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Abstract 

Monitoring crop productivity is crucial in precision agriculture, often using biomass and 

yield as metrics to measure crop health and growth status. This thesis aims to predict dry 

above-ground biomass using Unmanned Aerial Vehicle (UAV) multispectral imagery, 

derived vegetation indices (VI), plant height, leaf area index (LAI), and plant nutrient content 

ratios. Additionally, the thesis tests the viability of VENμS satellite data as an alternative to 

other popular multispectral satellite data for predicting winter wheat yield. Conducted in two 

winter wheat fields in southwestern Ontario, Canada, the study employed Random Forest 

(RF) and Support Vector Regression (SVR) machine learning models with various variable 

combinations. The results demonstrate that the approach in biomass estimation was accurate 

and provided valuable insights into the applicability of biochemical parameters. Furthermore, 

VENμS produced promising yield prediction results, proving to be a better satellite platform 

compared to other publicly available satellite data for yield prediction. 
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Summary for Lay Audience 

The main source of food for the world’s population is agriculture. As the global population 

grows, the strong demand for food sources and food security has emphasized the need for 

efficient and sustainable agricultural practices. Advances in technology have led to the 

development of precision agriculture, which involves applying technology and agricultural 

principles to strategically manage resources in all aspects of agricultural production, aiming 

to maximize crop performance and maintain environmental sustainability. 

Remote sensing is the science of obtaining information about an object, area, or phenomenon 

through the analysis of data acquired by a device from a distance. In precision agriculture, 

this often involves using satellite imagery or imagery captured by cameras mounted on 

unmanned aerial vehicles (UAVs). Specialized sensors installed on these platforms can detect 

light emissions and reflections from the Earth’s surface that are beyond the human eye’s 

visible spectrum. For example, while humans cannot see near-infrared light, the sensors can 

detect and record the amount of near-infrared radiation reflected by plants, providing insights 

into their health and vigor. The reflectance data collected by these sensors can be transformed 

into indices that convey specific information about the plants, using formulas known as 

vegetation indices. 

Biomass and yield are common metrics for evaluating the performance and productivity of 

crops. Accurately forecasting these metrics allows farmers to respond early and effectively 

during the growing stages to maximize harvest output. This is especially crucial for farmers 

in southern Ontario, where there is only one growing season each year. In this thesis, 

prediction models based on machine learning algorithms were developed to identify which 

variables are most important for accurately predicting biomass and yield. The results provide 

farmers with key information on the factors that most significantly influence these metrics, 

enabling them to monitor and manage these variables to effectively manage their crop 

production.  
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Glossary 

AGB (Above Ground Biomass): AGB refers to the total mass of living plants, excluding 

roots, present above the soil surface. It includes all vegetation such as trees, shrubs, and 

grasses, and is a crucial parameter in ecological and environmental studies for assessing 

carbon storage and ecosystem productivity. 

Bands/Channels: Bands (or channels) refer to specific ranges of wavelengths in the 

electromagnetic spectrum that the camera can capture. Each band corresponds to a particular 

portion of the spectrum and can be used to gather detailed information about the target's 

physical and chemical properties. 

Ensemble Learning: Ensemble learning is a machine learning technique that combines 

multiple models to improve the overall performance and accuracy of predictions. The idea is 

that by aggregating the predictions from several models, the ensemble model can achieve 

better results than any individual model alone. 

Increasing Node Purity: Increasing node purity is a concept used in decision tree algorithms 

to enhance the quality of the splits made at each node in the tree. Node purity refers to how 

homogenous or uniform the data points in a node are with respect to the target variable. 

Higher node purity means that the data points in the node are more similar to each other 

regarding the target variable. 

K-fold Cross Validation: K-fold cross-validation is a technique used to evaluate the 

performance and robustness of a machine learning model. It helps to ensure that the model's 

evaluation is not overly dependent on a particular subset of the data. 

LAI: Leaf Area Index (LAI) is a dimensionless value that represents the total leaf area per 

unit ground surface area. It is an important parameter in agricultural and ecological studies as 

it provides a measure of the amount of leaf material in a given area, which is directly related 

to the processes of photosynthesis, transpiration, and energy exchange. 

Machine Learning: Machine learning is a field within artificial intelligence that focuses on 

the development of algorithms and models enabling computers to learn from and make 

decisions based on data. The key idea is that, rather than being explicitly programmed to 
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perform tasks, these systems improve their performance over time by identifying patterns and 

relationships within data. 

Multispectral Camera: A multispectral camera is a specialized imaging device that captures 

image data at specific wavelengths across the electromagnetic spectrum. Unlike traditional 

cameras that capture images in visible light (red, green, and blue), multispectral cameras can 

capture images in both visible and non-visible wavelengths (such as near-infrared, short-

wave infrared, etc.). This capability allows for detailed analysis of various physical and 

biological properties that are not visible to the naked eye. 

Orthomosaic: A multispectral camera is a specialized imaging device that captures image 

data at specific wavelengths across the electromagnetic spectrum. Unlike traditional cameras 

that capture images in visible light (red, green, and blue), multispectral cameras can capture 

images in both visible and non-visible wavelengths (such as near-infrared, short-wave 

infrared, etc.). This capability allows for detailed analysis of various physical and biological 

properties that are not visible to the naked eye. 

Precision Agriculture: Precision agriculture is an approach to farm management that uses 

information technology and data analysis to ensure that crops and soil receive exactly what 

they need for optimum health and productivity. 

Random Forest: Random Forest is an ensemble learning method used for classification, 

regression, and other tasks. It operates by constructing a multitude of decision trees during 

training time and outputting the class (classification) or mean prediction (regression) of the 

individual trees. 

Regression: Regression models are a type of statistical method used to predict a dependent 

variable (also called the response or outcome variable) based on one or more independent 

variables (also called predictors or features). They are fundamental tools in both supervised 

learning in machine learning and in traditional statistical analysis. 

Support Vector Regression: Support Vector Regression (SVR) is a type of Support Vector 

Machine (SVM) used for regression problems. It utilizes the same principles as the SVM for 

classification but adapted for predicting continuous values rather than discrete class labels. 
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UAV: A UAV (Unmanned Aerial Vehicle), commonly known as a drone, is an aircraft 

without a human pilot on board. UAVs can be controlled remotely by a human operator or 

autonomously by onboard computers. They are used in a variety of applications across 

different fields due to their ability to capture data from perspectives that would otherwise be 

difficult, dangerous, or expensive to obtain. 

Yield: Yield refers to the amount of a particular crop that is harvested per unit of land area. It 

is a critical measure in agriculture, reflecting the productivity and efficiency of farming 

practices, and is typically expressed in terms of weight (e.g., tons per hectare) or volume. 
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Chapter 1  

1 Introduction 

1.1 Background 

With the increasing global population, the demand for food sources and food security has 

necessitated the development of efficient and sustainable agricultural practices. In the 

modern era, the agriculture industry faces challenges such as rising global food demand, 

crop disease and pest outbreaks, limited cultivated areas, and climate change. The climate 

in southern Ontario is projected to get considerably warmer and potentially wetter over 

the course of the 21st century (Hewer & Brunette, 2020). However, farmers in the 

province are less concerned about climate change compared to those in areas with more 

frequent extreme weather events (Tan & Reynolds, 2003; Reid et al., 2007). Agriculture 

and the agri-food sector are crucial to the Canadian economy, contributing approximately 

7% to Canada’s gross domestic product (GDP) and accounting for one in every nine jobs 

in 2022 (Agriculture and Agri-Food Canada, 2024). While climate change may not be an 

immediate concern for the Canadian agricultural industry, it is prudent to prepare for 

future challenges. 

1.2 Precision Agriculture 

Precision agriculture (PA) is an agricultural management approach that leverages remote 

sensing technologies and principles to manage spatial and temporal data associated with 

all aspects of agricultural production (Pierce & Nowak, 1999). This approach aims to 

better understand the variability within the studied field, leading to benefits such as 

improved crop yield and enhanced environmental quality by understanding and managing 

crop diseases. As sensing technology advances, the field of PA has grown accordingly. 

Modern tools, such as advanced spectral sensors and unmanned aerial vehicles (UAVs), 

have facilitated extensive research in this area (Radoglou-Grammatikis et al., 2020). 

PA utilizes advanced technologies and data analysis techniques to maximize crop output 

while optimizing input. This is achieved by assessing quantified spatial and in-situ plant 
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data to inform agricultural practices, such as the application of water, labor, and fuel, thus 

minimizing costs and avoiding excessive waste, such as pesticide overuse and nutrient 

loss. Excessive use of pesticides and irrigation can cause nutrient loss, potentially 

harming future cultivation. PA incorporates multiple types of spatial technologies, 

including geographic information systems (GIS), ground-based handheld data collection, 

and remote sensing via ground-based or aerial vehicles, to formulate and strategize 

efficient agricultural practices (Chlingaryan et al., 2018). 

1.2.1 Remote Sensing in Techniques in Precision Agriculture 

Remote sensing refers to the science and art of obtaining information about an object, 

area, or phenomenon through the analysis of data acquired by a device that is not in direct 

contact with the target of interest (Lillesand et al., 2015). In precision agriculture (PA), 

remote sensing encompasses nearly every aspect, including biomass estimation and yield 

prediction (Sishodia et al., 2020). Spectral imagery obtained from sensors on various 

remote sensing platforms can be transformed into vegetation indices (VIs), which are 

quantitative measurements that gauge the general vigor of plants. These indices are 

derived from the reflectance rates of plant surfaces at different wavelength bands. Plant 

spectral information in the visible and near-infrared (NIR) wavelengths has been shown 

to have a high correlation with crop growth (Zhang et al., 2018), leading to the 

widespread use of VIs in crop yield-related remote sensing studies. Vegetation indices 

such as the normalized difference vegetation index (NDVI) and the normalized difference 

red edge (NDRE) have been validated as reliable predictors of winter wheat yield. 

Additionally, indices like the modified soil-adjusted vegetation index (MSAVI) and the 

modified chlorophyll absorption ratio index (MCARI) are effective in predicting the leaf 

area index (LAI) of winter wheat, an indicator correlated with crop yield (Fu et al., 2020; 

Panek et al., 2020; Tian et al., 2015; Xie et al., 2014). 

1.2.2 Popular Platforms in Remote Sensing 

1.2.2.1 Satellite 

Remote sensing imagery has been used in agricultural applications for over 60 years. 

Satellite imagery collected from the Landsat series, MODIS, and Sentinel-2 has been 
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widely adopted in crop monitoring and yield estimation research (Liaqat et al., 2017; 

Hunt et al., 2019). Researchers have had varying degrees of success in developing 

accurate crop yield estimation models, though none have matched the accuracy of UAV-

based imagery models. Previous research shows that Sentinel-2 multispectral data alone 

was able to produce a regression model representing 70% of the winter wheat crop yield 

variability under optimal conditions (Zhao et al., 2020). The primary limitations of using 

satellite imagery compared to UAV-based images are the lower spatial and temporal 

resolutions. UAV systems can produce data at sub-10 cm spatial resolution, whereas 

satellites typically operate at meter-level spatial resolutions (Harwin & Lucieer, 2012). 

Landsat 8 Operational Land Imager (OLI), launched in 2013, has a spatial resolution 

ranging from 15 to 30 meters across its nine spectral bands and revisits the same 

geographical location every 16 days (United States Geological Survey (USGS), 2019). 

Sentinel-2, launched in 2015, offers varied spatial resolutions across its 13 multispectral 

bands (10 m, 20 m, and 60 m) with a revisit time of 5 days, thanks to its constellation of 

twin satellites (European Space Agency (ESA), 2015). However, satellites such as 

VENμS, despite their limited publicly available data, and commercial satellites like 

PlanetScope and WorldView-3, provide spatial resolutions of 5 meters or below with 

almost daily revisits, making them potential alternatives to UAV-based images. 

The ease of access to satellite data offers a significant advantage over UAV-based remote 

sensing. Most satellite data are widely available, and some, such as Landsat and Sentinel-

2 data, are free of charge, which can reduce research costs for those who do not own 

equipment for spectral data collection. However, optical satellite images cover large 

areas, resulting in lower quality compared to UAV-collected data in terms of spatial and 

temporal resolution. Nonetheless, the accessibility and cost-effectiveness of satellite data 

make it an invaluable resource for agricultural research, particularly when acquiring high-

resolution UAV data is not feasible. 

1.2.2.2 UAV 

UAVs, or unmanned aerial vehicles, have gained popularity in recent decades, with 

common consumers purchasing them for recreational purposes. In remote sensing, UAVs 
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offer a relatively low-cost alternative in terms of time, money, and manpower (Ehsani & 

Maja, 2013). Modern drones or UAVs enable users to program a planned flight path in 

advance, allowing the UAV to operate fully automatically at the site of interest. 

Depending on the type of UAV being used, some can carry heavier objects and consume 

more energy, while others are lightweight, designed to carry lighter objects, and provide a 

longer flight period. Users can select the appropriate type of UAV based on the sensor 

adopted in the research and the size of the study area. Compared to optical satellite 

images, UAVs can produce higher spatial resolution because they capture data at lower 

altitudes, which can be adjusted manually. However, for large-scale data collection, 

satellite data is often a superior choice since UAVs typically cover smaller areas. UAVs 

require multiple battery packs and significant time to cover extensive study areas, often 

taking hours to cover tens of hectares of fields. Additionally, the quality of UAV images 

may deviate during long flight periods due to changing sunlight conditions. In contrast, 

satellite images capture snapshots over large areas instantaneously, providing more 

consistent data for large study areas. 

1.2.3 Crop Productivity Metrics 

Biomass in precision agriculture refers to the quantity or weight of the organism in a 

given area, usually represented in units of weight per area. This parameter is frequently 

used to assess the health of crops, their nutrient supply, and the effectiveness of 

agricultural management practices, thereby enabling predictions of grain yield potential 

(Bendig et al., 2015; Fu et al., 2014). Yield, in contrast, is the direct measurement of 

agricultural production per unit of land area. It is a straightforward metric that allows the 

agricultural industry to manage field fertilization and, when predicted accurately, to 

prevent food shortages (Han et al., 2020). Accurate predictions of biomass and yield 

enable farmers to respond early and effectively during the growing stages to maximize 

harvest output. This is especially crucial for farmers in southern Ontario, where there is 

only one growing season each year. 
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1.3 Research Questions 

Remote sensing techniques are widely adopted in precision agriculture, utilizing spectral 

data to analyze crop properties such as health and vigor with nutrient levels, and 

productivity with metrics like biomass and yield estimation (Atkinson Amorim et al., 

2022; Han et al., 2020; Lee et al., 2020; Yu et al., 2022). This study attempts to address 

two gaps in the field of crop productivity studies. First, while there is extensive research 

on biomass estimation, few studies have explored the use of biochemical parameters, 

such as plant nutrient contents, as predictive variables. Biomass and yield estimation 

generally rely on a range of variables such as plant height, leaf area index (LAI), and 

specific vegetation indices (VIs), including the renormalized difference vegetation index 

(RDVI) and modified hyperspectral variants of the normalized difference vegetation 

index (NDVI-like) (Bendig et al., 2014; Tian et al., 2015; Xie et al., 2014). These 

variables measure the physical structures of plants and are indicative of plant biomass 

and yield. It is well established by Marschner (2001) that plant nutrients and biochemistry 

are intricately linked to plant structure, health, and condition, all of which are critical 

factors in implementing precision agriculture (PA) strategies. Exploring the inclusion of 

biochemical parameters could potentially enhance the accuracy of biomass and yield 

predictions by providing a more comprehensive view of plant health and productivity. 

This integration of biochemical data with traditional physical metrics and VIs could lead 

to more precise and actionable insights for farmers, helping to optimize inputs and 

improve crop management practices. 

Secondly, researchers have traditionally faced challenges with optical satellite imagery 

due to its relatively lower spatial resolution compared to ground-collected data (Fu et al., 

2020). This limitation has often restricted research to regional scales rather than local, 

field-scale studies. However, VENμS (Vegetation and Environment monitoring on a New 

Micro-Satellite) offers a potential solution by providing higher spatial resolution data 

compared to most other satellites. With frequent revisits every 2 days and a wide range of 

multispectral bands, VENμS data can enhance the precision and applicability of satellite-

based studies at the field scale. 

