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Abstract

Consider a complex analytic curve X in C2, along with a specific point p 2 X . The primary
concern arises in approximating geometrically the curve X precisely at the point p. Analo-
gously, in introductory calculus, students learn to compute the tangent line to the graph of a
function y = f (x) at a given point p = (x⇤, f (x⇤)) by utilizing the derivative of f at x⇤.

For analytical convenience, we assume a local representation of the curve X using a power
series expansion. This representation centers the point p at the origin (0,0) 2 C2. Thus, our
mathematical input becomes a Taylor series:

f (x) =
•

Â
i=1

cixi .

Alternatively, one may conceptualize our input as a “germ” or a “jet” of sufficiently high
order. This assumption of a local representation is grounded in the application of the implicit
function theorem. The theorem, coupled with the specific nature of the questions posed, al-
lows us to work with a localized description of X that relies on only finitely many coefficients
{ci}•

i=1.
An alternative perspective on defining a plane curve involves considering it as the set of

points where an implicit polynomial function F(x,y) 2 C[x,y] equals zero. This set of points
is termed a “variety,” denoted as V (F(x,y)) = {(x,y) 2 C2 | F(x,y) = 0}.

Given a degree d and a sequence c = (c1,c2, . . .) defining the power series expansion, our
objective is to ascertain the “best approximation” of the curve G through a curve expressed as
V (F(x,y)), where F(x,y) has a degree no greater than d. This specific curve is referred to as
the “degree d osculating curve” of the Taylor series, or equivalently, the “degree d osculating
curve” of X at the point p.

Keywords: Approximation , Osculation
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Summary for Lay Audience

A curve is said to osculate a second curve if the two touch only at a point. A straight
line tangent to a curve is a familiar example. The straight line osculates the curve at the point
where it touches the curve. A second example will be familiar to some calculus students: an
osculating circle. In this case, the circle not only touches a given curve, but also matches the
curvature of the curve at the point of touching.

Osculating curves approximate the curve they are touching in the neighbourhood of the
contact point. For this reason, they are used a lot in Computer Aided Design (CAD) to speed
up calculations and to ensure that curves and surfaces remain smooth at places where they join.

The thesis develops a new way of calculating osculating curves, without being restricted to
straight lines or circles. This allows formulae of greater generality than before to be computed.
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Chapter 1

Introduction

The local analysis of curves and surfaces is a fundamental aspect of complex geometry and
has broad applications in various scientific and engineering disciplines. In this area, commonly
used techniques include power series expansions, the computation of tangent spaces, and in-
tersection multiplicity numbers.

In the study of curves and surfaces, the idea of curvature is an important part of under-
standing how curves (resp. surfaces) deviate from being a straight line (resp. plane). This idea
extends to osculation, which is interesting both for mathematical reasons and for its practical
applications. An osculating curve is a local approximation to another curve at a specific point.
This means it closely follows the curvature and direction of the original curve at that point. Un-
derstanding osculating curves helps in approximating complex curves by simpler ones, which
is crucial in applications such as computer graphics and numerical methods.

The osculating curve provides information about the curvature of the original curve at a
point. Curvature measures how quickly a curve changes direction as you move along it. This
information is essential in many practical applications, including designing roads, analyzing
shapes in engineering, and understanding wave patterns.

Computer-aided design (CAD) refers to software that allows engineers to design things, for
example, the body of a car. Osculating curves are important when designing shapes as they help
with the visualization and analysis of shapes. For instance, the body of a car bends smoothly
around the outside of the car. Osculating curves help designers ensure smooth joins, meaning
the curvature changes smoothly between different sections of a surface. In CAD, surfaces are
often defined by curves, and making sure that these curves blend smoothly into each other
without sudden changes in curvature is important for creating designs that are aesthetically
pleasing and easy to manufacture. Surfaces can be really complicated, and osculating curves
can be used to approximate these complicated surfaces by simpler ones that approximately
match the local curvature and direction of the surface being designed. This is very useful in
simplifying and optimizing designs without losing important geometric details.

Modern factories use machines that are computer-controlled. Computer Numerically Con-
trolled (CNC) machines and 3D printing use osculating curves. Tool paths need to follow the
shapes of the surfaces they are making accurately. Osculating curves help in generating tool
paths that ensure close cutting or printing at high speeds, and they also help prevent errors
caused by sudden changes in surface curvature.

Many CAD systems use parametric modeling and mathematical parameters. Osculating

1



2 CHAPTER 1. INTRODUCTION

curves provide a mathematical framework for defining and manipulating curves and surfaces
parametrically. This allows engineers to change designs by adjusting parameters that control
the curvature and shape of curves. We see that osculating curves have many applications.

Many studies have been conducted in this field. Philip Franklin’s foundational work on
Osculating Curves and Surfaces [8] explains the key ideas behind these mathematical concepts
and shows how they can be used in many fields. Franklin starts by defining osculating curves as
the best possible approximations of other curves at specific points, using higher-order deriva-
tives to capture their shape precisely. He then expands these ideas to include osculating planes,
circles, and higher-dimensional surfaces like spheres and hypersurfaces.

Before Franklin, Arthur Cayley used a method involving higher-order contact between
curves to study osculating circles and conics [4]. Specifically, he explored the concept of
contact points where a curve and a conic section (like an ellipse or hyperbola) share higher-
order derivatives at a specific point. This method involves using power series expansions and
Taylor series to approximate the curve locally and determine the best-fitting conic section that
has multiple points of contact (up to five-point contact) with the original curve.

By considering higher-order derivatives and the associated power series, Cayley was able
to define osculating conics that provide a very accurate approximation of the curve at the given
point. This approach allows for precise modeling and analysis of the curve’s behavior in a
small neighborhood around the point of contact.

Balay-Wilson and Brysiewicz’s paper on ”Points of Ninth Order on Cubic Curves” extends
these ideas by providing a necessary and sufficient condition for points on a cubic to be as-
sociated with an infinite family of other cubics with nine-point contact at that point. They
parameterize this family of cubics using the osculating quadratic, offering new insights into
higher-order contact on cubic curves. Their method involves geometric analysis to establish
the conditions under which a cubic curve will have points of ninth-order contact, leading to
a parameterization of the family of such curves. This work significantly advances the under-
standing of high-order contacts and their applications in algebraic geometry [3].

This thesis focuses on the geometric approximation of complex analytic curves in C2. We
assume that such a curve is given to us locally at a point p by the expansion of a power series
f . Our goal is to find the best way to approximate the plane curve X using another curve of a
specific form, V (F(x,y)), where F(x,y) is a polynomial with a degree of at most d, where d is
a prescribed positive integer. This kind of curve is called a ”degree d osculating curve” of X at
the point p. Therefore, our project takes a different approach from previous works.

The target polynomial F(x,y) is obtained by solving a linear system given by a matrix
whose coefficients are polynomials in the coefficients of the (truncated) power series f . A
first contribution of this thesis is a study of the combinatorial properties of this matrix, see
Chapter 3.

