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ABSTRACT

In this thesis, a new univariate-multivariate portmanteau test is derived. The

proposed test statistic can be used for diagnostic checking ARMA , VAR , FGN ,

GARCH , and TAR time series models as well as for checking randomness of series

and goodness-of-fit VAR models with stable Paretian errors. The asymptotic distri-

bution of the test statistic is derived as well as a chi-square approximation. However,

the Monte-Carlo test is recommended unless the series is very long. Extensive sim-

ulation experiments demonstrate the usefulness of this test and its improved power

performance compared to widely used previous multivariate portmanteau diagnostic

check.

The contributed R package portes is also introduced. This package can utilize

multi-core CPUs often found in modern personal computers as well as a computer

cluster or grid. The proposed package includes the most important univariate and

multivariate diagnostic portmanteau tests with the new test statistic given in this

thesis. It is also useful for simulating univariate/multivariate data from nonseasonal

ARIMA /VARIMA process with finite or infinite variances, testing for stationarity and

invertibility, and estimating parameters from stable distributions. Many illustrative

applications are given.

In this thesis, it has been shown that the classical ordinary least squares regression

may produce smaller p-values than it should due to the lack of statistical independency

in the fitted model which may invalidate the statistical inferences. The Poincaré plots

are suggested to check for such hidden positive correlations.

KEY WORDS: Diagnostic check, Portmanteau test, Monte-Carlo significance test,

Residual autocorrelation function, VARMA models, FGN models, GARCH models,

Stable distributions, Parallel computing and multi-core systems, Poincaré plots, R.
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INTRODUCTION

After identification and estimation of the parameters in a fitted model, the good-

ness of fit test is the next most important step for testing the selected model. In time

series analysis, we assume that the series is stationary with white noise innovations.

This implies that a good fitted model must produce residuals that are approximately

uncorrelated in time. Box and Pierce (1970) show that the asymptotic distribution of

the residual autocorrelations can be utilized to check the validity of this assumption

under the ARMA models. They introduced to the literature the overall goodness-

of-fit test on the residuals autocorrelations up to lag m. This test statistic is called

portmanteau test. Since then there evolves many literature on portmanteau tests

for ARMA and GARCH models (Ljung and Box, 1978; McLeod and Li, 1983; Peňa

and Rodriguez, 2002; Rodŕıguez and Ruiz, 2005; Peňa and Rodriguez, 2006). The

portmanteau test is extended to the multivariate VARMA models by Chitturi (1974,

1976); Hosking (1980); Li and McLeod (1981); Francq and Räısi (2007) and to the

MGARCH models by (Li and Mak, 1994; Ling and Li, 1997). Lin and McLeod (2006)

introduce the Monte-Carlo portmanteau test and show that this test provides a test

with the correct size. They show that the Monte-Carlo version of Peňa and Rodriguez

(2002) is often more powerful than its competitors. Lin and McLeod (2008) extends

the Monte-Carlo test of Peňa and Rodriguez (2002) to the ARMA models with stable

Paretian errors.

In Chapter 1 of this thesis we introduce a new univariate-multivariate portman-

teau test based on the approximation chi-square distribution and the Monte-Carlo

procedures. The new test statistic may be considered an extension of the univariate

portmanteau test statistics suggested by Peňa and Rodriguez (2002); Lin and McLeod

1



(2006, 2008). Simulation experiments demonstrate that the proposed test statistic is

the most powerful test with the correct size.

In Chapter 2, the portmanteau tests for time series models, portes, R package

is introduced. The Simple Network of Workstations, snow, R package for parallel

computing is implemented in this package. Many applications with this package are

given.

In Chapter 3, the Poincaré plots are suggested as a tool for checking the possi-

bility of lack of statistical independence in the observations due to positive hidden

correlations. It is found via simulations that the test statistics based on the classical

ordinary least squares regression may overstate the significance level due to lack of

statistical independence in the observations.

2
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IMPROVED MULTIVARIATE PORTMANTEAU TEST

Chapter 1

IMPROVED MULTIVARIATE PORTMANTEAU TEST

1.1 INTRODUCTION

The VARMA (p, q) model for a k-dimensional mean zero time seriesZt = (Z1,t, . . . , Zk,t)
′

can be written as

Φ(B)Zt = Θ(B)at, (1.1)

where Φ(B) = Ik − Φ1B − · · · − ΦpB
p,Θ(B) = Ik − Θ1B − · · · − ΘqB

q, Ik is

the identity matrix of order k, the coefficient matrices are, Φ` = (φi,j,`)k×k, ` =

1, . . . , p; Θ` = (θi,j,`)k×k, ` = 1, . . . , q and B is the backshift operator on t. Let

β = (vec Φ1, . . . , vec Φp, vec Θ1, . . . , vec Θq) be the vector of true parameters, where

vec denotes the matrix vectorization function. We assume that an efficient estimation

algorithm such as maximum likelihood is used to produce the corresponding estimate

β̂ so that β̂ − β = Op(n
−1/2). The white noise process, at = (a1,t, . . . , ak,t)

′, is

assumed independent normal with mean zero and covariance matrix, E(ata
′
t−`) =

δ`Γ0, where Γ0 is the innovation covariance matrix and δ` = 1 or 0 according as ` = 0

or ` 6= 0. The assumption of normality may be relaxed to that of strong white noise

so that at, t = 1, . . . , n are assumed to be independent and identically distributed

with mean zero and constant covariance matrix, Γ0. The model is assumed to be

stationary, invertible, and identifiable (Box et al., 2008, §14.2). After fitting this

model to a series of length n, the residuals, ât = (â1,t, . . . , âk,t)
′, t = 1, . . . , n may

be estimated and used to check the model assumption that the innovations are white

5



noise, that is, to test the null hypothesis that

H0 : Γ` = 0, ` = 1, . . . ,m, (1.2)

where Γ` = Cov {at,at−`} and m is chosen large enough to cover all lags, `, of

interest. Several versions of the multivariate portmanteau test have been developed

for this purpose (Li, 2004).

In the next two subsections, brief reviews are given of previous multivariate port-

manteau tests as well as the univariate versions of the generalized variance test of

Peňa and Rodriguez (2002, 2006). In Section 1.2, the multivariate extension of the

generalized variance test of Peňa and Rodriguez (2002) is discussed and its asymptotic

distribution is derived. As in the univariate case (Peňa and Rodriguez, 2002, Equation

9), it is shown in Equation 1.18 that the stronger the multivariate autocorrelation,

the smaller the generalized variance. A chi-square approximation is suggested but for

most purposes it is recommended to use the Monte-Carlo testing procedure that is

described in Section 1.2.2. Simulation experiments in Section 1.3, demonstrate the

improvement in power over the widely used previous multivariate portmanteau test.

Illustrative applications are discussed in Section 1.4.

1.1.1 Multivariate portmanteau tests

The portmanteau test statistics, Qm and Q̃m and others, discussed in this section are

all asymptotically χ2
k2(m−p−q) as n→∞. It is also assumed that m > p+ q is fixed

and that m large enough so that Theorem 5 in Li and McLeod (1981) holds.

Hosking (1980) defined the residual autocorrelation matrix,

R̂` = L̂′Γ̂`L̂, (1.3)

6



where Γ̂` = n−1∑n
t=`+1 âtâ

′
t−`, Γ̂−` = Γ̂′`, ` ≥ 0 and L̂ is the lower triangular

Cholesky decomposition of Γ̂−1
0 . The multivariate portmanteau test statistic may be

written,

Qm = n
m∑
`=1

r̂′`(R̂
−1
0 ⊗ R̂−1

0 )r̂`, (1.4)

where r̂` = vec R̂′` is a row vector of length k2 formed by stacking the rows of R̂`, ⊗

is the Kronecker product, and m represents the number of lags being tested. In the

univariate case, Qm is identical to Box-Pierce portmanteau statistic (Box and Pierce,

1970) and both statistics are asymptotically χ2
k2(m−p−q) (Hosking, 1980, 1981a).

Li and McLeod (1981) defined,

R̂
(†)
` = (r̂i,j(`))k×k, (1.5)

where r̂i,j(`) = γ̂i,j(`)/
√

(γ̂i,i(0)γ̂j,j(0)), i, j = 1, . . . , k, γ̂i,j(`) = n−1∑n
t=`+1 âi,tâj,t−`,

γ̂i,j(−`) = γ̂j,i(`), ` ≥ 0. Replacing R̂ by R̂(†) in Equation 1.4, another portman-

teau test statistic Q
(†)
m is obtained. The null distribution of Q

(†)
m is also asymptotically

χ2
k2(m−p−q). The definition of residual autocorrelations used in Equation 1.3 is equiv-

alent to the residual autocorrelations in Equation 1.5 if the residuals used Equation

1.5, ât, are replaced by the standardized residuals, L̂′ât.

Chitturi (1974) defined the residual autocorrelation matrix at lag `,

R̂
(‡)
` = Γ̂`Γ̂

−1
0 , (1.6)

and another portmanteau test statistic Q
(‡)
m is obtained by replacing R̂ by R̂(‡) in

Equation 1.4, and its null distribution is also asymptotically χ2
k2(m−p−q).

7



Hosking (1981a) noted that Qm = Q
(†)
m = Q

(‡)
m and the portmanteau test statistic

may be expressed simply in terms of the residual autocovariances,

Qm = n
m∑
`=1

tr (Γ̂′`Γ̂
−1
0 Γ̂`Γ̂

−1
0 ), (1.7)

where tr (·) denotes trace of a matrix. The multivariate portmanteau test statistic

is equivalent to a test based on the Lagrange multiplier (Hosking, 1981b; Poskitt and

Tremayne, 1982).

Hosking (1980) and Li and McLeod (1981) suggested modified versions of Qm so

that the expected value of the modified portmanteau statistic under the null hypoth-

esis is equal to k2(m− p− q) +Op(1/n) and showed that both of these modifications

are satisfactory when n and m are large enough. Simulation experiments suggest that

both these modified portmanteau tests work about equally well (Li, 2004, §3).

The modified portmanteau test of Hosking (1980) is given by,

Q̃m = n2
m∑
`=1

r̂′`(R̂
−1
0 ⊗ R̂−1

0 )r̂`/(n− `). (1.8)

In the univariate time series, the Q̃m test statistic approximately equal the Ljung-Box

statistic (Ljung and Box, 1978) and both statistics are asymptotically χ2
k2(m−p−q)

(Hosking, 1980, 1981a).

1.1.2 Univariate generalized variance portmanteau test

Peňa and Rodriguez (2002) proposed a univariate portmanteau test statistic,

D̂m = n

(
1− | R̂m |

1/m
)
, (1.9)

where | · | denotes the determinant and R̂m is the residual correlation matrix of order

8



m+ 1,

R̂m =


1 r̂11(1) . . . r̂11(m)

r̂11(1) 1 . . . r̂11(m− 1)
... . . .

. . .
...

r̂11(m) r̂11(m− 1) . . . 1

 . (1.10)

Peňa and Rodriguez (2002) derived the asymptotic distribution of D̂m as gamma

using the standardized values of residual autocorrelations. Li (2004, §2.7) noted

several interesting interpretations for this statistic. It was shown in simulation ex-

periments (Peňa and Rodriguez, 2002) that the D̂m statistic had better power than

the test of Ljung and Box (1978) in many situations. One problem noted by Lin and

McLeod (2006) is that the test statistic D̂m may not exist because, with the modified

version of the residual autocorrelations used, the residual autocorrelation sequence is

not always positive-definite or even non-negative definite. Furthermore, the size of

the test may not be accurate due to the asymptotic approximation (Li, 2004, p. 19).

To overcome these difficulties Lin and McLeod (2006) suggested using a Monte-Carlo

significance test and demonstrated that this approach provides a test with the correct

size and is often more powerful than the usual Ljung-Box test (Lin and McLeod, 2006,

Table 6).

Peňa and Rodriguez (2006) suggested taking the log of the (m+ 1)th root of the

determinant in Equation 1.10,

D̃m = −n(m+ 1)−1 log | R̂m | (1.11)

and they derived a gamma distribution approximation for this test statistic.

In the portmanteau tests based on the asymptotic distribution (Ljung and Box,

1978; Peňa and Rodriguez, 2002, 2006) not only is the size of the test inaccurate if

the series length n is not large enough but there is also a problem if m, the number of
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lags, is not large enough as well. The Monte-Carlo significance test approach does not

require any such assumption about m and has much better finite-sample properties

than tests based on the asymptotic distribution.

1.2 NEW MULTIVARIATE PORTMANTEAU TEST

The univariate residual autocorrelations in the Toeplitz matrix in Equation 1.10 are

replaced by, R̂`, ` = 1, . . . ,m in Equation 1.3,

R̂m =


Ik R̂1 . . . R̂m

R̂′1 Ik . . . R̂m−1
... . . .

. . .
...

R̂′m R̂′m−1 . . . Ik

 , (1.12)

where Ik = R̂0. The proposed multivariate portmanteau test statistic is

Dm = −n log |R̂m |. (1.13)

From Hadamard’s inequality for the determinant of a positive definite matrix,

|R̂m | ≤ 1. When there is no significant autocorrelation in the residuals, R̂` =

Op(n
−1
2 ) so R̂m is approximately block diagonal and hence |R̂m | ≈ 1.

On the other hand, when there is autocorrelation present, |R̂m | will be expected

to be smaller than 1. To see this we repeatedly apply the formula for the determinant

of a partitioned matrix (Seber, 2008, §14.1),

|R̂m | =
m∏
`=1

| Ik − R̂(`)R̂
−1
`−1 R̂

′
(`) |, (1.14)

where R̂(`) = [R̂1 : · · · : R̂`] is the k-by-`k block partitioned matrix. Then Σ̂` = Ik−

R̂(`)R̂
−1
`−1 R̂

′
(`)

corresponds to the error covariance matrix when a linear predictor of
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order ` is fit to L̂′ât using the previous ` values (Reinsel, 1997, Equation 3.15). Thus,

Equation 1.14 is a direct multivariate generalization of the well known univariate

decomposition of generalized variance into the product of the one-step ahead variances

of the linear minimum-mean-square error predictors (McLeod, 1977, p. 532),

| R̂m |=
m∏
`=1

σ̂2
` , (1.15)

where σ̂2
` is the mean-square error for a fitted linear predictor of order `. In this case,

R2
` = 1− σ̂2

` , where R2
` is the square of the multiple correlation for the order ` linear

predictor, and so (Peňa and Rodriguez, 2002, Equation 7),

| R̂m |=
m∏
`=1

(1−R2
` ). (1.16)

In the multivariate case,

η̂2
` = 1− | Ik − R̂(`)R̂

−1
`−1 R̂

′
(`) | (1.17)

is the proportion of the generalized variance that is accounted for by a linear predictor

of order `. From Equations 1.14 and 1.17, the corresponding multivariate equivalent

of Equation 1.16 is

|R̂m | =
m∏
`=1

(1− η̂2
` ). (1.18)

It follows from Equation 1.18 that |R̂m | < 1 and that the smaller the value of |R̂m |,

the more strongly autocorrelated the normalized residuals, L̂′ât, are.