Thus, the research questions we attempt to answer in this thesis are: 
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i. Can machine learning models accurately estimate winter wheat above-ground 

biomass (AGB) using plant height, LAI, UAV-based MicaSense multispectral 

bands, VIs, and plant nutrient content levels and ratios?  

ii. What is the importance of the relationship between the variables and AGB? 

Which machine learning model was the most accurate in estimating winter 

wheat AGB? Are plant nutrient content levels and ratios significant predictors 

of winter wheat AGB?  

iii. Can machine learning models accurately predict winter wheat yield using VIs 

derived from VENμS satellite imagery at different growth stages? 

iv. What is the importance of the relationship between the VENμS-derived VIs 

and yield? Which machine learning model was the most accurate in predicting 

winter wheat yield using VENμS satellite imagery at a local, field-scale? Is 

the prediction accuracy comparable to that of other publicly available satellite 

data? 

1.4 Research Objectives 

The focus of this thesis is to explore the capability of machine learning models in 

predicting crop productivity. This includes evaluating machine learning regression 

models in estimating winter wheat above-ground biomass (AGB) using biophysical, 

biochemical, and UAV multispectral data, and predicting winter wheat yield using 

VENµS satellite imagery. The objectives of this study are: 

i. To build machine learning regression models to estimate winter wheat AGB 

using parameters such as plant height, LAI, UAV-based MicaSense 

multispectral bands, the derived VIs, and plant nutrient content levels and 

ratios. 

ii. To determine the optimal combinations of dates (growth stages) and 

parameters for AGB estimation in a winter wheat field located in southern 
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Ontario. Interpret the ranked importance of variables to evaluate the quality of 

the variables as predictors of AGB in the best performing regression model. 

iii. To build machine learning regression models to predict winter wheat yield 

using VIs derived from VENµS satellite imagery. 

iv. To determine the optimal combinations of dates (growth stages) and important 

VIs for yield estimation in a winter wheat field located in southern Ontario, 

and whether it is a viable alternative to other popular and publicly available 

multispectral satellite data. Then, uncover insights in the ranked importance of 

the variables and produce a yield prediction map. 

1.5 Thesis Structure 

This thesis is written in the integrated article format, comprising an introduction, two 

academic journal papers, and a conclusion. Chapter 1 provides background information, 

including a review of precision agriculture and its associated remote sensing applications, 

as well as the research questions and objectives of the thesis. Then, chapters 2 and 3 serve 

the purpose of incorporating new data sources and exploring their capabilities in 

predicting crop productivity. Chapter 2 presents a published journal paper on the use of 

biophysical, biochemical, and UAV multispectral imagery to estimate winter wheat 

biomass. Chapter 3 features a journal paper on using VENµS satellite imagery to predict 

winter wheat yield at a local, field scale. Chapter 4 concludes the thesis by summarizing 

the completed objectives and offering suggestions for future research. 

1.6 Study Areas 

According to Agriculture and Agri-Food Canada (2024), southwestern Ontario is one of 

the primary agricultural regions in Canada. The major field crops in this area include 

winter wheat, corn, and soybeans. In this thesis, two different winter wheat fields were 

studied in 2020 and 2022, respectively (Figure 1-1). Both fields are located west of the 

city of London, Ontario. The wheat field studied in 2020 is situated east of the village of 

Mount Brydges, while the field studied in 2022 is located further south, closer to the 

community of Melbourne. This region is classified as having a warm-summer humid 
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continental climate (Dfb) according to the Köppen climate classification system, with 

growing seasons generally lasting from April to October. 

 

Figure 1-1. The study areas of the thesis. The names of the fields are denoted with 

their studied year respectively. 
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Chapter 2  

2 Evaluation of Machine Learning Regression Techniques 
for Estimating Winter Wheat Biomass Using 
Biophysical, Biochemical, and UAV Multispectral Data 

2.1 Introduction 

With the increasing growth of the global population, the strong demand for food sources 

and food security has highlighted the need to enhance the development of efficient and 

sustainable agricultural practices. In the modern era, challenges such as rising global food 

demand, crop diseases and pest outbreaks, limited cultivated areas, and climate change 

are affecting the entire agriculture industry. Tan and Reynolds found that in southern 

Ontario, water supply and demand are the major challenges for the agricultural industry 

(Tan & Reynolds, 2003). Notably, farmers in the province are less concerned about 

climate change compared to those in regions where extreme weather events are more 

prevalent (Reid et al., 2007). The agriculture and agri-food sectors contribute 

approximately 7% to Canada’s gross domestic product (GDP), and one in every nine jobs 

in Canada was provided by this sector in 2022 (Agriculture and Agri-Food Canada, 

2024). Although climate change is not an immediate challenge for the Canadian 

agricultural industry, it is prudent to be informed early and prepare for counteractions 

while we still have time to respond to unforeseen climate variations. 

Precision agriculture (PA) utilizes advanced technologies and data analysis techniques to 

maximize crop output while minimizing inputs. This approach involves assessing 

quantified spatial and in situ plant data to guide agricultural practices, such as the 

application of water, labor, and fuel, thereby reducing costs and preventing excessive 

waste, like pesticide and nutrient loss. PA integrates various spatial technologies, 

including geographic information systems (GIS), handheld ground-based data collection 

devices, and remote sensing through ground-based or aerial vehicles, to develop and 

implement efficient agricultural strategies (Chlingaryan et al., 2018). 
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Above-ground biomass (AGB) is a frequently used parameter to indicate crop growth 

status and the effects of agricultural management practices, making AGB estimation one 

of the main applications in PA (Bendig et al., 2015; Li et al., 2015). In this study, we 

adopt a multivariate approach to estimate AGB using biophysical and biochemical 

parameters, utilizing in situ field data and high-resolution multispectral imagery collected 

by an unmanned aerial vehicle (UAV). Biophysical parameters included plant height and 

the leaf area index (LAI). In the context of using plant height as a predictor of AGB, the 

literature includes UAV-based height extraction methods that provide comprehensive 

coverage of the studied field, with multispectral cameras and LiDAR systems being 

common approaches (Bendig et al., 2014; Guo et al., 2024; Li et al., 2015). Research has 

yielded varying degrees of success in identifying plant height as an important factor 

correlating with AGB. Furthermore, the LAI has been proven to be a significant 

parameter for monitoring crop growth and estimating AGB. Liu et al. found a strong 

linear relationship between the LAI and AGB, though this relationship weakens after the 

crops’ senescence (Liu et al., 2010). To explore the potential of variables that are strong 

predictors of AGB in the early growth stages of winter wheat, our study attempts to 

address the limitations of these variables in later growth stages by incorporating 

biochemical parameters. 

While research related to biomass estimation is abundant, few studies have utilized 

biochemical parameters, such as plant nutrient contents, as predictors. Common variables 

in biomass and yield estimation included plant height, the LAI, and specific vegetation 

indices (VIs), like the renormalized difference vegetation index (RDVI) and the modified 

hyperspectral variant of the normalized difference vegetation index (NDVI-like) (Bendig 

et al., 2014; Tian et al., 2015; Xie et al., 2014). These variables measure the physical 

structures of plants and are indicative of plant biomass and yield, and it is well 

established that plant biochemistry is intricately linked to plant structure, health, and 

condition, all of which are critical factors in applying PA strategies (Cavender-Bares et 

al., 2020). According to Marschner (2001), macronutrients, micronutrients, and beneficial 

elements are essential classes of nutrients that promote plant health and growth through 

various mechanisms. For instance, nitrogen is a crucial macronutrient and is a major 

constituent of organic materials such as enzymes, chlorophyll, and compounds involved 
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in oxidation-reduction reactions. The nitrogen content in plant tissue can indicate yield 

potential and overall crop health. Micronutrients, including iron, manganese, copper, and 

zinc, along with beneficial elements, like sodium, boron, and aluminum, play vital roles 

in plant growth. These micronutrients are essential for redox reactions and other 

physiological processes. For example, iron is necessary for protein synthesis and 

increases ribosome abundance in leaf cells. Manganese and copper act as activators for 

various enzymes, including those involved in detoxifying superoxide radicals and 

synthesizing lignin. Zinc is important for maintaining membrane integrity, protein 

synthesis, and the production of the phytohormone indole-3-acetic acid (IAA). Although 

beneficial elements are essential only for certain plant types, they stimulate growth and 

enhance physiological functions. Sodium, for instance, facilitates the movement of 

substrates between the mesophyll and the bundle sheath and can partially substitute for 

potassium’s role as an osmoticum. Boron contributes to cell wall stability by bridging 

polyuronides and promoting lignin synthesis. Understanding the significant roles of these 

nutrients underscores the potential of using plant nutrient contents as predictors of AGB. 

This approach could provide more comprehensive insights into crop health and 

productivity, thereby advancing the efficacy of PA practices. 

The availability of plant nutrient data provides an opportunity to evaluate plant nutrient 

content ratios as predictors as well. Balanced nutrition is crucial for achieving high 

yields, and the overapplication of fertilizers can lead to reduced yields, soil and 

groundwater contamination, and harmful effects on human health and the environment 

(Bryant et al., 2000; Zhao et al., 2021). While few studies have explored using plant 

nutrient content ratios as predictors of AGB, ratios, such as nitrogen to phosphorus (N:P), 

have been used in crop fertilization as indicators of nutrient limitations, particularly when 

either nitrogen or phosphorus is the limiting factor for plant growth (Koerselman & 

Meuleman, 1996). The lack of research in this area, combined with the availability of 

relevant data, presents a promising opportunity to investigate the effectiveness of nutrient 

content ratios in estimating AGB. 

Unmanned aerial vehicles (UAVs) are widely utilized in PA to capture timely, accurate, 

and cost-effective data on the earth’s surface (Radoglou-Grammatikis et al., 2020). 
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Passive sensors, such as multispectral or hyperspectral cameras, RGB cameras, and active 

sensors, such as LiDAR, are typically mounted on UAVs to collect data for remote 

sensing applications in PA. These sensors are adopted because they do not require 

physical or destructive contact with plants to gather information. With the spectral data 

collected from remote sensing imagery, vegetation index (VI) calculations are made 

possible. VIs are mathematical transformations of spectral bands widely used in 

agricultural research to determine specific plant properties, such as the LAI, chlorophyll 

content, and nutrient levels (Wu et al., 2008; Xie et al., 2014; Yu et al., 2022). 

Consequently, VIs are commonly adopted for crop growth and health monitoring, 

including biomass estimation, and research has demonstrated that VIs can be effective 

predictors of biomass (Silleos et al., 2006; Sishodia et al., 2020). For instance, vegetation 

indices that performed well in the study by Fu et al. were derived using the red absorption 

portion (550 nm–750 nm) of the spectrum (Fu et al., 2014). On multispectral cameras, 

this typically includes the red band and red-edge bands. VIs that were proven by them as 

reliable predictors, such as the normalized difference vegetation index (NDVI) and the 

soil-adjusted vegetation index (SAVI), utilize spectral information from the red 

absorption portion. Based on these findings, it is imperative to further explore the 

biomass estimation capabilities of a diverse range of vegetation indices. 

Although crop monitoring has traditionally relied on satellite imagery, UAV-based 

imagery offers significant advantages in terms of spatial and temporal resolution (Gómez 

et al., 2019; Liao et al., 2022). UAV systems can produce data with spatial resolutions of 

less than 10 cm compared to the meter-level spatial resolutions of satellite imagery. For 

example, the Landsat 8 Operational Land Imager, launched in 2013, has a spatial 

resolution varying between 15 and 30 m across its nine spectral bands and revisits the 

same geographical location every 16 days. Similarly, Sentinel-2, launched in 2015, 

features 13 multispectral bands with spatial resolutions of 10 m, 20 m, and 60 m, and a 

revisit time of 5 days with its constellation of twin satellites. Studies have indicated that 

UAV-based spectral data collected over smaller sampling areas explain more variation in 

wheat grain yield than the best-performing Sentinel-2 data. In comparison, Sentinel-2 

data have yielded unsatisfactory results due to cloud coverage and lower temporal 

resolution (Bukowiecki et al., 2021). This underscores the superior spatial and temporal 
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resolution advantages that UAVs have over satellites for crop monitoring. Winter wheat 

was selected for this study due to its prominence as one of the most widely cultivated 

crops in southern Ontario (Ontario Ministry of Agriculture, Food and Rural Affairs, 

2023). In recent years, machine learning regression methods, such as Random Forest 

(RF) and Support Vector Regression (SVR), have been extensively explored in biomass 

and yield estimation studies (Atkinson Amorim et al., 2022; van Klompenburg et al., 

2020; Wang et al., 2022). A significant advantage of these machine learning regression 

methods over linear regression is their applicability to a wide range of data, as they do 

not assume linear relationships. Given the diverse categories of variables involved, it is 

crucial to use a method suitable for capturing complex, non-linear relationships to ensure 

the validity of the results and reduce variability (Tausch, 1989). 

To make a well-informed estimation of AGB, it is essential to incorporate a wide range of 

data, including both biophysical and biochemical parameters. The objective of this study 

is to (i) investigate the relationships between AGB and factors, such as plant height, LAI, 

multispectral bands, VIs, and plant nutrient content levels and ratios; (ii) evaluate the 

effectiveness of RF and SVR models in estimating AGB; (iii) determine the optimal 

combinations of dates (growth stages) for AGB estimation in a winter wheat field located 

in southern Ontario; and (iv) identify the ranked importance and optimal combinations of 

variables for AGB estimation. 

2.2 Materials and Methods 

2.2.1 Study Area and Data Collection 

The study site is in Southwest Middlesex County, Ontario, Canada, near the community 

of Melbourne, which is about 40 km southwest of the urban center of London, Ontario 

(Figure 2-1). Fieldwork was conducted in June of 2022, during which the average 

temperature was recorded at 18.8 ◦C and the relative humidity averaged %. The climate in 

the area is classified as warm summer humid continental climate (Dfb) according to the 

Köppen climate classification system. The area is predominantly agricultural croplands, 

and its major field crops include winter wheat, corn, and soybeans. Winter wheat was 

selected as the focus of this study. A winter wheat field covering 35.5 hectares 



17 

 

(approximately 355,000 m2) in this region was designated as the specific area for 

investigation. 

 

Figure 2-1. Location of the studied wheat field near Melbourne, ON, Canada over 

an ArcGIS Pro Basemap Image. 

The cultivar in the studied field was soft red winter wheat, which was planted in October 

2021. In the region of southwestern Ontario, winter wheat typically commences shooting 

in late April and is harvested from early to mid-July. Data acquisition was performed 

during the start of inflorescence emergence and heading stage to the ripening stage of the 

winter wheat. Studies have also pointed out that as AGB increases with the advancement 

of the growth stages, VIs’ correlation with AGB decreases after the flowering stage (Di 

Bella et al., 2004; Wang et al., 2022). This decline is attributed to the maturation and 

yellowing of the plant’s leaves, underscoring the significance of incorporating more 

variety of data in assessing the efficacy of machine learning regression models in AGB 

estimation. 
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As outlined in Table 2-1, the field was revisited every six to seven days for ground 

sampling to align with the changing phenological stages of the winter wheat. Ground 

sampling was scheduled to align with UAV flights, whenever possible, to maintain 

consistency in data collection relative to the growth stages. However, optimal conditions 

for ground sampling and UAV flights were not always synchronized due to potential 

adverse weather conditions, such as strong winds or rapid weather changes. Given the 

field’s longest edge exceeding 850 m, two separate UAV flights were necessitated during 

each visit. Within the map depicted in Figure 2-2, 2 sets of sampling points were 

established: 16 sample points in a 4 × 4 grid on the northwest side and 12 sample points 

in a 4 × 3 grid on the southeast side. This placement aimed to maximize area coverage 

while minimizing labor intensity. The sampling points were positioned approximately 60 

m apart, both vertically and horizontally, to ensure a representative distribution of data. A 

minimum distance of 50 m from all roads and houses was maintained to mitigate 

potential outliers and minimize disturbance to local residents. A GPS device was 

employed to facilitate precise revisits of these sample points during subsequent fieldwork 

sessions. 

