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Abstract

Pathogens can be transmitted both vertically (from the parent to the offspring) and

horizontally. Here, I model the co-evolution of pathogens and their hosts allow-

ing for vertical and horizontal transmission and density-dependent host population

growth. My analysis uses evolutionary game theory. I use computational methods

to find that increasing vertical transmission does not always result in more benign

disease outcomes. Instead, it can lead to higher pathogen-induced mortality. Fur-

thermore, more benign outcomes evolve more readily when horizontal transmission

is more profitable for the pathogen, and overall virulence increases as horizontal

transmission becomes more profitable. The results also indicate that vertical trans-

mission, when associated with high virulence, can drive selection-driven extinction

of the pathogen, which highlights the importance of considering both transmission

modes in evolutionary studies.

Keywords: adaptive dynamics, parasite, infectious disease, evolutionary epidemi-

ology
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Summary for lay audience

My research focuses on the co-evolution of pathogens (agents causing disease) and

their hosts (the organisms they infect), exploring how diseases spread and evolve.

There are two main ways pathogens can transmit: from parent to offspring (vertical

transmission) and between individuals in the same generation (horizontal transmis-

sion). Understanding these patterns helps us learn how diseases affect their hosts

over time.

Using mathematical models and computer simulations, I study these interactions

to predict changes. Surprisingly, increasing transmission from parent to offspring

does not always make the disease less harmful. In fact, it can sometimes make it

deadlier.

I also found that the severity of a disease can increase if spreading between indi-

viduals becomes more advantageous for the pathogen. Interestingly, highly deadly

diseases that rely on both vertical and horizontal transmission can sometimes drive

themselves to extinction by killing their hosts too quickly.

These findings help us understand the complex co-evolutionary relationships be-

tween hosts and pathogens, showing that the way diseases spread greatly influences

their overall impact.

iii



Co-Authorship statement

Chapter 2 will be submitted for publication co-authored by myself, Bita Ghodsi,

and my supervisor, Geoff Wild (in that order). The order of authorship reflects the

extent of the contribution made to the research. Wild and I jointly conceived of the

research. I developed the model and the computational methods, I generated the

results, and I drafted the chapter, all under Wild’s guidance.

iv



"If you think you are too small to

make a difference, try sleeping with

a mosquito."

– Dalai Lama
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Chapter 1

Introduction

1.1 Host-Parasite Relationships

This thesis is about parasitism and the evolution of the relationship between para-

sites and their hosts. Parasitism is a widespread and ecologically significant inter-

action in which one organism, the parasite, lives on or within another living organ-

ism, the host. The parasite obtains nutrients of the host and causes some degree

of real damage to it. Parasites include a diverse array of organisms such as bacte-

ria, viruses, fungi, protozoa, helminths (worms), and arthropods . They can harm

their hosts, causing anything from mild discomfort to severe illness or death (Price,

1980). Understanding parasitism is crucial for its implications in health, disease,

and ecological balance, and evolutionary processes.

Hosts provide the necessary environment and resources for parasites to survive and

reproduce. This relationship is inherently detrimental to the host, often resulting

in reduced fitness, such as decreased health, reproductive success, or survival. The

1



CHAPTER 1. INTRODUCTION 2

interactions between hosts and parasites are complex, influencing the behavior and

evolution of both parties involved (Price, 1980).

Studying the evolutionary dynamics of host-parasite interactions is essential for sev-

eral reasons. Firstly, parasites play a significant role in regulating host populations

and maintaining ecosystem balance (Britton, 2003). Secondly, the co-evolution of

parasites and hosts drives evolutionary changes, providing insights into natural se-

lection and adaptation (Abrams et al., 1993). Lastly, understanding these dynamics

can help develop strategies to control parasitic diseases, which have substantial im-

pacts on public health, agriculture, and economic stability (Godfray, 1994).

By modeling these interactions mathematically, this thesis aims to explore the eco-

logical and evolutionary implications of parasitism. Mathematical models provide

valuable insights into the dynamics of host-parasite systems, aiding in the devel-

opment of strategies to manage parasitic diseases and maintain ecological balance.

Tools such as invasion analysis and adaptive dynamics are particularly useful. Inva-

sion analysis helps us understand how mutant traits can spread through a population,

while adaptive dynamics offers a framework for studying the long-term evolution

of these traits under ecological and evolutionary pressures. These approaches en-

able us to predict potential evolutionary outcomes and stability within host-parasite

interactions (Dercole and Rinaldi, 2008).

1.2 Evolutionary Game Theory

Evolutionary Game Theory is a framework that applies the principles of game

theory to evolutionary biology, providing insights into how strategic interactions

among individuals influence evolutionary outcomes. Evolutionary Game Theory

generally models the evolution of strategies in populations. Adaptive dynamics is a
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theoretical framework that builds upon the principles of evolutionary game theory

to bridge the fields of ecology and evolution. Adaptive dynamics focuses on the

long-term evolutionary changes of continuous traits (Dercole and Rinaldi, 2008).

It considers how interactions between individuals with different traits affect the

process of selection. When mutations are very small, adaptive dynamics defines

a fitness landscape and describes evolutionary changes using a system of ordinary

differential equations. This approach models how new traits evolve and how traits

with lower fitness are eliminated through extinction. The process involves the in-

vasion and fixation of rare lineages: a new lineage appears and, if it successfully

invades, it becomes fixed in the population before the next mutation occurs.

1.2.1 ESS and Convergence Stability for One Species

It is essential to introduce some fundamental concepts that support the analysis of

evolutionary dynamics. Consider a population where all individuals are of type x∗.

This value is considered an evolutionary equilibrium if the population can maintain

this state without further changes occurring (Christiansen, 1991).

Two other important concepts in this regard are evolutionarily stable strategy (ESS)

and convergence stability. Previous work of Maynard Smith and Price (1973) on

ESS provided a framework for analyzing the stability and persistence of different

strategies in competitive interactions. An ESS is a strategy that, if adopted by the

majority of a population, cannot be invaded by any alternative strategy with higher

reproductive fitness (Maynard Smith and Price, 1973; Eshel and Motro, 1981). Con-

vergence stability refers to the ability of a population to return to a stable state after

a small perturbation. In the context of my study, convergence stability measures the

long-term behavior of the host-parasite system. Specifically, I am interested in in-

vestigating whether the system reaches a stable equilibrium and if the evolutionary
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dynamics lead to convergence toward this equilibrium. This concept is also known

as a continuously stable strategy (CSS) as described by Eshel (1983).

While an ESS ensures that natural selection will not drive a system away from

the given state, it does not provide insights into how the system initially reaches

that state. On the other hand, convergence stability focuses on how a particular

state is achieved through the process of selection, ensuring the system returns to

equilibrium after small perturbations.

By using these fundamental concepts into my analysis, I aim to uncover the evo-

lutionary outcomes and convergence behavior of the host-parasite system. The in-

vasion fitness function, represented by W(xm, x), denotes the rate at which a rare

lineage, xm, grows in a population dominated by a resident lineage, x (Metz et al.,

1992; Dieckmann and Law, 1996). W(xm, x) is assumed to be twice continuously

differentiable in both x and xm. For x∗ to be an evolutionary equilibrium, we have:

∂W
∂xm

∣∣∣∣∣
xm=x=x∗

= 0. (1.2.1)

For x∗ to be evolutionarily stable, we require the strict inequality W(xm, x∗) <

W(x∗, x∗). Therefore, for any x∗ that satisfies Condition (1.2.1), the following must

hold for all xm , x∗:

W(xm, x∗) −W(x∗, x∗) ≈
1
2
∂2W
∂x2

m

∣∣∣∣∣
xm=x=x∗

(xm − x∗)2 ≤ 0,

leading to
∂2W
∂x2

m

∣∣∣∣∣
xm=x=x∗

< 0 as a sufficient condition for evolutionary stability, as
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noted by Taylor (1996). Therefore, I summarize the sufficient ESS conditions by:

∂W
∂xm

∣∣∣∣
xm=x=x∗

= 0,

∂2W
∂xm

2

∣∣∣∣
xm=x=x∗

< 0.
(1.2.2)

Inspired by Christiansen (1991), the evolutionary equilibrium x∗, satisfying Condi-

tion (1.2.1), is convergence stable if for any x close to x∗, a variant xm near x has

a positive fitness increment when the distance between xm and x∗ is less than that

between x and x∗. This can be represented by:

W(xm, x) > W(x, x)⇔ |x − x∗| > |xm − x∗| . (1.2.3)

From Condition (1.2.3), holding |x − x∗| > |xm − x∗| true, we obtain:

W(xm, x) −W(x, x) ≈
∂W
∂xm

∣∣∣∣∣
xm=x

(xm − x) > 0,

which can be represented by:


if x < x∗ then

∂W
∂xm

∣∣∣∣∣
xm=x
> 0,

if x∗ < x then
∂W
∂xm

∣∣∣∣∣
xm=x
< 0.

(1.2.4)

It follows that the condition
d
dx

(
∂W
∂xm

∣∣∣∣∣
xm=x

)
x=x∗
≤ 0 must hold in addition to 1.2.1.

Therefore, I summarize the sufficient convergence stability conditions by:

∂W
∂xm

∣∣∣∣∣∣
xm=x=x∗

= 0,

∂2W
∂x2

m
+
∂2W
∂x∂xm

∣∣∣∣∣∣
xm=x=x∗

< 0.
(1.2.5)
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System (1.2.5) ensures that after a small perturbation from the evolutionary equi-

librium, x∗, population will naturally return to it over time.

We can model evolution as a process of successive invasion-displacement events,

where a beneficial mutant appears and replaces the resident population before a new

mutant can emerge (Metz et al., 1992). The evolution of a trait over evolutionary

time τ is driven by the fitness gradient of the mutant trait evaluated at the resident

trait, and is proportional to this gradient. This can be mathematically expressed as:

dx
dτ
= k
∂W
∂xm

∣∣∣∣∣
xm=x
, (1.2.6)

where k is a non-negative constant that scales the rate of evolutionary change (Dieck-

mann and Law, 1996). The partial derivative in Equation (1.2.6) implies that the

differences between the mutant and resident traits are very small, indicating weak

selection. The trait expression x∗ is defined as an evolutionary equilibrium if it satis-

fies Equation (1.2.1), making it a solution to Equation (1.2.6). Additionally, meeting

the strict convergence stability conditions ensures that x∗ is a locally asymptotically

stable solution to Equation (1.2.6). I later extend these dynamics to two dimensions

(two traits), considering them as co-evolution.

1.2.2 Example: Evolution of Body Size in a Predator

To illustrate the concepts of evolutionarily stable strategy and convergence stability,

I consider a simple one-species example that can be found in Abrams et al. (1993).

Let’s examine a species where body size is an evolutionary trait that affects the

fitness of an individual. The fitness function of an individual with body size of xm
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in a resident population with mean trait value of x, where xm is near x, is given by:

W(xm, x) = f
( xm

x

)
− d(xm), (1.2.7)

where f ( xm
x ) denotes the probability of winning contests multiplied by the benefit

from winning contests, which is an increasing function of xm
x , and d(x) represents

the cost of the trait. For x∗ to be convergence stable, it must meet Condition (1.2.5).

