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Abstract

The implications of understanding fault networks as ergodic systems are addressed

here by using the Thirumalai-Mountain metric that identifies effective ergodic peri-

ods, when long but finite time intervals are considered. This framework was proven

to be useful in statistical seismology studies. Initially, it was established that that the

metric can be used to quantify seismicity clustering. Periods of effective ergodicity

were characterized by the occurrence of declustered seismicity. This interpretation

was implemented for synthetic and seismic data from southern California and Cana-

dian mines.

Next, methods used in the estimation of regional seismic hazard were applied

to mining induced seismicity. The interpretation of this metric as a measurement

of seismicity clustering was fundamental to the adaptation of these techniques to

mining seismicity. The latter also provided a better understanding of the mechanism

for increased efficiency of hazard assessment methods based on seismic patterns during

these ergodic periods.

In addition, this metric was employed in order to develop a robust seismic declus-

tering technique that does not depend on a large number of parameters. Optimization

methods and the Gutenberg-Richter law were used as constraints to identify clustered

events in a given dataset. This method was applied to a synthetic catalog and seis-

mic data from regions with different tectonic settings: southern California, Taiwan,

Switzerland and the Gibraltar arc. Comparison to other declustering methods applied

to the datasets did not show the same success due to their parameter dependence.
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The effects of location errors on a particular pattern-based seismic hazard as-

sessment technique was also studied. Perturbed catalogs were generated from the

southern Californian dataset by adding noise to epicenter locations. Seismicity trends

identified by the metric did not change with the increase in noise levels. A combina-

tion of the latter and the large number of small events offset the effects of location

errors in the performance of the considered method in retrospective forecasts, where

no systematic degradation was found. This indicates that these uncertainties do not

affect the technique significantly. The same occurred for smaller catalogs.

Finally, remarks on the advantages and limitation of the framework are discussed

along with suggestions of future work.

Keywords

Ergodic hypothesis, earthquake clustering, seismicity declustering, seismic hazard

assessment, mining seismicity, southern California
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Epigraphy

“Para quem está se afogando, jacaré é tronco.”

popular saying
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Chapter 1

General Introduction

One of the long-sought goals in seismology is to effectively forecast earthquakes in

order to mitigate their effects when they occur in inhabited areas. Several attempts

have been made to accomplish this goal by using different phenomena as precursory

signals for large events over the years (Kanamori, 1981; Petersen et al., 2008; Cicerone

et al., 2009), but no method is currently accepted as a standard given the complexity

of the physical processes involved in earthquake faulting. Anomalous electromagnetic

activity, changes in groundwater levels and surface deformation are a few examples of

these precursory signals. In particular, historic seismic activity has been extensively

used in different studies (Field, 2007; Wiemer et al., 2009). The Pattern Informat-

ics (PI) (Rundle et al., 2002; Tiampo et al., 2002) and the Relative Intensity (RI)

(Holliday et al., 2005) are two methods that rely on past seismicity for hazard assess-

ment: the first quantifies changes in seismicity rates whereas the second evaluates the

long-term seismic activity.

The statistical analysis of seismicity, or statistical seismology, may offer valuable

information, particularly in conjunction with the constant improvement in both the

available data and computational capacity. Empirical distributions that describe

the occurrence of earthquakes based on their magnitudes, known as the Gutenberg-

Richter (GR) law (Gutenberg and Richter, 1954), or on their time of occurrence from

a given initial time, the Omori Law (Omori, 1894), have been extensively used over

the years for seismic hazard assessment. These distributions also have been used
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as constraints for models developed to simulate the dynamics of earthquake systems

based on population growth, such as the Epidemic Type Aftershock Sequence (ETAS)

(Ogata, 1988) and the self-similar Branching Aftershock Sequence (BASS) (Holliday

et al., 2007). Here one event directly triggers other events with given spatial and

temporal distributions based upon these statistical seismology relationships. The

main goal of these approaches is to offer different tools to better understand and/or

improve results in topics such as seismic hazard assessment, seismicity clustering, and

other branches of seismology.

It has been argued that one of the main reasons for the development of statistical

seismology was to obtain a similar success to that obtained in statistical mechan-

ics, or at least to obtain improvements in our understanding of different geophysical

phenomena (Vere-Jones et al., 2005). Restricted random walks have been used to

simulate the slip distribution of earthquakes, and they reproduced the GR distribu-

tion as well as the mean slip for a given fault length (Ward, 2004). A few other

examples of the use of well-established statistical approaches applied in seismology

include the characterization of the distribution of waiting times and the locations of

events in a given region using a Lévy flight representation (Sotolongo-Costa et al.,

2000), and the study of the interoccurrence time interval between earthquakes using

a non-homogeneous Poisson process model (Shcherbakov et al., 2005).

The GR and Omori laws suggest that earthquake faulting systems may be un-

derstood in terms of Self-Organized Criticality (SOC) (Sornette and Sornette, 1989),

where the dynamics of a given system is in a critical state (Bak et al., 1987). Forecast-

ing earthquakes in this framework becomes a delicate matter, given that any small
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perturbation may trigger large events in the system. However, Chen et al. (1991) has

argued that uncertainties in self-organized critical states are weakly chaotic, meaning

that there is a gradual loss in predictability but at a much slower rate than a chaotic

system. This suggests that the ability to forecast large events in this context may

still be possible.

1.1 Background

In this section, the basic concepts behind the work presented are discussed. The

ergodic hypothesis and its applicability to real earthquake fault systems is considered.

This is a fundamental part for the entire framework here developed. Optimization

problems are introduced along with the method employed in Chapter 4.

1.1.1 Ergodic Hypothesis

The goal of statistical mechanics is to offer a framework to study systems with a large

number Np of particles. This is done by relating individual properties of particles to

measurable bulk properties of the considered system in a macroscopic level. One of

the possible definitions for the ergodic hypothesis states that, for an invariant physical

quantity f ,

lim
T→∞

1

T

∫ T

0

f(t)dt = 〈f〉 (1.1)

where the left side of (1.1) is the temporal average of f for a given particle and 〈f〉

is the ensemble average of f . This means that, over a long period of time, a single

particle of the system samples all possible configurations of the phase space uniformly.
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As it stands, the ergodic hypothesis is a perfect candidate to be used as a cor-

nerstone to the development of statistical mechanics because it offers a link between

microscopic states and macroscopic properties of a given system. A simple ensemble

average could be used to calculate the time averages of microscopic properties with

complex dynamics. However, it has been argued that (1.1) does not hold for all sce-

narios, such as hydrodynamics or electrodynamics (Balescu, 1975). This is due to the

fact that 〈Ci〉 is time-independent, which means that (1.1) is most likely only valid

for a system in equilibrium. One of the main points of debate regarding the validity

of (1.1) is that a system of particles cannot cover the entire phase space from a topo-

logical standpoint (Isihara, 1971). As a result, the use of the ergodic hypothesis in

statistical mechanics is avoided by some (Landau and Lifshitz, 1971; Balescu, 1975).

The employment of the ergodic hypothesis in the description of a physical system

should then be performed with caution. A quasi-ergodic hypothesis (Isihara, 1971)

may be considered, in which a particle does not cover all the phase space, but covers

it to the extent that (1.1) holds true. A suggestion that an ergodic framework may be

applied to earthquakes can be found in Rundle et al. (1995), where statistical prop-

erties of mean field slider block models used to describe fault systems were studied.

These models consist of mass-less blocks connected to nearest neighbors by springs

of constant KC and to a loader plate that translates at a velocity V by springs with

constant KL. In the mean field approximation, when Kc � KL, they were shown to

be characterized as systems in equilibrium if they display small fluctuations around a

fixed internal energy and enough noise is available to allow them to explore the phase

space.
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A system in equilibrium is a positive indication that the ergodic hypothesis may

be applicable but it does not guarantee it. Nevertheless, the results in Rundle et al.

(1995) suggest that the framework of ergodicity may be applicable to that slider block

model. Its properties were further examined in Ferguson et al. (1999) by employing

a metric developed by Thirumalai and Mountain (the TM metric) (Thirumalai et al.,

1989; Mountain and Thirumalai, 1989) to demonstrate that they display effective

ergodicity when V → 0 and the range of interaction increases. The limit when

V → 0 refers to a slowly-driven system.

The TM metric was originally developed to study effective ergodicity in liquids

and glasses. For a system of N particles and an observable G, the TM metric is given

by

ΩG(t) =
1

N

N∑
i=1

[gi(t)− 〈g〉]2 (1.2)

where gi = 1
t

∫ t
0
Gi(t)dt is the time average of Gi(t) until t, Gi(t) is an observable for

particle i, and 〈g〉 = 1
N

∑
i gi(t) is the average of gi over all particles i. The term

effective ergodicity relates to periods of time that are finite but long enough to ensure

that the phase space is being sampled evenly. This metric is also the spatial variance

of gi calculated for different instances of time. Effective ergodic periods are identified

when 1
ΩG(t)

∝ t, which relates the convergence of temporal means of a single particle

and the ensemble average in (1.2) to a random process (Mountain and Thirumalai,

1989).

Relating models that may describe earthquake faulting to systems in equilibrium,

or a metastable state of equilibrium, using an ergodic framework can offer valuable
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insights into the understanding of the physics of earthquakes and/or the description

of phenomena related to these natural processes. The work done in Tiampo et al.

(2003) and Tiampo et al. (2007) explore these possibilities by applying the TM metric

to earthquake systems, considering earthquakes as point-source processes and as the

physical quantity under consideration. This application has resulted in the interesting

observation of a correlation between the improvement of the performance of the PI and

the occurrence of periods of effective ergodicity (Tiampo et al., 2010). The goal of this

work is to offer a deeper understanding of the implications and advantages of studying

earthquake fault networks in terms of an ergodic dynamical system and, from this

knowledge, profit on the description of different phenomena related to earthquakes.

1.1.2 Seismicity Patterns

An important aspect of statistical seismology is the study of seismicity patterns, with

useful applications to declustering and hazard assessment. Declustering focuses on

separating the background portion of a catalog from the events that are correlated

(foreshocks, aftershocks and swarms). The first stands for the declustered seismicity

and the second is the clustered portion of the catalog. The use of the background

seismicity allows for an unbiased estimation of long-term seismic activities, and thus

a more reliable estimation of long-term seismic hazard (Wiemer et al., 2009; Petersen

et al., 2008). Several declustering methods are available (Gardner and Knopoff, 1974;

Reasenberg, 1985; Marsan and Lengliné, 2008; Zaliapin et al., 2008; Wu, 2010) and

no current standard practice is available.

It is a common practice to consider declustered seismicity as a set of events that
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can be described as a Poissonian process in time. However, there is no absolute

definition for this type of events and declustering techniques usually consider dif-

ferent features regarding the distances between hypocenters and the interoccurrence

times between events. Simple space/time windows for different mainshock magni-

tudes can be used (Gardner and Knopoff, 1974), or more elaborate criteria such as

using a time-dependent Poisson model to describe aftershocks (Reasenberg, 1985).

These methods are highly dependent on the choice of parameters and adaptive mea-

sures for their implementation to different region are required (Wiemer et al., 2009).

Non-parametric methods have been also been proposed (Baiesi and Paczuski, 2004;

Marsan and Lengliné, 2008; Zaliapin et al., 2008) to account for such limitations. The

availability of different declustering methods leads to a high variability in the estima-

tion of background seismicity that affect the long-term seismic hazard assessment in

a region (van Stiphout et al., 2011).

Regarding hazard assessment, different seismicity patterns also have been observed

prior to large earthquakes distributed worldwide: foreshocks, seismic gaps, quiescence

periods, precursory swarms and doughnut patterns (Kanamori, 1981; Mogi, 1985).

This suggests that the use of seismic patterns as precursory signals in earthquake

forecasting is feasible, and different methods have been developed (Bowman and

King, 2001; Keilis-Borok, 2002; Rundle et al., 2002). Among these is the PI method,

a technique that quantifies seismic activation or quiescence levels for a region in a

given time period compared to historical seismic activity. This method was applied

to different regions in the world for seismic hazard assessment (Chen et al., 2005;

Nanjo et al., 2005) and has also been applied to study stress shadows, regions with a
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decrease in static stress (Tiampo et al., 2006).

In most analyses using statistical seismology, earthquakes are considered point

processes that are described by their location (hypocenter), occurrence time, and

magnitude. Their results can be affected by the uncertainties related to these mea-

surements. Magnitude uncertainties have been shown to follow a Laplace distribution,

and they affected the performance of forecasts and estimations of seismic rate in a

model with simple seismicity clustering (Werner and Sornette, 2008). It has been

also shown that epicenter location uncertainties may also affect the determination of

background seismicity levels, but to a lesser extent when compared to influence of the

choice of declustering method used (van Stiphout et al., 2011). For seismic hazard

assessment methods that analyze patterns of moderate seismicity, such as the PI,

the effects of location errors should be attenuated due to the large number of events

considered and the maintenance of the seismic patterns.

1.1.3 Particle Swarm Optimization

Optimization is an important discipline in mathematics and computer science with a

broad range of applications to problems involving decision-making. It can be thought

of as an implementation of the variational principle to find the extreme value of a func-

tion, for which the Hamiltonian formalism for classical mechanics and the Fermat’s

principle are good examples (Goldstein et al., 2000). The first consists in obtaining

the equations of motion for a particle from minimizing an observable defined as ac-

tion, whereas the second states that light takes the path which requires the shortest

time when travelling form one point to another.
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There are several different methods to perform optimizations, with some inspired

by phenomena observed in nature. Genetic Algorithms (GAs) (Holland, 1992) are

an example of the latter, in which a fitness function is optimized by considering pos-

sible solutions to be individuals that evolve over generations. This fitness function

is the measurement of how good each individual is given the problem in hand. The

population of possible solutions undergoes constant changes inspired by biological

evolution such as mutation, recombination, crossover and elitism to optimize a given

fitness function. The best individual yields the optimum value of the fitness func-

tion and is considered the solution of the problem. These methods do not require

the computation of gradients but they can be computationally expensive for a large

number of parameters. They also tend to oversample probable states based upon the

selection criteria, which can be both an advantage to operate a better local search or

a disadvantage if this oversampling occurs near local minima.

The Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is a

stochastic optimization method that is based on the social behavior of animals. This

framework considers a set of possible solutions that optimizes a fitness function h to

be the position of birds in the search space. Each bird i is associated with a position

X
(t)
i = {x(t)

i1 , ..., x
(t)
ik }, where k is the number of parameters to be considered in the

optimization of h, and t is the iteration in which the system is in. The best known

position of bird i up until t is given by P
(t)
i = {p(t)

i1 , ..., p
(t)
ik } and the best known po-

sition of the entire flock up until t is given by G(t) = {g(t)
1 , ..., g

(t)
k }. Both P

(t)
i and

G(t) are determined from the values obtained for h given a set of parameters Xi(t).

Depending on the values of h sought after, a maximization (highest values of h) or
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a minimization (lowest values of h) may be performed. The update of the positions

of all birds from iteration t to t+ 1 is performed by computing v
(t+1)
ik , the velocity of

the parameter k of particle i, as:

v
(t+1)
ik = v

(t)
ik + c1rand()(p

(t)
ik − x

(t)
ik ) + c2Rand()(g

(t)
k − x

(t)
ik ) (1.3)

where rand() and Rand() are random numbers between 0 and 1, c1 and c2 are con-

stants usually set to be equal to 2. This velocity represents the update in the coor-

dinate x
(t)
ik to t+ 1. The updated position is then obtained as:

x
(t+1)
ik = x

(t)
ik + v

(t+1)
ik . (1.4)

A modified version for the PSO (Shi and Eberhart, 1998) has been proposed in

which (1.3) is re-written as

v
(t+1)
ik = wv

(t)
ik + c1rand()(p

(t)
ik − x

(t)
ik ) + c2Rand()(g

(t)
k − x

(t)
ik ). (1.5)

where w ∈ [0.9, 1.2]. The difference between the original and this modified version of

the PSO is the introduction of the parameter w in the first term of the right-side of

(1.5) that controls the local/global aspect of the search. The position updates of the

birds in (1.4) are directly proportional to w, meaning that the greater the value of

w, the farther the particle can move from iteration t to t+ 1 in the phase space and

vice-versa. This is analogous to the effects of the weight of the bird when flying, and

thus this parameter is known as the inertia factor. The second term in (1.5) is the

cognitive term for its dependence on P
(t)
i , whereas the third term is deemed a social

term for its dependence on G(t). Because of these parallels, the constants c1 and c2

are called learning factors.
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Problem Dimensions
PSO Parameters

w c1 c2

20 -0.4438 -0.2699 3.395

30 -0.6031 -0.6485 2.6475

50 -0.2256 -0.1564 3.8876

100 -0.2089 -0.0787 3.7637

Table 1.1: List of optimized parameters that were used in this work for the PSO. The problem

dimensions stand for the number of parameters in the benchmark function, w is the inertia

factor, and the parameters c1 and c2 are the learning factors. Modified and reprinted from

Pedersen (2010).

This method does not require the explicit computation of gradients or a large

number of parameters, but it can be inefficient in local searches. Improvements to

the PSO aimed at the mitigating this disadvantage have been proposed (Qin et al.,

2006; Nickabadi et al., 2010), where an adaptive w that is dependent on the number

of interactions in the PSO is employed. This ensures that a global search is executed

in the early stages of the optimization, and a local search is performed towards its

end. The improvement of the performance of the PSO was also studied by executing

optimizations on the PSO parameters themselves instead of the parameters in h to

determine their best values when fitting different benchmark functions (Pedersen,

2010). Table 1.1 displays a part of the results obtained in the previous study, where

the Problem Dimension stands for the number of parameters in h.

In Chapter 4, the modified PSO version in (1.5) and (1.4) along with the different

values of w, c1 and c2 in Table 1.1 was employed to decluster seismic catalogs to

improve the computational performance. These parameters were chosen based on
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the Problem Dimension that was the closest to the number of parameters in the

optimization. The PSO was then applied as following:

1. define the fitness function h, the number of particles to be considered, and the

range in which the parameters are allowed to vary.

2. define the optimal parameters w, c1 and c2 from Table 1.1 to be used.

3. define the initial set of X
(t∗)
i and v

(t∗)
ik for t∗ = 0 from a uniform random distri-

bution.

4. define P
(t∗)
i ← X

(t∗)
i and G(t∗) as the best X

(t∗)
i .

5. compute (1.5) and then (1.4) to obtain v
(t∗+1)
ik and then the updated X

(t∗+1)
i

6. determine if the new positions X
(t∗+1)
i perform better than the previous ones.

If so, update P
(t∗+1)
i .

7. determine if any of the new positions perform better than G(t∗). If so, update

G(t∗+1).

8. repeat items 4-6 for t∗ ← t∗ + 1 until the convergence criteria is met.

In this work, the TM metric will be used to study seismicity patterns. In Chapter

2, the physical meaning of the TM metric is analyzed when applied to earthquake

fault systems. It is shown that this metric can be used to quantify seismicity clus-

tering and that this measurement is dependent on past seismicity. The occurrence

of declustered seismicity is related to the periods of effective ergodicity, providing a
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physical interpretation for such phenomena. The understanding of this metric as a

measurement of clustering is applied to different applications to statistical seismology.

Chapter 3 consists of the analysis of seismic hazard in mines located in northern

Ontario, Canada, with two methods originally applied to regional seismicity: the PI

and the RI. The interpretation of the TM metric as a measurement of clustering was

crucial to the adaptation of both methods to a mining seismicity scale. A higher

performance of the PI was observed during periods of effective ergodicity, as noted

by previous studies on regional seismicity (Tiampo et al., 2010). This was attributed

to the declustered nature of seismicity during effective ergodic periods, allowing for

a better identification of the quiescence/activation signals that the PI is sensitive to.

The identification of effective ergodicity in these small scales show that metastable

states can be obtained when blasting activity is regular. This suggests that seismicity

in smaller scales may still maintain some features observed in regional seismicity in

particular cases.

Chapter 4 focuses on the development of a new declustering technique for seis-

micity based on the TM metric. It consists of removing events so that the remaining

catalogs display a long effective ergodic period, during which seismicity is consid-

ered declustered. The removal of events was managed by an optimization method,

the PSO. This choice was based on its simple implementation and the better perfor-

mance compared to GAs in preliminary tests. The GR distribution was used as a

constraint to constrain the particular choice of events to be removed from a given cat-

alog. The method was applied to a synthetic catalog and four regions with different

shear strain rates (Kreemer et al., 2003): southern California, Taiwan, Switzerland
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and a combination of southern Spain and northern Africa. The proposed method

performed well for all different regions with no major change in its implementation,

displaying a relative lack of sensitivity to regional tectonics.

Finally, the effects of location errors in the performance of the PI method were

analyzed in Chapter 5. The southern Californian dataset was used to generate per-

turbed catalogs with the addition of different levels σn of normally distributed random

noise to epicenter locations. No systematic degradation of the efficiency of the PI was

observed as the noise levels increased, but two isolated instances of decline in the

PI performance were identified for σn = 0.007◦ and 0.2◦. These were likely due to

the nature of the methods used to quantify the PI performance. The effects of the

total number of events was also considered by randomly removing events from the

original catalog, with no significant decrease in the performance for the PI. The TM

metric did not vary considerably from the clustering trends of the original dataset in

all cases, indicating that the clustering features remain relatively invariant.
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Chapter 2

A Simple Metric to Quantify Seismicity

Clustering1

2.1 Introduction

A simple inspection of the distribution of hypocenters of earthquakes indicates that

they do not occur randomly in space or time. Several attempts have been made

in order to better understand the cause/consequence relationship between events

(Reasenberg, 1985; Dieterich, 1994; Felzer et al., 1994; Baiesi and Paczuski, 2004;

Marsan and Lengliné, 2008; Zaliapin et al., 2008). Clusters of earthquakes are com-

monly addressed in terms of swarms, a set of events with no single predominant event,

or sequences that are highly related to a mainshock of large magnitude.

Mainshocks are often considered as stationary Poisson processes with a fixed oc-

currence rate over time (Kagan and Jackson, 1991) and the remainder of the asso-

ciated seismicity is classified as foreshock/aftershock sequences. The definition of

foreshocks and aftershocks is not absolute and the studies on seismicity clustering

mentioned previously use different criteria to identify clusters. Kanamori (1981) con-

sidered different seismic patterns that can be used as precursors to large events, in

which foreshocks are an important type, even though their occurrence is not manda-

tory prior to mainshocks. Mogi (1985) classified foreshock sequences into two types:

C and D. In the first, the seismic activity increases gradually towards the mainshock.

1Modified from Nonlinear Processes in Geophysics, 2010, 17, 293-302
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The opposite occurs in type D sequences, in which seismicity decreases towards the

mainshock.

Aftershocks are an important source of information about the mechanism of earth-

quake triggering and they have been widely studied over the years. Mendonza and

Hartzell (1988) studied the correlation between the spatial distribution of aftershocks

and the coseismic slip in faults in California. The Epidemic Type Aftershock Sequence

(ETAS) model (Ogata, 1988; Helmstetter and Sornette, 2002) was proposed to un-

derstand the occurrence of aftershocks as generated by a mainshock. Utsu (2002)

assembled a series of studies on seismicity, including findings on the spatial distri-

bution of aftershocks. Shcherbakov et al. (2005) studied the interoccurrence time

interval between aftershocks using a nonhomogeneous Poissonian model.

In this work, the TM metric will be interpreted as a simple measure of clustering.

This metric, originally developed to study liquid systems and glasses (Thirumalai

et al., 1989; Thirumalai and Mountain, 1993), was applied to earthquake simulations

(Ferguson et al., 1999) and to regional seismicity by Tiampo et al. (2003, 2007). The

result was the identification of periods of metastable equilibrium in seismic activity.