Table 2-1. Number of sample points and dates of data collection season. 

Fieldwork 

Dates 

Field Sample 

Point Groups 

# of Sample 

Points 
UAV Flight Dates 

Phenology 

(BBCH Scale 1) 

June 4 

Winter Wheat 

Field W4 and W5 

12 in W4, 

16 in W5 

June 8 
Inflorescence emergence, heading 

(high 50 s to low 60 s) 

June 10 June 10 Flowering, anthesis (60 s) 

June 17 June 19 Development of fruit (70 s) 

June 23 June 24 Ripening (low 80 s) 

1 Biologische Bundesanstalt, Bundessortenamt and CHemical industry. 
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Figure 2-2. Location and distribution of the sample points. 

Fresh AGB samples were destructively harvested in a 20 × 20 cm grid at each sample 

point and transported to A&L Canada Laboratories for immediate fresh weight 

determination on the day of collection. Subsequently, these samples were dried in an 

oven at 60 °C for 48–72 hours. After drying, the biomass was weighed, and the top leaves 

of the plants were analyzed to determine nutrient content levels using the A&L PT2 plant 

test. This test provided nutrient content levels expressed in percentages and parts per 

million (ppm), as well as both actual and expected nutrient content ratios for each sample. 

The expected ratio serves as a target value for farmers, aimed at enhancing plant quality; 

it remains consistent across the field but varies according to the growth stage. In contrast, 

the actual ratio, derived from the actual nutrient content percentages, varied from sample 

to sample. In this study, both nutrient content levels and the actual ratio were utilized as 

biochemical parameters for predicting AGB. For the purposes of this paper, the actual 

ratio will simply be referred to as “ratio,” as the expected ratio is not utilized in this 

study. 
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Additionally, the LAI and crop heights were measured at each sample point as 

physiological parameters for the machine learning models. A LI-COR LAI-2200C 

equipped with a 180° view cap was utilized to measure a single LAI value at each sample 

point as the canopy of the wheat field densified approaching crop maturity. At each 

sample point, a recording sequence was employed, consisting of four readings above the 

canopy and eight readings below the canopy near the plant roots, distributed evenly with 

four in one row and four in the adjacent row. Scattering corrections were applied as 

needed during the above canopy recording procedures, contingent on ambient lighting 

and sky conditions. Furthermore, six individual plant height values were measured within 

a 1 m radius of each sample point using a meter stick, from which an average height 

value was calculated for each point. During the height measurements, the plants were left 

undisturbed to maintain their natural posture. 

2.2.2 UAV Imagery 

The UAV employed in this study was the Da-Jiang Innovations (DJI) Matrice 100, 

equipped with a MicaSense RedEdge narrowband multispectral camera (MicaSense Inc., 

Seattle, WA, USA), which collected spectral information across various bands (Figure 2-

3). All flights were scheduled between 10 a.m. and 2 p.m. under cloud-free or near cloud-

free conditions to minimize illumination variability across the field. Flights were 

postponed and rescheduled to the nearest possible date if the weather conditions were 

suboptimal, ensuring alignment with ground data collection and the phenological stages 

of plant growth. Additionally, flights were conducted under the lowest possible wind 

conditions to reduce challenges in image mosaicking due to plant movement. The flight 

plan was designed using the Pix4Dcapture app, which allows the pilot to adjust flight 

settings dynamically. At both sections (W4 and W5) of the study field, flights were 

conducted at altitudes of 50–60 m above ground level, often at the upper limits of the 

UAV’s manufacturer-recommended wind speeds. To preserve the data quality and flight 

efficiency, the UAV was set to fly at speeds between 3 to 4 m/s, depending on the 

windspeeds of the day. As the winter wheat matured and increased in height, the plants 

exhibited greater sway. Consequently, to ensure the accuracy of the resulting 

orthomosaics, all flights were performed with 85% front and side overlapping image 
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capture. The flight paths were executed in a zigzag pattern, aligning with the orientation 

of the crop rows to enhance the accuracy of the orthomosaics. The outputs were weekly 

generated MicaSense band orthomosaics with a spatial resolution of 4 × 4 cm. 

Unfortunately, the flight data collected in the first week experienced a four-day delay 

relative to the sampling date due to adverse flight conditions. On June 4th, thin clouds 

scattered across the sky led to the initial assessment of the flight data as inaccurate, 

followed by three days of intermittent showers or wind speeds too high for safe UAV 

operation. 

 

Figure 2-3. Image of the MicaSense RedEdge narrowband multispectral camera. 

2.2.3 UAV Image Processing 

Pix4Dmapper (version 4.8.0) was employed to process the multispectral images 

collected, generating one orthomosaic image per band. Prior to each flight, the 

MicaSense camera was subjected to a radiometric calibration to ensure the accuracy of 

the reflectance data. This calibration involved positioning the camera above a MicaSense 

Calibrated Reflectance Panel to capture white reference images for each band, taking into 

account sensor influences and the scene’s illumination conditions at the location. These 

white reference images, along with the reflectance values provided by the manufacturer’s 

white board, were utilized in Pix4Dmapper for image calibration, enabling each of the 

five MicaSense bands to produce corrected reflectance data of the field. The process of 
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Structure from Motion (SfM), utilized by Pix4Dmapper, stitches together all the 

individual images captured by the camera. The high-overlapping image capture settings 

established for the flights facilitated this process, enhancing the accuracy of the results. 

The output comprised five orthomosaic images, each representing different reflectance 

values across the bands for both sections of the study area. 

2.2.4 Vegetation Indices 

The orthomosaic images were used to calculate vegetation indices (VIs) in QGIS. In 

order to minimize GPS error in the weekly visit to the field sample points, the VI values 

were averaged within a 1 m radius of the sample point. Details of the camera bands are 

listed in Table 2-2. 

Table 2-2. Spectral bands of the MicaSense multispectral camera. 

Band Name Band Range (nm) Center Wavelength (nm) Bandwidth (nm) 

1 Blue 465–485 475 20 

2 Green 550–570 560 20 

3 Red 663–673 668 10 

4 Red Edge 712–722 717 10 

5 NIR 820–860 840 40 

A total of 13 Vis were calculated, as listed in Table 2-3. Indices such as the NDVI and 

SAVI have been previously validated as reliable predictors of winter wheat biomass (Fu 

et al., 2014). Additionally, several of the VIs make use of spectral information in the red 

edge and near-infrared wavelengths, which have been demonstrated to correlate strongly 

with crop growth, health, yield, and the LAI (Xie et al., 2014; Zhang et al., 2018). The 

chlorophyll index red edge (CL_RE) has been established as an effective VI for 

predicting crop nitrogen content, which serves as an indicator of plant vigor and 

productivity. 

Table 2-3. Vegetation indices to be tested in this study. 

VI 1 Formula 2 Authors 

ARVI 
NIR − [Red − 1×(Red − Blue)]  

NIR+[Red − 1×(Red − Blue)] 
 Kaufman and Tanre, 1992 

Cl_RE NIR÷RE − 1 Gitelson et al., 2003 
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EVI 
2.5×(NIR − Red)

NIR+6×Red-7.5×Blue+1 
 Huete et al., 2002 

GCVI NIR÷Green − 1 Gitelson et al., 2003 

ISR Red÷NIR Fernades et al., 2003  

MCARI [(RE − Red) − 0.2×(RE − Green)]×RE÷Red Daughtry et al., 2000 

MSAVI [2×NIR+1 − √(2×NIR+1)2 − 8×(NIR − Red) ]÷2 Qi et al., 1994 

NDRE (NIR − RE) ÷ (NIR + RE) Gitelson and Merzyak, 1994 

NDVI (NIR − Red)÷(NIR+Red) Rouse et al., 1974 

OSAVI [1.16×(NIR − Red)]÷(NIR+Red+0.16) Rondeaux et al., 1996 

RDVI (NIR − Red)÷(√NIR+Red ) Roujean and Breon, 1995 

RVI NIR÷Red Jordan, 1969 

SAVI [1.5×(NIR − Red)]÷(NIR+Red+0.5) Huete, 1988 
1 ARVI, atmospherically resistant vegetation index; Cl_RE, chlorophyll index red edge; EVI, enhanced vegetation 

index; GCVI, green chlorophyll vegetation index; ISR, infrared simple ratio; MCARI, modified chlorophyll absorption 

in reflectance index; MSAVI, modified soil-adjusted vegetation index; NDRE, normalized difference red edge; NDVI, 

normalized difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; RDVI, renormalized 

difference vegetation index; RVI, ratio vegetation index; SAVI, soil-adjusted vegetation index.  

2 Blue, blue reflectance; green, green reflectance; red, red reflectance; RE, red edge reflectance; NIR, near-infrared 

reflectance. 

2.2.5 Biochemical Parameters 

In this study, 14 nutrient content levels and 8 derived nutrient content ratios were 

analyzed. Existing research has identified nitrogen and phosphorus as essential for 

protein synthesis, enzyme activities, and chlorophyll formation in plants (Novoa & 

Loomis, 1981; Shi et al., 2020). Additionally, potassium is crucial in mitigating stress 

from drought, cold temperatures, salinity, and biotic factors, such as diseases and pests 

(Oosterhuis et al., 2014). For example, sufficient potassium levels can enhance 

photosynthetic efficiency, improve water usage, and stabilize plant metabolism under 

drought conditions. Additionally, nutrient content ratios, such as nitrogen to sulfur (N:S) 

in plant leaves, are significant indicators of crop health and nutrient deficiency (Blake-

Kalff et al., 2000; Pagani & Echeverría, 2011). This framework provided the basis for 

testing both individual nutrient content levels and ratios. The 14 nutrients tested included 

nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), sodium 

(Na), sulfur (S), boron (B), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), aluminum 
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(Al), and nitrate-N. The 8 nutrient content ratios evaluated were N:S, N:K, P:S, P:Zn, 

K:Mg, K:Mn, Ca:B, and Fe:Mn. 

2.2.6 Machine Learning Regression Modeling 

In the context of machine learning, regression models are used to predict continuous 

outcomes based on input variables. Two prominent techniques within this domain are 

Random Forest (RF) Regression and Support Vector Regression (SVR), both of which 

offer robust solutions to complex regression problems. 

RF is an ensemble learning method that operates by constructing multiple decision trees 

during the calibration phase and outputting the mean prediction of the individual trees. 

This method capitalizes on the power of multiple decision trees to reduce overfitting, 

which is common in models relying on a single decision tree. Each tree in the forest is 

built from a random sample of the calibration data, and at each node, a subset of features 

is randomly chosen to decide the split. This randomness helps in making the model more 

resilient to noise in the dataset. Moreover, Random Forest can handle large datasets with 

higher dimensionality and can estimate which variables are important in the underlying 

relationships being modeled. 

SVR, on the other hand, extends the concepts of Support Vector Machines (SVMs) from 

classification to regression. Unlike traditional methods that minimize the error between 

predicted and actual values, SVR attempts to fit the error within a certain threshold. It 

involves the creation of a hyperplane in a multidimensional space where the distance 

between the data points and the hyperplane is minimized, ensuring that errors do not 

exceed a defined threshold. This makes SVR particularly useful in cases where a margin 

of tolerance is specified in the predictions. SVR is highly effective in handling non-linear 

relationships through the use of kernel functions, which map input data into higher-

dimensional spaces (Chang & Lin, 2011). 

Both RF and SVR provide distinct advantages depending on the nature of the data and 

the specific requirements of the regression task (van Klompenburg et al., 2020). RF is 

generally preferred for problems with high-dimensional spaces and large datasets, 
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offering interpretations in terms of feature importance. SVR is advantageous when 

dealing with datasets where the prediction needs to stay within a certain range and is 

effective in capturing complex relationships through its kernel trick. When employed 

thoughtfully, both methods can yield highly accurate predictive models in a wide range of 

scientific and industrial applications. 

Figure 2-4 displays the workflow of the methodology. The modeling was written in R 

programming language using R Studio by utilizing packages such as “randomForest” and 

“e1071” for RF and SVR, respectively. In both models, the independent variables were 

the VIs, MicaSense bands, plant physiological parameters, plant nutrient levels, and plant 

nutrient content ratios. Data collected over the four weeks were randomly divided into a 

70% calibration set and a 30% validation set. In the RF models, using the default settings 

of 500 decision trees and the square-rooted number of variables considered at each split 

(mtry) provided the most stable results. For the SVM models, the Radial Basis Function 

(RBF) kernel was used with default parameters, which worked best in this study. The 

strength of the prediction model was assessed using the coefficient of determination (R2) 

and root mean square error (RMSE). To ensure the model’s strength and stability, we 

validated the results by creating random splits of the calibration and validation sets 100 

times. The R2 and RMSE values reported are the average values obtained from these 

splits. The equations for both metrics are as follows: 

R2  =  1 − 
∑(yi − ŷi )

2

∑(yi − y̅i )
2  (1) 

where y
i
 is the observed value, ŷ

i
 is the predicted value, and y̅

i
 is the mean of the 

observed values, and 

RMSE =  √
∑ (ŷi − yi)2n

i=1

n
 (2) 

where ŷ
i
 represents the predicted AGB (g/m2), y

i
 denotes the observed AGB (g/m2), n is 

the total number of observations, and i serves as the summation index, incrementing by 

one. 
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Figure 2-4. Methodology flowchart of this study. 

2.3 Results 

2.3.1 Biomass Data 

AGB was destructively collected at each sample point. The dry weight of the sampled 

biomass progressively increased across different growth stages, as illustrated in Figure 2-

5. Initially, AGB exhibited a modest increase during the first two weeks of fieldwork, 

followed by a significant acceleration in growth thereafter. 
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Figure 2-5. Distribution of above-ground biomass data throughout the four-week 

study period during the June 2022 growing season. 

2.3.2 Regression Models with All Variables 

A total of 42 variables were utilized as predictors for AGB, including plant height, LAI, 

MicaSense bands, VIs, and levels and ratios of plant nutrient content. The datasets were 

categorized into single-date and multi-date groups to assess the temporal impact on the 

models and to identify the most effective date or combination of dates for estimating 

AGB. These variables were incorporated into the calibration and validation of the RF and 

SVR models, as detailed in Table 2-4. Overall, the RF models exhibited slightly superior 

performance compared to the SVR models, with multi-date RF models outperforming 

those based on single dates. The best-performing RF model, which utilized all variables 

across all four dates, achieved an R2 of 0.93 and an RMSE of 90.98 g/m2 in its calibration 

set, and an R2 of 0.80 with an RMSE of 152.71 g/m2 in its validation set. RF models that 

incorporated data from three dates also demonstrated high performance. Similarly, SVR 

models showed improved performance with multi-date data compared to single-date 

models. The optimal SVR model, employing all variables and data from June 10, 17, and 
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23, yielded an R2 of 0.90 and an RMSE of 108.79 g/m2 in its calibration set, and an R2 of 

0.77 with an RMSE of 156.61 g/m2 in its validation set. Although this model was only 

marginally superior to its counterpart, which utilized data from all four dates, it featured a 

lower RMSE. It is noteworthy that almost all models based on single-date data were not 

significant, a result anticipated due to the high number of variables relative to the modest 

dataset size of 28 entries. 

Table 2-4. Calibration and validation statistics: analysis by date and modeling 

approach (RF and SVR) using 42 variables, including plant height, the LAI, 

MicaSense bands, vegetation indices, and plant nutrient content levels and ratios 1. n 

is the number of data entries. 

