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ABSTRACT 

Spinal fusion to correct spinal deformity is typically performed with a 2-rod construct spanning 

the targeted area of fusion. More evidence is starting to emerge around the utility of multiple-rod 

constructs (typically 3 or more rods) to increase the stiffness and stability of a spinal fusion 

construct. Much of this work has focused on the lumbar spine, and little has been published 

around how these constructs behave in a long construct spanning the thoracic spine. The purpose 

of this thesis is to compare the stability of a two-rod (dual-rod) construct (DRC) to a four-rod 

(multiple-rod) construct (MRC) in cadaveric thoracic spines. Nine intact human cadaveric 

thoracic spines (T1-T12) were instrumented with either a DRC or MRC, and biomechanical 

testing was then carried out to compare range of motion (ROM) and stiffness between these two 

constructs. Results demonstrated comparable absolute total ROM and stiffness between DRCs 

and MRCs, and this was consistent across all measured vertebral levels. However, after 

undergoing a 1-hour bodyweight simulation fatigue test, DRCs exhibited an increase in 

flexion/extension ROM and decrease in stiffness while MRCs did not. Overall, these findings 

support previous clinical and biomechanical results in the lumbar spine and adult spinal 

deformity literature that MRCs can potentially be used to increase the stability of thoracic spine 

constructs. 

  



 iii 

KEYWORDS 

Cadaver, Spinal Fusion, Thoracic Spine, Adult Spinal Deformity, Two-Rod Construct, Dual-Rod 

Construct, Satellite Rod, Multiple-Rod Construct, Proximal Junctional Kyphosis 

  



 iv 

SUMMARY FOR LAY AUDIENCE 

Spinal fusion, where two or more segments of the spine are fused together, is a common method 

to treat various types of spinal pathology. In order to accomplish a successful spinal fusion, the 

amount of motion at the fusion site must be decreased to a certain level to allow adequate bone 

formation across the segment. To decrease the amount of motion at a fusion site, the spine is 

instrumented at each level with screws and rods. Typically, two rods are used in a construct (one 

on each side), with two screws at each vertebral level. However, sometimes this two-rod 

construct is not rigid enough and excessive motion at the fusion site persists.  

 

When too much motion occurs at the attempted fusion site, instead of bone forming across the 

fusion site, the area is filled with stable scar or fibrous tissue—this is called a nonunion or 

pseudarthrosis. Nonunion can lead to ongoing pain and increased motion that leads to continued 

stress on implants. As the implants are subjected to ongoing stress, complications can occur, such 

as the screws pulling out from the bone, or the rods themselves breaking. When instrumentation 

fails, this can then lead to further progression of deformity, pain, and even neurologic deficits, 

ultimately resulting in the need for additional surgery.  

 

In an attempt to increase stability at the surgery site and to prevent nonunion, many deformity 

surgeons have started to use three or more rods (multiple-rod constructs) to augment 

instrumentation. This has had promising results in the biomechanical and clinical literature 

within the lumbar spine, but biomechanical research is lacking on how these constructs behave in 

the thoracic spine. In this thesis, two different types of instrumentation methods—a dual-rod 

construct and multiple-rod construct—in the thoracic spines of cadavers were compared.  
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Overall, dual-rod constructs and multiple-rod constructs exhibited similar absolute stability. But 

when each construct was subjected to 1 hour of simulated day-to-day wear and tear, multiple-rod 

constructs appeared more resistant to change in stiffness and range of motion. This supports the 

idea that multiple-rod constructs provide additional stability in the initial phase immediately after 

surgery, when bone is attempting to fuse. This has important consequences as multiple-rod 

constructs can be used to increase construct stiffness, which can potentially result in less 

nonunion and reduce the incidence of revision surgery after spinal fusion, ultimately leading to 

improved patient satisfaction and outcomes.  
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CHAPTER 1 

1 – INTRODUCTION 

This chapter provides an overview into relevant spine anatomy, background on various methods 

to increase stability in spine surgery, as well as a literature review of the current evidence 

around multiple-rod and dual-rod constructs. 

 

1.1 – ANATOMY OVERVIEW  

The vertebral column extends from the skull, down to the middle of the buttocks where it 

articulates with the right and left innominate bones of the pelvis girdle. In total, it makes up 

about two fifths of the total height of the human body. This column is composed of 33 total 

vertebrae divided into 5 distinct regions—7 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 4 

coccygeal (Figure 1). These individual vertebrae can move relative to each other, and together, 

they form the central weight-bearing axis of the body, support the head, and transfer weight to 

the abdomen and legs. The complex interaction between the vertebrae, muscles, and ligaments 

allows for multidirectional movement, and protection of the spinal neural elements1. 

 

Overall, except for the first and second cervical vertebrae, the individual vertebrae of the spine 

share many common features. They consist of a vertebral body anteriorly, the vertebral arch, and 

four articular processes—2 superior and 2 inferior—that connect vertebrae to each other. The 

vertebral body is anterior and bears much of the weight of an individual. The vertebral arch 

travels posteriorly from the body and is made up of the pedicles and bilateral laminae, which 

then connect to the transverse and spinous processes.  The arch, along with the posterior aspect 
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of the body, form the spinal canal that contains and protects the spinal cord. The articular 

processes connect from superior to inferior among neighboring vertebrae and form a facet joint, 

which maintain alignment and allow for range of motion2.  

 

The thoracic spine has several unique features. First, is the presence of costal facets and 

associated ribs. Six costal facets are present on each thoracic vertebrae—1 on each transverse 

process and 2 demi-facets on each side of the vertebral body. These costal facets articulate with 

the posterior ribs at each respective level2 (Figure 2). Together, and with the combination of the 

anterior axial skeleton, the ribcage is formed. The ribcage greatly strengthens the stability of the 

thoracic spine compared to the other segments, with biomechanical studies having demonstrated 

significant differences in range of motion in thoracic cadaveric spines with disarticulated ribs3,4. 