Thus, we have:

∂W
∂xm

∣∣∣∣∣
xm=x=x∗

=
1
x∗

f ′(1) − d′(x∗) = 0,

d
dx

[
∂W
∂xm

∣∣∣∣∣
xm=x

]
x=x∗
= −

1
x∗2

f ′(1) − d′′(x∗) < 0,

This condition holds if (but not only if) d′′(x) > 0. For x∗ to also be an ESS, it must

satisfy Condition (1.2.2), resulting in:

∂2W
∂x2

m

∣∣∣∣
xm=x=x∗

=
1

x∗2
f ′′(1) − d′′(x∗) < 0.

These are the general stability conditions for this fitness function. Notably, one sta-

bility definition does not necessarily imply the other. For example, for the Function

(1.2.7), If d(xm) = 2x2
m and f

(
xm
x

)
= 1

2

(
xm
x

)8
, then x∗ = 1 is convergence stable but

not an ESS.

1.2.3 Two-Species Co-evolution

In a two-species system, the evolutionary dynamics become more complex as each

species’ fitness depends not only on its own trait values but also on the trait values

of the other species. For instance, Abrams et al. (1993) explains the co-evolution

of predator-prey relationships, emphasizing that these interactions involve contin-
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uous adaptation by both species. Predators and prey have selective pressures on

each other, leading to evolutionary changes such as new defences in prey and more

effective hunting strategies in predators. This process can result in an evolutionary

arms race, where each species constantly evolves to surpass the other, or in stable

co-evolutionary states where both species reach a balance in their adaptations.

In the context of two co-evolving species, the definition of an Evolutionarily Stable

Strategy (ESS) extends to include the interactions between the species. For the first

species with resident trait x and mutant trait xm, and the second species with resident

trait y and mutant trait ym, the fitness of the mutant parasite and the mutant host are

denoted by Wp(xm; x, y) and Wh(ym; x, y), respectively, representing the fitness of a

mutant parasite and a mutant host when the (x, y) are resident traits. For a pair,

(x∗, y∗), to be evolutionarily stable, the sufficient condition would be:

Wp(x∗; x∗, y∗) > Wp(xm; x∗, y∗) for all xm , x∗

Wh(y∗; x∗, y∗) > Wh(ym; x∗, y∗) for all ym , y∗,
(1.2.8)

showing that neither species can increase its fitness by changing the trait value

(Maynard Smith and Price, 1973).

We model co-evolution of the host-parasite by generalizing the dynamics of System

(1.2.6) for a two-species system, resulting in

dx
dτ
= kp
∂Wp

∂xm

∣∣∣∣∣
xm=x

dy
dτ
= kh
∂Wh

∂ym

∣∣∣∣∣
ym=y
,

(1.2.9)

where kp and kh are non-negative constants which scale the rate of evolutionary

change (Dieckmann and Law, 1996).
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We can also evaluate convergence stability of System (1.2.9) to examine whether the

population dynamics will evolve towards the ESS for both species over time. For

the equilibrium (x∗, y∗) to be convergence stable, small perturbations in the traits

should result in evolutionary dynamics that return the system to (x∗, y∗). For that,

the real parts of the eigenvalues of the Jacobian matrix associated with linearization

of System (1.2.9) at the equilibrium should be negative, ensuring the system returns

to (x∗, y∗) after small perturbations.

1.3 Example of Co-evolution: Host-Parasitoid

Now, as an example of co-evolution, I will examine the co-evolutionary dynamics

of a host-parasitoid system. In this section, I introduce parasitoids and analyze how

the interactions between parasitoids and their hosts can drive evolutionary changes

in both populations. This analysis will include modeling population dynamics, de-

veloping fitness functions, and exploring the stability states.

1.3.1 Parasitoids

Parasitoids are a unique group of parasites whose larvae feed exclusively on the

bodies of other arthropods, ultimately leading to the host’s death (Godfray, 1994).

Unlike predators, parasitoids always kill their host and require only a single host

to complete their development. They lay their eggs on or in the bodies of hosts,

and the larvae feed on the host’s tissues until pupation, by which time the host is

generally dead (Godfray, 1994). This intimate interaction with their hosts is a key

aspect of their role in evolutionary ecology.
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1.3.2 Nicholson-Bailey and Population Dynamics

The earliest and simplest models for the behaviors of hosts and parasitoids were

developed by Nicholson and Bailey (Nicholson and Bailey, 1935). First, we take a

look at the Nicholson-Bailey model and its results and then see how Britton (2003)

has modified the model.

The model of Nicholson and Bailey (1935) was developed to study oscillations in

host-parasitoid systems. This model operates in discrete time, and while a contin-

uous model will be analyzed later, the ideas and principles remain fundamentally

the same. The census occurs at the beginning of each season, prior to any para-

sitism, and counts adult parasitoids as well as the stages of the host that are subject

to parasitization. Let Hn and Pn represent the number of hosts and parasitoids, re-

spectively, at the beginning of generation n. The population dynamics of this model

are described as follows:

Hn+1 = R0Hn f (Hn, Pn),

Pn+1 = cHn(1 − f (Hn, Pn)),
(1.3.1)

where R0 refers to the host basic reproductive ratio, i.e., the per capita produc-

tion of the host per generation in the absence of parasitism, c indicates the average

number of eggs laid per generation by an adult parasitoid in a single host that will

survive to breed in the next generation, and f (Hn, Pn) is the fraction of hosts not

parasitized over one generation. So that after parasitism, the number of unpara-

sitized hosts would be Hn f (Hn, Pn) while the number of parasitized hosts would be

Hn(1 − f (Hn, Pn)).

There are some key assumptions in their model. First, it assumes no density-
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dependent effects on the host population, leading to exponential growth in the

absence of parasitism (assuming R0 > 1). Second, it assumes parasitoids can

infect any host they encounter without limit. Finally, they model f (Hn, Pn) by

treating parasitoid search as a Poisson process with searching efficiency α. The

search is continuous between census points: dHn
dt = −αPnHn for n < t < n + τ.

The parasitoid number remains constant during the search. Thus, by the inter-

val’s end, H(n + τ) = Hn f (Hn, Pn) = Hn exp(−aPn), where a = ατ. Therefore,

f (Hn, Pn) = exp(−aPn). Thus, Equations (1.3.1) become:

Hn+1 = R0Hn exp(−aPn)

Pn+1 = cHn(1 − exp(−aPn)).
(1.3.2)

To find the host and parasitoid populations sizes at equilibrium, denoted as (H∗, P∗),

we solve the equations Hn+1 = Hn and Pn+1 = Pn. This yields:

P∗ =
1
a

log(R0),

H∗ =
P∗R0

c(R0 − 1)
.

Now, I examine the stability of the equilibrium. I apply the Jury condition for the

stability of discrete-time linear systems, which are:

|traceJ∗| < det J∗ + 1,

det J∗ < 1,
(1.3.3)

where J∗ is the Jacobian matrix of the System (1.3.2) at equilibrium. However, for

R0 > 1, the determinant exceeds one, violating the second Jury condition. This

suggests that the system has at least one eigenvalue which lies outside the unit
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circle. Consequently, the Nicholson-Bailey model predicts unbounded oscillations

in the host-parasitoid system, which does not reflect real-life dynamics. This issue is

illustrated through numerical results in Figure (1.1). In this model, some unrealistic

Figure 1.1: Numerical integration of the Nicholson-Bailey host-parasitoid model,
assuming parasitoid search follows a Poisson process. The model fails as the par-
asitoid population drops to zero. Consequently, the trajectory forms an outward
spiral, with peaks and troughs becoming more extreme until eventual extinction.

assumptions might have caused unrealistic results. Addressing each of them to

adjust the model can result in a stable state. Britton (2003) suggested some potential

modification in the clumped distribution of parasitoid search behavior that could

be described by a negative binomial distribution, dHn
dt = −αPnHn

(
1 + bPn

k

)−k
for

n < t < n + τ, which leads to:

f (Hn, Pn) =
(
1 +

bPn

k

)−k

,

where k is the clumping parameter. As k approaches infinity, f (Hn, Pn) converges to
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the exponential function e−bPn , thereby recovering the Poisson model. I present the

numerical results of the modified Nicholson-Bailey model in Figure (1.2), demon-

strating stability for a finite clumping parameter (k = 1).

Figure 1.2: Numerical integration of the Nicholson-Bailey host-parasitoid model,
assuming parasitoid search follows a binomial distribution when k = 1. The model
demonstrates the interaction dynamics where the probability of finding a host is
binomially distributed, affecting the population trajectories of both species. The
result shows the fluctuations of the host and parasitoid populations over time.

1.3.3 Parasitoid Invasion

Now, I examine the adaptive dynamics and outcomes of the parasitoid-host sys-

tem. Consider a host population susceptible to attack and infection by a resident

parasitoid strain and a mutant parasitoid strain during a period of length τ. Let P̂n

denote the size of the mutant parasitoid population at the beginning of generation

n. Assume that a and â are constant attack rates, and k is a constant reflecting the
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extent to which the host population is clumped. c and ĉ are the average numbers

of eggs laid by an adult resident parasitoid and an adult mutant parasitoid, respec-

tively, in a single host that will survive to the next generation. The dynamics of the

two-parasitoid system are given by:

Hn+1 = R0Hn f (bPn + b̂P̂n),

Pn+1 = cHn
bPn

bPn + b̂P̂n
(1 − f (bPn + b̂P̂n)),

P̂n+1 = ĉHn
b̂P̂n

bPn + b̂P̂n
(1 − f (bPn + b̂P̂n)),

(1.3.4)

where b = aτ, b̂ = âτ. This two-parasitoid system (System 1.3.4) has a mutant-free

equilibrium (H∗, P∗, 0).

The positive definiteness of the Jacobian matrix indicates local stability around an

equilibrium point, meaning that small perturbations will converge back to the equi-

librium. This stability property is related to the convergence behavior of the system.

Now, I find the Jacobian matrix for the system at the mutant-free equilibrium to an-

alyze the stability:

J∗P =


R0 f (bP∗) R0H∗ f ′(bP∗)b −−

c(1 − f (bP∗)) −cH∗ f ′(bP∗)b −−

0 0 b̂ĉ
bc

 . (1.3.5)

The elements marked −− are not of interest. The positive definiteness of the matrix

depends only on the element in the lower right corner of this Jacobian matrix, which

determines the invasion potential of the mutant parasitoid. I consider this element

as the parasitoid fitness. I will model b and c as functions of a continuous resident

trait, x. Therefore, I express b and c as b = b(x) and c = c(x), respectively. I assume
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a trade-off between b(x) and c(x), meaning that x has opposite effects on b(x) and

c(x). Let xm denote the mutant trait, with ĉ = c(xm) and b̂ = b(xm). Consequently,

the fitness of the mutant parasitoid, denoted WP(xm; x, y), can be expressed as:

WP(xm; x, y) =
b(xm)c(xm)

b(x)c(x)
(1.3.6)

If WP(xm; x, y) > 1, then the mutant invades, and if the inequality is reversed, the

mutant is eliminated.