One non-obvious question in our approach is to prove that this matrix is generically non-
singular. This is done in Chapter 4 with the introduction and study of what we call osculating
spaces. This is a second contribution of this thesis.

Using our method, we can identify the osculating curves at smooth points on a curve with
the highest contact order. However, there are instances where osculating curves of degree d
exhibit a higher contact order than expected. The points where this higher contact occurs are
known as d-extactic points.

Cayley also explained the concept of sextactic points of a plane curve in one of his pa-
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pers [5]. These are points where the contact order is higher than what we expect.
Additionally, the paper ”A Uniform Approach for the Fast Computation of Matrix-Type

Padé Approximates” [6] presents an innovative method for efficiently computing Matrix-Type
Padé Approximates (MTPAs). These approximates are crucial in numerical analysis and sci-
entific computing. By developing a unified computational framework, the authors enhance
the speed and accuracy of generating MTPAs, addressing challenges similar to those faced
in modeling and approximating complex geometrical structures. This connection shows how
advanced mathematical methods are useful in both geometric modeling and matrix approxima-
tion. They both aim to offer efficient and precise solutions for various scientific and engineering
problems.

Cayley wrote two important papers on osculating curves [4], [5]. He was a famous English
mathematician who wrote over 900 papers on mathematics, including matrix theory, algebra,
and geometry. He is famous for the Cayley-Hamilton theorem, which states that every square
matrix satisfies its own characteristic equation. Cayley learned of the work of George Salmon
when the two sat next to each other in a lecture by Hamilton on quaternions [12]. Cayley
worked as a lawyer for 15 years and only worked on mathematics at night. He later became
a professor at Cambridge and worked full-time on mathematics. He died and was buried in
Cambridge, but his gravestone was lost in the 1980s [11].

Modern mathematicians who have worked on problems of curves include Vladimir Arnold,
a Ukrainian-born mathematician who won a Wolf Prize for his work on dynamical systems,
differential equations, and singularity theory. He wrote a paper on extactic points (the title of
the paper misspells extactic as extatic) [2].

In summary, the study of osculating curves is rich with historical context and modern ap-
plications. From the foundational work of Cayley and Franklin to the cutting-edge research
in computational methods, understanding osculating curves provides essential insights into the
geometry of curves and surfaces, with significant implications for both theoretical mathematics
and practical engineering.



Chapter 2

Background

Given a complex analytic curve X ⇢C2 and a point p2X , a natural problem is to geometrically
approximate X at p. Assuming that p is the origin, the curve X can be described by a Taylor
series

f (x) =
•

Â
i=1

cixi. (2.1)

An alternative way of defining a plane curve is as the vanishing locus of an implicit polynomial
function F(x,y) 2 C[x,y].

V(F(x,y)) = {(x,y) 2 C2 | F(x,y) = 0}.

Given d 2 N and a sequence c = (c1,c2, . . .) defining (2.1), our goal is to determine the best
approximation of X by a curve of the form V(F(x,y)) where F(x,y) has degree at most d. [1]
Such a curve is called a degree d osculating curve of X at p. For example, the degree 1
osculating curve of X at p is simply the tangent line of X at p. Given, a formula for this curve
is

F(x,y) = c1x� y.

In this section, we review different notions related to our goal. In Section 2.1, we start
with the well-known subject of osculating circles, taught in undergraduate calculus courses.
In Section 2.2, we recall basic concepts and results about algebraic curves. Section 2.3 is
dedicated to the notions of a contact order and osculating curve and in section 2.4 we see
examples of computing calculating circles in Maple.

2.1 Osculating circles

Multivariable calculus explores into the study of functions of several variables and their geo-
metric interpretation. Central to this discipline is the exploration of space curves, which repre-
sent paths or trajectories in three-dimensional space. These curves find extensive applications
across various fields, including physics, engineering, and computer graphics, where they serve
as fundamental tools for describing the motion of objects and analyzing dynamic systems. One
critical aspect of studying space curves is understanding their curvature at specific points, a

4



2.2. BASIC FACTS ABOUT ALGEBRAIC CURVES 5

concept elucidated by the osculating circle. The osculating circle provides a geometric ap-
proximation of the curve’s behaviour at a given point, offering valuable insights into its local
curvature. Mastery of space curves and the computation of their osculating circles are inte-
gral to advancing mathematical analyses and problem-solving methodologies in multivariable
calculus. [14]

In the following, we’ll solve an example that will familiarize us more with the concept of
the osculating circle.

Example 1 How can we find the osculating circle of the parabola y = x2 at the origin?

Let g(t) be a regular parametric plane curve, where t is the parameter. This determines the
unit tangent vector T(t), the unit normal vector N(t), the signed curvature k(t), and the radius
of curvature R(t) at each point where t is defined:

T(t) = g 0(t), T
0(t) = k(t)N(t), R(t) =

1
|k(t)| .

Suppose that P is a point on g where k(t) , 0. The corresponding center of curvature is the
point Q at distance R along N, in the same direction if k is positive and in the opposite direction
if k is negative. The circle with center at Q and radius R is called the osculating circle to the
curve g at the point P.

The curvature k of a curve is a measure of how sharply that curve bends at a given point.
For a smooth curve defined by a vector-valued function r(t) = hx(t),y(t),z(t)i, the curvature
at a point is given by:

k =
kv⇥ak
kvk3

where v(t) = dr

dt is the velocity vector, a(t) = dv

dt is the acceleration vector, k · k denotes the
magnitude of a vector, and ⇥ represents the cross product.

In two dimensions, for a curve given by y = f (x), the curvature can also be expressed as:

k =
| f 00(x)|

(1+( f 0(x))2)3/2

The curvature of the parabola at the origin is k = 1
y = 1

1 = 1. Hence, the radius of the
osculating circle at the origin is r = 1

k = 1, and its center is (0,1). Therefore, the equation of
the osculating circle in terms of its center (0,1) and radius 1 is given by:

(x�0)2 +(y�1)2 = 1

which simplifies to:
x2 +(y�1)2 = 1

2.2 Basic facts about algebraic curves

In the study of algebraic curves in the projective plane P2 over the complex numbers C, fun-
damental concepts such as singular and smooth points, tangent lines, and intersection multi-
plicities play crucial roles [10, 9]. An algebraic curve C in P2 is defined by a homogeneous
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polynomial F(x,y) in C[x,y]. Singular points on C are characterized by simultaneous vanishing
of its partial derivatives Fx and Fy, while smooth points have well-defined tangent lines. The
intersection multiplicity of two curves C and D at a point p captures the algebraic complexity
of their intersection locally [10]. Bézout’s Theorem provides a key result: it states that the
total number of intersection points, accounting for multiplicities, between two curves C and C0

equals the product of their degrees [10, 9]. This theorem underscores the foundational link be-
tween algebraic geometry and the algebra of polynomials, elucidating the geometric properties
of curves in P2.