Date Model (n) 

Calibration Validation 

R2 RMSE (g/m2) R2 p-Value 
RMSE 

(g/m2) 

June 4 
RF 28 0.95 41.90 0.21 NS 137.37 

SVR 28 0.93 40.11 0.47 <0.05 132.17 

June 10 
RF 28 0.96 54.64 −0.13 NS 86.19 

SVR 28 0.85 58.74 −0.14 NS 99.63 

June 17 
RF 28 0.93 52.62 −0.02 NS 162.74 

SVR 28 0.76 76.20 −0.14 NS 132.08 

June 23 
RF 28 0.95 80.82 −0.14 NS 245.32 

SVR 28 0.70 113.80 −0.14 NS 238.80 

June 4, 10 
RF 56 0.95 44.03 −0.06 NS 134.58 

SVR 56 0.75 63.90 0.09 NS 130.63 

June 4, 17 
RF 56 0.94 60.62 0.57 <0.001 138.11 

SVR 56 0.85 77.20 0.47 0.001 155.47 

June 4, 23 
RF 56 0.97 75.91 0.68 <0.001 237.24 

SVR 56 0.96 83.87 0.59 <0.001 257.60 

June 10, 17 
RF 56 0.92 59.01 0.40 <0.01 123.23 

SVR 56 0.84 71.79 0.46 0.001 120.43 

June 10, 23 
RF 56 0.97 71.46 0.66 <0.001 212.96 

SVR 56 0.96 83.51 0.68 <0.001 201.40 

June 17, 23 
RF 56 0.94 86.27 0.23 <0.05 252.59 

SVR 56 0.90 103.30 0.22 <0.05 249.10 

June 4, 10, 17 
RF 84 0.94 58.61 0.41 <0.001 131.64 

SVR 84 0.84 73.80 0.38 <0.001 130.17 

June 4, 10, 23 
RF 84 0.96 82.96 0.67 <0.001 207.08 

SVR 84 0.94 98.08 0.71 <0.001 184.32 

June 4, 17, 23 
RF 84 0.94 91.83 0.76 <0.001 177.09 

SVR 84 0.90 112.88 0.72 <0.001 187.79 

June 10, 17, 23 RF 84 0.94 89.50 0.72 <0.001 177.91 
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SVR 84 0.90 108.79 0.77 <0.001 156.61 

June 4, 10, 17, 23 
RF 112 0.93 90.98 0.80 <0.001 152.71 

SVR 112 0.89 113.81 0.77 <0.001 165.71 
1 All calibration models are significant at p-value < 0.001. 

It is crucial to note that the overall best-performing model is not necessarily the one with 

the highest R2 value in either the calibration or validation sets. For example, the RF 

model using data from June 10 and 23 demonstrated a high R2 of 0.97 and a low RMSE 

of 75.91 g/m2 in the calibration set. However, the same model exhibited significantly 

weaker performance in the validation set, with an R2 of 0.66 and a high RMSE of 212.96 

g/m2. This discrepancy suggests potential overfitting, indicating that while the model 

predicts the calibration data exceptionally well, it does not generalize effectively to new, 

unseen data. 

2.3.3 Variable Importance Plot 

RF modeling, which involves the use of numerous decision trees, was employed to 

generate a variable importance plot in R Studio using the “varImpPlot()” function. The 

plot displays increasing node purity (IncNodePurity) on the x-axis, which indicates the 

importance of each explanatory variable in predicting dry AGB on the decision trees. A 

higher IncNodePurity value signifies that the variable is more critical as a predictor. This 

method was employed to visualize the variable rankings in both the RF and SVR models, 

aiding in the identification of key predictors in the models. 

The RF model incorporating all 42 variables demonstrated optimal performance when 

applied to the full four-date dataset. Analysis of the variable importance plot revealed that 

the NDVI was the most critical predictor, as depicted in Figure 2-6. Among the top ten 

most influential variables, the composition included five of the thirteen VIs utilized, two 

out of fourteen nutrient content levels, two of the eight nutrient content ratios, and plant 

height. Notably, the NDVI, ISR, ARVI, and RVI exhibited significantly higher 

IncNodePurity values compared to the remaining variables. These VIs are commonly 

associated with vegetation monitoring in agriculture and biomass estimation. 

Macronutrients such as N and K were also ranked in the top 10. N and K are crucial 

macronutrients that regulate enzymes and the synthesis of organic compounds. 
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Additionally, K plays a vital role in cell growth and the regulation of photosynthesis, both 

of which are responsible for plant development (Marschner, 2011; Oosterhuis et al., 

2014). 

 

Figure 2-6. Variable importance plot produced with all 42 variables from all four 

dates. A higher IncNodePurity value indicates a higher impact on AGB estimation. 

Refer to Table 2-3 for the full names of vegetation indices. Al, aluminum; B, boron; 

Ca, calcium; CaB_ACT, calcium boron actual ratio; Cu, copper; Fe, iron; 

FeMn_ACT, iron manganese actual ratio; K, potassium; KMg_ACT, potassium 

magnesium actual ratio; KMn_ACT, potassium manganese actual ratio; Mg, 

magnesium; Mn, manganese; N, nitrogen; Na_, sodium; NK_ACT; nitrogen 

potassium actual ratio; NO3N, nitrate nitrogen; NS_ACT, nitrogen sulfur actual 

ratio; P, phosphorus; PS_ACT, phosphorus sulfur actual ratio; PZn_ACT, 

phosphorus zinc actual ratio; S, sulfur; Zn, zinc. 

The SVR model that incorporated all 42 variables yielded the best results using data 

collected on June 10, 17, and 23. A variable importance plot generated from these three 
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dates identified the ISR as the most crucial predictor of AGB, with a slightly higher 

ranking than the NDVI, as shown in Figure 2-7. The top ten most important variables 

included five of the thirteen VIs utilized, three of the fourteen nutrient content levels, and 

two of the five MicaSense bands. Indices such as the NDVI, ISR, ARVI, and RVI 

displayed significantly higher IncNodePurity values than the other variables. Consistent 

with the results from the four-date analysis, the primary predictors remained the ISR, 

NDVI, RVI, and ARVI, albeit in a different order. In this three-date plot, MicaSense red 

and green bands, along with P, saw an increase in their rankings, moving into the top ten, 

a shift from their positions in the four-date plot. P is an essential macronutrient similar to 

N and K. However, its relevance had only increased in the four-date plot, while the 

importance of N and K had decreased. P is responsible for various biochemical reactions 

within the plant, including nitrogen fixation and the synthesis of nucleic acids and 

phospholipids, making it essential for the genetic and structural components of plant cells 

(Marschner, 2011). Although KMg_ACT was the highest-ranked nutrient content ratio in 

both plots, none of the nutrient content ratios were among the top ten variables in the 

three-date analysis. 
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Figure 2-7. Variable importance plot produced with all 42 variables from June 10, 

17, and 23. A higher IncNodePurity value indicates a higher impact on AGB 

estimation. Refer to Figure 2-6 for the full names of the variables. 

2.3.4 Regression Models with Selected Variables 

Variable selection is essential for reducing redundancy and complexity in regression 

models with a larger variety of variables. It enhances model performance and 

interpretability by focusing on the most relevant predictors, thereby reducing overfitting 

and computational complexity. This process also improves the model’s ability to 

generalize well to new data, ensuring more robust and accurate predictions. As indicated 

by the variable importance plots (Figures 2-6 and 2-7), although the best-performing RF 

and SVR models utilized all 42 variables, the importance of the explanatory variables in 

estimating AGB varied considerably. For the RF models, based on the variable 

importance plot in Figure 2-6, we selected the top four, seven, ten, fourteen, twenty, and 

twenty-nine variables, determined by reductions in the increase in node purity, which 

helped establish a ranking threshold. A similar selection process was applied to the SVR 
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models, grouping variables into rankings of the top five, seven, ten, fourteen, twenty, and 

twenty-eight based on the variable importance plot in Figure 2-7. 

Additionally, two distinct groups of variables were evaluated in both RF and SVR 

models. Research has substantiated that UAV multispectral data alone can effectively 

predict AGB, leading to the testing of a class consisting solely of MicaSense bands and 

VIs (Zhu et al., 2023). Moreover, plant nutrient content, though seldom used as a 

predictor for AGB, displayed high importance in some explanatory variables. 

Consequently, nutrient content levels and ratios were also explored as a separate class for 

testing. 

Table 2-5 outlines the statistics for RF model calibration and validation sets using data 

from various dates and combinations of variables. The most effective date combination 

for RF utilized data from all four dates. For the calibration sets, the R2 remained high 

across most groups, consistently above 0.9, except for the group containing only the top 

four variables. The RMSE values ranged from 89.19 to 119.81 g/m2. Notably, the RMSE 

values were significantly elevated for groups comprising solely multispectral data and 

VIs, as well as those limited to plant nutrient content levels and ratios, with both 

exceeding 100 g/m2. A decreasing trend in the RMSE was observed as more variables 

were included in the calibration sets, continuing up to the top 20 variables. Although the 

calibration sets exhibited similar performance, the validation set using only multispectral 

data and VIs outperformed the set that included only plant nutrient content levels and 

ratios. Nevertheless, neither was the best performing among the RF models. The 

validation set with the top seven variables demonstrated higher performance, which 

continued to improve up to the model incorporating the top twenty variables. The 

validation sets exhibited R2 values between 0.59 and 0.81, with RMSE values spanning 

from 149.95 to 213.49 g/m2. 

Table 2-5. Statistics of the RF models for above-ground biomass estimation with all 

dates (June 4, 10, 17, 23) and different combinations of variables (n = 112) 1.  

Variables 
Number of 

Variables 

Calibration Validation 

R2 RMSE (g/m2) R2 RMSE (g/m2) 

All VIs + 5 MicaSense bands 18 0.91 102.19 0.73 175.63 
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All plant nutrient content + ratios 22 0.93 100.79 0.68 196.54 

Top 4: NDVI, ISR, ARVI, RVI 4 0.87 119.81 0.59 213.49 

Top 7: top 4 + height, N, KMg_ACT 7 0.91 100.90 0.76 167.32 

Top 10: top 7 + NS_ACT, K, OSAVI 10 0.93 92.36 0.79 156.00 

Top 14: Top 10 + red, NK_ACT, GCVI, 

NDRE 
14 0.93 89.53 0.78 160.04 

Top 20: Top 14 + green, Cl_RE, P, Fe, 

RE, Mg 
20 0.93 89.19 0.81 149.95 

Top 29: top 20 + NO3N, Ca, PZn_ACT, 

Al, MSAVI, MCARI, RDVI, CaB_ACT, 

Cu 

29 0.94 89.41 0.81 151.52 

1 All models are significant at p-value < 0.001. 

The overall best-performing RF model employed a combination of the top 20 variables, 

achieving an R2 of 0.93 and an RMSE of 89.19 g/m2 in the calibration set and an R2 of 

0.81 and an RMSE of 149.95 g/m2 in the validation set. Analyses of the models with the 

top 29 variables and all 42 variables (as detailed in Table 2-4) indicated a decline in 

model performance with the addition of more variables. The R2 values plateaued while 

the RMSE increased, suggesting that eliminating lower-ranked variables from the 

variable importance plot can enhance the performance of the RF models. 

Table 2-6 presents the statistics for SVR models using data from June 10, 17, and 23 

across various variable combinations. The calibration sets of the SVR models displayed a 

range of performance with R2 values between 0.72 and 0.88 and RMSE values from 

119.65 to 178.05 g/m2. The highest performance was observed with the top twenty-eight 

variables and the lowest with the top five variables. There was a linear increase in R2 and 

a corresponding decrease in the RMSE as the number of variables in the calibration sets 

increased. Unlike the calibration sets, the validation sets did not exhibit consistent trends, 

with R2 values ranging from 0.62 to 0.77 and RMSE values between 154.36 and 206.40 

g/m2. In contrast to the RF models, the SVR model utilizing only multispectral data and 

VIs performed worse than the model focusing solely on plant nutrient content levels and 

ratios. However, neither of these models achieved the highest performance. 

Table 2-6. Statistics of the SVR models for above-ground biomass estimation with 

the three dates (June 10, 17, 23) and different combinations of variables (n = 112) 1. 

Variables 
Number 

of 

Calibration Validation 

R2 RMSE R2 RMSE 
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Variables (g/m2) (g/m2) 

All VIs + 5 MicaSense bands 18 0.81 145.51 0.62 190.51 

All nutrient content + ratios 22 0.85 136.75 0.69 206.40 

Top 5: ISR, NDVI, RVI, ARVI, K 5 0.72 178.05 0.66 187.07 

Top 7: Top 5 + P, Red 7 0.76 162.81 0.62 198.99 

Top 10: top 7 + GCVI, Na, green 10 0.81 147.21 0.66 184.68 

Top 14: top 10 + RE, Cl_RE, blue, NDRE 14 0.81 145.18 0.69 179.08 

Top 20: top 14 + OSAVI, B, KMg_ACT, 

height, NO3N, KMn_ACT 
20 0.86 128.30 0.73 165.47 

Top 28: Top 20 + CaB_ACT, NIR, SAVI, 

MSAVI, NS_ACT, N, PZn_ACT, Fe 
28 0.88 119.65 0.77 154.36 

1 All models are significant at p-value < 0.001. 

The best overall performing SVR model utilized the top 28 variables, achieving an R2 of 

0.88 and an RMSE of 119.65 g/m2 in the calibration set and an R2 of 0.77 and an RMSE 

of 154.36 g/m2 in the validation set. Comparing the performance of the model with the 

top 28 variables to that using all 42 variables (as detailed in Table 2-4), the former 

exhibited slightly better generalization capabilities, as indicated by a lower RMSE in the 

validation set. Therefore, the SVR model with 28 variables was considered superior due 

to its slightly better balance between training accuracy and validation error. Nonetheless, 

the differences in validation performance were minimal, suggesting that both models are 

relatively comparable in their ability to generalize. 

2.4 Discussion 

In this study, RF and SVM regression methods were used to predict the AGB of winter 

wheat, utilizing UAV multispectral MicaSense bands, associated VIs, plant biophysical 

parameters (plant height and the LAI), and plant biochemical parameters (nutrient content 

levels and ratios). During the first two weeks of sampling, the variation in AGB was low; 

however, it began to increase rapidly starting from the third sampling date, June 17. This 

rapid change aligns with the growth stages of winter wheat. On June 4 and 10, the plants 

were in their late heading and early flowering stages, respectively—a transition period 

marked by a slowdown in height increase due to shifts in developmental priorities and 

physiological changes. Initially, plant height and leaf area are major contributors to AGB 

as the stem elongates and leaves enlarge. By the heading stage, most stem elongation is 

complete, with culms extended and plant height largely established. What follows is 
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primarily the emergence of the inflorescence from the flag leaf’s sheath, which does not 

significantly contribute to further height increase. As the plant transitions to the 

reproductive phase, its focus shifts from vegetative to reproductive growth, including the 

formation and maturation of the inflorescence. On June 17, the winter wheat entered the 

fruit development stage, channeling photosynthates from leaves and stems into the 

developing grains, which accumulate starch, proteins, and other nutrients, significantly 

increasing their weight and overall biomass. Finally, during the ripening stage on June 

23, the grains transform from a watery, milky substance into a hard, dry state—a process 

marked by the continuous accumulation of dry matter, primarily starch, enhancing total 

AGB. 

The RF and SVR models were initially calibrated using all 42 variables across single- and 

multi-date datasets. In the validation sets, models based on single dates generally 

performed poorly and were statistically non-significant. Our finding agrees with Atkinson 

Amorim et al.’s (2022) work that models using multiple date combinations performed 

better, especially if the combinations involved the last two dates. The best performance 

was observed in the RF model that utilized data from all four dates. According to the 

corresponding variable importance plot, the NDVI emerged as the most crucial variable, 

with other top-ranked variables primarily consisting of multispectral data. This finding 

aligns with Fu et al.’s findings that the NDVI and its narrowband-modified variations 

were effective predictors of biomass using partial least squares regression. Moreover, the 

top-ranked VIs in AGB estimation mainly comprised the NIR band, further supporting Fu 

et al.‘s (2014) identification of NIR as a sensitive band region for AGB. In PA, 

employing UAVs equipped with spectral cameras is a common and cost-effective method 

to capture multispectral data and estimate AGB (Hassan et al., 2018; Wei et al., 2023; 

Zhang et al., 2018). Although previous studies have proposed new methods for 

estimating crop AGB using multispectral data, our study demonstrates that existing 

machine learning methods can also produce comparable results when increasing the 

variety of predictors, such as plant nutrient content levels and ratios. Furthermore, 

senescence might affect the use of multispectral data for crop biomass monitoring at post-

flowering stages, potentially reducing model performance compared to pre-flowering 
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stages (Sharma et al., 2022). Our study did not encounter this issue, likely due to the 

inclusion of additional variables beyond multispectral data and derived VIs. 