Evolutionarily stable x∗ is understood as:

x∗ = arg max b(x)c(x) (1.3.7)

This analysis provides a framework for understanding the conditions under which

a mutant parasitoid strain can invade.

1.3.4 Host Invasion

In this section, I will analyze the host invasion dynamics. I consider both a resi-

dent host and a mutant host, each susceptible to attack and infection by a parasitoid

over a period of length τ. Let Ĥn denote the size of the mutant host population

at the beginning of generation n. Let R0 and R̂0 represent the per capita produc-

tion per generation of the resident and mutant hosts, respectively, in the absence

of parasitism. Hosts can modify their attack rates in response to the presence of



CHAPTER 1. INTRODUCTION 16

parasitoids. The dynamics of the two-host system are given by:

Hn+1 = R0Hn f (bPn),

Pn+1 = cHn(1 − f (bPn)) + cĤn(1 − f (b̂Pn)),

Ĥn+1 = R̂0Ĥn f (b̂Pn).,

(1.3.8)

where b = aτ, b̂ = âτ. This two-host System (1.3.8) has a mutant-free equilibrium

(H∗, P∗, 0).

Similar to the pathogen invasion, I explore the positive definiteness of the Jacobian

matrix of System (1.3.8) at equilibrium, which is:

JH =


R0 f (bP∗) R0H∗ f

′

(bP∗)b −−

c(1 − f (bP∗)) −cH∗ f
′

(bP∗)b −−

0 0 R̂0 f (b̂P∗n)

 , (1.3.9)

where −− indicates elements that are not relevant to our analysis. The positive

definiteness of the matrix depends only on the element in the lower right, which

we take as host fitness. I will model b and R0 as functions of the host continuous

evolutionary trait, y. Thus, I express b = b(y) and R0 = R0(y) for the resident host,

and b̂ = b(ym) and R̂0 = R0(ym) for the mutant host. Consequently, the fitness of the

mutant host, ym, in a resident population is given by:

Wh(ym; x, y) = R0(ym) f (b̂P∗n). (1.3.10)

Substituting the population size of the parasitoid at equilibrium, we have:

Wh(ym; x, y) = R0(ym)
(
1 +

b(ym)
b(y)

( k
√

R0(y) − 1)
)−k

. (1.3.11)
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If Wh(ym; x, y) > 1, the mutant host invades, leading to:

(R0(y))
1
k − 1

b(y)
<

(R0(ym))
1
k − 1

b(ym)
. (1.3.12)

Evolutionarily stable y∗ is understood as:

y∗ = arg max
(R0(y))

1
k − 1

b(y)
. (1.3.13)

This analysis provides a framework for understanding the conditions under which

mutant host strains can invade and establish themselves in a population, contribut-

ing to our understanding of host-parasitoid evolutionary dynamics.

1.4 Looking ahead

While models like the Nicholson-Bailey host-parasitoid one provide a solid foun-

dation, they have limitations. In the discussed host-parasitoid model, each species

optimizes its fitness independently without considering the other’s strategy. This

contrasts with Shillcock et al. (2023) and my work in the next chapter. Shill-

cock et al. (2023) introduces a game between the host and the pathogen, where

each species’ fitness depends on the other’s strategy, so the fitness of each species

is maximized given the strategy of the other. I will go further by developing a

more general and complicated game, exploring both interspecies and intraspecies

interactions. This includes scenarios where a mutant arises, and its growth rate

depends on not only its own strategy but also the resident populations’ strategies.

This broader approach will help me understand scenarios where pathogens interact

with other pathogens and hosts with other hosts, providing a more complete view

of co-evolution. Shillcock et al. (2023) also points out issues with handling ver-
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tical transmission (transmission from parent to offspring), which adds complexity

to evolutionary dynamics. Including factors like vertical transmission and density-

dependent effects, the model I introduce aims for a more detailed understanding of

pathogen evolution.



Chapter 2

Host-Pathogen Co-evolution with

Vertical Transmission of Infections

and Density-Dependent Dynamics

2.1 Introduction

Pathogens can be transmitted vertically from parent to offspring. In humans, for

example, this can occur before birth, during birth, and after birth, with examples in-

cluding hepatitis, HIV, and rubella (Arora et al., 2022). In mammals more broadly,

the protozoan Toxoplasma gondii can be transmitted from mother to fetus during

pregnancy (Montoya and Liesenfeld, 2004). In insects, the Wolbachia bacterium is

passed from mother to offspring through the eggs (Werren, 1997). In plants, vertical

transmission can happen through pollen and seeds (Pagán et al., 2022). Of course

pathogens can also spread through more usual (horizontal) means.

19



CHAPTER 2. HOST-PATHOGEN CO-EVOLUTION 20

Vertical transmission is often predicted to select against pathogens that inflict ex-

cessive harm on their hosts (Cressler et al., 2016; Frank, 1996; Lipsitch et al., 1996;

Stearns and Medzhitov, 2015; Úbeda and Jansen, 2016; Ewald, 1994). A vertically

transmitted pathogen that is too virulent limits the reproductive potential of its host

and cuts itself off from a ready source of new infections. It is easy to show theo-

retically that, all else being equal, vertically transmitted pathogens should be less

virulent than those transmitted exclusively through horizontal means (e.g. Stearns

and Medzhitov, 2015; Úbeda and Jansen, 2016). All else may not be equal, though.

In fact, recent theoretical work has shown that when hosts co-evolve with their

pathogens, vertical transmission can lead to higher levels of host harm (Shillcock

et al., 2023).

Although recent theoretical work shows that vertical transmission can bring co-

evolving pathogens and hosts into greater conflict (Shillcock et al., 2023), this work

is far from complete. In particular, it is based on a model in which pathogen-

induced mortality is the sole factor regulating host-population growth. If pathogen-

induced mortality is too low, or absent, then the size of the host population grows

without bound and the modelling paradigm upon which the conclusions rest fails

(Metz et al., 1992). The implication here is that recent work may struggle to find

co-evolutionary outcomes involving benign pathogens and can say nothing about

phenomena like selection-driven extinction of the pathogen that have been observed

elsewhere (van Baalen, 1998). To fill this gap, we must revise current approaches

by incorporating self-regulation of host population growth.

Our goal is to understand how vertical transmission impacts pathogen-host co-

evolution when host population growth is regulated by factors in addition to pathogen-

induced mortality. Specifically, we asked how host demography (birth rate, death
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rate) and the ease with which infections are created horizontally (later, profitability

of horizontal transmission) interact with vertical transmission to shape co-evolutionary

outcomes when growth of the host population is density-dependent. Unlike previ-

ous work, we find self-regulation of host population growth can mean vertically

transmitted pathogens are driven to extremely low densities by selection under cer-

tain circumstances.

2.2 Population Dynamics

We use a standard model for the dynamics of a host population in the presence of

an infectious agent. Let S = S (t) represent the number of individuals currently un-

infected but susceptible to infection in the future. Immediately following infection,

individuals enter the exposed phase of the disease: they are infected but not yet in-

fectious. Let E = E(t) represent the number of exposed hosts. Exposed individuals

progress to the infectious phase. Let I = I(t) be the number of infectious hosts

characterized by the onset of infectiousness. Our immediate aim is to describe the

changes in S , E, and I over time and to predict the long-term dynamic behavior of

the system.

The number of individuals of each category varies due to death, birth, and disease

progression. We use bs to denote the per-capita birth rate of susceptible and exposed

hosts, bI to denote the per-capita birth rate of infectious hosts, and µ(N) = µ0N to

denote the per-capita background mortality rate of hosts, where µ0 is a positive

constant and N = S + E + I is the total population size (we achieve self regulation

of host population growth with density-dependent background mortality). Exposed

hosts become infectious at a rate of δ. We assume the infection increases the per-

capita mortality rate of infectious but not exposed individuals by the rate of α as
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pathogen-induced mortality rate.

The number of individuals of each category also varies due to disease transmission

and recovery. The infection is transmitted both horizontally and vertically. Hosts

in the infectious stage have the capacity to horizontally transmit the pathogen to

susceptible individuals, with some constant rate noted as β > 0 which characterizes

the pathogen’s horizontal transmissibility from I to uninfected host. The infectious

hosts have the capability to transmit the infection to their newborn offspring. The

parameter v denotes the probability at which the offspring of an infectious host

is born with the infection. We assume that exposed hosts are incapable of trans-

mitting the disease, either horizontally or vertically. Additionally, we assume that

all infected newborn offspring are initially exposed and not infectious. Infectious

hosts can recover from an infection. The infection is cleared from the infectious

host at the recovery rate, γ. After clearance, the host is assumed to be immediately

susceptible again.

For later use, we introduce a trade-off between the pathogen-induced mortality rate

(α) and the horizontal transmission rate constant (β), as well as between the host

recovery rate (γ) and bI . The relationship between virulence and transmission (β)

has been a subject of debate, with Alizon et al. (2009) noting that while the trade-off

is controversial, it is widely recognized as a critical factor in pathogen evolution.

Acevedo’s meta-analysis (Acevedo et al., 2019) further supports this, demonstrat-

ing a generally positive relationship between virulence and β. Additionally, we

consider a trade-off involving the host’s energy budget, where any energy allocated

to immune function (γ) reduces the energy available for reproduction, thereby influ-

encing bI . Consequently, we denote these relationships as β = β(α) and bI = bI(γ)
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where β
′

(α) > 0, β′′(α) < 0, b
′

I(γ) < 0, and b′′I (γ) < 0. We specifically define

β(α) = kαn

bI(γ) = bs − cγ2,
(2.2.1)

Here, n represents the profitability of the horizontal transmission, where 0 ≤ n ≤ 1.

This means that a one-percent increase in pathogen-induced mortality rate yields

an n-percent increase in the horizontal transmission rate. The constants c and k act

as scalars, adjusting the strength of the respective trade-offs. These trade-offs will

become relevant when we develop fitness functions below.

We summarize our model assumptions with a system of differential equations:

dS
dt
= bsS + bsE + (1 − v)bI(γ)I − β(α)IS + γI − µ(N)S

dE
dt
= β(α)IS + vbI(γ)I − δE − µ(N)E

dI
dt
= δE − γI − αI − µ(N)I.

(2.2.2)

In the absence of the infection, the system of equations simplifies to

dS
dt
= (bs − µ(N))S = (bs − µ0N)S = (bs − µ0S )S

dE
dt
=

dI
dt
= 0,

(2.2.3)

which admits ( bs
µ0
, 0, 0) as the equilibrium solution (the disease-free equilibrium),

suggesting that when there is no infection, the population is at equilibrium at N̄o =

S̄ o =
bs
µ0

. In other words, in the absence of the disease, the host population size does

not grow without bound as it has in previous models (Shillcock et al., 2023).

