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ABSTRACT 

 
 

Signal transduction via heterotrimeric G proteins in response to transmembrane G 

protein-coupled receptors plays a central aspect in how cells integrate extracellular 

stimuli and produce biological responses. In addition to receptor-mediated activation of 

heterotrimeric G proteins, during the last few decades, accessory proteins have been 

found to regulate G protein activity via different mechanisms.  Several proteins have been 

identified that contain multiple G protein regulatory domains.  Using various molecular 

and biochemical approaches, we have characterized the effects of two such proteins, G18 

and RGS14, on G protein activity.  Both proteins contain a second G protein binding 

domain in addition to the GoLoco domain, which primarily acts as a guanine nucleotide 

dissociation inhibitor (GDI) on Gi/o proteins.  Our results identified that the N-terminal 

region of G18 is a novel G protein-interacting domain, which may have distinct 

regulatory effects within the Gi/o subfamily and could potentially play a role in 

differentiating signals between these related G proteins.  In addition, we characterized the 

tissue and cellular distribution of G18.  We found that G18 is expressed in primary 

isolated rat aortic smooth muscle cells and endothelial cells.  A protein-protein interaction 

assay indicated that G18 is able to directly interact with RGS5, an RGS protein that is 

also highly expressed in vascular tissue.  This interaction results in an increase in RGS5 

GTPase accelerating protein (GAP) activity with little or no effect on G18 activity.  In 

Chapter 4 of the thesis, we identified a novel GAP enhancing domain located at the Ras-

binding (RB) region of RGS14.  This enhancement may be due to the intramolecular 

interaction between the RB domain and the RGS domain.  Furthermore, this interaction 

may also result in an inhibitory effect on the GDI activity of the RGS14 GoLoco motif.  



iv 

 

Overall, my work suggests that GoLoco motif containing proteins G18 and RGS14 are 

organizers of G protein signaling that also modulate RGS protein function. 
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INTRODUCTION 
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1 INTRODUCTION 

1.1 G PROTEIN SIGNALING 

1.1.1 CLASSICAL RECEPTOR DEPENDENT G PROTEIN SIGNALING 

 

G protein-coupled receptors (GPCRs) comprise the largest family of cell surface 

receptors (Lagerstrom and Schioth, 2008).  Over 60% of drugs currently available on the 

market target GPCRs, acting to mimic or block endogenous ligands or to modulate ligand 

levels (Leurs et al., 1998;Gesty-Palmer and Luttrell, 2008).  GPCRs transduce 

extracellular signals into the cell via heterotrimeric GTP binding proteins (G proteins).  

Heterotrimeric G proteins consist of the three subunits α, β, .  The Gα subunit contains 

the nucleotide binding site, and in the inactive state, Gα is associated with GDP and Gβγ 

subunits which normally form a complex.  GPCRs can be activated by different stimuli 

such as hormones, neurotransmitters and chemokines (Neves et al., 2002).  Binding of an 

activating ligand or agonist to the receptor triggers a conformational change which leads 

to nucleotide exchange and activation of the Gα subunit of the G protein (GTP for GDP).  

This also is thought to cause dissociation of the Gβγ dimer from the Gα subunit.  Both 

activated Gα (GTP-bound) and Gβγ are able to activate downstream effectors including 

adenylyl cyclase (AC) and phospholipase Cβ (PLC-β) (Neves et al., 2002;Smrcka, 2008).  

G protein activation is terminated by the intrinsic GTPase activity of Gα, which 

hydrolyzes GTP to GDP, returning Gα to its inactive (GDP-bound) state and reforming 

the Gαβγ heterotrimer (Figure 1.1).  After activation, GPCRs can undergo internalization, 

and many can signal from endosomal compartments via G protein-independent 

mechanisms.  This process appears to be regulated primarily by phosphorylation and 

arrestin binding (Marchese et al., 2008). 
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Figure 1.1 

 

 

 

 

 

 

 

 

Fig. 1.1. Receptor-mediated activation of G proteins.  The binding of the extracellular 

ligand to the receptor causes a conformational change of the receptor, which leads to the 

activation of the Gα subunit. This activation promotes the exchange of GTP for GDP and 

is thought to cause the dissociation of Gβγ dimer from the complex. Both the GTP-bound 

Gα and free Gβγ are capable of initiating signals by interacting with downstream 

effectors. The process is terminated by the GTPase activity of the Gα subunit which can 

hydrolyze GTP to GDP, returning the Gα subunit to its inactive form and reforming the 

Gαβγ complex.  
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Diverse mechanisms exist to precisely regulate the magnitude and duration of G protein 

signaling.  Nucleotide exchange can be modulated by guanine nucleotide exchange 

factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs), whereas the 

GTPase activity of Gα subunit can be enhanced by GTPase accelerating proteins (GAPs) 

(Siderovski and Willard, 2005).  Regulation of G protein signaling by these accessory 

proteins will be discussed below (sections 1.2, 1.3, 1.4 and 1.5 ) (Figure 1.2).   

 

1.1.2 DIVERSITY OF G PROTEINS 

To date, 23 α subunit, 7 β subunit and 12 γ subunit isoforms have been identified 

(McIntire, 2009).  Based on their sequence similarities and effector selectivities, Gα 

subunits can be divided into four subfamilies (Gs, Gi/o, Gq, G12/13) (Neves et al., 2002).  

Gs proteins (Gαs, Gαolf) can stimulate AC activity, increasing cyclic adenosine 

monophosphate (cAMP) production.  This second messenger in turn can regulate 

activities of cAMP-dependent protein kinase (PKA) or exchange proteins directly 

activated by cAMP (Epac).  In addition to these two major effectors, cAMP is also able to 

activate cyclic nucleotide-gated ion channels and certain phosphodiesterases (Weinstein 

et al., 2004).  Gi/o family members (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαt) exhibit inhibitory 

effects on AC activity.  Gi/o proteins may also regulate c-Src activity and Rap pathways, 

however, the physiological consequences of these functions still remain to be established 

(Weissman et al., 2004;He et al., 2005).  The primary effector for Gq (Gαq, Gα11, Gα14, 

Gα15, Gα16) is PLC-β, the activation of  
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Figure 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2. Regulation of G protein cycle.  The rate of nucleotide exchange can be altered 

by guanine nucleotide dissociation inhibitors (GDIs) and guanine nucleotide exchange 

factors (GEFs).  GTP hydrolysis can be regulated by GTPase accelerating proteins 

(GAPs). 
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which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG), 

and further regulates Ca
2+

 release as well as protein kinase C (PKC) activity (Mizuno and 

Itoh, 2009).  The cellular targets for G12/13 (Gα12, Gα13) are not yet fully established.  

It has been shown that G12/13 can regulate Rho/Rho-kinase activation via RhoGEFs (e.g. 

p115RhoGEF) and further play a role in cell migration (Bian et al., 2006;Suzuki et al., 

2009).  There are 7 β subunits and 12 γ subunits. Upon the activation of GPCRs and 

rearrangement of G protein subunits, Gβγ is able to activate a large number of its own 

effectors; however, the mechanism of Gβγ interaction with its effectors is not well 

understood (McCudden et al 2005)  (Figure 1.3, Table 1.1). 

 

1.1.3 STRUCTURAL BASIS OF GALPHA PROTEIN ACTIVATION 

All Gα proteins have structures composed of two domains, a GTPase domain and a 

helical domain (Figure 1.4) (Oldham and Hamm, 2006a).  The GTPase domain shares 

homology with the family of monomeric G proteins, and the three flexible loops 

(Switches I, II and III) within this domain undergo dramatic structural changes during the 

nucleotide exchange and hydrolysis cycle (Lambright et al., 1994;Mixon et al., 1995).  

The GTPase domain also contains binding sites for Gβγ, receptors and effectors.  The 

helical domain of the Gα subunit contains an α-helical lid over the nucleotide-binding 

site, burying the bound nucleotide in the core of the protein (Lambright et al., 

1994;Warner et al., 1998).  Since this domain is the most divergent among the four Gα 

subfamilies, it may also regulate coupling of specific G proteins to receptors, and other 

regulators (Liu and Northup, 1998). 
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Figure 1.3 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3. Regulation of systemic functions by signaling through G protein pathways.  

A schematic representation of how signaling through G protein pathways can regulate 

systemic functions.  Reproduced from  Neves et al., 2002. 
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Table 1.1 

 

 

 

 

 

 

 

 

 

Table 1.1. Classes of Gα subunits, their expression patterns and effectors. 

  

Members of the Gα family, their expression pattern and their signaling model

Gα class expression effector proteins

Gαs Ubiquitous

Gαolf Olfactory neurons

Gαi1/2/3 Ubiquitous

GαoA/B Brain

Gαt1/2 retina stimulation of cGMP-phosphodiesterase

Gαz Brain/platelets K+  channel closure

Gα15/16 Hematopoietic cells

Gαq/11 Ubiquitous

Gα14 Lung, kidney, liver

Gα12/13 Gα12/13 Ubiquitous Rho GEF

Gαs

Gαi

Gαq/11

stimulation of adenylyl cyclase

inhibition of adenylyl cyclase

stimulation of PLCβ
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Figure 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4. Structural features of heterotrimeric G proteins. (a) Ribbon model of 

Gαt/i(GDP)β1γ1 heterotrimer (1GOT). (b) The subunits have been rotated to show the 

intersubunit interface. (c) When the GDP-bound (1TAG), GTPγS-bound (1TND) and 

heterotrimeric (1GOT) structures of Gα are aligned. Reproduced from Oldham et al., 

2006a. 
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Although receptor-stimulated GDP release is not fully understood, several potential 

mechanisms have been proposed (Oldham et al., 2006b) (Figure 1.5).  These mechanisms 

involve the α5-helix (Marin et al., 2000;Ceruso et al., 2004), β6-strand (Onrust et al., 

1997) and intramolecular contacts within the N-terminus of Gα (Natochin and Artemyev, 

2000).  It has been suggested that upon activation, the receptor uses the N-terminus helix 

of Gα to “pull” the Gβγ complex and switches I and II away from the nucleotide binding 

pocket, resulting in GDP release (Iiri et al., 1998).  Due to the high cellular GTP 

concentration (both absolute concentration and relative concentration compared to GDP), 

Gα will most likely exist in a very transient nucleotide-free state before the binding of 

GTP.  This binding causes a structural rearrangement of the heterotrimeric G protein 

which exposes the effector binding site and leads to signal transduction.  In addition, the 

binding of GTP to Gα can be facilitated and stabilized by Mg
2+

, which has been 

suggested to act as a keystone locking the Gα in a conformation that favors effector 

binding.  Binding of Mg
2+

-GTP upon the release of GDP is followed by the clamping of 

the Mg
2+

-GTP complex into place where Mg
2+

 is coordinated with Ser and Thr residues 

in the switch I region and the α1 helix of the GTPase domain of Gα (Birnbaumer and 

Zurita, 2010).   

 

Structural studies on the mechanism of GTP hydrolysis have demonstrated the 

importance of the three switch regions (Sondek et al., 1994;Coleman et al., 1994) (Figure 

1.6).  Inspection of the crystal structure of AlF4
-
-activated Gα reveals the  
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Figure 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5. Heterotrimeric G protein activation by Gprotein-coupled receptors.  (a) 

Several regions in the Gα subunit show receptor-mediated changes in mobility on 

receptor binding. (b) Peptides may mimic receptor-mediated conformational changes in 

Gα, as shown in the model of Gαi1 bound to the KB-752 and D2N peptides (Protein Data 

Bank ID 2HLB). (c) Transparent surface model of the Gi heterotrimer with the α5–β6 and 

SwI–αF motifs shown as ribbons. Reproduced from  Oldham and Hamm, 2008. 
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functional role of conserved glutamine and arginine residues within the nucleotide 

binding pocket (Noel et al., 1993;Coleman et al., 1994).  The intrinsic GTP hydrolysis 

activity varies among different Gα proteins (WM Oldham, HE, Hamm 2006).  The 

mechanisms of these differences have not been studied in detail, however, the relatively 

slow GTPase activity of Gα can be stimulated by GAPs.   

 

1.2 REGULATOR OF G PROTEIN SIGNALING (RGS) PROTEINS 

The duration of G protein signaling is determined by the length of time that the Gα 

subunit is in its GTP-bound state (Ross and Wilkie, 2000).  Originally, GTP hydrolysis 

was considered to be an unregulated function of the Gα subunit, which has intrinsic 

GTPase activity (Brandt and Ross, 1985).  However, several groups have identified the 

inconsistency between the rapid G protein signal inactivation rates in vivo and relatively 

slow GTP hydrolysis rate in vitro (Breitwieser and Szabo, 1988;Vuong and Chabre, 

1991).  This suggests the existence of a mechanism in vivo that can stimulate the GTPase 

activity of Gα and accelerate GTP hydrolysis.  So far, regulator of G protein signaling 

(RGS) proteins are one of the most well understood proteins that serve such a role.  

 

SST2, Egl-10 GOS8 (renamed RGS2), and GAIP (RGS19), were among the first RGS 

proteins identified in the mid 90s (Siderovski et al., 1994;De Vries et al., 1995;Koelle 

and Horvitz, 1996;Apanovitch et al., 1998).  Since then, more RGS proteins have joined 

the family, and so far, 20 distinct genes in mammals have been found encoding RGS 

proteins (Abramow-Newerly et al., 2006).  They can be grouped into four  
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Figure 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6. Mechanisms of GTP hydrolysis by Gα. (a) Crystallographic snapshots of GTP 

hydrolysis. Four important residues for stabilizing the transition state are shown (b) 

Structure of the RGS9 RGS domain binding to Gαt(GTP·AlF4
−
) (1FQK). The RGS 

proteins enhance the basal GTP hydrolysis rate of Gα subunits by stabilizing the 

transition state. (c) The recently solved structures of Gαi/12(GTP·AlF4
−
) (1ZCA) and 

Gαi/13(GDP) (1ZCB) suggest that GTP hydrolysis leads to an 8.5° rotation of the helical 

domain away from the GTPase domain in this family of Gα subunits (arrow). Reproduced 

from Oldham et al., 2006a. 
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subfamilies based on their sequence similarity in the RGS domain (R4/B, RZ/A, R7/C, 

and R12/D).  In addition, there are also a similar number of “RGS like” proteins, and 

some of these proteins exhibit GAP activity (Ross et al., 2000;Abramow-Newerly et al., 

2006) (Figure 1.7).  All the RGS proteins share a signature RGS domain (120 amino 

acids).  Although many RGS proteins are relatively simple proteins that contain little 

more than a RGS domain, there are also some RGS proteins that contain signaling 

domains other than the RGS domain, thus RGS proteins may also have non-canonical 

functions distinct from inactivating Gα subunits (Sethakorn et al., 2010). 

 

1.2.1 STRUCTURAL BASIS OF RGS PROTEIN-G PROTEIN INTERFACE 

RGS proteins bind to the active/transition state of Gα proteins, and increase the rate of 

GTP hydrolysis up to 2000 fold (Mukhopadhyay and Ross, 2002).  Thus, the GTPase 

activities of Gα measured in the presence of RGS proteins in vitro correspond well to or 

exceed the cellular deactivation rate (Ross et al., 2000).  The molecular and structural 

mechanism of RGS protein GAP activity has been well studied.  The classic RGS domain 

consists of 9 α-helices bundled into two lobes, one formed by helices αI, αII, αIII, αVIII, 

and αIX.  The other lobe consists of the αIV, αV, αVI, and αVII helices. (Tesmer et al., 

1997;Soundararajan et al., 2008).  This canonical structure is shared by most RGS 

domains, however, it has also been suggested that members from the R12 subfamily 

(RGS10, RGS12, RGS14) may have an extended αV-αVI loop compared with the other 

three families.  Furthermore, they do not contain a complete αVI helix, which shows 

some flexibility (Soundararajan et al., 2008).   
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Figure 1.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7. Structures and classification of mammalian RGS protein.  RGS proteins are 

classified into subfamilies A-D based on alignment of RGS domain amino acid 

sequences.  Note that RGS-like proteins are not listed here.  Abbreviations: RGS: 

regulator of G protein signaling; DEP: Dishevelled, worm EGL-10, and mammalian 

Pleckstrin; R7BP: R7 binding proteins; GGL: G gamma like; PDZ: PSD95, Dgl and ZO-

1/2; PTB: protein tyrosine binding; RID: Ras interaction domain.  Adapted from 

Hollinger and Hepler, 2002. 
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The typical G protein-RGS protein interface has also been solved by both NMR and 

crystallography (Tesmer et al., 1997;Moy et al., 1999).  These studies highlighted 

interactions between the RGS domain and G proteins that are important for the GAP 

activity.  For example, the αIII-αIV loop interacts with the switch II region of Gα, while 

the αV-αVI loop, and αVI helix interact with all three switch regions of Gα, and the αVII, 

αVIII helices and transition region interact with switch I of Gα (Soundararajan et al., 

2008).  However, due to the different structure of R12 RGS domains, their interactions 

with G proteins are likely to vary.  For example, the amino acids within αVI helix of 

RGS10 are disordered, thus it does not retain the typical interactions between the switch 

III region of the G protein and the αVI helix of the RGS domain (Soundararajan et al., 

2008).  The selectivity between different RGS proteins and G proteins is likely 

determined by the interaction between the αVII and αVIII helices of RGS domains and 

the Gα all-helical domain (Skiba et al., 1999;Soundararajan et al., 2008) (Figure 1.8).   

 

1.2.2 MECHANISMS OF RGS PROTEIN GAP ACTIVITY 

The mechanism of RGS protein GAP activity was first studied using RGS4-Gαi1 as a 

prototype (Tesmer et al., 1997;Srinivasa et al., 1998).  From these studies, the authors 

concluded that RGS4 stimulates GTP hydrolysis primarily, if not exclusively, by binding 

to and stabilizing the transition state conformation of the Gα subunit that is most likely to 

hydrolyse GTP.  Moreover, the crystal structure of RGS4 bound to transition state Gαi1 

(i.e. with GDP and AlF4
-
 in the binding pocket) provided more detailed information 

regarding the interaction between RGS protein and G protein.  These results indicated 

that RGS4 does not directly interact with either GDP or AlF4
-
, instead, RGS4 catalyzes  
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Figure 1.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8. RGS-domain interactions with the Gα all-helical domain. RGS4/Gαi1 

complex (PDB ID 1AGR). Glu-161, Lys-162, and Arg-166 in the RGS4 αVII helix are 

within 4.0 Å of the Gαi1 all-helical domain residues Ser-75 or Glu-116. Reproduced from 

Soundararajan et al., 2008. 
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GTP hydrolysis by reducing the energy of the transition state of the Gα subunit and 

destabilizing the Gα-GTP complex (Tesmer et al., 1997).  Several studies have 

highlighted the importance of an asparagine residue (Asn-128) within the RGS domain of 

RGS4.  This is the only residue positioned at the active site of Gα, and it interacts with a 

glutamine residue (Gln-204) of Gαi1 that polarizes the attacking water molecule in the 

GTPase reaction (Tesmer et al., 1997;Srinivasa et al., 1998;Xie and Palmer, 2007).  

Subsequent studies using other RGS-Gα complexes such as RGS16/Gαt and RGS9/Gαt 

(McEntaffer et al., 1999;Slep et al., 2001), p115-RhoGEF/Gα13/i1 (Chen et al., 2005) 

and RGS1, GAIP/Gαi/o (Watson et al., 1996) also confirmed that the RGS domains bind 

to and stabilize the flexible (switch) regions of Gα during the transition state of GTP 

hydrolysis. 

 

1.2.3 SELECTIVE REGULATION OF RGS PROTEINS 

The selectivity of RGS proteins is dependent on sequence elements both within and 

outside of the RGS domain as well as the helical domain of the Gα protein (De Vries et 

al., 2000).  Most RGS proteins studied so far are GAPs for the Gαi/o and Gαq 

subfamilies of G proteins.  However, their affinity toward different G proteins varies.  

For example, RGS19 binds with high affinity to Gαi1, Gαi3 and Gαo, very weakly with 

Gαi2, and it does not appear to interact at all with Gαs and Gαq (De Vries et al., 1996).  

On the other hand, RGS4 interacts strongly with both Gαi/o and Gαq (Xu et al., 1999).  

Comparison between the crystal structures of these two RGS proteins indicated that 

RGS19 has a Ser (156) at the position corresponding to the Asn128 position in RGS4, 

which may contribute to the observed difference in G protein selectivity (Tesmer et al., 
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1997;De Alba et al., 1999).  So far, there is only one RGS protein that has been reported 

to selectively interact with Gαs, RGS-PX1, however, this remains to be confirmed 

independently by other laboratories (Zheng et al., 2001) (Table 1.2). 

