
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-18-2011 12:00 AM

Some Single and Combined Operations on Formal Languages: Some Single and Combined Operations on Formal Languages:

Algebraic Properties and Complexity Algebraic Properties and Complexity

Bo Cui, The University of Western Ontario

Supervisor: Lila Kari, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Bo Cui 2011

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Cui, Bo, "Some Single and Combined Operations on Formal Languages: Algebraic Properties and
Complexity" (2011). Electronic Thesis and Dissertation Repository. 234.
https://ir.lib.uwo.ca/etd/234

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/234?utm_source=ir.lib.uwo.ca%2Fetd%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Some Single and Combined Operations on Formal
Languages: Algebraic Properties and Complexity

(Thesis Format: Integrated-Article)

by

Bo Cui

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario
August, 2011

c© Bo Cui 2011

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Advisor Examining Board

Dr. Lila Kari Dr. Stuart Rankin

Supervisory Committee Dr. Kai Salomaa

Dr. Roberto Solis-Oba

Dr. Kaizhong Zhang

The thesis by
Bo Cui
entitled

Some Single and Combined Operations on Formal Languages:

Algebraic Properties and Complexity

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date Chair of Examining Board

ii

Abstract

In this thesis, we consider several research questions related to language operations

in the following areas of automata and formal language theory: reversibility of op-

erations, generalizations of (comma-free) codes, generalizations of basic operations,

language equations, and state complexity.

Motivated by cryptography applications, we investigate several reversibility questions

with respect to the operations parallel insertion and deletion. Among the results we

obtained, the following result is of particular interest. For languages L1, L2 ⊆ Σ∗,

if L2 satisfies the condition L2ΣL2 ∩ Σ+L2Σ
+ = ∅, then any language L1 can be

recovered after first parallel-inserting L2 into L1 and then parallel-deleting L2 from

the result. This property reminds us of the definition of comma-free codes. Following

this observation, we define the notions of comma codes and k-comma codes, and then

generalize them to comma intercodes and k-comma intercodes, respectively. Besides

proving all these new codes are indeed codes, we obtain some interesting properties,

as well as several hierarchical results among the families of the new codes and some

existing codes such as comma-free codes, infix codes, and bifix codes.

Another topic considered in this thesis are some natural generalizations of basic lan-

guage operations. We introduce block insertion on trajectories and block deletion on

trajectories, which properly generalize several sequential as well as parallel binary

language operations such as catenation, sequential insertion, k-insertion, parallel in-

sertion, quotient, sequential deletion, k-deletion, etc. We obtain several closure prop-

erties of the families of regular and context-free languages under the new operations

by using some relationships between these new operations and shuffle and deletion

on trajectories. Also, we obtain several decidability results of language equation

problems with respect to the new operations.

Lastly, we study the state complexity of the following combined operations: L1L
∗
2,

L1L
R
2 , L1(L2 ∩ L3), L1(L2 ∪ L3), (L1L2)

R, L∗
1L2, L

R
1 L2, (L1 ∩ L2)L3, (L1 ∪ L2)L3,

iii

L1L2 ∩ L3, and L1L2 ∪ L3 for regular languages L1, L2, and L3. These are all the

combinations of two basic operations whose state complexities have not been studied

in the literature.

Keywords: Formal Languages, Finite Automata, Language Operations, Parallel

Insertion and Deletion, Block Insertion and Deletion on Trajectories, Reversibility,

Codes, K-comma Codes, K-comma Intercodes, Language Equations, State Complex-

ity, and Combined Operations.

iv

Acknowledgement

I sincerely thank all the people who made this thesis possible!

It has been a pleasure to work with my supervisor, Dr Lila Kari. Without her

guidance, encouragement, and support, I would not overcome the difficulties in my

research. Moreover, she inspired me to be successful not only at school but also in

my future life.

I would like to thank Dr. Lucian Ilie and Dr. Sheng Yu for their valuable comments

for my thesis proposal.

Special thanks are given to the members of my examining committee, Dr. Stuart

Rankin, Dr. Kai Salomaa, Dr. Roberto Solis-Oba, and Dr. Kaizhong Zhang, for

their valuable suggestions on revising and finalizing this thesis.

I am grateful to all the other co-authors of the papers included in this thesis, Dr.

Yuan Gao, Dr. Shinnosuke Seki, and Dr. Sheng Yu, for the fruitful collaborations.

I wish to express my gratitude to the Department of Computer Science for providing

me the opportunity to study here and the financial support.

I appreciate the help from the people in the department, especially the staff members

in the main office and the members in the system group.

I am indebted to all my friends who created and shared with me the happiness during

my stay at Western.

Last but not least, I would like to thank my parents and my wife, to whom I dedicate

this work, for their support, encouragement, and love.

v

Table of Contents

Certificate of Examination ii

Abstract and Keywords iii

Acknowledgement v

Table of Contents vi

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Reversibility of operations and its role in generalizing comma-free codes 2

1.2 Generalizations of basic operations and language equations 5

1.3 State complexity of combined operations 7

1.4 Structure of the thesis and co-authorship 10

Bibliography . 12

vi

2 On the Reversibility of Parallel Insertion, and Its Relation to Comma

Codes 17

Abstract . 17

2.1 Introduction . 18

2.2 Preliminaries . 19

2.3 When does (L1 ⇐ L2)⇒ L2 equal L1? 21

2.4 Comma codes . 30

2.5 Comma intercodes . 36

2.6 Conclusion . 39

Bibliography . 41

3 K-Comma Codes and Their Generalizations 43

Abstract . 43

3.1 Introduction . 44

3.2 K-comma codes . 47

3.3 K-comma intercodes . 50

3.4 N -k-comma intercodes . 60

3.5 Conclusion . 68

Bibliography . 69

4 Block Insertion and Deletion on Trajectories 71

Abstract . 71

4.1 Introduction . 72

4.2 Preliminaries and definitions . 74

vii

4.3 Block insertion and deletion on trajectories 77

4.4 Closure properties . 83

4.4.1 Closure properties with respect to block insertion 83

4.4.2 Closure properties with respect to block deletion 85

4.5 Decision problems of language equations 89

4.6 Existence of trajectories . 94

4.7 Existence of left operands . 102

4.7.1 Positive decidability results 102

4.7.2 Undecidability results . 105

4.8 Conclusion . 108

Bibliography . 110

5 State Complexity of Two Combined Operations: Catenation-Star

and Catenation-Reversal 112

Abstract . 112

5.1 Introduction . 113

5.2 Preliminaries . 114

5.3 Catenation combined with star . 116

5.4 Catenation combined with reversal 124

5.5 Conclusion . 133

Bibliography . 134

6 State Complexity of Two Combined Operations: Catenation-Union

and Catenation-Intersection 137

Abstract . 137

viii

6.1 Introduction . 138

6.2 Preliminaries . 139

6.3 Catenation combined with union . 140

6.4 Catenation combined with intersection 150

6.5 Conclusion . 158

Bibliography . 159

7 State Complexity of Combined Operations with Two Basic Opera-

tions 162

Abstract . 162

7.1 Introduction . 163

7.2 Preliminaries . 165

7.3 State complexity of (L1L2)
R . 166

7.4 State complexity of LR
1 L2 . 172

7.5 State complexity of L∗
1L2 . 185

7.6 State complexity of (L1 ∪ L2)L3 . 194

7.7 State complexity of (L1 ∩ L2)L3 . 199

7.8 State complexity of L1L2 ∩ L3 . 202

7.9 State complexity of L1L2 ∪ L3 . 206

7.10 Conclusion . 210

Bibliography . 213

8 Conclusion and Discussion 216

Bibliography . 219

ix

9 Addendum 220

Bibliography . 227

Copyright 228

Vita 231

x

List of Figures

2.1 How uamu overlaps with uanu
2 . 23

2.2 For u1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A∪B is an infix code, u3v3 can

be a proper infix of u1v1au2v2 only in these two ways. Note that x′

and y in Case 1 can be empty at the same time, and x and y′ in Case

2 can be empty at the same time. 35

2.3 The inclusion hierarchy of bifix codes, intercodes, comma intercodes,

and infix codes, where arrows indicate proper inclusion. 38

3.1 The inclusion hierarchy of the families of bifix codes, k-comma inter-

codes, and infix codes, where arrows indicate proper inclusion 54

3.2 For u1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A∪B is an infix code, u3v3 can

be a proper infix of u1v1wu2v2 only in these two ways, where w ∈ Σk.

Note that x′ and y in Case 1 can be empty at the same time, and x

and y′ in Case 2 can be empty at the same time. 57

3.3 The inclusion hierarchy of k-comma intercodes, n-k-comma intercodes,

and bifix codes, where arrows indicate proper inclusion. 64

6.1 The DFA B showing that the upper bound in Theorem 15 is reachable

when m = 1 and n, p ≥ 2 . 143

xi

6.2 The DFA C showing that the upper bound in Theorem 15 is reachable

when m = 1 and n, p ≥ 2 . 143

6.3 The DFA A showing that the upper bound in Theorem 19 is attainable

when m ≥ 2 and n, p ≥ 1 . 151

6.4 The DFA B showing that the upper bound in Theorem 19 is attainable

when m ≥ 2 and n, p ≥ 1 . 151

6.5 The DFA C showing that the upper bound in Theorem 19 is attainable

when m ≥ 2 and n, p ≥ 1 . 152

7.1 The set S1 of DFAs that are outputs of reversal when the upper bound

for the state complexity of reversal is achieved is disjoint from the set

S2 of DFAs that are the left operand for catenation which can achieve

the upper bound for the state complexity of catenation. 164

7.2 Witness DFA N which shows that the upper bound of the state com-

plexity of (L(M)L(N))R, 3 · 2m+n−2 − 2n +1, is reachable when m,n ≥ 2168

7.3 Witness DFA M which shows that the upper bound of the state com-

plexity of L(M)RL(N),
3

4
2m+n, is reachable when m,n ≥ 2 175

7.4 Witness DFA N which shows that the upper bound of the state com-

plexity of L(M)RL(N),
3

4
2m+n, is reachable when m,n ≥ 2 175

7.5 Witness DFA M which shows that the upper bound of the state com-

plexity of L(M)RL(N), 2m−1 + 1, is reachable when m ≥ 4 and n = 1 183

7.6 Witness DFA A which shows that the upper bound of the state com-

plexity of L(A)∗L(B), m(2n − 1) − 2n−1 + 1, is reachable when A has

only one final state, which is also the initial state, and m,n ≥ 2 . . . 187

7.7 Witness DFA B which shows that the upper bound of the state com-

plexity of L(A)∗L(B), m(2n − 1) − 2n−1 + 1, is reachable, when A has

only one final state, which is also the initial state, and m,n ≥ 2 . . . 187

xii

7.8 Witness DFA A which shows that the upper bound of the state com-

plexity of L(A)∗L(B), 5 · 2m+n−3 − 2m−1 − 2n + 1, is reachable when

m,n ≥ 2 . 191

7.9 Witness DFA B which shows that the upper bound of the state com-

plexity of L(A)∗L(B), 5 · 2m+n−3 − 2m−1 − 2n + 1, is reachable when

m,n ≥ 2 . 192

xiii

List of Tables

1.1 The state complexity of basic operations on regular languages L1 and

L2 over an non-unary alphabet Σ, accepted by DFAs of m and n states,

m,n ≥ 1, respectively. Note that these state complexities are obtained

for general cases and can be lower in some special cases such as when

one of m,n is 1. 8

1.2 The state complexity of several combined operations on regular lan-

guages L1 and L2 over an non-unary alphabet Σ, accepted by DFAs of

m and n states, m,n ≥ 1, respectively. Note that these state complex-

ities are obtained for general cases and can be lower in some special

cases such as when one of m,n is 1. 9

4.1 Decidability results of the problems Q0,i and Q0,d, where L1, L2, L3

are over a non-unary alphabet. SIN, FIN, INF, and CSL stand for a

singleton, a finite, an infinite, and a context-sensitive language, respec-

tively. ANY means that not depending on what L2 is, we can prove

the undecidability results. 95

4.2 Decidability results of the problems Q1,i and Q1,d, where L1, L2, L3 are

over a non-unary alphabet, and CSL stands for the family of context-

sensitive languages. 101

xiv

4.3 Decidability results of the problems Q2,i and Q2,d, where L2 and L3 are

over a non-unary alphabet. 109

4.4 Decidability results of the problems Qw
2,i and Qw

2,d, where L2 and L3

are over a non-unary alphabet. CSL and REC stand for the families

of context-sensitive languages and of recursive languages, respectively. 109

7.1 The state complexities of all the combinations of two basic operations,

where L1, L2, and L3 are accepted by DFAs of m, n, and p states,

respectively. Note that we only list the most general case for each

combined operation in this table. 212

xv

1

Chapter 1

Introduction

The study of language operations is a fundamental research area in automata and

formal language theory, and has played an essential role in understanding the mecha-

nisms of generating words and languages. Basic operations, such as catenation, star,

union, intersection, shuffle, quotient, etc., have been extensively studied in the litera-

ture. Many new operations have also been introduced either as generalizations of the

basic operations or motivated by some new applications. There are many research di-

rections related to language operations. For instance, the study of closure properties

of families of languages under a certain operation, the study of language equations

with respect to different operations, and state complexity.

This thesis tackles several research questions related to language operations in the

following areas: reversibility of operations, generalizations of (comma-free) codes,

generalizations of basic operations, language equations, and state complexity. Since

this thesis is formatted as integrated-article, each chapter follows a standard article

structure and is self-contained. Thus, in this chapter, we only briefly present the

background and major results on each topic, and leave the introduction of preliminary

definitions and notations for each chapter.

2

1.1 Reversibility of operations and its role in gen-

eralizing comma-free codes

Among many research directions about operations, one particular topic of interest is

the reversibility of some operations, which was originally motivated by cryptography

applications: If one encrypts a plain-text message by the insertion of a key, and

decryption is accomplished by the deletion of the key, what are the language properties

that would ensure that the plain-text can be uniquely deciphered? In Chapter 2, we

investigate several questions in this framework, wherein the operations involved are

parallel insertion and deletion. We obtain a complete answer to this question for the

singleton case, i.e., for two words u, v ∈ Σ∗, under what conditions, after parallel-

inserting v into u, followed by the parallel deleting of v from the result, do we obtain

exactly u? Then, we investigate the question for languages L1, L2 ⊆ Σ∗. We prove

that, if L2 satisfies the condition L2ΣL2 ∩ Σ+L2Σ
+ = ∅, any language L1 can be

recovered after first parallel-inserting L2 into L1, and then parallel-deleting L2 from

the result.

The condition LΣL ∩ Σ+LΣ+ = ∅ reminds us of the definition of comma-free codes,

which is as follows: A nonempty set L ⊆ Σ+ is a comma-free code if L2∩Σ+LΣ+ = ∅.

This leads us to defining the notion of comma codes as follows: We call a language

L ⊆ Σ+ a comma code if LΣL ∩ Σ+LΣ+ = ∅. Note that unlike the comma-free code

where L2 consists of catenations of words in L not separated by any “commas” (hence

the term “comma-free”), in our definition, LΣL contains words in L separated by a

letter in Σ that acts as a “comma”, hence the name “comma code”. We prove that

comma codes are actually codes by establishing a relationship among comma-free

codes, comma codes, and infix codes, where a nonempty set L ⊆ Σ+ is called an infix

code if L ∩ (Σ∗LΣ+ ∪ Σ+LΣ∗) = ∅.

The notion of codes is not only crucial in cryptography, but also important in many

other areas such as information communication and data compression. In such sys-

3

tems, it is required that, if a message is encoded by using words from a code, then any

arbitrary catenation of words should be uniquely decodable into codewords. Various

codes [1, 40, 45] with specific algebraic properties, such as prefix codes, infix codes,

and comma-free codes have been motivated and defined for the above mentioned and

various other purposes.

In coding theory, the notion of comma-free codes was extended to the more general

one of intercodes [41, 46]. For m ≥ 1, a nonempty set L ⊆ Σ+ is called an intercode

of index m if Lm+1 ∩ Σ+LmΣ+ = ∅. It is clear that an intercode of index 1 is a

comma-free code. Based on the similarity between the definition of comma code

and that of comma-free code, we generalize comma codes to comma intercodes. For

m ≥ 1, a nonempty set L ⊆ Σ+ is called a comma intercode of index m if (LΣ)mL ∩

Σ+(LΣ)m−1LΣ+ = ∅. It is immediate that a comma intercode of index 1 is a comma

code. A language L is called a comma intercode if there exists an integer m ≥ 1 such

that L is a comma intercode of index m. Then, we prove that comma intercodes are

codes as well. Moreover, we obtain that the families of comma intercodes of index

m form an infinite proper inclusion hierarchy within the family of bifix codes, where

a nonempty set L ⊆ Σ+ is called a bifix code if L ∩ LΣ+ = ∅ (prefix code) and

L ∩ Σ+L = ∅ (suffix code). The first element of this hierarchy, the family of comma

codes, is a subset of the family of infix codes, while the last element is a subset of the

family of bifix codes.

As seen in the definition of comma codes, even if we put an arbitrary letter between

each two codewords in the catenation of an arbitrary number of codewords, the re-

sulting string can still be uniquely decoded into original codewords. This property

reminds us of the encoding and decoding of genetic information in DNA. It is com-

monly assumed that, in DNA, genes that carry genetic information satisfy certain

coding properties so that they can be decoded and expressed uniquely and efficiently.

Recent developments in biology show that, although genetic information is encoded

in DNA, genes (coding segments) are usually interrupted by noncoding segments,

4

formerly known as “junk segments”. Thus, it is not only of mathematical but also of

biological interest to generalize the notion of comma codes to k-comma codes, where

a comma (corresponding to a noncoding segment) is defined as a word of length k,

and no codeword (corresponding to gene or coding segment) is a subword of two other

codewords separated by a comma. Formally, for any k ≥ 0, a set L ⊆ Σ+ is called

a k-comma code if LΣkL ∩ Σ+LΣ+ = ∅. Furthermore, we can generalize the notion

of comma-free codes to a more general one of k-spacer codes, which allow “commas”

between two codewords of lengths up to k ≥ 0. Formally, for any k ≥ 0, a language

L is called a k-spacer code if LΣ≤kL ∩ Σ+LΣ+ = ∅.

In Chapter 3, we prove that both k-comma codes and k-spacer codes are in fact

codes. Also, we generalize k-comma codes to k-comma intercodes in a similar way

of generalizing comma-free codes to intercodes. Moreover, we prove that k-comma

intercodes are indeed codes, and obtain some hierarchies of codes.

As a further advance, we define and study the notion of n-k-comma intercodes as a

generalization of k-comma intercodes, following the research on the generalizations of

several types of codes in the literature. A language L is an n-code if every nonempty

subset of L of size at most n is a code. The original motivation for these codes

came from the analysis of 2-codes which had been shown to be the set of antichains

with respect to a partial order derived from anti-commutativity [11]. The authors

of [20] obtained several properties about the combinatorial structure of n-codes and

showed that these codes form an infinite proper inclusion hierarchy. Later, they

applied similar constructions to prefix and suffix codes, and obtained n-ps-codes [21].

However, unlike the hierarchy of n-codes, the hierarchy of n-ps-codes collapses after

only three steps, and turned out to be finite. In [26], the authors generalized the

notions of intercodes to those of n-intercodes, established relationships among these

codes, and obtained an infinite inclusion hierarchy including both intercodes and n-

intercodes. In Chapter 3, we show that the families of n-k-comma intercodes form an

infinite inclusion hierarchy as well.

5

1.2 Generalizations of basic operations and lan-

guage equations

One important research direction of language operations is to study generalizations of

basic operations. In the literature, several operations have been introduced as general-

izations of catenation. For example, sequential and parallel insertion and deletion [27],

k-insertion and k-deletion (introduced in [31] under the name of k-catenation and

k-quotient, respectively), synchronized insertion and deletion [10], distributed cate-

nation [32], mix operation [33], and shuffle and deletion on trajectories [13, 35, 29].

The notion of shuffle on trajectories was first introduced by Mateescu, Rozenberg,

and Salomaa [35] with an intuitive geometrical interpretation. It provides us with a

sequential syntactical control over the operation of insertion: a trajectory describes

how to insert the letters of a word into another word. As its left-inverse operation,

deletion on trajectories was independently introduced by Domaratzki [13], and Kari

and Sośık [29, 30]. The notion of inverse operations was first defined by Kari [28] for

solving language equations with an unknown language.

We consider two types of language equation problems: (1) equality test, i.e., “Can

we test the equality of a language obtained by performing an operation on some

languages with another language?”, and (2) existence of operand, for example, left

operand problems deal with the question of whether or not we can find a solution X

for the equation X ⋄L2 = L3 where L2 and L3 are given languages, and ⋄ is a certain

language operation. Note that right operand problems can be described analogously.

The essential role of the notion of inverse operations is very much like the role of

subtraction for solving equations such as x + a = b, where a, b are integers and x is

an unknown.

In order to solve a (left operand) language equation problem with respect to parallel

insertion defined in [27] in a more general framework, we generalize parallel insertion

to block insertion on trajectories and introduce block deletion on trajectories as its

6

inverse operation. These new operations provide us with a new framework to study

properties of language operations. With the parallel syntactical constraint provided

by trajectories, these operations properly generalize several sequential as well as par-

allel binary language operations such as catenation, sequential insertion, k-insertion,

parallel insertion, quotient, sequential deletion, k-deletion, etc.

Although we can easily verify that these new operations and shuffle and deletion

on trajectories generalize different sets of operations, we prove that block insertion

on trajectories can be simulated in two steps by using shuffle on trajectories and

substitutions, and similarly we can simulate block deletion on trajectories by using

deletion on trajectories and substitutions.

After obtaining several closure properties of the families of regular languages and

context-free languages under block insertion and deletion on regular and context-

free trajectory sets, we obtain several decidability results on the language equation

problems involving these new operations.

We investigate the equality test problems for block insertion and deletion on trajec-

tories under different conditions in Section 4.5.

Since we can consider trajectory sets as operands for block insertion and deletion

on trajectories, in Section 4.6, we investigate the language equation problems with

respect to the trajectory sets for both of the operations, i.e., the trajectory sets are

unknown and the other languages are given.

Lastly, in Section 4.7, we investigate language equation problems with respect to

the left operand for block insertion and deletion on trajectories, as well as its word-

variants, i.e., we limit a solution to be a singleton.

7

1.3 State complexity of combined operations

State complexity [42] is a type of descriptional complexity based on the deterministic

finite automaton (DFA) model. Here we give the basic concepts about state complex-

ity. The state complexity of a regular language L, denoted by sc(L), is the number of

states of the minimal complete DFA that accepts L. The state complexity of a class

S of regular languages, denoted by sc(S), is the supremum among all sc(L), L ∈ S.

The state complexity of an operation on regular languages is the state complexity of

the resulting languages from the operation as a function of the state complexities of

the operand languages. For example, let L1 be an m-state DFA language and L2 be

an n-state DFA language. The state complexity of the union of L1 and L2 is mn, and

it can be considered as a function f(m,n) = mn. It is clear that the state complexity

of an operation is a type of worst-case complexity.

State complexity is not only interesting from the theoretical point of view, but also

has strong implications for automata applications. For example, it is important to

know the largest possible number of states we need to manipulate in an application,

since this number is usually restricted by memory limit or programming languages.

The general research method for obtaining the exact state complexity of an operation

is to find a matching pair of upper bound and lower bound. Usually, the upper bound

is obtained by theoretical analysis, and the lower bound is obtained from some worst

case examples. However, it is difficult to get a matching pair directly. Thus, we

often need several iterations of modifying either the upper bound or the examples

that prove the lower bound. During this process, we need the help of some software

that manipulates automata, such as Grail+, to test and verify whether or not some

candidate examples can prove a lower bound that matches a pre-obtained upper

bound. If not, we sometimes can get some intuition about how to modify either the

upper bound or the examples.

Prior to 1990s, only a few papers were published on state complexity. One reason

8

is that, without the help of computer software, it is very difficult to find worst case

examples that prove the lower bound of the state complexity of an operation.

After the publication by Yu, Zhuang, and Salomaa [44] in 1994, a large number

of papers have been published on the state complexity of individual operations, for

example, the state complexity of basic operations such as union, intersection, cate-

nation, star, reversal, etc. [14, 19, 22, 23, 36, 39, 43, 44], and the state complexity of

several other operations such as shuffle, orthogonal catenation, proportional removal,

and cyclic shift [2, 9, 12, 24]. For instance, the following table shows the exact state

complexity of five basic operations: union, intersection, catenation, reversal, and star.

Operations L1 ∪ L2 L1 ∩ L2 L1L2 LR
1 L∗

1

State Complexity mn mn m2n − 2n−1 2m 2m−1 + 2m−2

Table 1.1: The state complexity of basic operations on regular languages L1 and
L2 over an non-unary alphabet Σ, accepted by DFAs of m and n states, m,n ≥ 1,
respectively. Note that these state complexities are obtained for general cases and
can be lower in some special cases such as when one of m,n is 1.

Besides the study of state complexity of individual operations, the study of state

complexity of combined operations, which was initiated by A. Salomaa, K. Salomaa,

and S. Yu in 2007 [37], is considered to be another important direction. This is

because, in practice, the operation to be performed is often a combination of several

individual operations in a certain order, rather than only one individual operation.

For example, in order to obtain a precise regular expression, a combination of basic

operations is usually required. In recent publications [15, 16, 17, 18, 25, 34, 37], it has

been shown that the state complexity of a combined operation is not always a simple

mathematical composition of the state complexities of its component operations. For

instance, as shown in Table 1.2, the state complexity of union combined with star

((L1 ∪ L2)
∗) is 2m+n−1 − 2m−1 − 2n−1 + 1 instead of 2mn−1 + 2mn−2, which is the

composition of the state complexities of union and star, while the state complexity

9

of intersection combined with star ((L1 ∩L2)
∗) is exactly equal to the composition of

the state complexities of intersection and star.

Operation State complexity Reference
(L1 ∪ L2)

∗ 2m+n−1 − 2m−1 − 2n−1 + 1 [37]
(L1 ∩ L2)

∗ 2mn−1 + 2mn−2 [25]
(L1L2)

∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 [16]
(LR

1)
∗ 2m [16]

(L1 ∪ L2)
R 2m+n − 2m − 2n + 2 [34]

(L1 ∩ L2)
R 2m+n − 2m − 2n + 2 [34]

(L1L2)
R O(2mn−1) [34]

(L1
∗)R 2m [34]

Table 1.2: The state complexity of several combined operations on regular languages
L1 and L2 over an non-unary alphabet Σ, accepted by DFAs of m and n states,
m,n ≥ 1, respectively. Note that these state complexities are obtained for general
cases and can be lower in some special cases such as when one of m,n is 1.

From the results obtained in the literature, it seems that there is no general method

to compute the exact state complexity of combined operations. Thus, we need to

individually investigate the state complexity of some often used combined opera-

tions. It is clear that an initial and important step of the study of state complexity

of combined operations is to study the state complexity of combinations of two ba-

sic operations. Thus, in this thesis, we study and obtain the state complexity of

combinations of two basic operations that have not been investigated in the litera-

ture, namely the state complexity of the following combined operations, L1L
∗
2, L1L

R
2 ,

L1(L2 ∩L3), L1(L2 ∪L3), (L1L2)
R, L∗

1L2, L
R
1 L2, (L1 ∩L2)L3, (L1 ∪L2)L3, L1L2 ∩L3,

and L1L2∪L3 for regular languages L1, L2, and L3. Note that we do not consider the

combined operations (L1 ∪ L2) ∩ L3 and (L1 ∩ L2) ∪L3, because it is clear that their

state complexities are simply the compositions of the state complexities of union and

intersection.

10

1.4 Structure of the thesis and co-authorship

This thesis consists of 6 co-authored research articles. Three of them were published

in conference proceedings and journals, two of them will be published in journals, and

one of them will be submitted to a journal. In this section, I present the co-authorship

and my contribution in each of the articles.

Chapter 2 contains the article, “On the reversibility of parallel insertion, and its

relation to comma codes”, [6], co-authored with Dr. Lila Kari and Dr. Shinnosuke

Seki. I initiated the research project and proved all the results. After that, Dr.

Shinnosuke Seki revised and shortened several proofs.

Chapter 3 contains the article, “K-comma codes and their generalizations”, [7], co-

authored with Dr. Lila Kari and Dr. Shinnosuke Seki. I initiated the research

project and proved all the results except for Proposition 31, which was proved by Dr.

Shinnosuke Seki. He also provided several comments for improvement.

Chapter 4 contains the article, “Block insertion and deletion on trajectories”, [8], co-

authored with Dr. Lila Kari and Dr. Shinnosuke Seki. I initiated this research project,

and introduced the notion of block insertion and deletion on trajectories. In the

original version of this paper, I proved all the closure properties using constructional

methods, and obtained most of the decidability results. Later, Dr. Shinnosuke Seki

established the relationships between these new operations and shuffle and deletion

on trajectories, and therefore shortened the proofs of the closure property results. It

is difficult to enumerate my results or his results, because this paper went through

several major revisions. So, I would say that I contributed at least half of the content

of this paper.

Chapter 5 contains the article, “State complexity of two combined operations: catenation-

star and catenation-reversal”, [3], co-authored with Dr. Yuan Gao, Dr. Lila Kari,

and Dr. Sheng Yu. I initiated this research project and my contribution to this

paper includes the section about the state complexity of catenation combined with

11

star (Section 5.3), lemmas 38 and 39, and a major part (the reachability proof) of

the proof of Theorem 12.

Chapter 6 contains the article, “State complexity of two combined operations: catenation-

union and catenation-intersection”, [4], co-authored with Dr. Yuan Gao, Dr. Lila

Kari, and Dr. Sheng Yu. My contribution to this paper is the section about the state

complexity of catenation combined with union (Section 6.3).

Chapter 7 contains our recently submitted manuscript, “State complexity of com-

bined operations with two basic operations”, [5], co-authored with Dr. Yuan Gao,

Dr. Lila Kari, and Dr. Sheng Yu. This research project is a continuation of our

research on state complexity of combined operations. My contribution to this project

includes the sections about the state complexities of L∗
1L2, L1L2 ∩L3, and L1L2 ∪L3

(Sections 7.5, 7.8, and 7.9).

12

Bibliography

[1] Berstel, J., Perrin, D.: Theory of Codes, Academic Press. Inc., Orlando, Toronto.

(1985)

[2] Campeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity

of shuffle of regular languages, Journal of Automata, Languages and Combina-

torics, 7 (3) (2002) 303-310

[3] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:

catenation-star and catenation-reversal, International Journal of Foundations of

Computer Science, accepted

[4] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:

catenation-union and catenation-intersection, International Journal of Founda-

tions of Computer Science, accepted

[5] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of combined operations with

two basic operations, submitted

[6] Cui, B., Kari, L., Seki, S.: On the reversibility of parallel insertion, and its

relation to comma codes, in: Proc. of CAI 2009, LNCS 5725, 204-219

[7] Cui, B., Kari, L., Seki, S.: K-comma codes and their generalizations, Funda-

menta Informaticae, 107 (2011) 1-18

13

[8] Cui, B., Kari, L., Seki, S.: Block insertion and deletion on trajectories, Theoret-

ical Computer Science, 412 (2011) 714 - 728

[9] Daley, M., Domaratzki, M., Salomaa, K.: State complexity of orthogonal cate-

nation, in: Proc. of DCFS 2008, Charlottetown, PE, Canada, July 16-18, 2008,

134-144

[10] Daley, M., Ibarra, O., Kari, L.: Closure and Decidability Properties of Some

Language Classes with respect to Ciliate Bio-operations, Theoretical Computer

Science, 306 (2003) 19-38

[11] Day, P.H., Shyr, H.J.: Languages defined by some partial orders, Soochow J.

Math, 9 (1983) 53-62

[12] Domaratzki, M.: State complexity and proportional removals, Journal of Au-

tomata, Languages and Combinatorics, 7 (2002) 455-468

[13] Domaratzki, M.: Deletion along trajectories, Theoretical Computer Science, 320

(2004) 293-313

[14] Domaratzki, M., Okhotin, A.: State complexity of power, Theoretical Computer

Science, 410 (24-25) (2009) 2377-2392

[15] Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined

operations, Theoretical Computer Science, 410 (35) (2009) 3272-3280

[16] Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:

star of catenation and star of Reversal, Fundamenta Informaticae, 83 (1-2) (2008)

75-89

[17] Gao, Y., Yu, S.: State complexity approximation, in: Proc. of Descriptional

Complexity of Formal Systems, (2009) 163-174

14

[18] Gao, Y., Yu, S.: State complexity of union and intersection combined with star

and reversal, Computing Research Repository, (2010) arXiv:1006.3755v1

[19] Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic

finite automata, in: Proc. of International Conference on Implementation and

Application of Automata, LNCS 2608, 2002, 148-157

[20] Ito, M., Jürgensen, H., Shyr, H. J., Thierrin, G.: Anti-commutative languages

and n-codes, Discrete Applied Math, 24 (1989) 187-196

[21] Ito, M., Jürgensen, H., Shyr, H. J., Thierrin, G.: N -prefix-suffix languages,

Intern. J. Computer Math, 30 (1989) 37-56

[22] Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and

complementation of regular languages, International Journal of Foundations of

Computer Science, 16 (2005) 511-529

[23] Jirásková, G.: State complexity of some operations on binary regular languages,

Theoretical Computer Science, 330 (2005) 287-298

[24] Jirásková, G., Okhotin, A.: State complexity of cyclic shift, in: Proc. of DCFS

2005, Como, Italy, June 30-July 2, 2005, 182-193

[25] Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of

intersection, Turku Center for Computer Science TUCS Technical Report, No.

825, 2007

[26] Jürgensen, H., Yu, S. S.: Relations on free monoids, their independent sets, and

codes, Intern. J. Computer Math, 40 (1991) 17-46

[27] Kari, L.: On Insertion and Deletion in Formal Languages, Ph.D. Thesis, Uni-

versity of Turku. (1991)

15

[28] Kari, L.: On language equations with invertible operations, Theoretical Com-

puter Science, 132 (1994) 129-150

[29] Kari, L., Sośık, P.: Language deletion on trajectories, Technical Report, Univer-

sity of Western Ontario, 606 (2003)

[30] Kari, L., Sośık, P.: Aspects of shuffle and deletion on trajectories, Theoretical

Computer Science, 331 (2005) 47-61

[31] Kari, L., Thierrin, G.: K-catenation and applications: k-prefix codes, Journal

of Information and Optimization Sciences, 16 (2) (1995) 263-276

[32] Kudlek, M., Mateescu, A.: On distributed catenation, Theoretical Computer

Science, 180 (1997) 341-352

[33] Kudlek, M., Mateescu, A.: On mix operation. New Trends in Formal Languages,

G. Pǎun and A. Salomaa, Eds., LNCS, 1218 (1997) 35-44

[34] Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language

operations combined with reversal, Information and Computation, 206 (2008)

1178-1186

[35] Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic

constraints, Theoretical Computer Science, 197 (1998) 1-56

[36] Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Ja-

cobsthal’s function, International Journal of Foundations of Computer Science,

13 (1) (2002) 145-159

[37] Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations,

Theoretical Computer Science, 383 (2007) 140-152

[38] Salomaa, A., Salomaa, K., Yu, S.: Undecidability of the state complexity of

composed regular operations, in: Proc. of International Conference on Language

and Automata Theory and Applications, LNCS 6638, 2011, 489-498

16

[39] Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular

languages, Theoretical Computer Science, 320 (2004) 293-313

[40] Shyr, H. J.: Free Monoids and Languages. Lecture Notes, Institute of Applied

Mathematics, National Chung-Hsing University, Taichung, Taiwan. (2001)

[41] Shyr, H. J., Yu, S. S.: Intercodes and some related properties, Soochow J. Math,

16 No.1 (1990) 95-107

[42] Yu, S.: Regular languages, in: Rozenberg, G., Salomaa, A. (Eds.), Handbook of

Formal Languages, Vol. 1, Springer-Verlag, 1997, 41-110

[43] Yu, S.: State complexity of regular languages, Journal of Automata, Languages

and Combinatorics, 6 (2) (2001) 221-234

[44] Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages, Theoretical Computer Science, 125 (1994) 315-328

[45] Yu, S. S.: Languages and Codes, Lecture Notes, Department of Computer Sci-

ence, National Chung-Hsing University, Taichung, Taiwan 402. (2005)

[46] Yu, S. S.: A characterization of intercodes, Intern. J. Computer Math, 36 (1990)

39-48

17

Chapter 2

On the Reversibility of Parallel

Insertion, and Its Relation to

Comma Codes

Abstract

This paper studies conditions under which the operation of parallel insertion can be

reversed by parallel deletion, i.e., when does the equality (L1 ⇐ L2)⇒ L2 = L1 hold

for languages L1 and L2. We obtain a complete characterization of the solutions in

the special case when both languages involved are singleton words. We also define

comma codes, a family of codes with the property that, if L2 is a comma code, then

the above equation holds for any language L1 ⊆ Σ∗. Lastly, we generalize the notion

of comma codes to that of comma intercodes of index m. Besides several properties,

we prove that the families of comma intercodes of index m form an infinite proper

inclusion hierarchy, the first element which is a subset of the family of infix codes,

and the last element of which is a subset of the family of bifix codes.

18

2.1 Introduction

In combinatorics on words and formal language theory, operations play an essential

role in understanding the mechanisms of generating words and languages. Several

generalizations of catenation and quotient, such as shuffle, shuffle on trajectories, [14],

sequential and parallel insertion and deletion, [5], distributed catenation, [10], mix

operation, [11], deletion on trajectories, [2], and hairpin completion and reduction,

[13], have been studied in the literature. Follow-up studies investigated properties of

languages produced by sequential and parallel insertion and deletion in [3, 6, 7, 8, 9].

One particular topic of interest was the reversibility of some of these operations,

originally motivated by cryptography applications: If one uses the insertion of a key

as one component of a cryptosystem to encrypt a plain-text message, and one step of

decryption is accomplished by the deletion of the key, what are the language properties

that would ensure that the plain-text can be uniquely deciphered? Motivated by

this potential application, the determinism and inversibility of insertion and deletion

operations on words were studied in, e.g., [6].

The question can be asked in a more general framework wherein the operations in-

volved are the parallel insertion and deletion. This paper represents a first step

towards an answer. More precisely, similar to sequential insertion and deletion, if we

parallel-delete a word v from the language obtained by parallel-inserting v into u, we

will not always obtain u. Thus, the question we ask is “Under what conditions, after

parallel-inserting v into u, followed by the parallel deletion of v from the result, do

we obtain exactly u?”.

In Sect. 2.3, after the investigation of various properties of parallel insertion and

deletion, we give a complete answer to this question for the singleton case, and fur-

thermore we generalize the question to languages. We show that, if L2 is a comma

code (formally introduced in Sect. 2.4), any language L1 can be recovered after first

parallel-inserting L2 into L1 and then parallel-deleting L2 from the result.

19

The notion of codes was defined for applications in communication systems. That is,

if a message is encoded by using words from a code, then any arbitrary catenation

of words should be uniquely decodable into code-words. Various codes with specific

algebraic properties, such as prefix codes, infix codes, and comma-free codes [1, 16, 17],

have been defined and used for various purposes. In Sect. 2.4, we define a family of

codes, named comma codes, and show that this family is a proper subfamily of that of

infix codes. Also, we give a characterization of comma codes, obtain some closure and

algebraic properties, as well as compare the comma code family with other families,

such as that of comma-free codes and that of solid codes.

Based on the similarity between the definition of comma codes and that of comma-free

codes, in Sect. 2.5, we generalize comma codes and introduce the notion of comma

intercodes. Similar to the notion of intercodes [16, 17, 18], the families of comma

intercodes of index m form a proper inclusion hierarchy within the family of bifix

codes. However, we show that any two families of intercodes and comma intercodes

are incomparable.

2.2 Preliminaries

An alphabet Σ is a nonempty finite set of letters. A word over Σ is a sequence of

letters in Σ. The length of a word w, denoted by |w|, is the number of letters in this

word. The empty word, denoted by λ, is the word of length 0, while a unary word is

a word of the form aj , j ≥ 1, a ∈ Σ. The set of all words over Σ is denoted by Σ∗,

and Σ+ = Σ∗ \ {λ} is the set of all nonempty words. A language is a subset of Σ∗. A

language with exactly one word is called a singleton. In this paper, for a word w ∈ Σ∗,

we often denote a singleton {w} as w. A catenation of two languages L1, L2 ⊆ Σ∗,

denoted by L1L2, is defined as L1L2 = {uv | u ∈ L1, v ∈ L2}. As mentioned, if an

operand is a singleton, say L1 = {u} or L2 = {v}, then we write uL2 or L1v instead

of {u}L2 or L1{v}.

20

A word x ∈ Σ∗ is called an infix (prefix, suffix) of a word u ∈ Σ+ if u = zxy (u = xy,

u = zx) for some words y, z ∈ Σ∗. In this definition, if z and y are nonempty, then

such an x is called a proper infix, prefix, or suffix of u. For a word u ∈ Σ∗, the set of

its infixes (prefixes, suffixes) is denoted by F(u) (resp. Pref(u), Suff(u)). For a word

u ∈ Σ∗, we denote the prefix (suffix) of length n ≥ 0 by prefn(u) (resp. suffn(u)).

These notations can be naturally extended to languages, e.g., Pref(L) is the set of

prefixes of the words in L.

A nonempty word u ∈ Σ+ is said to be primitive if u = vn implies n = 1 and u = v for

any v ∈ Σ+. Any non-primitive word can be written as a power of a unique primitive

word [16], which is called the primitive root of the word.

It is well known that [16], if nonempty words x, y, z ∈ Σ+ satisfy xy = yz, then there

exist α, β ∈ Σ∗ such that αβ is primitive, x = (αβ)i, y = (αβ)jα, and z = (βα)i for

some i ≥ 1 and j ≥ 0.

A nonempty word u ∈ Σ+ is called bordered if there exists a nonempty word which

is both proper prefix and proper suffix of u. A bordered primitive word is a primitive

word which is bordered, and it can be written as xyx for some x, y ∈ Σ+ [16].

Parallel insertion and deletion on words and languages are variants of well-known

(sequential) insertion and deletion, introduced in [5]. For two words u, v ∈ Σ∗, the

parallel insertion of v into u results in a word va1va2 · · · anv, where u = a1a2 · · · an

for letters a1, . . . , an ∈ Σ. We denote this resulting word by u ⇐ v. This operation

can be generalized to languages as follows: for two languages L1, L2 ⊆ Σ∗, the parallel

insertion of L2 into L1 generates a language

L1 ⇐ L2 =
⋃

n ≥ 1, a1, . . . , an ∈ Σ s.t. a1a2 · · · an ∈ L1

L2a1L2a2 · · ·L2anL2.

21

Example 1 For L1 = {cd} and L2 = {a, b},

L1 ⇐ L2 = L2cL2dL2

= {acada, acadb, acbda, acbdb, bcada, bcadb, bcbda, bcbdb}.

In contrast, the parallel deletion of a language L2 from another language L1 results

in a set of words which can be obtained by deleting elements of L2 from an element

of L1 in a “maximal parallel manner”. We denote the resulting set by L1 ⇒ L2. For

u ∈ L1, let

u⇒ L2 =
{
u1u2 · · ·ukuk+1 | u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, u ∈ u1L2u2L2 · · ·L2uk+1

and F(ui) ∩ (L2 \ {λ}) = ∅ for all 1 ≤ i ≤ k + 1
}
.

By this definition, it is clear that if u does not contain any word in L2 as its infix,

then u⇒ L2 = ∅. Then we define L1 ⇒ L2 =
⋃

u∈L1
(u⇒ L2).

Example 2 Let L1 = {abababa, aababa, abaabaaba} and L2 = {aba}. Then

L1 ⇒ L2 = ({abababa} ⇒ L2) ∪ ({aababa} ⇒ L2) ∪ ({abaabaaba} ⇒ L2)

= {b, abba} ∪ {aba, aab} ∪ {λ} = {b, abba, aba, aab, λ}.

2.3 When does (L1 ⇐ L2)⇒ L2 equal L1?

By definitions, parallel insertion and deletion are not inverse operations in the sense

that L1 may not equal to (L1 ⇐ L2) ⇒ L2. Thus, a question of interest is to find

under what conditions does the equality (L1 ⇐ L2) ⇒ L2 = L1 hold. We start by

providing some properties of parallel insertions and deletions relevant to this question.

The simplest case is when the operation is the parallel insertion and both operands

22

are singleton words. The next theorem will show that, unless w and u are unary

words over the same letter, w ⇐ u is primitive.

Lemma 1 Let u ∈ Σ+ and us ∈ Suff(u). If usau ∈ Pref(u2) for some a ∈ Σ, then u

is a power of a.

Proof: Due to the assumption, u = usau
′
p = u′

pusa for some u′
p ∈ Σ∗. It well known

that, for two words u, v ∈ Σ+, if uv = vu, then they share their primitive roots.

Therefore, the primitive root of u is same as that of usa. Hence, if us is empty, it is

clear that u ∈ a+. Even, otherwise, since us ∈ Suff(u′
pusa), us is a power of a. Thus,

this lemma holds. 2

Theorem 1 Let u, w ∈ Σ+. Then w ⇐ u is not primitive if and only if w and u are

unary words over the same letter a ∈ Σ.

Proof: The if-direction is trivial. So we consider here the only-if direction under the

assumption that w ⇐ u is non-primitive. Then w ⇐ u overlaps with its square in

a nontrivial way. Let w = a1a2 . . . an for some n ≥ 1 and a1, . . . , an ∈ Σ. Also let

w ⇐ u = vk for some v ∈ Σ+ and k ≥ 2. In the following, we prove that in all

possible cases v is a unary word, which trivially implies what we want.

Firstly we consider the case when there is an integer ℓ such that ua1 · · ·uaℓ = vi for

some i ≥ 1, which further implies that ua1 · · ·uaℓ = an−ℓ+1u · · ·anu. In this case, we

can always find such ℓ in the range ⌈n/2⌉ ≤ ℓ. For such ℓ, this equation implies that

all of a1, . . . , an are the same, say a, and v is a power of a. If |u| = 1, this is always

the case so that all we have to consider is the case |u| ≥ 2 under the assumption that

such ℓ cannot be found. Note that then we cannot find an integer ℓ′ ≥ 0 such that

ua1 · · · aℓ′u is a power of v, either.

Under the assumption, one of the occurrences of u in w ⇐ u overlaps with the factor

u2 of (w ⇐ u)2 nontrivially (x 6= λ and y 6= λ in Fig. 2.1.) As shown there, we have

usamu ∈ Pref(u2) for some 1 ≤ m ≤ n. Lemma 1 implies that u is a unary word

23

over am longer than 1. Note that the overlap between w ⇐ u and its square implies

that for all 1 ≤ i ≤ n, ai = an because these characters in w ⇐ u must be contained

within some u in (w ⇐ u)2. 2

an a1

am

x yus

u u u u

u u

Figure 2.1: How uamu overlaps with uanu
2

As mentioned before, (L1 ⇐ L2)⇒ L2 = L1 is not always the case. Even if we limit

L1 and L2 to be singletons {w} and {u}, (w ⇐ u)⇒ u can contain words except w.

Since parallel insertion of a word into another word certainly generates a singleton,

it is the parallel deletion that creates such words. We initiate our investigation on

this problem with a more general question: under what conditions, parallel deletion

results in a singleton.

Note that w ⇒ u = ∅ if and only if w does not contain u as its infix. In the following,

we only consider cases where w contains u as its infix. Also, note that two occurrences

of u in w have to overlap in a nontrivial manner for w ⇒ u not to be a singleton. If

u is unbordered, two occurrences of u never overlap non-trivially regardless of what

w is. Thus we have the following proposition.

Proposition 1 If u ∈ Σ∗ is unbordered, then w ⇒ u is a singleton for any word

w ∈ Σ∗ that contains u as its infix.

This also suggests that, even for a bordered word u, w ⇒ u is at most a singleton as

long as the form of w guarantees that nontrivial overlaps between u’s do not occur in

it. We will give a necessary and sufficient condition for w ⇒ u to be a singleton in

the case when w and u share the same primitive root.

Proposition 2 For a ∈ Σ, let w = aj and u = ak for some j ≥ k ≥ 1. Then w ⇒ u

is a singleton if and only if either k = 1, k ≤ j ≤ 2k − 1, or j = 3k − 1.

24

Proof: We consider the if-direction first. If k = 1, then this operation results in a

singleton of the empty word. If j < k, then we cannot delete any u from w so that

w ⇒ u = {w}. If k ≤ j ≤ 2k − 1, then by the definition of parallel deletion, the

operation deletes exactly one u from w, and hence w ⇒ u = {aj−k}. In the case when

j = 3k − 1, we let w = ai1akai2 for some 0 ≤ i1 < k. Then k ≤ i2 ≤ 2k − 1. We know

that ai2 ⇒ u = {ai2−k}. Hence w ⇒ u is a singleton.

On the other hand, we show that if k and j do not satisfy these conditions, then

w ⇒ u contains at least two elements. If 2k ≤ j ≤ 3k − 2, then it is clear that

we can delete two u’s from w. In addition, we can write w as ak−1akaj−2k−1. Since

j − 2k − 1 < k, ak−1aj−2k−1 is also included in w ⇒ u. In the case 3k ≤ j, note that

(a2k ⇒ u)(aj−2k ⇒ u) ⊆ w ⇒ u. We know that (a2k ⇒ u) is not a singleton, and

hence w ⇒ u cannot be a singleton. 2

Since a primitive word cannot be a proper infix of its square [17], this proposition has

the following corollary.

Corollary 1 Let w = gj and u = gk for some primitive word g and j ≥ k ≥ 1. Then

w ⇒ u is a singleton if and only if either k = 1, k ≤ j ≤ 2k, or j = 3k − 1.

Next we consider the more general case when w and u may have distinct primitive

roots. If the primitive root of u is unbordered, then we can give a condition similar

to the one given in Proposition 2. The proof for this proposition works to prove the

next proposition.

Proposition 3 Let w ∈ Σ∗ and u = gk for some unbordered primitive word g and

k ≥ 1. If the following condition holds, then w ⇒ u is a singleton.

(Condition) whenever w = wpg
jws for some wp, ws ∈ Σ∗ with g 6∈ Suff(wp) and

g 6∈ Pref(ws), and j ≥ 1, either k = 1, k ≤ j ≤ 2k − 1, or j = 3k − 1.