We successfully optimized the machine learning models by selecting the top-ranked 

variables from the variable importance plots. This approach is consistent with findings 

from other research, which has proven that machine learning is an effective method for 

predicting biomass in crops, such as wheat and oats (Atkinson Amorim et al., 2022; 

Sharma et al., 2022; Wang et al., 2022). While we were using a very similar camera setup 

installed on the UAV as Sharma et al. (2022), our findings proved that including 

biophysical and biochemical parameters in the analysis can significantly increase the RF 

and SVR models’ accuracy. Similar to the results of Lu et al. (2019), the best-performing 

RF model proved more accurate than the top SVR model. We tested a total of 42 

variables. Although the SVR model performed well, nearly matching the RF model, the 

latter was better in terms of performance and ease of use. In the RF model, the top twenty 

variables were selected, which included eight of the thirteen VIs, three of the five 

MicaSense bands, five of the fourteen nutrient content levels, three of the eight nutrient 

content ratios, and plant height as the model’s performance started dropping with more 

variables being added. In comparison, Wang et al. (2022) reported higher RMSE values 

in their post-flowering stage analysis than ours in their linear regression, partial least 

squares regression (PLSR), and RF models. Our model performance was comparable 

with theirs, and the lower RMSE values in our models could be advantageous for making 

timely adjustments in fertilizer and water application recommendations. This is especially 

crucial in unstable climate conditions, where late-stage growth adjustments are necessary. 

The RF method, which utilizes multiple decision trees, seems particularly well-suited to 

handling a high number of variables and avoiding overfitting. As reported by Wang et al., 

RF outperformed linear regression and PLSR by having higher stability in predicting 

AGB during their study period. Our findings aligned with theirs, as RF proved to be the 

more stable model when handling a variety of data compared to SVR. Conversely, the 

SVR model required user hyper-tuning and used a kernel trick function to separate data 

into groups, relying on the radial distance between points to provide meaningful insights 

for the model. We believe that our research findings can be applied to North American 

wheat fields located at similar latitudes to southern Ontario, Canada. However, the model 
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may perform differently under varying agricultural practices and environmental 

conditions. Future applications of these findings should take these factors into account. 

2.5 Conclusions 

2.5.1 Contributions of Utilizing Multiple Categories of Variables in 
AGB Estimation 

This study tested the effectiveness of multispectral data and biophysical and biochemical 

parameters in predicting the AGB of winter wheat using machine learning methods. 

Variables tested include UAV MicaSense bands, the derived VIs, plant height, the LAI, 

and plant nutrient content levels and ratios. The best result was obtained from the RF 

model with an R2 of 0.81 and an RMSE of 149.95 g/m2 using the top 20 variables, with a 

close to even split between spectral variables and nutrient content variables. 

The inclusion of plant nutrient content levels and ratios as predictors in this study 

represents an advancement in the field of biomass estimation. Traditionally, these 

variables are not commonly utilized. The utilization of a lower-cost UAV multispectral 

camera setup, combined with biophysical and biochemical parameters, particularly at the 

later growth stages of winter wheat post-flowering, demonstrates a cost-effective method 

to predict AGB when urgent changes in late growth stages are needed to counteract 

unpredicted weather events, such as forest fire smoke and haze. 

2.5.2 Limitations and Future Work 

Though machine learning algorithms are capable of analyzing variables across categories, 

it is important to recognize the empirical nature of the machine learning models used. 

These models, by design, rely on existing datasets for validation and can only 

approximate the true AGB, which is only verifiable at harvest. This intrinsic limitation 

highlights the potential discrepancies between predicted and actual outcomes. Such 

limitations underscore the necessity for ongoing calibration and testing of these models 

under varied agricultural conditions and across different crop cycles to ensure their 

reliability and accuracy. The applications of these models can also be limited to dataset 

access, which is a common limitation in PA research because in situ measurements often 
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are required, and that comes with the associated intensive labor, costs, and conditions. 

Additionally, it is important to recognize that the variables tested are not the only 

associated factors that affect AGB. Variables such as weather conditions, soil properties, 

field topography, moisture supply, and more need to be considered to define the 

condition of the plants. 

Due to constraints in data and time availability, this research could not be conducted 

earlier in the growth stages of the winter wheat. Future studies should consider extending 

the time span to investigate the models’ effectiveness more comprehensively. 

Additionally, further exploration into the use of UAV-based spectral data for biomass 

estimation is suggested. This exploration should particularly focus on wavelengths or VIs 

that strongly correlate with plant nutrient levels and ratios. More importantly, it should 

emphasize hyperspectral bands, which have proven to be highly accurate in monitoring 

crop growth and estimating yield (Guo et al., 2023). Furthermore, high spatial and 

temporal resolution satellite imagery can serve as a viable alternative to UAV imagery, 

eliminating the need for UAVs. Examples such as Planetscope and VENμS both have 

frequent revisit periods and high spatial resolution for a local, field-scale study. We 

demonstrated the effectiveness of using plant nutrient content levels and ratios as 

parameters to estimate AGB in this study. Therefore, further research into non-

destructive methods using remote sensing techniques to obtain these data is 

recommended for future biomass estimation studies. Since plant height has also been 

proven to be a reliable predictor in this study, integrating Real-Time Kinematic (RTK) 

UAVs or LiDAR-equipped UAVs could enhance the precision and quantity of height 

data collection across the entire field. Combining these technologies with biomass 

estimation models could lead to the development of highly accurate AGB estimation 

maps, providing a more detailed understanding of biomass and crop yield potential. 
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Chapter 3  

3 Local Field-Scale Winter Wheat Yield Prediction Using 
VENµS Satellite Imagery and Machine Learning 
Techniques 

3.1 Introduction 

The growing global population has heightened the need for reliable food sources and 

food security, underscoring the importance of advancing efficient and sustainable 

agricultural practices. The agriculture industry today faces substantial challenges, 

including rising global food demand, crop diseases, pest outbreaks, limited arable land, 

and the impacts of climate change. Addressing these issues is vital for ensuring a resilient 

and productive agricultural sector. Research by Tan and Reynolds indicates that in 

southwestern Ontario, water supply and demand pose the greatest challenge to the 

agricultural sector (Hewer & Brunette, 2020). Interestingly, farmers in this region are less 

concerned about cli-mate change compared to those in areas more frequently affected by 

extreme weather events (Reid et al., 2007). The agriculture and agri-food sector 

contributed approximately 7% to Canada’s gross domestic product (GDP) and accounted 

for one in every nine jobs in 2023 (Agriculture and Agri-Food Canada, 2024). While 

climate change may not present an immediate threat to the Canadian agricultural 

industry, it is wise to stay informed and proactively prepare for potential future climate 

variations. 

Precision agriculture (PA) employs advanced technologies and data analysis techniques 

to optimize crop yields while minimizing resource use. This approach involves evaluating 

quantified spatial and in-situ plant data to inform agricultural practices such as the 

application of water, labor, and fuel, thereby reducing costs and preventing excessive 

waste, including pesticide and nutrient loss. PA integrates various spatial technologies, 

such as geographic information systems (GIS), handheld ground-based data collection 

devices, and remote sensing through ground-based or aerial vehicles, to develop and 

implement efficient agricultural strategies (Chlingaryan et al., 2018). Given the high 

demand for data collection, remote sensing techniques are employed in crop management 
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to precisely manage, produce, and predict crop data for analysis. Accurate crop yield 

prediction is crucial for helping farmers address production challenges and mitigate the 

effects of climate variability and change on crop yield (Hammer, 2000). 

Among the various platforms of surface spectral data collection in PA, space-borne 

satellites are one of the most stable platforms (Liao et al., 2023; Shafi et al., 2019; 

Skakun et al., 2018; Yu et al., 2022; Zhang et al., 2020; Zhao et al., 2020). A key 

advantage of using optical satellite images for remote sensing is the ability to obtain 

spectral data over large land areas in a single snapshot with high resolution. Traditionally, 

researchers have faced challenges with optical satellite images due to their relatively 

lower spatial resolution compared to ground-collected data (Fu et al., 2020). This 

limitation has restricted research to regional scales rather than local, field-scale studies. 

For example, Landsat 8, launched in 2013 by the United States, features the Optical Land 

Imager (OLI) with a spatial resolution of up to 30 m (United States Geological Survey 

[USGS], 2019). Similarly, Sentinel-2, launched in 2015, features 13 multispectral bands 

with spatial resolutions of 10 m, 20 m, and 60 m, and a revisit time of 5 days with its 

constellation of twin satellites (European Space Agency [ESA], 2015). In contrast, 

VENμS’s VSSC (Vegetation and Environment monitoring on a New Micro-Satellite 

Super-spectral Camera) captures optical images at a resolution as high as 5.3 m. 

Additionally, VENμS has a revisit time of 2 days, compared to Landsat 8’s 16 days 

(USGS, 2019; Centre National d’Etudes Spatiales [CNES] & Israeli Space Agency [ISA], 

2023). These advantages in both high spatial and temporal resolution make VENµS a 

superior choice for detailed crop monitoring and analyses, providing more frequent and 

precise data for agricultural applications. 

The ease of access to satellite data offers a significant advantage over UAV-level remote 

sensing. Many satellite datasets, such as those from VENμS, Landsat series, Sentinel-2, 

MODIS, and SPOT series are publicly available. VENμS imagery can be downloaded 

free of charge in its predefined areas, thereby reducing both labor and monetary research 

costs compared to ground sampling and UAV flight operations. While crop monitoring 

has traditionally relied on satellite imagery, UAV-based systems often challenge their 

usability due to superior spatial and temporal resolution. Crop growth stages can vary 
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week to week, making some satellite images unsuitable for timely analysis. For instance, 

Sentinel-2 data have yielded unsatisfactory crop yield prediction results due to cloud 

coverage and lower temporal resolution (Bukowiecki et al., 2021). VENμS addresses this 

issue by providing higher spatial resolution data compared to most satellites, while 

maintaining frequent revisits of 2 days and offering a wide range of multispectral bands 

(CNES & ISA, 2023). 

Furthermore, UAV operations are often constrained by weather conditions. Clear skies 

and low wind speeds are typically required to collect high-quality data. While UAVs 

offer flexible planning and scheduling, VENµS can achieve similar advantages by 

mitigating poor coverage with its short revisit period. Despite this, UAVs provide an 

edge over satellites by allowing researchers greater control over the location and timing 

of data collection. However, UAV flights with payload such as multispectral cameras are 

often restricted under aviation regulations, and additional procedures or certifications are 

often required if the flight is to be conducted in a regulated aerodrome in most countries. 

For instance, Transport Canada mandates the registration of any remotely piloted aircrafts 

(RPAs) weighing between 250 g and 25 kg, which encompasses most commercially 

available UAVs that can carry spectral sensors as pay-loads (Transport Canada, 2023). 

Additionally, operating these RPAs categorized by Transport Canada re-quires the pilot 

to have different classes of operation licenses based on the location of flight. In contrast, 

satellite data can often be obtained online free of charge and without any operational 

requirements, making the data widely accessible. Thus, VENμS effectively combines the 

advantages of both satellite and UAV systems, offering high spatial resolution, frequent 

temporal coverage, and ease of data access. 

With the spectral data collected from remote sensing imagery, vegetation index (VI) 

calculations become feasible. VIs are mathematical transformations of spectral bands 

widely used in agricultural research to determine specific plant properties, such as leaf 

area index (LAI), chlorophyll content, and nutrient levels (Wu et al., 2008; Xie et al., 

2014; Yu et al., 2022). Consequently, VIs are commonly employed for crop growth and 

health monitoring, including yield prediction (Silleos et al., 2006; Yu et al., 2022). For 

instance, vegetation indices that performed well in the study by Fu et al. were derived 
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using the red absorption portion of the spectrum (Fu et al., 2014). On multispectral 

cameras, this typically includes the red band and red-edge bands. Indices such as the 

normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), 

and soil-adjusted vegetation index (SAVI) have been previously studied as effective 

indices in winter wheat yield monitoring (Fu et al., 2020; Panek et al., 2020). VENμS is 

specifically designed for vegetation monitoring, offering more bands in the red-edge and 

near-infrared range than most publicly available satellite data. This enhanced spectral 

capability improves its ability to detect vegetation properties. Therefore, it is important to 

further explore VENμS's yield prediction potential using a more diverse range of 

vegetation indices that may be unavailable from other satellites. 

Recently, machine learning regression methods, such as Random Forest (RF) and 

Support Vector Regression (SVR), have been extensively investigated for biomass and 

yield estimation (Atkinson Amorim et al., 2022; Chlingaryan et al., 2018; van 

Klompenburg et al., 2020; Wang et al., 2022). These machine learning methods can 

capture complex patterns and relationships in the data that traditional methods might miss 

and was proven to be viable in yield prediction (Han et al., 2020; Nigam et al., 2019). RF, 

for example, can handle a large number of input variables and is less likely to over-fit due 

to its ensemble nature. Hunt et al. successfully mapped winter wheat yield using Sentinel-

2 data and RF regression models, achieving a relatively low root mean square error at 

0.66 t/ha (Hunt et al., 2019). This work suggests the potential of utilizing higher spatial 

resolution data to capture the within-field yield variability with a common machine 

learning algorithm. 

SVR, conversely, focuses on optimizing a margin around a hyperplane, which can result 

in better generalization on unseen data. While traditional regression methods are 

straightforward and easier to interpret, machine learning regression methods like RF and 

SVR offer significant advantages in terms of handling complexity, scalability, and 

adaptability, making them suitable for a wide range of modern data-driven applications. 

Compared to most publicly available satellites, such as Sentinel-2, VENμS offers 

additional bands in the red-edge and near-infrared ranges, which are particularly 
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advantageous for vegetation monitoring. It also provides relatively higher spatial and 

temporal resolution. Despite these benefits, VENμS has been rarely studied in yield 

estimation research. Therefore, to make a well-informed prediction of winter wheat yield 

at a local, field scale using VENμS data, it is essential to introduce an appropriate pre-

diction model. The objective of this study is to (i) investigate the relationships between 

yield and VIs at difference growth stages; (ii) evaluate the effectiveness of RF and SVR 

models in predicting yield; (iii) determine the optimal combinations of dates (growth 

stages) for yield prediction in a winter wheat field located in southwestern Ontario; (iv) 

uncover insights in the ranked im-portance of VIs from different growth stages; and (v) 

produce a yield prediction map. 

3.2 Materials and Methods 

3.2.1 Study Area and Data Collection 

The study site is in Strathroy-Caradoc, Ontario, Canada, near the village of Mount 

Brydges, which is about 23 km southwest of the urban center of London, Ontario (Figure 

3-1). The studied period was in May to early July of 2020, during which the average 

temperature was recorded at 22 °C and the relative humidity averaging 73%. The climate 

in the area is classified as warm-summer humid continental climate (Dfb) according to 

the Köppen climate classification system. The area is predominantly agricultural 

croplands and its major field crops include winter wheat, corn, and soybeans (Ontario 

Ministry of Agriculture, Food and Rural Affairs, 2023). Winter wheat was selected as the 

focus of this study. A winter wheat field covering 53.7 hectares in this region was 

designated as the specific area for investigation 
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Figure 3-1. Location of the studied wheat field near Melbourne, ON, Canada over 

an ArcGIS Pro Basemap Image. 

The cultivar in the studied field was soft red winter wheat, which was planted in October 

of 2019. In the region of Southwest Ontario, winter wheat typically lies dormant over the 

winter after planting, then commences shooting in late April of the following year and is 

harvested from early to mid-July. VENμS imagery acquisition was performed at each 

consequent growth stages starting at tillering, then stem elongation, booting, heading, 

flowering, early fruit development, and ripening. The growth stages were verified by 

gauging the plant’s physical characteristics using the Biologische Bundesanstalt, 

Bundessortenamt and CHemical industry (BBCH) scale at the field, matching the satellite 

overpass dates (Table 3-1). Unfortunately, the satellite imagery taken on the date of 

visiting the field during late fruit development stage was later found to be covered by 

cloud shadows. In total, 8 cloud-free VENμS imagery was acquired. 

