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Abstract

Altruistic behaviors occur when an individual decreases its personal fitness to

help another individual. Such behaviors occur across a range of species and

environments, and they take different forms. The diversity of altruistic be-

haviors is also characterized by various group living features, including group

structure and social interactions. In this thesis, I develop models to study

how the specificities of group living can influence the evolution of altruistic

behaviors. I use inclusive fitness models to understand how the social envi-

ronment the group creates, the ecological factors, and the benefits of altruistic

behaviors impact the evolution of social behaviors. In the first model, I study

the evolution of delayed dispersal with group size benefits. Dispersal tends

to be delayed when breeding opportunities are scarce, i.e., when the habitat

is saturated. I find that habitat saturation is not always associated with a

high level of dispersal. This finding challenges previous results and highlights

the need to model environmental feedback explicitly. In a second model, I

measure how redirected help can emerge when individuals disperse near their

relatives. Redirected help happens when an individual whose entire brood fails

reallocates the effort it would have expended on parental care to help a related

neighbor. The adaptive significance of this strategy may look straightforward,

but if the population is viscous, the helper also competes with its relatives.

This population viscosity creates additional costs and benefits that can re-

strain the evolution of altruism. To investigate the evolution of redirected

help in a viscous population, I use an infinite-island model where redirected

help can provide survival or fecundity benefits to the recipients. I find that

the survival benefits associated with redirected help sometimes promote the

emergence of help better than fecundity benefits, which contradicts previous

ii



findings. In a third model, I delve more deeply into the evolution of redirected

help by explicitly accounting for spatial structuring within the population.

I find that switching to a spatially explicit model has repercussions for the

evolution of redirected help. For instance, the influence of offspring dispersal

on the evolution of redirected help is reversed between the two models. My

findings highlight the impact of spatial structure on the evolution of social

behaviors. Overall, my thesis shows that different group living features can

challenge predictions on the evolution of social behaviors.

Keywords: kin selection, altruistic behaviors, kin competition, spatial

structure, game theory, mathematical model
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Summary for lay audience

In nature, some animals diminish their reproduction or survival to help

another individual. These animals display what is referred to as altruistic be-

havior. This puzzling behavior is common in many species and environments

and takes many forms. For example, some individuals help defend a nest,

and some will help feed the offspring of another. Displaying these behaviors

does not seem to be the best strategy to adopt. Why would an individual

help another individual at its own expense? This question has long puzzled

scientists, and many answers have been proposed. One of these relies on the

fact that family members share some genes. By helping a family member, the

helper increases the representation of its genes in the next generation. When

studying a species in the wild, it can be hard to determine if altruism is truly

adaptive. Every species has its unique life cycle, is possibly subject to a specific

set of environmental conditions, and sometimes engages in elaborate social in-

teractions. These details influence the selective advantage enjoyed (or not) by

altruism. In this thesis, I study how features of a species’ life cycle and envi-

ronment can influence the evolution of altruism. I find that different features

inherent to the group organization, such as ecological feedback and spatial

structure, can challenge previous predictions about the evolution of altruistic

behaviors. For example, the conditions favoring the evolution of altruism can

change depending on the spatial structure or the benefits provided.
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Chapter 1

Introduction

1.1 Altruism as a social behavior

Cooperative behaviors are described using various definitions. We need to de-

fine this type of social behavior properly in order to study it. In this thesis, I

consider social behaviors between two parties: the actor performing the behav-

ior and the recipients who bear the consequences of the behavior. Note that

a recipient can also be an actor. I can now differentiate the type of behavior

depending on the benefits or cost it provides to the actor and the recipients. I

define fitness as the average number of offspring an individual produces. The

effect of the behavior, negative or positive, can then be measured as the effect

on the fitness of the recipient and the actor. In regards of my thesis, I use

Taylor and Frank [90] chain rule decomposition of inclusive fitness [38] to char-

acterize the inclusive fitness change, which considers the change in the fitness

of the actor and the recipients

BR + C, (1.1)

1



CHAPTER 1. INTRODUCTION 2

where B denotes the effect for the recipient, R is the relatedness (i.e., the

genetic link) between the actor and the recipient, and C is the effect of the

behavior for the actor. In nature, distinguishing the effects of social interac-

tions can be difficult to separate. For example, one interaction’s benefits can

compensate for another’s cost.

Following the terminology of Bourke [3], I separate behaviors into four

categories. The first one benefits the actor and the other recipients: B > 0,

C > 0; this is called cooperation or mutualism. In this situation, both the

actor and the recipient produce, on average, more offspring; this is the top left

corner of Table 1.1. In the second category (top right corner of Table 1.1), the

actor has benefits at the recipient’s expense: B < 0, C > 0. This is referred to

as selfishness; in that case, the actor has more offspring on average while the

recipient has less. In the third category (bottom right corner), the actor pays

some cost to harm the recipients: B < 0, C < 0. This is referred to as spite. In

that case, both actors and recipients have, on average, fewer offspring. Finally,

when the actor pays some cost to give benefits to the recipients: B > 0, C < 0.

We referred to it as altruism (bottom left corner). The evolution of cooperation

and selfishness can be understood straightforwardly, as it benefits the actor.

However, why would an individual bear the cost of helping another individual,

i.e., by behaving altruistically?

In this thesis, I focus on the evolution of different altruistic behaviors in

various scenarios.

1.2 Models of evolution of social behaviors

The evolution of social behaviors can be studied mathematically using evo-

lutionary models. One very common tool used in theoretical evolution is
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Effect on the recipient(s)
+ -

Effect on the actor + Cooperation Selfish
- Altruism Spite

Table 1.1: Classification of social behaviors based on the effect on the fitness
of the actor (C) and on the other recipients B.

neighbor-modulated and inclusive fitness models [35, 28]. In these models, we

consider the fitness change for the actor and the other individuals impacted

by the change of behavior, i.e., the recipients. As some of these recipients

share some genes with the actor, changing their fitness changes the number

of copies of these genes passed to the next generation. Impacts on recipi-

ents are weighted by, among other things, measures of kinship. The fitness is

then inclusive as it includes the fitness of different individuals. I will describe

neighbor-modulated and inclusive fitness using a method previously developed

[90] [see also 78, 92].

Focusing on an individual (focal individual), I now denote x as the geno-

typic value (continuous) controlling the behavior. I use y = y(x) as the phe-

notypical value of the actor, z = z(x) as the recipient’s phenotypical value

(continuous) and ẑ as the phenotypical value of the average individual in the

population. The variable y (respectively z) describes then the level at which

the actor (respectively the recipient) expresses the behavior. For example, y

can give the probability that the actor is helping to feed the offspring of an-

other individual, namely the recipient, and z is the probability of the same

behavior by the recipient. The fitness of the focal individual (actor) is then

W (y, z), where I suppose that W is a continuous function. Changing the
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genotypic value x gives

dW

dx
= dW

dy

dy

dx
+ dW

dz

dz

dx
. (1.2)

The values dy
dx

and dz
dx

are the slopes of the phenotypical values on the genotypic

value of the actor. We can replace them with the statistical regressions of the

phenotypical values (y and z) to the genotypical value x equal to cov(y, x) and

cov(z, x), respectively. We then evaluate this expression when y = z = ẑ as

we compute the fitness change of changing the behavior y(x) and z(x) from

the initial population ẑ. Dividing by cov(y, x) we obtain

dW

dx
∝ ∆W (ẑ) = dW

dy
1 + dW

dz
R (1.3)

where 1 is the relatedness between the actor and itself, and R = cov(z,x)
cov(y,x) is

the relatedness between the actor and the recipient (non-actor) [65, 68]. As

the actor can also be a recipient, the term dW
dy

is equal to the effect the actor

has on itself. Equation (1.3) gives the neighbor-modulated fitness change of

changing genotypic value x.

Equation (1.3) can be seen from two different points of view, depending on

whether we look from the actor or recipient perspective. First, in a recipient-

centered view, we can interpret the fitness change as the change of fitness of

the actor given its own change of behavior and of its relatives. The change in

the relatives’ behavior is proportional to the relatedness between the actor and

the relatives. This recipient-centered view is the neighbor-modulated fitness

[28]. Looking at the actor-centered view, Equation (1.3) sums the fitness

changed of each recipient given the change of behavior of the actor. Each

recipient’s fitness change is weighted by the relatedness between the actor and
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the recipient. This actor-centered view gives the inclusive fitness change [28].

As a first simple example, we can consider an altruistic behavior that de-

creases the actor’s fitness by C > 0 and increases the recipient’s fitness by

B > 0. We have
dW

dx
∝ −C +BR, (1.4)

which corresponds to Hamilton’s rule for altruistic behavior [36]. This rule

tells us that the inclusive fitness change experienced by the helper is the sum

of its personal cost, weighted by a relatedness coefficient of 1 and the fitness

change B of the recipient, related to the helper by R. Assuming a selfish

population, when Equation (1.4) is positive, that is when the benefits surpass

the cost of helping, altruism can emerge. When Equation (1.4) is negative,

that is when the benefits are lower than the cost, altruism cannot emerge.

Inclusive fitness change explain us how altruism can emerge in a population.

The simplicity of Hamilton’s rule makes it appealing, but some limitations

on the evolution of altruism can occur if individuals interact with and com-

pete with their relatives. This situation can arise when dispersal is either

slow, occurs over on short distances, or only partially. This dispersal features

leads to population viscosity: individuals remain close to their relatives if they

disperse locally. This population viscosity can create new costs and benefits

when an individual helps another with whom they are in competition. Let’s,

for example, consider the simple case developed by Taylor [88]. This model

considers an infinite population subdivided into patches of N breeding spots.

We suppose this population is non-overlapping (individuals die at the end of

their first year), asexual, and haploid. The population’s life cycle starts with

each individual on a breeding spot interacting with another individual on the

same patch, chosen randomly among all the other patch members, including
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the actor itself. Without receiving or giving help, an individual will have M

offspring. If they help the other individual, they will pay a cost by having

−C time less offspring offspring. In exchange, the recipient will have B more

offspring. The recipient, and so its offspring, is related by a coefficient R to

the helper. The parental (F0) generation dies, and the offspring disperse with

probability d or stay on their natal nest with probability 1 − d. Finally, off-

spring compete for a breeding spot on the patch they are found. There are

B − C extra offspring, which will displace (1 − d)(B − C) local offspring if

they compete on their natal patch with probability 1 − d. As those displaced

offspring are born on the same patch as the helper, they are related to them by

the relatedness coefficient R. I denote by y the level of help expressed by the

actor, and z, the level of help expressed by the recipient. Hence, the fitness is

equal to

W (y, z) = (M − Cy +Bz)
(

d

N(M + (B − C)ẑ)︸ ︷︷ ︸
Dispersal

+ 1 − d

Nd(M + (B − C)ẑ) +N(1 − d)(M + (B − C)z)︸ ︷︷ ︸
Local

)
, (1.5)

where ẑ denotes the average helping rate in the entire population. Differentiat-

ing W (y, z) with respect to genotypical value x, and evaluating the expression

as y = z = ẑ, we obtain

dW

dx
=
(

−C +B
dz

dx
− (1 − d)2(B − C)dz

dx

)
1

N(M + (B − C)ẑ) . (1.6)

This gives, using the relatedness coefficient R = dz
dx

, and removing the right-



CHAPTER 1. INTRODUCTION 7

most positive scalar, assuming B > C,

∆W (ẑ) = −C︸︷︷︸
Direct cost

+ BR︸︷︷︸
Direct benefit

− (1 − d)2(B − C)R︸ ︷︷ ︸
Displaced local offspring

. (1.7)

The trait will spread if ∆W (ẑ) > 0, which is equivalent to

B

C
>

1 − (1 − d)2R

R − (1 − d)2R
(1.8)

The relatedness between the helper and its recipient, R is computed using the

following recursion:

R = 1
N

+ N − 1
N

(1 − d)2R (1.9)

which can be rearranged to NR(1−(1−d)2) = 1−(1−d)2R. Using this formula

in our fitness change, we obtain B
N
> C, which shows that help can spread

if the cost paid by the helper is compensated by giving benefit to the helper

itself. In other words, the kin competition created by the population viscosity

cancels the help benefits. Helping is only favored if the return expected by the

actor exceeds the cost, i.e., the actor effectively helps itself with probability

1/N .

In nature, a population can be grouped into classes, whether by sex, (male

or female), or by age classes, (juveniles, adults). In that case, the benefits

and costs related to help must consider the differences between the classes.

Indeed, increasing offspring’s survival may not have the same consequences

as increasing an adult’s survival. We need to consider the reproductive value

of an individual in each class [24, 87]. The reproductive value of a class j is

the probability that taking a gene from an individual in a distant future, this

gene comes from the class j from now. Let’s look at the methods presented
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in [90]. Let’s assume we have several classes. We first denote cj as the class

reproductive value of the class j. We also define by uj, the frequency of the

class j in the total population, and finally, νj, the reproductive value of an

individual in the class j. It is commonly used to have νj = cj/uj.

Let’s assume that a class j individual produces a number wij of i-class

individuals. The matrix A = [wij] stores the number of individuals of the

different classes produced by an individual from every class. In a monomor-

phic population (every individual bears the same phenotype, z̄), the dominant

eigenvalue, λ, of A gives the growth rate of the population. If λ = 1, then

our population is at equilibrium. The population at equilibrium follows the

class distribution given by the right eigenvector µ associated with λ. The left

eigenvector ν gives the reproductive value of an individual in class j. In our

monomorphic population, the average fitness is equal to the sum of the number

of individuals ui of every class, times the production of every class-j individual

multiplied by the reproductive value of a class-j individual

W (y, z) =
∑
i,j

νiwij(y, z)uj. (1.10)

The inclusive fitness change associated with a change in the genotypic value x

is then equal to
dW

dx
|x=x̂=

∑
i,j

νi
dwij
dx

uj = ν
dA

dx
u, (1.11)

where x̂ denotes the genotypical value of the resident population. Vectors ν

and u can change with ẑ, but they do not depend on x. Given that ν and µ

are eigenvectors, the middle side of Equation (1.14) simplifies into the right

side.

I now look at a concrete example of inclusive fitness change in a class-
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structured population from [90]. Suppose we have a population divided into

two classes: offspring and adults. Adults give birth to n offspring and survive

at probability s after every time step. Offspring mature with probability m.

The matrix A is

A =

 0 n

m s

 (1.12)

I suppose now that an offspring can help its parent increase its fecundity

by a factor B, it will decrease its maturation by a factor C. Let y be the

offspring phenotype and z be the one from its parent. Let λ be the dominant

eigenvalue of A, then λ corresponds to the growth rate of the population. We

also have u = (n, λ)T and ν = (m,λ). An offspring helping will mature at rate

m(1 − sCy). This fitness depends on s as its parent needs to survive to be

helped. The survival of an adult does not change with the behavior. A helped

adult will produce n(1 + snBz/λ) offspring, where s/λ gives the probability

that an adult was already an adult at the time step before, and so give birth

to offspring. The fitness matrix is then

A =

 0 n(1 + snBz/λ)

m(1 − sCy) n

 (1.13)

The fitness change associated is

dW

dx
= ν

dA

dx
u =

(
m λ

) 0 n2sBR/λ

−smC 0


n
λ

 = nsm(−λC +BnR)

(1.14)

where dy
dx

= 1, and dz
dx

= R.

Equation (1.14) is positive when C < BnR/λ. An increase in the help

level will then be selected if the cost is low and the benefit is high, but also if
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the relatedness R is high, as expected from Hamilton’s rule.

1.3 Convergence stability

Now that I have defined the inclusive fitness change and some of its applica-

tions, what can we say about this fitness change? Let’s assume the genotypical

value of the focal individual is x, its phenotypical value is y(x), the phenotyp-

ical value of the recipient is z(x), and the one of the resident population is ẑ,

i.e., the phenotypical value of the general population. The fitness of the focal

individual is then W (y, z), and its fitness change is equal to ∆W (ẑ)|y=z=ẑ.

Three things can happen to the fitness change. The first case happens if

∆W (ẑ)|y=z=ẑ> 0, then a higher level at which the behavior is expressed, y,

will be selected. In the second case, a lower level is selected if ∆W (ẑ)|y=z=ẑ< 0.

Finally, if ∆W (ẑ)|y=z=ẑ= 0, we reach an evolutionary equilibrium y∗, mean-

ing that evolution does not change the behavior. However, this evolutionary

equilibrium behavior may or may not be dynamically stable, meaning that a

perturbation is corrected by selection, and the equilibrium state is restored.

We then assess the stability of an equilibrium to see if another can replace this

value of the behavior.

In evolutionary game theory, several stability concepts have been devel-

oped, such as evolutionary stability or convergence stability [81, 80]. In inclu-

sive fitness models, a common assumption is weak selection, which assumes

that the effect of change in fitness is small. This assumption allows us to de-

termine the convergence stability of a strategy, but its evolutionary stability

can only be assessed in certain specific cases.

I use the definitions and theorems from [86] to define the convergence sta-

bility I will use in my thesis. I assume the evolutionary equilibrium is y∗. I also
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consider the function W (y, z), which computes an individual’s fitness given its

own strategy y, the recipient strategy z, and the resident population’s strategy

ẑ.

The strategy y∗ is convergence stable if for all resident ẑ in the neighbor-

hood of the equilibrium y∗, the mutant strategies that are better than ẑ are

only the ones who are closer to y∗ than ẑ is to y∗.

If W is twice differentiable, this condition can be summarized by:

∂

∂ẑ
∆W (ẑ)

∣∣∣∣
ẑ=y∗

≤ 0, (1.15)

where y∗ satisfies ∆W (y∗) = 0. This condition can tell that the local optimal

strategy y∗ can be reached, but it does not mean this strategy is evolutionary

stable. The weak inequality is necessary for convergence stability, and the

strict version is sufficient.

For an equilibrium to be evolutionary stable, we need the following condi-

tions:
∂2W

∂y2 (y, z)|y=z=ẑ=y∗< 0. (1.16)

In general, this last condition may not be possible to obtain using See also

[20, 19] for the formal analysis of these conditions.

I now show how an evolutionary equilibrium can be found in an inclusive

fitness context. I present an example from [90], which is a simplification of

[41] on the partial dispersal of offspring. I consider a population of adults

living on patches with N breeding spots. I look at this population in discrete

time steps. Each adult will give birth to a large number n of offspring. For

a focal individual, I suppose that a fraction y of these offspring will disperse

to a random patch and will survive dispersal at probability 1 − c. I also
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assume that the offspring itself control the dispersal of offspring. This focal

individual’s fitness (W ) is given by the number of breeding spots occupied by

its offspring after a time step. The average dispersal rate of other offspring

on the same patch is denoted z, and the average dispersal rate of the entire

population is ẑ. The fitness of our focal individual is thus

W (y, z) = (1 − y)p(z)︸ ︷︷ ︸
Local fitness

+ y(1 − c)p(ẑ)︸ ︷︷ ︸
Exported fitness

, (1.17)

where p(z) = 1
(1−z+ẑ(1−c)) gives the probability for an offspring to get a breeding

spot on a patch where the dispersal rate is z.

The derivative of the fitness function, evaluated at y = z = ẑ, is

dW

dx
= dW

dy

dy

dx
+ dW

dz

dz

dx
= −p(ẑ) + (1 − c)p(ẑ) + (1 − ẑ)p′ dz

dx
, (1.18)

which simplifies to

∆W = 1
1 − ẑc

(
−c+R

1 − ẑ

1 − ẑc

)
, (1.19)

where R = dz
dx

is the relatedness between the focal individual and a random

offspring on the same patch.

Equation 1.19 gives the inclusive fitness change undergone by the focal

individual who disperses one more offspring and retains one less. One more

dispersing offspring returns 1 − c to the fitness of the adult. However, as one

less offspring remains, the adult loses 1 unit of fitness. The other offspring,

related to R to the focal individual, has more opportunity to win a breeding

site and gives 1−ẑ
1−ẑc , which is the probability for a local offspring to compete

successfully for a local breeding site.
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A higher dispersal rate will be selected if ∆W > 0, which is equivalent to

R 1−ẑ
1−ẑc > c. At evolutionary equilibrium, there is no inclusive fitness change,

which then equals 0. This gives the following relation at evolutionary equilib-

rium y = z = ẑ = y∗:

R
1 − y∗

1 − y∗c
= c. (1.20)

Note that the relatedness coefficient also depends on the dispersal rate y∗.

To find the dispersal rate at evolutionary equilibrium, y∗, we must compute

the relatedness between the focal individual (offspring) and a random offspring

on the natal patch. The relatedness coefficient between two individuals is

equal to the ratio between the covariance of the genotypic value of the gene

of interest of the two individuals and the covariance of the genotypic values of

the gene of interest of the focal individual and itself [65, 68]. To compute these

covariances, we define f as the inbreeding coefficient in the population (the

probability that randomly chosen alleles at the locus in question are identical

by descent) and g as the coefficient of kinship between two offspring born

on the same patch. The values of these coefficients in the next generations

are f ′ = g and g′ = 1
N

1+f+2g
4 + N−1

N
( 1−y∗

1−y∗c
)2g. At equilibrium, we thus have

f = g = 1
4N−3−4(N−1)( 1−y∗

1−y∗c )2 . Now, I can compute the relatedness coefficient

between two offspring born on the same patch using correspondences between

covariances and f and g as defined above, such that

R = 2g
1 + f

= 1
2N − 2(N − 1)( 1−y∗

1−y∗c
)2 . (1.21)

Solving R 1−y∗

1−y∗c
= c, we find

y∗ = H + 1 − 2Nc
H + 1 − 2Nc2 , (1.22)
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with H =
√

1 + 4N(N − 1)c2. If we set N = 1, we have y∗ = 1−c
1−c2 . I will

now show that y∗ is convergence stable for N = 1. To do so, I compute the

derivative of the inclusive fitness change with respect to y and evaluate this

expression at y = z = ẑ = y∗

∂

∂y
(∆W )

∣∣∣∣
y=z=ẑ=y∗

= 1
(1 − cy∗)2

(
−c2 + cR

1 − y∗

1 − cy∗ −R + cR
1 − y∗

1 − cy∗

)
.

(1.23)

Given y∗ = 1−c
1−c2 , we have

∂

∂y
(∆W (ẑ))

∣∣∣∣
y=z=ẑ=y∗

= − 1
2(y∗)2 − < 0. (1.24)

The evolutionary equilibrium y∗ is thus convergence stable.

I now look at the evolutionary equilibrium in a class-structured popula-

tion. I introduce a new example presented by Taylor [90] and introduced by

Hamilton [39] in which they look at the sex allocation by a female breeder.

Sex allocation is defined as the allocation of resources to males or females by

the parent. I consider a sexual population where N females breed on a patch.

After mating, they disperse to another patch with probability µ and die during

dispersal with probability k. Females then compete for a breeding spot on the

patch they are found on.

I now suppose that each female gives birth to n sons and n daughters; their

sons survive with probability y, and daughters survive with probability 1 − y.

We can see y as the male/female ratio. I assume this ratio is controlled by the

mother, which is then the actor. As the actor is the mother and the recipients

are her daughters and her sons, we must compute their fitness. The fitness of
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a random female offspring is

Wf (yf , zf ) = (1 − yf ) ((1 − µ)p(zf ) + µ(1 − k)p(y∗)) , (1.25)

where yf is the mother’s phenotype, zf is the average phenotype on her native

patch, and y∗ is the average sex ratio in the population. The probability that a

female gets a breeding spot after dispersing is p(z) = 1
n
( 1

(1−z)(1−µ)+(1−y∗)µ(1−k)).

Similarly, the fitness of a random male offspring is

Wm(ym, zm) = ym
1 − zm
zm

((1 − µ)p(zm) + µ(1 − k)p(y∗)), (1.26)

where ym is its mother’s sex ratio, and zm is the average sex ratio on his native

patch. 1−zm
zm

is the female/male mating ratio on his native patch.

As we have a class-structured population with female and male classes,

I use the notation previously described to compute the fitness of an average

individual, which equals W = cmWm+ cfWf at equilibrium. Again, here cm is

the class reproductive value for males, and cf is the class reproductive value

for females. If we consider a diploid species, we have cm = cf ; if we have

a haplodiploid species, we have cf = 2cm. At equilibrium, we have dW
dx

= 0

which can be written

y∗F = (1 − y∗)M = 0, (1.27)

where y∗ = y is the evolutionary equilibrium value,

M = cmrm − cmRm, (1.28)

and

F = cfrf + cmRm −
(

1 − µ

1 − kµ

)2

(cfRf + cmRm). (1.29)
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The coefficient rf is the relatedness between the mother and its female off-

spring, rm is the relatedness between the mother and its male offspring, Rf

is the relatedness between the mother and a random female offspring on the

same patch and Rm is the relatedness between the mother and a random male

on the same patch.

In equation 1.29, F gives the fitness change of having one daughter more

breeding, M is the fitness change of having one more son breeding. Both terms

take into account the extra fitness gained by the mother’s offspring and the

decreased fitness for other offspring on the same patch due to the increased

sex-related kin competition.

In this specific example, it is difficult to determine the evolutionary stability

of the equilibrium x∗ = y∗. From the previous definition, if we want to check

the evolutionary stability of y∗, we need to compute ∂2W
∂y2 . In the case of class

structured population, we obtain

(1.30)

∂2W

∂y2 = ∂2

∂y2 (νAu)

= ∂

∂y

(
∂νAu

∂y

)

= ∂

∂y

(
ν
∂A

∂y
u

)

= ∂ν

∂y

∂A

∂y
u+ ν

∂2A

∂y2 u+ ν
∂A

∂y

∂u

∂y
.

I used equation 1.11 to go from line 2 to line 3. Equation 1.11 cannot be

used to simplify the last line. We thus need to determine the derivative of the

eigenvectors ν and µ with respect to y. This makes it much more difficult to

assess as we need to see the effect of selection on the reproductive value and

the population distribution. In this thesis, I will then restrain myself to the

convergence stability case.
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1.4 Specific cooperative behaviors

Cooperative behaviors are common in many species, many environments, and

in many different forms. For instance, you can find individuals helping to build

the nest, defend against predators, or feed the offspring [3]. We also have

behaviors that are not strictly speaking altruistic behaviors because either

individuals do not provide active help or because this behavior is conditional.

This is the case for delayed dispersal.