Using the Chitturi (1974) multivariate residual autocorrelations, Equation 1.6,

the correlation matrix corresponding to Equation 2.10, R̂
(‡)
m , is defined by the block

matrix with (i, j)-block, R̂
(‡)
i−j for i, j = 1, . . . ,m + 1. This matrix is not symmetric

but |R̂m | =| R̂
(‡)
m |, so these multivariate autocorrelations could also be used.
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Multivariate autocorrelations are often defined as in Equation 1.5 (Box et al., 2008,

Equation 14.1.2). Using this definition, the residual autocorrelation matrix may be

written,

R̂
(†)
` = D̂−1/2Γ̂`D̂

−1/2, (1.19)

where D̂−1/2 = diag (γ̂
−1/2
1,1 (0), . . . , γ̂

−1/2
k,k (0)). The correlation matrix corresponding

to Equation 2.10 obtained by replacing R̂` by R̂
(†)
` may be denoted by R̂

(†)
` and the

corresponding generalized variance portmanteau statistic, | R̂(†)
m |. A similar decom-

position as given in Equation 1.18 shows that small values | R̂(†)
m | correspond to posi-

tive autocorrelation. On the other hand, when there is no autocorrelation present, the

off-block diagonal entries in the matrix R̂
(†)
m are Op(n

−1/2). So, | R̂(†)
m |≈| R̂

(†)
0 |m+1.

When the innovation variance matrix, Γ0, has large off-diagonal elements, | R̂(†)
0 |< 1.

Hence again | R̂(†)
m |= Op(r

m) for some r ∈ (0, 1). So, in both cases, autocorrelation

or no autocorrelation, | R̂(†)
m | tends to be small provided the innovation covariance

matrix is not diagonal. Numerical experiments confirmed that the test using D
(†)
m

and Dm are essentially equivalent when Γ0 is diagonal but in the non-diagonal case,

D
(†)
m does not provide a useful test.

1.2.1 Asymptotic distribution and approximation

In this section, the asymptotic distribution for Dm in Equation 1.13 is derived and an

approximation to this distribution is suggested. Since, as shown in Lin and McLeod

(2006, Figure 2) in the univariate case by simulation, the actual finite-sample distri-

bution for Dm converges slowly, the asymptotic distribution for Dm is not expected

to be of much use in diagnostic checking multivariate time series models unless n is

very large.

We use the following notation as in Hosking (1980, §4), Ψ(B) = Φ(B)−1Θ(B) =
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∑∞
i=0 ΨiB

i and Π(B) = Θ(B)−1 =
∑∞
i=0 ΠiB

i are matrix power series such that

the elements Ψi and Πi converge exponentially to zero as i→∞. Define

G =


G0 0 . . . 0

G1 G0 . . . 0
...

...
. . .

...

Gm−1 Gm−2 . . . Gm−p

 , (1.20)

and

H =


H0 0 . . . 0

H1 H0 . . . 0
...

...
. . .

...

Hm−1 Hm−2 . . . Hm−q

 , (1.21)

where Gr =
∑∞
i=0 Γ0Ψ′i ⊗ Πr−i and Hr = Γ0 ⊗ Πr.

Theorem 1. Assume that the model specified in Equation 1.1 has independent and

identically distributed innovations with mean zero and constant covariance matrix.

The model is fit to a series of length n using an n−1/2-consistent algorithm. After

obtaining the residuals defined in Equation 1.3 and the test statistic, Dm, in Equation

1.13, Dm is asymptotically distributed as

k2m∑
i=1

λiχ
2
1,i,

where χ2
1,i, i = 1, . . . , k2m are independent χ2

1 random variables and λ1, . . . , λk2m

are the eigenvalues of (Ik2 −Q)M , where M is k2m× k2m diagonal matrix

M =


mIk2 O . . . O

O (m− 1)Ik2 . . . O
...

...
. . .

...

O O . . . Ik2

 , (1.22)
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and

Q = X(X′W−1X)−1X′W−1 (1.23)

is an idempotent matrix with rank k2(p+ q), X is defined as k2m× k2(p+ q) matrix

(G−H), and W = Im ⊗ Γ0 ⊗ Γ0 is positive-definite symmetric.

Proof. From the decomposition in Equation 1.14, it follows that,

− n log |R̂m | = −n
m∑
`=1

log | Ik −A` |, (1.24)

where A` = R̂(`)R̂
−1
`−1 R̂

′
(`)

. Using the fact that | Ik −A` |=
∏k
i=1(1− λi(`)), where

0 < λi(`) < 1 are the eigenvalues of A`, ` = 1, . . . ,m,

− n log |R̂m | = −n
m∑
`=1

k∑
i=1

log(1− λi(`)). (1.25)

Expanding log(1− λi(`)) = −
∑∞
r=1 r

−1λri (`) and tr (A`) =
∑k
i=1 λi(`),

Dm = n
m∑
`=1

tr (A`) +Op(n
−1). (1.26)

One can verify that

tr (A1) = tr (R̂′1R̂1)

tr (A2) ≈ tr (R̂′1R̂1) + tr (R̂′2R̂2)

...

tr (Am) ≈ tr (R̂′1R̂1) + . . .+ tr (R̂′mR̂m),

(1.27)

so that,

Dm ≈ n

m∑
`=1

(m− `+ 1) tr (R̂′`R̂`). (1.28)
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Using the commutative property of trace,

Dm ≈ n

m∑
`=1

(m− `+ 1) tr (Γ̂′`Γ̂
−1
0 Γ̂`Γ̂

−1
0 ). (1.29)

It follows from Neudecker (1969, Equation 2.12),

Dm ≈ n
m∑
`=1

(m− `+ 1)( vec Γ̂`)
′(Γ̂−1

0 ⊗ Γ̂−1
0 ) vec Γ̂`,

= n( vec Γ̂)′(Im ⊗ Γ̂−1
0 ⊗ Γ̂−1

0 )M( vec Γ̂),

(1.30)

where vec Γ̂ = ( vec Γ̂1 . . . vec Γ̂m) is k2m× 1 column vector and M is k2m× k2m

diagonal matrix defined in Equation 1.22.

Hosking (1980, Theorem 1) showed that

√
n vec Γ̂ ∼ Nk2m(0, (Ik2m −Q)W ), (1.31)

where W−1 can be replaced by a consistent estimator Ŵ−1 = Im⊗ Γ̂−1
0 ⊗ Γ̂−1

0 , and

Q is the idempotent matrix of rank k2(p+ q) in Equation 1.23.

From the theorem on quadratic forms given by Box (1954, Theorem 2.1), and

Equations 1.30, 1.31, the asymptotic distribution of Dm is given by,

Dm →
k2m∑
i=1

λiχ
2
1, (1.32)

where → stands for convergence in distribution as n → ∞ and λ1, . . . , λk2m are the

eigenvalues of (Ik2m −Q)M .

1.2.1.1 Approximation

The upper percentiles of the cumulative distribution function in Equation 1.32 could

be evaluated by the Imhof (1961) algorithm. For the univariate case, Lin and McLeod

15



(2006, Table 2) showed that the convergence to the asymptotic distribution is very

slow. In the case of large-samples, an approximation based on Box (1954, Theorem

3.1) works well. Using this result, the test statistic in Equation 1.32 can be approx-

imated by aχ2
b , where a and b are chosen to make the first two moments agree with

those of exact distribution of Dm. Hence, a =
∑
λ2
i /
∑
λi and b = (

∑
λi)

2/
∑
λ2
i ,

where,
k2m∑
i=1

λi = tr [(Ik2m −Q)M ],

k2m∑
i=1

λ2
i = tr [(Ik2m −Q)M (Ik2m −Q)M ].

(1.33)

When p = q = 0, a = (2m + 1)/3 and b = 1.5k2m(m + 1)/(2m + 1). In the

VARMA (p, q) case, one degree of freedom is lost for each parameter so Dm is ap-

proximately distributed as aχ2
b , where

a =
2m+ 1

3
,

b =
3k2m(m+ 1)

2(2m+ 1)
− k2(p+ q).

(1.34)

1.2.2 Monte-Carlo significance test

Monte-Carlo significance tests, originally suggested by George Barnard (Barnard,

1963), are feasible for many small-sample problems (Marriott, 1979) and with modern

computing facilities these types of tests are increasingly feasible for larger samples and

more complex problems (Dufour and Khalaf, 2001). For a pure significance test with

no nuisance parameters, as is the case, for example, for simply testing a time series for

randomness, the accuracy of the Monte-Carlo procedure depends only on the number

of simulations (Dufour, 2006, Proposition 2.1).

In the case of diagnostic checking, the model parameters must be estimated
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and Dufour (2006, Proposition 5.1) has shown that, provided consistent estimators

are used, Monte-Carlo tests remain asymptotically valid. Since we assume n−1/2-

consistent estimators are used, the requirements for Dufour (2006, Proposition 5.1)

are met.

Simulations for Dm in the univariate case (Lin and McLeod, 2006, Table 3) as

well as our simulations for the multivariate case in Section 1.3.1, suggest the impact

of nuisance parameters is negligible. The p-value for all of the portmanteau test

statistics presented in this paper may be obtained using the Monte-Carlo method

outlined below. We use the statistic Dm in the description but Q̃m could be used

instead.

Step 1: Set N , the number of simulations. Usually, N ← 1000 but smaller values

may be used if necessary. By choosing N large enough, an accurate estimate of

the p-value may be obtained.

Step 2: After fitting the model and obtaining the residuals, compute the portman-

teau test statistic for lag m or possibly a set of lags such as ` = 1, . . . ,m,

where m ≥ 1. Typically m is chosen large enough to allow for possible high-

order autocorrelations. Denote the observed value of the test statistics by

D
(o)
` , ` = 1, . . . ,m.

Step 3: For each i = 1, . . . , N , simulate the fitted model, refit it, obtain the residuals

from this model, compute the test statistic, D
(i)
` , ` = 1, . . . ,m.

Step 4: For each `, ` = 1, . . . ,m, the estimated p-value is given by,

p̂ =
#{D(i)

` ≥ D
(o)
` , i = 1, 2, . . . , N}+ 1

N + 1
. (1.35)
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The approximate 95% margin of error for the p-value is, 1.96
√

p̂(1− p̂)/N .

The above algorithm is simply a restatement of the Monte-Carlo testing algorithm

given by Lin and McLeod (2006, §3) for the univariate case. Lin and McLeod (2006,

Table 3) demonstrate that the Monte-Carlo testing procedure has the correct size for

an AR (1) and this is verified for some VAR (1) models in Section 1.3.1.

Remark 1. In the Monte-Carlo test procedure it is assumed that the innovations

used in our simulations in Step 3 are normally distributed but any distribution with

constant covariance matrix could be used. In particular, using the empirical joint

distribution is equivalent to bootstrapping the multivariate residuals. Using boot-

strapped residuals is implemented in our software (Mahdi and McLeod, 2011).

Remark 2. A limitation of the Monte-Carlo diagnostic check is the assumption of

constant variance. Many financial time series exhibit conditional heteroscedasticity.

In practice this means that our test may overstate the significance level (Duchesne and

Lalancette, 2003). This means that when used for constructing a VAR or VARMA

model, the final fitted model may not be as parsimonious as a model developed using

a portmanteau test which takes into account conditional heteroscedasticity (Francq

and Räısi, 2007; Duchesne, 2006). Our Monte-Carlo portmanteau test can also be

used to test for the presence of multivariate conditional heteroscedasticity simply

by replacing the residuals by squared or absolute residuals. An illustration of this

procedure is given later in Section 1.4.2.

Remark 3. Francq and Räısi (2007) discuss a more general asymptotic multivariate

portmanteau diagnostic test that is valid assuming only that the innovations are

uncorrelated. This test requires a large sample though.

Remark 4. Lin and McLeod (2008) discuss the Monte-Carlo portmanteau test for

univariate ARMA with infinite variance. The Monte-Carlo method of Lin and McLeod
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(2008) for infinite-variance ARMA has been extended to the multivariate case as well

and is available in our R package (Mahdi and McLeod, 2011).

1.3 SIMULATION RESULTS

The purpose of our simulations is to demonstrate the improved power as well as the

correct size of the Monte-Carlo (MC) test using Dm. We also compare the empirical

Type 1 error rates for the aχ2
b -approximation discussed in Section 1.2.1.1.

1.3.1 Comparison of type 1 error rates

The empirical error rates have been evaluated under the Gaussian bivariate VAR (1)

process Zt = ΦiZt−1 + at, i = 1, . . . , 4 for the portmanteau test statistic Dm using

the MC and aχ2
b -approximation to evaluate the p-value. The covariance matrix of

at has unit variances and covariance 1/2 and the coefficient matrices are taken from

Hosking (1980) and Li and McLeod (1981),

Φ1 =

(
0.9 0.1

−0.6 0.4

)
,Φ2 =

(
−1.5 1.2

−0.9 0.5

)
,Φ3 =

(
0.4 0.1

−1.0 0.5

)
,Φ4 =

(
0.3 0.5

0.0 0.3

)
.

The empirical error 1% and 5% rates are shown in Table 1.1. For each entry in

Table 1.1, 103 simulations were done. The MC test also used N = 103.

The 95% confidence interval assuming a 5% rejection rate for each test is (3.6, 6.4).

At the 5% rejection rate, there are 17 entries outside this interval with the aχ2
b ap-

proximation and only one 1 with the Monte-Carlo test. In conclusion, size-distortion

with the Monte-Carlo test appears to be negligible but is sometimes present when the

aχ2
b approximation is used.