Now we consider the main problem of finding conditions for (L1 ⇐ L2) ⇒ L2 to be

equal to L1. We start our investigation of this problem with the special case when

25

L1 = {w} and L2 = {u}. Hence our first aim is to clarify when (w ⇐ u)⇒ u does not

contain any word other than w. If either w or u is the empty word, then (w ⇐ u)⇒ u

is always {w}. Therefore in the remainder of this paper we will assume, without loss

of generality, that u and w are nonempty. Let w = a1a2 · · ·an for some n ≥ 1 and

a1, . . . , an ∈ Σ. In order for the parallel deletion to create another word besides w,

there must exist at least two different ways to parallel-delete the occurrences of u

from w ⇐ u. In other words, we have to delete some occurrences of u that have not

been parallel-inserted into w. Formally speaking, u has to be a proper infix of uaiu

for some 1 ≤ i ≤ n. Based on this idea, we define the set:

X =
{
u ∈ Σ+ | prefx(u) 6= suffx(u) or prefy(u) 6= suffy(u)

for any (x, y) ∈ N2 with x+ y + 1 = |u|
}
.

Informally, X contains words u which cannot be proper infixes of ubu for any letter

b ∈ Σ. For such words u ∈ X , there cannot exist two different ways to parallel-delete

the occurrences of u from w ⇐ u, and hence we have the following result.

Proposition 4 If u ∈ X, then (w ⇐ u)⇒ u = {w} for any w ∈ Σ∗.

In the following, we give a characterization of X . First of all, no unary word can be in

X . By the informal definition of X , the set of all unbordered words of length at least

2, denoted by U>1, is a subset of X . Let N(>1) denote the set of all non-primitive

words whose primitive root is of length at least 2. The next result shows that no

word u in N(>1) can be a proper infix of ubu, for any b ∈ Σ.

Lemma 2 N(>1) ⊆ X.

Proof: Suppose that there were u ∈ N(>1) such that u 6∈ X . Let u = gi for some

primitive word g of length at least 2 and i > 1. Also we can let u = usaup for some

us ∈ Suff(u), a ∈ Σ, and up ∈ Pref(u). The equation gi = usaup implies that this a is

26

inside one and only one of these g’s. Since g2 cannot overlap with g in any nontrivial

way, either us or up is a power of g. We only consider the case when us = gj for some

j ≥ 1; the other can be proved in a similar way. Then aup = gi−j. Since up ∈ Pref(gi),

this means g is a power of a, a contradiction with the primitivity of g. 2

Let QB be the set of all bordered primitive words. Any word in QB can be written as

w = (αβ)kα for some primitive word αβ, and k ≥ 1. We partition QB into two sets.

The first one, Q
(=1)
B , denotes the set of all bordered primitive words w that can be

written as (αβ)kα with |β| = 1. The second one is simply the complement, Q
(>1)
B =

QB \ Q
(=1)
B . For example, aaabaa, abbabba ∈ Q

(>1)
B while aabaabaa ∈ Q

(=1)
B . This is

because even though we can regard aabaabaa as αβα with α = a and β = abaaba, we

can also consider it as (α′β ′)2α′, where α′ = aa and β ′ = b.

The next result shows that every bordered primitive word w that can only be written

as (αβ)kα such that αβ is primitive, k ≥ 1, and |β| cannot be 1, cannot be a proper

infix of waw for any a ∈ Σ. Formally, we have

Lemma 3 Q
(>1)
B ⊆ X.

Proof: Suppose that there exists u ∈ Q
(>1)
B but u 6∈ X . This means that u = usaup

for some us ∈ Suff(u) and up ∈ Pref(u) and a, b ∈ Σ such that u = upbus. The

Parikh vector of a word contains the occurrences of each letter in Σ. Since the

Parikh vectors of up and us together contain the same number of occurrences of

each letter in usaup and upbus, we can obtain a = b and hence u = upaus. Due

to a well known result mentioned in Sect. 2.2, there exist α, β ∈ Σ∗ such that

usa = (αβ)i and up = α(βα)j for some i ≥ 1 and j ≥ 0 and βα is primitive. Then

ua = upausa = upa(αβ)
i = α(βα)i+ja, and hence the suffix of length |αβ| + 1 of

ua is bαβ = βαa. Again, based on the Parikh vector of this suffix, b = a, i.e.,

aαβ = βαa. Note that |β| ≥ 2 because u ∈ Q
(>1)
B and hence a is a proper suffix of β.

Therefore, this equation means that βα overlaps with its square in a nontrivial way,

a contradiction with its primitivity. 2

27

The next result states that any word w that is either a unary word or a bordered

primitive word that can be written as (αβ)kα with αβ being primitive, k ≥ 1, and

|β| = 1, can be a proper infix of waw for some a ∈ Σ.

Lemma 4
(
Q

(=1)
B ∪ {ai | a ∈ Σ, i ≥ 1}

)
∩X = ∅.

Proof: As mentioned above, any unary word cannot be in X . Let w ∈ Q
(=1)
B . By

definition, there exist α ∈ Σ+ and b ∈ Σ such that αb is primitive and w = (αb)kα

for some k ≥ 1. Then w is a proper infix of wbw, and hence w 6∈ X . 2

The next proposition characterizes the set of all words u that cannot be a proper infix

of uau for any a ∈ Σ, as being either unbordered words of length greater than 1, or

bordered primitive words of the form (αβ)kα such that αβ is primitive, k ≥ 1, and

|β| cannot be 1, or non-primitive words whose primitive root has length longer than

1.

Proposition 5 X = U>1 ∪Q
(>1)
B ∪N(>1).

Proof: Note that Σ+ = U>1 ∪QB ∪N(>1) ∪ {a
i | a ∈ Σ, i ≥ 1}. Combining Lemmas

2, 3, and 4 together, we can reach this proposition. 2

As mentioned in Proposition 4, u being an element of X is sufficient for it to satisfy

(w ⇐ u)⇒ u = {w} for any word w. In the following, we give necessary and sufficient

conditions for the equality to be true in the case when u 6∈ X , that is, either u is

unary or u ∈ Q
(=1)
B .

Proposition 6 Let w ∈ Σ∗ and u = ak for some a ∈ Σ and k ≥ 1. Then (w ⇐

u)⇒ u = {w} if and only if

1. if k = 2, then aa 6∈ F(w);

2. otherwise, w ∈ (Σ \ {a})∗.

28

Proof: If w contains aa as its infix, then a3k+2 ∈ F(w ⇐ u). Proposition 3 implies

that (w ⇐ u) ⇒ u is not a singleton. Next we consider the case when w contains

no aa but a as its infix, and k = 2. Then a5 ∈ F(w ⇐ u). Since 5 = 3k − 1,

(w ⇐ u)⇒ u is a singleton due to the proposition. It is clear that for w ∈ (Σ\{a})∗,

(w ⇐ u)⇒ u = {w}. 2

Having considered the case of u being unary, now the only one remaining case is when

u is an element of Q
(=1)
B . For such a word u, there exist α ∈ Σ+, b ∈ Σ, and k ≥ 1

such that u = (αb)kα. We define Mu = {a ∈ Σ | u ∈ Suff(u)aPref(u)}. By definition,

Mu 6= ∅ if and only if u 6∈ X .

Lemma 5 For a bordered primitive word u, if b ∈Mu, then there exists a nonempty

word α ∈ Σ+ such that u = α(bα)k for some k ≥ 1 and αb is primitive.

Proof: Since b ∈Mu, u = upbus = usbup for some up, us ∈ Σ∗. Then usb = (αβ)i and

up = α(βα)j for some i ≥ 1, j ≥ 0, and α, β ∈ Σ∗ such that αβ is primitive. Suppose

that α were empty. Then u = βi+j. On one hand, i + j has to be 1 because u is

primitive; on the other hand, i+ j ≥ 2 because up cannot be empty, otherwise, u is a

unary word over b longer than 2. Thus, α is nonempty. So ub = upbusb = α(βα)i+jb,

and hence b(αβ)i = (βα)ib. Since αβ is primitive, β has to be of length 1, and hence

β = b. 2

Lemma 6 For u ∈ Q
(=1)
B , |Mu| = 1.

Proof: Suppose |Mu| > 1, say two distinct characters b, d are in Mu. Then Lemma

5 implies that u = α(bα)i = γ(dγ)j for some i, j > 0 and α, γ ∈ Σ∗ such that both

αb and γd are primitive. Without loss of generality, we assume |αb| > |γd|. Then

by Fine-and-Wilf’s theorem [12], i = 1. Hence u = αbα = γ(dγ)j. If j is odd, then

clearly b = d, a contradiction. Otherwise, α = (γd)j/2γp = γs(dγ)
j/2 and γ = γpbγs

for some γp, γs ∈ Σ∗ of same length. Then we have (γd)j/2−1γdγp = γs(dγ)
j/2−1dγpbγs,

and hence b = d, the same contradiction. 2

29

Proposition 7 Let u ∈ Q
(=1)
B . Then (w ⇐ u)⇒ u = {w} for w ∈ Σ+ if and only if

w ∈ (Σ \Mu)
+.

Proof: If w does not contain any letter in Mu, then it is clear that (w ⇐ u)⇒ u =

{w}.

We prove the converse implication. Due to Lemmas 5 and 6, Mu = {b} and there

exists α ∈ Σ+ such that u = α(bα)k for some k ≥ 1 and αb is primitive. Let

w = a1 · · · an for some n ≥ 1 and ai ∈ Σ for all 1 ≤ i ≤ n, and assume that w

contains b. Then we can find an integer 1 ≤ m ≤ n such that am−1 6= b (if any),

am = · · · = am+j−2 = b, and am+j−1 6= b (if any) for some j ≥ 2. Now

w ⇐ u = ua1 · · ·uam−1[α(bα)
kbα(bα)kb · · · bα(bα)k]am+j−1u · · ·anu.

We can parallel-delete u’s from the bracketed infix in two ways: one is to delete j u’s

that were actually inserted by the preceding insertion; the other is to leave the first

αβ and delete u from every (k+1)|αβ| position. Note that in the latter way, we delete

exactly j − 1 u’s. If in both cases, we parallel-delete the inserted u’s from the prefix

and suffix, then we obtain two distinct words w, a1 · · · am−1αbb
j−2(bα)kam+j−1 · · · an.

We still need to check that the latter parallel deletion is valid. For that, it is enough

to check that neither am−1αb or (bα)kam+j−1 contain u. Their lengths are at most

|u| so that if one of them contains u, then it is u itself. However, this is not the case

because of the primitivity of αb and α 6= λ. 2

Since

u ∈ Σ+ = N(>1) ∪ {aa
+| a ∈ Σ}

︸ ︷︷ ︸

non-primitive

∪Σ ∪ U>1 ∪Q
(=1)
B ∪Q

(>1)
B

︸ ︷︷ ︸

primitive

,

Propositions 4, 5, 6, 7 completely characterize the solutions to the equation (w ⇐

u)⇒ u = {w}.

Hence now we are ready to consider the more general equation (L1 ⇐ L2)⇒ L2 = L1.

30

When L2 is a singleton, say L2 = {u}, the set X plays an important role.

Proposition 8 If u ∈ X, then (L⇐ u)⇒ u = L for any language L ⊆ Σ∗.

Proof: By definition, (L ⇐ u) ⇒ u =
⋃

w∈L(w ⇐ u) ⇒ u. Then this result is

immediate from Proposition 4. 2

2.4 Comma codes

In the previous section, we saw that if u ∈ X , then (L ⇐ u) ⇒ u = L for any

language L ⊆ Σ∗. The aim of this section is to introduce a new language family with

the property that if a language L2 belongs to this family, then (L1 ⇐ L2)⇒ L2 = L1

holds for any language L1 ⊆ Σ∗.

Definition 1 A set L ⊆ Σ+ is called a comma code if LΣL ∩ Σ+LΣ+ = ∅.

Intuitively, a comma code is a set L with the property that none of its words can be

a proper infix of u1au2 where u1 and u2 are words in L, and a ∈ Σ is a “comma”. As

it turns out (Corollary 2) a comma code is indeed a code.

As examples, L = {abka | k > 1} is a comma code, while any language that contains

unary words or words in Q
(=1)
B is not a comma code.

Theorem 2 If the language L2 ⊆ Σ+ is a comma code, the equation (L1 ⇐ L2) ⇒

L2 = L1 holds for any language L1 ⊆ Σ∗.

The definition of comma codes reminds us of that of comma-free codes. A nonempty

set L ⊆ Σ+ is a comma-free code if L2 ∩ Σ+LΣ+ = ∅. Recall that a nonempty set

L ⊆ Σ+ is an infix code if L∩ (Σ∗LΣ+ ∪Σ+LΣ∗) = ∅, and that a comma-free code is

an infix code [17]. We establish a relationship among these three codes, which leads

us to the fact that comma codes are actually codes.

31

Lemma 7 For a language A ⊆ Σ∗, A is a comma code if and only if AΣ is a comma-

free code.

Proof: (If) We assume that AΣ is a comma-free code, and suppose that A were not

a comma code. Then there exist w1, w2, w3 ∈ A, a ∈ Σ, and x, y ∈ Σ+ such that

w1aw2 = xw3y. By putting some b ∈ Σ at the ends of both sides, we can reach a

contradiction with AΣ being a comma-free code.

(Only-if) Suppose that AΣ were not a comma-free code. Then we have u1a1u2a2 =

x′u3a3y
′ for some u1, u2, u3 ∈ A, a1, a2, a3 ∈ Σ, and x′, y′ ∈ Σ+. Since y′ is nonempty,

we can cut the rightmost letters of both sides from this equation, and reaches the

contradiction. 2

Lemma 8 For a language A ⊆ Σ∗, A is an infix code if and only if AΣ is an infix

code.

Proof: The only-if direction is trivial because the family of infix codes is closed under

concatenation. As of the if direction, under the assumption that AΣ is an infix code,

suppose that A were not. Then there exist u ∈ A and x, y ∈ Σ∗ such that xuy ∈ A

and xy 6= λ. Then for any b ∈ Σ, xuyb ∈ AΣ, which contains uc ∈ AΣ as its factor,

where c is a first letter of yb. Since uc 6= xuyb, this is a contradiction. 2

Corollary 2 A comma code is an infix code, and hence a code.

Actually, the family of comma codes is a proper subset of the family of infix codes.

For example, L = {ab, ba} is an infix code, but not a comma code. Hence we give a

characterization of infix codes which are comma codes. For this purpose, we define

32

the following terms:

Lp = {x ∈ Σ+ | xy, yz ∈ L for some y, z ∈ Σ+},

Li = {y ∈ Σ+ | xy, yz ∈ L for some x, z ∈ Σ+},

Ls = {z ∈ Σ+ | xy, yz ∈ L for some x, y ∈ Σ+},

Lp = {x ∈ Σ+ | xa ∈ Lp for some a ∈ Σ},

Ls = {x ∈ Σ+ | ax ∈ Ls for some a ∈ Σ}.

Proposition 9 ([16]) Let L ⊆ Σ+. If L is an infix code, then the following four

conditions are equivalent and make L a comma-free code: (1) Ls∩Li = ∅, (2) Lp∩Li =

∅, (3) L ∩ LsLs = ∅, and (4) L ∩ LpLp = ∅. Conversely, if L is a comma-free code,

then L is an infix code with these properties.

Proposition 10 Let L ⊆ Σ+. If L is an infix code such that L ∩ Σ = ∅ and (Ls ∪

Lp) ∩ Σ = ∅, then the following four conditions are equivalent and make L a comma

code: (1) Ls ∩ Li = ∅, (2) Lp ∩ Li = ∅, (3) L ∩ LsLs = ∅, and (4) L ∩ LpLp = ∅.

Conversely, if L is a comma code, then L is an infix code with these properties.

Proof: Note that the emptiness of L∩Σ and (Ls∪Lp)∩Σ is the minimal requirement

for L to be a comma code.

(Only-if) Lemma 7 implies that LΣ and ΣL are comma-free codes. Using Proposi-

tion 9, we have the four properties: (a) (LΣ)s ∩ (LΣ)i = ∅, (b) (ΣL)p ∩ (ΣL)i = ∅,

(c) LΣ ∩ (LΣ)s(LΣ)s = ∅, and (d) ΣL ∩ (ΣL)p(ΣL)p = ∅. Suppose that there were

u ∈ Ls∩Li. Then there exist x, y, z, w ∈ Σ+ and a ∈ Σ such that xy, yau, zu, uw ∈ L.

Let w = bw′ for some w′ ∈ Σ∗. Then xya, yaub ∈ LΣ and hence ub ∈ (LΣ)s. More-

over, zub, ubw′c ∈ LΣ for any c ∈ Σ, and hence ub ∈ (LΣ)i. These two results cause a

contradiction with the property (a). The 2nd one derives from the property (b) in the

same manner. Next we prove the 3rd property from (c). Suppose that L∩LsLs 6= ∅.

Then there exist x, y, z, w, u, v ∈ Σ+ and a ∈ Σ such that xy, yau, zw, wv ∈ L and

33

uv ∈ L. Let v = bv′ for some v′ ∈ Σ∗. Then xya, yaub, zwb, wbv′c ∈ L for any c ∈ Σ.

Thus, ub, v′c ∈ (LΣ)s and ubv′c ∈ LΣ, a contradiction. The 4th derives from the

property (d) in this way.

(If) Suppose L were not a comma code. Then there exist u, v, w ∈ L, x, y ∈ Σ+, and

a ∈ Σ such that uav = xwy. Since L ∩ Σ = ∅, (Ls ∪ Lp) ∩ Σ = ∅, and L is an infix

code, u = xα, v = βy, and w = αaβ for some α, β ∈ Σ+. Therefore, β ∈ Ls ∩ Li,

α ∈ Lp ∩ Li, βy ∈ L∩ ∈ LsLs, and xα ∈ L∩ ∈ LpL
p
. These contradict the properties

1-4. 2

Example 3 Let L1 = {aba, abba}. While this is a comma-free code, abababa ∈

LΣL∩Σ+LΣ+ and hence L1 is not a comma code. On the other hand, let us consider

L2 = {aaab, abab}. This is a comma code but not a comma-free code because any

element of comma-free codes has to be primitive [17]. Moreover, there is a language

which is both a comma and comma-free code. An example is L3 = {abba, abbba}.

This example is enough to verify the following result.

Proposition 11 The family of comma codes and the family of comma-free codes are

incomparable, but not disjoint.

Another important subfamily of infix codes is the family of solid codes. A nonempty

set L ⊆ Σ+ is called a solid code if L is an infix code and Pref(L)∩Suff(L)∩Σ+ = ∅.

This is a strict requirement. In fact, if L is a solid code, then all of Li, Ls, Lp, Ls,

and Lp are empty. Thus, the following is a corollary of Proposition 10.

Corollary 3 Let L be a solid code. If L ∩ Σ = ∅, then L is a comma code.

Since there exists a solid code all of whose elements are of length at least 2, this

corollary clarifies that the family of solid codes and that of comma codes are not

disjoint. However, these two families are incomparable as shown in the next example.

34

Example 4 Let L1 = {ab, c}. This is a solid code, but not a comma code because it

contains a word of length 1. On the other hand, L2 in Example 3 provides an example

of a comma code which is not a solid code.

Proposition 12 The family of comma codes and the family of solid codes are incom-

parable.

Next we consider the closure properties of comma codes under certain operations.

For alphabets Σ1,Σ2, let f : Σ∗
1 → Σ∗

2 be a homomorphism. Then the inverse homo-

morphism f−1 : Σ∗
2 → 2Σ

∗
1 is defined as: for u ∈ Σ∗

2, f
−1(u) = {v ∈ Σ∗

1 | f(v) = u}.

Proposition 13 The family of comma codes is not closed under union, catena-

tion, +, complement, non-erasing homomorphism, and inverse non-erasing homo-

morphism. On the contrary, it is closed under reversal and intersection with an

arbitrary set.

Proof: The union of comma codes {ab} and {ba} is not a comma code. The

catenation AB of comma codes A = {aaba} and B = {abaa} is not so because

(aaba)(abaa)b(aaba)(abaa) contains (aaba)(abaa) as a proper infix. For a comma code

L = {abab}, ababababaabab ∈ L+ΣL+ ∩ Σ+L+Σ+. Thus L+ is not a comma code.

The complement of a comma code {ab} contains a word of length 1 and hence not a

comma code. Consider alphabets Σ1 = {a, b} and Σ2 = {a}, and let f : Σ∗
1 → Σ∗

2 be a

non-erasing homomorphism defined as f(a) = f(b) = a. Then f maps a comma code

{aaab, abab} onto {aaaa}, which is not a comma code. Consider alphabets Σ3 = {a}

and Σ4 = {a, b}, and let g : Σ∗
3 → Σ∗

4 be a homomorphism defined as g(a) = ab. Since

L = {abab} is a comma code but g−1(L) = {aa} is not, the class of comma codes is

not closed under inverse non-erasing homomorphisms.

By definition, it is clear that the family of comma codes is closed under reversal or

intersection with an arbitrary set. 2

35

Proposition 13 says that the catenation of two comma codes is not always a comma

code. So we investigate a condition under which a catenation of two languages A

and B becomes a comma code under the assumption that A ∪ B is an infix code.

Under this assumption, an element of AB can be a proper infix of an element of

ABΣAB only in two ways as shown in Fig. 2.2. The following results offer additional

conditions on A and B, which make AB a comma code by preventing both cases in

Fig. 2.2 from occurring.

x′ x y z z′

z′ z x y y′

Case 1

Case 2

u1 v1 a u2 v2

u3 v3

u1 v1 a u2 v2

u3 v3

Figure 2.2: For u1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A∪B is an infix code, u3v3 can be
a proper infix of u1v1au2v2 only in these two ways. Note that x′ and y in Case 1 can
be empty at the same time, and x and y′ in Case 2 can be empty at the same time.

Proposition 14 Let A,B ⊆ Σ∗ such that A ∪ B 6= ∅. If A ∪ B is either a comma

code or a comma-free code, then AB is a comma code.

Proof: Suppose that AB were not a comma code. Then there exist u1, u2, u3 ∈ A,

v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some r, s ∈ Σ+. Since

comma-free codes and comma codes are infix codes, then A∪B is an infix code. Thus,

we have the two cases shown in Fig. 2.2. Nevertheless, they cause a contradiction

with A ∪ B being a comma or comma-free code. 2

Proposition 15 Let A,B ⊆ Σ∗ such that A ∩ B = ∅ and A ∪ B is an infix code. If

As ∩ Bp = ∅, then AB is a comma code.

Proof: Suppose that AB were not a comma code. Then there exist u1, u2, u3 ∈ A,

v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some r, s ∈ Σ+. Since

A∪B is an infix code and A∩B = ∅, we have only two cases: (1) u3 = x′x, v1 = xy,

36

v3 = yaz, and u2 = zz′, or (2) v1 = z′z, u3 = zax, u2 = xy, and v3 = yy′ for some

x′, x, y, z ∈ Σ+ and a ∈ Σ. Then x in case (1) or y in case (2) is in As ∩ Bp, a

contradiction. 2

Note that the condition in the above proposition is also the condition for AB to be

a comma-free code [16]. Therefore, if A and B are two disjoint languages such that

A ∪ B is an infix code and As ∩ Bp = ∅, then AB is in the intersection of the family

of comma codes and that of comma-free codes.

2.5 Comma intercodes

In coding theory, the notion of comma-free code was extended to the more general

one of intercode. For m ≥ 1, a nonempty set L ⊆ Σ+ is called an intercode of index

m if Lm+1 ∩ Σ+LmΣ+ = ∅. An intercode of index 1 is a comma-free code. Based on

the similarity between the definition of comma code and that of comma-free code, we

introduce the comma intercode as a generalization of comma code.

For m ≥ 1, a nonempty set L ⊆ Σ+ is called a comma intercode of index m if

(LΣ)mL ∩ Σ+(LΣ)m−1LΣ+ = ∅. It is immediate that a comma intercode of index 1

is a comma code. A language L is called a comma intercode if there exists an integer

m ≥ 1 such that L is a comma intercode of index m. First of all, we have to prove

that a comma intercode is actually a code. A nonempty set L ⊆ Σ+ is a bifix code if

L ∩ LΣ+ = ∅ (prefix code) and L ∩ Σ+L = ∅ (suffix code).

Proposition 16 A comma intercode is a bifix code.

Proof: Let L be a comma intercode of index m for some m ≥ 1. Suppose that L

were not a prefix code. Then we have u, w ∈ L such that w = uv for some v ∈ Σ+.

This implies that for some a1, . . . , am ∈ Σ, wa1wa2 · · · amw = wa1(wa2 · · · amu)v ∈

Σ+(LΣ)m−1LΣ+, which contradicts that L is a comma intercode. In the same way,

we can prove that L must be a suffix code. Thus, L is a bifix code. 2

37

Like comma codes, a comma intercode consists of only non-unary words of length at

least 2. From now, we introduce several properties of comma intercodes.

Proposition 17 Let L be a regular language. Then for a given integer m ≥ 1, it is

decidable whether or not L is a comma intercode of index m.

Proof: Since the family of regular languages is closed under catenation and inter-

section, (LΣ)mL ∩ Σ+(LΣ)m−1LΣ+ is regular. Hence it is decidable whether this

language is empty. 2

Proposition 18 Let L be a comma intercode of index m for some m ≥ 1. Then

L ⊆ X.

Proof: Suppose that there were w ∈ L but w 6∈ X . Then w = wsawp for some

ws ∈ Suff(w), a ∈ Σ, and wp ∈ Pref(w). This implies that w = wpaws. Then

(wa)mw = wpa(wsawpa)
m−1wsawpaws ∈ Σ+(LΣ)m−1LΣ+, a contradiction. 2

Proposition 19 For any m ≥ 1, every comma intercode of index m is a comma

intercode of index m+ 1.

Proof: Let L be a comma intercode of index m. By definition, we have (LΣ)mL ∩

Σ+(LΣ)m−1LΣ+ = ∅. Suppose that L were not a comma code of index m+ 1. Then

(LΣ)m+1L∩Σ+(LΣ)mLΣ+ 6= ∅. That is, there exist x1, . . . , xm+2 ∈ L, y1, . . . , ym+1 ∈

L, a1, . . . , am+1, b1, . . . , bm ∈ Σ, and u, v ∈ Σ+ such that

x1a1 · · · am+1xm+2 = uy1b · · · bmym+1v.

Because of L being a comma intercode of index m, |u| < |x1| and |v| < |xm+2|

must hold. However, even so, y1b1 · · · bmym+1 is in Σ+x2a2 · · · amxm+1Σ
+, and hence

(LΣ)mL ∩ Σ+(LΣ)m−1LΣ+ 6= ∅. This is a contradiction. 2

38

For any m ≥ 1, we denote the family of comma intercodes of index m by Im.

Proposition 19 implies that Im ⊆ Im+1 for any m ≥ 1. This inclusion is actu-

ally proper. Let {a, b} ⊆ Σ and ui = abia for some i ≥ 1. Then, for some

a1, . . . , am+1 ∈ Σ, L = {u1a1 · · ·um+1am+1um+2, u2, u3, . . . , um, um+1} satisfies the

condition (LΣ)m+1L ∩ Σ+(LΣ)mLΣ+ = ∅, and hence L ∈ Im+1. On the other hand,

L 6∈ Im. This is because a word u1a1 · · ·um+1am+1um+2 ∈ Σ+u2a2 · · ·um+1Σ
+.

Moreover, let Cb denote the family of bifix codes. Then {aba, abba} is in Cb but not

in Im for any m ≥ 1. Combining Proposition 19 with this example, we have the

following hierarchy, where ⊂ denotes proper inclusion.

Theorem 3 I1 ⊂ I2 ⊂ · · · ⊂ Im ⊂ · · · ⊂ Cb holds.

Let I ′m denote the family of intercodes of index m for any m ≥ 1. It is known that

I ′1 ⊂ I ′2 ⊂ · · · ⊂ I ′m ⊂ · · · ⊂ Cb holds [16]. Due to these results and Proposition 11,

we obtain the following corollary.

Corollary 4 For any m,n ≥ 1, the family of intercodes of index m and the family

of comma intercode of index n are incomparable.

Furthermore, we know that the family of comma-free codes and that of comma codes

are proper subsets of the family of infix codes. Thus, we can draw the proper inclusion

hierarchy of the families of bifix codes, intercodes, comma intercodes, and infix codes

as follows.

Bifix codes
Intercodes Comma intercodes

I ′m+1 Im+1

I ′m Im

I ′1 (Comma-free codes) I1 (Comma codes)

Infix codes

Figure 2.3: The inclusion hierarchy of bifix codes, intercodes, comma intercodes, and
infix codes, where arrows indicate proper inclusion.

39

Although the definition and some properties of comma intercodes are similar with

those of intercodes, we show in the following that these two codes are not similar in

terms of synchronous decoding delay. A code L is synchronously decipherable if there

is a non-negative integer n such that for all u, v ∈ Σ∗ and x ∈ Ln, uxv ∈ L∗ implies

u, v ∈ L∗. If a code L is synchronously decipherable, then the smallest such n is

called the synchronous decoding delay of L. It is known that, for a code L ⊆ Σ+, L is

an intercode of index n if and only if L is synchronously decipherable with delay less

than or equal to n [17]. In contrast, comma intercodes do not have such a property.

Proposition 20 Let L ⊆ Σ+ be a comma intercode of index n. Then L is not

necessarily synchronously decipherable with delay less than or equal to n.

Proof: Consider L = {abab, aaab}, which is a comma intercode of index 1, and hence

a comma code of any index. For m ≥ 1, aaab(abab)m = aa(abab)mab ∈ Lm+1 and

(abab)m ∈ Lm but aa, ab 6∈ L. Therefore, L is not with delay m. 2

2.6 Conclusion

In this paper, we obtained some properties of parallel insertion and deletion, and

investigated conditions for the equation (L1 ⇐ L2)⇒ L2 = L1 to hold. We obtained a

complete characterization of solutions in the special case when L1 and L2 are singleton

languages. For the general case, we introduced the definition of comma codes and

proved that, if L2 is a comma code, then the equation holds for any language L1 ⊆ Σ∗.

We also obtained a characterization, some closure properties, and algebraic properties

of comma codes, and compared this family of codes with the families of comma-free

codes and solid codes. Lastly, we generalized the notion of comma codes to that of

comma intercodes of index m. As it turns out, the families of comma intercodes of

index m form an infinite proper inclusion hierarchy within the family of bifix codes.

The first element of this hierarchy, the family of comma codes, is a subset of the

40

family of infix codes, while the last element of which is a subset of the family of

bifix codes. This hierarchy parallels, but is different from, the one that starts with

comma-free codes (which are infix codes), and continues with intercodes of index m

(which are bifix codes).

41

Bibliography

[1] Berstel, J., Perrin, D.: Theory of Codes, Academic Press. Inc., Orlando, Toronto.

(1985)

[2] Domaratzki, M.: Deletion along trajectories, Theoretical Computer Science, 320

(2004) 293-313

[3] Ito, M., Kari, L., Thierrin, G.: Insertion and deletion closure of languages,

Theoretical Computer Science, 183 (1997) 3-19

[4] Jürgensen, H., Konstantinidis, S.: The hierarchy of codes, in: Proc. of FCT

1993, LNCS 710 (1993) 50-68

[5] Kari, L.: On Insertion and Deletion in Formal Languages, Ph.D. Thesis, Uni-

versity of Turku. (1991)

[6] Kari, L.: Insertion and deletion of words: determinism and reversibility, in: Proc.

of MFCS 1992, LNCS 629 (1992) 315-326

[7] Kari, L., Thierrin, G.: Words insertions and primitivity, Utilitas Mathematica,

53 (1998) 49-61

[8] Kari, L., Mateescu, A., Paun, Gh., Salomaa, A.: Deletion sets, Fundamenta

Informatica, 18 (1) (1993) 355-370

[9] Kari, L., Mateescu, A., Paun, Gh., Salomaa, A.: On parallel deletions applied

to a word, RAIRO, Theoret. Inform. Appl. 29 (1995) 129-144

42

[10] Kudlek, M., Mateescu, A.: On distributed catenation, Theoretical Computer

Science, 180 (1997) 341-352

[11] Kudlek, M., Mateescu, A.: On mix operation, New Trends in Formal Languages,

G. Pǎun and A. Salomaa (Eds.), LNCS 1218 (1997) 35-44

[12] Lothaire, M.: Algebraic Combinatorics on Words, Cambridge University Press,

2002

[13] Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired

by the DNA hairpin formation: Completion and reduction, Theoretical Computer

Science, 410 (2009) 417-425

[14] Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic

constraints, Theoretical Computer Science, 197 (1998) 1-56

[15] Parikh, R.J.: On context-free languages, Journal of the Association for Comput-

ing Machinery, 13 (1966) 570- 581

[16] Shyr, H. J.: Free Monoids and Languages, Lecture Notes, Institute of Applied

Mathematics, National Chung-Hsing University, Taichung, Taiwan. (2001)

[17] Yu, S. S.: Languages and Codes, Lecture Notes, Department of Computer Sci-

ence, National Chung-Hsing University, Taichung, Taiwan 402. (2005)

[18] Yu, S. S.: A characterization of intercodes, Intern. J. Computer Math. 36 (1990)

39-48

43

Chapter 3

K-Comma Codes and Their

Generalizations

Abstract

In this paper, we introduce the notion of k-comma codes - a proper generalization of

the notion of comma-free codes. For a given positive integer k, a k-comma code is

a set L over an alphabet Σ with the property that LΣkL ∩ Σ+LΣ+ = ∅. Informally,

in a k-comma code, no codeword can be a subword of the catenation of two other

codewords separated by a “comma” of length k. A k-comma code is indeed a code,

that is, any sequence of codewords is uniquely decipherable. We extend this notion

to that of k-spacer codes, with commas of length less than or equal to a given k. We

obtain several basic properties of k-comma codes and their generalizations, k-comma

intercodes, and some relationships between the families of k-comma intercodes and

other classical families of codes, such as infix codes and bifix codes. Moreover, we

introduce the notion of n-k-comma intercodes, and obtain, for each k ≥ 0, several

hierarchical relationships among the families of n-k-comma intercodes, as well as a

characterization of the family of 1-k-comma intercodes.

44

3.1 Introduction

The notion of codes is crucial in many areas such as information communication, data

compression, and cryptography. In such systems, it is required that, if a message is

encoded by using words from a code, then any arbitrary catenation of words should be

uniquely decodable into codewords. Various codes with specific algebraic properties,

such as prefix codes, infix codes, and comma-free codes [1, 4, 15, 18], have been

motivated and defined for various purposes. For instance, the definition of comma-

free codes [2, 5] followed the 1953 discovery of the double-helical structure of DNA,

[17], as a proposed mathematical solution to a problem which arose in connection

with protein synthesis. The problem was the following. There are 20 known types

of aminoacids. The most plausible hypothesis at the time, that each aminoacid is

encoded by one three-letter DNA sequence, i.e., a 3-letter sequence over the four-

letter alphabet {A,C,G, T} raised the following question: From the possible 43 = 64

three-letter words over the DNA alphabet, which ones code for aminoacids and why?

The hypothesis was advanced, for example, [2, 5, 17] that the triplets coding for

aminoacids form a comma-free code, i.e., a set with the property that any sequence

of codewords is uniquely decodable, as well as with the additional property that no

codeword is a subword of the catenation of two codewords. This hypothesis seemed

to be supported by the fact that the size of the maximal comma-free code over a

four-letter alphabet, where all words have length three, was found to be exactly 20.

We now know, [13], that some aminoacids are encoded by more than one triplet

(codon), and that none of the sets consisting of choosing one codon per aminoacid is

comma-free. As Hayes remarked, while this is less elegant than any of the theoretical

codes proposed, it provides higher error-tolerance: “With Gamow’s overlapping codes,

any mutation could alter three adjacent amino acids at once, possibly disabling the

protein. Comma-free codes are even more brittle in this respect, since a mutated

codon is likely to become nonsense and terminate the translation” [7].

45

While in this case Nature proved that mathematical theories may be beautiful and

still wrong, comma-free codes and their generalizations remain interesting and much

studied concepts [8, 11, 16, 18, 19]. More recent developments in biology show that,

although genetic information is encoded in DNA, genes (coding segments) are usually

interrupted by noncoding segments, formerly known as “junk segments”. A gener-

alization of comma-free codes, wherein a comma (noncoding segment) is defined as

a word of length k, and no codeword (gene, or coding segment) is a subword of two

other codewords separated by a comma, may be of mathematical but also of biological

interest.

In this paper, we generalize the notion of comma-free codes to k-comma codes, and

further, to k-spacer codes, which allow “commas” (corresponding to noncoding seg-

ments) of lengths k ≥ 0, respectively less than or equal to k, between two code-

words. Since k-comma codes are proper generalizations of comma-free codes and

comma codes [3] (which allow commas of length one), it is natural to investigate their

properties and the properties of their generalizations, k-comma intercodes, which are

defined analogously to intercodes (which generalize the comma-free codes). As conse-

quences, some properties of k-spacer codes are obtained from those of k-comma codes

and k-comma intercodes. For example, a k-spacer code is an infix code, and hence a

code. Also, due to our result, for some k ≥ 0, if the length of the shortest words of a

language L is not longer than k, then L cannot be a k-spacer code.

The paper is organized as follows. In Section 3.2, we give the formal definitions of k-

comma codes and k-spacer codes, and show that they are in the family of infix codes.

In Section 3.3, we generalize k-comma codes to k-comma intercodes, and obtain a

hierarchical relationship among the families of bifix codes, k-comma intercodes, and

infix codes. Moreover, we obtain several closure properties and the synchronously

decipherability of the families of k-comma intercodes and provide a polynomial time

algorithm to decide whether a given regular language is a k-comma intercode. As

consequences, several closure properties of families of k-spacer codes and a polyno-

46

mial time algorithm that determines whether a regular language is a k-spacer code

are obtained. In Section 3.4, we generalize k-comma intercodes into n-k-comma in-

tercodes and obtain hierarchical relationships among them. Moreover, we obtain a

characterization of the families of 1-k-comma intercodes, and describe the family of

1-k-comma intercodes by using the classic notions of bordered words, unbordered

words, and primitive words.

We end this section by some preliminary definitions and notations used in the paper.

An alphabet Σ is a nonempty finite set of letters. A word over Σ is a sequence of

letters in Σ. The length of a word w, denoted by |w|, is the number of letters in

this word. The empty word, denoted by λ, is the word of length 0. A unary word

is a word of the form aj , j ≥ 1, a ∈ Σ. The set of all words over Σ is denoted by

Σ∗, and Σ+ = Σ∗ \ {λ} is the set of all nonempty words. A language is a subset of

Σ∗. The catenation of two languages L1, L2 ⊆ Σ∗, denoted by L1L2, is defined as

L1L2 = {uv | u ∈ L1, v ∈ L2}.

A word x ∈ Σ∗ is called an infix of a word u ∈ Σ+ if u = zxy for some words

y, z ∈ Σ∗. In this definition, if z and y are nonempty, then x is called a proper infix

of u. Similarly, a word x ∈ Σ∗ is called a prefix (suffix) of a word u ∈ Σ+ if u = xy

(resp. u = zx) for some word y ∈ Σ∗ (resp. z ∈ Σ∗). In addition, if y (resp. z) is

nonempty, then x is called a proper prefix (resp. suffix) of u. For a word u ∈ Σ∗, the

set of its prefixes (suffixes) is denoted by Pref(u) (resp. Suff(u)). For a word u ∈ Σ∗,

we denote the prefix (suffix) of length n ≥ 0 of u by prefn(u) (resp. suffn(u)). These

notations can be naturally extended to languages, e.g., Pref(L) = ∪u∈LPref(u).

A nonempty word u ∈ Σ+ is said to be primitive, also known as non-periodic, if

u = vn implies n = 1 for any v ∈ Σ+. Any nonempty word can be written as a power

of a unique primitive word, which is called the primitive root of the word.

It is well known that, if nonempty words x, y, z ∈ Σ+ satisfy xy = yz, then there

exist α, β ∈ Σ∗ such that αβ is primitive, x = (αβ)i, y = (αβ)jα, and z = (βα)i for

47

some i ≥ 1 and j ≥ 0.

A nonempty word u ∈ Σ+ is said to be bordered if there exists a nonempty word which

is both proper prefix and proper suffix of u. A bordered primitive word is a primitive

word which is bordered, and it can be written as xyx for some x, y ∈ Σ+ [15].

3.2 K-comma codes

The classic notion of comma-free codes is defined as follows: A language L ⊆ Σ+ is

called a comma-free code if LL ∩ Σ+LΣ+ = ∅. Recently, [3], the notion of comma

codes was introduced for solving some language equations. A language L ⊆ Σ+ is

called a comma code if LΣL ∩ Σ+LΣ+ = ∅. It is clear that the following definition

of k-comma codes is a natural generalization of these two notions, which can be

interpreted as 0-comma codes and 1-comma codes, respectively.

Definition 2 For any k ≥ 0, a set L ⊆ Σ+ is called a k-comma code if LΣkL ∩

Σ+LΣ+ = ∅.

In this section, we first show that a k-comma code is in fact a code (Corollary 5), and

that, for any two integers k1, k2 ≥ 0, the family of k1-comma codes and the family of

k2-comma codes are not comparable (Proposition 21). Then, we extend the notion

of k-comma codes to that of k-spacer codes, and show that the families of k-spacer

codes form an infinite proper inclusion hierarchy (Proposition 22).

Intuitively, a k-comma code is a set L such that none of its words can be a proper

infix of u1vu2 where u1 and u2 are words in L, and v is a “comma” of length k. It is

clear that any codeword of a k-comma code must be longer than k. As examples, for

any k ≥ 0, L = {abia | i > k} is a k-comma code.

We first establish a relationship between comma-free codes and k-comma codes, for

any k ≥ 0.

48

Lemma 9 For a language L ⊆ Σ∗ and any k ≥ 0, L is a k-comma code if and only

if LΣk is a comma-free code.

Proof: We assume that LΣk is a comma-free code, and suppose that L were not a

k-comma code. Then there exist w1, w2, w3 ∈ L, v1 ∈ Σk, and x, y ∈ Σ+ such that

w1v1w2 = xw3y. By putting some v2 ∈ Σk at the ends of both sides, we can reach a

contradiction with LΣk being a comma-free code.

On the other hand, if LΣk is not a comma-free code. Then we have u1v1u2v2 =

x′u3v3y
′ for some u1, u2, u3 ∈ L, v1, v2, v3 ∈ Σk, and x′, y′ ∈ Σ+. Since y′ is nonempty,

we can cut the last k letters of both sides from this equation, and reach a contradiction

that L is not a k-comma code. 2

Recall that a nonempty set L ⊆ Σ+ is an infix code if L ∩ (Σ∗LΣ+ ∪ Σ+LΣ∗) = ∅,

and that a comma-free code is an infix code [18]. The following relationship leads us

to the fact that k-comma codes are actually codes.

Lemma 10 For a language L ⊆ Σ∗, L is an infix code if and only if LΣk is an infix

code.

Proof: The “only-if” direction is trivial because the family of infix codes is closed

under concatenation. For the “if” direction, assume that LΣk is an infix code, and

suppose that L is not. Then there exist u ∈ L and x, y ∈ Σ∗ such that xuy ∈ L and

xy 6= λ. Then for any v1 ∈ Σk, xuyv1 ∈ LΣk, which contains uv2 ∈ LΣk as its factor,

where v2 is the prefix of yv1 of length k. Since uv2 6= xuyv1, this is a contradiction.2

The following corollary is immediate.

Corollary 5 For any k ≥ 0, a k-comma code is an infix code, and hence a code.

Lemma 9 implies that the families of k-comma codes are closely related to that of

comma-free codes. However, the following result shows that any two of these families

49

are incomparable, which means that, for any two integers n and m, 0 ≤ n < m, there

exists an n-comma code which is not an m-comma code, and vice versa.

Proposition 21 Let 0 ≤ n < m. The family of n-comma codes and the family of

m-comma codes are incomparable, but not disjoint.

Proof: Let L1 = {abn+1a}. We can easily verify that L1 is an n-comma code but

not an m-comma code. On the other hand, let us consider L2 = {ambam+nb}. This

is an m-comma code but not an n-comma code. Moreover, there is a language which

is both an n-comma code and an m-comma code. An example is L3 = {ab
m+1a}. 2

As a corollary, we cannot compare the classic family of comma-free codes with the

other families of k-comma codes.

Corollary 6 For any k ≥ 1, the family of k-comma codes and the family of comma-

free codes are incomparable.

Now we loosen the restriction on the length of commas, and define k-spacer codes.

Definition 3 For any k ≥ 0, a language L is called a k-spacer code if LΣ≤kL ∩

Σ+LΣ+ = ∅.

It is clear that, if a language is a k-spacer code, it is an i-comma code for all i,

0 ≤ i ≤ k. Therefore, for any k ≥ 0, a k-spacer code is a comma-free code and hence

an infix code. Let Sk denote the family of k-spacer codes, and Ci denote the family

of infix codes. Then we have the following relationship.

Proposition 22 Sk+1 ⊂ Sk ⊂ · · · ⊂ S0 ⊂ Ci holds.

Proof: By definition, Sk+1 ⊆ Sk holds for any k ≥ 0. To show that the inclusion is

proper, note that {akb} is in Sk but not in Sk+1 for any k ≥ 0. It is clear that S0 is

the family of 0-comma codes and S0 ⊆ Ci holds. Moreover, due to Proposition 21,

there exists a 1-comma code that is an infix code but not a 0-comma code. Therefore,

the inclusion S0 ⊆ Ci is proper. 2

50

3.3 K-comma intercodes

Since a k-spacer code is an intersection of some k-comma codes, in this section, we

obtain some closure properties (Proposition 29) and decidability results (Theorem 6)

of the family of k-spacer codes, as consequences of those of k-comma codes. In

coding theory, the notion of comma-free codes was extended to the more general one

of intercodes [16].

Definition 4 For m ≥ 1, a nonempty set L ⊆ Σ+ is called an intercode of index m

if Lm+1 ∩ Σ+LmΣ+ = ∅.

It is clear that an intercode of index 1 is a comma-free code.

Similarly, we introduce the notion of k-comma intercodes as a natural generalization

of the notion of k-comma codes, and then obtain several basic properties of k-comma

codes as consequences of those of k-comma intercodes. In particular, we first show

that the k-comma intercodes are actually codes, and there exists an infinite inclusion

hierarchy among the families of bifix codes, k-comma intercodes, and infix codes.

Moreover, we obtain several results about k-comma intercodes, such as closure prop-

erties (Propositions 25, 26, and 27), synchronously decipherability (Proposition 30),

and an efficient algorithm that determines whether a regular language is a k-comma

intercode (Theorem 5).

The notion of k-comma intercodes is defined as follows.

Definition 5 For k ≥ 0 and m ≥ 1, a nonempty set L ⊆ Σ+ is called a k-comma

intercode of index m if (LΣk)mL ∩ Σ+(LΣk)m−1LΣ+ = ∅.

It is immediate that a k-comma intercode of index 1 is a k-comma code, and that a

0-comma intercode is an intercode. For any k ≥ 0, a language L is called a k-comma

intercode if there exists an integer m ≥ 1 such that L is a k-comma intercode of index

m. The family of k-comma intercodes is denoted by Ik.

51

We will prove that, for any k ≥ 0, a k-comma intercode is actually a code. Recall that

a nonempty set L ⊆ Σ+ is a bifix code if L∩LΣ+ = ∅ (prefix code) and L∩Σ+L = ∅

(suffix code).

Proposition 23 For any k ≥ 0, a k-comma intercode is a bifix code.

Proof: Let L be a k-comma intercode of index m for some k ≥ 0 and m ≥ 1.

Suppose that L were not a prefix code. Then we have u, w ∈ L such that w = uv

for some v ∈ Σ+. This implies that for some x1, . . . , xm ∈ Σk, wx1wx2 · · ·xmw =

wx1(wx2 · · ·xmu)v ∈ Σ+(LΣk)m−1LΣ+, which contradicts that L is a k-comma inter-

code of index m. In the same way, we can prove that L is a suffix code. Thus, L is a

bifix code. 2

Similar to Lemma 9, we establish a relationship between intercodes and k-comma

intercodes.

Lemma 11 For a language L ⊆ Σ∗ and any integers k ≥ 0 and m ≥ 1, L is a

k-comma intercode of index m if and only if LΣk is an intercode of index m.

The families of intercodes of different indexes form an infinite proper inclusion hier-

archy within the family of bifix codes, i.e., the family of intercodes of index m is a

proper subset of the family of intercodes of index m + 1, for any m ≥ 1. Moreover,

the family of all the intercodes of any index is a proper subset of the family of bifix

codes [15]. In the following, we prove that such an infinite proper inclusion hierarchy

exists among the families of k-comma intercodes of different indexes for any k ≥ 0.

We first prove the following lemma.

Lemma 12 Let L be a k-comma intercode for some k ≥ 0. Then any codeword in L

must be longer than k.

Proof: Suppose u were a codeword in L of length at most k. Then, we can find

words x, y ∈ Σk with ux = yu. For any m ≥ 1, (ux)mu = (yu)mu. This contradicts

L being a k-comma intercode. 2

52

Let Ik,m denote the family of k-comma intercodes of index m, for any k ≥ 0 and

m ≥ 1. We have the following hierarchies.

Theorem 4 Ik,1 ⊂ Ik,2 ⊂ · · · ⊂ Ik,m ⊂ · · · ⊂ Cb holds for any k ≥ 0.

Proof: We first prove that, for any k ≥ 0 and m ≥ 1, every k-comma intercode of

index m is a k-comma intercode of index m + 1. Let L be a k-comma intercode of

index m. By definition, we have (LΣk)mL ∩ Σ+(LΣk)m−1LΣ+ = ∅. Suppose that L

were not a k-comma code of index m + 1. Then (LΣk)m+1L ∩ Σ+(LΣk)mLΣ+ 6= ∅.

That is, there exist u1, . . . , um+2 ∈ L, v1, . . . , vm+1 ∈ L, x1, . . . , xm+1, y1, . . . , ym ∈ Σk,

and z1, z2 ∈ Σ+ such that u1x1 · · ·xm+1um+2 = z1v1y1 · · · ymvm+1z2.

We claim that |z1| < |u1| and |z2| < |um+2| must hold. Suppose z1 = u1z
′ for

some z′ ∈ Σ∗, then x1 · · ·xm+1um+2 = z′v1y1 · · · ymvm+1z2. Since v1 is in L, we

have |v1| > |x1|. Then, we can easily check that v2y2 · · · vm+1 is an proper infix of

u2x2 · · ·um+2, a contradiction. Similarly, we can prove that |z2| < |um+2|.

However, even if |z1| < |u1| and |z2| < |um+2|, we still have v1y1 · · · ymvm+1 in

Σ+u2x2 · · ·xm um+1Σ
+, and hence (LΣk)mL ∩ Σ+(LΣk)m−1LΣ+ 6= ∅. This is a con-

tradiction. Thus, Ik,m ⊆ Ik,m+1.