Second, the natural alignment of the thoracic spine is 20-50 of kyphosis, which differs from the 

20-60 of lordosis in the lumbar spine and 20-40 of lordosis in the cervical spine5,6. Third, the 

motion of a spinal segment is determined in part by the plane of facet joint orientation7. In the 

thoracic spine, facet joints are aligned more coronally. This allows for more rotation but 

minimizes extension. Conversely, the more sagittal orientation of the lumbar facets allows for 

more extension while limiting rotation8 (Figure 3).  
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Figure 1. Anatomy of the vertebral column 

The cervical and lumbar spine natural position is in lordosis, while the thoracic spine sits in 

kyphosis.  
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Figure 2.  Anatomy of the thoracic vertebra 
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Figure 3. Apophyseal Joint orientation variation 

Anatomical differences of the facet joints in cervical, thoracic, and lumbar vertebrae. Cervical 

facet joint orientation is more transverse, while thoracic is more coronal and lumbar is more 

sagittal7.  

  



 6 

1.2 – PSEUDARTHROSIS AND IMPLANT-RELATED COMPLICATIONS 

Spinal fusion surgery continues to be a mainstay in the treatment of traumatic and degenerative 

conditions. One population-based study, comparing rates of fusion procedures from 2004 to 

2015, showed a 32% increase in the number of surgeries in that timeframe9. Unfortunately, these 

fusion surgeries are not always successful, and with the increase in incidence of spinal fusion 

surgeries, there is also an increase in the incidence of revision spine surgeries. There are multiple 

reasons why patients may require revision surgery, but the remainder of this work will focus on 

pseudarthrosis and its relation to implant-related complications.  

 

Pseudarthrosis, or nonunion, is a failure of fusion diagnosed at or after 1 year of index surgery10. 

In a population based review of revision surgery following lumber spine surgery, 23.6% of 

revision surgeries were done for pseudarthrosis11. Although, spinal implants can fail in multiple 

ways—such as screw malposition or fracture, rod dislodgement, interbody cage subsidence, or 

painful or prominent implants12,13—rod fracture accounts for approximately 47-60% of the 

total1,14 and is one of the most common implant-related complications. Rod fracture is closely 

linked to pseudarthrosis, where the odds of having a rod fracture in the setting of pseudarthrosis 

is 29 times greater than having a rod fracture without pseudarthrosis15.  

 

The link between pseudarthrosis and rod fracture is a double-edged sword. If rod fracture occurs 

early after surgery (typically within 1 year), it is thought to be due to increased mobility across 

the fusion site, causing increased strain on the rod, which leads to fracture. This then causes 

further increased mobility at the fusion site leading to pseudarthrosis15. If rod fracture occurs 

later after surgery (usually greater than 1 year), it is thought to be due to increased mobility at the 
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fusion leading to an inability of the segments to fuse. This then results in increased cyclical 

loading of the rod construct, increased micro-movements, increased construct strain, and 

ultimately, instrumentation failure16–19. In both these settings, increasing construct stiffness is 

thought to be a way to decrease the prevalence of pseudarthrosis and rod fracture20.  
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1.3 – INCREASING ROD STIFFNESS 

Spinal construct stiffness can be increased by performing an interbody fusion, up-sizing pedicle 

screw instrumentation, or by augmenting the posterolateral fusion mass with increased rod 

stiffness21. For the purposes of this topic, we will focus solely on methods to increase rod 

stiffness, which can be accomplished by changing the material or shape, increasing the diameter, 

or increasing the number of rods22,23.  

 

1.3.1 – ROD MATERIAL 

Commonly used metal rods in spine surgery include titanium alloy, stainless steel, and cobalt 

chromium alloy. Out of these three materials, titanium appears to afford the least amount of 

stiffness. In one study looking at twenty-four implants that were mounted in polyethylene blocks 

and subsequently cyclically loaded, stainless steel implants demonstrated greater stiffness than 

titanium alloy implants24. Additionally, in a 1997 biomechanical analysis comparing titanium to 

stainless steel embedded in ultra-high molecular weight polyethylene blocks, the stiffness of 

stainless steel constructs was significantly higher than titanium ones25. Similarly, in a 2018 study, 

titanium was shown to afford less stability than cobalt chromium26.  

 

Whether stainless steel or cobalt chromium provides more stability is less clear though. In a 2009 

biomechanical study, researchers compared titanium to cobalt chromium in a 4-point bending 

mechanical testing with the goal of understanding how these rods of different material differ with 

regards to bending stiffness, strength (as expressed by yield point), and memory (deformation at 

yield point). Cobalt chromium demonstrated similar Young’s Modulus to high-strength steel, but 

greater Young’s Modulus than standard-strength steel27. On the other hand, in a retrospective 
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review, cobalt chromium and stainless steel were compared in patients undergoing spinal 

deformity surgery. The incidence of rod fracture in those with cobalt chromium rods was 15% 

compared to 8% in those with stainless steel rods28. Together, these studies suggest high amount 

of stiffness in both stainless steel and cobalt chromium, with perhaps more overall stiffness in 

cobalt chromium and more variability in stiffness within stainless steel ones.   

 

1.3.2 – ROD DIAMETER 

Increasing rod diameter is another way to increase overall construct stiffness. This has been 

shown in both biomechanical and clinical studies. In a 2007 biomechanical in vitro analysis on 

bovine spines undergoing physiologic loading after anterior scoliosis instrumentation, 

researchers compared the stress seen across different sized stainless steel rods. They 

demonstrated increased stiffness in 5mm rods compared to 4mm rods29. Later, in 2011, a separate 

group conducted a biomechanical analysis on the cervicothoracic junction in cadaveric spines 

with ankylosing spondylitis. Their results demonstrated greater stiffness in 3.5mm titanium rods 

compared to 3.2mm titanium rods30. 

 

1.3.3 – ROD SHAPE 

Potentially less studied than rod material and diameter, is the concept of rod shape. In a 2002 

geometric element model and analysis, researchers compared rods with a cross-sectional square 

shape and those with a cross-sectional circular shape. Overall, they demonstrated better 

biomechanical performance in square-shaped rods31. To the best of our knowledge, no further 

studies have followed up on or demonstrated these findings clinically, potentially due to 
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manufacturers of these implants not having widely fabricated this design, thus limiting their 

clinical relevance.  