We test the local asymptotic stability of the disease-free equilibrium by investigat-



CHAPTER 2. HOST-PATHOGEN CO-EVOLUTION 24

ing the eigenvalues of the Jacobian matrix,

JDFE =


−µ(N̄0) bs −β(α)N̄0 + (1 − v)bI(γ) + γ

0 −δ − µ(N̄0) β(α)N̄0 + vbI(γ)

0 δ −(γ + α + µ(N̄0))

 . (2.2.4)

Specifically, the disease-free equilibrium is locally asymptotically stable whenever

the real parts of all eigenvalues of JDFE are negative. If one of the eigenvalues of

this matrix has positive real part, then the disease-free equilibrium is unstable. We

can immediately see that one of the eigenvalues is −µ(N̄0) < 0. Given the block

triangular structure of JDFE, we conclude that the local asymptotic stability of the

disease-free equilibrium hinges on the eigenvalues of the submatrix in the 2 × 2

block found in the lower right (the critical submatrix).

It is convenient to apply the Routh-Hurwitz criteria to the eigenvalues of the critical

submatrix. The trace of the submatrix is negative, so the disease-free equilibrium

loses its locally asymptotic stability if and only if the determinant of the submatrix

is negative. In other words, the disease-free equilibrium is unstable when

(δ + µ(N̄0))(γ + α + µ(N̄0)) − δ(β(α)N̄0 + vbI(γ)) < 0. (2.2.5)

The previous line rearranges to

δ

(δ + µ(N̄0))
β(α)N̄0 + vbI(γ)
(γ + α + µ(N̄0))

> 1. (2.2.6)

The left-hand side of Condition (2.2.6) is known as the basic reproduction ratio,

R0. It gives the expected number of secondary infections generated by an exposed

host in a fully susceptible population (van den Driessche and Watmough, 2002). In
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Figure 2.1: Population size of infectious hosts (I), plotted as a function
of the basic reproduction number (R0) for our model. We see a trans-
critical bifurcation at R0 = 1 and stability is transferred from a disease-
free equilibrium to an endemic equilibrium. This analysis is based on
varying the rate at which exposed hosts become infectious, δ, within the
range from 0.0 to 1.0. The model runs were performed with birth rate,
bs = 0.2, vertical transmission rate, v = 0.4, horizontal transmission
profitability, n = 0.4, and background mortality rate, µ(N) = 0.15 × N,
when N represents the total population.



CHAPTER 2. HOST-PATHOGEN CO-EVOLUTION 26

Condition (2.2.6), δ
(δ+µ(N̄0)) denotes the probability an exposed individual becomes

infectious, 1
(γ+α+µ(N̄0)) denotes the average duration an infectious individual remains

in that state, and β(α)N̄0 + vbI(γ) signifies the rate at which new infections are

generated both horizontally and vertically. When R0 > 1, the disease-free equi-

librium typically loses its locally asymptotic stability, and an endemic equilibrium

may exist. If such an equilibrium exists, exposed and infectious individuals oc-

cur in non-zero numbers, and this equilibrium can gain locally asymptotic stability.

Numerical experiments support our expectations (Figure 2.1).

2.3 Fitness

To model the co-evolution of pathogen and host, we must determine the fitness of

each. In this section, we describe the fitness of a rare pathogen lineage and that of a

rare host lineage, at the endemic equilibrium represented by S̄ , Ē, and Ī. The same

general approach appears many times in the literature (Abrams et al., 1993; Day

and Burns, 2003; Shillcock et al., 2023).

2.3.1 Pathogen Fitness

We consider a rare mutant pathogen that induces a mortality rate of αm on its host.

This rare mutant is in a resident population dominated by a pathogen that induces

mortality rate α at its endemic equilibrium. The following system represents the
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population dynamics in the presence of both resident and mutant pathogen strains:

dS
dt
= bsS + bs(E + Em) + (1 − v)bI(γ)(I + Im) − β(α)IS

− β(αm)ImS + γ(I + Im) − µ(N)S

dE
dt
= β(α)IS + vbI(γ)I − δE − µ(N)E

dI
dt
= δE − γI − αI − µ(N)I

dEm

dt
= β(αm)ImS + vbI(γ)Im − δEm − µ(N)Em

dIm

dt
= δEm − γIm − αmIm − µ(N)Im.

(2.3.1)

Here, Em and Im denote the number of exposed and infectious hosts, respectively,

carrying the mutant pathogen, N denotes the total population of residents and mu-

tants, and we assume that no host can be infected by more than one strain of

pathogen. Linearizing this model at the mutant-free equilibrium, where no mu-

tant individual is present, denoted by (S̄ , Ē, Ī, 0, 0), results in a decoupled 5 × 5

matrix, with a 2×2 block decoupled in the lower right corner. This structure allows

the growth of the rare mutant pathogen to be approximated using

dEm
dt

dIm
dt

 = Jp

Em

Im

 , (2.3.2)

where

Jp =

−(δ + µ(N̄)) β(αm)S̄ + vbI(γ)

δ −(γ + µ(N̄) + αm)

 , (2.3.3)

and N̄ represents the total population at the mutant-free equilibrium.

We can now apply the next-generation theorem to develop a mathematical expres-

sion of the pathogen invasion fitness (Hurford et al., 2009). We decompose Jp as
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Fp − Vp, where

Fp =

0 β(αm)S̄ + vbI(γ)

0 0

 (2.3.4)

and

Vp =

δ + µ(N̄) 0

−δ γ + αm + µ(N̄)

 . (2.3.5)

We index the rows and columns of Fp and Vp as i, j, k = 1, 2, where category 1

refers to exposed hosts and category 2 refers to infectious hosts. That said, the i jth

entry of Fp gives the rate at which a category j infection produces a new category i

infection. When we invert the matrix Vp, we find

V−1
p =

1
(δ + µ(N̄))(γ + µ(N̄) + αm)

γ + µ(N̄) + αm 0

δ δ + µ(N̄)

 . (2.3.6)

The jkth entry of V−1
p is the average length of time a current category k infection

spends as a category j infection during its lifetime. Having this decomposition,

the ikth element of the matrix, Kp = FpV−1
p , is interpreted as the expected lifetime

number of new type i infections produced by a given infection that is currently of

type k. We call Kp the ‘next generation matrix’ for this reason.

The spectral radius of the next-generation matrix gives us the invasion fitness of

the mutant pathogen within a resident pathogen population, denoted Wp(αm;α, γ).

Given that Kp is a triangular matrix, its largest eigenvalue can easily be found, and

doing so yields

Wp(αm;α, γ) =
δ

(δ + µ(N̄))
β(αm)S̄ + vbI(γ)
(γ + µ(N̄) + αm)

, (2.3.7)

where S̄ and N̄ are functions of α and γ. The mutant pathogen invades if Wp(αm;α, γ) >
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Wp(α;α, γ) = 1 and if the inequality is reversed, the mutant is eliminated. Provided

selection is weak (and provided an additional, minor technical condition is met),

a mutant pathogen that invades, eventually displaces the resident pathogen strain

(Dercole and Rinaldi, 2008).

2.3.2 Host Fitness

We now consider a scenario where a rare lineage of mutant hosts has arisen within

a resident population at its endemic equilibrium. These mutant hosts recover from

infections at a rate of γm, compared to the resident hosts who recover at a rate of γ.

The following system represents the population dynamics in the presence of both

resident and mutant hosts:

dS
dt
= bsS + bsE + (1 − v)bI(γ)I − β(α)(I + Im)S + γI − µ(N)S

dE
dt
= β(α)(I + Im)S + vbI(γ)I − δE − µ(N)E

dI
dt
= δE − γI − αI − µ(N)I

dS m

dt
= bsS m + bsEm + (1 − v)bI(γm)Im − β(α)(I + Im)S m + γmIm

− µ(N)S m

dEm

dt
= β(α)(I + Im)S m + vbI(γm)Im − δEm − µ(N)Em

dIm

dt
= δEm − γmIm − αIm − µ(N)Im.

(2.3.8)

Here, Em and Im denote the number of exposed and infectious hosts, respectively,

carrying the mutant pathogen, S m denotes the number of susceptible hosts to the

mutant pathogen, and N represents the total population of residents and mutants.

Linearizing this model around the mutant-free equilibrium, where no mutant indi-

vidual is present, denoted by (S̄ , Ē, Ī, 0, 0, 0), results in a decoupled 6 × 6 matrix,
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with a decoupled 3 × 3 block in the lower right corner. This structure allows the

growth of the rare mutant host to be approximated using


dS m

dt

dEm

dt

dIm

dt

 = Jh


S m

Em

Im

 , (2.3.9)

where

Jh =


bs − β(α)Ī − µ(N̄) bs (1 − v)bI(γm) + γm

β(α)Ī −δ − µ(N̄) vbI(γm)

0 δ −(γm + α + µ(N̄))

 . (2.3.10)

We decompose Jh as Fh − Vh, where

Fh =


bs bs (1 − v)bI(γm)

0 0 vbI(γm)

0 0 0

 (2.3.11)

and

Vh =


β(α)Ī + µ(N̄) 0 −γm

−β(α)Ī δ + µ(N̄) 0

0 −δ γm + α + µ(N̄)

 . (2.3.12)

The matrix Fh captures mutant host reproductive rates, and the inverse of Vh cap-

tures the expected amount of time a host remains in a given state (Hurford et al.,

2009). The next generation matrix for the host is Kh = FhV−1
h , and its spectral-radius

gives us the host invasion fitness, Wh(γm;α, γ). The matrix Kh is block triangular

and its largest eigenvalues is also an eigenvalue of the 2 × 2 submatrix in the upper
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left. It follows that

Wh(γm;α, γ) =
(Kh11 + Kh22) +

√
(Kh11 + Kh22) − 4(Kh11 Kh22 − Kh21 Kh12)

2
, (2.3.13)

where Khi j denotes the element at row i and column j of Kh. The mutant host invades

when Wh(γm;α, γ) > Wh(γ;α, γ) = 1, and if the inequality is reversed, the mutant is

eliminated. Again, provided selection is weak (and provided an additional, minor

technical condition is met), a mutant host that invades, displaces the resident host

strain (Dercole and Rinaldi, 2008).

2.4 Evolutionary Dynamics

We model co-evolution as a series of invasion-displacement events: an advanta-

geous mutant (either pathogen or host) arises and displaces the existing resident

before another mutant (either pathogen or host) can arise (Metz et al., 1992). The

rate of change of a trait expression over time τ is proportional to the fitness gradient

of the mutant traits evaluated at the resident trait value. This allows us to describe

the trajectories of pathogen-induced mortality and host recovery over evolutionary

time τ as
dα
dτ
= kp
∂Wp

∂αm
(α;α, γ)

dγ
dτ
= kh
∂Wh

∂γm
(γ;α, γ),

(2.4.1)

where kp and kh are constants that scale the rate of evolutionary change (Dieckmann

and Law, 1996). The partial derivatives in Equation (2.4.1) indicate the difference

between the mutant and resident traits is only very small; in other words, selection

is weak. Equation (2.4.1) implies that mutant hosts and mutant pathogens do no co-

occur. Thus, correlations between pathogen and host cannot emerge in this model.
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A pair of host and pathogen traits, (α∗, γ∗), are at co-evolutionary equilibrium when

they satisfy
∂Wp

∂αm
(α∗;α∗, γ∗) = 0

∂Wh

∂γm
(γ∗;α∗, γ∗) = 0.