The relationship between the effective ergodic periods and certain types of seismicity

patterns was also addressed in Tiampo et al. (2010). These previous studies indicate

that clustering plays an important role in the results. The interpretation presented

here offers a clear understanding of how seismicity clustering affects the TM metric,

especially for southern California.

This article begins with a demonstration of the framework in which the TM metric

can be considered a measurement of seismicity clustering. The method is then applied
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to three different cases: synthetic data, the southern California dataset, and mining

induced seismicity. Remarks and limitations of the method are considered in the

conclusion.

2.2 The Thirumalai-Mountain Metric

The ergodic hypothesis is an important assumption for classical statistical mechanics

in order to relate micro and macro states (Farquhar, 1964; de Oliveira and Werlang,

2007). A classical definition of the ergodic hypothesis states that, for an ensemble of

particles, the time average of a property f(t) of a single particle and the ensemble

average of the same property f are related as follow

lim
T→∞

1

T

∫ T

0

f(t)dt = 〈f〉 (2.1)

where 〈f〉 is the ensemble average of f(t).

The TM metric was first developed to study the effective ergodicity in liquids and

glasses (Thirumalai et al., 1989; Thirumalai and Mountain, 1993). The same frame-

work will be used in the present work to study seismicity. For a system comprised of

N particles and an observable G, the TM metric is written as

ΩG(t) =
1

N

N∑
j=1

[gj(t)− 〈g〉]2 (2.2)

where gj is the time average of the observable G for particle j until t and 〈g〉 is the

ensemble average of gj over all particles j at time t. Equation (2.2) is simply the

spatial variance of the temporal mean of gj. Effective ergodicity arises from the fact
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that the relationship between ensemble and particle time averages are addressed for a

long but finite time interval to ensure that all the phase space is sampled with equal

likelihood, and it occurs when 1/ΩG is linear in time (Thirumalai and Mountain,

1993). If the time average of gj for a particle is the same as the ensemble average of

gj, the metric is null.

Tiampo et al. (2007) applied Eq. (2.2) to historic seismicity to identify periods of

effective ergodicity by dividing the region of interest into a mesh of N boxes. These

are considered to be the particles of the system and the cumulative number of events

per box nj was used as a proxy for the observable G: the seismic energy released.

It has been argued that out of the possible proxies available for the seismic released

energy, the number of events displays the longest correlations in time (Jimenez et al.,

2006).

Different magnitude cutoffs were considered in the search for effective ergodic

periods in southern California and it was found that the metric changes considerably

for each case (Tiampo et al., 2007). The lack of effective ergodic periods for smaller

events was hypothesized to be due to the stability of the catalog of southern California

for the lower magnitude range. The system is stationary during these periods of

effective ergodicity, meaning that the average of the studied property is constant over

the considered period, and can be considered in a state of metastable equilibrium

(Tiampo et al., 2003). Metastable equilibrium is a state that the system tends to

occupy unless a disturbance is strong enough to propel the system to a new, but

more stable, state.

Equation (2.2) can be re-written in terms of the variance of the cumulative number
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of events in each box nj(t). For simplicity, a simple translation in time is considered

so that the initial time considered t0 is set to be zero and ∆t = tf − t0 = t. The TM

metric then becomes

Ωn(t) =
1

∆t2

∑N
j (nj(t))

2

N
− 1

∆t2

(∑N
j nj(t)

N

)2

=
1

t2
(〈
nj(t)

2
〉
− 〈nj(t)〉2

)
. (2.3)

Periods in which the inverse TM metric is linear with a positive slope, 1
Ωn(t)

= t
De

are

considered to be effective ergodic and in a state of metastable equilibrium. From the

latter and Eq. (2.3), it can be seen that the variance of nj(t) is linear in time during

the effective ergodic periods. This can be interpreted as the variance of a normal

diffusion processes, and the parameter De can be regarded as a diffusion parameter

(Tiampo et al., 2007) related to the rate in which the phase space is sampled. In this

case, De = 1
Ωn(t0)

where t0 is the initial time considered.

Equation (2.3) can be examined to analyze the effects of clustering in the TM

metric. Its rightmost term is proportional to the square of the sum of cumulative

events per box. It is sensitive to variations in the total number of events in each

time step and thus it can be used to quantify temporal clustering of events. The

same cannot be said for spatial clustering: different spatial configurations of a fixed

number of hypocenters will yield the same sum of cumulative events. The left term

in the right side of Eq. (2.3) can be regarded as a more complete measurement of

clustering (refer to Appendix A).

A simpler form of the TM metric can be obtained if Σnj � N or Σnj � Σn2
j .
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Under one of these assumptions, the TM metric can be written as

Ωn(t) =
1

t2
〈
nj(t)

2
〉

(2.4)

and considering the scaling in time of the TM metric for ergodic periods,

Ωn(t) ∝ t−1

〈
nj(t)

2
〉
∝ t. (2.5)

The imposed linearity in time for the effective ergodic periods can be regarded as a

benchmark to compare the evolution of seismicity clustering in time. It is important

to stress, however, that the values obtained by the metric are non-unique. This means

that different configurations might yield the same result.

Techniques that identify seismicity pattern changes often measure variations rel-

ative to long-term averages and generally are more accurate during ergodic periods

because the spatial and temporal averages are stationary and approach the same

value. Tiampo et al. (2010) showed that a better effectiveness of the Pattern Infor-

matics (Tiampo et al., 2002; Holliday et al., 2006), a method that quantifies seismicity

changes, was achieved during effective ergodic periods. The interpretation of effec-

tive ergodic periods presented here is similar to the relationship between the time

evolution of the metric for liquids and systems in thermal equilibrium (Mountain

and Thirumalai, 1989). In this analogy, the temperature of the system is the back-

ground seismicity and noise when dealing with the cumulative number of events and

these effective ergodic periods are disrupted by the aftershock sequences from large

earthquakes.
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2.3 Results

2.3.1 Synthetic Catalog

The method was initially tested for a simple synthetic catalog comprised of 10000

recordings for different scenarios. These scenarios are generated by distributing events

both randomly and artificially clustered in space and time. Temporal and spatial

coordinates were distributed in a unity interval for simplicity. The first case consists

in a catalog comprised of 10000 events randomly displaced in space and time. A time

clustering scenario was achieved for the second case by agglomerating 600 and 1500

events of the initial 10000 for times t1 = 0.2 and t2 = 0.7 respectively. For the third

case, spatial clustering was obtained by giving the same latitudes and longitudes to

subset of 600 and 1500 events while maintaining their randomness in time. The last

case is obtained by combining the previous two scenarios into one where the clustered

subsets partially overlap to produce clusters in space, time, and both.

The initial step is to verify the feasibility of the approximation for the TM metric

illustrated in Eq. (2.5). Figure 2.1 displays both terms used to compute the full

form of the TM metric in Eq. (2.3) for all scenarios. The random and time clustered

cases are displayed in Figs. 2.1a and 2.1b respectively. In these cases, Eq. (2.5)

does not approximate the TM metric since (Σnj)
2 is not negligible compared to Σn2

j .

Figure 2.1c illustrates the scenario with spatial clustering alone and it shows that

(Σnj)
2 remains the same compared to the random catalog case in Fig. 2.1a, whereas

Σn2
j increases considerably for all t. This demonstrates that the first term does not

measure spatial clustering, as noted previously, and that the approximation in Eq.
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Figure 2.1: Plot of the two terms in Eq. (2.3) for four different cases. Figure 2.1a represents

the case with 10000 events randomly distributed in time and space, Figure 2.1b obtained from

clustering 600 and 1500 out of the 10000 events at t =0.2 and 0.7 respectively, Figure 2.1c is

obtained by clustering 600 and 1500 out of the 10000 events spatially with the same latitudes

and longitudes and Fig. 2.1d is obtained from the combination of the latter two scenarios.

(2.5) becomes feasible in the presence of spatial clustering. The same rationale can

be applied to the last scenario illustrated in Fig. 2.1d, in which temporal and spatial

clustering are considered simultaneously, to validate the applicability of Eq. (2.5). In

this case, (Σnj)
2 is the same as in Fig. 2.1b while Σn2

j increases substantially for all

t due to the spatial clustering.
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Figure 2.2: Inverse TM metric for the different scenarios described in Fig. 2.1. From the

uppermost to the lowermost solid line: random catalog, temporal clustering only, spatial

clustering only, and the combination of both temporal and spatial clustering.

Both terms from Eq. (2.3) display a non-linear behavior in Fig. 2.1a, scaling as tβ

and tα where β, α > 1. Their combination, however, results in the linear trend of the

inverse TM metric along the entire time domain observed for this case in Fig. 2.2. An

examination of Eq. (2.3) and the linearity of the inverse TM metric indicate that the

cumulative number of events per box nj evolves as a normal diffusive process during

this long effective ergodic period. Based on the interpretation of Tiampo et al. (2007),

the period in which the inverse TM metric is linear is effectively ergodic. The original

work on the TM metric in glasses and liquids relates effective ergodicity and fluids in

thermal equilibrium (Mountain and Thirumalai, 1989). Considering the cumulative

number of events per box nj as a proxy for the seismic released energy and the latter

statement, it can be inferred that effective ergodic periods result from configurations
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in which the number of events are evenly distributed over the boxes. This suggests

that these periods are characterized by non-clustered seismic activity.

Time clustering is verified from the abrupt vertical shifts of both (Σnj)
2 and Σn2

j

during the instances when the imposed agglomerations occur in Figs. 2.1b and 2.1c.

As discussed previously, both terms of Eq. (2.3) respond to the introduced temporal

clustering. Figure 2.2 shows that the effective ergodic period displayed throughout

the whole time domain for the random catalog in both time and space is disrupted

during the instances when the time clustering is introduced. In between the instances

when the temporal clustering is inserted, the system is in an effective ergodic state.

The imposed temporal clustering in the given instants t1 and t2 promotes abrupt

changes in the rates of seismic activity which translates to a sudden increase of the

TM metric during these instances. This may be interpreted as a break in the thermal

equilibrium of the system while the disruptions in the seismicity rate lasts, which

means changes of the phase space subset where the system resides.

Figure 2.1c shows that the spatial clustering alone changes the scaling of Σn2
j to

tβ
′

while maintaining the same tα scaling for (Σnj)
2 observed for the random case,

where β′ > β > α. This is not a localized effect as observed for time clustering, but

rather a global effect that is spread over the entire period considered. By assuming the

approximation for the variance of nj(t) to be (Σnj)
2 and its scaling with time shown

in Fig. 2.1c, it can be inferred that the cumulative number of events per time step

evolves in time as a super-diffusive process. The latter differs from the normal-like

diffusive behavior observed for effective ergodic periods and the result is the smooth

non-linear trend observed for the inverse TM metric of the spatially clustered case
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in Fig. 2.2. The Coso Geothermal Field in southeastern California is an example of

a region where seismicity occurs in a swarm-like manner and might display spatial

clustering with little-to-no temporal clustering (Lees, 1998).

A more realistic situation encompasses both time and space clustering. The pre-

vious individual analysis of the effects of time and space agglomeration allow for the

study of their combination and the results are also illustrated in Figs. 2.1 and 2.2.

The vertical shifts observed due to time clustering are enhanced for Σn2
j as t increases

due to the spatial clustering effects. The combination of the super-diffusive nature

of nj(t) due to spatial clustering and the change in the scanned phase space subset

generated by time clustering results in a system that is locally effectively ergodic.

The term “locally“ means that the system is effectively ergodic within the period

during which temporal clustering does not occur: whenever t 6= t1 and t 6= t2. Once

it happens, the system is reset and a different normal diffusion process takes place.

This behaviour is illustrated in Fig. 2.2: from the moment when each of the two

time clustering occurs, the inverse TM metric displays effective ergodic periods with

different diffusion coefficients.

2.3.2 Southern California

Implementing the method to synthetic catalogs offers a good foundation to under-

stand the effects of different seismicity patterns to Eqs. (2.4) and (2.5). However,

real seismicity offers a behavior which is intrinsically more complex and a deeper

understanding of the technique is required. The next step is to apply the method to

a well studied dataset: the southern Californian catalog. The spatial clustering in



33

this data allows for the application of the approximation in Eq. (2.5) as discussed

previously.

Tiampo et al. (2007) showed that events recorded from 1932 to 2006 in southern

California with magnitude M4 or greater display long effective ergodic periods that

are disrupted by large events. These periods of effective ergodicity were disrupted

by some large earthquakes, but not all. The 1952 Kern County, the 1979 Imperial

Valley and the 1992 Landers earthquakes but not the 1989 Loma Prieta disrupted

the effective ergodic period.

Figure 2.3: Plot of Eq. (2.4) for the southern California dataset from 1932 to 2006. Dash-

dot lines are linear regressions for the three effective ergodic periods from 1933 to 1951, from

1955 to 1978, and from 1980 to 1991. Upside triangles locate the years of the occurrences

of large earthquakes: the 1952 Kern County, the 1979 Imperial Valley, the 1992 Landers

and the 1999 Hector Mine.

The same set of data is used with this method to better understand the previous
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results in terms of seismicity clustering. A mesh of 0.1◦ x 0.1◦ is considered for the

region between latitudes 32◦S and 40◦S and longitudes -115◦ and -125◦. Figure 2.3

shows the plot of Eq. (2.4) for the data considered. The dashed lines identify the

large events that disrupt the effective ergodic periods: the 1952 Kern County, the 1979

Imperial Valley, the 1992 Landers, and the 1999 Hector Mine earthquakes. A vertical

jump is observed for the years in which these events occurred. The exception is the

1979 Imperial Valley event, due to its late occurrence in the year (October), so that

the bulk of the disruption occurs in the following year. It is important to stress that

no premonitory pattern can be obtained from Fig. 2.3 due to the scale of the temporal

discretization of the system: the effects of foreshocks/quiescence/aftershocks are all

combined into one when considering a yearly time-discretization for the system.

Interesting features can be observed in Fig. 2.3. The first is the constant decrease

in the amplitude of the vertical jumps as the years pass. This is attributed to the

saturation of the cumulative number of events per box over time, which makes the

effects of clustering less pronounced over the years due to the accrual of larger numbers

events over the entire region and the asymptotic behavior of Ωn → ∞ as t → ∞.

This illustrates importance of the choice of t0: the later t0 is, the larger the response

for the 1992 Landers and 1999 Hector mine earthquakes. This result also was noted

by Tiampo et al. (2007). Here, this saturation results in the method not being able

to detect the clustering due to the 1989 Loma Prieta earthquake.

The second important feature observed in Fig. 2.3 is the change in the slope of the

linear regressions obtained with a Pearson’s correlation coefficient greater than 0.97

between large events: from 1933 to 1951, from 1955 to 1978, and from 1980 to 1991.
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Figure 2.4: Distribution of events before the 1952 Kern County earthquake before the main-

shock (top left), after the mainshock (top right) and up until the mainshock since 1932

(bottom right). The approximation in Eq. (2.4) with the time of occurrence of the 1952

Kern County event as the dashed line are also plotted (bottom left).

As mentioned previously, these periods are effective ergodic and they correspond to

intervals of time in which the system displays a normal diffusive behaviour. The

different slopes indicate that these diffusive processes sample the different subsets of

the phase space at different rates. Additional work remains to determine whether this

apparent rate change is due to a sampling effect from changes (primarily increases) in

the seismic network, local and/or regional effects related to changes in the stress field

from the large events themselves combined with tectonic and geologic heterogeneities,
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Figure 2.5: Distribution of events before the 1992 Landers earthquake before the mainshock

(top left), after the mainshock (top right) and up until the mainshock since 1932 (bottom

right). The approximation in Eq. (2.4) with the time of occurrence of the 1992 Landers

event as the dashed line are also plotted (bottom left).

or some combination thereof.

Figures 2.4 to 2.6 display the distribution of the cumulative number of events

prior to, along with the number of events before and after the 1952 Kern County, the

1999 Landers and the 1989 Loma Prieta Earthquakes. The cumulative activity prior

to the 1952 Kern County event is not considerably larger than the activity following

the mainshock. As a result, the computation of Eq. (2.4) for t =1952 leads to the

considerable vertical jump observed in Fig. 2.3. The effects of the increase in the
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Figure 2.6: Distribution of events around the 1989 Loma Prieta earthquake: before the

mainshock (top left), after the mainshock (top right) and up until the mainshock since 1932

(bottom right). The approximation in Eq. (2.4) with the time of occurrence of the 1989

Loma Prieta event as the dashed line are also plotted (bottom left).

cumulative number of events per box can be seen for the 1999 Landers earthquake

illustrated in Fig. 2.5: the seismic activity after this event occurred in a region of

considerable historic activity. The 1989 Loma Prieta earthquake, as displayed in Fig.

2.6, occurred in a region where the cumulative number of events prior to 1989 was

considerably lower than the rest of the map. As a result, the clustering of seismic

activity after this mainshock was not enough to promote a large disruption in the

evaluation of Eq. (2.4). The latter can be attributed to the differences in seismic
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activity between the northern and southern California.

2.3.3 Mining Seismicity

Mining induced seismicity (MIS) represents an interesting source of information due

to the range of magnitudes that are involved: between lab controlled experiments

and crustal seismicity. It can then offer important information on the scaling laws

of seismicity and the nature of earthquake triggering. Economical factors also play

an important role and, as a result, this topic has been extensively studied (Gibowicz

and Kijko, 1994; Richardson and Jordan, 2002).

As a result, this method was also applied to MIS from two mines in Ontario,

Canada. The dataset from Kidd Creek D Mine was obtained from August 2004 to

May 2007 and it consists of 23000 event recordings. For Macassa Mine, over 10000

events were recorded from December 2004 to May 2007. A 3D version of the method

was used and different space/time configurations were tested. The outcomes displayed

similar behaviours and, in the present work, only the results from cubes with an edge

length of 10m and a time binning of 7 consecutive days are shown for both mines.

Blasting activity is the main mechanism that drives the occurrence of small earth-

quakes in mines. As a result, MIS display a bimodal nature: small events highly

clustered in time or space that are created by the blasts and larger, tectonic-like seis-

micity. Different bimodal distributions are constantly used to describe MIS (Gibowicz

and Kijko, 1994). Richardson and Jordan (2002) used a set of simple criteria based

on the space/time distance between events to identify the highly clustered blasting

related events.
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Figure 2.7: Plot of Eq. (2.4) for Kidd Creek D (solid line) and the number of events recorded

per time bin t (dashed lines).

Figure 2.8: Plot of Eq. (2.4) for Macassa mine (solid line) and the number of events

recorded per time bin t (dashed lines)
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From the results obtained so far with this method, significant variability of Eq.

(2.4) is expected. Its plot along with the seismic activity for Kidd Creek D is illus-

trated in Fig. 2.7. Frequent low-magnitude blasting activity generates most of the

clustering observed in the various discontinuities in the plot. Note the horizontal

feature in Fig. 2.7 around the period between the 100th and 140th weeks. The drop

in the seismicity rate observed in Fig. 2.7 and the change of blasting sites are the

reasons for the constant values of Eq. (2.4). The first automatically decreases the

values obtained for Eq. (2.4) whereas the second has a more substantial role in the

observed feature. As mentioned previously for the 1989 Loma Prieta earthquake,

the method is unable to detect clustering in areas with a considerably lower seismic

activity compared to the rest of the region. During the instances in which Σn2
j is

constant, the blasting activity was shifted to regions with no or low previous seismic

activity.

For Macassa Mine, the result of the method is plotted in Fig. 2.8. As indicated

for the previous mine, two plateaus in the values of Eq. (2.4) are observed and

they coincide with periods of low seismic activity. This mine displayed a completely

different blasting regime compared to Kidd Creek D: rare high energy blasts. During

the first period, around the 80th week, there was a shift in the blasting sites followed

by a stoppage in the blasting activities. The second period around the 110th week is

highlighted by a complete halt in the blasting process resulting in the sudden drop

in seismic activity, leading to a second plateau. Once again, the historic seismicity

played an important role as observed for the previous mine and southern California.
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2.4 Conclusions

The TM metric is a simple metric that was first applied to study glass and liquid

systems. Tiampo et al. (2007) showed that this metric can be used to identify pe-

riods of effective ergodicity, in which the system is considered to be in a metastable

equilibrium state as a gas in thermal equilibrium, and that seismicity clustering seems

to play an important role in this framework. These effective ergodic periods are in-

terpreted as periods of time in which the evolution of cumulative number of events

per box behave as a normal diffusive process. It is shown that the metric and the

phenomena observed in the previous work can be attributed to seismic clustering and

that, under the right assumptions, this metric can be simplified. Spatial clustering in

seismicity allows for an approximation to the metric in which the effects of clustering

in both time and space are simpler to account for.

While the determination of effective ergodic periods which ensure that spatial

and temporal averages are stationary and confident is important for seismic hazard

analysis, here we investigated the insight gained into seismicity clustering from the

behaviour of the metric under various spatial and temporal end members clustering

models. This interpretation was tested for three sets of data: synthetic, the southern

California dataset and mining induced seismicity. From the synthetic data, it was

observed that the effects of spatial and temporal clustering are of a different nature.

The first can be seen as a change in the rate that the subset of the phase space is

being browsed whereas the second is a change in the subset itself.

The implementation of this method to the southern California dataset showed
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that the disruptions in the effective ergodic periods observed in Tiampo et al. (2007)

were due to the aftershock sequences following large earthquakes. It was noticed that

these disruptions were highly dependent on the distribution of past seismicity across

the region. Large earthquakes such as the 1989 Loma Prieta did not disturb the

metric due to the generally lower seismic activity in the region.

Mining seismicity from Kidd Creek D and Macassa mines in Canada were also

tested under this interpretation of the TM metric. These mines displayed very differ-

ent blasting patterns in the periods considered: the first with frequent low-magnitude

blasts and the second with rarer larger ones. Regardless of these differences, the same

dependence on past seismicity in the analysis was verified in the datasets from both

mines. Changes in locations and rates of blasting activity induced changes in seis-

micity rates in locations with previously low activity, resulting in the constant metric

during these periods. It is the same as that which appeared to occur for the 1989

Loma Prieta event and the low seismicity rate in the surrounding local region.

Past studies concerning the application of the TM metric to seismicity have shown

that it can be used to highlight well-behaved statistical features of seismicity (Tiampo

et al., 2007, 2010). Here another interesting feature of the TM metric is examined and

it is shown that the metric provides a simple way to quantify seismicity clustering,

and can differentiate between spatial and temporal clustering, given that the region

space is chosen carefully. We also demonstrate that its simplicity comes at a cost:

the non-uniqueness of the values of the metric, in which different distributions of the

cumulative number of events in each box might yield the same score means that var-

ious spatial patterns can produce the same value over different time periods. Finally,
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ongoing studies using simple models of earthquake fault systems suggest that there

is a link between the TM results for seismicity that are both unique and more com-

plicated than originally anticipated. Future work will attempt to link the clustering

results for both historic data and models of earthquake processes.

2.5 Appendix

Consider a positive integer A written in terms of n numbers so that

A =
n∑
i

ai (2.6)

where ai are non-negative real numbers.

From (2.6),

A2 =

(
n∑
i

ai

)2

=
n∑
i

a2
i +

≥0︷ ︸︸ ︷
2

n∑
i;i 6=j

ai

(
n∑
j

aj

)
∑
i

a2
i = A2 − 2

n∑
i;i 6=j

ai

(
n∑
j

aj

)
(2.7)

The extreme values of Eq. (2.7) depend on

f(aj) =
n∑
i

(
ai

n∑
j 6=i

aj

)
(2.8)

The maximum value of Eq. (2.7) is obtained when Eq. (2.8) is null. Since aj are

non-negative integers and A is a positive integral, f(aj) = 0 ←→ aj = Aδij. This

means that one value of aj = A when j = i and the others are null, i.e. one box

contains all events and the others have no events.