In Section 1.4, we found that there is a much larger discrepancy between the

p-values using the aχ2
b approximation and those using the Monte-Carlo test.
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α = 1% α = 5%

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

m aχ2
b MC aχ2

b MC aχ2
b MC aχ2

b MC aχ2
b MC aχ2

b MC

Φ1

5 1.2 0.8 1.2 0.9 1.0 0.7 5.9 4.6 5.1 4.7 4.8 4.8
10 1.2 0.7 1.0 0.8 0.8 0.9 5.2 4.5 4.4 5.2 3.7 4.2
15 1.3 0.7 1.1 0.7 0.8 0.9 5.7 5.4 4.5 4.4 3.6 3.8
20 1.6 0.7 1.1 0.7 0.8 0.9 6.8 5.8 4.8 4.0 3.8 3.8
25 2.0 0.8 1.2 0.7 0.9 0.8 7.8 4.9 5.3 4.1 4.0 4.0
30 2.5 1.1 1.4 0.7 0.9 0.8 9.0 4.8 5.8 3.7 4.4 4.1

Φ2

5 0.9 0.9 0.8 1.2 0.7 1.0 4.7 4.8 4.0 4.8 3.5 4.7
10 1.0 0.7 0.9 1.3 0.6 1.4 4.8 3.8 3.8 4.0 3.5 4.8
15 1.2 1.0 1.0 0.8 0.7 1.5 5.7 3.9 4.3 3.9 3.6 5.0
20 1.7 0.8 1.0 0.8 0.7 1.2 6.9 4.2 4.9 4.2 3.8 4.8
25 2.0 0.7 1.0 0.7 0.7 1.0 8.2 4.0 5.3 3.9 4.1 5.3
30 2.4 0.7 1.3 0.6 0.7 1.0 9.5 4.3 5.8 4.0 4.5 5.4

Φ3

5 0.7 0.9 0.9 1.2 0.6 1.0 4.0 4.6 3.6 5.7 3.2 5.2
10 1.0 0.7 0.8 1.5 0.7 0.8 4.5 4.8 3.8 6.5 3.1 5.3
15 1.1 0.9 0.8 0.8 0.6 1.0 5.1 4.2 4.1 6.3 3.3 5.1
20 1.5 0.9 0.9 0.7 0.7 1.3 6.6 4.3 4.6 6.2 3.6 5.2
25 1.9 0.9 1.0 0.7 0.8 1.0 7.7 4.5 5.3 5.4 4.0 5.3
30 2.3 0.8 1.2 0.8 0.8 1.3 9.0 4.2 5.9 5.5 4.3 5.0

Φ4

5 0.6 0.8 0.6 1.1 0.5 1.0 2.9 4.3 2.6 4.7 2.5 5.2
10 0.8 0.8 0.7 1.1 0.6 1.0 3.9 4.6 3.2 4.9 3.0 4.5
15 1.0 0.9 0.9 1.0 0.6 1.0 4.9 4.1 3.9 4.6 3.2 5.0
20 1.3 1.2 0.9 1.0 0.7 1.0 6.1 4.4 4.5 5.3 3.6 4.9
25 1.8 0.9 1.1 1.0 0.7 1.0 7.3 3.9 5.0 5.0 3.9 4.8
30 2.2 1.0 1.3 1.0 0.8 0.9 8.7 3.9 5.6 5.2 4.3 4.7

Table 1.1: The empirical 1% and 5% significance levels, in percent, comparing ap-
proximation, aχ2

b , and Monte-Carlo, MC, for the portmanteau test statistic Dm.
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1.3.2 Power comparisons

Only Monte-Carlo significance tests are used to compare the empirical power of 1%

and 5% level tests with Q̃m and Dm. Possible size-distortion sometimes makes power

comparisons between asymptotic tests and Monte-Carlo tests invalid. In our compar-

isons, VAR models are fitted to various multivariate models. The power of diagnostic

tests using Dm versus Q̃m are compared using simulation. In all comparisons, the

p-values were evaluated using the Monte-Carlo (MC) method with N = 103. We con-

sider a VAR (1) model fitted to simulated data generated from eight VARMA models

selected from well-known textbooks as cited below.

Model 1

Lütkepohl (2005, p. 17).

[
Z1,t

Z2,t

]
−

[
0.5 0.1

0.4 0.5

][
Z1,t−1

Z2,t−1

]
−

[
0 0

0.3 0

][
Z1,t−2

Z2,t−2

]
=

[
a1,t

a2,t

]

Γ0 =

(
1.00 0.71

0.71 1.00

)

Model 2

Brockwell and Davis (1991, p. 428).

[
Z1,t

Z2,t

]
−

[
0.7 0

0 0.6

][
Z1,t−1

Z2,t−1

]
=

[
a1,t

a2,t

]
−

[
0.5 0.6

−0.7 0.8

][
a1,t−1

a2,t−1

]

Γ0 =

(
1.00 0.71

0.71 2.00

)
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Model 3

Reinsel (1997, p. 81).

[
Z1,t

Z2,t

]
−

[
1.2 −0.5

0.6 0.3

][
Z1,t−1

Z2,t−1

]
=

[
a1,t

a2,t

]
−

[
−0.6 0.3

0.3 0.6

][
a1,t−1

a2,t−1

]

Γ0 =

(
1.00 0.50

0.50 1.25

)

Model 4

Tsay [2005 2nd ed, p. 371].

[
Z1,t

Z2,t

]
−

[
0.8 −2

0 0

][
Z1,t−1

Z2,t−1

]
=

[
a1,t

a2,t

]
−

[
−0.5 0

0 0

][
a1,t−1

a2,t−1

]

Γ0 =

(
1.00 0.71

0.71 1.00

)

Model 5

Reinsel (1997, p. 25).

[
Z1,t

Z2,t

]
=

[
a1,t

a2,t

]
−

[
0.8 0.7

−0.4 0.6

][
a1,t−1

a2,t−1

]

Γ0 =

(
4 1

1 2

)
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Model 6

Tsay [2005 2nd ed, p. 350].

[
Z1,t

Z2,t

]
=

[
a1,t

a2,t

]
−

[
0.2 0.3

−0.6 1.1

][
a1,t−1

a2,t−1

]

Γ0 =

(
2 1

1 1

)

Model 7

Lütkepohl (2005, p. 445).

[
Z1,t

Z2,t

]
−

[
0.5 0.1

0.4 0.5

][
Z1,t−1

Z2,t−1

]
−

[
0 0

0.25 0

][
Z1,t−2

Z2,t−2

]
=

[
a1,t

a2,t

]
−

[
0.6 0.2

0 0.3

][
a1,t−1

a2,t−1

]

Γ0 =

(
1.0 0.3

0.3 1.0

)

Model 8

Reinsel et al. (1992, p. 141).
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
Z1,t

Z2,t

Z3,t

 −


0.4 0.3 −0.6

0.0 0.8 0.4

0.3 0.0 0.0



Z1,t−1

Z2,t−1

Z3,t−1

 =


a1,t

a2,t

a3,t

−


0.7 0.0 0.0

0.1 0.2 0.0

−0.4 0.5 −0.1



a1,t−1

a2,t−1

a3,t−1



Γ0 =


1.0 0.5 0.4

0.5 1.0 0.7

0.4 0.7 1.0


The power of the portmanteau statistics Dm and Q̃m for nominal 1% and 5% tests

using the MC test are shown in Table 1.2. The power is evaluated for 104 simulations

for each parameter setting and N = 103 is used in the MC algorithm. It is clear

from Table 1.2 that the Dm test is often substantially more powerful than the Q̃m.

Only when n = 50 and m = 30 is the Q̃m test more powerful and this only occurs for

Models 2 and 4.
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α = 1% α = 5%
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Model m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m

1 5 14 10 44 25 87 71 35 24 68 53 96 90
1 10 8 6 32 13 77 47 24 16 55 36 90 73
1 15 6 5 22 10 68 32 18 14 46 30 85 61
1 20 4 4 18 9 58 25 13 13 39 26 80 52
1 30 3 3 12 7 45 18 10 12 30 23 68 43
2 5 43 22 98 78 100 100 70 48 100 94 100 100
2 10 35 15 97 52 100 99 60 38 99 82 100 100
2 15 25 13 95 44 100 95 50 35 99 75 100 100
2 20 19 12 90 37 100 91 43 34 97 70 100 99
2 30 10 12 81 31 100 82 28 37 93 64 100 97
3 5 94 57 100 100 100 100 99 84 100 100 100 100
3 10 88 26 100 94 100 100 96 64 100 99 100 100
3 15 80 15 100 78 100 100 93 48 100 97 100 100
3 20 70 13 100 61 100 100 88 39 100 91 100 100
3 30 49 10 99 37 100 98 73 36 100 77 100 100
4 5 26 10 80 36 100 90 51 27 93 62 100 98
4 10 15 8 62 21 99 68 37 24 84 48 100 89
4 15 9 6 47 17 97 52 27 22 74 40 99 81
4 20 7 7 38 14 93 44 20 22 65 37 98 73
4 30 4 6 25 10 86 34 13 22 53 33 95 65
5 5 99 49 100 100 100 100 99 68 100 100 100 100
5 10 95 25 100 84 100 100 95 46 100 93 100 100
5 15 88 19 100 66 100 100 90 36 100 81 100 100
5 20 80 16 100 50 100 100 83 32 100 72 100 100
5 30 60 15 100 35 100 96 69 30 100 60 100 97
6 5 79 23 100 83 100 100 83 45 100 90 100 100
6 10 67 13 100 49 100 99 74 32 100 69 100 100
6 15 55 11 100 36 100 95 62 28 99 57 100 96
6 20 43 9 99 26 100 85 54 28 98 52 100 92
6 30 25 8 96 17 100 69 40 27 95 44 100 84
7 5 12 8 44 24 90 72 29 21 65 49 97 91
7 10 7 4 30 11 80 45 19 14 53 33 92 74
7 15 5 4 22 8 70 30 14 12 43 27 86 61
7 20 3 3 17 6 62 24 13 11 35 22 82 53
7 30 3 4 12 5 47 17 11 11 27 19 72 41
8 5 55 12 85 58 100 99 77 28 96 85 100 100
8 10 40 7 76 33 100 91 65 19 92 61 100 99
8 15 26 6 63 21 100 79 52 17 84 48 100 94
8 20 16 5 51 16 100 67 38 14 76 40 100 90
8 30 5 5 31 11 98 47 15 13 55 33 100 78

Table 1.2: Empirical power in percent comparison of Dm and Q̃m for nominal 1%
and 5% tests. 104 simulations with N = 103.25



1.4 ILLUSTRATIVE APPLICATIONS

1.4.1 IBM and S&P index

Tsay (2010, Chapter 8) uses the portmanteau diagnostic test in constructing a VAR

model for the monthly log returns of IBM stock and the S&P 500 index for January

1926 to December 2008. So here, n = 996. Univariate analysis for both of these

series indicates the presence of conditional heteroscedasticity (Tsay, 2010, p. 408)

but for forecasting purposes, we may consider a VAR model rather than a more

complex VAR/GARCH model (Weiss, 1984; Francq and Räısi, 2007). The AIC selects

a VAR(5) model. We found that the BIC selects a VAR(1) model. Table 1.3 compares

the p-values for the portmanteau tests for the VAR(p) for p = 1, 3, 5.

These portmanteau tests suggest that the VAR(5) is adequate and that the VAR(1)

and VAR(3) both exhibit lack of fit. The VAR(4) is not shown but the results for

this model are similar to the VAR(3). As noted in Remark 2, the presence of condi-

tional heteroscedasticity means that the p-values in Table 1.3 are too small and this

implies that, possibly, a lower order model than the VAR(5) may be adequate. This

possibility could be investigated using the multivariate portmanteau test of Francq

and Räısi (2007).

Table 1.3 also shows that aχ2
b approximation for the p-value of Dm is inaccurate

whereas for Q̃m the asymptotic approximation agrees quite well with the Monte-Carlo

result.

1.4.2 Investment, income and consumption time series

The trivariate quarterly time series, 1960–1982, of West German investment, income,

and consumption was discussed by Lütkepohl (2005, §3.2.3). For this series, n = 92

and k = 3. As in Lütkepohl (2005, §4.3.1) we model the logarithms of the first
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VAR(1) VAR(3) VAR(5)

aχ2
b MC aχ2

b MC aχ2
b MC

m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m
5 0.2 * * * 10.4 0.6 1.7 0.6 NA NA 91.2 89.9
10 0.1 0.3 * 0.2 13.5 6.1 2.8 4.0 77.4 50.3 59.4 50.2
15 0.3 2.1 * 2.2 20.4 22.3 6.4 22.1 84.0 61.2 63.1 61.4
20 0.2 * * * 15.4 2.6 5.0 2.2 71.8 11.3 45.2 9.9
25 0.1 * * * 8.7 1.1 2.3 0.7 53.0 7.6 27.5 7.1
30 0.2 * * * 7.3 2.7 2.3 2.2 46.2 13.7 23.3 12.0

Table 1.3: IBM and S&P 500 Index Data. aχ2
b : approximation. MC: Monte-Carlo

N = 103. NA: not applicable. The p-values are in percent. The ∗ indicates a p-value
less than 0.1%.

differences. Using the AIC, Lütkepohl (2005, Table 4.5) selected a VAR (2) for this

data. Only lags m = 5, 10, 15 are used in the diagnostic checks since n is relatively

short. All diagnostic tests reject simple randomness, VAR (0). The Monte-Carlo tests

for VAR (1) suggests model inadequacy at lag 5. Table 1.4 supports the choice of the

VAR (2) model.

VAR(0) VAR(1) VAR(2)

aχ2
b MC aχ2

b MC aχ2
b MC

m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m Dm Q̃m
5 * * 0.1 0.1 3.1 4.7 2.2 4.8 33.1 29.8 31.2 38.0
10 * 0.6 0.3 0.5 4.0 14.7 7.0 12.7 49.5 48.0 54.2 50.6
15 * 0.2 0.4 0.6 4.1 13.7 17.7 12.4 32.8 34.6 56.2 35.5

Table 1.4: Trivariate West German Macroeconomic Series. aχ2
b : approximation.

MC: Monte-Carlo using 103 replications. The p-values are in percent and ∗ indicates
a p-value less than 0.1%.

As pointed out in Remark 2, we may test for multivariate heteroscedasticity by

using the squared residuals and Table 1.5 gives the p-values with this test for the

VAR(2) model. In this case, aχ2
b approximation for Dm as well as the asymptotic χ2
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approximation for Q̃m are quite inaccurate. Based on the Monte-Carlo tests there is

little evidence to reject that null hypothesis of constant variance.

aχ2
b MC

m Dm Q̃m Dm Q̃m
5 0.2 15.2 31.9 81.3
10 0.3 6.3 24.4 37.9
15 * * 12.2 1.6

Table 1.5: The residuals of the fitted VAR(2) model on West German Macroeconomic
series are tested for heteroscedastic effects. aχ2

b : approximation. MC: Monte-Carlo

using 103 replications. The p-values are in percent and ∗ indicates a p-value less than
0.1%.

28



1.5 CONCLUDING REMARKS

Box et al. (2008) stress the importance of constructing an adequate and parsimonious

model in which the residuals pass a suitable portmanteau diagnostic check. In fore-

casting experiments with monthly riverflow time series, Noakes et al. (1985) found

that simply using a criterion such as the AIC or BIC may provide a model that either

does not pass a suitable diagnostic check for randomness of the residuals or that may

have more parameters than necessary. Monthly riverflow time series models chosen

with the fewest number of parameters that pass the portmanteau diagnostic check

for periodic autocorrelation (McLeod, 1994) tend to produce better one-step ahead

forecasts (Noakes et al., 1985). McLeod (1993) suggested formulating the principle of

parsimony as an optimization problem: minimize model complexity subject to model

adequacy. In any case, in the overall approach suggested many years ago and pre-

sented in their recent book (Box et al., 2008), portmanteau diagnostic checks play a

crucial role in constructing time series models.

In Section 1.2.2, Remark 2, it was pointed out the Monte-Carlo test with Dm may

also be useful in diagnostic checking for multivariate conditional heteroscedasticity

when used with squared or absolute residuals. This test is implemented in Mahdi

and McLeod (2011). There is an extensive literature on testing residuals in AR and

ARMA models for conditional heteroscedasticity (Ling and Li, 1997; Duchesne and

Lalancette, 2003; Duchesne, 2004; Rodŕıguez and Ruiz, 2005; Duchesne, 2006; Chabot-

Hall and Duchesne, 2008). The power study presented Section 1.3.2 suggests that the

Dm with squared or absolute residuals may be useful. Peňa and Rodriguez (2002)

also suggested that using squared-residuals with their generalized-variance portman-

teau test would outperform the usual diagnostic check (McLeod and Li, 1983). Other

tests designed for particular alternatives might be expected to perform better than an
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omnibus portmanteau test such as Dm or Q̃m when these alternatives hold. For ex-

ample, Rodŕıguez and Ruiz (2005) developed a diagnostic check for heteroscedasticity

for the case of small autocorrelations.

