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Abstract 

Agricultural productivity in strawberry cultivation was enhanced through the application of 
machine learning in this study. Traditional methods for detecting diseases and assessing 
ripeness in strawberries were identified as labor-intensive and error-prone, which limited 
farming efficiency and reduced crop yields. To address these challenges, it was hypothesized 
that advanced machine learning models incorporating attention mechanisms could 
significantly improve these tasks. The objective was to evaluate the effectiveness of various 
models by optimizing them for specific agricultural applications. Two datasets of strawberry 
images were augmented, and three pretrained models—Vision Transformer (ViT), 
MobileNetV2, and ResNet18—were fine-tuned. Data quality was improved through 
background removal and noise reduction, and weighted training was employed to manage 
imbalanced class distributions. The robustness of the models was further tested using synthetic 
data generated via Blender to simulate data scarcity. The results indicated that the ViT model 
achieved the highest accuracy and precision in identifying diseases and assessing ripeness. The 
models' effectiveness was further enhanced by the integration of attention mechanisms, and 
the potential for real-world agricultural applications was validated through the use of synthetic 
data. This research demonstrated that crop monitoring could be significantly improved with 
advanced machine learning models, particularly ViT, offering a promising tool for more 
sustainable and efficient strawberry cultivation. Future studies were recommended to expand 
these methods to other crops and integrate them into broader agricultural practices to enhance                          
productivity and sustainability. jgfgriuhiugriutgriugiurgiurgriugriugriugriugriirugiurgiurgiurg            
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Summary for Lay Audience 

The application of machine learning and computer vision in agriculture, specifically in 
strawberry cultivation, has opened new avenues for precision farming, crop monitoring, and 
disease detection. These technologies provide critical, real-time data that enable farmers to 
make informed decisions, optimizing resource use and improving crop management. 
Traditional methods, which rely on manual inspection for disease detection, are labor-intensive 
and subject to human error. By contrast, computer vision offers a more efficient solution by 
automating the detection of diseases, pests, and other issues, leading to timely interventions 
and improved crop quality. 

In addressing the challenges specific to strawberry cultivation, such as the lack of large, 
annotated datasets and the variability in environmental conditions, this research utilized 
advanced imaging techniques to address these obstacles. The study involved collecting two 
separate sets of strawberry images, which were then enhanced through resizing and 
augmentation, including background removal, implementing noise, etc., to train three 
pretrained models: Vision Transformer (ViT), MobileNetV2, and ResNet18. To counteract the 
issue of imbalanced class distribution, a weighted training approach was adopted, which 
equitably distributed the impact across all classes during the training process. 

Moreover, the study explored the integration of models like Swin Transformer to tackle more 
complex segmentation tasks, overcoming the limitations of standard ViT models which lack 
necessary segmentation heads for pixel-level classification. Through the strategic use of 
synthetic data and machine learning algorithms, the study aimed to provide robust solutions 
for strawberry disease identification and ripeness classification, enhancing the capabilities of 
farmers to monitor and manage their crops effectively. 
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Chapter 1  
 

1 Introduction 

1.1 Introduction 
     Machine learning and computer vision have proven to be valuable tools for farmers to 
streamline their resource utilization to lead to more sustainable and efficient agricultural 
production. These techniques have been applied to strawberry cultivation in the past with 
limited success. To build on this past work, in this study, first, two separate sets of 
strawberry images, along with their associated diseases, were collected and subjected to 
resizing and augmentation. Subsequently, a combined dataset consisting of nine classes 
was utilized to fine-tune three distinct pretrained models: ViT, MobileNetV2, and 
ResNet18. To address the imbalanced class distribution in the dataset, each class was 
assigned weights to ensure nearly equal impact during the training process. To enhance the 
outcomes, new images were generated by removing backgrounds, reducing noise, and 
flipping them. The performances of ViT, MobileNetV2, and ResNet18 were compared 
after being selected. Customization specific to the task was applied to all three algorithms, 
and their performances were assessed. Throughout this experiment, none of the layers were 
frozen, ensuring all layers remained active during training. Attention heads were 
incorporated into the first five and last five layers of MobileNetV2 and ResNet18, while 
the architecture of ViT was modified. 

     In the evolving fields of agriculture and food production, the integration of advanced 
technologies like machine learning and computer vision has begun to reshape traditional 
practices, offering new methods for enhancing efficiency and accuracy. This thesis 
explores innovative approaches to monitoring and improving strawberry cultivation using 
state-of-the-art machine learning models, particularly focusing on disease detection and 
ripeness classification. 

1.2 Overview of the Thesis 
     Following this introductory chapter, Chapter 2 provides a detailed analysis of the 
application of Vision Transformers to detect diseases and assess the ripeness of 
strawberries. Chapter 3 expands on the methodology by incorporating synthetic image 
generation to train segmentation models, demonstrating the effectiveness of these 
techniques in overcoming the limitations of real-world data. The thesis concludes with 
Chapter 4, where the findings are synthesized, and directions for future research are 
outlined, emphasizing the ongoing need for innovation in agricultural technology. 
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1.3 Significance of the Study 
     The necessity for more advanced monitoring techniques in agriculture is evident (1) due 
to various challenges such as disease management, and the need for sustainable practices. 
Traditional methods of crop monitoring and disease detection are labor-intensive and often 
lack precision(2). By integrating machine learning models capable of processing and 
generating complex visual data, this research aims to provide more reliable and efficient 
tools for farmers, thereby reducing waste, optimizing resource use, and improving crop 
management. 

1.4 Methodology 
     A significant contribution of this thesis is the application of Vision Transformers and 
other advanced machine learning models to the field of agriculture. The research not only 
tests these models under controlled conditions but also evaluates their performance in real-
world scenarios, providing a comprehensive assessment of their practical utility. 
Furthermore, the use of synthetic data to train these models addresses common challenges 
such as data scarcity and the high cost of data collection, presenting a solution for 
widespread application in data collection for agricultural technology. 
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Chapter 2  
 

2 Optimizing Strawberry Disease and Quality Detection with 
Vision Transformers and Attention-Based Convolutional 
Neural Networks 

 

This chapter1 is adapted from the manuscript “Optimizing Strawberry Disease and Quality 

Detection with Vision Transformers and Attention-Based Convolutional Neural Networks” 

published in Foods, vol. 13, no. 12, Art. no. 12, Jan. 2024, doi: 10.3390/foods13121869 

2.1 Introduction 
     The fields of machine learning (ML) and computer vision (CV) are rapidly expanding 
within agriculture, offering a multitude of applications, including precision farming, crop 
monitoring, and disease detection (1). These technologies provide real-time, precise data 
regarding agricultural yields and equip farmers and agribusinesses with the necessary 
insights to make informed decisions in crop management (3). Traditional techniques for 
disease detection in strawberries often involve manual inspection by experts, which is time-
consuming, labor-intensive, and prone to human error. These methods include visual 
inspections for signs of disease such as leaf spots, discoloration, and mold growth (1).  
     Computer vision, on the other hand, encompasses optimizing irrigation and fertilization 
strategies (4). It proves invaluable in identifying issues such as diseases, pest infestations, 
and fruit damage (3,5), facilitating timely intervention and enhancing overall crop quality 
(6). Furthermore, it empowers farmers to streamline their resource utilization, 
encompassing water, fertilizer, and labor, ultimately leading to more sustainable and 
efficient agricultural practices (7). 
      One area in which these benefits have yet to reach their full potential is strawberry 
cultivation. There is limited study on strawberry cultivation and disease control through 
computer vision due to several challenges such as the scarcity of large and annotated 
datasets, variability in environmental conditions, and the complexity of disease symptoms. 
Additionally, the high computational requirements and integration costs pose significant 
barriers (8). Strawberries are a popular fruit in Canada, with the majority of the crop being 
grown in Quebec, Ontario, and British Columbia. In addition to being a tasty and nutritious 

 
1 A version of this chapter has been published in Foods MDPI journal.  K. 
Aghamohammadesmaeilketabforoosh, S. Nikan, G. Antonini, and J. M. Pearce, “Optimizing Strawberry 
Disease and Quality Detection with Vision Transformers and Attention-Based Convolutional Neural 
Networks,” Foods, vol. 13, no. 12, Art. no. 12, Jan. 2024, doi: 10.3390/foods13121869. 