The maximum of (2.8) can be obtained by using the Lagrange multiplier method
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using Eq. (2.6) as a constraint g(ai) =
∑N

i ai − A ≡ 0

∇ai (f(ai)− λg(ai)) = 0

∇ai

[
n∑

j;j 6=i

aj

(
n∑
i

ai

)]
− λ∇ai

[
N∑
i

ai − A

]
= 0 (2.9)

where λ is a Lagrange multiplier.

The evaluation of Eq. (2.9) leads to a system of n-equations

∑
j 6=i

aj = λ, ∀i ∈ [1, n] (2.10)

which results in

aj =
A

n
. (2.11)

so that
∑

j aj = A.

The result obtained in Eq. (2.11) means that Eq. (2.8) is maximized when the

values of aj are the same, i.e. for the case in which the events are evenly distributed

in the non-empty boxes. The same procedure can be used to one of the ai numbers.

It is important to stress that different sets of ai may yield the same
∑

i a
2
i .
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Chapter 3

Pattern Informatics in Mining Induced

Seismicity and its Applications to

Rockburst Hazard Assessment2

3.1 Introduction

Human activities that change the stress field of a region, such as the filling of reser-

voirs and mining activities, often lead to variations in the local or regional levels of

seismicity (Simpson, 1986). Mining seismicity provides an interesting source for a

better understanding of the nature of earthquakes. The magnitudes of these events

fill the gap between controlled experiments and regional seismicity, turning these en-

vironments into excellent laboratories to understand different properties of seismicity.

Richardson and Jordan (2002) analyzed source parameters from mining seismicity in

deep gold mines in South Africa to better understand rock failure processes, estimat-

ing the critical slip distance of “friction-dominated” events in the order of 10−4m.

One of the most important issues concerning mining seismicity is to ensure safe

work conditions in mines while maintaining high productivity through the mitigation

of rockburst hazard. Rockbursts are induced seismic events that result in damage to

excavations and become more severe as the depth of mining increases. Vallejos and

McKinnon (2010) have established that aftershock sequences in mining seismicity fol-

2resubmitted to Geophysical Journal International
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low the modified Omori’s law (Omori, 1894; Utsu, 2002) to improve the guidelines

used to establish re-entry protocols in different mines in Canada. Other examples

of the assessment of seismic hazard in mines are: the use of a model in which seis-

mic events are Poissonian in time was proposed for coal mines in Poland (Lasocki,

1990); methods based on the relation between mining activity and induced seismic-

ity (Glowacka et al., 1990); the development of a seismic hazard scale in Australian

mines (Hudyma and Potvin, 2004) and the quantification of seismic hazard by using

the cumulative Benioff strain during a time interval in Czech mines (Holub, 2007).

Most of the methods mentioned above take into account a particular region of

the mine for the hazard assessment and/or they rely on analysis of a power law

distribution of the induced seismicity. The use of power laws for mining events may

be a troublesome assumption due to its seemingly bimodal nature (Gibowicz and

Kijko, 1994; Holub, 1996; Richardson and Jordan, 2002), in which mining seismicity

can be divided into events directly related to the mining activity and events related

to local geological features. Gibowicz and Kijko (1994) classify events of the first

type as low-to-medium magnitudes with their locations close to mining sites and

local geological features, whereas the second type is comprised of events with larger

magnitudes that are located farther from mining activities. A similar classification

has been done for mining seismicity in South African gold mines by Richardson and

Jordan (2002), where events are divided into Type A and B. The first is considered

to be fracture-dominated and related to mining activity. The latter is hypothesized

to be friction-related events that result from the long-term extraction of ore rather

than mining activity.
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A series of methods to forecast regional seismicity in the intermediate-to-long

term are available and they rely on different precursory signals (Cicerone et al., 2009;

Keilis-Borok, 2005), and seismicity pattern analysis is one of these potential indicators

(Kanamori, 1981). The application of the latter to mining seismicity might then offer

valuable information regarding the nucleation of large events in mines. Eneva (1998)

applied pattern recognition methods to analyze the relationship between large and

micro earthquakes as well as their temporal distribution in mines in Ontario, Canada,

by using three parameters previously employed in the analysis of a different mine

(Eneva and Young, 1993) and synthetic regional seismic data (Eneva and Ben-Zion,

1997).

Two techniques that are used to assess seismic hazard on a regional scale are the

Pattern Informatics (Rundle et al., 2002; Tiampo et al., 2002) and Relative Intensity

(Holliday et al., 2006, 2005). Both methods use past seismicity to quantify seismic

hazard. The first quantifies temporal variations in seismicity patterns using phase

dynamics, whereas the second measures historic seismicity rates. In this study, the

application of the PI method of quantification of seismicity patterns is proposed to

mining seismicity and its results are compared to those from the RI method. These

methods are applied to seismicity from two mines in Canada: Kidd Creek D and

Macassa.

Determining the parameters to be used in both methods, such as the temporal and

spatial discretization for a mining induced seismicity scale, is a critical step. These

parameters are estimated from the Thirumalai-Mountain (TM) metric (Thirumalai

et al., 1989; Thirumalai and Mountain, 1993; Tiampo et al., 2003). With the pa-
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rameters set, the retrospective forecasts for mining seismicity are compared using a

contingency table originally used for tornado and weather forecasting and a simple

skill score called the Heidke Skill Score (Heidke, 1926).

The structure of this paper is as follows: section 3.2 describes the data used in

this study as well as both the PI and RI along with the Heidke skill score and the TM

metric. The results of these methods applied to the seismicity of the mines studied

are presented and discussed in section 3.3. Finally, the conclusions are presented in

section 3.4.

3.2 Data and Methods

3.2.1 Mining Data

The dataset for Kidd Creek D mine consists of over 23000 recordings obtained from

August 2004 to May 2007 within a volume of size 500m x 600m x 550m. These

recordings were classified as blasts, noise, seismic events and reported events, where

the latter includes events felt by mine workers, large mine tremors and rockbursts.

The monitoring system in this mine consisted of 15 uniaxial and 4 triaxial accelerom-

eters.

For Macassa mine, over 10000 events were recorded during the period from Decem-

ber 2004 to May 2007 within a volume of size 460m x 340m x 280m. The recordings

for this mine were classified as events and blasts only during the time period consid-

ered. A dense microseismic monitoring array of 66 uniaxial accelerometers was used

in this mine during the period considered.
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Figure 3.1: Histogram of blasts for Kidd Creek D (a) and Macassa (b) mines that high-

light the difference in blasting activity between the mines. The first mine has frequent

low-magnitude blasts whereas the second has rarer high-magnitude blasts.

The blasts during the time period considered for both mines were identified man-

ually or automatically. In the first, the microseismic technologist at the mine knows
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Figure 3.2: Time series of blasts for Kidd Creek D (a) and Macassa (b) mines per week.

At Kidd Creek D mine, there is always blasting activity in the period considered whereas

Macassa mine has periods in which blasting is halted.

approximately when the blasts were scheduled but exact times were not recorded in

blast notices or daily blast logs. The blasts are then manually matched to the recorded

seismicity by the examination of the waveforms. The automatic identification is per-

formed by tagging events as blasts if a specific number of events occur within a certain

time interval. Figs. 3.1 and 3.2 illustrate the distribution of magnitudes and the rate
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of occurrence of blasts for both mines, respectively.

3.2.2 The Pattern Informatics and Relative Intensity

The PI and RI methods have been used for seismic hazard estimation on a regional

scale in several different parts of the world such as central Japan (Nanjo et al., 2005),

southern California (Holliday et al., 2005; Rundle et al., 2002; Tiampo et al., 2002) and

Taiwan (Chen et al., 2005) for intermediate-to-long term hazard assessment. These

methods rely on the premise that seismicity patterns can be used as a precursor to

larger events to assess the seismic hazard in a given region (Kanamori, 1981). The

first quantifies changes in seismicity rate while the second measures the long term

seismicity in the target region. Tiampo et al. (2006) showed that the PI can be used

as a proxy to measure stress in a given region of interest.

The starting point for both techniques is to have a complete catalog of seismic

events from an initial time t0 to a final time t2. A mesh is then created to divide the

region of interest into N boxes. Time series ni(t) for the cumulative number of events

in box i at a given time unit interval, or time bin t, are then generated for each box.

The RI hazard map is created by computing the number of earthquakes ni(t0, t2)

in each box i from t0 to t2

ni(t0, t2) =

t2∑
t=t0

ni(t). (3.1)

Previous work (Rundle et al., 2002; Holliday et al., 2005) regarded (3.1) as a non-

normalized probability for the location of future events with a magnitude larger than

a certain value Mf for times t > t2. This probability can be normalized so that the
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probability is unity over the entire region

Pi =
ni(t0, t2)∑N
i=1 ni(t0, t2)

. (3.2)

The RI poses as a reasonable method for evaluation of seismic hazard based on

long-term background rates of seismicity, regardless of the simplicity of (3.2). Past

seismicity in each element of the mesh is the main signal used in this method: the

more events in the past in a certain location, the more likely events are to occur

there. However, past recordings have the same importance regardless of when they

occurred. The result is a lack of sensitivity to foreshocks and quiescence periods prior

to large magnitude events by the RI. These precursory signals are better identified

by the PI method.

The computation of a PI hazard map requires a series of steps. Initially, a reference

time t1 ∈ [t0, t2] is chosen and the time interval ∆t = t2 − t1 is set as a standard.

Seismicity patterns in a period from a time base tb to t1 are then compared to ∆t.

The seismic intensity in a box i from tb to t is the average number of events per unit

time and is written as

Ii(tb, t) =
ni(tb, t)

t− tb + 1
. (3.3)

Seismic intensities are normalized for comparison purposes between different time

intervals. This is done by subtracting the average of Ii, µ, over all boxes and dividing

the result by the variance, σ

Îi(tb, t) =
Ii(tb, t)− µ

σ
. (3.4)

Equation (3.4) is evaluated for tb and the measurement of anomalous seismicity
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in box i, ∆Ii(tb, t1, t2), during ∆t = t2 − t1 considering the period from tb to t2 is

∆Ii(tb, t1, t2) = Îi(tb, t2)− Îi(tb, t1). (3.5)

Summing (3.5) over all possible values of tb reduces random variability of the

measurement of anomalous seismicity. The square of this sum is proportional to the

probability Pi of a future event with magnitude greater than Mf in box i during the

period from t2 to t2 + ∆t:

Pi ∝

(∑
tb

∆Ii(tb, t1, t2)

)2

. (3.6)

Equation (3.6) offers a comparison between the seismic activity from t1 until t2 and

all different time intervals between tb and t1. It is important to emphasize that

the anomalous seismicity quantified by equation (3.6) is related to activation and

quiescence periods, which can be related to seismicity clustering. The first stands for

an increase in seismic activity (clustering) whereas the second characterizes a decrease

in seismic activity in the time interval considered.

Equations (3.2) and (3.6) provide a set of scores for each box i that can be nor-

malized and, based on a decision threshold D, a binary forecast can be issued for the

period from t2 to t2 + ∆t for both the PI and the RI. Locations with a score greater

than D are considered to be hotspots in which it is hypothesized that events with

magnitude greater than Mf are most likely to occur.

3.2.3 The Heidke Skill Score

The results from binary-type forecasts can be represented in contingency tables (Table

3.1), where a, b, c and d represent correct forecasts, false alarms, misses and correct
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negatives respectively. The efficiency of forecasting methods can be measured by

means of tests called Skill Scores (SS). These tests quantify the improvement of a

given forecast over a standard reference one, and thus can evaluate their performance.

They rely on the choice of the reference forecast and are intrinsically incomplete

(Woodcock, 1976; Wilks, 1995).

The broadness of these tests can be seen in the literature. Shcherbakov et al.

(2010) used the Pierce Skill Score (PSS) to quantify the efficiency of their method to

obtain hotspots for large earthquakes worldwide. Comparisons showing that the PI

outperforms the RI have been made using Relative Operating Characteristic diagrams

(ROC) (Chen et al., 2005; Holliday et al., 2005). The comparison between the PI and

RI using Molchan diagrams (Zechar and Jordan, 2008) establish that there is not a

significant gain when using the PI for southern California.

The quantification of a SS can be made in terms of a ratio that uses a particular

measure of accuracy of a forecast method, A, and the reference forecast, Aref. It is

given by

SS =
A− Aref

Aperf − Aref
(3.7)

where Aperf is the value of accuracy for a perfect forecast.

One of the most used tests in atmospheric sciences is the Heidke Skill Score (HSS)

(Heidke, 1926), which uses the hit rates, Ph = a/n and Pm = d/n, of a forecast and

a random one. It offers a straightforward comparison between the forecast method

of interest and a random one. Considering table 3.1 and the total number of events
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Observed

yes no

Forecasts
yes a b

no c d

Table 3.1: Example of a contingency table: a, b, c and d represent correct forecasts, false

alarms, misses and correct negatives respectively.

n = a + b + c + d, the marginal probability of obtaining a “yes” forecast and “yes”

observation are Pyf = (a + b)/n and Pyo = (a + c)/n. The probability of a correct

forecast by chance is then Pyr = PyfPyo = (a + b)(a + c)/n2. The same rationale

can be made to conclude that the probability of a correct “no” forecast to be Pnr =

(b+ d)(c+ d)/n2. Thus A = Ph + Pm = (a+ d)/n, Aref = Pyr + Pnr, Aperf = 1, and

applying these to equation (3.7), the HSS is given by

HSS =
(a+ d)/n− Pyr − Pnr

1− Pyr − Pnr

=
2(ad− bc)

(a+ c)(c+ d) + (a+ b)(b+ d)
. (3.8)

Note that a perfect and a random forecast yield HSS = 1 and HSS = 0, respectively.

A negative HSS means that the forecast performs worse than a random guess.

In this case, the HSS is chosen over the PSS due to the scarcity of large magnitude

events in the mining catalog and the asymptotic behavior of the latter for a small

number of forecasts. Using the notation from Table 3.1, the Pierce skill score (PSS)

is written as

PSS =
a

a+ c
− b

b+ d
. (3.9)
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In this case, the number of cubes in the 3D mesh is considerably larger than the

number of large events. The number of correct negatives (d) becomes too large and

equation (3.9) will tend towards PSS = a
a+c

, the probability of detection of the

method. To obtain a perfect PPS in this context, an alarm should be issued for

all elements of the mesh. It is clear, therefore, that the PSS can be biased in this

framework and the HSS is a more accurate measure of forecast skill here.

3.2.4 The Thirumalai-Mountain Metric

The ergodic hypothesis offers an interesting way for classical statistical mechanics

to relate micro and macro states (Farquhar, 1964; de Oliveira and Werlang, 2007).

The Thirumalai-Mountain (TM) metric was first developed to study the effective

ergodicity in liquids and glasses (Thirumalai et al., 1989; Thirumalai and Mountain,

1993). In its original form, the TM metric is given as

ΩG(t) =
1

N

N∑
j=1

[gj(t)− ḡ]2 (3.10)

where gj is the time average of an observable for box j until t and ḡ is the average

of gj over all boxes. Equation (3.10) can be interpreted as the spatial variance of the

temporal mean of the observable gj(t).

Effective ergodicity refers to the relationship between both ensemble and particle

time averages for long but finite time intervals. They occur in periods of time when

the inverse TM metric is linear in time with a positive slope, 1
ΩG(t)

= t
De

. In the latter

relation, De = 1
ΩG(t0)

is a diffusion parameter (Tiampo et al., 2003, 2007) and t0 is

the initial time considered.
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Tiampo et al. (2007) applied this metric to regional seismicity to identify periods

of effective ergodicity by using the cumulative number of events in each box nj(t) as

a proxy for the observable gj(t), the seismic energy released. Because stationarity is

a necessary condition for ergodicity, during periods of effective ergodicity, the spatial

average is constant and approaches the temporal average. The system is in a state

of metastable equilibrium and because the spatial and temporal moments become

constant in this case, and techniques that identify seismicity pattern changes such as

the PI are more accurate and effective (Tiampo et al., 2010).

In this context, equation (3.10) can be re-written in terms of the variance of the

cumulative number of events in each box nj(t). The TM metric can be written as

ΩG(t) =
1

t2

∑N
j (nj(t))

2

N
− 1

t2

(∑N
j nj(t)

N

)2

=
1

t2
(〈
nj(t)

2
〉
− 〈nj(t)〉2

)
. (3.11)

Equation (3.11) shows that the TM metric is proportional to the variance nj(t).

Cho et al. (2010) considered the latter expression to interpret the time evolution of

the TM metric as a normal diffusive process during effective ergodic periods. This

led to the conclusion that the metric is sensitive to seismicity clustering in both space

and time and that effective ergodic periods represent intervals of time in which there

is no clustering.

3.3 The PI in mining seismicity

The application of the PI to mining seismicity should be performed with caution

given the fact that the latter is not driven with a constant driving rate as regional
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scale seismicity usually is. However, an examination of equations (3.5) and (3.6)

indicate that the PI quantifies anomalous seismic activity in a given box i during

a time interval ∆t compared to the historical seismicity. Tiampo et al. (2006) also

compared this measurement of anomalous seismicity to a proxy of the change of

the underlying stress in different parts of California. In the current framework, the

application of the PI in mining seismicity should then be considered strictly in terms

of the quantification of seismicity anomalies initially and its role as precursory signal

for larger seismic events in mines.

The implementation of the PI and RI methods to mining induced seismicity de-

pends on a series of parameters that are known for regional seismicity. Moulik (2009)

dealt with the estimation for the PI in a regional scale by searching for the set of

parameters that yield the optimal value of the Pierce’s Skill Score in retrospective

forecasts. It is important to notice that the procedure followed in the latter study is

not based on a deterministic approach to obtain the desired parameters.

Establishing these parameters for mining seismicity is achieved by a different

means to ensure a physical explanation for particular choices, and the TM metric

plays an important role here. The completeness of the catalog is analyzed based

on the frequency-magnitude distribution of events in both mines. Spatial/temporal

discretization and forecast magnitudes Mf are addressed with the TM metric. Fi-

nally, different time intervals ∆t are tested using the Hedke Skill Score to evaluate

retrospective forecasts for all active boxes in the system. In this framework, a correct

forecasts is issued if a large event occurs in one of the locations identified as a hotspot

or within its vicinity as performed in Holliday et al. (2005). The latter is the boxes
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immediately around the hotspot.

3.3.1 The Magnitude of Completeness

A complete catalog is a requirement for a good performance of both the PI and

RI methods (Rundle et al., 2002; Tiampo et al., 2002). The cumulative frequency-

magnitude distribution of seismic events for both Kidd Creek D and Macassa mines

are plotted in Fig. 3.3. The estimation of the b-values was made using the method

described in Tinti and Mulargia (1985). Error estimations for the b-values reported

here are to a 98% confidence level.

Two b-values were calculated in Fig. 3.3a for Kidd Creek D mine for different cutoff

magnitudes. The lower cutoff at -1.93M yields a distribution with b = 1.22 ± 0.03

that describes well the lower-magnitude range but not the high-magnitude end. At

this end, another linear trend is dominant for a cutoff magnitude of -0.73M with

b = 1.91±0.22. Similar trends have been reported for Pyhäsalmi ore mine in Finland

(Oye et al., 2005) and gold mines in South Africa (Richardson and Jordan, 2002).

For Macassa mine, one cutoff magnitude at -1.25M was used and a distribution

with a b = 3.20 ± 0.09 was obtained and plotted in Fig. 3.3(b). The reason for the

use of a single cutoff magnitude in this mine is the clipping of the seismic waveforms

of large events that occurred far from the sensors in the mine, preventing an accurate

determination of their magnitudes. The result is a superposition in the intermediate-

to-high magnitude range of both accurately measured magnitudes and saturated ones.

The difference in the b-values obtained indicate that the seismicity in both mines is

different, as expected given the blasting regimes adopted (Figs. 3.1 and 3.2).
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Figure 3.3: Cumulative frequency-magnitude distribution of events for Kidd Creek D (a)

and Macassa (b) mines. Solid lines represent the power law.

The low b values calculated for Kidd Creek D mine suggests that the small but

frequent blasts accelerate the rupture mechanism in the region, regardless of the

wider range of blast magnitudes in Fig. 3.1(a). On the other hand, the larger but

infrequent blasts at Macassa mine seems to have triggered a large number of events

that disrupt the expected power-law behavior. Even though the recordings of these

two mines obey the Modified Omori’s Law (Vallejos and McKinnon, 2010), it still
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does not guarantees that their magnitude distributions will follow a power law.

One of the factors that contributes to the difference in the calculated b-values for

the considered mines is the distinct blast regimes adopted (Blake and Hedley, 2004).

Kidd Creek D was in development and operated with small (Fig 3.1a) but frequent

(Fig. 3.2a) blasts of an average magnitude of -0.80M, whereas large (Fig. 3.1b) and

isolated (Fig. 3.2b) blasts with an average magnitude of 0.23M were used at Macassa

mine.

The employment of tests used for regional seismicity such as the one proposed

by Wiemer and Wyss (2000) can be biased in a mining seismicity scale to determine

the minimum magnitude of completeness. The reason is the underlying assumptions

in these methods, that often consider the frequency-magnitude distribution of events

to have an exponential form. Aki (1987) used borehole data in California to show

that this assumption may be troublesome even in a regional scale. Figs. 3.3(a) and

3.3(b) clearly do not display a linear trend such as the one observed for the regional

seismicity.

The magnitude of completeness Mc in this case was then determined as the cutoff

magnitudes in Vallejos and McKinnon (2011). Events bellow the magnitude bin with

the highest number of events in a non-cumulative frequency-magnitude distribution

of the mining seismicity were discarded. This corresponds to the magnitudes in Figs.

3.3(a) and 3.3(b) where the roll-off ends. These magnitudes are Mc = −1.93M and

Mc = −1.25M for Kidd Creek D and Macassa Mine, respectively.
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3.3.2 Spatial/Temporal Discretization

The TM metric can offer important constraints to both spatial and temporal dis-

cretization of the system as well as the forecast magnitude related to the application

of the PI and RI methods to mining seismicity. Ergodicity can be crucial to classi-

cal statistical analysis of systems given the simplifications that result from it, where

time averages of a single particle are the same as the ensemble averages. The TM

metric is of great importance in the estimation of the parameters considered in this

case. However, it is important to stress that ergodicity is a critical feature frequently

needed to ensure the validation of a classical statistical study of a system, but it does

not guarantee the success of the method.

In this procedure, seismic events excluding blasts were considered for the compu-

tation of the TM metric. Both regions of interest were divided into a 3D mesh of

cubes with different edge lengths and various time increments - from 7 to 30 days - to

construct the time series of the cumulative number of events for each box i. Fig. 3.4

displays the inverse TM metric for Kidd Creek D mine using different edge lengths

and time units. The same is plotted in Fig. 3.5 for Macassa mine. All the linear

trends to define effective ergodic periods were obtained for a Pearson’s correlation

coefficient greater than 0.99.

For Kidd Creek D, long periods of effective ergodicity are observed from the 49th

to the 91th week and from 98th to the 175th week (Fig. 3.4a). The same time periods

are also effective ergodic on a monthly base, from the 12nd to 22nd month and from

the 23rd to 41st month (Fig. 3.4b). A disruption in the effective ergodic periods is
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Figure 3.4: Inverse TM metric and seismicity rates for a 3D mesh at Kidd Creek D mine

considering: 7-day time series with cube edge of 10m (a) and 30-day time series with cube

edge of 20m (b). Most features of the inverse TM metric are roughly the same for the

different space/time configurations.

observed in both cases is due to the change in seismicity rate around the 95th week

and 41st month. This change is attributed to the drop in blasting activity and their

low magnitude, as illustrated in Figs. 3.1(a) and 3.2(a) respectively.