Let P2 denote the projective plane over C, where a point p 2 P2 is represented by ho-
mogeneous coordinates (x : y). If C[x,y] is the polynomial ring in two variables x and y and
F(x,y) 2 C[x,y] is a homogeneous polynomial, we define the algebraic curve, or simply the
curve C, as

V (F) = {(x,y) 2 P2 | F(x,y) = 0}.
For F 2 C[x,y], we denote its partial derivative with respect to x and y by Fx and Fy. A point p
on a curve C =V (F) is called singular if

Fx(p) = Fy(p) = 0.

While a non-singular point is called smooth. Given a curve C = V (F) and a point p 2 C,
we denote the tangent to C at p by Tp. For a smooth point p, there is a unique tangent at p
given as

Tp =V (xFx(p)+ yFy(p)).

Definition 1 Let C,D 2C[x,y] and p be a maximal ideal. We define the intersection multiplic-
ity of C and D at p to be

Ip(C,D) = dim
C[x,y]p
hC,Di .

where the dimension is taken to be the dimension as a C vector space.

Theorem 1 (Bézout’s Theorem) Let C and C0 be two curves in P2 without common components
of degrees d and d0 respectively. Let C\C0 = {p1, . . . , pn}. Then

n

Â
i=1

(C ·C0)pi = d ·d0.

In other words, two curves intersect in precisely the product of their degrees number of points,
counting multiplicity.

2.3 Contact order and osculating curve

Throughout this manuscript, we assume that X has been given locally as the graph of the sum
of a power series (2.1). Fix a positive integer d. The space of degree d algebraic curves in C2

is a projective space of (projective) dimension

Nd =

✓
d +2

2

◆
�1 (2.2)
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since a generic degree d polynomial in two variables

F(x,y) = Â
i+ jd

ai, jxiy j (2.3)

has (Nd +1)-many monomials, and scaling F(x,y) does not change where it vanishes.

With Definition 2, we adapt the well-known notion of contact order (see the landmark
textbook [7] by Richard Courant) to our context.

Definition 2 Let again F 2 C[x,y] be a polynomial and f 2 C[[x]] be a power series. Assume
that both the constant terms of F and f are null. Let k be a positive integer. We say that the
curve V(F(x,y)) has contact order k with the graph G of x 7! f (x) at the origin if

F(x, f (x))⌘ 0 mod x j for j = 1, . . . ,k

F(x, f (x)) . 0 mod xk+1

If the curve V(F(x,y)) does not have contact order k with the graph G of x 7! f (x) at the origin
for any positive k, then we say that V(F(x,y)) has contact order 0 with the graph G of x 7! f (x)
at the origin. In any case, we say that F(x,y) approximates f (x) to order k at the origin, and
we write

k =C(V(F),X) =C(F, f ),

whenever the curve V(F(x,y)) has contact order k with the graph G of x 7! f (x) at the origin.

Definition 3 We call an osculating curve of degree d to f (x) any algebraic curve of degree d
with maximal contact order with f (x) at the origin.

Example 2 Below, we illustrate conics which osculate the graph of f (x) = x+x2+x3+x4+x5

at the origin to orders 0,1, . . . ,5.
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(a) Contact Order 0
F(x,y) := x2 + xy+ y2 + x+ y

(b) Contact Order 1
F(x,y) := x+ y+ yx+ x2 + y2

(c) Contact Order 2
F(x,y) = x� y+ yx+ x2 + y2

(d) Contact Order 3
F(x,y) := 6x�6y+ yx+ x2 + y2

(e) Contact Order 4
F(x,y) := 6y+2y2 �6yx�6x+ x2

(f) Contact Order 5
F(x,y) :=�18x+18y�8yx�2x2 + y2

Figure 2.1: Osculating curves with contact orders from 0 to 5 for y = x+ x2 + x3 + x4 + x5
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2.4 Osculating circles and evolutes in Maple

The evolute of a curve is the locus of the centres of curvature of the curve. Using Maple allows
these calculations to be done easily. We begin by defining an ellipse and calculating the tangent
and normal vectors at a point, chosen to give an interesting plot. Some of the output is stopped
to save space. Notation follows the textbooks.

> r :=<2* cos ( t ) , s i n ( t )> :
> dr := d i f f ( r , t ) :
> T:= s i m p l i f y ( d r / Norm ( dr , 2 ) ) ;

T :=

2

4
�2sin(t)p
�3cos(t)2+4

cos(t)p
�3cos(t)2+4

3

5

> dT := s i m p l i f y ( d i f f ( T , t ) ) :
> N:= s i m p l i f y ( dT / Norm ( dT , 2 ) ) :
> kappa := s i m p l i f y ( Norm ( dT , 2 ) / Norm ( dr , 2 ) ) ;

k :=
4
p

2

(5�3cos(2t))3/2

The variable RofC is the radius of curvature, and CofC is the centre of curvature.

RofC : = 1 / kappa :
CofCE := s i m p l i f y ( rE+RofC*NE ) ;

Co fC :=


3cos(t)3/2
�3sin(t)3

�

Evaluating all quantities at t = 7p/8 gives the plot

Since the centre of curvature was computed for general t, the evolute comes “for free” by
plotting the variable CofC as a function of t.
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The commands to calculate osculating circles and evolutes can be collected into Maple
procedures.

O s c C i r c l e := p r oc ( r , t , p , s , x , y )
l o c a l dr , T , dT , N, kappa , RofC , CofC , Oc , Ocp , Ocimp ;
d e s c r i p t i o n ” Given a c u r v e r ( t )=<x ( t ) , y ( t )> , a s a Maple Vector ,

and a p o i n t t =p , ” ,
” r e t u r n an e q u a t i o n f o r t h e o s c u l a t i n g c i r c l e a t a=x ( p ) , b=y ( p ) ” ,
” The p o i n t t =p can be symbol ic , g i v i n g t h e g e n e r a l c a s e ” ,
” Both a p a r a m e t r i c form and an i m p l i c i t form a r e r e t u r n e d ” ;
u s e s L i n e a r A l g e b r a ;
#
# I n p u t Args
# r : Ve c t o r e x p r e s s i o n i n p a r a m e t e r ( t assumed i n p roc )
# t : P a r a m e t e r used t o d e s c r i b e r ( t )
# p : Value o f t g i v i n g a p o i n t on c u r v e r ( t )
# s : P a r a m e t e r used t o d e s c r i b e o s c u l a t i n g c i r c l e on o u t p u t
# x , y : u n a s s i g n e d v a r i a b l e s used t o r e t u r n i m p l i c i t e q u a t i o n

f o r o s c u l a t i n g c i r c l e
#
d r := d i f f ( r , t ) ;
# u n i t t a n g e n t v e c t o r
T:= s i m p l i f y ( d r / Norm ( dr , 2 ) ) ;
# and now t h e p r i n c i p a l u n i t normal
dT := s i m p l i f y ( d i f f ( T , t ) ) ;
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N:= s i m p l i f y ( dT / Norm ( dT , 2 ) ) ;
# From t h i s we can f i n d t h e c u r v a t u r e
kappa := s i m p l i f y ( Norm ( dT , 2 ) / Norm ( dr , 2 ) ) ;
# Rad ius o f C u r v a t u r e o r Rad ius o f C i r c l e
RofC : = 1 / kappa ;
CofC := s i m p l i f y ( r + RofC*N ) ;
#
Oc := CofC + RofC*< s i n ( s ) , cos ( s )> ;
Ocp := s i m p l i f y ( e v a l ( Oc , t =p ) ) ;
Ocimp := s i m p l i f y ( e v a l ( ( x−CofC [ 1 ] ) ˆ 2 + ( y−CofC [ 2 ] ) ˆ 2 − RofC ˆ 2 , t =p ) ) ;
r e t u r n ( [ Ocp , Ocimp ] ) ;

end p roc :