4 

 

fruit, strawberries also have a significant economic impact on the Canadian agricultural 
industry (9). 
     There have been four core studies applying machine vision to strawberries. First, Zheng 
et al. (7) revealed that vegetable recognition and size detection could be effectively 
achieved using a stereo camera in conjunction with a key point detection method. Another 
study with a focus on vegetable health (10) aimed to detect diseases in vegetables through 
the utilization of a combination of K-means clustering and support vector machines 
(SVMs). Transitioning to the context of strawberries, Afzaal et al.(8) successfully detected 
diseases in strawberries and their leaves. This achievement was made possible through the 
application of classic deep learning techniques and the implementation of region-based 
convolutional neural networks (R-CNNs). Moreover, Puttemans et al.(11) conducted a 
separate investigation that employed object detection methods to distinguish between ripe 
and unripe strawberries. Their methodology not only facilitated the differentiation of 
strawberries based on ripeness but also enabled the individual isolation of each strawberry 
from its cluster(11). In this study, an additional set of data from StrawDI(12), introduced 
by Borrero, was utilized to complement the dataset from the study by Afzaal et al. (8), 
allowing for a broader comparison that extends beyond diseases. Necessary modifications 
were subsequently made, and three pre-existing classification models were specifically 
trained for this task and comparison. The primary objective of this study is to provide 
farmers with valuable guidance concerning the most effective method for classifying their 
images. 
     In this study, two separate sets of strawberry images, along with their associated 
diseases, were collected and subjected to resizing and augmentation. Subsequently, a 
combined dataset consisting of nine classes was utilized for fine-tuning three pretrained 
classification algorithms: vision transformers, MobileNetV2, and ResNet18. The available 
dataset is imbalanced. Class imbalance is a major issue in machine learning, causing biased 
classifiers and poor performance for minority classes. Traditional methods to address this 
include cost-sensitive learning, which creates synthetic instances and adjusts class weights. 
Recent advancements focus on handling class overlap and improving evaluation metrics. 
However, challenges like effective overlap handling and developing adaptive techniques 
continue to be active research areas (13,14).  
     To address the imbalanced class distribution in the dataset, each class was assigned 
weights using PyTorch’s Weighted Random Sampler(15) to ensure nearly equal impact 
during the training process. To improve accuracy, augmentation and attention layers were 
employed, proving particularly effective in addressing major misclassifications. All three 
algorithms underwent task-specific customization, and their performance was compared at 
the conclusion of the study. 
      The objectives and major contributions of this study include five major tasks. First, the 
vision transformer, MobileNetV2, and ResNet18 models were fine-tuned to achieve higher 
accuracy in classifying strawberry diseases and quality. Next, two separate strawberry 
image datasets were combined and enhanced to create a robust and balanced dataset for the 
training and evaluation of the models. As the datasets were imbalanced, the weighted 
random sampler was employed. In addition, attention layers in CNNs were introduced to 
reduce misclassification and enhance model performance. Finally, the performance of the 
vision transformer, MobileNetV2, and ResNet18 models were assessed to determine the 
most effective method for detecting strawberry diseases. 
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2.2 Methodology 

2.2.1 Dataset and Preparation 

     Two datasets were merged with the goal of identifying diseases in strawberries. The 
initial dataset, illustrated in Figure 2.1, comprises seven distinct types of strawberry 
diseases: (a) angular leaf spot, (b) anthracnose fruit rot, (c) blossom blight, (d) gray mold, 
(e) leaf spot, (f) powdery mildew fruit, and (g) powdery mildew leaf. Initially, the classes 
were separated in the training file. The number of images in each class was 287, 64, 146, 
332, 452, 90, and 380, respectively. The images were RGB and 419 × 419 pixels in size. 
They were captured with a SAMSUNG Galaxy Note 5 under greenhouse lighting (8,16). 
The second dataset consisted of cluttered images of strawberries that required cropping and 
labeling for seamless integration. For the other two classes, images from the StrawDI(12) 
repository were used. These two classes, ripe and unripe, were included to enhance the 
completeness of the dataset. The number of images for each class in the training set was 
202 for ripe and 208 for unripe. This process resulted in the creation of two distinct classes 
to distinguish between ripe and unripe strawberries, shown in Figure 2.2. Subsequently, 
the two datasets were merged to form a more comprehensive dataset.  

 

Figure 2.1. Images of the seven diseases in strawberries and their leaves: (a) angular leaf 
spot;(b) anthracnose fruit rot; (c) blossom blight; (d) gray mold; (e) leaf spot; (f) powdery 
mildew leaf; (g) powdery mildew fruit. 
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Figure 2.2. Strawberries dataset before and after cropping 

 

     For this dataset, transformations were applied to ensure uniformity in the images, 
including resizing to 256 × 256 pixels, converting to tensors, and normalizing their pixel 
values based on predetermined zero mean and unit standard deviation values to normalize 
them for the employed model. An imbalance in class distribution was initially observed in 
the dataset, as illustrated in Table 2.2. The first approach undertaken to address this issue 
involved generating additional images for classes with the fewest number of images, 
namely anthracnose and powdery mildew fruit. Sets of new images were generated through 
background removal, flipping, and blurring of the existing images using OpenCV 
functions. Due to the limited number of images, approximately 70, achieving a balanced 
dataset through image generation, however, was not feasible. The other attempt to address 
this challenge was to adopt a technique involving a weighted sampling function, where a 
higher representation will have a smaller weight (17). This approach assigns higher weights 
to the minority class samples and lower weights to the majority class samples during the 
model training process, amplifying the impact of the minority classes on prediction (17). 
First, the dataset was split into 0.8 and 0.2 for training and testing, respectively. Addressing 
the initial dataset’s imbalance issue, weights were calculated and assigned to each class via 
the ‘WeightedRandomSampler’ in PyTorch(15,18).  
Table 2.2 shows the calculated weights for each class and the details of the augmentation 
step. Figure 1.3 schematically shows the preprocessing steps in this study. The details of 
the augmentation are depicted in Table 2.2. 
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Table 2.1. Preprocessing Details 
 

Preprocessing Value 
Resize (256,256) 

Center Crop (224,224) 
Normalize (mean) [0.485, 0.456, 0.406] 
Normalize (std) [0.229, 0.224, 0.225] 

 
 
Table 2.2. Distribution of training data before and after augmentation along with the 
assigned weights to each class. 

 

Figure 2.3. Preprocessing steps before training 

 

2.2.2 Methods 
     The prepared data were fed to three distinct pretrained models: vision transformer (19), 
MobileNetV2(20), and ResNet18 (21). Each of these models underwent specific 
adjustments to make them suitable for the intended task, as elaborated in the paragraphs 
below. The vision transformer has demonstrated that models trained on large and varied 
datasets can effectively grasp fundamental visual concepts. This leads to better 
performance across various tasks and areas, showing improved adaptability and 
understanding (22). The streamlined structure of MobileNetV2 facilitates faster 
convergence in training, expediting both model development and deployment. Integrating 
MobileNetV2 into transfer learning leverages this accelerated training, resulting in more 
efficient utilization of computational resources (23). ResNet18, being a widely used 
algorithm, serves as a viable benchmark for comparison purposes in image classification 
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applications. 
Table 1.3 presents the specifications of the models. It is important to highlight that, to 
ensure fair comparison among the models, the parameters are identical and are outlined in 
table1.3. 
 
Table 2.3. Parameters chosen for the method 

 

2.2.2.1 Vision Transformer 

     A standard transformer architecture was used to process both token embeddings and 2D 
image data. Images were converted into sequences of flattened patches, which were then 
mapped to a fixed-size vector. Positional information was maintained using standard 1D 
position embeddings. The transformer encoder consists of alternating layers of self-
attention and multi-layer perceptron (MLP) blocks, with layer normalization and residual 
connections. This setup allows the model to effectively represent and process both textual 
and image data (24). ViT differs from CNNs in its inductive bias, utilizing the two-
dimensional neighborhood structure sparingly, primarily by dividing the image into 
patches. Adjustments to position embeddings were made during fine-tuning for images of 
different resolutions. Unlike CNNs, ViT’s position embeddings contain no initial 
information about patch positions, requiring the model to learn spatial relationships 
between patches from scratch (19). Instead of raw image patches, the input sequence can 
be made from feature maps of a CNN. In this hybrid model, patches from the CNN feature 
map underwent patch embedding projection. Patches with a spatial size of 1 × 1 flattened 
the feature map’s spatial dimensions, projecting it to the transformer dimension. 
Classification input and position embeddings were added as described (25). The encoder 
part of the original transformer architecture was employed by the ViT, and the decoder was 
not utilized. A sequence of embedded image patches, with a learnable class embedding 
prepended to the sequence, was taken as input to the encoder, which was augmented with 
positional information. The self-attention mechanism, a key component of the transformer 
architecture, was employed. Importance scores were assigned to patches by the model, 
allowing it to understand the relationship between different parts of an image and focus on 
the most relevant information. This aids in better comprehension of the image and enables 
the model to perform various computer vision tasks. Following this, a classification head 
attached to the output of the encoder received the value of the learnable class embedding 



9 

 

to output a classification label. Figure 2.4 illustrates all of these processes.  
 