 

1.3.4 – NUMBER OF RODS 

Among the methods to increase rod stiffness, the most researched method is using additional 

metal rods to create a multiple-rod construct (MRC) instead of the standard 2-rod or dual-rod 

construct (DRC). Essentially, an MRC can be made by attaching additional rods alongside the 

existing left and right posterior rods, for a total of 3 or more rods. Indeed, multiple studies have 

shown success in reducing the number of rod fractures with MRCs compared to DRCs14,32–35.  

 

One retrospective review from 2019 examined 106 patients with adult spinal deformity and 

compared those with MRCs to those with DRCs with the goal of determining the incidence of 

iliac screw loosening. Patients with MRCs had a higher incidence of iliac screw loosening but 

lower rate of rod fractures compared to those with a DRCs32.  

 

In 2021, accessory rod constructs were compared to traditional DRCs in a cohort of patients with 

adult spinal deformity. The results from this study showed a decreased incidence of rod fractures 

in the accessory rod (i.e. MRC) group, despite that group having higher baseline deformity and a 

higher rate of pedicle subtraction osteotomy33.  

 

On the other hand, in 2021, Bourghli et al. published a retrospective review of 67 patients with 

adult spinal deformity who underwent pedicle subtraction osteotomy and were fused with an 

MRC or standard DRC. They showed similar rates of rod-related complications between the two 
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cohorts, as well as similarities between complications associated with pseudarthrosis. However, 

in this cohort, better patient-reported outcome scores and postoperative coronal alignment were 

observed in the MRC group compared to the DRC group36.  
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1.4 – THESIS RATIONALE 

Much of the biomechanical work supporting the use of MRCs to increase stiffness has been 

conducted on cadaveric lumbar spines, or biomechanical models of the lumbar spine37,38. 

Largely, this research has focused on increasing stiffness in the setting of concurrent osteotomy 

for adult spinal deformity39–43.   

 

Although the biomechanical investigation into adult spinal deformity and the various 

osteotomies that are done to treat such pathology in the lumbar spine are well deserved, the use 

of MRCs in the thoracic spine is still an area not as well researched. Rod fractures can certainly 

occur in the thoracic spine as well, such as in tumor resection surgery44, where the thoracic spine 

is the most common region for cancer metastasis45. Additionally, in adult patients operated on for 

scoliosis without osteotomies, where long constructs can span the length of the thoracic and 

lumbar spine, rod fractures have been reported at a rate of 4%46. 

 

To the best of our knowledge, no biomechanical analysis of MRCs has been conducted in the 

thoracic spine. The purpose of this thesis is to compare the stability of MRCs to DRCs in 

cadaveric thoracic spines. Our hypothesis is that MRCs will demonstrate increased stability 

compared to DRCs. A secondary objective of this thesis is to examine the behavior of screw 

loosening and segmental changes in these two constructs after a 1-hour fatigue test.  
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CHAPTER 2 

2 – METHODS 

This chapter gives an overview around the various materials and methodology used in this 

thesis.  

 

2.1 – CADAVER PREPARATION 

Prior to specimen collection and preparation, approval was obtained from the institutional ethics 

board (ID#118078 and ID#125155). Full details around the initial collection and preparation of 

these specimens is detailed elsewhere47. Briefly, 11 full cadaveric specimens were procured and 

included non-identifiable information such as medical history, cause of death, age, and sex. All 

specimens were kept in -20C freezer prior to use. Computed tomography (CT) scan was then 

performed to rule out internal bony abnormalities.  

 

Once the CT scan was complete, specimens were sectioned into cervical, thoracic, and 

lumbosacral segments. The thoracic spine (T1-T12) segment was used for this study. These 

specimens were then thawed to room temperature and prepared further. The majority of 

musculature was dissected off the specimen, leaving the facet capsules, posterior ligamentous 

complex, and costovertebral joints intact. The ribcage was removed leaving approximately 2cm 

of posterior rib attached at the costovertebral joints. The most cranial (T1) and most caudal (T12) 

vertebral segments were then potted in cement with their endplates parallel to the ground, 

leaving the adjacent intervertebral discs free and able to allow range of motion. This setup can be 

seen in Figure 4. From here, all spines underwent native range of motion testing without 



 14 

instrumentation and were subsequently instrumented for non-destructive testing as part of a 

previous study47. Following this testing, all spines were stored back in a freezer at -20C. 

 

After reviewing the specimens’ imaging and medical history, preliminary testing of cadaveric 

spines for the present study was then conducted to develop the testing protocol. During this 

preliminary testing, 2 of the initial 11 cadaveric specimens sustained bony or ligamentous 

damage and were subsequently excluded from the present study. As such, 9 thoracic spines were 

non-damaged and available for further biomechanical testing. Demographics of cadaveric 

specimens used in this study are detailed in Table 1. 

 

Table 1. Demographics of cadaveric specimens. 

Specimen Age Sex Cause of Death 

1 62 Male Respiratory Failure 

2 68 Male Respiratory Failure 

3 65 Male Cholangiocarcinoma 

4 72 Female Paget’s Disease 

5 71 Male Cardiac Arrest 

6 33 Male Head Injury 

7 78 Male Lymphoma 

8 63 Female Respiratory Failure 

9 69 Male Cardiomyopathy 
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Figure 4. Cadaveric Specimen Preparation 

Cadaveric thoracic spines (T1-T12) were sectioned and cleared of any musculature. They were 

then potted into cement at the cranial (T1) and caudal (T12) ends. The T1-T2 and T11-T12 

articulation are free to allow motion.  
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2.2 – INSTRUMENTATION 

Prior to instrumentation and testing, specimens were thawed overnight at room temperature. 

Multi-level pedicle screw fixation was performed starting from T3 and extending down to 

include T11—this left T2 as an uninstrumented level, while T1 and T12 were both fixed in 

potted cement. Pedicle screw start point and insertion technique was done according to 

previously described technique48. Using a pedicle probe, screw tracts were examined for 

breaches. The depth of each screw track was then measured, and 6.0mm polyaxial pedicle screws 

were inserted, ranging from 40mm to 55mm in length. Pedicle screws were inserted by hand to 

ensure a constant angle and speed until each screw was well seated.  