Delayed dispersal occurs when offspring remain on their breeding site rather

than disperse immediately [35, 15]. In that case, they may lose the opportunity

to breed as they require a breeding spot or a partner. Individuals who delay

their dispersal can thus incur a cost of opportunity for their behavior. In

exchange, by staying on their natal site, they maintain a group size that can

protect against predators, increase the yield from foraging, and maybe even

teach the offspring in the group [33, 34]. Note that these benefits do not need

to be done actively. Indeed, a large group can protect better against predators

without active protection [33, 34]. By delaying their dispersal, individuals

can then bring some benefits to their relatives while paying a cost for not

looking for a breeding spot. In this way, delayed dispersal may be considered

cooperative behavior in the broad, Hamilton’s sense.

Another behavior I present now is redirected helping. Some bird species

lay eggs in brood during the breeding season. Before hatching, the eggs can be

eaten by a predator or destroyed by bad weather. In that case, the breeder suf-

fers brood failure and may be unable to re-breed after this loss. This breeder

can decide to reallocate the parental resources it would have given to its off-

spring to the offspring of another breeder, which did not suffer brood failure.
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This reallocation of parental effort is referred to as redirected helping [43, 83].

The breeder who decides to help will incur a cost because it will spend some

resources for feeding offspring or defending the nest against predators. The

help recipient will benefit as its offspring will be better fed or enjoy more pro-

tection. Again, this behavior may not be classified into cooperative behavior

stricto sensu as it depends on the success or failure of the neighborhood. Still,

it fits a broader definition as it incurs personal costs and benefits others.

Altruistic behaviors can take various forms and be exhibited in different

environments. In future chapters, I will study these two examples more pro-

foundly and examine their ecological relations with the environment.

1.5 Environment-population interactions

In some articles, the evolution of cooperative behaviors has been modeled but

in a way that does not consider the environmental feedback. For example, in

Kokko et al. [56], offspring can delay natal dispersal and help their dominant

breeder. By staying and eventually helping, offspring can increase the group

size by recruiting new members and providing survival and fecundity benefits.

When offspring decide to delay dispersal, they lose the opportunity to look for

a breeding spot. However, the ability of an offspring to find a breeding spot

depends on a single parameter [56]. Delaying dispersal and helping offspring

affects population saturation [57]. First, they change it in a short time scale.

The offspring that do not disperse early do not compete directly for a breeding

spot, and then the competition is decreased on a short time scale. They also

increase the competition by recruiting new individuals who will compete for a

breeding spot during their lifetime. Delaying dispersal and helping can then

impact environmental features such as habitat saturation. Modeling ecological
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feedback is thus necessary to understand the dynamics between a population

and its environment.

Studying the evolution of social behaviors requires that we model the pop-

ulation, the environment, and the different feedback between them. Besides

altruistic behavior, several interactions between individuals or with the envi-

ronment occur. The interactions of altruism, competition, and reproduction

must be considered when building a model.

Other model features also need to be taken into account. Spatial structures

have different impacts on population dynamics [93, 42]. For instance, let’s

compare the effect of the cost of dispersal on the evolution of altruism when

it provides survival benefits. If we use an infinite-island model, then a high

cost of dispersal increases the range of cost/benefit, driving the emergence of

help [91]. In a model using a stepping-stone spatial model, a high cost of

dispersal decreases the range of cost/benefit, driving the emergence of help

[47]. Spatial structure is thus an essential non-parametric feature that can

impact the evolution of social behaviors.

1.6 Contribution of this thesis

In this introductory chapter, I presented different examples of social behaviors

and mathematical tools used to study their evolution. I also introduced some

specific behaviors that remained unexplored in relation to the environment.

In this thesis, I propose that group living features can challenge predictions

on the evolution of altruistic behavior. I model the influence of the environ-

ment on population dynamics and social behaviors, whether through ecological

feedback or the spatial structure of the population. In the following chapters of

my thesis, I present three studies of the impact of group living features on the
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evolution of altruistic behavior. Each chapter starts with a relevant literature

review, followed by a presentation of the methods used, mainly introduced in

this introduction.

In Chapter 2 of this thesis, I model the evolution of delayed natal dispersal

in relation to habitat saturation and group size effect. Individuals delay natal

dispersal for many reasons. There may be no place to disperse to; immediate

dispersal or reproduction may be too costly; immediate dispersal may mean

that the individual and their relatives miss the benefits of group living. Under-

standing the factors that lead to the evolution of delayed dispersal is important

because delayed dispersal sets the stage for complex social groups and social

behavior. Here, I study the evolution of delayed dispersal when the quality

of the local environment is improved by greater numbers of individuals (e.g.,

safety in numbers). I assume that individuals who delay natal dispersal also

expect to delay personal reproduction. In addition, I assume that improved

environmental quality benefits manifest as changes to fecundity and survival.

I am interested in how the changes in these life-history features affect delayed

dispersal. I use a model that ties evolution to population dynamics. I also aim

to understand the relationship between levels of delayed dispersal at evolution-

ary equilibrium and the probability of establishing as an independent breeder

(a population-level feature) in response to changes in life-history details. My

model emphasizes kin selection and considers a sexual organism, which allows

us to study parent-offspring conflict over delayed dispersal. Using convergence

stability, I show that at evolutionary equilibrium, fecundity and survival ben-

efits of group size or quality promote higher levels of delayed dispersal over a

more extensive set of life histories with one exception. The exception is for

benefits of increased group size or quality reaped by the individuals who delay

dispersal. The increased benefit does not change the life histories supporting
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delay dispersal there. Next, in contrast to previous predictions, I find that

a low probability of establishing in a new location is not always associated

with a higher incidence of delayed dispersal. Finally, I find that increased

personal benefits of delayed dispersal exacerbate the conflict between parents

and their offspring. I discuss my findings in relation to previous theoretical

and empirical work, especially work related to cooperative breeding.

In Chapter 3 of my thesis, I study the selective advantage of redirected help

in a viscous population living on an infinite-island model. When a brood fails,

the parent can decide to help a neighbor rear its offspring. This behavior is

referred to as redirected helping and occurs in various species. The advantage

of redirected helping may seem obvious, provided the individual whose brood

fails helps a related neighbor: the helper at least gains indirect fitness by redi-

recting its parental effort. However, complications arise when considering a

viscous population, where individuals remain on or close to their natal site.

In such a population, individuals compete with their relatives, which dilutes

the advantage of helping and may counteract it altogether. This raises the

question, under what conditions can we expect redirected helping to emerge

from a selfish population in a viscous population? I address this question

with an inclusive fitness model that looks at the conditions for the emer-

gence of redirected help using specific versions of Hamilton’s rule described

previously. This model allows overlapping generations and accounts for demo-

graphic stochasticity due to brood failure. In contrast to previous theoretical

studies of species with overlapping generations, I find that helping (in this case,

redirected helping) can be more strongly promoted when it provides survival

rather than fecundity benefits. My result depends on the species’ life history

and environment. Most notably, the result is impacted by the risk of brood

failure and the survival rate of breeders.
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In the model of Chapter 3, I investigated how population viscosity can

affect the emergence of redirected help by focusing on a population living on

an infinite-island model. However, the dispersal pattern of individuals in an

infinite-island model neutralizes the impact of population viscosity. In Chapter

4 of my thesis, I reestablish population viscosity by studying the evolution of

redirected help using a one-dimensional stepping-stone model. In this new

spatial structure, the dispersal pattern is much more constrained than the

infinite-island spatial structure, reestablishing the population viscosity I am

interested in. Using a Hamilton’s rule argument for the emergence of redirected

help, I find that dispersal acts in the opposite direction as in my previous model

and that the different benefits redirected help can influence how this behavior

will evolve. I discuss my results about the previous literature questioning the

evolution of altruism in a viscous population.

In Chapter 5, I discuss my present results and suggest possible future work

directions.



Chapter 2

Evolution of delayed dispersal

with group size effect and

population dynamics

2.1 Introduction

Delaying dispersal from one’s natal site can be advantageous for many reasons.

For example, if immediate dispersal is too costly, then by delaying dispersal,

an individual may be able to exploit future opportunities [71, 82] or avoid

immediate hardship [55]. Delayed dispersal also maintains the size of the

natal group, which can sometimes confer group-size benefits on an individual

and its relatives [40, 74].

Delayed dispersal is considered a precursor to the evolution of complex

social systems [3]. These include cooperative breeding systems where some

individuals delay dispersal and postpone or forego personal reproduction to

help raise neighbors’ offspring [35]. In fact, delayed dispersal is thought to

23
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be the cornerstone that supports cooperative breeding [55, 98, 94]. Delayed

dispersal can thus be studied to understand the link between group formation

and environmental features [82, 54, 55, 15, 58].

For cooperative breeding systems in particular, the importance of the group

size and group quality benefits of delayed dispersal is becoming increasingly

recognized [56, 25, 52, 34, 33]. However, the theory connecting delayed dis-

persal and group benefits, in ways relevant to the evolution of cooperative

breeding systems, is incomplete. In particular, previous theories assume ei-

ther asexual reproduction or limited environmental feedback [56, 25]. Thus,

we do not fully understand the evolution of delayed dispersal (and coopera-

tion more generally) in a sexual and dynamic population. In turn, our lack

of understanding means we do not fully grasp the consequences of the life-

history changes that inevitably accompany group benefits [52]; nor do we fully

grasp the extent to which group benefits change parent-offspring conflict over

delayed dispersal [96].

In this paper, we fill gaps in the theory surrounding group size benefits and

their connection to delayed dispersal. We build a sexual model that empha-

sizes the sub-social route to sociality, which occurs when parents and offspring

remain in association through the delayed dispersal of the latter [3]. Our model

assumes that social groups are made of one dominant breeding individual and

non-breeding subordinates. We link population dynamics to the evolution of

delayed dispersal to allow for eco-evolutionary feedback and assume that group

size or quality benefits manifest as changes to fecundity and survival. We are

interested in how these changes affect delayed dispersal. In particular, we in-

vestigate the relationship between the probability with which a subordinate

will establish as an independent breeder and the delayed dispersal rate. Fi-

nally, we ask how parent-offspring (breeder-subordinate) conflict over delayed
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dispersal changes with changing benefits of group living.

2.2 Model

2.2.1 Basic assumptions

We observe a population composed of breeders, subordinates, and floaters at

discrete, evenly spaced points in time. Each breeder is the dominant individual

in its breeding spot and is reproductively active. Subordinates live alongside a

breeder on the same breeding spot and are sexually mature but not reproduc-

tively active. Each occupied breeding spot is thus composed of one breeder

and several subordinates. Floaters do not live in a breeding spot but are look-

ing for one. They occupy a habitat that is not suitable for reproduction. We

want to consider group size effects in our model; however, explicitly tracking

group size can make the model’s state space unmanageable. To get around

this challenge, we introduce breeding spot (i.e. group) quality and connect

this quality to the dispersal tendencies of a group’s members.

We allow breeding spots to be of two qualities: low-quality or high-quality.

We separate breeders who live in a low-quality breeding spot from those who

live in a high-quality one. We separate subordinates the same way, distin-

guishing between those living in a low-quality and a high-quality breeding

spot, respectively. High quality is achieved and maintained when sufficient

subordinates delay dispersal and remain on the breeding spot. If too few

subordinates stay, then the quality of the breeding spot may be reduced.

We have five classes of individuals in the population, and we keep track of

the number of individuals in each class. We use Ut to denote the number of

floaters, B0,t for the number of breeders in the population who belong to a low-
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quality group, B1,t for the number of breeders in the population who belong

to a high-quality group, A0,t for the number of subordinates in the population

who occupy a low-quality group, and A1,t for the number of subordinates in

the population who occupy a high-quality group, where the subscript t tells

us that population is censused at the beginning of time step t. All notation

and parameters with their values are described in Table 2.1. Parameter values

may vary depending on the life history of the species.

2.2.2 Population dynamics

Figure 2.1 presents the five life-history events that occur between census points.

These events are described in order below.

(1) Early dispersal

At the beginning of this stage, one breeder and n0 subordinates live on each

low-quality breeding spot; one breeder and n1 ≥ n0 subordinates live on each

high-quality breeding spot. High-quality groups are thus larger than low-

quality groups at the beginning of the time step. Each subordinate disperses

(early) or delays dispersal as the stage progresses. The dispersal or delayed

dispersal of each subordinate occurs independently but depends on the breed-

ing spot’s quality. If subordinates delay dispersal, they remain on the breeding

spot; if they disperse, they become floaters. We use h0 to denote the prob-

ability that a subordinate delays dispersal from a low-quality spot, and we

use h1 to denote the analogous probability for a high-quality breeding spot.

Of course, 1 − h0 and 1 − h1 give the probabilities with which subordinates

in low-quality and high-quality groups, respectively, become floaters. At the

end of this stage, there are h0n0 subordinates in a low-quality group and h1n1
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(1) Early dispersal: 1 − h0, 1 − h1

(2) Group quality update
based on the number of subordinates:

T0, T1,1 − T0,1 − T1

(3) Survival: sb0 , sb1 (3) Survival: sa0 , sa1 (3) Survival: su

(4) Late dispersal

(5) Competition and establishment: p̃u,p̃a

(6) Reproduction
and maturation of

the offspring: n0, n1

Breeders Subordinates Floaters

Figure 2.1: Life-history stages that occur during one time step.
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subordinates in a high-quality group.

In general, we consider two scenarios. In the first scenario, delayed disper-

sal is controlled by the subordinate, meaning that it is determined by genes

expressed by the subordinate itself. In the second scenario, delayed dispersal is

under the breeder’s control, meaning that it is determined by genes expressed

by the breeder. We can study breeder-subordinate conflict over the decision

to delay dispersal by considering breeder and subordinate control.

(2) Group quality updates

More subordinates on a breeding site increase the chance that the group will

transition to or maintain a high-quality level. Conversely, fewer subordinates

increase the chance that the group will transition to or maintain a low-quality

level. To capture these effects, we introduce T0(h0) = 1−e−n0h0 as the probabil-

ity that a low-quality group becomes high-quality and 1−T1(h1) = 1−e−n1h1 as

the probability that a high-quality group remains high-quality. We also intro-

duce 1−T0(h0) as the probability that a low-quality group remains low-quality

and T1(h1) as the probability that a high-quality group becomes low-quality.

In the long run, we expect a fraction T1(h1)
T0(h0)+T1(h1) of the groups to be of low-

quality and a fraction T0(h0)
T0(h0)+T1(h1) of the groups to be of high-quality.

(3) Survival

At this stage of the life cycle, individuals suffer mortality. Floaters survive this

stage at rate su. The survival rate among group members (i.e. non-floaters)

depends on the quality of the group in which they are found. Breeders in a

low-quality group survive this stage at rate sb0 , while those in high-quality

groups survive at sb1 . We suppose sb1 ≥ sb0 . Subordinates survive this stage
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at rate sa0 = su in low-quality groups and at rate sa1 ≥ sa0 in high-quality

groups. We treat this survival difference sa1 − sa0 as indicative of a group

size effect because it reflects the extent of the direct benefits reaped by a

subordinate who delays dispersal. The difference for both sb1 −sb0 also reflects

a benefit awarded to the breeder thanks to the increased group size/quality.

Similar effects have been ascribed to benefits associated with collective action

in groups, group resource defense, group predator defense, and group foraging

[79, 5, 58].

(4) Late dispersal of subordinates

Surviving subordinates disperse and become floaters. Note that they are

slightly different than actual floaters for their ability to compete for a breeding

spot, see next stage.

(5) Competition and establishment

Former subordinates and floaters attempt to establish as independent breed-

ers. Because they have delayed dispersal, subordinates are at a disadvantage.

Floaters become established with intrinsic probability pu, while delayed dis-

persers become established with intrinsic probability pa < pu. In all cases,

habitat saturation, represented by the total number of occupied breeding spots

(B0,t + B1,t), reduces the probability of establishing. The actual probability

with which a floater establishes in this time step is p̃u = pu
1+a(B0,t+B1,t) , and

is p̃a = pa
1+a(B0,t+B1,t) for late dispersers, where a > 0 is the strength of the

habitat saturation effect. New breeders establish low-quality groups. Delayed

dispersers and floaters who fail to secure a breeding spot remain floaters.
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(6) Reproduction and maturation of offspring

Breeders, including the ones established in step (5), reproduce. Breeders are

sexual hermaphrodites and reproduce as female and male. When a breeder re-

produces through female function, it randomly chooses N potential mates, i.e.,

other breeders who could provide the paternal contribution to offspring. With

probability 1 − ϕ, the breeder selects one of its N potential mates to provide

the paternal contribution for a given offspring; alternatively, with probability

ϕ, the breeder provides the paternal contribution itself. We call ϕ the self-

fertilization (selfing) rate based on this. Keeping in mind that a breeder can

be chosen to be the mate of another individual, we conclude that the breeder

of each low-quality group produces n0 offspring through female function and

expects to produce ϕn0 +(1−ϕ)n0B0,t+n1B1,t
B0,t+B1,t

through male function. Similarly,

the breeder of each high-quality group produces n1 offspring through female

function and ϕn1+(1−ϕ)n0B0,t+n1B1,t
B0,t+B1,t

through male function. All offspring pro-

duced through female function or through male function via selfing are found

locally on the breeder’s own breeding spot during this stage. All offspring pro-

duced through male function via outcrossing are found on the breeding spot(s)

of the breeder’s mate(s) during this stage.

After reproduction, offspring mature and become subordinates. Thus, at

the end of the stage, there are n0 subordinates in each low-quality breeding

spot and n1 subordinates in each high-quality breeding spot. We interpret the

difference n1 − n0 as a fecundity benefit, again associated with group size [as

described above 79, 5, 58].
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2.2.3 Population dynamic features

The events described in the previous subsection lead to a mathematical de-

scription of how the distribution of individuals changes from one time step to

the next. Let Vt = (Ut, B0,t, B1,t, A0,t, A1,t)T be the distribution of individu-

als at time t. Then, Vt+1 = B(B0,t, B1,t)Vt, where the matrix B(B0,t, B1,t),

given in Appendix A.1, captures the dynamics of the population. The dy-

namic equation admits a trivial equilibrium, (0, 0, 0, 0, 0)T . We use the local

stability analysis described in Appendix A.2 to find that the stability of the

trivial equilibrium is determined by

R0 =LuLbΛ (2.1)

which is the expected number of subordinates a given subordinate produces

throughout its lifetime. It is composed of Lu = 1
(1−su(1−pu)) which is the ex-

pected lifetime spent as a floater and Lb = 1
((1−sb0 (1−T0))(1−sb1 (1−T1))−sb0sb1T0T1)

which gives the expected lifetime spent as a breeder, and finally Λ which sum-

marizes the expected rate at which the average breeder produces subordinates

of all types (given in Appendix A.2). When R0 is less than 1, the trivial

equilibrium is stable, and the population tends to extinction over time. When

R0 is greater than 1, the trivial equilibrium is unstable, and if there are con-

straints on the density of the habitat, i.e., a > 0, the population reaches a

positive equilibrium V ∗ = (U∗, B∗
0 , B

∗
1 , A

∗
0, A

∗
1). Henceforth, we require R0 to

be greater than 1.

For later use, we introduce the probability with which a floater eventually
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establishes as an independent breeder,

P ∗ = sup̃u
1 − su(1 − p̃u)

. (2.2)

For short, we call this the probability of establishment. The star attached

to P ∗ emphasizes the fact that p̃u is evaluated at equilibrium V ∗. While P ∗

refers specifically to floaters, it also influences the probability with which a

subordinate establishes as an independent breeder.

2.2.4 Evolution of delayed dispersal behavior

We study how selection changes the delayed dispersal strategies h0 and h1.

Here, in the main text, we build an expression for the change in inclusive

fitness [36] experienced by the individual who controls subordinate dispersal

when the delayed dispersal rate is increased. Our approach follows [87], but

in Appendix A.3, we show how our expressions can be built by the alternative

method developed in [90].

To build an expression for the inclusive fitness change experienced by the

focal individual, we must incorporate the reproductive values of different in-

dividuals. The reproductive value of an individual describes the asymptotic

genetic contribution made by that individual to future generations [90, 23].

The reproductive value of each individual in a given class (breeder, floater,

subordinate) is computed in Appendix A.3.

We describe the inclusive fitness change for the delay dispersal rate in low-

quality groups h0 and present the analogous expression for the delay dispersal

rate in high-quality groups h1. Fix attention on a subordinate in a low-quality
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Table 2.1: Summary of notation used in the main text and, where appropriate,
baseline value used.

Notation Description Baseline Value
su survival of floaters 0.5
sb0 survival of breeders in a low-quality group 0.5
sb1 survival of breeders in a high-quality group 0.5
sa0 survival of subordinates in a low-quality group 0.5
sa1 survival of subordinates in a high-quality group 0.5
pu ability of floaters to find a breeding spot 0.5
pa ability of late dispersers to find a breeding spot 0.25
a strength of the habitat saturation 2
ϕ self fertilization rate 0.1
h0 delayed dispersal rate in low-quality groups
h1 delayed dispersal rate in high-quality groups
n0 number of subordinates in low-quality groups 3
n1 number of subordinates in high-quality groups 3

T0(h0) = 1 − e−n0h0 transition rate from low to high-quality groups
T1(h1) = e−n1h1 transition rate from high to low-quality groups

Ut number of floaters at time t
B0,t total number of low-quality breeding spots

occupied by a breeder at time t
B1,t total number of high-quality breeding spots

occupied by a breeder at time t
A0,t total number of subordinates in the population

found on a low-quality breeding spot
A1,t total number of subordinates in the population

found on a high-quality breeding spot
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breeding spot. This subordinate is the actor. Suppose the individual who

controls the actor’s behavior decides to increase the likelihood with which the

actor delays dispersal. We denote the increase as δh0 (for h1, we use δh1), and

we suppose it is positive and small. Below, we enumerate three consequences

of the decision to increase the delayed dispersal behavior for the reproductive

value of all individuals who are affected by the change in the actor’s behavior

and genetically related to the individual with control.

First, by being less likely to disperse early, the actor forfeits the repro-

ductive value it would have accrued as a floater, denoted νu. Thus, it loses

reproductive value in δh0νu. Of course, there is still reproductive value to

be added. By increasing the delayed dispersal rate by δh0, the subordinate

remaining in the group survives to compete in stage (5) with probability

(1 − T0(h0))sa0 + T0(h0)sa1 . Given it survives to stage (4), the actor fails

to secure a breeding spot with probability (1 − p̃a). In this case, it becomes

a floater and has reproductive value νu. Alternatively, the actor secures a

breeding spot with probability p̃a, and in this case, it becomes a breeder in a

low-quality spot with reproductive value νb0 . We also credit the new breeder

with the reproductive value of all the subordinate offspring νsub,0, which is

composed of the subordinates produced through its female function (local)

and male functions (non-local) in low and high-quality groups. Assuming the

population is at equilibrium and recognizing that the breeder donates only half

of its genes to its offspring, while the other half comes from the other parent,

we find

νsub,0 = n0

2 νa0︸ ︷︷ ︸
female function

+ϕ
n0

2 νa0 + (1 − ϕ)
[

B∗
0

B∗
0 +B∗

1

n0

2 νa0 + B∗
1

B∗
0 +B∗

1

n1

2 νa1

]
︸ ︷︷ ︸

male function

,

(2.3a)
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where νa0 and νa1 are the reproductive values of a subordinate born on low-

quality and high-quality patches, respectively (see Appendix A.3). Equation

(2.3a) is the reproductive value of all the subordinates produced by a breeder

on a low-quality breeding spot. The analogous expression for the reproductive

value of all the subordinates produced by a breeder on a high-quality breeding

spot is

νsub,1 = n1

2 νa1 + ϕ
n1

2 νa1 + (1 − ϕ)
[

B∗
0

B∗
0 +B∗

1

n0

2 νa0 + B∗
1

B∗
0 +B∗

1

n1

2 νa1

]
. (2.3b)

Putting our observations together, when the actor is born in a low-quality

breeding spot, the decision to delay dispersal more readily changes the actor’s

reproductive value by

∆h0WActor = δh0

(
((1 − T0(h0))sa0 + T0(h0)sa1) ((1−p̃a)νu+p̃a(νb0 +νsub,0))

− su((1 − p̃u)νu + p̃u(νb0 + νsub,0))︸ ︷︷ ︸
=νu

)
. (2.4a)

Had we focused on a subordinate in a high-quality spot,

∆h1WActor = δh1

(
(T1(h1)sa0 + (1 − T1(h1))sa1) ((1−p̃a)νu+p̃a(νb0 +νsub,0))

− su((1 − p̃u)νu + p̃u(νb0 + νsub,0))
)
, (2.4b)

would have been the analogous expression.

Second, the decision to delay the dispersal of the actor also affects the

breeder. The effects on a low-quality breeding spot are solely due to changes

in the transition probability to a high-quality spot. As a result of this decision,

the transition rate T0(h0) changes by T ′
0(h0)/n0. When such a change happens
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and assuming the breeder survives, the breeder’s reproductive value changes

from νb0 + νsub,0 to νb1 + νsub,1, where νb1 is the reproductive value of a breeder

on a high-quality breeding spot. It follows that the decision changes the re-

productive value of the breeder with whom the subordinate actor is associated

by

∆h0WBreeder = δh0
T ′

0(h0)
n0

(sb1(νb1 + νsub,1) − sb0(νb0 + νsub,0)). (2.5a)

The analogous expression for the change in a breeder on a high-quality breeding

spot is

∆h1WBreeder = δh1
(1 − T1(h1))′

n1
(sb1(νb1 + νsub,1) − sb0(νb0 + νsub,0)). (2.5b)

Note we use (1 − T1(h1)) in the previous equation to denote the probability

that a high-quality group remains a high-quality group.

Finally, the decision to delay dispersal more readily impacts the (approxi-

mately) h0n0 subordinates who remain in the breeding spot, including the ac-

tor. Again, the transition to high-quality groups, T0(h0) increases by T ′
0(h0)/n0

as a result of this decision. In this case, the survival of every remaining sub-

ordinate changes from sa0 to sa1 , and we arrive at

∆h0WSubs = δh0 n0 h0
T ′

0(h0)
n0

(sa1 − sa0)︸ ︷︷ ︸
GS

[(1 − p̃a)νu + p̃a(νb0 + νsub,0)], (2.6a)

as the total change in reproductive value for remaining subordinates. The

term GS denotes the group size effect for subordinates: an increase in de-

layed dispersal (δh0) makes the group more likely to become of high-quality

and ultimately leads to a survival benefit (sa1 − sa0). This group size effect
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is weighted by the reproductive value obtained as a late disperser (term in

squared brackets). The analogous change for late dispersers in a high-quality

breeding spot is

∆h1WSubs = δh1 n1 h1
(1 − T1(h1))′

n1
(sa1 − sa0)[(1 − p̃a)νu + p̃a(νb0 + νsub,0)].