 

Besides the amino acid residues located within the RGS domain, the N-terminal regions 

of RGS proteins also serve as important determinants for their selectivity.  Members from 

different RGS subfamilies contain N-terminal regions with diverse structural features.  

Members of the B/R4 subfamily of RGS proteins each have an amphipathic α-helix of 

about 30 amino-acid residues in length with several palmitoylation sites (Somerville et 

al., 2003), the A/RZ subfamily RGS proteins have a cysteine-rich domain referred to as a 

cysteine string motif (Nunn et al., 2006), whereas in other RGS subfamilies, molecular 

domains such as the DEP domain (C/R7 subfamily) or PDZ domain (RGS12) are near the 

N-terminus of the protein.  The N-terminal domain of RGS proteins regulates selectivity 

by either mediating RGS protein sub-cellular localization or making direct contact with 

specific GPCRs or effector proteins (Xie et al., 2007).  For example, deletion of the N-

terminus of RGS2 (1-67 aa) greatly reduces its plasma membrane and nuclear 

localization, as well as its biological activity (Heximer et al., 2001).  A selective 

interaction between the N-terminus of RGS4 and the muscarinic acetylcholine receptor 

also determines RGS4 selectivity on the muscarinic acetylcholine receptor over the 

cholecystokinin receptor (Zeng et al., 1998). 

 

The biological function and selectivity of RGS proteins are also regulated by their tissue 

distribution and alternative gene splicing.  Although all RGS proteins share a similar 
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RGS domain, there are very different tissue expression patterns among different RGS 

proteins.  For example, RGS2 has a relatively ubiquitous expression pattern, which 

suggests a more general function (De Vries et al., 2000).  In contrast, RGS9-1, is 

selectively expressed in retina, while its splice variant RGS9-2 is expressed in brain (He 

et al., 1998;Kim et al., 2005).  RGS5 is highly expressed in vascular tissues especially 

pericyte and endothelial cells, with lower expression in skeletal muscle and kidney 

tissues (Jin et al., 2009).  RGS21 is the newest member of the RGS protein family, it is 

expressed in the taste bud cells and selectively interacts with G gustducin (Von 

Dannecker et al., 2004;Li et al., 2005) (Table 1.2).  The relatively narrow tissue 

expression of these RGS proteins hints that they may have specialized roles. 

 

1.2.4 THE RGS-LIKE SUBFAMILY OF RGS PROTEINS 

Besides proteins that contain a typical RGS domains that function as a GAP, there is 

another group of proteins that contains a RGS-like (RGL, or RH (RGS homology)) 

domain, which is more distantly related to the RGS domains (Hollinger et al., 

2002;Abramow-Newerly et al., 2006;Tesmer, 2009).  Proteins containing an RGL 

domain include Axins, D-AKAPs (dual specificity Akinase anchoring proteins), 

p115RhoGEFs, RGS-PX1, GRKs (G protein receptor kinases) and PLC-β (Ross et al., 

2000;Hollinger et al., 2002).  Only a few of these homologous domains have been shown 

to interact with Gα proteins, for example, GRK2, GRK3 and RhoGEFs, but the GAP 

activities of most of these proteins are modest (Ross et al., 2000;Tesmer, 2009).  The fact 

that RGL domains have been found in proteins that are involved in different signaling  
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Table 1.2 

RGS protein Tissue G protein Targets Reference 

RGS1 Retina 

B cell;Rods 

Go (Hoffmann et al., 2001) 

(Bansal et al., 2007) 

RGS2 Ubiquitous Gq, Gi/o, Gs (Xu et al., 1999) 

(Kimple et al., 2009) 

(Gu et al., 2008) 

(Roy et al., 2006) 

RGS3 Ubiquitous G11, Gi3 (Dulin et al., 1999) 

RGS4 CNS, Heart Gi/o, Gq, Gz (Xu et al., 1999) 

(Inanobe et al., 2001) 

(Cavalli et al., 2000) 

(Berman et al., 1996) 

(Tu et al., 2003) 

RGS5 Vascular Gi/o, Gq (Gu et al., 2009) 

RGS6 Brain, Spinal cord Gi/o (Anderson et al., 2009) 

(Posner et al., 1999) 

RGS7 Brain Gi/o (Anderson et al., 2009) 

(Posner et al., 1999) 

RGS8 Brain, Testis,  

Thyroid gland 

Gi/o, Gq (Kurogi et al., 2009) 

(Bansal et al., 2007) 

(Benians et al., 2004) 

(Saitoh et al., 2002) 

RGS9 Retina, Rods Gi/o, Gt (Anderson et al., 2010) 
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(Skiba et al., 2000) 

(He et al., 2000) 

RGS10 Leukocyte 

Platelet 

Gi3/o/,Gz 

 

(Wu et al., 2005) 

RGS11 Brain, Pancreas, 

Retina 

Go (Anderson et al., 2009) 

(Masuho et al., 2010) 

RGS12 Brain Gi/o (Snow et al., 1998) 

RGS13 T lymphocytes, 

B lymphocytes 

Mast cells 

Gi/o, Gq (Shi et al., 2002) 

RGS14 Brain, 

Lymphocyte 

Gi/o, G12/13 (Hepler et al., 2005) 

(Cho et al., 2000) 

RGS16 B cells Gi/o, Gq (Hoffmann et al., 2001) 

(Slep et al., 2008) 

(Anger et al., 2004) 

RGS17 Brain Gi/o, Gq, Gz (Mao et al., 2004) 

(Nunn et al., 2006) 

RGS18 Brain, Spleen   

RGS19 Atrial myocytes Go, Gi3, Gq (Tu et al., 2003) 

(Woulfe and Stadel, 1999) 

(Hepler et al., 1997) 

(Huang et al., 1997) 

(Doupnik et al., 2001) 

RGS20 Beta-cells Gz, Gi/o (Nunn et al., 2006) 

(Maurice et al., 2010) 
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(Pagano et al., 2008) 

RGS21 Taste bud cells Gi/o, Ggustducin (Li et al., 2005) 

( Von Dannecker et al., 

2004) 

 

Table 1.2. Selectivity of interactions between mammalian RGS proteins and G 

proteins. 
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pathways suggests that they may function as integrators linking other signaling pathways 

to heterotrimeric G protein pathways (further discussed below in section 1.6). 

 

1.2.5 NON-CANONICAL FUNCTION OF RGS PROTEINS 

RGS proteins were first identified as negative regulators of G protein signaling via their 

GAP activities.  However, some RGS proteins contain other molecular domains outside 

of the RGS domain that have binding partners other than Gα subunits of G proteins, and 

thus further regulate either their subcellular localization, GAP activity or receptor 

coupling (Sethakorn et al., 2010).  In addition, these additional domains may enable RGS 

proteins to serve non-canonical functions and limit signaling via GAP-independent 

mechanisms such as effector antagonism and guanine nucleotide dissociation inhibition 

(Abramow-Newerly et al., 2006;Sethakorn et al., 2010).   

 

In addition to their binding to G proteins, RGS proteins bind to many different effector 

proteins such as ACs, PLC-β, and GIRK channels (Abramow-Newerly et al., 2006).  The 

interaction between RGS proteins and the effectors may have both positive and negative 

effects on signal transduction.  In some cases, RGS proteins can bind to either the 

effectors or the active G protein and interfere with the productive interaction between 

these two proteins.  Thus, RGS proteins function as effector antagonists (Dowal et al., 

2001).  On the other hand, RGS proteins may also serve as anchors and create RGS-G 

protein-effector complexes, resulting in rapid transduction of the G protein signal 

(Chidiac and Roy, 2003). 
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The C/R7 subfamily of RGS proteins contains a conserved G gamma-like (GGL) domain,  

which forms a requisite stable complex with the G protein subunit Gβ5 (Witherow and 

Slepak, 2003).  It has been suggested that the GGL domain has a scaffolding role in 

forming the complex between GPCRs and RGS proteins.  However, the existence of this 

complex has not been identified (Abramow-Newerly et al., 2006).  In addition to C/R7 

RGS proteins, RGS3 has been suggested to interact with Gβ1γ2 through a region N-

terminal to the RGS domain (Shi et al., 2001).  Overexpression of RGS3 inhibits Gβ1γ2-

mediated production of IP3, and activation of extracellular signal- regulated protein 

kinase (ERK) (Shi et al., 2001). 

 

Regulation of non-G protein signaling by RGS proteins has also been investigated.  Both 

RGS13 and RGS16 have been found to interact with the p85α subunit of PI3 kinase in a 

G protein-independent way, and inhibit signaling events downstream of PI3 kinase 

(Bansal et al., 2008;Liang et al., 2009).  In addition, the interaction between RGS3 and 

Smad family proteins interferes with TGF-β-induced dimerization of Smad3 with Smad4, 

thereby inhibiting Smad-mediated gene transcription (Yau et al., 2008).  Work done by 

our lab has identified a novel inhibitory role of RGS2 on global protein synthesis, 

wherein it interacts with the ε subunit of eIF2B to inhibit its GEF activity on eIF2 

(Nguyen et al., 2009).  In addition, RGS proteins or RGL proteins have been suggested to 

play a role in regulating nuclear signaling, for example by modulating gene transcription 

(Sethakorn et al., 2010).  
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1.2.6 OVERVIEW OF RGS14 

The D/R12 subfamily RGS proteins contain three members, RGS10, RGS12 and RGS14.  

Besides RGS10, which is similar in size to the B/R4 proteins, RGS12 and RGS14 are 

large multi-domain proteins.  In addition to the RGS domain, both proteins contain a 

second Gα binding domain, the GoLoco motif (discussed in detail below), as well as two 

small G protein binding domains (Ras binding domains or RB domains) located between 

the RGS domain and the GoLoco motif.  The longest isoform of RGS12 also contains a 

PDZ domain and a PTB (protein tyrosine binding) domain N-terminally to the RGS 

domain, whereas RGS14 only has a relatively short N-terminus.  The biochemical 

activities of the two heterotrimeric G protein binding domains of RGS14 have been 

studied previously (Cho et al., 2000;Mittal and Linder, 2004;Hepler et al., 2005;Mittal 

and Linder, 2006).  The GAP activity of RGS14 has been studied both in solution and in 

receptor-stimulated membrane-based assays (Cho et al., 2000;Hepler et al., 2005).  To 

date RGS14 has been found to act as a GAP solely on the Gi/o subfamily of G proteins 

(Cho et al., 2000;Chidiac et al., 2002).  The GoLoco domain of RGS14 inhibits GDP 

release from isolated Gαi1 and Gαi3, but not Gαi2 and Gαo (Mittal et al., 2004).  On the 

other hand, the RGS domain of RGS14 exhibits similar GAP activity toward all four 

members of the Gi/o subfamily of G proteins in solution-based assays (Mittal et al., 

2004;Hepler et al., 2005).  Interestingly, the affinity of full-length RGS14 for Gαi/o 

subunits is apparently greater than that of the isolated RGS domain (Hollinger et al., 

2001).   
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The RB domains of RGS12 and RGS14 were originally identified through their similarity 

to the RB domains found in Raf-1 proteins.  Similar to other RB domain containing 

proteins such as RalGDS, phosphoinositide-3 kinase and the Raf kinases, the RB domains 

of RGS12 and RGS14 selectively interact with active Ras/Rap family members.  

However, apparently, the RB domains of RGS12 and RGS14 each have a few distinct 

binding partners. RGS12 preferentially interacts with H-Ras to form a signaling complex 

with Ras/Raf/MEK proteins and regulates nerve growth factor-mediated differentiation.  

The RGS domain of RGS12 has low binding affinity for K-Ras, M-Ras, R-Ras and Rap 

proteins (Willard et al., 2007b).  On the other hand, RGS14 was thought to selectively to 

interact with Rap, but not Ras proteins in vitro (Traver et al., 2000;Mittal et al., 2006).  

Recent studies have, however, shown that both H-Ras and, Raf-1 can bind in a positively 

cooperative manner to the RB domains of RGS14 and modulate signaling through 

Ras/Raf/MAP kinase cascades (Shu et al., 2010).  Since both RGS12 and RGS14 contain 

two distinct Gα binding sites as well as two small G protein binding sites, it has also been 

proposed that they may act as scaffolding proteins that integrates heterotrimeric G protein 

and small G protein pathways (Willard et al., 2009;Shu et al., 2010).   

 

The tissue distribution of RGS14 implies that it is highly expressed in brain and spleen, at 

a modest level in lung and at very low levels in various other tissues (Snow et al., 1997).  

Different G protein-interacting domains of RGS14 play important roles in regulating 

RGS14 subcellular localization.  Several studies have shown that RGS14 shuttles 

between the nucleus and plasma membrane. Its localization to the nucleus depends on the 

RGS and RBD domains, whereas its translocation to the plasma membrane depends on its 
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GoLoco motif (Shu et al., 2007).  The cellular and physiological functions of RGS14 

have also been studied to some extent, but most studies have focused on its roles in brain 

function and cell division.  By associating with microtubules, RGS14 is able to regulate 

microtubule polymerization and spindle organization (Martin-McCaffrey et al., 2005).  It 

has also been pointed out that RGS14 may play an important role in hippocampal-based 

learning and memory by acting as a natural suppressor of synaptic plasticity in CA2 

neurons (Lee et al., 2010). 

 

1.3 GDI PROTEINS 

Nucleotide exchange and hydrolysis are the two steps that control the lifetime of a G 

protein-mediated signal.  GTP hydrolysis can be regulated by RGS proteins.  Similarly, 

nucleotide exchange can also be regulated by factors including GEF and GDI proteins.  

GDI proteins directly interact with and stabilize the inactive (GDP-bound) Gα subunit 

and inhibit GDP dissociation, which will in turn slow down the activation of Gα.  In 

heterotrimeric G proteins, the association between Gα subunit and Gβγ dimer favors the 

GDP-bound state of Gα, and the protein complex undergoes major conformational 

changes upon binding of GTP to Gα.  Therefore the Gβγ dimer is considered to act as a 

GDI that stabilizes Gα in its inactive state, suppressing spontaneous Gα activation and 

facilitating its coupling with the receptors (Neer, 1995;Tang et al., 2006).  The effect of 

Gβγ on nucleotide exchange has been studied in detail with Gαs (Brandt et al., 1985) and 

Gαo.  In the absence of Mg
2+

, the affinity of GDP for Gαo is increased markedly by Gβγ 

(Kd from ~40 nM to 0.1 nM), which results from both an increase in the rate of 

association of GDP and a decrease in the rate of dissociation (Gilman, 1987).   
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Besides Gβγ, other proteins have also been identified as GDIs for Gα subunits.  One 

example is human neuroglobin (Ngb), a heme protein that is expressed in the brain and 

can bind reversibly to oxygen.  Oxidized neuroglobin binds exclusively to the GDP-

bound form of Gαi (Wakasugi et al., 2003).  Single-turnover GDP dissociation and 

GTPγS binding experiments suggested that ferric Ngb serves as a GDI for both Gαi and 

Gαo, and it does this apparently by blocking GDP release.  Mutagenesis experiments also 

imply that residues around Cys46 of Ngb are important for GDI activity (Wakasugi et al., 

2003).  Interestingly, a BLAST search of the Ngb protein reveals that it shares 25%-35% 

amino acid sequence homology with the RGS domain of GPCR kinases (GRKs), 

however, it acts as a GDI rather than a GAP.  Moreover, ferrous ligand-bound Ngb, 

which is the predominant form under normoxia, does not have GDI activity. Thus Ngb 

may act as an oxidative stress-responsive sensor for signal transduction in the brain.   

 

1.4 GOLOCO MOTIF CONTAINING PROTEINS 

1.4.1 IDENTIFICATION AND CHARACTERIZATION OF GOLOCO MOTIF CONTAINING 

PROTEINS 

Among all the GDIs identified for heterotrimeric G proteins, the best studied proteins are 

those containing the GoLoco motif.  The first GoLoco motif identified was in loco, a 

RGS12 homologue found in Drosophila melanogaster.  A second G protein interaction 

site was identified C-terminally to the RGS domain of the protein (Granderath et al., 

1999).  This observation led to the discovery of several other proteins that share a highly 
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conserved 19 amino acid motif (Siderovski et al., 1999).  The GoLoco motif was also 

named G protein regulatory (GPR) domain by Cismowski and colleagues, who identified 

a receptor-independent activator of Gβγ signaling (Cismowski et al., 1999;Takesono et 

al., 1999).   

 

The GoLoco motif has a much higher binding affinity for GDP-bound Gα relative to 

either nucleotide-free or GTP-bound Gα (Kimple et al., 2002a;Kimple et al., 2002b).  

The interaction between the GoLoco motif and Gα stabilizes the latter in its inactive 

form, and slows down spontaneous nucleotide exchange (Siderovski et al., 2005).  

Binding of the GoLoco motif results in a significant conformational change of the switch 

region of the Gα subunit, and impairs the binding of Gβγ.  Thus, Gα-GDP-Gβγ and Gα-

GDP-GoLoco complexes are mutually exclusive (Natochin et al., 2001;Bernard et al., 

2001;Siderovski et al., 2005).   

 

It has been suggested that the GoLoco motif and Gβγ are able to compete for binding to 

the Gα proteins (Takesono et al., 1999).  Thus, the GoLoco-Gα interaction may either 

promote heterotrimer dissociation or interfere with subunit re-association.  A GoLoco 

motif consensus peptide derived from AGS3 has the ability to inhibit Gα binding to Gβγ 

10 times greater than the Gβγ hot spot-binding peptide (SIGK) (which also interferes 

with the binding between Gβγ and Gα) with an IC50 of 250 nM.  In addition, this GoLoco 

peptide was able to cause a rapid dissociation of the G protein βγ subunits from the Gα 

subunit about 13 fold higher than the intrinsic off rate of Gα (Ghosh et al., 2003).  
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However, full-length RGS14 failed to disrupt pre-formed G protein heterotrimers either 

in vitro or in cells (Mittal et al., 2006).  Still, GoLoco peptide derived from RGS14 seems 

to be able to prevent the reformation of the Gαβγ heterotrimer (Webb et al., 2005).  

Overall, the ability of the GoLoco motif to promote G protein subunit dissociation may 

depend on the experimental or cellular context and the particular proteins in question. 

 

1.4.2 DIVERSITY OF GOLOCO MOTIF CONTAINING PROTEINS 

To date, the GoLoco motif has been found to exist in four well-defined families of 

proteins. i) A single GoLoco motif is present in the RGS and RBD domain containing 

proteins RGS12, RGS14, and Drosophila Loco. ii) Pcp-2/GPSM4 and 

G18/GPSM3/AGS4 are relatively small proteins that contain two and three GoLoco 

motifs, respectively. iii) A single GoLoco motif is present at the N-terminus of RapGAP 

domain containing proteins (Rap1GAP1a, -b and Rap1GAP2b,-c). iv) GoLoco motifs are 

found in multiple arrays in the tetratricopeptide-repeat (TPR) domain containing proteins 

Pins, GPSM2/LGN and GPSM1/AGS3 (Figure 1.9).   

 

Most of the GoLoco motifs identified so far selectively interact with Gαi, but not other 

subfamilies of G proteins (Blumer et al., 2005).  The relative affinities of the GoLoco 

motif for Gαi and Gαo vary among different GoLoco containing proteins (Mittal et al., 

2004;Willard et al., 2006;Willard et al., 2007a;Zhao et al., 2010).  Some GoLoco motif 

containing proteins also interact with G proteins other than Gi or Go.  For example,   
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Figure 1.9 

 

 

 

 

 

 

 

 

Fig. 1.9. Diversity of GoLoco motif containing proteins.  The Gαi/o-Loco interaction, 

or GoLoco motif, is found singly, or in tandem arrays, in a number of different proteins. 

Domain abbreviations are PDZ, PSD-95/Discs large/ZO-1 homology domain; PTB, 

phosphotyrosine-binding domain; RGS, regulator of G protein signaling box; RBD, Ras-

binding domain; and RapGAP, Rap-specific GTPase-activating protein domain. Asterisk 

denotes N-terminal variation in GoLoco motif sequence between isoforms I and II of 

Rap1GAP.  Reproduced from  Willard et al., 2004. 
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AGS3 interacts with Gαt and blocks rhodopsin-induced dissociation of GDP (Natochin et 

al., 2000).  It has been suggested that the selectivity between GoLoco motif containing 

proteins and G protein subtypes is influenced by amino acid residues outside of the core 

domain of the GoLoco motif, as well as the all-helical domain of Gα (Kimple et al., 

2002a).   

