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A B S T R A C T

The ability to stop actions and thoughts is essential for goal-directed behaviour. Neuroimaging research has
revealed that stopping actions and thoughts engage similar cortical mechanisms, including the ventro- and
dorso-lateral prefrontal cortex. However, whether and how these abilities require similar subcortical mechan-
isms remains unexplored. Specifically of interest are the basal ganglia, subcortical structures long-known for
their motor functions, but less so for their role in cognition. To investigate the potential common mechanisms in
the basal ganglia underlying action and thought stopping, we conducted meta-analyses using fMRI data from the
Go/No-Go, Stop-signal, and Think/No-Think tasks. All three tasks require active stopping of prepotent actions or
thoughts. To localise basal ganglia activations, we performed high-resolution manual segmentations of striatal
subregions. We found that all three tasks recovered clusters in the basal ganglia, although the specific locali-
sation of these clusters differed. Although the Go/No-Go and Stop-signal tasks are often interchangeably used for
measuring action stopping, their cluster locations in the basal ganglia did not significantly overlap. These dif-
ferent localised clusters suggest that the Go/No-Go and Stop-signal tasks may recruit distinct basal ganglia
stopping processes, and therefore should not be treated equivalently. More importantly, the basal ganglia cluster
recovered from the Think/No-Think task largely co-localised with that from the Stop-signal task, but not the Go/
No-Go task, possibly indicating that the Think/No-Think and Stop-signal tasks share a common striatal circuitry
involved in the cancellation of unwanted thoughts and actions. The greater similarity of the Think/No-Think
task to the Stop-Signal rather than Go/No-Go task also was echoed at the cortical level, which revealed highly
overlapping and largely right lateralized set of regions including the anterior DLPFC, VLPFC, Pre-SMA and ACC.
Overall, we provide novel evidence suggesting not only that the basal ganglia are critical for thought stopping,
but also that they are involved in specific stopping subprocesses that can be engaged by tasks in different
domains. These findings raise the possibility that the basal ganglia may be part of a supramodal network re-
sponsible for stopping unwanted processes more broadly.

1. Introduction

Being able to stop actions and thoughts is fundamental to goal-di-
rected behaviour. Much research has sought to understand how people
stop prepotent responses when needed, a process known as inhibitory
control. Although research on inhibitory control has often focused on
stopping motor actions, there has also been significant interest in how
people stop higher-level cognitive processes, such as memory retrieval.

Recent evidence from neuroimaging studies suggests that inhibiting
motor actions and memory retrieval may engage similar cortical me-
chanisms, and that a supramodal inhibition mechanism may be sup-
ported in part by the right dorsolateral and ventrolateral prefrontal
cortices (DLPFC, VLPFC; Depue et al., 2015). Although there have been
previous meta-analyses on the common activations across motor in-
hibition tasks (Cai et al., 2014; Rae et al., 2014; Swick et al., 2011), no
studies have examined whether memory inhibition consistently
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activates similar regions. In addition, previous studies usually focused
analyses on the cortical level. In the case of motor inhibition, sub-
cortical mechanisms are known to contribute significantly, particularly
the basal ganglia (Aron et al., 2014; Rae et al., 2014). Moreover,
whether and how the basal ganglia are engaged in memory inhibition
remains unknown. Here we conducted a quantitative meta-analysis to
examine the basal ganglia contribution to both memory and motor in-
hibition, with a particular emphasis on how people stop retrieval.
Moreover, we consider whether scrutinising the specific localisation of
domain-specific activations in the basal ganglia might contribute to our
understanding of the roles of the basal ganglia in inhibiting memories
and actions.

The basal ganglia are a group of subcortical nuclei with a well-es-
tablished role in motor inhibition (Aron et al., 2007; Kandel et al.,
2012; Graybiel, 2005). Studies from the animal literature have identi-
fied three coordinating pathways in the basal ganglia that contribute to
the different processes in motor control: the hyperdirect, direct, and
indirect pathways (Alexander and Crutcher, 1990; Nambu et al., 2002).
The hyperdirect pathway has two primary roles (Takada et al., 2013):
first, it globally inhibits all motor responses to prevent unnecessary
movements from taking place prior to movement onset and second, it
engages an early selection process that implicitly determines the ideal
goal-directed motor response. Following the hyperdirect pathway, the
direct pathway initiates the selected motor response. Finally, the in-
direct pathway terminates the selected motor response either when it is
achieved or when it needs to be cancelled (Freeze et al., 2013). Can-
cellation of an ongoing motor response may be required when the
course of the movement needs to be adjusted due to sensory feedback
(Fourneret and Jeannerod, 1998), or when the movement needs to be
completely revoked due to altered task goals, such as when a stop signal
is delivered in a stop-signal task.

The foregoing observations support the idea that the basal ganglia
are indispensable for motor inhibition, and that the hyperdirect and
indirect pathways are particularly relevant. Whereas the indirect
pathway involves cortical input to the striatum, which relays signals to
the external globus pallidus (GPe), the subthalamic nuclei (STN), and
output via the internal globus pallidus (GPi) and substantia nigra pars
reticulata (SNr), the hyperdirect pathway instead involves direct cor-
tical input to the STN and output through the GPi/SNr. Critically,
human neuroimaging studies of motor inhibition have provided con-
verging evidence for the importance of basal ganglia structures, such as
the STN (Aron and Poldrack, 2006). However, no effort has yet been
made to characterise the specific regions within the basal ganglia that
are consistently recruited by motor inhibition in humans. In this paper,
we address this objective with a meta-analytic approach, which pro-
vides quantitative inference of the spatial reliability of activations re-
ported across multiple neuroimaging experiments. To localise the
clusters of activation observed at the meta-analytic level, we performed
high-resolution manual segmentation of basal ganglia sub-regions.

Although basal ganglia mechanisms are clearly essential for motor
inhibition, it is unclear to what extent they are dedicated to motor in-
hibition per se. It is possible, for example, that some functions per-
formed by the basal ganglia during stopping may apply more broadly to
higher-order cognitive processes (Alexander et al., 1986; Schroll and
Hamker, 2013). Both patient and neuroimaging studies suggest that at
least some high-level cognitive functions are supported by the basal
ganglia. For example, patients with basal ganglia impairments such as
Parkinson's disease develop deficits in cognitive functions including
executive functions and working memory, on top of their motor deficits
(Robbins and Cools, 2014). In addition, children with attention deficit
hyperactivity disorder (ADHD) consistently show dysfunctions in the
frontostriatal network, usually associated with the cognitive control of
attention and executive functions (Booth et al., 2005; Durston et al.,
2003). Neuroimaging studies with healthy participants also suggest that
the basal ganglia are similarly involved in cognitive functions such as
working memory gating (Scimeca and Badre, 2012). These findings

support the possibility that the basal ganglia are involved in control in
general, and thus may play a supramodal role in the inhibitory control
of both motor and cognitive processes. Alternatively, the basal ganglia
could support distinct, modality-dependent stopping mechanisms that
stop motor and cognitive processes (Pauli et al., 2016). The current
meta-analysis thus examines the existing literature and delineates
whether memory and motor inhibition yield shared or anatomically
dissociated subregions of the basal ganglia.