Unlike the previous case, no long linear trend is established in Fig. 3.5 for the
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Figure 3.5: Inverse TM metric and seismicity rates for a 3D mesh at Macassa mine con-

sidering: 7-day time series with cube edge of 10m (a) and 30-day time series with cube edge

of 20m (b). Most features of the inverse TM metric are roughly the same for the different

space/time configurations.

inverse TM metric at Macassa mine regardless of the space/time configuration used.

The sudden changes of the seismicity rate at this location in both cases prevent the

system from reaching long effective ergodic periods. As observed for Kidd Creek

D, the blasting activity in this mine is a key factor for such behavior. The large-
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magnitude blasting regime implemented in this mine (Fig. 3.2b) yields the highly

clustered seismicity observed in Fig. 3.4(b). These sequences of aftershocks in mining

seismicity are clustered in time and they obey the modified Omori’s law (Vallejos and

McKinnon, 2010).

The geology of the mines may also contribute to the results obtained by the TM

metric for the mines considered. A number of sub-vertical faults cutting through the

orebody that are close enough to be influenced by the mining-induced stress changes

are located at Kidd Creek D mine. This configuration is more susceptible to smoother

stress adjustments that would lead to states of metastable equilibrium. At Macassa

mine, faults are not as pervasive as the latter and may be less likely to respond to

mining-induced stress changes. The result is a system most likely dominated by a

coarser stress adjustment and, thus less likely to establish effective ergodic periods.

The variation of the space/time configurations does not change considerably the

trends in the inverse TM metric in either mines. Based on the interpretation of

the TM metric as a quantification of seismicity clustering, this indicates that the

seismicity clustering observed in the different spatial/temporal discretizations seems

invariant. The blasting regimes adopted in each mine seem to deeply affect the

establishment of effective ergodic periods at the mines as observed in their frequency-

magnitude distributions. Given the observed invariance of the TM metric with respect

to different griding, the smallest time window of a week and spatial configuration of

10m edge cubes can be chosen for both mines for the application of the PI and RI to

mining seismicity.
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3.3.3 Forecast Magnitude

Most of the parameters needed for the implementation of the PI and RI for mining

seismicity have been determined. The magnitude of the events to be identified in

the retrospective forecasts can also be estimated by the TM metric instead of being

hypothesized as done for regional seismicity (Holliday et al., 2005). The key point to

achieve this goal is the interpretation of the TM metric as a measurement of seismicity

clustering.

Kagan and Jackson (1991) presented the idea of mainshocks to be Poisson pro-

cesses in time with a fixed rate. It is then reasonable to assume that the inverse

TM metric for the mainshocks would yield long periods of effective ergodicity for

mainshocks. With this in mind, the forecast magnitude Mf can then be estimated

by calculating the inverse TM metric for different sets of seismicity that are bounded

from a varying lower limit M∗ to the largest magnitude recorded Mmax. The scan is

performed by constantly increasing M∗ from the smallest magnitude recorded until a

value M∗∗ that yields a long effective ergodic period. This ensures that the considered

set of events is declustered in space and time while displaying larger magnitudes, and

thus M∗∗ is set to be Mf .

Fig. 3.6 displays the inverse TM metric for both mines using 10m edge cubes and

7 day time bins. The minimum of the reported events of -1.5M was used for Kidd

Creek D mine and the inverse TM metric is plotted in Fig. 3.6(a). The period of

effective ergodicity in this case is the same as the one obtained in Fig. 3.4(a) for

the complete catalog. Once again, the blasting regime during this period is the main
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Figure 3.6: Inverse TM metric for Kidd Creed D (a) and Macassa (b) mines considering

events with magnitude greater than −1.5M and −1.07M respectively. The same effective

ergodic period highlighted in Figure 3.4 is observed for Kidd Creek D mine and a new

effective ergodic period is observed for Macassa mine from the 66th onwards.
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cause for such stability. It is important to stress that events that yield linear inverse

TM metrics are not necessarily mainshocks, but they comprise a set of events of larger

magnitude that yield a system in which the cumulative number of events in each box

evolves as a normal diffusive process.

For Macassa mine, there was no reported event classification and Mf was deter-

mined by employing the method described here. Fig. 3.6(b) displays the inverse

TM metric for a cutoff magnitude of -1.07M which was chosen as Mf . A period of

effective ergodicity, not present when the complete catalog was considered, is now

observed from the 63rd week onwards. The blasting activity in this mine that con-

stantly disrupted the inverse TM metric for the entire catalog does not disrupt the

effective ergodic periods observed for events larger than -1.07M.

3.3.4 PI and RI in Mining Induced Seismicity

With the majority of the parameters for the PI and RI defined, a series of retrospective

forecasts with different final times t2 were computed to analyze the use of seismicity

patterns as a precursory signal for large events determined in the previous section

in the mines considered. Two time intervals ∆t, one of two and another of four

weeks, were considered in these retrospective forecasts for different values of t2 for

both mines. The results of the PI were then compared to the results obtained by the

RI.

The decision threshold, D, for each retrospective forecast was chosen to maximize

the Heidke score for both PI and RI forecasts. The choice of the HSS over ROC

diagrams to quantify the efficiency of the forecasts was to allow for a series of forecasts
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at different instances of time. The result is a simple and systematical comparison

between the results from the PI and RI for a set of retrospective forecasts. Figs. 3.7

and 3.8 display the maximum Heidke score for both methods considering a given t2

and each ∆t for Kidd Creek D and Macassa mines respectively. The overall trend is

a better performance of the PI for Kidd Creek D mine regardless of the time interval

∆t. The performances of the PI and RI are comparable for Macassa mine with some

instances of time where the PI performs better, in particular for ∆t = 4.

It is important to stress that the RI highlights locations based on the historical

seismic activity and it does not take into account the effects of blasts immediately

before t2. On the other hand, the PI considers such activity when choosing the ∆t

time interval prior to t2 as a training period. The plots of the maxima for the HSS

at Kidd Creek D mine in Fig. 3.7 for both values of ∆t show that the PI outperforms

the RI consistently due to the constant blasting rate in the period considered at Kidd

Creek D mine (Fig. 3.2a). The time period considered fall within the long effective

ergodic periods in Fig. 3.4(a), during which the system is in a metastable equilibrium

state as observed for regional seismicity (Tiampo et al., 2007). The requirements of

the PI of a slowly driven system are met for mining seismicity in this case.

The cumulative number of events in each box evolves as a random walk during

the effective ergodic periods (Cho et al., 2010). As a result, the occurrences of qui-

escence/activation periods are more easily identified, and the PI method is sensitive

to these particular precursory signals. The result is the overall better performance of

the PI observed in Fig. 3.7 for both values of ∆t. This is in agreement with recent

studies on the performance of the PI on a regional scale (Tiampo et al., 2010) and
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it offers a physical explanation for such behavior. Instances of poor performance of

the PI during this period, around the 105th and 126th weeks, occur when there was

a change in the blasting sites. This leads to a sudden change in seismicity patterns

that the PI cannot take into account instantaneously. Some time after the relocation

of the blasting sites, the performance of the PI increases again as expected.

Figure 3.7: Plot of the maximum values of the Heidke score for a 7-day time series with

cube edge of 10m for both PI and RI at Kidd Creek D mine for ∆t = 2 (a) and 4 weeks (b).

A magnitude forecast of -1.25M was considered in this case.



75

Figure 3.8: Plot of the maximum values of the Heidke score for a 7-day time series with

cube edge of 10m for both PI and RI at Macassa mine for ∆t = 2 (a) and 4 weeks (b). A

magnitude forecast of -1.07M was considered in this case.

For Macassa mine, the highly irregular blasting regime adopted generated strong

clustering throughout the period considered and an effective ergodic period was not

obtained (Fig. 3.5a). This uneven clustering weakens the efficiency of seismicity

patterns as a precursory signal for large events in the mine, resulting in similar per-

formances of the PI and RI for ∆t = 2 in Fig. 3.8(a). From the 74th to the 80th
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Figure 3.9: Plot of the maximum values for the Heidke score for a 7-day time series with

cube edge of 10m for both PI and RI at Kidd Creek D (a) and at Macassa (b) mine for

∆t = 4. Forecast magnitudes of -0.73M and -0.7M was considered for Kidd Creek D and

Macassa mines, respectively.

week, there was a change in the location of the majority of the blasts followed by a

period without blasting at the mine considered. This resulted in the occurrence of

seismicity in locations with no previous history of activity and a sudden decrease in

the occurrence of events altogether that resulted in the poor performance of both PI
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and RI displayed in Fig. 3.8. A change in blasting sites occurred around the 93th

week, resulting in the decrease in performance for both ∆t. For ∆t = 4, better per-

formance of the PI is observed for t2 values from 82 to 100 (Fig. 3.8b). A comparison

between Figs. 3.2(b) and 3.8 indicates that these isolated instances of poor perfor-

mance of both the PI and RI around the 110th week can be attributed to the halt

in blasting during this period. Problems in the estimation of intermediate-to-high

magnitudes due to the clipping of seismic waveforms may have influenced estima-

tion of the forecast magnitude for Macassa mine, and thus the retrospective forecasts

themselves.

The differences between the blasting regimes adopted in the mines are most likely

the cause of these divergent responses. The frequent but small blasting activity at

Kidd Creek D mine displayed in Figs. 3.1(a) and 3.2(a) seems to accelerate without

changing drastically the dynamics of the system, given how constant they were during

the period considered. This is analogous to the idea that small earthquakes are an

integral part of the dynamics that includes the triggering of earthquakes for regional

seismicity in southern California (Helmstetter, 2003). The use of large blasts (Fig.

3.1b), regardless of their lower frequency (Fig. 3.2b), seems to offset the effect of the

abundance of small events. The main issue is the high variability in blasting practice,

which does not allow for a pattern to be established. This poses as an important

issue for methods that rely on pattern recognition such as the PI, since the triggering

mechanism is affected considerably by external factors such as blasting. The result is

that the PI does not offer a considerable gain over the RI.
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A comparison between the performances of the PI and the RI for both mines

suggest that seismicity patterns can be useful for seismic hazard in mines. In partic-

ular, the PI performs better at Kidd Creek D mine and for an instance of time at

Macassa mine for ∆t = 4. The good performance of the PI for ∆t = 4 is in agreement

with previous studies on the hazard assessment in deep gold mines in South Africa

(Spottiswoode, 2010), where monthly assessment based on overall seismicity rate was

suggested.

The same scenarios were considered with higher forecast magnitudes in Fig. 3.9

for both mines and ∆t = 4. This choice was based on the changes in the linear trends

of the frequency-magnitude plots in Fig. 3.3 that occur at -0.73M and -0.7M for

Kidd Creek D and Macassa mines, respectively. The performance of the RI in Fig.

3.9(a) drops considerably compared to the performance shown in Fig.3.7(a) with the

increase of the forecast magnitude for Kidd Creek D mine, especialy after the 100th

week. The PI performance displays a similar trend to the one in Fig. 3.7(b), with the

exception of a sudden drop from the 120th to the 135th weeks and from the 150th

week onwards due to a decrease in the occurrence of events with magnitude -0.73M or

greater during these periods. For Macassa mine, the performances of both PI and RI

displayed in Fig. 3.9(b) are similar to the ones in Fig. 3.8(b). The drops of efficiency

in both methods around the 93th and 112th weeks were enhanced when the forecast

magnitude increases to -0.7M. These results corroborate the idea that the PI may

offer useful information to seismic hazard assessment in mines.
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3.4 Conclusion

The employment of the PI and RI, two intermediate-to-long term forecast methods

well established for regional seismicity, was attempted for mining induced seismicity to

analyze the applicability of seismicity patterns as precursory signal to large events in

two distinct mining environments. The catalogs of induced seismicity from the mines

considered are completely different with respect to their blasting regimes. The main

difficulty for this implementation was to determine the most appropriate parameters

to be used in the low magnitude range that encompasses seismic activity in mines. The

TM metric was of extreme importance in this task to determine the spatial/temporal

discretization of the system as well as the magnitudes of large events to be considered

in the PI and RI. As a result, the choice of parameters was made on a physical basis

rather than on an ad-hoc one.

The interpretation of the TM metric as a measurement of seismicity clustering was

crucial in this framework. During effective ergodic periods in Kidd Creek D mine,

the PI performed considerably better than the RI given the declustered nature of

seismicity. This allowed for a better identification of instances of anomalous seismic

activity at Kidd Creek D mine. The lack of an effective ergodic period at Macassa

mine showed that precursory signal is damped by the clustering generated by the

large blasts, which occurred at irregular time intervals. The PI did not perform

consistently and considerably better than the RI in this case.

The blasting regime of the mines played a crucial role in the different aspects of

mining induced seismicity that were covered. Less frequent high-magnitude blasts
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and changes in blasting sites had considerable influence on the effective ergodicity of

mining induced seismicity. These factors suppressed the establishment of a seismicity

trend long enough to improve the efficiency of the PI. Taking them into consideration

when performing a PI analysis is an important issue to be considered.
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Chapter 4

Declustering seismicity using the TM

metric3

4.1 Introduction

Clustering is an important branch in data analysis and several methods to study ag-

glomerations are available in the literature (Jain and Dubes, 1988; Hartigan, 1975). A

simple examination of the spatial and temporal distributions of regional earthquakes

show that they primarily occur along tectonic features such as faults (spatial cluster-

ing) and close in time to large events (temporal clustering). For example, the Omori

Law (Omori, 1894) is an empirical relation that describes the clustering of earthquake

aftershocks in time. Dobrovolsky et al. (1979) calculated a strain radius that delin-

eates the area where events can be related to a precursor and Utsu (2002) offers a

broad review on the spatial distribution of seismicity. Stein (1999) also incorporated

the principle of spatial clustering when associating the occurrence of triggered events

or aftershocks to regions of stress increase.

The inherent clustered nature of earthquakes has motivated several studies to un-

derstand and model seismicity. The Epidemic Type Aftershock Sequence (ETAS)

(Ogata, 1988; Helmstetter and Sornette, 2002) and the Branching Aftershock Se-

quence (BASS) (Turcotte and Holliday, 2007) are examples of techniques that model

seismic nucleation in terms of larger events that generate smaller ones. Other exam-

3submitted to Bulletin of the Seismological Society of America
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ples are the analysis of the interoccurrence times between events as a non-homogeneous

Poisson process by Shcherbakov et al. (2005) and the study of the correlation between

the locations of aftershocks and regions of coseismic slip in southern California by

Mendonza and Hartzell (1988).

Declustering data has been the subject of intensive study over the years, where

the main goal is to separate a given data set into subsets in which their elements share

similar characteristics based on a particular set of criteria. Well-known methods for

declustering are the k-means (MacQueen, 1967; Huang, 1998) and techniques based

on fuzzy c-means (Dunn, 1973; Bezdek, 1981). In the k-means technique, centroids

represent clusters that are a function of the average of a given characteristic over all

elements in a small subset. The likelihood that an element belongs to more than one

cluster is considered in the fuzzy c-means approach.

For seismicity, several attempts have been made in the past to decluster catalogs.

Gardner and Knopoff (1974) developed a declustering method for southern California

using time and space windows for different magnitude cutoffs to identify clustered

events. Events within these windows are considered clustered and removed from the

catalog. A more refined procedure was introduced by Reasenberg (1985) in which

events are analyzed in pairs and aftershock sequences are modeled as time-dependent

Poisson processes. Based on the space/time distance of the events, the pair is classified

as clustered or not. Both these methods were developed mostly for California and

are heavily dependent on the parameters used in the analysis.Zaliapin et al. (2008)

upgraded the work presented in Baiesi and Paczuski (2004), in which time-space-

magnitude distances between earthquakes are analyzed, to identify clustered and
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declustered events in a framework that is not parameter-dependent.

A method to decluster seismicity based on determining the probability of direct

and indirect aftershock triggering was proposed by Marsan and Lengliné (2008). No

a priori model is needed to perform this declustering and it was found that a cas-

cading effect for small earthquakes, in which events trigger other events indirectly,

plays an important role in the dynamics of the system. Hidden Markov models also

have been used to decluster seismicity (Wu, 2010), where the seismic activity before

and after an event is considered in order to determine if this event belongs to the

background seismicity. In this study, a different method to decluster seismicity is

proposed based on the statistical properties of the data over long time intervals. This

technique employs a concept from statistical mechanics, the Thirumalai-Mountain

(TM) metric (Thirumalai et al., 1989; Thirumalai and Mountain, 1993), as a basis

for measuring seismic clustering as deviations from the long-term ergodic averages of

the fault system (Cho et al., 2010).

In section 4.2, the TM metric and its relationship to seismicity clustering is in-

troduced. The proposed declustering method is presented in section 4.3 and applied

to a synthetic catalog, the southern California catalog, the Taiwanese catalog and a

region comprised of southern Spain and northern Africa in section 4.4. Finally, the

conclusion and final remarks are presented in section 4.5.
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4.2 The TM Metric and Clustering

The ergodic hypothesis is an important assumption in different formulations of clas-

sical statistical mechanics because it provides a simple link to relate micro and macro

states of a system (Farquhar, 1964). For a thermodynamic system, a simple definition

of the ergodic hypothesis states that

lim
T→∞

1

T

∫ T

0

f(t)dt = 〈f〉 (4.1)

where f(t) is a phase-space function and 〈f〉 is its ensemble average. This definition

means that the temporal average of f(t) of a single particle of the system is equal to

the ensemble average of f(t) for a given time t.

The original application of the TM metric was to study effective ergodicity in

liquids and glasses (Thirumalai et al., 1989). In this context, the term effective

meant that long but finite time intervals are considered in the analysis in order to

assure that the phase space is sampled evenly (Thirumalai and Mountain, 1993). For

the N -body system, the metric is written as

ΩG(t) =
1

N

N∑
i=1

[gi(t)− 〈g〉]2 (4.2)

where gi = 1
t

∫ t
0
Gi(t)dt is the time average of Gi(t) until t, Gi(t) is an observable for

particle i, N is the number of particles in the system, and 〈g〉 = 1
N

∑
i gi(t) is the

average of gi over all particles i. From these definitions, equation 4.2 can be written
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as:

ΩG(t) =
1

N

N∑
j=1

[gj(t)
2 − 2gj(t) 〈g〉+ 〈g〉2]

=

[∑
j gj(t)

2

N

]
− 2

[∑
j gj(t)

N

]
〈g〉+

∑
j 〈g〉

2

N

=
〈
g(t)2

〉
− 〈g(t)〉2

=
1

t2

[〈∫ t

0

Gj(t
′)dt′

∫ t

0

Gj(t
′′)dt′′

〉
−
〈∫ t

0

Gj(t)dt

〉2
]
. (4.3)

Equation (4.3) is simply the variance of
∫ t

0
Gj(t)dt and effective ergodic periods occur

when its inverse is linear in time with a positive slope.

Tiampo et al. (2007) employed this metric to regional seismicity by griding a

region of interest and using the cumulative number of events nj(t) in each box j

until time step t as a proxy for the released seismic energy. In this framework,∫ t
0
Gj(t

′)dt′ =
∫ t

0
Gj(t

′′)dt′′ = nj(t) and equation (4.3) becomes

ΩG(t) =
1

t2
[〈
nj(t)

2
〉
−
〈
nj(t)

2
〉]

=
1

t2
σ2. (4.4)

where σ2 = 〈nj(t)2〉 − 〈nj(t)2〉 is the variance of nj(t).

It was shown that effective ergodic periods occur and that during these periods the

system is stationary and in a state of meta-equilibrium. These states are disrupted

by large events and it was later shown that these disruptions in the TM metric during

otherwise ergodic periods were caused by seismicity clustering (Cho et al., 2010).

The latter study offers an in-depth analysis of the TM metric when applied to

earthquake systems. It employed the description of the TM metric in terms of the

variance of nj(t) to establish that 〈nj(t)2〉 is dependent on both spatial and temporal

clustering whereas 〈nj(t)〉2 is a measurement of temporal clustering only for a fixed
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number of events in a time step t. The scaling of the inverse of the metric during effec-

tive ergodic periods plays a crucial role in understanding the effects of spatiotemporal

seismicity clustering in the TM metric. During these instances of time,

〈
nj(t)

2
〉
− 〈nj(t)〉2 ∝ t. (4.5)

Equation (4.5) describes the variance of a normal diffusion process, such as a

Brownian motion. As a result, seismicity clustering can be quantified by examining

the features of σ2: if it is linear in time, seismicity is considered to be random in both

space and time; any deviations from the linear trend are the result of clustering in

space and/or time.

4.3 Declustering Method

In this framework, effective ergodic periods are considered those in which the occur-

rence of seismicity is random in both space and time, ie. it is not clustered. The

declustering of seismic catalogs using the TM metric then becomes a simple problem

once the metric is applied to a particular region: given a complete dataset, how many

events must be extracted from each box so that the TM metric displays a long effec-

tive ergodic period over a given time period? The method is straightforward and it

consists of the following steps:

1. an initial interval from a time t0 to t∗ is chosen in which relation (4.5) holds.

This trend represents an upper-limit for the seismic activity required for the

establishment of a single long effective ergodic period in the declustered catalog,
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and it is extrapolated to be used as a reference line to obtain the random portion

of seismicity.

2. events that occur in the timestep t∗ + 1 are removed so that 〈nj(t∗ + 1)2〉 −

〈nj(t∗ + 1)〉2 is the same as the value given by the reference trend obtained at

step 1.

3. with the new set of nj(t
∗+ 1), step 2 is repeated by excluding events that occur

in the next time step t∗ + 2 and so on.

The reference line can be seen as the targeted σ2 for the declustered portion of

the catalog. Determining the number of events that must be removed from boxes in

a given time step so that σ2 for the remaining events matches the value extrapolated

in the reference line is the goal. This is an optimization problem that focus on

minimizing the difference between the the variances yielded by the reference line and

the remaining events. This type of problem is not trivial and has been the subject of

extensive studies to develop effective methods to solve them. Computational efficiency

and the convergence to local extremes rather than the global extreme are the most

significant challenges of such problems.

Several methods have been used over the years to address optimization prob-

lems: neural networks (Crick, 1989; Bishop, 1995), genetic algorithms (GAs) (Hol-

land, 1992), particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Peder-

sen, 2010), dynamic programming (Bellman, 1972), among others. In this particular

study, GAs and the PSO were tested and the PSO was chosen given its superior

performance.
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The PSO technique considers a group of particles located in the targeted param-

eter space as possible solutions to the problem in hand. The location of each particle

represents the set of parameters that constitutes one single solution. The dynamics

of each particle is dictated by the best position of the particle under consideration

and the best position recorded from all the particles, resembling a gradient-based

search. The optimized version of the PSO described in Pedersen (2010) was used

in this study. In addition, boxes with three earthquakes or less were automatically

considered declustered for the synthetic seismicity in order to improve the efficiency

of the technique. A similar limit of boxes with two earthquakes was applied to the

regional seismicity for the same reason.

Once the number of events to be removed from each box is determined, a choice

must be made regarding which events to exclude from the boxes. For the TM met-

ric, events in the same box and time step are indistinguishable. This task can be

accomplished by introducing constraints on the declustering process. In this case,

the frequency-magnitude distribution of the entire region is used as the appropriate

constraint, given both its simplicity of implementation and the fact that it is an op-

portunity to include magnitude information to the method, which otherwise is not

included in this particular TM formulation. As a result, events are drawn from each

box in each time step according to an exponential probability distribution that yields

the Gutenberg-Richter distribution for the entire region, expressed as

logN(m) = a− bm, (4.6)
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where a and b are parameters and N(m) is the number of events with magnitude

greater than m.