 

1.4.3 MOLECULAR BASIS FOR THE GDI ACTIVITY OF GOLOCO MOTIF CONTAINING 

PROTEINS 

The crystal structure of the GoLoco motif region of RGS14 coupled with Gαi1 highlights 

the importance of GoLoco’s highly conserved Asp/Glu-Gln-Arg triad and the switch II 

region of the Gα subunit (Kimple et al., 2002a).  The amino terminus of the GoLoco 

peptide forms an α-helix that inserts between the switch II and the α3 helix of the Gα, 

displacing the switch II away from the α3-helix.  The side chain of the arginine finger 

within the Asp/Glu-Gln-Arg triad of the GoLoco motif reaches into the nucleotide 

binding pocket and makes direct contact with the α and β phosphates of the bound GDP 

molecule.  Mutation of this Arg to Phe leads to a complete loss of GDI activity (Peterson 

et al., 2000;Kimple et al., 2002a).  The binding of the GoLoco motif to Gα proteins also 

displaces Arg178 within the switch I region of the Gαi1, which makes contact with the 

phosphate group, resulting in the formation of a new contact with GDP ribose.  This 

newly formed contact is believed to be the molecular basis of GoLoco GDI activity 

(Kimple et al., 2002a) (Figure 1.10). 
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The selectivity between different GoLoco motif containing proteins and G proteins is 

determined by the all-helical domain of the Gα subunit and the amino acid C-terminal to 

the core GoLoco motif.  A Gαo-insensitive GoLoco peptide derived from RGS14 and 

AGS3 exhibited GDI activity on a chimeric Gαo subunit containing the all-helical 

domain of Gαi1 (Kimple et al., 2002a).  In addition, replacement of the C-terminal 

domain of RGS14 with the corresponding region in Pcp-2 (a GoLoco protein sensitive to 

Gαo) leads to a gain of function similar to wild type Pcp-2 (Kimple et al., 2002a). 

 

1.4.4 REGULATION OF GOLOCO MOTIF FUNCTION 

Structural studies provide a basic foundation for studying the mechanisms of GoLoco 

motif-regulated G protein activation.  However, little is known regarding the regulation 

of GoLoco motif function.  Most GoLoco proteins identified so far contain one or more 

phosphorylation sites either located within or N-terminally to the core GoLoco motif, 

which may potentially affect their function.  Phosphorylation of Thr-494, a cAMP-

dependent protein kinase (PKA) substrate just N-terminal to the start of the GoLoco 

motif in RGS14, enhances its GDI activity up to three fold (Hollinger et al., 2003).  

However, whether or not this effect is due to a direct contribution of the phosphorylation 

to the interaction between the GoLoco motif and Gα protein remains unclear (Willard et 

al., 2004).  On the contrary, phosphorylation of the GoLoco motifs of AGS3 by LKB1, 

the mammalian homologue of serine-threonine kinases in C. elegans (PAR-4), reduces its 

ability to interact with G proteins (Blumer et al., 2003).  LGN is a homologue of AGS3, 

and it contains 4 GoLoco motifs.  Phosphorylation of the Thr450 site N-terminal to the 

first GoLoco motif by 
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Figure 1.10 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.10. The GoLoco region of RGS14 interacts with Gαi1. Ribbon drawing of 

R14GL peptide (red) in contact with the Ras-like (green) and all-helical (yellow) domains 

of Gi1. Also shown are the three switch regions of Gi1 (blue), GDP (magenta) and Mg
2+

 

(orange). Adapted from  Kimple et al., 2002a. 
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PBK/TOPK leads to an enhancement of cell growth; however, it is unknown whether this 

effect is related to G protein signaling (Fukukawa et al., 2010).  Thus, phosphorylation 

may serve as a general mechanism regulating the interaction and function of GoLoco 

motifs.  However, post-translational modifications may result in opposite effects and lead 

to increased or decreased G protein signals depending on the cellular context and the 

specific GoLoco proteins in question. 

 

Besides phosphorylation, GoLoco-Gα protein complexes can also be regulated by GPCRs 

and Gβγ.  In an overexpression system, AGS3 and Gαi were found to exhibit a specific 

bioluminescence resonance energy transfer (BRET) signal.  Activation of the α2 

adrenergic receptor (α2-AR) or µ-opioid receptor, but not the M3 muscarinic receptor, 

greatly diminished this signal.  Apparently, this decrease in BRET signal is Gβγ 

independent, but is inhibited by the co-expression of RGS4, implying that both nucleotide 

exchange and hydrolysis play a role in this regulatory effect (Oner et al., 2010a).  

Similarly, the coupling between G18 and Gαi is also reduced upon activation of the α2 

adrenergic receptor (Oner et al., 2010b).  The functional consequences of these effects 

remain unknown.   

 

From a biochemical point of view, GoLoco proteins are able to inhibit receptor-catalyzed 

guanine-nucleotide exchange in both single-turnover GTPγS binding assays (Natochin et 

al., 2000;Kerov et al., 2005) and steady-state GTPase assays (Natochin et al., 

2000;Kerov et al., 2005;Zhao et al., 2010).  However, depending on the particular 
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receptor and GoLoco protein being tested, the GDI activity may be masked by the 

relatively slow GTP hydrolysis, which is the rate limiting step in a receptor-stimulated 

system (discussed in section 1.7).  In the presence of RGS protein, which speeds up the 

rate of GTP hydrolysis, and thus changes the rate limiting step back to nucleotide 

exchange, it again becomes possible to detect GoLoco GDI activity.  This allows us to 

measure GoLoco protein activity in a receptor-stimulated system, which is thought to be 

closer to physiological conditions compared to solution-based assays. 

 

1.4.5 CELLULAR FUNCTIONS OF GOLOCO MOTIF CONTAINING PROTEINS 

Functional studies of GoLoco motif containing proteins suggest a wide range of 

physiological roles, including involvement in cell division, neuronal outgrowth, and ion 

channel regulation (Blumer et al., 2007).  The influence of GoLoco motif containing 

proteins on G protein-regulated ion channels also been investigated in HEK293 cells and 

X. laevis oocytes expressing G protein-regulated inwardly rectifying K
+

 (GIRK) channels.  

Full-length GPSM2 and GoLoco peptides, based on the GoLoco region of this protein, 

activated basal Gβγ-dependent K
+

 currents, while siRNA knockdown of GPSM2 

decreased basal K
+

 currents in primary neuronal cultures (Wiser et al., 2006).  GPSM2 

also modulated receptor regulation of Cav2.1 calcium channels expressed in X. laevis 

oocytes, but has no effect on the basal current (Kinoshita-Kawada et al., 2004).  The 

complexes between Gαi-GDP and the GoLoco regions of AGS3, Pins, and GPSM2 have 

been found to regulate both Drosophila and mammalian asymmetric cell division (ACD). 

In addition, such interactions may also affect receptor- and nucleotide-independent 
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activation of Gβγ-dependent ACD (McCudden et al., 2005).  From a broader perspective, 

different proteins tend to use their GoLoco motifs for different functional outcomes.  

 

1.4.5.1 Involvement of GoLoco proteins in cell division 

The most well established cellular function of GoLoco proteins is their role in regulating 

ACD.  Mitotic cell division can be divided into two basic categories, symmetric cell 

division and asymmetric cell division.  Conventional cell division produces two identical 

daughter cells, whereas asymmetric cell division results in a different fate of the daughter 

cells.  In ACD, The mother cell will establish an axis of polarity followed by unequal 

distribution of cell fate determinants, as well as unequal orientation of the mitotic spindle 

along the axis.  Finally the cell will asymmetrically divide into two daughter cells 

(Crouch et al., 2000;Gonczy, 2008).  ACD is used by many species during development 

to generate cellular diversity, such as Drosophila neuroblasts and sensory organ 

precursor. 

 

The first report to demonstrate the potential role of GoLoco motif in ACD found that Pins 

(a four GoLoco motif containing protein,) is required for the asymmetrical localization of 

the cell fate determinant inscuteable in Drosophila neuroblasts and it is critical in the 

orientation of neuroblast  mitotic spindles (Schaefer et al., 2000).  Similarly, deletion of 

the GoLoco protein GPR1/GPR2 in C. elegans embryos leads to a spindle positioning 

defect that results in a symmetric P0 division and the production of equal sized AB and 

P1 blastomeres, a phenotype indistinguishable from that of deletion of endogenous G 

proteins in the embryos (Gonczy et al., 2000;Gonczy, 2008) (Figure 1.11).   
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Increasing evidence has revealed that the role of GoLoco proteins may not be limited to 

ACD processes, as such proteins may also regulate symmetric cell division by 

influencing mitotic spindle poles, microtubule dynamics, etc. (Kaushik et al., 

2003;Martin-McCaffrey et al., 2005;Blumer et al., 2006).  Increasing expression levels of 

LGN have been observed at the metaphase of mammalian cell division.  Furthermore, 

subcellular localization studies indicate that LGN is important for the cortical positioning 

of the spindle pole, which likely reflects stronger pulling or pushing forces on the spindle 

pole (Blumer et al., 2006).  RGS14 has also been suggested to be a microtubule-

associated protein and a component of the mtotic spindle that regulates microtubule 

polymerization and spindle organization (Martin-McCaffrey et al., 2005). 

 

Many studies have implied that the coupling between GoLoco proteins and G proteins is 

important for the proper functioning of the latter during cell division.  First, Gαi proteins 

share similar sub-cellular localization with GoLoco proteins during mitosis (Cho and 

Kehrl, 2007).  Secondly, the interaction between GoLoco domains and G proteins 

influences the sub-cellular localization of GoLoco proteins during both interphase and 

mitosis (Cho et al., 2007;Shu et al., 2007).  Thirdly, blocking the normal interactions 

between GoLoco proteins and G proteins leads to abnormal exaggerated mitotic spindle 

rocking in kidney epithelial cells (Willard et al., 2008), as well as cytokinesis defects 

(Cho et al., 2007).  In contrast, overexpression of LGN and Gαi causes aberrant 

metaphase chromosome alignment and a repositioning of the spindle poles closer to the 

cell cortex (Du and Macara, 2004;Blumer et al., 2006).  
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Figure 1.11 

 

 

 

 

 

 

 

 

 

 

Fig. 1.11. Comparable signal transduction complexes, centered around Pins family 

members, regulate asymmetric cell divisions. Interactions between signaling 

components are abstracted from genetic and direct biochemical evidence. Domain 

abbreviations are ARM, weakly predicted Armadillo repeats; C2, homology to conserved 

region 2 of protein kinase C; CC, coiled-coil region; GUK, membrane-associated 

guanylate kinase homology domain; PDZ, PSD-95/Discs large/ZO-1 homology domain; 

RBD, Ras-binding domain; RGS, regulator of G protein signaling box; SH3, Src 

homology-3 domain; and S/T-kinase; serine/threonine kinase domain. Reproduced from 

Willard et al., 2004. 
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As mentioned earlier, interactions between GoLoco motifs and Gα proteins also influence 

proper coupling between Gα subunits and Gβγ dimers, the latter of which is required for 

the mitotic-spindle orientation of neural progenitors in the developing neocortex.  

Silencing AGS3 leads to a phenotype similar to that of the impairment of Gβγ (Sanada 

and Tsai, 2005). 

 

1.4.6 OVERVIEW OF G18 

G18 is encoded by a gene within the major histocompatibility complex class III region of 

chromosome 6 (Cao et al., 2004;Kimple et al., 2004).  It contains three GoLoco motifs at 

its C-terminus, while its short N-terminus contains multiple proline residues (14 out of 60 

amino acids in total). The mRNA of G18 is expressed in a variety of tissues such as heart, 

placenta, lung and liver (Cao et al., 2004). Only two previous studies have been 

published focusing on the biochemical function of G18. These studies found that the 

GoLoco motifs of G18 can interact with GDP-bound Gαi1 both in vitro and following co-

transfection, act as a GDI to the Gi subfamily of G proteins. However, in a celluar 

context, overexpression of G18 does not seem to alter the activation level of PLC-β, 

which is a direct effector of Gβ .  This latter observation does not support the idea that 

GoLoco motif is able to promote subunit dissociation and further activate Gβ -mediated 

cell signaling.  Thus, there are many aspects of G18 remaining to be determined, such as 

its cellular localization, binding properties with other partners and effects on GPCR-

mediated cell signaling.  

 



42 

 

Recently, the effect of receptor activation on coupling between G18 and G protein has 

also been examined.  The specific signal between G18 and Gαi1 obtained from 

bioluminescence resonance energy transfer (BRET) assays is reduced upon activation of 

the receptor.  In addition, in the presence of G proteins, BRET signals are observed 

between G18 and the α2 adrenergic receptor, suggesting that G18-Gαi complex may 

serve as substrate for agonist-induced G protein activation (Oner et al., 2010b). 

 

1.5 RECEPTOR-INDEPENDENT GEFS 

It is well known that receptor-mediated activation of G protein pathways is very 

important in regulating cellular processes.  However, increasing evidence suggests that 

alternative modes of regulation of G proteins may exist.  A functional yeast-based screen 

has identified a number of non-receptor proteins that could influence the activation state 

of G proteins (Cismowski et al., 1999;Takesono et al., 1999).  In parallel with these 

observations came the realization that some signal processing through G protein 

pathways is independent of receptor function.  For example, heterotrimeric G protein 

signaling is likely to be involved in regulating spindle pole orientation, and microtubule 

dynamics during asymmetric cell division in many different species (Bellaiche and Gotta, 

2005;Izumi and Matsuzaki, 2005).  However, to date, there is no evidence for such 

processes of receptor activation.  It has been proposed that during cell division, 

nucleotide exchange on G protein is stimulated by a receptor-independent GEF (Ric-8) 

(Wang et al., 2005;Woodard et al., 2010).  Unlike GEFs for monomeric G proteins, there 

are only a few known non-GPCR GEFs for heterotrimeric G proteins.  These proteins 
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include AGS1(Gαi/o), Ric-8 (Gαi/o, Gs, Gq), GIV (Gαi), and GAP-43 (Gαo) (Strittmatter 

et al., 1991;Nakamura et al., 1998).  

 

Activator of G protein signaling 1 (AGS1 or DexRas) is a dexamethasone-inducible-Ras-

related gene in AtT20 cells.  A yeast-based functional screen indicates that Gαi2, and 

Gαi3 activation can be regulated by AGS1 (Cismowski et al., 1999;Cismowski et al., 

2000).  In vitro biochemical assays also suggest that AGS1 acts as a GEF for Gαi1, Gαi2 

and purified brain G protein heterotrimer (Cismowski et al., 2000).  Overexpression of 

AGS1 blocks receptor-mediated heterologous desensitization of AC1 (Nguyen and Watts, 

2006), which is consistent with a regulatory role for AGS1 in Gαi signaling.  The 

molecular basis of the potential GEF activity of this protein has yet to be determined.  It 

has been suggested, however, that the cationic regions in AGS1, similar to those found in 

the activation loops of GPCRs, may function to directly facilitate GDP release 

(Cismowski et al., 2000). 

 

Resistance to inhibitors of cholinesterase (Ric-8) is another direct activator of 

heterotrimeric G proteins that is of great interest.  Ric-8 was originally identified as a 

conserved protein that is required for Gαq signaling in C. elegans (Miller et al., 2000).  It 

has two mammalian homologs Ric-8A and Ric-8B.  Biochemical characterization of Ric-

8A revealed that it is a potent GEF for Gαq, Gαi1 and Gαo, but not Gαs (Tall et al., 

2003).  Interestingly, Ric-8B has been found to interact with Gαs and Gαq.  It serves as a 

GEF for Gs, Gαolf and Gαq (Von Dannecker et al., 2005;Von Dannecker et al., 
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2006;Kerr et al., 2008;Chan et al., 2011), and it may also positively regulate Gs signaling 

via a GEF-independent, but ubiquitination-related mechanism (Nagai et al., 2010).  In 

contrast to AGS1, Ric-8 seems unable to promote nucleotide exchange when Gα is 

coupled to Gβγ  (Tall et al., 2003).  Thus, the GEF effect of Ric-8 has to be initiated after 

Gβγ dissociation or before the reassociation of Gβγ.  Recent studies on asymmetric cell 

division suggest a potential model for Ric-8-regulated G protein signaling.  This model 

proposes that the interaction between a GoLoco motif containing protein and Gα 

promotes dissociation of Gβγ dimer from the Gα subunit.  This GoLoco-Gα protein 

complex then serves as a substrate for Ric-8 binding, which will further stimulate 

nucleotide exchange on Gα (Afshar et al., 2004;Hess et al., 2004;Tall and Gilman, 

2005;Thomas et al., 2008). 

 

Although different receptor-independent GEF proteins have been discovered, unlike RGS 

protein and GoLoco motif containing proteins, they share limited sequence homology and 

molecular domain similarity, suggesting that they may regulate G protein activation via 

different mechanisms.  The G protein interacting domain of GIV (also called Girdin 12, a 

selective GEF for Gαi subunits) has been studied.  GIV interacts with the Gαi3 subunit 

through two independent domains and the GIV-C-tail is responsible for the state-

dependent interaction and its GEF activity (Garcia-Marcos et al., 2009).  The important 

residues that contribute to the GIV-Gαi interface have been also identified.  However, 

this GEF domain shares no significant homology with other GEFs or GDIs.  Indeed, it 

will be helpful to determine the structure of the interface between these GEFs and Gα 
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proteins, which will provide more information to unmask the different mechanisms of 

receptor-independent GEF regulation of G protein activation. 

 

1.6 REGULATION OF G PROTEIN SIGNALING BY PROTEINS CONTAINING 

MULTIPLE G PROTEIN BINDING DOMAINS. 

 

1.6.1 PROTEINS THAT CONTAIN MORE THAN ONE MOLECULAR DOMAIN THAT 

REGULATES HETEROTRIMERIC G PROTEIN FUNCTION. 

Many proteins discussed above bear complex, multidomain structures that suggest an 

ability to actively orchestrate interdependent signaling events.  For instance, RGS12, 

RGS14, G18 and GRK family proteins all contain extra molecular domains that can 

regulate GPCR-mediated G protein signaling via different mechanisms. 

 

Members of the R7 RGS protein subfamily contain a conserved G protein gamma-like 

(GGL) domain that specifically interacts with Gβ5 (type 5 G protein β subunit) protein 

(Witherow et al., 2000).  Gβ5 is essential for the stability of the R7 RGS proteins, thus 

R7 RGS-Gβ5 complexes exhibit enhanced GAP activity (Kovoor et al., 2000).  It has 

also been suggested that, unlike traditional Gβ  subunits that form dimers, the major 

binding partner of Gβ5 is the GGL domain of the R7 RGS proteins (Posner et al., 

1999;Skiba et al., 2001).  Thus, the interaction between R7 RGS proteins and Gβ5 may 

negatively regulate Gβγ-stimulated cellular signaling. 
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For many GPCRs, short term regulation is initiated by phosphorylation of the receptor by 

GPCR kinases (GRKs).  All GRKs share an RGS homology (RGL) domain at their 

amino-terminal region (Siderovski et al., 1996).  The RH domain of GRK2 has been 

suggested to interact selectively with Gαq/11 but not other G protein subfamilies 

(Carman et al., 1999;Sallese et al., 2000).  Unlike other RGS proteins, GRK2 only 

weakly stimulates GTP hydrolysis when Gαq is coupled with M1 muscarinic receptor 

(Carman et al., 1999).  However, GRK2 is able to inhibit Gαq-stimulated PLC-β both in 

vivo and in vitro.  The underlying mechanism still remains to be established.  It has been 

shown that the binding site between the RH domain of GRK2 and Gαq is different than 

that of other RGS proteins (Tesmer et al., 2005), which may account for the weak GAP 

activity observed in vitro (Sterne-Marr et al., 2003).  The role of GRK2 in regulating Gα 

signaling remains to be fully elucidated.  Besides phosphorylation-dependent deactivation 

of G protein signaling via its kinase domain, the RH domain maybe involved in 

phosphorylation-independent attenuation of signaling (Pao and Benovic, 2002;Dhami et 

al., 2005).  It has been suggested that the binding of GRK2 to both the receptor and G 

protein is required for phosphorylation–independent desensitization to occur (Sterne-

Marr et al., 2004). 

 

As mentioned before, G18 was originally identified as a 3 GoLoco motif containing 

protein that acts as a GDI on Gαi but not Gαo (Cao et al., 2004;Kimple et al., 2004).  

Studies described in this thesis have revealed novel functions of G18 including its 
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interactions with Gαi/o proteins which produces a GEF effect on Gαi1, but yields an 

overall decrease in steady-state GTP turnover on Gαo (further discussed in Chapter 2); 

Moreover, we have examined the possible cross-talk between G18-regulated and RGS 

protein-regulated G protein activity (further discussed in Chapter 3).  