The multivariate portmanteau diagnostic test developed by Francq and Räısi

(2007) does not require independent and identically innovations but only uncorrelated

innovations. This test would be appropriate for the bivariate example in Section 1.4.1.

Scripts for reproducing all tables in this paper are available with our freely avail-

able software (Mahdi and McLeod, 2011). This package can utilize multicore CPUs

often found in modern personal computers as well as a computer cluster or grid

(Schmidberger et al., 2009). On a modern eight core personal computer, the com-

putations for Tables 1.4 and 1.5 take about one minute. Table 1.3 takes about six

minutes due to the longer series length and increased number of lags. The simulations

reported in Section 1.3 were run on a computer cluster.
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PORTMANTEAU TESTS FOR TIME SERIES MODELS: R PACKAGE portes

Chapter 2

PORTMANTEAU TESTS FOR TIME SERIES MODELS:

R PACKAGE portes

2.1 INTRODUCTION

The multivariate vector integrated autoregressive moving average, VARIMA (p,d, q),

model with mean vector µ and deterministic equation a+bt for a k-dimensional time

series Zt = (Z1,t, . . . , Zk,t)
′ can be written as

Φ(B)D(B)(Zt − µ) = a+ bt+ Θ(B)et, (2.1)

where Φ(B) = Ik−Φ1B−· · ·−ΦpB
p,Θ(B) = Ik−Θ1B−· · ·−ΘqB

q and Ik is a

k×k identity matrix, Φ` = (φij,`)k×k, Θ` = (θij,`)k×k are coefficient matrices, andB

is a backshift operator such asBjZt = Zt−j . D(B) = diag [(1−B)d1 , . . . , (1−B)dk ]

is a diagonal k × k matrix, where d = (d1, . . . , dk), di ≥ 0. This states that each

individual series Zi, i = 1, . . . , k is differenced di times to reduce to a stationary

VARMA (p, q) series. It is assumed that the VARMA model is stationary, invertible,

and identifiable (Reinsel, 1997; Box et al., 2008). The coefficients a and b represent

the constant drift and the deterministic time trend respectively and the white noise

process et = (e1,t, . . . , ek,t)
′ is assumed to be uncorrelated in time with mean zero;

that is, E(et) = 0 and E(ete
′
t−`) = Γ0δ`, where Γ0 is the k × k positive definite

variance covariance matrix and δ` is the usual Kronecker delta with unity at ` = 0

and zero elsewhere.
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In univariate time series, i.e. when k = 1, the model in Equation 2.1 reduces to

be an integrated autoregressive moving average, ARIMA (p, d, q), model

φ(B)D(B)(Zt − µ) = a+ bt+ θ(B)et, (2.2)

where a and b, are the drift and the trend terms respectively, φ(B) = 1−φ1B−· · ·−

φpB
p, θ(B) = 1− θ1B − · · · − θqBq, D(B) = d is the differencing order, and et is the

white noise series with mean zero and variance σ2 (Hannan, 1969; Pfaff, 2006; Box

et al., 2008).

After fitting the ARIMA or VARIMA model using efficient estimators, the resid-

uals, êi,t where i = 1, . . . , k and t = 1, . . . , n can be obtained. We may then use

portmanteau goodness-of-fit test to test the adequacy of the fitted model by checking

whether the residuals are approximately white noise (Li, 2004).

The most popular portmanteau tests that were introduced by Box and Pierce

(1970); Ljung and Box (1978); Hosking (1980); Li and McLeod (1981), with a new

portmanteau generalized variance test based on the determinant of the standard-

ized multivariate residual autocorrelations (Peňa and Rodriguez, 2002, 2006; Lin and

McLeod, 2006; Mahdi and McLeod, 2011) are implemented in the R package portes.

In addition, the portmanteau tests for nonlinear structure in time series as proposed

by McLeod and Li (1983) and for Fractional Gaussian Noise, FGN , stochastic model

(McLeod et al., 2007b) that possesses long memory, are also implemented in this

package. Adler et al. (1998) studied ARMA models with identical and independent in-

novations from stable distribution with infinite variances and Lin and McLeod (2008)

developed a generalized variance portmanteau test for such models using Monte-Carlo

techniques and this test is also included in this package. Any other fitted model, such

as threshold autoregressive models, TAR, can be also tested for adequacy using this

36



proposed package (Cryer and Chan, 2010). Brief descriptions for different portman-

teau tests are given in Section 2.3.

The concern of using the portmanteau tests is that the accuracy of the asymptotic

distributions requires n and m large, where n denotes the length of the series and

m is the lag time value. The development of powerful computers, specially those

with multicore systems, in which the R packages Rmpi (Yu, 2002) and snow (Tier-

ney et al., 2011) work efficiently with parallel computing, has made Monte-Carlo

tests more affordable and recommended in such cases as simulation experiments show

that the Monte-Carlo tests are usually more accurate and powerful than asymptotic

distributions (Lin and McLeod, 2006; Mahdi and McLeod, 2011).

In Sections 2.2 and 2.4 we describe the main function, portest(), with some

illustrative applications explaining the Monte-Carlo version of Peňa and Rodriguez

(2002); Mahdi and McLeod (2011) portmanteau test with implementation to snow

package. This function can be used for testing whiteness of series as well as for

testing adequacy of fitted ARMA and VARMA models with finite or infinite variances,

GARCH effects, FGN models, or any other fitted model. To reproduce the results in

these sections, one should install the packages fGarch, FGN, snow, TSA, and vars, on

a computer with a minimum requirement of dual core. These packages are available

from the Comprehensive R Archive Network website, CRAN.

R> library("fGarch")

R> library("FGN")

R> library("snow")

R> library("vars")

The proposed R package portes is developed so one can simulate time series from

univariate ARIMA process or multivariate VARIMA process with innovations of finite
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or infinite variance from stable distribution (see Section 2.5.2). The simulated data

may has a deterministic constant drift and time trend term with non-zero mean.

It can be used for testing stationarity and invertibility and for estimating stable

parameters of data from stable distribution. The package portes is available from

the Comprehensive R Archive Network, CRAN, at http://CRAN.R-project.org/

package=portes version 1.08 and can be installed in the usual ways and is ready to

use after typing

R> library("portes")

2.2 THE MAIN FUNCTION: portest

In this section we describe the main function, portest(). This function implements

the portmanteau test statistics as given in Box and Pierce (1970); Ljung and Box

(1978); Hosking (1980); Li and McLeod (1981); McLeod and Li (1983) with a new

portmanteau test statistic based on the determinant of the standardized univariate

or multivariate residual autocorrelations (Peňa and Rodriguez, 2002, 2006; Lin and

McLeod, 2006, 2008; Mahdi and McLeod, 2011). The p-values can be evaluated using

the Monte-Carlo techniques and the approximate asymptotic chi-square distribution.

The syntax of portest() is listed below:

portest(obj,lags=seq(5,30,5),order=0,test=c("gvtest","BoxPierce",

"LjungBox","Hosking","LiMcLeod"),MonteCarlo=TRUE,nslaves=1,

NREP=1000,InfiniteVarianceQ=FALSE,SquaredQ=FALSE,

func=list(SimModel=NULL,FitModel=NULL),pkg=NULL,SetSeed=TRUE)
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2.2.1 Monte-Carlo goodness-of-fit test

The minimal required input of the function portest() is portest(obj). By select-

ing this argument, the generalized variance portmanteau statistic, gvtest(), that is

described in Section 2.3.5 will be implemented using the Monte-Carlo approach with

one thousand replications on a single CPU at lags 5, 10, 15, 20, 25, and 30.

As an illustrative example, consider the univariate series DEXCAUS. Data is avail-

able from our R Package portes and refer to daily Canada/US foreign exchanges rates

from January 04, 1971 to September 05, 1996. A complete description of the data can

be retrieved simply by typing ?DEXCAUS in R session. In this example, the portest()

function implements the Monte-Carlo version of the statistic gvtest with 103 repli-

cations using a single CPU and test for randomness of returns. The results suggest

that the returns series behaves like random series. With respect to computer time,

the CPU time equals to 49.61 seconds to get the output of this example.

R> data("DEXCAUS")

R> returns <- log(DEXCAUS[-1]/DEXCAUS[-length(DEXCAUS)])

R> portest(returns)

Lags Statistic df p-value

5 5.726436 4.090909 0.2237762

10 12.002784 7.857143 0.1478521

15 16.798015 11.612903 0.1598402

20 20.847948 15.365854 0.1718282

25 23.805231 19.117647 0.2227772

30 27.248101 22.868852 0.2477522

For the Monte-Carlo significance test, the function portest() with an object obj

of class "list" requires an additional two arguments, func and pkg as a minimal
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required inputs. The argument func is a list with two functions, SimModel() and

FitModel(). In this case, users should write their own R code of these two functions

and make sure that the class output of the FitModel() function is a "list" with at

least one components, res, where res stands for the residuals of the fitted model. This

list of outputs is then passes the argument of the function SimModel(). The output of

the function SimModel() should be a simulated univariate or multivariate time series

from the fitted model. The name of the R library that contains the function used

in the fitted model should be entered via the argument pkg (see the simple example

given in Section 2.4.7).

In general, the input argument obj must be an object with class "ar", "Arima",

"arima0", "varest", "FitAR", "FitFGN", "garch", "fGARCH", "numeric", "ts",

"matrix", "mts & ts", or "list". The classes "Arima", "arima0", "FitAR", "FitFGN",

"garch", "fGARCH", "numeric", and "ts" are used with univariate time series, whereas

the classes "matrix", and "mts & ts" are used with multivariate time series. The

functions ar(), ar.yw(), and ar.ols() with a returned object of class "ar" work

with univariate or multivariate time series while the function ar.burg() returns an

object with a class "ar" that can be used with the univariate time series only. The

class object "varest" is associated with the output of the function VAR() from the

R vars package under the multivariate time series case (Pfaff, 2010). Note that the

function arima() in the stats package and the functions auto.arima(), Arima()

in the forecast package have output object with class "Arima", whereas the func-

tion arima0() has output object with class "arima0". Note also that the functions

FitAR(), FitARp(), and FitARz() in the R package FitAR have output objects with

class "FitAR" (McLeod and Zhang, 2011). The function FitFGN() in the R package

FGN has output object with class "FitFGN" (McLeod et al., 2011) whereas the func-

tions garch() and garchFit() return objects with classes "garch" and "fGARCH"
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respectively (Trapletti, 2011; Wuertz and core team members, 2011). By default,

the argument MonteCarlo = TRUE in the main function, portest(), implements the

Monte-Carlo version of the portmanteau test statistic, whereas the approximation

asymptotic distribution of the portmanteau test statistic will be implemented by se-

lecting the argument MonteCarlo = FALSE. The argument nslaves = 1 is used with

one single CPU, whereas nslaves > 1 is used with multiple CPU’s, provided that the

snow package is loaded and the argument MonteCarlo = TRUE is selected (Tierney

et al., 2011),

For objects with classes "ar", "Arima", "arima0", "varest", "FitAR", "FitFGN",

"garch", "fGARCH", and "list", the Monte-Carlo goodness-of-fit test checks the

adequacy of the fitted model under the null hypothesis using the following steps:

1. Get the residuals from the input object obj and calculate the observed value of

the portmanteau test at lag m, say D0
m. If the argument SquaredQ = TRUE is

selected then the observed value of the portmanteau test will be calculated for

the square of residuals to test for nonlinearity structure in time series (McLeod

and Li, 1983).

2. Apply the function arima.sim(), SimulateFGN(), garchSim(), or varima.sim()

on the extracted estimated parameters from the ARMA , FGN , GARCH , or

VAR models respectively and simulate a new time series where the exact distri-

bution of the extracted residuals are used for bootstrapping the simulated in-

novations series. Users may write their own fitted and simulated functions and

pass these two functions via the argument func, provided that the output of the

fitted has an object obj with class "list". The argument InfiniteVarianceQ

= TRUE is used for models with innovations from stable distribution with infi-

nite variance, while the default one is used with innovations with finite variance
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(Adler et al., 1998; Lin and McLeod, 2008).

3. Use the same function used before to fit the same model to the simulated series.

4. Extract the residuals from this fitted model and calculate the simulated portman-

teau test as described in step 1, say Di
m, i = 1, 2, . . ..

5. Repeat Steps 2 to 4 NREP times, where NREP is an argument represents the number

of replications needed to use in Monte-Carlo test.

The Monte-Carlo p-values associated with the different lag values (Dufour, 2006;

Davison and Hinkley, 1997, Chapter 4) are calculated using the following formula

p-value =
#{Di

m ≥ D0
m, i = 1, 2, . . . , NREP}+ 1

NREP + 1
(2.3)

We investigate the timing for the function portest() based on the Monte-Carlo

significance test for univariate and multivariate time series of lengths n = 100, 500, 1000.

In the univariate case, we generate AR (1) series and then compute the elapsed AR (1)

fitted time based on the contributed R functions, FitAR(), ar(), arima(), arima0(),

Arima(), and auto.arima(). In the multivariate series we consider the series di-

mensions k = 2, 3, 4 generated from the VAR (1) process and the computed time is

compared between the fitted VAR (1) model using the functions VAR() and ar.ols().

In addition to this, we compute the elapsed time of fitting GARCH models using

the functions garch() and garchFit() as well as FGN models using the function

FitFGN().

The times reported in Tables 2.1, 2.2, and 2.3 were achieved on a 2.1 GHz intel(R)

Core(TM) i3 CPU running Windows 7.
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nslaves n FitAR() ar() arima() arima0() Arima() auto.arima()

1 100 72.93 68.59 82.11 82.37 82.53 82.82
1 500 73.21 68.94 91.16 91.46 91.61 91.11
1 1000 74.96 69.59 104.8 105.11 105.16 210.83

4 100 19.54 17.39 22.27 21.01 22.13 21.83
4 500 18.78 17.87 24.43 22.98 24.40 25.06
4 1000 19.39 17.91 27.51 26.15 27.44 52.15

Table 2.1: CPU time in seconds. The R functions FitAR(), ar(), arima(), arima0(),
Arima(), and auto.arima() are used to fit the AR (1) model to univariate time series
of lengths n = 100, 500, 1000 and the portest() function is applied on the fitted
model based on 103 replications of Monte-Carlo test. nslaves denotes the number of
CPU’s are used.

VAR() ar.ols()

nslaves n k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

1 100 117.94 127.58 139.29 109.39 112.78 117.16
1 500 329.39 344.34 361.16 319.20 327.06 334.57
1 1000 359.97 378.68 401.02 346.50 355.69 365.16

4 100 31.70 34.34 35.63 25.65 26.66 27.82
4 500 77.19 81.75 87.01 68.76 71.11 72.70
4 1000 85.23 93.54 101.65 74.91 77.43 80.05

Table 2.2: CPU time in seconds. The R functions VAR() and ar.ols() are used to fit
the VAR (1) model to series of lengths n = 100, 500, 1000 with dimensions k = 2, 3, 4.
The portest() function is applied on the fitted model based on 103 replications of
Monte-Carlo test. nslaves denotes the number of CPU’s are used.