We then prove that this inclusion is proper by giving examples of languages L ∈

Ik,m+1 \ Ik,m. Let Σ = {a, b} and ui = abi+ka for some i ≥ 1. Then, for some

x1, . . . , xm+1 ∈ Σk, L = {u1x1 · · ·um+1xm+1um+2, u2, u3, . . . , um+1} satisfies the con-

dition (LΣk)m+1L ∩ Σ+(LΣk)mLΣ+ = ∅, and hence L ∈ Ik,m+1. On the other hand,

L 6∈ Ik,m, since u2x2 · · ·um+1 is a proper infix of word u1x1 · · ·um+1xm+1um+2, and

hence (LΣk)mL ∩ Σ+(LΣk)m−1LΣ+ 6= ∅.

Lastly, we can verify that L′ = {aa, aba} is a bifix code but not a k-comma intercode of

indexm for any k ≥ 0 andm ≥ 1. It is clear that L′ cannot be a k-comma intercode of

any index for k ≥ 2. Then, for either k = 0 or k = 1, we have aba(ak+2)m−1ak(aba) ∈

(L′Σk)mL′ ∩ Σ+(L′Σk)m−1L′Σ+ for any m ≥ 1. Therefore, Ik,m ⊂ Cb. 2

53

Although an intercode of index m+1 is not always an intercode of index m, we show

in the following that, it is true for specific languages of the form uΣk.

Lemma 13 For a word u ∈ Σ∗ and an integer m ≥ 1, uΣk is an intercode of index

m if and only if uΣk is an intercode of index m+ 1.

Proof: It is well known that an intercode of index m is an intercode of index m+1,

but its converse implication is not always true. We prove that it is true for specific

languages of the form uΣk. Under the assumption that uΣk is an intercode of index

m+ 1, suppose that uΣk were not an intercode of index m. Due to the assumption,

Lemma 11 gives us that u is a k-comma intercode and hence |u| > k. There exists

x1, · · · , xm+1, x
′
1, · · · , x

′
m ∈ Σk and y, z ∈ Σ+ such that

ux1ux2 · · ·uxmuxm+1 = yux′
1ux

′
2 · · ·ux

′
mz. (3.1)

Note that |u|+ k = |y|+ |z|. We consider two cases depending on the length of y. If

|y| < |u| (i.e., |z| > k), let z = usxm+1 with u = upus for some up, us ∈ Σ+. Then

ux1ux2 · · ·uxm−1up = yux′
1ux

′
2 · · ·ux

′
m−1 and usxmup = ux′

m. With these, we have

ux1ux2 · · ·uxm−1(uxm)
2uxm+1 = ux1 · · ·uxm−1up(usxmup)

2usxm+1

= yux′
1ux

′
2 · · ·ux

′
m−1(ux

′
m)

2z.

Thus, uΣk would not be an intercode of index m+ 1, a contradiction.

Now we consider the second case when |y| ≥ |u|. Recall that |u| > k. Hence we can

let x1 = ysup and uys = y, where up ∈ Pref(u) and ys ∈ Suff(y). We can see in

Eq. 3.1 that x2 also has the suffix up as x2 = wup for some w ∈ Σ∗. Then ux′
1 = upuw

54

and upux3 · · ·uxm+1 = ux′
2 · · ·ux

′
mz, and we have

ux1(ux2)
2ux3 · · ·uxm+1 = uysup(uwup)

2ux3 · · ·uxm+1

= uys(upuw)
2upux3 · · ·uxm+1

= y(ux′
1)

2ux′
2 · · ·ux

′
mz.

Even in this case, we reached the same contradiction. 2

Bifix codes

I0,m+1

I0,m

I0,1

Ik,m+1

Ik,m

Ik,1

Ik+1,m+1

Ik+1,m

Ik+1,1

Infix codes

Figure 3.1: The inclusion hierarchy of the families of bifix codes, k-comma intercodes,
and infix codes, where arrows indicate proper inclusion

Due to Theorem 4, the language L1 considered in the proof of Proposition 21 is an

n-comma intercode of any index. Moreover, we can verify that it is not an m-comma

intercode for any index where m > n. On the other hand, the language L2 in the

same proof is an m-comma intercode of any index but not an n-comma intercode for

any index where n < m. Hence, the following is clear.

Proposition 24 For any k1, k2 ≥ 0 and m1, m2 ≥ 1, the family of k1-comma inter-

codes of index m1 and the family of k2-comma intercodes of index m2 are incomparable

unless k1 = k2.

Furthermore, due to Corollary 5 and Proposition 21, we know that, for any k ≥ 0,

there exists an infix code that is not a k-comma code. Therefore, the family of k-

comma codes is a proper subset of the family of infix codes for any k ≥ 0. Thus,

55

we can draw the proper inclusion hierarchy of the families of bifix codes, k-comma

intercodes, and infix codes as shown in Figure 3.1.

Next, we consider closure properties of the families of k-comma intercodes of index

m for any k ≥ 0 and m ≥ 1 and the families of k-comma intercodes. Recall that a

function f : Σ∗
1 → Σ∗

2 is called a homomorphism (on Σ∗
1) if h(xy) = h(x)h(y) for all

x, y ∈ Σ∗
1. The homomorphism f is non-erasing if f(w) = λ implies w = λ. Then

the inverse non-erasing homomorphism f−1 : Σ∗
2 → 2Σ

∗
1 is defined as: for u ∈ Σ∗

2,

f−1(u) = {v ∈ Σ∗
1 | f(v) = u}, where f is non-erasing.

Proposition 25 For any k ≥ 0 and m ≥ 1, the families of k-comma intercodes of

index m are not closed under union, catenation, +, complement, and non-erasing

homomorphism. The families of k-comma intercodes are not closed under these op-

erations either. In contrast, they are closed under reversal and intersection with an

arbitrary set.

Proof: Due to Theorem 4, we just need to show for each operation that the resulting

languages of some k-comma codes under the operation is not a bifix code, or not a

k-comma intercode of index m for any m ≥ 1. The union of two k-comma codes

{ab1+ka} and {ab1+kab1+ka} is not a bifix code. We can easily verify that the catena-

tion of AB of k-comma codes A = {aab1+ka} and B = {ab1+kaab} is not a k-comma

intercode of index m for any m ≥ 1. For any L ⊆ Σ+, L+ is not a bifix code. The

complement of a k-comma code {ab1+ka} is not a bifix code. Consider alphabets

Σ1 = {a, b} and Σ2 = {a}, and let f : Σ∗
1 → Σ∗

2 be a non-erasing homomorphism

defined as f(a) = f(b) = a. Then f maps a k-comma code {ab1+ka, ab2+ka} onto

{a3+k, a4+k}, which is not a bifix code.

By definition, it is clear that the families of k-comma intercodes of index m and

the families of k-comma intercodes are closed under reversal or intersection with an

arbitrary set. 2

56

The closure properties of the family of intercodes and the families of k-comma inter-

codes for k ≥ 1 under inverse non-erasing homomorphism are different.

Proposition 26 For any m ≥ 1, the family of intercodes (0-comma intercodes) of

index m is closed under inverse non-erasing homomorphism, and therefore the family

of intercodes is closed under this operation.

Proof: Let L be an intercode of index m over Σ1. Suppose the family of intercodes

of index m were not closed under inverse non-erasing homomorphism. Then, there

exists a non-erasing homomorphism f : Σ∗
2 → Σ∗

1 such that f−1(L) is not an inter-

code of index m. This implies that there exist u1, · · · , um+1, v1, · · · , vm ∈ f−1(L)

such that u1 · · ·um+1 ∈ Σ+
2 v1 · · · vmΣ

+
2 . Since f is non-erasing, f(u1) · · ·f(um+1) ∈

Σ+
1 f(v1) · · ·f(vm)Σ

+
1 , a contradiction. 2

For any positive integer k, the family of k-comma intercodes is not closed under

non-erasing homomorphism.

Proposition 27 For any k ≥ 1 and m ≥ 1, the family of k-comma intercodes of

index m is not closed under non-erasing homomorphism. Moreover, the family of

k-comma intercodes is not closed under this operation.

Proof: Consider alphabets Σ1 = {a} and Σ2 = {a, b}, and let f : Σ∗
1 → Σ∗

2 be

a homomorphism defined as f(a) = abk. We can verify that L = {abkabk} is a

k-comma code but f−1(L) = {aa} is not a k-comma intercode of index m for any

m ≥ 1. 2

Proposition 25 says that the catenation of two k-comma codes is not always a k-

comma intercode. So we investigate a condition under which the catenation of two

languages A and B becomes a k-comma intercode under the assumption that A ∪ B

is an infix code. Under this assumption, an element of AB could be a proper infix

of an element of ABΣkAB only in two ways as shown in Figure 3.2. The following

57

results offer additional conditions on A and B, which make AB a k-comma code, and

therefore k-comma intercode for any index, by preventing both cases in Figure 3.2

from occurring.

x′ x y z z′

z′ z x y y′

Case 1

Case 2

u1 v1 w u2 v2

u3 v3

u1 v1 w u2 v2

u3 v3

Figure 3.2: For u1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A∪B is an infix code, u3v3 can be
a proper infix of u1v1wu2v2 only in these two ways, where w ∈ Σk. Note that x′ and
y in Case 1 can be empty at the same time, and x and y′ in Case 2 can be empty at
the same time.

Proposition 28 For two languages A,B ⊆ Σ∗, if A ∪ B is a k-comma code, then

AB is a k-comma intercode for any index.

Proof: Suppose that AB were not a k-comma code. Then there exist u1, u2, u3 ∈ A,

v1, v2, v3 ∈ B, and w ∈ Σk such that u1v1wu2v2 = ru3v3s for some r, s ∈ Σ+. Since

k-comma codes are infix codes, A ∪ B is an infix code. Thus, we have the two cases

shown in Figure 3.2. Nevertheless, they cause a contradiction with A ∪ B being a

k-comma. Thus, AB is a k-comma code, and therefore a k-comma intercode for any

index. 2

Now, we consider closure properties of the families of k-spacer codes. Since the family

of 0-spacer codes is the family of comma-free codes, we only consider the cases when

k ≥ 1. By noticing the languages in the proofs of Propositions 25 and 27 are also

k-spacer codes, the following result is immediate.

Proposition 29 For any k ≥ 1, the family of k-spacer codes is not closed under

union, catenation, +, complement, non-erasing homomorphism, and inverse non-

erasing homomorphism. In contrast, it is closed under reversal and intersection with

an arbitrary set.

58

Although the definitions and previous properties of k-comma intercodes are obtained

for any k ≥ 0, we show in the following that intercodes (k = 0) and their gener-

alizations (k ≥ 1) are different in terms of synchronous decoding delay. A code L

is synchronously decipherable if there is a non-negative integer n such that for all

u, v ∈ Σ∗ and x ∈ Ln, uxv ∈ L∗ implies u, v ∈ L∗. If a code L is synchronously

decipherable, then the smallest such n is called the synchronous decoding delay of L.

It is known that, for a code L ⊆ Σ+, L is an intercode of index n if and only if L is

synchronously decipherable with delay less than or equal to n [18]. In contrast, for

any k ≥ 1, k-comma intercodes do not have such a property.

Proposition 30 Let L ⊆ Σ+ be a k-comma intercode of index n, for some k ≥ 1

and n ≥ 1. Then L is not necessarily synchronously decipherable with delay less than

or equal to n.

Proof: Consider L = {ak+2bk, abkabk}, which is a k-comma intercode of index 1, and

hence a k-comma intercode of any index. For any n ≥ 1, we have ak+2bk(abkabk)n

= ak+1(abkabk)nabk ∈ Ln+1 and (abkabk)n ∈ Ln, but ak+1 and abk are not in L.

Therefore, L is not with delay n. 2

Since a k-spacer code is a comma-free code, it is synchronously decipherable with

delay 1.

From the definition of k-comma intercodes, we can easily decide if a given regular

language is a k-comma intercode of index m, for a given m, by using the closure

properties of regular languages. A natural question is whether there exists a method

that solves the problem efficiently. In the following, we show that there exists a

polynomial time algorithm to do so.

Note that Han, Salomaa, and Wood [6] introduced an algorithm that decides if a given

finite automaton (FA) accepts an intercode of a given index m in m2O(|Q|2 + |δ|2)

worst-case time (Lemma 3.2 in [6]). Furthermore, without the specification ofm, their

59

algorithm can determine whether the regular language given by an FA is an intercode

for some index m ≥ 1, and if the answer is positive, then it can find the smallest

index m such that the language is an intercode of index m. The time complexity of

this algorithm is O(log|Q|(|Q|4 + |Q|2|δ|2)) in worst-case (Theorem 3.2 in [6]).

Due to Lemma 11, for a regular language given as a finite automaton and a given

integer k, k ≥ 0, we can determine whether L is a k-comma intercode of a given

index m in m2O(|Q|2 + |δ|2) worst-case time. Due to Lemma 12, we first check if the

shortest word of L is longer than k. If not, L can not be a k-comma intercode of any

index. If the answer is yes, then we give an answer to the question by checking if LΣk

is an intercode of index m. Thus, we obtain the following result.

Lemma 14 Given an FA A and an index m ≥ 1, we can determine whether L(A) is

a k-comma intercode of index m in m2O(|Q|2 + |δ|2) worst-case time.

Similarly, for some given k ≥ 0, and without the specification of m, we can determine

if a language given by an FA is a k-comma intercode of some index m ≥ 1 such that

the language is a k-comma intercode of index m but not of index m − 1.

Lemma 15 Given an FA A and some k ≥ 0, in O(log|Q|(|Q|4+ |Q|2|δ|2)) worst-case

time, we can determine whether L(A) is a k-comma intercode for some index m ≥ 1,

and if the answer is positive we can find the smallest index m such that L(A) is a

k-comma intercode of index m but not of index m − 1.

Furthermore, without the specification of k and m, we can find all k such that a

language given by FA is a k-comma intercode of some index m ≥ 1 such that the

language is a k-comma intercode of index m but not of index m − 1. Since k must be

shorter than the shortest words in the language, we just need to check all possible k

and k is bounded by the size of the FA.

Theorem 5 Given an FA A, in O(log|Q|(|Q|5 + |Q|3|δ|2)) worst-case time, we can

determine whether L(A) is a k-comma intercode for all k ≥ 0 and index m ≥ 1, and if

60

the answer is positive we can find the smallest index m such that L(A) is a k-comma

intercode of index m but not of index m − 1.

We know that a language L cannot be a k-spacer code if its shortest words are not

longer than k. Thus, given an FA A, to determine if L(A) is a k-spacer code for some

k ≥ 0, we just need to find the length l of the shortest words of L(A), and then, check

if L is an i-comma code (i-comma intercode of index 1) for all i, 0 ≤ i ≤ k, for some

k < l. Since k-spacer codes form a proper inclusion hierarchy with respect to their

index (Proposition 22), we can apply a binary search to find the largest k (if any)

in the range from 0 to l − 1, and therefore L is a k′-spacer code for all 0 ≤ k′ ≤ k.

Based on the analysis, we establish the following result.

Theorem 6 Given an FA A, in O(log|Q|(|Q|3 + |Q||δ|2) worst-case time, we can

determine whether L(A) is a k-spacer code for any k ≥ 0, and if the answer is

positive we can find the largest k.

3.4 N-k-comma intercodes

A language L is an n-code if every nonempty subset of L of size at most n is a code.

The authors of [9] obtained several properties about the combinatorial structure of

n-codes and showed that these codes form an infinite proper inclusion hierarchy, i.e.,

for any integer n ≥ 1, the family of (n + 1)-codes is a proper subset of the family

of n-codes. Later, they applied similar constructions to prefix and suffix codes, and

obtained n-ps-codes [10]. However, unlike the hierarchy of n-codes, the hierarchy

of n-ps-codes collapses after only three steps, and turned out to be finite. In [12],

the authors generalized the notions of intercodes to those of n-intercodes, established

relationships among these codes, and obtained an infinite inclusion hierarchy including

both intercodes and n-intercodes.

61

In this section, we consider n-k-comma intercodes. We show that, for any k ≥ 0, there

exists an infinite inclusion hierarchy of the families of n-k-comma intercodes and k-

comma intercodes within the family of bifix codes (Theorem 7). Moreover, we give a

characterization of the family of 1-k-comma intercodes for any k ≥ 0 (Proposition 32).

Lastly, we describe the family of 1-1-comma intercodes in terms of bordered words,

unbordered words, and primitive words (Proposition 33).

An n-k-comma intercode of index m is a nonempty language L ⊆ Σ+ such that every

nonempty subset of L of cardinality at most n is a k-comma intercode of index m. For

any n ≥ 1 and k ≥ 0, a language L is called an n-k-comma intercode if there exists an

integer m ≥ 1 such that L is an n-k-comma intercode of index m. Let In,k,m denote

the family of n-k-comma intercodes of index m over Σ and let In,k,∞ =
⋃

m≥1 In,k,m

denote the family of n-k-comma intercodes. We have that

Ik,m =
⋂

n≥1

In,k,m and Ik =
⋂

n≥1

In,k,∞.

Moreover, the following two lemmas are clear from the definition of n-k-comma in-

tercode of index m.

Lemma 16 For any integers n,m ≥ 1, and k ≥ 0, In+1,k,m ⊆ In,k,m.

Lemma 17 For any integers n,m ≥ 1, and k ≥ 0, Ik,m ⊆ In,k,m.

In the following, for each k ≥ 0, we obtain several hierarchical relationships among

k-comma intercodes, n-k-comma intercodes, and bifix codes.

Theorem 7 For any k ≥ 0 and every n,m ≥ 1, the following statements hold true:

1. I1,k,∞ and the family of bifix codes are incomparable.

2. Every n-k-comma intercode with n ≥ 2 is a bifix code.

3. Ik,m = · · · = I2m+2,k,m = I2m+1,k,m ⊂ · · · ⊂ I2,k,m ⊂ I1,k,m.

62

4. Ik,m ⊂ Ik,m+1.

5. In,k,1 ⊆ In,k,2 ⊆ · · · ⊆ In,k,m ⊆ · · · .

6. If n ≥ 2m+ 1, In,k,m ⊂ In,k,m+1.

7. If n ≥ 2 and n ≤ 2m+ 1, In,k,m ⊂ In,k,m+1.

8. In+1,k,∞ ⊂ In,k,∞.

9. If n ≥ 2, then Ik,m ⊆ In,k,m ⊂ In,k,∞ ⊂ Cb and Ik,m ⊂ Ik ⊂ In,k,∞.

10. I2,k,∞ ⊂ I1,k,∞ ∩ Cb.

Proof: For (1), let us consider the two languages L1 = {aa, aba} and L2 = {ab
k+1a,

abk+1abk+1a}. We can verify that L1 is a bifix code but not in I1,k,∞, while L2 is in

I1,k,∞ but not a bifix code.

For (2), assume that L is an n-k-comma intercode of index m with n ≥ 2 for some

m ≥ 1. Suppose that L is not a bifix code. Then, there exists two words u, v ∈ L

such that u = vz for some z ∈ Σ+. Let L′ be a subset of L of size n such that

v, u ∈ L′. For some x ∈ Σk, we have that (ux)mu ∈ (L′Σk)mL′ ∩ Σ+(L′Σk)m−1L′Σ+,

a contradiction. This implies that In,k,m ∈ Cb, and hence In,k,∞ ∈ Cb.

For (3), due to Lemmas 16 and 17, it suffices to prove that (i) I2m+1,k,m ⊆ Ik,m and

(ii) for any 1 ≤ n ≤ 2m+ 1, In,k,m \ In+1,k,m 6= ∅.

We first prove (i). For L 6∈ Ik,m, then there exist u1, u2, · · · , um, um+1 ∈ L, v1, v2, · · · ,

vm ∈ L, x1, x2, · · · , xm, y1, y2, · · · , ym−1 ∈ Σk, and z, z′ ∈ Σ+ such that

u1x1u2x2 · · ·umxmum+1 = zv1y1v2y2 · · · vm−1ym−1vmz
′,

which implies that L 6∈ I2m+1,k,m. Hence, I2m+1,k,m ⊆ Ik,m.

Then, we prove (ii). We give a construction for some languages Ln ∈ In,k,m \ In+1,k,m.

Let Σ = {a, b} and ui = abk+ia for i ≥ 1. For some words x1, . . . , xn+1 ∈ Σk, define

63

Ln in the following ways:

if n ≤ m, then, as

{u2, u3, . . . , un+1, u1x1(u2x2)
m−n+1u3 · · ·un+2},

if m < n < 2m and n is odd, then, as

{ujxjuj+1 | j = 1, . . . , n − 1} ∪ {un+1, unxn(un+1xn+1)
m−(n−1)/2un+2},

if m < n < 2m and n is even, then, as

{ujxjuj+1 | j = 1, . . . , n − 2} ∪ {un, un+1, un−1xn−1unxn(un+1xn+1)
m−n/2un+2},

if n = 2m, then, as

{ujxjuj+1 | j = 1, . . . , n+ 1}.

We can easily verify that Ln ∈ In,k,m \ In+1,k,m.

Statement (4) is proven in Theorem 4.

For (5), if L ∈ In,k,m, then for any subset L′ of L with |L′| ≤ n, L′ ∈ Ik,m. Statement

(4) implies that L′ ∈ Ik,m+1. Thus, L ∈ In,k,m+1.

For (6), statement (3) implies that In,k,m = Ik,m since n ≥ 2m + 1. With statement

(4) and Lemma 17, we have In,k,m = Ik,m ⊂ Ik,m+1 ⊆ In,k,m+1.

To show (7), due to statement (5), we just need to show the inclusion is proper. We use

the construction of languages Ln in (3), and we can verify that Ln−1 ∈ In,k,m+1\In,k,m.

For (8), In+1,k,∞ ⊆ In,k,∞ is an immediate consequence of the definition. To prove

the inequality, we give examples of languages Mn ∈ In,k,∞ \ In+1,k,∞. We still use the

same words ui defined previously. For some words x1, · · · , xn+1 ∈ Σk, define Mn as

{ujxjuj+1 | j = 1, . . . , n} ∪ {un+1xn+1u1}.

64

We can verify that Mn ∈ In,k,∞ \ In+1,k,∞ for any n ≥ 1.

For (9), by definitions, the inclusions Ik,m ⊆ In,k,m ⊆ In,k,∞ and Ik,m ⊆ Ik ⊆ In,k,∞

are immediate. The inclusion In,k,∞ ⊆ Cb follows from (2). The inequalities In,k,m 6=

In,k,∞, Ik,m 6= Ik, and Ik 6= In,k,∞ follow from (7), (4), and (8), respectively. The

inequality In,k,∞ 6= Cb follows from (10).

For (10), we have I2,k,∞ ⊆ I1,k,∞∩Cb by (2) and (8). For the inequality, as an example,

M1 constructed in (8) is a language in I1,k,∞ ∩ Cb, but not in I2,k,∞. 2

Cb I1,k,1 = I1,k,2 = · · · = I1,k,∞

I2,k,1

I2,k,2

I2,k,3

I2,k,4

I2,k,∞

I1,k,∞ ∩ Cb

I3,k,∞

I3,k,4

I3,k,3

I3,k,2

I3,k,1 = Ik,1

I4,k,∞

I4,k,4

I4,k,3

I4,k,2

I5,k,∞

I5,k,4

I5,k,3

I5,k,2 = Ik,2

I6,k,∞

I6,k,4

I6,k,3

I7,k,∞

I7,k,4

I7,k,3 = Ik,3

I2m+1,k,∞

I2m+1,k,m = Ik,m

Ik

Figure 3.3: The inclusion hierarchy of k-comma intercodes, n-k-comma intercodes,
and bifix codes, where arrows indicate proper inclusion.

From statements 5, 6, and 7 in the previous theorem, we obtain the following corollary.

Corollary 7 For any integers n ≥ 2 and k ≥ 0, the following strict set inclusion

hierarchy exists

In,k,1 ⊂ In,k,2 ⊂ · · · In,k,m ⊂ · · · .

This hierarchy does not exist among the families of 1-k-comma intercodes as proven

below.

65

Proposition 31 I1,k,1 = I1,k,2 = · · · = I1,k,m = · · · .

Proof: Due to statement 5 in Theorem 7, it suffices to prove I1,k,m+1 ⊆ I1,k,m. Let

L ∈ I1,k,m+1. Then for any u ∈ L, {u} is a k-comma intercode of index m + 1.

Lemma 11 implies that uΣk is an intercode of index m + 1, and this language is an

intercode of index m due to Lemma 13. We apply Lemma 11 once again to obtain

{u} is a k-comma intercode of index m. Therefore, L ∈ I1,k,m. 2

We notice that the resulting languages in the proof of Propositions 25 are neither a

bifix code nor a 1-k-comma intercode of any index. Therefore, for any n ≥ 1, k ≥ 0,

and m ≥ 1, the family of n-k-comma intercode of index m is not closed under union,

catenation, +, complement, and non-erasing homomorphism. Similar to the proofs

of Propositions 26 and 27, we can show that the family of n-intercodes (n-0-comma

intercodes) of any index is closed under inverse non-erasing homomorphism, while,

for any k ≥ 1, the family of n-k-comma intercodes of any index is not closed under

the operation.

Let Q be the set of all primitive words. It is known that the set of 1-intercodes of

index m is equal to the 2Q \ ∅ for any m ≥ 1 [12]. In the next proposition, we show a

stronger result. For any k ≥ 0, the family of 1-k-comma intercodes is equal to 2Xk \∅,

where Xk is defined as:

Xk = {u ∈ Σ+ | uvu ∩ Σ+uΣ+ = ∅ where v ∈ Σk}.

Note that, X0 = Q.

Proposition 32 For any k ≥ 0, a language L is a 1-k-comma intercode if and only

if L ∈ 2Xk \ ∅.

Proof: Due to Proposition 31, we just need to show that L is a 1-k-comma intercode

of index 1 if and only if L ∈ 2Xk \ ∅.

66

If L is a 1-k-comma intercode of index 1, then, for every u ∈ L, {u} is a k-comma

intercode of index 1. Suppose that L 6∈ 2Xk \ ∅. Then, there exists a word w ∈ L

such that w 6∈ Xk. Thus, wvw∩Σ
+wΣ+ 6= ∅ for some v ∈ Σk, a contradiction to {w}

being a k-comma intercode of index 1.

For the converse implication, let L be a non-empty subset of Xk. Suppose there

were a word u ∈ L such that {u} is not a k-comma intercode of index 1. Then,

uvu ∈ Σ+uΣ+ for some v ∈ Σk, which implies that u 6∈ Xk, a contradiction. 2

In the following, we give a characterization of X1 in terms of bordered words, unbor-

dered words, and primitive words. It is clear that, no unary word can be in X1, and

the set of all unbordered words of length at least 2, denoted by U>1, is a subset of

X1. Let N(>1) denote the set of all non-primitive words whose primitive root is of

length at least 2. The next result shows that no word u in N(>1) can be a proper infix

of uau, for any a ∈ Σ.

Lemma 18 N(>1) ⊆ X1.

Proof: Suppose that there were u ∈ N(>1) such that u 6∈ X1. Let u = gi for some

primitive word g of length at least 2 and i > 1. Also we can let u = usaup for some

us ∈ Suff(u), a ∈ Σ, and up ∈ Pref(u). The equation gi = usaup implies that this a is

inside one and only one of these g’s. Since g2 cannot overlap with g in any nontrivial

way, either us or up is a power of g. We only consider the case when us = gj for some

j ≥ 1; the other can be proved in a similar way. Then aup = gi−j. Since up ∈ Pref(gi),

this means g is a power of a, a contradiction with the primitivity of g. 2

Let QB be the set of all bordered primitive words. Any word in QB can be written as

w = (αβ)kα for some primitive word αβ, and k ≥ 1. We partition QB into two sets.

The first one, Q
(=1)
B , denotes the set of all bordered primitive words w that can be

written as (αβ)kα with |β| = 1. The second one is simply the complement, Q
(>1)
B =

QB \ Q
(=1)
B . For example, aaabaa, abbabba ∈ Q

(>1)
B while aabaabaa ∈ Q

(=1)
B . This is

67

because even though we can regard aabaabaa as αβα with α = a and β = abaaba, we

can also consider it as (α′β ′)2α′, where α′ = aa and β ′ = b.

The next result shows that every bordered primitive word w that can only be written

as (αβ)kα such that αβ is primitive, k ≥ 1, and |β| cannot be 1, cannot be a proper

infix of waw for any a ∈ Σ. Formally, we have

Lemma 19 Q
(>1)
B ⊆ X1.

Proof: Suppose that there exists u ∈ Q
(>1)
B but u 6∈ X1. This means that u = usaup

for some us ∈ Suff(u) and up ∈ Pref(u) and a, b ∈ Σ such that u = upbus. The

Parikh vector [14] of a word contains the occurrences of each letter in Σ. Since

the Parikh vectors of up and us together contain the same number of occurrences

of each letter in usaup and upbus, we can obtain a = b and hence u = upaus. Due

to a well known result mentioned in Section 3.1, there exist α, β ∈ Σ∗ such that

usa = (αβ)i and up = α(βα)j for some i ≥ 1 and j ≥ 0 and βα is primitive. Then

ua = upausa = upa(αβ)
i = α(βα)i+ja, and hence the suffix of length |αβ| + 1 of

ua is bαβ = βαa. Again, based on the Parikh vector of this suffix, b = a, i.e.,

aαβ = βαa. Note that |β| ≥ 2 because u ∈ Q
(>1)
B and hence a is a proper suffix of β.

Therefore, this equation means that βα overlaps with its square in a nontrivial way,

a contradiction with its primitivity. 2

The next result states that any word w that is either a unary word or a bordered

primitive word that can be written as (αβ)kα with αβ being primitive, k ≥ 1, and

|β| = 1, can be a proper infix of waw for some a ∈ Σ.

Lemma 20
(
Q

(=1)
B ∪ {ai | a ∈ Σ, i ≥ 1}

)
∩X1 = ∅.

Proof: As mentioned above, any unary word cannot be in X1. Let w ∈ Q
(=1)
B . By

definition, there exist α ∈ Σ+ and b ∈ Σ such that αb is primitive and w = (αb)kα

for some k ≥ 1. Then w is a proper infix of wbw, and hence w 6∈ X1. 2

68

Note that

Σ+ = N(>1) ∪ {aa
+| a ∈ Σ}

︸ ︷︷ ︸

non-primitive

∪Σ ∪ U>1 ∪Q
(=1)
B ∪Q

(>1)
B

︸ ︷︷ ︸

primitive

.

As a consequence of Lemmas 18, 19, and 20, we have the following proposition.

Proposition 33 X1 = U>1 ∪Q
(>1)
B ∪N(>1).

This proposition, by using several classic notions, characterizes the set of all words u

that cannot be a proper infix of uau for any a ∈ Σ, as being either unbordered words

of length greater than 1, or bordered primitive words of the form (αβ)kα such that

αβ is primitive, k ≥ 1, and |β| cannot be 1, or non-primitive words whose primitive

root has length longer than 1.

3.5 Conclusion

In this paper, we introduced the notion of k-comma codes, a generalization of comma-

free codes, as well as the notion of k-spacer codes, and k-comma intercodes.

We established some relationships among families of k-comma codes, k-comma inter-

codes, infix codes, and bifix codes. Also, we obtained several closure properties of

families of k-comma intercodes, and showed that we can determine efficiently whether

a regular language given by a finite automaton is a k-comma intercode of index m

for any k ≥ 0 and m ≥ 1, or a k-spacer code for any k ≥ 0.

Lastly, we introduced the notion of n-k-comma intercodes and obtained several hier-

archical relationships among families of n-k-comma intercodes. Moreover, we gave a

characterization of the family of 1-k-comma intercodes for any k ≥ 0, and describe

the family of 1-1-comma intercodes in terms of several classic notions.

Future work includes experimental testing of, e.g., whether or not the language of

genes of a certain organism is indeed a k-spacer code for some value k.

69

Bibliography

[1] Berstel, J., Perrin, D.: Theory of Codes, Academic Press. Inc., Orlando, Toronto.

(1985)

[2] Crick, H.C., Griffith, J.S., Orgel, L.E.: Codes without commas, Proc. Nat. Acad.

Sci. 43 (1957) 416-421

[3] Cui, B., Kari, L., Seki, S.: On the reversibility of parallel insertion, and its

relation to comma codes, Proc. of CAI 2009. LNCS 5725, 204-219

[4] Eastman, W. L.: On the construction of comma-free codes, IEEE Trans. Inform.

Theory, 11 (1965) 263-267

[5] Golomb, S.W., Gordon, B., Welch, L.R.: Comma-free codes, Canadian Journal

of Mathematics, 10 (1958) 202-209

[6] Han, Y.-S., Salomaa, K., Wood, D.: Intercode regular languages, Fundamenta

Informaticae, 76 (2007) 113-128

[7] Hayes, B.: The invention of the genetic code, American Scientist, 86:8-14, 1998

[8] Hsieh, C. Y., Hsu, S. C., Shyr, H. J.: Some algebraic properties of comma-free

codes, RIMS Kenkyuroku, 697 Japan (1989) 57-66

[9] Ito, M., Jürgensen, H., Shyr, H. J., Thierrin, G.: Anti-commutative languages

and n-codes, Discrete Applied Math, 24 (1989) 187-196

70

[10] Ito, M., Jürgensen, H., Shyr, H. J., Thierrin, G.: N -prefix-suffix languages,

Intern. J. Computer Math, 30 (1989) 37-56

[11] Jürgensen, H., Konstantinidis, S.: Codes, in Rozenberg, G., Salomaa, A. (eds):

Handbook of Formal Languages, vol. I, 511-607. Springer-Verlag, Berlin, 1997.

[12] Jürgensen, H., Yu, S. S.: Relations on free monoids, their independent sets, and

codes, Intern. J. Computer Math, 40 (1991) 17-46

[13] Lewin, B.: Genes IX, Jones and Bartlett Publishers, 2007

[14] Parikh, R.J.: On context-free languages, Journal of the Association for Comput-

ing Machinery, 13 (1966) 570- 581

[15] Shyr, H. J.: Free Monoids and Languages, Lecture Notes, Institute of Applied

Mathematics, National Chung-Hsing University, Taichung, Taiwan. (2001)

[16] Shyr, H. J., Yu, S. S.: Intercodes and some related properties, Soochow J. Math,

16 No.1 (1990) 95-107

[17] Watson, J.: Genes, Girls and Gamow: After the Double Helix, Oxford University

Press, 2001

[18] Yu, S. S.: Languages and Codes, Lecture Notes, Department of Computer Sci-

ence, National Chung-Hsing University, Taichung, Taiwan 402. (2005)

[19] Yu, S. S.: A characterization of intercodes, Intern. J. Computer Math, 36 (1990)

39-48

71

Chapter 4

Block Insertion and Deletion on

Trajectories

Abstract

In this paper, we introduce block insertion and deletion on trajectories, which provide

us with a new framework to study properties of language operations. With the parallel

syntactical constraint provided by trajectories, these operations properly generalize

several sequential as well as parallel binary language operations such as catenation,

sequential insertion, k-insertion, parallel insertion, quotient, sequential deletion, k-

deletion, etc.

We establish some relationships between the new operations and shuffle and deletion

on trajectories, and obtain several closure properties of the families of regular and

context-free languages under the new operations. Moreover, we obtain several decid-

ability results of three types of language equation problems which involve the new

operations. The first one is to answer, given languages L1, L2, L3 and a trajectory

set T , whether the result of an operation between L1 and L2 on the trajectory set

T is equal to L3. The second one is to answer, for three given languages L1, L2, L3,

72

whether there exists a set of trajectories such that the block insertion or deletion

between L1 and L2 on this trajectory set is equal to L3. The third problem is similar

to the second one, but the language L1 is unknown while languages L2, L3 as well as

a trajectory set T are given.

4.1 Introduction

The study of language operations is a fundamental research area of the theory of

computation, and has played an essential role in understanding the mechanisms of

generating words and languages. Some basic operations, such as catenation, shuffle,

and quotients, have been extensively studied in the literature. As generalizations of

these operations, several operations were introduced: sequential and parallel inser-

tion and deletion [7], k-insertion and k-deletion (introduced in [12] under the name

of k-catenation and k-quotient, respectively), schema for parallel insertion and dele-

tion [9], distributed catenation [13], mix operation [14], and shuffle and deletion on

trajectories [2, 15, 10]. The notion of shuffle on trajectories was first introduced by

Mateescu, Rozenberg, and Salomaa [15] with an intuitive geometrical interpretation.

It provides us with a sequential syntactical control over the operation of insertion:

a trajectory describes how to insert the letters of a word into another word. As its

left-inverse operation [8], deletion on trajectories was independently introduced by

Domaratzki [2], and Kari and Sośık [10].

We introduce two operations here, block insertion on trajectories and its left-language-

inverse operation called block deletion on trajectories. Trajectories over the binary

alphabet {0, 1} enable us to specify selected positions where a language can be in-

serted. A trajectory corresponds to the spaces at the beginning, between two letters,

and at the end of a word. If a digit in a trajectory is 1, this signifies an insertion of the

language at that location, and, if it is 0, then no insertion is performed there. Block

insertion on trajectories is a proper generalization of several sequential and parallel

73

binary language operations such as catenation, sequential insertion, k-insertion, par-

allel insertion, etc. For instance, parallel insertion of a language into a word inserts

the language between the letters of the word, as well as before the first letter, and

after the last letter of the word. Parallel-inserting a language L into a word abc results

in LaLbLcL. Thus, by using a trajectory consisting of only 1’s, parallel insertion of

a language into a word can be realized by the block insertion of the language into

the word on a trajectory in 1∗. Moreover, different choices of trajectories will pro-

vide us with more flexible syntactical control over parallel insertion. Block deletion

on trajectories is defined as the left-language-inverse operation of block insertion on

trajectories such that if we can obtain a word w by block-inserting a language L into

a word u on a trajectory t, then u can be obtained by block-deleting L from w on

the same t possibly along with other words. This operation also properly generalizes

some operations, such as quotient, sequential deletion, k-deletion, etc.

We notice that a major difference between shuffle on trajectories and block inser-

tion on trajectories is the way of using their trajectories. However, we prove that

block insertion on trajectories can be simulated in two steps by using shuffle on tra-

jectories and substitutions, respectively (Lemma 25). Similarly, although deletion on

trajectories and block deletion on trajectories use their trajectories differently, we can

simulate block deletion on trajectories by using deletion on trajectories and substitu-

tions (Lemma 26). These representation lemmas enable us to make use of the known

closure properties of language families under shuffle and deletion on trajectories in

order to prove closure properties of these families under block insertion and deletion

on trajectories. Some of these closure properties are generalizations of those under

the operations which are special cases of block insertion and deletion on trajectories,

and among them are several of interest. For instance, deleting an arbitrary language

from a regular language on a regular set of trajectories results in a regular language

(Proposition 39); the corresponding result regarding quotient is well-known [19].

Next, we consider decision problems about language equations of the form L1 ←T

74

L2 = L3 (block inserting L2 into L1 on T results in L3) and its block-deletion variant.

If all of the four involved languages are given, the problem is the equality test. Once we

replace some of these languages with variables X, Y, . . ., the problem becomes finding

a solution. In this paper, we consider the equality test as well as finding a solution to

L1 ←X L2 = L3, X ←T L2 = L3, and their block-deletion variants. It is commonly

expected that problems are decidable only when the languages involved are all regular,

and become undecidable once any of the languages becomes context-free. Indeed,

most of the results obtained in this paper agree to this expectation. Exceptions occur

when the operation is block deletion with all the involved languages but L2 being

assumed to be regular. Then for both the equality test and the existence of trajectory

set, the boundary between decidability and undecidability shifts to between L2 being

context-free and being context-sensitive (Propositions 43, 44 and Propositions 53, 54,

respectively).

This paper is organized as follows: the next section contains basic notions and no-

tation used throughout this paper. In Section 4.3, we provide formal definitions of

block insertion and deletion on trajectories and give several of their basic properties

as well as the representation lemmas. Section 4.4 is devoted to the closure properties

under these operations. The equality test, existence of trajectory and left operand

are discussed in Sections 4.5, 4.6, and 4.7, respectively.

4.2 Preliminaries and definitions

An alphabet Σ = {a1, a2, . . . , an} is a nonempty, finite, and totally-ordered set of

n-letters. A word over Σ is a sequence of letters in Σ. The length of a word w ∈ Σ∗,

denoted by |w|, is the number of letters in this word. The empty word, denoted

by λ, is the word of length 0. The set of all words over Σ is denoted by Σ∗, and

Σ+ = Σ∗ \ {λ} is the set of all nonempty words. A language is a subset of Σ∗. A

language consisting of exactly one word is said to be singleton. The complement of a

75

language L, denoted by Lc, is defined as Σ∗ \ L. The right quotient of a language L

by a word u is defined by Lu−1 = {w | wu ∈ L}.

For a letter a ∈ Σ, the number of occurrences of a in a word w is denoted by |w|a. The

Parikh image of a word w ∈ Σ∗, denoted by Ψ(w), is Ψ(w) = {(|w|a1, |w|a2, . . . , |w|an)}.

We can extend this to a language L ⊆ Σ∗ as Ψ(L) =
⋃

w∈LΨ(w).

A (non-deterministic) finite automaton (NFA) is a tuple A = (Q,Σ, δ, s, F), where Q

is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set of final states.

δ : Q × Σ → 2Q is called a transition function. If |δ(q, a)| ≤ 1| for any q ∈ Q and

a ∈ Σ, then this automaton is called a deterministic finite automaton (DFA). We

extend δ to Q × Σ∗ → 2Q in the usual way. Then this automaton accepts a word

w ∈ Σ∗ if δ(s, w) ∩ F 6= ∅. It is a well-known fact that a language which is accepted

by an NFA can be accepted by a DFA, and such language is said to be regular.

The context-free languages (CFLs) are produced by context-free grammars. If a lan-

guage is produced by a linear context-free grammar, then it is called a linear context-

free language (LCFL). For more details about grammars, the reader is referred to [1].

For each letter a of Σ, let s(a) be a language over an alphabet Σa. Furthermore,

define, s(λ) = λ, s(au) = s(a)s(u) for a ∈ Σ and u ∈ Σ∗. Such a mapping s from

Σ∗ into 2Σ
′∗

, where Σ′ is the union of the alphabets Σa, is called a substitution. A

substitution s is said to be regular (context-free) if each of the languages s(a) is regular

(resp. context-free). The family of regular (context-free) languages is closed under

regular (resp. context-free) substitution [18]. A substitution h such that each h(a)

consists of a single word is called a homomorphism. The inverse substitution s−1 of a

substitution s is defined for each w ∈ Σ∗ by s−1(w) = {u | w ∈ s(u)}. Furthermore,

for a language L ⊆ Σ∗, s−1(L) =
⋃

w∈L s
−1(w) = {u | w ∈ s(u) for some w ∈ L}.

Now let us recall the definition of left-inverse operations from [8]. For two binary word

operations ⋆ and •, the operation • is said to be the left-inverse of the operation ⋆ if

for all words u, v, w over an alphabet, the equivalence “w ∈ (u ⋆ v) ⇐⇒ u ∈ (w • v)”

76

holds.

Lastly, we recall the definitions of shuffle and deletion on trajectories. A trajectory is

a binary word over an alphabet {0, 1}. For two words u, v ∈ Σ∗, the shuffle of u with

v on a trajectory t, denoted by u
∃
t v, is defined as follows:

u
∃
t v = {u1v1 · · ·ukvk | u = u1 · · ·uk, v = v1 · · · vk, t = 0i11j1 · · · 0ik1jk ,

where |um| = im and |vm| = jm for all m, 1 ≤ m ≤ k}.

As its left-inverse operation, one can define the deletion of v from a word w on t,

denoted by w t v, as follows:

w t v = { u1 · · ·uk | w = u1v1 · · ·ukvk, v = v1 · · · vk, t = 0i11j1 · · · 0ik1jk ,

where |um| = im and |vm| = jm for all m, 1 ≤ m ≤ k}.

Note that, in both of these definitions, it is possible to have i1 = 0 and jk = 0. At

any rate, by these definitions, u
∃
t v = w if and only if w t v = u.

If T is a set of trajectories, the shuffle of u with v on the set T of trajectories and the

deletion of v from w on T are:

u
∃
T v =

⋃

t∈T

u
∃
t v, w T v =

⋃

t∈T

w t v.

Furthermore, the operations
∃
T and T are extended to languages over Σ, if L1, L2 ⊆

Σ∗, then:

L1
∃
T L2 =

⋃

u∈L1,v∈L2

u
∃
T v, L1 T L2 =

⋃

w∈L1,v∈L2

w T v.

77

4.3 Block insertion and deletion on trajectories

In this section, we first introduce the formal definitions of block insertion and block

deletion on trajectories. Then, we propose several basic properties of these operations.

Lastly, we compare these operations with shuffle and deletion on trajectories and

establish relationships between these four operations.

Let us describe block insertion on trajectories first. Given a word a1a2 · · ·an of length

n (n ≥ 0), one can find n − 1 spaces between two letters. The operation “block-

inserting a language L2 into the word a1 · · · an on a trajectory t” inserts L2 into some

of these spaces, as well as possibly in the space to the left of a1 or the space to the

right of an. In order for the operation to be performed (to result in a nonempty set),

the trajectory t ∈ {0, 1}∗ has to be of length n+1. Each digit of the trajectory word

corresponds to a space and specifies whether L2 is inserted into the space (if the letter

is 1) or not (otherwise). The operation is defined formally as follows:

Definition 6 Let u = a1 · · · an such that a1, . . . , an ∈ Σ, n ∈ N, L2 ⊆ Σ∗, and

t = t0t1 · · · tm be a trajectory for some m ≥ 0 and t0, t1, . . . , tm ∈ {0, 1}. The block

insertion of L2 into u on t is defined as:

u←t L2 =







∅ if m 6= n,

L′
0a1L

′
1 · · · anL

′
n if m = n,

where for 0 ≤ k ≤ n, L′
k = L2 if tk = 1 and L′

k = {λ} if tk = 0.

Example 5 ab ←110 {ab, b, bc} = {ab, b, bc}a{ab, b, bc}b (see the following figure),

which is

{abaabb, ababb, ababcb, baabb, babb, babcb, bcaabb, bcabb, bcabcb}.

{ab, b, bc} {ab, b, bc}
↓ ↓ab←110 {ab, b, bc} = a b

t = 1 1 0

78

Next we define block deletion on trajectories.

Definition 7 Let w ∈ Σ∗, L2 ⊆ Σ∗, and t = t0t1 · · · tm be a trajectory for some

m ≥ 0 and t0, t1, . . . , tm ∈ {0, 1}. The block deletion of L2 from w on t is defined as:

w →t L2 = {a1 · · · am | w can be decomposed as w = v0a1 · · ·amvm

with a1, . . . , am ∈ Σ, and for 0 ≤ j ≤ m,

vj ∈ L2 if tj = 1, and vj = λ if tj = 0}.

By definition, we can see that λ cannot be a trajectory for block insertion or deletion

on trajectories.

Recall the definition of left-inverseness. Since parallel operations are defined as an

operation from Σ∗× 2Σ∗ to 2Σ
∗

and extended, more appropriate “inverseness” should

be defined as follows: for two operations ◦, ⋄ thus defined and extended, w ∈ (u ◦

L) ⇐⇒ u ∈ (w ⋄ L) for any words u, w ∈ Σ∗ and a language L ⊆ Σ∗. If ◦ and

⋄ satisfies this condition, we say that they are left-l-inverse to each other. Block

insertion and deletion on the same trajectory set are left-l-inverse to each other. This

is confirmed by the following stronger result.

Proposition 34 For two words w, u ∈ Σ∗, a language L2 ⊆ Σ∗, and a trajectory t,

w ∈ u←t L2 if and only if u ∈ w →t L2.

Example 6 As seen in Example 5, bcabb ∈ ab ←110 {ab, b, bc}. We can check that

bcabb →110 {ab, b, bc} = {ab, cb} (depicted as follows). Note that bcabb ∈ cb ←110

{ab, b, bc}.

bc b
↑ ↑bcabb→110 {ab, b, bc} = { a b

t = 1 1 0

,
,

b ab

t =
↑ c ↑ b }.
1 1 0

The new operations are extended so as to take languages as their first operand and

79

trajectories: for L1, L2 ⊆ Σ∗ and a set of trajectories T ,

L1 ←T L2 =
⋃

u∈L1,t∈T

u←t L2, L1 →T L2 =
⋃

u∈L1,t∈T

u→t L2.

Due to these extensions, the next result immediately holds as a corollary of Proposi-

tion 34.

Corollary 8 For two words w, u ∈ Σ∗, a language L2 ⊆ Σ∗, and a trajectory set T ,

w ∈ u←T L2 if and only if u ∈ w →T L2.

We now obtain several basic properties of the proposed operations. Let us start

with the distributivity with respect to the left operand or trajectory set. Note that

distributivity does not hold with respect to the right operand.

Lemma 21 For languages L1, L
′
1, L2 and trajectory sets T , we have

1. (L1 ∪ L′
1)←T L2 = (L1 ←T L2) ∪ (L′

1 ←T L2);

2. (L1 ∪ L′
1)→T L2 = (L1 →T L2) ∪ (L′

1 →T L2).

Lemma 22 For languages L1, L2 and trajectory sets T1, T2, we have

1. L1 ←(T1∪T2) L2 = (L1 ←T1
L2) ∪ (L1 ←T2

L2);

2. L1 →(T1∪T2) L2 = (L1 →T1
L2) ∪ (L1 →T2

L2).

The next property is about the 0-trajectory, i.e., a subset of 0+, which actually does

not do anything. Combining the next lemma with Lemma 22 leads us to a corollary

(Corollary 9), which shall turn out to be helpful to prove some undecidability results

of language equations with block insertion or deletion on trajectories in the later

sections.

Lemma 23 For languages L1 and L2, L1 ←0+ L2 = L1 and L1 →0+ L2 = L1.

80

Corollary 9 Let L1 be a language and T be a set of trajectories such that 0+ ⊆ T .

Then L1 ←T L2 ⊇ L1 and L1 →T L2 ⊇ L1.

As another property of block insertion and deletion, we can see that if L2 = ∅, then

any trajectory which contains 1 cannot produce any word.

Lemma 24 Let L1 be a language and T be a set of trajectories. Then L1 ←T ∅ =

L1 ←(T∩0+) ∅ and L1 →T ∅ = L1 →(T∩0+) ∅.

As remarked in [2, 15], various operations from formal languages are particular cases

of the operations of shuffle on and deletion along trajectories. In a similar manner,

the block insertion and deletion enable us to simulate some of the operations.

Remark 1 Here we show that some operations are specific cases of block insertion

on trajectories.

1. For T = 0∗1, ←T is the language catenation.

2. For T = 0∗10∗, ←T=← is the sequential insertion [7], which is defined, for two

languages L1, L2 over the alphabet Σ, as L1 ← L2 = ∪u∈L1,v∈L2
(u← v), where

u← v = {u1vu2 | u = u1u2}.

3. For T = {0∗10n | 0 ≤ n ≤ k}, ←T=←
k is the k-catenation [12], which is

defined, for two languages L1 and L2 over the alphabet Σ, as L1 ←
k L2 =

∪u∈L1,v∈L2
(u←k v) where u←k v = {u1vu2 | u = u1u2, |u2| ≤ k}.