(2.4.2)

In other words, the pair (α∗, γ∗) is an equilibrium solution to Equation (2.4.1). That

said, we consider a pair of traits at co-evolutionary equilibrium to be convergence

stable if they are asymptotically stable under the dynamics described by Equation

(2.4.1).

In general, convergence stable pairs like (α∗, γ∗) may still be susceptible to invasion

by mutants (Geritz et al., 1998), that is they may lack evolutionary stability (May-

nard Smith, 1982). To guarantee that (α∗, γ∗) are evolutionarily stable, we would

like to require

Wp(αm;α∗, γ∗) < Wp(α∗;α∗, γ∗) = 1

Wh(γm;α∗, γ∗) < Wh(γ∗;α∗, γ∗) = 1
(2.4.3)

for all αm , α
∗ and γm , γ

∗. However, we can only impose a local version of

Condition (2.4.3). For αm near α∗ and γm near γ∗, we have

Wp(αm;α∗, γ∗) ≈ 1 +
1
2

(αm − α
∗)2∂

2Wp

∂α2
m

(α∗;α∗, γ∗)

Wh(γm;α∗, γ∗) ≈ 1 +
1
2

(γm − γ
∗)2∂

2Wh

∂γ2
m

(γ∗;α∗, γ∗),
(2.4.4)

where we have applied the definition of a co-evolutionary equilibrium to simplify
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the previous line. It follows that,

∂2Wp

∂α2
m

(α∗;α∗, γ∗) < 0

∂2Wh

∂γ2
m

(γ∗;α∗, γ∗) < 0
(2.4.5)

gives us a local condition for the evolutionary stability of (α∗, γ∗).

2.5 Numerical Analysis

We identify convergence stable pairs, numerically, in four steps. First, we guess

values for (α∗, γ∗). Second, we find the endemic equilibrium corresponding to our

guess by iterating Equation (2.2.2) forward in time. Third, we use the endemic

equilibrium to calculate the fitness; specifically we calculate finite difference ap-

proximations for the partial derivatives for Equation (2.4.1). Fourth, we update the

guess by adding some multiple of the appropriate partial derivative to the current

values of α∗ and γ∗, respectively. We repeat steps two to four until the absolute

values of the finite difference approximations to the fitness derivatives in Equation

(2.4.1) become sufficiently close to zero. To ensure the pair (α∗, γ∗) is also evolu-

tionarily stable, we verify Condition (2.4.3) using finite difference approximations.

The entire methodology is detailed in the appended Jupyter Notebook B.

2.6 Results

Before we detail the results, it is useful to make three fundamental observations.

First, an increase in the birth rate, bs, prompts a compensatory rise in the back-

ground mortality rate, µ(N̄), at equilibrium (Figure 2.2). Consequently, a rise in

bs triggers a reduction in the expected duration of infection and the expected life



CHAPTER 2. HOST-PATHOGEN CO-EVOLUTION 34

span of the host. Second, as n increases, horizontal transmission becomes more

profitable and therefore more attractive for the pathogen. From the host’s perspec-

tive, increased n leads to greater risk of pathogen-induced mortality, as pathogen-

induced mortality is associated with horizontal transmission. Third, a higher ver-

tical transmission rate, v, means a larger proportion of offspring from infected in-

dividuals being infected. From the host’s perspective, infected offspring are costly,

because they are of lower quality; however, infected offspring are beneficial to the

pathogen as it does not need to impose pathogen-induced mortality in order to create

these new infections. These points facilitate a clearer understanding of the results.
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Figure 2.2: Variation of the background mortality rate when the pop-
ulation is at endemic and co-evolutionary equilibrium. We assume the
rate of exposed hosts becoming infectious, δ = 1, horizontal trans-
mission profitability, n = 0.27, and the background mortality rate,
µ(N) = 0.15 × N, when N represents the total population.

The results themselves, can be organized around the profitability of horizontal trans-

mission, n. Generally, lower n leads to lower levels of trait expressions (i.e., smaller

α∗ and γ∗). By contrast, higher n leads to higher levels of trait expressions. How-
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ever, within this generic framework, additional patterns emerge.

2.6.1 Lower Profitability of Horizontal Transmission Rate

We make two sets of observations for cases in which the profitability of horizontal

transmission, represented by n, is low. The first set of observations concerns the

effect of model parameters on the stable pathogen-induced mortality rate, α∗. The

second set of observations concerns the effect of model parameters on the stable

host recovery rate, γ∗.

Modifying the vertical transmission, v, and birth rate, bs, influences the value of

α∗. We observe that a rise in birth rate, bs, elevates the pathogen-induced mortal-

ity rate α∗ (Figure 2.3). A higher birth rate results in higher background mortality,

as explained above, and in turn shortens the expected duration of infection. To

maintain its reproductive success then, the pathogen must create new infections at a

higher rate, and this need is reflected in the increased α∗, which improves horizontal

transmission. With bs held constant, an increase in v reduces the pathogen-induced

mortality rate, α∗ (Figure 2.3). As opportunities for vertical transmission become

more frequent, the pathogen can maintain its reproductive success with less hori-

zontal transmission which translates to lower α∗.

Adjusting the parameters of vertical transmission, v, and birth rate, bs, impacts

stable recovery rate, γ∗, as well.

When v is fixed at a low value, increasing bs lowers recovery rate, γ∗ (Figure 2.3).

As mentioned above, larger reproductive rates are compensated by higher back-

ground mortality rate, which leads to a shorter host life span. Because of the trade-

off involving birth rate when infected, the lower recovery rate allows the host to

maintain its lifetime reproductive success in a shorter period of time. Notably, the
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reduction in γ∗ here is accompanied by an increase in α∗ (Figure 2.3). This is ex-

plained by the lower value of n. Recall that when n is small, the risk associated with

infection is low. Thus, the host is less concerned by the threat of the disease and

more concerned with reduction in fitness connected to the density of its own popu-

lation. Given v is low, the host is similarly less concerned by the risks of producing

low-quality infected offspring.

Conversely, when v is fixed at a high value, an increase in bs boosts γ∗ (Figure

2.3). Now, an infected host prioritizes recovery because otherwise, it will transmit

its infection to a significant fraction of its offspring. In other words, there is a

shift toward enhancing the quality of reproductive output within a shortened life

expectancy rather than the quantity.

When v is increased, with bs held constant, we observe a reduction in recovery

rate γ∗ (Figure 2.3). This is interpreted as a response to the reduction in pathogen-

induced mortality, α∗, that is in turn driven by greater opportunities for vertical

transmission.
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Figure 2.3: Variation in the evolutionarily stable values of pathogen-
induced mortality rate (α∗) and host recovery rate (γ∗) across different
levels of vertical transmission rates (v) and birth rates (bs), at lower
horizontal transmission profitability (n), specifically for n = 0.23 and
n = 0.27. The first row of subplots details how α∗ adapts to shifts
in vertical transmission and birth rates for these lower n values, while
the second row focuses on γ∗. We assume the rate of exposed hosts
becoming infectious, δ = 1, and the background mortality rate, µ(N) =
0.15 × N, when N represents the total population.

2.6.2 Higher Profitability of Horizontal Transmission Rate

We now consider cases in which profitability of horizontal transmission, n, is higher.

In these cases, we see a deviation from the pattern established in the previous sub-

section (lower n). Specifically, the stable expressions show a noticeable local peak

for higher rates of vertical transmission, v, and lower birth rate, bs (Figure 2.4). As

an aside (for the moment), near the local peak, we lose the numerical data because

our algorithm converges to an evolutionary equilibrium where there is effectively
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no infection. The loss of numerical data is evidence by wire-frames in Figure 2.4

where v is large and bs is relatively small. Biologically speaking, wire-frames are

where selection driven extinction of pathogen occurs.

The local peak we identify can be characterized in two distinct ways. First, for

a fixed birth rate, bs, increasing v eventually triggers a rise in the level of trait

expression (Figure 2.4). The intuition here is that, because we have a higher n,

horizontal transmission is more profitable, so the pathogen-induced mortality is

intencivized. It follows that the infected offspring produced by an infected host are

at greater risk of pathogen-induced mortality. From the host parent’s perspective,

the risk is amplified as rates of vertical transmission increase, leading to increased

recovery rate. Of course, increased recovery rate shortens the duration of infection,

which encourages even more horizontal transmission and even greater pathogen-

induced mortality.

Second, for a fixed vertical transmission rate, v, increasing birth rate, bs, leads to a

fall in the level of expression, at least near the peak (Figure 2.4). The intuition is that

background mortality increases with birth rate, resulting in shorter host lifespan.

Thus, increasing bs may prompt a reduction in γ∗ to preserve lifetime reproductive

success over a shorter period of time. The changes we observe in the pathogen trait,

α∗, could be viewed as a co-evolutionary response to the host. However, they do

make sense on their own when we realize increasing bs impacts expected duration of

infection through its relationship with background mortality rate. As bs intensifies,

infections become shorter-lived, but opportunities for vertical transmission become

more frequent as offspring are produced more quickly; this leads to the fall in α∗

we see near the peak.
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Figure 2.4: Variation in the evolutionarily stable values of the
pathogen-induced mortality rate (α∗) and the host recovery rate (γ∗)
in relation to different levels of vertical transmission rate (v) and birth
rate (bs) under distinct higher values of horizontal transmission prof-
itability (n), specifically for n = 0.33, 0.4, 0.5, and 0.6. We observe a
notable rise in these values at higher v levels. We assume the rate of
exposed hosts becoming infectious, δ = 1, and the background mortal-
ity rate, µ(N) = 0.15 × N, when N represents the total population. The
grey wire-frames represent the regions where the number of infections
is effectively zero, so we consider the pathogen to be extinct.

2.6.3 Virulence

We now explore the evolution of virulence defined in two distinct ways. The first

definition of virulence we explore is related to case mortality, in other words the

probability of an infectious host’s death due to its infection (Day, 2002). The second

definition is related to the fitness reduction experienced by a host when it acquires

an infection (Read, 1994).
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Case mortality, the probability of an infectious host dying from its infection, is

calculated as
α∗

α∗ + γ∗ + µ(N̄)
, (2.6.1)

where the superscript ‘∗′ reminds us that the expression is evaluated at the co-

evolutionary equilibrium. Figure 2.5 shows how virulence, measured as case mor-

tality, changes with the birth rate, bs, vertical transmission rate, v, and also the

horizontal transmission profitability, n. The relationship between case mortality

and model parameters closely resembles that between pathogen-induced mortality,

α∗, and model parameters (compare to Figures 2.4 and 2.3).

There are two additional noteworthy observations to be made about case mortality.

First, it can increase as the rate of vertical transmission, v, goes up. Because, the

highest case mortality occurs when (but not only when) there is no vertical trans-

mission, any such rise in case mortality is preceded by a reduction (Figure 2.5).

This first noteworthy observation is consistent with the findings of Shillcock et al.

(2023) in a model with no self regulation of host population.