 

Similarly, RGS12 and RGS14 both contain a GoLoco motif in addition to an RGS 

domain.  Biochemical activities of these two domains have been studied individually.  

However, the net combined effect of the RGS domain and GoLoco domain on regulating 

G protein activity still remains poorly understood.  It appears that both the GoLoco and 

RGS domains are required for RGS14 to maximally inhibit carbachol-stimulated ERK 

activation (Traver et al., 2004).  However, work from our lab identified a novel “RGS 

enhancing” activity of the Ras-binding region of RGS14.  By binding to the RGS 

domains of different proteins, it appears that the RB domains may not only restore the 

relatively weak GAP activity of the R14-RGS domain, but also increase the GAP activity 

of other RGS proteins such as RGS4 and RGS5 (Chapter 4).  These observations provide 

an alternative interpretation, which involves intramolecular interaction and potentially 

also splice variants (further discussed in Chapter 4). 

 

1.6.2 CROSS-TALK BETWEEN HETEROTRIMERIC G PROTEIN SIGNALING AND 

MONOMERIC G PROTEIN SIGNALING 

Proteins containing multiple molecular domains can regulate single signaling pathways 

via different mechanisms under certain condition.  In addition, these proteins may have a 
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scaffolding role that integrates signals from different pathways and regulates signal cross-

talk.  Such mechanisms have been found to coordinate signaling between heterotrimeric 

G protein signaling and monomeric G protein pathways. 

 

Dbl homology RhoGEF proteins (including p115RhoGEF, PDZ-RhoGEF and LARG) 

contain a DH/PH domain, which can stimulate exchange of GDP for GTP on Rho 

GTPases (Rossman and Sondek, 2005).  Several studies indicate that GPCRs are key 

upstream regulators of Rho GTPases (Sah et al., 2000).  A link between GPCR signaling 

and Rho activation was uncovered by the identification of an RGS-like domain located at 

the N terminus of RhoGEF, which stimulates the intrinsic GTP hydrolysis activity of 

Gα12/13 (Fromm et al., 1997) and Gαq (Booden et al., 2002).  Reciprocally, activation of 

Gαq or Gα12/13 activates the RhoGEF function of these proteins and thus leads to a 

synergistic activation of RhoA (Booden et al., 2002;Chikumi et al., 2002).   

 

In some cases, scaffolding proteins may link heterotrimeric G proteins to the inactivation 

of small G proteins. Yeast two hybrid screening to identify potential binding partners for 

Gαz resulted in the discovery of another small G protein regulator Rap1GAP, which 

stimulates the GTPase activity of Rap1 (Meng et al., 1999).  The N-terminus of 

Rap1GAP encodes a GoLoco motif that binds to Gαi1/2 (Rap1GAPI) or Gαz 

(Rap1GAPII) (Mochizuki et al., 1999;Meng and Casey, 2002).  Activation of G protein 

recruits Rap1GAP to the plasma membrane which attenuates Rap1 signaling, resulting in 
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a decrease or an increase in ERK activation depending on the specific operative Rap1-

effector pathways in the cell lines at hand (Mochizuki et al., 1999;Meng et al., 2002). 

 

Finally, the two tandem Ras binding domains (RBD) in RGS12 and RGS14 have also 

been shown to integrate G protein and Ras/RafMAPkinase signaling pathways (Ponting, 

1999;Willard et al., 2009;Shu et al., 2010).  The inhibitory effect of RGS14 on Erk 

phosphorylation is reversed by co-expression of Gαi1, which recruits RGS14 to the 

plasma membrane and inhibits Raf binding to RGS14.  Overall, these RGS proteins may 

act as molecular switches that organize cellular signal transduction via different 

pathways.  Moreover, the RB domains of RGS14 may also regulate the GAP activity of 

the RGS domain and also the GDI activity of the GoLoco domain, which will be 

discussed in Chapter 4. 

 

1.7 KINETIC REGULATION OF G PROTEIN ACTIVITY 

The kinetics of the G protein activation and deactivation reactions are very important in 

understanding how G protein-mediated signaling occurs.  GDP dissociation is the first 

step in the G protein activation/deactivation cycle.  The relatively high concentration of 

GTP in the cell leads to a rapid association of GTP after GDP dissociation with relatively 

little association of GDP.  Thus, the rate of nucleotide exchange mainly depends on the 

rate of GDP dissociation.  Although the association of GTP is reversible, GTP 

dissociation is slow.  As a result, GTP typically is hydrolyzed by the G protein even 

before it dissociates and the cycle starts over.  Overall, nucleotide exchange and GTP 
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hydrolysis are two key reactions that determine the duration of G protein in its GTP-

bound form which provokes downstream signaling.  The kinetics of G protein activity is 

tightly regulated by GEFs, GDIs and GAPs.  The output of G protein signaling in 

response to a stimulus reflects the balance of these various regulatory mechanisms which 

may co-exist in the cell.   

 

1.7.1 GEF-MEDIATED ACTIVATION OF G PROTEINS 

From a kinetic point of view, the fractional activation of G protein reflects the balance 

between GEF-promoted activation (i.e., GDP dissociation and GTP binding) and GAP-

promoted deactivation (Ross, 2008). GEFs such as GPCRs dramatically increase the rate 

of GDP dissociation, resulting in an increase in GTP association and G protein activation.   

 

The mechanism of Ric-8-mediated G protein activation shares a similar but not identical 

mechanism with that of the receptor.  Ric-8 favors binding with high affinity to the open 

conformation of the G protein (Chan et al., 2011).  Thus, the effect of Ric-8B on 

fractional activation of G protein may be nucleotide concentration dependent. Ric-8 

promotes dissociation of both GDP and GTP, and at lower concentrations of GTP (< 500 

nM) this favors the nucleotide-free state of the G protein and leads to a decrease in the 

overall rate of GTP turnover.  At higher GTP concentrations, such as those that are found 

intracellularly (~150 M), GTP association is greater than dissociation and the Gα-GTP 

form predominates (Chan et al., 2011). 
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In addition to promoting nucleotide dissociation, Ric-8 has also been reported to increase 

cellular G protein levels apparently by stabilizing G proteins in a nucleotide-free 

conformation and preventing them from denaturing.  This observation has profound 

implications with respect to the kinetics of Gq activation.  Gq tends to have a fast 

denaturation rate when it is in the nucleotide-free state (Chidiac et al., 1999).  As the 

binding of GTP is competing with the denaturation of unliganded Gq, increasing the 

concentration of GTP decreases denaturation and thus enables the formation of Gq-GTP.  

The fact that Ric-8 is able to decrease the denaturation rate of the G protein will further 

benefit the formation of the active GTP-bound G protein. 

 

1.7.2 GDI-MEDIATED INHIBITION OF G PROTEIN ACTIVATION 

Nucleotide exchange is limited by the relatively slow rate of nucleotide dissociation.  The 

GDI activity of the GoLoco motif, which decreases the GDP dissociation, may also lead 

to an overall reduction in G protein activation. It has been shown that the rate of GTP S 

binding is decreased up to 80% in the presence of GoLoco proteins or peptide derived 

from the Goloco motifs of RGS12 and RGS14 (Kimple et al., 2001;Zhao et al., 2010).  

However, the effects of GoLoco proteins on G protein–mediated signaling outputs still 

remain to be established.  This is further complicated by the tendency of the GoLoco 

motif to compete with Gβγ.  The Gβγ dimer is also able to slow down the rate of intrinsic 

GDP dissociation from Gα subunit up to 50 fold, depending on the specific G protein in 

question (Gilman, 1987). On the other hand, Gβγ is required for receptor-stimulated Gα 

activation since it can stabilize Gα-receptor coupling. 
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1.7.3 GAP-MEDIATED GTP HYDROLYSIS 

The GTP hydrolysis (khyd) rates of G proteins can be increased up to 2000 fold by GAPs 

such as RGS proteins (Mukhopadhyay and Ross, 1999).  As a result, RGS proteins 

negatively regulate the G protein cycle both by dampening signaling output and by 

rapidly terminating G protein activation upon removal of the stimulus.  Interestingly, 

kinetic characterization indicated that the rate of the overall steady-state GTPase reaction 

measured in the presence of PLC-β is 10 times faster than the rate of GTP binding to G 

protein in the absence of PLC-β, which is the first step to form Gα-GTP (Biddlecome et 

al., 1996).  Moreover, even though the khyd is dramatically increased by GAPs, the fact 

that the fractional activation of G protein still remains high suggests that either the 

activation rate (kon) is also increased or the GAP activity is inhibited while the receptor is 

activated. 

 

One theory that supports the idea that RGS proteins are able to potentiate receptor-

mediated G protein activation is a proposed kinetic scaffolding mechanism (Biddlecome 

et al., 1996;Zhong et al., 2003).  In this model, GAPs are able to reduce depletion of local 

Gα-GDP levels to permit rapid recoupling to receptor and sustained G protein activation.  

In combination with the kinetic scaffolding mechanism, there is another model based on 

the idea of physical scaffolds, where RGS proteins may directly or indirectly interact with 

the receptor and facilitate receptor-G protein coupling and promote signal onset.  Thus 

RGS proteins may act as a scaffold to assembly different signal components (Popov et 
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al., 2000;Lambert et al., 2010).  The mechanisms described above provide many insights 

into how G protein signaling is regulated by different factors.  Our next challenge will be 

to determine among those different mechanisms, which one, if any, is predominant in the 

cell, and how these co-existing mechanisms regulate G protein signaling dynamics, as 

well as how these interrelated reactions combine to determine output in response to 

stimuli.        

 

1.8 EXPERIMENTAL APPROACHES TO STUDY THE FUNCTION OF G PROTEIN 

ACCESSORY PROTEINS 

Traditional analysis of GPCR signaling has relied on changes in the activity of 

downstream effectors as a readout of G protein function.  However, the receptor 

pharmacology is often system-dependent.  That is, many variants such as receptor-G 

protein coupling, selectivity, and specific downstream effectors measured, can contribute 

to the final readout (Windh and Manning, 2002).  Thus, direct assessment of G protein 

activation by G protein-coupled receptors is perhaps best accomplished by measuring 

either the nucleotide exchange step or GTP hydrolysis during G protein cycle. 

 

1.8.1 SF9 CELL/ BACULOVIRUS SYSTEM 

Heterotrimeric G proteins and receptors can be overexpressed in mammalian cells and 

GTPase activity can be measure using isolated cell membranes or intact cells.  However, 

mammalian cells often express endogenous receptors or G proteins that may interfere 

with these measurements (Schneider and Seifert, 2010).  Thus, in order to obtain specific 
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signal with reasonable signal to noise ratio, we need a system that has a relatively “clean 

background”.  Insect cells derived from Spodoptera frugiperda pupal ovarian tissue fulfill 

these requirements to a large extent.  Only one G protein from the Gαi family has been 

detected in Sf9 cells (Knight and Grigliatti, 2004).  However, this insect G protein does 

not couple appreciably to mammalian GPCRs.  This advantage makes Sf9 cells a 

virtually Gαi free environment.  Functionally reconstituted signaling in Sf9 cells is 

similar to the receptor expressed in a mammalian system, and Sf9 cells also carry out 

most of the post-translational modifications, which makes this system similar to 

mammalian systems (Asmann et al., 2004).   

 

Besides Sf9 cells, Sf21 and High-five insect cells are also used to study G protein 

functions.  They have advantages and disadvantages, for example, compared to Sf9 cells, 

the expression level of particular receptors may be higher in Sf21 or High-five cells.  

However, both may carry some form of endogenous G protein subtypes (Wehmeyer and 

Schulz, 1997).   

 

1.8.2 MEASURING RGS PROTEIN GAP ACTIVITY USING GTPASE ASSAYS 

Two general approaches are used to measure GAP activity.  The most basic method is to 

measure the rate of GTP hydrolysis in a single enzymatic turnover.  Single turnover 

refers to the hydrolysis of a single molecule of GTP by each molecule of Gα.  Since Mg
2+

 

is required for GTP hydrolysis, but not nucleotide exchange, radiolabeled GTP can be 

pre-loaded to G protein in the absence of Mg
2+

 and the addition of Mg
2+

 with or without 
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GAPs will stimulate GTP hydrolysis (Krumins and Gilman, 2002).  The level of free Pi 

generation is then measured and intrinsic GTP hydrolysis is subtracted.  The second 

general method to measure GAP activity is via steady-state GTPase assays.  In the 

absence of the receptor, nucleotide exchange is the rate limiting step in G protein cycle.  

Thus the increase in GTP hydrolysis by GAPs may be masked by the slow rate of 

nucleotide exchange (Zhao et al., 2010).  Stimulation is significant only if the nucleotide 

exchange rate is sufficiently fast.  To observe GAP activity under steady-state conditions, 

GDP/GTP exchange must be accelerated by a GEF (either GPCRs or receptor-

independent GEFs).  The GAP-independent hydrolysis during the assay is subtracted as 

background.  The advantage of a steady-state GTPase assay is that it is presumably closer 

physically to signals in cells compared to single-turnover assays.   

 

1.8.3 MEASURING THE ACTIVITIES OF GEFS, GDIS USING NUCLEOTIDE 

EXCHANGE ASSAYS 

1.8.3.1 GDP dissociation assays 

Nucleotide exchange consists of two steps, GDP dissociation and GTP binding.  As 

mentioned earlier, the rate limiting step in this process is typically GDP dissociation.  

Due to the abundance of GTP in the cell, GTP will occupy the empty nucleotide pocket 

once GDP has dissociated.  Thus, in most cases, the observed rates of GDP dissociation 

and nucleotide exchange are similar.   
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Gα protein alone or in combination with Gβγ subunits can be pre-coupled with 

radiolabeled [α-
32

P]GDP, [α-
3
H]GDP or [α-

32
P]GTP (the intrinsic GTPase activity of Gα 

proteins catalyze the conversion of [α-
32

P]GTP to [α-
32

P]GDP).  Excess GDP with or 

without regulators in question may be added to trigger GDP release from the G protein.  

Similar to the GTPγS binding assay discussed below (section 1.8.3.2), GDP dissociation 

assays can be carried out either in solution using purified components or in membranes to 

study the receptor-stimulated release of nucleotide. 

 

1.8.3.2 [
35

S]GTPγS binding assays 

Under some conditions, nucleotide association might also be affected by G protein 

regulators, thus only looking at GDP dissociation might not present a complete picture 

and might lead to false conclusions.  GTPγS binding assays are also used to further study 

nucleotide exchange.  Since the GTP analog guanosine 5'-O-[gamma-thio] triphosphate 

(GTPγS) dissociates slowly and cannot be hydrolyzed to GDP, the binding of GTPγS to 

Gα proteins leads to an irreversible reaction where the level of radioactive isotope can be 

measured.  Unlike GTPase assays which can be performed at steady-state or pre-steady-

state,  GDP- GTPγS exchange assays can only be performed under single-turnover 

conditions (Windh et al., 2002).  GTPγS binding assays can be performed either in 

solution or using recombinant cell systems.  Depending on the purpose of the 

experiments, different assays should be considered.  For example, solution-based assays 

using purified protein components can provide a relatively simple system with low 

background levels.  It is optimal for looking at G protein activity in the presence and 
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absence of its regulators.  On the other hand, membrane-based, agonist-simulated assays 

should be used when looking at receptor-G protein coupling.   

 

1.9 RESEARCH GOALS AND SIGNIFICANCE 

Originally, the fundamental components of GPCR-mediated cell signaling were 

recognized to be the receptors, heterotrimeric G proteins and effectors.  However, more 

and more studies suggest that signaling processes are not as simple as once imagined.  

First of all, an increasing number of factors have been found to regulate a single signaling 

pathway via different mechanisms. Secondly different signaling pathways are able to link 

together and form signaling networks that alter a cellular response to a stimulus.  Multi-

domain proteins play a significant role in signaling pathway cross-talk.  Therefore, the 

purpose of my thesis is to identify and characterize the biochemical and cellular activities 

of proteins that contain multiple G protein regulatory domains, and to understand how 

these different G protein binding domains contribute to the net effect of these proteins on 

G protein activity.  My studies have focused on two such proteins, G18 and RGS14.  The 

overall objective of this research is to elucidate the mechanisms by which G18 and 

RGS14 regulate G protein activity.  The specific aims of this study are: 

1.  To characterize the effects of G18 on Gi/o protein activities and examine 

the potential contribution of its amino terminal domain and carboxyl 

terminal GoLoco motifs. 

2. To investigate the subcellular localization of G18 and its potential effect 

on RGS protein GAP activity. 
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3. To characterize the effect of the non-RGS domains of RGS14 on RGS 

proteins GAP activities. 

The proposed studies should help to elucidate how the different G protein binding 

domains of G18 and RGS14 work in combination to selectively regulate G protein 

mediated GPCR signaling.  The study of how G protein activation and deactivation steps 

are regulated by multi-G protein binding domain containing proteins will help us further 

understand the basic aspects of G protein function, It will also give us a better idea of 

how G proteins can regulate cell signaling under normal and pathological conditions, as 

well as how GPCR-targeted drugs produce their effects. 
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2 CHAPTER 2 

2.1 CHAPTER SUMMARY 

 

The protein G18 (also known as AGS4 or GPSM3) contains three conserved 

GoLoco/GPR domains in its central and C-terminal regions which bind to inactive Gαi, 

while the N-terminal region has not been previously characterized.  We investigated 

whether this domain might itself regulate G protein activity by assessing the abilities of 

G18 and mutants thereof to modulate the nucleotide binding and hydrolytic properties of 

Gαi1 and Gαo.  Surprisingly, in the presence of fluoroaluminate (AlF4
-
), both G proteins 

bound strongly to full length G18 (G18wt) and to its isolated N-terminal domain 

(G18ΔC), but not to its GoLoco region (ΔNG18).  Thus it appears that its N-terminal 

domain promotes G18 binding to fluoroaluminate-activated Gαi/o.  Neither G18wt nor 

any G18 mutant affected the GTPase activity of Gαi1 or Gαo.  In contrast, complex 

effects were noted with respect to nucleotide binding.  As inferred by the binding of 

[
35

S]GTP S to G i1, the isolated GoLoco region as expected acted as a guanine 

nucleotide dissociation inhibitor (GDI), whereas the N-terminal region exhibited a 

previously unknown guanine nucleotide exchange factor (GEF) effect on this G protein.  

On the other hand, the N-terminus inhibited [
35

S]GTP S binding to Gαo, albeit to a lesser 

extent than the effect of the GoLoco region on G i1.  Taken together, our results identify 

the N-terminal region of G18 as a novel G protein-interacting domain that may have 

distinct regulatory effects within the Gi/o subfamily, and thus it could potentially play a 

role in differentiating signals between these related G proteins.   
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2.2 INTRODUCTION 

 

The classical model of G protein signaling includes three major components: G protein-

coupled receptor (GPCR), heterotrimeric G protein and effector.  The inactive Gα subunit 

binds with high affinity to GPCR, G  and GDP.  The binding of an agonist to the 

receptor promotes its guanine nucleotide exchange factor (GEF) activity towards the G 

protein that results in the exchange of GDP for GTP.  This activates the G protein and is 

thought to cause the dissociation of Gα and G .  Both GTP-bound Gα and free G  are 

capable of initiating signals by interacting with downstream effectors such as adenylyl 

cyclase, phospholipase C , and various ion channels and kinases (Neves et al., 2002).  

Signaling is terminated by the intrinsic GTPase activity of the Gα subunit, thereby 

returning the latter to its inactive form and regenerating the inactive Gα  complex.  It is 

now recognized that heterotrimeric G protein signaling is more complex than originally 

proposed, with a number of factors having been identified that can modulate G protein 

activity.  These include the regulator of G protein signaling (RGS) proteins that 

accelerate G protein deactivation, and the receptor-independent activator of G protein 

signaling (AGS) proteins that modulate G protein signals through several distinct 

mechanisms.  The Gi/o-Loco (GoLoco)/G protein regulatory (GPR) motif of the Group II 

AGS proteins can alter the activities of both Gα and G  (Blumer et al., 2007). 

 

The GoLoco/GPR motif was originally identified in the Drosophila RGS12 homologue, 

Loco (Siderovski et al., 1999;Cao et al., 2004;Willard et al., 2004).  The GoLoco motif is 
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a 19 amino acid sequence that can bind to the Gα subunit of Gi/o proteins in their inactive 

state (Gα-GDP) to inhibit the exchange of GDP for GTP. This biochemical activity 

serves as the basis for its function as a guanine nucleotide dissociation inhibitor (GDI) 

(De Vries et al., 2000;Kimple et al., 2001;Natochin et al., 2001;Kimple et al., 2002a;Cao 

et al., 2004;McCudden et al., 2005;Willard et al., 2006) to impede Gα activation.  