4. For T = 1+, ←T=⇐ is the parallel insertion [7], which is defined, for two

languages L1 and L2 over the alphabet Σ, as L1 ⇐ L2 = ∪u∈L1
(u⇐ L2), where

u ⇐ L2 = {v0a1v1 · · ·akvk | k ≥ 0, aj ∈ Σ, 1 ≤ j ≤ k, vi ∈ L2, 0 ≤ i ≤

k and u = a1a2 · · · ak}.

Unlike shuffle on trajectories, block insertion on trajectories makes it possible to sim-

ulate parallel insertion naturally.

81

Remark 2 Some operations are specific cases of block deletion on trajectories.

1. For T = 0∗1, →T is the right quotient.

2. For T = 0∗10∗, →T=→ is the sequential deletion [7], which is defined, for two

languages L1, L2 over the alphabet Σ, as L1 → L2 = ∪u∈L1,v∈L2
(u→ v), where

u→ v = {w ∈ Σ∗ | u = w1vw2, w = w1w2}.

3. For T = {0∗10n | 0 ≤ n ≤ k}, →T=→
k is the k-deletion [12], which is

defined, for two languages L1 and L2 over the alphabet Σ, as L1 →
k L2 =

∪u∈L1,v∈L2
(u→k v) where u→k v = {u1u2 | u = u1vu2, |u2| ≤ k}.

In contrast to the case of block insertion on trajectories, parallel deletion [7] is not

a particular case of block deletion on trajectories. This is because, unlike parallel

deletion, block deletion cannot delete two adjacent words.

Having proposed block insertion and deletion on trajectories, we will establish re-

lationships between these new operations and shuffle and deletion on trajectories.

We namely show how to simulate block insertion (deletion) on trajectories by shuffle

(resp. deletion) with the help of a homomorphism and a substitution (resp. a ho-

momorphism and an inverse substitution). For a given language L2, the substitution

sL2
: Σ ∪#→ Σ∗ is defined as sL2

(a) = a for any a ∈ Σ and sL2
(#) = L2. When L2

is clear from the context, the subscript of sL2
is omitted. Note that if L2 is regular,

then s is a regular substitution. The homomorphism required is φ : {0, 1}∗ → {0, 1}∗

defined as φ(0) = 0 and φ(1) = 10.

Lemma 25 Let L1, L2 be languages on Σ and T ⊆ {0, 1}∗ be a set of trajectories.

Then

L1 ←T L2 = sL2
(L1

∃
φ(T)0−1 #∗)

Example 7 Let us recall the example of block insertion considered in Example 5:

ab←110 {ab, b, bc}. The morphism φ maps 110 into 10100: φ(110) = φ(1)φ(1)φ(0) =

82

10100. Then ab
∃
φ(110)0−1 #∗ = {ab

∃
1010 #2} = {#a#b}. Substituting {ab, b, bc}

into #’s completes the simulation of ab←110 {ab, b, bc}.

Block deletion on trajectories is the left-l-inverse operation of block insertion on tra-

jectories, and deletion on trajectories is the left-inverse operation of shuffle on tra-

jectories. Thus, it is likely that we can describe the language of the form u →t L2

by deletion on trajectories. Actually, we can simulate u →t L2 using deletion on

trajectories, the homomorphism φ, and the inverse substitution s−1. Note that for a

language L ⊆ Σ∗, s−1(L) =
⋃

w∈L s
−1(w).

Lemma 26 Let L1, L2 ⊆ Σ∗ be languages and T ⊆ {0, 1}∗ be a set of trajectories.

Then

L1 →T L2 = (s−1
L2
(L1) φ(T)0−1 #∗) ∩ Σ∗.

For a word w ∈ L1, the inverse substitution s−1 guesses which of its infixes in L2

should be deleted by replacing them with #’s. When the guess was wrong, deleting

#∗ along φ(T)0−1 leaves some of the #’s unerased and hence the guess is rejected by

taking intersection with Σ∗.

Example 8 In Example 6, we saw that bcabb→110 {ab, b, bc} = {ab, cb}. Keeping in

mind that the length of φ(110)0−1 is 4, if we choose from s−1(bcabb) only the words

of length 4, then we obtain the set

{#abb, bc#b,#c#b,#a#b,#ab#, bc##,#c##,#a##}.

Deleting #∗ along φ(110)0−1 = 1010 generates the set {cb, ab, c#, a#}. By taking

intersection of this set with Σ∗, we finally obtain {ab, cb}.

In the next section, we will prove closure properties of language families with respect

to block insertion and deletion on trajectories, and these representation lemmas play

a significant role there. Closure properties with respect to morphism, substitution,

83

right quotient, or intersection, are known. So we conclude this section with one

closure property with respect to the specific homomorphism φ.

Lemma 27 A trajectory set T is regular (context-free) if and only if φ(T)0−1 is

regular (resp. context-free).

Proof: The direct implication follows from the fact that the families of regular lan-

guages and context-free languages are closed under homomorphism and the right

quotient [6].

In order to prove the converse implication, we first note that φ(T) = φ(T)0−10 holds.

This is because every word in φ(T) ends with 0 due to the definition of φ. Hence,

φ(T)0−1 being regular (context-free) implies that φ(T) is regular (resp. context-

free). Since φ is a mapping that encodes T into φ(T) with a prefix code {0, 10},

φ(T) is uniquely decodable. Thus, φ−1(φ(T)) = T . Since the family of regular

languages (context-free languages) is closed under inverse homomorphism [4, 19], we

can conclude that T is regular (resp. context-free). 2

4.4 Closure properties

In this section, we obtain several closure properties of the families of regular languages

and context-free languages under block insertion and deletion on regular and context-

free trajectory sets, mainly based on the representation lemmas and known closure

properties with respect to shuffle and deletion on trajectories.

4.4.1 Closure properties with respect to block insertion

First of all, we consider the case when all of L1, L2, T are regular. The following

proposition shows that L1 ←T L2 is regular in such a case.

84

Proposition 35 Let L1, L2 be regular languages over Σ, and T be a regular set of

trajectories. Then L1 ←T L2 is regular.

Proof: Since T is regular, φ(T)0−1 is regular by Lemma 27. Hence, L1
∃
φ(T)0−1 #∗ is

regular due to Theorem 5.1 in [15], which states that, if a trajectory set T is regular,

then for any regular languages L1, L2, L1
∃
T L2 is regular. Note that s is a regular

substitution because L2 is regular. The family of regular languages is closed under

regular substitution [19] so that s(L1
∃
φ(T)0−1 #∗) is regular. Lemma 25 concludes

that L1 ←T L2 is regular. 2

The next proposition proves that if one of L1, L2, T is a context-free language and

the other two are regular languages, then L1 ←T L2 is context-free.

Proposition 36 Let L1, L2 be languages over Σ, and T be a set of trajectories. If

one of L1, L2, T is context-free and the other two are regular, then L1 ←T L2 is

context-free.

Proof: We first consider the case when T is context-free and L1, L2 are regular.

Then, φ(T)0−1 is context-free by Lemma 27. Hence, L1
∃
φ(T)0−1 #∗ is context-free

due to Theorem 5.2 in [15], which states that, if a trajectory set T is context-free,

then for any regular languages L1, L2, L1
∃
T L2 is context-free. Since the family

of context-free languages is closed under context-free substitution, and s is a regular

substitution, s(L1
∃
φ(T)0−1 #∗) is context-free. Lemma 25 concludes that L1 ←T L2

is context-free.

Similarly, we can prove that L1 ←T L2 is context-free in the other two cases due to

Theorem 5.3 in [15] which states that, if a trajectory set T is regular, then for any

languages L1, L2, one of them is regular and the other is context-free, L1
∃
T L2 is

context-free. 2

Until now, the difference between L1 and L2 in their roles in block insertion and

deletion has not shown up. Once we expand the investigation onto the case when

85

two of L1, L2, T are context-free, the difference becomes apparent in terms of closure

properties as shown in the next two propositions.

Proposition 37 Among L1, L2, T , if either L1 or T is regular and the other two are

context-free, then L1 ←T L2 is context-free.

Proof: In both cases, L1
∃
φ(T)0−1 #∗ is context-free. The context-free substitution

preserves context-freeness so that s(L1
∃
φ(T)0−1 #∗) = L1 ←T L2 is context-free using

Lemma 25. 2

On the other hand, if L1 and T are context-free, then even if L2 is singleton, L1 ←T L2

is not always context-free.

Proposition 38 There exist context-free languages L1 and T ⊆ {0, 1}∗, and a regular

language L2 such that L1 ←T L2 is not a context-free language.

Proof: Consider L1 = {v ∈ {a, b}∗ | |v|a = |v|b}, T = {t ∈ {0, 1}∗ | |t|0 = |t|1 + 1},

and L2 = {c}. It is clear that

L1 ←T L2 = {w ∈ {a, b, c}
∗ | |w|a = |w|b = |w|c}.

Hence, L1 ←T L2 is not a context-free language. 2

4.4.2 Closure properties with respect to block deletion

We now proceed to the investigation on the closure properties of the families of regular

and context-free languages under block deletion on trajectories. As for block insertion

on trajectories, we mainly rely on the representation lemma (Lemma 26) and closure

properties with respect to deletion on trajectories [2]. Let us recall some of them

here:

86

1. If L1, T , L2 are regular, then L1 T L2 is also regular. The author introduced

an effective method for constructing NFA accepting L1 T L2 based on DFAs

for L1, T , and L2.

2. If one of L1, T , and L2 is context-free and the other two are regular, then

L1 T L2 is context-free, which can be non-regular.

3. If two languages involved in L1 T L2 are context-free, and the other one is

regular, then L1 T L2 is not necessarily context-free.

Combining the first and second results together, we can see that the regularity of

L1 T L2, when L1 and T are regular, depends on the regularity of L2. In contrast,

for block deletion on trajectories, L1 →T L2 is regular regardless of what L2 is. The

proof of this result requires the following technical lemma.

Lemma 28 Let L2 ⊆ Σ∗ be a language and s be the substitution defined as s(a) = a

for any a ∈ Σ and s(#) = L2. For a regular language L1, s−1(L1) is a regular

language over Σ ∪ {#}, and if further L2 is context-free, then s−1(L1) is effectively

constructible.

Proof: Let A = (Q,Σ, δ, i, F) be a deterministic finite automaton for L1. For two

states p, q ∈ Q, let us define Lp,q = {w ∈ Σ∗ | δ(p, w) = q}. Then we build up a finite

automaton A′ = (Q,Σ ∪ {#}, δ′, i, F), where

δ′ = δ ∪ {(p,#, q) | Lp,q ∩ L2 6= ∅}. (4.1)

One can easily verify that L(A′) = s−1(L1) and hence s−1(L1) is regular.

Furthermore, if L2 is context-free, Lp,q ∩ L2 is context-free and hence the emptiness

check in (4.1) can be done efficiently. This means that we can effectively construct

the finite automaton A′. 2

87

Proposition 39 Let L1, L2 be languages over Σ, and T be a set of trajectories. If

L1 is regular and T is regular (context-free), then L1 →T L2 is regular (resp. context-

free).

Proof: Since L1 is regular, Lemma 28 implies that s−1(L1) is regular. The previously-

mentioned closure properties with respect to deletion along trajectories implies that

s−1(L1) φ(T)0−1 #∗ is regular (context-free) because φ(T)0−1 is regular (resp. context-

free). Lemma 26 concludes that L1 →T L2 is regular (resp. context-free). 2

Note that the results of Lemma 28 and Proposition 39 are closely related to the

classical result that regular languages are closed under quotient with arbitrary lan-

guages [19].

In the case of T being regular in this proof, if a finite automaton for s−1(L1) is given,

the result in [2] mentioned previously implies that we can effectively construct an

NFA for L1 →T L2 for a context-free language L2. As a result, the next proposition

follows.

Proposition 40 For a regular language L1, a regular set T of trajectories, and a

context-free language L2, L1 →T L2 is not only regular but effectively constructible.

As expected, analogous results do not hold in the case when either L1 or T is arbitrary,

or even context-free. The case when T is context-free is shown in the following

example.

Example 9 Consider L1 = a∗b∗, T = {0n10n | n ≥ 0}, and L2 = {ab}. Then

L1 →T L2 = {a
nbn | n ≥ 0}.

Proposition 39 and this example leave the case where L1 is context-free and T , L2 are

regular. We will show that in this case L1 →T L2 is context-free. The proof requires

one technical lemma about a closure property of the family of context-free languages

under inverse regular substitution.

88

Lemma 29 The family of context-free languages is closed under inverse regular sub-

stitution.

This lemma holds because we can verify that a regular substitution s can be specified

by a finite transduction, and its inverse s−1 is defined in the same way as the inverse

of a finite transduction was defined in Theorem 2.16 [19], which states that the inverse

of a finite transduction is a finite transduction. Thus, s−1 is also a finite transduction.

Furthermore, we know that the family of context-free languages is closed under finite

transduction [4]. It might be worth pointing out that the inverse substitution s−1

is defined differently in [4] as follows: for a language L, s−1(L) = {w | s(w) ⊆ L}.

Under this definition, the family of context-free languages is not closed under inverse

substitution. Examples were provided there.

Proposition 41 Let T be a set of trajectories, and L1, L2 be languages over Σ. If

L1 is context-free and T, L2 are regular, then L1 →T L2 is context-free.

Proof: Lemma 26 states that L1 →T L2 = (s−1(L1) φ(T)0−1 #∗) ∩ Σ∗. Lemmas 27

and 29 imply that φ(T)0−1 is regular and s−1(L1) is context-free. Due to the closure

properties under deletion on trajectories, s−1(L1) φ(T)0−1 #∗ is context-free, and

hence, L1 →T L2 is context-free. 2

Moreover, in the following example, we can see that there exist a context-free language

L1 and regular languages L2, T such that L1 →T L2 is a non-regular context-free

language.

Example 10 By swapping the roles of L1 and T in Example 9 as L1 = {a
nbn | n ≥ 1}

and T = 0∗10∗, we have L1 →T {ab} = {a
nbn | n ≥ 0}.

Finally we consider the three cases when two of L1, L2, T are context-free. Note that

Proposition 39 has already addressed the case when T and L2 are context-free. The

following proposition gives answers to the other two cases.

89

Proposition 42 There exist languages L1, L2, and a set of trajectories T satisfying

each of the following:

1. L1 and L2 are context-free, and T is regular, but L1 →T L2 is not context-free;

2. L1 and T are context-free, and L2 is regular, but L1 →T L2 is not context-free.

Proof: 1. Due to Theorem 3.4 in [5], CFLs are not closed under right quotient.

When T = 0∗1, →T is the right quotient. Thus, the result is immediate.

2. Consider L1 = {anbncdm | n,m ≥ 0}, T = {02n10n | n ≥ 0}, and L2 = cd∗. We

can verify that

L1 →T L2 = {a
nbncn | n ≥ 0},

which is well-known not to be context-free. 2

Among the closure properties obtained in this section, the results which guarantee

the regularity of the resulting language are of special interest. They enable us to

obtain decidability results of language equation problems involving block insertion

and deletion, some of which will be considered in the following sections.

4.5 Decision problems of language equations

Now that we have established closure properties with respect to block insertion and

deletion on trajectories, let us shift our attention to decision problems which involve

these operations.

We begin our investigation with a simple but essential problem: can we test the equal-

ity of a language obtained by block insertion (deletion) on trajectories with another

language? These problems are formally described as follows: For given languages L1,

L2, L3, and a set T of trajectories,

90

Q0,i : is L1 ←T L2 = L3 ?

Q0,d : is L1 →T L2 = L3 ?

First of all, we observe positive decidability results for both problems. They are due

to the fact that the equality between regular languages is decidable as well as to the

closure properties of the family of regular languages established in Section 4.4. It is

noteworthy that the decidability of Q0,d does not require L2 to be regular as long as

L1 and T are regular. In fact, Proposition 40 implies that, for a context-free language

L2, Q0,d remains decidable.

Proposition 43 Let T be a set of trajectories, and L1, L2, L3 be languages over Σ.

The following statements hold true:

1. If all of L1, L2, L3, T are regular, the problem Q0,i is decidable.

2. If L1, L3, T are regular and L2 is context-free, the problem Q0,d is decidable.

Here the question arises of whether Q0,d becomes undecidable if we weaken the as-

sumption on L2 from being context-free to being context-sensitive. The next propo-

sition answers this question affirmatively.

Proposition 44 Let L1, L3 be regular languages and T be a regular set of trajectories.

If L2 is context-sensitive, then the problem Q0,d is undecidable.

Proof: We first recall that, for a given context-sensitive language L over Σ, it is

undecidable whether L 6= ∅ [16], and context-sensitive languages are closed under

catenation with singleton languages [16]. Note that L 6= ∅ if and only if Lb∩Σ+ 6= ∅,

where b is a letter in Σ.

Now, we prove the proposition, and reduce the problem of whether Lb∩Σ+ 6= ∅ into

Q0,d with L1 = Σ+, T = {1}, L2 = Lb, and L3 = {λ}. We claim that

Σ+ →1 Lb = {λ} ⇐⇒ Lb ∩ Σ+ 6= ∅.

91

If Lb ∩ Σ+ 6= ∅, then there exists a word w ∈ Lb ∩ Σ+. Since w →1 w = {λ}, the

left hand side holds. Conversely, if Lb∩Σ+ = ∅, then Lb has to be ∅. In such a case,

Σ+ →1 Lb = ∅. 2

One can reasonably expect that once some of the involved languages become context-

free (except the case just considered now), the problems Q0,i and Q0,d turn into

undecidable. They actually do, except when L1, L2, L3 are over a unary alphabet.

Due to Parikh’s theorem [17], context-free languages over a unary alphabet are regular

so that assuming L1, L2, or L3 context-free makes no sense. Let us assume that

L1, L2, L3 are regular and T is context-free. Then the assumption of L1, L2, L3 being

unary implies the existence of a regular trajectory set which is “equivalent” to T in

the following sense.

Lemma 30 Let L1, L2 be two languages over a unary alphabet. For any context-free

trajectory set T , there exists a regular trajectory set T ′ such that L1 ←T L2 = L1 ←T ′

L2 (L1 →T L2 = L1 →T ′ L2).

Proof: Due to Parikh’s theorem, there exists a regular set of trajectories T ′ such

that Ψ(T) = Ψ(T ′), where Ψ is the Parikh mapping.

We show that L1 ←T L2 = L1 ←T ′ L2. For that, it suffices to show L1 ←T L2 ⊆

L1 ←T ′ L2, since the reverse inclusion will hold by symmetry. Suppose that L1 ←T

L2 6⊆ L1 ←T ′ L2. Then, there exist a word u = an ∈ L1 for some n ≥ 0, a trajectory

t = t0 · · · tn ∈ T where ti ∈ {0, 1} for 0 ≤ i ≤ n, and some words in L2, such

that v0av1 · · · avn 6∈ L1 ←T ′ L2, where, if ti = 0 vi = λ, otherwise, vi ∈ L2. Thus,

an+
∑

0≤i≤n |vi| is not in L1 ←T ′ L2. However, this is a contradiction, since there exists

t′ ∈ T ′ such that Ψ(t′) = Ψ(t), and it is clear that an+
∑

0≤i≤n |vi| ∈ an ←t′ L2.

Similarly, we can prove the equality L1 →T L2 = L1 →T ′ L2 holds. 2

This lemma implies that, when T is context-free and the operand languages are

restricted to be unary languages, we just need to consider a regular set of trajectories

92

T ′ that is letter equivalent to T . Thus, the problems turn out to be equal to the

problems solved in Proposition 43.

Corollary 10 Let T be a context-free trajectory set, and L1, L2, L3 be regular lan-

guages over a unary alphabet. Then both problems Q0,i and Q0,d are decidable.

In the rest of this section and Sections 4.6 and 4.7, we assume that L1, L2, L3 are over

a non-unary alphabet. To clarify this assumption, we describe problems by using

phrases such as “Q0,i over a binary (ternary) alphabet” if a binary (resp. ternary)

alphabet is used for the proof. Note that we will present the proofs of Propositions 60,

62, and 63 using ternary alphabets for the sake of readability. The constructions could

be straightforwardly encoded over binary alphabets. In the following, we will prove

several undecidability results.

Proposition 45 Let L1, L2, L3 be languages over a binary alphabet Σ, and T be a

set of trajectories. The following statements hold true:

1. The problem Q0,i over a binary alphabet is undecidable if one of L1, L2, L3, and

T is context-free, and the other three are regular.

2. The problem Q0,d over a binary alphabet is undecidable if either L1 or L3 is

context-free, and the other and T are regular.

Proof: For Q0,i, we consider four cases depending on which of the involved languages

is context-free.

Firstly we consider Q0,i with T being context-free. Let L be an arbitrary context-free

language over Σ = {a, b} and let h : {a, b}∗ → {0, 1}∗ be a homomorphism which

maps a to 0 and b to 1. Let Tc = h(L)0. Recall that the morphism φ maps 1 to

10 and 0 to 0. Note that for a trajectory t ∈ {0, 1}∗, 0∗
∃
t 1

∗ = {t} holds. Hence,

the representation lemma (Lemma 25) shows that 0∗ ←Tc
{1} = s{1}(0

∗ ∃
φ(h(L)0)0−1

#∗) = 0∗
∃
φ(h(L)) 1∗ = φ(h(L)). Now if we could decide Q0,i in this setting, for a

93

regular language L3, we can decide whether φ(h(L)) = φ(h(L3)), which is equivalent

to L = L3 because φ(h(·)) is a prefix-coding. However, the equality test between

regular and context-free languages is undecidable [6].

For the cases when either L1 or L3 is context-free, by letting T = 0+, the problem

of whether L1 is equal to L3 is reduced to the problem “is L1 ←T L2 equal to L3?”.

Due to the reason mentioned above, in these cases Q0,i has to be undecidable. For

the case when L2 is context-free, “is L2 equal to Σ∗” is reduced to Q0,i by choosing

L1 = {λ}, T = {1}, and L3 = Σ∗.

Now it is clear that the usage of T = 0+ leads us to the undecidability of Q0,d under

the given conditions because then L1 →T L2 = L3 ⇐⇒ L1 = L3. 2

Let us try to fill the only one remaining gap about Q0,d: when T is context-free. The

next proposition shows that Q0,d is undecidable also in this case.

Proposition 46 The problem Q0,d over a binary alphabet is undecidable if L1 and

L3 are regular, L2 is singleton, and T is context-free.

Proof: Let L be an arbitrary context-free language over {a, b}, h map a to 01 and

b to 10, and f map a to a#a and b to #bb. Choose T = h(L)0, L1 = {a, b}∗,

L2 = {#}, and L3 = {aa, bb}∗. We first observe that, for a word w ∈ {a, b}∗ and

t ∈ T , f(w) →t L2 ∈ {a, b}
∗ if and only if t = h(w)0. Moreover, if t = h(w)0, then

f(w)→t L2 is the word obtained from w by replacing a with aa and b with bb. Thus,

we can conclude that f(L1) →T L2 = L3 if and only if L = {a, b}∗. This means

that if Q0,d were decidable with L1, L3 being regular, L2 being singleton, and T begin

context-free, we could decide whether L = {a, b}∗. 2

We conclude this section with a variant of Q0,i and Q0,d when the left-operand is

context-free. For a set of trajectories T ⊆ {0, 1}∗, the Parikh image of T restricted

to 0 is

Ψ0(T) = {|t|0 | t ∈ T}.

94

From the definition of φ, the following lemma is clear.

Lemma 31 For a trajectory set T ∈ {0, 1}∗, T is finite if and only if Ψ0(φ(T)0
−1)

is finite.

Considering an alphabet Σ, denote R0(T) =
⋃

d∈Ψ0(T) Σ
d.

Proposition 47 The problem Q0,i is decidable for a context-free language L1, regular

languages L2, L3, and a regular trajectory set T if and only if T is finite.

Proof: We prove here only the direct implication because the other direction is

trivial. Assume that T is infinite, i.e., Ψ0(φ(T)0
−1) is infinite due to Lemma 31.

Let L be an arbitrary context-free language. Consider the regular language R =

{0, 1}∗
∃
φ(T)0−1 #∗ = R0(φ(T)0

−1)
∃
φ(T)0−1 #∗. Intuitively, this equality implies that

a word in {a, b}∗ is useful for the operation
∃
φ(T)0−1 only if its length is equal to the

number of digit 0 of a trajectory in φ(T)0−1. It was proved in Theorem 6.3 in [11]

that L
∃
φ(T)0−1 #∗ = R if and only if R0(φ(T)0

−1) ⊆ L. Using the representation

lemma (Lemma 4), we have L ←T # = L
∃
φ(T)0−1 #∗. Thus, L ←T # = R if and

only if R0(φ(T)0
−1) ⊆ L. The latter problem is known to be undecidable [11] so that

Q0,i is also undecidable if T is infinite. 2

Using the representation lemma (Lemma 26) and the proof of Theorem 6.4 in [11],

we can prove an analogous result for block deletion as follows.

Proposition 48 The problem Q0,d is decidable for a context-free language L1, regular

languages L2, L3, and a regular trajectory set T if and only if T is finite.

The results proved in this section are summarized in Table 4.1.

4.6 Existence of trajectories

We now continue our investigation on language equations involving block insertion

and deletion on trajectories. Here language equations with one variable are of interest.

95

Problem L1 L2 L3 T Result Proof
Q0,i Reg Reg Reg Reg D Proposition 43

CFL Reg Reg FIN D Proposition 47
CFL ANY Reg INF U Proposition 45
SIN CFL Reg SIN U
Reg ANY CFL Reg U
Reg SIN Reg CFL U

Q0,d Reg CFL Reg Reg D Proposition 43
Reg CSL Reg Reg U Proposition 44
CFL Reg Reg FIN D Proposition 48
CFL ANY Reg INF U Proposition 45
Reg ANY CFL Reg U
Reg SIN Reg CFL U Proposition 46

Table 4.1: Decidability results of the problems Q0,i and Q0,d, where L1, L2, L3 are
over a non-unary alphabet. SIN, FIN, INF, and CSL stand for a singleton, a finite,
an infinite, and a context-sensitive language, respectively. ANY means that not
depending on what L2 is, we can prove the undecidability results.

In particular, the topic of this section is an equation of the form L1 ←X L2 = L3

or its block deletion variant, where L1, L2, L3 are given and X is a variable. The

questions arise in the following form: For given languages L1, L2, and L3,

Q1,i: does there exist a trajectory set T such that L1 ←T L2 = L3?

Q1,d: does there exist a trajectory set T such that L1 →T L2 = L3?

Before investigating these problems under various conditions on L1, L2, L3, we note

that when the answer to Q1,i or Q1,d is positive, there also exists a maximum solution

Tmax, which is the union of all the solutions to L1 ←X L2 = L3 respectively L1 →X

L2 = L3 (this is due to Lemma 22). Therefore, in order to decide the existence of a

solution to L1 ←X L2 = L3 or L1 →X L2 = L3, we can employ a technique proposed

in [7, 8] that firstly constructs the maximal solution Tmax under the assumption that

the equation has a solution, and then checks whether Tmax is actually its solution.

96

For Q1,i, this candidate is

T0 = {t ∈ {0, 1}
∗ | L1 ←t L2 ⊆ L3}.

Lemma 32 Let L1, L2, L3 be languages. If L1 ←X L2 = L3 has a solution, then T0

is its maximum solution.

Proof: Since the equation is assumed to have a solution, we can let T be its solution,

that is, L1 ←T L2 = L3. We can also assume the existence of its maximum solution

Tmax defined as the sum of all the solutions. By the definition of T0, the two solutions

T and Tmax are subsets of T0. Then using Lemma 22, we can easily check that

L1 ←T0
L2 = (L1 ←T L2) ∪ (L1 ←T0\T L2)

= L3.

Thus, T0 ⊆ Tmax. In conclusion, T0 = Tmax. 2

Furthermore, we can prove that in the case when L1, L2, L3 are regular, T0 becomes

regular.

Lemma 33 Let L1, L2, L3 ⊆ Σ∗ be regular languages. Then T0 is regular and effec-

tively constructible.

Proof: Here we prove that T c
0 is regular and effectively constructible. Note that

t ∈ T c
0 if and only if (L1 ←t L2) ∩ Lc

3 6= ∅.

For a trajectory t, the representation lemma (Lemma 25) enables us to describe

L1 ←t L2 as s(L1
∃
φ(t)0−1 #∗), where s is the substitution that substitutes L2 for #.

By the definition of inverse substitution, we can easily check that

s(L1
∃
φ(t)0−1 #∗) ∩ Lc

3 6= ∅ ⇐⇒ (L1
∃
φ(t)0−1 #∗) ∩ s−1(Lc

3) 6= ∅.

97

Thus, t ∈ T c
0 is equivalent to that (L1

∃
φ(t)0−1 #∗) ∩ s−1(Lc

3) is non-empty. In [3],

Domaratzki and Salomaa prove that this nonemptiness can be effectively checked

by constructing a finite automaton. Therefore, T c
0 is regular and effectively con-

structible. 2

Combining these lemmas provides us with a decidability result about Q1,i.

Proposition 49 The problem Q1,i is decidable when L1, L2, L3 are regular.

Proof: Due to Lemma 32, it suffices to decide whether T0 is its solution or not.

Lemma 33 implies that T0 is regular, and the closure property shown in Section 4.4

proves that L1 ←T0
L2 is regular. In order to test whether T0 is a solution of L1 ←X

L2 = L3, we simply compare this regular language with the regular language L3. 2

Now we turn our attention to the case when one of L1, L2, L3 is context-free, and the

other two are regular. Only languages over non-unary alphabets will be considered

for the reason mentioned previously.

Firstly, we consider Q1,i under the assumption that L1 is context-free and L2, L3 are

regular.

Proposition 50 The problem Q1,i over a binary alphabet is undecidable if L1 is

context-free and L2, L3 are regular.

Proof: We prove this result by reducing the undecidable problem of whether L1 = Σ∗

to one instance of our problem with L2 = {λ} and L3 = Σ∗. We claim that

∃T ⊆ {0, 1}∗ such that L1 ←T {λ} = Σ∗ ⇐⇒ L1 = Σ∗.

Indeed, if L1 = Σ∗, then T = 0∗ satisfies the equation. Conversely, assume that there

exists T such that L1 ←T {λ} = Σ∗. Then for all x ∈ Σ∗, there exist y ∈ L1 and

t ∈ T such that x ∈ y ←t {λ}. Note that this happens only if x = y and |t| = |y|+1.

Therefore, x ∈ L1 and L1 = Σ∗. 2

98

Due to the asymmetry of the operands of block insertion on trajectories, we next

consider Q1,i for a context-free language L2 and regular languages L1, L3. We show

that, even if L2 does not contain the empty word, this question is undecidable. Thus,

it is undecidable in general.

Proposition 51 The problem Q1,i over a binary alphabet is undecidable if L2 is

context-free and L1, L3 are regular.

Proof: We reduce the problem of whether L2 = Σ+ to one instance of our problem

with L1 = {λ} and L3 = Σ+. Then

∃T ⊆ {0, 1}∗ such that {λ} ←T L2 = Σ+ ⇐⇒ L2 = Σ+.

The rest of this proof is similar to that of Proposition 50; hence, omitted. 2

The last case for Q1,i is when the resulting language L3 is context-free. In order to

address this problem, we recall one undecidable result proved in [3]. Let us denote the

set of non-negative integers by N, and, for a set I ⊆ N, let ΣI = {w ∈ Σ∗ | |x| ∈ I}.

Then, for a given LCFL L, it is undecidable whether there exists I ⊆ N such that

L = ΣI .

Proposition 52 The problem Q1,i over a binary alphabet is undecidable if L3 is linear

context-free and L1, L2 are regular.

Proof: We reduce the problem of whether there exists I ⊆ N such that L3 = ΣI to

an instance of our problem with L1 = Σ∗ and L2 = {λ}. We claim that

∃T ⊆ {0, 1}∗ such that L3 = Σ∗ ←T {λ} ⇐⇒ ∃ I ⊆ N such that L3 = ΣI .

If there exists I ⊆ N such that L3 = ΣI , then let T = {0i+1 | i ∈ I}. We can

verify that L3 = Σ∗ ←T {λ}. Conversely, if there exists T ⊆ {0, 1}∗ such that

L3 = Σ∗ ←T {λ}, then let I = {|t| − 1 | t ∈ T and |t| ≥ 1}. Then L3 = ΣI . 2

99

Having considered Q1,i, let us investigate the problem Q1,d. Firstly, we prove a de-

cidability result for the case when L1 and L3 are regular by taking the same strategy

to construct the candidate of maximum solution and check its validity. Let

Td = {t ∈ {0, 1}
∗ | L1 →t L2 ⊆ L3}.

The next lemma is the block deletion variant of Lemma 32, which can be proved in

the exactly same way so that we omit its proof.

Lemma 34 Let L1, L2, L3 be languages. If L1 →X L2 = L3 has a solution, then Td

is its maximum solution.

Lemma 33 has also a block deletion variant as shown below. One significant difference

is that this variant does not require L2 to be regular, but exhibits an algorithmically-

good behavior when L2 is at most context-free.

Lemma 35 Let L1, L3 ⊆ Σ∗ be regular languages and L2 be an arbitrary language.

Then Td is regular. Furthermore, if L2 is context-free, then Td is effectively con-

structible.

Proof: Recall that L1 →t L2 = (s−1(L1) φ(t)0−1 #∗) ∩ Σ∗ (Lemma 26). Due to

Lemma 28, s−1(L1) is regular because L1 is regular, and moreover becomes effectively

constructible when L2 is context-free. As done in Lemma 33, t ∈ Td if and only if

(s−1(L1) φ(t)0−1 #∗) ∩ Lc
3 6= ∅. We note that for regular languages R1, R2, R3,

Domaratzki and Salomaa demonstrated an effective construction of a finite automaton

which accepts a trajectory t satisfying (R1 t R2) ∩ Rc
3 6= ∅ [3]. Now it is clear that

Td is regular. Moreover, if L2 is context-free, applying their method on the finite

automata for s−1(L1), #
∗, and Lc

3 makes it possible to effectively construct a finite

automaton for Td. 2

Lemmas 34 and 35 lead us to a decidable result for Q1,d.

100

Proposition 53 The problem Q1,d is decidable if L2 is context-free and L1, L3 are

regular.

It is natural to consider here whether the problem Q1,d remains decidable or not once

we change L2 from being context-free to being context-sensitive in Proposition 53.

Proposition 54 The problem Q1,d is undecidable if L2 is context-sensitive and L1, L3

are regular.

Proof: The basic idea used here has been already proposed in the proof of Proposi-

tion 44. We claim that Σ+ →X Lb = {λ} has a solution if and only if Lb ∩ Σ+ 6= ∅.

From the proof of that proposition, we know that, if Lb ∩ Σ+ 6= ∅, then X = {1}

is a solution to the equation on the left hand side. Conversely, if Lb ∩ Σ+ = ∅,

then Lb has to be the empty set. Note that, in such a case, the only trajectory sets

T such that Σ+ →T Lb 6= ∅ are subsets of 0∗. However, these sets cannot satisfy

Σ+ →T Lb = {λ}. 2

Next we consider the problem Q1,d under the conditions that one of L1 and L3 is

context-free, and the other and L2 are regular. In these cases Q1,d becomes undecid-

able. Actually, it is enough for the context-free language to be linear to obtain the

undecidability results.

Proposition 55 The problem Q1,d is undecidable over a binary alphabet if L1 is

linear context-free and L2, L3 are regular.

Proof: We prove the proposition by reducing the problem of whether L1 = Σ∗ to

one instance of our problem with L2 = {λ} and L3 = Σ∗. We claim that

∃T ⊆ {0, 1}∗ such that L1 →T {λ} = Σ∗ ⇐⇒ L1 = Σ∗.

If L1 = Σ∗, T = 0∗ satisfies the equation. Conversely, assume that there exists T

such that L1 →T {λ} = Σ∗. Then for all x ∈ Σ∗, there exist y ∈ L1 and t ∈ T such

101

Problem L1 L2 L3 Result Proof
Q1,i Reg Reg Reg D Proposition 49

CFL Reg Reg U Proposition 50
Reg CFL Reg U Proposition 51
Reg Reg CFL U Proposition 52

Q1,d Reg CFL Reg D Proposition 53
Reg CSL Reg U Proposition 54
CFL Reg Reg U Proposition 55
Reg Reg CFL U Proposition 56

Table 4.2: Decidability results of the problems Q1,i and Q1,d, where L1, L2, L3 are over
a non-unary alphabet, and CSL stands for the family of context-sensitive languages.

that x ∈ y →t {λ}. Note that this happens only if x = y and |t| = |y|+1. Therefore,

x ∈ L1 and L1 = Σ∗. 2

Proposition 56 The problem Q1,d is undecidable over a binary alphabet if L3 is

linear context-free and L1, L2 are regular.

Proof: We prove the proposition by reducing the problem of whether there exists

I ⊆ N such that L3 = ΣI to one instance of our problem with L1 = Σ∗ and L2 = {λ}.

We claim that

∃T ⊆ {0, 1}∗ such that L3 = Σ∗ →T {λ} ⇐⇒ ∃ I ⊆ N such that L3 = ΣI .

If there exists I ⊆ N such that L3 = ΣI , then let T = {0i+1 | i ∈ I}. We can

verify that L3 = Σ∗ →T {λ}. Conversely, if there exists T ⊆ {0, 1}∗ such that

L3 = Σ∗ →T {λ}, then let I = {|t| − 1 | t ∈ T and |t| ≥ 1}. Note that we do not

consider→λ, because it is not defined for any language. We can verify that L3 = ΣI .2

We summarize the results on Q1,i and Q1,d proved in this section in Table 4.2 as

follows.

102

4.7 Existence of left operands

We consider here two other language equations with one variable of the forms X ←T

L2 = L3 and X →T L2 = L3. The questions are formulated as: for given languages

L2, L3 and a given trajectory set T ,

Q2,i: does there exist a solution to X ←T L2 = L3?

Q2,d: does there exist a solution to X →T L2 = L3?

By limiting a solution of the language equations considered in Q2,i and Q2,d to a

singleton, we can obtain word-variants of these questions as follows: for languages

L2, L3 and a trajectory set T ,

Qw
2,i: does there exist a word x satisfying x←T L2 = L3?

Qw
2,d: does there exist a word x satisfying x→T L2 = L3?

4.7.1 Positive decidability results

We first consider questions Q2,i and Q2,d. As in the problems to find a trajectory,

when the answer to these questions is positive, there exists the maximum solution

Xmax due to Lemma 21. Therefore, we employ the same technique, which constructs

Xmax and checks whether this is actually a solution.

Here we propose a theorem of how to construct the Xmax candidate for Q2,i and Q2,d

in a more general setting where ←T and →T are replaced by two binary operations

◦, ⋄ : 2Σ
∗

× 2Σ
∗

→ 2Σ
∗

which are left-l-inverse to each other. This is a generalization

of Theorem 4.6 in [8]. We omit its proof because it can be obtained by replacing

left-inverse in the proof of their result with left-l-inverse.

103

Theorem 8 Let L2, L3 ⊆ Σ∗ be languages and ◦, ⋄ : 2Σ
∗

× 2Σ
∗

→ 2Σ
∗

be operations

which are left-l-inverse to each other. If an equation X ◦L2 = L3 has a solution, then

the language (Lc
3 ⋄ L2)

c is its maximum solution.

As done in Section 4.6, in order to solve Q2,i (Q2,d), it suffices to check whether the

candidate of maximum solution (Lc
3 →T L2)

c (resp. (Lc
3 ←T L2)

c) given in Theorem 8

is actually a solution to X ←T L2 = L3 (resp. X →T L2 = L3). When all of L2, T, L3

are regular, this check can be done efficiently. Thus, we have the following decidability

results.

Proposition 57 Both the problems Q2,i and Q2,d are decidable when L2, L3, T are

regular.

Recall that block insertion on trajectories becomes parallel insertion introduced in [7]

when T = 1∗. Thus, the following is a corollary of Proposition 57 and answers one

decidability question that was left open in [7].

Corollary 11 Let ⋄ be the parallel insertion, and R2, R3 be regular languages. The

problem of whether there exists a solution to X ⋄R2 = R3 is decidable.

Now we turn our attention to questions Qw
2,i and Qw

2,d. Let us consider a decidability

result about the problem Qw
2,i first. By definition, we can easily observe that a word

x which satisfies x ←T L2 = L3 is of length at most the length, say ℓ, of a shortest

word in L3, unless L3 is empty. Thus, Qw
2,i can be solved if we check for all the words

of length at most ℓ whether the word becomes a solution to x ←T L2 = L3. This

check can be done if L2 and L3 are regular, the length of shortest words in L3 is

computable, and we can give a list consisting of all elements of length at most ℓ + 1

of T .

Proposition 58 The problem Qw
2,i is decidable if L2 and L3 are regular, and one can

enumerate a trajectory set T .

104

Corollary 12 The problem Qw
2,i is decidable if L2 and L3 are regular and T is recur-

sive.

In contrast, a solution to x →T L2 = L3 can be arbitrarily long, but finite. Thus, if

L3 is infinite, clearly there exists no word w such that w →T L2 = L3. Although the

brute-force attack does not work for Qw
2,d, we can prove a decidability result for this

problem under an interesting condition.

Proposition 59 The problem Qw
2,d is decidable if

1. L2 is regular,

2. one can decide whether L3 is finite or not, and

3. one can enumerate a trajectory set T .

Proof: Note that the emptiness test can be achieved efficiently for regular languages.

With the reason just mentioned, it suffices to consider the case when L3 is finite. Let

ℓ′ be the length of longest words in L3. Then any trajectory in T of length at least

ℓ′+2 is “useless”. Since elements of T can be enumerated, we can effectively construct

T ′ = {t ∈ T | |t| ≤ ℓ′+1}. Due to closure properties of the family of regular languages,

the following regular language is effectively constructible:

W = (Lc
3 ←T ′ L2)

c −
⋃

S⊂L3

(Sc ←T ′ L2)
c,

where ⊂ represents proper inclusion. We claim that, for all w ∈ Σ∗, w ∈ W if and

only if w →T ′ L2 = L3.

Due to Theorem 8, given the equation X →T ′ L2 = L3, the regular set R
′ = (Lc

3 ←T ′

L2)
c is the maximal set with the property X →T ′ L2 ⊆ L3. Therefore, w is a solution

of w →T ′ L2 = L3 if and only if

1. w ∈ R′, i.e., w →T ′ L2 ⊆ L3, and

105

2. w →T ′ L2 is not a proper subset of L3, i.e., w →T ′ L2 6⊂ L3.

Note that Condition 2 is equivalent to the following one: for all S ⊂ L3, w →T ′ L2 6⊆

S, and hence w /∈ (Sc ←T ′ L2)
c. Thus, we can conclude that all the solutions to the

equation w →T ′ L2 = L3 are in W .

To decide whether there exists a word w such that w →T ′ L2 = L3, we construct W

and test the emptiness of W . 2

Corollary 13 The problem Qw
2,d is decidable if L2 is regular, L3 is context-free, and

T is recursive.

4.7.2 Undecidability results

Next, we obtain undecidability results about Q2,i, Q2,d, and their word-variants. We

exclude the case when L2 and L3 are over a unary alphabet.

In the following, we will prove that if one of L2, L3, T becomes context-free and the

others remain regular, then Q2,i becomes undecidable. This is not always the case for

Qw
2,i (cf. Proposition 58), but the unsettled cases are considered, that is when either

L2 or L3 becomes context-free, and the other one as well as T are regular, then Qw
2,i

becomes undecidable.

Remark 3 The problems Q2,i and Qw
2,i are undecidable when L2 is context-free and

L3, T are regular. This is because these problems with some specific T , say T = 0∗1

(catenation), T = 0∗10∗ (insertion), or T =
⋃

0≤n≤k 0
∗10n (k-insertion), are known

to be undecidable ([7, 12]).

More generally, we can prove that for any non-empty trajectory set T ⊆ 0∗10∗, these

problems are undecidable, though we omit its proof here.

The next case is when L3 is context-free. The following proposition addresses the

undecidability of Q2,i and Qw
2,i at the same time. To that end, we employ a technique

106

to reduce an undecidable problem into a language equation X ←T L2 = L3 which

can have only a singleton solution.

Proposition 60 The problems Q2,i and Qw
2,i over a ternary alphabet Σ are undecid-

able if L2, T are regular and L3 is context-free.

Proof: For a given non-empty context-free language L ⊆ Σ∗, let L3 = #L, where

is a special symbol not included in Σ. Also let L2 = Σ∗ and T = {01}. Due to

the definition of T , if X is a solution, then {x ∈ X | |x| = 1} is also a solution. We

claim that L = Σ∗ if and only if X ←01 Σ
∗ = #L has a solution which consists only

of a word of length 1. In fact, the only possible solution is X = {#} so that the

direct implication is trivial with X = {#}. Assume that L 6= Σ∗, i.e., there exists

a word w 6∈ L. Since #w 6∈ #L, this equation cannot have the solution X = {#}.

Consequently, L = Σ∗ if and only if the equation X ←01 Σ∗ = #L has a solution.

It is undecidable whether a given non-empty context-free language is equal to Σ∗ so

that our problem is also undecidable. 2

The remaining case is when T is context-free. In this case, Qw
2,i remains decidable as

mentioned previously.

Proposition 61 The problem Q2,i over a binary alphabet is undecidable if L2 is finite,

L3 is regular, and T is context-free.

Proof: Let L be an arbitrary CFL over {a, b}. Let h map a to 01 and b to 10, and

choose T = h(L)0. Note that T = {01, 10}∗0 if and only if L = {a, b}∗.

We claim thatX ←T {c} = {#c#, c##}∗ has a solution if and only if T = {01, 10}∗0.

In order to verify this claim, we firstly observe that for any t ∈ T , w ←t {c} ∈

{#c#, c##}∗ if and only if w = #|t|−1 and w ←t {c} = f(φ(t)0−1), where f substi-

tutes # for 0 and c for 1. Let m ≥ 0 such that t ∈ {01, 10}m0. Assume that w ←t {c}

is in {#c#, c##}∗. Note that |φ(t)0−1|1 = m and φ(t)0−1 ∈ {010, 100}m. Due to

the representation lemma, w ←t {c} = w
∃
φ(t)0−1 c|φ(t)0

−1|1 = w
∃
φ(t)0−1 cm, and

107

the above assumption implies that w
∃
φ(t)0−1 cm ∈ {#c#, c##}m. By comparing

the number of #’s, we can see that w = #2m. Then w ←t {c} = f(φ(t)0−1). Thus,

X ←T {c} = {#c#, c##}∗ has a solution if and only if φ(T)0−1 = {010, 100}∗ if and

only if T = {01, 10}∗0. 2

Now we change our focus onto Q2,d and its word-variant.

Remark 4 It is known that the problems Q2,d and Qw
2,d with T = 0∗1 (right quotient)

are undecidable when L2 is context-free and L3 is regular [7]. Thus in general the

problems Q2,d and Qw
2,d are undecidable for context-free L2, regular L3, and regular T .

Proposition 62 The problem Q2,d over a ternary alphabet is undecidable if L2 and

T are regular, and L3 is context-free.

Proof: Note that the inclusion is undecidable for the class of context-free languages

which contains neither λ nor a word of length 1. Let # be a special symbol not

included in Σ. Let L4, L5 ⊆ Σ∗ be given context-free languages such that L4 ∩ (Σ ∪

{λ}) = L5 ∩ (Σ ∪ {λ}) = ∅. Note that #(L4 ∪ L5) ∪ L4# is context-free. Here we

claim that L5 ⊆ L4 if and only if the following equation has a solution:

X →10∗∪0∗1 ({#} ∪ Σ) = #(L4 ∪ L5) ∪ L4#.

If the inclusion holds, then the right-hand side of the equation becomes #L4 ∪ L4#

so that the equation has a solution #L4#. Next suppose that even when L5 6⊆ L4,

the equation found a solution. Then L5 contains a word w which is not in L4. Since

#w is in #(L4 ∪ L5), X has to contain either #w#, #2w, #wa, or b#w for some

a, b ∈ Σ. Let w = w′cd for some w′ ∈ Σ∗ and c, d ∈ Σ; note that w is of length at

least 2 due to the assumption on L5. From these four words, this deletion would also

generate w#, #2w′c, wa, and b#w′c, respectively. However, none of them can be a

member of #(L4 ∪ L5) ∪ L4#. Thus, this claim holds. 2

108

Proposition 63 The problem Q2,d over a ternary alphabet is undecidable if L2 is

finite, L3 is regular, and T is context-free.

Proof: Let L be an arbitrary CFL over {a, b}, and h be a homomorphism defined as

h(a) = 01 and h(b) = 10. Then we define a trajectory set T = 0h(L) ∪ 0∗ ∪ 01+, and

for F2 = {a, b} and R3 = {#a,#b}+ ∪ (#ab)∗, we claim the following:

h(L) = {01, 10}∗ if and only if X →T F2 = R3 has a solution.

First of all, we note that (#ab)∗ →01+ F2 = ∅. This is because deleting F2 from

a word according to 01+ means deleting 2n-th (n ≥ 1) letter of the word, but only

when all of them are in F2, and this condition cannot be satisfied as exemplified that

the 4-th letter of #ab#ab is #.

If h(L) = {01, 10}∗, then we can easily check that X = (#ab)∗ is a solution. Con-

versely, if the equation has a solution X , then X must be a subset of R3 because

T contains 0∗. If X contains a word in {#a,#b}+, then by deleting F2 from the

word according to 01+, we would obtain a word in #+, but this is not in R3; hence,

X ⊆ (#ab)∗. And, this inclusion actually must be equal since we cannot obtain a

word in (#ab)∗ by deleting F2 from another word in the set according to T . Let us

define a mapping g as g(01) = #b and g(10) = #a. If h(L) does not contain t, then

g(t) 6∈ X →T F2. Thus, h(L) must be {01, 10}∗. 2

The results proved in this section are summarized in Tables 4.3 and 4.4.

4.8 Conclusion

In this paper, we introduced the notion of block insertion and deletion on trajectories

for the study of properties of language operations under some parallel constraints.

These operations are in fact proper generalizations of several known sequential and

109

Problem L2 L3 T Result Proof
Q2,i Reg Reg Reg D Proposition 57

CFL Reg Reg U [7, 12], Remark 3
Reg CFL Reg U Proposition 60
FIN Reg CFL U Proposition 61

Q2,d Reg Reg Reg D Proposition 57
CFL Reg Reg U [7], Remark 4
Reg CFL Reg U Proposition 62
FIN Reg CFL U Proposition 63

Table 4.3: Decidability results of the problems Q2,i and Q2,d, where L2 and L3 are
over a non-unary alphabet.