Tinti and Mulargia (1985) define the probability density function (pdf) p(m) that

generates (4.6) as:

p(m) =


βλe−βm, if m1 ≤ m ≤ m2

0, otherwise

, (4.7)

where β = b/ log e and λ =
(
e−βm1 − e−βm2

)−1
. For each box with events to be

extracted in a timestep t, a magnitude is randomly drawn from (4.7) with m1 as

the minimum and m2 as the maximum magnitudes in the box. The event with the

closest magnitude to the one drawn is removed and the process is repeated until the

required number of events is extracted. Declustering is considered complete when σ2

is linear, where the criteria for linearity is when the Pearson’s correlation coefficient

on its linear regression is greater than 0.99.

4.4 Results

In this section, results of the proposed declustering method are presented for a syn-

thetic catalog based on the ETAS model and natural seismicity from southern Cali-

fornia, Taiwan, Switzerland and a region comprised of southern Spain and northern

Africa. These regions offer a good challenge for the proposed method given their vari-

ability in tectonic and seismic characteristics. Kreemer et al. (2003) indicates that

the first two regions undergo high shear strain rates, whereas the last two regions

display low shear strain rates.
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The proposed method was applied in the same manner to all the different catalogs

considered once the spatial/temporal discretization and a starting period was identi-

fied for a stationary seismicity rate in order to obtain the reference line. The results

were compared to two classical declustering techniques, as appropriate: Reasenberg’s

method (Reasenberg, 1985) using parameters optimized for California and a modified

Gardner-Knopoff (GK) method (Gardner and Knopoff, 1974; Wiemer et al., 2009)

for central Europe.

For the synthetic catalog, the b-value is estimated using Aki’s formulation (Aki,

1965) for continuous magnitude distributions. The estimations for southern Califor-

nia, Taiwan and Switzerland were made using the estimation in Tinti and Mulargia

(1985) to account for the binning of magnitudes. Magnitude bins of 0.01 were con-

sidered for Taiwan and southern California from 1972 onwards, whereas 0.1 bins were

considered for Switzerland and southern California prior to 1971 for the latter. Errors

in the b-value were estimated for these regions to a 98% confidence level. The b-values

for the region comprised of southern Spain and northern Africa were calculated from

least-square regressions as done by previous studies in the region (Jimenez et al.,

2006; Stich et al., 2007) and their 95% confidence level intervals were used.

To quantify whether the declustered seismicity is Poissonian in time, the coefficient

of variation (Cv) of earthquake interoccurrence time δt was applied. It is defined as

the ratio of the standard deviation of δt and its average. This approach was used

in Kagan and Jackson (1991), where a Poissonian system in time displays Cv = 1,

a quasiperiodic system yields a Cv in the range (0, 1), and a system with temporal

clustering results in Cv > 1. In this context, the computation of Cv should be
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seen as a statistical testing scheme and not a direct implication that a given dataset

is Poissonian in time or not. For the historic catalogs, the interoccurrence times

between earthquakes were calculated in days. Finally, the MATLAB toolbox ZMAP

(Wiemer, 2001) was used to implement the two classical declustering techniques, as

noted above, for every seismic datasets.

4.4.1 Synthetic Catalog

Synthetic catalogs offer controlled test subjects for any statistical seismological method.

Here the ETAS model was used to generate 27,132 events distributed in a square area

with an side length of 128 arbitrary units. A total of 17,800 were randomly displaced

in space and time, constituting the declustered portion of the catalog. No correlated

seismicity was generated in the initial portion of the catalog, in order to enable a

good estimation of the linear trend of σ2 needed in the declustering process.

A spatial mesh of 8 × 8 arbitrary units boxes and a total of 50 timesteps were

considered in order to generate the nj(t) time series. These parameters were chosen to

loosely emulate southern California regarding the number of events per box per time

unit. Figure 4.1a displays the obtained σ2 for the original synthetic catalog along

with the reference line calculated from the extrapolation of the initial trend of the

latter. The deviations of σ2 for the original catalog from a linear trend indicate the

presence of clustering in space and time as expected. Increases in seismic activity in

the entire catalog, as illustrated in Figure 4.1c, correlate well with the discontinuities

in σ2 for the entire catalog in Figure 4.1a, in particular the large discontinuity seen

at approximately t = 3800.
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Figure 4.1: Variance of nj(t) for (a) the entire catalog along with the reference line. (b)

Enlargement of the reference line and the variance of both the true declustered portion of the

catalog and the events identified as declustered by the TM method. (c) Plot of the seismicity

rates of the entire catalog, the original declustered portion and the identified declustered

seismicity.

The declustering method based on the TM metric was applied to this dataset and

the PSO determined the number of events to be removed from each box so that a

linear σ2 would be obtained. Figure 4.1b displays a closer look at the reference line

along with the variances from the 17,800 events randomly generated by the ETAS, the
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Figure 4.2: Frequency-magnitude distribution of the original synthetic dataset.

true background seismicity, and the events not removed by the PSO. The reference

line fits the σ2 of both the true background and the events not removed by the PSO

as expected. A comparison between the seismicity rates from the true background

portion of the catalog and the events that were not removed from the catalog by the

PSO is plotted in Figure 4.1c. Both portions are constant over the period considered,

as expected, and they agree reasonably well with each other.

The PSO identified a total of 9,386 clustered events from the catalog to obtain

the long effective ergodic period outlined in Figure 4.1b, meaning that 17,746 events

remained as declustered seismicity. Equation (4.7) was used to determine which events

were removed from every box and its parameters were obtained from the Gutenberg-

Richter distribution of the entire catalog illustrated in Figure 4.2. The result is a set

of two catalogs identified by the method: one of clustered and another of declustered

events. The declustered catalog yielded a Cv = 1.03, indicating that this portion of
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Figure 4.3: Frequency-magnitude distribution for the synthetic (a) clustered and (b) declus-

tered events, along with the distributions for the (c) clustered and (d) declustered events

identified by the proposed method.

the seismicity is Poissonian.

Figure 4.3 displays the Gutenberg-Richter distributions of the four catalogs con-

sidered: the true random seismicity, as defined by the original ETAS algorithm, and

the events identified as declustered by the method, along with their respective clus-

tered counterparts. The b-value obtained for the clustered seismicity of 0.889± 0.022
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Figure 4.4: Spatial distribution of the (a) original clustered synthetic seismicity along with

the (b) identified clustered seismicity by the TM metric.

is close to the original regional value for b of 0.901 ± 0.013. This is expected given

the use of (4.7) as a criteria to extract events from each box, which introduces a

magnitude dependence to the method as a constraint that the clustered seismicity is

imposed to. The lack of such dependence might lead to unrealistic results. For ex-

ample, Wu (2010) presented a declustering method based on a hidden Markov model

that does not take into account the magnitudes of events, and the clustered seismicity
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identified in Japan yielded a low b-value around 0.68.

The main difference in the distributions plotted in Figures 4.3a and 4.3c occurs

for events with magnitudes between 4 and 5. More events in this range are observed

for the clustered seismicity identified by the TM metric, leading to a higher mean

magnitude in this case. Aki’s estimation of the b-value is inversely proportional to

the mean magnitude of the events, and thus results in a lower estimation for the

clustered seismicity as identified by the TM metric. The converse explains the higher

estimation of the b-value for the declustered seismicity compared to the true declus-

tered seismicity: a lower mean magnitude for the declustered seismicity identified by

the TM metric yields a higher estimation of the b-value. In part this also is a result

of the fact that the TM method is identifying moderate-sized events as clustered be-

cause they generate aftershocks, while the original ETAS algorithm designates them

as part of the random process of initial background earthquake generation. In actu-

ality, these events are related to the clustered nature of seismicity and the algorithm

is designating them correctly in this context.

The spatial distribution of the clustered catalog as identified by this technique

is compared to the original clustered portions of the synthetic catalog in Figures

4.4a and 4.4b, respectively. They display the same features for the true and derived

clustered portions of the catalog and their differences arise from the inability to

distinguish between events in the same box and the simplicity of the criteria used to

extract events that only takes into account their magnitudes. The method presented

here consists of two decision-making processes: establishing how many events must

be removed from each box so that σ2 becomes linear in time using a minimization
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method, the PSO in this case, and then choosing which events from each box to be

removed using a given criteria, equation (4.7) in this case. The PSO allows for up to

7,990 of the 9,332 true clustered events to be identified, meaning that 1,396 of the

events were wrongly assigned for removal by the PSO, but the use of the probabilistic

criteria (4.7) yielded the correct identification of 7,272 clustered events. The difference

was the higher number of events with magnitudes between 4M and 5M and the lower

number of events 5M or greater identified as clustered when comparing Figures 4.3a

and 4.3c.

The proposed declustering method was applied to 100 different synthetic catalogs

comprised of 20,000 events each in order to better understand its efficiency. The

PSO allowed for up to 91% of the true clustered events to be correctly identified on

average, meaning that 9% of the events were poorly assigned for removal by the PSO.

However, the employment of the probabilistic criteria (4.7) yielded a lower number of

correct clustered events identified, or 84% on average. The efficiency of the proposed

method depends on the criteria in (4.7), but the trade-off between its simplicity and

the efficiency loss was considered advantageous in this case.

4.4.2 Southern California

Southern California is an ideal candidate for the declustering method presented given

the quality of the available data and the past declustering studies done in the region

(Gardner and Knopoff, 1974; Reasenberg, 1985; Zaliapin et al., 2008; Wang et al.,

2010). A similar dataset to the one used in Tiampo et al. (2007) was subjected to the

TM declustering technique and the results were qualitatively compared to the ones
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obtained by Reasenberg’s declustering method. The parameters used in Reasenberg’s

method were the same listed in Helmstetter et al. (2006) to a similar region in southern

California. They were obtained so that the declustered portion of the seismicity

was characterized as a Poisson process. The dataset considered was compiled from

both the Advanced National Seismic System (ANSS) and Northern California Seismic

Network (NCSN) and it consists of events 3M or greater recorded between 1933 and

2006, distributed between latitudes 32◦ and 40◦ north and longitudes 115◦ and 125◦

west.

Figure 4.5a illustrates the spatial distribution of events in the region of interest

with magnitude 3M or greater along with their rate of occurrence on an yearly base.

This is the same region of interest of previous studies on seismicity patterns (Rundle

et al., 2002; Tiampo et al., 2002) that required a complete catalog. It is clear from

Figure 4.5b that the number of events recorded since the 1970’s is considerably higher

than previously. Thus, the dataset was divided into events recorded before 1971 and

events recorded from 1972 onwards and the declustering using the TM metric was

performed separately. This division was chosen to avoid the clustered seismicity from

the 1971 San Fernando earthquake in the estimation of the reference line for the

second time period considered.

In both cases, the region was divided into a mesh of 0.1◦ × 0.1◦ boxes and yearly

time steps were considered to construct the time series nj(t), as in Tiampo et al.

(2007). The different variances of nj(t) are plotted in Figure 4.6a and 4.6b for record-

ings before and after 1971, respectively. The discontinuities in the variances of nj(t)

for the entire catalog in 1952, 1971, 1979, 1992 and 1999 agree with the occurrence
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Figure 4.5: (a) Spatial distribution and (b) rate of occurrence of events recorded with mag-

nitudes 3M or greater from 1933 to 2006 in southern California.

of large earthquakes in the region as expected: the 1952 Kern County, the 1971 San

Fernando, the 1979 Imperial Valley, the 1992 Landers and the 1999 Hector Mine

earthquakes. Other deviations from the linear trend are observed in the 1940’s are

likely due to the initiation of recordings in the northwest portion of the region.

The proposed method was applied to these two time periods and the variances of

nj(t) for the declustered seismicity did collapse to the reference lines in both cases, as
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Figure 4.6: Plot of the reference line to perform the declustering and the variances of nj(t)

for the original catalog and the declustered seismicity obtained from the TM and Reasenberg’s

method from southern California for (a) events recorded from 1933 to 1971 and (b) an

enlargement of the variances for the declustered catalogs. The same plots for events recorded

in the same region from 1972 onwards are shown in (c) and (d), respectively.

indicated in Figures 4.6a for 1933 to 1971 and 4.6c for 1972 to 2006. A closer look at

the variances of the declustered events obtained by Reasenberg’s method in Figures

4.6b and 4.6d show that some fluctuations are still present in both time periods that

make σ2 not quite linear, indicating that some clustering is still present. Jones and

Hauksson (1997) employed Reasenberg’s declustering method to a smaller region in
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Figure 4.7: Frequency-magnitude distribution for the entire catalog of southern California

for (a) the entire period, (b) 1933-1971 and (c) 1972-2006.

southern California and temporal clusters in the declustered catalog were observed.

It was argued that this temporal clustering was due to the existence of seismic cycles.

A vertical offset is observed between σ2 of the declustered catalogs obtained by the

proposed and Reasenberg’s methods in Figures 4.6b and 4.6d. The reason is the need

to use the initial portion of recorded seismicity to determine the reference line in the
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Figure 4.8: Spatial distribution of (a) clustered and (b) declustered events identified by the

TM metric along with (c) clustered and (d) declustered events identified by Reasenberg’s

method for events recorded in the 1940-1971 period.

method presented here. As a result, the declustering takes place during the period in

which the linear trend of σ2 is extrapolated, in this case 1940-1971 and 1975-2006. In

Reasenberg’s method, no training period is needed and hence the observed vertical

shift. In addition, the primary departure from a linear trend observed in Figure 4.6d

in the late 1970’s may be attributed to the changes in the network coverage, indicating

that more events are being classified as declustered since the 1980’s.
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Figure 4.9: Spatial distribution of (a) clustered and (b) declustered events identified by the

TM metric along with (c) clustered and (d) declustered events identified by Reasenberg’s

method for events recorded in the 1975-2006 period.

Given the division of the original catalog motivated by the change in the seismic

network coverage of the region, the removal of events was performed accordingly.

Figure 4.7a displays the frequency-magnitude distribution for the entire catalog and

the b-values for the probability distribution in equation (4.7) were calculated for

the distributions in Figures 4.7b and 4.7c for events recorded before and after 1971.

The two sets of results were then concatenated into a single representation so that
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Figure 4.10: Plot of seismicity rates for the (a) declustered and (b) clustered seismicity

identified by the method based on the TM metric and Reasenberg’s algorithm for the period

1940-1971. The same plots for the identified (c) declustered and (d) clustered events for the

1975-2006 period from both methods.

qualitative comparisons with the results obtained from Reasenberg’s method could be

made. In order for these comparisons to be unbiased, events in the periods 1933-1939

and 1972-1975 that were used to extrapolate σ2 were excluded from all subsets of

events. The performance of both methods was very similar overall, especially for the
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Figure 4.11: Frequency-magnitude distribution for (a) all clustered events identified by the

TM method from 1940 until 1971 and 1975 until 2006 and (b) aftershock sequences extracted

from the latter for the 1992 Landers earthquake. A square area of 1.25◦ × 1.25◦ and events

recorded in the year of the mainshock and the following year were considered.

period from 1975 until 2005 when the coverage of the seismic network was improved.

The spatial distribution of epicenters of the clustered and declustered seismicity

identified by both methods from 1940 to 1971 and 1975 onwards are plotted in Figures

4.8 and 4.9, respectively. A total number of clustered events of 11,318 and 11,154 were
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identified by the TM and Reasenberg’s methods for 1940-1971 and 1975 onwards,

respectively. An overall good agreement between the distribution of the clustered

events is observed in Figures 4.8a and 4.8c for the first considered period. The main

difference is in the distribution of clustered events with magnitude 5M or greater

in the northern and southern parts of the map, which might be attributed to the

different seismicity rate in northern California and the poorer network coverage in

the period. The TM method is dependent on a homogeneous catalog and a uniform

declustered seismicity rate. In Figures 4.8 and 4.9 the TM declustering method

appears to isolate clusters more effectively in space, with fewer random background

events included in the clustered portion. With the improvement of coverage in the

1970s, the distribution of clustered seismicity identified by both methods becomes

very similar, even for events with magnitudes greater than or equal to 5M with some

isolated exceptions around the considered region, as illustrated in Figures 4.9a and

4.9c for the 1975-2006 period. These differences in the distribution of large evens

may be attributed to the probabilistic criteria (4.7) employed in the TM declustering

method.

The calculated Cv for the declustered portions illustrated in Figures 4.8 and 4.9

were 1.30 and 1.16 for the TM and Reasenberg’s methods for the 1940-1971 period,

respectively. For the 1975-2006 period, the declustered catalogs yielded Cv values of

1.27 for the TM method and 1.10 for Reasenberg’s. These differences were expected

given the design of both methods: the parameters used in Reasenberg’s method were

optimized to yield a Poissonian declustered catalog, whereas no consideration regard-

ing the interoccurrence times between declustered events is made in the proposed
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method.

Figure 4.10 displays the seismicity rates of the clustered and declustered portions

identified by both methods for the periods 1940-1971 and 1975-2006. Throughout

1940-1971 and the initial years of 1975-2006, the TM method consistently identifies

more declustered events, as illustrated in Figures 4.10a and 4.10c. This trend changes

from the early 1980s onwards and coincides with the increase in σ2 for Reasenberg’s

declustered catalog, as expected and observed in Figure 4.6d. Figure 4.10b shows

that a low number of clustered events is identified by both methods from the mid

1950s to the mid 1960s, suggesting the existence of a period of low seismic activity

in the region. This drop in seismic activity was observed by Jones and Hauksson

(1997) from August, 1952 until July, 1969 for a smaller region in southern California.

Only 33 large events with magnitude 5M or greater were recorded during the periods

1955-1964. This is less than the average number of large events of 68 per 10 years

recorded from 1935 to 1954 and from 1975 to 1994.

It is important to stress that any conclusions regarding the temporal clustering

during this period should be evaluated with caution. Network coverage plays an

important role in the number of aftershocks recorded in the 1950s and 1960s. The

periods 1965-1974 and 1995-2005 can be used as example to illustrate this concern.

In the first, 29 events with magnitude 5M or greater but the TM declustering method

identified more than 500 in its first-half alone as illustrated in Figure 4.10b. From

1995 until 2005, a similar small number of large earthquakes was recorded in the

region: 32 events. However, far more aftershocks were recorded during this 10-year

period. The year 1999 alone displayed around 800 clustered events identified by both
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methods due to the 1999 Hector Mine earthquake (Figure 4.10d).

It is possible to extend the investigation of individual aftershock sequences identi-

fied by the TM metric. Figure 4.11 displays the frequency-magnitude distribution of

the clustered seismicity and the aftershock sequences of the 1992 Landers earthquake

identified by the proposed TM method. For this sequence, seismicity recorded within

a square region of 1.25◦ × 1.25◦ around the mainshock was used as in Shcherbakov

et al. (2005) for events recorded in 1992 and 1993. The frequency-magnitude dis-

tribution shown in Figure 4.11 for the 1992 Landers aftershock sequence appears to

display a characteristic distribution (Schwartz and Coppersmith, 1984), because all

events in the boxes where the mainshock occurred were classified as a clustered and

were removed from the declustered dataset. The b-value obtained for this sequence is

0.97± 0.05, which is higher than the value of 0.950± 0.021 for the clustered events,

indicating that the low magnitude seismic activity in this sequence was considerably

high.

4.4.3 Taiwan

The declustering method based on the TM metric is a statistical approach that does

not depend on the geology or faulting characteristics of the system. The Taiwanese

catalog poses as an interesting challenge for the proposed technique since it comprises

events recorded in a subduction zone. Chen et al. (2006) analyzed seismicity patterns

in Taiwan for a dataset of events recorded from 1987 to 1999 with magnitude 3.4M or

greater between latitudes 19.4◦ and 26◦ north and longitudes 117.9◦ and 126.5◦ east.

In the latter study, the region of interest was divided into a mesh of 0.1◦× 0.1◦ boxes
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and the time series nj(t) were constructed on an yearly base. Figures 4.12 displays

the spatial distribution of the events in the entire catalog obtained from the Central

Weather Bureau of Taiwan.

Figure 4.12: Spatial distribution of the entire Taiwanese catalog for events with magnitude

3.4M or greater recorded from 1987 to 2008.

The same discretization was employed here to perform the TM declustering tech-

nique to an extended dataset of the Taiwanese catalog, with recordings from 1987 to

2008. This catalog was also declustered using Reasenberg’s method with the default

parameters for California as performed by Chen and Wu (2006) and the results were

compared. The variances of nj(t) for the entire catalog and the declustered portions

along with the reference line are plotted in Figure 4.13a. The discontinuities in Figure

4.13a of σ2 for the entire catalog observed in 1990, 1994, 1999 and 2002 are attributed

to the clustering of events. The PSO established the long effective ergodic period for

the Taiwanese catalog in Figure 4.13b as expected. A closer examination of σ2 for

the declustered catalogs obtained by both methods in Figure 4.13b show that the
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Figure 4.13: (a) Plot of the declustering reference line and the variances of nj(t) for the orig-

inal catalog and the declustered seismicity obtained from the TM and Reasenberg’s method

for Taiwan, from 1987 to 2008. (b) Enlargement of the variances of nj(t) for the Taiwanese

catalog along with its declustered portion and the reference line for the TM declustering

method.

variance for the Reasenberg’s declustered catalog can also be considered linear.

Figure 4.14 displays the seismicity rates of the entire catalog along with the declus-

tered portions obtained from the TM and Reasenberg’s method. The years of high

seismic activity (1990, 1994, 1999 and 2002) correlate well with the discontinuities of
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Figure 4.14: Yearly seismicity rate for the entire Taiwanese catalog from 1987 to 2008 along

with declustered portions obtained from the TM and Reasenberg’s method from 1990 to 2008.

σ2 of the entire catalog in Figure 4.13b as expected. The activity in the year 1999

was considerably higher due to the Chi-Chi earthquake. The declustered portions in

Figure 4.14 are more homogeneous throughout the considered time period for both

methods, with similar seismicity rates up until 1999 and from 2003 onwards. From

2000 to 2002, the TM method identified more clustered events in 2000 and 2002 due

to the 1999 Chi-Chi earthquake and an 6.8M event occurred in March, 31 of 2002,

respectively.

The choice of the events to be removed from each box in each timestep was

made using the criteria outlined in equation (4.7) and the b-value calculated for the

frequency-magnitude distribution for the entire region is plotted in Figure 4.15a.

The clustered portion of the seismicity plotted in Figure 4.15b displays a similar

b-value to the one obtained for the entire catalog, whereas the declustered portion

in Figure 4.15c displays a slightly lower b-value. For the 1999 Chi-Chi earthquake,
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Figure 4.15: Frequency-magnitude distribution for (a) the original Taiwanese catalog from

1987 until 2008, (b) its clustered portion as identified by the TM metric from 1990 until

2008, (c) the declustered portion for the same period and (d) the seismicity associated with

the 1999 Chi-chi earthquake. For the latter, the seismicity identified as clustered recorded

in 1999 and 2000 within a 1◦ × 1◦ square centered at the mainshock was considered in the

aftershock sequence.

seismicity located in a 1◦×1◦ area around the mainshock for the years 1999 and 2000

was considered. As observed for the aftershock sequences in southern California, the

mainshock of the 1999 Chi-Chi earthquake was tagged as clustered due to the decision

of the PSO to remove all events in the box where the mainshock was located. The
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Figure 4.16: Spatial distribution of the (a) clustered and (b) declustered seismicity identified

by the TM metric and (c) clustered and (d) declustered seismicity identified by Reasenberg’s

method in Taiwan from 1990 to 2008.

result is the frequency-magnitude relationship plotted in Figure 4.15d, which follows

the Gutenberg-Richter law.