 
Figure 2.4. Architecture of a ViT 
 

2.2.2.2 MobileNetV2 

MobileNetV2 is a specialized type of CNN designed for a range of visual tasks, particularly 
useful in agriculture (20). Its standout feature is efficiency, crucial in scenarios with limited 
computational resources (26). Its ability to achieve high accuracy with a reasonable number 
of parameters makes it suitable for real-time applications such as crop monitoring and 
disease identification in agriculture. In MobileNetV2, two types of blocks were present, 
one being a residual block with astride of 1, and the other, a block with a stride of 2 for 
downsizing. Both types consisted of three layers each. First, a 1 × 1 convolution layer 
followed by ReLU6 activation was applied. For a standard configuration with a width 
multiplier of 1 and a resolution of 224x224, MobileNetV2 performs 300 million MAC 
operations, indicating the number of operations combining multiplication and 
accumulation performed during one forward pass, reflecting the model's computational 
demand. Variations in input resolutions and width multipliers adjust the computational cost 
up to 585 million MACs and parameters between 1.7 and 6.9 million, with the removal of 
ReLU6 at each bottleneck module output enhancing accuracy. However, the performance 
trade-offs were further explored for various input resolutions ranging from 96 to 224 and 
width multipliers from 0.35 to 1.4, leading to computational costs up to585 M multiply-
adds and model sizes between 1.7 M and 6.9 M parameters. Notably, the removal of ReLU6 
at the output of each bottleneck module resulted in improved accuracy. Additionally, 
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incorporating shortcuts between bottlenecks yielded better performance compared to 
shortcuts between expansions or those without any residual connections. Figure 2.5 
illustrates the architecture of the original MobileNetV2.  

Figure 2.5. Original MobileNetV2’s architecture. 

 

2.2.2.3 ResNet18 

ResNet18’s key feature is its depth with many layers, which helps to extract distinctive 
features in complex image classification tasks (21). It deals with a common problem called 
“vanishing gradient”, which can make training difficult. In the context of deep learning, a 
"vanishing gradient" problem occurs when the gradients, which are used during the 
backpropagation process to update the weights of the neural network, become increasingly 
smaller as they are propagated back through the network's layers. This issue becomes more 
pronounced in deeper networks with many layers, like ResNet18. As gradients become 
smaller, the updates to the weights in the earlier layers of the network become 
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insignificantly small, slowing down the learning process or stopping it altogether, making 
the network difficult to train. To address this, “residual connections” allow the network to 
skip certain layers during training, making it easier to train deep models (21). This 
approach demonstrated that deeper networks achieved improved optimization and 
accuracy (27). Traditional deep networks face difficulties in training, however, and 
increasing the number of layers does not guarantee better learning outcomes. As deeper 
networks converge, accuracy plateaus and then rapidly declines. Residual learning tackles 
this issue by learning residual mappings rather than direct mappings. The original ResNet-
18 architecture comprised eighteen layers, known as residual including convolutional 
layers with 3 × 3 filters and down sampling layers with a stride of 2. Figure 6 illustrates 
the architecture of the original Resnet18. These blocks played a crucial role in improving 
how the network learns intricate features from input data. Throughout the network, residual 
shortcut connections were inserted between layers either maintaining the same dimensions 
or adjusting for dimensionality changes. Residual block operation can be expressed as 
follows: 

F(x) = H(x) – x                                                                                                               (2.1) 

where F(x) is the residual function to be learned, x is the input to the block, and H(x) is the 
underlying mapping. The residual connection facilitates the learning of the residual 
function, mitigating the vanishing gradient problem. Another aspect is the use of global 
average pooling, a method that simplifies information before making final predictions. This 
pooling helps to reduce the spatial dimensions of feature maps (21). 

  
Figure 2.6. Original ResNet18’s architecture 
 

2.2.3 Hyper Parameter Optimization and Attention Mechanism 
     Machine learning algorithms often rely on hyperparameters, which have to be chosen 
through automatic hyperparameter optimization (HPO) in order to obtain reliable and 
reproducible results (28). GridSearch (GS) is a method involving the systematic evaluation 
of hyperparameter combinations by discretizing their ranges. Numeric and integer 
hyperparameter values are typically evenly spaced within their specified constraints, with 
the number of distinct values per hyperparameter termed the grid’s resolution. The 
optimization of categorical hyperparameters involves considering either a subset or all 
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possible values. HPO methods streamline the process of finding optimal hyperparameter 
configurations, enhancing the performance and reproducibility of ML models. In this 
research, GridSearch (29) was used in every algorithm to select the best learning rate to 
fine-tune the model during validation. To determine the suitable learning rate, a gradual 
approach was taken. Initially, a low learning rate of 0.00001 was implemented for warm 
up purposes, followed by a gradual increase to 0.1. Subsequently, after optimization, a 
value of 0.001 was identified as the optimal learning rate, which was then employed 
consistently across all models to ensure fair comparison. Cross-entropy loss and the SGD 
optimizer were employed, with a learning rate of 0.001. The model underwent 5-fold cross 
validation to enhance the models’ generalization and reduce the risk of overfitting. To 
understand feature maps and introduce attention mechanisms, it is essential to recognize 
that patterns and combinations of low-level features are captured by intermediate layers. A 
balance between low-level and high-level information is provided by extracting features 
from these layers. High-level semantic information, contributing to the understanding of 
more abstract concepts, is captured by later layers and residual blocks. Attention 
mechanisms were introduced to specific layers responsible for these misclassifications,(30) 
directing the model’s focus to distinct parts of input images. 
 

2.2.4 Computational Power 

The implementations were performed using the library PyTorch (Torch 2.1) of Python with 
the support of the Digital Alliance of Canada (31) and Google Collaboratory, which 
provided the GPU resources to accommodate the enhanced processing demands posed by 
the extensive dataset and prolonged training epochs. 

2.2.5  Evaluation Metrics 
     Accuracy measures the fraction of correctly classified instances in the total number of 
instances and is deemed effective when class distribution is balanced. Precision gauges the 
fraction of accurately classified positive instances in relation to all instances classified as 
positive, indicating how many of the predicted positive instances are truly positive. It is a 
suitable metric in scenarios where it is crucial to minimize the occurrence of false positives 
(32). Recall, also referred to as sensitivity or true-positive rate, assesses the fraction of 
accurately classified positive instances relative to all the positive instances, indicating the 
number of actual positive instances that were correctly identified as positive. It is 
advantageous in situations where missing a positive instance has significant consequences. 
On the other hand, the F1 score, which is the harmonic mean of precision and recall, is a 
combined metric that balances the values of precision and recall, thus providing a single 
score that is useful when both false positives and false negatives need to be considered. 
Accuracy, precision, recall, and F1 score, defined in the following equations, are 
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commonly employed evaluation metrics in machine learning for quantifying the 
performance of a classifier:  

 

Figure 2.7. Procedure for the algorithms. 

 

2.3 Results 
     The results of the three models were compared using the accuracy, precision, recall, and 
F1 score metrics, as shown in Table 2.4. Based on the work of Afzaal et al. (8), an average 
precision of 82.43% was attained. In this investigation, the precision in each class was 
improved. Additionally, all three algorithms utilized were different from ResNet101, as 
employed in the original study.  