Problem L2 L3 T Result Proof
Qw

2,i Reg Reg REC D Corollary 12
CFL Reg Reg U [7, 12], Remark 3
Reg CFL Reg U Proposition 60

Qw
2,d Reg CFL REC D Corollary 13

CFL Reg Reg U [7], Remark 4

Table 4.4: Decidability results of the problems Qw
2,i and Qw

2,d, where L2 and L3 are
over a non-unary alphabet. CSL and REC stand for the families of context-sensitive
languages and of recursive languages, respectively.

parallel binary operations in formal language theory such as catenation, sequential

insertion, k-insertion, parallel insertion, quotient, sequential deletion, k-deletion, etc.

Mainly based on the representation lemmas, which relate these new operations to

shuffle and deletion on trajectories, we examined the closure properties of the families

of regular and context-free languages under these operations, and considered three

types of language equation problems involving the operations.

In Section 4.7, the decidability of a solution to the language equation X ←T L2 = L3

and its deletion variant was investigated, but the analogous problem on L1 ←T X =

L3 and L1 →T X = L3 remains open.

110

Bibliography

[1] Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown

automata, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages,

vol. 1, Springer-Verlag, 1997, pp. 111-174

[2] Domaratzki, M.: Deletion along trajectories, Theoret. Comput. Sci. 320 (2004)

293-313

[3] Domaratzki, M., Salomaa, K.: Decidability of trajectory-based equations, The-

oret. Comput. Sci. 345 (2005) 304-330

[4] Ginsburg, S.: The Mathematical Theory of Context-Free Languages, McGraw-

Hill, New York, 1966.

[5] Ginsburg, S., Spanier, E. H.: Quotients of context-free languages, J. ACM 10

(1963) 487-492

[6] Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 1979.

[7] Kari, L.: On Insertion and Deletion in Formal Languages, Ph.D. Thesis, Uni-

versity of Turku, Department of Mathematics, SF-20500 Turku, Finland, 1991.

[8] Kari, L.: On language equations with invertible operations, Theoret. Comput.

Sci. 132 (1994) 129-150

111

[9] Kari, L., Seki, S.: Schema for parallel insertion and deletion, in: Y. Gao, H. Lu,

S. Seki, S. Yu (Eds.), Developments in Language Theory, in LNCS 6224 (2010)

267-278

[10] Kari, L., Sośık, P.: Language deletion on trajectories, Technical Report 606,

University of Western Ontario, 2003.

[11] Kari, L., Sośık, P.: Aspects of shuffle and deletion on trajectories, Theoret.

Comput. Sci. 331 (2005) 47-61

[12] Kari, L., Thierrin, G.: K-catenation and applications: k-prefix codes, J. of

Inform. and Optim. Sci., 16 (1995) 263-276

[13] Kudlek, M., Mateescu, A.: On distributed catenation, Theoret. Comput. Sci.

180 (1997) 341-352

[14] Kudlek, M., Mateescu, A.: On mix operation, in: G. Pǎun, A. Salomaa (Eds.),

New Trends in Formal Languages, in: LNCS 1218 (1997) 35-44

[15] Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: syntactic

constraints, Theoret. Comput. Sci. 197 (1998) 1-56

[16] Mateescu, A., Salomaa, A.: Aspects of classical language theory, in: G. Rozen-

berg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 1, Springer-Verlag,

1997, pp. 175-252

[17] Parikh, R. J.: On context-free languages, J. ACM 13 (1966) 570- 581

[18] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

[19] Yu, S.: Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of

Formal Languages, vol. 1, Springer-Verlag, 1997, pp. 41-110

112

Chapter 5

State Complexity of Two

Combined Operations:

Catenation-Star and

Catenation-Reversal

Abstract

This paper is a continuation of our research work on state complexity of combined

operations. Motivated by applications, we study the state complexities of two partic-

ular combined operations: catenation combined with star and catenation combined

with reversal. We show that the state complexities of both of these combined oper-

ations are considerably less than the compositions of the state complexities of their

individual participating operations.

113

5.1 Introduction

It is worth mentioning that in the past 15 years, a large number of papers have

been published on state complexities of individual operations, for example, the state

complexities of basic operations such as union, intersection, catenation, star, etc.

[6, 9, 10, 14, 16, 17, 18], and the state complexities of several other operations such

as shuffle, orthogonal catenation, proportional removal, and cyclic shift [2, 4, 5, 11].

However, in practice, it is common that several operations, rather than only a single

operation, are applied in a certain order on a number of finite automata. The state

complexity of combined operations is certainly an important research direction in

state complexity research. The state complexities of a number of combined operations

have been studied in the past two years. It has been shown that the state complexity

of a combination of several operations are usually not equal to the composition of the

state complexities of individual participating operations [7, 12, 13, 15].

In this paper, we study the state complexities of catenation combined with star, i.e.,

L1L
∗
2, and reversal, i.e., L1L

R
2 , respectively, where L1 and L2 are regular languages.

These two combined operations are useful in practice. For example, the regular ex-

pressions that match URLs can be summarized as L1L
∗
2. Also, the state complexity of

L1L
R
2 is equal to that of catenation combined with antimorphic involution (L1θ(L2))

in biology. An involution function θ is such that θ2 equals the identity function. An

antimorphic involution is the natural formalization of the notion of Watson-Crick

complementarity in biology. Moreover, the combination of catenation and antimor-

phic involution can naturally formalize a basic biological operation, primer extension.

Indeed, the process of creating the Watson-Crick complement of a DNA single strand

w1w2 uses the enzyme DNA polymerase to extend a known short primer p = θ(w2)

that is partially complementary to it, to obtain θ(w2)θ(w1) = θ(w1w2). This can be

viewed as the catenation between the primer p and θ(w1). The reader is referred to [1]

for more details about biological definitions and operations.

114

It has been shown in [18] that (1) the state complexity of the catenation of an m-state

DFA language (a language accepted by an m-state minimal complete DFA) and an

n-state DFA language is m2n − 2n−1, (2) the state complexity of the star of a k-state

DFA language, where the DFA contains at least one final state that is not the initial

state, is 2k−1 + 2k−2, and (3) the state complexity of the reversal of an l-state DFA

language is 2l. In this paper, we show that the state complexities of L1L
∗
2 and L1L

R
2

are considerably less than the compositions of their individual state complexities. Let

L1 and L2 be two regular languages accepted by two complete DFAs of sizes p and

q, respectively. We will show that, if the q-state DFA has only one final state which

is also its initial state, the state complexity of L1L
∗
2 is p2q − 2q−1; in the other cases,

that is when the q-state DFA contains some final states that are not the initial state,

the state complexity of L1L
∗
2 is (3p − 1)2q−2. This is in contrast to the composition

of state complexities of catenation and star that equals (2p − 1)22
q−1+2q−2−1. We

will also show that the state complexity of L1L
R
2 is p2q − 2q−1 − p + 1 instead of

p22
q

− 22
q−1, the composition of state complexities of catenation and reversal. In fact,

it is clear that these direct compositions are too high to be reached, because, by using

the standard NFA constructions, we can obtain two upper bounds, 2p+q+1 and 2p+q,

for the state complexities of L1L
∗
2 and L1L

R
2 , respectively. However, even these are

still significantly higher than the actual state complexities obtained in this paper.

The paper is organized as follows. We introduce the basic notations and definitions

used in this paper in the following section. Then we study the state complexities of

catenation combined with star and reversal in Sections 5.3 and 5.4, respectively. We

conclude the paper in Section 5.5.

5.2 Preliminaries

An alphabet Σ is a finite set of letters. A word w ∈ Σ∗ is a sequence of letters in Σ,

and the empty word, denoted by λ, is the word of 0 length.

115

An involution θ : Σ → Σ is a function such that θ2 = I where I is the identity

function and can be extended to an antimorphic involution if, for all u, v ∈ Σ∗,

θ(uv) = θ(v)θ(u). For example, let Σ = {a, b, c} and define θ by θ(a) = b, θ(b) =

a, θ(c) = c, then θ(aabc) = cabb. Note that the well-known DNA Watson-Crick

complementarity is a particular antimorphic involution defined over the four-letter

DNA alphabet, ∆ = {A,C,G, T}.

A non-deterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, s, F), where

Q is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set of final states,

δ : Q × Σ → 2Q is the transition function. If |δ(q, a)| ≤ 1 for any q ∈ Q and a ∈ Σ,

then the automaton is called a deterministic finite automaton (DFA). A DFA is said

to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the DFAs we mention

in this paper are assumed to be complete. We extend δ to Q× Σ∗ → Q in the usual

way. Then the automaton accepts a word w ∈ Σ∗ if δ(s, w) ∩ F 6= ∅. Two states

p, q ∈ Q are equivalent if the following condition holds: δ(p, w) ∈ F if and only if

δ(q, w) ∈ F for all words w ∈ Σ∗. It is well-known that a language which is accepted

by an NFA can be accepted by a DFA, and such a language is said to be regular.

The language accepted by a finite automaton A is denoted by L(A). The reader is

referred to [8] for more details about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number of

states of the minimal complete DFA that accepts L. The state complexity of a class

S of regular languages, denoted by sc(S), is the supremum among all sc(L), L ∈ S.

The state complexity of an operation on regular languages is the state complexity of

the resulting language from the operation as a function of the state complexities of the

operand languages. For example, we say that the state complexity of the intersection

of anm-state DFA language and an n-state DFA language is exactly mn. This implies

that the largest number of states of all the minimal complete DFAs that accept the

intersection of two languages accepted by two DFAs of sizes m and n, respectively,

is mn, and such languages exist. Thus, in a certain sense, the state complexity of an

116

operation is a worst-case complexity.

5.3 Catenation combined with star

In this section, we consider the state complexity of catenation combined with star.

Let L1 and L2 be two languages accepted by two DFAs of sizes m and n, respectively.

We notice that, if the n-state DFA has only one final state which is also its initial

state, this DFA also accepts L∗
2. Thus, in such a case, an upper bound for the number

of states of any DFA that accepts L1L
∗
2 = L1L2 is given by the state complexity of

catenation as m2n − 2n−1. We first show that this upper bound is reachable by some

DFAs of this form (Lemma 36). Then we consider the state complexity of L1L
∗
2 in the

other cases, that is when the n-state DFA contains some final states that are not the

initial state. We show that, in such cases, the upper bound (Theorem 9) coincides

with the lower bound (Theorem 10).

Lemma 36 For any m ≥ 2 and n ≥ 2, there exists a DFA A of m states and a DFA

B of n states, where B has only one final state that is also the initial state, such that

any DFA accepting the language L(A)L(B), which is equal to L(A)L(B)∗, needs at

least m2n − 2n−1 states.

The DFAs that prove Theorem 1 in [10] can be used to prove this lemma with a slight

modification of the second DFA. We change its original final state into a non-final

state. We also change its initial state so that it is not only the initial state but also

the only final state. As a result, the proof for Lemma 36 is very similar to that of

Theorem 1 in [10], and hence is omitted.

Note that, if n = 1, due to Theorem 3 in [18], for any DFA A of size m ≥ 1, the state

complexity of a DFA accepting L(A)L(B) (L(A)L(B)∗) is m.

In the rest of this section, we only consider the cases when the DFA for L2 contains

at least one final state that is not the initial state. Thus, the DFA for L2 is of size at

117

least 2.

When considering the size of the DFA for L1, we notice that, when the size of this

DFA is 1, the state complexity of L1L
∗
2 is 1.

Lemma 37 Let A be a 1-state DFA and B be a DFA of n ≥ 1 states over the same

alphabet Σ. Then the necessary and sufficient number of states for a DFA to accept

L(A)L(B)∗ is 1.

Proof: Since A is complete, L(A) is either ∅ or Σ∗. We need to consider only the

case L(A) = Σ∗. Then we have Σ∗ ⊆ L(A)L(B)∗ ⊆ Σ∗. Thus, L(A)L(B)∗ = Σ∗, and

it is accepted by a DFA of 1 state. 2

Now, we focus on the cases when m > 1 and n > 1, and give an upper bound for the

state complexity of L1L
∗
2.

Theorem 9 Let A = (Q1,Σ, δ1, s1, F1) be a DFA such that |Q1| = m > 1 and |F1| =

k1, and B = (Q2,Σ, δ2, s2, F2) be a DFA such that |Q2| = n > 1 and |F2 − { s2}| =

k2 ≥ 1. Then there exists a DFA of at most m(2n−1+2n−k2−1) − k12
n−k2−1 states that

accepts L(A)L(B)∗.

Proof: We denote F2 − { s2} by F0. Then, |F0| = k2 ≥ 1.

We construct a DFA C = {Q,Σ, δ, s, F} for the language L1L
∗
2, where L1 and L2 are

the languages accepted by DFAs A and B, respectively. Intuitively, C is constructed

by first constructing a DFA B′ for accepting L∗
2, then catenating A to this new DFA.

Note that, in the construction for B′, we need to add an additional initial and final

state s′2. By careful examination, we can check that the states of B′ are state s′2 and

the elements in P − {∅} , where P is defined in the following. As the state set we

choose Q = {r ∪ p | r ∈ R and p ∈ P}, where

R = {{qi} | qi ∈ Q1 and qi 6∈ F1} ∪ {{qi, s
′
2} | qi ∈ Q1 and qi ∈ F1}, and

P = {S | S ⊆ (Q2 − F0)} ∪ {T | T ⊆ Q2, s2 ∈ T, and T ∩ F0 6= ∅}.

118

If s1 6∈ F1, the initial state s is s = {s1} ∪ {∅}, otherwise, s = {s1, s
′
2} ∪ {∅}.

The set of final states F is chosen to be F = {S ∈ Q | S ∩ (F2 ∪ {s
′
2}) 6= ∅}.

We denote a state in Q as {qi} ∪G1 ∪G2, where qi ∈ Q1, G1 ⊆ {s
′
2}, and G2 ⊆ Q2.

Then the transition relation δ is defined as follows:

δ({qi} ∪G1 ∪G2, a) = D0 ∪D1 ∪D2, for any a ∈ Σ, where

D0: If δ1(qi, a) = q′i ∈ F1, D0 = {q
′
i, s

′
2}, otherwise, D0 = {q

′
i}.

D1: If G1 = ∅, D1 = ∅, otherwise,

D1 = δ2(s2, a), if δ2(s2, a) ∩ F0 = ∅;D1 = δ2(s2, a) ∪ {s2}, otherwise.

D2: If G2 = ∅, D2 = ∅, otherwise,

D2 = δ2(G2, a), if δ2(G2, a) ∩ F0 = ∅;D2 = δ2(G2, a) ∪ {s2}, otherwise.

We can verify that the DFA C indeed accepts L1L
∗
2. The computation of C always

starts with the initial state of A, and, after reaching a final state of A, it also reaches

s′2 by the λ-transition of the catenation operation. Up to this point, the states of

Q we have visited contain only one state q of A, and s′2 if q is a final state. After

reaching some states of B′, the computation simulates the transition rules of both A

and B′. It is clear that each state in Q should consist of exactly one state in Q1 and

the states in one element of P . Moreover, if a state of Q contains a final state of A,

then this state also contains the state s′2.

To get an upper bound for the state complexity of catenation combined with star, we

should count the number of states of Q. However, as we will show in the following,

some states in Q are equivalent.

Note that, in a standard construction for B′, states s′2 and s2 should reach the same

119

state on any letter in Σ. Also note that a state of Q contains s′2 only when it contains

a final state of A. Moreover, there exist pairs of states, denoted by {qf , s
′
2, s2} ∪ T

and {qf , s
′
2} ∪ T , such that qf is a final state of A and T ⊆ Q2 \ {s2}. Then we show

that the two states in each of such pairs are equivalent as follows. For a letter a ∈ Σ

and a word w ∈ Σ∗,

δ({qf , s
′
2, s2} ∪ T, aw) = δ({qf , s

′
2} ∪ T, aw) = δ(δ({qf , s

′
2} ∪ T, a), w).

Note that the equivalent states are only in the set F1 × {s
′
2} × {S | S ⊆ (Q2 − F0)},

and we can furthermore partition this set into two sets as

F1 × {s
′
2} × {s2} × {S

′ | S ′ ⊆ (Q2 − F0 − { s2})} ∪

F1 × {s
′
2} × {S

′ | S ′ ⊆ (Q2 − F0 − { s2})}.

It is easy to see that, for each state in the former set, there exists one and only one

equivalent state in the latter set, and vice versa. Thus, the number of equivalent pairs

is k12
n−k2−1.

Finally, we calculate the number of inequivalent states of Q. Notice that there are m

elements in R, 2n−k2 elements in the first term of P , and (2k2 − 1)2n−k2−1 elements

in the second term of P . Therefore, the size of Q is |Q| = m(2n−1 + 2n−k2−1). Then,

after removing one state from each equivalent pair, we obtain the following upper

bound

m(2n−1 + 2n−k2−1) − k12
n−k2−1

. 2

Next, we give examples to show that this upper bound can be reached.

Theorem 10 For any integers m ≥ 2 and n ≥ 2, there exists a DFA A of m states

and a DFA B of n states such that any DFA accepting L(A)L(B)∗ needs at least

120

m
3

4
2n − 2n−2 states.

Proof: We first give witness DFAs A and B of sizes m ≥ 2 and n = 2, respectively.

We use a three-letter alphabet Σ = {a, b, c}.

Let A = (Q1,Σ, δ1, q0, {qm−1}), where Q1 = {q0, q1, . . . , qm−1} and the transitions are

given as:

• δ1(qi, a) = qi+1, i ∈ {0, . . . , m − 2}, δ1(qm−1, a) = q0,

• δ1(qi, b) = qi+1, i ∈ {0, . . . , m − 3}, δ1(qm−2, b) = q0, δ1(qm−1, b) = qm−2,

• δ1(qi, c) = qi+1, i ∈ {0, . . . , m − 3}, δ1(qm−2, c) = q0, δ1(qm−1, c) = qm−1.

Let B = (Q2,Σ, δ2, 0, {1}), where Q2 = {0, 1} and the transitions are given as:

δ2(0, a) = 1, δ2(0, b) = 0, δ2(0, c) = 0, δ2(1, a) = 0, δ2(1, b) = 1, δ2(1, c) = 0.

Following the construction described in the proof of Theorem 9, we construct a DFA

C = (Q3,Σ, δ3, s3, F3) that accepts L(A)L(B)∗. Note that set P only contains three

elements P = {∅, {0}, {0, 1}}. Thus, the proof for this case is straightforward, and

hence is omitted. This omitted proof can be found in [3].

In the rest of the proof, we consider more general cases when the first DFA is of size

m ≥ 2 and the second DFA is of size n ≥ 3. We still use the same DFA A, and give an

example of DFA D such that the number of states of a DFA that accepts L(A)L(D)∗

reaches the upper bound. We use the same alphabet Σ = {a, b, c}.

Define D = (Q4,Σ, δ4, 0, {n − 1}), where Q4 = {0, 1, . . . , n − 1}, and the transitions

are given as

• δ4(i, a) = i+ 1, i ∈ {0, . . . , n − 2}, δ4(n − 1, a) = 0,

• δ4(0, b) = 0, δ4(i, b) = i+ 1, i ∈ {1, . . . , n − 2}, δ4(n − 1, b) = 1,

121

• δ4(i, c) = i, i ∈ {0, . . . , n − 2}, δ4(n − 1, c) = 1.

Let E = (Q5,Σ, δ5, s5, F5) be the DFA for accepting the language L(A)L(D)∗ con-

structed from A and D exactly as described in the proof of the previous theorem.

Then we are going to show that (1) all the states in Q5 are reachable from the initial

state, and (2), after merging the states that are shown to be equivalent in the previous

theorem, all the remaining states are pairwise inequivalent.

We first consider (1). Recall that every state in Q5 consists of exactly one state of

Q1 and the states of an element in P defined from the states of D as in the previous

theorem. Moreover, if a state of Q5 contains a final state of A, then this state

also contains 0′. Thus, we denote each state in Q5 as Q′
i ∪ S, where Q′

i = {qi} for

i ∈ {0, . . . , m − 2}, Q′
m−1 = {qm−1, 0

′}, and S ∈ P . States Q′
1 ∪ {∅}, . . . , Q

′
m−1 ∪ {∅}

are reachable since Q′
i ∪ {∅} = δ5(Q

′
0 ∪ {∅}, a

i), for i ∈ {1, 2, . . . , m − 1}. Then we

prove that the rest of the states are reachable by induction on the size of S.

Basis: We show that, for any i ∈ {0, . . . , m − 1}, state Q′
i ∪ S such that S contains

only one state of B is reachable. We first consider two special cases where S = {0}

and S = {1}.

For the case S = {0}, since Q′
m−1∪{∅} is reachable, we have Q

′
m−1∪{0} = δ5(Q

′
m−1∪

{∅}, c). Then, from state Q′
m−1 ∪ {0}, by reading a letter b, we can reach state

Q′
m−2 ∪ {0}. Furthermore, we can reach the other states where S = {0} as:

Q′
i ∪ {0} = δ5(Q

′
m−2 ∪ {0}, c

i+1), for i ∈ {0, . . . , m − 3}.

For the case S = {1}, we can reach state Q′
i ∪ {1} for i ∈ {1, . . . , m − 2} from states

Q′
i−1 ∪ {0} by reading a letter a. Moreover, state Q′

0 ∪ {1} can be reached from state

Q′
m−1 ∪ {0} by a letter a. Note that state Q′

m−1 ∪ {1} has not been considered, but

we will consider it later.

Then we consider state Q′
i ∪ {j} where j ≥ 2, for i ∈ {0, . . . , m − 2}. We can easily

122

verify that they can be reached as follows:

Q′
i ∪ {j} = δ5(Q

′
l ∪ {1}, b

j−1),

where, if i < (j − 1) mod (m − 1), l = i − [(j − 1) mod (m − 1)] +m − 1, otherwise,

l = i − [(j − 1) mod (m − 1)].

The only states that have not been considered are states Q′
m−1∪{j}, j ≥ 1. It is clear

that they can be reached from Q′
m−2 ∪ {j − 1} by reading a letter a.

Induction step: For i ∈ {0, . . . , m − 1}, assume that all states Q′
i ∪ S such that

|S| < k are reachable. Then we consider states Q′
i ∪ S where |S| = k. Let S =

{j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < . . . < jk < n − 1 if n − 1 6∈ S, j1 = n − 1 and

0 = j2 < . . . < jk < n − 1 otherwise. There are four cases:

1. j1 = n − 1 and j2 = 0. Then, for i ∈ {1, . . . , m − 1},

Q′
i ∪ S = δ5(Q

′
i−1 ∪ S ′, a)

where S ′ = {n − 2, j3 − 1, . . . , jk − 1}, which contains k − 1 states.

For the reachability of state Q′
0 ∪ S, we consider the following two subcases. (1) if

j3 = 1, Q′
0 ∪ S can be reached from Q′

m−1 ∪ {n − 2, 0, j4 − 1, . . . , jk − 1} by reading

a letter a, (2) otherwise, it can be reach from Q′
m−2 ∪ {n − 2, j3 − 1, . . . , jk − 1} by

reading a letter b. Note that, in both of the two subcases, state Q′
0 ∪ S is reached

from a state where the size of S is k − 1 as well.

2. j1 = 0 and j2 = 1. Then, Q′
0 ∪ S = δ5(Q

′
m−1 ∪ S ′, a), and, for i ∈ {1, . . . , m − 1},

Q′
i ∪ S = δ5(Q

′
i−1 ∪ S ′, a), where S ′ = {n − 1, 0, j3 − 1, . . . , jk − 1}. State Q′

i ∪ S ′,

i ∈ {0, . . . , m − 1}, is considered in Case 1.

3. j1 = 0 and j2 = 1 + t, t > 0. Then, for i ∈ {0, . . . , m − 2},

Q′
i ∪ S = δ5(Q

′
l ∪ S ′, bt)

123

where, if i < t mod (m − 1), l = i − [t mod (m − 1)] + m − 1, otherwise, l =

i − [t mod (m − 1)], and S ′ = {0, 1, j3 − t, . . . , jk − t}, which is considered in Case 2.

For state Q′
m−1∪S, we can verify that it is reachable from state Q′

m−1∪S
′ by reading

a letter c, where S ′ = {j2, j3, . . . , jk} and it is of size k − 1.

4. j1 = t > 0. We first consider the case when t = 1. It is clear that state Q′
0 ∪ S

and state Q′
i ∪ S, i ∈ {1, . . . , m − 1}, can be reached from states Q′

m−1 ∪ S ′ and

Q′
i−1∪S

′, respectively, by reading a letter a, where S ′ = {0, j2 − 1, . . . , jk − 1}, which

is considered in either Case 2 or Case 3.

Then we consider the cases when t > 1. If i ∈ {0, . . . , m − 2}, state Q′
i∪S is reachable

as follows:

Q′
i ∪ S = δ5(Q

′
l ∪ {1, j2 − t+ 1, . . . , jk − t + 1}, bt−1),

where, if i < (t − 1) mod (m − 1), then l = i − [(t − 1) mod (m − 1)]+m − 1, otherwise,

l = i − [(t − 1) mod (m − 1)].

For the remaining states, state Q′
m−1 ∪ S can be reached from state Q′

m−2 ∪ {j1 −

1, j2 − 1, . . . , jk − 1} by reading a letter a.

Now, we show that, after merging the states that are proven to be equivalent, the rest

of the states are pairwise inequivalent. Let {qi} ∪ G and {qj} ∪ H be two different

states in Q5, where qi, qj ∈ Q1, with 0 ≤ i ≤ j ≤ m − 1. Then we consider the

following three cases:

1. i < j. Then the string am−1−ic is accepted by DFA E starting from state {qi}∪G,

but it is not accepted starting from state {qj}∪H . Note that, on a letter c, E remains

in the same state for any non-final state, and goes to state 1 from state n − 1.

2. i = j 6= m − 1. Without loss of generality, there exists a state k of D such that

k ∈ G and k 6∈ H . We first consider a special case when H ⊂ G and G − H = {0}.

That is, the only difference between G and H is that G contains one more state 0

than H . In such a case, we can verify that the string abn−2 is accepted by DFA E

124

starting from state {qi} ∪ G, but it is not accepted starting from state {qj} ∪H . In

other cases, we can assume that k > 0. Then the string bn−1−k is accepted by DFA

E starting from state {qi} ∪G, but it is not accepted starting from state {qj} ∪H .

3. i = j = m − 1. Recall from the proof of Theorem 9 that we can partition the

subset {qm−1} × {0
′} × {S | S ⊆ (Q4 − F0)} of Q5 into

{qm−1} × {0
′} × {0} × {S ′ | S ′ ⊆ (Q4 − F0 − { 0})} ∪

{qm−1} × {0
′} × {S ′ | S ′ ⊆ (Q4 − F0 − { 0})}.

Moreover, for each state in the former set, there exists one and only one equivalent

state in the latter set, and vice versa. Thus, we remove all the states in the former

set from Q5. Then, without loss of generality, there exists a state k of D such that

k 6= 0′, k 6= 0, k ∈ G, and k 6∈ H . We can verify that the string b2n−2−k is accepted

starting from state {qi} ∪G, but it is not accepted starting from state {qj} ∪H .

From (1) and (2), we know that DFA E has m
3

4
2n − 2n−1 reachable states, and any

two of them are not equivalent. Since we have considered all the pairs of DFAs of

sizes larger than 1, the proof is completed. 2

5.4 Catenation combined with reversal

In this section, we first show that the state complexity of catenation combined with

an antimorphic involution θ (L1θ(L2)) is equal to that of catenation combined with

reversal. That is, we show, for two regular languages L1 and L2, that sc(L1θ(L2)) =

sc(L1L
R
2) (Corollary 14). Then we obtain the state complexity of L1L

R
2 by proving

that its upper bound (Theorem 11) coincides with its lower bound (Theorem 12,

Theorem 13, and Lemma 40).

We note that an antimorphic involution θ can be simulated by the composition of

two simpler operations: reversal and a mapping φ, which is defined as φ(a) = θ(a) for

125

any letter a ∈ Σ, and φ(uv) = φ(u)φ(v) where u, v ∈ Σ+. Thus, for a language L, we

have θ(L) = φ(LR) and θ(L) = (φ(L))R. It is clear that φ is a homomorphism. Thus,

the language resulting from applying such a mapping to a regular language remains

to be regular. Moreover, we can obtain a relationship between the sizes of the two

DFAs that accept L and φ(L), respectively.

Lemma 38 Let L ⊆ Σ∗ be a language that is accepted by a minimal DFA of size n,

n ≥ 1. Then the necessary and sufficient number of states of a DFA to accept φ(L)

is n.

Proof: Note that, for a minimal DFA A, the minimal DFA A′ that accepts φ(L(A))

has the same states as those of A, but the labels of the transitions are changed. Thus,

we just need to show that 1) all the states in A′ are reachable, and 2) any two states

in A′ are not equivalent. For 1), if a state of A can be reached from the initial state

by reading a word u, then the same state can be reached from the initial state of

A′ by reading the word φ(u). For 2), for any two states p, q in A, since they are

inequivalent, then there exists a word v such that it leads p to a final state but leads

q to a non-final state. It is clear that the word φ(v) can distinguish p from q in A′ by

leading them to a final and a non-final states, respectively. 2

In order to show that the state complexity of L1θ(L2) is equal to that of L1L
R
2 , we

first show that the state complexity of catenation combined with φ is equal to that of

catenation, i.e., for two regular languages L1 and L2, sc(L1φ(L2)) = sc(L1L2). Due to

the above lemma, if L2 is accepted by a DFA of size n, φ(L2) is accepted by another

DFA of size n as well. Thus, the upper bound for the number of states of any DFA

that accepts L1φ(L2) is clearly less than or equal to m2n − 2n−1. The next lemma

shows that this upper bound can be reached by some languages.

Lemma 39 For integers m ≥ 1 and n ≥ 2, there exist languages L1 and L2 accepted

by two DFAs of sizes m and n, respectively, such that any DFA accepting L1φ(L2)

needs at least m2n − 2n−1 states.

126

Proof: We know that there exist languages L1 and L′
2 accepted by two DFAs of sizes

m and n, respectively, such that any DFA accepting L1L
′
2 needs at least m2n − 2n−1

states. We let L2 = φ(L′
2). Thus, L1φ(L2) = L1φ(φ(L

′
2)) = L1L

′
2. Therefore, the

lemma holds. 2

As a consequence, we obtain that the state complexity of catenation combined with

φ is equal to that of catenation.

Corollary 14 For two regular languages L1 and L2, sc(L1φ(L2)) = sc(L1L2).

Then we can easily see that the state complexity of catenation combined with θ is

equal to that of catenation combined with reversal as follows.

sc(L1θ(L2)) = sc(L1φ(L
R
2)) = sc(L1L

R
2).

In the following, we study the state complexity of L1L
R
2 for regular languages L1 and

L2. We will first look into an upper bound of this state complexity.

Theorem 11 For two integers m,n ≥ 1, let L1 and L2 be two regular languages

accepted by an m-state DFA with k1 final states and an n-state DFA with k2 final

states, respectively. Then there exists a DFA of at most m2n − k12
n−k2(2k2 − 1) − m+1

states that accepts L1L
R
2 .

Proof: Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, k1 final states and

L1 = L(M). Let N = (QN ,Σ, δN , sN , FN) be another DFA of n states, k2 final states

and L2 = L(N). Let N ′ = (QN ,Σ, δN ′ , FN , {sN}) be an NFA with k2 initial states.

δN ′(p, a) = q if δN(q, a) = p where a ∈ Σ and p, q ∈ QN . Clearly,

L(N ′) = L(N)R = LR
2 .

After performing the subset construction on N ′, we can get an equivalent, 2n-state

DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR
2 . Please note that A may not

127

be minimal and since A has 2n states, one of its final state must be QN . Now

we construct a DFA B = (QB,Σ, δB, sB, FB) accepting the language L1L
R
2 , where

QB = {〈i, j〉 | i ∈ QM , j ∈ QA}, if sM 6∈ FM , sB = 〈sM , ∅〉, otherwise, sB = 〈sM , FN〉,

FB = {〈i, j〉 ∈ QB | j ∈ FA}, and

δB(〈i, j〉, a) = 〈i′, j′〉, if δM(i, a) = i′, δA(j, a) = j′, a ∈ Σ, i′ /∈ FM ;

= 〈i′, j′ ∪ FN〉, if δM(i, a) = i′, δA(j, a) = j′, a ∈ Σ, i′ ∈ FM .

It is easy to see that δB(〈i, QN〉, w) ∈ FB for any i ∈ QM and w ∈ Σ∗. This means

all the states (two-tuples) ending with QN are equivalent. There are m such states.

On the other hand, since NFA N ′ has k2 initial states, the states in B starting with

i ∈ FM must end with j such that FN ⊆ j. There are in total k12
n−k2(2k2 − 1) states

which don’t meet this.

Thus, the number of states of the minimal DFA accepting L1L
R
2 is no more than

m2n − k12
n−k2(2k2 − 1) − m+ 1

. 2

This result gives an upper bound for the state complexity of L1L
R
2 . Next we show

that this bound is reachable.

Theorem 12 Given two integers m ≥ 2, n ≥ 2, there exists a DFA M of m states

and a DFA N of n states such that any DFA accepting L(M)L(N)R needs at least

m2n − 2n−1 − m+ 1 states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, where QM = {0, 1, . . . , m − 1},

Σ = {a, b, c}, and the transitions are given as:

• δM(i, x) = i, i = 0, . . . , m − 1, x ∈ {a, b},

128

• δM(i, c) = i+ 1 mod m, i = 0, . . . , m − 1.

Let N = (QN ,Σ, δN , 0, {0}) be a DFA, where QN = {0, 1, . . . , n − 1}, Σ = {a, b, c},

and the transitions are given as:

• δN(0, a) = n − 1, δN (i, a) = i − 1, i = 1, . . . , n − 1,

• δN(0, b) = 1, δN(i, b) = i, i = 1, . . . , n − 1,

• δN(0, c) = 1, δN (1, c) = 0, δN(j, c) = j, j = 2, . . . , n − 1, if n ≥ 3.

Now we design a DFA A = (QA,Σ, δA, {0}, FA), where QA = {q | q ⊆ QN}, Σ =

{a, b, c}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are defined as:

δA(p, e) = {j | δN(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It has been shown in [18] that A is a minimal DFA that accepts L(N)R. Let B =

(QB,Σ = {a, b, c}, δB, sB = 〈0, ∅〉, FA) be another DFA, where

QB = {〈p, q〉 | p ∈ QM − { m − 1}, q ∈ QA − { QN}} ∪ {〈0, QN〉}

∪ {〈m − 1, q〉 | q ∈ QA − { QN}, 0 ∈ q},

FB = {〈p, q〉 | q ∈ FA, 〈p, q〉 ∈ QB},

and for each state 〈p, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈p, q〉, e) =







〈p′, q′〉 if δM(p, e) = p′ 6= m − 1, δA(q, e) = q′ 6= QN ,

〈p′, q′〉 if δM(p, e) = p′ = m − 1,

δA(q, e) = r′, q′ = r′ ∪ {0}, q′ 6= QN ,

〈0, QN〉 if δM(p, e) = m − 1, δA(q, e) = r′, r′ ∪ {0} = QN ,

〈0, QN〉 if δM(p, e) 6= m − 1, δA(q, e) = QN .

129

As we mentioned in the proof of Theorem 11, all the states (two-tuples) ending with

QN are equivalent. So here, we replace them with one state: 〈0, QN〉. And all the

states starting with m − 1 must end with j ∈ QA such that 0 ∈ j. It is easy to see

that B accepts the language L(M)L(N)R. It has m2n − 2n−1 − m + 1 states. Now

we show that B is a minimal DFA.

(I) We first show that every state 〈i, j〉 ∈ QB is reachable by induction on the size of

j. Let k = |j| and k ≤ n − 1. Note that state 〈0, QN〉 is reachable from state 〈0, ∅〉

over string cmb(ab)n−2.

When k = 0, i should be less than m − 1 according to the definition of B. Then there

always exists a string w = ci such that δB(〈0, ∅〉, w) = 〈i, ∅〉.

Basis (k = 1): State 〈m − 1, {0}〉 can be reached from state 〈m − 2, ∅〉 on a letter

c. State 〈0, {0}〉 can be reached from state 〈m − 1, {0}〉 on string can−1. Then, for

i ∈ {1, . . . , m − 2}, state 〈i, {0}〉 is reachable from state 〈i − 1, {0}〉 on string can−1.

Moreover, for i ∈ {0, . . . , m − 2}, state 〈i, j〉 is reachable from state 〈i, {0}〉 on string

aj .

Induction step: Assume that all states 〈i, j〉 such that |j| < k are reachable. Then

we consider the states 〈i, j〉 where |j| = k. Let j = {j1, j2, . . . , jk} such that 0 ≤ j1 <

j2 < . . . < jk ≤ n − 1. We consider the following four cases:

1. j1 = 0 and j2 = 1. State 〈m − 1, {0, 1, j3, . . . , jk}〉 is reachable from state 〈m −

2, {0, j3, . . . , jk}〉 on a letter c. Then, for i ∈ {0, . . . , m − 2}, state 〈i, j〉 can be reached

from state 〈m − 1, {0, 1, j3, . . . , jk}〉 on string ci+1.

2. i = 0, j1 = 0, and j2 > 1. State 〈0, j〉 can be reached as follows:

〈0, {j1, j2, . . . , jk}〉 = δB(〈m − 2, {j3 − j2 + 1, . . . , jk − j2 + 1, n − j2 + 1}〉, c2aj2−1).

3. i = 0 and j1 > 0. State 〈0, j〉 is reachable from state 〈0, {0, j2 − j1, . . . , jk − j1}〉

over string aj1.

130

4. We consider the remaining states. For i ∈ {1, . . . , m − 1}, state 〈i, j〉 such that

j1 = 0 and j2 > 1 can be reached from state 〈i − 1, {1, j2, . . . , jk}〉 on a letter c,

and, for i ∈ {1, . . . , m − 2}, state 〈i, j〉 such that j1 > 0 is reachable from state

〈i, {0, j2 − j1, . . . , jk − j1}〉 over string aj1. Recall that we do not have states 〈i, j〉

such that i = m − 1 and j1 > 0.

(II) We then show that any two different states 〈i1, j1〉 and 〈i2, j2〉 in QB are distin-

guishable. Let us consider the following three cases:

1. j1 6= j2. Without loss of generality, we may assume that |j1| ≥ |j2|. Let x ∈ j1 − j2.

We do not need to consider the case when x = 0, because, if 0 ∈ j1 − j2, then the

two states are clearly in different equivalent classes. For 0 < x ≤ n − 1, there exists

a string t such that δB(〈i1, j1〉, t) ∈ FB and δB(〈i2, j2〉, t) /∈ FB, where

t =







an−x if i2 6= m − 1, j1 6= j2,

an−x−1ca if i2 = m − 1, j1 6= j2, n > 2,

c if i2 = m − 1, j1 6= j2, n = 2.

Note that, under the second condition, after reading the prefix an−x−1 of t, state n − 1

cannot be in the second component of the resulting state since x 6∈ j2.

Also note that when n = 2, j1, j2 ∈ {∅, {0}, {1}, {0, 1}}. Moreover, when i2 = m − 1,

〈i2, j2〉 can only be 〈m − 1, {0}〉. Due to the definition of B, we have that, for s ≥ 1,

〈s,QN〉 /∈ QB. Thus, it is easy to see that 〈i1, j1〉 is either 〈i1, {1}〉 or 〈0, {0, 1}〉.

When 〈i1, j1〉 = 〈i1, {1}〉, we have either j2 = {0} or j2 = ∅. It is clear that in either

case the two states are distinguishable. When 〈i1, j1〉 = 〈0, {0, 1}〉, a string c can

distinguish them because δB(〈0, {0, 1}〉, c) ∈ FB and δB(〈m − 1, {0}〉, c) /∈ FB.

2. j1 = j2 6= QN , i1 6= i2. Without loss of generality, we may assume that i1 > i2. In

this case, i2 6= m − 1. Let x ∈ QN − j1. There always exists a string u = an−x+1bcm−1−i1

such that δB(〈i1, j1〉, u) ∈ FB and δB(〈i2, j2〉, u) /∈ FB.

Let 〈i1, j
′
1〉 and 〈i2, j

′
1〉 be two states reached from states 〈i1, j1〉 and 〈i2, j2〉 on the

131

prefix an−x+1 of u, respectively. We notice that state 1 of N cannot be in j′1. Then,

after reading another letter b, we reach states 〈i1, j
′′
1 〉 and 〈i2, j

′′
1 〉, respectively. It is

easy to see that states 0 and 1 of N are not in j′′1 . Lastly, after reading the remaining

string cm−1−i1 from state 〈i1, j
′′
1 〉, the first component of the resulting state is the final

state of DFA M and therefore its second component contains state 0 of DFA N . In

contrast, the second component of the resulting state reached from state 〈i2, j
′′
1 〉 on

the same string cannot contain state 0, and hence it is not a final state of B. Note

that this includes the case that j1 = j2 = ∅, i1 6= i2.

3. We don’t need to consider the case j1 = j2 = QN , because there is only one state

in QB which ends with QN . It is 〈0, QN〉.

Since all the states in B are reachable and pairwise distinguishable, DFAB is minimal.

Thus, any DFA accepting L(M)L(N)R needs at least m2n − 2n−1 − m+ 1 states. 2

This result gives a lower bound for the state complexity of L(M)L(N)R when m,n ≥

2. It coincides with the upper bound when k1 = 1 and k2 = 1. In the rest of this

section, we consider the remaining cases when either m = 1 or n = 1. We first

consider the case when m = 1 and n ≥ 3. We have L1 = ∅ or L1 = Σ∗. When L1 = ∅,

for any L2, a 1-state DFA always accepts L1L
R
2 , since L1L

R
2 = ∅. The following

theorem provides a lower bound for the latter case.

Theorem 13 Given an integer n ≥ 3, there exists a DFA M of 1 state and a DFA

N of n states such that any DFA accepting L(M)L(N)R needs at least 2n−1 states.

Proof: Let M = (QM ,Σ, δM , 0, {0}) be a DFA, where QM = {0}, Σ = {a, b}, and

δM(0, e) = 0 for any e ∈ Σ. Clearly, L(M) = Σ∗.

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, where QN = {0, 1, . . . , n − 1}, Σ = {a, b},

and the transitions are given as:

• δN(0, a) = n − 2, δN (i, a) = i − 1, i = 1, . . . , n − 2, δN(n − 1, a) = n − 1

132

• δN(0, b) = n − 1, δN(j, b) = j, j = 1, . . . , n − 1.

Now we design a 2n-state DFA A = (QA,Σ, δA, {n − 1}, FA), where QA = {q | q ⊆

QN}, Σ = {a, b}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are defined as:

δA(p, e) = {j | δN(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(N)R. Let B = (QB,Σ, δB, sB, FA} be

another DFA, where Σ = {a, b}, QB = {〈0, q〉 | q ∈ QA, n − 1 ∈ q}, sB = 〈0, {n − 1}〉,

FB = {〈0, q〉 | q ∈ FA, 〈0, q〉 ∈ QB}, and for each state 〈0, q〉 ∈ QB and each letter

e ∈ Σ,

δB(〈0, q〉, e) = 〈0, q
′〉 if δA(q, e) = q′′ and q′ = q′′ ∪ {n − 1}.

Clearly, DFA B accepts L(M)L(N)R. Since n − 1 ∈ j for any state 〈0, j〉 ∈ QB, B

has 2n−1 states in total. Now we show that B is a minimal DFA.

(I) We first show that every state 〈0, j〉 ∈ QB is reachable. We omit the case that

|j| = 1 because the only state in QB satisfying this condition is the initial state

〈0, {n − 1}〉. When |j| > 1, assume that j = {n − 1, j1, j2, . . . , jk} where 0 ≤ j1 <

j2 < . . . < jk ≤ n − 2, 1 ≤ k ≤ n − 1. There always exists a string

w = bajk−jk−1bajk−1−jk−2 · · · baj2−j1baj1

such that δB(〈0, {n − 1}〉, w) = 〈0, j〉.

(II) We then show that any two different states 〈0, j1〉 and 〈0, j2〉 in QB are distin-

guishable. Without loss of generality, we may assume that |j1| ≥ |j2|. Then let

x ∈ j1 − j2. Note that x 6= n − 1 because n − 1 has to be in both j1 and j2. We can

always find a string u = an−1−x such that δB(〈0, j1〉, u ∈ FB, and δB(〈0, j2〉, u) /∈ FB.

Since all the states in B are reachable and pairwise distinguishable, B is a minimal

DFA. Thus, any DFA accepting L(M)L(N)R needs at least 2n−1 states. 2

133

Now, we consider the case when m = 1 and n = 2. We can easily verify the fol-

lowing lemma by using DFA M defined in Theorem 13, and DFA N defined as

N = (QN , {a, b}, δN , 0, {1}), where QN = {0, 1} and the transitions are given as:

δN (0, a) = 0, δN(1, a) = 1, δN(0, b) = 1, δN(1, b) = 1.

Lemma 40 There exists a 1-state DFA M and a 2-state DFA N such that any DFA

accepting L(M)L(N)R needs at least 2 states.

Finally, we consider the case when m ≥ 1 and n = 1. When L2 = ∅, for any L1,

a 1-state DFA always accepts L1L
R
2 = ∅. When L2 = Σ∗, L1L

R
2 = L1Σ

∗, since

(Σ∗)R = Σ∗. Due to Theorem 3 in [18], which states that, for any DFA A of size

m ≥ 1, the state complexity of L(A)Σ∗ is m, the following is immediate.

Corollary 15 Given an integer m ≥ 1, there exists an m-state DFA M and a 1-state

DFA N such that any DFA accepting L(M)L(N)R needs at least m states.

After summarizing Theorems 11, 12, and 13, Lemma 40 and Corollary 15, we obtain

the state complexity of the combined operation L1L
R
2 .

Theorem 14 For any integer m ≥ 1, n ≥ 1, m2n − 2n−1 − m + 1 states are both

necessary and sufficient in the worst case for a DFA to accept L(M)L(N)R, where M

is an m-state DFA and N is an n-state DFA.

5.5 Conclusion

Motivated by their applications, we have studied the state complexities of two par-

ticular combinations of operations: catenation combined with star and catenation

combined with reversal. We proved that they are significantly lower than the com-

positions of the state complexities of their individual participating operations. Thus,

this paper shows further that the state complexity of a combination of operations has

to be studied individually.

134

Bibliography

[1] Amos, M.: Theoretical and Experimental DNA Computation (Natural Computing

Series), Springer, 2005

[2] Campeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of

shuffle of regular languages, Journal of Automata, Languages and Combinatorics

7 (3) (2002) 303-310

[3] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of catenation combined with

star and reversal, in: Proc. of DCFS 2010, Saskatoon, SK, Canada, August 8-10,

2010, 58-67

[4] Daley, M., Domaratzki, M., Salomaa, K.: State complexity of orthogonal cate-

nation, in: Proc. of DCFS 2008, Charlottetown, PE, Canada, July 16-18, 2008,

134-144

[5] Domaratzki, M.: State complexity and proportional removals, Journal of Au-

tomata, Languages and Combinatorics, 7 (2002) 455-468

[6] Domaratzki, M., Okhotin, A.: State complexity of power, Theoretical Computer

Science, 410 (24-25) (2009) 2377-2392

[7] Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:

star of catenation and star of reversal, Fundamenta Informaticae, 83 (1-2) (2008)

75-89

135

[8] Hopcroft, J. E., Motwani, R., Ullman, J. D.: Introduction to Automata Theory,

Languages, and Computation (2nd Edition), Addison Wesley, 2001

[9] Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and

complementation of regular languages, International Journal of Foundations of

Computer Science, 16 (2005) 511-529

[10] Jirásková, G.: State complexity of some operations on binary regular languages,

Theoretical Computer Science, 330 (2005) 287-298

[11] Jirásková, G., Okhotin, A.: State complexity of cyclic shift, in: Proc. of DCFS

2005, Como, Italy, June 30-July 2, 2005, 182-193

[12] Jirásková, G., Okhotin, A.: On the state complexity of star of union and star

of intersection, Turku Center for Computer Science TUCS Tech. Report No. 825,

2007

[13] Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language

operations combined with reversal, Information and Computation, 206 (2008)

1178-1186

[14] Pighizzini, G., Shallit, J. O.: Unary language operations, state complexity and

Jacobsthal’s function, International Journal of Foundations of Computer Science,

13 (2002) 145-159

[15] Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations,

Theoretical Computer Science, 383 (2007) 140-152

[16] Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular

languages, Theoretical Computer Science, 320 (2004) 293-313

[17] Yu, S.: State complexity of regular languages, Journal of Automata, Languages

and Combinatorics, 6 (2) (2001) 221-234

136

[18] Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages, Theoretical Computer Science, 125 (1994) 315-328

137

Chapter 6

State Complexity of Two

Combined Operations:

Catenation-Union and

Catenation-Intersection

Abstract

In this paper, we study the state complexities of two particular combinations of oper-

ations: catenation combined with union and catenation combined with intersection.

We show that the state complexity of the former combined operation is consider-

ably less than the mathematical composition of the state complexities of catenation

and union, while the state complexity of the latter one is equal to the mathematical

composition of the state complexities of catenation and intersection.

138

6.1 Introduction

State complexity is a type of descriptional complexity for regular languages based

on the deterministic finite automaton (DFA) model [22]. The state complexity of

an operation on regular languages is the number of states that are necessary and

sufficient in the worst case for the minimal, complete DFA that accepts the resulting

language of the operation [8]. Many results on the state complexities of individual

operations have been obtained, e.g. union, intersection, catenation, star, etc [1, 2, 3,

4, 9, 11, 12, 15, 16, 18, 20, 22].

However, in practice, the operation to be performed is often a combination of several

individual operations in a certain order, rather than only one individual operation.

The research on state complexity of combined operations started in 2005. Up to now,

a number of papers on this topic have been published [4, 5, 6, 7, 13, 14, 17, 19]. It

has been shown that the state complexity of a combined operation is not simply a

mathematical composition of the state complexities of its component operations. It

appears that the state complexity of a combined operation in general is more difficult

to obtain than that of an individual operation, especially the tight lower bound of the

operation. This is because the resulting languages of the worst case of one operation

may not be among the worst case input languages of the subsequent operation.

The study on state complexity of individual operations has already greatly relied on

computer software to test and verify the results. One could say that, without the use

of computer software, there would be no results on the state complexity of combined

operations.

Although there is only a limited number of individual operations, the number of

combined operations is unlimited. It is impossible to study the state complexity

of all the combined operations. However, we consider that, besides the study of

estimation and approximation of state complexity of general combined operations

[6, 7], establishing the exact state complexity of some commonly used and basic

139

combined operations is helpful to reveal the mutual influence between the component

operations. For example, the state complexities of union and intersection on regular

languages are known to be the same [15, 20]. However, the state complexities of

(L1 ∪ L2)
∗ and (L1 ∩ L2)

∗ have been proved to be different [19].