E v o l u t e := p r oc ( r , t ) l o c a l dr , T , dT , N, kappa , RofC , CofC , Oc , Ocp , Ocimp ;
d e s c r i p t i o n ” Given a c u r v e r ( t )=<x ( t ) , y ( t )> , a s a Maple Vector , ” ,
” r e t u r n an e q u a t i o n f o r t h e e v o l u t e ” ;
u s e s L i n e a r A l g e b r a ;
#
# I n p u t Args
# r : V e c t o r e x p r e s s i o n i n p a r a m e t e r ( t assumed i n p roc )
# t : P a r a m e t e r used t o d e s c r i b e r ( t )
#

d r := d i f f ( r , t ) ;
# u n i t t a n g e n t v e c t o r

T:= s i m p l i f y ( d r / Norm ( dr , 2 ) ) ;
# and now t h e p r i n c i p a l u n i t normal

dT := s i m p l i f y ( d i f f ( T , t ) ) ;
N:= s i m p l i f y ( dT / Norm ( dT , 2 ) ) ;

# From t h i s we can f i n d t h e c u r v a t u r e
kappa := s i m p l i f y ( Norm ( dT , 2 ) / Norm ( dr , 2 ) ) ;

# Rad ius o f C u r v a t u r e o r Rad ius o f C i r c l e
RofC : = 1 / kappa ;
CofC := s i m p l i f y ( r +RofC*N ) ;

#
end p roc :

These programs can be applied to a parabola. An osculating circle at t = 1/2 is plotted,
together with its centre and a radius, and the evolute is also plotted. Notice that the evolute
passes through the centre of curvature as expected. The circle is off-centre by construction, but
the parabola and evolute are symmetric about the y-axis.
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Chapter 3

Characterization and properties of

osculating curves

Equipped with the definition of contact order (Definition 2), the condition that the degree d
polynomial

F(x,y) = Â
1i+ jd

ai, jxiy j,

with a0,0 = 0, approximates the power series

f (x) =
•

Â
i=1

cixi,

to order Nd , with Nd =
�d+2

2
�
� 1, is defined by a system of polynomial equations in the Nd

unknown variables a = {ai, j}1i+ jd and the parameters c = {c1, . . . ,cNd�1}. In this system,
each variable ai, j appears to degree 1. Moreover, the condition that, for 1  j  Nd .

F(x, f (x))⌘ 0 mod x j (3.1)

holds, involves only the first j�1 terms {c1, . . . ,c j�1}. Note that, for j = 1, the above condition
is trivially true.

Notation 1 We denote by h j(a,c) 2 C[c][a] the polynomial equation given by the vanishing of
[x j]F(x, f (x)), that is, the coefficient of x j in the composition F(x, f (x)).

Therefore, the coefficients of F are the solutions in PNd�1
a to the homogeneous polynomial

system Hc with Nd �1 (non-trivally true) equations in Nd variables, where

Hc = {hk(a,c)}Nd�1
k=1 ⇢Q[c][a]. (3.2)

In Section 3.1, we exhibit properties for the polynomials hk(a,c). Then, in Section 3.2, we
study the structure of the matrix encoding the linear system defining the unknown variables
ai, j.

13
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3.1 Combinatorial properties of the polynomials hk(a,c)

We start this section with an example.

Example 3 In this example, we want to see the general form of the matrix for finding the
osculating conic for a given power series. In this context, we have:

F(x,y) = a00 +a10x+a20x2 +a01y+a11xy+a02y2, and H2 = {[xk]F(x, f (x))}4
k=0

F(x, f (x)) = a00 +a10x+a01(c1x+ c2x2 + c3x3 + . . .)

+a20x2 +a11x(c1x+ c2x2 + c3x3 + . . .)

+a02(c1x+ c2x2 + c3x3 + . . .)2

[x0]F(x, f (x)) = a00

[x1]F(x, f (x)) = a10 +a01c1

[x2]F(x, f (x)) = a01c2 +a20 +a11c1 +a02c2
1

[x3]F(x, f (x)) = a01c3 +a11c2 +2a02c1c2

[x4]F(x, f (x)) = a02c2
2 +2a02c1c3 +a11c3 +a01c4

Now we construct the matrix of coefficients to solve a linear equation system for finding
them.

2

6666664

1 1 1 1 1 1
1 0 0 0 0 0
0 1 0 c1 0 0
0 0 1 c2 c1 c2

1
0 0 0 c3 c2 2c1c2
0 0 0 c4 c3 2c1c3 + c2

2

3

7777775

2

6666664

a00
a10
a20
a01
a11
a02

3

7777775
=

2

6666664

1
0
0
0
0
0

3

7777775

After constructing the matrix, we solve the system using Cramer’s rule. The solutions, as
function of c1, c2, c3, and c4, are given by:

a0,0 = 0

a1,0 =
c1c3

2
c2

1c2c4 � c2
1c2

3 + c1c3
2 � c1c2

2c3 + c4
2 �2c1c2c4 +2c1c2

3 � c3
2 + c2

2c3 + c2c4 � c2
3

a0,1 =
�c3

2
c2

1c2c4 � c2
1c2

3 + c1c3
2 � c1c2

2c3 + c4
2 �2c1c2c4 +2c1c2

3 � c3
2 + c2

2c3 + c2c4 � c2
3

a1,1 =
�2c1c2c4 +2c1c2

3 + c2
2c3

c2
1c2c4 � c2

1c2
3 + c1c3

2 � c1c2
2c3 + c4

2 �2c1c2c4 +2c1c2
3 � c3

2 + c2
2c3 + c2c4 � c2

3

a2,0 =
c2

1c2c4 � c2
1c2

3 � c1c2
2c3 + c4

2
c2

1c2c4 � c2
1c2

3 + c1c3
2 � c1c2

2c3 + c4
2 �2c1c2c4 +2c1c2

3 � c3
2 + c2

2c3 + c2c4 � c2
3

a0,2 =
c2c4 � c2

3
c2

1c2c4 � c2
1c2

3 + c1c3
2 � c1c2

2c3 + c4
2 �2c1c2c4 +2c1c2

3 � c3
2 + c2

2c3 + c2c4 � c2
3
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In Chapter 4, we shall prove that there exists a polynomial F of degree d satisfying the
equations given by Relation (3.1) thus, which has contact order at least Nd with f (x). Moreover,
we shall see that

(1) the osculating curve of degree d to f (x) is unique, and

(2) for almost all values of c, the osculating curve of degree d to f (x) has contact order Nd
with f (x).