In addition to localising consistent basal ganglia activations, the
current meta-analysis may also help to deduce cortical regions con-
tributing to basal ganglia involvement during inhibitory control.
Different subregions in the basal ganglia receive largely topographical
projections from cortical areas with different functional roles (Haber,
2003; Lawrence et al., 1998; Pauli et al., 2016; Seger, 2013). For ex-
ample, Haber et al. (2006) traced corticostriatal projections in macaque
monkeys from regions associated with different functions, such as the
DLPFC (executive functions) and the ventromedial prefrontal cortex
(VMPFC; reward processing). Haber et al. found that DLPFC projects to
dorsal striatum, including the caudate nucleus, spanning across the
internal capsule to medial putamen. The caudate targets were largely in
the caudate head, ranging into the caudate body, whereas the putamen
targets were almost exclusively rostral to the anterior commissure. In
contrast, Haber found that the VMPFC projects primarily to ventral
striatum. Similar pathways may exist in humans (Haber and Knutson,
2010). These observations may be important because of evidence that
DLPFC plays an essential role in supramodal inhibitory control over
multiple task domains, including cognition, emotion, and motor action
(Depue et al., 2015). Hence the DLPFC-striatum pathway demonstrated
by Haber et al. (2006) could be a candidate through which both
memory and motor inhibition are achieved. It is therefore necessary to
segment striatal subregions to localise meta-analytic activation clusters
in the basal ganglia, including the caudate head, body, and tail sections,
and the putamen. This localisation could help us to ascertain whether
both memory and motor inhibition engage a DLPFC-striatum pathway
and, if so, whether striatal activations are similarly localised.

To address the preceding objectives, we conducted quantitative
meta-analyses of brain activations from functional magnetic resonance
imaging (fMRI) studies of motor and memory inhibition, including the
Go/No-Go, Stop-signal, and Think/No-Think tasks (Fig. 1.1). In a ty-
pical Go/No-Go task, participants are presented with visual stimuli,
such as red and green circles. When they see some stimuli (e.g., green
circles), they need to respond with a motor action, such as pressing a
button (known as Go trials). In contrast, upon encountering other sti-
muli (e.g., red circles), they need to refrain from making any motor
responses at all (No-Go trials). The procedure ensures that go trials are
much more frequent than No-Go trials so that participants get into the
habit of making the button press response. A typical Stop-signal task is
similar to the Go/No-Go task. Participants also need to view visually
presented stimuli and either carry out a motor response on a Go trial or
stop a motor response on a Stop trial. However, in the Stop-signal task,
all stimuli represent Go trials, except when an independent stop signal
(e.g., an auditory tone) is presented sometime after stimulus onset,
signalling the participant to stop. Taking the coloured circles example,
participants need to respond to both the blue and green circles, except
when a ‘beep’ tone is played shortly after either a blue or a green circle
appears, indicating that they need to cancel the motor response. The
Go/No-Go and Stop-signal tasks are often treated equivalently in the
literature (Nigg, 2000; Zheng et al., 2008), although this might not be
the case for reasons we will discuss shortly. Finally, the Think/No-
Think task requires participants to stop a cognitive operation, namely,
memory retrieval. In a typical Think/No-Think task, participants first
learn cue-target associations, such as word pairs (Anderson and Green,
2001), word-object pairs (Gagnepain et al., 2014), or object-scene pairs
(Catarino et al., 2015). In the subsequent Think/No-Think phase, each
trial presents one cue from one of the pairs. Upon seeing the cues,
participants need to either recall the corresponding target to the
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presented cue if it appears in green (Think trial) or to refrain from re-
calling the target if the cue appears in red (No-Think trial). A surprise
cued-recall test is given at the end of the experiment to measure how
recall performance was influenced by retrieving the associated items
(Think condition) or by inhibiting their retrieval (No-Think). To mea-
sure these effects, recall of Think and No-Think pairs is compared to
recall for baseline pairs that were also learned initially, but that were
omitted from the Think/No-Think phase.

All three of the foregoing tasks share the feature of having to stop an
active process in either the memory or the motor domain. These tasks
thus provide the opportunity to investigate the possibility that a su-
pramodal inhibitory control mechanism contributes to stopping pro-
cesses in general. If so, the meta-analytic clustering observed in each
task may co-localise in the basal ganglia. However, each task may also
engage different sub-processes through which stopping is achieved. For
example, for motor inhibition, Schachar et al. (2007) defined two dif-
ferent forms of stopping required by the Go/No-Go and Stop-signal
tasks. On one hand, the Go/No-Go task potentially allows participants
to prevent a motor response before it is even initiated: upon recognising
a No-Go stimulus, participants could decide not to prepare for a
movement, and hence prevent any motor response entirely. On the
other hand, the Stop-signal task presents the stop-signal after the cue
stimulus appears. Because of this delay in stop-signal onset, participants
have likely initiated preparation or execution of the motor response,
requiring them to cancel the action. It is unclear whether these different
demands (prevention versus cancellation) engage distinct sub-processes
that are implemented by different mechanisms within the basal ganglia,
such as the hyperdirect pathway for action prevention, and the indirect
pathway for action cancellation. For example, whereas Eagle et al.
(2008) suggested that the Go/No-Go and Stop-signal tasks have a si-
milar anatomical basis but distinct neuropharmacological under-
pinnings, Dalley et al. (2011) argued that the tasks engage different
brain regions due to the different sub-processes. Specifically, according
to Dalley et al. stop-signal tasks primarily activate the right inferior
frontal gyrus (rIFG), whereas Go/No-Go tasks activate the left IFG.
Within the basal ganglia, the specific regions involved in different tasks

or sub-processes remain unresolved, although recent studies have em-
phasised the role of the STN in the stop-signal task (Aron et al., 2014).
The current meta-analysis would therefore be invaluable for examining
both whether and how the basal ganglia contribute to different motor
inhibition sub-processes. If domain- or sub-process-specific mechanisms
are engaged during action prevention and cancellation, the meta-ana-
lytic clusters observed in each task may rely on anatomically distinct
subregions of the basal ganglia. One possibility, for example, is that Go/
No-Go activations may be left lateralised, whereas Stop-signal activa-
tions could be right-lateralised, mirroring Dalley's lateralisation pro-
posal for prefrontal cortical involvement in these tasks.

Unlike motor inhibition, there have been no formal studies of
whether the basal ganglia consistently contribute to memory inhibition.
We therefore used this meta-analysis to examine basal ganglia activa-
tions during the Think/No-Think task, and to compare any findings to
activations observed during the Go/No-Go and Stop-signal tasks. If
memory inhibition engaged the basal ganglia, it is unclear which motor
inhibition task it might most resemble (see Fig. 1.1, lower right panel).
On one hand, the Think/No-Think task is procedurally similar to the
Go/No-Go task because participants are cued to either engage memory
retrieval or to stop it, depending on the stimulus presented. On the
other hand, the sub-processes required by the Think/No-Think task may
instead resemble those engaged by the Stop-signal task. Although the
colour of the stimulus instructs participants (on No-Think trials) to
prevent the target from being recalled (potentially before the retrieval
process gets underway), this attempt at retrieval prevention often fails
initially; thus the target memory often intrudes into awareness (Levy
and Anderson, 2012). It is possible that overcoming intrusions requires
the cancellation of an ongoing retrieval process, making the No-Think
task potentially similar to the Stop-signal task. To examine this possi-
bility, Levy and Anderson (2012) asked participants to report whether
the target had intruded after each No-Think trial, and found that, in-
deed, overcoming an intrusion induced larger hippocampal down-reg-
ulation than did preventing an intrusion. In addition, Benoit et al.
(2014) found that overcoming intrusions triggered greater inhibitory
modulation of the hippocampus by the DLPFC. Moreover, similar to
cancelling motor actions, inhibiting memory retrieval in the Think/No-
Think task primarily recruits right lateral prefrontal cortex (Benoit
et al., 2014). Taken together, these findings suggest that the Think/No-
Think task engages stopping processes that may be better described as
cancellation than prevention. To examine whether memory inhibition
requires a sub-process more similar to prevention or cancellation, this
meta-analysis will assess whether reported activations across 16 fMRI
studies reliably cluster in the basal ganglia, and moreover, how the
spatial localisation of any such clusters relate to those observed in the
Go/No-Go and Stop-signal tasks. Finally, if basal ganglia clusters are
reliable across all three tasks, we will also examine their spatial overlap
with conjunction analyses.