Table 3-1. Growth stages at the study area with matching VENμS overpass dates. 

Growth Stage VENμS Overpass 
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Tillering - 1 20200503 

Tillering - 2 20200513 

Stem Elongation 20200521 

Booting 20200525 

Heading 20200606 

Flowering 20200612 

Early Fruit (Grain) Development 20200616 

Late Fruit (Grain) Development Cloud Cover 

Ripening 20200706 

3.2.2 VENμS Satellite Imagery and Preprocessing 

The data used in this research was collected by VENμS (Vegetation and Environment 

monitoring on a New MicroSatellite), which was launched in August 2017. This satellite 

marks the first Earth observation collaboration between France and Israel, led by the 

Centre National d’Etudes Spatiales (CNES) and the Israeli Space Agency (ISA). The 

mission aims to monitor plant growth and health status, providing valuable in-sights into 

the impacts of environmental factors, human activities, and climate change on Earth's 

land surface (CNES & ISA, 2023). Since 2017, the VENμS VM1 mission has provided 

multispectral data from its 12 different bands, featuring a spatial resolution of 5.3 meters, 

a revisiting period of 2 days, and operating at an altitude of 720 kilometers above sea 

level (Table 3-2). As implied by its name, VENμS excels in monitoring Earth's surface 

vegetation, which is facilitated by its extensive red-edge and near-infrared bands. 

Table 3-2. Spectral bands of the VENμS super-spectral camera. 

Bands Central Wavelength (nm) Bandwidth (nm) 

1 423.9 40 

2 446.9 40 

3 491.9 40 

4 555 40 

5 619.7 40 

6 619.5 40 

7 666.2 30 

8 702 24 

9 741.1 16 

10 782.2 16 

11 861.1 40 

12 908.7 20 
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The imagery was categorized as level 2A (L2A) surface reflectance data, which each 

scene covering areas ranging from 27 × 27 km² to 27 × 54 km² at the spatial resolution of 

5 × 5 m². The satellite imagery was processed and distributed by Theia MUSCATE 

(MUlti SATellite, multi-CApteurs, for multi-TEmporelles data), a component of the 

Theia Land Data Centre. This French inter-agency organization aims to provide satellite 

data and value-added products for scientific communities and public policy actors. 

MUSCATE facilitates the processing and distribution of large volumes of satellite 

imagery, particularly from VENμS, Sentinel-2, and Landsat satellites. This includes tasks 

such as atmospheric corrections and creating cloud-free surface reflectance syntheses. 

The processed data are used in various applications, including agriculture, forestry, urban 

planning, and environmental monitoring. Each of the VENμS L2A products contained 

two versions of surface reflectance data for the 12 bands, from B01 to B12. The first 

version of the surface reflectance rasters is denoted as SRE.DBL (Surface Reflectance), 

which is atmospherically corrected. The second version is denoted as FRE.DBL. (Flat 

REflectance), which are SRE.DBL files further corrected for slope effects. This 

correction suppresses apparent reflectance variations due to the orientation of slopes with 

regard to the sun, making the corrected image appear as if the land surface were flat. For 

this study, the FRE.DBL raster files were adopted. 

The L2A surface reflectance rasters were encoded as 16-bit signed integers, necessitating 

preprocessing before any manipulation by dividing pixel values of each channel by 1000. 

This preprocessing was conducted in Python 3.9.19 using packages such as “rasterio”, 

“gdal”, and “numpy” to extract and obtain surface reflectance values from each band at 

the study site. Subsequently, the 12-band raster values were normalized to a range 

between 0 and 1 for use in later calculations. 

3.2.3 Vegetation Indices 

Vegetation indices (VIs) were used in this study as predictors of final harvested yield. 

The VIs were calculated as raster products using the 12 VENμS bands in Python 3.9.19, 

employing the same packages used in satellite image preprocessing. Additionally, several 

VIs that utilize spectral information in the red edge and near-infrared wavelengths, which 

are well-represented in VENμS data, have demonstrated strong correlations with crop 
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growth, health, and yield (Cao et al., 2016; Xie et al., 2014; Zhang et al., 2018). A total of 

21 VIs were tested in this study, including 8 variations of existing VIs based on their 

original development formulas (Table 3-3). This was made possible by fitting the narrow 

bandwidth of VENμS bands into VI formulas initially developed with legacy sensors and 

satellites. For instance, NDVI was developed using the Landsat-1 Multi-spectral Scanner, 

where the NIR band 7 had a bandwidth range of 800 to 1100 nm. With the VSSC, both 

bands 11 and 12 fit within this NIR range, allowing for the inclusion of variations of 

existing VIs in the analysis. 

Table 3-3. Vegetation indices to be tested in this study. 

VI 1 Formula 2 Original Authors 

ARVI 
NIR11 − [Red7 − 1 × (Red7 − Blue3)]  

NIR11 + [Red71 × (Red7 − Blue3)] 
 Kaufman and Tanre, 1992 

DVI-1 NIR11 − Red7 Richardson and Wiegand,1977 

DVI-2 NIR12 − Red7  

EVI 
2.5 × (NIR11 − Red7)

NIR11 + 6 × Red7 − 7.5 × Blue2 + 1 
 Huete et al., 2002 

ISR-1 
Red7

NIR11
 Fernades et al., 2003 

ISR-2 
Red7

NIR12
  

MCARI [(RE8 − Red7) − 0.2 × (RE8– Green4)] × RE8 ÷ Red7 Daughtry et al., 2000 

MSAVI-1 
[2 × NIR10 + 1 − √(2 × NIR10 + 1)2 − 8 × (NIR10 − Red7) ]

÷ 2 
Qi et al., 1994 

MSAVI-2 [2×NIR11+1-√(2×NIR11+1)2 − 8×(NIR11-Red7) ]÷2  

NDRE-1 
(NIR10 − RE8)

(NIR10 + RE8)
 Gitelson and Merzlyak, 1994 

NDRE-2 
(NIR10 − RE9)

(NIR10 + RE9)
  

NDVI-1 
(NIR11 − Red7)

(NIR11 + Red7)
 Rouse et al., 1974 

NDVI-2 
(NIR12 − Red7)

(NIR12 + Red7)
  

OSAVI [1.16 × (NIR11 − Red7)] ÷ (NIR11 + Red7 + 0.16)] Rondeaux et al., 1996 

RDVI (NIR11 − Red7) ÷ (√(NIR11 + Red7 ) Roujean and Breon, 1995 

REP 702 +  40 (
(

Red7  + NIR10

2
) − Red8

Red9 − Red8
) Guyot and Baret, 1988 



55 

 

RVI-1 
NIR11

Red7
 Jordan, 1969 

RVI-2 
NIR12

Red7
  

SAVI-1 
(NIR10 − Red7)

(NIR10 + Red7 + 0.5)
(1.5) Huete, 1988 

SAVI-2 
(NIR11 − Red7)

(NIR11 + Red7 + 0.5)
(1.5)  

SAVI-3 
(NIR12 − Red7)

(NIR12 + Red7 + 0.5)
(1.5)  

1 ARVI, atmospherically resistant vegetation index; DVI-1, 2, difference vegetation index; EVI, enhanced vegetation 

index; ISR-1, 2, infrared simple ratio; MCARI, modified chlorophyll absorption in reflectance index; MSAVI-1, 2, 

modified soil-adjusted vegetation index; NDRE-1, 2, normalized difference red edge; NDVI-1, 2, normalized 

difference vegetation index; OSAVI, optimized soil-adjusted vegetation index; RDVI, renormalized difference 

vegetation index; REP, red edge position; RVI-1, 2, ratio vegetation index; SAVI-1, 2, 3, soil-adjusted vegetation index. 

2 Blue, blue reflectance; green, green reflectance; red, red reflectance; RE, red edge reflectance; NIR, near-infrared 

reflectance. Subscripts are the equivalent VENμS bands. 

3.2.4 Yield Dataset 

The yield data was collected at harvest on July 25, 2020, with a combine harvester 

equipped with a 10-meter wide and 1.5-meter-long header. Yield data was generated as 

point shapefile, with yield data recorded approximately every second at the center of the 

harvester’s track. To ensure accuracy, potential outliers located at the edges of the field 

were removed. For this study, the shapefile was interpolated into a 5 × 5 m² spatial 

resolution raster using QGIS 3.22 with inverse distance weighted (IDW) interpolation, 

matching the VENμS imagery and the derived vegetation indices (VIs). This approach 

was adopted to fully utilize the high-resolution advantage of VENμS data and to produce 

a detailed yield prediction map. 

3.2.5 Machine Learning Regression Modelling and Cross-
Validation 

In machine learning, regression models are used to predict continuous outcomes based on 

input variables. Two notable techniques in this domain are Random Forest (RF) 

regression and Support Vector Regression (SVR), both of which offer robust solutions 

for complex regression problems. Advantages of machine learning regression also 

includes its ability to automatically learn from data without being explicitly programmed 
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for each specific task. Given that the regression models in this study were based on pixel-

level analysis, machine learning regression methods were ideal for our needs as they 

excel in handing large data sizes. In our study, we used three key metrics to evaluate the 

performance of our regression models: Mean Absolute Error (MAE), R-squared (R²), and 

Root Mean Squared Error (RMSE). These metrics were employed during both the cross-

validation stage and the calibration and validation of the final model to ensure a 

comprehensive assessment of model accuracy and reliability. 

RF is an ensemble learning method that constructs multiple decision trees during 

calibration and outputs the mean prediction of these trees. By using multiple trees, RF 

reduces overfitting, a common issue in single decision tree models. Each tree is built 

from a random sample of the data, with a random subset of features selected at each node 

to decide splits. This randomness helps make the model more resilient to noise and 

outliers. RF can handle large, high-dimensional datasets and identify important variables 

in the modeled relationships. Additionally, RF provides measures of feature importance, 

helping to understand the impact of each variable on the prediction. 

SVR, on the other hand, extends the concepts of Support Vector Machines (SVMs) from 

classification to regression. Like RF, SVR is also generally robust to over fitting. It is a 

result of its margin maximization, the use of kernel functions, the epsilon-insensitive loss 

function, and the reliance on support vectors. Unlike traditional methods that minimize 

the error between predicted and observed values, SVR attempts to fit the error within a 

certain threshold. It involves the creation of a hyperplane in a multidimensional space 

where the distance between the data points and the hyperplane is minimized, ensuring 

that errors do not exceed a defined threshold. This makes SVR particularly useful in 

cases where a margin of tolerance is specified in the predictions. SVR is highly effective 

in handling non-linear relationships through the use of kernel functions, making it 

adaptable to various types of data (Chang & Lin, 2011). 

In this study, the data collected over 8 dates were randomly divided into a 70% 

calibration set and a 30% validation set. A 10-fold K-fold cross-validation approach was 

employed in this study to ensure the robustness and generalizability of the machine 
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learning regression models. This method involved splitting the calibration data into 

multiple subsets (folds), using each subset in turn as the validation set while the 

remaining data was used for training. With 10 folds, each fold uses 90% of the data for 

training and 10% for validation. This approach ensured that each training set was large 

enough to effectively train the model, while each validation set was sufficient to provide 

a reliable evaluation without overfitting. During the cross-validation stage, MAE, R², and 

RMSE served as crucial indicators of model performance. Cross-validation involved 

partitioning the calibration dataset into multiple folds and iteratively training and 

validating the model on these folds. MAE provided the average magnitude of errors in 

the predictions, indicating the overall accuracy of the model without considering the 

direction of errors. RMSE, which penalized larger errors more significantly due to its 

squared component, offered insight into the model's ability to handle large deviations 

from observed values. R², representing the proportion of variance explained by the 

model, evaluated the goodness of fit, with values closer to 1 indicated a better fit. By 

averaging these metrics across all folds, we obtained a robust estimate of the model's 

performance and its variability, thus mitigating the risk of overfitting or underfitting to 

specific subsets of data. For the RF models, the RMSE dictated the optimal cross-

validated RF model with an optimal number of splits at each tree node. The MAE value 

of that optimal RF model represents its average magnitude of the errors in the prediction. 

MAE served the same purpose in the SVR models, but RMSE determined the optimal 

SVR model with the optimal regularization parameter. The equations are as follows: 

R2  =  1 − 
∑(yi − ŷi )

2

∑(yi − y̅i )
2  (1) 

where y
i
 is the observed value, ŷ

i
 is the predicted value, and y̅

i
 is the mean of the 

observed values, and; 

RMSE =  √
∑ (ŷi − yi)2n

i=1

n
 (2) 

MAE = 
1

𝑛
∑ |ŷ

i
− y

i
|

n

i=1
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where ŷ
i
 represents the predicted yield (t/ha), y

i
 denotes the observed yield (t/ha), n is the 

total number of observations, and i serves as the summation index, incrementing by one. 

After cross-validation, the final model was trained on the entire cross-validated 

calibration dataset and then evaluated on both the calibration and validation datasets 

using the same metrics. In the calibration stage, RMSE assessed the model's fit to the data 

it was trained on, while R² measures how well the model captures the underlying data 

patterns. High R² values, coupled with low RMSE, suggest a good fit. However, it is 

crucial to compare these metrics with those from the validation stage. The validation 

stage involved assessing the model on unseen data, providing an indication of its 

generalization ability. Consistent performance across calibration and validation sets, 

characterized by similar R², and RMSE values, indicates a robust model. 

Figure 3-2 displays the workflow of the methodology. The modeling was written in R 

programming language using RStudio by utilizing packages such as “randomForest” and 

“e1071” for RF and SVR, respectively. In both models, the independent variables were 

the VIs. Data collected over the 8 dates were ran individually, then divided into two 

groups of “pre-heading” and “post-heading”. For each dataset, a 10-fold cross-validation 

was performed using packages “caret” and “kernlab”. In the RF models, using the default 

setting of 500 decision trees yielded the best results. Additionally, the cross-validation 

process determined the optimal mtry to consider at each split for each model. The optimal 

mtry value varied as different combinations of the data were tested during cross-

validation. In SVR, RBF was identified as the most suitable. The model's tuning 

parameters were automatically adjusted, optimizing for the cost value that produced the 

lowest RMSE, while the sigma (σ) parameter, which controls the width of the RBF 

kernel, was kept constant. The yield prediction raster was also created using the “raster”, 

“sp”, and “rasterVis” packages in RStudio. 
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Figure 3-2. Methodology flowchart of this study. 

3.3 Results 

3.3.1 Cross-validation of Regression Models 

In our study, we performed 10-fold cross-validation on a total of 13 datasets. These 

datasets were divided into two categories: 8 individual growth stages, and three groups of 

growth stages. The growth stage groups included 3 combinations of growth stages from 

pre-heading, 2 combinations of growth stages from post-heading, and all data. The 

rationale for forming grouped pre- and post-heading stage datasets is based on the fact 

that winter wheat undergoes a transition period marked by a slowdown in leaf growth due 

to shifts in developmental priorities and physiological changes. As the plant transitions to 

the reproductive phase, its focus shifts from vegetative to reproductive growth, including 

the formation and maturation of the inflorescence, causing the leaves to turn yellow. For 

the purpose of this study, ripening stage data was not included in the post-heading stage 
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and all data group because the model performance significantly dropped after early fruit 

development stage. 