Proving these results will require the study of particular algebraic varieties called that we call
osculating spaces.

In the present chapter we will focus on combinatorial aspects of the formula for the osculat-
ing curve of a generic power series by a degree d polynomial. More precisely, we analyze the
polynomials hk(a,c) appearing as coefficients of x in the composition F(x, f (x)). As seen in
Example 3 the structure of these polynomials is special in several ways. First, each polynomial
is bi-homogeneous in the a and c variables in that each monomial has the same degree in the a

and c variables separately. The degree in the a variables is always one. Moreover, these poly-
nomials are all quasihomogeneous in that each monomial involved has the same quasidegree.
The quasi-degree of a monomial m = ai jc

g1
1 cg2

2 · · ·cgNd�1
Nd�1 is

qdeg(m) = 1 · g1 +2 · g2 + · · ·+(Nd �1) · gNd�1.

To precisely describe these patterns, we introduce the following definitions and then state a
fundamental technical theorem.

Definition 4 For j,d ,n 2 N we let Rn
j,d be all (n)-tuples of natural numbers r = (r1, . . . ,rn) 2

Nn such that Ân
t=1 rt = j and Ân

t=1 t · rt = d . Given a collection of variables c = (c1, . . . ,cn) we
write

q j,d (c1, . . . ,cn) = Â
r=(r1,...,rn)2Rn

j,d

cr

where cr = cr1
1 · cr2

2 · · ·crn
n . .

The polynomial q j,d (c1, . . . ,cn) is the partial Bell polynomial B j,d (c1, . . . ,c j�d+1) evalu-
ated at ci = 0 for i > n.

What follows is essentially a rederivation of the beautiful Faá di Bruno’s formula on deriva-
tives of a composition of differentiable functions, or equivalently, the coefficients of a compo-
sition of power series as in [13].

Theorem 2 Fix d 2 N and set

F(x,y) = Â
i+ jd

ai jxiy j, f (x) =
•

Â
i=1

cixi.

Then for F(x, f (x)) = Âk�1 hk(a,c)xk we have

∂hk

∂ai j
= [ai j]hk(a,c) = [ai j][xk]F(x, f (x)) = Â

r2RNd�1
j,k�i

cr = q j,k�i(c1, . . . ,cNd�1)
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Proof This is a direct analysis of the composition F(x, f (x)). Recall that

F(x,y) = Â
i+ jd

ai jxiy j, f (x) =
Nd�1

Â
i=1

cixi

and so the coefficient [xk]F(x, f (x)) of xk in F(x, f (x)) is clearly linear in the a variables.
Consequently, we analyze [ai j]hk(a,c) = [ai j][xk]F(x, f (x)).

We have:

[ai j]hk(a,c) = [ai j][xk]F(x, f (x))

= [ai j][xk] Â
i+ jd

ai jxi( f (x)) j

= [ai j][xk] Â
i+ jd

ai jxi

 
•

Â
n=1

cixi

! j

= [ai j][xk] Â
i+ jd

ai jxi

0

B@Â
d�1

xd Â
r=(r1,...,rNd�1)2RNd�1

j,d

cr1
1 · · ·crNd�1

Nd�1

1

CA

= [ai j][xk] Â
i+ jd

ai jxi

0

B@Â
d�1

xd Â
r2RNd�1

j,d

c
r

1

CA

= [ai j][xk] Â
i+ jd

ai j Â
d�1

xd+i Â
r2RNd�1

j,d

c
r

= [xk] Â
d�1

xd+i Â
r2RNd�1

j,d

c
r

The coefficient of xk in this final equation clearly occurs when d = k� i. Thus, we have

[ai j]hk(a,c) = [ai j][xk]F(x, f (x)) = Â
r2RNd�1

j,k�i

c
r = q j,k�i(c1, . . . ,cNd�1)

as desired.

The formula given in Theorem 2 allows us to write down, in terms of the c parameters, a
linear system of equations in the a variables. We write Md for this (Nd �1)⇥Nd matrix whose
kernel is the vector space spanned by the d-th osculating curve of f (x). We remark that the
columns of Md are indexed by the pairs (i, j) such that i+ j  d and the rows of Md are indexed
by 1,2, . . . ,Nd � 1. Then, Theorem 2 gives a formula for the (k,(i, j))-th entry of Md and the
following corollary is obtained as a result of applying Cramer’s rule to the matrix equation

Md ·a = [1;0; · · ·0]t

where Md the Nd ⇥Nd matrix obtained by appending a row of 1’s above M, labeled as the 0-th
row.
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Example 4 The matrix M3 is the 9⇥9 matrix

(1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (0,2) (1,2) (0,3)
0 1 1 1 1 1 1 1 1 1
1 q0,0 q�1,0 q�2,0 q1,1 q0,1 q�1,1 q1,2 q0,2 q1,3
2 q1,0 q0,0 q�1,0 q2,1 q1,1 q0,1 q2,2 q1,2 q2,3
3 q2,0 q1,0 q0,0 q3,1 q2,1 q1,1 q3,2 q2,2 q3,3
4 q3,0 q2,0 q1,0 q4,1 q3,1 q2,1 q4,2 q3,2 q4,3
5 q4,0 q3,0 q2,0 q5,1 q4,1 q3,1 q5,2 q4,2 q5,3
6 q5,0 q4,0 q3,0 q6,1 q5,1 q4,1 q6,2 q5,2 q6,3
7 q6,0 q5,0 q4,0 q7,1 q6,1 q5,1 q7,2 q6,2 q7,3
8 q7,0 q6,0 q5,0 q8,1 q7,1 q6,1 q8,2 q7,2 q8,3

For i < 0 we have that qi, j = 0 and for i > 0 we have qi,0 = 0. For j = 0 the only nonzero
qi, j is when i = 0 in which case q0,0 = 1. We further remark that qi,1 = ci. Hence, this matrix
simplifies to

(1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (0,2) (1,2) (0,3)
0 1 1 1 1 1 1 1 1 1
1 1 c1 q1,2 q1,3
2 1 c2 c1 q2,2 q1,2 q2,3
3 1 c3 c2 c1 q3,2 q2,2 q3,3
4 c4 c3 c2 q4,2 q3,2 q4,3
5 c5 c4 c3 q5,2 q4,2 q5,3
6 c6 c5 c4 q6,2 q5,2 q6,3
7 c7 c6 c5 q7,2 q6,2 q7,3
8 c8 c7 c6 q8,2 q7,2 q8,3

The following example illustrates the pattern discussed, where each row of the matrix cor-
responds to coefficients ci and powers of c1 up to c8. We observe how the parameters and their
powers propagate across subsequent rows and columns, demonstrating a structured pattern
based on the arrangement of these elements.