To examine the inhibitory control mechanisms in the basal ganglia
in memory and motor inhibition, we compared meta-analytic activa-
tions both qualitatively by localising the clusters to specific basal
ganglia structures, and quantitatively by computing conjunction and
contrast maps between tasks. This coordinate-based meta-analysis ap-
proach is convenient for illustrating common activations across studies
and task modalities. Nevertheless, this analysis method is, by design,
more sensitive to spatially clustered activations than it is to activations
that are more dispersed. Thus, if a given task does not yield significant
activations in a region, by this analysis, it could either be because few
activations occurred in that structure across studies, or instead because
the activations were spatially dispersed. To distinguish these possibi-
lities, we therefore subsequently visualised the activation foci in the
basal ganglia, and computed descriptive summary statistics from the
visualised data. These descriptive results give an impression of the
dispersion of basal ganglia activations in each of the Go/No-Go, Stop-
signal, and Think/No-Think tasks, and with that, provide clues as to
whether an absence of significant activation clusters from the meta-

Fig. 1.1. Typical Go/No-Go, Stop-signal, and Think/No-Think Paradigms and the
Hypothesised Inhibitory Control Processes. In the hypothesised inhibitory control
process panel, the arrows denote the time-flow within a single trial. The colour green
represents the respond processes, the red “X” represents when inhibitory control is pu-
tatively engaged in the trial, and the grey represents the inhibited processes. On a Go or
Think trial, participants would carry out the motor response or memory retrieval, re-
spectively. On an inhibit trial, if prevention processes are engaged, inhibitory control
should be effective from the very beginning of the trial, before the corresponding re-
sponse is even started. If cancellation processes are engaged, inhibitory control would be
recruited only to terminate an initiated response. In the lower right, the uncertain posi-
tioning of the “X” indicates that we do not know whether prevention or cancellation may
be more important for the Think/No-Think task.
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analysis of a given task is driven by the absence of activity in the basal
ganglia, or instead by a lack of clustered activity.1

To characterise the specific localisation of basal ganglia activations,
we manually segmented the caudate head, body, tail, and putamen
subregions of the striatum, as existing atlases either do not have these
subregions available, or have imprecise segmentations. For the other
fine nuclei in the basal ganglia, we used an existing ultra-high resolu-
tion basal ganglia atlas (Keuken et al., 2014). As suggested by previous
findings, we hypothesised that if a supramodal inhibition mechanism
existed in the basal ganglia, the task-induced clusters should overlap
extensively with each other, possibly in the caudate head and anterior
putamen that receive projections from the DLPFC (Haber, 2006).
However, if inhibitory control is achieved in a domain-specific or pro-
cess-specific fashion, the basal ganglia clusters may be distinct across
tasks. Specifically, if basal ganglia involvement is domain-specific,
there should be co-localised clusters between the motor inhibition tasks
(i.e. Go/No-Go and Stop-signal), which differ spatially from clusters
observed in the memory inhibition task (i.e. Think/No-Think). How-
ever, if basal ganglia involvement is process-specific, there should be
co-localised clusters in tasks requiring cancellation of ongoing cognitive
or motor operations (i.e. Think/No-Think and Stop-signal), which differ
spatially from clusters observed in the task that primarily engages
prevention of motor responses (i.e. Go/No-Go). If this pattern is ob-
served, it would raise the possibility of a supramodal basal ganglia
contribution to the cancellation of both actions and thoughts. Finally, it
was also of interest to examine whether the STN is engaged by the
memory and motor inhibition tasks, or whether STN activation is spe-
cific to certain tasks or processes.

2. Material and methods

2.1. Selection criteria and the meta-analytic approach

Studies using the Go/No-Go and Stop-signal tasks were selected for
the motor inhibition meta-analyses, whereas studies using the Think/
No-Think task were selected for the memory inhibition meta-analysis.
For the motor inhibition meta-analyses, we first identified studies from
existing ALE meta-analyses (Cai et al., 2014; Rae et al., 2014; Swick
et al., 2011). We then searched for additional studies that were pub-
lished after the above meta-analyses through Google Scholar, using the
key words “Stop-signal task” and “Go/No-Go task”, respectively. For
the memory inhibition analysis, we included all published Think/No-
Think studies, and two additional studies from the laboratory of the last
author that are being prepared for publication. These searches resulted
in 46 Stop-signal studies, 38 Go/No-Go studies, and 16 Think/No-Think
studies. We further screened these studies according to the following
criteria:

1. Only fMRI studies reporting results from whole brain analyses in a
standardised coordinate space (MNI or Talairach) were included;

2. Only data from healthy adults were included;
3. Only Stop-signal and Go/No-Go tasks where participants responded

by hand were included;
4. Only contrasts concerning differences between inhibition and an

active condition were included, i.e. No-Think>Think, Stop>Go,
and No-Go>Go. We requested the relevant data from each author
if they were not already reported in the original article.

According to these criteria, 16 Think/No-Think, 39 Stop-signal, and

30 Go/No-Go studies were identified (Supplement) and included in the
meta-analyses. The meta-analyses were conducted using Activation
Likelihood Estimation with GingerALE v2.3.6 (Eickhoff et al., 2009,
2012, 2017; Turkeltaub et al., 2012). The following default settings
were applied: less conservative mask size; non-additive ALE method
(Turkeltaub et al., 2012); no additional FWHM; cluster analysis peaks at
all extrema. Where applicable, coordinates reported in Talairach space
in the original studies were transformed into MNI space using the
icbm2tal transform in GingerALE (Laird et al., 2010; Lancaster et al.,
2007) prior to the analyses.

The first step of the meta-analytic approach is to examine the spatial
convergence across different studies within each task domain. To do
this, three separate meta-analyses were conducted for the Think/No-
Think, Stop-signal, and Go/No-Go tasks using cluster-level inference
(p< .05, cluster-forming threshold uncorrected p< .001, threshold
permutations=1000). Secondly, to examine the spatial convergence
and divergence between different task domains, contrast analyses
(Eickhoff et al., 2011) were conducted between each pair of the Think/
No-Think, Stop-signal and Go/No-Go Tasks (i.e., Think/No-Think &
Stop-signal; Think/No-Think & Go/No-Go; Stop-signal & Go/No-Go).
For analysing each pair of the tasks, the thresholded activation maps
from the individual analyses, as well as the pooled results from both
tasks were used as inputs. The outputs were conjunction and contrast
maps between the conditions. The same GingerALE settings were ap-
plied to the contrast analyses (less conservative mask size; non-additive
ALE method; no additional FWHM; cluster analysis peaks at all ex-
trema.). The results were thresholded to voxel-wise uncorrected
p< .001, with the p-value permutations of 10,000 iterations, and the
minimum cluster volume of 200 mm3. We present results from all
conjunction and contrast analyses between each pair of the tasks.

The ALE analysis is a whole-brain analysis, and we report both
cortical and subcortical findings. However, given the conceptual focus
on the role of the basal ganglia in memory and motor inhibition, we
accordingly focus our consideration of our results on the basal ganglia.
In addition to the meta-analytic results, to give an impression of the
activation peaks from the included studies, we display their peak co-
ordinates on 3D renders of the basal ganglia. By definition, the ALE
analyses are sensitive to common clusters of activation across studies.
Activation peaks that are more spatially dispersed, either because a
particular cognitive function is not associated with localised activation,
or because the included studies are few in number, might therefore not
be detected as common across studies. We therefore also counted the
number of coordinates that were located in the basal ganglia in the left
and right hemispheres. Together, the peak coordinates and their counts
serve to provide a comprehensive descriptive picture of the meta-ana-
lytic data that the ALE results are based on. We report this information
at the end of the results section.