(2.6b)

Again, we use (1−T1(h1)) as the probability that a high-quality breeding spot

remains high-quality.

We build an expression for the overall change of inclusive fitness experi-

enced by the individual with control of the actor’s behavior by taking (2.4),

(2.5) and (2.6), weighting them by the appropriate relatedness coefficient, and

summing. The result for the focal individual on a low-quality breeding spot is

∆h0W = RI,B0 ·∆h0WBreeder+R̄I,A0 · ∆h0WSubs︸ ︷︷ ︸
j

+RI,A0 ·∆h0WActor. (2.7a)

Here RI,B0 expresses the relatedness between the individual with control and

the breeder (I = A0 for subordinate control and I = B0 for breeder control).

The coefficient R̄I,A0 expresses the relatedness between the individual with

control and the average subordinate remaining in the low-quality breeding

spot, including the actor. Finally, coefficient RI,A0 is the relatedness between

the individual in control and the subordinate actor. All relatedness coefficients

are calculated in Appendix A.4.

Similarly, the inclusive fitness change for a subordinate on a high-quality

patch is

∆h1W = RI,B1 ·∆h1WBreeder+R̄I,A1 ·∆h1WSubs+RI,A1 ·∆h1WActor, (2.7b)
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where similar to (2.7a), relatedness coefficients are computed between the in-

dividual in control I and the breeder or the subordinate(s) on a high-quality

breeding spot.

Switching which individual controls the behavior, the breeder or the subor-

dinate, only changes the relatedness coefficients that appear in the expression

for the inclusive fitness change, RI,A0 , RI,A1 , RI,B0 , RI,B1 , R̄I,A0 , and R̄I,A1 .

The other components of the inclusive fitness change remain the same, as

the effect on fitness is identical. When the subordinate controls its behavior,

I = A0, we use R̄A0,A0 in the inclusive fitness expression. The definition of

R̄A0,A0 means that term j in (2.7a) includes the personal benefits of increased

group quality awarded to the actor. Thus, while the term j does include in-

direct benefits to kin, it also includes personal benefits associated with group

size effect. To be clear, when the subordinate controls the behavior, the term

j can be written as

R̄A0,A0 · ∆h0WSubs = 1
n0

· ∆h0WSubs︸ ︷︷ ︸
Direct

+ n0 − 1
n0

(ϕ2 + ϕ(1 − ϕ) + (1 − ϕ)2N + 1
4N ) · ∆h0WSubs︸ ︷︷ ︸

Indirect

. (2.8)

When the breeder controls the behavior, we use R̄B0,A0 . Thus, the term j

covers only indirect benefits (from the breeder’s perspective) awarded to the

average subordinates remaining on the natal nest.

The sign of ∆h0W and ∆h1W gives us the direction of the evolution for h0

and h1 under the action of selection. If ∆h0W > 0, then selection will favor

an increase in the average tendency to delay dispersal h0. If ∆h0W < 0, then

selection will favor a decrease in the average tendency to delay dispersal h0. If
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the inclusive fitness change is equal to 0, then selection does not act to change

the associate delayed dispersal strategy. The same dynamics apply to h1 and

∆h1W .

When both ∆h0W = 0 and ∆h1W = 0, the system is at evolutionary equi-

librium. We use h∗
0, h∗

1 to denote this evolutionary equilibrium. We assess

the stability of the evolutionary equilibrium numerically, when it exists, as

described below. When it is stable, the evolutionary equilibrium represents

the endpoint of the evolutionary process. In some cases, we expect the evolu-

tionary process to lead us to the boundary of the trait space (the faces of the

unit square [0, 1]2). In these cases, the endpoint of evolution is not, strictly

speaking, an evolutionary equilibrium.

2.2.5 Numerical methods

We use numerical simulations to obtain the endpoint of the evolution of the

delayed dispersal strategies. Given delayed dispersal strategies h0 and h1,

we compute ∆h0W and ∆h1W , and then update using h0 + δh0∆h0W and

h1 + δh1∆h1W , respectively. If, at any time, either h0 or h1 or both is lower

than 0 or greater than 1 (because the selection is directional), we replace this

value with the one occurring at the closest border. We begin our simulation

assuming a fully dispersing population (h0 = h1 = 0), and we continue until

one of three things happens:

1. both ∆h0W and ∆h1W are within a tolerance of 0 in absolute values, in

which case the evolutionary process has reached an internal evolutionary

equilibrium;

2. both values of h0 and h1 remain the same after an iteration, in which

case, the evolutionary process ended at one of the corners of the trait
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space [0, 1]2;

3. one delayed dispersal strategy, h0 or h1, has been repeated exactly. The

other value’s inclusive fitness change, ∆h1W or ∆h0W , is within a toler-

ance of 0 in absolute value, indicating the process has settled on one of

the faces of the trait space but not on a corner.

There is a fourth case for which we would stop the process, namely when a

maximum number of iterations has been exceeded. We did not observe this

case. Note that in the three cases, we observed, the endpoint of the evolution

is stable in the sense that it is an attractor.

At the end of the process, the last value of h0 and h1 is reported. When re-

ported values are both strictly greater than 0 and strictly less than 1, we have

an evolutionary equilibrium (h∗
0, h

∗
1) that is also an attractor (multidimension-

ally stable). We also use h∗
0 and h∗

1 for values returned by the simulation that

occurs at the boundary. Overall, we use the simulations to study the role of

various parameters that affect ∆h0W and ∆h1W .

All simulations are performed using Julia (1.7.1), and results are visualized

using Python (3.8).

All simulation code can be found on this link.

https://github.com/aflatresUWO/coop_breed_group_size
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2.3 Results

2.3.1 At equilibrium, the number of delayed dispersers

is independent of group quality

At evolutionary equilibrium, a class of solutions satisfying both ∆h0W = 0

and ∆h1W = 0 is captured by

h∗
0n0 = h∗

1n1. (2.9)

No other classes of evolutionary equilibrium solutions exist if there are no

survival benefits for delayed dispersers (sa0 = sa1), i.e., no group size effect

for subordinates’ survival (see the stage (3) of the life cycle). If their survival

increases with group size (sa0 < sa1), there may be other classes of evolutionary

equilibrium solutions, but extensive numerical simulations did not reveal them.

It seems that equation (2.9) is the only evolutionary equilibrium solution that

exists based on numerical simulations. This equation also holds whether the

individual controlling the delayed dispersal behavior is the subordinate or the

breeder. Thus, parent-offspring conflicts change the value of h∗
0 and h∗

1 but

not the relation (2.9).

Biologically speaking, equation (2.9) tells us that after early dispersal, low

and high-quality groups are of the same size. Any size difference between low

and high-quality groups we might observe during the life cycle are temporary.

Moreover, since n0 ≤ n1, we have h∗
0 ≥ h∗

1, meaning that subordinates born in

high-quality are never more likely to delay dispersal than those born in a low-

quality breeding spot. Essentially, smaller groups (low-quality groups) retain

more subordinates at evolutionary equilibrium. In addition, equation (2.9)
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implies that the quality distribution of groups is independent of the current

group quality. It follows that at evolutionary equilibrium, the fraction of high-

quality groups is T0(h∗
0) = 1 − T1(h∗

1) and the fraction of low-quality groups is

1 − T0(h∗
0) = T1(h∗

1).

We can also deduce from equation (2.9) that h∗
0 > 0 is equivalent to h∗

1 > 0.

In other words, the conditions that lead to h∗
0 > 0 also lead to h∗

1 > 0. In turn,

this also implies that the set of parameters that supports delayed dispersal

at non-zero levels (h0, h1 > 0) is independent of survival benefits for subor-

dinates. That said, we found the delayed dispersal strategies at evolutionary

equilibrium higher with group size effects for subordinates (see section 3.4).

As a final comment, since h∗
0 and h∗

1 are related by equation (2.9), we only

report results for h∗
0 below.

2.3.2 Selfing promotes delayed dispersal but can dimin-

ish group size benefits for subordinates

We are interested in how selfing ϕ, i.e., self fertilization, impacts the evolution

of delayed dispersal. On the one hand, we expect selfing to increase relatedness,

promoting cooperative behaviors like delayed dispersal [36]. On the other

hand, increasing the selfing rate may decrease the reproductive value that

subordinates achieve through male function, which scales the group size effect

on subordinates’ survival, making it smaller (see equations (2.3a) and (2.6)).

Selfing may also change the cost of delaying dispersal paid by late dispersers,

as described in equation (2.4). On balance, numerical results suggest that

increasing the selfing rate ϕ increases the level of delayed dispersal h∗
0 (Figure

2.2A). This finding is consistent with the interpretation of delayed dispersal

as an act of altruism, as it brings direct costs to the subordinates while giving
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benefits to the breeder.

In addition to increasing the level of delayed dispersal, we observe that

selfing decreases the reproductive value of a remaining subordinate who sur-

vived to stage (3) in the life cycle (Figure 2.2B). Recall that this reproductive

value scales the group size effect on subordinates. Therefore, while selfing

leads to more philopatric individuals, it reduces their reproductive value and

ultimately reduces the impact of group size survival benefits on the evolution

of delayed dispersal.

The cost of delayed dispersal paid by the subordinates, ∆h0WActor in

(2.4a) and ∆h1WActor in (2.4b), is also decreased when we increase the selfing

rate (Figure 2.2C). Indeed, as ϕ increases the delayed dispersal rate h0, the

personal benefits of staying increase too. The cost of delayed dispersal is,

therefore, decreased with a higher ϕ. Thus there is a positive feedback between

h0 and ϕ for the decrease of the cost of delaying dispersal.

Overall, despite diluting the group size effect for subordinates, an increased

selfing rate lowers the cost of delayed dispersal and raises the relatedness be-

tween individuals, leading to an increase in the level of delayed dispersal. We

can thus expect selfing to increase relatedness, and reduce the value of dis-

persers, leading to higher levels of delayed dispersal.

Two interesting features of our model are revealed when we increase either

(a) the selfing rate or (b) the fecundity benefits of moving into a higher qual-

ity group, n1 − n0. First, when we make these increases, selection raises the

delayed dispersal rate (Figure 2.2A). However, the same increases also lower

the reproductive value achieved by a remaining subordinate (Figure 2.2B).

The reproductive value of a philopatric subordinate is thus maximal when the

delayed dispersal rate is minimal (which, in our case, is no delayed dispersal).

Second, because this reproductive value scales the group size effect for subor-
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Figure 2.2: The impact of selfing rate ϕ and fecundity benefit (n1 − n0) on
(A) equilibrium level of delayed dispersal (h∗

0), (B) reproductive value of a
delayed disperser ((1 − p̃a)νu + p̃a(νb0 + νsub,0), see equation 6), and (C) the
cost of delayed dispersal (∆h0WSelf < 0 is plotted). Numerical simulations
assume n0 = 3, sb0 = sb1 = 0.5, su = sa0 = 0.5, sa1 = 0.6, pu = 0.5, pa = 0.25,
a = 2. Relatedness is calculated assuming a breeder only chooses one mate (see
Appendix A.4). In all cases, we assume subordinate control of delay dispersal.
Qualitatively similar results are found with breeder control.

dinates, this effect decreases with either selfing rate or fecundity benefits; it

thus would be maximal when delayed dispersal is minimal if it were not for

the fact that the increased group size effect is null at h0 = 0 (see equation

(2.6), GS). Thus, our second finding reveals a tragedy of sorts: the group size

benefits for subordinates is unavailable exactly when it could have the highest

impact.

2.3.3 Habitat saturation impact on delayed dispersal

The relationship between the delayed dispersal at evolutionary equilibrium

and the probability of establishing as an independent breeder (equation (2.2))

depends on the species’ life history. Figure 2.3 shows this relationship when

we vary life history details captured by fecundity and survival. Note that we

kept the strength of habitat saturation, a fixed to study the life history impact

and not just habitat saturation effect. The qualitative nature of the relation-

ship between habitat saturation and life history details changes depending on
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whether fecundity or survival is varied. Nevertheless, the relationship reveals

two consistent patterns. First, as we increase the benefits of delayed disper-

sal, we increase the evolutionary equilibrium rate of delayed dispersal. This is

most evident when we consider the effect of increasing n1 − n0, sb1 − sb0 , and

sa1 − sa0 (Figure 2.3A, B, C). The pattern is also evident as we decrease n0;

in this case, the decrease leads to a greater benefit of delayed dispersal owing

to the transition-rate model’s geometry (Figure 2.3D). Second, whenever we

change the life history in a way that leads to higher rates of production or

survival, we lower the probability of establishment (Figure 2.3A, B, C).

We wish to emphasize that as we decrease the fecundity rate, n0, we in-

crease delayed dispersal and the probability of establishment (Figure 2.3A). In

this case, we have a positive relationship between the probability of establish-

ment and delayed dispersal. This pattern contrasts with other patterns that

we found when varying survival (Figure 2.3B, C) and contrasts with reports

of this relationship in the literature (17, 56; but see 57).

2.3.4 Breeder-subordinate conflict

We study the breeder-subordinate conflict by computing the difference be-

tween the levels of delayed dispersal at evolutionary equilibrium when the

breeder controls the behavior and when the subordinate controls the behavior.

In general, we expect this difference not to be negative. Indeed, it is more

beneficial for the breeder than for the subordinate to delay the dispersal of the

latter. This is in keeping with standard predictions of parent-offspring conflict

given that delayed dispersal can be viewed as altruistic, [96]. In addition, the

threshold at which individuals start to delay dispersal when under parental

control is always lower than when under subordinate control. The distance
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Figure 2.3: Relationship between equilibrium level of delayed dispersal (h∗
0)

and probability of eventually establishing as an independent breeder (P ∗, see
equation (2.2)). Panel (A) shows the effect of varying fecundity n0 between a
minimum value of 3 (blue) to a maximum of 7 (red) and the effect of varying
the benefit n1 − n0 from 3.42 (small circles) to 3.89 (medium circles) to 4.52
(large circles). Panel (B) shows the effect of varying breeder survival sb0 from
a minimum value of 0.3 (blue) to a maximum of 0.7 (red) and the effect of
varying the benefit sb1 −sb0 from 0.09 (small circles) to 0.12 (medium circles) to
0.15 (large circles). Panel (C) shows the effect of varying subordinate survival
sa0 from a minimum value of 0.5 (red) to a maximum of 0.7 (blue) and the
effect of varying the benefit sa1 −sa0 from 0.03 (small circles) to 0.07 (medium
circles) to 0.11 (large circles). In (C), we assume assumes n1 = 5 and n0 = 3.
Unless otherwise stated, simulations in (A)-(C) assume pu = 0.5, pa = 0.25,
a = 2, n0 = n1 = 3, sb0 = 0.5, sb1 = 0.5, su = sa0 , sa0 = 0.5, sa1 = 0.5,
Φ = 0.1. Relatedness is calculated assuming a breeder only chooses one mate
(see Appendix A.4). Panel (D) shows the marginal effect of increased delayed
dispersal on the probability with which low-quality groups transition to high-
quality, T ′

0 depending on the group size h0n0. In particular, as the fecundity
parameter n0 increases, the delayed dispersal’s marginal effect is diminished.
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between the thresholds is relevant to the results we present below.

As a check, we start our analysis of conflict by removing breeder benefits

(n1 = n0 and sb1 = sb0) and group size benefits for subordinates (sa0 = sa1)

while still group membership benefits (su < sa0). In this case, only direct

benefits to the actor remain in the model, and our numerical simulation cor-

rectly predicts no breeder-subordinate conflict (see supplementary data). We

investigate conflict by varying the selfing rate ϕ as an additional check. As ϕ

increases, relatedness between breeders and subordinates increases, and con-

flict decreases (see supplementary data). In the limit, as ϕ goes to 1, conflict

disappears, as expected.

Raising the benefits given to the breeder changes the level of breeder-

subordinate conflict in a way that depends on the subordinates’ survival ben-

efits. The first noticeable change in conflict is an increase between the two

thresholds described above. Between these thresholds, breeders want subordi-

nates to stay more and more readily, but subordinates are unwilling (Figure

2.4Ai, ii, 2.4Bi, ii). The extent of the increase between the thresholds subordi-

nates benefits from larger group size (sa1 > sa0) even though the distance be-

tween the thresholds remains the same (colored vertical lines in Figure 2.4Aiii,

iv, 2.4Biii, iv). Beyond the second threshold, both breeder and subordinate

prefer non-zero levels of delayed dispersal, and the extent of the conflict ei-

ther plateaus or decreases (Figure 2.4Ai, ii, 2.4Bi, ii). Importantly, the extent

of the conflict beyond the second threshold tends to be higher when subordi-

nates’ survival increases with group size, with one exception (Figure 2.4Aiii, iv,

2.4Biii, iv ). That exception occurs when the delayed dispersal level preferred

by the breeder reaches its maximum value; in this case, conflict decreases as

the subordinate’s preference catches up to that of the breeder. Overall, in-

creasing subordinates’ survival in larger groups tends to exacerbate conflict as
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benefits to the breeder increase.

Raising the group-size benefits given to subordinates has a non-monotonic

effect on the breeder-subordinate conflict. In particular, the conflict first in-

creases until reaching a maximal value and finally decreases for high values of

benefits (Figure 2.4 Ci, Cii). This decrease is driven by the fact that delayed

dispersal is increasing under the subordinate’s control. In contrast, under the

breeder’s control, delayed dispersal has reached the upper bound of the be-

havior, h0 = 1. While it is tempting to conclude that an increased survival for

subordinates is tempering breeder-subordinate conflict, the decrease in con-

flict is because the breeder’s preferred subordinate behavior is at its maximum

level.

2.4 Discussion

We studied the formation and maintenance of groups that include a dominant

breeder and non-breeding subordinates. We accomplished this by building

a model for the evolution of a subordinate behaviors. These behaviors can

be understood either as delayed dispersal or as delayed dispersal linked with

helping. In both cases, the evolution of the behavior has implications for co-

operative breeding. Delayed dispersal is considered an important precursor to

the evolution of cooperative breeding systems [55]. Delayed dispersal linked to

breeder-directed helping has been used repeatedly to explain the adaptive sig-

nificance of cooperative breeding, especially in the face of ecological constraints

[17, 70, 99].

Our first main result is that, at evolutionary equilibrium, the number of

non-dispersers is independent of group quality. This is a consequence of the

equilibrium dispersal rate from large high-quality groups being higher than
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Figure 2.4: Equilibrium levels of delayed dispersal h∗
0 and the extent of breeder-

subordinate conflict over delayed dispersal represented by the difference of pre-
dictions under breeder exclusive control or under subordinate exclusive control
(h∗

0(bre)−h∗
0(sub)). Panel (A) shows how the levels of delayed dispersal and the

extent of the conflict change with fecundity benefit n1 − n0. Coloured vertical
lines mark the location of the threshold value of n1−n0 beyond which h0 = 0 is
no longer favoured. The left vertical line (orange) marks the threshold for the
breeder control scenario and the right vertical line (brown) marks that for the
subordinate control scenario. Vertical lines are in the same position in all of
(A). Panel (B) shows how the levels of delayed dispersal and the extent of the
conflict change with breeder survival benefit sb1 − sb0 . Coloured vertical lines
mark the location of the threshold value of sb1 − sb0 beyond which h0 = 0 is
no longer favoured. The left vertical line (orange) marks the threshold for the
breeder control scenario and the right vertical line (brown) marks that for the
subordinate control scenario. Vertical lines are in the same position in all of
(B). Panel (C) shows how the levels of delayed dispersal and the extent of the
conflict change with subordinate survival benefit sa1 − sa0 . Unless otherwise
noted, n0 = n1 = 3, sb0 = sb1 = 0.5, su = sa1 = sa0 = 0.5, ϕ = 0.1, a = 2,
pa = 0.25, pu = 0.5. Relatedness was calculated assuming breeders have one
mate (see Appendix A.4).
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that from small low-quality groups. Similar density-dependent dispersal pat-

terns have been found in cooperative breeders like meerkats (S. surricata)

where individuals in small groups disperse less frequently than individuals in

larger groups [61]. More generally, dispersal in other cooperative breeding sys-

tems may be positively or negatively related to group size depending on the

benefits of cooperation and the cost of kin competition [9, 62].

Our first result reflects the conclusion of the “constant philopater hypoth-

esis" proposed by [76]. Those authors used a classic island model to show that

breeders of all qualities produce the same number of philopatric offspring, but

breeders of higher quality produce more offspring that disperse. Our equation

(2.9) shows that the number of delayed dispersers is independent of group qual-

ity and, since there is a higher fecundity in high-quality groups, there are more

dispersers in high-quality groups. Therefore, our results extend the constant

philopater hypothesis to a scenario where density is not regulated as strictly

as in an island model, and dispersal (rather, delayed dispersal) influences the

quality we assign to the breeder. Given that philopatry conditioned on quality

impacts sex-ratio [8], then future work could extend the results of our study

to sex-dependent helping in cooperative breeders.

We focus our work on the increase of the survival of an individual who

delay dispersal. We treat these benefits as passive and connected to improved

group size. We could have interpreted them as active benefits generated by

an actor who delays dispersal and subsequently helps. Regardless of the in-

terpretation, these group size benefits for subordinates, lead them to delay

dispersal more readily but do not change the set of conditions under which

groups are predicted to form. In other words, group size affecting the survival

of subordinates leads to larger groups but does not make group formation more

likely. This conclusion complements those arising from the simulation models
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of [25]. There, the increased survival for subordinates in larger groups drives

the formation of groups. Our work shows that kin selection can also drive the

formation of groups via the sub-social route with a group size effect. In this

context, delayed dispersal can be considered an act of altruism by the subor-

dinate and directed toward the breeder. [25] correctly points out that group

size effects set the stage for kin-selected active helping. Our work suggests

group size effects can also open the door to increased benefits directed toward

kin when those benefits are related to group size or quality.

When we interpret subordinate behavior in our model as delayed dispersal

linked to active help, our predictions are consistent with recent empirical find-

ings on group size effects in cooperative breeding systems. Specifically, it has

been found that helpers in smaller groups work harder than those in larger

groups, even after correcting for the load-lightening effect [26]. If we interpret

subordinate behavior in our model as effort, then a similar idea comes through

in equation (2.9): helpers in low-quality groups compensate by working harder.

We investigated the relationship between the probability with which a

floater will eventually establish as an independent breeder and its tendency

to delay dispersal. We found that a low probability of establishment is not

always associated with a high level of delayed dispersal when the evolution

of delayed dispersal itself is tied to population dynamics. In particular, we

found that by decreasing the overall level of reproduction, we simultaneously

decrease the competition among floaters and increase the reproductive benefits

of delayed dispersal. Decreased competition among floaters leads to greater es-

tablishment probability, increased benefits incentivize delayed dispersal, and

so a positive relationship emerges between the probability of establishment

and delayed dispersal. Previous work has predicted a negative relationship

between the probability of successful independent breeding and delayed dis-
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persal [17, 56, 55]. However, that work treats the probability of success as an

independent variable in the model that is not altered by population dynamic

feedback. Overall, we see that a complete understanding of delayed dispersal

and cooperative breeding requires consideration of population dynamic feed-

back. Pen and Weissing,[70] and Kokko et al. [57] have expressed similar

sentiments. The latter found the survival of dispersers mediated a positive

relationship with the probability of establishment and delayed dispersal when

these were connected through population dynamics. Our work shows a similar

effect but with reproduction.

We built a sexual model that allows us to study breeder-subordinate con-

flict over delayed dispersal. The scenario here is essentially parent-offspring

conflict over altruism, even though we consider subordinate’s behavior to pro-

vide passive benefits. In keeping with parent-offspring conflict theory [96], the

breeder always wants the subordinate to delay dispersal more than the sub-

ordinate is willing to. The discrepancy between these perspectives is how we

measure the intensity of the conflict. In this way, we study a battleground

rather than a resolution model, as we observe and do not predict how the

conflict can be solved, [29].

Previous work on natal dispersal showed a pattern of conflict that is differ-

ent than the one we uncover. In those models, dispersal rather than philopatry

is the altruistic act. Consequently, a parent in those model prefers a higher rate

of dispersal (lower rate of philopatry) than preferred by an offspring [66, 85].

This previous work, however, does not account for the possibility for group

size benefits and emphasizes a viscous population demographics and kin com-

petition. In this way, previous work does not capture some important features

that we emphasize in our model and that are thought to be important in fam-

ily units where cooperative breeding is absent [58]. In particular, it misses the
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particular parent-offspring conflicts that we identify here.

Our battleground model shows that, generally, group size effects exacer-

bates the conflict between the breeder and the subordinate. The results derive

from the fact that the conflict is strongest when the subordinate is unwilling

to delay dispersal, but some delay dispersal is optimal from the breeder’s per-

spective. In this zone of conflict (between the thresholds we identify in the

results), the breeder’s perspective is more sensitive to group size effects than

the subordinate’s perspective. In fact, in many cases, the subordinate’s per-

spective is insensitive to the large changes of benefits of delayed dispersal. We

see signs of conflicts like the one predicted by our model in cooperative breed-

ers like the white-fronted bee-eaters [Merops bullockoides, 18]. In this species,

breeding parents disrupt their offspring’s attempt at independent breeding to

coerce the offspring into returning to their natal site and providing help. Sim-

ilar patterns have been observed in pied babblers (Turdoides bicolor) where

individuals can kidnap subordinates of other groups to increase their own

group size [73], and in a cichlid fish (Neolamprologus pulcher) where dominant

breeders harass non-contributing subordinates [102]. Given that this cichlid

species’ behavior is consistent with the group size effect hypothesis [26], it may

provide a good system to test the effect of group size benefits on the extent of

the breeders-subordinate conflict.

Our model of parent-offspring conflict can be used to contextualize repro-

ductive skew within a social group. The conflict between the breeder and its

offspring over delayed dispersal with group size benefits means the breeder will

encourage offspring to delay dispersal more readily than the offspring would

have otherwise. This encouragement can bring benefits for the offspring such

as giving staying incentives by giving the offspring reproductive opportunities

as in African lions (Panthera leo) [69], or dwarf mongooses, (Helogale parvula),
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[11]. Other actions performed by the dominant breeder can be harmful for the

offspring, such as reproduction suppression in naked mole rats. For instance,

the breeder can delay the maturation of the subordinates. In the naked mole

rats, the dominant breeder increases the subordinates’ response to pup vocal-

izations [97] or inducing reproduction suppression [22].