The second noteworthy observation is that when there is no vertical transmission,

the case mortality at evolutionary equilibrium equals the profitability of horizontal

transmission, captured by the parameter n. The same result was obtained by Day

and Burns (2003) but with a model that, like Shillcock et al. (2023), lacked self

regulation of the host population. In other words, the evolution of case mortality is

completely determined by the shape of the trade-off between the rates of horizontal

transmission and pathogen-induced mortality when v = 0. The result, here, is due

to the functional form we chose for β(α). It is easy to prove, mathematically, that

case mortality must equal n given our model for β(α) and given that the pathogen

expresses ‘α’ at an evolutionary equilibrium level. The same is true for previous
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work (Day and Burns, 2003; Shillcock et al., 2023).
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Figure 2.5: Variation in virulence as case mortality, which is calculated
at co-evolutionary equilibrium, across a range of vertical transmission
(v) and birth rates (bs), evaluated at different values of horizontal trans-
mission profitability (n), specifically for n = 0.23, 0.33, 0.4, and 0.6.
Each subplot represents how virulence adapts with increasing n. We
assume the rate of exposed hosts becoming infectious, δ = 1, and the
background mortality rate, µ(N) = 0.15×N. The grey wire-frames rep-
resent the regions where the number of infections is effectively zero, so
we consider the pathogen to be extinct.

The second definition of virulence we consider is the reduction in fitness expe-

rienced by a host who moves from the susceptible category to the exposed. In

Appendix (A), we show that virulence in the second sense is expressed as

bs − µ(N̄)
β(α∗)Ī

. (2.6.2)

This mathematical definition of virulence differs from the analogous one found in

Shillcock et al. (2023). However, the difference is not related to the presence or ab-

sence of self regulation of host population. It is related to the absence of an exposed

class of host in Shillcock et al. (2023) model. Despite the differences between our

mathematical definition of virulence (in the sense of fitness reduction) and that of
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Shillcock et al. (2023), our qualitative predictions match theirs. In particular, viru-

lence can increase with increasing vertical transmission, and this increase can lead

virulence to exceed the levels at which it is observed that the vertical transmission

is absent (Figure 2.6).
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Figure 2.6: Variation in virulence as fitness reduction across a range
of vertical transmission (v) and birth rates (bs), evaluated at different
values of horizontal transmission profitability (n), specifically for n =
0.23, 0.33, 0.4, and 0.6. Each subplot represents how virulence adapts
with increasing n. We assume the rate of exposed hosts becoming in-
fectious, δ = 1, and the background mortality rate, µ(N) = 0.15 × N,
when N represents the total population. The grey wire-frames repre-
sent the regions where the number of infections is effectively zero, so
we consider the pathogen to be extinct.

2.7 Discussion

We have modelled the co-evolution of pathogen and its host when the former is

both transmitted vertically and horizontally. Previous work neglects the possibility

that host population growth may be limited by factors other than pathogen-induced

mortality alone (Shillcock et al., 2023). In general, host population growth can be

regulated in many ways. We want to understand how and whether co-evolutionary
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predictions change when host population growth is constrained by factors beyond

the pathogen alone.

One thing that does not change when we add self regulation of host population

growth to a co-evolutionary model is the conclusion that increasing the vertical

transmission rate does not always produce more benign disease outcomes. We

find that increasing vertical transmission rate can lead to higher levels of pathogen-

induced mortality. Like previous work that neglected non-linear features of host

population growth (Shillcock et al., 2023), we find more benign disease outcomes

evolve more readily when the horizontal transmission is more profitable to the

pathogen. Unlike that previous work, though, we find that more benign outcomes

are no longer closely connected to high rates of host reproduction. The contrast

that our work provides stems from our model of negative density-dependent host

population growth. We modelled this as density-dependent mortality and saw that

increases in host birth rate were balanced by higher death rates. Ultimately, then,

increases in host birth rate became associated with shorter infections which, we

argue, intensifies the need for a pathogen to exploit its host and raises the risk of

infection. The similarities and differences between the conclusions of our work and

those of previous work (Shillcock et al., 2023), extend to the predicted levels of

co-evolved virulence.

Vertical transmission does not always lead to more benign pathogens, but this does

not mean that more benign pathogens are never the co-evolutionary result of verti-

cal transmission. Previous theory has hinted that host-pathogen co-evolution might

lead to very low levels of host harm when vertical transmission is possible (Shill-

cock et al., 2023). However, the hints are just that: hints. Previous theory is limited

by the assumption that the pathogen is the only regulator of host population growth.
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If pathogen-induced mortality and host recovery become too low, then previous the-

ory has nothing to say, because there is no endemic equilibrium to serve as the cen-

tral focus of an analysis. Therefore, if we want to uncover what happens when more

benign pathogens co-evolve with their hosts, we need to add non-linear density de-

pendent regulators of host population growth (van Baalen, 1998). In this paper, we

do exactly this. We find that there are indeed co-evolutionary outcomes where host

recovery and pathogen-induced mortality rate are low, and in those cases, the infec-

tion occurs at numbers that are positive but effectively zero. We interpret this result

as selection-driven extinction of the pathogen, because low number of infectious

hosts implies an elevated risk of stochastic loss of the pathogen (Dieckmann and

Metz, 2006). Like van Baalen (1998), we find that density dependent regulation

of the host population growth allows the host to drive the pathogen to extinction

without going extinct itself. One might argue that this density dependence is key

to achieving selection-driven extinction, because it implies invasion fitness of the

host and pathogen, respectively, depends on resident traits. As previous authors

argue, when invasion fitness is independent of resident traits— as it is in the model

developed by Shillcock et al. (2023)— selection maximizes the population mean

fitness making selection-driven extinction impossible (Matsuda and Abrams, 1994;

but see Parvinen and Dieckmann, 2013, for clarity on selection-driven extinction

under optimizing selection).

Unlike van Baalen (1998), our model allows for vertical transmission of the pathogen.

Clearly then, vertical transmission is not necessary for selection-driven extinction

of the pathogen to occur. However, our results show that selection-driven extinc-

tion of the pathogen does occur more readily when vertical transmission leads to

high virulence, measured as a reduction in host fitness in a resident population. In

other words, vertical transmission is more strongly associated with selection-driven
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extinction of the pathogen when the fitness reduction experienced by infected hosts

is high. This in turn is indicative of a greater competitive ecological advantage for

susceptible hosts. Previous ecological models have predicted susceptible hosts can

out-compete infected ones leading to the extinction of vertically transmitted para-

sites (Hochberg, 1991). Our work shows that similar predictions arise as a result of

co-evolutionary forces.

A general prediction of our model is that pathogen-induced mortality and overall

virulence increase when horizontal transmission becomes more profitable for the

pathogen. This prediction holds even in the presence of the substantial vertical

transmission. Our prediction is analogous to ones made about the impact of so-

called ‘imperfect vaccines’ on pathogen evolution. An imperfect vaccine reduces

the overall costs of virulence to pathogens, for example by lowering the mortal-

ity rate without limiting horizontal transmission (Gandon et al., 2001; Read et al.,

2015; Fleming-Davies et al., 2018). In other words, an imperfect vaccine provides

a pathogen with an incentive to exploit its host to a greater degree. In the context of

our model, such an incentive arises as we increase the parameter n. Increasing this

parameter raises the benefits of host exploitation holding the cost fixed.

Our general prediction, that virulence rises as horizontal transmission becomes

more profitable, is also consistent with experimental findings. More to the point, it

is consistent with experimental reductions in virulence that emerge when horizon-

tal transmission becomes less profitable because it is prevented (Bull et al., 1991).

It is also consistent with experimental results of Stewart et al. (2005) and Pagán

et al. (2014) who found a positive relationship between horizontal transmission and

pathogen virulence. Pagán et al. (2014) also demonstrated that plant viruses trans-

mitted horizontally evolved to be more virulent than those transmitted vertically.
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Our findings are limited by our modeling assumptions. One key limitation of

our model is the assumption that hosts can only be infected by a single strain of

pathogen at any given time. Our model, therefore, does not account for the possibil-

ity of co-infections with multiple pathogen strains. If co-infecting strains did occur

and were distantly related, we would expect even higher levels of pathogen trait

expression to evolve because each strain would be more inclined to pursue selfish

interests (Frank, 1992). In this case, we also speculate the level of host trait ex-

pression (recovery) would increase in response to more aggressive disease-causing

agent.

Another key limitation of our model is the assumption that mutations in the host

population are independent of those in the pathogen population. This means we

neglect the potential for phenotypic correlations between hosts and pathogens to

emerge. Positive phenotypic correlations between social partners –e.g. a pathogen

and its host– is known to produce cooperative evolutionary outcomes (Fletcher and

Doebeli, 2009a). Thus, if we were to allow these correlations in our model, they

would likely drive trait expressions to lower levels. Similar predictions are made by

models built around sequential move evolutionary games that allow positive phe-

notypic correlations between host and pathogen to emerge (Taylor et al., 2006).

Whether low levels of trait expressions in these cases lead to pathogen extinction is

an open question.

Finally, we assumed host population growth is regulated by background mortality

that is density-dependent. As we have explained, this modelling decision means

that the duration of infection is sensitive to host demography. In other words, a

particular life history feature of the pathogen is sensitive to changes in the host

population size. Had we incorporated density dependent host birth rates instead,
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duration of infection would have been independent of host population size. In this

case, the incentives that shape the evolution of pathogen trait expression may be

quite different. Future work should focus on outlining the role of density dependent

demography of co-evolution of hosts and their vertically transmitted pathogens.



Chapter 3

Conclusion

3.1 Summary

Understanding the impact of vertical transmission on pathogen-host co-evolution is

crucial for public health and ecosystem balance. Previous work indicates that verti-

cal transmission can sometimes bring co-evolving pathogens and hosts into greater

conflict, contrary to widely accepted views. However, this work is based on a model

where pathogen-induced mortality alone regulates the host population, which can

result in unbounded host population growth if the pathogen-induced mortality is

too low or absent, failing to address phenomena like selection-driven extinction of

pathogens.

In the second chapter, I modeled the co-evolution of pathogens and their hosts

with both vertical and horizontal transmission, incorporating density-dependent

host population growth. To achieve this, I explored the dynamics of host-pathogen

interactions using evolutionary game theory and adaptive dynamics. I found that

48
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increasing vertical transmission does not always result in more benign disease out-

comes; instead, it can lead to higher pathogen-induced mortality. Furthermore,

more benign outcomes evolve more readily when horizontal transmission is more

profitable for the pathogen, and overall virulence increases as horizontal transmis-

sion becomes more profitable. Unlike previous models that assumed pathogen-

induced mortality as the sole regulator, my approach showed that increased host

birth rates, balanced by higher death rates, can shorten infections and intensify

pathogen exploitation. The results also indicated that vertical transmission, when

associated with high virulence, can drive selection-driven extinction of the pathogen,

which highlights the importance of considering both transmission modes in disease

management strategies.

3.2 Where to Go From Here?

In this study, I made several assumptions that, while simplifying the model, might

limit its applicability. It would be beneficial for future research to focus on relaxing

some of these assumptions to obtain a more comprehensive understanding of host-

pathogen dynamics. I also mention a few potential extension to my model for future

work.

First of all, I have neglected the possibility of co-infection, meaning that I assume

each host can only be infected by a single strain of a pathogen at any given time.