2.2. Basal ganglia ROI definition

To examine how clusters recovered from the meta-analyses of the
memory and motor inhibition tasks related to the subregional anatomy
of the basal ganglia, we projected the clusters onto 3D renderings of the
subregions. These regions of interest (ROIs) in the basal ganglia were
defined with both manual segmentation and an existing atlas (Atlasing
of the Basal Ganglia; ATAG; Keuken et al., 2014). Although the ATAG
atlas took averages of structural images from ultra-high resolution 7 T
MRI and thus provides very fine details of basal ganglia structures, it
only treated the striatum as one single structure. No other existing at-
lases provided high-resolution parcellations of the relevant striatal
subregions. We therefore performed manual segmentation of the
striatal subregions, including bilateral caudate head, body, tail, and
putamen, according to established anatomy and segmentation protocols
(Eliez et al., 2002; Levitt et al., 2002; Nolte, 2013); segmentation
guidelines provided by the Centre for Morphometric Analysis (CMA;
http://www.cma.mgh.harvard.edu/manuals/segmentation/). The

1 It might be useful to note that the observed spatial dispersion of activation foci re-
flects true dispersion as well as measurement noise, i.e. studies with smaller sample sizes
are expected to yield more spatially distributed foci than studies with larger sample sizes.
However, as long as study sample sizes do not differ substantially across the different
tasks, we assume that observed differences in spatial dispersion between tasks can largely
be attributed to true differences in dispersion between tasks.

Y. Guo et al. Neuropsychologia 108 (2018) 117–134

120

http://www.cma.mgh.harvard.edu/manuals/segmentation/


segmentations were performed using ITK-SNAP v3.2 (Yushkevich et al.,
2006; www.itksnap.org) from the high-resolution ICBM 2009b template
structural image (.5 mm isotropic; Fonov et al., 2009, 2011). Together,
these segmentations of the human caudate and putamen improve upon
the anatomical precision of several widely used atlases, such as Ana-
tomical Automatic Labelling in SPM (AAL; Tzourio-Mazoyer et al.,
2002) and Atlasing of the Basal Ganglia (ATAG). Fig. 2.1 compares our
segmentation with these atlases. The resulting subcortical clusters are
projected onto the 3D rendering of the segmented structures using
Mango v4.0 (Lancaster & Martinez; http://ric.uthscsa.edu/mango/).

2.2.1. Segmentation protocols for the striatal subregions
2.2.1.1. Caudate head. The head of the caudate was segmented through
the coronal plane, starting from the slice where it first appears in
between the lateral boundaries of the lateral ventricle and the internal
capsule, ending at the posterior edge of the anterior commissure,
cutting in the middle of the interventricular foramen of Monroe
across the frontoparietal axis (Eliez et al., 2002; Levitt et al., 2002;
Nolte, 2013). Care was taken not to include the sheet of meninges
between the lateral ventricle and the caudate.

The nucleus accumbens was excluded from the caudate head fol-
lowing guidelines provided by the Centre for Morphometric Analysis
(CMA) for creating the Harvard-Oxford Subcortical Atlas (http://www.
cma.mgh.harvard.edu/manuals/segmentation/). See Fig. 2.1 for an
example of this parcellation error in the AAL.

2.2.1.2. Caudate body. The body of the caudate was segmented through
the coronal plane, starting from the posterior edge of the anterior
commissure until the slice where the cerebral aqueduct enlarges to form
the opening of the fourth ventricle (Eliez et al., 2002; Nolte, 2013). The
dorsal and ventral boundaries of the caudate body were refined in the
sagittal plane, following the lateral ventricle and the internal capsule.

2.2.1.3. Caudate tail. The tail of the caudate started from the coronal
slice containing the opening of the fourth ventricle, and was followed
until it curved around the thalamus in the sagittal plane. The rest of the
tail was traced cross-referencing the coronal, sagittal, and axial planes
until it reaches the amygdala.

2.2.1.4. Putamen. The putamen was traced through the coronal plane,
starting from the slice where it first shows up lateral to the internal

capsule, surrounded by the other white matter tissues, and ending when
it is no longer seen. Care was taken not to include blood vessels inferior
to the putamen, the claustrum lateral to the putamen, or white matter
tracts posterior to the putamen.

The nucleus accumbens was segmented out from the putamen when
the internal capsule no longer separates the caudate nucleus and the
putamen. Existing pipelines usually draw arbitrary lines to segment
between the putamen and the accumbens, such as drawing a straight
vertical line downwards from the lateral inferior tip of the internal
capsule as suggested by the CMA guidelines. This is possibly due to the
lower resolution of the structural image used in those segmentations.
However, the anatomical boundaries between the putamen and the
nucleus accumbens in the ICBM 2009b structural template are clearly
more visible, and hence are directly used as references for segmenta-
tion.

3. Results

On the whole, the ALE meta-analyses revealed both cortical and
subcortical clusters in the Go/No-Go, Stop-signal, and Think/No-Think
tasks.

3.1. Cortical activations across the three tasks

Although the current effort emphasizes the role of the basal ganglia
in stopping behaviour, we first briefly characterize cortical activations.
Notably, although other GingerALE meta-analyses of motor response
inhibition already have been published (e.g. Cai et al., 2014; Rae et al.,
2014; Swick et al., 2011), the current analysis is the first to be pub-
lished since the identification and correction of significant algorithmic
bugs in the method used to correct for multiple comparisons that led to
inadvertently liberal statistical thresholds being adopted (Eickhoff
et al., 2017). The current activation maps therefore may be more cir-
cumscribed than those that have been previously reported owing to the
newly corrected statistical corrections adopted.

As can be seen in Fig. 3.1, on the cortical level, preventing motor
actions (Go/No-Go task) activated bilateral DLPFC and the right VLPFC,
as well as regions in the right parietal lobes. Cancelling motor actions
(Stop-signal task), on the other hand, activated the right DLPFC, VLPFC,
and precentral gyrus. Action cancellation also activated bilateral insula,
temporal and parietal regions, the cingulate gyrus and preSMA. These

Fig. 2.1. Segmentation of the striatal subregions. The three
columns compare the AAL and ATAG atlases with our manual
segmentation. The top row shows the coronal section, the middle
row shows the axial section, and the bottom row shows the 3D
rending of the structures in the sagittal plane. The relevant
structures are labelled, and the differences are marked with black
circles. Anatomical underlay and subcortical renders are dis-
played in MNI space.
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findings are generally consistent with those reported in previous meta-
analyses (Cai et al., 2014; Rae et al., 2014; Swick et al., 2011), with
several notable exceptions. First, Go-No-Go activations were less ex-
tensive than in prior reports (Swick et al., 2011) and did not include
activation in either the left or right insula or left IFG. Second, although
there was greater overall agreement between the current findings and
those of Cai et al. (2014), our Stop-Signal analysis did not reveal acti-
vation in left DLPFC or frontal polar cortex. This difference may be
attributable, however, to Cai et al.’s mixing of Stop-Signal and Go-No-
Go studies into a common analysis, a possibility supported by presence
of those missing activations in our Go-No-Go task analysis. These results
were generated using cluster-level inference (p< .05, uncorrected
p< .001, threshold permutations=1000). The cortical analysis also
revealed that the Think/No-Think task activated the right DLPFC,
VLPFC, cingulate gyrus, precentral gyrus, and the parietal lobe (in-
cluding supramarginal/angular gyrus and intraparietal sulcus), as well
as the left insula and supramarginal gyrus. The similarity of these ac-
tivations to those observed in motor action stopping suggest the pos-
sible existence of domain-general cortical regions that contribute to
memory and motor stopping, as suggested in prior work (Anderson
et al., 2004; Depue et al., 2015). Indeed, all of the tasks activated the
right DLPFC, VLPFC, and supramarginal/angular gyrus, in the right
hemisphere.

