 + λ(c1N∗141 + c2N∗142) + N∗141N∗142(c1c2 − β1β2) = 0. (4.82)

The Routh-Hurwitz criterion states that both of the constant terms on the above equation

need to be positive to guarantee eigenvalues with negative real parts. The constant attached

to the λ term is always positive when N∗141 and N∗142 exist. Therefore, all that matters is the

constant term. λ4 is always negative, but λ3 can vary sign depending on the parameters.

This gives the following conditions for stability after substituting the values of N∗141 and

N∗142:

c1c2 > β1β2,

γ3

1 + Bα3
c4

+
ε1 p1

1 + α1
·

R2β1 − c2R1

β1β2 − c1c2
+
ε2 p2

1 + α2
·

R1β2 − c1R2

β1β2 − c1c2
< D3 +

p3B
c4(1 + α3)

.
(4.83)
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Note that the first condition describes the weak competition case. Therefore, if E14 corre-

sponds to a case of strong competition, it must be unstable. This then implies that a case of

weak competition is the only possible case of stability, provided that the second condition

holds as well.
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Chapter 5

Summary and Discussion

5.1 Results Involving Full Model and N1 - N2 Competition

Subsystem

Our analysis showed that in this decoupled system the extinction case is unstable, and the

strong competition coexistence case is unstable. The weak competition coexistence case is

stable as well as the exclusion cases. In the full model, we see that all of these analogous

cases are unstable. This suggests that N3 and N4 have a top-down effect on the persistence

of N1 and N2. Another relationship worth considering is the effect of N4 on the persistence

of N1 and N2 in the full model. This corresponds to the equilibria E8 and E9 of the full

model. N̂∗1 =
R1
c1

will persist in the competition subsystem when the condition:

R2c1 < β2R1 (5.1)

holds. Similarly, N̂∗2 =
R2
c2

will persist in the competition system when the condition:

R1c2 < β1R2 (5.2)
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holds. Comparing the stability conditions of E9 given in (4.58) with (5.1), these two condi-

tions are shared. If N4 gets involved, it will allow N∗91 =
R1
c1

to persist. Similarly, comparing

the stability conditions of E8 given in (4.55) with (5.2), these two conditions are shared. If

N4 gets involved, it will allow N∗82 =
R2
c2

to persist. This suggests N4 may have a beneficial

effect on one of N1 and N2, but have a negative effect on N3 in the full model.

5.2 Results Involving Full Model and N3-N4 Predator-Prey

Subsystem

Let us now consider the predator-prey subsystem. This system has two equilibria of inter-

est, namely Ē2(0, N̄∗4) and Ē3(N̄+3 , N̄
+
4 ). Ē2 always exists and the stability is given by (3.35).

This stability condition reads:

γ3

1 + α3N̄∗4
< D3 +

p3N̄∗4
1 + α3

. (5.3)

This means that the fear response of N3 and N̄∗4 play a role in its ability to exclude N3. Ē3 is

stable when it exists, which are given by (3.28) In the full model, we have the equilibrium

point E6(0, 0,N∗63,N
∗
64). This is a combination of both of the previously mentioned equilib-

rium points in the predator-prey system, as this equilibrium covers the coexistence of N3

and N4 as well as the exclusion of the next lowest members of the food chain. E6 is stable

when it exists and (4.50) holds. The existence conditions are still given by (4.10), and the

stability conditions read:

γ1

1 + α1N∗63

< D1 +
p1N∗63

1 + α1
,

γ2

1 + α2N∗63

< D2 +
p2N∗63

1 + α2
.

(5.4)
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Note the similarities of these conditions with the ones corresponding to Ē2. The fear

response of N1 and N2 both play a role in the stability. This suggests that the fear response

of the lowest member(s) and equilibrium point of the next highest member will play a part

in order for the next highest member(s) to exclude the next lowest member(s). Since we’re

also combining the coexistence of N3 and N4 this also invokes the existence criteria given

by (3.28)

Another relationship worth considering is the effect of Ē2 on E14. Ē2 is stable when the

condition given in (3.35):
γ3

1 + Bα3
c4

< D3 +
p3B

c4(1 + α3)
(5.5)

holds. E14 is stable when weak competition occurs and the second condition in (4.83):

γ3

1 + Bα3
c4

+
ε1 p1

1 + α1
·

R2β1 − c2R1

β1β2 − c1c2
+
ε2 p2

1 + α2
·

R1β2 − c1R2

β1β2 − c1c2
< D3 +

p3B
c4(1 + α3)

(5.6)

holds. If (3.35) holds, then the second condition in (4.83) holds if:

0 ≤
ε1 p1

1 + α1
·

R2β1 − c2R1

β1β2 − c1c2
+
ε2 p2

1 + α2
·

R1β2 − c1R2

β1β2 − c1c2
< D3 +

p3B
c4(1 + α3)

−
γ3

1 + Bα3
c4

(5.7)

is true. If not, E14 is unstable. If the second part of (4.83) holds, then (3.35) holds

since:
γ3

1 + Bα3
c4

≤
γ3

1 + Bα3
c4

+
ε1 p1

1 + α1
·

R2β1 − c2R1

β1β2 − c1c2
+
ε2 p2

1 + α2
·

R1β2 − c1R2

β1β2 − c1c2
(5.8)

This means N4 will determine is E14 is stable, which implies that N4 has a top-down, helpful

effect on N1 and N2, and a negative effect on N3. N1 and N2 coexist in the competition

subsystem with weak competition, but N4 is required in order for N1 and N2 to coexist in

the full model. If (3.35) is violated, one should expect N3 to persist, which was discussed

in Chapter 3.

Another relationship worth considering is the effect of Ē2 on E8. Ē2 is stable when the
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condition given in (3.35):
γ3

1 + Bα3
c4

< D3 +
p3B

c4(1 + α3)
(5.9)

holds. E8 is stable when Ê2 is stable in the competition model, and when the second

condition in (4.55):
γ3

1 + α3B
c4

+
ε2 p2R2

c2(1 + α2)
< D3 +

p3B
c4(1 + α3)

(5.10)

holds. If (3.35) holds, then the second condition in (4.55) holds if:

0 ≤
ε2 p2R2

c2(1 + α2)
< D3 +

p3B
c4(1 + α3)

−
γ3

1 + α3B
c4

(5.11)

is true. If not, E8 is unstable. If the second part of (4.55) holds, then (3.35) since:

γ3

1 + α3B
c4

≤
γ3

1 + α3B
c4

+
ε2 p2R2

c2(1 + α2)
. (5.12)

This means that N4 will determine if N2 is stable in E8. This suggests that N4 has a top-

down helpful effect on N2 and a negative effect on N3.

Another relationship worth considering is the effect of Ē2 on E9. Ē2 is stable when the

condition given in (3.35):
γ3

1 + Bα3
c4

< D3 +
p3B

c4(1 + α3)
(5.13)

holds. E9 is stable when Ê1 is stable in the competition subsystem, and when the second

condition in (4.58):
γ3

1 + α3B
c4

+
ε1 p1R1

c1(1 + α1)
< D3 +

p3B
c4(1 + α3)

(5.14)

holds. If (3.35) holds, then the second condition in (4.58) holds if:

0 ≤
ε1 p1R1

c1(1 + α1)
< D3 +

p3B
c4(1 + α3)

−
γ3

1 + α3B
c4

(5.15)
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is true. If not, E9 is unstable. If the second part of (4.58) holds, then (3.35) since:

γ3

1 + α3B
c4

≤
γ3

1 + α3B
c4

+
ε1 p1R1

c1(1 + α1)
. (5.16)

This means that N4 will determine if N1 is stable in E9. This suggests that N4 has a top-down

helpful effect on N1 and a negative effect on N3.

5.3 Conclusion

In this work, we studied the dynamics of (1.11). We considered how competition and

the fear effect could affect the long-term dynamics of a food chain model. In Chapter 3,

we looked at the dynamics of the competition subsystem and the predator-prey subsys-

tem.

We showed that in the competition subsystem that N1 and N2 could invade each other

successfully under certain conditions. The coexistence of N1 and N2 required weak compe-

tition to come into play. In the predator-prey subsystem, we showed that N4 could success-

fully invade N3 under certain conditions, but N3 was unable to invade N4. We showed that

the coexistence equilibrium must be globally asymptotically stable and must become sta-

ble if the invasion equilibrium loses stability, provided the coexistence equilibrium exists.

We investigated impact of the fear effect on making the coexistence equilibrium becoming

stable.

For the full model, we considered the stability and existence of the equilibrium points. We

showed there existed some relationships between some of the results covered in Chapter 3

and the full model. These were discussed in Chapter 5. We showed that it is impossible

for N1 and N2 to invade N3, N4 and coexist. This implies that the competition component

can have a detrimental effect. We also showed that the presence of N4 helped N1 and N2 to

coexist which led to the invasion of N3. The presence of N4 was also needed if N1 or N2
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wanted to invade the other in the full model, at the expense of N3. The fear response played

a role in this as seen in many of the discussed results in the stability criteria.

Some further work might consider looking at potential bifurcations that may occur, as well

as considering E15 in-depth.
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