However, previous research has shown that co-infection can significantly impact the

evolution of virulence. For example, Frank (1992) developed a model that explores

how the relatedness of co-infecting strains affects virulence. His model suggests

that when genetically distinct strains infect the same host, competition among these

strains can drive the evolution of higher virulence. Additionally, I have imposed
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the limitation that once a host is infected by a pathogen strain, it cannot be subse-

quently infected by a more virulent strain. This restriction contrasts with models

that allow superinfection. According to Nowak and May (1994), allowing super-

infection leads to intra-host competition among different strains of the pathogen,

driving the evolution of increased virulence as more aggressive strains outcompete

less virulent ones. This results in higher levels of virulence overall but can also lead

to a reduction in transmission rates due to increased host damage. This simplifica-

tion allows us to focus on the dynamics of single-strain infections without the added

complexity of interactions between multiple strains within the same host. However,

this simplification is a limitation of my current work. Future research could extend

this model to include the possibility of superinfection to allow for a more compre-

hensive exploration of how intra-host competition among multiple pathogen strains

influences virulence evolution.

Another key limitation of my model is the assumption that mutations in the host

population are independent of those in the pathogen population. This neglects

the potential for phenotypic correlations between hosts and pathogens. Positive

phenotypic correlations between social partners, such as a pathogen and its host,

are known to produce cooperative evolutionary outcomes. For example, Fletcher

and Doebeli (2009b) demonstrate how positive phenotypic correlations can drive

the evolution of cooperative behaviors. Taylor et al. (2006) explores a case of

host-pathogen interaction where cooperation leads to reduced levels of virulence in

pathogens. Conversely, negative phenotypic correlations between host and pathogen

traits can drive the evolution of increased virulence as pathogens adapt to exploit

hosts more effectively. As another example of cooperative behavior, Sanchez et al.

(2018) found that metabolic adaptations in the host, as a cooperative defense, could

create an environment that supports the pathogen’s presence without causing sig-
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nificant harm, leading to a state where the pathogen can persist without triggering

severe disease symptoms. Future work could explore how virulence might evolve

under scenarios of both positive and negative phenotypic correlations, particularly

examining how cooperation between hosts and pathogens, allowing vertical trans-

mission combined with different levels of horizontal transmission profitability, in-

fluences evolutionary outcomes.

For this model, I suggest a modification to the birth rate of infectious individuals,

bI(γ), to incorporate a cost associated with host recovery. Instead of bI(γ) = bs−γ
2,

I propose using bI(γ) = bs−λγ
2, where λ represents the cost coefficient of recovery.

This change allows exploration of how recovery costs impact pathogen and host

dynamics. As λ increases, λγ2 significantly reduces the birth rate of infected hosts

at higher recovery rates, making high recovery rates less favorable for pathogens.

Shillcock et al. (2023) explored various costs for the host to clear infection, showing

more benign outcomes when recovery was costlier to the host. This could be due

to the evolution of lower recovery rates, resulting in longer infectious periods and

pathogens evolving lower virulence to balance prolonged infection benefits against

harmful effects on host reproduction. Hosts can evolve resistance or tolerance; high

immune response costs sometimes lead to tolerance rather than resistance. It would

be interesting to see how modifying costs in our model impacts trait expressions and

virulence. These insights into recovery cost trade-offs could inform new strategies

for managing infections.

Another suggestion for future work is to explore my findings on selection-driven

extinction outcomes in greater detail. I discovered that more profitable horizontal

transmission could allow for selection-driven extinction of the pathogen across a

broader range of parameters, such as vertical transmission and birth rates. On the
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other hand, as discussed, an imperfect vaccine reduces the overall costs of virulence

to pathogens by lowering mortality rates without limiting horizontal transmission

(Gandon et al., 2001; Fleming-Davies et al., 2018; Read et al., 2015). This reduc-

tion provides pathogens with an incentive to exploit their hosts more, represented

in my model by increasing the horizontal transmission profitability, parameter n,

which raises the benefits of host exploitation while keeping the cost fixed. This

raises the question: Could an imperfect vaccine potentially increase the likelihood

of pathogen extinction, similar to my finding of more potential pathogen extinction

for higher n? Future research could investigate whether the increased exploita-

tion incentives introduced by imperfect vaccines might lead to a higher chance of

pathogen extinction, providing important insights for vaccine strategy and disease

management. Additionally, it would be worthwhile to explore any potential cor-

relation between higher levels of virulence and increased potential for pathogen

extinction. Higher virulence has been found for high horizontal profitability (Stew-

art et al., 2005; Pagán et al., 2014). If a correlation exists, it might be feasible to

utilize this as a means of disease management to drive the pathogen to extinction.

In conclusion, my study emphasizes the importance of considering various factors

such as recovery costs, coinfection dynamics, and phenotypic correlations in mod-

eling host-pathogen interactions. Future work should empirically validate these

theoretical insights. Refining my model to include these factors will enhance our

understanding of disease dynamics and inform better strategies for managing in-

fectious diseases. This comprehensive approach will provide a more accurate and

robust framework for predicting and controlling pathogen behavior in different eco-

logical and evolutionary contexts.
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Appendices

A Virulence (Fitness Reduction)

Here, we derive the function for virulence as a measure of fitness reduction. To

do this, we need to find how much the susceptible host’s fitness is reduced when it

gets exposed to an infection. We know that at equilibrium the fitness change of all

populations (susceptible, exposed, infectious) should be zero, which means that:


dWS

dt

dWE
dt

dWI
dt

 = Jh


WS

WE

WI

 =

0

0

0

 , (A.1)

where WS , WE, and WI denote the host fitness when it is susceptible, exposed, and

infectious, respectively. We also previously computed Jh (2.3.10). So we have:


WS

WE

WI



bs − β(α)Ī − µ(N̄) bs (1 − v)bI(γm) + γm

β(α)Ī −δ − µ(N̄) vbI(γm)

0 δ −(γm + α + µ(N̄))

 =

0

0

0

 .
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Knowing that WS = 1, we solve for WE:

WE =
β(α)Ī − (bs − µ(N̄))

β(α)Ī
.

Thus, the fitness reduction would be:

1 −WE =
bs − µ(N̄)
β(α)Ī

.

B Jupyter Notebook Implementation

This appendix contains the Jupyter Notebook, which includes the complete im-

plementation details of the methods and analyses discussed in the second chapter.

Each step of the implementation is thoroughly documented with code snippets and

explanations to enhance understanding and reproducibility.



thesis_project_notebook

July 8, 2024

0.0.1 Libraries

In the following cell, we import essential libraries for numerical operations, data handling, and
visualization.

[2]: import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import pandas as pd
import csv
from scipy.interpolate import griddata
from mpl_toolkits.mplot3d import Axes3D

0.0.2 Notation Key

alpha: pathogen_induced mortality rate (resident)
gamma: host recovery rate (resident)
alpha_m: pathogen-induced mortality rate (mutant)
gamma_m: host recovery rate (mutant)
bs: birth rate of non-infectious individuals
mu: background mortality rate
mu_coef(𝜇0): coefficient of background mortality rate
beta: horizontal transmission rate constant
delta: the rate at which the exposed population gets infectious
N: total population
bI: birth rate of infectious individuals
n: profitability of the horizontal transmission to the pathogen
S, E, I: susceptible, exposed, and infectious population size
z : (S, E, I)
v: vertical transmission rate
Wp: pathogen fitness function
Wh: host fitness function
eps: epsilon
niter: number of iteration

0.0.3 Defining Key Functions

In the following code snippet, we define several crucial functions required for simulat-
ing and analyzing the dynamics of our model.
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• bI(gamma, bs): Calculates the birth rate of the infectious population based on the host
recovery rate (𝛾) denoted by gamma and the basic birth rate (𝑏𝑠) denoted by bs.

• mu(N, mu_coef = 0.15): Computes the background mortality rate as a function of the total
population (N) scaled by a coefficient, 𝜇0, represented by mu_coef.

• beta(alpha, n): Determines the horizontal transmission rate constant, as a function of
the pathogen-induced mortality rate (‘𝛼’), denoted by alpha, and n (which represents the
profitability of the horizontal transmission to the pathogen).

• population_rates(z, gamma, alpha, bs, v, n, delta=1, mu_coef = 0.15): Repre-
sents the population model, calculating the rate of change of susceptible (S), exposed (E),
and infectious (I) population sized over time given a set of parameters.

• endemic_equilibrium(z, gamma, alpha, bs, v, n): Returns the endemic equilibrium of
the population, by an iterative process of updating 𝑑𝑧

𝑑𝑡 and adjusting z based on that so that the
magnitude of the gradient falls below a specified threshold, indicating convergence to an opti-
mal point. The rates of change are calculated at each iteration using the population_rates
function.

• Wh(z, gamma_m, alpha, bs, v, n, delta=1) and Wp(z, gamma, alpha_m, bs, v, n,
delta=1): Calculate the fitness of the host and the pathogen, respectively, given sets of
parameters.

• gradient_fitness_pathogen(z, gamma, alpha, bs, v, n, eps) and
gradient_fitness_host(z, gamma, alpha, bs, v, n, eps): Return the approxi-
mate gradients of the fitness functions, evaluated at the input parameters gamma and alpha,
using the other provided parameter values.

• convergence_stable(z, gamma, alpha, bs, v, n): Starting with an initial guess for sta-
ble 𝛼 and 𝛾, the endemic equilibrium is found using the endemic_equilibrium function.
Then, it evaluates the fitness of the pathogen and the host at equilibrium using the Wp and
Wh functions, respectively. Then, it calculates the fitness gradients. This iterative process
continues, with updates to the evolutionary trait expressions, until the gradients approach a
tolerance level near zero. The procedure returns the convergence stable 𝛾 and 𝛼, along with
other information, based on a given set of parameters.

• ESS(gradient_fitness_pathogen, gradient_fitness_host): Evaluate whether both fit-
ness gradients are less than zero to confirm the presence of an Evolutionarily Stable Strategy
(ESS). It returns 1 if an ESS is confirmed and 0 otherwise.