(2.2) 

 
(2.3) 

 (2.4) 

 
(2.5) 
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Table 2.4. Evaluation Results for each model 

 

     In this study, to enhance feature representation in models based on convolutional neural 
networks (MobileNetv2 and ResNet18), attention mechanisms were employed. Custom 
modules were employed for efficient feature extraction while minimizing computational 
complexity. Additionally, attention mechanisms were integrated into the CNN architecture 
through a module named Attention Module, allowing for the dynamic adjustment of feature 
importance. Attention Modules were embedded into key feature extraction layers of a 
pretrained CNN model, specifically the first five and last layers of convolutional layers. 
For the vision transformer, the ViT feature extractor was loaded to extract features from 
images. A collate function was defined to convert batches of data into tensors. The model 
was trained and evaluated, and metrics were logged. Optionally, a model card was created 
with information about the fine-tuning process, dataset, and tags. Each step contributed to 
the comprehensive process of loading, preparing, training, and evaluating the model for 
image classification. The models were evaluated on the 20% dataset used as the test set, 
with attention mechanisms impacting feature representation and the overall model 
performance being assessed through experimental validation. 
     Moreover, these metrics were utilized to analyze the confusion matrix of the predictions. 
The confusion matrix shows the number of true positives, false positives, true negatives, 
and false negatives for each class. Accuracy measures the overall correctness of a model's 
predictions, while precision assesses the correctness among positively labeled instances. In 
imbalanced datasets, precision is favored over accuracy because it highlights performance 
on the minority class and avoids misleading metrics due to the dominance of the majority 
class. Precision is especially valuable in scenarios like medical testing or fraud detection, 
where false positives have significant consequences. By analyzing the confusion matrix, 
we can identify which classes appeared to be more difficult to predict and focus on 
improving the performance of the model on those classes. Figure 8 displays the confusion 
matrices for ViT, MobileNetV2, and ResNet18. 
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Figure 2.8. Confusion Matrix for (a) ViT, (b)MobileNetV2, and (c)ResNet18. 
 
     The confusion matrices for the ViT, MobileNetV2, and ResNet18 models highlight 
instances of misclassification, which requires more discussion. In the vision transformer 
model, anthracnose was once misclassified as blossom blight. Additionally, powdery 
mildew was once confused with gray mold, both presenting mold-like symptoms, which 
may make them difficult to distinguish, especially in the early stages. Unripe strawberries 
were misclassified as ripe strawberries six times, due to variability in color through their 
growth. The MobileNetV2 model, enhanced with attention layers, showed somewhat 
similar patterns of misclassification, with anthracnose and powdery mildew fruit rot being 
confused with gray mold once and three times, respectively, again due to overlapping 
visual features. Moreover, unripe strawberries were misclassified as ripe four times, 
suggesting challenges in differentiating ripeness stages due to the fact that images were 
mostly in the middle stages of growth and included both red and yellow colors. The 
attention layers improved focus on relevant features, but some subtle distinctions still posed 
challenges. For the ResNet18 model, which also included attention layers, anthracnose was 
once misclassified as a powdery mildew leaf. Unripe strawberries were classified as ripe 
four times, and ripe ones were misclassified as ripe five times. This shows that it is the 
weakest algorithm in terms of distinguishing ripe and unripe classes. The inclusion of 
attention layers helped to some extent, but further improvements are needed. Despite these 
minor misclassifications, the overall results are promising. The high accuracy rates 

6 
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achieved by all three models indicate that they are effective in identifying and classifying 
strawberry diseases and ripeness stages. These results suggest that the models, particularly 
the vision transformer, are well suited for practical applications in agricultural settings. The 
minor misclassifications highlight specific areas for improvement but do not significantly 
detract from the models’ overall performance.  
C-curves (Arrow C Curves) were also used to evaluate and compare the performance of 
three models across different classes. The C-curve shows the cumulative distribution of F1 
scores, providing a clear visual representation of how well each model performs across all 
categories. This plot is useful for identifying strengths and weaknesses in the models' 
classification abilities. In Figure 2.9, the ViT's C-curve shows high performance in most 
classes, with some variability indicating areas for improvement. The C-curves help 
highlight differences between the models, offering insights into their robustness and 
fairness in classification. This makes the plot especially valuable in understanding how 
each model performs in a multi-class setting and where enhancements might be needed. 
 

      
 
Figure 2.9 C-curve for the best model, ViT. 
 
 
 
 
 



19 

 

     These misclassifications highlight the need for enhancing the dataset with more diverse 
samples to help the models learn subtle differences. The use of attention layers has shown 
promise in improving model performance by focusing on relevant features, but additional 
refinements are necessary. By addressing the issues, the models can better support farmers 
in accurately identifying and managing strawberry diseases, thereby promoting healthier 
crops and more efficient agricultural practices. Upon an analysis of the confusion matrices, 
it is evident that, for this specific task, after the modifications, the ViT is the more 
appropriate selection. The observation can be made that there are more true positives, and 
the occurrences of false negatives and positives are reduced. In order to ensure the model’s 
ability to distinguish between ripe and unripe strawberries, an unripe image was 
deliberately placed in the ripe folder for testing purposes. The confusion matrix generated 
for the ViT demonstrates that only one unripe image was misclassified, providing insight 
into the model’s performance in correctly identifying ripe and unripe strawberries. In terms 
of the efficiency of the weighted random sampler, the AGHRNet study (33) addressed class 
imbalance through a hybrid loss function that combines cross-entropy loss and dice loss, 
resulting in a segmentation accuracy of 77.79% mIoU (mean intersection over union) and 
89.46% mPA (mean pixel accuracy). Another study (13)utilized data-level techniques such 
as oversampling and augmentation to balance the dataset, achieving improved 
segmentation accuracy, though specific accuracy metrics are not detailed. When compared 
to a weighted random sampler approach, which adjusts the sampling probability to balance 
the class distribution during training, this method provides a more comprehensive solution. 
The weighted random sampler helps to address class imbalance by ensuring that minority 
class samples are more likely to be selected, thereby mitigating bias. This, along with the 
augmentation of classes with a small number of images, helps to achieve better results. 

2.4 Discussion 
     From the results shown above, the vision transformer model presents better performance 
overall. ViT, MobileNetV2, and ResNet18 reached their highest accuracy values of 98.4%, 
98.1%, and 97.9%, respectively; in this particular context, however, where the class 
distribution is relatively not balanced, accuracy loses reliability. In spite of this, the 
precision, defined in Equation (3), which is used to determine how many of the predicted 
positive instances are truly positive, reached almost 98% with the ViT. It is a metric often 
used to minimize the occurrence of false positives (32), resulting, in this case, in a more 
reliable and less waste of good and healthy strawberries. Food waste is a major issue 
(34),and reducing food waste (35) could help feed many of those suffering from food 
insecurity and starvation unnecessarily (36,37).Overall, effective discrimination between 
strawberries and non-strawberries was achieved by all three of the algorithms. The 
classification task faced increased difficulty with images of diseased leaves due to their 
higher visual complexity and crowding. Additionally, addressing one of the challenges 
encountered in this project, the imbalanced and small-sized nature of the image dataset, 
necessitated careful consideration, augmentation, and the assignment of appropriate 
weights.  
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2.5 Future work 
     Finally, it should be pointed out that a more balanced dataset could potentially alter the 
results. Future work can investigate the impact of the dataset balance on the results. By 
leveraging a more extensive dataset featuring high-quality images, a larger and balanced 
dataset could be generated, enabling the implementation of more sophisticated algorithms 
with appropriate modifications to facilitate the generalization of the models. In addition, 
by fixing the distance between the camera and the strawberries, future work could also 
enable the determination of the size of the strawberries for automatic yield monitoring in 
both conventional (38,39) and agrivoltaics-based crop systems growing under solar panels 
(40–42). This would be the next step in a fully autonomous open-source system for 
strawberry harvesting (43).The work presented here represents the inception of a project 
aimed at the integration of machine learning into the quality control process for berries, 
particularly strawberries. In evaluating machine learning for strawberry disease detection, 
the approach used here built on and extended the methodologies of established studies. The 
application of Mask R-CNNby Afzaal et al. (8) and convolutional neural networks by Xiao 
et al. (44) highlights the efficacy of deep learning models in accurately identifying plant 
diseases, especially straw-berries. The research advances revealed in this study were 
obtained by combining these findings with integrating vision transformers, which 
Kamilaris and Prenafeta-Boldú  (2) and Turkoglu et al. (45) suggested could further 
optimize disease detection in agricultural applications. The robustness of these models in 
handling varied and complex datasets is critical for achieving high accuracy, as 
demonstrated in the results and supported by Lee et al. (46). The objective of this 
experiment was to develop a model capable of advancing the current standards in the 
classification and recognition of strawberry status through images. This model can be used 
for both outdoor traditional strawberry farming as well as in controlled environment 
production systems designed for strawberry cultivation. The wall system organizes plants 
in rows and facilitates water circulation from a reservoir, moving along rails to the top 
before descending. Throughout the growth cycle on these vertical walls, daily images can 
be captured to monitor the progress and health of the strawberries. This can be 
accomplished with cameras on each wall or mobile cameras with robots on rails, wires, or 
mobile rolling robots. Additionally, through the utilization of cameras and the application 
of image preprocessing methods to mitigate the impact of sunlight, these algorithms can 
be effectively extended for outdoor farming applications. To further advance the 
application of machine learning in strawberry cultivation, the exploration of hybrid models 
that combine the strengths of CNNs and vision transformers is proposed. This approach is 
supported by the potential of advanced deep learning techniques for crop disease detection, 
as discussed by Xiao et al. [43]. Additionally, the enhancement of data preprocessing 
techniques to more effectively address class imbalances is noted by Buda et al. [14]. The 
integration of real-time disease detection systems into agricultural practices, envisioned by 
Xiao et al. [43] and Afzaal et al. [7], is expected to drastically improve operational 
efficiencies and crop health management. jgfsgfiegiuiuerysuiugiruvgidvgviurgvgzigviug   
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Chapter 3  