The mean of the evaluation metrics was used to test the models’ generalizability on 

unseen data across all 10 folds. Among the individual growth stages, the early fruit 

development stage performed the best, while tillering-1 performed the worst, with both 

machine learning models performing similarly. As seen in figure 3-3, there was a trend in 

increasing R²̅̅ ̅, and decreasing RMSE̅̅ ̅̅ ̅̅ ̅̅  and MAE̅̅ ̅̅ ̅̅  as the growth stages progressed from 

tillering-1 to early fruit development. The evaluation metrics displayed a significant drop 

of model performance for both RF and SVR afterwards in the ripening stage. The RF 

model (R²̅̅ ̅ = 0.78, RMSE̅̅ ̅̅ ̅̅ ̅̅  = 0.4832 t/ha, MAE̅̅ ̅̅ ̅̅  = 0.3362 t/ha) explained the variance 

slightly better than the SVR model (R²̅̅ ̅ = 0.78, RMSE̅̅ ̅̅ ̅̅ ̅̅  = 0.4834 t/ha, MAE̅̅ ̅̅ ̅̅  = 0.3330 t/ha). 

However, the SVR model was slightly less sensitive to outliers compared to the RF 

model. Overall, the machine learning regression models within each growth stage were 

similar in terms of stability, as seen in the sizes of the whiskers on figure 3-3. 



61 

 

 

Figure 3-3. Mean cross-validation statistics histogram: analysis by growth stages 

datasets and modelling approach (RF and SVR) using 21 VI variables. The whiskers 

display the standard deviation of the metrics. 
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On the other hand, models that incorporated all data and combinations from the pre- and 

post-heading groups showed an increase in explanatory power as more data were added 

to the regression models. Models using post-heading stage datasets demonstrated greater 

robustness, with lower mean RMSE values, compared to those using pre-heading stage 

datasets. However, models using all data were the least stable, as indicated by their 

higher RMSE̅̅ ̅̅ ̅̅ ̅̅  standard deviation. Overall, both models demonstrated the highest 

generalizability on unseen data when all data were combined. The SVR (R²̅̅ ̅ = 0.86, 

RMSE̅̅ ̅̅ ̅̅ ̅̅  = 0.3899 t/ha, MAE̅̅ ̅̅ ̅̅  = 0.2475 t/ha) explained data variance better and had lower 

prediction error than the RF (R²̅̅ ̅ = 0.84, RMSE̅̅ ̅̅ ̅̅ ̅̅  = 0.4185 t/ha, MAE̅̅ ̅̅ ̅̅  = 0.2800 t/ha) model 

in cross-validation. 

3.3.2 Yield Prediction Using Regression Models 

Table 3-4 displays the calibration and validation performance of the RF and SVR models 

with datasets from all 8 tested growth stages individually. Overall, the models best at 

explaining data variance could be found when the models were using early fruit 

development stage data. The calibration R² ranged between 0.54 and 0.96 and RMSE 

values ranged between 0.2039 and 0.7057 t/ha. The RF model has a significantly higher 

calibration R² = 0.96 compared to the SVR model R² = 0.79, indicating that the RF model 

fits the training data much better. This finding was consistent throughout the analysis, 

and is expected due to RF's ensemble nature, which excels in capturing complex patterns. 

In terms of validation model metrics, R² value ranged between 0.50 and 0.77 and RMSE 

value ranged between 0.5008 and 0.7421 t/ha. The validation results were also consistent 

with calibration that both RF and SVR had the highest R² when paired with data from the 

early fruit development stage. RF (R² = 0.77, RMSE = 0.5008 t/ha) slightly outperformed 

SVR (R² = 0.77, RMSE = 0.5039 t/ha), making it the best performing pre-diction model 

when using data from individual stages. 

Table 3-4. Calibration and validation statistics: analysis by individual growth stage 

datasets and modelling approach (RF and SVR) using 21 VI variables1. 

Growth Stage Model 
Calibration Validation 

R² RMSE (t/ha) R² RMSE (t/ha) 

Tillering-1 RF 0.94 0.3017 0.50 0.7335 
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SVR 0.54 0.7057 0.50 0.7421 

Tillering-2 
RF 0.94 0.2953 0.53 0.7116 

SVR 0.55 0.6971 0.53 0.7208 

Stem Elongation 
RF 0.94 0.2727 0.61 0.6510 

SVR 0.63 0.6358 0.61 0.6539 

Booting 
RF 0.95 0.2607 0.64 0.6264 

SVR 0.66 0.6032 0.65 0.6177 

Heading 
RF 0.96 0.2186 0.74 0.5283 

SVR 0.77 0.4989 0.74 0.5319 

Flowering 
RF 0.96 0.2181 0.75 0.5254 

SVR 0.77 0.4907 0.75 0.5183 

Early Fruit Development 
RF 0.96 0.2039 0.77 0.5008 

SVR 0.79 0.4696 0.77 0.5039 

Ripening 
RF 0.95 0.2653 0.61 0.6494 

SVR 0.61 0.6418 0.59 0.6709 
1 All models are significant at p-value < 0.001. 

The analysis extended to using combinations of datasets from growth stages. Table 3-5 

displays the calibration and validation performance of the RF and SVR models with 

dataset groups of pre-heading stage, post-heading stage, and all data. Collectively, 

models using dataset groups as variables outperformed models using individual datasets 

from tilling-1, tilling-2, stem elongation, and booting stage, which all of them were in the 

pre-heading stage group. In calibration, the R² values ranged between 0.75 and 0.98, 

while the RMSE value ranged between 0.1640 and 0.5189 t/ha. Both ranges were 

significantly narrower compared to their counterparts in individual growth stages as we 

saw improved performance of SVR. Overall, the calibration R² was consistently higher in 

RF models than in SVR models. However, the validation statistics shown that SVR 

models outperformed RF models in yield prediction as the validation, with higher R² 

values and the lower RMSE values in SVR models when paired with each of the three 

dataset groups. The R² values ranged between 0.72 and 0.86, while the RMSE value 

ranged between 0.3925 and 0.5465 t/ha in validation. The best yield prediction model 

was found to be SVR model using all data from tillering-1 to early fruit development 

stage (R² = 0.86, RMSE = 0.3925 t/ha). Although the RF model performed better in 

calibration, it predicted yield with slightly lower accuracy (R² = 0.83, RMSE = 0.4257 

t/ha). 
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Table 3-5. Calibration and validation statistics: analysis by dataset groups and 

modelling approach (RF and SVR) using 21 VI variables1. 

Dataset 

Group 
Growth Stage Combinations Model 

Calibration Validation 

R² RMSE (t/ha) R² 
RMSE 

(t/ha) 

Pre-heading 

Stage 

Stem Elongation + Booting 
RF 0.96 0.2241 0.72 0.5561 

SVR 0.75 0.5189 0.73 0.5465 

Tillering-2 + Stem Elongation 

+ Booting 

RF 0.97 0.2119 0.74 0.5353 

SVR 0.79 0.4788 0.75 0.5165 

Tillering-1, 2 + Stem Elongation 

+ Booting 

RF 0.97 0.2038 0.75 0.5210 

SVR 0.82 0.4431 0.78 0.4917 

Post-

heading 

Stage 

Flowering 

+ Early Fruit Development 

RF 0.97 0.1902 0.79 0.4810 

SVR 0.81 0.4462 0.79 0.4814 

Heading + Flowering 

+ Early Fruit Development 

RF 0.97 0.1798 0.81 0.4570 

SVR 0.84 0.4116 0.81 0.4507 

All Data (Ripening excluded) 
RF 0.98 0.1640 0.83 0.4257 

SVR 0.89 0.3437 0.86 0.3925 
1 All models are significant at p-value < 0.001. 

3.3.3 Ranked Importance of Vegetation Indices from Different 
Growth Stages 

RF modeling, which utilizes numerous decision trees, was employed to generate a 

variable importance plot in RStudio using the “varImpPlot()” function. This plot displays 

increasing node purity (IncNodePurity) on the x-axis, representing the importance of each 

variable in predicting yield across different dates. A higher IncNodePurity value indicates 

that the variable is more significant as a predictor, helping to identify the key predictors 

in the models. The variable importance plot revealed that NDRE-1 and NDRE-2 from 

heading, flowering, and early fruit development stages were among the most important 

predictors of yield, with the top-ranked variable being NDRE-1 from flowering stage, as 

shown in figure 3-4. REP from flowering and early fruit development stage ranked 4th 

and 7th respectively, on the plot. NDRE-1, NDRE-2, REP, and ARVI from multiple 

growth stages constituted 17 of the top 20 ranked VI variables. Beyond the top 7 ranked 

VIs, the IncNodePurity values of the remaining VI variables were relatively similar and 

gradually decreased throughout the list of the 147 tested VI variables in total. 
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Figure 3-4. Variable importance plot produced with VIs with all data. Only the top 

20 of the 147 VI variables were displayed. Refer to table 3-3 for the full names of the 

variables. The number denoted after the variables’ abbreviation is the date of the 

VENμS imagery. 

3.3.4 Visualization of Predicted Yield 

A yield prediction map helps visualize the yield variations within a field, and VENμS’ 

higher spatial resolution enabled readers to clearly identify areas of inaccuracies. Figure 

3-5 demonstrates that the prediction generally captured the yield variations across the 

entire field, as reflected by both the map and the evaluation metrics. However, the 

prediction did not accurately capture the extreme values in the observed yield. For 

instance, the north side borders of the field showed extreme lows in the observed yield, 

but the predicted yield map did not reflect values as extreme. Similarly, in areas of 

extreme highs, the prediction failed to capture the highest values and some-times 

incorrectly predicted the yield as a markedly different value. 
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Figure 3-5. Visualized comparison between the observed and predicted yield. 

3.4 Discussion 

3.4.1 Implications of Model Performance on Yield Prediction with 
VENμS Imagery 

PA uses advanced technologies and data analysis to optimize agricultural practices and 

assist in management decisions, with the goal of minimizing input while maximizing 

output and efficiency. We proposed using VENμS imagery for yield prediction as an 

alternative to other publicly available satellite data with its higher spatial and temporal 

resolution. The differences in performance of the machine learning regression models 

have been discussed in detail above. Though similar in prediction performance. SVR was 

the overall better machine learning regression model when more data was added to the 

regression, while RF was more accurate when predicting yield with data from individual 

stages. Our findings aligned with the study conducted by Han et al. and we were able to 

suggest that both RF and SVR were high performance techniques in yield prediction 

(Han et al., 2020; Nigam et al., 2019). However, potential overfitting was observed in the 

RF models, even after careful tuning. Although this overfitting decreased as more growth 

stage data was added, we recognize that RF models can be prone to overfitting, especially 

when dealing with complex data. This limitation prompted the inclusion of SVR in the 
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study, which exhibited less overfitting and proved to be the more reliable algorithm in 

this context. 

The regression models were able to distinguish early fruit development stage was the best 

growth stage to predict yield from. This finding agreed with Hassan et al. in which the 

yield prediction accuracy increased as the growth stages progressed (Hassan et al., 2019). 

Overall, our study was able to achieve a higher accuracy by incorporating all data from 

tillering to early fruit development stage. Among all the test VIs, NDRE is the most 

important predictor of yield as tested, which is consistent with previous studies (Fu et al., 

2020). As reported, NDRE-1, NDRE-2, REP, and ARVI from multiple growth stages 

made up 17 of the top 20 most important variables in predicting the final yield, with 

NDRE-1, NDRE-2, and REP being the major contributor to the prediction. The common 

characteristics of the three VIs is that they all used bands 8, 9, 10 of VENμS, which are at 

the central wavelengths of 702, 741.1, and 782.2 nm. These bands fall in between the red-

edge and NIR regions of the spectrum and the VIs based on this wavelength range was 

previously proven to be effective in predicting grain yield (Zhang et al., 2018). 

Our results, when compared to studies based on different satellite data, displayed a 

similar or even higher prediction accuracy, often accompanied by lower errors (Skakun et 

al., 2018; Zhao et al., 2020). Given that grouped stages of data performed better in the 

prediction models, we conducted an additional test with Sentinel-2 data, applying the 

same methodology and using overpass dates as close as possible to those used with 

VENμS data. Table 3-6 presents the regression statistics of the yield prediction models 

using Sentinel-2 data with grouped growth stages. Of the 21 VIs tested, 20 were recreated 

using Sentinel-2 data. Unfortunately, data from the Tillering-2 stage could not be 

included in the analysis due to cloud cover. The best prediction results obtained was at R² 

= 0.79 and RMSE = 0.5147 t/ha with SVR using all data.  
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Table 3-6. Calibration and validation statistics: analysis by dataset groups and 

modelling approach (RF and SVR) using 20 VI variables created using Sentinel-2 

bands, matched to equivalent VENμS bands1. 

Dataset 

Group 
Growth Stage Combinations Model 

Calibration Validation 

R² RMSE (t/ha) R² 
RMSE 

(t/ha) 

Pre-

heading 

Stage 

Stem Elongation + Booting 
RF 0.96 0.2557 0.70 0.6280 

SVR 0.76 0.5452 0.72 0.5997 

Tillering-1 + Stem Elongation 

+ Booting 

RF 0.96 0.2476 0.71 0.6106 

SVR 0.78 0.5237 0.74 0.5835 

Post-

heading 

Stage 

Flowering 

+ Early Fruit Development 

RF 0.97 0.2167 0.78 0.5379 

SVR 0.82 0.4728 0.79 0.5238 

Heading + Flowering 

+ Early Fruit Development 

RF 0.97 0.2121 0.78 0.5310 

SVR 0.83 0.4615 0.79 0.5190 

All Data (Ripening excluded) 
RF 0.97 0.2091 0.78 0.5287 

SVR 0.84 0.4434 0.79 0.5147 
1 All models are significant at p-value < 0.001. 

The accuracy of the prediction model plateaued when using post-heading stage data only, 

with minor decrease in RMSE as more data was added. Additionally, compared to the 

best prediction model using VENμS imagery, the model prediction error with Sentinel-2 

data was still significantly higher. This could be contributed to Senti-nel-2’s lower spatial 

resolution, as VENμS has four times more data than Sentinel-2. Although we were able 

to optimize and successfully create a robust and accurate winter wheat yield prediction 

model with VENμS data at a local, field-scale, it is not without its drawbacks. Contrast to 

most publicly available satellites which provide frequent coverage of the Earth's land 

surface, VENμS does not cover the entire Earth's land surface. Instead, it focuses on 

specific sites of interest and revisits these selected sites frequently. This means that the 

site of researcher’s interest may not be in coverage even though the data is publicly 

available. Researchers are required to apply for VENμS coverage at their location of 

interest. 

 



69 

 

3.5 Conclusions 

This study evaluated the effectiveness of VENμS multispectral imagery in predicting 

winter wheat yield in southwestern Ontario using machine learning methods. A total of 

21 VIs, including 8 variations of existing VIs based on their original development 

formulas, were tested. The best prediction result demonstrated a high correlation between 

VENμS data and observed yield, with an R² = 0.86 and an RMSE = 0.3925 t/ha using an 

SVR model. According to our results, a reliable prediction of yield can be achieved two 

months prior to harvest using the combined pre-heading stage data, and the best result 

can be obtained 39 days prior when using all data from pre- and post- heading stage. The 

findings suggest that VENμS data can offer superior yield prediction accuracy compared 

to other publicly available satellites and could potentially serve as a viable alternative to 

UAV data for local, field-scale studies. 

Though machine learning algorithms are effective in capturing complex patterns among 

variables, it is important to recognize the empirical nature of these models. They rely on 

existing datasets for validation and can only approximate the observed yield, which is 

only verifiable at harvest. This intrinsic limitation highlights the potential discrepancies 

between predicted and actual outcomes. Such limitations underscore the necessity for 

ongoing calibration and testing of these models under varied agricultural conditions and 

across different crop cycles to ensure their reliability and accuracy. 

Additionally, while k-fold cross-validation and a 70/30 train-test split were employed in 

this study due to its broad adoption and effective use of the data, future work could 

explore spatial splitting as a viable alternative. Spatial splitting, which divides the dataset 

based on geographic location rather than random subsets, may provide a more realistic 

evaluation of the model’s robustness across different parts of the field by better 

addressing spatial autocorrelation. Investigating this approach could enhance the model's 

performance in capturing spatial variability within the field. 

VENμS, as mentioned above, does not provide worldwide coverage, which is a 

significant drawback limiting the use of its superior high-resolution multispectral data. 