2.2.2 Monte-Carlo testing for randomness

When the object obj has a class "numeric", "ts", "matrix", or "mts & ts" provided

that MonteCarlo = TRUE is selected, the function portest() implements the Monte-

Carlo techniques for testing the randomness behaviors of the object obj as follows,

1. Treat the object obj as residuals and calculate the observed value of the portman-

teau as described in Step 1 before. The argument SquaredQ = TRUE maybe

selected if one need to check for nonlinearity structure.
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nslaves n garch() garchFit() FitFGN()

1 100 137.27 240.39 77.08
1 500 164.24 346.9 90.14
1 1000 198.08 458.43 121.14

4 100 38.83 62.35 20.39
4 500 45.35 83.53 22.59
4 1000 53.77 119.73 29.98

Table 2.3: CPU time in seconds. Univariate time series of lengths n = 100, 500, 1000
are generated from normal process and R functions garch() and garchFit() are
used to fit the GARCH (1,1) model, whereas the function FitFGN() is used to fit
FGN model. The portest() function is applied on the fitted model based on 103

replications of Monte-Carlo test. nslaves denotes the number of CPU’s are used.

2. If InfiniteVarianceQ = TRUE then simulate an innovation series with infinite

variance from stable distribution. Otherwise, simulate a white noise series from

normal distribution with mean zero and estimated covariance obtained from the

object obj.

Step 2 will be repeated NREP times as described before. Each time, the simulated

portmanteau test is calculated for the simulated series from step 2 and compared to

the observed one. The Monte-Carlo p-values associated with the different lag values

are calculated as in Equation 2.3 before.

Note that the argument lags = seq(5, 30, 5) is a vector of lag auto-cross cor-

relation coefficients used for test statistic that can be changed to any desirable vector

of positive integers. Note also that the argument order is not used in Monte-Carlo

version of the test statistic and used only for asymptotic distribution approach with

object class "numeric", "ts", "matrix", or "mts & ts".
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2.2.3 Asymptotic distribution significance test

By setting the argument MonteCarlo = FALSE in the main function, portest(), the

portmanteau test statistic based on the asymptotic chi-distribution as we will describe

in Section 2.3 will be implemented.

The argument order is needed to determine the degrees of freedom for the chi-

distribution in such a case, but it is automatically determined if the object obj is

a fitted time series model with class "ar", "Arima", "arima0", "varest", "FitAR",

"FitFGN", "garch", "fGARCH", or "list".

In general order = p + q represents the orders of the ARMA /VARMA models.

The default argument order = 0 is used for the case of random series, garch

effects, or fractional gaussian noise. The argument lags is described as before while

the other arguments are not used in this case.

Note that for both types, Monte-Carlo and asymptotic distribution, when SquaredQ

= TRUE, then apply the test on the squared values. This checks for Autoregressive

Conditional Heteroscedastic, ARCH, effects. When SquaredQ = FALSE, then apply the

test on the usual residuals.

As an illustrative example, consider again the returns of the DEXCAUS data. We

apply the portest() function using the asymptotic chi-square method, and the results

support the claim that the returns series behaves like random series.

R> portest(returns, MonteCarlo = FALSE)

Lags Statistic df p-value

5 5.726436 4.090909 0.2302146

10 12.002784 7.857143 0.1431200

15 16.798015 11.612903 0.1395903
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20 20.847948 15.365854 0.1566299

25 23.805231 19.117647 0.2090410

30 27.248101 22.868852 0.2396022

2.3 COMPUTATION PORTMANTEAU TESTS

2.3.1 Box and Pierce portmanteau test

In the univariate time series, Box and Pierce (1970) introduced the portmanteau

statistic

Qm = n
m∑
`=1

r̂2
` (2.4)

where r̂` =
∑n
t=`+1 êtêt−`/

∑n
t=1 ê

2
t , and ê1, . . . , ên are the residuals. This test statis-

tic is implemented in the R function BoxPierce() and can be used in the multivariate

case as well. It is approximately chi-square distribution with k2(m− (p+ q)) degrees

of freedom where k represents the dimension of the time series. The usage of this

function is extremely simple:

BoxPierce(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function are as previously described.

Note that the function portest() with the arguments test = "BoxPierce",

MonteCarlo = FALSE, and order = 0 will the same results as the function BoxPierce().

The Monte-Carlo version of this test statistic is implemented in the function portest()

as an argument test = "BoxPierce" provided that MonteCarlo = TRUE is selected.
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2.3.2 Ljung and Box portmanteau test

Ljung and Box (1978) modified the Box and Pierce (1970) test statistic as follows:

Q̂m = n(n+ 2)
m∑
`=1

(n− `)−1r̂2
` . (2.5)

This test statistic is is also asymptotically chi-square with degrees of freedom k2(m−

p− q) and implemented in the R function LjungBox(),

LjungBox(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function are previously described.

In R, the function Box.test() was built to compute the Box and Pierce (1970) and

Ljung and Box (1978) test statistics only in the univariate case where we cannot use

more than one single lag value at a time. The functions BoxPierce() and LjungBox()

are more general than Box.test() and can be used in the univariate or multivariate

time series in conjunction with a vector of different lag values; as well, they can be

applied on an output object from a fitted model.

Note that the function portest() with the arguments test="LjungBox", MonteCarlo=FALSE,

and order=0 will the same results as the function LjungBox(). The Monte-Carlo ver-

sion of this test statistic is implemented in the function portest() as an argument

test = "LjungBox" provided that MonteCarlo = TRUE is selected.

2.3.3 Hosking portmanteau test

Hosking (1980) generalized the univariate portmanteau test statistics given in Equa-

tions 2.4 and 2.5 to the multivariate case. He suggested the modified multivariate

portmanteau test statistic
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Q̃m = n2
m∑
`=1

(n− `)−1r̂′`(R̂
−1
0 ⊗ R̂−1

0 )r̂` (2.6)

where r̂` = vec R̂′` is a 1 × k2 row vector with rows of R̂` stacked one next to

the other, and m is the lag order. The symbol ⊗ denotes the Kronecker product

(http://en.wikipedia.org/wiki/Kronecker_product), R̂` = L̂′Γ̂`L̂, L̂L̂′ = Γ̂−1
0

where Γ̂` = n−1∑n
t=`+1 êtê

′
t−` is the lag ` residual autocovariance matrix.

The asymptotic distributions of Q̃m is chi-squared with k2(m− p− q) degrees of

freedom. In portest package, this statistic is implemented in the function Hosking():

Hosking(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function is described as before. Note that the func-

tion portest() with the arguments test = "Hosking", MonteCarlo = FALSE, and

order = 0 will gives the same results of the function Hosking(). The Monte-Carlo

version of this test statistic is implemented in the function portest() as an argument

test = "Hosking" provided that MonteCarlo = TRUE is selected.

2.3.4 Li and McLeod portmanteau test

Li and McLeod (1981) suggested the multivariate modified portmanteau test statistic

Q̃
(L)
m = n

m∑
`=1

r̂′`(R̂
−1
0 ⊗ R̂−1

0 )r̂` +
k2m(m+ 1)

2n
(2.7)

which is asymptotically distributed as chi-squared with k2(m− p− q) degrees of

freedom. In portes package, the test statistic Q̃
(L)
m is implemented in the function

LiMcLeod(),

LiMcLeod(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),
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where the arguments of this function is described as before.

Note that the function portest() with the arguments test= "LiMcLeod", MonteCarlo=FALSE,

and order=0 will the same results as the function LiMcLeod(). The Monte-Carlo ver-

sion of this test statistic is implemented in the function portest() as an argument

test="LiMcLeod" provided that MonteCarlo = TRUE is selected.

2.3.5 Generalized variance portmanteau test

Peňa and Rodriguez (2002) proposed a univariate portmanteau test of goodness-of-fit

test based on the m-th root of the determinant of the Toeplitz residual autocorrelation

matrix of order m+ 1,

R̂m =


r̂0 r̂1 . . . r̂m

r̂−1 r̂0 . . . r̂m−1
... . . .

. . .
...

r̂−m r̂−m+1 . . . r̂0

 , (2.8)

where r̂0 = 1 and r̂−` = r̂`, for all `. They approximated the distribution of their pro-

posed test statistic by the gamma distribution and provided simulation experiments

to demonstrate the improvement of their statistic in comparison with the one that is

given in Equation 2.5.

Lin and McLeod (2006) introduced the Monte-Carlo version of this test as they

noted that it is quite often that the generalized variance portmanteau test does not

agree with the suggested Gamma approximation. They show that the Monte-Carlo

is more powerful than its competitors with the correct size level.

Peňa and Rodriguez (2006) suggested to modify the generalized variance test by

taking the log of the (m+ 1)-th root of the determinant of R̂m given in Equation 2.8.

They proposed two approximations by using the Gamma and Normal distributions

to the asymptotic distribution of this test and indicated that the performance of both
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approximations for checking the goodness-of-fit in linear models is similar and more

powerful for small sample size than the previous one.

Mahdi and McLeod (2011) extended this portmanteau test to the multivariate time

series and their simulation experiments illustrated and demonstrated the usefulness

of the Monte-Carlo test as well as its improved power performance compared to the

previously used multivariate portmanteau diagnostic checks.

Their new multivariate generalized portmanteau test statistic is

Dm = −3n(2m+ 1)−1 log | R̂m | (2.9)

where

R̂m =


Ik R̂1 . . . R̂m

R̂′1 Ik . . . R̂m−1
... . . .

. . .
...

R̂′m R̂′m−1 . . . Ik

 , (2.10)

The asymptotic null distribution is chi-quare with k2[1.5m(m+ 1)(2m+ 1)−1−p− q]

degrees of freedom, and it is implemented in the R function gvtest(),

gvtest(obj, lags = seq(5, 30, 5), order = 0, SquaredQ = FALSE),

where the arguments of this function are described as before.

Note that the function portest() with the arguments test="gvtest", MonteCarlo=FALSE,

and order=0 will the same results as the function gvtest(). The Monte-Carlo ver-

sion of this test statistic is implemented in the function portest() as an argument

test="gvtest" provided that MonteCarlo = TRUE is selected.

More simulation results including the simulation R code that we used to compare

the asymptotic distribution with the Monte-Carlo significance tests are available on

the online vignette documentation of the portes R package.
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2.4 APPLICATIONS

In this section we apply the generalized variance portmanteau test, gvtest, on some

real data using the approximation asymptotic distribution and the Monte-Carlo sig-

nificance test. For the Monte-Carlo significance test, we use the argument nslaves

= 4 on a personal computer with 4 CPU’s. Users may change this number to meet

the number of CPU’s that they want. We also include the R code used for calculating

the elapsed time in seconds for each Monte-Carlo test.

R> nslaves <- 4

2.4.1 Canadian Lynx trappings data

The first example make use of the univariate series of the logarithms of Canadian lynx

trappings from 1821 to 1934. Data is available from the R package datasets under the

name lynx. The AR (2) fitted model was selected based on the BIC criterion. The

asymptotic distribution and the Monte-Carlo version of Dm statistic are given in the

following R code for lags m = 5, 10, 15, 20, 25, 30.

R> lynxData <- log(lynx)

R> p <- SelectModel(lynxData, ARModel = "AR", Criterion = "BIC",

+ Best = 1)

R> fitlynx <- FitAR::FitAR(lynxData, p, ARModel = "AR")

R> gvtest(fitlynx)

Lags Statistic df p-value

5 5.984989 2.090909 0.054687987

10 10.036630 5.857143 0.115222212

15 21.447021 9.612903 0.014964682
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20 31.810564 13.365854 0.003100578

25 38.761595 17.117647 0.002040281

30 43.936953 20.868852 0.002252062

R> startTime <- proc.time()

R> portest(fitlynx, test = "gvtest", nslaves = nslaves)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 5.984989 2.090909 0.142857143

10 10.036630 5.857143 0.172827173

15 21.447021 9.612903 0.018981019

20 31.810564 13.365854 0.006993007

25 38.761595 17.117647 0.002997003

30 43.936953 20.868852 0.002997003

R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

17.87

For lags m ≥ 15, the Dm statistic based on the asymptotic distribution and

the Monte-Carlo approach suggests model inadequacy. Fitting a subset autoregres-

sive using the function FitARp() with the BIC criterion (McLeod and Zhang, 2011,

2008b), the Monte-Carlo version of the portmanteau test more decisively suggests

model adequacy, whereas the asymptotic chi-square suggests inadequacy at lags 15

and adequacy otherwise.
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R> SelectModel(log(lynx), lag.max = 15, ARModel = "ARp", Criterion =

+ "BIC", Best = 1)

[1] 1 2 4 10 11

R> fitsubsetAR <- FitAR::FitARp(log(lynx), c(1, 2, 4, 10, 11))

R> portest(fitsubsetAR, test = "gvtest", MonteCarlo = FALSE)

Lags Statistic df p-value

5 2.374225 0.0000000 NA

10 3.598248 0.0000000 NA

15 5.661285 0.6129032 0.008190694

20 8.590962 4.3658537 0.090004731

25 11.462473 8.1176471 0.184353957

30 13.900470 11.8688525 0.297764350

R> startTime <- proc.time()

R> portest(fitsubsetAR, test = "gvtest", nslaves = nslaves)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 2.374225 0.0000000 0.5534466

10 3.598248 0.0000000 0.8401598

15 5.661285 0.6129032 0.8821179

20 8.590962 4.3658537 0.8491508

25 11.462473 8.1176471 0.8341658

30 13.900470 11.8688525 0.8461538

R> endTime <- proc.time()

R> (endTime - startTime)[3]
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elapsed

20.14

2.4.2 Monthly simple returns of the CRSP value-weighted index data

In the second example, we consider the monthly simple returns of the CRSP value-

weighted index univariate data from January 1926 to December 1997. This data was

discussed by Lin and McLeod (2008) and available in our Package with the name CRSP.

They implemented the Monte-Carlo and the asymptotic test of Peňa and Rodriguez

(2002) and Ljung and Box (1978) on the fitted AR (5) model assuming that the

innovations have finite and infinite variance.

R> data("CRSP")

R> CRSP.AR5 <- stats::arima(CRSP, c(5, 0, 0))

R> lags <- c(10, 20, 30)

We may reproduce the output results of Lin and McLeod (2008, Tables II, V)

using the function portest().

First we apply the Monte-Carlo test of gvtest on the fitted model assuming that

the innovations have finite variance.

R> startTime <- proc.time()

R> portest(CRSP.AR5, lags = lags, nslaves = nslaves)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

10 4.838733 2.857143 0.062937063

20 18.807192 10.365854 0.013986014

30 34.519726 17.868852 0.004995005
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R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

58.39

Then we follow the suggestion of Lin and McLeod (2008), by applying the quan-

tile estimation method of McCulloch (1986) on the residuals of the fitted mode (see

Section 2.5.3),

R> resCRSP.AR5 <- CRSP.AR5$resid

R> fitstable(resCRSP.AR5)

alpha beta scale location

1.650244 -0.3204106 0.02779931 0.005089577

The estimated parameter α = 1.65 suggests that the infinite variance hypothesis

is plausible for this data. Now we apply the Monte-Carlo version of gvtest test

assuming that innovations have infinite variance,

R> startTime <- proc.time()

R> portest(CRSP.AR5, lags = lags, nslaves = nslaves,

+ InfiniteVarianceQ = TRUE)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

10 4.838733 2.857143 0.06093906

20 18.807192 10.365854 0.03596404

30 34.519726 17.868852 0.01898102
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R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

57.72

As noticed by Lin and McLeod (2008), the Monte-Carlo version of the Peňa and

Rodriguez (2002) test based on the assumption that innovations have finite variance

is not different from that assumption of innovations with infinite variance.