Figure 4.16 displays the spatial distribution of the clustered and declustered por-

tions of the catalog from 1990 to 2008 identified by both declustering techniques.

Overall, the same features in both clustered distributions (Figures 4.16a and 4.16b)

for the TM and Reasenberg’s methods are observed. In addition to the better spatial
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isolation of clustered events in Figure 4.16a, the main difference is the lack of large

events with magnitude 5M or greater identified as clustered by Reasenberg’s method

in the northeast coast in Figure 4.16b. Despite the many similarities in the spatial

distribution of clustered events obtained by both methods, the total number of events

identified as clustered was quite different. For the TM method, a total of 5,633 events

were determined clustered whereas Reasenberg’s method identified only 4,498 events

as clustered. The latter constantly identified more declustered events over the years,

especially during the 2000-2003 period. This difference likely is due to the choice of

the standard parameters for California to perform this declustering, but a study of

the optimal parameters for the Reasenberg method in Taiwan falls outside the scope

of this work.

The values for Cv obtained for the declustered seismicity obtained by the proposed

TM method and Reasenberg’s method were 1.36 and 1.19, respectively. Reasenberg’s

method in this case displayed an analogous performance to that of southern California.

This may be due to fact that there is a concentration of high shear strain rates in both

regions that results in larger mainshocks and more concentrated aftershock sequences.

4.4.4 Switzerland

Another interesting region with good quality data to employ the proposed declustering

method is Switzerland. Nanjo et al. (2010) used a probabilistic method that estimated

the magnitude of completeness of the Swiss catalog between 1983 and 2008 to be 2.5M

in the far southwest of the country and lower than 1.6M in regions of high seismic

activity. The moderate seismic activity in the region poses a challenge to the method
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given the general requirement for a substantial number of recordings to apply the

method and, as such, is a good test of the method.

Figure 4.17: (a) Spatial distribution of the entire Swiss catalog for events with magnitude

1.6M or greater from 1983 until 2008. (b) The frequency-magnitude distribution for the

entire Swiss catalog for the same time period.
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Figure 4.18: (a) Plot of the reference line to perform the declustering and the variances of

nj(t) for the original catalog and the declustered seismicity obtained from the TM and the

GK method from Switzerland for events recorded from 1988 to 2008 and (b) enlargement of

the variances for the declustered catalogs.
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Figure 4.19: Seismicity rates for the entire Swiss catalog from 1988 until 2008 and the

declustered seismicity identified by the TM metric and the GK method from 1991 until

2008.

A cutoff magnitude of 1.6M was used to seismicity recorded from 1988 to 2008 be-

tween latitudes 45◦ and 48.5◦ north and longitudes 5.2◦ and 11.5◦ east. This dataset

was obtained from the Swiss Seismological Service and it is considered complete by

the method described in Wiemer and Wyss (2000) to a 95% level of confidence. Fig-

ures 4.17a and 4.17b display the spatial distribution of epicenters and the frequency-

magnitude distribution of the entire catalog, respectively. For comparison, the same

dataset was declustered with the method described in Gardner and Knopoff (1974),

optimized for central Europe as described in Wiemer et al. (2009). Their choice of the

GK method was based on the high variability of the results obtained for Reasenberg’s

method for different parameters.

A mesh of 0.1◦× 0.1◦ boxes and yearly timesteps were used to construct the time

series nj(t) and the variances of nj(t) for the entire catalog and the two declustered
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Figure 4.20: Spatial distribution of (a) clustered and (b) declustered events identified by the

TM metric along with (c) clustered and (d) declustered events identified by the Gardner-

Knopoff method for the Swiss catalog from 1991 until 2008.

portions are plotted in Figure 4.18a, with a close-up of the variances from the declus-

tered portions in Figure 4.18b. There are no abrupt changes in σ2 of the entire catalog

in Figure 4.18a, but considerable changes in the slope are observed in the periods of

1999-2003 and 2003-2005. These changes correlate well with periods of high seismic

activity in Figure 4.19, indicating that seismicity clustering is disrupting σ2 of the

entire catalog as expected. As for the declustered seismicity identified by the TM
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Figure 4.21: Frequency-magnitude distribution for the (a) clustered and (b) declustered

portions of the Swiss catalog identified by the TM metric from 1991 until 2008.

metric, the PSO performed well in determining the number of events to be removed

from the catalog to obtain a long linear trend for σ2 as seen in Figure 4.18b. No

linear trend is obtained for the declustered seismicity from the GK method, and an

apparent scaling 〈nj(t)2〉−〈nj(t)〉2 ∝ tα with α > 1 is observed in this case. Previous

results on the TM metric (Cho et al., 2010) showed that this is due to the presence

of spatial clustering.
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The seismicity rate of the Swiss catalog along with both declustered portions

identified by the TM metric are plotted in Figure 4.19. It is clear that the total

number of events considered in this case is less than the previous cases (Figures 4.1c,

4.10, and 4.14). The determination of the reference line could be biased given the

high seismic activity during the 1983-1987 period, therefore the declustering method

was applied form 1988 onwards. The rates for the declustered portions differ from

each other, with an overall higher seismicity rate for the declustered portion obtained

by the GK method. A total of 1,678 declustered events were obtained by the GK

method and 1,491 by the TM method.

The frequency-magnitude distribution of the region plotted in Figure 4.17b was

used to choose the events to be removed from each box. Figure 4.20 displays the spa-

tial distributions of the clustered and declustered events identified by both methods

from 1990 onwards. In this case, events with magnitude 4M or larger are considered

large, given the moderate seismic activity in the region. There are only a few large

events in the catalog and the TM metric identifies more of these as clustered. A sim-

ple visual inspection shows that the clustered seismicity obtained by the TM metric

in Figure 4.20c again is more localized than the clustered seismicity in Figure 4.20a.

Also, the declustered sets in 4.20b and 4.20d indicate that the GK method identifies

more than double the number of declustered events (264 versus 115 events) in the

region delimited by longitudes 9.5◦ and 11◦ and latitudes 46◦ and 47◦. This con-

tributes to the spatial clustering remaining in the declustered portion of the catalog

identified by the GK method in Figure 4.18b and is likely due to the heterogeneity

in the coverage of the Swiss seismic network (Nanjo et al., 2010).
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The values for Cv obtained for the declustered seismicity identified by the TM and

the GK methods were of 1.25 and 1.05, respectively. This region differs considerably

from both Taiwan and southern California regarding the distribution of shear strain

rates (Kreemer et al., 2003), displaying a more homogeneous rate and less intense

shear strain concentration. This illustrates the difference between the performances

of the TM method and the classical declustering methods (Reasenberg and the GK).

Both were originally applied to California and their parameters are not fitted for

this region. The first displays high variability with respect to the chosen parameters

while, for the second it is necessary to use parameters optimized specifically for central

Europe (Wiemer et al., 2009).

Both the distributions for the clustered and declustered seismicity identified by the

TM metric in Figures 4.21a and 4.21b follow the Gutenberg-Richter law as expected.

The low number of larger magnitude clustered events in Figures 4.21a is due to the

removal of all seismicity in boxes with large events and as seen for the individual

aftershock sequences in southern California.

4.4.5 Southern Spain and northern Africa

The region displays complicated and diffuse seismic activity, comprised of moderate

seismicity driven by the convergence of the Eurasian and African plates. This region

displays a similar shear strain rate distribution regime as seen for Switzerland, with

low and diffused shear strain rates (Kreemer et al., 2003). A dataset obtained from

the Spanish National Geographic Institute (IGN) from 1990 to 2010 was considered

here. The completeness of this catalog was addressed in Goméz (2009) and it was
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determined that from 1990 onwards, the magnitude of completeness for southern

Spain is approximately 3Mb. Seismicity recorded between latitudes 40◦ and 32◦

north and longitudes 20◦ west and 6◦ east and depths less than 60km was declustered

using the proposed declustering method and Reasenberg’s method. For the latter,

the standard parameters for California were employed for declustering.

Figure 4.22: (a) Spatial distribution of the entire Spanish catalog for events with magnitude

3Mb or greater from 1990 until 2010. (b) The frequency-magnitude distribution for the

entire Spanish catalog for the same time period.
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Figure 4.23: (a) Plot of the reference line to perform the declustering and the variances

of nj(t) for the original catalog and the declustered seismicity obtained from the TM and

Reasenberg’s method from Spain for events recorded from 1990 to 2010 and (b) enlargement

of the variances for the declustered catalogs.

Figure 4.22a displays the spatial distribution of the seismicity recorded during the

time period considered. The region also encompasses the northern parts of Morocco

and Algeria. Most seismicity is distributed in the northern tip of Africa and in the

coast south and southwest from Portugal, with a smaller fraction in the southeast of
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Figure 4.24: Seismicity rates for the entire Spanish catalog from 1990 until 2010 and the

declustered seismicity identified by the TM metric and Reasenberg’s methods from 1993 until

2010.

Spain. The frequency-magnitude distribution for the region considered is plotted in

Figure 4.22b, and the b-value of 1.232±0.097 was obtained from a least squares linear

fit. The least square estimation of the b-value was employed to the dataset provided

by IGN for a different time period (Jimenez et al., 2006) and a different seismic catalog

maintained by the Andaluz Institute of Geophysics (IAG) (Stich et al., 2007) and a

b-values of 1.24 was obtained by the latter in the period 1986-2006 for events 3.6Mb

or greater.

To perform the proposed declustering technique, the discretization of Tiampo et al.

(2007) for the entire Iberian Peninsula, comprised of yearly timesteps and a mesh of

0.1◦× 0.1◦ boxes to construct the time series nj(t) was employed. This spatial grid is

the same as that of Goméz (2009) for the study of the completeness of the catalog. The

variances of nj(t) for the entire catalog and the declustered portions of the seismicity
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Figure 4.25: Spatial distribution of (a) clustered and (b) declustered events identified by

the TM metric along with (c) clustered and (d) declustered events identified by Resenberg’s

method from 1993 until 2010.

identified by both methods are plotted in Figure 4.23a, with an enlargement of the

variances of the declustered portions in Figure 4.23b. A long effective ergodic period

for the declustered seismicity was obtained by the TM method in Figure 4.23, as

expected. The same was not observed for the declustered seismicity identified by

Reasenberg’s method, and the overall trend of σ2 in this case is the same as σ2 for

the entire catalog until 2003. This is an indication that Reasenberg’s method did

not perform well in southern Spain with the standard parameters for California. The
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Figure 4.26: Frequency-magnitude distribution for the (a) clustered and (b) declustered

portions of the Spanish catalog identified by the TM metric from 1993 until 2010.

first departure of σ2 of the entire catalog from the linear trend extrapolated from the

initial stationary period occurred in 1994, followed by a second in 2003/2004. These

discontinuities were due to large events in the region: two events 5.7Mb in the north

of Morocco and Algeria in 1994, the 6.6Mb 2003 Boumerdès earthquake, and the

6.2Mb 2004 Al-hoceima earthquake.

The seismicity rate for the entire catalog plotted in Figure 4.24 corroborates the
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observations above. The two mainshocks in 2004 and 2003 generated a large peak

in seismic activity in the region, and a small activity peak is observed in 1994. A

quiescent period with a few clustered events is observed prior to the large events in

northern Africa from 1998 until 2001, and an increase in the average number of events

per year is observed since 2000. The latter is due to the installation of wide band

seismometers in the region (Goméz, 2009). The seismicity rate of the declustered

seismicity identified by Reasenberg’s method shows that most of the events were

considered declustered, whereas the declustered seismicity obtained by the TM metric

is stationary over the entire period considered.

From the regional b-value obtained in Figure 4.22b, the events to be removed

from each box were chosen based on criteria (4.7). A total of 4,380 out of the original

6,180 events were classified as clustered by the TM method, compared to the 1,461

clustered events identified by Reasenberg’s method. This striking difference may

be attributed to the differences in shear strain rates between southern Spain and

California (Kreemer et al., 2003): the parameters used in California take into account

clustered seismicity that is much more concentrated than that of regions of lower shear

strain rates, and only a few events are classified as clustered in this case. This would

also explain the difficulties mentioned by Wiemer et al. (2009) regarding the use of

this classical declustering techniques for Switzerland.

Figure 4.25 illustrates the spatial distribution of clustered and declustered seismic-

ity obtained by both methods. Most of the clustered seismicity identified by the TM

metric in Figure 4.25a is located along northern Africa, where the large-magnitude

seismicity occurs more frequently, in the ocean south of Portugal where a set of faults
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are presented, and in the southeast of Spain. Its counterpart, the declustered seis-

micity, in Figure 4.25b is more sparse, as expected, with the exception of a cluster

southwest of Portugal that was generated from the constant occurrence of isolated

events around Gloria fault. An interesting feature in Figure 4.25b is the transverse

trend across the map, from the southeast of Spain through Morocco.

The combination of the distribution of epicenters for the declustered seismicity

identified by Reasenberg’s method in Figure 4.25d and its seismicity rate in Figure

4.24 confirms that the method does not perform well for this region, and optimum

parameters must be found to ensure a better performance of this technique. Most of

the clustered seismicity identified this classical declustering method in Figure 4.25c

comes from the 2003 Boumerdès and the 2004 Al-hoceima earthquakes.

The frequency-magnitude distributions for the clustered and declustered portions

of the catalog identified by the TM metric are plotted in Figures 4.26a and 4.26b,

respectively. The b-value obtained for the clustered seismicity was of 1.193 ± 0.093,

which is very close to the regional value as expected. The lower b-value obtained

for the declustered portion of the catalog indicates that a lower proportion of small

events is found in this case.

The values for Cv obtained for the declustered seismicity obtained by the pro-

posed TM method and Reasenberg’s were 1.24 and 1.58, respectively. In this case,

Reasenberg’s method appears to perform less effectively than in southern California,

incorrectly identifying clustered events as declustered, likely due to the differences in

the seismic regime in this region. As mentioned previously, an optimization of the

parameters has to be employed to ensure a more accurate identification of clustering
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in this region with Reasenberg’s method.

4.5 Conclusion

A new and simple declustering technique is proposed based on the TM metric, and its

premise is to remove clustered events from a catalog so that the remaining seismicity

displays a long effective ergodic period. No information regarding the geology of the

region or a large number of parameters is needed for the performance of this method,

and its performance is shown to be robust for different and varied datasets. A system

of particles is created from the spatial and temporal discretization of the region of

interest and the cumulative number of events in each box nj(t) is used as a proxy

for the seismic-released energy. The number of events to be removed from each box

is determined by an optimization method, the PSO in this case, and the regional

frequency-magnitude distribution then is used to determine which events are to be

excluded from each box. In this framework, the evolution of nj(t) for the declustered

catalog is considered as a normal diffusive process.

The method was initially used to decluster a synthetic catalog generated from the

ETAS model and then four locations that display different tectonic settings: south-

ern California, Taiwan, Switzerland and a region comprised of southern Spain and

northern Africa. The good performance achieved for the declustering of the synthetic

catalog was a positive indicator of the efficiency of the method and long periods of

effective ergodicity were found for all the cases of actual, historic seismicity. The

proposed method was applied consistently, with no change in its application once the
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spatial discretization and the cutoff magnitude of the catalog were determined. The

regions considered display different distributions of shear strain rates, and these char-

acteristics appear to influence the performance of the classical declustering methods

considered for comparison purposes. The performance of the method was consistent

regardless of the region under consideration for a homogeneous dataset, while the per-

formance of the classical methods depended on the parameters used for the different

regions.

Applying the probability density function that yielded the regional Gutenberg-

Richter law as a constraint for the clustered seismicity proved to be simple criteria

that enabled the incorporation of the magnitude of events into the proposed declus-

tering method. The frequency-magnitude distributions for the clustered seismicity

identified by the proposed method in all the cases followed the Gutenberg-Richter

law with b-values close to unity. The individual aftershock sequences displayed the

same agreement with the Gutenberg-Richter law, and the discrepancies observed were

caused by the inclusion of large-magnitude events located in boxes where all events

were identified as clustered by the PSO. The results obtained by the proposed method

agreed reasonably well with other established declustering methods for southern Cal-

ifornia and Taiwan, but differed for Switzerland, most likely due to the heterogeneity

of the catalog, and Spain, due to the application of Reasenberg’s method with param-

eters used for California. These last two analyses illustrate the dependence of these

classical declustering methods on their parameters.

The declustered seismicity identified by the proposed method displayed constant

values of Cv that deviate from the unity value expected for Poisson processes. This
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topic has to be approached with caution given the fact that the proposed method

does not take into account the interoccurrence times between neither the clustered or

declustered events, unlike the classical methods used here. An attempt to rescue a

part of the physics of the region under consideration was made with the introduction

of an exponential probability distribution to the magnitudes of the clustered events.

A logical second step to this method would be the incorporation of aspects of the

physics of interoccurrence times of the clustered events.

Despite its simplicity, a series of factors had to be taken into account to ensure a

proper employment of the proposed declustering method. The extrapolation of the

initial linear trend of σ2 was essential, and a period of stationary seismic activity must

be considered in order to obtain an accurate reference line. For regional seismicity,

homogeneous coverage in the region of interest is needed to perform the declustering

and account for changes in seismic network coverage. In addition the completeness

of the catalog also is an important issue because a sufficiently large record is re-

quired to validate the statistical approach. Further improvements to the proposed

method include the improvement of the efficiency of the optimization method and

the employment of a more elaborated criteria to identify events for extraction.
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Chapter 5

Effects of location errors in the Pattern

Informatics4

5.1 Introduction

Earthquakes are a significant natural hazard in many inhabited areas, and the de-

termination of both the spatial and temporal locations prone to the occurrence of

large events has become a topic of great interest over the years (Keilis-Borok, 2005;

Kanamori, 2003). The seismic hazard map for the United States (Petersen et al.,

2008) and the working group on Regional Earthquake Likelihood Models (RELM) are

two recent examples of these efforts (Field, 2007). A series of different phenomena,

including but not limited to electromagnetic activity, gas emissions, and/or surface

deformation have been evaluated over the years as precursory signals to accomplish

this goal, with limited success (Cicerone et al., 2009).

Among the potential precursory signals are seismicity patterns that might occur

prior to a strong earthquake. Kanamori (1981) identified different precursory seis-

micity patterns based on different large events distributed worldwide, but many of

these focused on patterns in moderate-to-large events. However, methods such as

these have been limited statistically by their relatively small numbers. The Pattern

Informatics (PI) is a technique used in intermediate-to-long regional seismic hazard

assessment that rely on seismic patterns in small-to-moderate magnitude events as a

4submitted to Pure and Applied Geophysics
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precursory signal for larger earthquakes (Rundle et al., 2002; Tiampo et al., 2002).

This method therefore utilizes a large number of seismic events in a phase dynamics

framework that uses rotations of a phase function to quantify anomalies in seismic

activity. From a statistical standpoint, the PI offers a solid comparison between long-

term background seismicity rates and local variations in order to identify periods of

activation and/or quiescence. This technique has been used worldwide (Chen et al.,

2005; Nanjo et al., 2005) and it is also a part of the RELM working group.

When applying statistical methods to study earthquakes as a point-source phe-

nomena, events are characterized by their occurrence time, location and magnitude.

These estimations are subjected to errors that may affect the outcomes of different

statistical analyzes. An attempt to address this issue in the PI was performed in

Nanjo et al. (2005) by smoothing seismicity rates of a particular region with the

activity in its vicinity. van Stiphout et al. (2011) analyzed the effects of different

sources of error in the estimation of background seismicity levels, commonly used in

hazard assessment (eg. Petersen et al. (2008) and Wiemer et al. (2009)). It was found

that hypocentral errors influenced these estimations, but the choice of the decluster-

ing method had the greatest impact on the estimation of the background seismicity

rate. A different approach to address the same issue was employed by Werner and

Sornette (2008) to determined the deviation of estimations of seismicity rates due to

magnitude uncertainties in a simple clustering model.

The use of large datasets in the PI is an important feature with respect to fluc-

tuations introduced by epicenter locations uncertainties. If errors are considered

independent and identically distributed, the large number of events would tend to
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decrease the effects of location errors in the PI. This is because of the Central Limit

Theorem, that reduces these variabilities. In this paper, the effects of locations er-

rors in the performance of the PI are analyzed. This is accomplished by generating

different scenarios from the introduction of normally distributed noise with different

standard deviations randomly distributed over the epicenters of events recorded in

California. The PI method is applied to the various datasets and its performance for

retrospective forecasts is quantified by means of Skill Scores (SS) commonly used in

atmospheric sciences (Wilks, 1995; Woodcock, 1976). This simple analysis is extended

to investigation of the role of the number of events in the catalog by randomly remov-

ing events from the original dataset before the introduction of the noise as described

previously.

The next section introduces the PI along with the two SS employed to quantify the

performance of the latter and the TM metric, used to quantify seismicity clustering.

The process of generating the perturbed catalogs is also described in Section 5.2.

The effects of the introduction of noise in the locations being discussed in Section 5.3.

Finally, the implications of the process are discussed in section 5.4.

5.2 Methodology

5.2.1 The Pattern Informatics

The PI (Rundle et al., 2002; Tiampo et al., 2002) is a method used to offer intermediate-

to-long term seismic hazard assessment by quantifying local changes in seismicity

patterns in order to identify instances in space and time characterized by seismic ac-
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tivation or quiescence. These variations are considered a proxy for local stress changes

which precede large events (Tiampo et al., 2006). The PI method has been used in

different regions in the globe such as central Japan (Nanjo et al., 2005), southern

California (Holliday et al., 2005) and Taiwan (Chen et al., 2005).

The computation of a PI hazard map is performed by initially obtaining a complete

seismic catalog from a region of interest with recordings from an initial time t0 until

t2. A mesh is then created to divide the location considered into a set of Nb boxes

and time series nj(t) of the cumulative number of events in each box i up until a

certain time t are computed. The seismic intensity in a box i between t and a time

base tb ∈ [t0, t2] can be calculated as

Ii(tb, t) =
ni(tb, t)

t− tb + 1
. (5.1)

Seismic intensities given by equation (5.1) are then normalized for comparison

purposes by subtracting the averages µ over all boxes of Ii and dividing the result by

the variance

Îi(tb, t) =
Ii(tb, t)− µ

σ
. (5.2)

A base time t1 ∈ [t0, t2] is chosen so that a training period ∆t from t1 until t2

is considered. Equation (5.1) is evaluated for t1 and t2 to determine the anomalous

seismicity ∆Ii(tb, t1, t2) in box i during ∆t

∆Ii(tb, t1, t2) = Îi(tb, t2)− Îi(tb, t1). (5.3)

The sum of equation (5.3) over different values tb is performed to reduce the

random variability in the measurement of anomalous seismic activity. The probability
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of a future event of magnitude Mf or greater to occur in box i during the period from

t2 to t2 + ∆t is then given as

Pi ∝

(∑
tb

∆Ii(tb, t1, t2)

)2

. (5.4)

For a given threshold D, a binary forecast can be issued for the forecast period

from t2 until t2 + ∆t. Events with magnitude Mf or greater are considered most

likely to occur on or adjacent to these hotspots: locations where Pi greater than D.

Holliday et al. (2005) hypothesized that Mf = Mc + 2 for southern California, where

Mc is the magnitude of completeness of the catalog.

5.2.2 The Heidke and Pierce Skill Scores

The results of binary-type forecasts can be represented in contingency tables, as

illustrated in table 5.1. In this case, a, b, c and d represent correct forecasts, false

alarms, misses and correct negatives respectively, and a+b+c+d = Nb. A series of skill

scores have been developed over the years to quantify the efficiency of binary forecasts

based on contingency tables. These methods, commonly used in atmospheric sciences,

rely on the comparison between forecasts and thus are intrinsically incomplete (Wilks,

1995; Woodcock, 1976).