To determine whether the foregoing characterizations of cross-task
commonalities accurately represent inter-task relationships, we con-
ducted a formal conjunction analysis. As can be seen in Fig. 3.2, action
prevention (Go/No-Go) and Action Cancellation (Stop-Signal) tasks
shared limited right lateralized activations in the right anterior DLPFC
and the Supramarginal/Angular Gyrus. The existence of overlapping
activations suggests that some elements of motor action cancellation
and motor action prevention are shared, as one might expect, based on
their classification as action stopping tasks. More interesting, however,
was the differing relationship between memory inhibition (the Think/
No-Think task) and the two motor response inhibition tasks. Whereas
activations observed for memory inhibition overlapped extensively
with action cancellation (Stop-signal task), overlap was more limited

with action prevention (Go/No-Go). Specifically, action cancellation
and memory inhibition shared right lateralized activations in the
anterior DLPFC, posterior MFG, VLPFC, Insula, Angular/Supramarginal
gyrus, Intraparietal Sulcus, Pre-SMA, and anterior cingulate. In con-
trast, action prevention and memory inhibition only shared activation
in right angular/supramarginal gyrus and a very small region in right
middle frontal gyrus that did not overlap with the region shared with
action cancellation. These findings suggest that despite broad simila-
rities of all three tasks in the involvement of right lateral prefrontal
cortex, the spatial localisation of shared activations may provide ad-
ditional information about the relative similarities between tasks. These
data are consistent with the possibility that memory inhibition, at the
cortical level, may have more in common with action cancellation than
with action prevention.

3.2. Subcortical activations across the three tasks

On the subcortical level, all three tasks produced reliable clusters in
the basal ganglia, suggesting that the basal ganglia are involved in both
memory and motor inhibition and may be part of a supramodal network
of inhibitory control. By qualitatively comparing the ALE results, we
found a task-specific hemispheric asymmetry in the location of basal
ganglia clusters. Specifically, significant activation clustering was lo-
calised to the left hemisphere for action prevention (Go/No-Go) task,
whereas significant activation clustering was localised to the right
hemisphere for action cancellation (Stop-signal) and memory inhibition
(Think/No-Think) tasks. The following results sections will elaborate on
findings in the basal ganglia. For a summary of all the basal ganglia
results from the task-specific, conjunction, and contrast analyses, please
see section 3.3.

3.2.1. Comparing the cancellation and prevention of motor actions
On the whole, our analyses indicated that both action cancellation

and prevention yielded clusters of activation in the basal ganglia.
However, action cancellation yielded more spatially extensive clusters,
which scarcely overlapped with the clusters from action prevention.

Fig. 3.1. Cortical activations from the task-specific meta-analyses. All clusters are thresholded using cluster-level inference (p<.05, uncorrected p< .001, threshold permuta-
tions=1000).

Y. Guo et al. Neuropsychologia 108 (2018) 117–134

122



The largely distinct localisation of basal ganglia clusters suggests that
action cancellation and action prevention may engage distinct stopping
processes that should not be assumed to be equivalent. This section
illustrates these findings by detailing and comparing the clusters from
the Stop-signal (cancellation) and Go/No-Go (prevention) tasks.

3.2.1.1. Action cancellation engaged right basal ganglia structures. Across
the 39 Stop-signal studies included in the analysis, cancelling a motor
action yielded a consistent cluster in the right basal ganglia (Fig. 3.3).
First, cancelling a motor action is associated with a cluster in the right
centromedial striatum, primarily in the caudate head, spanning into the
caudate body and the right anteromedial putamen. This cluster also
extended to the right anterior GPe. Visual inspection suggests that the
localisation of this cluster may coincide with the putative homologue of
the region that receives DLPFC projections identified in the monkey
literature (Haber and Knutson, 2010), a possibility consistent with the
clear DLPFC activation observed during action cancellation in our
cortical findings (Fig. 3.1). Second, significant clusters were also
observed in the bilateral STN and left SN. The STN finding is
compatible with the significant action cancellation role consistently
attributed to this structure in previous literature (Aron and Poldrack,
2006). The SN activations are compatible with the dopaminergic
modulation that is required by basal ganglia control mechanisms
(Alexander and Crutcher, 1990). However, these activations from the
STN and SN should be interpreted cautiously, as they are small in size
and are neighboured by other subcortical nuclei, and our functional
resolution is only as good as that of the ALE result maps. Thus, the
reported activations may be driven by effects in neighbouring
structures. Finally, cancelling a motor action also yielded a cluster in
the ventral thalamus. The ventral thalamus is downstream to the basal
ganglia and is specifically implicated in motor processes (Alexander
et al., 1986).

3.2.1.2. Action prevention reliably activated left putamen and GPe, but not
caudate. Across the 30 Go/No-Go studies included in the analysis,
preventing a motor action yielded a cluster in the left basal ganglia,

including anterior putamen, spanning into anterior GPe, only touching
on the medial wall of the caudate head (Fig. 3.4). The putamen
involvement aligns with classic models of the cortico-basal ganglia
circuit for motor control (Alexander et al., 1986). However, the absence
of a caudate cluster during action prevention, as compared to action
cancellation, suggests that these motor inhibition tasks may place
different demands on neural mechanisms in the basal ganglia.

3.2.1.3. Action cancellation and prevention showed no significant co-
localisation in the basal ganglia. From the meta-analyses of individual
task types, it is striking that action cancellation and prevention shared
so few clusters in the basal ganglia, given that the Stop-signal and the
Go/No-Go tasks are often used interchangeably to measure response
inhibition. To formally test whether action cancellation and action
prevention engaged similar basal ganglia structures, we computed a
conjunction analysis between the Go/No-Go and Stop-signal tasks. No
overlapping clusters were identified in the basal ganglia at the current
threshold, although subthreshold clustering might exist in the Go/No-
Go task (see contrast analysis in 3.2.1.4). It is unlikely that this lack of
similarity between these tasks within the basal ganglia arises from
insufficient statistical power, given the large number of studies
included in the analysis. To the extent that interactions between
cortical and basal ganglia structures are considered critical to the
character of the stopping mechanism, these findings suggest that
overlap at the cortical level between the Stop-signal and Go/No-Go
tasks (Fig. 3.2) may not imply a common mechanism of action stopping.

Some have suggested that putative differences between the two
tasks may be due to the variations in the administration of the Go/No-
Go task (Levy and Wagner, 2011). Typically, the prepotency of the to-
be-stopped motor response in the Go/No-Go and Stop-signal tasks is
created by having frequent Go trials and infrequent No-Go or Stop trials
(Wessel, 2017). However, some Go/No-Go studies have had equiprob-
able Go and No-Go trials, making the prepotency of the motor responses
uncertain, and possibly undermining the necessity of inhibitory control.
This is unlikely to be the case in our analysis, as only 9 out of 30 Go/No-
Go studies used an equiprobable design, and another 2 with varying

Fig. 3.2. Cross-task conjunction analysis. All clusters are thresholded using cluster-level inference (p< .05, uncorrected p<.001, threshold permutations=1000).
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frequency of No-Go trials in different blocks of their task phase. The
limited number of studies should not exert a strong influence on the
results (Eickhoff et al., 2009, 2011). To confirm this, we conducted a
control meta-analysis including only Go/No-Go studies with infrequent
No-Go trials (N=19), which revealed an identical cluster of activation
in the left basal ganglia as the one reported in the original Go/No-Go

meta-analysis (see Fig. 3.4). We then re-ran the conjunction between
the Stop-signal and Go/No-Go tasks using the modified Go/No-Go
sample (N=19). Again, we found no significant basal ganglia co-loca-
lisation of clusters between tasks. Hence, the null conjunction effect
cannot be attributed to variation of prepotency in the Go/No-Go task.