Example 5

0

BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 c1 0 0 0 0 0
0 0 1 0 c2 c1 0 c2

1 0 0
0 0 0 1 c3 c2 c1 2c1c2 c2

1 c3
1

0 0 0 0 c4 c3 c2 2c1c3 + c2
2 2c1c2 3c2

1c2
0 0 0 0 c5 c4 c3 2c1c4 +2c2c3 2c1c3 + c2

2 3c2
1c3 +3c1c2

2
0 0 0 0 c6 c5 c4 2c1c5 +2c2c4 + c2

3 2c1c4 +2c2c3 3c2
1c4 +6c1c2c3 + c3

2
0 0 0 0 c7 c6 c5 2c1c6 +2c2c5+2c3c4 2c1c5 +2c2c4 + c2

3 3c2
1c5 +6c1c2c4 +3c1c2

3 +3c2
2c3

0 0 0 0 c8 c7 c6 2c1c7 +2c2c6 +2c3c5 + c2
4 2c1c6 +2c2c5 +2c3c4 3c2

1c6 +6c1c2c5 +6c1c3c4 +3c2
2c4 +3c2c2

3

1

CCCCCCCCCCCCCCA

3.2 Structural patterns in the matrix Md

As we can see in Example 3, the terms of every numerator can be found in the denominator.
Recall that the columns of the matrix Md are indexed by the ai, j’s. We observe that this matrix
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has a specific pattern based on the ai, j’s. More precisely, we have the following.

Proposition 1 The following properties hold:

(1) in the column indexed by ai, j, all the elements from row 1 excluded to row i+ j + 1
included are zero.

(2) in the column indexed by ai, j, all non-zero entries below row i+ j+ 1 are polynomials
homogeneous of degree j. Also, each entry in each column must have a specific property
based on partitions for j to r+1 with multi-degrees of polynomials of each array.

The proof has been mentioned in previous sections (see Theorem 2).
Furthermore, regarding the solutions, a discernible pattern emerges. By applying Cramer’s
rule, each solution is represented as a fraction. Here, the denominator corresponds to the
determinant of the matrix, while each numerator takes the form of a homogeneous polynomial.

• of degree ei, j =
�d+2

2
�
� j�2, and quasi-degree

�d+2
2
�
+ i

• whose terms are all terms of the denominator.

Recall that the matrix of the coefficients is non-singular. Recall that ai, j(c) represents the
coefficient at position (i, j) in the solution vector, dependent on the parameter c.

We denote by f(i, j), the pair (ni, j,qi, j) where ni, j is the degree of the numerator of ai, j(c)
and qi, j is the quasi-degree of the numerator of ai, j(c).

Proposition 2 The pairs f(i, j) are pairwise different.

Proof To prove that f is injective, we need to show that for any distinct pairs (i1, j1) and
(i2, j2) in Z2, f(i1, j1) , f(i2, j2).

Consider two distinct pairs (i1, j1) and (i2, j2) in Z2. Without loss of generality, assume
i1 , i2.

We have:

f(i1, j1) =
✓✓

d +2
2

◆
+ i1,

✓
d +2

2

◆
� j1 �2

◆

f(i2, j2) =
✓✓

d +2
2

◆
+ i2,

✓
d +2

2

◆
� j2 �2

◆

Since i1 , i2, the first coordinates of f(i1, j1) and f(i2, j2) are different. Hence, f(i1, j1) ,
f(i2, j2).

Similarly, if j1 , j2, the second coordinates of f(i1, j1) and f(i2, j2) are different. Hence,
f(i1, j1) , f(i2, j2).

Thus, for any distinct pairs (i1, j1) and (i2, j2), we have f(i1, j1) , f(i2, j2), proving that f
is injective. ⇤



Chapter 4

Osculating spaces of plane curves

4.1 Osculating spaces

As in Section 2.3 and thus as in Definition 2, we denote by X an analytic curnve given locally
at p = (0,0) as the graph of the sum of a power series:

f (x) =
•

Â
i=1

cixi. (4.1)

For d 2 N, the generic polynomial of degree d in C[x,y] has the form

F(x,y) = Â
0i+ jd

ai, jxiy j. (4.2)

Recall that we denote by V (F(x,y)) its vanishing locus and that we assume that p 2V (F(x,y))
holds, which implies a0,0 = 0.

Definition 5 The osculating space of X of order k and degree d is the C-vector space

Vd,k = {F 2 C[x,y] | deg(F) d, C(F, f )� k}.

Writing F(x,y) as in (4.2) and f (x) as in (4.1), the composition F(x, f (x)) notably has coeffi-
cients which are polynomials in the indeterminates a and c:

F(x, f (x)) =
•

Â
j=0

h j(a,c)x j.

In particular, the only ci involved in h j(a,c) are {c1,c2, . . . ,c j} and each h j(a,c) is linear
in the variables a. These coefficients h j(a,c) represent the conditions in Definition 2 and so,
given c, we obtain an explicit representation of Vd,k as the solution set to a linear system of
equations in the variables a.

Lemma 1 Given a fixed f (x) which represents X locally near p = (0,0), the osculating space
Vd,k is the solution set to the homogeneous linear system of k equations h0(a,c) = h1(a,c) =
h2(a,c) = · · ·hk�1(a,c) = 0 in (Nd +1)-many variables a.

19
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Proof That these equations cut out the osculating space Vd,k follows immediately from Defi-
nitions 2 and 5. Linearity in a is easily observed since the polynomials h j(a,c) come from the
composition

F(x, f (x)) = Â
0i+ jd

ai jxi( f (x)) j =
•

Â
j=0

h j(a,c)x j.

Osculating spaces respect the inclusion Vd,k+1 ✓ Vd,k and the corresponding difference in
dimensions can be at most one: Vd,k+1 is the intersection of the vector space Vd,k with the
hyperplane V(hk) through the origin. We remark that

• The inclusion Vd,k+1 ✓Vd,k need not be strict (Example 6).

• An osculating space may contain no irreducible curves (Example 7).

• The chain CNd+1
a =Vd,0 ◆Vd,1 ◆ · · · may not terminate (Example 8).

If the chain does terminate at some Vd,m, then Vd,m must have dimension one by the above
remarks. Equivalently, Vd,m represents a unique curve V (F(x,y)).

Definition 6 If Vd,m = span(F(x,y)) for some m 2 N and irreducible polynomial F(x,y) 2
C[x,y], we call F(x,y) the osculating curve of X at p.

Remark 1 Directly from its definition, there are two ways for an osculating curve of degree
d to not exist. The first is that Vd,k has dimension larger than 1 for all k. Since Vd,0 is finite-
dimensional, this means that the vector spaces Vd,k eventually stabilize at some sufficiently
large k. Equivalently, the statement “any polynomial of degree at most d meeting X to order at
least k at p meets X to infinite order at p”. Equivalently, y = f (x) describes, locally, a curve
X = V (F) of degree d0  d. If d = d0 then Vd,d2+1 = span(F) has dimension 1 by Bézout’s
theorem. Hence, it must be that d0 < d and the vector spaces Vd0,d02+1 consist of reducible
curves having X as a component. The second way is that when dim(Vd,k) = 1, we have that
Vd,k consists of only reducible curves. This is the case for Example 7, for instance.