2.4.3 Monthly log stock returns of intel corporation data

Our next example is given as an illustrative application of testing Autoregressive

Conditional Heteroscedastic, ARCH , effects. We consider the monthly log stock

returns of Intel Corporation data which is available in our package with the names

monthintel. First we apply the asymptotic distribution and the Monte-Carlo version

of the statistic gvtest directly on the returns, which suggests no significant serial

correlations.

R> data("monthintel")

R> monthintel <- as.ts(monthintel)

R> startTime <- proc.time()

R> portest(monthintel, lags = seq(10, 40, 10), MonteCarlo = FALSE,

+ SquaredQ = FALSE)

Lags Statistic df p-value

10 9.85822 7.857143 0.2632960

20 20.38081 15.365854 0.1738108

30 28.17267 22.868852 0.2039194

40 34.86373 30.370370 0.2627128
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R> portest(monthintel, lags = seq(10, 40, 10), MonteCarlo = TRUE,

+ nslaves = nslaves, SquaredQ = FALSE)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

10 9.85822 7.857143 0.2667333

20 20.38081 15.365854 0.1728272

30 28.17267 22.868852 0.1848152

40 34.86373 30.370370 0.2217782

R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

26.3

After that we apply both methods of gvtest on the squared returns. The result

suggests that the monthly returns are not serially independent and the return series

may suffers of ARCH effects.

R> startTime <- proc.time()

R> portest(monthintel, lags = seq(10, 40, 10), MonteCarlo = FALSE,

+ SquaredQ = TRUE)

Lags Statistic df p-value

10 34.67590 7.857143 2.718240e-05

20 52.04751 15.365854 7.097281e-06

30 64.65689 22.868852 7.331587e-06

40 72.26830 30.370370 2.856747e-05
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R> portest(monthintel, lags = seq(10, 40, 10), MonteCarlo = TRUE,

+ nslaves = nslaves, SquaredQ = TRUE)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

10 34.67590 7.857143 0.007992008

20 52.04751 15.365854 0.005994006

30 64.65689 22.868852 0.004995005

40 72.26830 30.370370 0.003996004

R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

26.3

2.4.4 U.S. inflation data

In this example, we fit an ARMA/GARCH model to the U.S. inflation (Bollerslev,

1986). We used the GNP deflator for 1947-01-01 to 2010-04-01. Data is available

from our package with the name GNPDEF. There are n = 254 observations which are

denoted by zt, t = 1, . . . , n. The inflation rate may be estimated by the logarithmic

difference, rt = log(zt)− log(zt−1).

The function garchFit() from the R package fGarch is used to fit the ARMA(4,0)-

GARCH(1,1) model and the Monte-Carlo gvtest test does not show and GARCH effects

in the fitted residuals.

R> z <- ts(GNPDEF[, 2], start = 1947, freq = 4)

R> r <- 100 * diff(log(z))
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R> GarchFit <- garchFit(formula = ~arma(4, 0) + garch(1, 1), data = r,

+ trace = FALSE)

R> startTime <- proc.time()

R> portest(GarchFit, nslaves = nslaves, SquaredQ = FALSE)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 4.32453 4.090909 0.05294705

10 8.18047 7.857143 0.10889111

15 11.57489 11.612903 0.16183816

20 14.09171 15.365854 0.25374625

25 16.28966 19.117647 0.34165834

30 18.80426 22.868852 0.41658342

R> portest(GarchFit, nslaves = nslaves, SquaredQ = TRUE)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 2.282153 4.090909 0.5464535

10 8.514656 7.857143 0.2397602

15 11.523989 11.612903 0.3046953

20 14.299126 15.365854 0.3436563

25 16.510697 19.117647 0.4255744

30 19.908227 22.868852 0.4265734

R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

317.59
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2.4.5 Nile annual minima data

For testing Fractional Gaussian Noise, FGN , we consider the NileMin data. This

data is given in the FGN package with the name NileMin (McLeod et al., 2011).

We use the function FitFGN to fit FGN to this data and then apply the Monte-Carlo

version of gvtest test to the fitted model,

R> data("NileMin")

R> NILE.FGN <- FitFGN(NileMin)

R> startTime <- proc.time()

R> portest(NILE.FGN, nslaves = nslaves)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 0.8061659 4.090909 0.9030969

10 2.8027767 7.857143 0.9010989

15 5.6961553 11.612903 0.8831169

20 7.9541034 15.365854 0.9070929

25 11.7901068 19.117647 0.8571429

30 16.4277997 22.868852 0.7682318

R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

111.57

Results suggest no inadequacy in the fitted model.
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2.4.6 Canadian labor market data

This example uses the multivariate macro economic data set for Canada. Data starts

at the first quarter of 1980 and ends at the fourth quarter of 2000 and available from

the software JMulTi (Breitung et al., 2004) and the R Package vars (Pfaff, 2010).

R> data("Canada")

According to Breitung et al. (2004); Pfaff (2008a), the AIC and FPE determine the

optimal lag number of an unrestricted VAR model with a maximal lag length of eight

to be p = 3, whereas the HQ criterion indicates p = 2 and the SC criterion indicates

an optimal lag length of p = 1. After that, they estimated for all three lag orders a

VAR including a drift constant and a deterministic trend and conducted diagnostic

tests using the multivariate version of the BoxPierce portmanteau test statistic. See

results in (Pfaff, 2008a, Table 3).

R> p1ct <- vars::VAR(Canada, p = 1, type = "both")

R> BoxPierce(p1ct, lags = seq(4, 16, 4), order = 1)

Lags Statistic df p-value

4 96.77914 48 3.873632e-05

8 140.53171 112 3.525332e-02

12 182.80955 176 3.468634e-01

16 233.49989 240 6.059988e-01

As BoxPierce statistic suggests an adequacy in the fitted VAR (1) model at lag

m = 12 and 16, it shows inadequacy at lower lags. The Monte-Carlo version of

BoxPierce portmanteau test confirmed these results.

R> startTime <- proc.time()

R> portest(p1ct, test = "BoxPierce", lags = seq(4, 16, 4), nslaves = nslaves)
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4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

4 96.77914 48 0.004995005

8 140.53171 112 0.070929071

12 182.80955 176 0.318681319

16 233.49989 240 0.393606394

R> endTime <- proc.time()

R> (endTime - startTime)[3]

elapsed

16.86

Next, we fit a VAR (3) with a constant and a trend using the function VAR and

implement the goodness of fit tests based on the Monte-Carlo version of gvtest

statistic,

R> p3ct <- vars::VAR(Canada, p = 3, type = "both")

R> startTime <- proc.time()

R> portest(p3ct, lags = seq(4, 16, 4), nslaves = nslaves)

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

4 19.70053 5.333333 0.8281718

8 57.65003 53.647059 0.9640360

12 109.50000 101.760000 0.9870130

16 175.40899 149.818182 0.9960040

R> endTime <- proc.time()

R> (endTime - startTime)[3]
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elapsed

26.69

The Monte-Carlo version of gvtest statistics suggests model adequacy.

2.4.7 Prey data

The final example make use the stationary prey Didinium time series in the veilleux

data. Data is available from the TSA R package with the name prey.eq (Cryer and

Chan, 2010). We apply the Monte-Carlo version of gvtest on the fitted threshold

AR model taken from the package TSA (Cryer and Chan, 2010). In this example we

coded the two functions FitModel() and SimModel() needed for the argument func

as follows,

R> library("TSA")

R> FitModel <- function(data) {

+ fit <- TSA::tar(y = log(data), p1 = 4, p2 = 4, d = 3, a = 0.1,

+ b = 0.9, print = FALSE)

+ res <- ts(fit$std.res)

+ parSpec <- list(res = res, fit = fit)

+ parSpec

+ }

R> SimModel <- function(parSpec) {

+ fit <- parSpec$fit

+ exp(tar.sim(fit)$y)

+ }

R> data(prey.eq)
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R> portest(FitModel(prey.eq), nslaves = nslaves, func = list(SimModel,

+ FitModel), pkg = "TSA")

4 slaves are spawned successfully. 0 failed.

Lags Statistic df p-value

5 2.588669 4.090909 0.4355644

10 4.125518 7.857143 0.7112887

15 5.792759 11.612903 0.8331668

20 7.421699 15.365854 0.9000999

25 9.195862 19.117647 0.9410589

30 10.633459 22.868852 0.9730270

R> detach(package:TSA)

The results suggest that the model is an adqquate model. Note that we can modify

this simple code replacing the fitted TAR model and tar.sim() function by any other

fitted model and simulation code.

2.5 SOME USEFUL FUNCTIONS

2.5.1 Stationary and invertibility of VARMA models

The conditions for stationary and invertibility of the VARMA (p, q) process are the

same as in the pure VAR (p) and pure VMA (q) cases, respectively (Reinsel, 1997).

The multivariate VAR (p) model of k-dimensional time series Zt = (Z1,t, . . . , Zk,t)
′

with mean vector µ and no deterministic equation is given by

Φ(B)(Zt − µ) = et, (2.11)
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where Φ(B) = Ik − Φ1B − · · · − ΦpB
p, can always expressed in the state-space

kp-dimensional VAR (1) model in terms of Z?t = (Z ′t, . . . ,Z
′
t−p+1)′ as Z?t = µ +

Φ?Z?t−1 + e?t , with e?t = (e′t,0
′, . . . ,0′)′ and Φ? equal to the kp × kp companion

matrix associated with the VAR (p) operator Φ(B), that is,

Φ? =



Φ1 Φ2 . . . . . . Φp

Ik 0 . . . . . . 0

0 Ik 0 . . . 0
...

. . . . . . . . .
...

0 0 . . . Ik 0


kp×kp

. (2.12)

Similar to this, the k-dimensional VMA (q) process can be represented in the state-

space kq-dimensional VMA (1) model as Z?t = µ+e?t −Θ?e?t−1, where Θ? is defined

by Equation 2.12 after replacing Φi by Θj and i = 1, . . . , p by j = 1, . . . , q, e?t by Z?t

and Z?t by e?t . In this light, the stationary condition that all roots of det[Φ(B)] = 0

are greater than one in absolute value in the VAR (p) model is equivalent to the

condition in the state-space VAR (1) representation that all eigenvalues of the kp ×

kp companion matrix Φ? be less than one in absolute value, and the invertibility

condition that all roots of det[Θ(B)] = 0 are greater than one in absolute value

in the VMA (q) model is equivalent to the condition in the state-space VMA (1)

representation that all eigenvalues of the kq × kq companion matrix Θ? be less than

one in absolute value. The function InvertQ() in our package uses this techniques

and checks the validity of the stationary and invertibility assumptions in the process.

The syntax of InvertQ is:

InvertQ(coef).

It takes a numeric, matrix, or array of coefficients of AR , MA , VAR , or VMA process

as an argument and returns a warning message, "check stationary/invertibility
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condition !", only if the process is not stationary or not invertible.

For checking stationarity of a process with dimension k = 2 from VAR (2) with

coefficients Φ1 =

(
0.5 0.1

0.4 0.5

)
and Φ2 =

(
0.0 0.0

0.3 0.0

)
, type:

R> phi <- array(c(0.5, 0.4, 0.1, 0.5, 0, 0.3, 0, 0), dim = c(2,

+ 2, 2))

R> InvertQ(phi)

and for checking invertibility of a process with dimension k = 3 from VMA (1) with

coefficient Θ =


0.5 0.0 0.0

0.1 0.1 0.3

0.0 0.2 0.3

 , type:

R> theta <- array(c(0.5, 0.1, 0, 0, 0.1, 0.2, 0, 0.3, 0.3), dim = c(3,

+ 3, 1))

R> InvertQ(theta)

while for checking stationarity and invertibility of process from VARMA (1,1) with

coefficients Φ =

(
0.9 0.4

0.3 0.1

)
and Θ =

(
0.5 0.7

0.1 0.5

)
, type:

R> phi <- array(c(0.9,0.3,0.4,0.1),dim=c(2,2,1))

R> InvertQ(phi)

Warning message:

In InvertQ(phi) : check stationary/invertibility condition !

R> theta <- array(c(0.5, 0.1, 0.7, 0.5), dim = c(2, 2, 1))

R> InvertQ(phi)

The warning message in the output means that the stationary condition in the

process is not valid.
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2.5.2 Simulation from nonseasonal ARIMA or VARIMA models

We may use the function varima.sim() in the proposed package to simulate non-

seasonal data from VARIMA , ARIMA process described in Equations 2.1 and 2.2

respectively. The simulated data may have a deterministic constant drift and time

trend term with non-zero mean. To simulate time series from models with infinite vari-

ance innovations, the argument StableParameters with stable parameters, ALPHA,

BETA, GAMMA, and DELTA must be entered in the function varima.sim(), provided

that the arguments innov = NULL and innov.dist = "stable" are selected. The

parameters ALPHA represent the index parameter of the stable distribution and must

be entered as a numeric or vector with values in the range (0, 2]. The skewness pa-

rameters BETA values must be in the range [−1, 1]. The scale parameters, and the

location parameters, GAMMA, DELTA, can have NULL values or real values in the range

(−∞,∞).

The varima.sim() function is:

varima.sim(phi=NULL,theta=NULL,d=NA,sigma,n,constant=NA,trend=NA,

demean=NA,innov=NULL,innov.dist=c("normal","t","stable"),

df=1,StableParameters=NA,Trunc.Series=NA),

where phi and theta are the autoregressive and moving average parameters respec-

tively and should have class "array" or "NULL" in case of k > 1. The arguments

constant and trend represent coefficients of the deterministic equation and the ar-

gument demean stands for the mean of the series. For k = 1, these parameters can be

entered with class "numeric", "array", or "NULL". Note that also for k = 1, the class

of the argument sigma is "numeric" or "matrix", whereas for k > 1, the argument

sigma must be entered as a matrix with class "matrix". d = (d1, . . . , dk), di ≥ 0
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is the differencing order. The argument innov maybe used to include a univariate

or multivariate innovations series, otherwise the innovations series maybe generated

from a distribution selected from the argument innov.dist. More information about

this function can be found on the portes manual documentation.

For given values of the argument StableParameters, the function varima.sim()

calls the function rStable() to generate innovations from stable distributions, S(α, β, γ, δ).

The syntax of rStable() in our package is defined as follows:

rStable(n, ALPHA, BETA, GAMMA = NULL, DELTA = NULL).

The arguments of this functions are defined as before. Our function rStable()

may be considered an extension to the function rStable() in the R fBasics package

(Wuertz and core team members, 2010) as it can be used for generating univariate or

multivariate data from independent stable distributions.