The naked mole rat is a potential example of the kind of parent-offspring

conflict we explore. This species lives in colonies where non-breeding subor-

dinates help the dominant breeder (queen) reproduce. Only some offspring

disperse; the rest are recruited as helpers. Dispersers have a specific morphol-

ogy and behavior: they have a larger body and are more aggressive [67]. It is

likely that the development of the disperser morph is a locus of conflict between

the dominant breeder and its subordinates. The queen may prefer offspring

develop as disperser morphs less readily than the offspring themselves would

prefer. Perhaps, the breeder could advance its goal by manipulating the de-

velopment of offspring through means that are similar to the one it uses when

it manipulates the maturation and behavior of offspring already developed as

subordinates [22].

Overall, group size effects plays a complex role in the evolution of delayed

dispersal and cooperative breeding. This is especially true when evolution is

tied to population dynamics and influenced by habitat saturation. Group size

effects on subordinates’ survival encourages delayed dispersal and promotes

larger or higher-quality groups. In many cases, it exacerbates the conflict

between the breeder and subordinate over the delayed dispersal. Our findings

complement previous works and suggest new avenues for research.



Chapter 3

Selective advantages of

redirected helping in a viscous

population

3.1 Introduction

Cooperative breeding is a social system in which certain individuals invest their

time and energy to care for offspring produced by others. Cooperative breeding

—indeed, helpful behaviors more generally — has long puzzled researchers,

but its adaptive significance can be understood in terms of benefits that come

from reciprocity [95] or those arising via kin selection [38]. Although helping

and cooperative breeding are well understood broadly, outstanding questions

about their evolution remain.

One example of an open question centres around redirected help in coop-

erative breeding systems. Redirected helping occurs when an individual who

has experienced brood failure redirects their parental effort to help a related

55
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neighbor. This behavior is well documented in species such as the Long-tailed

Tit (Aegithalos caudatus), [43], the Western Bluebird, (Sialia mexicana), [53],

the Iberian Magpie (Cyanopica cooki) [13], among others. At first glance,

redirecting helping looks like an evolutionary no-brainer: if an individual has

little chance of personal (or direct) reproductive success in a given year, what

downside could there be to attempting to make indirect gains through rela-

tives? Of course, one obvious downside is the cost that would be incurred by

helping [44].

Less obvious are the costs of helping in a viscous population. A population

is considered viscous when individuals remain close to their natal site through-

out their life [75]. Population viscosity imposes a genetic structure, meaning

individuals interact and compete with their genetic relatives. Competition in

a viscous population can be enough to cancel or at least reduce benefits arising

from helping [101, 91]. In the same way, the success of redirected helping in

a viscous population may be blunted by the increased local competition that

it creates [78]. For instance, the benefits of redirected help, anticipated by

the extra offspring it creates, may later be diminished if those extra offspring

interfere with the success of related offspring produced by a different neigh-

bor. Overall, it is unclear when redirected helping should be favored in viscous

populations.

This paper tackles the problem of redirected helping in viscous populations.

We build an inclusive-fitness model to outline the conditions under which

this behavior is predicted to be advantageous. We use an infinite-patch (i.e.,

infinite-island) model where a breeder whose brood fails can decide to redirect

parental effort to another breeder on the same patch. We assume redirected

help brings survival or fecundity benefits to the recipient but costs the helper

by decreasing its survival. In contrast with the results of previous studies,
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we find that helping can, in some cases, be more strongly promoted when

it provides survival rather than fecundity benefits. This result depends on

the life history of the species and its environment; most notably, the result is

impacted by the risk of brood failure and the survival rate of breeders. Our

results provide new perspectives on cooperative breeding studies while opening

new research areas.

3.2 Material and methods

3.2.1 Life cycle

We consider a large (ideally infinite) population of haploid asexual individu-

als. The population is subdivided into identical patches, each supporting n

breeding spots occupied by a single adult (breeder).

We observe the population at discrete points in time (years). At the begin-

ning of a given year, each individual produces a brood of N offspring, where

N is very large. Each entire brood fails independently, with probability p.

Failure could occur, for example, because of predation.

Each offspring produced by a successful breeder (probability 1−p) becomes

an adult with probability f (fledging success). It then disperses from its natal

patch with probability d and survives dispersal with probability (1− c), where

c is the cost of dispersal. Given it survives, the dispersing offspring is on a

new patch selected uniformly at random.

Each breeder suffers mortality after offspring dispersal. Breeders whose

brood failed survive at rate s0, while those with a successful brood survive at

rate s1. Survivors retain their patches, and offspring compete equally for a

breeding spot vacated by adult breeders who died. As more offspring compete
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than there are free breeding spots (N large), all breeding spots are occupied

at the end of the time step.

When an individual’s brood fails, it can decide to help another randomly

chosen breeder on the same patch whose brood did not fail. Importantly,

we assume that an individual’s tendency to provide help when their brood

fails does not impact the probability with which their brood fails. A helpful

failed breeder (the actor) increases either the fledging success of the recipient’s

offspring by a small amount δf or the survival of the recipient itself by a small

amount δs1. However, by helping, the actor expends some energy, which

translates to a small decrease in its own survival by δs0. The fact that δf ,

δs1, and δs0 are small reflects an underlying assumption that the effect of

selection is weak. This is a common assumption in inclusive fitness models

[30, 86, 87, 100].

To connect to standard theory [38], we use C = δs0/s0 for the fitness

cost paid by the actor (cost of helping), Bs = δs1/s1 (survival benefit) for

the fitness benefit given to the actor’s patchmate, and Bf = δf/f (fecundity

benefit) for the fitness benefit given to each of the patchmate’s N offspring.

We can interpret C, Bs, and Bf as selection coefficients from mathematical

population genetics [see 12].

3.2.2 Inclusive fitness of redirected helping

We now build our inclusive fitness expression for the advantage of redirected

help in an otherwise selfish population. In a later section, we will give a more

mathematically detailed explanation for this inclusive fitness expression. That

later section is aimed at readers with a technical interest in inclusive fitness

modeling.
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Table 3.1: Variables expression and definition

Expression Definition
Pk,n =

(
n
k

)
pk(1 − p)n−k Probability that k broods fail on a patch with

n breeders.
hk = (1−d)(n−k)

(1−d)(n−k)+n(1−p)d(1−c)) Probability that a local offspring competes
successfully on a patch where k breeders had
brood failure

ψ = p(1−s0)+(1−p)(1−s1)
N(1−p) Probability that an offspring finds a breeding

spot, equivalent to its reproductive value
ψk = k(1−s0)+(n−k)(1−s1)

N(n−k)(1−d)+N(1−p)d(1−c) Probability that an offspring competes suc-
cessfully on a breeding spot where k breeders
suffered brood failure, equivalent to its repro-
ductive value on a patch where k breeders
had brood failure

r̄ = α
1−β Coefficient of consanguinity (see B.2 for com-

putation)
Rs =

(
r̄ − r̄

∑n
k=1

kPk,n
p(1−pn−1)hk

)/(
1 − r̄

∑n
k=1

kPk,n
p(1−pn−1)hk

)
Rf =

(
r̄d(1−c)

∑n

k=0 Pk,n
ψk
ψ

+r̄(1−d)
∑n−1

k=1
kPk,n

p(1−pn−1)
ψk
ψ

(1−hk)
)

(
1−r̄

∑n

k=1
kPk,n

p(1−pn−1)
hk

)



CHAPTER 3. REDIRECTED HELPING: INFINITE-ISLAND 60

As mentioned, redirected helping decreases the survival of the helper (ac-

tor) and increases either the survival of another breeder (recipient) on the same

patch or its fecundity. Fitness effects are always weighted by relatedness. The

effects impacting the actor are weighted by relatedness to self equal to 1; those

impacting a recipient on the same patch are weighted by Rs when considering

survival benefits and Rf for fecundity benefits (see Table 3.1 for expression of

relatedness coefficients). The relatedness coefficients weighting the impacts on

a recipient on another patch equal 0. We use relatedness coefficients as [72]

envisaged them: these coefficients measure relatedness in a way that reflects

the scale of competition and the viscous nature of the population [72, 31, 78].

The costs and benefits of redirecting help are also weighted by the repro-

ductive value of the individual whose fitness is changed. The reproductive

value of an individual reflects its genetic contribution to future generations

in the very distant future [23]. We set the reproductive value of a breeder

at the beginning of the year to 1 without loss of generality. It follows that

the reproductive value of an offspring is equal to the probability that it estab-

lishes itself as a breeder at the beginning of the next year, and we denote it

as ψ = ψ · 1. Similarly, the reproductive value of a breeder whose brood failed

equals s0 = s0 · 1, and that of a breeder whose brood succeeded is s1 = s1 · 1.

We express the reproductive value of an offspring in terms of the reproductive

value of breeders as

ψ = p(1 − s0) + (1 − p)(1 − s1)
N(1 − p) . (3.1)

We interpret equation (3.1) as the total reproductive value surrendered by

adults who do not survive and divided by the total number of offspring.

After dispersal occurs, the ability of an offspring to obtain a breeding



CHAPTER 3. REDIRECTED HELPING: INFINITE-ISLAND 61

spot depends on the number of breeders who experience brood failure on the

patch it competes. We denote by ψk the reproductive value of an offspring

competing on a patch with k brood failures after the dispersion of offspring

occurs. Expression for ψk can be found in Table 3.1.

We are now able to state our version of Hamilton’s rule for redirected help

in a viscous population as

Survival benefits: − Cs0 +RsBss1 > 0, (3.2a)

Fecundity benefits: − Cs0 +RfBfNψ > 0. (3.2b)

As presented, if conditions (3.2a) or (3.2b) hold, then redirected help is favored

in the corresponding scenario. When the conditions are reversed, redirected

help is disfavored. See appendix B.1 for detailed computations.

By setting (3.2a) or (3.2b) equal to 0 and solve for Rs and Rf , we can

rearrange to R∗
s = Cs0

s1Bs
and R∗

f = Cs0
ψNBf

. These two equations give us the

critical survival and critical fecundity cost-benefit ratios; they set a maximum

Cost:Benefit that supports redirected helping. As that critical ratio increases,

redirected helping is favored more readily and for more cost-benefit ratios. As

we change a given parameter, the cost-benefit ratio can increase and so the

potential for the evolution of redirected help increases too, see Figure 3.1.

To compare the effect of each benefit, survival or fecundity, on the evolution

of redirected helping in a selfish population, we compute the critical cost-

benefit ratios R∗
s and R∗

f while varying different parameters such as the survival

of the breeders, s0 = s1 = s, or the brood failure probability p.

All numerical computations and visualizations are performed using Julia

(1.7.1) and can be found on this link.

https://github.com/aflatresUWO/redirected_help
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Figure 3.1: Variation of the critical Cost-Benefit ratio varying with a given
parameter. As a given parameter changes, the critical cost-benefit ratio can
also change, and the range of costs and benefits supporting redirected help
changes, too. For example, when the critical cost-benefit ratio increases with
a given parameter, redirected help is favored for a larger range of costs and
benefits when the given parameter value is high.
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3.2.3 Neighbor-modulated fitness and fitness change

In this subsection, we derive the inclusive fitness expressions in equations (3.2)

using the neighbor-modulated fitness approach [90]. This approach is equiva-

lent to the inclusive fitness method we developed in the previous section [92].

Consequently, the reader may skip this section without penalty.

We begin the neighbor-modulated fitness analysis by paying attention to

an average breeder in the population. Let z• be the probability that this focal

individual helps given that its brood fails. Similarly, let z̄ be the probability

that the average (nonself) breeder on the same patch as the focal individual

helps, given its brood fails. Finally, let z be the probability that the average

breeder in the population helps given its brood fails.
The neighbor-modulated fitness of the focal individual, in the role of the

recipient, is w(z•, z̄). It is defined as the number of adult breeders in the next
time step produced by a focal individual. As the notation suggests, neighbor-
modulated fitness depends on the focal individual’s phenotype and on the
phenotype exhibited by the actor who influence the focal individuals. The
focal individual’s phenotype influences its survival; to capture this, we write
s0 = s0(z•). The actors in the neighborhood of the focal individual influence
its survival and fecundity. Specifically, with probability (1 − p)Pk,n−1 (Table
3.1), the focal individual is a successful breeder with exactly k brood failures
on the same patch, so its survival is s1 = s1( kz̄

n−k ). Its fecundity is f = f( kz̄
n−k ).

Given the life cycle described in a previous section, the neighbor-modulated
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fitness of an individual is

w(z•, z̄) = p(pn−1s0(0) + (1 − pn−1)s0(z•)) + (1 − p)
n−1∑
k=0

Pk,n−1s1

(
kz̄

n − k

)
(3.3)

+ (1 − p)
n−1∑
k=0

Pk,n−1
k(1 − s0(z̄)) + (n − k)(1 − s1

(
kz̄

n−k

)
)

n − k︸ ︷︷ ︸
Number of local available breeding spots

hk(z̄)

+ (1 − p)
n−1∑
k=0

Pk,n−1f

(
kz̄

n − k

) n∑
i=0

Pi,n

i(1 − s0(z)) + (n − i)(1 − s1( iz
n−i ))∑n

l=0 Pl,n(n − l)f( lz̄
n−l )︸ ︷︷ ︸

Number of non-local available breeding spots

·(1 − hi(z̄)),

where

hk(z̄) =
(1 − d)f( kz̄

n−k )(n− k)
(1 − d)f( kz̄

n−k )(n− k) + d(1 − c
∑n
l=0 Pl,n(n− l)f( lz̄

(n−l)))

now replaces hk from Table 3.1. The argument in hk denotes the average

help received by the helped individual. This fitness expression combines both

survival and fecundity effects. In addition, when z• = z̄ = z, this expression

is equal to 1 as expected.

Four terms comprise the neighbor modulated fitness in Equation (3.3). The

first term captures the survival of the focal individual when its brood fails. It

also accounts for the fact that if all broods on the patch fail, no neighbor

receives help. The second term describes the expected survival of the focal

individual in the case where its brood does not fail. Expected survival in the

second term is calculated by conditioning on how many of the n − 1 other

broods on the patch fail. The third and fourth terms capture the expected

fecundity of the focal individual. The third term represents success through

offspring that do not disperse and is calculated by conditioning on how many

of the broods on this patch fail. The fourth term represents success through

offspring that disperse and is calculated by conditioning on the number of
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local broods that fail and the number of broods that fail where the dispersing

offspring compete.

We now want to establish when help is advantageous in a population of

selfish individuals. To do this, we define x• as the genotypic value of the focal

individual at the locus controlling redirected helping. We then assume that

the phenotype of the focal individual is a function of x• (i.e., z• = z•(x•)), and

we do the same for the average non-self neighbor on the patch (i.e., z̄ = z̄(x•)).

Finally, we differentiate w with respect to x• and evaluate it at z• = z̄ = z = 0

to obtain

∆w = ∂w

∂z•

dz•

dx•
+ ∂w

∂z̄

dz̄

dx•

]
z•=z̄=z=0

= ∂w

∂z•
1 + ∂w

∂z̄
r̄
]
z•=z̄=z=0

. (3.4)

Where r̄ is the coefficient of consanguinity between the focal individual and

an average (non-self) breeder on the same patch. Note that we now use r̄

to quantify relatedness. When ∆w is positive, redirected helping is favored

in a selfish population (z = 0) and when it is negative, redirected helping is

disfavored.

Carrying the operation in equation (3.4) to equation (3.3), we obtain

∆w = s′
0(0)p(1 − pn−1) + s′

1(0)(1 − p)
n−1∑
k=0

Pk,n−1
k

n− k

− s′
0r̄(1 − p)

n−1∑
k=0

k

n− k
hk(0) − s′

1r̄(1 − p)
n−1∑
k=0

k

n− k
hk(0)

+ r̄(1 − p)
n−1∑
k=0

Pk,n−1
k(1 − s0(0)) + (n− k)(1 − s1(0))

n− k

k

n− k
h′
k(0)

+ f ′(0)r̄(1

− p)
n−1∑
k=0

n∑
i=0

Pk,n−1
k

n− k
Pi,n

i(1 − s0(0)) + (n− i)(1 − s1(0))
f(0)n(1 − p) (1 − hi(0)).

(3.5)
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Which can be reduced to

(3.6)

∆w/p = s′
0(0)

n−1∑
k=1

Pk−1,n−1(1 − r̄hk(0))

+ s′
1(0)r̄

n−1∑
k=1

Pk−1,n−1(1 − hk(0))

+ f ′(0)r̄
n−1∑
k=1

Pk−1,n−1

(
k(1 − s0(0)) + (n− k)(1 − s1(0))

f(0)(n− k) hk(0)(1

− hk(0))

+
n∑
i=0

Pi,n
i(1 − s0(0)) + (n− i)(1 − s1(0))

f(0)n(1 − p) (1 − hi(0))
)
.

Note that survival and fecundity changes introduced previously correspond to

terms in the previous equation in the following way: δs0 = s′
0(0), δs1 = s′

1(0)

and δf = f ′(0). If δf is equal to 0, then equation (3.6) has the same sign as

the left-hand side of the condition (3.2a) (survival benefits). If δs is equal to

0, then equation (3.6) has the same sign as the left-hand side of the condition

(3.2b) (fecundity benefits).

To interpret (3.6), we focus on a helpful individual (the actor) established

on a patch and in an otherwise selfish population. As suggested by the left-

hand side of (3.6), we assume that the actor’s brood fails, so it expresses its

helpful tendency. The first term, on the right hand, reflects the reduced sur-

vival of the actor and the resulting reduction in competition experienced by

all the offspring produced by the actor’s neighbors. From a technical perspec-

tive, the actor reduces its survival, ultimately changing its reproductive value

by s′
0(0) × 1. Because the total reproductive value of all individuals in the

population is fixed, the change in the actor’s reproductive value must be com-

pensated exactly by a change in the reproductive value of another (or others)

in the opposite direction [31, 78]. If we assume that a total of k broods on the

actor’s patch failed (with probability Pk−1,n−1), then compensation is made
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by one of the actor’s patchmates with probability hk(0). Thus, the compen-

satory change alters the actor’s inclusive by −r̄hk(0)s′
0(0). Biologically, since

the helper will survive at a lower rate, its breeding spot will become available

at a higher probability. It follows that offspring, especially those born on this

patch, will have another opportunity to win a breeding spot, increasing their

fitness.

We interpret the second term on the right-hand side of (3.6) like the first.

This term reflects the increased survival experienced by the actor’s average

neighbor and the resulting increase in competition experienced by all offspring

produced by these neighbors. Here, the actor changes the reproductive value

of a neighbor by s′
1(0) and is related to that neighbor by r̄. Again, assuming

that a total of k broods on the actor’s patch failed, the change in reproductive

value is compensated by another of the actor’s neighbors with probability

hk(0). This ultimately changes the actor’s inclusive fitness by −r̄hk(0)s′
1(0).

Biologically, the increased survival of breeders who succeeded on this patch

decreases the probability that their breeding spot will become available for

competing offspring, leading to a reduction in the offspring’s fitness.

We interpret the third term in (3.6) as the net effect of increased fledging

success, f ′(0), for offspring competing for a breeding spot on the local patch

with probability hk(0), first term, and dispersing to compete on another patch

with i brood failure among the n breeding spots with probability 1 − hi(0),

second term. This accounts for the increased fledging success as a benefit and

increased competition on the local patch (−hk(0)). Indeed, as more offspring

become adults, more individuals compete for a breeding spot, leading to a

decrease of the fitness of offspring. The increased competition on non-local

patches is not considered as it impacts unrelated individuals, i.e coefficient of

consanguinity equal to 0.
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3.3 Results

3.3.1 Low brood failure probability p ≈ 0

We first compute the critical cost-benefit ratio under survival or fecundity

benefits only, assuming brood failure probability, p, is small. Biologically, small

brood failure probability means the focal actor is the only individual suffering

brood failure. We also look at the backward migration rate, m = 1 − h0,

which gives the fraction of non-local competitors on a given patch when the

brood failure probability is low. This rate gives an idea of how well mixed the

population is.

As one should expect, the critical cost-benefit ratios respond to model pa-

rameter changes. The critical cost-benefit ratios increase as the patch size, n,

decreases (Figure 3.2 top and middle row left to right panels). This means

that helping emerges more readily when the patch size is small. A decrease

in the backward migration rate, m, has the same effect: it raises the critical

cost-benefit ratios, and in so doing, it promotes helping (Figure 3.2 top and

middle rows). As we change adult survival, s, the critical cost-benefit ratios

vary depending on the nature of the benefits. Specifically, the critical cost-

benefit ratio associated with survival benefits increases with the probability

of survival, s (Figure 3.2 top row). However, the cost-benefit ratio associated

with fecundity benefits responds non-monotonically, often decreasing with s

(Figure 3.2 Middle row). Thus, increasing the probability of adult survival pro-

motes helping with survival benefits and often hinders helping with fecundity

benefits.

The effects of the parameters on relatedness explain most but not all of

these results. As we decrease the patch size, n, decrease the backward migra-
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Figure 3.2: Panel Top row: Critical cost-benefit ratio associated with survival
benefits (y-axis) depending on the survival of breeders (x-axis), backward migration
rate, m, and patch size, n. Dotted lines, m ≈ 0, dashed lines, m ≈ 1/2, solid lines,
m ≈ 1. Left panel, n = 2, middle panel, n = 3, right panel, n = 10. As a recall,
the higher the line, the easier for redirected help to emerge. Middle row: Critical
cost-benefit ratio associated with fecundity benefits. Parameters and legend are
identical as in top row panels. Bottom panels: ratio of the cost-benefits associated
with survival benefits over fecundity benefits. Dotted lines, m ≈ 0, dashed lines,
m ≈ 1/2, solid lines, m ≈ 1. Left panel, n = 2, middle panel, n = 3, right panel,
n = 10. The purple line represents an equal value of both critical cost-benefit
ratios. Over the purple line, survival is a better driver for redirected help; under it,
fecundity is a better driver. Grey line: s = 0.5. Other parameters used: p ≈ 0.
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tion rate, m, and increase the generation overlap through s, the relatedness

increases. Naively, helping is promoted by changes in these parameters because

of greater relatedness [38].

In the case where helping provides fecundity benefits, we must consider

both relatedness and the reproductive value of offspring. As we increase s,

relatedness increases, but the reproductive value of offspring decreases (See

Table 3.1, ψ, for the expression of the reproductive value). For lower val-

ues of s, the decrease in reproductive value is outweighed by the increase in

relatedness; in these cases, the response of the critical cost-benefit ratio is

understood as a relatedness effect. For higher values of s, the decrease in

reproductive value exceeds the increase in relatedness; in these cases (which

predominate our results), the response is understood as being driven by the

reproductive value of offspring.

We can directly compare the critical cost-benefits ratios under survival or

fecundity benefits to determine which is more effective at promoting redirected

helping. For small p, the comparison is made using

sR∗
s

ψNR∗
f

∼ s

1 − s

(
n(n− 1 +m)

(n− 1 +m)2 + (1 −m)n2

)
, (3.7)

where R∗
s and R∗

f are the critical costs:benefits ratios, i.e., the relatedness

coefficients that satisfy −Cs0 +RsBss1 = 0 and −Cs0 +RfBfNψ = 0, respec-

tively. When equation (3.7) exceeds 1, survival benefits promote helping more

readily than fecundity benefits; the reverse is true when the expression is less

than 1. From equation (3.7), it is clear that raising adult survival probability

strengthens the ability of survival benefits to promote helping compared to fe-

cundity benefits (see also Figure 3.2 bottom row). This result differs from one

reported by [91], who found that fecundity benefits are always more effective
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than survival benefits at promoting help. We come back to this point in the

discussion.

We know that we can increase s to a point where survival benefits are

better at promoting helping than fecundity benefits. Our question now is,

where does this point lie?

We know that the term in brackets in (3.7) lies between 0 and 1. Thus, any

survival probability for which survival benefits are better is no less than the

point s = 1/2. We move this point ever closer to s = 1/2 as we increase the

backward migration rate, m (Figure 3.2 bottom row). The value of s beyond

which survival benefits become better at promoting helping also respond to

changes in patch size n. The impact of the patch size is not monotonic in

general, but in the vast majority of cases of the results, a larger patch size

leads to moving the tipping point closer to s = 1/2 (Figure 3.2 bottom row).

3.3.2 Larger brood failure probability p > 0

In the larger brood failure probability, critical cost-benefit ratios were again

positive almost everywhere in the space of model parameters (Figures 3.3 and

3.5). Thus, there is almost always scope for the advantage of redirected helping

when the number of brood failures varies among patches. Population viscosity

and the local competition that results do not eliminate the possibility that

redirected helping is advantageous.

All else being equal, we found that decreasing patch size n promotes the

advantage of redirected helping in the variable-failures scenario (Figures 3.3

and 3.5). Generically, reduced mixing among patches (i.e. lower backward

migration rates m) also promotes redirected helping.

The qualitative effect of increasing the brood-failure probability, p, de-
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pends on the nature of the benefits conferred by help. With survival benefits,

increasing p inhibits redirected helping in some cases and promotes it in others

(Figure 3.3). Specifically, increasing p tends to inhibit redirected helping on

smaller patches when there is less mixing among patches or both. Conversely,

increasing p tends to promote redirected helping when patches are larger and

mixing among patches is more extensive (m large).

When helping confers fecundity benefits, the qualitative effect of p pro-

motes redirected helping (Figure 3.5). We conjecture that this qualitative

agreement arises (at least in part) because some portion of fecundity benefits

can be exported to other patches. That is to say, some fraction of the extra

offspring resulting from help leave their natal patch and experience the average

environment.

For the survival-benefits model, increasing s promotes redirected helping

when the brood-failure probability p is smaller and inhibits helping when p

is larger (Figure 3.3). For the fecundity-benefits model, increasing survival

probability s uniformly inhibits redirected helping (Figure 3.5).