Theorem 3 The vector space Vd,k is non-trivial for k  Nd. Generically, dim(Vd,k) = Nd +1�
k. For generic c and any d, an osculating curve of degree d exists.

Proof The first part is the rank-nullity theorem: a homogeneous system of k equations in
Nd +1 variables always has a nontrivial solution when k  Nd .

For the second part, we assume c is generic and proceed by induction on k: our induc-
tion hypothesis is dim(Vd,k) = dim(Vd,k�1)+ 1. The base case k = 1 is seen to be true since
CNd+1

a = Vd,0 is the affine cone over PNd
a . A polynomial vanishes p = (0,0) if and only if the

constant term is zero, so dim(Vd,0) = Nd +1 = dim(Vd,1)+1. We proceed by induction. Note
that dim(Vd,k)� dim(Vd,k+1) is either zero or one since we are including only one additional
homogeneous equation: hk(a,c). Observe that ck does not appear in h j(a,c) for any j < k,
but does appear in hk(a,c) in the unique term a0,1ck. Suppose towards a contradiction that the
equality dim(Vd,k) = dim(Vd,k+1) holds, so there exists a dependency

hk(a,c) = l0h0(a,c)+ · · ·+lk�1hk�1(a,c).
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Consider c 7! c+aek for generic a 2 C. Applying this transformation, the right hand side of
the above dependency is unchanged, while the left hand side differs by a0,1ack, implying that
a0,1 2 span(h0, . . . ,hk�1). However, by assumption, a0,1 , 0 since the graph of y = f (x) does
not have a vertical tangent at x = 0. We conclude by induction that dim(Vd,k) = Nd +1�k and
so dim(Vd,Nd) = 1.

Finally, we show that Vd,Nd is spanned by an irreducible polynomial for generic c. Sup-
pose towards contradiction that Vd,Nd = span(F1(x,y) ·F2(x,y)) where deg(F1) = d1 < d and
deg(F2) = d � d1. Since contact order is additive under unions, C(F1F2, f ) = C(F1, f ) +
C(F2, f ). By the proofs given above the contact order with generic X obtainable by a polyno-
mial of some degree is bounded: C(F1, f )  Nd1 and C(F2, f )  Nd�d1 . Some algebra reveals
that

C(F1,F2, f ) =C(F1, f )+C(F2, f ) Nd1 +Nd�d1 = Nd +d1(d1 �d)< Nd,

where the last strict inequality follows from d1 �d < 0.

4.2 Algorithms

We now describe algorithms for computing the osculating spaces and curves of any degrees
and contact orders associated to an analytic curve X at a point p. As before, our algorithms
given below all assume that X is represented as the graph of a power series f (x) near x = 0 and
that p = (0,0).

Algorithm 1 Osculating space

Input: • Natural numbers k and d
• The Taylor polynomial fk�1(x) of f (x) of degree k�1

Output: A representation of the osculating space Vd,k of y = f (x) at p = (0,0)

1: Construct a generic degree d polynomial Fd(x,y) = Â0i+ jd ai jxiy j with the ai j left as indetermi-
nants

2: Obtain the first k coefficients h j(a,c) of Fd(x, fk�1(x)) = Â•
j=0 h j(a,c)x j.

3: Write the matrix M of the system h0(a,c) = · · · = hk�1(a,c) = 0.
4: Compute any representation V for the nullspace of M
5: return V

Regarding correctness, the steps of Algorithm 1 directly follow from the definitions given in
the above section. The only exception is that we compute Fd(x, fk�1(x)) instead of Fd(x, f (x)).
We remark that this does not introduce any errors since the polnomials h0, . . . ,hk�1 only involve
c1, . . . ,ck�1.

Algorithm 2 computes the osculating curve of X at p of some degree d, provided that it
exists. It relies on Algorithm 1. Algorithm 2 terminates by the assumption that an osculating
curve exists. The only other requirement of Algorithm 2 is that the representation of the os-
culating spaces returned by the sub-procedure Algorithm 1 allows for the computation of their
dimensions (used in step 2) and a basis (used in step 5).
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Algorithm 2 Osculating curve

Input: • A natural number d
• An oracle for the Taylor polynomials fk(x) of f (x)

Assume: The osculating curve of degree d of X at p exists
Output: A polynomial F(x,y) defining the osculating curve of degree d of X at p

1: Set k = Nd and compute V =Vd,k
2: while dim(V )> 1 do

3: k = k+1
4: V =Vd,k

5: return A basis F(x,y) for V

4.3 A specific example and a general example

The steps taken by the Maple implementation are shown in a detailed example. To compute
the osculating conic of the graph of f (x) = ex �1 at p = (0,0):

(1) Expand ex �1 as a Taylor series.

f (x) = x+ 1
2x2 + 1

6x3 + 1
24x4 + 1

120x5 + · · · . (4.3)

(2) Truncate to a Taylor polynomial of the required degree.

f4(x) = x+ 1
2x2 + 1

6x3 + 1
24x4. (4.4)

(3) Form a generic polynomial of degree d = 2.

F(x,y) = a20x2 +a11xy+a02y2 +a10x+a01y , (4.5)

where we have ensured that a00 = 0.

(4) Compute Nd = 5. which is obtained from (2.2).

(5) Substitute y = f4(x) into (4.5) and collect powers of x.

F(x, f4(x))=(a01+a10)x+
�1

2a01+a02+a11+a20
�

x2+
�1

6a01+a02+
1
2a11

�
x3

+
� 1

24a01 +
7
12a02 +

1
6a11

�
x4 +

� 1
120a01 +

1
4a02 +

1
24a11

�
x5 +O(x6)

Note that the expression for F(x, f4(x)) derived by Maple continues up to terms in x12,
and the expression here is truncated to save space. Packages like [15] are particularly
helpful as they avoid computing irrelevant coefficients.

(6) Assign elements in the matrix M. Row i contains coefficients of xi. Column j contains
coefficients of a01,a02,a10,a11,a2,0.

M = [1 0 1 0 0; 1
2 1 0 1 1; 1

6 1 0 1
2 0; 1

24
7

12 0 1
6 0] , (4.6)

where the coefficients of x5 and higher are not used. Notice that

F(x, f4(x)) =
⇥
x x2 x3 x4⇤M

⇥
a01,a02,a10,a11,a20

⇤T
+O(x5) .
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(7) We want the coefficients of
⇥
x x2 x3 x4⇤ to equal zero. Thus we want

M
⇥
a01,a02,a10,a11,a20

⇤T
= 0 ,

which defines the null space of the matrix M.

(8) Calculate the null space of M using Maple:
⇥
9 �1

2 9 4 1
⇤t .

(9) Since this is one dimensional and the corresponding conic is irreducible, we return the
osculating conic.

