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Variable annuity (VA) is a modern insurance product that offers certain guaranteed protections and
tax-deferred treatment. Holding VA contracts could benefit from a separate account which makes outside
investment and a general account that guarantees some minimum payoff (Gan, 2013). In Canada this
product is called segregated-fund; or unit-linked insurance in the United Kingdom; variable annuities and
equity-indexed annuities in the United States (Hardy, 2003).

Because of the inherent complexity of guarantees’ payoff, the closed-form solution of fair market values
(FMVs) is often not available. Most insurance companies depend on Monte Carlo (MC) simulation
to price the FMVs of these products, which is an extremely computational intensive and time-consuming
approach (Gan, 2013; Gan and Valdez, 2018). However, the metamodeling approach can be used
to circumvent the heavy computation. The idea of metamodeling approach to predict the FMVs consists
of four main steps (Barton, 2015): (i) (sampling stage) acquiring a small number of representative VA
contracts; (ii) (labeling stage) labeling these contracts using MC Simulation; (iii) (modeling stage) fitting
a machine learning model to the selected representative data; and (iv) (prediction stage) estimating the
FMVs of all unlabeled VA contracts in the portfolio through statistical predictive analysis.

In the modeling stage, the bagged tree method has proved to outperform other parametric approaches
(Gan et al., 2018). Gweon et al. (2020) also applied a bias-corrected (BC) bagging model and
showed significant improvement for prediction performance.

When the number of unlabeled data is large, the budget for labeling is limited and labels are expensive
obtain, the active learning framework (Cohn et al., 1994) could achieve satisfactory prediction
performance with a small amount of labeled data (i.e., representative VA contracts). Two active learning
approaches, the weighted random sampling (WRS) and repeated random sampling (RRS) have been tried
on selecting representative contracts and showed good performance (Gweon and Li, 2021).

For the summer research program, we investigate whether the BC bagging model is
also effective in the active learning framework.

Introduction

Regression and classification tree (Breiman et al., 1984) is an effective machine learning method,
which stratifies or splits the predictor space into different regions. Figure 1 gives a simple regression tree
example, which is constructed by using two predictors (x1 and x2). Before reaching the terminal nodes, the
algorithm determines the value at each binary split.

Figure 1. A simple regression tree example.
Given the decision tree often suffers from high variance, the bootstrap aggregation, or bagging
(Breiman, 1996) can help to reduce the variance using bootstrap samples from the original data. The idea
of bagging is constructed as follows.

The predictor vector of the portfolio is X = {x1, ..., xn}, where xi ∈ Rp and i = 1, 2, ..., n. The target,
FMV for xi is Y = {y1, ..., yn}. The relationship between Y and x ∈ X can be written as

Y = f (x) + ϵ,

where f (x) is the approximated functional relationship and ϵ is the error term.

The method of bootstrap (Efron, 1979) is used to obtain multiple training sets. We select a small subset Z

of X which contains j representative contracts and label them using MC Simulation. The selected training
set is Z = {z1, ..., zj} where zj ∈ X with FMVs {y1, ..., yj}. Let L = {(z1, y1), ..., (zj, yj)} be the labeled
training dataset. We fit the bagging model for the training set and obtain

f̂ (z, L) = 1
B

B∑
b=1

f̂ (z, Lb), (1)

where B is the number of bootstrap samples, b = 1, ..., B, Lb is the bth bootstrap sample and I(∗) is the
indicator function. Then we use this model to predict FMVs for unlabeled contracts.

Regression Trees and Bagging

A common measurement for the prediction performance of f̂(x, L) is the mean squared prediction error
(MSPE):

MSPE(f̂ (x, L)) = E((f̂ (x, L) − Y )2).
Given Y = f (x) + ϵ, via bias-variance decomposition:

MSPE(f̂ (x, L)) = E((f̂ (x, L) − E(f̂ (x, L))2) + (E(f̂ (x, L)) − f (x))2 + E(ϵ2). (2)

According to (2), the MSPE is decomposed into variance, bias2 and noise. It is important to achieve both
a low variance and a low bias to obtain a low MSPE. Since bagging effectively reduce the prediction
variance, we consider bias as a factor dominating the prediction error (Zhang and Lu, 2012). We use the
BC bagging model to correct the prediction biases by fitting another bagging model to estimate biases,
and subtracting them from the predicted FMVs.

We define the bias B(x, L) as the difference between predicted and true value, then

E(f̂ (x, L)) − Y = B(x, L) − ϵ, (3)

where f̂(x, L) is the predicted value of bagging, Y is the FMVs computed by MC simulation. We can
estimate the prediction bias B(x, L) by fitting another bagging model. The response for the second bagging
model is E(f̂ (x, L)) − Y instead of Y . Since we cannot predict the FMVs in training stage with untrained
model, we consider using the out-of-bag (OOB) prediction of the former bagging model. The OOB
prediction is defined as

f̂OOB(z, L) = 1
B

B∑
b=1

f̂ (z, Lb)I((z, y) /∈ Lb)),

where B is the number of trees that do not use observation (z, y) and I(∗) is the indicator function. After
we obtain the OOB prediction f̂OOB(z,L) and FMVs computed by MC simulation Y , f̂OOB(z,L) − Y will
be the response. Fit a bagging model to the training data to estimate prediction biases B̂(x, L), and the
predicted FMV of VA contract x is

Ŷ ∗ = E(f̂ (x, L)) − B̂(x, L).