Several important contact points have been identified between the GoLoco motif and Gα 

subunits, the most notable being the extension of its highly conserved Asp/Glu-Gln-Arg 

triad into the nucleotide-binding pocket of Gα that interacts directly with the α- and - 

phosphates of GDP (Kimple et al., 2002a;Kimple et al., 2002b).  This interaction 

between the GoLoco motif and Gα subunits has been shown to promote the dissociation 

of the G  dimer from Gα in vitro (Kimple et al., 2002b).  In this way, the GoLoco motif 

may act as a receptor-independent activator of Gβγ signaling (Bernard et al., 

2001;Schaefer et al., 2001;Ghosh et al., 2003;Yu et al., 2005).  The Gα-GoLoco complex 

may also affect physical coupling between Gα and the receptor (Natochin et al., 

2000;Sato et al., 2004) and this may further impact the control of G protein function.   

 

The modulation of G protein activities by GoLoco motif-containing proteins has been 

implicated in multiple physiological processes.  In C. elegans and drosophila, GPR1/2 

and Pins GoLoco motifs, respectively, play essential roles in asymmetric cell division 

(Willard et al., 2004;Izumi et al., 2006;Siller and Doe, 2009) and analogous mechanisms 

appear to exist in mammalian systems.  For example, the Pins homologue LGN recently 

was shown to be critical for cell polarization during oocyte meiosis in mice (Guo and 

Gao, 2009).  Emerging evidence also points to a role in GPCR signaling.  Endogenously 
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expressed LGN, for example has been found to regulate G protein-dependent GIRK 

channel function in hippocampal neurons (Wiser et al., 2006), while another mammalian 

GoLoco protein, Pcp2, is able to modulate receptor regulation of Cav2.1 calcium 

channels expressed in X. laevis oocytes (Kinoshita-Kawada et al., 2004).   

 

The current study examines the effects of G18 (AGS4/GPSM3) on G protein activity in a 

variety of experimental contexts.  G18 is a 160 amino acid protein that is composed of 

three tandem GoLoco motifs interspersed through its middle and C-terminal area, plus an 

uncharacterized N-terminal segment that is rich in proline (14 out of 60 residues).  

Previous biochemical analyses have shown that at least two GoLoco motifs of G18 can 

interact with GDP-bound Gαi1 both in vitro and in overexpressed cell systems (Cao et 

al., 2004;Kimple et al., 2004).  However, the overall physiological function of G18 still 

remains unknown.  In the current study, we further examine the interactions between G18 

and heterotrimeric G proteins and moreover we identify its N-terminus as a novel G 

protein-interacting domain.   
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2.3 MATERIAL AND METHODS 

 

2.3.1 RNA PREPARATION AND RT (REVERSE TRANSCRIPTION) PCR 

Tissues from three month old C57BL/6 mice were collected and homogenized.  Total 

RNA was extracted using trizol reagent (Invitrogen) and further purified using RNeasy 

mini columns (Qiagen).  2 g of total RNA was used for reverse transcription with the 

High Capacity Reverse Transcription kit (Applied Biosystems).  Primers specific for the 

open reading frame of G18 were used in PCR reactions to examine the tissue distribution 

of G18.  The level of GAPDH was used as loading control.  

 

2.3.2 PREPARATION OF RECOMBINANT EPITOPE TAGGED-G18 FUSION PROTEINS 

GST-tagged G18wt (full length G18), ΔNG18 (a N-terminal 60 amino acid truncation 

mutant, containing only the three GoLoco motifs) and NG18-mGL (lacking the N-

terminal 60 amino acid and containing point mutations at the last amino acid of each 

GoLoco motif from R to F) were kindly provided by Dr. David P. Siderovski (The 

University of North Carolina, Chapel Hill NC. U.S.A).  G18-mGL (containing R to F 

mutations at the last amino acid of each GoLoco motif) was generated using the Site-

Directed Mutagenesis kit (Stratagene).  G18 C (the N-terminal domain of G18) which 

contains only the first 60 amino acids of G18 was generated by inserting a stop codon at 

the appropriate position.  The PCR product was subcloned into the pET-19b or pGEX4T2 

vector to generate a His-tagged or GST-tagged fusion protein, respectively.  All other 

constructs of G18 were further subcloned into the pET-19b vector using primers listed in 

Table 1.  Proteins were expressed and purified as described below. 
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2.3.3 PROTEIN PURIFICATION 

N-terminally His10-tagged G18 and mutants thereof were purified from Escherichia Coli 

BL21 (DE3) strain as follows.  Six liters of LB medium containing 100 g/ml ampicillin 

was inoculated with previously transformed cells and grown with vigorous shaking at 

37°C to an OD600≥0.5.  Expression of the proteins was induced by the addition of 

isopropyl-β-D-thiogalacto pyranoside (IPTG) to a final concentration of 500 μM, and 

incubated for an additional 4 hours before harvesting the bacteria by centrifugation.  

Bacteria were resuspended in 70 mL buffer A (25 mM Tris pH8.0, 500 mM NaCl, 1% 

tween 20, 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 1 μg/ml leupeptin, 10 μg/ml 

aprotinin, and 5 mM imidazole) and incubated on ice with 0.2 mg/ml lysozyme for 30 

minutes.  After a further 20 minute incubation with 25 μg/ml DNaseI and 0.5 mM MgCl2, 

3 ml of a 50% slurry of Ni-NTA affinity resin (Qiagen) pre-equilibrated in buffer A was 

added and the mixture was gently rocked at 4°C for 2 hours.  The resin was subsequently 

loaded onto a 30 ml column and washed with buffer B (25 mM Tris pH 8.0, 500 mM 

NaCl, 1% tween20, 0.1 mM PMSF, 1 μg/ml leupeptin, 10 μg/ml aprotinin, 20 mM 

imidazole) followed by buffer C (25 mM Tris, pH 8.0, 500 mM NaCl, 0.2 mM PMSF, 2 

μg/ml leupeptin, 20 μg/ml aprotinin, 40 mM imidazole).  Proteins were eluted from the 

Ni-NTA beads by adding 800 μl buffer D (final concentrations: 25 mM Tris, pH 8.0, 500 

mM NaCl, 0.2 mM PMSF, 1 μg/ml leupeptin, 10 μg/ml aprotinin, 250 mM imidazole) 

following a 30 minutes incubation at 4ºС.  This process was repeated a total of six times.  

This procedure yielded proteins that were approximately 60% pure as determined by 

Coomassie Blue staining.  Samples were further purified by FPLC using a Superdex 75 

column (Pharmacia) to yield proteins that were > 90% pure.  Peak fractions were pooled, 

and stored in aliquots at −80 °C. 



85 

 

 

GST-tagged G18 proteins were purified using a previously established glutathione-

Sepharose 4B affinity purification method (Abramow-Newerly et al., 2006).  His-tagged 

Gαi1 and Gαo were grown in enriched medium (2% tryptone, 1% yeast extract, 0.2% 

glycerol, 0.5% NaCl, 50 mM KH2PO4), induced with 30 M IPTG and purified as 

described previously (Mao et al., 2004).  

 

2.3.4 PROTEIN-PROTEIN INTERACTION ASSAY 

Purified His6-Gαi1 or His6-Gαo (500 nM) was preincubated for 1 hour in binding buffer 

(50 mM Tris (pH 7.5), 0.6 mM EDTA, 150 mM NaCl, 1 mM DTT, 0.1% Triton-X 100, 

PMSF 2 μg/ml leupeptin, and 20 μg/ml aprotinin) at 30ºC in the presence of either 10 μM 

GDP or GDP+AMF (10 mM NaF, 10 mM MgCl2, 20 µM AlCl3).  An equimolar amount 

(500 nM) of GST-tagged G18WT, G18-mGL, ΔNG18, ΔNG18-mGL or G18 C was 

added to the Gα mixture and incubated on a rotating platform at 4ºC for 2 hours.  

Glutathione Sepharose 4B beads or Ni-NTA agarose beads (20 µL bed volume) were 

then added into the protein mixture and incubate overnight.  The protein mixture was 

washed three times with binding buffer in the presence of GDP±AMF and the beads were 

resuspended in 2X Laemmli buffer.  Eluted proteins were separated on a 12% SDS gel 

and transferred to a Polyvinylidene Fluoride Transfer (PVDF) membrane (Pall 

Corporation) for immunoblotting. 

 

2.3.5 IMMUNOBLOTTING 
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Membranes were incubated with blocking buffer (Tris-Buffered Saline Tween-20 

(TBST) with 5% skim milk) for 1 hour and then probed with anti-His or anti-GST 

antibody (1:1000) (Santa Cruz biotechnology) diluted in blocking buffer overnight on a 

rotating platform at 4ºC.  Blots were subsequently washed 3 times with TBST and then 

incubated with HRP-conjugated secondary antibody (1:2000) (Promega) diluted in TBST 

for 1 hour at room temperature.  After another 3 washes with TBST, the blot was 

visualized by LumiGLO Reserve Chemiluminescence substrate (KPL, Inc) using a 

FluorChem 8000 imaging system.  

 

2.3.6 PRE-STEADY STATE GTPASE ASSAY 

Pre-steady state GTPase activity of purified G proteins was measured as described earlier 

(Mao et al., 2004).  Purified His6-Gαi1 or His6-Gαo (1 µM) was incubated with [ -
32

P]-

GTP (1×10
6
 cpm/assay) plus 1 µM nonradioactive GTP for 15 minutes at 30ºС or 20ºС in 

GTP binding buffer (50 mM Hepes (pH 7.5), 0.05% Lubrol, 1 mM DTT, 10 mM EDTA, 

5 g/ml BSA) and then kept on ice.  The GTP binding reaction was stopped by the 

addition of 0.25 volumes of mix buffer (50 mM Hepes (pH 7.5), 10 mM MgCl2, 500 µM 

GTP) and a single round of GTP hydrolysis was initiated by adding 10 mM of Mg
2+

 in 

the presence or absence of 1 µM G18, one of its mutants, RGS4 (300 nM in Figure 2.5, 

100nM in Figure 2.8) or both RGS4 and G18.  Aliquots were taken at the indicated time 

points and quenched with ice-cold 5% (w/v) Norit in 0.05 M NaH2PO4.  The level of 

radioactive 
32

Pi in the supernatant was detected by liquid-scintillation counting on a 

Packard Tri-Carb 2900TR liquid scintillation counter (Perkin Elmer). 
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2.3.7 GTP S BINDING ASSAY 

Purified His6-Gαi1 (100 nM) or His6-Gαo (100 nM) was incubated for 1 hour at 4°C in 

binding buffer (20 mM Hepes (pH 8.0), 1 mM EDTA (pH 8.0), 100 mM NaCl, 1 mM 

DTT, 2 mM MgCl2, 0.1 mg/ml BSA, 0.1% Lubrol, PMSF and 1 μg/ml leupeptin, 10 

μg/ml aprotinin) in the presence or absence of 1-2 µM G18 or its mutants.  Binding 

assays were initiated by adding 0.5 μM [
35

S]-GTPγS (1.25×10
5
 cpm/pmol).  The 

incubation continued for 30 minutes at 30ºC (Gαi1) or 60 minutes at 20ºC (Gαo).  The 

assay was terminated by adding ice-cold stop buffer (20 mM Tris (pH 8.0), 10 mM 

MgCl2, 100 mM NaCl, 0.1% Lubrol, 1 mM GTP and 0.1 mM DTT).  Samples were 

filtered through nitrocellulose membranes (Millipore) followed by washing four times 

with 2 mL ice-cold wash buffer (20 mM Tris (pH 8.0), 100 mM NaCl, 10 mM MgCl2).  

Radioactivity was measured using liquid-scintillation counting.  The nonspecific binding 

was determined in the presence of 100 μM unlabeled GTPγS, and these values were 

subtracted to yield specific binding. 

 

2.3.8 SOLUTION-BASED STEADY STATE GTPASE ASSAY 

Purified His6-Gαi1 or His6-Gαo (250 nM) was incubated with 3 µM G18 or one of its 

mutants for 30 minutes at 4ºC in assay buffer (50 mM NaHepes (pH 8.0), 1 mM EDTA, 2 

mM, DTT, 0.1%Triton-X 100, 6 mM MgSO4, 1 μg/ml leupeptin, 10 μg/ml aprotinin, and 

PMSF).  [γ-
32

P]GTP (1×10
6
 cpm/assay) plus 5 µM nonradioactive GTP was then added 

and the protein mix was further incubated for 1 hour at 30ºC (Gαi1) or 20ºC (Gαo).  The 

reaction was stopped by adding ice-cold 5% (w/v) Norit in 0.05 M NaH2PO4.  After 
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centrifugation, the level of radioactive 
32

Pi in the supernatant was determined by liquid-

scintillation counting.   

 

2.3.9 RECEPTOR- AND AGONIST-STIMULATED GTPASE ASSAY 

Sf9 membranes overexpressing M2 muscarinic receptor and heterotrimeric G proteins 

were prepared as indicated previously (Cladman and Chidiac, 2002).  These Sf9 cell 

membranes (8 µg/tube) were assayed for 100 µM carbachol-stimulated GTP hydrolysis at 

30ºC for 5 minutes in the absence or presence of the indicated purified proteins in the 

reaction buffer (20 mM Hepes, pH 7.5, 1 mM EDTA, 1mM DTT, 0.1 mM PMSF, 10 mM 

NaCl, 2 mM MgCl2 (7.5 mM calculated free Mg
2+

) 1 μM GTP, 1 mM ATP, [γ-
32

P] GTP 

(1×10
6
 cpm per assay) and protease inhibitors) in a total reaction volume of 50 µL.  The 

assay was stopped by adding 950 µL of ice-cold 5% (w/v) Norit in 0.05 M NaH2PO4.  

The reaction mixture was centrifuged and the level of 
32

Pi in the resulting supernatant 

was determined by liquid-scintillation counting.  The nonspecific GTPase activity was 

defined as that in the presence of the inverse agonist tropicamide (10 μM), and these 

values were subtracted from the total counts per minute to yield the agonist- and receptor-

dependent GTP hydrolysis.   
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2.4 RESULTS 

 

2.4.1 TISSUE DISTRIBUTION OF G18 IN MICE 

G18 is a 160 amino acid protein encoded by a 1472 bp mRNA, with 88% similarity 

between humans and mice at the amino acid level (Cao et al., 2004).  To determine the 

tissue distribution of G18 in mice, total RNA was extracted from different tissues of three 

month old C57BL/6 mice and primers specific for the open reading frame of G18 were 

used to probe for G18.  As shown in Figure 2.1, full-length G18 was detected at 

approximately 500 bp, corresponding well to the open reading frame of 480bp.  We 

found that G18 was highly expressed in spleen and lung, moderately expressed in heart, 

kidney, liver, brain, and adipose tissue.  These results are consistent with a previous 

report (Cao et al., 2004) by Cao et. al using a human RNA blot thus indicating a similar 

tissue distribution between human and mouse.   

 

2.4.2 PURIFIED G18 CAN INTERACT WITH BOTH INACTIVE AND 

FLUOROALUMINATE-ACTIVATED G  PROTEINS. 

Previous studies have shown that the GoLoco motifs of G18 have higher binding affinity 

toward Gαi-GDP compared to Gαo-GDP (Cao et al., 2004;Kimple et al., 2004).  To 

extend these findings, we tested the binding between purified G18 and purified Gαi1 or 

Gαo in both their inactive GDP-bound and fluoroaluminate-activated states.  Three G18 

mutants were examined (Figure 2.2) which contain an N-terminal truncation ( NG18), 

inactivating point substitutions within each GoLoco motif (G18-mGL), or a combination 

of both modifications ( NG18-mGL).  Consistent with previous studies (Cao et al., 

2004;Kimple et al., 2004), G18wt and NG18 interacted with Gαi1-GDP whereas G18- 
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Fig. 2.1. (A) Amino acid sequence of G18.  The three GoLoco motifs are underlined.  

The proline residues are shown in white on a black background, and arginines that could 

potentially contribute to the N-terminal effects are indicated in bold type.  (B) Tissue 

distribution of G18.  Various tissues from 3 month old C57BL/6 mice were isolated, total 

RNA was extracted, and RT-PCR followed by PCR was performed using primers 

specific for the open reading frame of G18.  GAPDH was used as loading control.  

Control lane indicates the reference length of G18 using the PCR product from the 

plasmid. 
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Figure 2.1 
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Figure 2.2

 

 

Fig. 2.2. Constructs and purified proteins.  (A) Domain architecture of different 

constructs used in the study.  (B) His-tagged proteins were purified from E.Coli strain 

BL21 (DE3) using Ni-NTA affinity purification followed by FPLC.  Protein purity was 

estimated by Coomassie staining.  The correct molecular size of G18 C (which may have 

run anomalously due to its high proline content) was verified by mass spectrometry. 
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mGL and NG18-mGL did not (Figure 2.3).  None of the purified G18 proteins 

displayed any detectable binding to the GDP-bound form of Gαo under the conditions 

employed in our studies (Figure 2.3). 

 

To determine whether the observed G18 interactions were specific for inactive G protein, 

we performed parallel in vitro pull-down assays in the presence of AlF4
-
 to mimic the 

transition state of G protein.  Surprisingly, in the presence of AlF4
-
, both Gαi1 and Gαo 

interacted with G18wt (Figure 2.3).  Moreover, removal of the G18 N-terminal domain 

diminished its binding to G proteins (Figure 2.3).  These results suggest that whereas the 

GoLoco motifs of G18 are responsible for its interaction with inactive Gαi, the N-

terminal segment of G18 may serve to bind the fluoroaluminate-activated Gαi/o.   

 

2.4.3 THE N-TERMINAL DOMAIN OF G18 CAN INTERACT WITH 

FLUOROALUMINATE-ACTIVATED G  PROTEINS 

We also generated and tested an additional truncation mutant of G18 containing only the 

first 60 residues (G18 C) to confirm the binding between the N-terminus of G18 and 

transition state of G proteins.  Indeed, this segment of G18 was sufficient to bind to 

fluoroaluminate-activated forms of both Gαi1 and Gαo (Figure 2.4).   

 

2.4.4 G18 HAS NO EFFECT ON G PROTEIN GTPASE ACTIVITY IN PRE-STEADY STATE 

GTPASE ASSAYS. 

We examined the effects of G18wt, NG18 and G18 C on the various stages of the G 

protein guanine nucleotide-binding cycle to determine the biochemical significance of the  
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Figure 2.3 

 

Fig. 2.3. Protein-protein interaction between G proteins and G18.  Purified His6-Gαi1 

or Gαo was incubated with excess GDP±AlF4
-
 for 30 minutes at 4 C, purified GST-

tagged G18 or one of its mutants was added to the solution, and the incubation was 

continued for another 2 hours before adding glutathione-Sepharose 4B beads.  After 

overnight incubation at 4 C on a rotating platform, the mixture was centrifuged, washed 

and the resulting pellet was retained for immunobloting analysis.  Membranes were 

probed with anti-His antibody.  Input represents 10% of the protein used in the pull-down 

assay.  A representative blot of 3 independent experiments is shown. 
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Fig. 2.4. Protein-protein interaction between G proteins and the N-terminus of G18.  

Purified His6-Gαi1 or Gαo was incubated with excess GDP+AlF4
-
 for 30 minutes at 4 C, 

purified GST-tagged G18 or its isolated N-terminus (G18ΔC) was added to the solution, 

and the incubation was continued for another 2 hours before adding Ni-NTA agarose 

beads.  The protein mix was further incubated overnight at 4 C on a rotating platform, 

samples were centrifuged and the resulting pellet was retained for immunobloting 

analysis.  Membranes were probed with anti-GST antibody.  Input represents 10% of the 

protein used in the pull-down assay.  A representative blot of 3 independent experiments 

is shown. 

 



96 

 

Figure 2.4 
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interaction between the G18 N-terminus and Gα subunits.  Since GTPase activating 

proteins (GAP) tend to have high affinity for fluoroaluminate-activated G proteins 

(Berman et al., 1996;Watson et al., 1996), we first investigated the possibility that the 

G18 N-terminus might have GAP activity towards Gαi/o subunits using a solution-based 

pre-steady state GTPase assay. 

 

Our results revealed that none of the purified G18 proteins tested had any impact on the 

rate of GTP hydrolysis by Gαi1 or Gαo (Figure 2.5).  RGS4, serving as a positive 

control, exhibited robust GAP activity on both Gαi1 and Gαo (Figure 2.5).  These results 

indicate that G18 does not serve as a GAP towards free Gαi/o subunits. 