The function varima.sim() checks the conditions of stationary or invertibility or

both in the simulated process by calling the function InvertQ(), then it determines

recursively the impulse response coefficients, ψl or Ψl, l = 1, 2, . . ., by solving the

equation ψ(B) = φ−1(B)θ(B) or Ψ(B) = Φ−1(B)Θ(B) (Reinsel, 1997). Finally it

represents this process in terms of an infinite MA or VMA filter, as follows

Zt = µ+ et + ψ1et−1 + ψ2et−2 + · · · (2.13)

Zt = µ+ et + Ψ1et−1 + Ψ2et−2 + · · · (2.14)

The impulse response coefficients ψl or Ψl are calculated from the function ImpulseVMA()

in our package at sufficiently large number. That is, we set a large value to the ar-

gument Trunc.Series in the functions ImpulseVMA() or varima.sim() at which

the models in Equation 2.13 or Equation 2.14 need to be truncated, so that the
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weight of the impulse response coefficient at this truncated value is negligible. If

Trunc.Series is NA is used in the function varima.sim() then the infinite MA or

VMA representation will be truncated at the minimum value of 100 or least integer

value of n/3, where n is the length of the simulated series. If Trunc.Series is NA is

used in the function ImpulseVMA() then the truncation value will be p + q, where p

and q represent the order of autoregressive and moving average respectively.

2.5.2.1 Simulation example 1

To generate a univariate time series with length 100 from AR (2,1) with drift equation

2 + 0.01t, mean µ = 0, ARMA coefficients φ1 = 0.7, φ2 = 0.2, θ = −0.5 and t-

distribution innovations, type:

R> Trunc.Series <- 30

R> n <- 100

R> sigma <- 1

R> phi <- array(c(0.7, 0.2), dim = c(1, 1, 2))

R> theta <- -0.5

R> constant <- 2

R> trend <- 0.01

R> demean <- 0

R> d <- 0

R> z1 <- varima.sim(phi, theta, d, sigma, n, constant, trend, demean,

+ innov.dist = "t", Trunc.Series = Trunc.Series)

In this example the infinite MA series is truncated at the value 30, however users

can use any desirable truncation value.
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2.5.2.2 Simulation example 2

In this example we simulate a bivariate time series of length 200 from a VARMA (1,1)

model with mean µ = (2, 5)′, drift equation a+bt = (1, 4)′+(0, 0.04)′t, and coefficient

matrices Φ =

(
0.5 0.1

0.4 0.5

)
, and Θ =

(
0.5 0.6

−0.7 0.3

)
, where at are generated

from multivariate normal distribution with mean vector zero and covariance matrix

Γ0 =

(
1.00 0.71

0.71 1.00

)
. The infinite VMA series is truncated at the least integer value

of 200/3 = 67.

R> set.seed(123)

R> n <- 200

R> phi <- array(c(0.5, 0.4, 0.1, 0.5), dim = c(2, 2, 1))

R> theta <- array(c(0.5, -0.7, 0.6, 0.3), dim = c(2, 2, 1))

R> sigma <- matrix(c(1, 0.71, 0.71, 1), 2, 2)

R> constant <- c(1, 4)

R> trend <- c(0, 0.04)

R> demean <- c(2, 5)

R> d <- NA

R> z2 <- varima.sim(phi, theta, d, sigma, n, constant, trend, demean)

2.5.2.3 Simulation example 3

Finally, to simulate an VAR (2) process of length 600 with coefficient matrices Φ1 =(
0.8 0

0.0 −2

)
, Φ2 =

(
−0.5 0.0

0.0 0.0

)
, covariance matrix Γ0 =

(
1.0 0.5

0.5 1.0

)
, and er-

ror term from a stable distribution with α = (1.3, 1.6)′, β = (0, 0.2)′, γ = (1, 1)′, δ =

(0, 0.2)′, type:
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Figure 2.1: A simulated time series of example 2.5.2.2.

R> set.seed(1234)

R> k <- 2

R> n <- 600

R> phi <- array(c(0.8, 0, -2, 0), dim = c(k, k, 1))

R> theta <- array(c(-0.5, 0, 0, 0), dim = c(k, k, 1))

R> sigma <- matrix(c(1, 0.5, 0.5, 1), k, k)

R> ALPHA <- c(1.3, 1.6)

R> BETA <- c(0, 0.2)

R> GAMMA <- c(1, 1)

71



R> DELTA <- c(0, 0.2)

R> StableParameters <- c(ALPHA, BETA, GAMMA, DELTA)

R> d <- NA

R> z3 <- varima.sim(phi, theta, d, sigma, n, innov.dist = "stable",

+ StableParameters = StableParameters)
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Figure 2.2: A simulated time series of example 2.5.2.3.

In this example the series is truncated at default value: Trunc.Series = min(100, 600/3) =

100
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2.5.3 Fit parameters to stable distribution

The quantile estimation method of McCulloch (1986) is implemented in the R func-

tion fitstable(). This method is highly reliable, fast and reasonably efficient espe-

cially bearing in mind that in most applications there is a lot of data. The function

fitstable() is:

fitstable(x),

where x represents the data frame. This function is used under the assumption of

that the variables of the vector x are independents. The output of this function is a

k rows represents the number of variables in the vector x, and 4 columns with named

components alpha, beta, scale, and location associated to the stable parameters,

ALPHA, BETA, GAMMA, and DELTA respectively.

In the following example we use the function fitstable() to estimate the stable

parameters for a simulated data from ARMA (2,1) model with errors from stable

distribution.

R> set.seed(54368)

R> n <- 1000

R> phi <- c(1.3, -0.35)

R> theta <- 0.1

R> sigma <- 1

R> ALPHA <- 1.5

R> BETA <- 0

R> GAMMA <- 1

R> DELTA <- 0

R> StableParameters <- c(ALPHA, BETA, GAMMA, DELTA)
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R> d <- NA

R> x <- varima.sim(phi, theta, d, sigma, n, innov.dist = "stable",

+ StableParameters = StableParameters)

R> fitstable(x)

alpha beta scale location

1.436127 -0.2743106 6.330361 5.219509

As another example we use the function rStable() to simulate a bivariate inde-

pendent data of size 100 from a stable distribution with heavy tail then we use the

function fitstable() to estimate the stable parameters as follows

R> set.seed(54368)

R> ALPHA <- c(1.3, 1.6)

R> BETA <- c(0, 0.2)

R> GAMMA <- c(1, 1)

R> DELTA <- c(0, 0.2)

R> x <- rStable(100, ALPHA, BETA, GAMMA, DELTA)

R> fitstable(x)

alpha beta scale location

1.550165 -0.2760850 0.9314066 0.08272251

1.705539 1.0000000 0.9158591 0.57164890

2.6 CONCLUDING REMARKS

Our package portes is available from the Comprehensive R Archive Network, CRAN,

at http://CRAN.R-project.org/package=portes. It implements the Monte-Carlo

test in a very convenient way, specially if we are running R in batch mode using
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the snow package with cluster computers. We believe that many R users may find

that the portes package is convenient for simulating time series from nonseasonal

ARIMA (p, d, q) or VARIMA (p,d, q) models with or without deterministic equation

where innovations have finite or infinite variances.

75



REFERENCES

Adler, R., Feldman, R., and Gallagher, C. (1998). Analysing stable time series. In
a practical guide to heavy tails: Statistical techniques and applications (eds R. J.
Adler, R. E. Feldman and M. S. Taqqu). Number 133–158. Boston: Birkhäuser.
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Peňa, D. and Rodŕıguez, J. (2002). A powerful portmanteau test of lack of test for
time series. Journal of American Statistical Association 97 (458), 601–610.

77
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POINCARÉ PLOTS AND REGRESSION WITH HIDDEN CORRELATIONS

Chapter 3

POINCARÉ PLOTS AND REGRESSION WITH HIDDEN

CORRELATIONS

3.1 INTRODUCTION

There are many possible threats to the validity of a statistical model, but one of

the most potentially serious in many situations is the possibility of lack of statistical

independence in the observations. When positive correlation exists and is not taken

into account then the estimators will not be fully efficient in many situations. An even

more serious problem is that statistical inferences from the model may be completely

wrong. More specifically, under positive autocorrelation, it is well known that in

the usual regression model the variances are inflated. This means that the usual

confidence limits will be too narrow and the p-values will overstate the statistical

significance of the results (Wold and Jureen, 1966, §13.4). This effect of positive

correlation applies potentially to all statistical models and not just to models involving

time series data.

Indeed McCullagh and Nelder (1989, §2.2, p.26) voice this concern with respect to

generalized linear models when they state: For the random part we assume indepen-

dence and constant variance of the errors. These assumptions are strong and need

checking.

In the case of time series data or when the order of collection of the observations is

known, the residual autocorrelation function is often used as well as related statistical

tests such as the Durbin-Watson test. For time series regression models, Draper and
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Smith (1998) recommend plotting the residual for the tth observation denoted by êt

as a lagged one scatter plot of êt+1 versus êt. Plotting êt vs. t may also be useful

but since dependency relationships are usually strongest at lag one, the lagged one

scatter plot often best reveals problems due to lack of independence in the data or

residuals.

Scatter plots of êt+1 versus êt, referred to as Poincaré return maps, are used in

non-linear time series analysis (Tong, 1998) and in non-linear dynamics for identifying

limit cycles (Kaplan and Glass, 1995, §6.6, p.304). When applied for the purpose of

diagnostic checking of a statistical model we will refer to this type of plot as a Poincaré

Plot. Many statistical models assume that given the model specification the residuals

are statistically independent. Violation of this assumption indicates that the model

is misspecified and this misspecification may result in incorrect statistical inferences.

Assuming that the observations are statistically independent, the observations may

be ordered in various ways. For example, the observations could be ordered according

to some covariate.

Poincaré plots may reveal non-linear forms of dependence or features not well

summarized by the correlation coefficient. An informal method of statistical inference

is to use a parametric bootstrap of the model to examine a sequence of Poincaré plots

simulated when the independence assumption is known to hold. The significance

of the residual plot can be informally judged by comparing with these plots. More

formally, the Kendall rank correlation between êt+1 and êt provides a statistical test

for monotone dependency which may be helpful in some cases.

Cleveland (1979) introduced the residual dependency plot by plotting the residuals

versus a covariate along with a loess smooth to help visualize whether there is a

relationship. The Poincaré plot is recommended as a complement not a replacement

to this plot. In the following examples, the residual dependency plot suggests that the
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fitted model is an adequate model, but the Poincaré plot indicates a strong hidden

positive dependency in the observations.

3.2 ILLUSTRATIVE EXAMPLES

3.2.1 Simulated data with hidden correlations

In this example, we simulate data with three covariate variables, X1, X2, X3,

and a response variable Y using the linear relationship yi = β0 +
∑3
j=1 βixji + ei,

i = 1, . . . , n. The sample size is 100. The error terms, ei, exhibit hidden positive

correlations according to the order values of X1 (see eqn. 3.3). First, we fit the clas-

sical ordinary least squares model, OLS, and test the overall adequacy of this model

(H0 : β1 = β2 = β3 = 0; vs. H1 : βj 6= 0, for at least one j = 1, 2, 3).

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.7459 0.0765 -9.7454 0.0000

X1 0.0188 0.0052 3.6473 0.0005
X2 -0.0307 0.0647 -0.4751 0.6363
X3 -0.0198 0.0754 -0.2623 0.7939

Table 3.1: Classical ordinary least squares model (OLS).

The p-value corresponding to the F-Statistic, 0.47%, is very small which suggests

that at least one of the covariates contributes significantly to the linear model. The

residual plots (Draper and Smith, 1998; Cleveland, 1993) did not indicate any viola-

tion to the usual assumptions of the linear models. So we may think that the classical

OLS model is a acceptable fitted model!.

Now things get disquieting if we look at the Poincaré Plot. When the observations

are ordered according to X1, inspection of Poincaré plot in Figure 3.1 and the Kendall

rank correlation test statistic, 7.33, with p-value = 2.23 × 10−12%, suggest a strong
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positive dependence due to many nearly tied values and hence the classical OLS model

is no longer the true fitted model for this data.

Figure 3.1: Poincaré plot of the residuals from OLS fitted model with a loess smooth.

Next we fit the true generalized least squares model, GLS, for the ordered data

using the exact variance covariance matrix of the error term. The p-value for testing

the hypothesis H0 : β1 = β2 = β3 = 0 is 84%. Although the GLS model is the true

model for this data, the large p-value suggests that none of the covariates contributes

significantly to the model. The Poincaré Plot in Figure 3.2 as well as Kendall rank

statistic, -0.41 with p-value = 68%, do not show any hidden correlation left.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.7311 0.5145 -1.42 0.1600

x1 -0.0046 0.0254 -0.18 0.8560
x2 -0.0098 0.0276 -0.35 0.7241
x3 0.0543 0.0377 1.44 0.1542

Table 3.2: Generalized least squares model (GLS) with exact covariance.

Comparing the estimated standard errors of the regression coefficients in Table
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3.1 with those in Table 3.2, one can see that the standard errors of the intercept

coefficient and the first covariate coefficient in the classical OLS are less than those

in GLS model.

Figure 3.2: Poincaré plot of the residuals from GLS fitted model with a loess smooth.

In this chapter we will show by simulation experiments that this is the case in

most cases. That is, when the error terms exhibit hidden positive autocorrelations

according to the jth covariate, Xj , then the wrong classical OLS model will often yield

a small value of variance for the corresponding jth coefficient in comparison with the

true GLS model. Also, we will show that it is always the case that the variance of

the intercept estimator in the OLS model has the lower value comparing to that true

one.

3.2.2 Generalized linear modeling example

Deviance residuals (McCullagh and Nelder, 1989, §2.4.3) are frequently used for di-

agnostic checking with generalized linear models. Under the usual assumptions, the
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observations in a specified model are statistically independent. This implies that the

deviance residuals should also be approximately statistically independent. Consider

the logistic regression of 189 births fitted by Venables and Ripley (2002, P.194-197).

In this model a response variable, low birth weight, is fitted to 9 explanatory vari-

ables. One of the explanatory variable is age, which represents the age of the mother

in years. Using this age variable to order the data, the resulting Poincaré plot of the

deviance residuals shown in the lower left panel of Figure 3.3 indicates a very strong

positive residual dependence. For comparison, the Poincaré plots for 8 bootstrap sim-

ulations of deviance residuals are shown in the other panels. To aid visualization of

the dependence relationship or lack thereof, a robust linear loess smooth with span

equal to 1 is shown in each panel. Figure 3.3 clearly reveals that there is significant

strong positive dependence in the residuals and so statistical inferences from the fit-

ted model may not be correct. Figure 3.4 shows the residual dependency plot of the

residuals vs. age. In this plot there is no apparent correlation in the residuals.

3.2.3 Loess fitting example

Cleveland (1993, §3.6, p.122-127) fits a loess curve to some sunlight polarization data.

The response variable is the Babinet point and the explanatory variable is the concen-

tration of particulate matter in the atmosphere. In Cleveland’s final fit, the Babinet

point is regressed on the cube-root of concentration using a robust loess linear re-

gression with a span of 1/3. The data are ordered according to the concentration

variable. The resulting Poincaré plot for this fit indicates very strong positive de-

pendency in this data exists. It should be noted that Cleveland (1993, p.126, Figure

3.37) found the usual residual dependence plot satisfactory and there is no indication

of positive correlation and dependency in this plot (see Figure 3.5). An improved fit

cannot be obtained simply by changing the loess smoothing parameters in this case.
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Figure 3.3: Poincaré plot of deviance residuals in the logistic regression of low birth weight

on 9 explanatory variables and 8 parametric bootstrap simulations.
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Figure 3.4: Residual dependency plot of residuals vs. age.