 

From here, specimens were randomized to undergo either initial testing with a multiple-rod 

construct (MRC) or with a dual-rod construct (DRC). To create a DRC, one 5.5mm diameter 

titanium rod was bent to the appropriate shape and attached to the left-sided pedicle screws 

spanning from T3-T11, while a second rod was attached to the right-sided pedicle screws. Both 

rods were then secured in place to the pedicle screws with locking set screws. To create an MRC, 

the same process was done that was used for the DRC set-up, followed by placement of one 

additional 5.5mm titanium rod just lateral to the existing 2 rods, with each new rod secured in 

place with one 5.5mm-5.5mm rod-to-rod connector cranially between T3 and T4 pedicle screws, 

and one 5.5mm-5.5mm rod-to-rod connector caudally between T10 and T11 pedicle screws. This 

resulted in a total of 4 rods in the MRC set-up. An example of the DRC and MRC setups can be 

seen in Figure 5.  
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After completing instrumentation, markers were rigidly applied to the specimens to create 

landmarks to be captured with the digital imaging correlation system. These markers included 

twelve 2.0mm K-wires with attached 3D-printed hemispherical plastic components covered with 

multiple black and white contrasting stickers. One of these markers was inserted into each 

vertebral body spanning from T1-T12. An example of this construct and marker setup is seen in 

Figure 6.  
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Figure 5. Instrumentation of dual-rod and multiple-rod constructs 

Cadaveric thoracic specimens were instrumented from T3 to T11. Rods were applied bilaterally 

and fixed into place with locking set screws to create a dual-rod construct (left). To create the 

multiple-rod construct, an additional rod was placed bilaterally spanning the fusion site and held 

in place by 2 rod-to-rod connectors, one between T3-T4 and one between T10-T11 (right). 
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Figure 6. Attachment of markers for digital image correlation system 

Twelve 2.0mm K-wires with attached 3D-printed hemispherical plastic components were 

covered with pre-calibrated black and white stickers to allow tracking from the digital imaging 

correlation system. One of these markers was inserted into each vertebral body spanning from 

T1-T12. 
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2.3 – SPECIMEN TESTING 

Upon completion of instrumentation and application of markers to allow proper image capture, 

the potted specimens were ready for testing. Each specimen was tested individually, on separate 

days, one at a time. Potted specimens were mounted on a testing machine with custom design 

modifications (Instron® 5967, Norwood, MA, USA). The potted T12 was rigidly attached to a 

sliding x-y table allowing unrestricted translation motion in the transverse plane. The potted T1 

was rigidly attached to a custom testing jig capable of testing in six degrees of freedom. An 

example of this set up is seen in Figure 7. 

 

First, range of motion (ROM) tests were performed with the intact spines prior to fusion. Then 

ROM tests were done following initial instrumentation (either DRC or MRC). The specimens 

were preloaded with 15N of force and set to maintain 15N during the test to remove any 

mechanical slack and aid in mounting the specimen through its neutral axis. ROM testing 

involved applying a pure rotational or bending load to the most cranial (T1) end up to a limit of 

±5Nm, at 1 per second, and cycled three times with the first two cycles for preconditioning and 

the last for data analysis. This method was based on previous protocols49.  

 

ARAMIS Adjustable 12M system (GOM Metrology, Braunschweig, Germany) was used as a 

digital imaging correlation (DIC) system to track the motion in six degrees of freedom of the 

twelve previously inserted 3D printed markers rigidly attached to each vertebra. The setup 

consisted of two 24mm focal length and 4096-by-3600 pixels (pixel size of 3.45µm) resolution 

cameras. The two cameras were set at a 25 angle, 4 Hz, and illuminated with two polarized LED 

light sources. The DIC setup was calibrated prior to each biomechanical test by a standard 

calibration protocol and calibration plate provided by GOM Metrology for a measuring volume 
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of 570-by-430-by-430mm. The images were processed in ARAMIS Professional 2019 (GOM 

Metrology, Braunschweig, Germany). Torsion was applied and tracked by a universal testing 

device (Instron® 5967, Norwood, MA, USA) using a 50kN load cell recoding data at 50Hz. 

Load cells were able to measure both forces as well as moments. Bending was applied and 

tracked by a custom testing jig consisting of a stepper motor (NEMA 23, OMC) and a 2.2kN 

load cell (MC3A-6-1k, AMTI) recording data at 20Hz. Each specimen was tested in 

flexion/extension, lateral bending, and internal/external rotation in a random order.  

 

Next, the specimens were cyclically loaded during a 1-hour extended test to simulate a scenario 

of day-to-day wear and tear of the construct before bony fusion. Again, the spines were 

preloaded to 15N to remove mechanical slack and to aid in mounting through the neutral axis. 

The specimens were tested for one hour and were cyclically loaded in IR/ER to ±5Nm at 5 per 

second and a cyclically applied axial load from 200N to 350N (representing one-quarter and one-

half body weight respectively) at 150N/s for one hour. Cyclical axial loads and cyclic torsional 

loads were independently applied. The torque data was captured by the same load cell as above 

(30kN load cell at 50Hz), while the positional/rotational data was collected in a predefined 

pulsed setup by the DIC system. The pulsed sequence was set to record the first 20 seconds at 

10Hz, then to reduce file size, this was set to record data at 1/3Hz for the next 3560 seconds 

before recapturing the data at 10Hz for the last 20 seconds of the one-hour test. The DIC system 

recorded the position of the 12 vertebrae throughout time. 

 

Immediately following the extended duration test, specimens were examined for any evidence of 

bony or ligamentous failure. Additionally, all screw-bone interfaces and screw-rod interfaces 
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were examined for signs of loosening. After thorough inspection, if no damage was visualized, 

the specimens were tested once again in flexion/extension, lateral bend, and rotation. This was 

done in an effort to determine if any change in motion was observed following the extended 

duration test. The testing sequence of ROM to extended test to ROM was then repeated for the 

other construct with the same specimen.  

 

ROM was calculated as the difference between the maximum and minimum ROM at each 

vertebra. 