 

2.4.5 THE N-TERMINAL DOMAIN OF G18 ACTS AS A GUANINE NUCLEOTIDE 

EXCHANGE FACTOR (GEF) ON G I1 

We next assessed whether the N-terminus of G18 might have any effects on nucleotide 

exchange, distinct from the established GDI activity of its GoLoco motifs on Gαi 

proteins.  Changes in the rate of GDP dissociation from Gα proteins were inferred from 

changes in the rate of GTP S binding using a solution-based pre-steady state assay.  As 

expected, the GoLoco region of G18 ( NG18) acted to inhibit GDP dissociation from 

Gαi1, as revealed by an 85% decrease in GTP S binding to the latter (Figure 2.6A).  In 

contrast, the isolated N-terminal segment of G18 (G18 C) increased GTP S binding to 

Gαi1 by approximately 60%.  Interestingly, full-length G18 had essentially no effect on 

the observed rate of GTP S binding to Gαi1, suggesting that the opposing functions of  
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Fig. 2.5. The effects of G18 on G protein GTPase activity under pre-steady state 

conditions.  Purified (A) His6-Gαi1 or (B) His6-Gαo was incubated with γ
32

P]-GTP 

(1×10
6
cpm/assay) for 15 minutes at 30ºС (Gαi1) or 20ºС (Gαo).  A single round of GTP 

hydrolysis was measured at 0ºС in the presence of 10 mM Mg
2+

 and RGS4, G18, or one 

of its mutants as indicated.  Data points shown are means ± S.E.M from 3 independent 

experiments.  
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Figure 2.5
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the two domains balance out under these experimental conditions.  These results suggest 

that G18 can serve as a bifunctional regulator of Gαi1, whereby its GoLoco region 

functions as a GDI and its N-terminal domain acts as a GEF. 

 

We further used a solution-based, steady state GTPase assay to corroborate the putative 

GEF activity of the G18 N-terminal region on Gαi1.  Interestingly, full length G18 

significantly promoted GTP turnover (Figure 2.7A).  In contrast, the N-terminal deletion 

mutant NG18 decreased GTPase activity (Figure 2.7A), which is consistent with its 

GDI activity.  In agreement with the results obtained from pre-steady state GTPγS 

binding assays (Figure 6A), there was a trend towards an increase with G18 C (Figure 

2.7A) and this reached statistical significance when the concentration was raised to 10 

μM (data not shown).  These results suggest that under steady state conditions with free 

Gαi1, the GEF activity of the N-terminal domain of G18 predominates over the GDI 

function of its GoLoco region.  

 

2.4.6 THE N-TERMINAL DOMAIN OF G18 INHIBITS NUCLEOTIDE EXCHANGE ON 

G O. 

The effects of G18 and its mutants on Gαo activity were also examined.  Surprisingly, 

G18wt inhibited nucleotide exchange on free Gαo by approximately 25% (Figure 2.6B).  

The GoLoco region of G18 ( NG18) had no effect on GDP dissociation from Gαo, 

which is consistent with its poor binding to Gαo-GDP.  In contrast, G18 C inhibited  
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Fig. 2.6. The effects of G18 on G protein nucleotide exchange.  Purified (A) His6-Gαi1 

or (B) His6-Gαo was preincubated with G18 at 4ºС.  Binding assays were initiated by 

adding 0.5 μM [
35

S] GTPγS (1.25×10
5
 cpm/pmol) at 30ºС (Gαi1) or 20ºС (Gαo).  The 

binding of GTPγS to Gα proteins was measured after 30 min (Gαi1) or 60 min (Gαo) of 

incubation.  Nonspecific binding was estimated in the presence of excess unlabeled 

GTPγS, and these values were subtracted from the results.  The data are presented as the 

mean ± S.E.M. of 3-5 independent experiments performed in duplicate.  * P<0.05, 

compared to G protein alone (One way ANOVA with Tukey's Multiple Comparison 

Test). 
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Figure 2.6 
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GTP S binding to Gαo to the same level as G18wt.  These results indicate that the effect 

of G18 on Go nucleotide exchange is primarily attributable to its N-terminal domain.  

 

Further, in the solution-based steady state GTPase assay, both G18wt and G18 C 

decreased the GTP hydrolysis of free Gαo, consistent with the observed inhibitory effects 

of the full length protein and the isolated N-terminal domain (Figure 2.7B).  NG18 also 

inhibited the GTPase activity of Gαo under these conditions.  The reason for the apparent 

discrepancy regarding the effects of NG18 in Figure 2.6B versus Figure 2.7B is not 

clear.  Overall our results suggest that the function of the N-terminal domain of G18 may 

depend on which G protein is involved, i.e., promoting nucleotide exchange at Gαi1 but 

decrease overall exchange at Gαo.   

 

2.4.7 EFFECTS OF G18 ON RECEPTOR- AND AGONIST- STIMULATED G PROTEIN 

GTPASE ACTIVITY.  

The foregoing observations indicate that the activity of G18 is not limited to its GoLoco 

motifs, as its N-terminal domain also modulates G protein-nucleotide interactions.  In 

addition, these results clearly identify Gαo as a novel interacting partner of G18.  

However, little is known regarding the activity of G18 (and GoLoco motif-containing 

proteins in general) within the context of receptor-stimulated G protein function.  

Therefore, we used a receptor- and agonist-dependent steady state GTPase assay to study 

the effects of G18 on GTP turnover by overexpressed Gαi1 or Gαo in membranes from 

Sf9 cells also co-expressing exogenous M2 muscarinic receptor and G subunits.  
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Fig. 2.7. The effects of G18 on Gα protein GTPase activity under steady state 

conditions.  Purified (A) His6-Gαi1 or (B) His6-Gαo was mixed with G18 at 4ºС.  The 

protein mixture was incubated with [γ-
32

P]-GTP (1×10
6
 cpm/assay) in the presence of 6 

mM Mg
2+

 at 30ºС (Gαi1) or 20ºС (Gαo).  Free 
32

Pi level was measured after 60 minutes 

of incubation.  The data are presented as the mean ± S.E.M. of 3 independent 

experiments performed in duplicate.  * P<0.05, ** P<0.01, *** P<0.001 compared to G 

protein alone (One way ANOVA with Tukey's Multiple Comparison Test). 
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Figure 2.7 
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The addition of G18wt to carbachol-activated M2+Gi1 or M2+Go membranes yielded 

little or no change in agonist-dependent GTPase activity (Figure 2.8A,B), 

notwithstanding its demonstrated effects in solution-based assays. Mutant forms of G18 

similarly lacked activity under these conditions (data not shown).  This apparent lack of 

effect could reflect a masking of changes in nucleotide exchange rates by the relatively 

slow intrinsic hydrolytic activities of Gαi1 and Gαo in the presence of the receptor.  To 

ensure that GTP hydrolysis per se was not rate limiting, cyclical GTP turnover was also 

measured in the presence of purified RGS4, which accelerates the hydrolytic step (Figure 

2.5).  Indeed, the inclusion of RGS4 in these assays revealed effects of G18wt on both 

Gi1 and Go, which were inhibited respectively by approximately 60% and 80% at the 

maximally obtainable concentration of G18wt (Figure 2.8A, B).  Another conceivable 

explanation is that this observation may reflect an effect of G18 on RGS4 activity.  We 

used a pre-steady state GTPase assay to test this possibility, and found that G18 had little 

or no effect on the GAP activity of RGS4 on either Gαi1 or Gαo (Figure 2.8C, D). 

 

To determine which regions of G18 might contribute to its effects on receptor-stimulated 

GTP turnover by Gi1 and Go, mutants bearing truncations and/or inactivating GoLoco 

point substitutions were also evaluated.  Compared to full length G18wt, N-terminally 

truncated G18 ( NG18) produced a similar inhibitory effect on receptor-activated Gi1 

(Figure 2.9A) but a greatly reduced effect on Go (Figure 2.9B).  In contrast, mutation of 

the GoLoco motifs (G18-mGL) substantially reduced activity on Gi1 (Figure 2.9C) but 

caused only a minor change in the inhibitory effect of G18 on Go GTPase activity 

(Figure 2.9D).  Despite the evident GEF effect of G18 C on isolated Gαi1 in solution 
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(Figure 2.6A), such activity was not observed in membranes in the presence of agonist-

activated receptor plus G  (Figure 2.9E), suggesting that the GEF activity of the 

receptor may exceed that of the N-terminal domain of G18.  G18 C instead produced a 

marginal inhibitory effect on receptor-activated Gi1 (Figure 2.9E), and a more 

pronounced inhibitory effect in corresponding experiments with Go (Figure 2.9F).  The 

latter observation reinforces the notion that G18 C has the potential to inhibit nucleotide 

turnover by inhibiting nucleotide exchange towards Gαo.  Overall, the inhibitory effect of 

full length G18 on M2+Gi1 GTPase activity is attributable primarily to its GoLoco 

motifs, whereas the effect on M2+Go seems to derive mostly from its N-terminal domain.   
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Fig. 2.8. The effects of G18 on receptor- and agonist- stimulated G protein GTPase 

activity.   (A, B) Sf9 cell membranes overexpressing M2 Muscarinic acetylcholine 

receptor and heterotrimeric Gαi1 or Gαo were prepared as indicated in Experimental 

Procedures.  Carbachol was used to activate M2 receptor.  Steady-state GTPase activities 

of G proteins were measured in the presence (solid line) or absence (dashed line) of 

RGS4 and the indicated concentrations of G18wt.  Nonspecific signal was determined in 

the absence of added purified proteins and in the presence of tropicamide.  The data are 

presented as the mean ± S.E.M. of 3-4 independent experiments. (C, D), Purified His6-

Gαi1 or His6-Gαo was incubated with [γ-
32

P]-GTP (1×10
6
cpm/assay) for 15 minutes at 

30ºС (Gαi1) or 20ºС (Gαo).  A single round of GTP hydrolysis was measured at 0ºС in 

the presence of 10 mM Mg
2+

 (□) and RGS4 (▲) or RGS4+G18 (▼).  Data points shown 

are means ± S.E.M from 3 independent experiments. 
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Figure 2.8 
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Figure 2.9 

 

 

Fig. 2.9. The effects of G18 mutants on receptor- and agonist-stimulated G protein 

GTPase activity.  M2-Gi1 and M2-Go membranes from sf9 cells were assayed for 

agonist-stimulated steady-state GTPase activity in the presence of RGS4 and the 

indicated concentrations of G18 mutants, as described in Figure 2.7.  G18wt activity 

(Figure 2.7) is shown as a dashed line for comparison in each panel.  The data points 

shown are means ± S.E.M. from 3-4 independent experiments. 
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2.5 DISCUSSION 

 

G18 was first identified within the major histocompatibility complex class III region on 

chromosome 6, and thus may be involved in the control of host immune defense and 

inflammatory responses (Gruen and Weissman, 2001;Moulds, 2001).  Such a role is 

further suggested by its relatively high expression levels in the spleen (Figure 2.2) and 

other immune tissues (Cao et al., 2004), although overall it appears to be fairly widely 

distributed.  Little is known about the biological function of G18, and a clear 

understanding of this is difficult without accurate knowledge of its biochemical behavior.  

The most significant finding described herein is the identification of the N-terminal 

region of G18 as a novel binding partner of Gαi/o proteins.  Surprisingly, this domain 

promotes nucleotide exchange on Gαi1 but seemingly inhibits nucleotide exchange on 

Gαo.  To our knowledge, this is the first example of a single domain that has distinct 

regulatory effects toward different Gα proteins.  Another unusual property of G18 is that 

it contains multiple G protein binding domains that produce dissimilar effects on the 

activity of a common target, and the ability of G18 both to promote and to impede GDP 

dissociation from G i1 respectively via its N-terminal and GoLoco regions appears to be 

unique. A comparable enigma exists with the R12 subfamily of RGS proteins, most of 

which contain a GoLoco motif that can produce GDI effects on G i and also an RGS 

domain that accelerates GTPase activity (Kimple et al., 2001).   

 

The most widely recognized GEF effects on heterotrimeric G proteins are those produced 

by agonist-activated GPCRs, but beyond this classical paradigm a variety of non-receptor 
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GEFs have also been identified including Ric-8A (Tall and Gilman, 2005;Thomas et al., 

2008), Ric-8B (Kerr et al., 2008), CSPα (Natochin et al., 2005), GIV (Garcia-Marcos et 

al., 2009), AGS1/Dexras1 (Cismowski et al., 2000), GAP-43/neuromodulin /B-50 

(Strittmatter et al., 1991), and the yeast protein Arr4 (Lee and Dohlman, 2008).  The 

primary amino acid composition of the N terminal domain of G18 does not resemble any 

of the previously identified GEFs, however, there are structural attributes of G18 that 

could conceivably contribute to interactions with G proteins.  For example, the N 

terminal segment of G18 is highly enriched in proline (14 out of 60 residues), which has 

a special role in protein function due to its unique side chain structure and its effects on 

overall protein conformation.  Proline residues tend to disrupt both α-helical and -sheet 

structures and two or more residues in a row typically promote left-handed PPII 

(polyproline type II) helices containing three residues per turn (Williamson, 1994;Li, 

2005).  PPII helices can readily adopt different conformations and thus bind to a variety 

of proline recognition domains, such as SH3 and WW domains (Li, 2005).  Proline-rich 

motifs have been found within several effectors of monomeric G proteins, such as Son of 

sevenless (Garbay et al., 2000;Gureasko et al., 2008), Sprouty 2 (Garbay et al., 2000;Lao 

et al., 2006), and POB1 (Garbay et al., 2000;Oshiro et al., 2002).  Our results suggest that 

a proline-rich motif may also serve as a binding partner for heterotrimeric G proteins.  

The mechanism by which G18 confers GEF activity on free Gαi1 requires further study 

but the presence of multiple arginine residues, particularly those at positions 31, 34 and 

46 (which would line up in a PPII helix) could conceivably provide the cationic interface 

needed to promote nucleotide exchange (Higashijima et al., 1990).   

 



113 

 

Consistent with the present results, previous studies have shown the GoLoco region of 

G18 to selectively bind to and impede GDP dissociation from inactive Gαi (Cao et al., 

2004;Kimple et al., 2004).  However, the GoLoco motifs in proteins such as Pcp2 and 

Rap1GAP appear not to be selective between Gαi and Gαo (Jordan et al., 1999;Luo and 

Denker, 1999;Natochin et al., 2001).  Also it is not obvious that the potential effects of 

activating agents have necessarily been tested in all studies on GoLoco-Gα interactions.  

The present results indicate that the binding of the GoLoco region of G18 to Gαo can be 

induced, albeit modestly, by AlF4
-
 (Figure 3, lane 4).  Nothing analogous to this 

observation could be found in the literature, however, the drosophila GoLoco protein Pins 

has been shown to bind to both active and inactive Gαo in this case drosophila Gαo 

purified from bacteria) and to regulate Gαo-dependent GPCR signaling (Kopein and 

Katanaev, 2009).  Although we and Kimple et al. (Kimple et al., 2004) were unable to 

show binding between non-activated mammalian Gαo and the GoLoco region of G18, 

Cao and co-workers did observe binding to Gαo-GDP (Cao et al., 2004).  The latter study 

used Gαo purified from insect cells rather than E. coli suggesting that co- and/or post-

translational modification of G proteins may affect their GoLoco interactions.  

 

All of the G protein binding domains of G18 appear to be sensitive to the activation states 

of their Gα targets (Figure 3).  N-terminal domain binding seems to be selective for the 

transition state of both Gαi1 and Gαo.  These interactions appear to be of primary 

importance for the binding of full length G18wt in the presence of AlF4
-
, as G protein 

binding was greatly reduced or eliminated in the absence of the N-terminal domain.  

However, the effects of the N-terminal domain of G18 on G protein activity must 
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ultimately be viewed within the context of the entire protein, including its three GoLoco 

motifs.  Important considerations include 1) which, if any, domain has a predominant 

effect on a particular G protein either as it signals at the plasma membrane or performs 

other functions in the cell interior, 2) whether G protein binding is mutually exclusive or 

can occur simultaneously to both the N-terminal domain and one of the GoLoco motifs, 

and 3) whether an individual G protein can bind to different G18 domains at different 

points within its GTPase cycle.   

 

The effect of G18 on a G protein may depend on its cellular localization and/or other 

binding partners.  We observed that the N-terminal GEF effect negates (Figure 2.6A) or 

overrides (Figure 2.7A) the GoLoco GDI effects on Gαi1 in solution, whereas the ability 

of G18 to inhibit receptor-stimulated Gi1 activity is unaffected by the removal of the N-

terminal domain (Figure 2.9A).  This suggests that perhaps free intracellular Gαi1 would 

be activated by the N-terminal GEF function of G18 while the GoLoco motifs would 

inhibit receptor-dependent Gαi1 activation at the plasma membrane.   

 

Together, the four G protein binding domains within G18 have the potential to produce 

complex effects on G protein activity.  It is unclear whether the N-terminal and GoLoco 

domains might either impede or facilitate the other’s binding to Gα, or whether the 

different domains can act sequentially as Gα goes through its GTP cycle.  If they act 

independently, then multiple G proteins could be affected at the same time.  Kimple et. al 

(Kimple et al., 2004) have shown that the first and third GoLoco motifs within N-
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terminally truncated G18 can simultaneously bind individual G proteins and thus function 

as independent GDIs, although this could potentially differ in the presence of other G 

protein regulators.  The idea that the N-terminal domain might be able to access GoLoco-

associated Gα is suggested by evidence that Ric-8A can exert its GEF activity on Gαi 

while the latter is coupled to the GoLoco region of AGS3.  Analogously, GPCRs and G  

must act in concert for agonist-stimulated nucleotide exchange to occur (Bourne, 

1997;Cabrera-Vera et al., 2003;Mahon et al., 2006).  While it is an intriguing possibility, 

the present results do not directly speak to whether the N-terminal and GoLoco domains 

of G18 might bind simultaneously to either Gαi1 or Gαo (or alternatively inhibit one 

another), and thus further studies will be required to address this issue.  
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3 CHAPTER 3 

3.1 CHAPTER SUMMARY 

 

RGS5 is an R4 subfamily RGS protein that negatively regulates GPCR signaling by 

promoting G protein GTP hydrolysis.  The tissue distribution of RGS5 indicates that it is 

highly expressed in the vascular system.  RGS5 also serves as a pericyte marker at sites 

of physiologic and pathologic angiogenesis. Here, we show that the three GoLoco motif 

containing protein G18/AGS4 is also expressed in vascular smooth muscle cells.  

GoLoco motif containing proteins are thought to negatively regulate Gα protein activity 

by acting as guanine nucleotide dissociation inhibitors (GDIs) that impede nucleotide 

exchange on Gαi/o proteins. The objective of the current study is to examine the 

combined effect of RGS5 and G18 on the G protein GTPase cycle.  Surprisingly, G18 

potentiated RGS5 GAP activity up to two fold.  On the other hand, in pre-steady state 

GTPγS binding assays, RGS5 exhibited little or no effect on G18 GDI activity. More 

interestingly, in vitro pull-down assays indicated that G18 directly interacts with RGS5, 

which may help to account for the observed increase in RGS5 GAP activity. The 

underlying mechanism of this enhancement in RGS5 activity by G18 is unclear, but our 

observations suggest it is possible that the GoLoco proteins and RGS proteins co-exist in 

the same cell type and potentially regulate each other’s activity, and collectively 

modulate G protein activity. 

  



123 

 

3.2 INTRODUCTION 

 

Nucleotide exchange and GTP hydrolysis are two steps that control the duration of G 

protein activation (Siderovski and Willard, 2005).  Many factors have been identified that 

can modulate G protein activity by altering the rate of either nucleotide exchange or GTP 

hydrolysis (Koelle, 1997).  Regulators of G protein Signaling (RGS) proteins can 

accelerate GTP hydrolysis by binding to the activated/transition state of Gα subunit via 

their RGS domain (~120 amino acids), and acting as GTPase accelerating proteins 

(GAPs) (Siderovski et al., 2005;Blumer et al., 2007).  The receptor-independent activator 

of G protein signaling (AGS) proteins are another family of proteins that can regulate G 

protein activity via other mechanisms different from those of RGS proteins (Seki et al., 

1998).  The members of the Group II AGS protein all contain a single or multiple Gi/o-

Loco interaction (GoLoco/GPR) motifs (Blumer et al., 2005).  Each conserved GoLoco 

motif contains ~19 amino acids which are able to bind to the inactive (GDP-bound) state 

of Gαi/o proteins and inhibit the dissociation of GDP from Gα.  The direct interaction 

between the conserved E/DQR triad of each GoLoco motif with the nucleotide binding 

pocket of Gα serves as the foundation for its function as a guanine nucleotide dissociation 

inhibitor (GDI) (Kimple et al., 2002). 