Fig. 3.3. Basal ganglia activation for action cancellation. Top row: Clusters are presented on coronal slices of a high-resolution MNI atlas. Reference lines for the coronal slices are
presented in the sagittal plane. Middle row: Clusters are displayed on high-resolution parcellations of the caudate, putamen, and external globus pallidus (GPe). Bottom row: Clusters are
displayed on high-resolution parcellaions of the subthalamic nucleus (STN) and substantia nigra (SN). All clusters are thresholded using cluster-level inference (p< .05, uncorrected
p< .001, threshold permutations=1000).

Fig. 3.4. Basal ganglia activation for action prevention. Top row: Clusters are presented on coronal slices of a high-resolution MNI atlas. Reference lines for the coronal slices are
presented in the sagittal plane. Bottom row: Clusters are displayed on high-resolution parcellations of the caudate, putamen, and external globus pallidus (GPe). All clusters are
thresholded using cluster-level inference (p< .05, uncorrected p< .001, threshold permutations=1000).
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Fig. 3.11. Basal ganglia activations in the task-specific, con-
junction, and contrast analyses. The left column shows basal
ganglia activations from the task-specific meta-analyses, colour-
coded by task contrasts (Blue=Stop>Go, Red=No-Go>Go,
and Green=No-Think>Think). The middle column shows the
conjunction analyses. Activations shared by two tasks are pre-
sented in the mixed colour based on the colours that we used to
represent the individual tasks. The right column shows basal
ganglia activations from the contrast analyses, with the colours
denoting task-specific activity. For example, bilateral STN was
activated more strongly in the Stop>Go contrast (blue) than the
No-Go>Go and No-Think>Think contrasts. The top panel
summarises activations in the left basal ganglia structures, while
the bottom panel summaries those in the right.

Fig. 3.12. Peak coordinates from the basal
ganglia activations in the Go/No-Go, stop-
signal, and Think/No-Think tasks.

Table 3.1
Number of studies reporting basal ganglia coordinates in the left and right hemispheres from the Go/No-Go, stop-signal, and Think/No-Think tasks.

Left Hemisphere Right Hemisphere

Studies Coordinates % of total studies Studies Coordinates % of total studies

Go/No-Go 7 9 23% 7 10 23%
Stop-signal 10 15 26% 13 15 33%
Think/No-Think 3 3 19% 8 10 50%
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angular/supramarginal gyrus for both Stop-signal and Go/No-Go tasks.
Notably, however, the spatial extent of meta-analytic activations was
reduced overall, owing to our use of a corrected version of GingerALE
which corrects for multiple comparisons accurately (Eickhoff et al.,
2017). Moreover, in contrast to prior meta-analyses (e.g. Swick et al.,
2011) which found evidence for bilateral insula activation in the Go/
No-Go task, we did not. Our memory inhibition meta-analysis also re-
vealed activations in the right DLPFC and VLPFC, in addition to the
anterior cingulate cortex, pre-SMA, and right parietal regions. These
findings are broadly consistent with the possibility that stopping en-
gages a supramodal cortical network, irrespective of whether one is
stopping actions or thoughts. Nevertheless, despite these broad simi-
larities, individual conjunctions between tasks revealed differences in
the extent to which memory inhibition shared activations with action
prevention versus action cancellation. Whereas memory inhibition
shared activations with action cancellation in right anterior and pos-
terior DLPFC, VLPFC, Insula, ACC, Pre-SMA, angular/supramarginal
Gyrus, and intraparietal sulcus, it's overlap with motor action preven-
tion was considerably more limited, especially in the right prefrontal
cortex. This difference suggests that memory inhibition may engage
stopping processes that require cancellation to a greater extent than it
requires retrieval prevention. Alternatively, the Go/No-Go task may
simply be less demanding than the other two tasks, yielding less pre-
frontal activation overall, and correspondingly less possible overlap
with action cancellation and memory inhibition.

On the subcortical level, although we observed basal ganglia clus-
ters in all three tasks, the specific localisation of these clusters differed.
Strikingly, the Go/No-Go and Stop-Signal tasks – two of the most widely
studied forms of motor stopping that are often assumed to engage si-
milar functions – showed clusters in different basal ganglia regions.
Whereas the Go/No-Go task consistently activated the left anterior
putamen (spanning into anterior GPe), the Stop-signal task yielded
more extensive right-lateralised spatial clusters of activation mainly in
the caudate head/body, anterodorsal putamen, anterior GPe. A formal
conjunction analysis revealed that overlap between the activation
clusters observed in these tasks was not statistically significant. These
findings hold both when we included all 30 Go/No-Go studies, and
when we excluded those with equiprobable Go and No-Go trials. To
ensure that inhibitory processes are taking place, future Go/No-Go
studies should always have infrequent No-Go trials in the design (Levy
and Wagner, 2011; Wessel, 2017). The differing localisations of these
clusters may be very important for two reasons. First, distinct basal
ganglia structures constitute different coordinating pathways sup-
porting the prevention, initiation, and termination of motor or cogni-
tive processes (Alexander and Crutcher, 1990; Graybiel, 2005; Scimeca
and Badre, 2012). Second, cortical and subcortical structures project
topographically to the basal ganglia (Haber, 2003; Winn et al., 2009).
Therefore, differently localised activation clusters, such as those ob-
served here, could indicate different computational functions
(Alexander and Crutcher, 1990; Haber et al., 2006; Lanciego et al.,
2012; Seger, 2013). These observations converge with recent findings
suggesting that the Go/No-Go and Stop-signal tasks may differ in im-
portant respects, including the underlying cognitive processes engaged
(Schachar et al., 2007; Verbruggen and Logan, 2008), cortical regions
recruited (Dalley et al., 2011), their electrophysiological markers
(Johnstone et al., 2007) and neuropharmacological underpinnings
(Eagle et al., 2008). These differences may arise because the Go/No-Go
task primarily requires the prevention of a motor action from taking
place, whereas the Stop-signal task requires cancelling an emerging or
ongoing motor process. Thus, the current analysis of activation clusters
support the view that despite their similarity as motor stopping pro-
cedures, these tasks may tap different control processes and should not
be treated equivalently.

After comparing the Go/No-Go and Stop-signal tasks, we examined
whether the basal ganglia were involved in stopping memory retrieval.
Interestingly, we found that, like stopping actions, stopping thoughts

also engages the basal ganglia. Memory inhibition in the Think/No-
Think showed a consistent cluster of activation in the right caudate
head/body, anterodorsal putamen, and anterior GPe. This cluster of
activations was exclusively right lateralised, and was more spatially
extensive than the analogous clusters from the motor stopping tasks.
This clearly indicates that basal ganglia structures play an important
role in stopping retrieval, perhaps akin to its role in stopping actions.
This commonality raises the possibility that basal ganglia structures are
involved in stopping in a more general way than is usually assumed in
research on motor inhibition. A similar supramodal hypothesis was
discussed by Aron (2007), though with a more specific focus on inter-
actions between VLPFC and the subthalamic nucleus, rather than the
basal ganglia more broadly.