𝑅𝑂𝑀𝑥 = 𝑅𝑂𝑀𝑥,𝑚𝑎𝑥 − 𝑅𝑂𝑀𝑥,𝑚𝑖𝑛 

Where, the subscript max and min are the maximum and minimum recorded values, respectively, 

and ROMx is the range of motion at the targeted vertebra. 

 

The stiffness of the vertebra was calculated by taking the slope of the entire torque rotation 

curve: 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 =
(𝑚𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥 −𝑚𝑜𝑚𝑒𝑛𝑡𝑚𝑖𝑛)

(𝑅𝑂𝑀𝑚𝑎𝑥 − 𝑅𝑂𝑀𝑚𝑖𝑛)
⁄  

Where momentmax is the maximum moment recorded (i.e., 5Nm), momentmin is the minimum 

moment recorded (i.e., -5Nm), ROMMax is the maximum rotation/bending recorded for T1, and 

ROMmin is the minimum rotation/bending recorded for T1. 
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Figure 7. Biomechanical testing set-up 

The potted and instrumented spines were mounted onto a custom table-top testing machine and 

secured at the top and bottom. Various loads were applied in each plane of motion and the 

optical tracking system monitored motion at the different segments.  
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2.4 – STATISTICAL ANALYSIS 

SPSS statistical software (version 29) was used for the statistical analysis of captured data. Each 

cadaveric specimen acted as its own control. Wilcoxon signed-rank test was used to compare 

median differences in total range of motion and total stiffness between construct types (i.e. DRC 

vs. MRC) and between status of fatigue test (i.e. pre- vs. post-). Statistical significance was set at 

<0.05. Additionally, individual segment range of motion median differences were compared 

using the Wilcoxon signed-rank test with statistical significance set at <0.05. T1-T2 and T11-

T12 were excluded from the analysis as the T1 and T12 vertebral bodies were fixed in cement. 
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CHAPTER 3 

3 – RESULTS 

This chapter details the results of the biomechanical testing. In total, 9 specimens were tested 

after being instrumented with a dual-rod or multiple-rod construct. All tests were completed 

successfully. No qualitative defects in bone, ligament, or hardware were observed throughout any 

of the testing. 

 

3.1 – TOTAL RANGE OF MOTION AND STIFFNESS 

When comparing the two construct types before and after the 1-hour bodyweight simulation test, 

range of motion (ROM) was higher for rotation, lateral bend, and flexion/extension for DRCs 

post-fatigue testing. For MRCs, rotation and lateral bend ROM were significantly higher after 

testing, while flexion/extension was not significantly different. Similarly, stiffness was lower 

following the 1-hour test for rotation and lateral bend in both DRCs and MRCs. However, 

flexion/extension was lower post-fatigue testing for DRC, but not for MRC (Table 2). No 

significant differences in absolute ROM or stiffness were found between DRCs and MRCs, 

regardless of the status of fatigue test or plane of motion (Table 3). A graphical comparison of 

construct ROM is shown in Figure 8.  
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Figure 8. Graphical comparison of total range of motion 

No significant differences in range of motion, regardless of fatigue status and plane of motion, 

were observed between multiple-rod and dual-rod constructs. In all planes of motion, however, 

range of motion was higher after 1-hour fatigue testing for both construct types, except for 

flexion/extension, which was similar for multiple-rod constructs before and after 1 hour fatigue 

testing. 

Abbreviations: DRC = dual-rod construct, MRC = multiple-rod construct, PreFT = test 

performed prior to 1-hour simulated fatigue test, PostFT = test performed after 1-hour simulated 

fatigue test. 
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3.1.1 – ROTATION 

Mean ROM was significantly higher after 1-hour testing for DRC (25.4  4.6 vs. 22.8  4.8, p 

= 0.009) and for MRC (25.0  5.1 vs. 22.3  4.1, p = 0.009). Stiffness was significantly lower 

after 1-hour testing for DRC (0.41  0.08Nm/º vs. 0.46  0.09Nm/º, p = 0.009) and for MRC 

(0.42  0.09Nm/º vs. 0.47  0.09Nm/º, p = 0.009). ROM and stiffness were similar between 

DRC and MRC regardless of fatigue status. 

 

3.1.2 – LATERAL BEND 

Mean lateral bend ROM was significantly higher after 1-hour testing for DRC (19.1  4.1 vs. 

16.9  5.3, p = 0.009) and for MRC (20.3  6.1 vs. 16.6  4.2, p = 0.009). Stiffness was 

significantly lower after 1-hour testing for DRC (0.58  0.13Nm/º vs. 0.67  0.17Nm/º, p = 

0.009) and for MRC (0.56  0.16Nm/º vs. 0.66  0.17Nm/º, p = 0.009). ROM and stiffness were 

similar between DRC and MRC regardless of fatigue status.  

 

3.1.3 – FLEXION/EXTENSION 

Mean flexion/extension ROM was significantly higher after 1-hour testing for DRC (15.3  4.4 

vs. 12.8  5.3, p = 0.009) but not for MRC (16.5  4.9 vs. 14.1  3.7, p = 0.076). Stiffness was 

significantly lower after 1-hour testing for DRC (0.76  0.31Nm/º vs. 1.13  1.08Nm/º, p = 

0.009). Stiffness was also lower for MRC after 1-hour testing but did not reach statistical 

significance (0.70  0.22Nm/º vs. 0.80  0.23Nm/º, p = 0.058). ROM and stiffness were similar 

between DRC and MRC regardless of fatigue status. 
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Table 2. Total Range of Motion and Stiffness, comparison by fatigue status 

Test Scenario 

Total ROM () 

Mean (SD) P-Value 

Total Stiffness (Nm/º) 

Mean (SD) 
P-

Value 
Pre-FT Post-FT Pre-FT Post-FT 

Dual-Rod Construct       

     Rotation 22.8 (4.8) 25.4 (4.6) 0.009 0.46 (0.09) 0.41 (0.08) 0.009 

     Lateral Bend 16.9 (5.3) 19.1 (4.1) 0.009 0.67 (0.17) 0.58 (0.13) 0.009 

     Flexion/Extension 12.8 (5.3) 15.3 (4.4) 0.009 1.13 (1.08) 0.76 (0.31) 0.009 

Multiple-Rod Construct       

     Rotation 22.3 (4.1) 25.0 (5.1) 0.009 0.47 (0.09) 0.42 (0.09) 0.009 

     Lateral Bend 16.6 (4.2) 20.3 (6.1) 0.009 0.66 (0.17) 0.56 (0.16) 0.009 

     Flexion/Extension 14.1 (3.7) 16.5 (4.9) 0.076 0.80 (0.23) 0.70 (0.22) 0.058 

Abbreviations: ROM = range of motion, Pre-FT = test performed prior to 1-hour simulated fatigue 

test, Post-FT = test performed after 1-hour simulated fatigue test. 