3 Blender-Enhanced Synthetic Image Generation: 
Advancing SwinUNet Segmentation Techniques through 
Controlled Data Environments 

 

3.1 Introduction 
     Deep learning, particularly through the use of models with a large number of 
parameters, has become a pivotal technique for tackling complex problems in machine 
vision (47). These models require extensive training on diverse visual data, but the high 
costs and time required to acquire and annotate large datasets can be prohibitive (48). To 
circumvent these challenges, data augmentation (DA) is often employed to artificially 
enhance the size of training datasets. This involves altering existing data to simulate 
various real-world conditions—such as different viewing angles, object deformations, and 
camera distortions—while maintaining the original labels (49). Such techniques are 
particularly useful in scenarios where data is scarce, of poor quality, imbalanced, or 
difficult to obtain due to high costs or other restrictions (48,50,51).  

Many computer vision tasks require specifically tailored data formats and annotations, 
which makes broadly-annotated, publicly available datasets often unsuitable for these 
specialized requirements. In such cases, creating custom training data from scratch is 
necessary (51). In fields requiring custom data formats and annotations, like object 
grasping (52), and manipulation, synthetic data generation using modern image synthesis 
techniques proves invaluable.  These techniques, including 3D modeling, allow for scalable 
resolutions and customizable content, providing flexibility for specific use cases (47). For 
instance, synthetic images have been successfully applied in monitoring additive 
manufacturing processes (53). 

     Bridging these advancements in data creation, the integration of novel architectural 
innovations such as the Vision Transformer (ViT) represents a pivotal shift (54).   The 
introduction of Transformers, particularly the ViT (54), has revolutionized fields beyond 
its initial application in natural language processing (NLP) (24) ViT adapts to various 
computer vision tasks such as image classification, semantic segmentation, and object 
detection by effectively processing long-range dependencies without built-in assumptions 
(54–57). This allows the ViT to effectively identify and process long-range dependencies 
in data, requiring fewer built-in assumptions. This characteristic improves the model's 
ability to independently learn from the input data. When the ViT is trained with a sufficient 
amount of data, it performs exceptionally well, surpassing the effectiveness of state-of-the-
art CNNs (54). However, standard ViT models lack segmentation heads necessary for tasks 
like semantic pixel-level classification, prompting the use of architectures like SETR and 
Swin Transformer for more complex segmentation tasks (58,59). It is worth noting that 
both CNN-based and Transformer-based models are used for this purpose (56). There is a 
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limitation with standard ViT models; they are not directly applicable to segmentation tasks 
as they do not have segmentation heads, which are essential for pixel classification.  
Segmentation Transformer (SETR) (60) and Swin Transformer (61) architectures can be 
utilized for complex segmentation tasks in computer vision, contrasting them with simpler 
image classification tasks.  

    A critical characteristic of the ViT model is its substantial need for extensive data sets 
to facilitate effective training. Dosovitskiy et al. (54) demonstrate that the performance of 
ViT models scales positively with the increasing size of the training data. This dependency 
highlights a dual aspect of utilizing ViT in research and practical applications—while it 
demands large, diverse datasets, it also offers the potential for superior performance if these 
requirements are met. Such dynamics underscore the importance of resource allocation in 
data collection to fully exploit the capabilities of ViT models in advanced computational 
tasks. , there are instances where data is scarce or difficult to obtain for model training, and 
collecting data can also be costly (48). 

This study aims at training a ViT model to identify ripe and unripe strawberries on growth 
walls using synthetic data for training to avoid the issue of data scarcity and compare the 
results with conventional data collection methods. The solution involved generating 
synthetic strawberry images along with their corresponding masks using an open-source 
software named Blender (62). This approach helped create a more robust dataset, allowing 
for effective training of the model. Subsequently, the augmented images were trained and 
evaluated using SwinUNet (63)as a method for transfer learning and Deep Domain 
Confusion (64) for domain adaptation. The trained model was then tested on real-time 
images captured by cameras from growth walls. 

 

3.2 Backgrounds 
     In this section, the applications of semantic segmentation and Vision Transformers 
(ViTs) will be explored first. SwinUNet (63) will then be discussed as an alternative to 
ViTs. Data Augmentation will be introduced, along with its advantages and the benefits of 
using Blender (62) to generate images. Additionally, challenges such as domain adaptation 
and the use of the Dice Similarity Coefficient as a method will be examined. 

3.2.1 Semantic Segmentation  

     Semantic segmentation, crucial for detailed visual scene analysis, offers pixel-level 
precision advantageous for medical imaging and autonomous driving due to its accuracy 
in object delineation (65). It surpasses simple detection by precisely outlining object 
shapes, crucial for complex interactions (59). It demands, however, substantial 
computational resources for training and execution and struggles with the scarcity of 
annotated datasets, especially in specialized fields (66). These factors make semantic 
segmentation both powerful for in-depth analysis and challenging to implement due to high 
resource demands and data acquisition challenges. 



23 

 

     Semantic segmentation serves a pivotal role in various application areas, including 
remote sensing, medical imaging, and agriculture (67), each benefiting from its ability to 
identify and delineate distinct regions within images accurately. Remote sensing imagery, 
combined with computer vision and AI, is essential for analyzing complex features across 
large geographical areas (68). Neural networks facilitate the processing of this vast data, 
enabling precise object detection and semantic segmentation (69). Research has improved 
the processing of high-resolution remote sensing images for semantic segmentation by 
optimizing the ViT architecture (56).This optimization involves the strategic addition of 
layers and attention mechanisms to the models, enhancing their efficiency. Notable 
advancements include the development of models such as the Efficient Transformer and 
the Wide-Context Transformer (70) which have demonstrated superior performance in 
these image analysis tasks. 

In agriculture, particularly, semantic segmentation is utilized to enhance precision farming 
by enabling robots to detect and classify crops and weeds effectively, facilitating targeted 
weeding actions(67). This technology relies on CNN-based models for real-time 
segmentation, distinguishing between elements like sugar beet plants, weeds, and 
background solely using RGB data. 

Experts in various fields extensively analyze these images, a time-consuming process. To 
enhance efficiency, deep learning methods have been employed for automatic feature 
extraction, improving medical image analysis. Notably, the U-Net architecture (65), 
initially developed for medical purpose, has seen various enhancements and applications 
across different medical datasets, including heart, lesion, and liver segmentation. There 
have been recent advancements in the application of ViT architectures to the agricultural 
and  medical sector, particularly through the introduction of TransUNet (71) and Swin-
Unet(63). These hybrid Transformer models integrate features from the U-Net and have 
demonstrated enhanced accuracy in segmenting. It also points out a significant challenge: 
the datasets are generally smaller compared to extensive natural image datasets, which 
include millions of images of landscapes, people, animals, and vehicles (20,72). This 
disparity in dataset size can pose difficulties in effectively training and developing these 
sophisticated models. Employing open-source software such as Blender can be extremely 
beneficial for generating additional images, thus addressing the challenge of limited 
datasets in medical imaging (73). By creating synthetic images, Blender can help enhance 
the volume and variety of data available for training sophisticated models like TransUNet 
or Swin-Unet, leading to better performance and more accurate results. 