Note that all of these steps can be performed while leaving the coefficients of f4(x) as inde-
terminants: f4(x) = c1x+ c2x2 + c3x3 + c4x4. The coefficients obtained from the composition
F(x, f4(x)) are

h0 = a00, h1 = a10 +a01c1,h2 = a01c2 +a20 +a11c1 +a02c2
1

h3 = a01c3 +a11c2 +2a02c1c2,h4 = a02c2
2 +2a02c1c3 +a11c3 +a01c4

The matrix equation we obtain in our Maple implementation is

2

66664

1 0 0 0 0 0
0 1 c1 0 0 0
0 0 c2 1 c1 c2

1
0 0 c3 0 c2 2c1c2
0 0 c4 0 c3 c2

2 +2c1c3

3

77775

2

6666664

a00
a10
a20
a01
a11
a02

3

7777775
=

2

66664

0
0
0
0
0

3

77775

We remark that each entry is both (1) homogeneous in the c’s and (2) quasi-homogeneous in
the c’s if one assigns the weight i to the variable ci. This homogeneity is a consequence of the
beautiful Faá di Bruno’s formula on derivatives of a composition of differentiable functions,
or equivalently, the coefficients of a composition of power series. The nullspace of the matrix
above is spanned by

( 0|{z}
a0,0

,c1c3
2|{z}

a1,0

,�c3
2|{z}

a0,1

,c4
2 � c1c2

2c3 � c2
1c2

3 + c2
1c2c4|                                {z                                }

a2,0

,c2
2c3 +2c1c2

3 �2c1c2c4|                          {z                          }
a1,1

,�c2
3 + c2c4|         {z         }

a0,2

)

This proves the formula for the osculating conic of a generic analytic curve.
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Figure 4.1: Osculating conic of f2 = ex �1� x5

270

We just computed the osculating conic for the function f = ex � 1 at the origin in degree
d = 5. A plot of the function and the osculating conic is shown in Figure 4.1. The conic is a
hyperbola, and its two branches are shown in the figure. This raises the question of when an
osculating conic is hyperbolic and when it is ellipsoidal. To answer this, the function f = ex�1
can be modified to increase its curvature. The osculating conic for f1 = ex � 1+ x2/2 at the
origin is T1 = 61x2+10xy+y2+72x�72y, an ellipse. The transition from hyperbola to ellipse
takes place at fc = ex �1+ x2/6, when the conic becomes Tc = 5x2 +3xy+12x�12y.

Another interesting modification is f2 = ex � 1� x5

270 . Since the conic is computed using
only terms up to O(x4), this function has the same osculating conic as f . However, if the Taylor
series in x around the origin are computed, we get:

f = x+
2
3

x2 +
1
6

x3 +
1

24
x4 +

1
120

x5 +
1

720
x6 +O(x7) (4.7)

T = x+
2
3

x2 +
1
6

x3 +
1

24
x4 +

1
216

x5 � 1
432

x6 +O(x7) (4.8)

f2 = x+
2
3

x2 +
1
6

x3 +
1

24
x4 +

1
216

x5 +
1

720
x6 +O(x7) (4.9)

Thus, f2 and T match up to 5 terms. This situation is sometimes termed “extactic”, meaning
that the overlap between the curves is higher than necessary.
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4.4 Additional examples

We conclude our computational journey with several illustrative examples.

Example 6 Consider the problem of computing the osculating conic associated to the Taylor
series y = f (x) = x+x2+2x3+3x4+2x5. Running Algorithm 2 returns, after two iterations of
the loop, that the osculating conic is the hyperbola defined by F(x,y) =�x+y+2x2�4xy+y2.
This polynomial spans both V2,5 and V2,6, implying that the conic has a sextactic contact with
the graph of f (x). This power series and the osculating conic appear in Figure 4.2.

Figure 4.2: The graph of a power series (red) and its osculating conic (blue). The osculating
conic is a hyperbola (note both branches) and meets the graph of the power series to contact
order six rather than the expected order of five at the origin.

Example 7 Consider the graph of f (x) = sin(x), with Taylor series y = f (x) = x� x3

3! +
x5

5! �
x7

7! + · · · . The point p = (0,0) on this graph is an inflection point. Equivalently, the tangent line
defined by F(x,y) = x� y meets the graph to order 3. The square of the tangent line G(x,y) =
(x� y)2 thus meets to order 6. One can check that we have V2,5 = V2,6 = span(G(x,y)). Con-
sequently, the graph of sin(x) admits no osculating conic at the origin.

Figure 4.3: The graph of the sine function (red) and its osculating (tangent) line at p = (0,0)
(blue). Since p is an inflection point, the tangent line meets to order three and its square to
order six. The pink curve is the osculating cubic which meets to order ten, rather than the
expected order of nine.

Beyond the non-existence of an osculating conic to the graph of y = sin(x) at the origin, we
compute V3,N3 =V3,9 to be dimension two instead of the expected dimension of one. We have

V3,9 = span((x� y)3,�42000x+42000y+4437x3 +3159x2y�729xy2 +133y3)

Since this osculating space has dimension two, V3,10 has dimension at least one and so there
exists a cubic curve which approximates y = sin(x) geometrically near the origin better than
one would expect. Indeed, one may compute that V3,10 = span(�42000x+42000y+4437x3 +
3159x2y�729xy2 +133y3). See Figure 4.3 for depictions of these curves.
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Example 8 Consider the curve defined by y(1�x)= 1, or equivalently 1�y+xy= 0. Through
the origin, it is represented by the Taylor series for f (x) = x

1�x :

y = f (x) = x+ x2 + x3 + x4 + x5 + · · ·

Running Algorithm 2 on d = 2 and f4(x) = x+ · · ·+ x4 produces the basis

F(x,y) = x� y+ xy

for V2,5. Indeed, this implies that F(x,y) is the osculating conic of the curve by Definition 6.
This is an example where V2,k =V2,5 for all k � 5.



Chapter 5

Conclusion

This research focused on improving the way we find osculating curves, which touch and closely
follow another curve at a point. By using a new method involving power series and matrices,
we achieved more accurate results beyond just straight lines and circles.

Osculating curves are crucial because they provide detailed information about the shape
of a curve at a specific point. Our method has practical applications in various fields, such as
designing cars, airplanes, and other shapes in Computer Aided Design (CAD). Accurate oscu-
lating curves ensure smooth and precise designs, leading to better products and more efficient
manufacturing processes.

For example, in automotive design, using accurate osculating curves can improve aerody-
namics, resulting in more fuel-efficient vehicles. In the aerospace industry, they can help create
more efficient and safe aircraft designs. By making it easier to find these curves, we enhance
our ability to understand and manipulate shapes.

This work builds on earlier research and improves how we use mathematics to study curves
and surfaces. It shows how advanced math techniques can solve real-world problems in en-
gineering and design. Overall, this thesis helps advance tools and methods for analyzing and
working with complex curves, opening up possibilities for future innovations.
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