P-values obtained from two-sided Wilcoxon test. Bolded values are <0.05. 

 

Table 3. Total Range of Motion and Stiffness, comparison by construct 

Test Scenario 

Total ROM () 

Mean (SD) P-Value 

Total Stiffness (Nm/º) 

Mean (SD) P-Value 

DRC MRC DRC MRC 

Pre-Fatigue Test       

     Rotation 22.8 (4.8) 22.3 (4.1) 0.722 0.46 (0.09) 0.47 (0.09) 0.813 

     Lateral Bend 16.9 (5.3) 16.6 (4.2) 0.477 0.67 (0.17) 0.66 (0.17) 0.554 

     Flexion/Extension 12.8 (5.3) 14.1 (3.7) 0.076 1.13 (1.08) 0.80 (0.23) 0.124 

Post-Fatigue Test       

     Rotation 25.4 (4.6) 25.0 (5.1) 0.343 0.41 (0.08) 0.42 (0.09) 0.236 

     Lateral Bend 19.1 (4.1) 20.3 (6.1) 0.554 0.58 (0.13) 0.56 (0.16) 0.554 

     Flexion/Extension 15.3 (4.4) 16.5 (4.9) 0.286 0.76 (0.31) 0.70 (0.22) 0.554 

Abbreviations: DRC = dual-rod construct, MRC = multiple-rod construct, ROM = range of motion. 

P-values obtained from two-sided Wilcoxon test. Bolded values are <0.05. 
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3.2 – RANGE OF MOTION BY VERTEBRAL SEGMENT 

Overall, the range of motion at the first uninstrumented level (T2-T3) was significantly higher in 

all planes of motion after 1-hour fatigue testing than before, but there were no differences 

between DRC or MRC. As testing moved caudally, these differences were less pronounced. A 

detailed analysis of ROM for all measured vertebral levels is found in Table 4. All range of 

motion was <1 at T5-T6 and distal, and there were no significant differences in motion between 

construct type or status of fatigue testing. As such, ROM values for T5-T6 were omitted from 

Table 4. 
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Table 4. Range of Motion by Vertebral Segment 

Vertebral  

Level 

Direction 

of Motion 

Fatigue Test  

Pre vs. Post 

Dual Rod-Construct Multiple-Rod Construct P-Value 

ROM () 

Mean (SD) 

P-Value 

Pre vs. Post 

ROM () 

Mean (SD) 

P-Value 

Pre vs. Post 

DRC vs. 

MRC 

T2-T3 

Rotation 
Pre 7.37 (2.60) 

0.009 
7.75 (2.47) 

0.033 
0.554 

Post 8.61 (2.54) 8.73 (2.89) 0.906 

Lateral 

Bend 

Pre 6.19 (2.44) 
0.018 

6.30 (2.46) 
0.009 

0.813 

Post 7.34 (2.81) 8.04 (2.69) 0.236 

Flexion/ 

Extension 

Pre 4.25 (2.36) 
0.015 

4.48 (2.07) 
0.028 

0.314 

Post 4.91 (2.21) 4.87 (1.90) 0.515 

T3-T4 

Rotation 
Pre 1.39 (0.71) 

0.018 
1.28 (0.70) 

0.013 
0.906 

Post 1.82 (1.08) 1.80 (0.95) 1.000 

Lateral 

Bend 

Pre 0.89 (0.59) 
0.042 

1.00 (0.91) 
0.343 

0.477 

Post 1.20 (0.81) 1.18 (1.41) 0.234 

Flexion/ 

Extension 

Pre 0.38 (0.36) 
0.024 

0.59 (0.47) 
0.076 

0.554 

Post 0.74 (0.70) 0.94 (1.06) 0.636 

T4-T5 

Rotation 
Pre 0.67 (0.28)  

0.343 
0.64 (0.28) 

0.044 
0.813 

Post 0.76 (0.38) 0.75 (0.38) 0.906 

Lateral 

Bend 

Pre 0.10 (0.11) 
0.624 

0.07 (0.09) 
0.813 

0.155 

Post 0.08 (0.12) 0.09 (0.14) 0.441 

Flexion/ 

Extension 

Pre 0.09 (0.10) 
0.097 

0.04 (0.09) 
0.477 

1.000 

Post 0.12 (0.08) 0.07 (0.14) 0.097 

Abbreviations: ROM = range of motion, Pre = test performed prior to 1-hour simulated fatigue test, Post = 

test performed after 1-hour simulated fatigue test, DRC = dual-rod construct, MRC = multiple-rod 

construct. 

P-values obtained from two-sided Wilcoxon test. Bolded = P-Value <0.05. 

Note: T2-T3 is uninstrumented, while T3-T4 and T4-T5 are first and second instrumented levels, 

respectively. From T5-T11, ROM is negligible with all values <1. 
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3.2.1 – ROTATION BY VERTEBRAL SEGMENT 

At T2-T3, mean rotation was significantly higher post 1-hour fatigue test for DRC (8.61  2.54 

vs. 7.37  2.60, p = 0.009) and for MRC (8.73  2.89 vs. 7.75  2.47, p = 0.033). Rotation 

between MRC and DRC at this level was similar regardless of fatigue test status.  

 

At T3-T4, mean rotation was significantly higher post-1 hour fatigue test for DRC (1.82  1.08 

vs. 1.39  0.71, p = 0.018) and for MRC (1.80  0.95 vs. 1.28  0.70, p = 0.013). Rotation 

between MRC and DRC at this level was similar regardless of fatigue test status.   