3.2.2 Vision Transformers 

     A standard transformer architecture was employed to handle both token embeddings 
and 2D image data, transforming images into sequences of flattened patches that were 
converted into fixed-size vectors with positional embeddings to preserve spatial context 
(54). The architecture consists of alternating layers of self-attention and multi-layer 
perceptrons (MLP), complemented by layer normalization and residual connections, which 
facilitates the simultaneous processing of text and image data. Vision Transformers differ 
from traditional CNNs mainly in their limited use of inductive bias, choosing instead to 
learn spatial relationships among image patches from the ground up. Adjustments to the 
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positional embeddings are made to accommodate images of different resolutions. Through 
its self-attention mechanism, the model assigns importance to each patch, improving its 
understanding of the relationships within the image and focusing on the most relevant 
segments for performing various vision-based tasks. The classification outcome is 
determined by a classification head that interprets the encoder's output, effectively 
summarizing these processes in a coherent workflow. Vision transformers are extensively 
employed for detecting strawberries and monitoring their quality in the field. Zheng et al. 
[31] evaluated ViT models for strawberry quality classification, detailing a ViT-based 
method integrated with a Support Vector Machine (SVM) that achieves a recognition 
accuracy of 98.1%.; The use of Vision ViT was studied for detecting strawberry diseases, 
enhanced by transfer learning to improve precision. This approach classified diseases 
across seven categories of strawberry parts, achieving an accuracy and F1-score of 0.927 
on the Strawberry Disease Detection dataset [32]; Also, LS-YOLOv8s integrated with the 
LW-Swin Transformer module, was developed to enhance the detection and classification 
of strawberry ripeness. The model significantly outperformed existing models, achieving 
94.4% detection precision [33]. These methods have achieved high accuracies exceeding 
95% while maintaining relatively low computational costs. Most recently in a study, the 
ViT was fine-tuned on augmented strawberry images, achieving 98.4% accuracy and 
nearly 99% precision in disease classification and ripeness detection, demonstrating its 
potential to enhance agricultural practices through precise crop monitoring (77).   

3.2.2.1      SwinUNet 

     SwinUNet (63) is an innovative architecture that combines the strengths of Swin 
Transformers with the proven structure of the U-Net (65). The Swin Transformer is a 
variant of vision transformers that employs shifted windows for self-attention, effectively 
processing hierarchical and multi-scale image features to boost performance across diverse 
computer vision applications (61).  Although SwinUNet is common in medical imaging,  
it has recently been used for agricultural uses (76). This hybrid model integrates the 
hierarchical Swin Transformers, known for their efficiency in processing vision tasks due 
to the shifted windowing technique in attention mechanisms (61). This integration allows 
SwinUNet to adeptly manage different scales of attention across its layers, enhancing its 
capability to maintain detailed context and achieve fine segmentation accuracy (61). 
SwinUNet has demonstrated exceptional performance, surpassing traditional CNN-based 
models in various segmentation tasks, such as organ and tumor delineation and fruit 
ripeness detection (63,76). It offers substantial improvements in terms of Dice scores and 
shows enhanced generalization across different imaging modalities. Studies (49) further 
validate its superiority, especially in handling complex images, where it outperforms 
standard U-Nets in both precision and computational efficiency (63). The flexibility of 
SwinUNet to adapt to various image sizes and types underscores its potential as a versatile 
tool in medical diagnostics, promising to boost diagnostic accuracy and thereby improve 
patient outcomes.  

3.2.3 Data Augmentation 

     Contemporary computer vision techniques predominantly utilize CNN and deep 
learning, which depend on extensive amounts of labeled data and significant computational 
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power (73). The difficulty in gathering and labeling large datasets complicates the 
widespread application of computer vision, particularly in areas where data annotation is 
notably laborious (78). Additionally,  the quality and diversity of the data are critical for 
developing robust computer vision models. Due to these challenges, there is increasing 
interest in synthetic image data as a more affordable and readily available option for 
training (48).  There are various data augmentation methods utilized such as: 1) geometric 
data augmentation (79), 2) photometric techniques such as color jittering  (80), lighting 
perturbation (81), and image denoising (82) modify the visual properties like contrast, 
brightness, and noise of images to enhance model robustness against such variations. 

     Generative AI methods offer the most promising potential for creating synthetic datasets 
for complex computer vision tasks (48). Generative modeling methods are deep learning 
techniques that utilize specialized neural architectures to learn and replicate the statistical 
distributions of target data, facilitating the creation of synthetic training data (51). The 
famous example of it is generative adversarial networks (GANs) (83). There are methods 
to synthesize data based on computer graphics modelling. Aforementioned methods 
normally approach data augmentation as a 2D transformation of an image within its own 
domain, using various techniques to generate variations of the original data in 2D space. 
These methods lack a semantic 3D context, making them potentially inadequate in 
representing true real-world variations (48). Utilizing a software such as Blender (62) can 
facilitate the synthesis of images in various shapes and forms, allowing for the generation 
of any desired number of samples. In crop disease and quality assessment, Blender provides 
the flexibility to design and incorporate any specific details required for the analysis. 

  Supervised learning in deep neural networks has some limitations, especially for tasks in 
computer vision and NLP that require extensive labeled data, which is challenging and 
expensive to obtain (69). It highlights that while transfer learning offers some relief, it falls 
short for specific applications like satellite imagery segmentation due to mismatches in 
data domains. Consequently, achieving high accuracy remains difficult. Self-supervised 
learning within Transformer architectures is an effective solution to these data-intensive 
challenges. This approach, which learns from unlabeled data, is made similar to human 
vision, offering a promising avenue to bypass the constraints of traditional supervised 
methods. In this study, the objective was to train a ViT model for segmentation without the 
necessity of acquiring external data. Previous studies (77) have indicated that a shortage of 
training data can lead to methods that incur high computational costs. 

     Blender is a free, open-source 3D graphics software that encompasses the entirety of 
the 3D process, including modeling, animating, rendering, and compositing (84). It offers 
several key advantages that make it ideal for generating synthetic datasets. First, Blender 
is equipped with a physics-based rendering engine (85), making it capable of producing 
high-quality, photorealistic images. A particular advantage of using Blender is its ability 
to precisely control the appearance of surfaces and materials through its shader nodes 
system (86). An extensive library of textures and backgrounds is also available, enabling a 
wide variety of realistic objects and environments to be created. Applying these resources 
can enhance the diversity and realism of synthetic datasets, making them more 
representative of the real world. The introduction of a node-based procedural workflow in 
version 2.92 has also significantly enhanced Blender’s capabilities (87). This feature 



26 

 

facilitates the creation and manipulation of complex geometries without the need for 
manual modeling, allowing for a high degree of flexibility and control over the object. It 
also enables the randomization of an object’s geometry within each frame, allowing for 
numerous object variations to be incorporated into a single scene animation. Additionally, 
Blender supports scripting and automation (88), helping to address issues related to data 
scarcity and imbalance by providing a scalable and cost-effective solution for generating 
large volumes of high-quality training data tailored to specific needs. 

     Previous research has demonstrated Blender’s effectiveness in generating synthetic 
datasets for various computer vision applications across different domains (47,89). For 
example, in the realm of additive manufacturing, Blender has been employed to generate 
comprehensive datasets for semantic segmentation of 3D-printed parts, improving real-
time failure analysis systems by accurately detecting various structural elements (53). In 
industrial applications, Blender has been used to create synthetic images for steel defect 
recognition, leading to improved performance in classifying and segmenting defects on 
steel slabs (90). Blender has also been instrumental in developing a quality inspection 
system for scaffolding, combining synthetic and real datasets to train models for assessing 
structural safety (91). In agriculture, Blender has been used to develop synthetic datasets 
for crop size estimation, effectively addressing challenges such as occlusions and 
perspective distortions (92). It has also enabled the creation of realistic datasets for object 
detection in sweet pepper cultivation through procedural generation, enhancing the training 
of deep learning models for both object detection and semantic segmentation (93) 

3.2.4 Domain Adaptation 

     A trained deep learning model exhibits optimal performance on test data when the data 
shares the same distribution as the training set (94). For instance, datasets comprising 
images from mobile phones differ significantly from those captured with high-end 
cameras, which can lead to the failure of traditional transfer learning approaches. In such 
cases, each new dataset requires initial annotation followed by re-training of the model to 
accommodate the new data characteristics. Domain adaptation offers a solution to this 
challenge by enabling adjustments to a pre-trained model to enhance its performance on 
new datasets without the need for re-training (64). Domain Adaptation is a machine 
learning strategy that modifies models trained on one domain to achieve high performance 
on a different yet related domain. This approach is especially beneficial when there is a 
lack of labeled data in the target domain but an abundance in the source domain, as it aligns 
the data distributions across domains (95,96). A typical application is adapting image 
recognition models trained on controlled environment images to accurately recognize 
images taken under diverse real-world conditions (97).  This approach conserves 
computational resources and, in the case of unsupervised domain adaptation, eliminates the 
need for labeling the new data. In this study, the source domain is the data generated by 
Blender and the target domain is the data received by the camera.  