One of these quantitative measures is the Heidke skill score (HSS) (Heidke, 1926).

It compares the considered forecast to a random one and it is calculated as

HSS =
2(ad− bc)

(a+ c)(c+ d) + (a+ b)(b+ d)
, (5.5)

where HSS ∈ [−1, 1]. A perfect and a random forecast yield HSS = 1 and HSS = 0

respectively. Negative scores mean that the forecast considered perform worse than
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Observed

yes no

Forecasts
yes a b

no c d

Table 5.1: Example of a contingency table: a, b, c and d represent correct forecasts, false

alarms, misses and correct negatives respectively

random guessing.

A second score is the Pierce skill score (PSS), which uses the hit rate H = a
a+c

and the false alarm rate F = b
b+d

of the considered forecast. The first is the fraction

of events successfully forecasted, whereas the second is the fraction of false alarms

given that an event did not occur. The PSS is given by:

PSS = H − F =
ad− bc

(a+ c)(b+ d)
, (5.6)

where PSS ∈ [−1, 1] and the same interpretation for the HSS can be made for the

PSS.

5.2.3 The TM Metric and Clustering

In classical statistical physics, the ergodic hypothesis offers a simple link to relate

micro and macro states of a system. Thirumalai et al. (1989) studied the effective

ergodicity for liquid and glasses using a simple metric defined as

ΩG(t) =
1

Nb

Nb∑
i=1

[gi(t)− 〈g〉]2 (5.7)

where Nb is the number of particles in the system considered, gi(t) = 1
t

∫ t
0
Gi(t

′)dt′ is

the time-average of a phase-space function Gi(t) and 〈g〉 = 1
Nb

∑
i gi(t) is its ensemble
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average. The term effective addresses the fact that long but finite time intervals are

considered in which the phase space is sampled evenly (Thirumalai and Mountain,

1993).

Tiampo et al. (2007) applied the TM metric to earthquake fault systems by divid-

ing a region of interest and using the number of events above a certain magnitude as

a proxy for Gi(t): the seismic released energy. In this framework,
∫ t

0
Gi(t

′)dt′ ≡ ni(t),

where ni(t) is the cumulative number of events in each box, and equation (5.7) can

then be written as

ΩG(t) =
1

t2
[〈
nj(t)

2
〉
− 〈nj(t)〉2

]
, (5.8)

where the angular brackets stand for ensemble averages.

Effective ergodic periods are identified as instances of time when the inverse TM

metric is linear in time, De

ΩG(t)
= t, with a positive slope. The parameter De =

ΩG(t0) is a diffusion coefficient that is related to the rate at which the phase space is

sampled. During these periods, the system is in a state of metastable equilibrium that

is disrupted by large earthquakes (Tiampo et al., 2007). Cho et al. (2010) established

that the evolution of nj(t) can be seen as a diffusive process during these periods,

when the occurrence of events is considered declustered, and deviations of the inverse

TM metric from a linear trend occur as a result of the clustering of events in space

and/or time.

The first term in the right-hand side of equation (5.8) is sensitive to both spatial

and temporal seismicity clustering whereas the second term is sensitive to temporal

clustering only. For a fixed number of events, equation (5.8) displays its extreme
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value when all events are concentrated in a single box (maximum) and all events are

evenly distributed over the boxes (minimum). In this case, De can be also interpreted

as a coefficient that scales the TM metric with respect to the initial conditions of the

system regarding its clustering.

5.2.4 Generation of Perturbed Catalogs

An original dataset comprised of events recorded by the Advanced National Seismic

System (ANSS) and Northern California Seismic Network (NCSN) of events recorded

between latitudes 32◦ and 40◦ north and longitudes −115◦ and −125◦ west from an

initial time t0 = 1932 until 2006 was considered. A magnitude of completeness Mc = 3

was employed, which means that the forecast magnitude in this case is Mf = 5. A

mesh of boxes with edge length ∆x = 0.1◦ and yearly timesteps is used to generate

the time series nj(t). This is the same space/time discretization used to perform the

PI in California and several other regions (Chen et al., 2005; Holliday et al., 2005).

Errors in the estimation of epicenter locations in southern California vary over the

years due to changes in the network coverage and the use of digitalized waveforms

since the 1970s (Hutton and Yu, 2008). The average accuracy in the horizontal

component from 1932 until 2006 is ≈ 2.5km and it drops to ≈ 0.7km from 1970

onwards (Perlock, 2009). The perturbed datasets were obtained by adding noise

to epicenter locations from the original southern Californian catalog. This noise was

considered uniformly distributed around the epicenters and normally distributed with

zero mean and different standard deviations σn in the radial direction. The lowest

σn = 0.007◦ was chosen to be the average error of ≈ 0.7km for events recorded from
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1970 onwards. The remaining σn = 0.05◦, 0.1◦ and 0.2◦ were chosen to take into

account higher levels of noise in the analysis and they were chosen based on ∆x.

The effects of a lower number of events was also considered. Initially, Nr events

were randomly removed from the original southern California dataset so that the

remaining events would constitute a spatially unperturbed, but smaller, catalog. The

same procedure of adding noise to epicenter locations, as detailed above, was applied

to the events in this cropped catalog to generate the perturbed scenarios. Different

Nr = 17500, 20000 and 25000 were considered, and a total of Nr = 22500 events

were removed from the original recordings from 1932 until 2006 in this particular

case. Furthermore, noise levels σn = 0.007◦, 0.1◦ and 0.2◦ were considered in this

analysis.

5.3 Results

The PI was performed for two different training periods: one from t1 = 1981 until

t2 = 1991 (∆t1) and another from t1 = 1989 until t2 = 1999 (∆t2). These ∆t periods

yielded forecasts from 1992 until 2002 and from 2000 until 2010, respectively. A total

of 55 large events (set E1) were recorded in the first period. For the second forecast

period, the number of large events dropped to 29 (set E2). Figure 5.1 illustrates the

resulting PI hazard map obtained from the original and different perturbed catalog

for ∆t1 along with the set of events to be forecasted E1. Both the HSS and PSS

were used to quantify the effectiveness of the retrospective forecasts for ∆t1 and ∆t2.

The computation of the scores was performed for all active boxes in the time period
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considered from t0 until t2 + ∆t. The same criteria used in Holliday et al. (2005)

to issue a successful forecast was used: if one of the targeted events is located in a

hotspot or in one of its immediate neighbors, the forecast is considered correct.

The PI scores obtained from equation (5.4) are a measurement of seismic activa-

tion and quiescence for a given box i, and this quantity is related to the seismicity

clustering in the system. Figure 5.2 is a plot of the inverse TM metric of the original

catalog as well as the perturbed ones for different values of σn. In order to compare

the degree of clustering of the different catalogs using the TM metric, De was set to

unity. The level of seismicity clustering decreases with the increase of the noise levels

added to the locations of the epicenters, represented by the direct correlation be-

tween the inverse TM metric and σn in Figure 5.2, as expected. Despite this constant

decrease of seismicity clustering with the increase of noise levels, the main features

of the inverse TM plot remain the same. The latter points towards persistence of

clustering patterns despite the addition of noise to event locations, although these

cluster patterns become more diffuse, as seen in Figure 5.1.

This invariance of the seismicity clustering patterns indicate that the effectiveness

of the PI should not be drastically affected by the addition of perturbation to the

epicenter locations, due to its intrinsic dependence on seismic patterns for forecasting.

The Central Limit Theorem also corroborates this hypothesis: the large number

of small events in the catalog reduces the effective variance in isolating the cluster

locations, reducing the overall effect of the addition of noise in epicenter locations.

Figure 5.3 displays the HSS and PSS for ∆t1 and the different catalogs considered.

The maximum values for both skill scores are similar, regardless of the noise level of
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Figure 5.1: Spatial distribution of results from equation (5.4) for the training period ∆t1

considering (a) no noise, (b) σn = 0.007◦, (c) σn = 0.05◦ and (d) σn = 0.1◦. Events with

magnitude Mf or greater that occurred during the forecast period are represented by open

blue circles. Color scale represents log10(PI/PImax).
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Figure 5.2: Inverse TM metric of seismicity recorded from 1932 until 2000 along with plots

for the datasets obtained from different noise levels σn. For these plots, De = 1 for a better

comparison of clustering intensity of the different catalogs.

the catalog. The difference between the curves arises from the decrease in seismicity

clustering with the addition of noise to the epicenter locations, as verified in Figure

5.2, resulting in a decrease in the variability of the values calculated by equation (5.4).

However, the location of hotspots should not change drastically with the addition of

noise to the catalogs as a result of the persistence of the clustering patterns. This

leads to the horizontal shift in the scores plotted in Figure 5.3 as the noise level

increases.

To verify the hypothesis that the efficiency of the PI does not drastically change

with location errors, a series of 300 PI retrospective forecasts for ∆t1 and for each

noise level was performed. Figure 5.4 displays the distribution of maximum scores

for both HSS and PSS for the forecast of the events E1 and the different noise levels.

These scores are estimated to follow normal distributions with standard deviations
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Figure 5.3: Plot of the (a) HSS and (b) PSS for ∆t1 and different threshold levels.
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Figure 5.4: Distribution of maximum HSS from (a) to (d) and PSS from (e) to (h) for

∆t1 and σn = 0.007◦, 0.05◦, 0.1◦ and 0.2◦, respectively. Red lines represent normal distri-

butions generated from the means and standard deviations σss of the score values in each

case, while the dot-lines represent the ±2σss. Green lines represent the maximum score

obtained from the unperturbed catalog.
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Figure 5.5: Distribution of maximum HSS from (a) to (d) and PSS from (e) to (h) and ∆t2

for σn = 0.007◦, 0.05◦, 0.1◦ and 0.2◦, respectively. Red lines represent normal distributions

generated from the means and standard deviations σss of the score values in each case, while

the dot-lines represent the ±2σss. Green lines represent the maximum score obtained from

the unperturbed catalog.
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Figure 5.6: Spatial distribution of results from equation (5.4) considering the cropped cata-

log, where Nr = 22500 events are removed, for the training period ∆t1 considering (a) no

noise, (b) σn = 0.007◦, (c) σn = 0.1◦ and (d) σn = 0.2◦. Events with magnitude Mf or

greater that occurred during the forecast period are represented by open blue circles. Color

scale represents log10(PI/PImax).
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Figure 5.7: Inverse TM metric of seismicity of part of the seismicity recorded from 1932

until 2000. In this case, more than 20000 events were randomly removed from the original

catalog. The inverse TM metric is also plotted for the datasets obtained from the addition

of different noise levels σn to this cropped dataset. For these plots, De = 1 for a better

comparison of clustering intensity of the different catalogs.
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σss, which became wider as σn increased due to the direct correlation between the

latter and the number of possible configurations of nj. In all cases, the maximum

score of the unperturbed catalog lies within the ±2σss interval of the distribution of

maximum scores of the perturbed catalogs. This indicates that the average result

obtained by the different perturbed catalogs are not considerably different from what

was obtained by the unperturbed catalog.

Figure 5.5 displays the same distribution of maximum scores for PI retrospective

forecasts for the second training period ∆t2 and the different catalogs considered. The

same direct correlation between σss and the noise level σn is also observed. In this

case, the maximum score of the unperturbed catalog was outside the ±2σss interval

in two distinct scenarios: for the PSS at σn = 0.007◦ and for the HSS at σn = 0.2◦.

The first performance decline is due to an average drop of H generated by the increase

of misses c in the configuration that yields the maximum PSS while the false alarm

rate remained constant (refer to the definition of the PSS in (5.6)). The fewer events

in E2 enhances the effects of this increase in c in the computation of H and thus the

maximum PSS.

The decrease in the variability of the PI scores introduced by the high σn = 0.2◦ is

the main reason for the second observed degradation, which can be seen as an increase

in the random nature of this particular forecast. This results in a worse performance

by the HSS standard, since it is a comparison of a given forecast to a random one.

This effect is also enhanced by the fewer number of events in E2, as in the previous

case. While this scenario holds no major concern given that the noise level in this

case is of ≈ 22km, which does not reflect the true epicenter location errors in southern
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California, it might prove important in other regions where errors are significantly

higher, particularly those associated with depth.

It is important to stress that both the PSS and the HSS use different criteria to

quantify the effectiveness of a binary forecast. For example, the increase in misses at

σn = 0.007◦ was fundamental for the degradation of the PI performance within the

scope of the PSS. A similar degradation was not obtained when employing the HSS

at the same noise σn. A systematic decrease in the PI performance would be a good

indicator of a significant effect errors in epicenter locations. However, the localized

degradations due to the nature of the skill scores do not offer significant evidence of

an overall impact in the PI due to location errors.

The effects of reducing the total number of events in the catalog also was con-

sidered. Figure 5.7 is a plot of the inverse TM metric for the unperturbed cropped

catalog and its perturbed versions. As before, the values of the inverse TM metric are

directly correlated to σn due to the decrease of clustering as the noise levels increase.

The invariance of the clustering trends in this plot indicates that the PI performance

should not be drastically affected in this case. This is supported by Figure 5.6, which

displays the PI hazard maps obtained from the cropped catalog along with its per-

turbed versions for ∆t1 along with the set of events to be forecasted E1. The same

overall persistence of the locations of hotspots is observed in these maps, where the

patterns become more diffuse as the noise level increases once again. This increase is

larger compared to what is observed in Figure 5.1 and it is a direct consequence of

the lower number of events in this case.

The persistence of the clustering patterns identified by the TM in this case implies
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Figure 5.8: Distribution of maximum HSS from (a) to (c) and PSS from (d) to (f) for

∆t1 and σn = 0.007◦, 0.1◦ and 0.2◦, respectively. Events were randomly removed in this

case to total 5359 events from 1932 until 2002. Red lines represent normal distributions

generated from the means and standard deviations σss of the score values in each case, while

the dot-lines represent the ±σss. Green lines represent the maximum score obtained from

the unperturbed catalog.
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again that the PI performances should not vary greatly for these catalogs, as well.

Figure 5.8 displays the distributions of the maximum HSS and PSS for the 200 ret-

rospective forecasts for ∆1 for each σn. The PI performances in the perturbed cases

do not display a systematic degradation compared to the performance obtained from

the unperturbed catalog, as expected.

5.4 Conclusion

The effects of location errors in seismic catalogs to the performance of the PI was

addressed here by artificially introducing different levels of noise to the southern

Californian dataset. This allowed for a simple analysis of the PI performance with

respect to error in epicenter locations. The TM metric results indicates that the

seismicity clustering patterns remain relatively constant despite the addition of noise

to the original catalog. This invariance leads to a similar performance of the PI for the

different noise levels considered when considering the Heidke and Pierce skill scores

to quantify the effectiveness of the method.

Significant deviations between the performance of the unperturbed and perturbed

catalog were observed for individual scenarios. These differences occurred due to the

sensitivity of the skill scores to a particular feature of the retrospective forecast. An

overall systematic decrease of the maximum performance of the PI with respect to

both skill scores was not observed for any of the noise levels used. This suggests

that the PI performance is not sensitive to the locations errors for catalogs with large

numbers of events as a result of its dependence on seismic clustering for its forecasting
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skill.

The random removal of events to analyze the combined effect of the number of

events and location errors also was considered. A significant number of events was

removed from the original dataset, but no significant change was observed in the

clustering of the system. The enhanced diffusion of clustering patterns due to higher

noise levels is as a dirrect consequence of the fewer number of events. No significant

difference between the performances of the PI for the perturbed and unperturbed

catalogs was also observed. The latter once again indicates the importance of the

clustering trends in the performance of the PI.

This work also suggests that the efficacy of seismicity-based forecasting techniques

that rely on large numbers of events over small-to-medium magnitudes will display

similar behaviour. Future work will extend this analysis to techniques such as the

Relative Intensity method (Nanjo et al., 2005). In addition, additional studies should

include the removal of more events from the original catalog in order to determine the

minimum number necessary to offset the error in location, and an analysis based on

a non-random criteria in order to assess different factors such as changes in recording

capabilities. The effects of the choice of the training period and grid sizes associated

with location errors will also be considered.
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Chapter 6

Conclusion

Statistical seismology offers many different tools to better understand earthquakes.

This work presents an in-depth analysis of the study of ergodicity in an earthquake

system using the TM metric. Initially, it was explicitly determined that this metric

can be considered a simple measurement of seismicity clustering (Cho et al., 2010).

Periods of effective ergodicity were interpreted to be instances of time in which seis-

micity is declustered, during which the evolution of the cumulative number of events

can be considered a normal diffusive process much like a random walk. The latter is

an interesting interpretation for declustered seismicity because it relates declustered

seismicity to a system that evolves randomly. The TM metric was applied successfully

as a clustering measurement to both regional and mining seismicity, but some precau-

tions need to be taken. Regions with different seismicity rates should be addressed

individually when using the TM metric.

The concept of effective ergodicity and its relation to seismicity clustering was

key in the adaptation of methods for regional seismic hazard assessment to a mining-

induced seismicity scale. The choices of parameters to be used in the PI and RI

for mining seismicity were made based on the inspection of clustering patterns of

seismicity identified by the TM metric, rather than in an ad-hoc fashion. The PI

outperformed the RI in most cases, especially during effective ergodic periods. The

link between effective ergodicity and the occurrence of declustered seismicity allowed

for a clear understanding of this improvement in the PI performance: during these
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instances of time, quiescence is better identified due to the lack of clusters that damp

its signal. This is analogous to the use of declustered catalogs in long-term regional

seismic hazard assessment (Petersen et al., 2008; Wiemer et al., 2009) and it com-

plements previous observations of high efficiency of the PI during periods of effective

ergodicity for regional seismicity (Tiampo et al., 2010).

Another straightforward application of the TM metric was the formulation of a

declustering technique for seismicity, an important step in the assessment of long-

term seismic hazard (Wiemer et al., 2009; Petersen et al., 2008) or even the study of

aftershock sequences. The proposed method is generic while maintaining a simple for-

mulation by approaching the removal of clustered events as an optimization problem.

It consists in removing events from a given dataset so that the remaining seismicity

displays a long effective ergodic period. The latter allows for a physical interpretation

of declustered seismicity as a system in equilibrium such as the cellular automaton in

Rundle et al. (1995). The choice of the events to be considered clustered is constrained

by the frequency-magnitude distribution of events of the considered catalog. This is

a broad approach and it was successfully tested in a synthetic catalog and performed

well for regions with various tectonic settings, as long as a homogeneous coverage and

good data is available. The Gardner-Knopoff method was modified for central Eu-

rope (Wiemer et al., 2009) and Reasenberg’s methods displayed a poor performance

for the region comprised of southern Spain and northern Africa. On the other hand,

the proposed declustering technique displayed the significant advantage of requiring

no adjustment in its application to the different regions once the spatial/temporal

discretization was defined. The determination of the initial trend to be extrapolated
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in order to obtain the long effective ergodic period is of extreme importance to the

method and should be addressed with caution. Other declustering methods based on

different approaches that have strived towards improving declustering seismicity are

also available (e.g. Marsan and Lengliné (2008); Zaliapin et al. (2008)).

Lastly, the effects of uncertainties in epicenter locations in the performance of the

PI was examined. Different studies have shown that magnitude uncertainties (Werner

and Sornette, 2008) and hypocenter errors (van Stiphout et al., 2011) may affect the

estimation of seismic rates, a key step in seismic hazard estimation. The southern Cal-

ifornian dataset was used to generate various perturbed catalogs by adding normally

distributed noise at different levels to event locations. Here the PI method was used

to evaluate the changes in the resulting changes in the catalog. Retrospective PI fore-

casts using the unperturbed catalog and various perturbed catalogs were performed.

No systematic degradation in the PI performance was observed when considering the

different perturbed catalogs. The effect of reducing the number of catalog events also

was analyzed by randomly removing events from the unperturbed catalog. Perturbed

datasets then were generated from the cropped catalog with different noise levels and

the same analysis was performed. No systematic discrepancies between the PI per-

formances for the unperturbed and perturbed catalogs were observed for this case as

well. The TM metric suggested that clustering patterns remained relatively invari-

ant for all the different perturbed datasets when compared to the original catalog.

The dependence of the PI on clustering patters suggests that the performance of the

method should not change considerably. The latter is corroborated by the Central

Limit Theorem given the large number of events considered, even with the removal
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of seismicity, that would offset the overall effect of the perturbations in epicenter

locations.