 

At T4-T5, mean rotation was similar post 1-hour fatigue test for DRC (0.76  0.38 vs. 0.67  

0.28, p = 0.343) but greater for MRC (0.75  0.38 vs. 0.64  0.28, p = 0.044). Rotation 

between MRC and DRC at this level was similar regardless of fatigue test status.  Graphical 

depiction of rotation ROM by vertebral level is shown in Figure 9. 
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Figure 9. Rotation by vertebral segment. 

No significant differences in range of motion, regardless of fatigue status, were observed 

between multiple-rod and dual-rod constructs. At T2-T3 and T3-T4, range of motion was higher 

after 1-hour fatigue testing for both construct types. At T4-T5, range of motion was higher after 

1-hour fatigue testing for multiple-rod constructs only.  

* Indicates Wilcoxon signed-rank test P-Value <0.05 

Abbreviations: DRC = dual-rod construct, MRC = multiple-rod construct, PreFT = test 

performed prior to 1-hour simulated fatigue test, PostFT = test performed after 1-hour simulated 

fatigue test. 
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3.2.2 – LATERAL BEND BY VERTEBRAL SEGMENT 

At T2-T3, mean lateral bend was significantly higher post 1-hour fatigue test for DRC (7.34  

2.81 vs. 6.19  2.44, p = 0.018) and for MRC (8.04  2.69 vs. 6.30  2.46, p = 0.009). 

Lateral bend between MRC and DRC at this level was similar regardless of fatigue test status.   

 

At T3-T4, mean lateral bend was significantly higher post 1-hour fatigue test for DRC (1.20  

0.81 vs. 0.89  0.59, p = 0.042) but not for MRC (1.18  1.41 vs. 1.00  0.91, p = 0.343). 

Lateral bend between MRC and DRC at this level was similar regardless of fatigue test status.   

 

At T4-T5, mean lateral bend was similar pre- and post-1-hour fatigue test for both DRC and 

MRC. No differences in ROM were observed between construct types regardless of fatigue test 

status. Graphical depiction of lateral bend ROM by vertebral level is shown in Figure 10. 
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Figure 10. Lateral bend by vertebral segment. 

No significant differences in range of motion, regardless of fatigue status, were observed 

between multiple-rod and dual-rod constructs. At T2-T3, range of motion was higher after 1-hour 

fatigue testing for both construct types. At T3-T4, range of motion was higher after 1-hour 

fatigue testing for dual-rod constructs only. No significant differences in range of motion were 

seen at T4-T5. 

* Indicates Wilcoxon signed-rank test P-Value <0.05 

Abbreviations: DRC = dual-rod construct, MRC = multiple-rod construct, PreFT = test 

performed prior to 1-hour simulated fatigue test, PostFT = test performed after 1-hour simulated 

fatigue test. 
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3.2.3 – FLEXION/EXTENSION BY VERTEBRAL SEGMENT 

At T2-T3, mean flexion/extension was significantly higher post 1-hour fatigue test for DRC 

(4.25  2.36 vs. 4.91  2.21, p = 0.015) and for MRC (4.48  2.07 vs. 4.87  1.90, p = 

0.028). No significant differences were noted in flexion/extension ROM at this level between 

construct type. 

 

At T3-T4, mean flexion/extension was significantly higher post 1-hour fatigue test for DRC 

(0.74  0.70 vs. 0.38  0.36, p = 0.024) but not for MRC (0.94  1.06 vs. 0.59  0.47, p = 

0.076). No significant differences were noted in flexion/extension ROM at this level between 

construct type.  

 

At T4-T5, mean flexion/extension was similar between MRC and DRC regardless of construct 

type and status of fatigue test. Graphical depiction of flexion/extension ROM by vertebral level 

is shown in Figure 11. 
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Figure 11. Flexion/Extension by vertebral segment. 

No significant differences in range of motion, regardless of fatigue status, were observed 

between multiple-rod and dual-rod constructs. At T2-T3, range of motion was higher after 1-hour 

fatigue testing for both dual-rod and multiple-rod constructs. At T3-T4, range of motion was 

higher after 1-hour fatigue testing for dual-rod constructs only. No significant differences in 

range of motion were seen at T4-T5. 

* Indicates Wilcoxon signed-rank test P-Value <0.05 

Abbreviations: DRC = dual-rod construct, MRC = multiple-rod construct, PreFT = test 

performed prior to 1-hour simulated fatigue test, PostFT = test performed after 1-hour simulated 

fatigue test. 
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CHAPTER 4 

4 – DISCUSSION 

This chapter includes a summary around the results of this thesis, as well as a comparison to 

other work performed in this field, and a look into the possible future directions for 

biomechanical work in this area.  

 

4.1 – DISCUSSION AND SUMMARY 

In this thesis, 9 cadaveric thoracic spines were instrumented with two different construct types—

dual-rod constructs (DRC) and multiple-rod constructs (MRC). Overall range of motion and 

stiffness were then analyzed before and after a 1-hour bodyweight simulation fatigue test. No 

significant differences were observed in range of motion (ROM) or stiffness between DRCs and 

MRCs. However, after a 1-hour fatigue test, MRCs maintained a similar ROM and stiffness to 

their pre-fatigue state during flexion/extension, while DRCs did not. This suggests that MRCs 

may provide additional stability to daily wear and tear following initial instrumentation, thus 

allowing further time for a bony fusion to take place. This is supported by other biomechanical 

literature in the lumbar spine showing lower stress forces with MRCs42,43,50–52, as well as by a 

recent meta-analysis comparing MRCs to DRCs in adult spinal deformity that showed lower 

rates of nonunion with MRCs when compared to DRCs53. 