In this paper, we study the state complexities of catenation combined with union, i.e.,

(L(A)(L(B)∪L(C))), and catenation combined with intersection, i.e., (L(A)(L(B)∩

L(C))), for DFAs A, B and C of sizes m,n, p ≥ 1, respectively. Both of them are

basic combined operations and are commonly used in practice. For L(A)(L(B) ∪

L(C)), we show that its state complexity is (m − 1)(2n+p − 2n − 2p +2) + 2n+p−2, for

m,n, p ≥ 1 (except the situations when m ≥ 2 and n = p = 1), which is much smaller

than m2np − 2np−1, the mathematical composition of the state complexities of union

and catenation [15, 20]. On the other hand, for L(A)(L(B) ∩ L(C)), we show that

the mathematical composition of the individual state complexities of this combined

operation is m2np − 2np−1, i.e., exactly equal to the state complexity of the operation

(also except the cases when m ≥ 2 and n = p = 1). Note that the individual state

complexity of union and that of intersection are exactly the same. However, when

they combined with catenation, the resulting state complexities are so different.

In the next section, we introduce the basic definitions and notation used in the paper.

Then we prove our results on catenation combined with union and catenation com-

bined with intersection in Sections 6.3 and 6.4, respectively. We conclude the paper

in Section 6.5.

6.2 Preliminaries

A non-deterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, s, F), where

Q is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set of final

states, and δ : Q × Σ → 2Q is the transition function. If |δ(q, a)| ≤ 1 for any q ∈ Q

and a ∈ Σ, then this automaton is called a deterministic finite automaton (DFA). A

140

DFA is said to be complete if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ. All the DFAs we

mention in this paper are assumed to be complete. We extend δ to Q×Σ∗ → Q in the

usual way. Then the word w ∈ Σ∗ is accepted by the automaton if δ(s, w) ∩ F 6= ∅.

Two states in a finite automaton A are said to be equivalent if and only if for every

word w ∈ Σ∗, if A is started in either state with w as input, it either accepts in both

cases or rejects in both cases. It is well-known that a language which is accepted by

an NFA can be accepted by a DFA, and such a language is said to be regular. The

language accepted by a DFA A is denoted by L(A). The reader may refer to [10, 21]

for more details about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number of

states of the minimal complete DFA that accepts L. The state complexity of a class

S of regular languages, denoted by sc(S), is the supremum among all sc(L), L ∈ S.

The state complexity of an operation on regular languages is the state complexity of

the resulting languages from the operation as a function of the state complexity of the

operand languages. For example, we say that the state complexity of the intersection

of anm-state DFA language and an n-state DFA language is exactly mn. This implies

that the largest number of states of all the minimal complete DFAs that accept the

intersection of an m-state DFA language and an n-state DFA language is mn, and

such languages exist. Thus, in a certain sense, the state complexity of an operation

is a worst-case complexity.

6.3 Catenation combined with union

In this section, we consider the state complexity of L(A)(L(B)∪L(C)) for three DFAs

A,B,C of sizes m,n, p ≥ 1, respectively. We first obtain the following upper bound

(m − k)(2n+p − 2n − 2p+2)+k2n+p−2 (Theorem 15), and then show that this bound is

tight for m,n, p ≥ 1, except the situations when m ≥ 2 and n = p = 1 (Theorems 16

and 17).

141

Theorem 15 For integers m,n, p ≥ 1, let A, B and C be three DFAs with m, n and

p states, respectively, where A has k final states. Then there exists a DFA of at most

(m − k)(2n+p − 2n − 2p + 2) + k2n+p−2 states that accepts L(A)(L(B) ∪ L(C)).

Proof: Let A = (Q1,Σ, δ1, s1, F1) where |F1| = k, B = (Q2,Σ, δ2, s2, F2), and C =

(Q3,Σ, δ3, s3, F3). We construct D = (Q,Σ, δ, s, F) such that

Q = {〈q1, q2, q3〉 | q1 ∈ Q1 − F1, q2 ∈ 2Q2 − {∅} , q3 ∈ 2Q3 − {∅}}

∪{〈q1, ∅, ∅〉 | q1 ∈ Q1 − F1}

∪{〈q1, {s2} ∪ q2, {s3} ∪ q3〉 | q1 ∈ F1, q2 ∈ 2Q2−{s2}, q3 ∈ 2Q3−{s3}},

s = 〈s1, ∅, ∅〉 if s1 6∈ F1, s = 〈s1, {s2}, {s3}〉 otherwise,

F = {〈q1, q2, q3〉 ∈ Q | q2 ∩ F2 6= ∅ or q3 ∩ F3 6= ∅},

δ(〈q1, q2, q3〉, a) = 〈q
′
1, q

′
2, q

′
3〉, for a ∈ Σ, where q′1 = δ1(q1, a) and,

for i ∈ {2, 3}, q′i = Si ∪ {si} if q
′
1 ∈ F1, q

′
i = Si otherwise,

where Si = ∪r∈qi{δi(r, a)}.

Intuitively, Q is a set of triples such that the first component of each triple is a state in

Q1 and the second and the third components are subsets of Q2 and Q3, respectively.

We notice that if the first component of a state is a non-final state of Q1, the other

two component are either both the empty set or both nonempty sets. This is because

the two components always change from the empty set to a non-empty set at the

same time. This is the reason to have the first and second terms of Q.

Also, we notice that if the first component of a state of D is a final state of A, then

the second component and the third component of the state must contain the initial

state of B and C, respectively. This is described by the third term of Q.

Clearly, the size of Q is (m − k)(2n+p − 2n − 2p + 2) + k2n+p−2. Moreover, one can

easily verify that L(D) = L(A)(L(B) ∪ L(C)). 2

142

In the following, we consider the conditions under which this bound is tight. We

know that a complete DFA of size 1 only accepts either ∅ or Σ∗. Thus, when n =

p = 1, L(A)(L(B) ∪ L(C)) = L(A)Σ∗ if either L(B) = Σ∗ or L(C) = Σ∗, and

L(A)(L(B) ∪ L(C)) = ∅ otherwise. Therefore, in such cases, the state complexity of

L(A)(L(B) ∪ L(C)) is m as shown in [20].

Now, we consider the case when n = 1 and p ≥ 2. Since L(B) ∪ L(C) = L(C) when

L(B) = ∅, it is clear that the state complexity of L(A)(L(B) ∪ L(C)) is equal to

that of L(A)L(C), m2p − k2p−1 given in [20], which coincides with the upper bound

obtained in Theorem 15. The situation is analogous to the case when n ≥ 2 and

p = 1.

Next, we consider the case when m = 1 and n, p ≥ 2.

Theorem 16 Let A be a DFA of size 1 over a four-letter alphabet. Then for any

integers n, p ≥ 2, there exist DFAs B and C with n and p states, respectively, defined

over the same alphabet such that any DFA accepting L(A)(L(B) ∪ L(C)) needs at

least 2n+p−2 states.

Proof: We use a four-letter alphabet Σ = {a, b, c, d}, and let A be the DFA accepting

Σ∗.

Let B = (Q2,Σ, δ2, 0, {n − 1}), as shown in Figure 6.1, where Q2 = {0, 1, . . . , n − 1},

and the transitions are given as

• δ2(i, a) = i+ 1 mod n, for i ∈ {0, . . . , n − 1},

• δ2(i, x) = i for i ∈ Q2, where x ∈ {b, d},

• δ2(0, c) = 0, δ2(i, c) = i+ 1 mod n, for i ∈ {1, . . . , n − 1}.

Let C = (Q3,Σ, δ3, 0, {p − 1})be a DFA, as shown in Figure 6.1, where Q3 =

{0, 1, . . . , p − 1}, and the transitions are given as

143

Figure 6.1: The DFA B showing that the upper bound in Theorem 15 is reachable
when m = 1 and n, p ≥ 2

• δ3(i, x) = i for i ∈ Q3, where x ∈ {a, c},

• δ3(i, b) = i+ 1 mod p, for i ∈ {0, . . . , p − 1},

• δ3(0, d) = 0, δ3(i, d) = i+ 1 mod p, for i ∈ {1, . . . , p − 1}.

Figure 6.2: The DFA C showing that the upper bound in Theorem 15 is reachable
when m = 1 and n, p ≥ 2

Let D = (Q, {a, b, c, d}, δ, 〈0, {0}, {0}〉, F) be the DFA for accepting the language

L(A)(L(B) ∪ L(C)) constructed from those DFAs exactly as described in the proof

of Theorem 15, where

Q = {〈0, {0} ∪ q2, {0} ∪ q3〉 | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},

F = {〈q1, q2, q3〉 ∈ Q | n − 1 ∈ q2 or p − 1 ∈ q3}.

We omit the definition of the transitions.

Then we prove that the size of Q is minimal by showing that (I) any state in Q can

be reached from the initial state, and (II) no two different states in Q are equivalent.

144

For (I), we first show that all the states 〈0, q2, q3〉 such that q3 = {0} are reachable

by induction on the size of q2.

The basis clearly holds, since the initial state is the only state whose second compo-

nent is of size 1.

In the induction steps, we assume that all states 〈0, q2, {0}〉 such that |q2| < k

are reachable. Then we consider the states 〈0, q2, {0}〉 where |q2| = k. Let q2 =

{0, j2, . . . , jk} such that 0 < j2 < j3 < . . . < jk ≤ n − 1. Note that the states such

that j2 = 1 can be reached as follows

〈0, {0, 1, j3, . . . , jk}, {0}〉 = δ(〈0, {0, j3 − 1, . . . , jk − 1}, {0}〉, a),

where {0, j3 − 1, . . . , jk − 1} is of size k − 1. Then the states such that j2 > 1 can be

reached from these states as follows

〈0, {0, j2, . . . , jk}, {0}〉 = δ(〈0, {0, 1, j3 − t, . . . , jk − t}, {0}〉, ct), where t = j2 − 1.

After this induction, all the states such that the third component is {0} have been

reached. Then it is clear that, from each of these states 〈0, q2, {0}〉, all the states in Q

such that the second component is q2 and the size of their third component is larger

than 1 can be reached by using the same induction steps but using the transitions on

letters b and d.

Next, we show that any two distinct states 〈0, q2, q3〉 and 〈0, q
′
2, q

′
3〉 in Q are not

equivalent. We only consider the situations where q2 6= q′2, since the other case can be

shown analogously. Without loss of generality, there exists a state r such that r ∈ q2

and r 6∈ q′2. It is clear that r 6= 0. Let w = dp−1cn−1−r. Then δ(〈0, q2, q3〉, w) ∈ F but

δ(〈0, q′2, q
′
3〉, w) 6∈ F . 2

Then we consider the more general case when m,n, p ≥ 2.

145

Example 11 We use a five-letter alphabet Σ = {a, b, c, d, e} in the following three

DFAs, which are modified from the two DFAs in the proof of Theorem 1 in [20].

Let A = (Q1,Σ, δ1, 0, {m − 1}) be a DFA, where Q1 = {0, . . . , m − 1} and, for each

state i ∈ Q1, δ1(i, a) = j, j = (i+1) mod m, δ1(i, x) = 0, if x ∈ {b, d}, and δ1(i, x) = i,

if x ∈ {c, e}.

Let B = (Q2,Σ, δ2, 0, {n − 1}) be a DFA, where Q2 = {0, . . . , n − 1} and, for each state

i ∈ Q2, δ2(i, b) = j, j = (i+ 1) mod m, δ2(i, c) = 1, and δ2(i, x) = i, if x ∈ {a, d, e}.

Let C = (Q3,Σ, δ3, 0, {p − 1}) be a DFA, where Q3 = {0, . . . , p − 1} and, for each state

i ∈ Q3, δ3(i, d) = j, j = (i+ 1) mod m, δ3(i, e) = 1, and δ3(i, x) = i, if x ∈ {a, b, c}.

Following the construction in the proof of Theorem 15, the DFA D can be constructed

from the DFAs in Example 11 for showing that the upper bound is attainable for

m,n, p ≥ 2. We note that, similar to the proof of Theorem 16, DFAs B and C in

this example change their states on disjoint letter sets, {b, c} and {d, e}. Thus, by

using a proof that is similar to the proof of Theorem 1 in [20], that shows the upper

bound for the state complexity of catenation can be reached, we can easily verify that

there are at least (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 distinct equivalence classes of

the right-invariant relation induced by L(A)(L(B)∪L(C)) [10]. Therefore, the upper

bound can be attained and the following theorem holds.

Theorem 17 Given three integers m,n, p ≥ 2, there exist a DFA A of m states, a

DFA B of n states, and a DFA C of p states over the same five-letter alphabet such that

any DFA accepting L(A)(L(B)∪L(C)) needs at least (m − 1)(2n+p − 2n − 2p+2)+2n+p−2

states.

A natural question is that, if we reduce the size of the alphabet used in DFAs A,B,C,

using a three-letter alphabet, can we attain the upper bound as well? We give a

positive answer in the next theorem under the condition m,n, p ≥ 3.

146

Theorem 18 For integers m,n, p ≥ 3, there exist DFAs A, B and C of m, n, and

p states, respectively, defined over a three-letter alphabet, such that any DFA that

accepts L(A)(L(B) ∪ L(C)) has at least (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 states.

Proof: We define the following three automata over the three-letter alphabet Σ =

{a, b, c}.

Let A = (Q1,Σ, δ1, 0, {m − 1}) be a DFA, where Q1 = {0, 1, . . . , m − 1}, and the

transitions are given as follows:

• δ1(i, a) = i+ 1 for i ∈ {0, . . . , m − 2}, δ1(m − 1, a) = 0;

• δ1(i, e) = i for i ∈ Q1, where e ∈ {b, c}.

Let B = (Q2,Σ, δ2, 0, {n − 1}) be a DFA, where Q2 = {0, 1, . . . , n − 1}, and the

transitions are given as follows:

• δ2(i, a) = i for i ∈ {0, . . . , n − 3}, δ2(n − 2, a) = n − 1, δ2(n − 1, a) = n − 2;

• δ2(i, b) = i+ 1 for i ∈ {0, . . . , n − 2}, δ2(n − 1, b) = n − 1;

• δ2(i, c) = i for i ∈ Q2.

Let C = (Q3,Σ, δ3, 0, {p − 1}) be a DFA, where Q3 = {0, 1, . . . , p − 1}, and the

transitions are given as follows:

• δ3(i, a) = i for i ∈ {0, . . . , p − 3}, δ3(p − 2, a) = p − 1, δ3(p − 1, a) = p − 2;

• δ3(i, b) = i for i ∈ Q3;

• δ3(i, c) = i+ 1 for i ∈ {0, . . . , p − 2}, δ3(p − 1, c) = p − 1.

147

LetD = (Q, {a, b, c}, δ, 〈0, ∅, ∅〉, F) be the DFA that accepts the language L(A)(L(B)∪

L(C)) constructed from those DFAs exactly as described in the proof of Theorem 15,

where

Q = {〈q1, q2, q3〉 | q1 ∈ Q1 − { m − 1}, q2 ∈ 2Q2 − {∅} , q3 ∈ 2Q3 − {∅}}

∪{〈q1, ∅, ∅〉 | q1 ∈ Q1 − { m − 1}}

∪{〈m − 1, {0} ∪ q2, {0} ∪ q3〉 | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},

F = {〈q1, q2, q3〉 ∈ Q | n − 1 ∈ q2 or p − 1 ∈ q3}.

We omit the definition of transitions.

Then we prove that the size of Q is minimal by showing that (I) any state in Q can

be reached from the initial state and (II) no two different states in Q are equivalent.

Now we consider (I). It is clear that states 〈q1, ∅, ∅〉, for q1 ∈ Q1 − { m − 1}, are

reachable from the initial state on strings aq1, and the state 〈m − 1, {0}, {0}〉 can be

reached from 〈m − 2, ∅, ∅〉 on the letter a.

We first show by induction on the size of the second component that any remaining

state in Q such that its third component is {0} can be reached from the state 〈m −

1, {0}, {0}〉. We only use strings over the letters a, b. Thus, the last component

remains {0}.

Basis: for any i ∈ {0, . . . , m − 2}, the state 〈i, {0}, {0}〉 can be reached from the

state 〈m − 1, {0}, {0}〉 on the string ai+1. Then for any i ∈ {0, . . . , m − 2} and

j ∈ {1, . . . , n},

〈i, {j}, {0}〉 = δ(〈i, {0}, {0}〉, bj).

Induction step: for i ∈ {0, . . . , m − 1}, assume that all states 〈i, q2, {0}〉 such that

|q2| < k are reachable. Then we consider the states 〈i, q2, {0}〉 where |q2| = k. Let

q2 = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < · · · < jk ≤ n − 1.

Note that the states such that j1 = 0 are reachable as follows. If either (i) jk ≤ n − 3,

148

or (ii) jk−1 = n − 2 and jk = n − 1, we have

〈m − 1, {0, j2, . . . , jk}, {0}〉 = δ(〈m − 2, {j2, . . . , jk}, {0}〉, a).

If jk = n − 2, the states 〈m − 1, {0, j2, . . . , jk}, {0}〉 can be reached from the states 〈m −

2, {j2, . . . , jk−1, n − 1}, {0}〉 by reading the letter a. If jk = n − 1 and jk−1 6= n − 2, the

states 〈m − 1, {0, j2, . . . , jk}, {0}〉 can be reached from states 〈m − 2, {j2, . . . , jk−1, n −

2}, {0}〉 by reading the letter a. In all the cases, we reach the state from a state such

that |q2| = k − 1. Similarly, we can easily verify that, by reading the letter a, states

〈0, {0, . . . , jk}, {0}〉 can be reached from the states 〈m − 1, {0, . . . , jk}, {0}〉. Note

that the state 〈0, q′, {0}〉 is not simply reached from 〈m − 1, q′, {0}〉 by reading the

letter a. We still need to consider the previous cases, and these cases apply to the

following states as well. For i ∈ {1, . . . , m − 2}, the states 〈i, {0, . . . , jk}, {0}〉 can be

reached from the states 〈i − 1, {0, . . . , jk}, {0}〉.

Next, we show that all states such that 0 6∈ q2 are reachable. Note that the first

component of these states cannot be m − 1. Thus, for i ∈ {0, . . . , m − 2}, we have

〈i, {j1, . . . , jk}, {0}〉 = δ(〈i, {0, j2 − j1, . . . , jk − j1}, {0}〉, b
j1).

After the induction step, we can verify that all states in Q such that the third com-

ponent is {0} have been reached.

In the following, we consider the states whose third component is non-empty but not

{0}. Note that if the second component of a state does not contain the states n − 2

and n − 1 or contains both of them, this component does not change by reading the

letter a. Thus, by using the letter c instead of the letter b in the same induction

step, we can show that, for i ∈ {0, . . . , m − 1}, the states 〈i, q2, q3〉 in Q such that

q2 ∩{n − 2, n − 1} = ∅ or {n − 2, n − 1} ⊆ q2 are reachable from the state 〈0, q2, {0}〉.

The remaining states to be considered are the states 〈i, q2, q3〉 such that q2 contains

149

either n − 2 or n − 1 but not both, for i ∈ {0, . . . , m − 1}. Assume q2 contains

n − 2. Then by the same induction with the letters a, c, we can reach the states

〈i, q2, q3〉 and states 〈i′, q′2, q
′
3〉, i, i

′ ∈ {0, . . . , m − 1}, from the state 〈0, q2, {0}〉 such

that q′2 = (q2 ∪ {n − 1}) − { n − 2}. Moreover, if we replace q′2 with q2, the union of

these two types of states is exactly all states in Q such that their second component

is q2. It is clear that those states 〈i′, q2, q
′
3〉 are reachable from the state 〈0, q′2, {0}〉

by following the same induction step with letters a, c. An analogous argument can

be applied to the states such that q2 contains n − 1 but not n − 2.

Now all the states in Q are reachable, and next we will show that the states of the

DFA D are pairwise inequivalent. Let 〈i, q2, q3〉 and 〈j, q
′
2, q

′
3〉 be two different states.

We consider the following two cases:

1. i < j. Then the string am−1−ibn−1cp−1a is accepted by the DFA D starting from

the state 〈i, q2, q3〉, but it is not accepted starting from the state 〈j, q′2, q
′
3〉.

2. i = j. We only prove for the situation where q2 6= q′2, since the proof is analogous

when q3 6= q′3. Without loss of generality, there exists a state r such that r ∈ q2

and r 6∈ q′2.

If i = j 6= m − 1, we can verify that cp−1bn−r−2a is accepted by D from the state

〈i, q2, q3〉 but not from the state 〈j, q′2, q
′
3〉.

If i = j = m − 1, it is clear that r 6= 0. We consider the following three cases.

(a) r ∈ {1, . . . , n − 3}. After reading the letter a, i and j become 0 and we

still have r ∈ q2 and r 6∈ q′2. Thus, the resulting situation has just been

considered.

(b) r = n − 2. Then the state 〈i, q2, q3〉 reaches a final state on acp−1ab, but

the state 〈j, q′2, q
′
3〉 does not on the same string.

(c) r = n − 1. Then the state 〈i, q2, q3〉 reaches a final state by reading acp−1a,

but the state 〈j, q′2, q
′
3〉 does not. 2

150

6.4 Catenation combined with intersection

In this section, we investigate the state complexity of L1(L2 ∩L3), and show that its

upper bound (Theorem 19) coincides with its lower bound (Theorems 20 and 21). The

following theorem shows an upper bound for the state complexity of this combined

operation.

Theorem 19 Let L1, L2 and L3 be three regular languages accepted by an m-state,

an n-state and a p-state DFA, respectively, for m, n, p ≥ 1. Then there exists a

DFA of at most m2np − 2np−1 states that accepts L1(L2 ∩L3). However, when m ≥ 1,

n = p = 1, the number of states can be lowered to m.

Theorem 19 gives a general upper bound of the state complexity of L1(L2 ∩ L3)

because m2np − 2np−1 is the mathematical composition of the state complexities of the

individual component operations. Thus, we omit the proof of this upper bound. When

m ≥ 1, n = p = 1, L(A)(L(B)∩L(C)) = L(A)Σ∗ if both L(B) and L(C) are Σ∗. The

resulting language is ∅ otherwise. Thus, the state complexity of L(A)(L(B) ∩ L(C))

in this case is the same as that of L(A)Σ∗: namely, m [20].

When m ≥ 1, n = 1, p ≥ 2, L(A)(L(B) ∩ L(C)) = ∅, if L(B) = ∅, and L(A)L(C) if

L(B) = Σ∗. In this case, the state complexity of the combined operation is m2p − 2p−1

which is the same as that of L(A)L(C) [20] and meets the upper bound in Theorem 19.

Similarly, when m ≥ 1, n ≥ 2, p = 1, the state complexity of L(A)(L(B) ∩ L(C)) is

m2n − 2n−1 which also attains the upper bound in Theorem 19. Next, we show the

upper bound m2np − 2np−1 is attainable when m,n, p ≥ 2.

Theorem 20 Given three integers m,n, p ≥ 2, there exists a DFA A of m states, a

DFA B of n states and a DFA C of p states over the same four-letter alphabet such

that any DFA accepting L(A)(L(B) ∩ L(C)) needs at least m2np − 2np−1 states.

Proof: Let A = (QA,Σ, δA, 0, FA) be a DFA, as shown in Figure 6.3, where QA =

{0, 1, . . . , m − 1}, FA = {m − 1}, Σ = {a, b, c, d} and the transitions are given as:

151

2 -1m
a a a......

c c c

a
0

b,d
b,d

b,c,d

a,b,d

1

Figure 6.3: The DFA A showing that the upper bound in Theorem 19 is attainable
when m ≥ 2 and n, p ≥ 1

• δA(i, a) = i+ 1 mod m, i = 0, . . . , m − 1,

• δA(i, x) = 0, i = 0, . . . , m − 1, where x ∈ {b, d},

• δA(i, c) = i, i = 0, . . . , m − 1.

LetB = (QB,Σ, δB, 0, FB) be a DFA, as shown in Figure 6.4, whereQB = {0, 1, . . . , n−

1}, FB = {n − 1} and the transitions are given as:

• δB(i, x) = i, i = 0, . . . , n − 1, where x ∈ {a, d},

• δB(i, b) = i+ 1 mod n, i = 0, . . . , n − 1,

• δB(i, c) = 1, i = 0, . . . , n − 1.

2 n
b b b......0

b,c
-1

c

b

a,c,d a,da,d a,d

c
1

Figure 6.4: The DFA B showing that the upper bound in Theorem 19 is attainable
when m ≥ 2 and n, p ≥ 1

Let C = (QC ,Σ, δC , 0, FC) be a DFA, as shown in Figure 6.5, whereQC = {0, 1, . . . , p −

1}, FC = {p − 1} and the transitions are given as:

• δC(i, x) = i, i = 0, . . . , p − 1, where x ∈ {a, b},

152

• δC(i, c) = 1, i = 0, . . . , p − 1,

• δC(i, d) = i+ 1 mod p, i = 0, . . . , p − 1.

2 p
d d d......0 -1

c

d

a,b,c a,ba,b a,b

c
c,d

1

Figure 6.5: The DFA C showing that the upper bound in Theorem 19 is attainable
when m ≥ 2 and n, p ≥ 1

We construct the DFA D = (QD,Σ, δD, sD, FD}, where

QD = {〈u, v〉 | u ∈ QB, v ∈ QC},

sD = 〈0, 0〉,

FD = {〈n − 1, p − 1〉},

and for each state 〈u, v〉 ∈ QD and each letter e ∈ Σ,

δD(〈u, v〉, e) = 〈u
′, v′〉 if δB(u, e) = u′, δC(v, e) = v′.

Clearly, there are n · p states in D and L(D) = L(B) ∩ L(C). Now we construct

another DFA E = (QE ,Σ, δE, sE , FE}, where

QE = {〈q, R〉 | q ∈ QA − FA, R ⊆ QD} ∪ {〈m − 1, S〉 | sD ∈ S, S ⊆ QD},

sE = 〈0, ∅〉,

FE = {〈q, R〉 | R ∩ FD 6= ∅, 〈q, R〉 ∈ QE},

153

and for each state 〈q, R〉 ∈ QE and each letter e ∈ Σ,

δE(〈q, R〉, e) =







〈q′, R′〉 if δA(q, e) = q′ 6= m − 1, δD(R, e) = R′,

〈q′, R′〉 if δA(q, e) = q′ = m − 1, R′ = δD(R, e) ∪ {sD}.

It is easy to see that L(E) = L(A)(L(B)∩L(C)). There are (m − 1) ·2np states in the

first term of the union for QE . In the second term, there are 1 · 2np−1 states. Thus,

|QE| = (m − 1) · 2np + 1 · 2np−1 = m2np − 2np−1.

In order to show that E is minimal, we need to show that (I) every state in E is

reachable from the start state and (II) each state defines a distinct equivalence class.

We prove (I) by induction on the size of the second component of states in QE . First,

any state 〈q, ∅〉, 0 ≤ q ≤ m − 2, is reachable from sE by reading the word aq. The we

consider all states 〈q, R〉 such that |R| = 1. In this case, let R = {〈x, y〉}. We have

〈q, {〈x, y〉}〉 = δE(〈0, ∅〉, a
mbxdyaq).

Notice that the only state 〈q, R〉 in QE such that q = m − 1 and |R| = 1 is 〈m −

1, {〈0, 0〉}〉 since the fact that q = m − 1 guarantees 〈0, 0〉 ∈ R.

Assume that all states 〈q, R〉 such that |R| < k are reachable. Consider 〈q, R〉 where

|R| = k. Let R = {〈xi, yi〉 | 1 ≤ i ≤ k} such that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ n − 1

if q 6= m − 1 and 0 = x1 ≤ x2 ≤ . . . ≤ xk ≤ n − 1, y1 = 0, otherwise. We have

〈q, R〉 = δE(〈0, R
′〉, ambx1dy1aq), where

R′ = {〈xj − x1, (yj − y1 + n)modn〉 | 2 ≤ j ≤ k}.

The state 〈0, R′〉 is attainable from the start state, since |R′| = k − 1. Thus, 〈q, R〉 is

also reachable.

154

To prove (II), let 〈q1, R1〉 and 〈q2, R2〉 be two different states in E. We consider the

following two cases.

1. q1 6= q2. Without loss of generality, we may assume that q1 > q2. There always

exists a string t = cam−1−q1bn−1dp−1 such that

δE(〈q1, R1〉, t) ∈ FE and δE(〈q2, R2〉, t) /∈ FE .

2. q1 = q2, R1 6= R2. Without loss of generality, we may assume that |R1| ≥ |R2|.

Let 〈x, y〉 ∈ R1 − R2. Then

δE(〈q1, R1〉, b
n−1−xdp−1−y) ∈ FE ,

δE(〈q2, R2〉, b
n−1−xdp−1−y) /∈ FE .

Thus, the minimal DFA accepting L(A)(L(B) ∩ L(C)) needs at least m2np − 2np−1

states for m,n, p ≥ 2. 2

Now we consider the case when m = 1, i.e., L(A) = Σ∗.

Theorem 21 Given two integers n, p ≥ 2, there exists a DFA A of one state, a DFA

B of n states and a DFA C of p states over the same five-letter alphabet such that

any DFA accepting L(A)(L(B) ∩ L(C)) needs at least 2np−1 states.

Proof: When m = 1, n ≥ 2, p ≥ 2, we give the following construction. Let A =

({0},Σ, δA, 0, {0}) be a DFA, where Σ = {a, b, c, d, e} and δA(0, t) = 0 for any letter

t ∈ Σ. It is clear that L(A) = Σ∗.

Let B = (QB,Σ, δB, 0, FB) be a DFA, where QB = {0, 1, . . . , n − 1}, FB = {n − 1}

and the transitions are given by

• δB(i, a) = i+ 1 mod n, i = 0, . . . , n − 1;

155

• δB(i, b) = i, i = 0, . . . , n − 1;

• δB(0, c) = 1, δB(j, c) = j, j = 1, . . . , n − 1;

• δB(0, d) = 0, δB(j, d) = j + 1, j = 1, . . . , n − 2, δB(n − 1, d) = 1;

• δB(i, e) = i, i = 0, . . . , n − 1.

Let C = (QC ,Σ, δC , 0, FC) be a DFA, where QC = {0, 1, . . . , p − 1}, FC = {p − 1}

and the transitions are given by

• δC(i, a) = i, i = 0, . . . , p − 1;

• δC(i, b) = i+ 1 mod p, i = 0, . . . , p − 1;

• δC(0, c) = 1, δC(j, c) = j, j = 1, . . . , p − 1;

• δC(i, d) = i, i = 0, . . . , p − 1;

• δC(0, e) = 0, δC(j, e) = j + 1, j = 1, . . . , p − 2, δC(p − 1, e) = 1.

Construct the DFA D = (QD,Σ, δD, 〈0, 0〉, FD) that accepts L(B)∩L(C) in the same

way as the proof of Theorem 20, where

QD = {〈u, v〉 | u ∈ QB, v ∈ QC},

FD = {〈n − 1, p − 1〉},

and for each state 〈u, v〉 ∈ QD and each letter t ∈ Σ,

δD(〈u, v〉, t) = 〈u
′, v′〉 if δB(u, t) = u′, δC(v, t) = v′.

156

Now we construct the DFA E = (QE,Σ, δE , sE, FE), where

QE = {〈0, R〉 | 〈0, 0〉 ∈ R,R ⊆ QD},

sE = 〈0, {〈0, 0〉}〉,

FE = {〈0, R〉 ∈ QE | R ∩ FD 6= ∅},

and for each state 〈0, R〉 ∈ QE and each letter t ∈ Σ,

δE(〈0, R〉, t) = 〈0, R
′〉 where R′ = δD(R, t) ∪ {〈0, 0〉}.

Note that 〈0, 0〉 ∈ R for every state 〈0, R〉 ∈ QE , since 0 is the only state in A and

it is both initial and final. It is easy to see that L(E) = L(A)(L(B) ∩ L(C)) and E

has 2np − 2np−1 = 2np−1 states in total. Now we show that E is a minimal DFA by

(I) every state in E is reachable from the initial state and (II) each state defines a

distinct equivalence class.

We again prove (I) by induction on the size of the second component of states in QE .

First, the only state in 〈0, R〉 ∈ QE such that |R| = 1 is the initial state, 〈0, {〈0, 0〉}〉.

Assume that all states 〈0, R〉 such that |R| ≤ k are reachable. Consider 〈0, R〉 where

|R| = k + 1. Let R = {〈0, 0〉, 〈x1, y1〉, . . . , 〈xk, yk〉} such that 0 ≤ x1 ≤ x2 ≤ . . . ≤

xk ≤ n − 1. We consider the following three cases.

Case 1. 〈0, y1〉 ∈ R, y1 ≥ 1. If there exists 〈0, yi〉 ∈ R, yi ≥ 1, 1 ≤ i ≤ k, then x1 = 0

and y1 ≥ 1, since 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n − 1. For this case, we have

〈0, R〉 = δE(〈0, R1〉, be
y1−1),

where R1 = {〈0, 0〉} ∪ S1 ∪ T1,

S1 = {〈xj, p − 1〉 | 〈xj , 0〉 ∈ R, xj 6= 0},

157

T1 = {〈xj, (yj − y1 + p − 1) mod (p − 1)〉 | 〈xj , yj〉 ∈ R, yj 6= 0, 2 ≤ j ≤ k}.

Notice that 〈0, 0〉 /∈ S1∪T1 and S1∩T1 = ∅. So the state 〈0, R〉 is reachable from the

initial state, since |R1| = k and 〈0, R1〉 is reachable.

Case 2. x1 ≥ 1, 〈xi, 0〉 ∈ R, 1 ≤ i ≤ k. It is easy to see that every xi ≥ 1 because

xi ≥ x1. We have

〈0, R〉 = δE(〈0, R2〉, ad
xi−1),

where R2 = {〈0, 0〉} ∪ T2,

T2 = {〈(xj − xi + n − 1) mod (n − 1), yj〉 | 〈xj, yj〉 ∈ R, 1 ≤ j ≤ k, j 6= i}.

There are k elements in R2. So the state 〈0, R〉 is also reachable for this case.

Case 3. x1 ≥ 1, yi ≥ 1, 1 ≤ i ≤ k, because every xi ≥ x1 ≥ 1, we have

〈0, R〉 = δE(〈0, R3〉, cd
x1−1ey1−1),

where R3 = {〈0, 0〉} ∪ T3,

T3 = {〈(xj − x1 + 1), (yj − y1 + p − 1) mod (p − 1) + 1〉 | 〈xj , yj〉 ∈ R, 2 ≤ j ≤ k}.

So every state 〈0, R〉 in E is reachable when |R| = k + 1.

To prove (II), let 〈0, R〉 and 〈0, R′〉 be two different states in E. Without loss of

generality, we may assume that |R| ≥ |R′|. So we can always find 〈x, y〉 ∈ R −

R′. Clearly, 〈x, y〉 6= 〈0, 0〉. So there exists a string w = an−1−xbp−1−y such that

δE(〈0, R〉, w) ∈ FE and δE(〈0, R
′〉, w) /∈ FE .

Thus, the minimal DFA that accepts Σ∗(L(B) ∩ L(C)) has at least 2np−1 states for

m = 1, n, p ≥ 2. 2

158

This lower bound coincides with the upper bound given in Theorem 19. Thus, the

bounds are tight for the case when m = 1, n, p ≥ 2.

6.5 Conclusion

In this paper, we have studied the state complexities of two basic combined operations:

catenation combined with union and catenation combined with intersection. We have

proved that the state complexity of L(A)(L(B) ∪ L(C)) is (m − 1)(2n+p − 2n − 2p +

2)+ 2n+p−2 for m,n, p ≥ 1 (except the situations when m ≥ 2 and n = p = 1), which

is significantly less than the mathematical composition of state complexities of its

component operations, m2np − 2np−1. We have also proved that the state complexity

of L(A)(L(B) ∩ L(C)) is m2np − 2np−1 for m,n, p ≥ 1 (except the cases when m ≥ 2

and n = p = 1), which is exactly the mathematical composition of state complexities

of its component operations.

159

Bibliography

[1] Birget, J.: State-complexity of finite-state devices, state compressibility and in-

compressibility, Mathematical Systems Theory, 26 (3) (1993) 237-269

[2] Campeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic opera-

tions on finite language, in:Proceedings of the Fourth International Workshop on

Implementing Automata VIII 1-11, LNCS 2214, 1999, 60-70

[3] Domaratzki, M.: State complexity and proportional removals, Journal of Au-

tomata, Languages and Combinatorics, 7 (2002) 455-468

[4] Domaratzki, M., Okhotin, A.: State complexity of power, Theoretical Computer

Science, 410 (24-25) (2009) 2377-2392

[5] Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined

operations, Theoretical Computer Science, 410 (35) (2009) 3272-3280.

[6] Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:

star of catenation and star of Reversal, Fundamenta Informaticae, 83 (1-2) (2008)

75-89

[7] Gao, Y., Yu, S.: State complexity approximation, in: Proc. of Descriptional

Complexity of Formal Systems (2009) 163-174

[8] Han, Y., Salomaa, K.: State complexity of basic operations on suffix-free regular

languages, Theoretical Computer Science, 410 (27-29) (2009) 2537-2548

160

[9] Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic

finite automata, in: Proc. of International Conference on Implementation and

Application of Automata 2002 LNCS 2608, 2002, 148-157

[10] Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, Languages,

and Computation, Addison Wesley, 1979

[11] Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and

complementation of regular languages, International Journal of Foundations of

Computer Science, 16 (2005) 511-529

[12] Jirásková, G.: State complexity of some operations on binary regular languages,

Theoretical Computer Science, 330 (2005) 287-298

[13] Jirásková, G., Okhotin, A.: On the state complexity of star of union and star

of intersection, Turku Center for Computer Science TUCS Technical Report No.

825, 2007

[14] Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language

operations combined with reversal, Information and Computation, 206 (2008)

1178-1186

[15] Maslov, A. N.: Estimates of the number of states of finite automata, Soviet

Mathematics Doklady, 11 (1970), 1373-1375

[16] Pighizzini, G., Shallit, J.: Unary language operations, state complexity and

Jacobsthal’s function, International Journal of Foundations of Computer Science,

13 (2002) 145-159

[17] Rampersad, N.: The state complexity of L2 and Lk, Information Processing

Letters, 98 (2006) 231-234

[18] Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular

languages, Theoretical Computer Science, 320 (2004) 293-313

161

[19] Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations,

Theoretical Computer Science, 383 (2007) 140-152

[20] Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages, Theoretical Computer Science, 125 (1994) 315-328

[21] Yu, S.: Regular languages, in: G. Rozenberg, A. Salomaa (Eds.),Handbook of

Formal Languages, Vol. 1, Springer-Verlag, 1997, 41-110

[22] Yu, S.: State complexity of regular languages, Journal of Automata, Languages

and Combinatorics, 6 (2) (2001) 221-234

162

Chapter 7

State Complexity of Combined

Operations with Two Basic

Operations

Abstract

This paper studies the state complexity of (L1L2)
R, LR

1 L2, L
∗
1L2, (L1 ∪ L2)L3, (L1 ∩

L2)L3, L1L2 ∩ L3, and L1L2 ∪ L3 for regular languages L1, L2, and L3. We first

show that the upper bound proposed by [Liu, Martin-Vide, Salomaa, Yu, 2008] for

the state complexity of (L1L2)
R coincides with the lower bound and is thus the state

complexity of this combined operation by providing some witness DFAs. Also, we

show that, unlike most other cases, due to the structural properties of the result of the

first operation of the combinations LR
1 L2, L

∗
1L2, and (L1∪L2)L3, the state complexity

of each of these combined operations is close to the mathematical composition of

the state complexities of the component operations. Moreover, we show that the

state complexities of (L1 ∩ L2)L3, L1L2 ∩ L3, and L1L2 ∪ L3 are exactly equal to the

mathematical compositions of the state complexities of their component operations in

163

the general cases. We also include a brief survey that summarizes all state complexity

of combined operations with two basic operations.

7.1 Introduction

State complexity is a type of descriptional complexity based on the deterministic

finite automaton (DFA) model. The state complexity of an operation on regular lan-

guages is the number of states that are necessary and sufficient in the worst case

for the minimal, complete DFA to accept the resulting language of the operation.

While many results on the state complexity of individual operations, such as union,

intersection, catenation, star, reversal, shuffle, power, orthogonal catenation, propor-

tional removal, and cyclic shift [1, 4, 5, 6, 11, 13, 14, 15, 18, 19, 21, 23, 24], have

been obtained in the past 15 years, the research on state complexity of combined

operations, which was initiated by A. Salomaa, K. Salomaa, and S. Yu in 2007 [20],

has recently attracted more attention. This is because, in practice, a combination

of several individual operations, rather than only one individual operation, is often

performed.

In recent publications [2, 3, 7, 8, 9, 10, 16, 17, 20], it has been shown that the state

complexity of a combined operation is usually not a simple mathematical composition

of the state complexities of its component operations. For example, let L1 be an

m-state DFA language and L2 be an n-state DFA language. Recall that the state

complexity of L1 ∪ L2 (considered as f(m,n)) is mn and the state complexity of L∗
2

(considered as g(n)) is 2n−1+2n−2. Thus, the composition of these state complexities

(g(f(m,n))) gives 2mn−1 +2mn−2 as an upper bound of the state complexity of (L1 ∪

L2)
∗. However, this upper bound is too high to be reached and the state complexity

of this combined operation has been proven to be 2m+n−1 + 2m−1 + 2n−1 + 1. This is

due to the structural properties of the DFA that results from the first operation of a

combined operation. For example, let us consider reversal combined with catenation

164

(LR
1 L2). We know that, on one hand, if a DFA is obtained for LR

1 , where m > 1, and

it reaches the upper bound of the state complexity of reversal (2m), then half of its

states are final [24]; On the other hand, in order to reach the upper bound of the state

complexity of catenation, the DFA of its left operand language has to have only one

final state [24]. This situation is depicted in Fig. 7.1. (In another example, the initial

Figure 7.1: The set S1 of DFAs that are outputs of reversal when the upper bound
for the state complexity of reversal is achieved is disjoint from the set S2 of DFAs
that are the left operand for catenation which can achieve the upper bound for the
state complexity of catenation.

state of a DFA obtained from star is always a final state). In general, the resulting

language obtained from the first operation (such as reversal, star, or union) may not

be among the worst cases of the subsequent operation (such as catenation). Although

the number of combined operations is unlimited and it is impossible to study the state

complexity of all of them, the study of the state complexity of combinations of two

basic operations is clearly necessary since it is the initial step towards the study of

combinations of more operations.

There are in total 24 different combinations of two basic operations selected from

catenation, star, reversal, intersection, and union. Among these combined operations,

the state complexities of the following ones have been studied in the literature: (L1∪

L2)
∗ in [20], (L1∩L2)

∗ in [16], (L1L2)
∗, (LR

1)
∗ in [8], (L1∪L2)

R, (L1∩L2)
R, (L1L2)

R,

(L1
∗)R in [17], L1L

∗
2, L1L

R
2 in [2], L1(L2 ∪ L3), L1(L2 ∩ L3) in [3], L∗

1 ∪ L2, L
∗
1 ∩ L2,

LR
1 ∪ L2, and LR

1 ∩ L2 in [10], where L1, L2, and L3 are three regular languages.

Note that we do not consider a repeated use of the same operation in this paper,

e.g. L1L2L3 and L1 ∪ L2 ∪ L3. In this paper, we study the state complexities of

all the other combinations of two basic operations, namely (L1L2)
R, LR

1 L2, L
∗
1L2,

165

(L1 ∪ L2)L3, (L1 ∩ L2)L3, L1L2 ∩ L3, and L1L2 ∪ L3 for regular languages L1, L2,

and L3 accepted by DFAs of m, n, and p states, respectively. We do not consider the

combined operations (L1 ∪ L2) ∩ L3 and (L1 ∩ L2) ∪L3, because it is clear that their

state complexities are simply the compositions of the state complexities of union and

intersection when m,n, p ≥ 1.

Although the state complexity of (L1L2)
R has been considered in [17], only an upper

bound has been obtained. In this paper, we prove, by providing some witness DFAs,

that the upper bound, 3·2m+n−2 − 2n+1, proposed in [17] is indeed the state complexity

of this combined operation when m ≥ 2 and n ≥ 1.

We also show that, unlike some other combined operations, the state complexities of

(L1 ∩L2)L3, L1L2 ∩L3, and L1L2 ∪L3 in general cases are equal to the compositions

of the state complexities of their component operations, while the state complexities

of LR
1 L2, L

∗
1L2 and (L1 ∪ L2)L3 are close to the compositions.

In the next section, we introduce the basic definitions and notations used in the paper.

Then we prove our results on the state complexities of (L1L2)
R in Section 7.3, LR

1 L2 in

Section 7.4, L∗
1L2 in Section 7.5, (L1∪L2)L3 in Section 7.6, (L1∩L2)L3 in Section 7.7,

L1L2 ∩ L3 in Section 7.8, and L1L2 ∪L3 in Section 7.9. Section 7.10 summarizes our

results and also provides an overview of the state complexity results of all possible

combined operations with two basic operations.

7.2 Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F), where Q is the finite set of states,

Σ is the finite input alphabet, δ : Q× Σ→ Q is the state transition function, s ∈ Q

is the initial state, and F ⊆ Q is the set of final states. A DFA is said to be complete

if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the DFAs we mention in this paper

are assumed to be complete. We extend δ to Q× Σ∗ → Q in the usual way.

166

A non-deterministic finite automaton (NFA) is denoted by a 5-tupleA = (Q,Σ, δ, s, F),

where the definitions of Q, Σ, s, and F are the same to those of DFAs, but the state

transition function δ is defined as δ : Q×Σ→ 2Q, where 2Q denotes the power set of

Q, i.e. the set of all subsets of Q.

In this paper, the state transition function δ is often extended to δ̂ : 2Q × Σ → 2Q.

The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for R ⊆ Q and a ∈ Σ. We

just write δ instead of δ̂ if there is no confusion.

A word w ∈ Σ∗ is accepted by a finite automaton if δ(s, w)∩ F 6= ∅. Two states in a

finite automaton A are said to be equivalent if and only if for every word w ∈ Σ∗, if

A is started in either state with w as input, it either accepts in both cases or rejects

in both cases. It is well-known that a language which is accepted by an NFA can be

accepted by a DFA, and such a language is said to be regular. The language accepted

by a DFA A is denoted by L(A). The reader may refer to [12, 22] for more details

about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number of

states of the minimal complete DFA that accepts L. The state complexity of a class

S of regular languages, denoted by sc(S), is the supremum among all sc(L), L ∈ S.

The state complexity of an operation on regular languages is the state complexity of

the resulting languages from the operation as a function of the state complexity of

the operand languages. Thus, in a certain sense, the state complexity of an operation

is a worst-case complexity.

7.3 State complexity of (L1L2)
R

In this section, we investigate the state complexity of (L1L2)
R for an m-state DFA

language L1 and an n-state DFA language L2, which has been an open problem

since 2008. In [17], the following theorem concerning the upper bound of the state

167

complexity of (L1L2)
R was proved.

Theorem 22 ([17]) Let L1 and L2 be an m-state DFA language and an n-state DFA

language, respectively, with m,n > 1. Then there exists a DFA with no more than

3 · 2m+n−2 − 2n + 1 states that accepts (L1L2)
R.

In the following, we first show that this upper bound is reachable by some worst-case

examples for m,n ≥ 2 (Theorem 23). Then we investigate the state complexity of

(L1L2)
R when m = 1 (Theorem 24) or n = 1 (Theorem 25). Finally, we summarize

the state complexity of (L1L2)
R (Theorem 26).

Let us start with a general lower bound of the state complexity of (L1L2)
R when

m,n ≥ 2.

Theorem 23 Given two integers m,n ≥ 2, there exists a DFA M of m states and

a DFA N of n states such that any DFA accepting (L(M)L(N))R needs at least

3 · 2m+n−2 − 2n + 1 states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, where QM = {0, 1, . . . , m − 1},

Σ = {a, b, c, d}, and the transitions are given as:

• δM(i, a) = i+ 1 mod m, i = 0, . . . , m − 1,

• δM(i, h) = i, i = 0, . . . , m − 1, h ∈ {b, c, d}.

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, shown in Figure 7.2, where QN =

{0, 1, . . . , n − 1}, Σ = {a, b, c, d}, and the transitions are given as:

• δN(i, a) = i, i = 0, . . . , n − 1,

• δN(i, b) = i+ 1 mod n, i = 0, . . . , n − 1,

• δN(i, c) = i, i = 0, . . . , n − 2, δN (n − 1, c) = n − 2,

• δN(i, d) = i, i = 0, . . . , n − 3, δN (n − 2, d) = n − 1, δN (n − 1, d) = n − 2.

168

Figure 7.2: Witness DFAN which shows that the upper bound of the state complexity
of (L(M)L(N))R, 3 · 2m+n−2 − 2n + 1, is reachable when m,n ≥ 2

Next we construct a DFA D = (QD,Σ, δD, sD, FD) to accept (L(M)L(N))R, where

QD = R ∪ S − T,

R = {〈R1, R2〉 | R1 ⊆ QM , R2 ⊆ QN − { 0}},

S = {〈R1, R2〉 | R1 ⊆ QM , m − 1 ∈ R1, R2 ⊆ QN , 0 ∈ R2}

T = {〈QM , R2〉 | R2 ⊆ QN , R2 6= ∅},

sD = 〈∅, {m − 1}〉,

FD = {〈R1, R2〉 ∈ QD | 0 ∈ R1},

and for any g = 〈R1, R2〉 ∈ QD, h ∈ Σ, δD is defined as follows,

δD(g, h) =







〈R′
1, R

′
2〉, if δ

−1
M (R1, h) = R′

1 6= QM , 0 /∈ R′
2 = δ−1

N (R2, h),

〈R′
1, R

′
2〉, if δ

−1
M (R1, h) ∪ {m − 1} = R′

1 6= QM , 0 ∈ R′
2 = δ−1

N (R2, h),

〈QM , ∅〉, if δ−1
M (R1, h) = QM , 0 /∈ δ−1

N (R2, h),

〈QM , ∅〉, if δ−1
M (R1, h) ∪ {m − 1} = QM , 0 ∈ δ−1

N (R2, h).

In the above definition, we have δ−1
M (R1, h) = R′

1 if and only if δM(R′
1, h) = R1.

Since M is a complete DFA, each state of M has an outgoing transition with each

letter in Σ. It follows that δ−1
M (QM , h) = QM , h ∈ Σ. Note that 0 ∈ QM , so every

169

state 〈QM , R2 ⊆ QN〉 is a final state. This means that all states starting with QM

are equivalent. Thus, when we construct the DFA D, all such equivalent states are

combined into one state, that is, 〈QM , ∅〉.

In the following, we will prove D is a minimal DFA.

(I) We first show that every state 〈R1, R2〉 ∈ QD, is reachable from sD. It can be

seen that 〈∅, ∅〉 = δD(sD, c) no matter n = 2 or n > 2. Then we consider the other 3

cases.