Bias-corrected Bagging (BC-bagging)

Active learning approach (Cohn et al., 1994) is considered when the number of unlabeled data is
large and labels are expensive to obtain, like in our scenario. We want to reduce the number of represen-
tative contracts to save budget and time if we can achieve a good performance of prediction at the same time.

Figure 2 illustrates the active learning framework, check Gweon and Li (2021) for more details:

Figure 2. An illustration of active learning framework (Gweon and Li, 2021).
.
Gweon and Li (2021) used Query-By-Committee (QBC) approach on the VA portfolios valuation,
which can be categorized into uncertainty sampling. Under the QBC-based method, the informativeness of
unlabeled data x, the ambiguity is defined as

V = 1
B

B∑
b=1

(f̂ (x, Lb) − f̂ (x, L))2, (4)

where B is the number of trees used in bagging, Lb is the bth bootstrap sample and f̂ (x, L) is the predicted
value for aggregate tree of unlabeled instance x. According to (1), f̂ (x, L) = 1

B

∑B
b=1 f̂ (x, Lb).

Two uncertainty sampling approaches based on this defined ambiguity are as follows.

• Weighted Random Sampling (WRS)
Let U be the current unlabeled data set. For xi ∈ U , we calculate the sampling weights of prediction
ambiguity

wi = Vi∑
h Vh

,

where Vi is the ambiguity of the unlabeled contract xi, i = 1, ..., h. Then a subset of unlabeled data can be
sampled with the probabilities w and added to the training set.

• Repeated Random Sampling (RRS)
The repeated random sampling evaluates the informativeness of a group of contracts, which follows three steps:

1. Draw a sample of size k from unlabeled data U by simple random sampling and denote the batch as S1.
2. Repeat the random sampling m times and generate groups S1, S2, ..., Sm.
3.Assess the informativeness of the m groups of contracts and choose the most informative sample.

.
To measure the informativeness, RRS uses IS = AS + DS where

AS = 1
k

∑
xi∈S

Vi,

and
DS = 1

k − 1
∑
xi∈S

(f̂ (xi, L) − E(f̂ (xi, L))2.

Active Learning Framework

This dataset consists of 190,000 synthetic VA contracts from Gan and Valdez (2017). We use 16 explanatory
variables (14 continuous and 2 categorical) and exclude other variables that are identical for all policies.
Check Gan and Valdez (2017) for more details. Table 1 summarizes the basic characteristics of the selected
predictors in VA dataset.

Table 1. Summary Statistics of the Predictors in VA Dataset
Category Description Count
Gender M (Male Policyholder) 113,993

F (Female policyholder) 76,007
Product type ABRP (GMAB with return of premium) 10,000

... (other 18 types) 10,000
Continuous Description Minimum Mean Maximum

gmwbBalance GMWB balance 0 35,612 499,709
gbAmt Guaranteed benefit amount 0 326,835 1,105,732

FundValue1 Account value of the 1st investment fund 0 33,434 1,099,205
FundValue2 Account value of the 2nd investment fund 0 38,543 1,136,896
FundValue3 Account value of the 3rd investment fund 0 26,740 752,945
FundValue4 Account value of the 4th investment fund 0 26,142 610,580
FundValue5 Account value of the 5th investment fund 0 23,027 498,479
FundValue6 Account value of the 6th investment fund 0 35,576 1,091,156
FundValue7 Account value of the 7th investment fund 0 29,973 834,254
FundValue8 Account value of the 8th investment fund 0 30,212 725,745
FundValue9 Account value of the 9th investment fund 0 29,958 927,513
FundValue10 Account value of the 10th investment fund 0 29,862 785,979

age Age of the policyholder 34.52 49.49 64.46
ttm Time to maturity in years 0.59 14.54 28.52

.
We employ three measurements, R2, mean absolute error (MAE) and percentage error (PE). Let yi and ŷi

be the true value (computed by MC simulation) and predicted value respectively, for i = 1, ..., N where N

is the total number of contracts that needs to be valued, the metrics are defined as

R2 = 1 −
∑

(ŷi − yi)2∑
(yi − y)2 , MAE = 1

N

N∑
i=1

|ŷi − yi|, PE =
∑

(yi − ŷi)∑
yi

.

Dataset and Evaluation Measurements

Figure 3 shows the comparison of different methods in terms of R2, MAE and PE. It is obvious that
bias-corrected approach (dashed lines) significantly improves the prediction performance based on R2 and
MAE. For percentage error, BC bagging still lowers the absolute values for WRS and RRS.

Figure 4 presents the smoothed curves for prediction errors and density histogram of FMVs. When FMVs
are large, the prediction errors tend to be large as well due to the high skewness of the response. However,
BC bagging (dashed lines) vastly reduces these errors which could be useful especially for valuing VA
contracts with large FMVs.

Figure 3. Comparison of different methods in terms of R2, mean absolute error and percentage error.

Figure 4. Upper: difference between the FMVs calculated by MC simulation and the predicted values for
different methods. Lower: density histogram of the FMVs calculated by MC simulation.

In conclusion, the bias-corrected approach vastly improves the prediction performance of bagging under
uncertainty sampling methods, WRS and RRS. Especially, for the VA portfolios skewed to the right,
BC-bagging performs well in the tail valuation, which make it a promising approach for insurance industry.

Results and Conclusions
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