 

An important caveat to this finding is seen, however, when the analysis is broken down into 

individual segments. Although DRCs and MRCs exhibited similar absolute ROM at each 

individual vertebral segment, they behaved differently pre- and post-fatigue testing. At the 
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highest instrumented level (T3-T4), only DRCs demonstrated a significantly higher ROM with 

lateral bend and flexion/extension post-fatigue testing. Conversely, at the T4-T5 level (second 

highest instrumented level), MRCs exhibited higher flexion/extension ROM while the ROM of 

DRCs was similar across all three movement planes pre- and post-fatigue testing. It’s difficult to 

say what these differences translate to clinically. One hypothesis around the use of MRCs is that 

although they may increase overall construct stiffness and benefit fusion rates, this is achieved at 

the expense of increasing forces at the screw-bone interface. In a 2018 retrospective review of 

106 patients with adult spinal deformity, MRCs were associated with a 1.9-fold increased risk of 

screw loosening at the cranial level, and a 4.1-fold increased risk of screw loosening at the 

caudal level32. This finding was echoed in a recent meta analysis by Zhao et al53. None of the 

cadaveric spines tested within this thesis exhibited qualitative signs of screw-bone or screw-rod 

interface loosening, but it’s possible that the differences in ROM at the two cranial instrumented 

levels post-fatigue testing were early warning signs of loosening, and with further duration of 

testing these differences may have become more pronounced.  

 

Aside from nonunion, rod breakage, and screw pullout, another serious complication in long 

instrumented spinal surgery is proximal junctional kyphosis (PJK). PJK is defined as a sagittal 

Cobb angle of 10-20 between the uppermost instrumented vertebra and the vertebra 2 levels 

above, or when the Cobb angle between these two vertebrae is 10-15 greater than the 

preoperative measurement54,55. This can result in new neurological deficits, fractures, severe 

pain, or worsening quality of life leading to revision surgery56. The reported incidence of PJK is 

5-46%57 and its development has been linked to mechanical, tissue, and demographic risk 

factors, with 76% of the research focusing on mechanical contributions to PJK55.  
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Among these mechanical contributions to PJK, increased rigidity of the construct at the 

transitional zone between instrumented and non-instrumented vertebrae is thought to play the 

most significant role in pathogenesis58–60, with some authors reporting lower incidence of PJK by 

deploying a more gradual transition in construct stiffness at the transitional level61.  

 

Previous cadaveric work has examined semi-rigid constructs at the uppermost instrumented level 

and found a more linear and less abrupt change in biomechanics at the transitional zone with 

transverse process hooks when compared to all pedicle screws62. This softer transition in 

biomechanics is hypothesized to be protective against PJK. However, in this same analysis, 

semi-rigid constructs and all pedicle screw constructs were not compared to all pedicle screw 

constructs with multiple rods.  

 

Although increasing construct stiffness with MRCs has been linked to increased PJK63, recently, 

a meta-analysis explored the rates of rod fracture, pseudoarthrosis, and PJK between DRCs and 

MRCs. Six studies21,32,64–67 were included in the analysis and the meta-analysis showed no 

association between PJK and type of construct (DRC vs MRC)68. In the present study, no 

difference in absolute range of motion was noted between DRCs and MRCs at the first 

uninstrumented or uppermost instrumented vertebral levels. This similarity in absolute construct 

stability supports the findings of this meta-analysis. However, DRCs showed increased ROM at 

the first instrument level (T3-T4) following 1-hour fatigue testing while MRCs did not, and at 

the second highest instrument level (T4-T5), MRCs showed increased ROM following 1-hour 

fatigue testing while DRCs did not (although the absolute ROM recorded was <1). This 

suggests that although these constructs may have initial overall comparable stiffness, they may 
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behave and react differently to daily wear-and-tear immediately after initial instrumentation 

which could ultimately affect rates of PJK. Although the clinical literature seems to indicate 

otherwise69, longer duration fatigue testing is necessary to further explore this problem. 
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4.2 – LIMITATIONS 

There were certain limitations to consider when drawing conclusions from the present analysis. 

The first is with the type of metal used in this experiment. Titanium rods were used in both 

constructs. While titanium is often the rod of choice in spine surgery, cobalt chromium is 

frequently used as well. It’s possible that a cobalt chromium DRC and MRC may behave 

differently than what was observed here. Indeed, cobalt chromium constructs have been 

demonstrated to be more rigid than titanium ones26,30, but the differences between MRC rigidity 

when it comes to the two materials may be overstated, as rates of PJK are not different between 

the two materials when MRCs are utilized69.  

 

Another limitation to this work is within the nature of the fatigue test that was performed. In one 

biomechanical study using polyethylene blocks comparing DRCs to MRCs, with 200N axial load 

cycled at 5Hz in the sagittal bending plane, the median number of cycles to rod failure was 

59,294 in DRC, and 561,214 with MRCs41. In the present analysis, due to insufficient machine 

capabilities, cadaveric specimen availability, and personnel constraints, the fatigue test time had 

to be capped at 1-hour in order to complete specimen testing within a day. As such, the 

maximum number of cycles achieved during one of those time periods was never more than 

1000 cycles. It’s possible that with increased time and cycles, there may have been divergence in 

stability between the two construct types. Future endeavors should look to test the cadavers at 

higher cycling speeds and for longer duration of time to better ascertain the effect of prolonged 

stress on constructs.  
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Lastly, the quality of the cadaveric soft tissues should be considered within this biomechanical 

analysis. In this study, paraspinal musculature and ribcages were dissected off of specimens to 

facilitate instrumentation and testing, but this state likely does not adequately reflect in-vivo 

conditions as these structures play a significant role in overall thoracic spine stability4,70.  

  



 43 

4.3 – CONCLUSION 

Multiple-rod constructs have been proposed as a way to increase stability in long spinal fusion 

surgery compared to dual-rod constructs. In this biomechanical analysis of intact cadaveric 

thoracic spines, no differences in absolute overall stiffness or range of motion were found 

between dual-rod and multiple-rod constructs. Furthermore, no absolute differences in range of 

motion were observed at individual segments. However, multiple rod-constructs did exhibit more 

resistance to fatigue testing than dual-rod constructs. This work supports the current clinical 

work in the adult spinal deformity field showing reduced incidence of nonunion and rod 

breakage with multiple-rod constructs. Future biomechanical efforts should seek to explore the 

differences in constructs with longer duration fatigue testing, as the increased rigidity afforded 

by multiple-rod constructs may result in failure at the screw-bone interface.  

 

Overall, multiple-rod constructs may play a beneficial role in affording additional stability during 

adult spinal deformity surgery with concomitant bony resections. This could ultimately lead to 

improved patient outcomes and fewer revision surgeries following adult spinal deformity 

surgery.  
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