Although both memory and motor inhibition activated the basal
ganglia, the pattern of activations in that structure provides converging
evidence that memory inhibition in the Think/No-Think task may be
more similar to action cancellation in the Stop-signal task than it is to
action prevention in the Go/No-Go task. Consistent with their strong
overlap at the cortical level (Fig. 3.2), our conjunction analysis revealed
strong overlap between the activation clusters observed for memory
inhibition and action cancellation, including the right caudate head/
body, anterior putamen, and the anterior GPe. Critically, the conjunc-
tion cluster between memory inhibition and action cancellation in the
right hemisphere constituted 33% of the voxels activated by memory
inhibition, and 49% of those activated by action cancellation in the
right hemisphere (or 41% when considering both hemispheres). These
findings suggest that the particular basal ganglia regions observed here
might play a computational role in cancelling a process, irrespective of
whether that process involved motor action. Action cancellation,
however, did engage bilateral STN and ventral thalamus more reliably
than did memory inhibition. It is possible that these regions are un-
iquely required for cancelling a motor response, as the ventral thalamus
is typically construed as the downstream target of the basal ganglia
during motor control (Alexander et al., 1986). The STN is also shown to
be integral for cancelling a motor action (Aron and Poldrack, 2006),
although which specific pathway the STN engages (either the hy-
perdirect or the indirect pathway) remains unresolved. However, given
their small size and the lack of attention to these structures in the lit-
erature on memory inhibition, their activity during memory inhibition
tasks might not have been consistently reported, even if it occurred.
Future studies of memory inhibition should specifically examine the
role of the STN in this process. More generally, connectivity analyses
could be conducted to investigate the network dynamics between the
basal ganglia structures to isolate the particular basal ganglia me-
chanisms underlying the inhibition of memory retrieval.

Despite the foregoing between-task differences in the STN activation
clustering, the overall similarity between the clusters observed for
memory inhibition and action cancellation in the striatum and GPe
suggests that inhibiting thoughts may require active cancellation. This
observation argues against the possibility that people prevent retrieval
of an unwanted item by simply directing the retrieval process to dis-
tracting thoughts, or, instead, by passively failing to engage retrieval.
Rather, the recruitment of cancellation-related striatal processes sug-
gests that retrieval is being actively stopped. This interpretation con-
verges with findings indicating that the engagement of inhibitory me-
chanisms during retrieval stopping is particularly robust when
memories intrude into awareness and need to be purged (Levy and
Anderson, 2012; Benoit et al., 2014). Using trial-by-trial intrusion re-
ports, it has been found that intrusions elicit greater recruitment of
right prefrontal cortex (Benoit et al., 2014) and greater down-regula-
tion of hippocampal activity (Levy and Anderson, 2012), compared to
trials without intrusions. The current findings suggest that retrieval
cancellation may be key to overcoming intrusions. In contrast, we ob-
served no overlap in activation clusters between memory inhibition and
action prevention from the ALE analyses. These findings are consistent
with the possibility that different basal ganglia regions contribute to
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distinct cancellation and prevention-related sub-processes, and that
cancellation is not tied uniquely to motor action, but rather may be
supramodal. To establish these conclusions more firmly, however, re-
quires that we move beyond mere co-localisation of activations to study
dynamic interactions of these basal ganglia structures with other ele-
ments of the putative control network, under conditions of cancellation
and prevention.

Our findings raise questions about the connectivity underlying these
dynamic interactions. Of particular interest is the connectivity of these
basal ganglia regions with other putative supramodal areas associated
with inhibitory control (e.g., DLPFC, VLPFC), and also with domain-
specific regions involved in memory and action, such as the hippo-
campus and the primary motor cortex (M1) respectively. For example,
in our meta-analyses, by localising clusters within the basal ganglia, we
observed that all of the Go/No-Go, Stop-signal, and Think/No-Think
tasks recovered clusters in the centromedial striatum, including the
caudate head/body, spanning across the internal capsule into medial
putamen. This cluster roughly coincides with the region identified by
Haber et al. (2006) that receives projections from the DLPFC (areas 9/
46). Although much care is needed when comparing anatomical land-
marks across species, Neggers et al. (2015) presented evidence based on
diffusion imaging that the frontostriatal projections from anterior pre-
frontal cortex are more similar between humans and macaque monkeys
than those from posterior frontal regions such as the frontal eye field
(FEF) and M1. Since the DLPFC is thought to play important roles in
stopping actions and thoughts (Anderson et al., 2004; Anderson and
Hanslmayr, 2015; Depue et al., 2010, 2015), and since this general
belief was strongly confirmed in our meta-analytic conjunction analysis
for action cancellation and memory inhibition (Fig. 3.2), this putative
DLPFC-striatal pathway could be a candidate through which memory
and motor inhibition are achieved. This possibility must await further
confirmation.

Despite its similarity to action cancellation, the memory inhibition
cluster extended to parts of the right putamen and GPe more than did
motor stopping in general. It is unclear what functions these potentially
memory-inhibition-specific activations of putamen and GPe may be
performing, or whether these functions are unique to this process or
simply a more robust and spatially extensive engagement of putamen
processes observed during action cancellation. The possibility that parts
of the putamen may serve functions specific to memory control should
be considered. It is worth noting, for example, that although the pu-
tamen is often seen as a motor structure (Alexander et al., 1986), recent
evidence suggests that it is involved in cognitive processes such as
working memory (Voytek and Knight, 2010), episodic memory en-
coding (Sadeh et al., 2011), and cognitive control (Badre and Wagner,
2007), and both neuroimaging and computational modelling suggest
that the basal ganglia play critical roles in memory processes (Gruber
et al., 2006; O'Reilly and Frank, 2006; Scimeca and Badre, 2012). In-
deed, Koster et al. (2015) also found that the putamen is significantly
activated in the interaction between memory, action, and reward.
Specifically, participants learned four different categories of objects,
each indicating whether the participants should respond to a following
visual stimulus, and whether the correct action/inaction would lead to
a reward or avoid a loss. They found that activity in the right dorsal
putamen significantly predicted memory retrieval when the associated
action/inaction led to the expected, but not to the unexpected level of
reward. Although these related findings do not speak to a role of the
putamen in memory inhibition, they do indicate that this structure in-
teracts with the medial temporal lobes during memory tasks, providing
precedent for such a role. The circuitry underlying this potential con-
tribution to memory inhibition remains to be identified.

On top of the established network of motor control involving the
basal ganglia, several authors have discussed potential interactions
between the basal ganglia and the hippocampus. While some found that
the basal ganglia and the hippocampus may be largely independent
from each other (Döller et al., 2008), others have suggested more

complex relationships between the two systems during memory func-
tions. On the one hand, basal ganglia and hippocampal processes may
be competitive in nature, such that increased activation in one structure
is associated with decreased activation in the other (Dagher et al., 2001;
Poldrack and Packard, 2003). Poldrack and Rodriguez (2004) reviewed
evidence for the competition between the hippocampal and basal
ganglia systems in classification learning, and proposed that the com-
petition may be modulated by task demands and behavioural success.
Rodriguez and Poldrack (2003) re-analysed a classification learning
dataset wherein participants performed a weather prediction task. In
this task, participants performed on-line learning where they associated
visual stimuli with weather categories. Using structural equation
modelling, they identified that the competitive interaction between the
basal ganglia and the medial temporal lobe is mediated by the pre-
frontal cortex. This work provides evidence against direct interactions
between the basal ganglia and the hippocampus, at least in the context
of Rodriguez and Poldrack's classification task.