 

G18 (a.k.a. AGS4 or GPSM3) is a 160 amino acid protein that contains three tandem 

GoLoco motifs at its C-terminus with a relatively short N-terminal domain that contains 

multiple prolines (Chapter 2, (Cao et al., 2004)).  The GoLoco motifs of G18 are thought 
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to act as GDIs on Gαi, but not Gαo (Kimple et al., 2004).  Recent work from our own lab 

has demonstrated that the N-terminus of G18 acts as a novel Gi/o protein binding partner. 

The N-terminus exhibits a previously unknown guanine nucleotide exchange factor 

(GEF) activity on Gαi, but limits GTPγS binding to Gαo.  Thus, the net effect of G18 

activity may vary depending on the G proteins in question (Chapter 2).  Furthermore, the 

presence of a G protein-coupled receptor (GPCR) also seems to influence which 

functional domain of G18 predominates with respect to its effects on G protein activity.  

For example, the GEF activity of G18 was not observed in a membrane-based steady-

state GTPase assay, as GPCR-stimulated G protein activation did not appear to be further 

enhanced by the N-terminus of G18.  This suggested that G18 may function as a GPCR-

independent GEF.  In addition, the function of G18 may also vary depending on the 

experimental or cellular context (Chapter 2).  

 

Gene expression studies revealed that the mRNA of G18 is highly expressed in immune 

and cardiovascular system tissues such as spleen, lung and heart (Chapter 2, Cao et al., 

2004).  In the current study, we first report the expression of G18 in primary smooth 

muscle cells isolated from both rat and mice.  G18 expression was detected at both the 

mRNA and protein levels.  Interestingly, the expression level of G18 is elevated in 

smooth muscle cell isolated from spontaneously hypertensive rat (SHR) compared to 

normotensive rat (WKY), suggesting a potential role for G18 in the regulation of vascular 

functions and/or blood pressure.  
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Here, we have examined the combined effect of G18 with another G protein regulatory 

protein that has been reported specifically expressed in vascular system, RGS5, on 

receptor-mediated G protein activation.  RGS5 is a relatively short RGS protein that 

belongs to the R4/B subfamily of RGS proteins.  It is highly expressed in vascular tissues 

(Seki et al., 1998;Cho et al., 2008;Nisancioglu et al., 2008).  It has been shown to play an 

important role in regulating vascular maturation and remodeling (Manzur and Ganss, 

2009b).  The role of RGS5 in regulating other aspects of cardiovascular function has also 

been studied.  For example, two individual studies have demonstrated that both systolic 

and diastolic blood pressure were significantly lower in RGS5-deficient mice compared 

with wild type (Manzur and Ganss, 2009a).  However, the mechanisms underlying this 

phenomenon are not clear since in vitro studies have suggested that the GAP activity of 

RGS5 is mainly linked to Gi and Gq proteins, both of which are mediators of 

vasoconstriction (Brinks and Eckhart, 2010).  Obviously, more studies are required to 

fully understand how RGS5 works in a cellular/tissue context.  It is possible that regions 

outside the RGS box serve a role in regulating RGS5 activity on G proteins, and other 

regulatory proteins also interact with RGS5 in a signaling complex and regulate its 

function. 

 

Mechanisms of RGS and GoLoco regulation of G protein activities have been 

investigated individually.  However, increasing evidence suggests that these proteins may 

co-regulate G protein activities in cells.  Interestingly, RGS12 and RGS14 are two 

relatively large RGS proteins that also possess a GoLoco domain at their C-terminal 
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region (Kimple et al., 2001).  Since both G18 and RGS5 are expressed in smooth muscle 

cells and they both can regulate G protein activity, we examined the possibility that they 

may do so in a coordinated manner.  The combined effects of RGS5 and G18 on G 

protein activity as well as the influence of one protein on the binding and biochemical 

function of the other protein thus were studied.  Surprisingly, in membrane-based, 

agonist/receptor-stimulated steady-state GTPase assays, G18 failed to inhibit the GTP 

hydrolysis promoted by RGS5, which is expected due to its GDI activity, but on the other 

hand, it did inhibit RGS4 GAP activity in a dose-dependent manner.  In vitro pull-down 

assays using purified proteins showed that G18 and RGS5 are able to form a protein 

complex by direct interaction.  Furthermore, we also found that by interacting with 

RGS5, G18 can potentiate RGS5 GAP activity on Gαi1 in pre-steady state GTPase 

assays.  Overall, this study provides a new evidence of how RGS5 function can be 

regulated by other G protein regulatory proteins. 
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3.3 MATERIAL AND METHODS 

3.3.1 GENERATION OF G18 ANTIBODY 

A 12 amino acid peptide was designed based on the N terminus of G18 (amino acids 1-

12).  Peptides were synthesized by the GeneScript Co., and rabbits were immunized 

through the GeneScript Co. antibody synthesis facility.  Each antiserum was 

characterized using both purified His-G18 fusion protein and transiently transfected CHO 

and HEK293 cells overexpressing Flag-tagged G18 to verify specificity and optimize the 

conditions for immunoblotting and immunoflorescence experiments.  

 

3.3.2 CELL CULTURE AND TRANSFECTION 

Wistar-Kyoto rats (10 to 12 weeks of age; Charles River) were utilized in our studies as a 

source of VSMCs. They were cared for in accordance with the Canadian Council on 

Animal Care guidelines. The protocol for their use was approved by the Animal Use 

Subcommittee, University of Western Ontario. Isolation of rat aortic VSMCs was 

performed as described previously (Gros et al., 2006). 

 

Chinese hamster ovary (CHO) cells were seeded onto 10 cm dishes (7×10
5
 cells/plate) or 

35 mm dishes (0.5×10
5
 cells/plate), the day before transfection, the cells were transiently 

transfected with pcDNA Flag-tagged G18 or HA-tagged RGS5 constructs, using 

lipofectamine. Control cells were mock-transfected.  Two days post transfection, cells 

were harvested for co-immunoprecipitation or fixed for immunofluorescence studies.   
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3.3.3 RNA PREPARATION AND REVERSE TRANSCRIPTION PCR 

Tissues from 3-month-old C57BL/6 mice were collected and homogenized. Total RNA 

was extracted using Trizol reagent (Invitrogen) and further purified using RNeasy mini 

columns (Qiagen). 2 μg of total RNA was used for reverse transcription with the High 

Capacity Reverse Transcription kit (Applied Biosystems). Primers specific for the open 

reading frame of G18 were used in PCR reactions to examine the expression of G18 

(Zhao et al., 2010).  

 

3.3.4 CONSTRUCTS AND PROTEIN PURIFICATION 

G18, its mutants and RGS5 were subcloned into pET19b or pGEX4T2 vectors to make 

His-tag or GST-tag fusion proteins, which were expressed in E. coli and purified by 

affinity chromatography followed by size exclusion FPLC as described in Chapter 2. 

Protein concentrations were determined by Bradford assay and purity was estimated by 

Coomassie staining.  

 

3.3.5 PURIFIED PROTEIN PULL-DOWN ASSAY 

GST-G18 or its truncated mutants were incubated in binding buffer with purified RGS 

protein (RGS4, RGS5, or RGS16) in the presence or absence of increasing concentration 

of Gαi1, which had been preincubated with 10 mM GDP. Glutathione 4B beads were 

added to the solution and the incubation was continued overnight at 4°C.  Beads were 

pelleted by centrifugation and washed with binding buffer, and proteins were separated 

by SDS-page and transferred to PVDF membrane for immunoblotting.  
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3.3.6 PROTEIN CO-IMMUNOPRECIPITATION FROM CELL LYSATES 

48 h after transfection, cells were rinsed with PBS, treated with Trypsin-EDTA (Gibco), 

collected by centrifugation, resuspended in lysis buffer (final concentrations: 50 mM 

Tris–HCl, pH 7.6, 1 mM EDTA, pH 8.0, 0.4 M NaCl, 1% Triton X-100, 10% glycerol, 

0.5 mM NaF, 0.2 mM Na3VO4, 0.2 mM PMSF, 1 μg/ml leupeptin, 10 μg/ml aprotinin). 

The samples were centrifuged at 14000 rpm for 15 min and the supernatants were 

transferred to new microcentrifuge tubes. 500 μl of supernatant was incubated with 50 μl 

of a 50% slurry of IgG agarose beads (equilibrated in lysis) for 1 h and subjected to 

centrifugation and then transferred into fresh tubes. Pre-cleared cell lysates (500 μl) were 

incubated with 10 µg anti-G18 antibody and 50 μl of a 50% slurry of lgG agarose beads 

overnight at 4°C, with gentle rotation. Cell lysates were then subjected to centrifugation 

and agarose beads were washed by resuspension and centrifugation three times in lysis 

buffer.  Proteins were released from the beads by heating at 99 °C for 5 min, subsequent 

to the addition of loading buffer, followed by SDS-PAGE and transfer to PVDF 

membrane for immunoblot analysis. For negative controls, each lysate was incubated 

with buffer-equilibrated agarose beads as appropriate to determine non-specific binding. 

To verify protein expression, 5% of cell lysate taken prior to the pull-down experiment 

was assessed by immunoblotting in parallel with immunoprecipitated samples. 

 

3.3.7 GTPS BINDING ASSAY 

Purified His6-Gαi1 was preincubated for 1 hour at 4 °C in the absence or presence of 

purified His-G18 ± RGS5.  Binding assays were initiated by adding 0.5μM [
35

S]-GTPγS 
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(1.25*10
5
 cpm/pmol). The combined proteins were further incubated at 30 °C for 30 min. 

The assay was terminated by the addition of cold stop buffer (Tris (pH 8.0) 20mM, MgCl2 

10mM, NaCl 100mM, Lubrol 0.1%, GTP 1mM, DTT 0.1mM) and samples were filtered 

through nitrocellulose membranes followed by washing with ice-cold wash buffer. The 

level of radioactive 
35

S binding to G protein was measured by liquid-scintillation 

counting. The nonspecific binding was measured in the presence of 100 μM unlabeled 

GTPγS, and these values were subtracted to yield specific binding.    

 

3.3.8 PRE-STEADY STATE GTPASE ASSAY 

Purified His6-Gαi1 (500nM) was incubated with 10
6
cpm of [-

32
P]-GTP for 15 min. The 

binding reaction was stopped by the addition of 500 µM cold GTP and a single round of 

GTP hydrolysis was initiated by adding 10 mM of Mg
2+

 in the presence or absence of 

RGS proteins ± WT G18. Aliquots were taken at indicated time points and the assay was 

quenched with ice cold activated charcoal. The level of radioactive 
32

Pi in the supernatant 

was measured by liquid-scintillation counting.  

 

3.3.9 RECEPTOR- AND AGONIST- STIMULATED STEADY-STATE GTPASE ASSAY 

Sf9 membranes (from cells expressing N-terminal c-myc-tagged M2 muscarinic receptor, 

Gαi1, Gβ1, and Gγ2) were incubated with γ[
32

P]GTP in the presence of purified RGS5 at 

indicated concentration with or without G18. Nonspecific membrane GTPase signal was 

estimated by adding 1mM of unlabeled GTP to the above assay mix, and this value was 

subtracted from the total counts per minute.  Reactions were stopped by activated 
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charcoal and the level of 
32

Pi in the resulting supernatant was determined by liquid-

scintillation counting. Agonist-dependent GTPase activity was determined by subtracting 

the signal measured in the presence of the inverse agonist tropicamide.  
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3.4 RESULTS  

 

3.4.1 CHARACTERIZATION OF G18 ANTIBODY 

To determine the specificity of our new G18 antibody, CHO cells were transiently 

transfected with flag-tagged G18, and 48 hours after transfection, cells were either 

subjected to immunofluorecence or lysed and the lysate was harvested for immunoblot 

analysis.  As indicated in Figure 3.1A, and consistent with a previous report (Cao et al., 

2004), no endogenous G18 was detected in CHO cells.  When G18 was overexpressed, 

an immune reaction band occurred at the expected molecular weight.  

Immunofluorescence experiments showed that only cells that are overexpressing G18 

were stained by the G18-antibody, with primarily cytosolic expression (Figure 3.1B). 

 

3.4.2 EXPRESSION AND LOCALIZATION OF G18 IN AORTIC SMOOTH MUSCLE CELL 

We examined the endogenous expression of G18 mRNA using different cell lines and 

primary cell cultures.  G18 is absent from both of the established cell lines that we 

examined including HEK293 and CHO cells, however, to our surprise, the mRNA of G18 

is detected in primary smooth muscle cells isolated from both mouse and rat aorta 

(Figure 3.2A).  Interestingly, the expression of G18 at the protein level was detected 

using G18 antibody in both smooth muscle cells and endothelial cells with relatively 

greater expression in the former (Figure 3.2B).  Furthermore, cells isolated from 

spontaneously hypertensive rats (SHR) express elevated levels of G18 compared to those 

isolated from normotensive rats (WKY) (Figure 5.3).  
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Fig. 3.1.  Characterization of G18 antibody.  CHO cells were seeded in 10 cm plates 

and transiently transfected with plasmid encoding Flag-G18 or pcDNA3.1 vector (control 

lysate).  48 hours after transfection, cells were either lysed and the cell lysate were 

separated by SDS-PAGE and transferred to PVDF membrane for immunoblotting (A) or 

fixed and subjected to immunofluorescence study (B).  Blots or fixed cells were probed 

with anti-G18 antibody (1:1000) and anti rabbit secondary antibodies (1:1000 (western 

blot), or 1:500 (immunoblotting)).  Data are representative of three independent 

experiments.    
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Figure 3.1 
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Immunocytochemistry-based assays showed that, consistent with a previous report and 

our own earlier results using an overexpression system, endogenous G18 was localized 

mainly in the cytosolic fraction (Figure 3.2C).  Interestingly, G18 was also seems to be 

evident at the lamellipodia region of most of the motile smooth muscle cells.  

 

3.4.3 INTERACTION BETWEEN G18 AND RGS PROTEINS 

RGS5 is highly expressed in vascular tissues and is considered to play a very important 

role in regulating vascular function (Mitchell et al., 2008), thus RGS5 may coexist in 

aortic smooth muscle cells with G18 in vivo.  Therefore, we studied the combined effect 

of G18 and RGS5 on G protein activity.  First, we sought to confirm the expression of 

RGS5 in isolated smooth muscle cells, and RGS5 mRNA was indeed detected using RT-

PCR in those cells. 

 

As noted, we have identified that both RGS5 and G18 are expressed in the aortic smooth 

muscle cells.  Since both G18 and RGS5 are negative regulators of Gi/o signaling, it is 

possible that one protein’s effect on G protein activity may be influenced by the presence 

of the other protein, thus, the overall duration of G protein signaling may be altered.  To 

examine this possibility, first we determined if G18 and RGS5 can form a complex, we 

used in vitro purified protein pull-down assay to address this issue.  As shown in Figure 

3.3A, His-RGS5 directly interacts with GST-G18, with no noticeable interaction with the 

GST tag or the GSH beads.  In contrast to its interaction with RGS5, G18 does not appear 

to interact with RGS2, RGS4 (data not shown) or RGS16 (Figure 3.3A).   
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Fig. 3.2. Expression of G18 in primary aortic smooth muscle cells and endothelial 

cells.   (A) Total RNA was isolated from cultured cell lines and primary cells, reverse 

transcribed to cDNA and PCR was performed using primers designed to specifically 

probe for G18.  (B) Lysates from cultured primary aortic smooth muscle cells and 

endothelial cells were separated by SDS-PAGE and transferred to PVDF membrane for 

immunoblotting.  (C) Primary aortic smooth muscle cells were fixed and subjected to 

immunoflurescence study.  Blots or fixed cells were probed with anti-G18 antibody 

(1:1000).  Data are representative of three independent experiments. 
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Figure 3.2 
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Since G18 contains three GoLoco motifs at its C-terminus as well as a short proline-rich 

N-terminus which may also play an important role in protein-protein interaction (Chapter 

2), we next tried to elucidate which part of G18 is responsible for its interaction with 

RGS5.  Constructs encoding either the isolated N-terminus (from 1-60 amino acids) or 

the C-terminus of G18 (from 61-160 amino acids) were used in vitro pull-down assays.  

Figure 3.3B shows that full length G18 as expected is able to interact with RGS5, 

however, little or no binding was observed when either terminus of the protein is 

removed.  These data suggest that the two termini of G18 may both contain elements that 

are necessary for its interaction with RGS5. 

 

3.4.4 EFFECT OF G PROTEIN ON G18 AND RGS5 INTERACTION 

Next, we examined if G protein is able to compete with RGS5 for binding to G18, or 

alternatively whether the three proteins can form a complex.  To address this issue, we 

performed a G18-RGS5 binding assay in the presence of increasing concentrations of 

Gαi1-GDP from 150 nM to 1.2 M and constant concentrations of G18 (300 nM) and 

RGS5 (300 nM).  As shown in Figure 3.4, with increasing concentration of Gαi1, the 

binding between RGS5 and G18 was decreased.  

 

3.4.5 EFFECT OF G18 ON RGS5 GAP ACTIVITY 

To study the functional consequences of the interaction between G18 and RGS5, 

solution-based single-turnover assays were performed.  These assays used all purified  
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Figure 3.3 

 

 

 

Fig. 3.3. Protein-protein interaction between G18 and RGS5 proteins.  Purified His-

tagged RGS proteins (300 nM) were incubated with GST-tagged wild type G18 (300 nM) 

(A), different truncated mutants of G18 (ΔNG18 or G18ΔC) (B). In vitro pull-down 

assays were performed as indicated in Materials and Methods. Briefly, GST-tagged G18 

and associated proteins were isolated using glutathione-sepharose beads, which were 

precipitated by centrifugation and washed three times with buffer.  The protein complex 

was separated using 12% SDS-PAGE and transferred to PVDF membrane, which was 

probed using and anti-polyhistidine antibody. The blots shown are representative of three 

independent experiments with similar results. 

(A) 

 

 

 

 

 

(B) 
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Figure 3.4 

 

 

Fig. 3.4. Effect of G protein on G18-RGS5 interaction.  Purified His-tagged RGS5 

(300nM) proteins were incubated with GST-tagged wild type G18 (300nM), and 

increasing concentrations of purified Gαi1 as indicated. In vitro pull-down assays were 

performed as described in Material and Methods.  Briefly, GST-G18 was pulled down 

using glutathione-sepharose beads, the pellet was washed three times by resuspension and 

centrifugation, and the final pellet was and resuspended in 2X protein loading dye and 

heated to 99˚C for 5 min.  The protein complex was separated using 12% SDS-PAGE, 

transferred to a PDVF membrane and probed for His-tagged proteins. 10% proteins were 

used as input.  The blots shown are representative of three independent experiments with 

similar results. 
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protein components, allowing us to examine a single cycle of activation (nucleotide 

exchange) or deactivation (hydrolysis), and also provided a more simplified system of 

analysis compared to membrane-based assays or cellular systems.  Using a solution-based 

single-turnover GTPase assay, we examined the effect of G18 on RGS5 GAP activity.  In 

the absence of G18, RGS5 as expected greatly enhanced GTP hydrolysis from Gαi1 

compare to agonist alone, exhibiting GAP activity (Figure 3.5A).  Interestingly, in the 

presence of both G18 and RGS5, the GAP activity of RGS5 was increased up to 2 fold 

(Figure 3.5A).  On the other hand, G18 showed no effect on RGS4 GAP activity, which 

does not interact with G18 (Figure 3.5B).  These results suggest that the binding between 

G18 and RGS5 is able to potentiate RGS5 GAP activity.  

 

3.4.6 EFFECT OF RGS5 ON G18 GDI ACTIVITY 

In another set of experiments, we used a GTPS binding assay to test whether RGS5 is 

able to alter the biochemical activities of G18, specifically its GDI, and GEF activities.  