6.1 Future Work

The study of earthquake systems in the framework of effective ergodicity has provided

important insights into the long-term behavior of earthquake fault systems, as well

as a practical application for the declustering of seismic catalogs. Interpreting the

TM metric as a measurement of clustering allowed for different applications and the

better comprehension of previous results. More can be done in this line of research,

including:

1. the implementation of the declustering method in 3-D for regions with good

coverage and a long recording history;

2. the application of constrains other than the frequency-magnitude distribution

of events to the declustering method based on the TM metric;

3. a further examination of better ways to estimate the initial trend used in the

declustering method proposed;

4. the improvement of the optimization methods used in the proposed declustering

technique to reduce computation times;

5. the performance of the PI in declustered catalogs obtained from the TM metric

as performed in other long-term seismic hazard assessment studies (Wiemer

et al., 2009; Petersen et al., 2008)
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6. a deep analysis of the clustered seismicity identified by the TM metric.
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A Computer code

A.1 decluster.m

function d e c l u s t e r ( cata log , t s t a r t , p )

[ var , time , num boxes ] = e r g o d i c i t y ( ca ta l og ) ;

%% D e c l u s t e r i n g

load count

cum events1 = cum events ;
c ou n t dec lu s t = count ;

%%%% This par t g e t s the l i n e a r trend o f the approx o f the TM
metr ic %%%%

t = t s t a r t ;
f i t = polyf it ( time ( 1 : t s t a r t ) , var ( 1 : t s t a r t ) , 1 ) ;
y = time .∗ f i t ( 1 ) + f i t (2 ) ;

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% g e t the boxes t h a t have at l e a s t one event in the 11 th−t ime

t = t + 1 ; % time t h a t we are t a k i n g the c l u s t e r i n g i n t o
c o n s i d e r a t i o n

for i = t : length ( time ) ,
i

index = find ( count ( : , t ) > 3) ;
i f ( isempty ( index ) == 1) ,

index = find ( count ( : , t ) > 0) ;
end
count t = count ( : , t ) ;
param = count ( index , t ) ’ ;
length ( param )
save ( ’ par ’ , ’ index ’ , ’ cum events1 ’ , ’ t ’ , ’ count t ’ , ’ num boxes ’ )

low bound = zeros (1 , length ( param ) ) ;
up bound = param ;

[ gbest , f i t f u n c ] = PSO( up bound , low bound , y ( i ) ) ;
%[ gbes t , f i t f u n c ] = MOL( up bound , low bound , y ( i ) ) ;
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%[ gbes t , f i t f u n c ] = PSO AIW( up bound , low bound , y ( i ) ) ;

x = gbest ( 1 : length ( param ) ) ;
N = s ize ( cum events1 , 1 ) ;
cum test = count t ;
cum test ( index ) = x ;
cum events1 ( : , t ) = cum test + cum events1 ( : , ( t−1) ) ;

c oun t dec lu s t ( : , t ) = cum test ;
t = t + 1 ;

end

cum events dec lus t = cum events1 ;
cum events1 = cum events ;

%% S e l e c t i o n o f events , where p (1) = b−v a l u e and p (2) = a−v a l u e
beta = p (1) / log10 (exp (1 ) ) ;
m1 = min( ca ta l og ( : , 4 ) ) ;
m2 = max( ca ta l og ( : , 4 ) ) ;
lambda = 1/(exp(−beta∗m1) − exp(−beta∗m2) ) ;

p d i s t = @( x ) beta∗ lambda∗exp(−beta∗x ) ;

a f t = count − cou nt dec lu s t ;

c a t a l o g i n d e x = [ ca ta l og ( : , 1 : 5 ) ind ] ;
random catalog = [ ] ;
k = 1 ;

for i = 1 : length ( time ) ,
index = find ( c a t a l o g i n d e x ( : , 6 ) == i ) ; % g e t e v e n t s t h a t

happened in time−s t e p ” i ”
chunk time = c a t a l o g i n d e x ( index , : ) ; % crop o f the c a t a l o g

f o r time−s t e p ” i ”

index remove = find ( a f t ( : , i ) > 0) ; % where t h e r e i s a t l e a s t
1 a f t e r s h o c k in time−s t e p ” i ”

box random = find ( a f t ( : , i ) == 0) ; % f i n d i n g boxes wi th no
c o r r e l a t e d e v e n t s

for j = 1 : length ( box random ) ,
ind = find ( chunk time ( : , 7 ) == box random ( j ) ) ;
random catalog = v e r t c a t ( random catalog , chunk time ( ind , : )

) ; % grouping e v e n t s from random boxes to the
d e c l u s t e r e d c a t a l o g

chunk time ( ind , : ) = [ ] ; % remove random e v e n t s from
chunk time
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end

for j = 1 : length ( index remove ) , % a n a l y z i n g boxes
i n d i v i d u a l l y to e x t r a c t a f t e r s h o c k s
index box = find ( chunk time ( : , 7 ) == index remove ( j ) ) ;
chunk = chunk time ( index box , : ) ; % e v e n t s in box ” j ” and

year ” i ”

for l = 1 : a f t ( index remove ( j ) , i ) , % choos ing e v e n t s one
by one

m min = min( chunk ( : , 4 ) ) ;
m max = max( chunk ( : , 4 ) ) ;

argu = rand ( ) ∗(exp(−beta∗m min) − exp(−beta∗m max) ) +
exp(−beta∗m max) ; % so t h a t the s o r t e d magnitude

v a r i e s from m min to m max

probs = −log ( argu ) /beta ; % chosen magnitude
comp = abs ( chunk ( : , 4 ) − probs ) ; % to f i n d the event

wi th the c l o s e s t magnitude

i nd s e a r ch = find (comp == min(comp) ) ; % v e c t o r t h a t
shows which magnitudes are the c l o s e s t from the
chosen magnitude ” probs ”

d i f f ( k ) = min(comp) ;
d i f f mag ( k ) = (m max − m min) ;
i f d i f f mag ( k ) == 0 ,

d i f f r e l ( k ) = 0 ;
else

d i f f r e l ( k ) = min(comp) /(m max − m min) ;
end

a f t c a t a l o g (k , : ) = chunk ( ind s e a r ch (1 ) , : ) ; % choos ing
the event as an a f t e r s h o c k

chunk ( in d s e a r ch (1 ) , : ) = [ ] ; % d e l e t i n g the chosen
event

k = k + 1 ;
end

random catalog = v e r t c a t ( random catalog , chunk ) ; % adding
the l e f t overs to the random c a t a l o g

clear chunk
end

end
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A.2 ergodicity.m

function [ var , time , num boxes ] = e r g o d i c i t y ( formated ) ;

%%%%%%%%%%% i n p u t s %%%%%%%%%%%%%%%%

% formated : year l a t lon mag

%%%%%%%%%%%% S p a t i a l Region %%%%%%%%%%%%%%%%%%%%
boxs i z e = ;
la t min = ;
lat max = ;
lon min = ;
lon max = ;
t min = ;
t max = ;
t imes teps = ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x box = ce i l ( ( lon max − lon min ) / boxs i z e ) ; % number o f boxes in
the x−a x i s

y box = ce i l ( ( lat max − l a t min ) / boxs i z e ) ; % number o f boxes in
the y−a x i s

time = [ t min : t imes teps : t max ] ;
dt = time (2 ) − time (1 ) ;

%%%%%%% Locat ing the e v e n t s in the 3D g r i d %%%%%%%%%%%%%%%%%%

count = zeros ( x box∗y box , length ( time ) ) ;

for i = 1 : length ( formated ) ,
i n d e x l a t = f loor ( ( formated ( i , 2 ) / boxs i z e − l a t min / boxs i z e ) +

1) ;
i ndex l on = f loor ( ( formated ( i , 3 ) / boxs i z e − lon min / boxs i z e ) +

1) ;
index dep = 1 ;
index t ime = f loor ( ( formated ( i , 1 ) /dt − t min /dt ) + 1) ;

i f i n d e x l a t > x box ,
i n d e x l a t = x box ;

end

i f i ndex l on > y box ,
i ndex l on = y box ;

end
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box index = ( index dep −1)∗( x box∗y box ) + ( i n d e x l a t − 1) ∗
x box + index l on ;

count ( box index , index t ime ) = s i n g l e ( count ( box index ,
index t ime ) + 1) ;

ind ( i , : ) = [ index t ime box index ] ;
end

num boxes = x box∗y box ; % t o t a l number o f boxes

% C a l c u l a t i n g the TM metr ic

i n t e g r a l = zeros ( num boxes , 1 ) ;
epson = zeros ( num boxes , length ( time ) ) ;

for i = 1 : length ( time ) ,
i n t e g r a l = count ( : , i ) + i n t e g r a l ;
epson ( : , i ) = (1/ i ) .∗ i n t e g r a l ; % eq (2) from ” e r g o d i c i t y in

n a t u r a l ear thquake f a u l t networks ”
mean epson = (1/ num boxes ) ∗sum( epson ( : , i ) ) ; % eq 3
var = ( epson ( : , i ) − mean epson ) . ˆ 2 ;
term ( i ) = sum( var ) ;
TM( i ) = (1/( num boxes ) ) ∗ term ( i ) ; % eq 1

end

D = 1/TM(1) ; % The d i f f u s i o n c o e f f i c i e n t ;
TM = TM.∗D;

cum events ( : , 1 ) = count ( : , 1 ) ;
for i = 2 : length ( time ) ;

cum events ( : , i ) = cum events ( : , ( i −1) ) + count ( : , i ) ;
end

save ( ’ count . mat ’ , ’ count ’ , ’ ind ’ , ’ cum events ’ )

av square = sum( cum events . ˆ 2 ) . / num boxes ;
square av = (sum( cum events ) . / num boxes ) . ˆ 2 ;

var = av square − square av ;

A.3 PSO.m

function [ gbest , f i t f u n c ] = PSO( up bound , low bound , y ) ;

% INPTUS
% up bound : row v e c t o r wi th upper l i m i t s o f number o f e v e n t s in

each box wi th at l e a s t one event ( from c l u s t e r e d data )
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% low bound : row v e c t o r wi th lower l i m i t s o f number o f e v e n t s in
each box wi th at l e a s one event

% y : y−c o o r d i n a t e s o f the r e f e r e n c e p o i n t

% OUTPUTS
% g b e s t : b e s t s o l u t i o n o f the PSO
% f i t f u n c : s c o r e s based on the d i s t a n c e between the model and

the p o s s i b l e
% s o l u t i o n s
% r e s i d u a l : v e c t o r wi th the d i f f e r e n c e between g l o b a l minimum and

j−th
% minimum found

load par

% Options f o r the PSO
N ind = 400 ; % number o f i n d i v i d u a l s in the p o p u l a t i o n
gen = 20000; % number o f g e n e r a t i o n s
param = length ( up bound ) ; % number o f parameters

conv = 1 ;
count = 1 ;

%c0 = l i n s p a c e ( 0 . 5 , 1 . 4 , gen ) ;
%c1 = 2; % l e a r n i n g f a c t o r
%c2 = 2; % l e a r n i n g f a c t o r

c o e f = [20 −0.4438 −0.2699 3 . 3 9 5 ; 30 −0.6031 −0.6485 2 . 6 4 7 5 ; 50
−0.2256 −0.1564 3 . 8 8 7 6 ; 100 −0.2089 −0.0787 3 . 7 6 3 7 ] ;

compa = abs ( c o e f ( : , 1 ) − param ) ;
ind = find ( compa == min( compa) ) ;

c0 = c o e f ( ind (1 ) ,2 ) .∗ ones ( gen , 1 ) ;
c1 = c o e f ( ind (1 ) ,3 ) ;
c2 = c o e f ( ind (1 ) ,4 ) ;

amp = up bound − low bound ;
for i = 1 : N ind ,

i n s o l ( i , : ) = round(amp.∗ rand (1 , param ) + low bound ) ; %
g e n e r a t i n g i n i t i a l s o l u t i o n s randomly from ” low bound ” to
” up bound ”

v i n i t i a l ( i , : ) = round ( 0 . 5 . ∗ (amp.∗ rand (1 , param ) + low bound ) )
; % g e n e r a t i n g i n i t i a l v e l o c i t i e s

end
s o l = i n s o l ;
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while (conv >= 0.0001 | | count < 2∗gen /100) ,

for i = 1 : N ind ,
cum test = count t ;
cum test ( index ) = s o l ( i , : ) ’ ;
cum test = cum test + cum events1 ( : , ( t−1) ) ;
y mod = sum( cum test . ˆ 2 ) . / num boxes − sum( cum test . /

num boxes ) . ˆ 2 ;

f i t f u n c ( i , : ) = [ s o l ( i , : ) sum( ( y − y mod ) . ˆ 2 ) ] ; %
matrix where each row i s a p a r t i c l e and the l a s t
e lement o f the row i s the f i t n e s s score

end

i f ( count == 1) , % i t i s the f i r s t i n t e r a c t i o n o f them
ALL

pbest = f i t f u n c ;
s c o r e s = pbest ( : , param+1) ;
ind = find ( s c o r e s == min( s c o r e s ) ) ;
gbest = pbest ( ind (1 ) , : ) ; % one s i n g l e p a r t i c l e and

the f i t n e s s score in the l a s t e lement o f the
v e c t o r

else
s c o r e s o l d = s c o r e s ; % f i t n e s s s c o r e s o f p r e v i o u s

g e n e r a t i o n
s c o r e s = f i t f u n c ( : , param+1) ; % f i t n e s s s c o r e s o f

curren t g e n e r a t i o n
comp = s c o r e s < s c o r e s o l d ;

ind = find (comp == 1) ; % p a r t i c l e s t h a t have improved
t h e i r f i t n e s s

pbest ( ind , : ) = f i t f u n c ( ind , : ) ; % r e w r i t i n g the
p a r t i c l e s t h a t have improved in the ” p b e s t ” matrix

s c o r e s = pbest ( : , param+1) ;
ind = find ( s c o r e s == min( s c o r e s ) ) ; % l o c a t i n g the

minimum f i t n e s s score in g e n e r a t i o n ” j ”
i f ( s c o r e s ( ind (1 ) ) < gbest ( param+1) ) , % comparing

s c o r e s
gbest = pbest ( ind (1 ) , : ) ;

end
end

for k = 1 : N ind , % t h i s loop updates each s o l u t i o n
i f ( count == 1) , % f i r s t i n t e r a c t i o n ever

v = round( c0 ( count ) .∗ v i n i t i a l (k , : ) + c1 .∗ rand (1 ,
param ) . ∗ ( gbest ( 1 : param ) − s o l (k , : ) ) + c2 .∗ rand
(1 , param ) . ∗ ( pbest (k , 1 : param ) − s o l (k , : ) ) ) ;
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s o l (k , : ) = s o l (k , : ) + v ;
v l a s t (k , : ) = v ;

else
v = round( c0 ( count ) .∗ v l a s t (k , : ) + c1 .∗ rand (1 ,

param ) . ∗ ( gbest ( 1 : param ) − s o l (k , : ) ) + c2 .∗ rand
(1 , param ) . ∗ ( pbest (k , 1 : param ) − s o l (k , : ) ) ) ;

s o l (k , : ) = s o l (k , : ) + v ;
v l a s t (k , : ) = v ;

end

comp = find ( s o l (k , : ) > up bound ) ; % check ing i f
curren t s o l u t i o n exceeds upper bound

i f ( isempty (comp) == 0) ,
s o l (k , comp) = up bound (comp) ;

end

comp = find ( s o l (k , : ) < low bound ) ; % check ing i f
curren t s o l u t i o n i s lower than lower boundary

i f ( isempty (comp) == 0) ,
s o l (k , comp) = low bound (comp) ;

end

end
conv = gbest ( length ( gbest ) ) ;

i f count == gen ,
break

end
count = count + 1 ;

end
count
t o t a l = sum( up bound )
remaining = sum( gbest ( 1 : length ( gbest )−1) )
conv = gbest ( length ( gbest ) )

A.4 locations.m

function l o c = l o c a t i o n s ( boxes ) ;

boxs i z e = 0 . 1 ;
d s i z e = 30 ; % f o r 2D case , use d s i z e = dep max−dep min
lat max = 40 ;
la t min = 32 ;
lon min = −125;
lon max = −115;
dep min = 0 ;
dep max = 30 ;
mag min = 3 ;
mag max = 100 ;
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mag big = 5 ;

t0 = 1932 ;
t1 = 1989 ;
t2 = 1999 ;

x box = ce i l ( ( lon max − lon min ) / boxs i z e ) ; % number o f boxes in
the x−a x i s

y box = ce i l ( ( lat max − l a t min ) / boxs i z e ) ; % number o f boxes in
the y−a x i s

z box = 1 ;

boxes = x box∗y box ;

% g e t t i n g the l o c a t i o n s o f the boxes . F i r s t column : l a t , Second
column :

% long , Third column : depth .
l o c = zeros ( boxes , 3 ) ;
k = 0 ;
a = 1 ;
for i = 1 : ( y box ) ,

l o c ((1+( i −1)∗x box ) : i ∗x box , 1 ) = lat min + boxs i z e /2 + k∗
boxs i z e ;

l o c ((1+( i −1)∗x box ) : i ∗x box , 2 ) = [ ( lon min+boxs i z e /2) : boxs i z e
: ( lon max−boxs i z e /2) ] ’ ;

l o c ((1+( i −1)∗x box ) : i ∗x box , 3 ) = dep min + d s i z e /2 ;
k = k + 1 ;

end

i f ( z box > 2) ,
k = 1 ;
for i = 1 : ( z box−1) ,

l o c ((1+ i ∗x box∗y box ) : ( i +1)∗x box∗y box , 1 : 2 ) = l o c ( 1 :
x box∗y box , 1 : 2 ) ;

l o c ((1+ i ∗x box∗y box ) : ( i +1)∗x box∗y box , 3 ) = dep min +
d s i z e /2 + k∗ d s i z e ;

k = k + 1 ;
end

end

A.5 pi score.m

function [ p i s c o r e , hotspots , hotspots norm ] = p i s c o r e ( s e r i e s , t0 ,
t1 , t2 , time )

%%%%%%%%%%% Inputs and Outputs %%%%%%%%%%%%%%%%%%%%%%%
% s e r i e s : i t i s the time s e r i e s
% t0 : s t a r t time
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% t1 in the PI paper
% t2 in the PI paper
% p i s c o r e : the score f o r each box
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% g e t t i n g the v e c t o r wi th the time and the l o c a t i o n o f t1 in t h i s
v e c t o r .

n = ( t1−t0 ) /( time (2 )−time (1 ) ) + 1 ; %l o c a t i o n o f t1
l i m i t = length ( time ) ;
num boxes = s ize ( s e r i e s , 1 ) ;
f a c t o r s t d = sqrt (1/( num boxes−1) ) ;

% running the c a l c u l a t i o n s f o r the p a i r s t b to t2 f o r a l l boxes .
There w i l l be

% l e n g t h ( time ) p a i r s .
s c o r e s t 2 = zeros ( num boxes , l i m i t ) ;
for i =1: l im i t ,

den = l im i t−i +1;
t e s t = (1/ den ) .∗sum( s e r i e s ( : , i : l i m i t ) , 2 ) ; % equat ion (1)
mean boxes = (1/ num boxes ) ∗sum( t e s t ) ;
var = ( te s t−mean boxes ) . ˆ 2 ;
std = sqrt (sum( var ) ) ;
s c o r e s t 2 ( : , i ) = ( t e s t − mean boxes ) . / std ; % eq (2)

end

% c a l c u l a t i o n s o f the p a i r s t b to t1 . They are d i v i d e d i n t o 2 f o r
t b l e s s

% and g r e a t e r than t1 r e s p e c t i v e l y .
s c o r e s t 1 = zeros ( num boxes , l i m i t ) ;
for i = 1 : n ,

den = n−i +1;
t e s t = (1/ den ) .∗sum( s e r i e s ( : , i : n ) , 2 ) ; % equat ion (1)
mean boxes = (1/ num boxes ) ∗sum( t e s t ) ;
var = ( te s t−mean boxes ) . ˆ 2 ;
std = sqrt (sum( var ) ) ;
s c o r e s t 1 ( : , i ) = ( t e s t − mean boxes ) . / std ; % eq (2)

end

for i =(n+1) : l im i t ,
den = i−n+1;
t e s t = −(1/den ) .∗sum( s e r i e s ( : , n : i ) , 2 ) ; % equat ion (1)
mean boxes = (1/ num boxes ) ∗sum( t e s t ) ;
var = ( te s t−mean boxes ) . ˆ 2 ;
std = sqrt (sum( var ) ) ;
s c o r e s t 1 ( : , i ) = ( t e s t − mean boxes ) . / std ; % eq (2)

end
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eq3 = s c o r e s t 2−s c o r e s t 1 ; % eq (3)

%eq4 = (1/ l i m i t ) .∗ sum( eq3 , 2 ) ; % eq (4)
eq4 = sum( eq3 , 2 ) ; % eq (4) de acordo com o programa em PERL
p i s c o r e = eq4 . ˆ 2 ;
norm space = sum( p i s c o r e ) ;
p i s c o r e = p i s c o r e . / norm space ; % eq (5)

%h o t s p o t s = p i s c o r e − (1/ num boxes ) .∗ sum( p i s c o r e ) ; % eq (6)
hotspots = p i s c o r e ;
hotspots norm = hotspots . /max( hotspots ) ;

A.6 moore box upadate.m

function [ r e s u l t , t e s t ] = moore box upadate ( thresho ld , b igevents ,
l o c a t i o n s , hotspots , count , f o r e c o u n t )

% This f u n c t i o n c a l c u l a t e s the number o f h i t s , c o r r e c t n e g a t i e v s ,
f a l s e

% alarms and misses when us ing the PI f o r a g iven t h r e s h o l d .

%%% Inputs and Outputs %%%

% t h r e s h o l d : the l i m i t in the PI score to c o n s i d e r a box to be a
p o s i t i v e f o r e c a s t

% b i g e v e n t s : c a t a l o g wi th the b i g e v e n t s in the f o r e c a s t per iod
% r e s u l t : v e c t o r wi th the Pierce ’ s S k i l l Score ( in t h i s order )
% t e s t : v e c t o r wi th yy , yn , ny , nn ( in t h i s order )

boxs i z e = 0 . 1 ;
d s i z e = 30 ; % f o r 2D case , use d s i z e = dep max−dep min
lat max = 40 ;
la t min = 32 ;
lon min = −125;
lon max = −115;
dep min = 0 ;
dep max = 30 ;
mag min = 3 ;
mag max = 100 ;
mag big = 5 ;

t0 = 1932 ;
t1 = 1989 ;
t2 = 1999 ;

x box = ce i l ( ( lon max − lon min ) / boxs i z e ) ; % number o f boxes in
the x−a x i s
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y box = ce i l ( ( lat max − l a t min ) / boxs i z e ) ; % number o f boxes in
the y−a x i s

z box = 1 ;

boxes = x box∗y box ;
%%%%%%%%%%%%%%

yy = 0 ; % f o r e c a s t ( yes ) ; observed ( yes ) − chkp = 1
yn = 0 ; % f o r e c a s t ( yes ) ; observed ( no ) − chkp = 2
nn = 0 ; % f o r e c a s t ( no ) ; observed ( no ) − chkp = 4
ny = 0 ; % f o r e c a s t ( no ) ; observed ( yes ) − chkp = 3

x box = ce i l ( ( lon max − lon min ) / boxs i z e ) ; % number o f boxes in
the x−a x i s

y box = ce i l ( ( lat max − l a t min ) / boxs i z e ) ; % number o f boxes in
the y−a x i s

z box = ce i l ( ( dep max − dep min ) / d s i z e ) ; % number o f boxes in
the z−a x i s

count b ig = zeros ( x box∗y box , 1 ) ;

for i = 1 : s ize ( b igevents , 1 ) ,
i n d e x l a t = f loor ( ( b igevent s ( i , 2 ) / boxs i z e − l a t min / boxs i z e )

+ 1) ;
i ndex l on = f loor ( ( b igevent s ( i , 3 ) / boxs i z e − lon min / boxs i z e )

+ 1) ;
index dep = 1 ;
b i g index ( i ) = ( index dep −1)∗( x box∗y box ) + ( i n d e x l a t − 1) ∗

x box + index l on ; % v e c t o r wi th the i n d e x e s o f the ” b i g
e v e n t s ”

count b ig ( b i g index ( i ) ) = count b ig ( b i g index ( i ) ) + 1 ;
end

used = sum( count , 2 ) + f o r e c o u n t ;

for i = 1 : length ( l o c a t i o n s ) , % a n a l i z e box by box
i f used ( i ) > 0 ,

proxy1 = 0 ;
proxy2 = 0 ;
i f ( hotspots ( i ) < th r e sho ld ) , % t h e r e i s NO FORECAST f o r

box ” i ”

for j = 1 : length ( b i g index ) ,
i f ( b i g index ( j ) == i ) , % t h e r e i s a b i g event in

box ” i ”
proxy1 = 1 ;
break
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end
end

i f ( proxy1 == 1) ;
ny = ny + 1 ;
chkp = 3 ;

else
nn = nn + 1 ;
chkp = 4 ;

end

else % t h e r e IS A FORECAST
for j = 1 : s ize ( b igevents , 1 ) , % t h e r e i s a b i g event

in the v i c i n i t y o f box ” i ”
checkpoint1 = abs ( b igevent s ( j , 2 ) − l o c a t i o n s ( i , 1 )

) − 1 .5∗ boxs i z e ;
checkpoint2 = abs ( b igevent s ( j , 3 ) − l o c a t i o n s ( i , 2 )

) − 1 .5∗ boxs i z e ;
checkpoint3 = abs ( b igevent s ( j , 4 ) − l o c a t i o n s ( i , 3 )

) − 1 .5∗ d s i z e ;

i f ( ( checkpoint1 <= 0) && ( checkpoint2 <= 0) && (
checkpoint3 <= 0) ) ,
proxy2 = 1 ;
break

end
end

i f ( proxy2 == 1) ;
yy = yy + 1 ;
chkp = 1 ;

else
yn = yn + 1 ;
chkp = 2 ;

end

end
box tag ( i ) = chkp ;

end
end

p s co r e = ( ( yy∗nn − yn∗ny ) / ( ( yy + ny ) ∗( yn + nn) ) ) ; % Pierce ’ s
s k i l l s core

H = yy /( yy + ny ) ;
FA = yn /( yn + nn) ;
num = 2∗( yy∗nn − ny∗yn ) ;
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den = ( yy + ny ) ∗( ny + nn) + ( yy + yn ) ∗( yn + nn) ;
he idke = num/den ;

r e s u l t = [ p s co r e th r e sho ld H FA heidke ] ;

t e s t = [ yy yn ny nn ] ;

end
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