As in the case where p was closer to 0, we can compare how well each

benefit drives redirected helping by comparing their respective critical cost-

benefit ratios. As expected from our previous results, we see that survival

benefits drive the evolution of help better than fecundity benefits when the

survival is high and the brood failure probability is low (Figure 3.6). We also

observe that as we decrease the backward migration rate m, we increase the

range of brood failure and survival probabilities for which survival benefits

are a better driver of helping than fecundity benefits (Figure 3.6). The set

of parameters for which survival benefits are a better driver of helping than

fecundity benefits becomes less sensitive to changes in the patch size for low

values of the backward migration rate (Figure 3.6).
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Figure 3.3: Contour plots of the critical cost-benefit ratio associated with
survival benefits depending on the survival (y-axis), brood failure probability
(x-axis), patch size n, and backward migration rate m. Left column, n = 2,
middle column, n = 3, right column, n = 10. Top row, m ≈ 0, middle row,
m = 1/2, bottom row, m ≈ 1. The color bar remains the same by column.
A higher value on the color bar means that redirected help can emerge more
easily.
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Figure 3.4: Critical cost-benefit ratio associated with survival benefits for
different patch sizes: dotted lines, n = 2, dashed lines, n = 3, solid lines:
n = 10. Adult survival equals s = 0.5, and backward migration rate m ≈ 0.
Recall that a high value on the y-axis means that redirected help is more easily
favored.

3.4 Discussion

We derive a version of Hamilton’s rule to capture the advantage of redirected

helping in a viscous population. We found that redirected helping can emerge

when it confers fecundity and survival benefits respectively. Life history fea-

tures that increase relatedness among neighbors also promote the emergence of

redirected helping. The relatedness measure we used accounted for local com-

petition among kin [72, 78]. Therefore, our conclusions automatically account

for the inclusive fitness losses that hinder helping in other model scenarios [e.g.

88]. Life history features that increase the reproductive value of offspring also

promote the emergence of redirected helping when that helping is associated

with fecundity benefits. Our conclusions align with previous accounts of kin

selection and reproductive skew [49, 1]. In that theory, the recipients become

a more attractive target for helping as they become more valuable. Here, the

same is true for offspring in our model as the brood failure goes up and adult’s

survival goes down.
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Figure 3.5: Contour plots of the critical cost-benefit ratio associated with
fecundity benefits depending on the survival (y-axis), brood failure probability
(x-axis), patch size n, and backward migration rate m. Left column, n = 2,
middle column, n = 3, right column, n = 10. Top row, m ≈ 0, middle row,
m = 1/2, bottom row, m ≈ 1. The color bar remains the same by column.
A higher value on the color bar means that redirected help can emerge more
easily. We capped the value of the critical cost-benefit ratio to 2.
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Figure 3.6: Equal level of the critical cost-benefit ratios associated with sur-
vival and fecundity (sRs = NψRf ) depending on breeder’s survival (y-axis),
brood failure probability (x-axis), patch size, n, and backward migration rate.
When a point (p, s) is higher than a curve, then survival benefits are more ef-
fective in promoting helping than fecundity benefits for this set of parameters
(surv>feco). The inverse is true when the point is located below the curve.
Left column, n = 2, middle column, n = 3, right column, n = 10. Dotted
lines, m = 0, dashed lines, m = 1/2, solid lines, m = 1.

We found that survival benefits can promote redirected helping better than

fecundity benefits. This result contrasts with [48], where authors found that

fecundity benefits are always a better driver for the evolution of helping than

survival benefit. To understand the difference between our model and the one

presented in one must first understand what drives the results in these articles.

The results of [48, 91] can be understood by considering that the total

reproductive value of a population is fixed. So, if the reproductive value of

an individual increases – say because it receives help– then the reproductive

value of other individuals decreases to compensate. Conversely, if the repro-

ductive value of an individual decreases – say because it provides help– then

the reproductive value of other individuals increases to compensate. When

the actor’s relatives make the compensation, it appears on the actor’s inclu-

sive fitness balance sheet [78, 32]. In the case of [48, 91], a portion of the net

benefits created when helping affect fecundity is exported. The same cannot



CHAPTER 3. REDIRECTED HELPING: INFINITE-ISLAND 77

be said when helping affects the survival of adults. Thus, the compensation

associated with fecundity benefits is less of an inclusive fitness liability for the

actor.

One might think that the best evolutionary case for helping occurs when

(a) the compensatory losses of reproductive value that follow the benefits of

helping are imposed disproportionately on non-relatives, while (b) the compen-

satory gains that follow the cost of helping are shared disproportionately with

relatives. In other words, one might think that the scenario most conducive

to helping is that benefits are paid in fecundity and costs are paid in survival.

However, as [48, 91] argued, personal survival effects can be converted into

personal fecundity effects and vice versa in their model. Thus, their conclu-

sion that helping is promoted more strongly with fecundity benefits cannot be

changed by adjusting the component of fitness affected by helping itself.

In our model, personal survival effects cannot be converted into personal

fecundity effects as the helper is a failed breeder and so has no fecundity to

convert to, at least immediately. The cost has to be paid in survival, so we

cannot always restrict our discussion to only one fitness component, unlike

[48, 91]. In our model, all else being equal, helping will be more promoted if

compensatory reductions in reproductive value are exported, but all else is not

always equal. With redirected helping, we have an extra degree of freedom in

the form of relative reproductive value of offspring and adults, which means

that survival benefits can outperform fecundity benefits even though we cannot

export compensatory costs to non-relatives.

Our results offer a new perspective on the findings of a recent meta-analysis

of data from 23 cooperatively breeding bird species, including ones that en-

gage in redirected help [14]. This meta-analysis concluded that help promotes

breeder longevity by allowing the breeder to reduce its investment in offspring,
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i.e. load-lightening. By contrast, our results show that greater longevity of

breeders promotes helping: greater breeder longevity increases both related-

ness and breeder reproductive value, raising the inclusive-fitness benefits of

helping. In this way, our findings add to the long-standing theory that casts

cooperative breeding as an adaptive response to the ecological constraints im-

posed by long-lived breeders [17, 6]. Though we emphasize a different causal

connection between helping and breeder longevity than previous authors [14],

our different perspectives are not mutually exclusive. In fact, we expect that

helping increases and responds to changes in the lifespan of a breeder in a

way that creates positive feedback between high survival and helping. This

co-evolution of helping behavior and load-lightening would be an interesting

direction to explore.

Our work has demonstrated that the survival benefits of redirected helping

can promote helping more strongly than fecundity benefits. The clear long-

term perspective provided by reproductive value was key to understanding the

contrast between benefits achieved through survival versus fecundity. In our

model, the fecundity benefits of help may be low relative to survival benefits

simply because the long-term outlook for offspring is poor. In this way, our

work underscores the importance of a long-term perspective when studying

redirected helping and, more generally, cooperative breeding. With that in

mind, revisiting studies that emphasize this short/long-term perspective may

be fruitful. One example here is the evolution of redirected helping in Long-

tailed Tits (Aegithalos caudatus)[45]. Long-tailed Tits who experience brood

failure redirect their parental care to related neighbors by feeding the offspring

produced by those neighbors [53]. In this way, the helpers increase fledging

success, corresponding to fecundity benefits in our model. However, the long-

term effects of helping benefits must be considered to make the correspondence
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as close as possible. While the impact of helping on the survival of fledging

or breeders has been studied before — and has been studied longitudinally —

it has mostly been studied using what we would call a short-term perspective

(43, 63; but see 64). Granted, there are constraints on pursuing what theorists

would call long-term studies, but feasible solutions could include creating a

matrix population model that describes the life history of the species of inter-

est. Such models provide information on the reproductive value of individuals

and can project the consequences of helping far into the future [7]. These

models can also help us disentangle the complicated long-term, indirect ef-

fects of helping, e.g., an effect mediated by habitat availability and resource

competition.

Our model has ignored a prominent feature in the biology of redirected

helping, namely kin recognition. In the Long-tailed Tits, recipients of help are

identified by kin recognition mechanisms [43]. Although we have neglected kin

recognition, we expect a more complicated model incorporating this feature

will make the same qualitative prediction. Adding kin recognition may change

where the critical cost:benefit thresholds are, making them less restrictive as

seen in other work [16]. However, one must be careful about considering the

geometry of the returns before committing to such conclusions [21].

In summary, we used an inclusive fitness model to show that redirected

helping arises when helping either increases fecundity or the survival of rel-

atives. Our model captures the demographic stochasticity associated with

brood failure in social groups of finite size. Our key findings contrast with

previous theories by demonstrating that the survival benefits of helping can

be a potent driver of helping. We also demonstrated that various life-history

and environmental features mediate this potent driver. Our study of redirected

helping provides a new perspective on cooperative breeding and points to new



CHAPTER 3. REDIRECTED HELPING: INFINITE-ISLAND 80

field and theoretical studies.



Chapter 4

Evolution of redirected helping

in a population over a stepping

stone model

4.1 Introduction

When a parent’s brood of offspring fails, it may redirect its efforts to help a

neighbor raise that neighbor’s offspring. This phenomenon is known as “redi-

rected help” and occurs often in nature [43, 13]. It may seem that redirected

helping confers an obvious selective advantage: an individual who misses an

opportunity to accrue fitness through their own offspring may still accrue in-

clusive fitness [38] by redirecting its help, specifically toward related neigh-

bors. However, redirected helping faces evolutionary obstacles when individ-

uals compete with their relatives in addition to helping them. Competition

among relatives is the hallmark of a “viscous population”, i.e., a population in

which dispersal is limited. Population viscosity imposes indirect costs on the

81
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helper that may be sufficient to cancel out any benefits that help generates for

itself [88, 89].

We have recently investigated the evolution of redirected helping in a vis-

cous population and found that its selective advantage is certainly not guaran-

teed in Chapter 3. We found that the interaction between selective advantage

and population viscosity changes depending on whether redirected help brings

survival or fecundity benefits to a neighbor. In particular, we found that redi-

rected helping can more readily overcome the evolutionary obstacles associated

with a viscous population when helping provides survival benefits, as compared

to fecundity benefits. This finding challenged the established idea that fecun-

dity benefits always promote the evolution of helping more effectively than

survival benefits [48, 91].

Our recent findings in Chapter 3 are based on an infinite-island model.

In such a model, space is ignored, and individuals are arranged into islands.

Importantly, dispersal from an island in an infinite-island model scatters indi-

viduals so far that they are guaranteed not to compete with their kin. In this

way, dispersal in an infinite-island model provides a strong antidote to pop-

ulation viscosity. However, individuals who disperse may still compete with

kin because dispersal occurs locally or over relatively short distances. Thus,

dispersal may not counterbalance population viscosity to the extent we think

it does based on infinite-island models alone. If we want to understand how

population viscosity affects the evolution of redirected helping, we need models

that capture space in an explicit way.

In this paper, we use a one-dimensional stepping-stone model to study how

spatial structuring of the environment can affect the evolution of redirected

help. By constraining dispersal to neighboring sites, we restore a portion of

the population viscosity lost in our previous model due to the infinite-island
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spatial structure. Looking at the influence of the environment, we ask how the

environmental parameters can select the type of benefits driving the emergence

of redirected help.

To answer our questions, we build a kin selection argument for the ad-

vantage of redirected helping that recognizes that both help and competition

occur among relatives [90]. We find that the incorporation of explicit spatial

structure leads to different population dynamics and impacts the evolution of

redirected help. We also show that different benefits can be selected to drive

the emergence of help in different environments.

4.2 Methods

4.2.1 Life cycle

We consider a population of haploid asexual individuals living on breeding

spots that are, themselves, arranged on a one-dimensional stepping-stone model.

We keep the dimension of our lattice to a minimum to constrain the dispersal.

Each breeding spot supports exactly one individual. Each individual at spot

i has 2 neighbors at sites i− 1 and i+ 1 where i ∈ Z.

We observe the population at discrete time steps (e.g., every year). At the

beginning of every time step, each individual produces a brood of N offspring,

where N is large. Each brood fails independently with probability p; this

can happen, for example, because of predation. In the case of a failure, the

individual has no offspring during this step. Each offspring from a successful

brood matures independently (fledging) with probability F and disperses to

one of the two neighboring breeding spots with probability d; half disperse

to the left and the other half to the right. Offspring can also disperse to an
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infinitely far breeding spot with probability µ. We suppose µ is very small,

meaning that terms in O(µ) are negligible but not terms in O(√µ). Dispersing

offspring die with probability c during dispersal. Non-dispersing offspring

(probability 1 − d) remain in their natal breeding spot.

Owners of breeding spots experience mortality after the offspring dispersal

phase. An owner who fails its brood survives at s0, while a successful breeder

survives at s1. If the owner survives, it remains in its breeding spot; otherwise,

the breeding spot becomes vacant. Offspring on a vacant breeding spot, after

dispersing or not, can compete for its ownership. They compete equally, and

the breeding spot is occupied by one offspring, who is taken randomly among

the ones found on the breeding spot. Offspring die if they do not successfully

compete for a breeding spot.

4.2.2 Neighbor-modulated fitness

When the individual at site i suffers brood failure, it decides to help one of its

two direct neighbors with probability zi. This help is provided if at least one of

its two neighbors experiences brood failure. If only one neighbor suffers brood

failure, all the help is directed to it. If both neighbors suffer brood failure,

help is shared equally between the two. If no neighbors suffer brood failure,

no help is given.

Help can increase the survival of the neighbors by a small amount or the

probability at which offspring becomes mature/fledges by a small amount (fe-

cundity/fledging benefits). However, by helping, the helper decreases its own

survival by a small amount. We then denote the survival rates by s0 = s0(zi),

s1 = s1(zi) and the fledging success by F = F (zi). These small changes in

survival or fecundity reflect a weak selection assumption, commonly used in
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✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

-4 -3 -2 -1 0 1 2 3 4

Figure 4.1: Example of brood successes and failures of the
neighboring breeding spot (white circles) around a focal
individual at breeding site 0 (yellow circle). A ✗ represents
a brood failure, while a ✓ represents a brood success.

inclusive fitness works [30, 86, 100]. We will compare the impact of the survival

and fecundity benefits on the evolution of redirected help.

We use a neighbor-modulated fitness approach to evaluate the evolution of

redirected help in a selfish population [90]. First, we focus on a random indi-

vidual at the beginning of a time step (focal individual) and assume, without

loss of generality, that it is located at the breeding spot i = 0. We use z0 to

denote the probability that the focal individual attempts to help its neighbors

at sites −1 or 1 when it experiences brood failure. We use zi to denote the

probability that the individual at breeding spot i will help its neighbor at step

i−1 or i+1 (given that its brood fails). We use the vector z⃗ = (...z−1, z0, z1, ...)

to store the helping rates of each individual in the population.

The neighbor-modulated fitness of an individual, w(z⃗), is measured as the

number of breeding spots the focal individual and its direct descendant occupy

after one time step. Thus, w(z⃗) captures both the survival of the focal indi-

vidual and the capacity of its offspring to compete successfully for breeding

spots.

When computing the focal individual’s neighbor-modulated fitness, we

must consider its neighbors’ brood successes and failures. For instance, if we

consider the case in Figure 4.1 associated with survival benefits, we observe

that the neighbor-modulated fitness of the focal individual is equal to
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(4.1)

s1(z−1/2)︸ ︷︷ ︸
Survival

+ (1 − s1(z−1/2)) 1 − d

1 − d/2(1 + c)︸ ︷︷ ︸
Competition on local breeding spot

+ (1 − s0(z−1))
1
2︸ ︷︷ ︸

Competition on breeding spot -1

+ (1 − s1(0))d/2(1 − c)
1 − cd︸ ︷︷ ︸

Competition on breeding spot +1

+ O(µ)︸ ︷︷ ︸
Competition far away, negligible

,

when considering survival benefits. If we consider fecundity benefits, the

neighbor-fitness of the focal individual is

(4.2)s1(0) + (1 − s1(0)) (1 − d)F (z−1/2)
(1 − d)F (z−1/2) + d/2(1 − c)F (0)

+(1−s0(z−1))
1
2 +(1−s0)

d/2(1 − c)F (z−1/2)
d/2(1 − c)F (z−1/2) + (1 − d)F (0) + d/2(1 − c)F (z3)

+O(µ).

The terms in (4.1) and (4.2) include the survival of the focal individual it-

self (first term), the probability one of its offspring competes successfully on

its breeding site (if the focal individual does not survive), (second term), the

ability of the offspring to compete successfully on a neighbors breeding spot

(-1 and +1), (third and fourth terms) and the ability for its offspring to com-

pete successfully on a breeding spot far away (fifth term). This last term is

negligible as we suppose µ is small.

We determine the focal individual’s overall neighbor-modulated fitness by

computing a weighted average over every possible neighborhood using the

frequency of the neighborhoods as weights (e.g. the case in Figure 4.1 is

weighted by p4(1 − p)5, which is its probability of occurring). This averaging

scheme is appropriate because neighborhood frequency can also be interpreted

as class reproductive value (see [87, 77]).
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4.2.3 Neighbor-modulated fitness change

We suppose redirected help zi is determined at a single locus. Recall that

our population is haploid and asexual. Let x0 denote the focal individual’s

genotypic value at this locus. Following [90], we treat each zi as a function

of x0. We compute the change in the neighbor-modulated fitness of the focal

individual by differentiating w(z⃗) with respect to x0 as dw
dx0

. We then evaluate

the derivative in a selfish population (zi = 0,∀i ∈ Z) to obtain

∞∑
i=−∞

∂w

∂zi

dzi
dx0

∣∣∣∣
z⃗=0⃗

. (4.3)

We then replace dzi
dx0

by ri the coefficient of consanguinity between the focal

individual and its neighbor i steps to obtain,

∆w =
∞∑

i=−∞

∂w

∂zi
ri. (4.4)

Computations of ri coefficients can be found in Section 4.2.4. Remember that

the survival and fledging success are measured in a selfish population z⃗ = 0⃗.

When (4.4) is positive, redirected help is favored and emerges. When (4.4) is

negative, redirected help is disfavored, and does not emerge.

While w(z⃗) looks at how an individual is affected by its neighbors (recipient-

centered), we can interpret (4.4) as the effects an actor has on its neighbors

(actor-centered) [92]. The change in perspective means that (4.4) can be un-

derstood in the way Hamilton [38] originally envisioned his theory.

I now define C = s′
0(0)/s0 < 0 as the survival cost of helping, Bs =

s′
1(0)/s1 > 0 as the increase in the survival for the helped breeder, and Bf =

F ′(0)/F (0) as the increase in fecundity/fledging success for the helped breeder.

As an example of neighbor-modulated fitness change, when we look at the
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case of Figure 4.1, we have

(4.5a)
r1

(
s′

1(0)
2

(
1 − 1 − d

1 − d+ d/2(1 − c)

)

− s′
0(0)
2

)
= s1

2 r1

(
Bs

(
1 − 1 − d

1 − d+ d/2(1 − c)

)
− Cs0

)

for survival benefits and

(4.5b)

−r1Cs0

+ r1BfF (0)
(1 − s0)

1 − d

1 − d/2(1 + c) + (1 − s1)
d/2(1 − c)

1 − d/2(1 + c)

− (1 − s0)
(

1 − d

1 − d/2(1 + c)

)2

− (1 − s1)
(

d/2(1 − c)
1 − d/2(1 + c)

)2


− r3F (0)(1 − s0)
(

d/2(1 − c)
1 − d/2(1 + c)

)2

for fecundity benefits. In (4.4), C = s′
0(0)/s0 < 0 is the cost of helping for the

helper, Bs = s′
1(0)/s1 > 0 is the increase in survival for the helped breeder,

and Bf is the increase in fecundity/fledging success for the helped breeder.

When (4.4) is positive, redirected help is favored and emerges. When (4.4) is

negative, redirected help is disfavored and does not emerge.

4.2.4 Coefficients of consanguinity

Neighbor-modulated fitness computations depend on the coefficients of con-

sanguinity ri, between the focal individual and a neighbor i steps away. We

define the coefficient of consanguinity (CC) between two individuals as the

probability that the allele carried by one and the allele carried by the other

are identical by descent [65]. We use the method developed in [84] to compute

the coefficients between a focal individual and its i step neighbor [see also 51].

We assume a selfish population zi = 0, ∀i ∈ Z as we look at the emergence of
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help in a selfish population. The assumption is justified because changes in

neighbor-modulated fitness represented by Equation (4.4) are estimated to be

first-order in the strength of selection [86].

We start by defining ρ0 as the probability that a breeding spot is retained by

its current owner or obtained by one of the current owner’s offspring. We use

ρ1 to denote the probability that a breeding spot is obtained by an individual

born one site away, an offspring born on the breeding spot on the left or the

right. The quantities ρ0 and ρ1 depend on the different parameters used, such

as brood failure probability, p, dispersal rates d, and µ, etc. We observe that

each coefficient ri satisfies ri = A(ri−2 + ri+2) + B(ri−1 + ri+1) + Dri, where

A = ρ2
1, B = 2ρ0ρ1 and D = ρ2

0 + 2ρ2
1. Coefficients ri satisfy the recursive

equation 

ri+2

ri+1

ri

ri−1


= 1
A



−B 1 −D −B A

A 0 0 0

0 A 0 0

0 0 A 0





ri+1

ri

ri−1

ri−2


(4.6)

subject to r0 = 1 as an individual is surely identical by descent to itself and

ri = r−i as the population disperses symmetrically.

The solutions of (4.6) are linear combinations of the eigenvectors of the

matrix, which has form vk = λk where λ is an eigenvalue and k is the index

of the coefficient of consanguinity. In the limit as µ → 0, to first order in √
µ,

we know that there are two eigenvalues whose modules are between 0 and 1,

as we want coefficients of consanguinity to be bounded between 0 and 1, we

only consider these two eigenvalues only, l1 and l2. Finally, given that r0 = 1
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and that we must have r1 = r−1, we obtain the following coefficients

r0 =1

r1 =c1l1 + c2l2

r2 =c1l
2
1 + c2l

2
2

r3 =c1l
3
1 + c2l

3
2,

where c1 = l1−l1l22
l21l2−l1l22+l1−l2 and c2 = 1 − c1.

4.3 Results

4.3.1 Small brood failure probability p

When the brood failure probability is almost zero, we can approximate the

neighbor-modulated fitness associated with survival and fecundity benefits.

For survival benefits, we have

(4.7)∆w(z⃗) = −Cs0(1 − r1) +Bss1(r1 − r2)
d/2(1 − c)

1 − d/2(1 + c) ,

and

∆w(z⃗) = −Cs0(1 − r1) +BfFr1

[
(1 − s0)

1 − d

1 − d/2(1 + c) (4.8)

− (1 − s0)
(

1 − d

1 − d/2(1 + c)

)2

+ (1 − s1)
d/2(1 − c)

1 − cd
− (1 − s1)

(
d/2(1 − c)

1 − cd

)2 ]

− r2BfF (1 − s1)
(
d/2(1 − c)(1 − d)
(1 − d/2(1 − c))2 + 1 − d

1 − cd

d/2(1 − c)
1 − cd

)

− r3BfF (1 − s1)
(
d/2(1 − c)

1 − cd

)2

,

for fecundity benefits. Again, we have s0 = s0(0), s1 = s1(0), and F = F (0)
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By reorganizing each of these two expressions and setting s0 = s1 = s,

we can express the cost-benefit ratio associated with survival and fecundity

benefits
(4.9)−C

Bs

=
[
(r1 − r2)

d/2(1 − c)
1 − d/2(1 + c)

]
/(1 − r1)

for survival benefits and

−C
Bf

=
[
Fr1

(
(1 − s0)

1 − d

1 − d/2(1 + c) − (1 − s0)
(

1 − d

1 − d/2(1 + c)

)2

+ (1 − s1)
d/2(1 − c)

1 − cd
− (1 − s1)

(
d/2(1 − c)

1 − cd

)2 )

− r2F (1 − s1)
(
d/2(1 − c)(1 − d)
(1 − d/2(1 − c))2 + 1 − d

1 − cd

d/2(1 − c)
1 − cd

)

− r3F (1 − s1)
(
d/2(1 − c)

1 − cd

)2 ]
/s0(1 − r1), (4.10)

for fecundity benefits. Note that these equations represent Hamilton’s rule

[38] for redirected help in our model. Coefficients ri are computed assuming p

close to 0 and then well approximate the values found in [91, 48].

When expressions (4.9) and (4.10) are set equal to 0, they put a maximum

cost-benefit ratio that can support the emergence of redirected help. As the

critical ratio increases, redirected helping is favored more readily, i.e. across

a greater range of parameters. As the critical cost-benefit ratio decreases,

redirected help is favored for less cost-benefit ratio and is thus favored less

readily. To understand the impact of each parameter on the emergence of

redirected helping, we vary that parameter and observe the response of the

critical cost-benefit ratio.

When we decrease the cost of dispersal c, we increase the critical cost-

benefit ratio, making it easier for help to emerge (Figure 4.2 top panels).

Increasing the dispersal rate d increases the critical cost-benefit ratio (Figure
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4.2 bottom panels). A high dispersal rate and low cost of dispersal then

promote the emergence of help.

Increasing the cost of dispersal or decreasing the dispersal rate increases the

coefficient of consanguinity (relatedness) between individuals. By increasing

c or decreasing d, we naively expect an increase in the redirected help rate

as individuals are more inclined to help a more related individual [37]. We

observe the opposite, however. The kin competition between offspring can

explain this relation. By decreasing dispersal d and increasing the cost of

dispersal c, we increase the competition among relatives when they compete

for a breeding spot. Indeed, when d goes to 0, all offspring of the same breeder

will compete only for a single breeding spot. When we increase the dispersal

rate and decrease the cost of dispersal, offspring can compete for more breeding

sites, which reduces the kin competition [88].

We observe that the type of benefits redirected help confers also impacts the

emergence of redirected help. The critical cost-benefit ratio associated with

survival benefits increases with survival (Figures 4.2A, left column). Con-

versely, the critical cost-benefit ratio associated with fecundity benefits de-

creases with survival (Figures 4.2B, middle column). Fecundity benefits are a

better promoter for redirected helping for low survival values, while survival

benefits drive the emergence of redirected helping for high survival values

better. Ultimately, survival benefits drive the emergence of help better than

fecundity benefits for high survival values (Figures 4.2C, right column).