Although this study showed that Sentinel-2 is a less effective alternative, it remains the 
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next best option for predicting yield with publicly available satellite data using our 

method. Its worldwide frequent coverage can produce comparable results to VENμS at 

the field scale and potentially similar results at a regional scale. This research highlights 

the potential of high-resolution satellite data with multispectral cameras for yield 

prediction. Future studies may also consider using commercial satellites such as 

PlanetScope and WorldView-3 as an alternative for high-resolution multispectral data. 

Combining these satellite data with yield estimation models could lead to advancements 

in low labor cost, non-destructive, yet highly accurate yield predictions, providing a more 

detailed understanding of crop yield potential and distribution. 
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Chapter 4  

4 Conclusion 

This chapter summarizes the thesis, discussing the research outcomes and evaluating 

whether the objectives were met. It also outlines the limitations of this research and 

explores possibilities for future studies. 

4.1 Summary 

Remote sensing applications are pivotal in precision agriculture as they facilitate efficient 

agricultural practices through the power of data, science, and technology. The continuous 

development and research of remote sensing applications for detecting plant 

characteristics and predicting crop productivity aim to help farmers anticipate and 

respond to future conditions. With the increase in frequency of extreme climate events 

causing environmental damage and threatening food security, the agricultural industry 

must strategically manage and apply its resources to maximize harvest output and avoid 

crop failure. 

In Chapter 2, RF and SVM regression methods were used to predict the AGB of winter 

wheat, utilizing UAV multispectral MicaSense bands, associated VIs, plant biophysical 

parameters (plant height and LAI), and plant biochemical parameters (nutrient content 

levels and ratios). Both single-date and multi-date data were tested, and the best model's 

variable importance plot was used to identify key variables related to winter wheat AGB 

by variable selection based on the importance ranking. The result allowed evaluation of 

whether biochemical parameters were effective additions to the prediction models, as 

they were not commonly used in a biomass estimation study. 

In Chapter 3, RF and SVM regression methods were used to predict the yield of winter 

wheat, utilizing VIs derived from VENµS satellite imagery, which offers higher spatial 

and temporal resolution compared to other popular satellites. The data were analyzed 

based on each growth stage of winter wheat by categorizing them individually and in 

combinations of growth stages. The variable importance plot of the best performing 
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model highlighted the key VIs at different growth stages that were strongly related to 

winter wheat yield. This analysis identified the most effective VENμS satellite bands and 

growth stages for yield prediction. A yield prediction map was then created and 

compared to the observed yield to visualize the prediction model's effectiveness in 

capturing field variations. 

4.2 Conclusions 

The research objectives for this thesis were completed in two separate journal articles 

detailed in Chapters 2 and 3, here are the responses to each as follows: 

i. In Chapter 2, machine learning RF and SVR models were adopted to estimate 

winter wheat AGB using UAV multispectral data, plant biophysical, and plant 

biochemical parameters. The testing was first conducted across single- and multi-

date datasets using all of the available variables. The accuracy of the machine 

learning models generally increased as more dates of datasets were used, and he 

best performing model was the RF model, which achieved an R2 = 0.80 and 

RMSE = 152.71 g/m2 using all four dates of data. The SVR models consistently 

showed slightly lower performance across different datasets, with the best 

performing SVR model achieving an R2 = 0.77 and RMSE = 156.61 g/m2 using 

the last three of the four dates of data. Afterwards, the variable importance plots 

for each of the best performing machine learning regression models were then 

utilized for variable selection based on their ranking to reduce redundancy and 

complexity in the regression models. 

ii. In Chapter 2, variable selection was performed after determining the best date 

(growth stage) combinations for the RF and SVR models. The overall best-

performing model was RF, which employed a combination of the top 20 

variables. This model achieved an R2 = 0.81 and an RMSE of 149.95 g/m2, 

generally outperforming the SVR models. This was accomplished using data from 

all four dates (growth stages), ranging from the heading stage to the ripening 

stage. Among the 20 variables, there was a close to even split between spectral 

variables and nutrient content variables. 
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The variable importance plots for both the best-performing RF and SVR models 

showed that NDVI, ISR, ARVI, and RVI were consistently among the top four 

most important variables in relation to AGB. In the RF model, macronutrients 

such as N and K were ranked 6th and 9th, respectively, while in the SVR model, K 

and P ranked 5th and 6th, respectively. 

iii. In Chapter 3, machine learning RF and SVR models were adopted to predict 

winter wheat yield using VIs derived from VENμS satellite imagery. The testing 

was conducted across the growth stages of the plants, from when they first 

become large enough to be detected to maturity. The best performing model was 

the SVR model, which achieved an R2 = 0.86 and RMSE = 0.3925 t/ha, 

outperforming the best performing RF model, which achieved an R2 = 0.83 and 

RMSE = 0.4257 t/ha. The variable importance plot for the best performing model 

was further studied to understand the effectiveness of VIs at different growth 

stages contributing to the prediction. 

iv. In Chapter 3, the best performing prediction model was RF utilizing the "all data" 

dataset, which included satellite imagery captured from the winter wheat’s 

tillering stage to early fruit development stage. This indicates that the early fruit 

development stage is the optimal time to use VENμS satellite imagery for yield 

prediction. Generally, fairly accurate predictions can be produced using 

combinations of datasets from the post-heading stage. The results also show that 

VENμS is a slightly superior alternative to the publicly available satellite data 

from Sentinel-2, as detailed in the conclusion section of Chapter 3. 

The variable importance plot of the best performing model revealed that NDRE-1, 

NDRE-2, REP, and ARVI from multiple growth stages constituted 17 of the top 

20 ranked VI variables. The common characteristics of NDRE-1, NDRE-2, and 

REP, the major contributors to the prediction, are that they all utilized bands 8, 9, 

and 10 of VENμS, which are all in the red-edge and NIR regions of the spectrum. 

Using the prediction model, a yield prediction map was created and compared 

with the observed yield map to evaluate the spatial variations of yield and 
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visualize the ability of the prediction model to capture extreme values in the 

observed yield. 

4.3 Significance of the Research 

In Chapter 2, the novelty of the research lay in the ability to use plant nutrient content 

levels and ratios as predictors of winter wheat AGB, demonstrating them to be among the 

most important predictors in the study. In the current research field, these parameters are 

not widely used, potentially due to the lack of access to plant laboratory analyses. 

Previous studies have also shown that senescence can cause a decline in model 

performance when predicting biomass (Sharma et al., 2022). Our study, utilizing a lower-

cost UAV multispectral camera setup combined with biophysical and biochemical 

parameters, particularly at the later growth stages of winter wheat post-flowering, 

demonstrates a cost-effective method to predict AGB. 

In Chapter 3, the effectiveness of VENμS satellite imagery in predicting winter wheat 

yield at a local, field scale was tested. Although the use of satellite imagery and machine 

learning for yield predictions has been widely studied, accurate yield prediction models 

have often been developed only on a regional scale due to challenges such as limited 

clear weather coverage and low spatial resolution (Hunt et al., 2019; Ma et al., 2022). The 

success of producing an accurate yield prediction model with VENμS imagery at a local, 

field scale highlights the potential of using high-resolution satellite imagery as an 

alternative to UAV-based imagery. This approach benefits farmers or researchers who 

lack the equipment to collect high-resolution multispectral data. 

4.4 Limitations and Future Work 

The limitations of the study varied between the approaches as Chapters 2 and 3 focused 

on different aspects of predicting crop productivity. However, both encountered the same 

fundamental limitation: the reliance of these machine learning regression models on 

existing datasets for validation. For biomass, it was in-situ destructive sampling, and for 

yield, it was at harvest. This inherent constraint reveals the possible gaps between 

predicted and observed results. These constraints emphasize the importance of 
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continuous calibration and testing of these models in diverse agricultural settings and 

across various crop cycles to maintain their dependability and precision. 

Data access was also a major limitation. Studies similar to the one conducted in Chapter 2 

often required in-situ measurements in the field, which are typically associated with 

intensive labor, costs, and conditions. UAV operations can also be disrupted by weather 

conditions, making it challenging to collect data in a timely manner when crop growth 

conditions can change within days. Access to high-quality satellite data can be difficult 

due to factors like cloud coverage. In Chapter 3, we noted that although VENμS data 

access is public and free, it does not provide worldwide coverage. As technology 

advances, future studies may consider using other high-resolution earth observing 

satellites as an alternative to some in-situ data collection, UAV imagery, and VENμS 

satellite imagery. Commercial satellites such as PlanetScope and WorldView-3 offer 

worldwide coverage of high-resolution satellite data, making them viable non-destructive 

alternatives for obtaining plant properties relevant to biomass and yield as discussed in 

Chapters 2 and 3. 

Random Forest and Support Vector Regression were the two machine learning 

techniques used in this thesis due to their overall ease of use and commonality in 

precision agriculture studies. However, adopting machine learning techniques generally 

bears the limitation of requiring very large training datasets for effective model building, 

not to mention the associated computational cost of processing the analysis and storing 

the large amounts of data. With the recent boom in the development of large language 

models and generative artificial intelligence (AI), future studies may be able to 

implement these advancements in machine learning, alleviating the computational cost of 

running complex analyses. 

Overall, promising results were discovered for both the aspects of crop productivity of 

winter wheat by integrating biochemical data in biomass estimation, as well as using 

VENμS derived VIs for yield prediction. The developed models need to be tested on 

additional datasets to determine their effectiveness and to better understand their 
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applicability and feasibility in precision agriculture. This further testing will help validate 

the models and potentially refine them for broader use in agricultural practices. 
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5 Appendices 

5.1 Appendix A – Fieldwork Photos 

 

Figure A-1. UAV flight mission conducted during the 2020 fieldwork at the wheat 

field. 
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Figure A-2. Equipment testing at the field with the LI-COR LAI-2200C 
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Figure A-3. AGB samples sorted in paper bags at each sample point. Contained in a 

backpack for ease of transport when walking in the field. 
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5.2 Appendix B – Data Samples 

 

Figure B-1. Example of biomass lab datasheet for sample points W4-01 to W4-16. 

Recorded on June 17th, 2022 
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Figure B-2. Example of plant analysis report for AGB biomass. Samples collected on 

June 17th, 2022. 
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Figure B-3. Example of LAI data on June 17, 2022. 

 



89 

 

 

Figure B-4. Example of raw yield data of the studied field in 2020. Generated from 

the yield sensor mounted on the harvester. Green represents high and red 

represents low. 
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5.3 Appendix C – Remote Sensing Imagery 

 

Figure C-1. Example of NDVI orthomosaic generated from imagery captured using 

a MicaSense multispectral camera mounted on a UAV on June 19th, 2022. Brighter 

equals higher NDVI value. 
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Figure C-2. Example of NDVI-1 orthomosaic generated from imagery captured by 

VENμS on June 16th, 2020. Brighter equals higher NDVI value.  
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5.4 Appendix D – Code 

library(randomForest) 

library(e1071) 

 

# Load data 

library(readxl) 

 

wheat <- read_excel("E:/data.xlsx") 

View(wheat) 

 

# Data split 

set.seed(001) 

train <- sample(nrow(wheat), 0.7*nrow(wheat), replace = F) 

trainset <- wheat[train,] 

validset <- wheat[-train,] 

 

# RF of training set 

RFmodelT <- randomForest(Biomass ~., data = trainset) 

 

# Variable importance plot 

varImpPlot(RFmodelT) 

plot(RFmodelT) 

   

# RF 

predictT <- predict(RFmodelT, newdata = trainset) 

predictV <- predict(RFmodelT, newdata = validset) 

 

# RF metrics 

rmsemodT <- sqrt(mean((predictT - trainset$Biomass)^2)) 

rmsemodV <- sqrt(mean((predictV - validset$Biomass)^2)) 

 

RsqRFmodT <- lm(trainset$Biomass ~ predictT, data = trainset) 

RsqRFmodV <- lm(validset$Biomass ~ predictV, data = validset) 

 

# SVM 

SVRmodelT <- svm(Biomass ~., data = trainset) 

 

predictTsvr <- predict(SVRmodelT, newdata = trainset) 

predictVsvr <- predict(SVRmodelT, newdata = validset) 

 

# SVM metrics 
rmsemodTsvr <- sqrt(mean((predictTsvr - trainset$Biomass)^2)) 

rmsemodVsvr <- sqrt(mean((predictVsvr - validset$Biomass)^2)) 

 

RsqSVRmodT <- lm(trainset$Biomass ~ predictTsvr, data = trainset) 

RsqSVRmodV<- lm(validset$Biomass ~ predictVsvr, data = validset) 

Figure D-1. R code of Random Forest and Support Vector regression models used in 

AGB estimation. 
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library(randomForest) 

library(e1071) 

library(caret) 

library(parallel) 

library(doParallel) 

library(kernlab) 

 

# Load data 

csv_path <- "E:/data.csv" 

wheat <- read.csv(csv_path, fileEncoding="UTF-8-BOM") 

 

# Data split 

set.seed(001) 

trainIndex <- createDataPartition(wheat$Paul, p = 0.7, list = FALSE) 

trainset <- wheat[trainIndex, ] 

validset <- wheat[-trainIndex, ] 

 

# Set up parallel processing 

numCores <- detectCores() - 1 

cl <- makeCluster(numCores) 

registerDoParallel(cl) 

 

# Define cross-validation 

control <- trainControl(method = "cv", number = 10) 

 

# Train Random Forest model with cross-validation 

RFmodel <- train(Paul ~ ., data = trainset, method = "rf", trControl = control) 

RFmodel 

 

# Variable importance plot 

varImpPlot(RFmodel$finalModel) 

plot(RFmodel$finalModel) 

 

# RF predictions and evaluation 

predictTrain <- predict(RFmodel, newdata = trainset) 

predictValid <- predict(RFmodel, newdata = validset) 

 

# RMSE for RF 

rmseTrain <- sqrt(mean((predictTrain - trainset$Paul)^2)) 

cat("Training RMSE for RF:", rmseTrain, "\n") 

rmseValid <- sqrt(mean((predictValid - validset$Paul)^2)) 

cat("Validation RMSE for RF:", rmseValid, "\n") 

 

# R2 for RF 

R2Train <- cor(trainset$Paul, predictTrain)^2 

cat("Training R-squared for RF:", R2Train, "\n") 

R2Valid <- cor(validset$Paul, predictValid)^2 

cat("Validation R-squared for RF:", R2Valid, "\n") 

 

# Train SVR model with cross-validation 

SVRmodel <- train(Paul ~ ., data = trainset, method = "svmRadial", trControl = control) 

SVRmodel 

 

# Predictions and evaluation for SVR 

predictTrainSVR <- predict(SVRmodel, newdata = trainset) 

predictValidSVR <- predict(SVRmodel, newdata = validset) 
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# RMSE for SVR 

rmseTrainSVR <- sqrt(mean((predictTrainSVR - trainset$Paul)^2)) 

cat("Training RMSE for SVR:", rmseTrainSVR, "\n") 

rmseValidSVR <- sqrt(mean((predictValidSVR - validset$Paul)^2)) 

cat("Validation RMSE for SVR:", rmseValidSVR, "\n") 

 

# R2 for SVR 

R2TrainSVR <- cor(trainset$Paul, predictTrainSVR)^2 

cat("Training R-squared for SVR:", R2TrainSVR, "\n") 

R2ValidSVR <- cor(validset$Paul, predictValidSVR)^2 

cat("Validation R-squared for SVR:", R2ValidSVR, "\n") 

Figure D-2. R code of Random Forest and Support Vector regression models used in 

yield prediction. 
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5.5 Appendix E – Copyrighted Material & Permissions 

Chapter 2, published under MDPI Drones, is licensed under an open access Creative 

Commons CC BY 4.0 license, meaning that anyone may download and read the paper for 

free. In addition, the article may be reused and quoted provided that the original 

published version is cited. 

 

 

Figure E-1. Certificate of publication for chapter 2 
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Chapter 3, published under MDPI Remote Sensing, is licensed under an open access 

Creative Commons CC BY 4.0 license, meaning that anyone may download and read the 

paper for free. In addition, the article may be reused and quoted provided that the original 

published version is cited. 

 

FigureE-2. Certificate of publication for chapter 3 
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