Case 1: R1 = ∅, R2 6= ∅.

It is trivial when n = 2, because m − 1 ∈ R1 6= ∅ if 0 ∈ R2. Therefore, we only

discuss n > 2 and use induction on the size of R2 to prove that the state can be

reached from sD. When |R2| = 1, let R2 be {i}, 1 ≤ i ≤ n − 1. Then we have

〈∅, {i}〉 = δD(sD, b
n−1−i). Now assume that 〈∅, R2〉 ∈ QD is reachable from sD when

|R2| = k. We will prove that 〈∅, R′
2〉 ∈ QD is also reachable when |R′

2| = k+1 ≤ n − 1.

We assume R′
2 = {q1, q2, . . . , qk+1} such that 1 ≤ q1 < q2 < . . . < qk+1 ≤ n − 1. Then

〈∅, R′
2〉 = δD(〈∅, R

′′
2〉, c(bd)

qk+1−qk−1dn−1−qk+1), where

R′′
2 = {q1 + n − qk − 2, q2 + n − qk − 2, . . . , qk−1 + n − qk − 2, n − 2}.

Note that qk−1 + n − qk − 2 < n − 2 because qk−1 < qk.

Case 2: R1 6= ∅, R2 = ∅.

Let R1 be {p1, p2, . . . , pk} such that 0 ≤ p1 < p2 < . . . < pk ≤ m − 1, 1 ≤ k ≤ m.

Then 〈R1, ∅〉 = δD(sD, w
′), where

w′ = bnap2−p1bnap3−p2 · · · bnapk−pk−1bnam−1−pkc.

When R1 = {p1}, w
′ is bnam−1−p1c.

Case 3: R1 6= ∅, R2 6= ∅.

Assume R1 = {p1, p2, . . . , pk} such that 0 ≤ p1 < p2 < . . . < pk ≤ m − 1, 1 ≤ k ≤

170

m − 1. Note that k cannot be m in this case, because all the states starting with QM

are equivalent and merged into 〈QM , ∅〉. We first use w′′ to move the DFA D from

sD to 〈R1, {n − 1}〉, where

w′′ = bnap2−p1bnap3−p2 · · · bnapk−pk−1bnam−1−pk .

Then 〈R1, R2〉 can be reached from 〈R1, {n − 1}〉 by the strings shown in Case 1

because they consist of the letters b, c, d and cannot change R1. Recall that m − 1

must be added to R1 when 0 shows up in R2 as the result of some move. For Case 3,

m − 1 has been included in R1 during the processing of w′′ and R1 ∪ {m − 1} = R1.

(II) Next, we show that any two different states 〈R1, R2〉, 〈R
′
1, R

′
2〉 ∈ QD, are distin-

guishable. It is obvious when one state is final and the other is not. Therefore, we

consider only when both the two states are final or non-final. There are three cases

in the following.

1. R1 6= R′
1. Without loss of generality, we may assume that |R1| ≥ |R

′
1|. Let

x ∈ R1 − R′
1. A string ax can distinguish the two states because

δD(〈R1, R2〉, a
x) ∈ FD,

δD(〈R
′
1, R

′
2〉, a

x) /∈ FD.

Note that when R1 = QM , R′
1 = QM − { 0} and 0 ∈ R′

2, δD(〈R1, R2〉, a
x) =

δD(〈R
′
1, R

′
2〉, a

x). However, this special case is not considered here because

〈R1, R2〉 is final and 〈R
′
1, R

′
2〉 is not.

2. R1 = R′
1 = ∅, R2 6= R′

2. Without loss of generality, we assume that |R2| ≥ |R
′
2|.

Let x ∈ R2 − R′
2. Then there always exists a string bxam such that

δD(〈R1, R2〉, b
xam) ∈ FD,

δD(〈i2, j2, k2〉, b
xam) /∈ FD.

171

3. R1 = R′
1 6= ∅, R2 6= R′

2. Let p be an element of R1 and R′
1. Since 〈R1, R2〉

and 〈R′
1, R

′
2〉 are two different states, according to the definition of D, R1 and

R′
1 cannot be QM , otherwise the two states would be the same. Thus, we can

find y ∈ QM − R1. Without loss of generality, assume that |R2| ≥ |R
′
2| and let

x ∈ R2 − R′
2. Then there always exists a string t such that one of δD(〈R1, R2〉, t)

and δD(〈R
′
1, R

′
2〉, t) is final and the other is not, where

t =







ap+1bxam−p−1ay+1am−1, if 0 /∈ R′
2,

amay, if 0 /∈ R2 and 0 ∈ R′
2,

bxay+1am−1, if 0 ∈ R2 and 0 ∈ R′
2.

Note that when 0 ∈ R2 or 0 ∈ R′
2, m − 1 must be in R1 and R′

1 according to

the definition of D and the condition of R1 = R′
1.

Thus, the states in D are pairwise distinguishable and D is a minimal DFA accepting

(L(M)L(N))R with 3 · 2m+n−2 − 2n + 1 states. 2

The lower bound given in Theorem 23 coincides with the upper bound shown in

Theorem 22 [17]. Thus, the bounds are tight when m,n ≥ 2.

Next, we consider the state complexity of (L1L2)
R when m = 1 or n = 1. When

m = 1, L1 is either Σ∗ or ∅. Clearly,

(L1L2)
R =







LR
2 Σ

∗, if L1 = Σ∗,

∅, if L1 = ∅.

The state complexity of LR
2 Σ

∗ will be proved later in Theorems 31, 32, 33 and

Lemma 41 in Section 7.4. Here we just give the following result on the state com-

plexity of (L1L2)
R when m = 1, n ≥ 2.

Theorem 24 For any integer n ≥ 2, let L1 be a 1-state DFA language and L2 be an

n-state DFA language. Then 2n−1 + 1 states are both sufficient and necessary in the

172

worst case for a DFA to accept (L1L2)
R.

Note that when m = 1, n ≥ 2, the general upper bound 3 ·2m+n−2 − 2n+1 = 2n−1+1.

Similarly, when n = 1, L2 is either Σ∗ or ∅, and

(L1L2)
R =







Σ∗LR
1 , if L2 = Σ∗,

∅, if L2 = ∅.

The state complexity of Σ∗LR
1 has been proved in [2]. Thus, we have the following

result on the state complexity of (L1L2)
R when m ≥ 1, n = 1.

Theorem 25 For any integer m ≥ 1, let L1 be an m-state DFA language and L2 be

a 1-state DFA language. Then 2m−1 states are both sufficient and necessary in the

worst case for a DFA to accept (L1L2)
R.

By summarizing Theorems 22, 23 and 24, we can obtain Theorem 26.

Theorem 26 For any integers m ≥ 1, n ≥ 2, let L1 be an m-state DFA language

and L2 be an n-state DFA language. Then 3 ·2m+n−2 − 2n+1 states are both sufficient

and necessary in the worst case for a DFA to accept (L1L2)
R.

7.4 State complexity of LR
1 L2

In this section, we study the state complexity of LR
1 L2 for an m-state DFA language

L1 and an n-state DFA language L2. We first show that the upper bound of the state

complexity of LR
1 L2 is

3
4
2m+n in general (Theorem 27). Then we prove that this upper

bound can be reached when m,n ≥ 2 (Theorem 28). Next, we investigate the case

when m = 1 and n ≥ 1 and prove the state complexity can be lower to 2n−1 in such

a case (Theorem 30). Finally, we show that the state complexity of LR
1 L2 is 2

m−1 +1

when m ≥ 2 and n = 1 (Theorem 33).

173

Now, we start with a general upper bound of the state complexity of LR
1 L2 for any

integers m,n ≥ 1.

Theorem 27 Let L1 and L2 be two regular languages accepted by an m-state DFA

and an n-state DFA, respectively, m,n ≥ 1. Then there exists a DFA of at most

3
4
2m+n states that accepts LR

1 L2.

Proof: Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, k1 final states and

L1 = L(M). Let N = (QN ,Σ, δN , sN , FN) be another DFA of n states and L2 = L(N).

Let M ′ = (QM ,Σ, δM ′, FM , {sM}) be an NFA with k1 initial states. δM ′(p, a) = q if

δM(q, a) = p where a ∈ Σ and p, q ∈ QM . Clearly,

L(M ′) = L(M)R = LR
1 .

By performing the subset construction on NFA M ′, we can get an equivalent, 2m-

state DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR
1 . Since M ′ has only one final

state sM , we know that FA = {i | i ⊆ QM , sM ∈ i}. Thus, A has 2m−1 final states

in total. Now we construct a DFA B = (QB,Σ, δB, sB, FB) accepting the language

LR
1 L2, where

QB = {〈i, j〉 | i ∈ QA, j ⊆ QN},

sB = 〈sA, ∅〉, if sA 6∈ FA;

= 〈sA, {sN}〉, otherwise,

FB = {〈i, j〉 ∈ QB | j ∩ FN 6= ∅},

δB(〈i, j〉, a) = 〈i′, j′〉, if δA(i, a) = i′, δN (j, a) = j′, a ∈ Σ, i′ /∈ FA;

= 〈i′, j′ ∪ {sN}〉, if δA(i, a) = i′, δN(j, a) = j′, a ∈ Σ, i′ ∈ FA.

From the above construction, we can see that all the states in B starting with i ∈ FA

must end with j such that sN ∈ j. There are in total 2m−1 · 2n−1 states which don’t

174

meet this.

Thus, the number of states of the minimal DFA accepting LR
1 L2 is no more than

2m+n − 2m−1 · 2n−1 =
3

4
2m+n

. 2

This result gives an upper bound for the state complexity of LR
1 L2. Next we show

that this bound is reachable when m,n ≥ 2.

Theorem 28 Given two integers m,n ≥ 2, there exists a DFA M of m states and a

DFA N of n states such that any DFA accepting L(M)RL(N) needs at least 3
4
2m+n

states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, shown in Figure 7.3, where

QM = {0, 1, . . . , m − 1}, Σ = {a, b, c, d}, and the transitions are given as:

• δM(i, a) = i+ 1 mod m, i = 0, . . . , m − 1,

• δM(i, b) = i, i = 0, . . . , m − 2, δM(m − 1, b) = m − 2,

• δM(m − 2, c) = m − 1, δM(m − 1, c) = m − 2,

if m ≥ 3, δM(i, c) = i, i = 0, . . . , m − 3,

• δM(i, d) = i, i = 0, . . . , m − 1,

Note that M is similar with the second witness DFA in the proof of Theorem 23.

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, shown in Figure 7.4, where QN =

{0, 1, . . . , n − 1}, Σ = {a, b, c, d}, and the transitions are given as:

• δN(i, a) = i, i = 0, . . . , n − 1,

• δN(i, b) = i, i = 0, . . . , n − 1,

175

Figure 7.3: Witness DFAM which shows that the upper bound of the state complexity

of L(M)RL(N),
3

4
2m+n, is reachable when m,n ≥ 2

• δN(i, c) = 0, i = 0, . . . , n − 1,

• δN(i, d) = i+ 1 mod n, i = 0, . . . , n − 1,

Figure 7.4: Witness DFAN which shows that the upper bound of the state complexity

of L(M)RL(N),
3

4
2m+n, is reachable when m,n ≥ 2

Now we design a DFA A = (QA,Σ, δA, {m − 1}, FA), where QA = {q | q ⊆ QM},

Σ = {a, b, c, d}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are defined as:

δA(p, e) = {j | δM(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

176

It is easy to see that A is a DFA that accepts L(M)R. We prove that A is minimal

before using it.

(I) We first show that every state I ∈ QA, is reachable from {m − 1}. There are three

cases.

1. |I| = 0. |I| = 0 if and only if I = ∅. δA({m − 1}, b) = I = ∅.

2. |I| = 1. Let I = {i}, 0 ≤ i ≤ m − 1. δA({m − 1}, am−1−i) = I.

3. 2 ≤ |I| ≤ m. Let I = {i1, i2, . . . , ik}, 0 ≤ i1 < i2 < . . . < ik ≤ m − 1, 2 ≤ k ≤ m.

δA({m − 1}, w) = I, where

w = ab(ac)i2−i1−1ab(ac)i3−i2−1 · · · ab(ac)ik−ik−1−1am−1−ik .

(II) Any two different states I and J in QA are distinguishable.

Without loss of generality, we may assume that |I| ≥ |J |. Let x ∈ I − J . Then a

string ax can distinguish these two states because

δA(I, a
x) ∈ FA,

δA(J, a
x) /∈ FA.

Due to (I) and (II), A is a minimal DFA with 2m states which accepts L(M)R. Now

let B = (QB,Σ, δB, sB, FB) be another DFA, where

QB = {〈p, q〉 | p ∈ QA − FA, q ⊆ QN}

∪ {〈p′, q′〉 | p′ ∈ FA, q
′ ⊆ QN , 0 ∈ q′},

Σ = {a, b, c, d},

sB = 〈{m − 1}, ∅〉,

FB = {〈p, q〉 | n − 1 ∈ q, 〈p, q〉 ∈ QB},

177

and for each state 〈p, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈p, q〉, e) =







〈p′, q′〉 if δA(p, e) = p′ /∈ FA, δN(q, e) = q′,

〈p′, q′〉 if δA(p, e) = p′ ∈ FA, δN(q, e) = r′, q′ = r′ ∪ {0}.

As we mentioned in last proof, all the states starting with p ∈ FA must end with

q ⊆ QN such that 0 ∈ q. Clearly, B accepts the language L(M)RL(N) and it has

2m · 2n − 2m−1 · 2n−1 =
3

4
2m+n

states. Now we show that B is a minimal DFA.

(I) Every state 〈p, q〉 ∈ QB is reachable. We consider the following six cases:

1. p = ∅, q = ∅. 〈∅, ∅〉 is the sink state of B. δB(〈{m − 1}, ∅〉, b) = 〈p, q〉.

2. p 6= ∅, q = ∅. Let p = {p1, p2, . . . , pk}, 1 ≤ p1 < p2 < . . . < pk ≤ m − 1,

1 ≤ k ≤ m − 1. Note that 0 /∈ p, because 0 ∈ p guarantees 0 ∈ q. δB(〈{m −

1}, ∅〉, w) = 〈p, q〉, where

w = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−1−pk .

Please note that w = am−1−p1 when k = 1.

3. p = ∅, q 6= ∅. In this case, let q = {q1, q2, . . . , ql}, 0 ≤ q1 < q2 < . . . < ql ≤ n − 1,

1 ≤ l ≤ n. δB(〈{m − 1}, ∅〉, x) = 〈p, q〉, where

x = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1b.

4. p 6= ∅, 0 /∈ p, q 6= ∅. Let p = {p1, p2, . . . , pk}, 1 ≤ p1 < p2 < . . . < pk ≤ m − 1,

1 ≤ k ≤ m − 1 and q = {q1, q2, . . . , ql}, 0 ≤ q1 < q2 < . . . < ql ≤ n − 1,

178

1 ≤ l ≤ n. We can find a string uv such that δB(〈{m − 1}, ∅〉, uv) = 〈p, q〉,

where

u = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−1−pk ,

v = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1.

5. p 6= ∅, 0 ∈ p, m − 1 /∈ p, q 6= ∅. Let p = {p1, p2, . . . , pk}, 0 = p1 < p2 < . . . <

pk < m − 1, 1 ≤ k ≤ m − 1 and q = {q1, q2, . . . , ql}, 0 = q1 < q2 < . . . < ql ≤

n − 1, 1 ≤ l ≤ n. Since 0 is in p, according to the definition of B, 0 has to be

in q as well. There exists a string u′v′ such that δB(〈{m − 1}, ∅〉, u′v′) = 〈p, q〉,

where

u′ = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−2−pk ,

v′ = amdql−ql−1amdql−1−ql−2 · · ·amdq2−q1amdq1a.

6. p 6= ∅, {0, m − 1} ⊆ p, q 6= ∅. Let p = {p1, p2, . . . , pk}, 0 = p1 < p2 < . . . <

pk = m − 1, 2 ≤ k ≤ m and q = {q1, q2, . . . , ql}, 0 = q1 < q2 < . . . < ql ≤ n − 1,

1 ≤ l ≤ n. In this case, we have

〈p, q〉 =







δB(〈{0, 1, p2 + 1, . . . , pk−1 + 1}, q〉, a), if m − 2 /∈ p,

δB(〈p − { m − 1}, q〉, b), if m − 2 ∈ p,

where states 〈{0, 1, p2+1, . . . , pk−1+1}, q〉 and 〈p −{ m − 1}, q〉 have been proved

to be reachable in Case 5.

(II) We then show that any two different states 〈p1, q1〉 and 〈p2, q2〉 in QB are distin-

guishable.

1. q1 6= q2. Without loss of generality, we may assume that |q1| ≥ |q2|. Let

179

x ∈ q1 − q2. A string dn−1−x can distinguish them because

δB(〈p1, q1〉, d
n−1−x) ∈ FB,

δB(〈p2, q2〉, d
n−1−x) /∈ FB.

2. p1 6= p2, q1 = q2. Without loss of generality, we assume that |p1| ≥ |p2|. Let

y ∈ p1 − p2. Then there always exists a string ayc2dn such that

δB(〈p1, q1〉, a
yc2dn) ∈ FB,

δB(〈p2, q2〉, a
yc2dn) /∈ FB.

Since all the states in B are reachable and pairwise distinguishable, DFAB is minimal.

Thus, any DFA accepting L(M)RL(N) needs at least 3
4
2m+n states. 2

Theorem 28 gives a lower bound for the state complexity of LR
1 L2 when m,n ≥ 2. It

coincides with the upper bound shown in Theorem 27 exactly. Thus, we obtain the

state complexity of the combined operation LR
1 L2 for m ≥ 2 and n ≥ 2.

Theorem 29 For any integers m,n ≥ 2, let L1 be an m-state DFA language and L2

be an n-state DFA language. Then 3
4
2m+n states are both necessary and sufficient in

the worst case for a DFA to accept LR
1 L2.

In the rest of this section, we study the remaining cases when either m = 1 or n = 1.

We first consider the case when m = 1 and n ≥ 2. In this case, L1 = ∅ or L1 = Σ∗.

LR
1 L2 = L1L2 holds no matter whether L1 is ∅ or Σ

∗, since ∅R = ∅ and (Σ∗)R = Σ∗. It

has been shown in [24] that 2n−1 states are both sufficient and necessary in the worst

case for a DFA to accept the catenation of a 1-state DFA language and an n-state

DFA language, n ≥ 2.

180

When m = 1 and n = 1, it is also easy to see that 1 state is sufficient and necessary

in the worst case for a DFA to accept LR
1 L2, because LR

1 L2 is either ∅ or Σ∗. Thus,

we have Theorem 30 concerning the state complexity of LR
1 L2 for m = 1 and n ≥ 1.

Theorem 30 Let L1 be a 1-state DFA language and L2 be an n-state DFA language,

n ≥ 1. Then 2n−1 states are both sufficient and necessary in the worst case for a DFA

to accept LR
1 L2.

Now, we study the state complexity of LR
1 L2 for m ≥ 2 and n = 1. Let us start with

the following upper bound.

Theorem 31 For any integer m ≥ 2, let L1 and L2 be two regular languages accepted

by an m-state DFA and a 1-state DFA, respectively. Then there exists a DFA of at

most 2m−1 + 1 states that accepts LR
1 L2.

Proof: Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, m ≥ 2, k1 final states

and L1 = L(M). Let N be another DFA of 1 state and L2 = L(N). Since N is a

complete DFA, as we mentioned before, L(N) is either ∅ or Σ∗. Clearly, LR
1 · ∅ = ∅.

Thus, we need to consider only the case L2 = L(N) = Σ∗.

We construct an NFA M ′ = (QM ,Σ, δM ′ , FM , {sM}) with k1 initial states which is

similar to the proof of Theorem 27. δM ′(p, a) = q if δM(q, a) = p where a ∈ Σ and

p, q ∈ QM . It is easy to see that

L(M ′) = L(M)R = LR
1 .

By performing subset construction on NFA M ′, we get an equivalent, 2m-state DFA

A = (QA,Σ, δA, sA, FA) such that L(A) = LR
1 . FA = {i | i ⊆ QM , sM ∈ i} because

M ′ has only one final state sM . Thus, A has 2m−1 final states in total.

181

Define B = (QB,Σ, δB, sB, {fB}) where fB /∈ QA, QB = (QA − FA) ∪ {fB},

sB =







sA if sA /∈ FA,

fB otherwise.

and for any a ∈ Σ and p ∈ QB,

δB(p, a) =







δA(p, a) if δA(p, a) /∈ FA,

fB if δA(p, a) ∈ FA,

fB if p = fB.

The automaton B is exactly the same as A except that A’s 2m−1 final states are

made to be sink states and these sink, final states are merged into one, since they are

equivalent. When the computation reaches the final state fB, it remains there. Now,

it is clear that B has

2m − 2m−1 + 1 = 2m−1 + 1

states and L(B) = LR
1 Σ

∗. 2

This theorem shows an upper bound for the state complexity of LR
1 L2 for m ≥ 2 and

n = 1. Next we prove that this upper bound is reachable.

Lemma 41 Given an integer m = 2 or 3, there exists an m-state DFA M and a

1-state DFA N such that any DFA accepting L(M)RL(N) needs at least 2m−1 + 1

states.

Proof: When m = 2 and n = 1. We can construct the following witness DFAs. Let

M = ({0, 1},Σ, δM , 0, {1}) be a DFA, where Σ = {a, b}, and the transitions are given

as:

• δM(0, a) = 1, δM(1, a) = 0,

• δM(0, b) = 0, δM(1, b) = 0.

182

Let N be the DFA accepting Σ∗. Then the resulting DFA for L(M)RΣ∗ is A =

({0, 1, 2},Σ, δA, 0, {1}) where

• δA(0, a) = 1, δA(1, a) = 1, δA(2, a) = 2,

• δA(0, b) = 2, δA(1, b) = 1, δA(2, b) = 2.

Whenm = 3 and n = 1. The witness DFAs are as follows. LetM ′ = ({0, 1, 2},Σ′, δM ′, 0, {2})

be a DFA, where Σ′ = {a, b, c}, and the transitions are:

• δM ′(0, a) = 1, δM ′(1, a) = 2, δM ′(2, a) = 0,

• δM ′(0, b) = 0, δM ′(1, b) = 1, δM ′(2, b) = 1,

• δM ′(0, c) = 0, δM ′(1, c) = 2, δM ′(2, c) = 1.

Let N ′ be the DFA accepting Σ′∗. The resulting DFA for L(M ′)RΣ′∗ is A′ =

({0, 1, 2, 3, 4},Σ′, δA′, 0, {3}) where

• δA′(0, a) = 1, δA′(1, a) = 3, δA′(2, a) = 2, δA′(3, a) = 3, δA′(4, a) = 3,

• δA′(0, b) = 2, δA′(1, b) = 4, δA′(2, b) = 2, δA′(3, b) = 3, δA′(4, b) = 4,

• δA′(0, c) = 1, δA′(1, c) = 0, δA′(2, c) = 2, δA′(3, c) = 3, δA′(4, c) = 4. 2

The above result shows that the bound 2m−1 + 1 is reachable when m is equal to 2

or 3 and n = 1. The last case is m ≥ 4 and n = 1.

Theorem 32 Given an integer m ≥ 4, there exists a DFA M of m states and a DFA

N of 1 state such that any DFA accepting L(M)RL(N) needs at least 2m−1+1 states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, shown in Figure 7.5, where

QM = {0, 1, . . . , m − 1}, m ≥ 4, Σ = {a, b, c, d}, and the transitions are given as:

183

• δM(i, a) = i+ 1 mod m, i = 0, . . . , m − 1,

• δM(i, b) = i, i = 0, . . . , m − 2, δM(m − 1, b) = m − 2,

• δM(i, c) = i, i = 0, . . . , m − 3, δM(m − 2, c) = m − 1, δM(m − 1, c) = m − 2,

• δM(0, d) = 0, δM(i, d) = i+ 1, i = 1, . . . , m − 2, δM(m − 1, d) = 1.

Figure 7.5: Witness DFAM which shows that the upper bound of the state complexity
of L(M)RL(N), 2m−1 + 1, is reachable when m ≥ 4 and n = 1

Let N be the DFA accepting Σ∗. Then L(M)RL(N) = L(M)RΣ∗. Now we design

a DFA A = (QA,Σ, δA, {m − 1}, FA) similar to the proof of Theorem 28, where

QA = {q | q ⊆ QM}, Σ = {a, b, c, d}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions

are defined as:

δA(p, e) = {j | δM(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(M)R. Since the transitions of M on

letters a, b, and c are exactly the same as those of DFAM in the proof of Theorem 28,

we can say that A is minimal and it has 2m states, among which 2m−1 states are final.

Define B = (QB,Σ, δB, sB, {fB}) where fB /∈ QA, QB = (QA − FA) ∪ {fB},

sB =







sA if sA /∈ FA,

fB otherwise.

184

and for any e ∈ Σ and I ∈ QB,

δB(I, e) =







δA(I, e) if δA(I, e) /∈ FA,

fB if δA(I, e) ∈ FA,

fB if I = fB.

DFA B is the same as A except that A’s 2m−1 final states are changed into sink states

and merged to one sink, final state, as we did in the proof of Theorem 31. Clearly, B

has 2m − 2m−1 + 1 = 2m−1 + 1 states and L(B) = L(M)RΣ∗. Next we show that B

is a minimal DFA.

(I) Every state I ∈ QB is reachable from {m − 1}. The proof is similar to that of

Theorem 28. We consider the following four cases:

1. I = ∅. δA({m − 1}, b) = I = ∅.

2. I = fB. δA({m − 1}, am−1) = I = fB.

3. |I| = 1. Assume that I = {i}, 1 ≤ i ≤ m − 1. Note that i 6= 0 because all the

final states in A have been merged into fB. In this case, δA({m − 1}, a
m−1−i) = I.

4. 2 ≤ |I| ≤ m. Assume that I = {i1, i2, . . . , ik}, 1 ≤ i1 < i2 < . . . < ik ≤ m − 1,

2 ≤ k ≤ m. δA({m − 1}, w) = I, where

w = ab(ac)i2−i1−1ab(ac)i3−i2−1 · · · ab(ac)ik−ik−1−1am−1−ik .

(II) Any two different states I and J in QB are distinguishable.

Since fB is the only final state in QB, it is inequivalent to any other state. Thus, we

consider the case when neither of I and J is fB.

Without loss of generality, we may assume that |I| ≥ |J |. Let x ∈ I − J . x is always

greater than 0 because all the states which include 0 have been merged into fB. Then

185

a string dx−1a can distinguish these two states because

δB(I, d
x−1a) = fB,

δB(J, d
x−1a) 6= fB.

Since all the states in B are reachable and pairwise distinguishable, B is a minimal

DFA. Thus, any DFA accepting L(M))RΣ∗ needs at least 2m−1 + 1 states. 2

After summarizing Theorem 31, Theorem 32 and Lemma 41, we obtain the state

complexity of the combined operation LR
1 L2 for m ≥ 2 and n = 1.

Theorem 33 For any integer m ≥ 2, let L1 be an m-state DFA language and L2 be

a 1-state DFA language. Then 2m−1 + 1 states are both sufficient and necessary in

the worst case for a DFA to accept LR
1 L2.

7.5 State complexity of L∗1L2

In this section, we investigate the state complexity of L(A)∗L(B) for two DFAs A

and B of sizes m,n ≥ 1, respectively. We first notice that, when n = 1, the state

complexity of L(A)∗L(B) is 1 for any m ≥ 1. This is because B is complete (L(B) is

either ∅ or Σ∗), and we have either L(A)∗L(B) = ∅ or Σ∗ ⊆ L(A)∗L(B) ⊆ Σ∗. Thus,

L(A)∗L(B) is always accepted by a 1 state DFA. Next, we consider the case where

A has only one final state, which is also the initial state. In such a case, L(A)∗ is

also accepted by A, and hence the state complexity of L(A)∗L(B) is equal to that of

L(A)L(B). We will show that, for any A of size m ≥ 1 in this form and any B of size

n ≥ 2, the state complexity of L(A)L(B) (also L(A)∗L(B)) is m(2n − 1) − 2n−1 + 1

(Theorems 34 and 35), which is lower than the state complexity of catenation in the

general case. Lastly, we consider the state complexity of L(A)∗L(B) in the remaining

case, that is when A has at least one final state that is not the initial state and

186

n ≥ 2. We will show that its upper bound (Theorem 36) coincides with its lower

bound (Theorem 37), and the state complexity is 5 · 2m+n−3 − 2m−1 − 2n + 1.

Now, we consider the case where the DFA A has only one final state, which is also

the initial state, and first obtain the following upper bound of the state complexity

of L(A)L(B) (L(A)∗L(B)), for any DFA B of size n ≥ 2.

Theorem 34 For integers m ≥ 1 and n ≥ 2, let A and B be two DFAs with m and

n states, respectively, where A has only one final state, which is also the initial state.

Then there exists a DFA of at most m(2n − 1) − 2n−1+1 states that accepts L(A)L(B),

which is equal to L(A)∗L(B).

Proof: Let A = (Q1,Σ, δ1, s1, {s1}) and B = (Q2,Σ, δ2, s2, F2). We construct a DFA

C = (Q,Σ, δ, s, F) such that

Q = Q1 × (2Q2 − {∅}) − { s1} × (2Q2−{s2} − {∅}),

s = 〈s1, {s2}〉,

F = {〈q, T 〉 ∈ Q | T ∩ F2 6= ∅},

δ(〈q, T 〉, a) = 〈q′, T ′〉, for a ∈ Σ, where q′ = δ1(q, a) and T ′ = R ∪ {s2}

if q′ = s1, T
′ = R otherwise, where R = δ2(T, a).

Intuitively, Q contains the pairs whose first component is a state of Q1 and second

component is a subset of Q2. Since s1 is the final state of A, without reading any

letter, we can enter the initial state of B. Thus, states 〈q, ∅〉 such that q ∈ Q1 can

never be reached in C, because B is complete. Moreover, Q does not contain those

states whose first component is s1 and second component does not contain s2.

Clearly, C hasm(2n − 1) − 2n−1+1 states, and we can verify that L(C) = L(A)L(B).2

Next, we show that this upper bound can be reached by some witness DFAs in the

specific form.

187

Figure 7.6: Witness DFA A which shows that the upper bound of the state complexity
of L(A)∗L(B), m(2n − 1) − 2n−1 + 1, is reachable when A has only one final state,
which is also the initial state, and m,n ≥ 2

Figure 7.7: Witness DFA B which shows that the upper bound of the state complexity
of L(A)∗L(B), m(2n − 1) − 2n−1 + 1, is reachable, when A has only one final state,
which is also the initial state, and m,n ≥ 2

Theorem 35 For any integers m ≥ 1 and n ≥ 2, there exist a DFA A of m states and

a DFA B of n states, where A has only one final state, which is also the initial state,

such that any DFA accepting the language L(A)L(B), which is equal to L(A)∗L(B),

needs at least m(2n − 1) − 2n−1 + 1 states.

Proof: When m = 1, the witness DFAs used in the proof of Theorem 1 in [24] can

be used to show that the upper bound proposed in Theorem 34 can be reached.

Next, we consider the case when m ≥ 2. We provide witness DFAs A and B, depicted

188

in Figures 7.6 and 7.7, respectively, over the three letter alphabet Σ = {a, b, c}.

A is defined as A = (Q1,Σ, δ1, 0, {0}) where Q1 = {0, 1, . . . , m − 1}, and the transitions

are given as

• δ1(i, a) = i+ 1 mod m, for i ∈ Q1,

• δ1(i, x) = i, for i ∈ Q1, where x ∈ {b, c}.

B is defined as B = (Q2,Σ, δ2, 0, {n − 1}) where Q2 = {0, 1, . . . , n − 1}, where the

transitions are given as

• δ2(i, a) = i, for i ∈ Q2,

• δ2(i, b) = i+ 1 mod n, for i ∈ Q2,

• δ2(0, c) = 0, δ2(i, c) = i+ 1 mod n, for i ∈ {1, . . . , n − 1}.

Following the construction described in the proof of Theorem 34, we construct a DFA

C = (Q,Σ, δ, s, F) that accepts L(A)L(B) (also L(A)∗L(B)). To prove that C is

minimal, we show that (I) all the states in Q are reachable from s, and (II) any two

different states in Q are not equivalent.

For (I), we show that all the state in Q are reachable by induction on the size of T .

The basis clearly holds, since, for any i ∈ Q1, the state 〈i, {0}〉 is reachable from

〈0, {0}〉 by reading string ai, and the state 〈i, {j}〉 can be reached from the state

〈i, {0}〉 on string bj , for any i ∈ {1, . . . , m − 1} and j ∈ Q2.

In the induction steps, we assume that all the states 〈q, T 〉 such that |T | < k are

reachable. Then we consider the states 〈q, T 〉 where |T | = k. Let T = {j1, j2, . . . , jk}

such that 0 ≤ j1 < j2 < . . . < jk ≤ n − 1. We consider the following three cases:

1. j1 = 0 and j2 = 1. For any state i ∈ Q1, the state 〈i, T 〉 ∈ Q can be reached as

〈i, {0, 1, j3, . . . , jk}〉 = δ(〈0, {0, j3 − 1, . . . , jk − 1}〉, bai),

189

where {0, j3 − 1, . . . , jk − 1} is of size k − 1.

2. j1 = 0 and j2 > 1. For any state i ∈ Q1, the state 〈i, {0, j2, . . . , jk}〉 can be

reached from the state 〈i, {0, 1, j3 − j2 + 1, . . . , jk − j2 + 1}〉 by reading string

cj2−1.

3. j1 > 0. In such a case, the first component of the state 〈q, T 〉 cannot be 0. Thus,

for any state i ∈ {1, . . . , m − 1}, the state 〈i, {j1, j2, . . . , jk}〉 can be reached

from the state 〈i, {0, j2 − j1, . . . , jk − j1}〉 by reading string bj1 .

Next, we show that any two distinct states 〈q, T 〉 and 〈q′, T ′〉 in Q are not equivalent.

We consider the following two cases:

1. q 6= q′. Without loss of generality, we assume q 6= 0. Then the string w =

cn−1am−qbn can distinguish the two states, since δ(〈q, T 〉, w) ∈ F and δ(〈q′, T ′〉, w) 6∈

F .

2. q = q′ and T 6= T ′. Without loss of generality, we assume that |T | ≥ |T ′|. Then

there exists a state j ∈ T − T ′. It is clear that, when q 6= 0, string bn−1−j can

distinguish the two states, and when q = 0, string cn−1−j can distinguish the

two states since j cannot be 0.

Due to (I) and (II), DFA C needs at least m(2n − 1) − 2n−1+1 states and is minimal.2

In the rest of this section, we focus on the case where the DFA A contains at least

one final state that is not the initial state. Thus, this DFA is of size at least 2. We

first obtain the following upper bound for the state complexity.

Theorem 36 Let A = (Q1,Σ, δ1, s1, F1) be a DFA such that |Q1| = m > 1 and |F1 −

{s1}| = k1 ≥ 1, and B = (Q2,Σ, δ2, s2, F2) be a DFA such that |Q2| = n > 1. Then

there exists a DFA of at most (2m−1+2m−1−k1 − 1)(2n − 1) − (2m−1 − 2m−k1−1)(2n−1 − 1)

states that accepts L(A)∗L(B).

190

Proof: We denote F1 − { s1} by F0. Then |F0| = k1 ≥ 1.

We construct a DFA C = (Q,Σ, δ, s, F) for the language L∗
1L2, where L1 and L2 are

the languages accepted by DFAs A and B, respectively.

Let Q = {〈p, t〉 | p ∈ P and t ∈ T} − {〈 p′, t′〉 | p′ ∈ P ′ and t′ ∈ T ′}, where

P = {R | R ⊆ (Q1 − F0) and R 6= ∅} ∪ {R | R ⊆ Q1, s1 ∈ R, and R ∩ F0 6= ∅},

T = 2Q2 − {∅} ,

P ′ = {R | R ⊆ Q1, s1 ∈ R, and R ∩ F0 6= ∅},

T ′ = 2Q2−{s2} − {∅} .

The initial state s is s = 〈{s1}, {s2}〉.

The set of final states is defined to be F = {〈p, t〉 ∈ Q | t ∩ F2 6= ∅}.

The transition relation δ is defined as follows:

δ(〈p, t〉, a) =







〈p′, t′〉 if p′ ∩ F1 = ∅,

〈p′ ∪ {s1}, t
′ ∪ {s2}〉 otherwise,

where, a ∈ Σ, p′ = δ1(p, a), and t′ = δ2(t, a).

Intuitively, C is equivalent to the NFA C ′ obtained by first constructing an NFA

A′ that accepts L∗
1, then catenating this new NFA with DFA B by λ-transitions.

Note that, in the construction of A′, we need to add a new initial and final state s′1.

However, this new state does not appear in the first component of any of the states in

Q. The reason is as follows. First, note that this new state does not have any incoming

transitions. Thus, from the initial state s′1 of A′, after reading a nonempty word, we

will never return to this state. As a result, states 〈p, t〉 such that p ⊆ Q1 ∪ {s
′
1},

s′1 ∈ p, and t ∈ 2Q2 is never reached in DFA C except for the state 〈{s′1}, {s2}〉. Then

we note that in the construction of A′, states s′1 and s1 should reach the same state

on any letter in Σ. Thus, we can say that states 〈{s′1}, {s2}〉 and 〈{s1}, {s2}〉 are

191

equivalent, because either of them is final if s2 6∈ F2, and they are both final states

otherwise. Hence, we merge this two states and let 〈{s1}, {s2}〉 be the initial state of

C.

Also, we notice that states 〈p, ∅〉 such that p ∈ P can never be reached in C, because

B is complete.

Moreover, C does not contain those states whose first component contains a final

state of A and whose second component does not contain the initial state of B.

Therefore, we can verify that DFA C indeed accepts L∗
1L2, and it is clear that the

size of Q is

(2m−1 + 2m−1−k1 − 1)(2n − 1) − (2m−1 − 2m−k1−1)(2n−1 − 1)

. 2

Then we show that this upper bound is reachable by some witness DFAs.

Figure 7.8: Witness DFA A which shows that the upper bound of the state complexity
of L(A)∗L(B), 5 · 2m+n−3 − 2m−1 − 2n + 1, is reachable when m,n ≥ 2

Theorem 37 For any integers m,n ≥ 2, there exist a DFA A of m states and a DFA

B of n states such that any DFA accepting L(A)∗L(B) needs at least 5 · 2m+n−3 −

2m−1 − 2n + 1 states.

192

Figure 7.9: Witness DFA B which shows that the upper bound of the state complexity
of L(A)∗L(B), 5 · 2m+n−3 − 2m−1 − 2n + 1, is reachable when m,n ≥ 2

Proof: We define the following two automata over a four letter alphabet Σ = {a, b, c, d}.

Let A = (Q1,Σ, δ1, 0, {m − 1}), shown in Figure 7.8, where Q1 = {0, 1, . . . , m − 1},

and the transitions are defined as

• δ1(i, a) = i+ 1 mod m, for i ∈ Q1,

• δ1(0, b) = 0, δ1(i, b) = i+ 1 mod m, for i ∈ {1, . . . , m − 1},

• δ1(i, x) = i, for i ∈ Q1, x ∈ {c, d}.

Let B = (Q2,Σ, δ2, 0, {n − 1}), shown in Figure 7.9, where Q2 = {0, 1, . . . , n − 1},

and the transitions are defined as

• δ2(i, x) = i, for i ∈ Q2, x ∈ {a, b},

• δ2(i, c) = i+ 1 mod n, for i ∈ Q2,

• δ2(i, d) = 0, for i ∈ Q2.

Let C = {Q,Σ, δ, 〈{0}, {0}〉, F} be the DFA accepting the language L(A)∗L(B) which

is constructed from A and B exactly as described in the proof of Theorem 36.

193

Now, we prove that the size of Q is minimal by showing that (I) any state in Q can

be reached from the initial state, and (II) no two different states in Q are equivalent.

We first prove (I) by induction on the size of the second component t of the states in

Q.

Basis: for any i ∈ Q2, the state 〈{0}, {i}〉 can be reached from the initial state

〈{0}, {0}〉 on string ci. Then by the proof of Theorem 5 in [24], it is clear that the

state 〈p, {i}〉 of Q, where p ∈ P and i ∈ Q2, is reachable from the state 〈{0}, {i}〉 on

strings over letters a and b.

Induction step: assume that all the states 〈p, t〉 in Q such that p ∈ P and |t| < k

are reachable. Then we consider the states 〈p, t〉 in Q where p ∈ P and |t| = k. Let

t = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < . . . < jk ≤ n − 1.

Note that states such that p = {0} and j1 = 0 are reachable as follows:

〈{0}, {0, j2, . . . , jk}〉 = δ(〈{0}, {0, j3 − j2, . . . , jk − j2}〉, c
j2am−1b).

Then states such that p = {0} and j1 > 0 can be reached as follows:

〈{0}, {j1, j2, . . . , jk}〉 = δ(〈{0}, {0, j2 − j1, . . . , jk − j1}〉, c
j1).

Once again, by using the proof of Theorem 5 in [24], states 〈p, t〉 in Q, where p ∈ P

and |t| = k, can be reached from the state 〈{0}, t〉 on strings over letters a and b.

Next, we show that any two states in Q are not equivalent. Let 〈p, t〉 and 〈p′, t′〉 be

two different states in Q. We consider the following two cases:

1. p 6= p′. Without loss of generality, we assume |p| ≥ |p′|. Then there exists a

state i ∈ p − p′. It is clear that string am−1−idcn is accepted by C starting from

the state 〈p, t〉, but it is not accepted starting from the state 〈p′, t′〉.

194

2. p = p′ and t 6= t′. We may assume that |t| ≥ |t′| and let j ∈ t − t′. Then the

state 〈p, t〉 reaches a final state on string cn−1−j , but the state 〈p′, t′〉 does not

on the same string. Note that, when m − 1 ∈ p, we can say that j 6= 0.

Due to (I) and (II), DFA C has at least 5 · 2m+n−3 − 2m−1 − 2n + 1 reachable states,

and any two of them are not equivalent. 2

7.6 State complexity of (L1 ∪ L2)L3

In this section, we study the state complexity of (L1 ∪ L2)L3, where L1, L2 and L3

are regular languages accepted by DFAs of m,n, p states, respectively. We first show

that the state complexity of (L1 ∪L2)L3 is mn2p − (m+ n − 1)2p−1 when m,n, p ≥ 2

(Theorem 38). Next, we investigate the case when m = 1 or n = 1 and p ≥ 2 and

show that the state complexity is mn2p − 2p−1 in such a case (Theorem 39). Then

we prove that the state complexity of (L1 ∪ L2)L3 is mn when m = 1 or n = 1 and

p = 1 (Theorem 40). Finally, we show that the state complexity of (L1 ∪ L2)L3 is

mn − m − n + 2 when m,n ≥ 2 and p = 1 (Theorem 41).

Now let us start with the state complexity of (L1∪L2)L3 for any integers m,n, p ≥ 2.

Theorem 38 Let L1, L2 and L3 be three regular languages accepted by an m-state

DFA, an n-state DFA and a p-state DFA, respectively, m,n, p ≥ 2. Then mn2p −

(m + n − 1)2p−1 states are sufficient and necessary in the worst case for a DFA to

accept (L1 ∪ L2)L3.

Proof: We first show that mn2p − (m+ n − 1)2p−1 states are sufficient. It has been

proved in [24] that the state complexity of L(U)L(V) is upper bounded by u2v − k2v−1,

where U and V are u-state and v-state automata, respectively, and V has k final

states. Thus, the state complexity of (L1 ∪ L2)L3 is no more than mn2p − k′2p−1 by

the mathematical composition of the state complexity of union and catenation, where

195

k′ is the number of final states in the DFA accepting L1 ∪ L2. We can easily get the

upper bound mn2p − (m+n − 1)2p−1 when the DFAs for L1 and L2 both have a single

final state.

Now let us prove that mn2p − (m + n − 1)2p−1 states are necessary in the worst

case. Let A = (QA,Σ, δA, 0, {m − 1}) be a DFA, where QA = {0, 1, . . . , m − 1},

Σ = {a, b, c, d}, and the transitions are given as:

• δA(i, a) = i+ 1 mod m, i = 0, . . . , m − 1,

• δA(i, e) = i, i = 0, . . . , m − 1, e ∈ {b, c, d}.

Let B = (QB,Σ, δB, 0, {n − 1}) be a DFA, where QB = {0, 1, . . . , n − 1}, Σ =

{a, b, c, d}, and the transitions are given as:

• δB(i, e) = i, i = 0, . . . , n − 1, e ∈ {a, c, d},

• δB(i, b) = i+ 1 mod n, i = 0, . . . , n − 1.

Let C = (QC ,Σ, δC , 0, {p − 1}) be a DFA, where QC = {0, 1, . . . , p − 1}, Σ = {a, b, c, d},

and the transitions are given as:

• δC(i, e) = i, i = 0, . . . , p − 1, e ∈ {a, b},

• δC(i, c) = i+ 1 mod p, i = 0, . . . , p − 1,

• δC(i, d) = 1, i = 0, . . . , p − 1.

196

Next we construct a DFA D = (QD,Σ, δD, sD, FD), where

QD = M ∪N ∪ P,

M = {〈i, j, k〉 | i ∈ QA − { m − 1}, j ∈ QB − { n − 1}, k ⊆ QC},

N = {〈i, j, k〉 | i = m − 1, j ∈ QB, k ⊆ QC , 0 ∈ k},

P = {〈i, j, k〉 | i ∈ QA, j = n − 1, k ⊆ QC , 0 ∈ k},

sD = 〈0, 0, ∅〉,

FD = {〈i, j, k〉 ∈ QD | p − 1 ∈ k},

and for any g = 〈i, j, k〉 ∈ QD, a ∈ Σ, δD(g, a) = 〈i
′, j′, k′〉, where

• if δA(i, a) = i′ 6= m − 1 and δB(j, a) = j′ 6= n − 1, then δC(k, a) = k′,

• if δA(i, a) = i′ = m − 1 and δB(j, a) = j′, then k′ = δC(k, a) ∪ {0},

• if δA(i, a) = i′ and δB(j, a) = j′ = n − 1, then k′ = δC(k, a) ∪ {0}.

Clearly, D accepts (L(A) ∪ L(B))L(C). We will prove D is a minimal DFA in the

following.

(I) We first show that every state 〈i, j, k〉 ∈ QD, is reachable from sD by induction

on the size of k.

When |k| = 0, we can see i 6= m − 1 and j 6= n − 1 according to the definition of

D. The state 〈i, j, ∅〉 is reachable from sD by reading aibj . When |k| = 1, let k be

{k1}, 0 ≤ k1 ≤ p − 1. We have δD(sD, a
mck1aibj) = 〈i, j, k〉. Note that if i = m − 1 or

j = n − 1, then k has to be {0} in this case.

Assume that any state 〈i′, j′, k′〉 ∈ QD such that |k′| = q ≥ 1 is reachable from sD.

We will prove that 〈i, j, k〉 ∈ QD such that |k| = q + 1 is reachable in the following.

Let k = {l1, l2, . . . , lq+1} and k′ = {l2 − l1, . . . , lq+1 − l1}, where 0 ≤ l1 ≤ l2 ≤ . . . ≤

lq+1 ≤ p − 1. Then

δD(〈0, 0, k
′〉, amcl1aibj) = 〈i, j, k〉.

197

Since |k′| = p and 〈0, 0, k′〉 is reachable from sD according to the induction hypothesis,

the state 〈i, j, k〉 is also reachable. As we mentioned, if i = m − 1 or j = n − 1, then

l1 has to be 0. Thus, we have proved every state 〈i, j, k〉 ∈ QD, can be reached from

sD.

(II) Next, we show that any two different states 〈i1, j1, k1〉, 〈i2, j2, k2〉 ∈ QD, are

distinguishable. We consider the following three cases.

1. k1 6= k2. Without loss of generality, we may assume that |k1| ≥ |k2|. Let

x ∈ k1 − k2. A string cp−1−x can distinguish the two states because

δD(〈i1, j1, k1〉, c
p−1−x) ∈ FD,

δD(〈i2, j2, k2〉, c
p−1−x) /∈ FD.

2. i1 6= i2, k1 = k2. Without loss of generality, we assume that i1 > i2. Then there

always exists a string bn−j2dam−1−i1cp−1 such that

δD(〈i1, j1, k1〉, b
n−j2dam−1−i1cp−1) ∈ FD,

δD(〈i2, j2, k2〉, b
n−j2dam−1−i1cp−1) /∈ FD.

3. i1 = i2, j1 6= j2, k1 = k2. Without loss of generality, we assume j1 > j2 in this

case. Then we can distinguish the two states with am−i1dbn−1−j1cp−1 because

δD(〈i1, j1, k1〉, a
m−i1dbn−1−j1cp−1) ∈ FD,

δD(〈i2, j2, k2〉, a
m−i1dbn−1−j1cp−1) /∈ FD.

Thus, the states in D are pairwise distinguishable and D is a minimal DFA accepting

(L(A) ∪ L(B))L(C) with mn2p − (m+ n − 1)2p−1 states. 2

Nest, we consider the case when m = 1 or n = 1, and p ≥ 2. When m = 1, n ≥ 2,

198

p ≥ 2, the resulting language of (L1 ∪ L2)L3 is either Σ∗L3 or L2L3 whose state

complexities are 2p−1 and n2p − 2p−1, respectively [24]. Clearly, the state complexity

of (L1 ∪ L2)L3 should be the latter one. When m ≥ 2, n = 1, p ≥ 2, the case

is symmetric and the state complexity is m2p − 2p−1. When m = n = 1, n ≥ 2,

(L1 ∪ L2)L3 is either Σ∗L3 or ∅ and the state complexity is 2p−1. Thus, we can get

Theorem 39.

Theorem 39 Let L1, L2 and L3 be three regular languages accepted by an m-state

DFA, an n-state DFA and a p-state DFA, respectively, m = 1 or n = 1, and p ≥ 2.

Then mn2p − 2p−1 states are sufficient and necessary in the worst case for a DFA to

accept (L1 ∪ L2)L3.

Now let us investigate the case when p = 1. In this case, the language L3 is either Σ
∗

or ∅. In [24], it has been proved that the state complexity of L1Σ
∗ is m. Therefore,

the mathematical composition of the state complexities of union and catenation for

(L1 ∪L2)L3 when p = 1 is mn. This upper bound is reachable when m = 1 or n = 1,

and p = 1, because

(L1 ∪ L2)Σ
∗ =







L1Σ
∗, if m ≥ 2, n = 1, L2 = ∅,

L2Σ
∗, if m = 1, L1 = ∅, n ≥ 2,

Σ∗, if m = n = 1, L1 = L2 = Σ∗.

Thus, Theorem 40 in the following holds.