4.3.2 Larger brood failure probability p

As brood failure becomes more frequent, variation in the composition of the

focal individual’s neighborhood becomes more important to predictions made
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Figure 4.2: A (left column): Critical cost-benefit ratio as-
sociated with survival benefits depending on the survival
s0 = s1 = s on the x-axis. B (middle column): Criti-
cal cost-benefit ratio associated with fecundity benefits for
various values depending on the survival s0 = s1 = s on the
x-axis. C (right column): ratio of the critical cost-benefit
ratio associated with survival benefits over the critical cost-
benefit ratio associated with fecundity benefits depending
on the survival s0 = s1 = s on the x-axis. The grey curve
in C shows a survival/fecundity ratio equal to 1: no bene-
fits are a better driver for the emergence of help than the
other. Top row: Curves are plotted with various values of
the cost of dispersal c: Black curves: c = 0.2, red curves:
c = 0.5, blue curves: c = 0.8. Here d = 0.2. Bottom row:
Curves are plotted with various values of the dispersal rate
d: Black curves: d = 0.2, red curves: d = 0.5, blue curves:
d = 0.8. Here, c = 0.2. Other parameters: p = 10−5,
µ = 10−6.
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by our model. Thus, for more appreciable rates of brood failure (larger p), we

must account for which of the focal individual’s nearby neighbors experience

brood failure and which do not. The variation we describe here is a form

of demographic stochasticity [sensu 77]. We investigate the effects of this

demographic stochasticity by observing the impact changing model parameters

(now including p) has on the neighbor-modulated fitness change. We examine

the emergence of redirected help by examining the neighbor-modulated fitness

change associated with survival or fecundity benefits (4.4). We vary several

parameters: the survival of breeders, s0 = s1 = s, the brood failure probability

p, the dispersal rate d, and finally, the cost of dispersal c.

Looking at how the brood failure rate, p, impacts the fitness change, we

observe several things. When p gets larger, the inclusive fitness change be-

comes negative for survival and fecundity benefits (Figure 4.3). For low values

of p, redirected help can be promoted, but for higher values of p, redirected

help may need greater benefits or lower costs to be promoted.

A decrease in the inclusive fitness change with increased p can be partially

explained by the reduction of the coefficient of consanguinity with higher p. In

fact, as p increases, coefficients ri decrease. Indeed, when p is high, the individ-

uals colonizing each breeding spot will become less related to the neighboring

breeders. Helping a neighbor will become less valuable if individuals are more

susceptible to brood failure (high p).

When dispersal d increases or the cost of dispersal c decreases, the maximal

values of p that promote redirected help increase (Figure 4.3). For high values

of d and low values of c, redirected help can emerge in an environment with

higher brood failure probabilities. This pattern is similar to what we found

with p ≈ 0: high dispersal rate/low cost of dispersal decreases the fitness

change and thus prevents the emergence of redirected helping.
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Again, we can compare how survival and fecundity benefits can drive the

emergence of redirected help. If brood failure probability is too high, redirected

help does not evolve (Figure 4.4). When brood failure probability is sufficiently

low, fecundity benefits will drive the emergence of help for low survival (Figures

4.4). At the same time, survival benefits will become a better driver than

fecundity for higher survival (Figure 4.4). Changing the cost of dispersal does

not change the range of survival values for which survival benefits promote the

emergence of helping better than fecundity benefits (Figure 4.4 top panels).

Increasing the dispersal rate, however, can make survival benefits a better

promoter than fecundity benefits, even for low survival (Figure 4.4 bottom

panels).

4.4 Discussion

We used a neighbor-modulated fitness approach to investigate how population

viscosity can impact the evolution of redirected help. We assume our popu-

lation inhabits a one-dimensional stepping-stone lattice, contrasting with our

previous model in Chapter 3. We found that high relatedness via, for example,

a low natal dispersal does not always promote redirected help. Even though

the relatedness increases, competition among kin can diminish the net benefit

of helping.

In fact, the benefits of help can be exactly compensated by kin competition

[88, 89]. Several theories have been proposed to bypass this compensation.

Adding generation overlap [48], dispersal of small groups rather than indi-

viduals (budding) [27], changing the timing of altruism [59], and conditional

behaviors [16] have been proposed as different solutions to the evolution of

altruism in a viscous population. Our model of redirected help assumes over-
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Figure 4.3: Neighbor-modulated fitness change nullclines
(∆w = 0) associated with survival benefits (left panels)
and fecundity benefits (right panels) when the brood failure
probability p is larger than 0 for various values of the cost of
dispersal c (top panels) and various values of the dispersal
rate d (bottom panels). On the x-axis, survival s0 = s1 = s,
and on the y-axis, brood failure probability p. Top panels:
Black curves: c = 0.1, blue curves: c = 0.3, red curves:
c = 0.5, orange curve: c = 0.7. Bottom panels: Black
curves: d = 0.3, blue curves: d = 0.5, red curves: d = 0.7,
orange curve: d = 0.9. A + is intended to remind us that
redirected help is favored under each curve, and a − shows
that redirected help is not favored in the region over each
curve. Other parameters, unless changed: c = 0.2, d = 0.2,
µ = 10−6, C = 1, Bs = Bf = 10.
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Figure 4.4: Difference of neighbor-modulated fitness
change associated with survival and fecundity benefits for
brood failure probability p (y-axis), survival s (x-axis), var-
ious values for the cost of dispersal (top panels), or disper-
sal rate d (bottom panels). Top panels: cost of dispersal
c: left panel: c = 0.1, right panel: c = 0.5. Bottom panel:
dispersal rate d. Left panel: d = 0.3, right panel: d = 0.7.
A "-" sign denotes regions of the parameter space where
redirected help is not emerging. F: regions of the parame-
ter space where fecundity benefits drive the emergence of
redirected help better than survival benefits. S: regions
of the parameter space where survival benefits drive the
emergence of redirected help better than fecundity bene-
fits. Other parameters (unless changed): c = 0.2,d = 0.2,
µ = 10−6, C = 1, Bs = Bf = 10.
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lapping generations. Life history is also constrained in our model, as helpers

do not have any fecundity because of brood failure. This brood failure implies

that helpers pay a cost of survival to help their relatives. Consequently, over-

lapping generations play a complex role in our model. Increasing generation

overlap increases survival benefits and the cost of helping but decreases fecun-

dity benefits. Brood failure makes helping with fecundity benefits worthwhile,

even if the generation overlap is low. This result contrasts with previous stud-

ies, where low survival hinders help emergence [48, 91]. In our model, altruism

can then evolve thanks to the overlapping generations and the constraints of

our life cycle.

In a previous study, costly dispersal hindered the emergence of help, re-

gardless of the benefits provided, [48]. Even if they looked at the evolution

of helping and we looked at the evolution of redirected helping, we observed

similar results in our model of redirected helping. This is due to the similar

spatial structure in the two models, where, once born, offspring disperse to the

same breeding spots. However, the evolutionary consequences of the offspring

dispersal can change if we use different details of the spatial structure incor-

porated into a model. In our previous model of redirected help, in which we

used an infinite-island model, we found that when dispersal is rare (or costly),

redirected help is promoted (see Chapter 3), which is the opposite result to

what we found using a stepping stone model. In both models, more dispersing

individuals diminishes the kin competition and lowers the relatedness between

individuals. In the stepping stone model, the reduction of the kin competi-

tion compensates for the lower relatedness, which makes helping emerge more

easily when offspring are more likely to disperse. However, this compensation

is not strong enough in the infinite-island model, causing helping to emerge

more easily when offspring disperse less.
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Dispersal in nature can occur over relatively short or long distances. It is

often thought to incur a cost for the dispersers due to the predation or lack of

resources during the dispersal [2]. If we want to study the impact of dispersal

on different behaviors, we need to consider how much individuals disperse

and how they disperse. Some individuals will disperse close to their natal

site; some will die during the process. It then may be compelling to separate

local and long-distance/costly dispersal as they have different consequences

on the life history of a species. For example, long-tailed tits disperse to a few

hundred meters from their natal site but also create flocks before looking for a

breeding site [43]. Thus, tong-tailed tits population shows population viscosity

as individuals disperse to relatively short distances. Given this local dispersal,

a (two-dimensional) stepping-stone spatial structure would be more relevant

than an infinite-island model. However, a spatial structure that considers the

formation of flocks followed by the local dispersal of individuals could lead to

a more well-mixed population and show different impacts of the dispersal rate.

We modeled the evolution of redirected help in a viscous population on

a one-dimensional stepping stone following our model using an infinite-island

model. We highlight the impact of the spatial structure in the evolution of

altruistic behaviors. Spatial structures affect the population’s life histories by

impacting the population’s dispersal, mating, and helping. Our models show

the need to consider the impact of different spatial structures when studying

social behaviors such as altruism, competition, or reproduction.



Chapter 5

Conclusion

5.1 Summary

I studied the evolution of different altruistic behaviors using three models. I

showed that group living features, such as the benefits of altruism, habitat

saturation, or spatial structure, can challenge previous theories and results for

the evolution of altruistic behaviors. My work emphasizes the need to model

environmental feedback when studying the evolution of social behaviors. In

addition, I highlighted the impact of spatial structure on ecological relations

between individuals and their environment.

In Chapter 2 of this thesis, I modeled the evolution of delayed natal dis-

persal in relation to habitat saturation and group size effects. I studied the

evolution of delayed dispersal when the quality of the local environment is im-

proved by greater numbers of individuals (e.g., safety in numbers). I assumed

that individuals who delay natal dispersal also expect to delay personal repro-

duction. In addition, I assumed that improved environmental quality benefits

manifest as changes to fecundity and survival. I focused my interest on how the
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changes in these life-history features affect delayed dispersal. I also aimed to

understand the relationship between levels of delayed dispersal and the prob-

ability of establishing as an independent breeder (a population-level feature)

in response to changes in life-history details. I considered a sexual organism,

which allows me to study parent-offspring conflict over delayed dispersal. At

evolutionary equilibrium, fecundity and survival benefits of group size or qual-

ity promote higher levels of delayed dispersal over a larger set of life histories

with one exception. The exception is for benefits of increased group size or

quality reaped by the individuals who delay dispersal. The increased benefit

does not change the life histories supporting delay dispersal there. In contrast

to previous predictions, I found that a low probability of establishing in a new

location is not always associated with a higher incidence of delayed dispersal.

Previous literature expected a positive link between habitat saturation and de-

layed dispersal [71]. My dynamical model of the evolution of delayed dispersal

with ecological feedback demonstrates that this relation is not as simple. Fi-

nally, I found that increased personal benefits of delayed dispersal exacerbate

the conflict between parents and their offspring. This result contrasts with

my own predictions. We should expect to observe more altruistic behavior if

we have more benefits. In fact, this benefit is available when group formation

has already occurred, which requires offspring to delay their dispersal. This

benefit is thus circumstantial and can drive a higher dispersal rate.

Overall, my model of delayed dispersal confirms but also shows new pre-

dictions about the evolution of delayed dispersal in a population subject to

habitat saturation.

In Chapter 3 of my thesis, I studied the selective advantage of redirected

help in a viscous population living on an infinite island model. When a brood

fails, the parent can decide to help a neighbor rear its offspring. This behavior
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is referred to as redirected helping and occurs in various species. In a viscous

population, the obvious advantages of redirected helping can be diluted by

the competition among kin. I addressed the evolution of redirected helping in

a viscous population using an inclusive fitness model that allows overlapping

generations and accounts for demographic stochasticity due to brood failure.

In contrast to previous theoretical studies of species with overlapping gener-

ations, I found that helping (in this case, redirected helping) can be more

strongly promoted when it provides survival rather than fecundity benefits.

This result depends on the species’ life history and environmental parameters,

such as survival or brood failure probability. I obtained this result due to the

specific life history of the population, as helpers cannot reproduce. Such life

history features can thus change predictions and lead to unexpected results.

Altruistic behaviors can occur in very various life histories. My results show

that the diversity of these life histories makes it challenging to draw general

rules about the evolution of altruistic behaviors.

In the model of Chapter 3, I investigated how population viscosity can

affect the evolution of redirected help by focusing on a population living on

an infinite-island model. However, the dispersal pattern of individuals in an

infinite-island model reduces the impact of population viscosity. In Chapter

4 of my thesis, I strengthened population viscosity by studying the evolution

of redirected help using a one-dimensional stepping-stone model. In this new

spatial structure, the dispersal pattern is much more constrained than the

infinite-island spatial structure, strenghtening the population viscosity I was

interested in. Using a different model, I wanted to study how changing the

spatial structure can affect the evolution of altruistic behavior. In this new

spatial structure, dispersal acts in the opposite direction as in our previous

model. This difference is inherent to the spatial structures used in these mod-
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els. I also found similarities between the results. For instance, in both models,

the different benefits from redirected help can influence how this behavior will

evolve. Different spatial structures can then affect how altruistic behaviors

and social behaviors, in general, can evolve.

5.2 Future directions

Throughout this thesis, I described potential future directions that would be

interesting to study.

Following Chapter 1, given individuals delay their natal dispersal, a nat-

ural behavior that can arise following this group formation is the evolution

of help. Helping behavior is similar to delayed dispersal as it incurs a cost

to the helper and provides survival or fecundity benefits to the helped indi-

vidual. However, the coevolution of delayed dispersal and help could lead to

different group sizes and qualities, creating discrepancies between groups. The

coevolution of these two behaviors has been studied before [25] but in a way

that does not consider a sexual population, which prevents social interactions

such as sexual reproduction, which can shape evolution differently. Studying

this coevolution in a dynamic population context could provide results and

answers on the history of altruistic behaviors [60, 10, 79]. Given the coevo-

lution of these two behaviors, we could also look at the interactions between

help and habitat saturation. From our unexpected results of Chapter 2, we

could also expect some additional results regarding the evolution of help and

ecological feedback. These results would provide the necessary or sufficient

environmental conditions for the evolution of helping in groups formed after

delayed dispersal [60, 10, 79].

Following Chapters 3 and 4, a potential new project would be to study the
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evolution of redirected helping and load-lightening. Load-lightening happens

when an individual decreases the parental resources it provides its offspring

[46, 50]. This behavior appears naturally because a breeder may want to fa-

vor their fitness. From Bourke’s definition [3], load-lightening is thus a selfish

behavior. This behavior also occurs in the Long-tailed Tits [43], which is a

species which performs redirected helping. It appears then that potentially,

some individuals can behave selfishly toward their own offspring but altru-

istically toward the offspring of others, which seems paradoxical. Exploring

the evolutionary history of these two behaviors could provide us with solu-

tions to this apparent paradox. We could also extend this model to help in

general. Given ecological feedback such as competition among kin or related,

we may also observe the evolution and coevolution of each behavior in a dif-

ferent environmental/ecological context. Using examples from the field, such

as the Long-tailed tits, we could compare the results with data and test the

predictions.

In addition to the coevolution of redirected helping and load-lightening,

studying the conflict over parental resource allocation would be very inter-

esting. Offspring always want more resources than their parents or a helper

would give them [96]. This type of conflict is similar to the one we observe in

Chapter 2. Measuring the extent of this conflict in the context of coevolution

of redirected help and load-lightening would provide resourceful information

on the difference between conflict and coevolution of behaviors. A resolution

model of these conflicts could lead to a different evolution of these two be-

haviors compared to the coevolution model. We could thus investigate how

these behaviors and the conflicts evolve with respect to each other. Should we

expect to have a reduction of conflict as social behavior evolves? Or should

we expect social behaviors to increase the conflict? This direction could then
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provide philosophical insight on the nature of altruism. Is altruism a reduction

of conflict, or does altruism actually increase this conflict? Ironically, we may

also observe that conflict over parental resources could lead to the evolution

of altruistic behaviors.
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Appendix A

Appendix Chapter 2

A.1 Matrix B

Life-history details provided in the main text, see subsection 2.2.2, tell us that

the distribution of individuals at time step t+1, Vt+1 = (Ut+1, B0,t+1, B1,t+1, A0,t+1, A1,t+1)T

is equal to B(B0, B1)Vt, where B is the matrix



su(1 − p̃u) 0 0 (1 − h0)su(1 − p̃u) (1 − h1)su(1 − p̃u)

+h0S(A0)(1 − p̃a) +h1(S(A1)(1 − p̃a)

sup̃u (1 − T0(h0))sb0 T1(h1)sb0 (1 − h0)sup̃u + h0S(A0)p̃a (1 − h1)sup̃u + h1S(A1)p̃a
0 T0(h0)sb1 (1 − T1(h1))sb1 0 0

sup̃un0 (1 − T0(h0))sb0n0 T1(h1)sb0n0 (1 − h0)sup̃un0 + h0S(A0)p̃an0 (1 − h1)sup̃un0 + h1S(A1)p̃an0

0 T0(h0)sb1n1 (1 − T1(h1))sb1n1 0 0


.

(A.1.1)

In the previous line, S(A0) = T0(h0)sa1+(1−T0(h0))sa0 and S(A1) = T1(h1)sa0+

(1 −T1(h1))sa1 . Note that B(B0,t, B1,t) depends on p̃u and p̃a, and expressions

for those are given in the main text.

116
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A.2 Stability of the trivial equilibrium

The population has a trivial equilibrium Vt = (0, 0, 0, 0, 0)T . To determine the

stability of this equilibrium, we compute the dominant eigenvalue of the next-

generation matrix [4] evaluated at the trivial equilibrium. The next generation

matrix is the product of two matrices. The first is F , a 5×5 matrix whose top

three rows consist only of 0 and whose bottom two rows are those from the

matrix B(B0,t, B1,t), (A.1.1). The second is (I −S)−1,which involves the 5 × 5

identity matrix I and the 5 × 5 matrix S. Here, S contains those elements of

B(B0,t, B1,t), (A.1.1) not already contained in F . We write the next generation

matrix as G = F (I − S)−1. The dominant eigenvalue of G is R0 = LuLbΛ in

equation (2.1), where

Λ = (1 − sb1(1 − T1))((pu − pa)su + pa)h0n0S(A0) + ((pu − pa)su + pa)sb1n1h1T0S(A1)

+pu(((1 − h0)(T1 − 1)n0 + T0n1(1 − h1))sb1 + n0(1 − h0))su

and Lu and Lb are given in the main text. When R0 is greater than 1, the

population reaches a positive and stable equilibrium V ∗ = (U∗, B∗
0 , B

∗
1 , A

∗
0, A

∗
1)

whose value and stability are computed numerically. This new equilibrium is

also the dominant right eigenvector of the matrix B(B∗
0 , B

∗
1), (A.1.1), for the

dominant eigenvalue 1.

A.3 Evolution of h0 and h1

In this appendix, we derive expressions for the action of selection on h0 and

h1. We use the approach outlined in [90], which requires us to begin our

derivation by identifying recipients of social behavior, i.e., those individuals
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whose fitness is affected by the delayed dispersal of others. In our model,

there are five classes of recipient: floaters (class 1), breeders in a low-quality

spot (class 2), breeders in a high-quality spot (class 3), subordinates in a

low-quality spot (class 4), subordinates in a high-quality spot (class 5). Fix

attention on a class-2 recipient and let η̄(2)
0 denote the probability that the

average offspring produced by this individual delays dispersal as a subordinate.

Fix attention on a class-3 recipient and let η̄(3)
1 denote the probability that the

average offspring produced by this individual delays dispersal as a subordinate.

Fix attention on a class-4 recipient, let η(4)
0 denote the probability that this

individual delays dispersal, and let η̄(4)
0 denote the probability that the average

offspring produced by this individual’s parent delays dispersal as a subordinate

(including the actor itself). Finally, fix attention on a class-5 recipient, let η(5)
1

denote the probability that this individual delays dispersal, and let η̄(5)
1 denote

the probability that the average offspring produced by this individual’s parent

delayed dispersal as a subordinate (including the actor itself).

Let mij denote the expected number of class-i individuals produced by a

focal class-j individual in the previous time step, weighted by genetic contri-

bution. We store these quantities in the matrix M = [mij], where M is given

in Table A.3.1. If η̄(2)
0 = η

(4)
0 = η̄

(4)
0 = h0 and η̄

(3)
1 = η

(5)
1 = η̄

(5)
1 = h1, then

MV ∗ = V ∗, where V ∗ is given in the previous Appendix. This implies that, in

the absence of selection, the largest eigenvalue of M is unity and is associated

with the right eigenvector V ∗. In the absence of selection, the largest eigen-

value of M is also associated with a left eigenvector ν = (νu, νb0 , νb1 , νA0 , νA1).

This left eigenvector stores the individual reproductive value of each class of

individual in the order introduced above. We determine ν by numerically solv-

ing the equation ν = νM with M evaluated at η̄(2)
0 = η

(4)
0 = η̄

(4)
0 = h0 and

η̄
(3)
1 = η

(5)
1 = η̄

(5)
1 = h1.
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Matrix M and matrix B from the previous section of the appendix are

related but are not identical. Matrix B tracks the number of individuals,

while matrix M tracks the flow of genes. This means we have to carefully

account for male and female functions when deriving M . It also means the

same level of detail is not needed for matrix B.

To determine the effect of selection on h0, we introduce g(j)
0 as the geno-

typic value of a class-j recipient (j = 2, 4) at the locus controlling delayed

dispersal behavior of individuals born in a low-quality group. We treat η(j)
0

and η̄(j)
0 as functions of corresponding g(j)

0 , then compute the change in fitness

by computing the derivative of the matrix M with respect to the genotypic

value of each recipient g(j)
0 , and multiply it by the left and right eigenvectors

to obtain

ν
dM

dg
(2)
0
V ∗ + ν

dM

dg
(4)
0
V ∗ = ν

 ∂M

∂η̄
(2)
0

dη̄
(2)
0

dg
(2)
0

V ∗ + ν

 ∂M

∂η
(4)
0

dη
(4)
0

dg
(4)
0

+ ∂M

∂η̄
(4)
0

dη̄
(4)
0

dg
(4)
0

V ∗

(A.3.1)

where it is understood that expressions are evaluated at η̄(2)
0 = η

(4)
0 = η̄

(4)
0 = h0

and η(3)
1 = η

(5)
1 = η̄

(5)
1 = h1. Finally, we replace the ordinary derivatives in the

previous line with corresponding relatedness coefficients to obtain

ν

(
∂M

∂η̄
(2)
0
RI,B0

)
V ∗ + ν

(
∂M

∂η
(4)
0
RI,A0

)
V ∗ + ν

(
∂M

∂η̄
(4)
0
R̄I,A0

)
V ∗, (A.3.2)

which can be rewritten as

ν

(
∂M

∂η̄
(2)
0

)
V ∗RI,B0 + ν

(
∂M

∂η
(4)
0

)
V ∗RI,A0 + ν

(
∂M

∂η̄
(4)
0

)
V ∗R̄I,A0 , (A.3.3)

where RI,B0 is the relatedness between the individual controlling the delayed

dispersal behavior on a low-quality breeding spot (breeder or subordinate)
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and the breeder on the same low-quality breeding spot (the breeder itself

or the breeder of the subordinate). RI,B0 = 1 if the breeder controls the

behavior, and RI,B0 = RA0,B0 if the subordinate controls it. RI,A0 is the

relatedness between the individual controlling the delayed dispersal behavior

on a low-quality breeding spot and the subordinate who delays dispersal. If

the subordinate itself controls the behavior, RI,A0 = 1; when the breeder

controls it, RI,A0 = RB0,A0 . Finally, R̄I,A0 is the relatedness between the

individual controlling the delayed dispersal behavior on a low-quality breeding

spot and the average delayed disperser on the same breeding spot. R̄I,A0 is

equal to RB0,A0 when the breeder controls the behavior and to R̄A0,A0 if the

controller is the subordinate. Those relatedness coefficients are the slopes of

the actor’s phenotype η(j)
0 on the recipient’s genic value g(j)

0 and can be replaced

by statistical regression coefficients computed in the following Appendix.

This expression gives the change in fitness detected by the different recipi-

ents when the genotypic value of the delayed dispersal behavior of individuals

born in a low-quality breeding spot is changed. In other words, equation

(A.3.3) gives the inclusive fitness change for the delayed dispersal behavior h0

which can be rewritten as:

∆h0WBreeder ·RI,B0 + ∆h0WSubs · R̄I,A0 + ∆h0WActor ·RI,A0 . (A.3.4)

which is equation (2.7a) in the main text

To determine the effect of selection on h1, we carry out a process similar

to the one we use for h0 evolution. We introduce g(j)
1 as the genotypic value

of a class-j recipient (j = 3, 5) at the locus controlling the delayed dispersal

behavior of individuals born in a high-quality group. We treat η(j)
1 and η̄(j)

1 as

functions of corresponding g
(j)
1 , then compute the change in fitness by com-
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puting the derivative of the matrix M with respect to the genotypic value of

each recipient g(j)
1 , and multiply it by the left and right eigenvectors

ν
dM

dg
(3)
1
V ∗ + ν

dM

dg
(5)
1
V ∗ = ν

 ∂M

∂η̄
(3)
1

dη̄
(3)
1

dg
(3)
1

V ∗ + ν

 ∂M

∂η
(5)
1

dη
(5)
1

dg
(5)
1

+ ∂M

∂η̄
(5)
1

dη̄
(5)
1

dg
(5)
1

V ∗

(A.3.5)

where expressions are evaluated at η̄(3)
1 = η

(5)
1 = η̄

(5)
1 = h1 and η

(2)
0 = η

(4)
0 =

η̄
(4)
0 = h0. Finally, we replace the ordinary derivatives in the previous line with

corresponding relatedness coefficients to obtain

ν

(
∂M

∂η̄
(3)
1
RI,B1

)
V ∗ + ν

(
∂M

∂η
(5)
1
RI,A1

)
V ∗ + ν

(
∂M

∂η̄
(5)
1
R̄I,A1

)
V ∗, (A.3.6)

Which can be rewritten as

ν

(
∂M

∂η̄
(3)
1

)
V ∗RI,B1 + ν

(
∂M

∂η
(5)
1

)
V ∗RI,A1 + ν

(
∂M

∂η̄
(5)
1

)
V ∗R̄I,A1 , (A.3.7)

where RI,B1 is the relatedness between the individual controlling the delayed

dispersal behavior on a high-quality breeding spot (breeder or subordinate)

and the breeder on the same high-quality breeding spot (the breeder itself

or the breeder of the subordinate). RI,B1 = 1 if the breeder controls the

behavior, and RI,B1 = RA1,B1 if the subordinate controls it. RI,A1 is the relat-

edness between the individual controlling the delayed dispersal behavior on a

high-quality breeding spot and the subordinate who delays dispersal. If the

subordinate itself controls the behavior, RI,A1 = 1; when the breeder controls

it, RI,A1 = RB1,A1 . Finally, R̄I,A1 is the relatedness between the individual

controlling the delayed dispersal behavior on a high-quality breeding spot and

the average subordinate on the same breeding spot. R̄I,A1 is equal to RB1,A1

when the breeder controls the behavior and to R̄A1,A1 if the controller is the
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subordinate. Those relatedness coefficients are the slopes of the actor’s pheno-

type η(j)
1 on the recipient’s genic value g(j)

1 and can be replaced by statistical

regression coefficients computed in the following Appendix. As well as (A.3.3),

(A.3.7) gives the change in fitness perceived by the different recipients when

the genotypic value of the delayed dispersal behavior of individuals born in

high-quality breeding spots is changed. In other words, equation (A.3.7) is the

inclusive fitness change for h1.