Choosing the span to be zero or close to zero can remove the positive dependence

in the Poincaré plot but at the expense of increasing the variance and degrading the

overall fit. Close inspection of Figure 3.6 shows that many points follow the 45 de-

gree line. This means they are exactly equal and hence that both the dependent and

independent variable are tied. Such ties are not consistent with the hypothesis of

independent and continuously distributed data. Removing data values corresponding

to ties in both variables and refitting the loess curve, as shown in Figure 3.7, does

improve the Poincaré plot a little but there still remains strong positive dependence

due to many nearly tied values.
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Figure 3.5: Residuals plot in the robust loess fit of Cleveland (1993, section 3.6) to the

polarization data.

Figure 3.6: Poincaré plot of residuals in the robust loess fit to the polarization data.
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Figure 3.7: Poincaré plot of residuals in the robust loess fit to the polarization data with

ties in both variables removed.

3.3 LINEAR REGRESSION MODEL

Let Y denotes the n × 1 vector of a response variable where yi, i = 1, . . . , n can be

modeled as a linear combination of k covariate variables, X1, . . . , Xk,

yi = β0 + β1(x1i − x̄1) + . . .+ βk(xki − x̄k) + ei, (3.1)

where e = (e1, e2, ..., en)′ is a n × 1 vector of random components. Assume that e

has a normal distribution with mean zero and positive definite covariance matrix,

Ω = σ2In − γ(h), (3.2)

where σ2 is the variance of ei, for all i, γ(h) is the semivariogram (Cressie, 1993),

h is the vector of the spacing between the values of a covariate variable, say Xp =

(xp1, . . . , xpn)′, hij = ‖xpi − xpj‖ for some p = 1, 2, ..., k and i, j = 1, 2, ..., n.
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In our simulation, the exponential covariance is used to create the hidden correlation

in the error terms,

Ω(h;σ2,r) = σ2 exp(−h/r), (3.3)

where r is the covariance parameter, denotes the range of the semivariogram.

The conditional log-likelihood function with the parameters θ = (β, σ2, r)′ may

be written, after dropping the constant term as,

L(θ|X,y) = −1

2
ln |Ω| − 1

2
(y −Xβ)′Ω−1(y −Xβ). (3.4)

The simultaneous joint MLE of θ may be obtained by the iterative algorithm described

in (McLeod et al., 2007) and the hypotheses about θ can be tested by the likelihood

ratio test. Under the null hypothesis, there is no hidden correlation, the change in

-2(log likelihood) between the independent error model and the model with hidden

correlation should follow a chi-square distribution with 1 degree of freedom.

Recall that the Gauss-Fisher regression theorem is assuming that the random

variables e are identical and mutually independent with zero mean and finite equal

variances, Ω = σ2I, as well as they are independent of the covariate observations.

Theorem 2. On the Gauss-Fisher specification, the least-squares regression coef-

ficients have the smallest variance among all unbiased estimates of the regression

coefficients.

Note 1: In the case that Ω = σ2I, the classical ordinary least squares, OLS, estima-

tion of the regression coefficients is given by β̂ = (β̂0, . . . , β̂k)′,

β̂ = (X ′X)−1X ′y, (3.5)
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where β̂ are unbiased estimators, E(β̂) = β, X = [1 : Xc] is the design matrix,

and Xc is defined as follows

Xc =


x11 − x̄1 x12 − x̄2 · · · x1k − x̄k
x21 − x̄1 x22 − x̄2 · · · x2k − x̄k

...
...

...
...

xn1 − x̄1 xn2 − x̄2 · · · xnk − x̄k


n×k

. (3.6)

The corresponding classical variance-covariance matrix of β̂ is

Cov(β̂) = σ̂2(X ′X)−1, (3.7)

and σ̂2 is the OLS maximum likelihood estimator of σ2.

Note 2: When the true variance-covariance of e, Ω, is not equal to σ2I then the

estimates β̂ are still unbiased but their true variance-covariance is

(X ′X)−1 ·X ′ΩX · (X ′X)−1. (3.8)

The intercept estimator equals ȳ = ē (Wold and Jureen, 1966); hence its vari-

ance is

σ̂2

n︸︷︷︸
classical ols Var(β̂0)

+
2

n2

n−1∑
i=1

n∑
j=i+1

Cov(êi, êj)︸ ︷︷ ︸
> 0

. (3.9)

Note 3: The generalized least squares, GLS, estimation of the regression coefficients,

β̃, (Draper and Smith, 1998; Thisted, 1998),

β̃ = (X ′Ω−1X)−1X ′Ω−1Y, (3.10)
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which also are unbiased estimators with variance-covariance matrix,

Cov(β̃) = (X ′Ω−1X)−1. (3.11)

In such a case, the intercept estimator equals ȳ? = ē?, where e? = K−1e, and

σK is the Cholesky decomposition of Ω so that Ω = σ2KK ′. The variance of

the intercept estimator is

σ̂2

n︸︷︷︸
classical ols Var(β̂0)

+
2

n2

n−1∑
i=1

n∑
j=i+1

Cov(ê?i, ê?j)︸ ︷︷ ︸
> 0

. (3.12)

Equations 3.9 and 3.12 clearly indicate that when Ω is positive-definite 6= σ2I, then

the classical OLS variance of the intercept estimator is always less than it should

be and this implies that the corresponding p-value may overstates the statistical

significance of the results.

The simulation experiments in the next section confirm this fact. In addition,

when the error terms exhibit hidden positive autocorrelations according to the jth

covariate Xj , then the classical OLS model will often yield a smaller value of variance

compared to the true and GLS models.

3.4 SIMULATION RESULTS

In this section, we consider fitting three different regression models - (a) the classical

ordinary least squares regression as in Equation 3.5, (b) the true ordinary least squares

using the estimated variance-covariance matrix, True OLS, as in Equation 3.8, (c) and

the generalized least squares regression, GLS, as in Equation 3.10.

The results are based on 1000 simulations using three different sample sizes, 30,
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60, and 90. In each simulation we generate the random errors from the multivariate

normal distribution with zero mean and variance-covariance function Ω as given in

Equation 3.3, where σ2 is assumed to be 1. We choose the variogram parameters

r = 3, r = 6, and r = 9 with a design matrix of k = 1, 2, 3 covariates, where X1

is used to create the hidden correlation. We generate the irregular distances vector

h from the U(0, 1) distribution, N(0, 1) distribution, and t5 distribution. Finally we

calculate the variances of the least squares parameter estimates using Equations 3.7,

3.8, and 3.11 and compare them to each other. Tables 3.3-3.8 reports some of these

results.

The results suggest that the classical OLS variances of the estimators of β0 and

β1 are always less than those variances of true OLS and GLS. On the other hand, the

classical OLS variances of the estimators of β2 and β3 are greater than those variances

of true OLS and GLS.
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Classical True OLS GLS
OLS & C.I & C.I

r = 3

Var(β̂0) 0.0333 0.2291 0.2242
(0.2089, 0.2493) (0.2044, 0.2440)

Var(β̂1) 0.0007 0.0039 0.0036
(0.0036, 0.0043) (0.0032, 0.0039)

r = 6

Var(β̂0) 0.0333 0.3846 0.3757
(0.3496, 0.4196) (0.3415, 0.4100)

Var(β̂1) 0.0007 0.0045 0.0039
(0.0041, 0.0049) (0.0035, 0.0043)

r = 9

Var(β̂0) 0.0333 0.4889 0.4745
(0.4442, 0.5336) (0.4311, 0.5178)

Var(β̂1) 0.0007 0.0044 0.0038
(0.0040, 0.0048) (0.0035, 0.0042)

Table 3.3: Distance vector generated from t5; k=1, range = 3, 6, 9, and n=30.

93



Classical True OLS GLS
OLS & C.I & C.I

r = 3

Var(β̂0) 0.0167 0.2141 0.2115
(0.1947, 0.2335) (0.1926, 0.2305)

Var(β̂1) 0.0002 0.0019 0.0016
(0.0017, 0.0020) (0.0014, 0.0017)

r = 6

Var(β̂0) 0.0167 0.3285 0.3287
(0.2982, 0.3588) (0.2985, 0.3589)

Var(β̂1) 0.0002 0.0026 0.0022
(0.0023, 0.0028) (0.0020, 0.0024)

r = 9

Var(β̂0) 0.0167 0.4240 0.4230
(0.3845, 0.4636) (0.3834, 0.4626)

Var(β̂1) 0.0002 0.0027 0.0023
(0.0024, 0.0029) (0.0021, 0.0025)

Table 3.4: Distance vector generated from U(0, 1); k=1, range = 3, 6, 9, and n=60.
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Classical True OLS GLS
OLS & C.I & C.I

r = 3

Var(β̂0) 1.11e-02 0.0917 0.0921
(0.0839, 0.0995) (0.0842, 0.1001)

Var(β̂1) 3.44e-05 0.00025 0.00023
(0.0002, 0.0003) (0.0002, 0.0003)

r = 6

Var(β̂0) 1.11e-02 0.1771 0.1771
(0.1613, 0.1929) (0.1613, 0.1929)

Var(β̂1) 3.44e-05 0.0004 0.0004
(0.0004, 0.0004) (0.0003, 0.0004)

r = 9

Var(β̂0) 1.11e-02 0.2492 0.2402
(0.2272, 0.2712) (0.2191, 0.2613)

Var(β̂1) 3.44e-05 0.0005 0.0004
(0.0004, 0.0005) (0.0004, 0.0005)

Table 3.5: Distance vector generated from N(0, 1); k=1, range = 3, 6, 9, and n = 90.
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Classical True OLS GLS
OLS & C.I & C.I

r = 3

Var(β̂0) 0.0333 0.2448 0.2415
(0.2228, 0.2668) (0.2202, 0.2629)

Var(β̂1) 0.0010 0.0050 0.0044
(0.0045, 0.0055) (0.0040, 0.0048)

Var(β̂2) 0.0502 0.0235 0.0077
(0.0212, 0.0258) (0.0069, 0.0085)

r = 6

Var(β̂0) 0.0333 0.4065 0.3961
(0.3701, 0.4429) (0.3610, 0.4312)

Var(β̂1) 0.0010 0.0056 0.0049
(0.0051, 0.0061) (0.0045, 0.0054)

Var(β̂2) 0.0502 0.0150 0.00382
(0.0136, 0.0165) (0.0034, 0.0042)

r = 9

Var(β̂0) 0.0333 0.5136 0.4977
(0.4675, 0.5597) (0.4536, 0.5417)

Var(β̂1) 0.0010 0.0053 0.0047
(0.0048, 0.0058) (0.0043, 0.0052)

Var(β̂2) 0.0502 0.0114 0.0026
(0.0103, 0.0125) (0.0023, 0.0028)

Table 3.6: Distance vector generated from N(0, 1); k=2, range = 3, 6, 9, and n=30.
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Classical True OLS GLS
OLS & C.I & C.I

r = 3

Var(β̂0) 1.67e-02 0.1225 0.1196
(0.1111, 0.1339) (0.1086, 0.1306)

Var(β̂1) 9.16e-05 0.0006 0.0005
(0.0005, 0.0006) (0.0005, 0.0006)

Var(β̂2) 1.02e-02 0.0084 0.0025
(0.0076, 0.0093) (0.0022, 0.0027)

r = 6

Var(β̂0) 1.67e-02 0.2228 0.2154
(0.2028, 0.2429) (0.1961, 0.2347)

Var(β̂1) 9.16e-05 0.0009 0.0008
(0.0008, 0.0010) (0.0007, 0.0009)

Var(β̂2) 1.02e-02 0.0069 0.0013
(0.0062, 0.0077) (0.0012, 0.0014)

r = 9

Var(β̂0) 1.67e-02 0.3082 0.2955
(0.2811, 0.3352) (0.2700, 0.3210)

Var(β̂1) 9.16e-05 0.0011 0.0009
(0.0010, 0.0012) (0.0008, 0.0010)

Var(β̂2) 1.02e-02 0.0054 0.0008
(0.0048, 0.0060) (0.0007, 0.0009)

Table 3.7: Distance vector generated from t5; k=2, range = 3, 6, 9, and n=60.
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Classical True OLS GLS
OLS & C.I & C.I

r = 3

Var(β̂0) 0.0333 0.2658 0.2642
(0.2441, 0.2874) (0.2420, 0.2865)

Var(β̂1) 0.0010 0.0049 0.0044
(0.0045, 0.0054) (0.0040, 0.0048)

Var(β̂2) 0.0413 0.0249 0.0078
(0.0223, 0.0274) (0.0071, 0.0086)

Var(β̂3) 0.0374 0.0244 0.0081
(0.0220, 0.0268) (0.0073, 0.0089)

r = 6

Var(β̂0) 0.0333 0.4267 0.4086
(0.3904, 0.4631) (0.3730, 0.4443)

Var(β̂1) 0.0010 0.0055 0.0047
(0.0050, 0.0060) (0.0043, 0.0051)

Var(β̂2) 0.0413 0.0172 0.0040
(0.0150, 0.0194) (0.0035, 0.0045)

Var(β̂3) 0.0374 0.0161 0.0040
(0.0144, 0.0179) (0.0035, 0.0046)

r = 9

Var(β̂0) 0.0333 0.5384 0.5126
(0.4924, 0.5843) (0.4676, 0.5575)

Var(β̂1) 0.0010 0.0053 0.0045
(0.0048, 0.0057) (0.0041, 0.0049)

Var(β̂2) 0.0413 0.0127 0.0027
(0.0111, 0.0143) (0.0024, 0.0030)

Var(β̂3) 0.0374 0.0117 0.0028
(0.0104, 0.0130) (0.0024, 0.0032)

Table 3.8: Distance vector generated from N(0, 1); k=3, range = 3, 6, 9, and n=30.
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3.5 CONCLUDING REMARKS

After some suitable ordering of the fitted residuals, êi, i = 1, 2, ..., n, it is suggested to

make use of Poincaré plots that is, scatter plots of êi+1 versus êi along with a robust

loess trend to check for lack of statistical independence. Poincaré plots are helpful

in detecting hidden positive correlations in the fitted model which may invalidate

statistical inferences due to incorrect small p-values in classical ordinary least squares

regression. One can use Kendall rank correlation test as well.

One should avoid using Poincaré residual plots for data that has been ordered by

the response variable, since positive dependence is expected in the Poincaré residuals

plot even when the assumption of independence holds in this case.

3.6 FUTURE WORK

Many published statistical results in medicine seem to overstate their statistical sig-

nificance (Matthews, 1998). One of the possible reason for this apparent lack of

robustness in medical statistics, at least in some cases, could simply be model mis-

specification due to lack of statistical independence. Further research is needed on

ways to improve statistical modeling when statistical dependence is found. The expo-

nential variogram model maybe useful for describing and modeling such a correlation

in some of these data.
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