Despite this evidence that the basal ganglia and the hippocampal
systems are independent or interact through the prefrontal cortex, other
evidence has suggested that the basal ganglia and hippocampus may
interact in other ways. For example, Sabatino and colleagues found
evidence that basal ganglia activity influences hippocampal oscilla-
tions. Specifically, whereas caudate stimulation appeared to influence
the hippocampal theta rhythm by inhibiting the hippocampal spikes (La
Grutta et al., 1985; Sabatino et al., 1985), pallidal stimulation triggered
enhanced epileptiform activity, inducing generalised seizure activity
(Sabatino et al., 1986). Berke et al. (2004) also found entrainment of
ventral/medial striatal neurons to the hippocampal theta in rats.
Moreover, using Granger Causal Modelling on fMRI data, Seger et al.
(2011) found evidence for effective connectivity from the putamen to
both the caudate and posterior hippocampus, as well as from posterior
hippocampus to the caudate. These interactions were observed in two
tasks. One was a weather prediction task, where participants learned
on-line whether a visual stimulus was meant to predict rain or sunshine.
The other was a subjective judgement task, wherein the participants
rated whether their weather categorisation was based on memories or
guesses. The foregoing findings raise the possibility that the basal
ganglia may exert a controlling influence on target structures in both
memory and motor inhibition. In the case of memory inhibition, this
controlling influence may arise through complex polysynaptic interac-
tions with the hippocampus. Further research is needed to elucidate
how these interactions might be achieved.

Ultimately, determining the extent to which a supramodal cancel-
lation process truly exists will depend on whether intrinsic basal
ganglia pathways are engaged in similar ways for memory and motor
inhibition tasks, including the direct, indirect, and hyperdirect path-
ways. Unfortunately, meta-analytic activations do allow us to de-
termine which specific pathways are required by these tasks. For ex-
ample, increased striatal activity may imply engagement of either the
direct or indirect pathway, or an interaction between the two.
Similarly, increased STN activity may indicate engagement of either the
hyperdirect or the indirect pathway. Despite these limits on our data, it
is worth considering how a supramodal cancellation process might
emerge from these pathways. In one recent effort (Schroll and Hamker,
2013) analysed a range of computational models characterising the
cognitive and motor functions of the basal ganglia with possible con-
tributions from these interacting pathways. Specifically, global blocking
of activations, such as premature-response prevention and working
memory updating, may be modulated by the hyperdirect and the in-
direct pathways; response inhibition/deferral and working memory
gate closing may be modulated by the interaction between the direct
and the short indirect pathways. Some of the proposals developed in
this analysis might be extended to characterize how the basal ganglia
are engaged to suppress retrieval from episodic memory, and the pre-
cise manner in which this process resembles action cancellation.

Although we sought to localise basal ganglia clusters in memory and
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motor inhibition tasks, our approach is not without caveats. For ex-
ample, Wager et al. (2007) discussed a few limitations in Activation
Likelihood Estimation (ALE). Due to the coordinate-based nature of the
ALE algorithm, the analysis only considers the peak coordinates re-
ported in each study, but not the extent of each cluster of activation
where the peaks lie. In addition, the peak coordinates may be influ-
enced by the specific methods used in each study (e.g., thresholding,
smoothing, registration and normalisation). Most of the studies in-
cluded in the current study adopted standard preprocessing methods
from widely used neuroimaging software (e.g., SPM, FSL, AFNI), in-
cluding slice-time correction, motion correction, normalisation, and
smoothing. There were, however, variations in approach. For example,
the smoothing kernel ranged from 3 mm to 12 mm and a few studies
also used customised methods (Supplement). Moreover, a number of
studies conducted first-level analyses in native space (Supplement), and
later normalised the contrast images to standard templates. These
variations necessarily limit the spatial precision we can attribute to the
current findings and should be considered in interpreting the data.

Furthermore, the ALE activation maps, rightfully, model the spatial
uncertainty of the reported peak coordinates from each study, which
introduces a certain level of spatial smoothness. These factors also re-
commend caution when drawing conclusions about the precise locali-
sation of our observed activations, given limitations on spatial resolu-
tion inherent to the meta-analytic method. Reporting bias is also a
consideration, because some researchers may choose to omit activation
peaks that do not fit prior expectations for a task, especially if the
spatial extent of the activation is small, as would be true for some of the
structures of key interest within the basal ganglia. These caveats have
led some to argue that results from coordinate-based meta-analysis
should be treated as an integration of existing knowledge instead of the
absolute truth (Rottschy et al., 2012), as more accurate and complete
information would require an image-based meta-analysis or ‘mega-
analysis’ (Salimi-Khorshidi et al., 2009).

One final caveat, applicable to this and all other ALE meta-analyses,
concerns how to interpret lack of significant clusters in a structure of
interest. One hand, failing to find a significant cluster for a particular
task may indicate that the structure is genuinely not engaged in the
task. On the other hand, because the ALE algorithm seeks to identify
clusters of activation, lack of a significant cluster may also be consistent
with the presence of more dispersed activation peaks that fail to con-
stitute a significant cluster. Indeed, the visualisation and counts of ac-
tivation peaks in the left and right basal ganglia show clearly that there
exist activations in basal ganglia structures in both hemispheres,
especially for our two motor stopping tasks (see Fig. 3.12 and
Table 3.1). Thus, whether one should interpret the differently later-
alized clusters for action prevention and cancellation derived from ALE
as indicating a meaningful task dissociation depends on the assumption
that spatially clustered activations are more meaningful than those that
are more dispersed. Regardless of the method of analysis, however,
memory inhibition in the Think/No-Think task appeared to yield more
spatially concentrated activations predominantly lateralised to the right
basal ganglia. Due to the moderate number of coordinates available in
current studies, however, quantitative examination of task-related dif-
ferences in the spatial distribution of coordinates across sub-regions of
the basal ganglia must await future studies.

Despite these limitations, our meta-analyses have provided the first
meta-analytic evidence that memory and motor inhibition (action
cancellation in particular) engage overlapping regions within the basal
ganglia. These patterns suggest that similar frontostriatal pathways may
be involved when people stop thoughts or actions. Moreover, by loca-
lising the observed clusters within our high-resolution manual seg-
mentation of striatal subregions, we hope that our results can serve as a
useful reference against which the results of future studies may be
compared.

5. Conclusions

The current meta-analyses demonstrate that the basal ganglia are
consistently activated in the inhibition of both actions and thoughts.
This basic finding is broadly congruent with recent literature indicating
that the basal ganglia are not merely involved in motor control, but also
in higher-level cognitive processes, such as memory. Importantly,
however, the surprising similarity of memory inhibition to action can-
cellation more than action prevention suggests that the nature of the
stopping processes that are recruited may dictate the localisation of
basal ganglia activity more so than does task domain, at least for the
tasks we studied. Our data indicate that, during cancellation, similar
cortical and basal ganglia regions are engaged, irrespective of the do-
main of the process that is controlled, consistent with the possibility of
a supramodal cancellation process. Meanwhile, the differences in acti-
vation clusters between the Go/No-Go and Stop-signal tasks suggest
that they may engage different stopping processes and that it may im-
prudent to treat these tasks equivalently. However, it bears emphasis
that the current ALE meta-analysis is more sensitive to clustered acti-
vations than to dispersed ones. The inference that motor cancellation
and motor prevention are distinctly localised in these data depends on
the assumption that highly clustered activations (as detected by ALE)
provide a more informative signature of functional specialization in the
basal ganglia than more dispersed activations would, an assumption
that deserves to be critically examined when more data is available.
Importantly, future studies should characterise the specific basal
ganglia engagement in memory and motor inhibition and investigate
how the frontal, basal ganglia, and domain specific target regions (e.g.,
motor cortex and hippocampus) interact to perform specific stopping
processes in different task domains. Extending the study of the role of
the basal ganglia in inhibitory control to measure the stopping of both
actions and thoughts will provide a valuable source of constraint on
hypotheses about the computational functions that the basal ganglia
perform.
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