Equations (A.3.3) and (A.3.7) compute the effect of selection on the geno-

typic value of a subordinate living on a low-quality and high-quality, respec-

tively. They thus correspond to the inclusive fitness change of increasing the

delayed dispersal rates (2.7a) and (2.7b) we found in the main text.
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A.4 Relatedness

We computed the relatedness between the actor and its relatives using the

method developed in Michod and Hamilton [65]. In general, the relatedness

between individuals I and J is defined as

RI,J = QI,J

QI,I

,

where QI,J is defined as the probability of identity by descent between an

allele chosen uniformly at random from individual I and another chosen in-

dependently at random from individual J . For QI,I , the choice is made with

replacement. For a breeder and its subordinate, the probability of identity

by descent is (1 + ϕ)(1 + f)/4, where f is the probability of identity by de-

scent between the two homologous alleles carried by the same individual. The

probability that two alleles chosen from the same individual are identical by

descent is (1 + f)/2. Thus, the relatedness between a subordinate and its

breeder is

RB0,A0 = RB1,A1 = RA0,B0 = RA1,B1 = 1 + ϕ

2 .

Using the same method, we compute the relatedness between a subordinate

and the average subordinate on the breeding spot. As mentioned in the main

text, the average subordinate includes the actor itself as it affects its own

fitness. The probability that two alleles chosen from the same individual are

identical by descent remains (1 + f)/2. The probability of identity by descent

between two subordinates born on the same patch is,

( 1
n0

+ n0 − 1
n0

(
ϕ2 + ϕ(1 − ϕ) + (1 − ϕ)2N + 1

4N

))
(1 + f)/2,
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whereN denotes the number of mates an individual has. Note that, on average,

two individuals taken randomly in the population have a probability of identity

by descent equal to 0 relative to the average population. It means that if two

outcrossed subordinates do not share the same male parent, they share only

1/4 of their genes through their female parent. The relatedness between two

subordinates born in the same low-quality breeding spot is thus

R̄A0,A0 = 1
n0

+ n0 − 1
n0

(
ϕ2 + ϕ(1 − ϕ) + (1 − ϕ)2N + 1

4N

)
,

Finally, the same process leads to the relatedness between two subordinates

born in the same high-quality breeding spot,

R̄A1,A1 = 1
n1

+ n1 − 1
n1

(
ϕ2 + ϕ(1 − ϕ) + (1 − ϕ)2N + 1

4N

)
.

A.5 Numerical simulations

As described in the main text, we use numerical approximations to estimate

∆h0W and ∆h1W . To estimate the different parts of the equations, (A.3.3),

and (A.3.7), we use finite difference approximations on the mutant matrix M .

We start by estimating ∂M

∂η̄
(2)
0

using the matrix M evaluated when the delayed

dispersal of a subordinate, η̄(2)
0 , is increased and subtract this matrix with the

matrix M evaluated when η̄
(2)
0 is decreased:

∂M

∂η̄
(2)
0

≈ M |
η̄

(2)
0 =h0+δh0,η

(4)
0 =η̄(4)

0 =h0,η̄
(3)
1 =η(5)

1 =η̄(5)
1 =h1

−M |
η̄

(2)
0 =h0−δh0,η

(4)
0 =η̄(4)

0 =h0−δh0,η̄
(3)
1 =η(5)

1 =η̄(5)
1 =h1

.

We approximate ∂M

∂η
(4)
0

, and ∂M

∂η̄
(4)
0

, (A.3.3), using the same process but changing

η
(4)
0 and η̄(4)

0 . We multiply ∂M

∂η̄
(2)
0

, ∂M

∂η
(4)
0

, and ∂M

∂η̄
(4)
0

by the dominant left and right
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eigenvectors of M evaluated at η(2)
0 = η

(4)
0 = η̄

(4)
0 = h0 and η̄

(3)
1 = η

(5)
1 = η̄

(5)
1 =

h1, ν, and µ and by the corresponding relatedness coefficients (see equation

(A.3.3) and Appendix A.4 for the relatedness coefficients). Summing all these

quantities, we find the approximation of the inclusive fitness change ∆h0W .

The same method is used to compute the approximation of the inclusive fitness

change ∆h1W .

We then update the values of h0 and h1 based on the computed values of

∆h0W and ∆h1W . A positive computed value results in an increase of the

delayed dispersal strategy, whereas a negative computed value results in a

decrease. We repeat the process using the updated values of h0 and h1 until

the algorithm stops by one of the three events described in the main text.

A.6 Supplementary data

The parent-offspring conflict over delay dispersal varies with selfing rate ϕ and

fecundity benefits n1−n0. As ϕ gets to 1, the population is clonal so relatedness

is equal to 1, the difference between subordinate and breeder preferred level

of delay dispersal is then null (Figures A.6.1, A.6.2).
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Figure A.6.1: Extent of breeder-subordinate conflict over delayed dispersal
represented by the difference of predictions under breeder exclusive control or
under subordinate exclusive control (h∗

0(bre) − h∗
0(sub)). The conflict varies

with selfing rate ϕ and fecundity benefits n1 − n0. Unless otherwise noted,
sb0 = sb1 = 0.5, su = sa0 = 0.5 sa1 = 0.6, a = 2, pa = 0.25, pu = 0.5

Figure A.6.2: Extent of breeder-subordinate conflict over delayed dispersal
represented by the difference of predictions under breeder exclusive control or
under subordinate exclusive control (h∗

0(bre) − h∗
0(sub)). The conflict varies

with selfing rate ϕ and survival benefits sb1 − sb0 . Unless otherwise noted,
n0 = n1 = 3, su = sa0 = 0.5, sa1 = 0.6, a = 2, pa = 0.25, pu = 0.5
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Appendix Chapter 3

B.1 Inclusive fitness change

Let’s fix attention on an actor who has experienced brood failure and who has

at least one patchmate who has not. In this case,

k

n

Pk,n
p(1 − pn−1) = Pk−1,n−1

1 − pn−1 (B.1.1)

gives the probability that the actor inhabits a patch with exactly 1 ≤ k ≤ n−1

brood failures, including its own.

The actor increases its level of phenotypic expression (i.e., its tendency to-

ward redirected helping) by a small amount δ > 0, and three primary inclusive-

fitness changes result from this increase. First, the actor changes its survival

by δs′
0(0). Second, it changes the survival of a patchmate by δs′

1(0). Third,

the actor changes the fecundity of its patchmate in the amount Nf ′(0)δ (e.g.,

the actor improves the fledging success of the N offspring produced by its

patchmate). The expression

128
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(1 − d) 1
f(0)

k(1 − s0(0)) + (n− k)(1 − s1(0))
N [ (n− k)(1 − d) + d(1 − c)n(1 − p) ]

+ d(1 − c)
n∑
i=0

Pi,n
1

f(0)
i(1 − s0(0)) + (n− i)(1 − s1(0))

N [ (n− i)(1 − d) + d(1 − c)n(1 − p) ] (B.1.2)

translates improved fecundity into competitive success. Putting these obser-

vations together gives us

δs′
0(0)

n−1∑
k=1

Pk−1,n−1

1 − pn−1 + δr̄s′
1(0)

n−1∑
k=1

Pk−1,n−1

1 − pn−1

+ δr̄Nf ′(0)(1 − d)
n−1∑
k=1

Pk−1,n−1

1 − pn−1
1

f(0)
k(1 − s0(0)) + (n− k)(1 − s1(0))

N [ (n− k)(1 − d) + d(1 − c)n(1 − p) ]

+ δr̄Nf ′(0)d(1 − c)
n∑
i=0

Pi,n
1

f(0)
i(1 − s0(0)) + (n− i)(1 − s1(0))

N [ (n− i)(1 − d) + d(1 − c)n(1 − p) ]
(B.1.3)

as the primary inclusive-fitness change that results from the actor’s change in

phenotype. As an aside, one can more easily make sense of the previous line

by recognizing that ∑n−1
k=1

Pk−1,n−1
1−pn−1 is equal to 1.

The primary fitness changes in (B.1.3) must be compensated by changes

in the opposite direction by other individuals in the population [78]. Com-

pensation associated with the first three terms is made by individuals who

carry alleles that are identical-by-descent to the one carried by the actor with

probability hkr̄. By contrast, compensation associated with last term (gains

made by offspring who disperse) is made by individuals whose alleles are not

identical-by-descent to the one carried by the actor. It follows that
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δs′
0(0)

n−1∑
k=1

Pk−1,n−1

1 − pn−1 (1 − r̄hk) + δs′
1(0)

n−1∑
k=1

Pk−1,n−1

1 − pn−1 (r̄ − r̄hk)

+δNf ′(0)(1−d)
n−1∑
k=1

Pk−1,n−1

1 − pn−1
1

f(0)
k(1 − s0(0)) + (n− k)(1 − s1(0))

N [ (n− k)(1 − d) + d(1 − c)n(1 − p) ](r̄−r̄hk)

+ δNf ′(0)d(1 − c)
n∑
i=0

Pi,n
1

f(0)
i(1 − s0(0)) + (n− i)(1 − s1(0))

N [ (n− i)(1 − d) + d(1 − c)n(1 − p) ] r̄

(B.1.4)

as the overall inclusive-fitness change experienced by the actor. We do not

change the sign of the overall inclusive-fitness change when we multiply by

p(1 − pn−1)/δ (the numerator, here, gives probability that an individual ex-

periences brood failure and at least one of its n − 1 neighbors does not). By

carrying out this multiplication, though, we arrive at the expression in (3.6)

derived with the neighbor-modulated fitness approach. Thus, the inclusive-

fitness argument and the neighbor-modulated fitness argument agree on the

direction in which selection acts on redirected helping.

We now return our attention to the expression in (B.1.2). We weigh this

expression by

Pk,n(n− k)
n(1 − p) = Pk,n−1, (B.1.5)

which is the probability an offspring is born on a patch with 0 ≤ k ≤ n − 1

brood failures, and sum over k to obtain,

(1 − d) 1
f(0)

n−1∑
k=0

Pk,n(n− k)
n(1 − p)

k(1 − s0(0)) + (n− k)(1 − s1(0))
N [ (n− k)(1 − d) + d(1 − c)n(1 − p) ]

+ d(1 − c) 1
f(0)

n∑
i=0

Pi,n
i(1 − s0(0)) + (n− i)(1 − s1(0))

N [ (n− i)(1 − d) + d(1 − c)n(1 − p) ] . (B.1.6)

To simplify the previously line, we collect the terms in (1 − s0(0)) separately
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from those in (1 − s1(0)) to obtain

1 − s0(0)
Nf(0)

(
n−1∑
k=0

Pk,n
k

n(1 − p)hk +
n∑
i=0

Pi,n
i

n(1 − p)(1 − hi)
)

+ 1 − s1(0)
Nf(0)

(
n−1∑
k=0

Pk,n
n− k

n(1 − p)hk +
n∑
i=0

Pi,n
(n− i)
n(1 − p)(1 − hi)

)
. (B.1.7)

We recognize that we can extend the sum in k to k = n because hn = 0. We

also recognize that we can exchange the index i for the index k. Thus, the

previous expression can be simplified further as

1 − s0(0)
Nf(0)n(1 − p)

n∑
k=0

kPk,n + 1 − s1(0)
Nf(0)n(1 − p)

n∑
k=0

(n− k)Pk,n = 1
f(0)ψ (B.1.8)

where

ψ = p(1 − s0(0)) + (1 − p)(1 − s1(0))
N(1 − p) . (B.1.9)

The quantity ψ is understood as either the reproductive value of offspring at

birth or equivalently as the establishment probability for the variable brood-

failure model. Under the former interpretation, we set the reproductive value

of an individual at the very beginning of the year equal to 1, without loss of

generality. Then, the numerator of ψ represents the per-capita reproductive

value forfeited by individuals who die in that year. The forfeiture is divided

among the annual per-capita reproductive success — the denominator of ψ —

to arrive at the reproductive value of an offspring at birth.

Inspired by our new insight about reproductive value, we re-write the over-

all inclusive-fitness effect of the actor’s phenotypic change in (B.1.4) as
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δs′
0(0)

n−1∑
k=1

Pk−1,n−1

1 − pn−1 (1 − r̄hk) + δs′
1(0)

n−1∑
k=1

Pk−1,n−1

1 − pn−1 (r̄ − r̄hk)

+δNψf ′(0)(1−d)
n−1∑
k=1

Pk−1,n−1

1 − pn−1
1

f(0)
k(1 − s0(0)) + (n− k)(1 − s1(0))

N [ (n− k)(1 − d) + d(1 − c)n(1 − p) ]ψ︸ ︷︷ ︸
term i

(r̄−r̄hk)

+ δNψf ′(0)d(1 − c)
n∑
i=0

Pi,n
1

f(0)
i(1 − s0(0)) + (n− i)(1 − s1(0))

N [ (n− i)(1 − d) + d(1 − c)n(1 − p) ]ψ︸ ︷︷ ︸
term ii

r̄

(B.1.10)

and interpret terms i and ii as elements of a decomposition of offspring repro-

ductive value at birth. Going a step further, we recognize that the inclusive-

fitness effect has the same sign as

−s0(0)C + s1(0)BsRs +BfNψRf (B.1.11)

where C = −s′
0(0)/s0(0), Bs = s′

1(0)/s1(0), and Bf = f ′(0)/f(0), and

Rs =
r̄ − r̄

∑n−1
k=1

Pk−1,n−1
1−pn−1 hk

1 − r̄
∑n−1
k=1

Pk−1,n−1
1−pn−1 hk

=
r̄ − r̄

∑n−1
k=1

k
n

Pk,n
p(1−pn−1)hk

1 − r̄
∑n−1
k=1

k
n

Pk,n
p(1−pn−1)hk

(B.1.12)

as well as

Rf =
d(1 − c)r̄∑n

k=0 Pk,n
ψ′
k

ψ
+ (1 − d)r̄∑n−1

k=1
Pk−1,n−1
1−pn−1

ψ′
k

ψ
(1 − hk)

1 − r̄
∑n−1
k=1

k
n

Pk,n
p(1−pn−1)hk

=
d(1 − c)r̄∑n

k=0 Pk,n
ψ′
k

ψ
+ (1 − d)r̄∑n−1

k=1
k
n

Pk,n
p(1−pn−1)

ψ′
k

ψ
(1 − hk)

1 − r̄
∑n−1
k=1

k
n

Pk,n
p(1−pn−1)hk

(B.1.13)

with ψ′
k standing in for k(1−s0(0))+(n−k)(1−s1(0))

N [ (n−k)(1−d)+d(1−c)n(1−p) ] .
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B.2 Coefficient of consanguinity

We define the coefficient of consanguinity (CC) between two individuals as the

probability that the allele carried by one and the allele carried by the other

are identical by descent [65]. We compute the CC between a focal individual

and its average non-self patch mate in a selfish (selectively neutral) popula-

tion using recursion. Again, note that weak selection justifies this neutral

approximation.

Let r̄ be the CC between a focal individual and its non-self patch mate.

The CC between a focal individual and the average breeder on its patch (self-

included) where k brood failures happened at the last time step is r̄• = 1
n−k +

n−k−1
n−k r̄. By choosing two random individuals on the same patch, given the

different events happening during a time step, we can express the equilibrium

value of r̄• as

r̄• = 1
n− k

+ n− k − 1
n− k

n∑
k=0

Pk,n

[
n− k

n

n− k − 1
n− 1

(
s2

1r̄

+ 2s1(1 − s1)hk(
n− k − 1
n− k

r̄+ 1
n− k

) + (1 − s1)2h2
k(
n− k − 1
n− k

r̄+ 1
n− k

)
)

+2n− k

n

k

n− 1

(
s0s1r̄+s0(1−s1)hkr̄+s1(1−s0)hk(

n− k − 1
n− k

r̄+ 1
n− k

)

+ (1 − s0)(1 − s1)h2
k(
n− k − 1
n− k

r̄ + 1
n− k

)
)

+ k

n

k − 1
n− 1

(
s2

0r̄ + 2s0(1 − s0)hk(
n− k − 1
n− k

r̄ + 1
n− k

)

+ (1 − s0)2h2
k(
n− k − 1
n− k

r̄ + 1
n− k

)
) ]
,

(B.2.1)

where hk is given in Table 3.1 of the main text. Simplifying the notations, we
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have r̄• = 1
n−k + n−k−1

n−k (α + r̄β), where

α =
n−1∑
k=0

Pk,n
hk

n− k

[
n− k

n

n− k − 1
n− 1 (2s1(1 − s1) + (1 − s1)2hk)

+ 2n− k

n

k

n− 1(s1(1 − s0) + (1 − s1)(1 − s0)hk) + k

n

k − 1
n− 1(1 − s0)2hk

]
,

and

β =
n−1∑
k=0

Pk,n

[
n− k

n

n− k − 1
n− 1 (s2

1 + n− k − 1
n− k

hk(2s1(1 − s1) + (1 − s1)2hk))

+ 2n− k

n

k

n− 1(s0s1 + s0(1 − s1)hk + (1 − s0)s1
n− k − 1
n− k

hk + (1 − s0)(1 − s1)h2
k

n− k − 1
n− k

)

+ k

n

k − 1
n− 1(s2

0 + 2s0(1 − s0)hk + (1 − s0)2h2
k

n− k − 1
n− k

)
]

+ s2
0

Solving for r̄• = 1
n−k + n−k−1

n−k r̄ and(B.2.1), we obtain

r̄ = α

1 − β
. (A.2)

This CC is used in Rs and Rf expressions that can be found in Table 3.1.

B.3 Prediction in the limit as p goes to 1−

In this subsection, we characterize the behavior of the critical cost-benefit ratio

Rf when the brood failure probability p goes to 1−. Note that the cost-benefits

ratio associated with survival benefits goes to 0 as p goes to 1−.

We first observe that as p → 1−, Pk,n goes to 0, except when k = n. Thus,

CC r̄ → 0, as α → 0 and β = s2
0 for m = n. This limit implies that the

denominator of Rf (see Table 3.1) goes to 1 as p goes to 1−.

We then observe that the second term in the numerator goes to 0 as p → 1−
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since the Pk,n terms are equal to 0 and ψk remain between 0 and 1 for all

k ∈ [0, n − 1]. We thus look at the first part of the numerator of Rf , which

corresponds to the fitness gains for offspring deciding to disperse. Recall that

its expression is: r̄d(1 − c)∑n
k=0 Pk,nψk

At first glance, this formula appears to be undetermined as p → 1−: the

CC r̄ is going to 0, and the reproductive value of the offspring ψk goes to +∞

for k = n. To compute the limit of Rf as p → 1−, we use approximations

for ψn and r̄ as p → 1−. Given the expression of ψn, we see that as p → 1−,

ψn = C
1−p + O((1 − p)2) in the neighborhood of p = 1, where C is a positive

constant. Looking at r̄, in the neighborhood of p = 1, we have

r̄ = r̄|p→1−+(p− 1)∂pr̄|p→1−+O((1 − p)2) = 0 + (p− 1)∂pr̄|p→1−+O((1 − p)2)

The derivative of r̄ is ∂pr̄ = (1−β)∂pα+α∂pβ
(1−β)2 , where α and β are given in the

previous appendix. The limit of the denominator as p → 1− is (1 − s2
0)2 > 0.

As α → 0 when p → 1−, we also have α∂pβ → 0. We thus only need to

compute the derivative of α to determine the behavior of r̄ as p → 1−. We

have

∂α =
n−1∑
k=0

∂pPk,nαk + Pk,n∂pαk,

where αk equals

hk
n− k

[
n− k

n

n− k − 1
n− 1 (2s1(1 − s1) + (1 − s1)2hk)

+ 2n− k

n

k

n− 1(s1(1 − s0) + (1 − s1)(1 − s0)hk) + k

n

k − 1
n− 1(1 − s0)2hk

]
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Since we have Pk,n → 0 for k < n, ∑n−1
k=0 Pk,n∂pαk → 0. Now, we have

∂pα = ∂p
n−1∑
k=0

Pk,nαk =
n−1∑
k=0

nPk−1,n−1αk−
n!

(n− k − 1)! k!p
k(1−p)n−k−1αk → −nαn−1 = −C,

as p → 1− and where C is a positive constant. In the neighborhood of p = 1

to 1−, r̄ = −(p− 1)C +O((1 − p)2).

Finally, we have:

ψnr̄ = −C(p− 1)
(1 − p) + o((1 − p)2) = C +O((1 − p)2) (B.1)

This result shows that as p → 1−, Rf → C where C is a constant in R.



Appendix C

Appendix Chapter 4

Here, I present the numerical methods used to compute the neighbor-modulated

fitness and fitness changes of redirected help in a viscous population in a

stepping-stone model. These numerical methods compute the neighbor-modulated

fitness change for survival and fecundity benefits, which leads to the results

presented in Chapter 4.
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Libraries 

using LinearAlgebra 

To compute the neighbor modulated fitness of the focal individual, we compute this fitness 
in all possible neighborhoods which depends on the brood successes and failures of the 
neighbors of the focal individual. In the case of survival benefits, the neighborhood is 
composed of the neighbors up to 3 steps away which give 2^7 possible neighborhood. In 
the case of fecundity benefits, we need to look at the neighbors up to 4 steps away which 
give 2^9 possible neighborhood. 

Survival benefits 
Parameters 
Cs = 1 # Cost of helping 
Bs = 1 ## Benefits of helping (survival) 
d = 0.2 # Dispersal rate 
c = 0.5 # Cost of dispersal 
u = 1e-6 # Dispersal rate (long distance) 

We start by looking at the survival benefits. The 2^7 cases can be reduced to 17 thanks to 
the symmetry of the neighborhood. The probability of the 17 identified cases is given by the 
following vector: 

P(p)=[p^3, p*(1-p^2), p^4*(1 - p), 2*p^3*(1 - p)^2, 2*p^2*(1 - p)^3,  
    p^2*(1 - p)^3, 2*p*(1 - p)^4, (1 - p)^5, p^4*(1 - p)^3, 2*p^3*(1 - p)^4, 
    p^2*(1 - p)^5, 2*p^4*(1 - p)^2, 2*p^3*(1 - p)^3, 2*p^3*(1 - p)^3, 
2*p^2*(1 - p)^4, 2*p^2*(1 - p)^4, 2*p*(1 - p)^5] 

P (generic function with 1 method) 

where p is the brood failure probability. 

We then define the functions giving the survival of an individual who succeeds its brood, 
s_1(z1) and of an individual who fails its brood s_0(z) 

s0(z0,z1) = s_0-Cs*s_0*(z0+z1); # when the focal individual fail, it will 
survive with rate s0(z0,0) as it helps. When a 1-step neighbor fails, it will 
give help so will survive with rate s0(0,z1). 
s1(z0,z1,z2) = s_1+Bs*s_1*(z0+z1+z2) # Here this survival concerns only the 
focal individual and its 1-step neighbors. 

s1 (generic function with 1 method) 

We can now compute the probability that an individual will keep its breeding spot, that its 
offspring will compete successfully on its breeding spot (local) or will successfully 
compete on the left or right side breeding spot. We store these four probabilities in a 17x4 
matrix as we have 17 cases. 



W(z0,z1,z2) = [ 
    s0(0)                 0  0                                      0; 
    s0(z0,0)              0  0                                      0; 
    s1(0,2*z1,0)    1 - s1(0,2*z1,0)  1 - s0(0,z1)             1 - s0(0,z1); 
    s1(0,2*z1,0)/2 + s1(0,z1,0)/2  1 - (s1(0,2*z1,0)/2 + s1(0,z1,0)/2)  1 - 
s0(0,z1)  (1 - s0(0,z1))/2; 
    s1(0,z1,0)     (1 - s1(0,z1,0))*(1 - d - u)/(1 - u*c - d/2*(1 + c))  1 - 
s0(0,z1)  (1 - s1(0,0,0))*d*(1 - c)/2/(1 - u*c - c*d); 
    s1(0,2*z1,0)/4 + s1(0,z1,0)/2 + s1(0,0,0)/4  1 - s1(0,2*z1,0)/4 - 
s1(0,z1,0)/2 - s1(0,0,0)/4  (1 - s0(0,z1))/2  (1 - s0(0,z1))/2; 
    s1(0,z1,0)/2 + s1(0,0,0)/2  (1 - s1(0,z1,0)/2 - s1(0,0,0)/2)*(1 - d - 
u)/(1 - u*c - d/2*(1 + c))  (1 - s0(0,z1))/2  (1 - s1(0,0,0))*d*(1 - c)/2/(1 
- u*c - c*d); 
    s1(0,0,0)        (1 - s1(0,0,0))*(1 - d - u)/(1 - u*c - c*d)  ((1 - 
s1(0,0,0))*d*(1 - c))/2/(1 - u*c- c*d)  (1 - s1(0,0,0))*d*(1 - c)/2/(1 - u*c 
- c*d); 
    s1(0,0,0)        (1 - s1(0,0,0))*(1 - d - u)/(1 - u*c - c*d)  ((1 - 
s1(0,0,z2))*d*(1 - c))/2/(1 - u*c - d/2*(1 + c))  (1 - s1(0,0,z2))*d*(1 - 
c)/2/(1 - u*c - d/2*(1 + c)); 
    s1(0,0,0)        (1 - s1(0,0,0))*(1 - d - u)/(1 - u*c - c*d)  ((1 - 
s1(0,0,z2))*d*(1 - c))/2/(1 - u*c - d/2*(1 + c))  (1 - s1(0,0,z2)/2 - 
s1(0,0,0)/2)*d*(1 - c)/2/(1 - u*c - d/2*(1 + c)); 
    s1(0,0,0)        (1 - s1(0,0,0))*(1 - d - u)/(1 - u*c - c*d)  ((1 - 
s1(0,0,z2)/2 - s1(0,0,0)/2)*d*(1 - c))/2/(1 - u*c - d/2*(1 + c))  (1 - 
s1(0,0,z2)/2 - s1(0,0,0)/2)*d*(1 - c)/2/(1 - u*c - d/2*(1 + c)); 
    s1(0,z1,0)     (1 - s1(0,z1,0))*(1 - d - u)/(1 - u*c - d/2*(1 + c))  (1 - 
s1(0,0,z2))*d*(1 - c)/2/(1 - u*c - d/2*(1 + c))  1 - s0(0,z1); 
    s1(0,z1,0)     (1 - s1(0,z1,0))*(1 - d - u)/(1 - u*c - d/2*(1 + c))  (1 - 
s1(0,0,z2)/2 - s1(0,0,0)/2)*d*(1 - c)/2/(1 - u*c - d/2*(1 + c))  1 - 
s0(0,z1); 
    s1(0,z1,0)/2 + s1(0,0,0)/2  (1 - s1(0,z1,0)/2 - s1(0,0,0)/2)*(1 - d - 
u)/(1 - u*c - d/2*(1 + c))  (1 - s1(0,0,z2))*d*(1 - c)/2/(1 - u*c - d/2*(1 + 
c))  (1 - s0(0,z1))/2; 
    s1(0,z1,0)/2 + s1(0,0,0)/2  (1 - s1(0,z1,0)/2 - s1(0,0,0)/2)*(1 - d - 
u)/(1 - u*c - d/2*(1 + c))  (1 - s1(0,0,z2)/2 - s1(0,0,0)/2)*d*(1 - c)/2/(1 - 
u*c - d/2*(1 + c))  (1 - s0(0,z1))/2; 
    s1(0,0,0)        (1 - s1(0,0,0))*(1 - d - u)/(1- u*c - c*d)  (1 - 
s1(0,0,z2))*d*(1 - c)/2/(1 - u*c - d/2*(1 + c))  (1 - s1(0,0,0))*d*(1 - 
c)/2/(1 - u*c - c*d); 
    s1(0,0,0)        (1 - s1(0,0,0))*(1 - d - u)/(1 - u*c - c*d)  (1 - 
s1(0,0,z2)/2 - s1(0,0,0)/2)*d*(1 - c)/2/(1 - u*c - d/2*(1 + c))  (1 - 
s1(0,0,0))*d*(1 - c)/2/(1 - u*c - c*d); 
] 

W (generic function with 1 method) 

The first column gives the probability that the individual will survive and will keep its 
breeding spot, the second gives the probabilty its offspring will get the breeding spot given 
it dies. The third and fourth column gives the probability that the offspring will get the 



breeding spot on the left and on the right side respectively. Note that these two last 
columns use the symmetry of the space to reduce the number of cases. 