3.2.5 Deep Domain Confusion 

     In CNNs there is a problem of dataset bias in deep learning. A standard supervised deep 
CNN, even when trained on extensive datasets, fails to completely eliminate bias when 
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tested against benchmarks (64). Deep Domain Confusion (DDC) is a method developed to 
address domain shift in domain adaptation, where a model trained in one domain does not 
perform well in another. Introduced by Tzeng et al. (64), DDC works by integrating a 
domain confusion loss into the training process, encouraging the model to learn features 
that are invariant across domains. This approach helps in enhancing the generalizability of 
deep learning models, particularly in applications like image recognition and natural 
language processing where the training and application environments greatly differ (73). 
The strategy involves optimizing a combined loss function that accounts for both prediction 
accuracy and domain confusion, thereby improving the model's effectiveness across varied 
domains. For example, Kamnitsas et al.(98) demonstrated how unsupervised domain 
adaptation could be applied to MRI scans, where models trained on data from one set of 
MRI machines significantly improved their performance on scans from different machines, 
showcasing the approach's effectiveness in medical imaging contexts. 

3.2.6 Dice Similarity Coefficient and Jaccard Index 

     The Dice Similarity Coefficient (DSC) (99) and the Jaccard Index (100) are commonly 
used to evaluate segmentation accuracy with. The DSC is calculated as 2True 
Positive/(2True Positive + False Positive + False Negative) , and the Jaccard Index is 
defined by True Positive/(True Positive + False Positive + False Negative).	These metrics 
are essential for assessing how well segmentation algorithms, typically optimized using 
(weighted) cross-entropy, perform in practical applications. Cross entropy optimization, 
however, often leads to a discrepancy between the training loss and the evaluation metrics, 
which can adversely affect model performance (99). To address this issue, recent 
innovations in computer vision have introduced methods like soft-Dice, soft-Jaccard, and 
Lovász-softmax (101). These approaches aim to directly optimize the desired metric, 
aligning the training objectives more closely with the performance evaluation metrics. 
These methodologies have been explored to determine whether weighted cross-entropy can 
act effectively as a surrogate for the Dice or Jaccard metrics.  

3.3 Methods 
     This section details the procedures used to assess the ripeness and health of strawberries, 
outlining how the data was collected, and the specific methods and algorithms employed 
in the analysis. 

3.3.1 Dataset 

3.3.1.1 Data Preparation 
     Petsiuk et al. (102) described a method for creating a procedural strawberry plant model 
using Blender geometry nodes in which parameters such as scale, rotation, and position of 
each plant part were precisely controlled through a node network, allowing for flexible 
adjustments to simulate natural plant variations. Their work forms the foundation for this 
study, and the following section details how their model was utilized and adapted to suit 
our specific application.  
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     In this study, Blender version 4.0.2 was employed to generate the synthetic dataset of 
strawberry plants for computer vision training. The scene (shown in Figure 3.1) comprised 
a vertical grow wall, peat cups with soil for a strawberry plant, a single strawberry plant, a 
track for the camera, and the camera itself. It was intended to closely resemble the actual 
growing conditions of strawberries planted in an indoor vertical grow wall located in the 
agrivoltaic agrotunnel at the Western Innovation for Renewable Energy Deployment in 
London, ON, Canada. The vertical grow wall was carefully replicated within Blender to 
ensure the synthetic data would be representative of the actual testing conditions. Lighting 
within the scene was achieved through the ambient illumination provided by the default 
forest environment texture, which mimicked natural light conditions. 

     The random node (103) was further integrated into the geometry node network, 
introducing variability by randomizing parameters such as the size and orientation of 
leaves, the curvature of stems, and the color of strawberries. The randomization was 
carefully constrained within realistic limits to avoid non-realistic appearances, ensuring 
that each rendered frame was unique. 

     Several improvements were also made to the original leaf model. The shape of the leaf 
was refined to more closely align with a strawberry plant’s true leaf morphology by 
utilizing Blender's knife tool (104) to cut out the shape from an imported image-as-plane, 
based on a reference image (105). A shader nodes setup (86) was created that allows for 
variation in leaf color between lighter and darker green. Additionally, the ability to 
randomly vary the leaf's curl was introduced. Finally, the Principled BSDF node (106) was 
used to increase the roughness of the leaf’s surface, further improving its realism. 

     Object instancing (107) was used to manage the high number of individual components 
efficiently. Each instance was subjected to the same randomization parameters, 
maintaining consistency across different parts of the plant while ensuring variability 
between frames. The camera also was set on a track and animated to move along it, 
changing angles and perspectives in each frame. This method allowed for the creation of 
highly realistic yet diverse synthetic datasets. 

     Blender's compositing tool (108) was used to create masks for image segmentation. This 
tool assigned separate pixel values to each part of the plant. For each image, the strawberry 
was assigned its own value while the rest of the plant and background were assigned a 
different value. The cycles rendering engine (85) was used to render the images with the 
number of samples set to 256. Initially, images were rendered using a CPU, which was 
later switched to a GPU to decrease rendering time. Using a GPU, less than two days were 
required to generate 4,000 images. While the animation rendering process occasionally 
resulted in strawberries being covered by leaves, and object intersection, such as 
overlapping leaves, was a challenge, it generally did not detract from the realism and was 
often negligible.  
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Figure 3.1. Scenes from the grow wall and strawberries in Blender 

In this method, images were generated using the open source Blender (109), and specific 
pixel values were assigned to different elements within each image, including the 
background (comprising the wall and leaves), as well as the ripe and unripe strawberries. 
Figure 3.2 displays representative generated images of ripe and unripe strawberries 
alongside their corresponding masks. 
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Figure 3.2. Images generated with Blender with their corresponding masks. (a) image of 
ripe strawberry with its mask (b). (c) is the image of unripe strawberry with its 
corresponding mask (d). 

3.3.1.2 Data pre-annotation 

     The generated data was divided into training and validation subsets. To assess the 
model's performance in real-time and under real-world conditions, a collection of images 
taken in an agrivoltaics agricultural tunnel (110) was employed for testing. These images  
(representative example shown in Figure 3) lacked predefined masks, necessitating pre-
annotation. For this experiment, to pre-annotate, the images were grayscaled and masked 
creation was carried out using Roboflow. (111)  

Table 3.1 presents the quantity of images utilized for training and testing within each 
category. Also, along with the real images with corresponding masks that were fed to the 
saved model for testing. 

 

Figure 3.3. left (the image taken from the camera and grey scaled), right (pre-annotated 
image) 

 

Table 3. 1 – Number of images in each data set. 

 Ripe Unripe 

Training (Synthetic) 5000 5000 

Evaluation (Synthetic) 1000 1000 

Testing (Real) 300 300 

 

Deep domain confusion was implemented, and the model was saved and tested on real-
time images. 
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     Following the preprocessing steps, the images were processed using SwinUNet for both 
training and validation, and the resultant model was evaluated on the real-time data with 
images captured from a Crealty (112) webcam. Deep domain confusion was implemented 
during evaluation to reduce the differences between the source and target domain.  

The computational resources for this project were provided by the Digital Alliance of 
Canada, which included the use of an A100 GPU. All code used in this study were written 
in Python and have been made accessible on the Open Science Framework (OSF) (109). 
Detailed specifications of the model are presented in Table 3.2. DSC method was 
implemented to evaluate the accuracy of the pixels segmented on both the ground truth 
sample and the segmented one. The DSC ranges from 0 to 1, where a value of 1 indicates 
a 100% match between the segments in the ground truth sample and the segmented target, 
representing perfect agreement. 

 

Table 3.2. Details of the architecture and algorithms used for this experiment. 