[8]: # Function to calculate the adjusted birth rate of infectious individuals
def bI(gamma, bs):

return bs - (gamma**2)

# Function to calculate the background mortality rate based on total population
def mu(N, mu_coef=0.15):

return mu_coef * N

# Function to calculate the rate constant of horizontal transmission
def beta(alpha, n):
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return alpha ** n

# Main function to calculate the rates of change in population classes
def population_rates(z, gamma, alpha, bs, v, n, delta=1, mu_coef=0.15):

N = np.sum(z) # Summing up the population to get total N
mu_val = mu(N)
beta_val = beta(alpha, n)
bI_val = bI(gamma, bs)

# Differential equations representing the changes in susceptible, exposed,␣
↪and infectious populations

dSdt = bs * z[0] + bs * z[1] + (1 - v) * bI_val * z[2] - beta_val * z[2] *␣
↪z[0] + gamma * z[2] - mu_val * z[0]

dEdt = beta_val * z[2] * z[0] + v * bI_val * z[2] - delta * z[1] - mu_val *␣
↪z[1]

dIdt = delta * z[1] - gamma * z[2] - alpha * z[2] - mu_val * z[2]

dzdt = np.array([dSdt, dEdt, dIdt])
return dzdt

# Function to find the equilibrium state of the population
def endemic_equilibrium(z, gamma, alpha, bs, v, n):

N = np.sum(z)
dzdt = np.array([1.0, 0.01, 0.0]) #initializing dz/dt

# Iteratively finding the equilibrium state until changes are below the␣
↪threshold

while np.max(np.abs(dzdt)) > 1e-05:
dzdt = population_rates(z, gamma, alpha, bs, v, n)
z += 0.01 * dzdt

return z

# Function to calculate host fitness with mutant recovery rate
def Wh(z, gamma_m, alpha, bs, v, n, delta=1):

N = np.sum(z)
beta_val = beta(alpha, n)
bI_val = bI(gamma_m, bs)
mu_val = mu(N)

F = np.array([[bs, bs, (1-v) * bI_val],
[0, 0, v * bI_val],
[0, 0, 0]])

V = np.array([[z[2] * beta_val + mu_val, 0, -gamma_m],
[-z[2] * beta_val, delta + mu_val, 0],
[0, -delta, alpha + gamma_m + mu_val]])
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K = np.matmul(F, np.linalg.inv(V))
return ((K[0][0] + K[1][1]) + np.sqrt((K[0][0] + K[1][1])**2 - 4 * (K[0][0]␣

↪* K[1][1] - K[1][0] * K[0][1]))) / 2

# Function to calculate pathogen fitness with mutant mortality rate
def Wp(z, gamma, alpha_m, bs, v, n, delta=1):

N = np.sum(z)
beta_val = beta(alpha_m, n)
bI_val = bI(gamma, bs)
mu_val = mu(N)

return ((delta) / (delta + mu_val)) * (((beta_val * (z[0]) + v * bI_val)) /␣
↪(gamma + alpha_m + mu_val))

# Function to test convergence and stability of the system
def convergence_stable(z, gamma, alpha, bs, v, n):

niter = 0
tol = 1e-06
eps = 0.0001

while True:
N = np.sum(z)
niter += 1
mu_val = mu(N)
z = endemic_equilibrium(z, gamma, alpha, bs, v, n)

Wh_up = Wh(z, gamma + eps, alpha, bs, v, n) #Wh at gamma_m = gamma +␣
↪eps

Wh_down = Wh(z, gamma - eps, alpha, bs, v, n) #Wh at gamma_m = gamma -␣
↪eps

Gh = (Wh_up - Wh_down) / (2 * eps)

Wp_up = Wp(z, gamma, alpha + eps, bs, v, n) #Wp at alpha_m = alpha + eps
Wp_down = Wp(z, gamma, alpha - eps, bs, v, n) #Wp at alpha_m = alpha -␣

↪eps
Gp = (Wp_up - Wp_down) / (2 * eps)

#updating alpha & gamma using Gp & Gh
gamma += 0.01 * Gh
alpha += 0.01 * Gp

if abs(Gh) < tol and abs(Gp) < tol:
break

return gamma, alpha, Gp, Gh, z
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# Function to calculate the gradient of fitness for the host using the finite␣
↪different approximation

def gradient_fitness_host(z, gamma, alpha, bs, v, n, eps):
return (Wh(z, gamma + 2 * eps, alpha, bs, v, n) - 2 * Wh(z, gamma, alpha,␣

↪bs, v, n) +
Wh(z, gamma - 2 * eps, alpha, bs, v, n)) / (4 * (eps) ** 2)

# Function to calculate the gradient of fitness for pathogen using the finite␣
↪different approximation

def gradient_fitness_pathogen(z, gamma, alpha, bs, v, n, eps):
return (Wp(z, gamma, alpha + 2 * eps, bs, v, n) - 2 * Wp(z, gamma, alpha,␣

↪bs, v, n) +
Wp(z, gamma, alpha - 2 * eps, bs, v, n)) / (4 * (eps) ** 2)

# Function to determine if an evolutionarily stable strategy (ESS) is achieved
def ESS(gradient_fitness_pathogen, gradient_fitness_host):

if gradient_fitness_pathogen < 0 and gradient_fitness_host < 0:
return 1

else:
return 0

0.0.4 Creating CSV Data file

In the following code snippet, we first create a CSV file named model_data.csv with defined
headers. We then loop over values of bs, v, and n values, adding records to the CSV file. (As the
code execution is time-consuming and may be interrupted, I executed the code separately for each
n value.)

[ ]: # defining headers
headers = ["bs", "delta", "v", "gamma*", "alpha*", "S_bar", "E_bar","I_bar",␣

↪"N", "n", "beta", "bI", "Gp", "Gh", "mu", "ESS"]
# Create the CSV file and write headers
with open('model_data.csv', 'w', newline='') as file:

writer = csv.writer(file)
writer.writerow(headers)

# Loop over the specified n values
for n in [0.23, 0.27, 0.33, 0.36, 0.4, 0.5, 0.6, 0.7]:

for bs in np.arange(0.2, 0.6, 0.04):
for v in np.arange(0.0, 0.1, 0.05):

gamma = 0.1
alpha = 0.1
eps_val = 0.001
z = np.array([0.6, 0.2, 0.7])

564



# Compute convergence stable and gradient fitness
gamma, alpha, Gp, Gh, z = convergence_stable(z, gamma, alpha, bs,␣

↪v, n)
gradient_fitness_pathogen_val = gradient_fitness_pathogen(z, gamma,␣

↪alpha, bs, v, n, eps_val)
gradient_fitness_host_val = gradient_fitness_host(z, gamma, alpha,␣

↪bs, v, n, eps_val)

# Determine if an Evolutionarily Stable Strategy (ESS) is achieved
ESS_val = ESS(gradient_fitness_pathogen_val,␣

↪gradient_fitness_host_val)

# Compute the total population at ESS
N = z[0] + z[1] + z[2]

# open the dataset and add a row
with open('model_data.csv', 'a', newline='') as file:

writer = csv.writer(file)
writer.writerow([round(bs, 3), 1, round(v, 3), gamma, alpha,␣

↪z[0], z[1], z[2], N, round(n, 3), beta(alpha, n), bI(gamma, bs), Gp, Gh ,␣
↪mu(N), ESS_val])

0.0.5 Importing Data/ Adding Virulence

In the following code snippet, we import the dataset and augment it by adding new columns for
case mortality and virulence (fitness reduction).

[5]: import pandas as pd

# Load the dataset from a CSV file
df = pd.read_csv('model_data.csv')

# Compute fitness reduction as a new column named 'virulence'
df['virulence'] = (df["bs"] - df["mu"])/(df["beta"] * df["I_bar"])

# Compute case mortality rate and add it as a new column named 'case_mortality'
df['case_mortality'] = df['alpha*'] / (df['alpha*'] + df['gamma*'] + df['mu'])

0.0.6 Visualization

Here, we visualize the effects of variation in n (horizontal transmission profitability) on the
pathogen-induced mortality rate and host recovery rate across different values of v (vertical trans-
mission rate) and bs (birth rate).

[13]: # Pre-defined values of 'n' for which analysis is conducted
n_values = [0.33, 0.4, 0.5, 0.6, 0.7]
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# Filtering the dataframe for each 'n' value to create separate dataframes
df_beta023 = df[df['n'] == 0.23]
df_beta027 = df[df['n'] == 0.27]
df_beta030 = df[df['n'] == 0.3]
df_beta033 = df[df['n'] == 0.33]
df_beta036 = df[df['n'] == 0.36]
df_beta040 = df[df['n'] == 0.4]
df_beta050 = df[df['n'] == 0.5]
df_beta060 = df[df['n'] == 0.6]
df_beta070 = df[df['n'] == 0.7]

# Selecting dataframes for the analysis
dfs = [df_beta033, df_beta040, df_beta050, df_beta060, df_beta070]

# Setting up the figure for 3D plotting
fig = plt.figure(figsize=(70, 20))

# Loop through each selected dataframe and corresponding 'n' value
for i, (n, df_filtered) in enumerate(zip(n_values, dfs), start=1):

# Create grid points for interpolation based on 'v' and 'bs' ranges
xi = np.linspace(df_filtered['v'].min(), df_filtered['v'].max(), 100)
yi = np.linspace(df_filtered['bs'].min(), df_filtered['bs'].max(), 100)
xi, yi = np.meshgrid(xi, yi)

# Interpolate alpha* and gamma* values for the grid
zia = griddata((df_filtered['v'].dropna(), df_filtered['bs'].dropna()),␣

↪df_filtered['alpha*'].dropna(), (xi, yi), method='cubic')
zig = griddata((df_filtered['v'].dropna(), df_filtered['bs'].dropna()),␣

↪df_filtered['gamma*'].dropna(), (xi, yi), method='cubic')

# Apply masks based on various conditions to handle invalid or extreme data␣
↪points

mask1 = griddata((df_filtered['v'], df_filtered['bs']), df_filtered['bI'] <␣
↪0, (xi, yi), method='nearest')

mask2 = griddata((df_filtered['v'], df_filtered['bs']),␣
↪df_filtered['I_bar'] < 1e-3, (xi, yi), method='nearest')

mask3 = griddata((df_filtered['v'], df_filtered['bs']),␣
↪df_filtered['E_bar'] < 1e-3, (xi, yi), method='nearest')

mask_combined = mask2 | mask3

# Set invalid data points to NaN for alpha* and gamma*
zia[mask1] = np.nan
zig[mask1] = np.nan

# Plot alpha* values on a 3D surface plot
ax1 = fig.add_subplot(2, len(n_values), i, projection='3d')
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surf_alpha_1 = ax1.plot_surface(xi, yi, zia, cmap='viridis',␣
↪edgecolor='none')

ax1.plot_surface(xi, yi, np.where(mask_combined, zia, np.nan),␣
↪cmap='Greys', edgecolor='none', zorder=1)

ax1.plot_wireframe(xi, yi, np.where(mask_combined, zia, np.nan),␣
↪color='black', alpha=0.7)

ax1.set_xlabel(r'$(v)$', fontsize=50)
ax1.set_ylabel(r'$(bs)$', fontsize=50)
ax1.set_title(f'n = {n}', fontsize=60)
ax1.view_init(elev=45)

# Plot gamma* values on a 3D surface plot
ax2 = fig.add_subplot(2, len(n_values), len(n_values) + i, projection='3d')
surf_gamma_1 = ax2.plot_surface(xi, yi, zig, cmap='inferno',␣

↪edgecolor='none')
ax2.plot_surface(xi, yi, np.where(mask_combined, zig, np.nan),␣

↪cmap='Greys', edgecolor='none', zorder=1)
ax2.plot_wireframe(xi, yi, np.where(mask_combined, zig, np.nan),␣

↪color='black', alpha=0.7)
ax2.set_xlabel(r'$(v)$', fontsize=50)
ax2.set_ylabel(r'$(bs)$', fontsize=50)
ax2.view_init(elev=45)

# Adjust layout to ensure clear visibility
plt.tight_layout()

# Display the plot
plt.show()

[ ]:
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