By summing the two first columns together and weighting each of the 17 terms by the 
probability that the neighborhood will happen, we obtain the probability that an individual 
or its offspring will keep the breeding spot, which we denote by p0. Similarly, we can 
compute the probability that an individual will get a breeding spot one step away, denoted 
p1. Note that we divide the expression by 2 to compute for only one breeding spot. 

p0(z0,z1,z2,p) = sum(P(p).*(W(z0,z1,z2)[:,1]+W(z0,z1,z2)[:,2])) 
p1(z0,z1,z2,p) = sum(P(p).*(W(z0,z1,z2)[:,3]+W(z0,z1,z2)[:,4]))/2 

We can now compute the coefficients of consanguinity r_i using the matrix shown in the 
main text. 

 
A(z0,z1,z2,p) = p1(z0,z1,z2,p)^2 
B(z0,z1,z2,p) = 2*p0(z0,z1,z2,p)*p1(z0,z1,z2,p) 
D(z0,z1,z2,p) = p0(z0,z1,z2,p)^2+2*p1(z0,z1,z2,p)^2 
 
L(z0,z1,z2,p) = 1/A(z0,z1,z2,p)*[-B(z0,z1,z2,p) (1-D(z0,z1,z2,p)) -
B(z0,z1,z2,p) -A(z0,z1,z2,p); A(z0,z1,z2,p) 0 0 0; 0 A(z0,z1,z2,p) 0 0; 0 0 
A(z0,z1,z2,p) 0] 

Following the solution shown in the text, we have the coefficients of consanguinity: 

function r(p) 
    lambda = eigvals(L(0,0,0,p)) 
    l1, l2 = lambda[abs.(real.((lambda))) .<1] 
     
    cc = (l2-l2*l1^2)/(l2^2*l1-l2*l1^2+l2-l1) 
    dd = 1-cc 
    r1 = cc*l2+dd*l1 # CC between focal and 1-step neighbor 
    r2 = cc*l2^2+dd*l1^2 # CC between focal and 2-step neighbor 
    r3 = cc*l2^3+dd*l1^3 # CC between focal and 3-step neighbor 
    return r1,r2,r3 
end 

I can now compute the neighbor modulated fitness change associated with survival 
benefits. I use a finite difference scheme to compute the change of fitness for the focal 
individual (dWz0), its direct neighbors (dWz1) and its 2 step neighbors (dWz2) for all 
possible neighborhood. I then sum the three fitness change weighted by the accurate 
coefficient of consanguinity and the probability that the neighborhood happens. The sum of 
all the fitness change in all the possible neighborhood gives the neighbor-modulated 
fitness change associated with survival benefits (dW). 

function dw(p) 
    dWz0 = zeros(17) 
    dWz1 = zeros(17) 



    dWz2 = zeros(17) 
    h = 1e-4 
    for i in range(1,17) 
        dWz0[i] = sum(W(h,0,0)[i,:]-W(0,0,0)[i,:])/h 
        dWz1[i] = sum(W(0,h,0)[i,:]-W(0,0,0)[i,:])/h 
        dWz2[i] = sum(W(0,0,h)[i,:]-W(0,0,0)[i,:])/h 
    end 
    dW = sum(P(p).*(dWz0.+r(p)[1].*dWz1 .+r(p)[2].*dWz2)) 
    return dW 
end 

Fecundity benefits 
The fecundity benefits case is more complex than the survival ones and require to compute 
numericall all the possible neighborhoods. To do so, I use a binary representation of all the 
2^9 possible cases. The function bin(n) gives the binary representation of an integer. By 
scanning all the integers between 1 and 2^9=512, I model all possible neighborhood by a 
vector of 0 and 1 which are written in the tab_fail matrix. By summing the vector associated 
with every neighborhood in tab_fail, I can compute how many success happened in the 
neighborhood and give the probability that every neighborhood happens given the brood 
failure probability p in the function Proba(p). 

function bin(n) 
    binary_str = zeros(9) 
    for i=1:9 
        if n==0 
            break 
        end 
        if (n-2^(i-1))%2^i==0 
             
            n -= 2^(i-1) 
            binary_str[10-i] = 1 
        else 
            binary_str[10-i] = 0 
        end 
         
    end 
    return binary_str 
end 
tab_fail=zeros(512,9) 
for j in range(1,512) 
    tab_fail[j,:] = bin(j) 
end 
 
function Proba(p) 
    proba = zeros(512) 
    for j=1:512 
        proba[j] = p^(9-sum(tab_fail[j,:]))*(1-p)^(sum(tab_fail[j,:])) 



    end 
    return proba 
end 

I now define the survival and fecundity (fledging success) function s0f(z) and f(z0,z1,z2,z3) 
respectively. Recall that helping decreases the survival of the helper and increases the 
fledging success of the offspring of the helped individual. 

o = 5; # focal individual position on the vector 
nb_class = 512; 
# Setting parameters values, these values may change during computations 
s_1 = 0.7 
s_0 = 0.5 
C = 1 
B = 1 
s0f(z) = s0-C*s0*z 
 
z0 = 0.01 
z1 = 0.01 
z2 = 0.01 
z2 = 0.01 
h = 1e-3 
F = 2 
F0 = 1 
f(z0,z1,z2,z3) = F0+F0*F*(z0+z1+z2+z3) 

f (generic function with 1 method) 

I now compute the survival of the focal individual located at the center of each 
neighborhood (So(z0)), the survival of the individual located to the right of the focal 
individual (Sp1(z1)), and the survival of the individual located to the left of the focal 
individual (Sm1(z1)). If the individual succeeds, they survive at rate s1, if they fail and one of 
their direct neighbor didn’t fail, they help and their survival is s0f(z0). Otherwise, they don’t 
help and survive at rate s0f(0). The survival in each neighborhood is then computed inside a 
vector. 

function So(z0) 
    so = zeros(nb_class) 
    for i=1:nb_class 
        if tab_fail[i,o] == 1 
            so[i] = s1 
        elseif tab_fail[i,o-1]==1 || tab_fail[i,o+1] == 1 
                so[i] = s0f(z0) 
            else 
                so[i] = s0f(0) 
        end 
         
    end 
    return so 
end 



 
function Sp1(z1) 
    sp1 = zeros(nb_class) 
 
    for i=1:nb_class 
        if tab_fail[i,o+1] == 1 
            sp1[i] = s1 
        elseif tab_fail[i,o]==1 || tab_fail[i,o+2] == 1 
                sp1[i] = s0f(z1) 
            else 
                sp1[i] = s0f(0) 
        end 
    end 
    return sp1 
end 
 
function Sm1(z1) 
    sm1 = zeros(nb_class) 
 
    for i=1:nb_class 
        if tab_fail[i,o-1] == 1 
            sm1[i] = s1 
        elseif tab_fail[i,o-2]==1 || tab_fail[i,o] == 1 
                sm1[i] = s0f(z1) 
            else 
                sm1[i] = s0f(0) 
        end 
    end 
    return sm1 
end 

Similarly, I compute the fledging success of the focal individual (Feco(z1)), its direct 
neighbors left (Fecom1(z0,z2)) and right (Fecop1(z0,z2), and its 2-step neighbors left 
(Fecom2(z1,z3)) and right (Fecop2(z1,z3)). Fledging success depends on the help provided 
by the 2 neighbors of an individual. 

function Feco(z1) 
    feco = zeros(nb_class) 
    for i=1:nb_class 
         
        if tab_fail[i,o] == 0 
            feco[i] = 0 
        elseif tab_fail[i,o-1] == 1 && tab_fail[i,o+1] == 1 
            feco[i] = f(0,0,0,0) 
        elseif tab_fail[i,o-2] == 0 && tab_fail[i,o-1] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o+2] == 0  
            feco[i] = f(0,2*z1,0,0) 
        elseif tab_fail[i,o-2] == 0 && tab_fail[i,o-1] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o+2] == 1  



            feco[i] = f(0,2*z1,0,0)/2+f(0,z1,0,0)/2 
        elseif tab_fail[i,o-2] == 1 && tab_fail[i,o-1] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o+2] == 1  
            feco[i] = f(0,2*z1,0,0)/4+f(0,z1,0,0)/2+f(0,0,0,0)/4 
        elseif tab_fail[i,o-2] == 0 && tab_fail[i,o-1] == 0 && 
tab_fail[i,o+1] == 1  
            feco[i] = f(0,z1,0,0) 
        elseif tab_fail[i,o-2] == 1 && tab_fail[i,o-1] == 0 && 
tab_fail[i,o+1] == 1  
            feco[i] = f(0,z1,0,0)/2+f(0,0,0,0)/2 
        elseif tab_fail[i,o-2] == 1 && tab_fail[i,o-1] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o+2] == 0 
            feco[i] = f(0,2*z1,0,0)/2+f(0,z1,0,0)/2 
        elseif tab_fail[i,o+2] == 0 && tab_fail[i,o+1] == 0 && tab_fail[i,o-
1] == 1  
            feco[i] = f(0,z1,0,0) 
        elseif tab_fail[i,o+2] == 1 && tab_fail[i,o+1] == 0 && tab_fail[i,o-
1] == 1  
            feco[i] = f(0,z1,0,0)/2+f(0,0,0,0)/2 
        else 
          feco[i] = 1000 
        end 
    end 
    return feco 
end 
 
function Fecom1(z0,z2) 
    feco = zeros(nb_class) 
    for i=1:nb_class 
        if tab_fail[i,o-1] == 0 
            feco[i] = 0 
        elseif tab_fail[i,o-2] == 1 && tab_fail[i,o] == 1 
            feco[i] = f(0,0,0,0) 
        elseif tab_fail[i,o-3] == 0 && tab_fail[i,o-2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o+1] == 0  
            feco[i] = f(z0,0,z2,0) 
        elseif tab_fail[i,o-3] == 0 && tab_fail[i,o-2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o+1] == 1  
            feco[i] = f(z0,0,z2,0)/2+f(0,0,z2,0)/2 
        elseif tab_fail[i,o-3] == 1 && tab_fail[i,o-2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o+1] == 1  
            feco[i] = f(z0,0,z2,0)/4+f(z0,0,0,0)/4+f(0,0,z2,0)/4+f(0,0,0,0)/4 
        elseif tab_fail[i,o-3] == 0 && tab_fail[i,o-2] == 0 && tab_fail[i,o] 
== 1  
            feco[i] = f(0,0,z2,0) 
        elseif tab_fail[i,o-3] == 1 && tab_fail[i,o-2] == 0 && tab_fail[i,o] 
== 1  
            feco[i] = f(0,0,z2,0)/2+f(0,0,0,0)/2 
        elseif tab_fail[i,o-3] == 1 && tab_fail[i,o-2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o+1] == 0  



            feco[i] = f(z0,0,z2,0)/2+f(z0,0,0,0)/2 
        elseif tab_fail[i,o-2] == 1 && tab_fail[i,o] == 0 && tab_fail[i,o+1] 
== 0  
            feco[i] = f(z0,0,0,0) 
        elseif tab_fail[i,o-2] == 1 && tab_fail[i,o] == 0 && tab_fail[i,o+1] 
== 1  
            feco[i] = f(z0,0,0,0)/2+f(0,0,0,0)/2 
        else 
          feco[i] = 1000 
        end 
    end 
    return feco 
end 
 
function Fecop1(z0,z2) 
    feco = zeros(nb_class) 
    for i=1:nb_class 
        if tab_fail[i,o+1] == 0 
            feco[i] = 0 
        elseif tab_fail[i,o+2] == 1 && tab_fail[i,o] == 1 
            feco[i] = f(0,0,0,0) 
        elseif tab_fail[i,o+3] == 0 && tab_fail[i,o+2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o-1] == 0  
            feco[i] = f(z0,0,z2,0) 
        elseif tab_fail[i,o+3] == 0 && tab_fail[i,o+2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o-1] == 1  
            feco[i] = f(z0,0,z2,0)/2+f(0,0,z2,0)/2 
        elseif tab_fail[i,o+3] == 1 && tab_fail[i,o+2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o-1] == 1  
            feco[i] = f(z0,0,z2,0)/4+f(z0,0,0,0)/4+f(0,0,z2,0)/4+f(0,0,0,0)/4 
        elseif tab_fail[i,o+3] == 0 && tab_fail[i,o+2] == 0 && tab_fail[i,o] 
== 1  
            feco[i] = f(0,0,z2,0) 
        elseif tab_fail[i,o+3] == 1 && tab_fail[i,o+2] == 0 && tab_fail[i,o] 
== 1  
            feco[i] = f(0,0,z2,0)/2+f(0,0,0,0)/2 
        elseif tab_fail[i,o+3] == 1 && tab_fail[i,o+2] == 0 && tab_fail[i,o] 
== 0 && tab_fail[i,o-1] == 0  
            feco[i] = f(z0,0,z2,0)/2+f(z0,0,0,0)/2 
        elseif tab_fail[i,o+2] == 1 && tab_fail[i,o] == 0 && tab_fail[i,o-1] 
== 0  
            feco[i] = f(z0,0,0,0) 
        elseif tab_fail[i,o+2] == 1 && tab_fail[i,o] == 0 && tab_fail[i,o-1] 
== 1  
            feco[i] = f(z0,0,0,0)/2+f(0,0,0,0)/2 
        else 
          feco[i] = 1000 
        end 
    end 
    return feco 



end 
 
 
function Fecop2(z1,z3) 
    feco = zeros(nb_class) 
    for i=1:nb_class 
        if tab_fail[i,o+2] == 0 
            feco[i] = 0 
        elseif tab_fail[i,o+3] == 1 && tab_fail[i,o+1] == 1 
            feco[i] = f(0,0,0,0) 
        elseif tab_fail[i,o+4] == 0 && tab_fail[i,o+3] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o] == 0  
            feco[i] = f(0,z1,0,z3) 
        elseif tab_fail[i,o+4] == 0 && tab_fail[i,o+3] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o] == 1  
            feco[i] = f(0,z1,0,z3)/2+f(0,0,0,z3)/2 
        elseif tab_fail[i,o+4] == 1 && tab_fail[i,o+3] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o] == 1  
            feco[i] = f(0,z1,0,z3)/4+f(0,z1,0,0)/4+f(0,0,0,z3)/4+f(0,0,0,0)/4 
        elseif tab_fail[i,o+4] == 0 && tab_fail[i,o+3] == 0 && 
tab_fail[i,o+1] == 1  
            feco[i] = f(0,0,0,z3) 
        elseif tab_fail[i,o+4] == 1 && tab_fail[i,o+3] == 0 && 
tab_fail[i,o+1] == 1  
            feco[i] = f(0,0,0,z3)/2+f(0,0,0,0)/2 
        elseif tab_fail[i,o+4] == 1 && tab_fail[i,o+3] == 0 && 
tab_fail[i,o+1] == 0 && tab_fail[i,o] == 0  
            feco[i] = f(0,z1,0,z3)/2+f(0,z1,0,0)/2 
        elseif tab_fail[i,o+3] == 1 && tab_fail[i,o+1] == 0 && tab_fail[i,o] 
== 0  
            feco[i] = f(0,z1,0,0) 
        elseif tab_fail[i,o+3] == 1 && tab_fail[i,o+1] == 0 && tab_fail[i,o] 
== 1  
            feco[i] = f(0,z1,0,0)/2+f(0,0,0,0)/2 
        else 
          feco[i] = 1000 
        end 
    end 
    return feco 
end 
 
function Fecom2(z1,z3) 
    feco = zeros(nb_class) 
    for i=1:nb_class 
        if tab_fail[i,o-2] == 0 
            feco[i] = 0 
        elseif tab_fail[i,o-3] == 1 && tab_fail[i,o-1] == 1 
            feco[i] = f(0,0,0,0) 
        elseif tab_fail[i,o-4] == 0 && tab_fail[i,o-3] == 0 && tab_fail[i,o-
1] == 0 && tab_fail[i,o] == 0  



            feco[i] = f(0,z1,0,z3) 
        elseif tab_fail[i,o-4] == 0 && tab_fail[i,o-3] == 0 && tab_fail[i,o-
1] == 0 && tab_fail[i,o] == 1  
            feco[i] = f(0,z1,0,z3)/2+f(0,0,0,z3)/2 
        elseif tab_fail[i,o-4] == 1 && tab_fail[i,o-3] == 0 && tab_fail[i,o-
1] == 0 && tab_fail[i,o] == 1  
            feco[i] = f(0,z1,0,z3)/4+f(0,z1,0,0)/4+f(0,0,0,z3)/4+f(0,0,0,0)/4 
        elseif tab_fail[i,o-4] == 0 && tab_fail[i,o-3] == 0 && tab_fail[i,o-
1] == 1  
            feco[i] = f(0,0,0,z3) 
        elseif tab_fail[i,o-4] == 1 && tab_fail[i,o-3] == 0 && tab_fail[i,o-
1] == 1  
            feco[i] = f(0,0,0,z3)/2+f(0,0,0,0)/2 
        elseif tab_fail[i,o-4] == 1 && tab_fail[i,o-3] == 0 && tab_fail[i,o-
1] == 0 && tab_fail[i,o] == 0  
            feco[i] = f(0,z1,0,z3)/2+f(0,z1,0,0)/2 
        elseif tab_fail[i,o-3] == 1 && tab_fail[i,o-1] == 0 && tab_fail[i,o] 
== 0  
            feco[i] = f(0,z1,0,0) 
        elseif tab_fail[i,o-3] == 1 && tab_fail[i,o-1] == 0 && tab_fail[i,o] 
== 1  
            feco[i] = f(0,z1,0,0)/2+f(0,0,0,0)/2 
        else 
          feco[i] = 1000 
        end 
    end 
    return feco 
end 

I now compute the probability for the focal individual to keep its breeding spot or that one 
of its offspring compete successfully for it (P0_f(z0,z1,z2,z3,p)). I also compute the 
probability for the offspring of the focal individual to compete successfully on the breeding 
spot on the left (P1l_f(z0,z1,z2,z3,p) and on the right (P1r_f(z0,z1,z2,z3,p)). Again, I scan all 
possible neighborhood and compute the probability to get the breeding spot and weight 
these probabilities by the probability the neighborhood happens, and finally sum all these 
probabilities. 

function P0_f(z0,z1,z2,z3,p) 
    P0 = 0 
    for i in range(1,nb_class) 
        P0 += Proba(p)[i]*(So(z0)[i]+(1-So(z0)[i])*(1-d-u)*Feco(z1)[i]/((1-d-
u)*Feco(z1)[i]+ d/2*(1-c)*(Fecom1(z0,z2)[i]+Fecop1(z0,z2)[i])+u*(1-
c)*f(0,0,0,0))) 
    end 
   return P0  
end 
 
function P1l_f(z0,z1,z2,z3,p) 
    P1 = 0 



    for i in range(1,nb_class) 
        P1 += Proba(p)[i]*((1-Sm1(z1)[i])*d/2*(1-c)*Feco(z1)[i]/(d/2*(1-
c)*Feco(z1)[i]+(1-d-u)*Fecom1(z0,z2)[i]+d/2*(1-c)*Fecom2(z1,z3)[i]+u*(1-
c)*f(0,0,0,0))) 
    end 
   return P1 
end 
 
function P1r_f(z0,z1,z2,z3,p) 
    P1 = 0 
    for i in range(1,nb_class) 
        P1 += Proba(p)[i]*((1-Sp1(z1)[i])*d/2*(1-c)*Feco(z1)[i]/(d/2*(1-
c)*Feco(z1)[i]+(1-d-u)*Fecop1(z0,z2)[i]+d/2*(1-c)*Fecop2(z1,z3)[i]+u*(1-
c)*f(0,0,0,0))) 
    end 
   return P1 
end 
 
function P1_f(z0,z1,z2,z3,p) 
    P1 = 0 
    for i in range(1,nb_class) 
        P1 += Proba(p)[i]*((1-Sp1(z1)[i])*d/2*(1-c)*Feco(z1)[i]/(d/2*(1-
c)*Feco(z1)[i]+(1-d-u)*Fecop1(z0,z2)[i]+d/2*(1-c)*Fecop2(z1,z3)[i]+u*(1-
c)*f(0,0,0,0))+(1-Sm1(z1)[i])*d/2*(1-c)*Feco(z1)[i]/(d/2*(1-
c)*Feco(z1)[i]+(1-d-u)*Fecom1(z0,z2)[i]+d/2*(1-c)*Fecom2(z1,z3)[i]+u*(1-
c)*f(0,0,0,0)))/2 
    end 
   return P1 
end 
function Pinf_f(z1,p) 
    Pinf = 0 
    for i in range(1,nb_class) 
        Pinf += (1-p)*u*(1-c)*Feco(z1)[i]*(1-s1)/(u*(1-c)*Feco(z1)[i]+(1-d-
u)*f(0,0,0,0)+d*(1-c)*f(0,0,0,0)*(1-p)+u*(1-c)*f(0,0,0,0))+p*u*(1-
c)*Feco(z1)[i]*(1-s0)/(u*(1-c)*Feco(z1)[i]+d*(1-c)*f(0,0,0,0)*(1-p)+u*(1-
c)*f(0,0,0,0)) 
    end 
    return Pinf 
end 

As in the survival case, I can compute the matrix used to compute the coefficients of 
consanguinity r_i by using the expression of the main text. 

A_t(z0,z1,z2,z3,p) = ((P1l_f(z0,z1,z2,z3,p)+P1r_f(z0,z1,z2,z3,p))/2)^2 
B(z0,z1,z2,z3,p) = 
2*P0_f(z0,z1,z2,z3,p)*(P1l_f(z0,z1,z2,z3,p)+P1r_f(z0,z1,z2,z3,p))/2 
Cm(z0,z1,z2,z3,p) = 
P0_f(z0,z1,z2,z3,p)^2+2*((P1l_f(z0,z1,z2,z3,p)+P1r_f(z0,z1,z2,z3,p))/2)^2 
 
L(z0,z1,z2,z3,p) = 1/A_t(z0,z1,z2,z3,p)*[-B(z0,z1,z2,z3,p) (1-



Cm(z0,z1,z2,z3,p)) -B(z0,z1,z2,z3,p) -A_t(z0,z1,z2,z3,p); A_t(z0,z1,z2,z3,p) 
0 0 0; 0 A_t(z0,z1,z2,z3,p) 0 0; 0 0 A_t(z0,z1,z2,z3,p) 0] 

Now I compute the coefficients of consanguinity using the same method as in the survival 
case 

function r(p) 
    lambda = eigvals(L(0,0,0,0,p)) 
    l1, l2 = lambda[abs.(real.((lambda))) .<1] 
     
    cc = (l2-l2*l1^2)/(l2^2*l1-l2*l1^2+l2-l1) 
    dd = 1-cc 
    r1 = cc*l2+dd*l1 
    r2 = cc*l2^2+dd*l1^2 
    r3 = cc*l2^3+dd*l1^3 
    return r1,r2,r3 
end 

Now I compute the neighbor-modulated fitness change using the same method as in the 
survival case. 

function dw(p) 
    h = 1e-3 
    dW0 = (P0_f(h,0,0,0,p)+2*P1_f(h,0,0,0,p)-P0_f(0,0,0,0,p)-
2*P1_f(0,0,0,0,p))/h 
    dW1 = (P0_f(0,h,0,0,p)+2*P1_f(0,h,0,0,p)+Pinf_f(h,p)-P0_f(0,0,0,0,p)-
2*P1_f(0,0,0,0,p)-Pinf_f(0,p))/h 
    dW2 = (P0_f(0,0,h,0,p)+2*P1_f(0,0,h,0,p)-P0_f(0,0,0,0,p)-
2*P1_f(0,0,0,0,p))/h 
    dW3 = (P0_f(0,0,0,h,p)+2*P1_f(0,0,0,h,p)-P0_f(0,0,0,0,p)-
2*P1_f(0,0,0,0,p))/h   
    r1,r2,r3 = r(p) 
 
    dW = dW0+r1*dW1+r2*dW2+r3*dW3 
return dW 
end 
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