Parameters Value 

Programming language Python 3 

Architecture SwinUNet 

Domain Adaptation Method Deep Domain Confusion 

Evaluation Metric Dice Similarity Coefficient 

Loss Function Weighted Cross Entropy Loss 

Source Domain Blender Generated Images 

Target Domain Creality CRCC-S7 HD 1080 3D printer Web Camera 

Computing Power Digital Alliance of Canada (A100 GPU) 

Epochs 400 

 

 

3.4 Results 
     SwinUNet and deep domain confusion techniques were applied to a dataset comprising 
5000 images per class augmented by Blender, categorized as ripe and unripe, each 
accompanied by corresponding masks. The DSC for both classes on the evaluation set, 
achieving 98% for ripe and 97.4% for unripe classes. The performance on the test set (real 
images) did not mirror these results, registering DSCs of 92% and 90% for ripe and unripe 
classes respectively. Despite increasing the number of images, the real-time data testing 
results continued to lag behind the evaluation set, underscoring the persistent challenge of 
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domain disparity. This pattern underscores the inherent limitations of domain adaptation 
methods in fully bridging the gap between varied data domains. 

 

Table 3.3 Validation and test results using 5000 images for training. 

 DSC (%) - validation DSC (%) - test Accuracy 

Ripe 98 92 98.74 

Unripe 97.4 90 97.2 

 

     In this study, the model's initial training involved 200 images per class, resulting in DSC 
of 58% for ripe strawberries and 56.4% for unripe ones on the test set. Subsequently, when 
the training set was expanded to 1,000, 4,000 and 5,000 per class, brought the DSC to 92% 
for ripe and 90% for unripe strawberries as shown in Figure 5. These results clearly 
demonstrate that within the same environment, increasing the number of training images 
substantially improves both the accuracy and the DSC of the model. 

 

 

Figure 3.4. The rate of DSC increase when increasing the number of training images. 
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3.5 Discussion 
     The findings from this study clearly indicate that an increase in the volume of training 
data significantly enhances the accuracy for each class. In studies involving AlsmViT 
(113), designed for analyzing foods with similar shapes but differing nutritional values, the 
top performance using Swinv2 achieved a 93% accuracy rate. Additionally, real-time 
semantic segmentation of crops and weeds (67) achieved an 89.5% success rate. In projects 
focusing on strawberry disease identification (75) using vision transformer-based models, 
the original ViT model reached a 98% accuracy level. However, these projects were limited 
to identifying and classifying strawberries using a dataset provided by Afzaal et al. (8), 
with the results obtained solely from augmented data. In a prior study(77) concerning 
strawberry disease and ripeness, the datasets, albeit imbalanced, originated from authentic 
images and were consistent across both training and testing phases within the same domain. 
The implementation of ViTs alongside weighted sampling methodologies facilitated a 
classification precision of 98.9%. In contrast, the current study utilized an evaluation set 
from the same domain as the training data, achieving comparable DSC and accuracy levels 
in a segmentation task. Nevertheless, the test data, sourced from a different domain, yielded 
reliable yet slightly less accurate results compared to the aforementioned study. 

     With the current methodology, the generation of additional data effectively addresses 
the issue of data scarcity. A noticeable discrepancy remains between the accuracy on real-
time data and that on the evaluation set. This gap may potentially be narrowed by enhancing 
the quality of the generated images, suggesting a focus on improving image generation 
processes as a means to boost real-time data performance. 

 

3.6 Future Work 
     Looking ahead, there are several promising avenues for enhancing the functionality and 
accuracy of this image processing system. First, there is potential for improvement in the 
quality of the generated images to make them more closely resemble real images. This 
enhancement would likely lead to better model training outcomes and more accurate 
segmentation in practical applications. Second, in the future, the adoption of stereoscopic 
cameras (114) for capturing real-time images could significantly advance our capabilities. 
By utilizing such technology, it would be possible to accurately measure the size and 
volume of objects, such as strawberries. This dimensional data could provide valuable 
additional information to determine the optimal timing for harvesting. 

     Additionally, exploring various Transformer models could further enrich our 
understanding and effectiveness in segmentation tasks. Experimenting with models like the 
SETR (69) could provide insightful comparisons with the currently employed algorithms, 
potentially revealing strengths or weaknesses that could inform future improvements and 
adaptations in our approach. 
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     Also, future research could explore the effects of training with zoomed-in images to 
determine if synthesizing images from a close distance influences accuracy. Additionally, 
generating images that contain both ripe and unripe strawberries within a single frame 
could be investigated, as this approach more closely mirrors real-world conditions. 

 

3.7 Conclusions 
     In this research, synthetic data created using Blender was utilized to train a ViT model. 
Gathering data in agricultural fields can be challenging and time-consuming due to the 
extended growth periods required for crops. Originally, the ViT is not tailored for 
segmentation tasks; thus, Swin-UNet, a variant within the ViT family, was employed via 
transfer learning for this purpose. To evaluate the model's performance on real-world data, 
this data had to be pre-annotated, and masks generated, necessitating the use of domain 
adaptation techniques. The model achieved a high accuracy of 98.5% on a validation set. 
The performance on real-time data did not match this, which is expected, but it still 
maintained a reliable accuracy and DSC above 90%, proving effective for applications like 
fruit detection. 
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Chapter 4 

4 Conclusion 
     This thesis has examined the application of advanced machine learning techniques, 
specifically Vision Transformers (ViTs) and synthetic data generation, to improve disease 
detection and ripeness classification in strawberry cultivation. The integration of these 
technologies into agricultural practices represents a stride towards more precise and 
automated crop management systems. This chapter synthesizes the findings from the 
conducted studies and discusses potential avenues for future research. 

4.1 Summary of Results 

4.1.1 Vision Transformers for Disease and Quality Detection 

     The first study, detailed in Chapter 2, focused on utilizing Vision Transformers to 
optimize strawberry disease detection and quality assessment. The results demonstrated 
that ViTs, enhanced with attention mechanisms, significantly outperform traditional 
convolutional neural networks in both accuracy and precision. The ViT model achieved a 
classification precision nearing 98.9%, underlining its capability to handle the nuanced 
variations in disease symptoms and fruit ripeness. This performance is attributed to the 
model's ability to process long-range dependencies and its robustness in learning from 
imbalanced datasets, enhanced by weighted sampling techniques. 

4.1.2 Synthetic Data and SwinUNet for Advanced Segmentation 

     Chapter 3 explored the creation and utilization of synthetic datasets through Blender to 
train the SwinUNet, a model adapted from ViT for complex segmentation tasks. This 
approach addressed the challenge of data scarcity and allowed for the controlled simulation 
of diverse agricultural environments. The SwinUNet, trained on these synthetic datasets, 
proved to be highly effective, achieving Dice Similarity Coefficients that closely 
approached those obtained with real-world data. The model demonstrated acceptable 
generalizability, which is crucial for adapting to the variability existed in agricultural 
applications. 

4.2 Implications of the Findings 
     The findings from this thesis underscore the potential of machine learning to 
revolutionize agricultural practices through enhanced disease detection and crop 
monitoring. By reducing reliance on manual labor and subjective assessments, these 
technologies can significantly improve the efficiency, accuracy, and timeliness of 
interventions. This not only contributes to better crop health and yield but also promotes 
sustainable agricultural practices by optimizing resource use. 



36 

 

4.3 Future Work 

4.3.1 Expansion to Other Crops and Conditions 

     Expanding the application of these models to other types of crops and environmental 
conditions would also be valuable. This includes testing the models in different climates, 
soils, and with various types of crop diseases, which could help in developing more robust, 
universal models for agricultural applications. 

4.3.2 Advanced Synthetic Data Generation 

     Advancements in synthetic data generation techniques hold significant potential for 
enhancing the training efficiency and effectiveness of machine learning models used in 
agricultural applications. By developing more sophisticated methods that more accurately 
mimic real-world variability, synthetic data can facilitate the training of models that are 
both highly adaptable and precise. Future research should focus on several promising 
strategies to improve the accuracy and functionality of the image processing systems in 
these settings. Enhancing the realism of synthesized images is expected to significantly 
boost both model training and segmentation accuracy. Furthermore, the integration of 
stereoscopic cameras could provide precise volumetric measurements of agricultural 
produce, such as strawberries, optimizing harvest timings. Additionally, exploring the 
effects of training models on zoomed-in imagery and generating composite images that 
include both ripe and unripe strawberries could enhance model robustness and better 
replicate complex field conditions. Together, these initiatives could greatly advance 
precision agriculture, improving decision-making processes and increasing the accuracy of 
crop yield predictions through refined technological applications. 
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