Theorem 40 Let L1, L2 and L3 be three regular languages accepted by an m-state

DFA, an n-state DFA and a 1-state DFA, respectively, m = 1 or n = 1. Then mn

states are sufficient and necessary in the worst case for a DFA to accept (L1 ∪L2)L3.

Now the only case left is m,n ≥ 2 and p = 1. The upper bound can be lowered in this

case, because the multiple final states in the resulting DFA for L1 ∪ L2 are merged

to one sink, final state to accept (L1 ∪ L2)Σ
∗. There are m+ n − 1 such final states

199

in the worst case. Thus, the upper bound is mn − m − n + 2 in this case and it is

easy to see that L1 = {|w|a ≡ m − 1 mod m | w ∈ {a, b}∗}, L2 = {|w|b ≡ n − 1

mod n | w ∈ {a, b}∗}, and L3 = {a, b}∗ are the witness regular languages that reach

the upper bound.

Theorem 41 Let L1, L2 and L3 be three regular languages accepted by an m-state

DFA, an n-state DFA and a 1-state DFA, respectively, m,n ≥ 2. Then mn − m − n+2

states are sufficient and necessary in the worst case for a DFA to accept (L1 ∪L2)L3.

7.7 State complexity of (L1 ∩ L2)L3

In this section, we investigate the state complexity of (L1 ∩ L2)L3, where L1, L2 and

L3 are regular languages accepted by DFAs of m,n, p states, respectively. We first

show that the state complexity of (L1 ∩ L2)L3 is mn2p − 2p−1 when m,n ≥ 1, p ≥ 2

(Theorem 42). Next, we prove the case when m,n ≥ 1, p = 1 and show that the state

complexity is mn in this case (Theorem 43).

Let us start with the state complexity of (L1∩L2)L3 for any integers m,n ≥ 1, p ≥ 2.

Theorem 42 Let L1, L2 and L3 be three regular languages accepted by an m-state

DFA, an n-state DFA and a p-state DFA, respectively, m,n ≥ 1, p ≥ 2. Then

mn2p − 2p−1 states are sufficient and necessary in the worst case for a DFA to accept

(L1 ∩ L2)L3.

Proof: The state complexity of (L1 ∩ L2)L3 is upper bounded by mn2p − 2p−1 be-

cause it is the mathematical composition of the state complexities of intersection and

catenation [24]. Thus, we only need to prove that mn2p − 2p−1 states are necessary

in the worst case. When m = 1 and p ≥ 2, (L1 ∩ L2)L3 is either L2L3 or ∅. The

state complexity of L2L3 is n2p − 2p−1 [24] which coincides with the upper bound we

obtained. The case when n = 1 and p ≥ 2 is symmetric.

200

When m,n, p ≥ 2, we use the same witness DFAs A, B and C in the proof of

Theorem 38. Next we construct a DFA D = (QD,Σ, δD, sD, FD), where

QD = M − N,

M = {〈i, j, k〉 | i ∈ QA, j ∈ QB, k ⊆ QC},

N = {〈i, j, k〉 | i = m − 1, j = n − 1, k ⊆ QC − { 0}},

sD = 〈0, 0, ∅〉,

FD = {〈i, j, k〉 ∈ QD | p − 1 ∈ k},

and for any g = 〈i, j, k〉 ∈ QD, a ∈ Σ, δD is defined as follows,

δD(g, a) =







〈δA(i, a), δB(j, a), δC(k, a) ∪ {0}〉, if δA(i, a) = m − 1

and δB(j, a) = n − 1,

〈δA(i, a), δB(j, a), δC(k, a)〉, otherwise.

It is easy to see that D accepts (L(A) ∩ L(B))L(C). In the following, we will show

D is minimal with a similar method as in the proof of Theorem 38.

(I) First, we prove that any state 〈i, j, k〉 ∈ QD can be reached from sD by induction

on the size of k.

When |k| = 0, we have i 6= m − 1 or j 6= n − 1 according to the definition of

D. The state 〈i, j, ∅〉 can be reached from sD by aibj . When |k| = 1, let k = {k1},

0 ≤ k1 ≤ p − 1. Then δD(sD, a
m−1bn−1abck1aibj) = 〈i, j, k〉. If i = m − 1 and j = n − 1,

k must be {0} when |k| = 1.

Assume any state 〈i′, j′, k′〉 ∈ QD such that |k′| = q ≥ 1 can be reached from sD. In

the following we will prove 〈i, j, k〉 ∈ QD such that |k| = q + 1 is also reachable. Let

k = {l1, l2, . . . , lq+1} and k′ = {l2 − l1, . . . , lq+1 − l1}, where 0 ≤ l1 ≤ l2 ≤ . . . ≤ lq+1 ≤

p − 1. Then

δD(〈0, 0, k
′〉, am−1bn−1abcl1aibj) = 〈i, j, k〉.

201

Since 〈0, 0, k′〉 where |k′| = p is reachable as the induction hypothesis, the state 〈i, j, k〉

is also reachable. Again, if i = m − 1 and j = n − 1, l1 must be 0. Thus, all states in

D are reachable from sD.

(II) Next, we prove that any two different states 〈i1, j1, k1〉 and 〈i2, j2, k2〉 in QD, are

distinguishable. There are three cases to be considered.

1. k1 6= k2. Without loss of generality, assume that |k1| ≥ |k2|. Then there exists

x ∈ k1 − k2 and a string cp−1−x distinguishes the two states because

δD(〈i1, j1, k1〉, c
p−1−x) ∈ FD,

δD(〈i2, j2, k2〉, c
p−1−x) /∈ FD.

2. i1 6= i2, k1 = k2. Without loss of generality, we may assume i1 > i2. Then there

exists a string bn−1−j1dam−1−i1cp−1 such that

δD(〈i1, j1, k1〉, b
n−1−j1dam−1−i1cp−1) ∈ FD,

δD(〈i2, j2, k2〉, b
n−1−j1dam−1−i1cp−1) /∈ FD.

3. i1 = i2, j1 6= j2, k1 = k2. Without loss of generality, assume that j1 > j2. Then

the two states can be distinguished by am−1−i1dbn−1−j1cp−1 because

δD(〈i1, j1, k1〉, a
m−1−i1dbn−1−j1cp−1) ∈ FD,

δD(〈i2, j2, k2〉, a
m−1−i1dbn−1−j1cp−1) /∈ FD.

Thus, all states in D are distinguishable and D is a minimal DFA for (L(A) ∩

L(B))L(C) with mn2p − 2p−1 states. 2

Next, we consider the case when m,n ≥ 1 and p = 1. Since L3 is accepted by a

1-state DFA, it is either ∅ or Σ∗. When L3 = ∅, (L1∩L2)L3 is also ∅. When L3 = Σ∗,

202

we have (L1 ∩ L2)L3 = (L1 ∩ L2)Σ
∗. As we mentioned in the previous section,

the state complexity of L1Σ
∗ is m [24]. Thus, the state complexity of (L1 ∩ L2)Σ

∗

is upper bounded by mn and the reader can easily prove that the upper bound is

reached by L1 = {|w|a ≡ m − 1 mod m | w ∈ {a, b}∗} and L2 = {|w|b ≡ n − 1

mod n | w ∈ {a, b}∗} when m,n ≥ 2. For m = 1 or n = 1, and p = 1, we have

(L1 ∩ L2)Σ
∗ =







L1Σ
∗, if m ≥ 2, n = 1, L2 = Σ∗,

L2Σ
∗, if m = 1, L1 = Σ∗, n ≥ 2,

Σ∗, if m = n = 1, L1 = L2 = Σ∗.

Thus, we can get Theorem 43 after summarizing the subcases above.

Theorem 43 Let L1, L2 and L3 be three regular languages accepted by an m-state

DFA, an n-state DFA and a 1-state DFA, respectively, m,n ≥ 1. Then mn states are

sufficient and necessary in the worst case for a DFA to accept (L1 ∩ L2)L3.

7.8 State complexity of L1L2 ∩ L3

In this section, we investigate the state complexity of L1L2∩L3 for regular languages

L1, L2, and L3 accepted by m-state, n-state, and p-state DFAs, respectively. It is

clear that, when p = 1, L3 can only be either Σ∗ or ∅. We do not need to consider the

case L3 = ∅. Thus, L1L2 ∩ L3 = L1L2. Therefore, when p = 1, the state complexity

of L1L2 ∩ L3 is equal to that of L1L2. In the following theorem, we show that the

state complexity of L1L2 ∩ L3 is (m2n − 2n−1)p when m ≥ 1, n ≥ 2, and p ≥ 2, and

it is mp when m ≥ 1, n = 1, and p ≥ 2.

Theorem 44 Let L1, L2, and L3 be languages accepted by m-state, n-state, and

p-state DFAs, respectively, then, we have:

(1) when m ≥ 1, n ≥ 2, and p ≥ 2, the state complexity of L1L2∩L3 is (m2n − 2n−1)p.

203

(2) when m ≥ 1, n = 1, and p ≥ 2, the state complexity of L1L2 ∩ L3 is mp.

Proof: For (1), Denote by A, B, and C the m-state, n-state, and p-state DFAs,

respectively. Since the claimed state complexity is exactly the composition of the

state complexities of catenation and intersection, the construction of a DFA E that

accepts L1L2∪L3 is as follows. We first construct a DFA D that accepts L1L2. Then,

the set of the states of E is a Cartesian product of the sets of the states of D and C,

the initial state of E is a pair of the initial states of D and C, and each final state of

E consists of a final state of D and a final state of C. Moreover, the transitions of E

simulates the transitions of D and C on the first element and the second element of

each state of E, respectively. Since the state complexity of L1L2 is m2n − 2n−1 when

m ≥ 1 and n ≥ 2, the total number of states in E is upper bounded by (m2n − 2n−1)p.

To prove (1), we just need to show that this upper bound can be reached by some

witness DFAs.

We first consider the case where m ≥ 2, n ≥ 2, and p ≥ 2. Let us define the following

DFAs A, B, and C over the same alphabet Σ = {a, b, c}.

Let A = (Q1,Σ, δ1, 0, F1), where Q1 = {0, 1, . . . , m − 1}, F1 = {m − 1}, and the

transitions are given as:

• δ1(i, a) = (i+ 1) mod m, i ∈ Q1,

• δ1(i, b) = i+ 1, if i ≤ m − 3, δ1(m − 2, b) = 0,

• δ1(m − 1, b) = (m − n+ 1) mod (m − 1),

• δ1(i, c) = i, i ∈ Q1.

Let B = (Q2,Σ, δ2, 0, F2), where Q2 = {0, 1, . . . , n − 1}, F2 = {n − 1}, and the

transitions are given as:

• δ2(i, a) = i+ 1, i ≤ n − 2, δ2(n − 1, a) = n − 1,

204

• δ2(i, b) = (i+ 1) mod n, i ∈ Q2,

• δ2(i, c) = i, i ∈ Q2.

Let C = (Q3,Σ, δ3, 0, F3), where Q3 = {0, 1, . . . , p − 1}, F3 = {p − 1}, and the

transitions are given as:

• δ3(i, x) = i, i ∈ Q3 and x ∈ {a, b},

• δ3(i, c) = (i+ 1) mod p, i ∈ Q3.

Note that, in DFAs A and B, the transitions on letters a and b are exactly the

same as those defined in the DFAs in [14] that prove the lower bound of the state

complexity of catenation. Moreover, no state will change after reading a letter c. Let

D = (Q4,Σ, δ4, 0, F4) be the DFA accepting L(A)L(B). Thus, D does not move on

letter c, it has |Q4| = m2n − 2n−1 reachable states, and any two states in Q4 are not

equivalent.

Then, as described at the beginning of this proof, we construct the DFA E =

(Q5,Σ, δ5, 〈0, 0〉, F5), where Q5 is a Cartesian product of Q4 and Q3. For each state in

Q5, δ5 simulates the transitions of D on its first element and simulates the transitions

of C on its second element. Furthermore, each state in F5 consists of a final state in

F4 and the final state in F3. Next we show that (I) all the states in Q5 are reachable

and (II) any two of them are not equivalent. It is clear that (I) is true, because, using

the proof of Theorem 1 in [14], any state 〈s, 0〉, s ∈ Q4, can be reach from the initial

state 〈0, 0〉 by reading a string over letters a and b, and then, any state 〈s, i〉, s ∈ Q4,

can be reached from the state 〈s, 0〉 by reading ci. For (II), let 〈s1, i1〉 and 〈s2, i2〉

be two different states in Q5. If s1 = s2, then there exists a string w1 such that, by

reading w1, we can reach a final state in F4 from the state s1. Thus, string w1c
p−i1−1

will distinguish the states 〈s1, i1〉 and 〈s2, i2〉. If s1 6= s2, then there exists a string

w2 such that w2 leads s1 to a final state in F4 but does not lead s2 to any final state

205

in F4. Thus, string w2c
p−i1−1 will distinguish the states 〈S1, i1〉 and 〈S2, i2〉. After

verifying (I) and (II), we can say that the size of Q5 is (m2n − 2n−1)p, and therefore

this number is the state complexity of L1L2 ∩ L3 when m ≥ 2, n ≥ 2, and p ≥ 2.

Next we consider the case where m = 1, n ≥ 2, and p ≥ 2. We use the alphabet

Σ = {a, b, c}. L1 is Σ∗, and we use the same DFA C for L3. Here we define F =

(Q6,Σ, δ6, 0, F6) for L2, where Q6 = {0, 1, . . . , n − 1}, F6 = {n − 1}, and the transitions

are given as follows:

• δ6(0, a) = 0, δ6(i, a) = i+ 1, 1 ≤ i ≤ n − 2, δ6(n − 1, a) = 1,

• δ6(0, b) = 1, δ6(i, b) = i, 1 ≤ i ≤ n − 1,

• δ6(i, c) = i, i ∈ Q6.

Note that, without the transitions on letter c, F is the second witness DFA in [24]

that proves the lower bound of the state complexity of catenation when m = 1 and

n ≥ 2. Thus, the proof for this case is very similar to that in the previous case and

hence is omitted.

For (2), recall that the state complexity of L1L2 is m when m ≥ 1 and n = 1. Thus,

mp is the composition of the state complexities of catenation and intersection, and

it is an upper bound of the state complexity of L1L2 ∩ L3 when m ≥ 1, n = 1, and

p ≥ 2. To prove (2), we just need to show the existence of witness DFAs that reach

this upper bound, and we give them in the following.

Define G = (Q7, {a, b}, δ7, 0, {m − 1}) to be the DFA for L1, where Q7 = {0, 1, . . . , m −

1}, and the transitions are as follows:

• δ7(i, a) = i+ 1 mod m, i ∈ Q7,

• δ7(i, b) = i, i ∈ Q7.

206

L2 is {a, b}∗.

Define H = (Q8, {a, b}, δ8, 0, {p − 1}) to be the DFA for L3, where Q8 = {0, 1, . . . , p −

1}, and the transitions are as follows:

• δ8(i, a) = i, i ∈ Q8,

• δ8(i, b) = i+ 1 mod p, i ∈ Q8.

It is clear that the DFA accepting L1L2 has m states. Then, the proof method is

exactly the same as the previous ones, and hence is omitted. 2

7.9 State complexity of L1L2 ∪ L3

In this section, we investigate the state complexity of L1L2∪L3 for regular languages

L1, L2, and L3 accepted by m-state, n-state, and p-state DFAs, respectively. It is

clear that, when L3 is Σ∗, L1L2 ∪ L3 = Σ∗ for any L1 and L2 over Σ. Thus, when

p = 1, the state complexity of L1L2 ∪ L3 is 1. For the other cases, we will show that

the state complexity of L1L2 ∪ L3 is mp − p + 1 when m ≥ 1, n = 1, and p ≥ 2

(Lemma 42), and it is (m2n − 2n−1)p when m ≥ 1, n ≥ 2, and p ≥ 2 (Theorem 45).

We first consider the case where m ≥ 1, n = 1, and p ≥ 2.

Lemma 42 Let L1, L2, and L3 be languages accepted by m-state, n-state, and p-state

DFAs, respectively. Then, when m ≥ 1, n = 1, and p ≥ 2, the state complexity of

L1L2 ∪ L3 is mp − p+ 1.

Proof: Let us denote by A, B, and C the m-state, n-state, and p-state DFAs, re-

spectively.

We first show that mp − p+1 is an upper bound of the state complexity of L1L2∪L3.

In the construction of a DFA E that accepts L1L2 ∪ L3, we first construct a DFA

D that accepts L1L2. Then, the set of the states of E is a Cartesian product of the

207

state sets of D and C, the initial state of E is a pair of the initial states of D and C,

and each final state of E contains a final state of D or the final state of C. Moreover,

the transitions of E simulates the transitions of D and C on the first element and the

second element of each state of E, respectively. Note that B has only one state and

it will go back to this state on any letter in Σ. As a result, the final state f of D will

return to itself on any letter in Σ as well.

We know that, when m ≥ 1 and n = 1, the state complexity of L1L2 is m. Thus,

E has at most mp states. Because f will return to itself on any letter in Σ, all the

states 〈f, i〉, where i is a state of C, are clearly equivalent. Therefore, mp − p + 1 is

an upper bound of the state complexity of L1L2 ∪L3 when m ≥ 1, n = 1, and p ≥ 2.

To show that this upper bound is reachable, we use the language L2 = {a, b}∗, and

the DFAs G and H in the proof of Theorem 44 for L1 and L3, respectively. The proof

is straightforward, and hence is omitted. 2

For the remaining cases, that is when m ≥ 1, n ≥ 2, and p ≥ 2, we obtain the

following result.

Theorem 45 Let L1, L2, and L3 be languages accepted by m-state, n-state, and p-

state DFAs, respectively. Then, when m ≥ 1, n ≥ 2, and p ≥ 2, the state complexity

of L1L2 ∪ L3 is (m2n − 2n−1)p.

Proof: Let us denote by A, B, and C the m-state, n-state, and p-state DFAs, re-

spectively.

Since the claimed state complexity is exactly the composition of the state complexities

of catenation and union, the construction of a DFA E that accepts L1L2 ∪ L3 is as

follows. We first construct a DFA D that accepts L1L2. Then, the set of the states of

E is a Cartesian product of the sets of the states of D and C, the initial state of E is a

pair of the initial states of D and C, and each final state of E contains a final state of

D or the final state of C. Moreover, the transitions of E simulates the transitions of

208

D and C on the first element and the second element of each state of E, respectively.

Since the state complexity of L1L2 is m2n − 2n−1 when m ≥ 1 and n ≥ 2, the total

number of states in E is upper bounded by (m2n − 2n−1)p. To prove the theorem, we

just need to show that there exist witness DFAs that reach this upper bound.

We first consider the case where m = 1, n ≥ 2, and p ≥ 2. We use the alphabet

Σ = {a, b, c, d}, and L1 = Σ∗.

Define B = (Q2,Σ, δ2, 0, F2) that accepts L2, where Q2 = {0, 1, . . . , n − 1}, F2 =

{n − 1}, the transitions on letters a, b, and c are exactly the same as those defined

in the DFA F used in the proof of Theorem 44, and the transitions on letter d are

given as δ2(i, d) = 0, i ∈ Q2.

Define C = (Q3,Σ, δ3, 0, F3) that accepts L3, where Q3 = {0, 1, . . . , p − 1}, F3 =

{p − 1}, the transitions on letters a, b, and c are exactly the same as those defined in

the DFA C used in the proof of Theorem 44, and the transitions on letter d are given

as δ3(i, d) = i, i ∈ Q3.

As described at the beginning of this proof, we first construct the DFA D. Note

that, without the transitions on letters c and d, B is the second witness DFA in [24]

that proves the lower bound of the state complexity of catenation when m = 1 and

n ≥ 2. Thus, D has 2n−1 states, all these states are reachable, and any two of the

states are not equivalent. After constructing E = (Q5,Σ, δ5, 〈0, 0〉, F5) we just need

to show that (I) all the states in Q5 are reachable, and (II) any two states in Q5 are

not equivalent. The reachability of all the states in Q5 is immediate since all the

transitions on letters a, b, and c of B and C are exactly the same as those defined in

the DFAs F and C used in the proof of Theorem 44, respectively.

For (II), let 〈s1, i1〉 and 〈s2, i2〉 be two different states in Q5. We consider the following

two cases:

1 i1 6= i2. String dcp−1−i1 will distinguish these two states.

209

2 i1 = i2. We have s1 6= s2, and there exists a string w such that, after reading w,

we can reach a final state of D from s1, but we cannot reach any final state of

D from s2. As a result, if i1 is not a final state of C, then w will distinguish

〈s1, i1〉 from 〈s2, i2〉, otherwise, string cw will distinguish these two states.

Since E has 2n−1p reachable states and any two of them are not equivalent, we have

showed the existence of witness DFAs that prove the state complexity of L1L2 ∪ L3

to be (m2n − 2n−1)p when m = 1, n ≥ 2, and p ≥ 2.

In the following, we consider the case where m ≥ 2, n ≥ 2, and p ≥ 2. We use

the same DFAs A, B, and C used in the proof of Theorem 44 for L1, L2, and L3,

respectively, and denote them by A′, B′, and C ′. As described at the beginning of

this proof, we construct D′ and E ′ for L1L2 and L1L2 ∪ L3, respectively. Note that

the only difference between E ′ and the DFA E used in the proof of Theorem 44 is the

definitions of their final state sets. Here, each final state of E ′ contains a final state

of B′ or the final state of C ′. Thus, we can say that, E ′ has (m2n − 2n−1)p states,

and all these states are reachable from its initial state. The proof for the reachability

of the states of E ′ is exactly the same as the proof for the reachability of the states

of the DFA E used in the proof of Theorem 44.

In order to prove the theorem, we need to show that any two states in E ′ are not

equivalent in the next step. Before proving this, we need some details about the

construction of D′. The DFAs A′ and B′ are obtained by adding the transitions on

letter c to the DFAs in [14] that prove the lower bound of the state complexity of

catenation. Thus, the set of the states of D′ can be written in the same form as used

in [14]:

Q4 = {{i} ∪ S | i ∈ Q1 − { m − 1} and S ⊆ Q2} ∪ {{m − 1} ∪ S | S ⊆ Q2 − { 0}},

i.e., any state in Q4 consists of exactly one state of Q1 and some states of Q2, and if

a set in Q4 contains the state m − 1, then it does not contain the state 0 of Q2. We

210

know that there are m2n − 2n−1 reachable states in Q4 and any two of them are not

equivalent.

Now, we show that any two states in E ′ are not equivalent. Let 〈t1, j1〉 and 〈t2, j2〉

be two different states in E ′. We consider the following two cases:

1 j1 = j2. Then, t1 6= t2, and there exists a string w that will distinguish t1 from t2

in D′. Therefore, if j1 is the final state of C ′, then string cw will distinguish

〈t1, j1〉 from 〈t2, j2〉, otherwise, w will distinguish these two states.

2 j1 6= j2. We have three sub-cases. (1) t1 = t2 and t1 is not a final state of D′.

String cp−j1−1 will distinguish 〈t1, j1〉 from 〈t2, j2〉. (2) t1 = t2 and t1 is a final

state of D′. Let us rewrite t1 as t1 = {i} ∪ T , where i ∈ Q1 and T ⊆ Q2.

String am−ibn−1cp−j1−1 will distinguish 〈t1, j1〉 from 〈t2, j2〉, since after reading

am−ibn−1 t1 will not reach any final state of D′. (3) t1 6= t2. Then, there exists

a string w′ that leads the state t1 to a final state of D′ but does not lead the

state t2 to any final state of D′. Thus, string w′cp−j1−1 will distinguish the two

states.

We have showed that E ′, which is constructed from A′, B′, and C ′, has (m2n − 2n−1)p

reachable states, and any two of its states are not equivalent. Therefore, the state

complexity of L1L2 ∪ L3 is equal to the composition of the state complexities of

catenation and union, which is (m2n − 2n−1)p. 2

7.10 Conclusion

In this paper, we completed the investigation of the state complexity of combined

operations with two basic operations, by studying the state complexities of (L1L2)
R,

LR
1 L2, L

∗
1L2, (L1∪L2)L3, (L1∩L2)L3, L1L2∩L3, and L1L2∪L3 for regular languages

L1, L2, and L3. In particular, we solved an open problem posed in [17] by showing that

211

the upper bound proposed in [17] for the state complexity of (L1L2)
R coincides with

the lower bound and is thus indeed the state complexity of this combined operation

when m ≥ 2 and n ≥ 1. Also, we showed that, due to the structural properties of

DFAs obtained from reversal, star, and union, the state complexities of LR
1 L2, L

∗
1L2,

and (L1∪L2)L3 are close to the mathematical compositions of the state complexities

of their individual participating operations, although they are not exactly the same.

Furthermore, we showed that, in the general cases, the state complexities of (L1 ∩

L2)L3, L1L2∩L3, and L1L2 ∪L3 are exactly equal to the mathematical compositions

of the state complexities of their component operations.

The combined operations considered in this paper are all the combinations of two basic

operations whose state complexities have not been studied. Therefore, we completed

the study of the state complexities of combinations of two basic operations. As a

summary, we list the state complexities of these combinations in Table 7.1.

The results obtained and summarized in this paper are on regular languages. There-

fore, a future work might consider the state complexity of the same operations for

sub-families of the family of regular languages, such as finite languages and codes.

Another interesting research direction is to investigate the state complexity of com-

bined operations composed of the language operations other than the basic ones, e.g.

shuffle [1], proportional removal [5, 18], cyclic shift [15, 18], etc.

212

Operation State complexity Most General Case
(L1 ∪ L2)

∗ 2m+n−1 − 2m−1 − 2n−1 + 1 ([20]) m,n ≥ 2
(L1 ∩ L2)

∗ 2mn−1 + 2mn−2 ([16]) m,n ≥ 2
(L1L2)

∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 ([8]) m,n ≥ 2
(LR

1)
∗ 2m ([8]) m ≥ 1

(L1 ∪ L2)
R 2m+n − 2m − 2n + 2 ([17]) m,n ≥ 3

(L1 ∩ L2)
R 2m+n − 2m − 2n + 2 ([17]) m,n ≥ 3

(L1L2)
R 3 · 2m+n−2 − 2n + 1 ([17] and Section 7.3) m ≥ 2, n ≥ 1

(L1
∗)R 2m ([17]) m ≥ 1

L∗
1L2 5 · 2m+n−3 − 2m−1 − 2n + 1, m,n ≥ 2

the DFA for L1 has at least one final state
that is not the initial state (Section 7.5)

L1L
∗
2 m3

4
2n − 2n−2, m,n ≥ 2

the DFA for L2 has at least one final state
that is not the initial state ([2])

LR
1 L2 3 · 2m+n−2 (Section 7.4) m,n ≥ 2

L1L
R
2 m2n − 2n−1 − m+ 1 ([2]) m,n ≥ 1

L1(L2 ∪ L3) (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 ([3]) m,n, p ≥ 1
L1(L2 ∩ L3) m2np − 2np−1 ([3]) m,n, p ≥ 1
L∗
1 ∪ L2

3
4
2m · n − n+ 1 ([10]) m,n ≥ 2

L∗
1 ∩ L2

3
4
2m · n − n+ 1 ([10]) m,n ≥ 2

LR
1 ∪ L2 2m · n − n + 1 ([10]) m,n ≥ 2

LR
1 ∩ L2 2m · n − n + 1 ([10]) m,n ≥ 2

(L1 ∪ L2)L3 mn2p − (m+ n − 1)2p−1 (Section 7.6) m,n, p ≥ 2
(L1 ∩ L2)L3 mn2p − 2p−1 (Section 7.7) m,n ≥ 1, p ≥ 2
L1L2 ∩ L3 (m2n − 2n−1)p (Section 7.8) m ≥ 1, n, p ≥ 2
L1L2 ∪ L3 (m2n − 2n−1)p (Section 7.9) m ≥ 1, n, p ≥ 2

(L1 ∪ L2) ∩ L3 mnp m, n, p ≥ 1
(L1 ∩ L2) ∪ L3 mnp m, n, p ≥ 1

Table 7.1: The state complexities of all the combinations of two basic operations,
where L1, L2, and L3 are accepted by DFAs of m, n, and p states, respectively. Note
that we only list the most general case for each combined operation in this table.

213

Bibliography

[1] Campeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of

shuffle of regular languages, Journal of Automata, Languages and Combinatorics,

7 (3) (2002) 303-310

[2] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:

catenation-star and catenation-reversal, International Journal of Foundations of

Computer Science, accepted

[3] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:

catenation-union and catenation-intersection, International Journal of Founda-

tions of Computer Science, accepted

[4] Daley, M., Domaratzki, M., Salomaa, K.: State complexity of orthogonal catena-

tion, in: Proc. of Descriptional Complexity of Formal Systems 2008, Charlotte-

town, PE, Canada, July 16-18, 2008, 134-144

[5] Domaratzki, M.: State complexity and proportional removals, Journal of Au-

tomata, Languages and Combinatorics, 7 (2002) 455-468

[6] Domaratzki, M., Okhotin, A.: State complexity of power, Theoretical Computer

Science, 410 (24-25) (2009) 2377-2392

[7] Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined

operations, Theoretical Computer Science, 410 (35) (2009) 3272-3280

214

[8] Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:

star of catenation and star of Reversal, Fundamenta Informaticae, 83 (1-2) (2008)

75-89

[9] Gao, Y., Yu, S.: State complexity approximation, in:Proc. of Descriptional Com-

plexity of Formal Systems 2009, (2009) 163-174

[10] Gao, Y., Yu, S.: State complexity of union and intersection combined with star

and reversal, Computing Research Repository, (2010) arXiv:1006.3755v1

[11] Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic

finite automata, in: Proc. of International Conference on Implementation and

Application of Automata 2002, LNCS 2608, 2002, 148-157

[12] Hopcroft, J. E., Motwani, R., Ullman, J. D.: Introduction to Automata Theory,

Languages, and Computation (2nd Edition), Addison Wesley, 2001

[13] Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and

complementation of regular languages, International Journal of Foundations of

Computer Science, 16 (2005) 511-529

[14] Jirásková, G.: State complexity of some operations on binary regular languages,

Theoretical Computer Science, 330 (2005) 287-298

[15] Jirásková, G., Okhotin, A.: State complexity of cyclic shift, in: Proc. of De-

scriptional Complexity of Formal Systems 2005, Como, Italy, June 30-July 2,

2005, 182-193

[16] Jirásková, G., Okhotin, A.: On the state complexity of star of union and star

of intersection, Turku Center for Computer Science TUCS Technical Report No.

825, 2007

215

[17] Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language

operations combined with reversal, Information and Computation, 206 (2008)

1178-1186

[18] Maslov, A.: Estimates of the number of states of finite automata, Soviet Math-

ematics Doklady, 11 (1970) 1373-1375

[19] Pighizzini, G., Shallit, J.: Unary language operations, state complexity and

Jacobsthal’s function, International Journal of Foundations of Computer Science,

13 (1) (2002) 145-159

[20] Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations,

Theoretical Computer Science, 383 (2007) 140-152

[21] Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular

languages, Theoretical Computer Science, 320 (2004) 293-313

[22] Yu, S.: Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of

Formal Languages, Vol. 1, Springer-Verlag, 1997, 41-110

[23] Yu, S.: State complexity of regular languages, Journal of Automata, Languages

and Combinatorics, 6 (2) (2001) 221-234

[24] Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages, Theoretical Computer Science, 125 (1994) 315-328

216

Chapter 8

Conclusion and Discussion

In this thesis, we considered several problems related to language operations in au-

tomata and formal language theory.

In the investigation of reversibility with respect to parallel insertion and deletion

(Chapter 2), we obtained a complete characterization of the solutions to the equation

(L1 ⇐ L2) ⇒ L2 = L1 in the special case when L1 and L2 are singleton languages.

Moreover, we introduced the notion of comma codes and showed that, if L2 is a

comma code, then this equation holds for any L1 ⊆ Σ∗. Also, we generalized the

notion of comma codes to that of comma intercodes in the same way comma-free

codes are generalized to intercodes.

In Chapter 3, inspired by the encoding and decoding mechanism in DNA, we intro-

duced the notions of k-comma codes and k-spacer codes, where the notion of k-comma

codes is a proper generalization of those of comma-free codes and comma codes. In

order to study the properties of these new codes in a systematic manner, we further

generalized the notions of intercodes, comma intercodes, and k-comma codes to k-

comma intercodes. We proved that all these new codes are indeed codes. We obtained

several closure properties of the families of k-comma intercodes, and showed that we

can determine efficiently whether a regular language given by a finite automaton is

217

a k-comma intercode of index m for any k ≥ 0 and m ≥ 1, or a k-spacer code for

any k ≥ 0. Also, we established some relationships among the families of k-comma

intercodes, infix codes, and bifix codes. Since the notion of k-comma intercodes prop-

erly generalizes those of comma codes, comma intercodes, and k-comma codes, its

properties apply to the other ones as well.

Moreover, we introduced the notion of n-k-comma intercodes and obtained several

hierarchical relationships among the families of n-k-comma intercodes. Also, we

showed that the family of 1-1-comma intercodes contains exactly the words u such

that (L⇐ u)⇒ u = L for any L ⊆ Σ∗.

Another research project we carried out is the study of block insertion and deletion on

trajectories, Chapter 4. We introduced these operations because we wanted to solve

the following language equation problem in a more general framework. “Does there

exist a solution to X ⇐ L2 = L3, where X is a unknown language and ⇐ denotes

parallel insertion?”

After establishing several relationships between these new operations and shuffle and

deletion on trajectories, we obtained the closure properties of the families of regular

and context-free languages under these new operations. Moreover, using these clo-

sure properties, we considered and gave answers to three types of language equation

problems involving the new operations. Recall that, when T = 1+, ←T is the parallel

insertion (⇐). Therefore, we solved the above problem involving the parallel inser-

tion, because we gave answers under different conditions to Q2,i: “Does there exist a

solution to X ←T L2 = L3?”

The decidability of the existence of a solution to the language equationX ←T L2 = L3

and its deletion variant was investigated, but the analogous problem on L1 ←T X =

L3 and L1 →T X = L3 remained open. These problems were later solved by Kari

and Seki in [6].

The last research projects were about state complexity of combined operations (Chap-

218

ters 5, 6, and 7). We studied the state complexity of the following combined oper-

ations: L1L
∗
2, L1L

R
2 , (L1L2)

R, L1(L2 ∩ L3), L1(L2 ∪ L3), L
∗
1L2, L

R
1 L2, (L1 ∩ L2)L3,

(L1 ∪ L2)L3, L1L2 ∩ L3, and L1L2 ∪ L3 for regular languages L1, L2, and L3.

We proved that the state complexities of L1(L2 ∩ L3), (L1 ∩ L2)L3, L1L2 ∩ L3, and

L1L2 ∪ L3, in the general cases, are exactly equal to the compositions of the state

complexities of their component operations. The special cases were also considered.

Also, we showed that, due to the structural properties of DFAs obtained from reversal,

star, and union, the state complexities of LR
1 L2, L

∗
1L2, and (L1 ∪ L2)L3 are close to

the compositions of the state complexities of their individual participating operations,

although they are not exactly the same.

Moreover, we proved that the state complexities of L1L
∗
2, L1L

R
2 , and L1(L2 ∪L3) are

considerably less than the direct compositions.

Although this thesis considered state complexity of combined operations for general

regular languages, there are other interesting research directions about state complex-

ity, for example, state complexity of individual or combined operations for sub-families

of the family of regular languages, such as finite languages and codes. Many results

have been obtained for these topics, such as [1, 2, 3, 4, 5]. However, there are still

many interesting problems to be considered within this scope, for example, not all the

combinations of two basic operations for prefix codes have been studied, and neither

have the state complexity of combined operations for finite languages.

As future work, another interesting research direction is to investigate the state com-

plexity of more general individual insertion and deletion operations such as sequential

insertion and deletion, and parallel insertion and deletion. To our knowledge, no re-

sults have been obtained even for these operations on words.

219

Bibliography

[1] Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic

operations on finite languages, in: Proc. of Workshop on Implementing Automata

1999, LNCS 2214, 2001, 60-70

[2] Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free reg-

ular languages, in: Proc. of International Symposium on Mathematical Founda-

tions of Computer Science 2007, LNCS 4708, 2007, 501-512

[3] Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite

languages, International Journal of Foundations of Computer Science, 19 (3)

(2008), 581-595

[4] Han, Y.S., Salomaa, K., Wood, D.: State complexity of prefix-free regular lan-

guages, in: Proc. of Descriptional Complexity of Formal Systems 2006, 165-176

[5] Han, Y.S., Salomaa, K., Yu, S.: State complexity of combined operations for

prefix-free regular languages, in: Proc. of Language and Automata Theory and

Applications 2009, LNCS 5457, 2009, 398-409

[6] Kari, L., Seki, S.: Schema for parallel insertion and deletion, in: Proc. of Devel-

opments in Language Theory 2010, LNCS 6224, 2010, 267-278

220

Chapter 9

Addendum

Because this thesis is formated as integrated-article, all the technical chapters should

contain exactly the same content of those published articles and no change is allowed.

Therefore, we list the modifications according to the comments provided by the thesis

examiners as follows.

Implementation of the comments

Abstract, line 7: “operations parallel insertion and deletion” → “parallel insertion

and deletion operations”.

page 24, line 2: The sentence “If j < k, then we cannot delete any u from w so

that w ⇒ u = {w}.” should be deleted, since we have already stated in the

statement of the proposition that j ≥ k ≥ 1.

page 25, in the definition of X: N denotes the set of natural numbers, and 0 ∈

N .

page 25, after the definition of X: Add the following lemma.

Lemma 43 If u ∈ X, then u cannot be a proper infix of ubu for any b ∈ Σ.

221

page 28, line 8: “By definition” → “It is easy to see”.

page 28, the first sentence of the proof of Lemma 5: This sentence is not clear.

We need the following clarification.

Because b ∈ Mu and due to the fact that Mu 6= ∅ if and only if u 6∈ X , we

can say that u 6∈ X . Thus, we know that u is either unary or in Q
(=1)
B . When

u is unary and consists of only letter b, it is obvious that u = upbus = usbup

for some up, us ∈ b∗. When u is in Q
(=1)
B , by the definition of Q

(=1)
B , u can be

written as (αb)kα for some primitive word αb and k ≥ 1. Thus, it is clear that

u can be written as u = upbus = usbup for some up, us ∈ Σ∗.

page 30, Theorem 2: The following paragraph provides a clear intuition about the

proof of Theorem 2. Thus the proof was omitted.

Let w = a1a2 · · · ak be a word in L1 and u1a1u2a2 · · · akuk+1, depicted in the

following figure, be a resulting word in w ⇐ L2, where u1, u2, · · · , uk+1 ∈ L2.

By the definition of comma codes, we know that any word v in L2 cannot be

u1 a1 u2 a2 . . . ak uk+1

a proper subword of v1bv2, where v1, v2 ∈ L2 and b is an arbitrary letter in

Σ. Therefore, the only words in L2 that can be deleted by parallel deletion

from u1a1u2a2 · · · akuk+1 are u1, u2, · · · , uk. Moreover, each ui, 1 ≤ i ≤ k,

can only be deleted from where it was inserted. Thus, the resulting word of

u1a1u2a2 · · · akuk+1 ⇒ L2 is a1a2 · · · ak and it is unique. Therefore, if L2 is a

comma code, the equation (L1 ⇐ L2)⇒ L2 = L1 clearly holds for any L1 ⊆ Σ∗.

page 31, line 9: “cut” → “delete”, and “reaches” → “reach”.

page 35, the proof of Proposition 14: The proof is revised as follows.

222

Suppose that A ∪B is either a comma code or a comma-free code, so A ∪B is

an infix code. Suppose now that AB is not a comma code. Then there exist

u1, u2, u3 ∈ A, v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some

r, s ∈ Σ+. It is easy to see that there are only two cases, shown in Fig. 2.2, that

do not contradict the fact that A ∪ B is an infix code. However, they cause a

contradiction with A ∪B being a comma or comma-free code.

page 37, line 2: “From now” → “Now”.

page 38, line 12: “Proposition 11” should be changed to “Example 3”. This is

because Corollary 4 is not a direct consequence of Proposition 11, but can be

exemplified by Example 3.

page 45, line 12: “lengths” → “length”.

page 47, line -4: “As examples” → “As an example”.

page 48, line 5: “ends” → “end”.

page 51, line 1: Delete “will”.

page 52, in the statement of Theorem 4: Cb is the family of bifix codes.

page 55, line 5: “h(xy) = h(x)h(y)” → “f(xy) = f(x)f(y)”.

page 58, line 16: Add “decipherable” after “not”.

page 58, line -2: Add A = (Q,Σ, δ, s, F) after “finite automaton”.

page 59, line 4: Add “the” before “worst-case”.

page 59, line 8, before “If not”: We should add a sentence “This check can be

done by using the breadth-first search on the DFA that accepts L.”

223

page 59, line 10, before “Thus”: We should add the following sentences.

“In such a case, the time complexity of this algorithm is dominated by the

component that determines whether L(A) is a k-comma intercode of index m.

Thus, the linear component of the breadth-first search can be omitted.”

page 59, line -6: Add “an” before “FA”.

page 60, line 8: “binary search” → “linear search starting from 0”.

page 60, Theorem 6: By using a linear search, this result can be improved. Thus,

we can delete the factor log|Q| in the time complexity result. The new statement

should be “in O(|Q|3 + |Q||δ|2) worst-case time”.

page 65, line 7-8: “neither a bifix code nor a 1-k-comma intercode” → “neither

bifix codes nor 1-k-comma intercodes”.

page 65, line 9: “intercode” → “intercodes”.

page 65, line 16: Delete “the” before “2Q \ ∅”.

page 77, in Definition 6: N denotes the set of natural numbers and 0 ∈ N. Note

that, when n = 0, u is the empty word λ.

page 78, line 13: “satisfies” → “satisfy”.

page 81, line 12: Delete “will”.

page 81, line -3: φ(T)0−1 means that we need to delete the last letter 0 from each

word in φ(T).

page 82, line -3: Delete “will”.

page 89, line 9: Letter c in anbncn should be d.

224

page 90, in the proof of Proposition 44: Delete the part “and context-sensitive

languages · · · a letter in Σ.” from the first paragraph. Then, simplify the

remaining proof as follows.

Now, we prove the proposition, and reduce the problem of whether L 6= ∅ into

Q0,d with L1 = Σ∗, T = {1}, L2 = L, and L3 = {λ}. We claim that

Σ∗ →1 L = {λ} ⇐⇒ L 6= ∅.

If L 6= ∅, then there exists a word w ∈ L. Since w →1 w = {λ}, the left hand

side holds. Conversely, if L = ∅, Σ∗ →1 L = ∅.

page 94, Proposition 47: The statement of the proposition should be changed to

the following.

1. Given a context-sensitive language L1, regular languages L2, L3, and a

finite trajectory set T , the problem Q0,i is decidable.

2. Given a context-sensitive language L1, regular languages L2, L3, and an

infinite trajectory set T , the problem Q0,i is undecidable.

To prove this new statement, we just need to change the word “context-free”

on Line 9 to “context-sensitive”. The new proof works because we can decide

whether a word is in a given context-sensitive language.

page 94, Proposition 48: The statement of the proposition should be changed to

the following.

1. Given a context-sensitive language L1, regular languages L2, L3, and a

finite trajectory set T , the problem Q0,d is decidable.

2. Given a context-sensitive language L1, regular languages L2, L3, and an

infinite trajectory set T , the problem Q0,d is undecidable.

225

page 103, Proposition 58: The statement of the proposition should be changed to

the following.

“Given two regular languages L2, L3 and a set of trajectories T , where one can

decide whether a given word is in T , the problem Qw
2,i is decidable.”

page 104, Proposition 59: The statement of the proposition should be changed to

the following.

1. Given a regular language L2, a finite language L3, and a set of trajectories

T , where one can decide whether a given word is in T , the problem Qw
2,d is

decidable.

2. Given a regular language L2, an infinite language L3, and a set of trajec-

tories T , where one can decide whether a given word is in T , then there

does not exist a solution to the problem Qw
2,d.

page 106, Proposition 60: In the statement of the proposition, “ternary alphabet”

should be changed to “binary alphabet”.

Since we changed the statement of the proposition, its proof should be modified

as follows. In the first line of the proof, we change the sentence “let L3 = #L,

where # is a special symbol not included in Σ.” to “let L3 = aL, where a is a

letter in the binary alphabet Σ.” Then, replace all the # in the proof with a.

page 109, in the caption of Table 4.4: The last sentence should be “REC stands

for the families of recursive languages.”, since CSL is not used in the table.

page 113, line 12: “are” → “is”.

page 114, line 9 and line 14: Delete “will”.

page 115, line 20-21: The sentence “The state complexity of a class · · · , L ∈ S”

should be changed to “The state complexity of a class of regular languages is

the worst among the state complexities of all the languages in the class.”

226

page 125, line 4: Delete “to be”.

page 139, line 17: Add “are” after “they”.

page 140, line 11-12: The sentence “The state complexity of a class · · · , L ∈ S”

should be changed to “The state complexity of a class of regular languages is

the worst among the state complexities of all the languages in the class.”

page 141, line 17: “component” → “components”.

page 166, line 16-17: The sentence “The state complexity of a class · · · , L ∈ S”

should be changed to “The state complexity of a class of regular languages is

the worst among the state complexities of all the languages in the class.”

page 169, line 6: Add “whether” after “no matter”.

page 194, line -3: The V before “has” should be U .

page 212: The following row should be added into Table 7.1.

Operation State complexity Most General Case
L1L2L3 (6m+ 3)2n+p−3 − (m − 1)(2p − 1) ([1]) m,n, p ≥ 2

227

Bibliography

[1] Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined

operations, Theoretical Computer Science, 410 (2009) 3272-3280

228

Copyrights

The content of Chapter 2 was published by Springer and is included in this thesis

with kind permission from Springer Science+Business Media:

Lecture Notes in Computer Science, On the reversibility of parallel

insertion, and its relation to comma codes, 5725, 2009, 204-219,

B. Cui, L. Kari, S. Seki.

The content of Chapter 3 was published by IOS press. According to the following

web page of IOS press, copyright remains the authors’.

http://www.iospress.nl/authco/copyright.html

The content of Chapter 4 was published by Elsevier. According to the following web

page of Elsevier, a journal author retains the right to include the journal article, in

full or in part, in a thesis or dissertation.

http://www.elsevier.com/wps/find/authorsview.authors/copyright

The content of Chapters 5 and 6 will be published by World Scientific in the following

two articles, respectively,

1. State complexity of two combined operations: catenation-union and catenation-

intersection, Cui, B., Gao, Y., Kari, L., Yu, S., International Journal of Foun-

dations of Computer Science, Copyright @ 2011 and World Scientific

2. State complexity of two combined operations: catenation-star and catenation-

reversal, Cui, B., Gao, Y., Kari, L., Yu, S., International Journal of Foundations

of Computer Science, Copyright @ 2011 and World Scientific

229

Permission of including these two articles in this thesis was granted according to the

following communication.

From: WSPC Rights Department <rights@wspc.com>

Subject: Re: copyright permission

Dear Bo Cui

Thanks for writing to us about the below permission request. We shall be happy to

grant you the permission of including the post-print version of the below two journal

articles in your Ph.D dissertation, provided that full acknowledgment given to the

original source with the following format:

Title of the Work, Author (s) and/or Editor(s) Name (s), Title of the Journal, Copy-

right @ year and owner.

Kind regards

Tu Ning

Bo wrote: Dear Sir/Madam,

I am an author of the following articles that will be published by World Scientific:

B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations:

catenation-union and catenation-intersection, International Journal of Foundations

of Computer Science, accepted.

B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations:

catenation-star and catenation-reversal, International Journal of Foundations of Com-

puter Science, accepted.

I am preparing my Ph.D. thesis and I want to include the above publications into it

as integrated articles. According to the following web page of World Scientific,

http://www.worldscinet.com/authors/authorrights.shtml

230

an author may share the published (printed or electronic) version provided it is for

non-commercial use, but the definition of non-commercial use does not include the use

for writing a thesis. So, I am just wondering if a permission is required to integrate

the articles into my thesis. If it is required, would you please grant the permission to

me to do so.

Thank you,

Bo Cui

231

VITA

Name:

Bo Cui

Education

University of Western Ontario — September 2007 to August 2011

Ph.D. (Computer Science)

Supervisor: Dr. Lila Kari

Saint Mary’s University — September 2005 to August 2007

M.Sc. (Computer Science), received, October 2007

Supervisor: Dr. Stavros Konstantinidis

Beijing Institute of Technology — September 2000 to July 2004

B.Eng. (Computer Science), received, July 2004

Related Work Experience

Research Assistant — September 2007 - August 2011

Department of Computer Science,

University of Western Ontario, London, Ontario.

Teaching Assistant — September 2007 - April 2011

Department of Computer Science,

University of Western Ontario, London, Ontario.

232

Research Assistant — September 2005 - August 2007

Department of Mathematics and Computing Science,

Saint Mary’s University, Halifax, Nova Scotia, Canada.

Teaching Assistant — September 2005 - April 2007

Department of Mathematics and Computing Science,

Saint Mary’s University, Halifax, Nova Scotia, Canada.

Publications

1. Cui, B., Gao, Y., Kari, L., Yu. S.: State complexity of two combined

operations: catenation-union and catenation-intersection, International

Journal of Foundations of Computer Science, accepted

2. Cui, B., Gao, Y., Kari, L., Yu. S.: State complexity of two combined

operations: catenation-star and catenation-reversal, International

Journal of Foundations of Computer Science, accepted

3. Cui, B., Kari, L., Seki, S.: K-comma codes and their generalizations,

Fundamenta Informaticae, 107 (2011) 1-18

4. Cui, B., Kari, L., Seki, S.: Block insertion and deletion on trajectories,

Theoretical Computer Science, 412 (2011) 714 - 728

5. Cui, B., Gao, Y., Kari, L., Yu. S.: State complexity of catenation

combined with union and intersection, in: Proc. of 15th Implementation

and Application of Automata, LNCS 6482 (2011) 95-104

6. Cui, B., Gao, Y., Kari, L., Yu. S.: State complexity of catenation

combined with star and reversal, in: Proc. of 12th Descriptional

Complexity of Formal Systems, EPTCS 31 (2010) 58-67

7. Cui, B., Kari, L., Seki, S.: On the reversibility of parallel insertion, and

its relation to comma codes, in: Proc. of 3rd Algebraic Informatica,

LNCS 5725 (2009) 204-219

233

8. Cui, B., Konstantinidis, S.: DNA coding using the subword closure

operation, in: Proc. of 13th DNA Computing, LNCS 484 (2008) 284-289

Submitted Manuscript

1. Cui, B., Gao, Y., Kari, L., Yu. S.: State complexity of combined

operations with two basic operations, submitted

	Some Single and Combined Operations on Formal Languages: Algebraic Properties and Complexity
	Recommended Citation

	Some Single and Combined Operations on Formal Languages: Algebraic Properties and Complexity