As shown in Figure 3.6A, RGS5 alone has no effect on nucleotide exchange.  In addition, 

Figure 3.6B shows that the GoLoco motifs of G18 exhibit GDI activity on free Gα, and 

the presence of RGS5 has no effect on G18 GDI activity.  A previous study from our lab 

identified that the N-terminus of G18 exhibits a novel GEF activity toward Gαi1, and the 

net effect of the full length protein on nucleotide exchange shows a balance between the 

GDI activity and the GEF activity.  Here, Figure 3.6 D showed that RGS5 also has no 

effect on activity of full-length G18.  The simplest explanation for this is that the binding 

of RGS5 to full-length G18 does not affect either the GEF or GDI functions.   
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Fig. 3.5. Effects of G18 on RGS5 GAP activity. Purified His-Gαi1 (250 nM) was 

incubated with [ -
32

P]-GTP (1X10
6
cpm/assay) for 15 min at 30ºС. A single round of GTP 

hydrolysis measured at 0ºС in the presence of 10 mM Mg
2+

, RGS5 (A), or RGS4 (B) 

(100 nM) with or without G18 (1 µM).  The graphs are presented as the mean ± S.E.M. 

of 3 independent experiments.  * P<0.05 ** P<0.01, compared to RGS protein alone 

(student t-test).   
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Figure 3.5 
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Fig. 3.6.  Effect of RGS5 on G18 GDI and GEF activity.  Purified His-Gαi1 (100 nM) 

was incubated alone or in the presence of RGS5 (A), ± the GoLoco region of G18 

(G18ΔN) (B), the N-terminus of G18 (G18ΔC) (C), or full-length G18 (D) at 1 µM for 1 

hour at 4 ºC followed by addition of 0.5µM [
35

S]GTPγS (1.25 × 10
5
 cpm/pmol) and the 

incubation continued at 30 °C (Gαi1).  The binding of GTPγS to Gα proteins was 

measured after 30 min (Gαi1) of incubation. Nonspecific binding was estimated in the 

presence of excess unlabeled GTPγS, and these values were subtracted from the results. 

The data are presented as the mean ± S.E. of three to five independent experiments 

performed in duplicate.   ** P<0.01, compared to G protein alone (One way ANOVA 

with Tukey's Multiple Comparison Test).   
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Figure 3.6 
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3.4.7 COMBINED EFFECTS OF G18 AND RGS5 ON STEADY-STATE GTPASE 

ACTIVITY 

Using pre-steady-state assays, we studied the effects of the interaction between RGS5 

and G18 on each other’s biochemical activities, and found that this interaction leads to an 

enhancement in the GAP activity of RGS5 without altering the effects of G18 on 

nucleotide turnover.  Finally, we used a membrane-based steady-state assay, which is 

thought to be more close to physiological conditions, to examine the net effect of this 

interaction on G protein activity.  We also used RGS4, which does not bind to G18 as a 

negative control.  Consistent with the Chapter 2, Figure 3.7B shows that compared to 

RGS4 alone, combination of RGS4 and G18 leads to a decrease in the maximum GTP 

hydrolysis without changing the EC50.  Since the rate limiting step in the presence of 

RGS protein is nucleotide exchange, this decrease most likely reflects an inhibition in 

nucleotide exchange which is caused by the GDI activity of G18.  Interestingly, this 

inhibitory effect was not observed with RGS5.  In the presence or absence of G18, there 

is no difference in GTP hydrolysis (Figure 3.7A).  Thus, under these experimental 

conditions, either the access for G18 to G protein is blocked by RGS5, which leads to a 

loss of GDI activity of G18, or the GDI activity of G18 and the increase in the GAP 

activity of RGS5 by G18 balance out each other and result in little or no net effect on 

GTP turnover.   
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Figure 3.7 
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Fig. 3.7. Combined effects of G18 and RGS proteins on agonist- and receptor-

dependent Gαi1 GTPase activity.  Membranes derived from Sf9 cells coexpressing the 

M2 muscarinic acetylcholine receptor plus heterotrimeric Gi1 were assayed for GTPase 

activity with the agonist carbachol (100 M) or the inverse agonist tropicamide (10 M), 

in the presence of increasing concentration of RGS5 (A) or RGS4 (B) without or with 

G18 (1 M) at the indicated concentrations.  Data shown represent the means ± S.E.M. 

taken from 3 independent experiments carried out in triplicate. * P<0.05 (student t-test).  
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3.5 DISCUSSION 

In the present study, we have developed a specific polyclonal G18 antibody, and reported 

the endogenous expression of G18 in primary isolated rat-aortic smooth muscle cells and 

endothelial cells.  We have also identified a novel protein-protein interaction between 

G18 and RGS5.  In addition, this binding has a functional consequence where G18 is able 

to enhance RGS5 GAP activity.  On the other hand, RGS5 has negligible effects on G18 

GDI or GEF activity.  Moreover, Gαi1-GDP inhibits and may possibly compete with 

RGS5 for binding to G18, as increasing concentrations of Gαi1-GDP lead to a decrease in 

RGS5 binding to G18. 

 

The tissue distribution of G18 mRNA indicates that its expression is relatively restricted 

(Cao et al., 2004, Chapter 2).  In the current study, we examined the expression of G18 in 

both established cell lines as well as primary cell cultures.  Consistent with its limited 

expression pattern, G18 is absent from both of the established cell lines examined (Figure 

3.1).  Interestingly, G18 was found in primary smooth muscle cells isolated from adult rat 

and mouse aorta.  The fact that the expression level of G18 exhibits variability between 

different cell types or cells isolated from different backgrounds, such as smooth muscle 

cells or endothelial cells, normotensive animals or hypertensive animals, suggests that its 

expression can be regulated, however, the mechanism of this regulation remains to be 

studied. 
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Sub-cellular localization studies reveal a portion of G18 is localized at the lamellipodia 

region of the smooth muscle cells.  Lamellipodia are a characteristic feature at the front, 

leading edge, of motile cells.  Promigratory stimuli activate signal transduction cascades 

that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the 

matrix, and activate motor proteins.  At the same time, many signaling pathways become 

activated during this process, for example, small G proteins (Rho, Rac, and Cdc42) 

regulate actin-binding proteins such as WAVE, WASP to promote actin nucleation (Song 

et al., 2006).  Interestingly, it has been suggested that WAVE1 protein also contains a 

GoLoco motif (Knoblich, 2001).  Thus, we speculate that our data may reflect a potential 

function of G18 in regulating cell migration and actin polymerization. 

 

Many studies have focused on the role of G proteins in regulating vascular function.  For 

example, high blood pressure is often associated with increased signaling via G protein-

coupled receptors (Gu et al., 2009).  Most of the regulators of G protein-mediated cell 

signaling in the vascular system are members of the RGS protein superfamily.  Among 

these proteins, RGS5 is of particular interest due to its specific expression pattern and 

activity regulation (Mittmann et al., 2003).  RGS5 has been detected in all isolated 

cardiovascular tissues with the highest expression level detected in aorta (Adams et al., 

2000).  However, RGS5 expression was dramatically decreased in cultured vascular 

smooth muscle cells from the rat aorta (Adams et al., 2000).  Here, we report the 

expression of another G protein regulatory protein, G18, in the vascular system.  

Functionally, RGS5 serves as a GAP on both Gi/o and Gq subfamilies of G protein (Zhou 
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et al., 2001), whereas G18 may serve as a GEF or GDI depending on the cellular context 

and the G proteins in question (Zhao et al., 2010).  Since both proteins are expressed in 

smooth muscle cell and regulate G protein activity, we examined the combined effects of 

RGS5 and G18 on G protein activity. 

 

Only a few studies have focused on investigating the binding partners of GoLoco proteins 

other than Gα proteins.  AGS3 and LGN are relatively large proteins that contain seven 

TPR motifs which can interact with mammalian Inscuteable (Insc) protein and regulate 

spindle orientation and microtubule dynamics during asymmetric cell division (Sanada 

and Tsai, 2005;Vural et al., 2010).  However, the effects of these interactions on the GDI 

activity of AGS3 or LGN remain unknown.  Using GTPS binding assays, we examined 

the effect of RGS5 on G18 GEF, GDI and net activity on nucleotide exchange from Gαi1.  

RGS5 does not seems to have any effect on G18 GDI as well as GEF activity; however, a 

limitation of these experiments is that we used the truncated G18 mutants lacking either 

the N-terminus or the C-terminus domain, which appear to have greatly reduced binding 

affinity for RGS5.  On the other hand, RGS5 has no effect on full-length G18 activity, 

which reflects a combined effect of its GEF and GDI domains (Chapter 2).  Overall, our 

results suggested that although G18 can directly interact with RGS5, this binding does 

not alter G18 activity.  An alternative explanation is that RGS5 may produce 

proportionally similar increases or decreases in both the GDI and GEF activities of full-

length G18. 
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Interactions between RGS proteins and other signaling proteins via RGS domain-

dependent or -independent mechanisms have been demonstrated before.  For example, 

we found that 14-3-3 directly binds to RGS4, RGS5 and RGS16.  However, 14-3-3 only 

inhibited RGS4 and RGS16 GAP activity, but had little or no effect on RGS5 GAP 

activity (Abramow-Newerly et al., 2006).  In another study, coupling between PDE and 

RGS9 was found to enhance RGS9 GAP activity (He et al., 1998). Similarly, work from 

our lab indicates that the Ras binding domains of RGS14 contain a “GAP-enhancing” 

acitivity which can increase GAP activity of many B/R4 RGS proteins (Zhao P, Chidiac 

P manuscript under revision, Chapter 4).  Interestingly, the interaction between RGS5 

and G18 also leads to a positive effect on RGS5 GAP activity.  This is evident in the 

single-turnover GTPase assay, which directly measures GTPase activity of Gα subunit 

using purified protein components.  The rate of GTP hydrolysis was significantly 

increased in the presence of G18, suggesting that this enhancement is probably due to an 

increase in the binding affinity between RGS protein and G protein.  G18 itself has no 

effect on G protein GTPase activity (Zhao et al., 2010).   

 

The fact that G18 has little or no effect on RGS5 GAP activity under steady-state 

conditions in the presence of activated receptor can be viewed from different aspects.  

One possible explanation of this lack of effect is that activation of the receptor or the 

presence of Gβγ subunits leads to a steric effect or a decrease in the affinity between G18 

and G protein, which reduces its GDI function.  In support of this hypothesis, a recent 

study reported that the interaction between G protein and G18 (as determined by an 
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intermolecular BRET signal) was decreased up to 40% upon activation of an associated 

GPCR (Oner et al., 2010).  A conformational change upon the activation of Gα thus may 

contribute to the observed lack of GDI activity.  However, the foregoing explanation for 

the lack of an effect of G18 in the presence of RGS5 may be unlikely, since in otherwise 

identical experiments G18 is clearly able to inhibit receptor- and RGS4-promoted GTP 

hydrolysis (Figure 3.7). The latter finding suggests that G18 actually does have the ability 

to slow down nucleotide exchange at receptor-activated G proteins, so that the overall 

GTP hydrolysis is decreased.  Alternatively, the interaction between G18 and RGS5 may 

interfere with the binding between G18 and the receptor-activated G protein, and as a 

result G18 fails to act as a GDI.  Yet another possibility is that (as we observed in single-

turnover GTP hydrolysis assays) there is an increase in RGS5 GAP activity in the 

presence of G18 but that this increase is masked by the GDI activity of G18. As a result, 

the increase in GTPase activity and decrease in nucleotide exchange cancel each other 

out and together produce little or no change in Pi production. 

 

Another interesting observation in the current study is that we saw a pattern consistent 

with competitive binding between Gαi1-GDP, RGS5 and G18, where increasing G 

protein concentration leads to a decrease in RGS5 binding to G18 (Figure 3.4).  

However, in our GTPγS binding assays, we did not observe altered G18 activity in the 

presence of RGS5 (Figure 3.6).  These results suggest that G18 may have higher affinity 

for Gαi1-GDP compared to that for RGS5 and thus RGS5 seems to be unable to cause the 

dissociation of G18 from G protein.  On the other hand, the G protein is able to dissociate 
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G18 from, RGS5.  When the G protein is activated, both G18 and RGS5 are able to 

interact with Gα-GTP (Zhao et al., 2010), thus it remains possible that the three proteins 

may form a complex which results in an increase in RGS5 GAP activity (Figure 3.5).  

However, experimental evidence is required to confirm this hypothesis.   

 

The potential mechanism and binding site between G18 and RGS5 remains to be 

elucidated.  However, elements of both the amino and carboxy terminal domains of G18 

are apparently required for this interaction, since truncated mutants missing either the N-

terminal GEF domain or the C-terminal GoLoco motifs showed little or no binding.  

Overall, our results are consistent with the idea that  the binding site between RGS5 and 

G18 is overlapping with the binding site between G18 and inactive Gαi1, which would 

suggest that the conserved D/EQR triad may play a role in this binding (Kimple et al., 

2002).   

 

Protein-protein interactions play an important role in signal transduction and integration.  

Data from the current study identified a novel protein-protein interaction between G18 

and RGS5, and we have also investigated the potential effects of this interaction on each 

protein’s respective biochemical function.  Both RGS5 and G18 are found to be 

expressed in vascular tissue, thus, if is possible that these two proteins are functioning in 

a common complex.  Thus, this will help us to better understand the cellular function of 

these two proteins.   
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Chapter 4 
RGS14 REGULATES GAP ACTIVITY VIA 

ITS RAS-BINDING REGION 
 

 

 

 

 

 

 

 

 

 

 

A version of this chapter is in submission: Zhao P, Nunn C, Ramineni S, Hepler J, 

Chidiac P;  RGS14 regulates GAP activity via its ras-binding region (2011).  
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4 CHAPTER 4 

4.1 CHAPTER SUMMARY 

RGS14 is a 60 kDa protein that contains a regulator of G protein signalling (RGS) 

domain near its N-terminus, a central pair of tandem Ras binding (RB) domains, and a 

Gi/o-Loco binding (GoLoco) motif near its C-terminus. The RGS domain of RGS14 

exhibits GTPase accelerating protein (GAP) activity toward Gi/o proteins, while its 

GoLoco domain acts as a guanine nucleotide dissociation inhibitor (GDI) toward Gi1 and 

Gi3.  We previously showed that the C-terminal half of RGS14 can enhance RGS4 GAP 

activity in membrane based steady-state GTPase assays.  Here we show that this novel 

“RGS enhancing” function correlates to an ability to bind directly to RGS proteins, and 

that these properties map to a region roughly equivalent to the two RB domains.  We also 

examined the effect of the RGS14 RGS domain on its GoLoco domain function, and 

found that removal of the RGS domain greatly enhanced GDI activity.  In conclusion, our 

data suggest a mechanism wherein intramolecular interactions between the RB domain 

and RGS domain of RGS14 may influence its effects on heterotrimeric G proteins, 

favoring the GAP activity of its RGS domain while disfavoring the GDI activity of its 

GoLoco domain. 
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4.2 INTRODUCTION 

Heterotrimeric G proteins are involved in many important cellular processes.  Binding of 

activating ligands to the receptor leads to the exchange of the nucleotide on the alpha 

subunit of G protein, which further regulates many downstream effectors, such as 

adenylyl cyclase and ion channels (Neves et al., 2002).  Nucleotide exchange and GTP 

hydrolysis are two major events that control the duration of G protein signalling.  Signal 

termination in vivo tends to be more rapid than observed rates of GTP hydrolysis in vitro 

(Dohlman and Thorner, 1997).  There are many factors that can regulate G protein 

signalling, such as GTPase accelerating proteins (GAPs), guanine nucleotide exchange 

factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs) (Siderovski and 

Willard, 2005).  Several proteins such as G18 (Zhao et al., 2010) and RGS14 (Hollinger 

et al., 2001;Mittal and Linder, 2006) have been found to contain more than one G protein 

regulatory domain. The net effects of these complex proteins on signalling events still 

remain poorly understand. 

 

RGS14 is a relatively large RGS protein (~60 kDa) that belongs to the D/R12 subfamily.  

Two members of this subfamily, RGS12 and RGS14, are multidomain proteins.  Besides 

the RGS domain, each contains a second Gα binding region (GoLoco motif), as well as a 

pair of Ras-binding (RB) domains; RGS12 and RGS14 are among the largest RGS 

proteins, while the remaining D/R12 member, RGS10, is similar in size to the B/R4 

subfamily of RGS proteins (Ross and Wilkie, 2000). Most studies on the physiological 

function of RGS14 have focused on its roles in the brain and in cell division (Martin-

McCaffrey et al., 2004a;Martin-McCaffrey et al., 2004b;Martin-McCaffrey et al., 
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2005;Rodriguez-Munoz et al., 2007;Lee et al., 2010).  For example, RGS14 is a mitotic 

spindle protein that associates with microtubules (Martin-McCaffrey et al., 

2004a;Martin-McCaffrey et al., 2004b;Martin-McCaffrey et al., 2005).  It has also been 

pointed out that RGS14 may play an important role in hippocampal-based learning and 

memory by acting as a natural suppressor of synaptic plasticity in CA2 neurons (Lee et 

al., 2010).  

 

The individual biochemical activities of the two heterotrimeric G protein binding 

domains of RGS14 have been well studied (Kimple et al., 2001;Hollinger et al., 

2003;Mittal and Linder, 2004;Shu et al., 2007).  The RGS domain exhibits GAP activity 

in single-turnover GTPase assay in solution, whereas the GoLoco domain inhibits GDP 

release from isolated G i1 and G i3. Interestingly, the affinity of full-length RGS14 for 

Gαi/o subunits was apparently greater than that of the isolated RGS domain (Hollinger et 

al., 2001). Thus it is possible that amino acid residues outside the RGS domain may help 

promote its interactions with G protein.  Either the RGS or GoLoco domain effect of 

RGS14 on heterotrimeric G proteins may predominate under a given set of circumstances 

(Hollinger et al., 2001;Traver et al., 2004;Vellano et al., 2011), although how this 

happens is not known.  

 

As noted above, both RGS12 and RGS14 contain two tandem binding domains for 

activated Ras-like monomeric G proteins (RB domains), which were identified through 
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their similarity to RB domains found in Raf-1 proteins (Ponting, 1999).  Recent studies 

have shown that both H-Ras and, surprisingly, Raf-1 can bind in a positively cooperative 

manner to the RB domains of RGS14 and modulate signalling through Ras/Raf/MAP 

kinase cascades (Willard et al., 2009;Shu et al., 2010).   Since RGS14 contains two 

distinct Gα binding sites as well as two Ras binding sites, it has also been proposed that 

RGS14 may act as a scaffolding protein that integrates heterotrimeric G protein and small 

G protein pathways (Willard et al., 2009;Shu et al., 2010).  Indeed, the binding of G i1 

to RGS14 appears to modulate its ability to govern H-Ras signalling (Shu et al., 2010). 

Given the complexity of its structure, other interdomain effects could potentially occur 

between the various domains of RGS14.  

 

Besides the full-length protein, various splice variants of RGS14 have been tentatively 

identified (see Discussion), although no specific activities have yet been attributed to 

them (Martin-McCaffrey et al., 2004a).  In several RGS14 variants, the RGS domain is 

missing or incomplete, suggesting that there may be functions yet to be uncovered.  In a 

previous study, we identified an unexpected effect of an experimentally truncated form of 

RGS14 on Goα and Giα function distinct from its RGS domain GAP and GoLoco domain 

GDI activities (Hepler et al., 2005).  We showed that the C-terminal half of RGS14 can 

enhance RGS protein GAP activity, apparently by increasing RGS affinity toward the G 

protein (Hepler et al., 2005).  However, the specific determinants that underlie this 

activity remain unknown.  In the current study, we further narrow down the RGS 

enhancer region to amino acid residues 300-444 which includes the two RB domains.  
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We also examined whether the functionality of the C-terminal half of RGS14 might in 

turn be affected by the RGS domain, and indeed we found that removal of the latter 

corresponded to an increase in the GDI activity of the GoLoco domain.  Overall, our 

findings suggest that both of these observations may be due to the internal interaction 

between the RGS domain and the RB domains which on one hand increases the affinity 

between RGS domain and G protein, and on the other hand interferes with the binding of 

the GoLoco domain to the G protein. 

  



163 

 

4.3 MATERIAL AND METHODS 

4.3.1 PROTEIN EXPRESSION AND PURIFICATION   

Hexahistidine (H6)-tagged thioredoxin (Tx), Tx- and H6-tagged full-length RGS14 

(TxH6-RGS14), truncated versions of the protein which contain the RB domains (aa205-

490, H6-R14-RBD), RB domains with active or inactive GoLoco domain (aa299-544, 

R14-RBD/GL, R14-RBD/GL(LLAA)), the active or inactivated GoLoco domain (aa444-

544, R14-GL or R14-GL(LLAA)), were constructed and expressed (Figure 4.1).  Proteins 

were purified from BL21/DE3 bacterial cells as described (Hepler et al., 2005).  Where 

indicated, fusion of RGS protein with Tx was necessary to generate an intact, stable 

protein. The cells were grown to mid-log phase, and protein production was induced with 

1 mM IPTG for 2 h. Cells were lysed using the French Press method, and the supernatant 

was recovered, loaded to a Ni
2+

 HiTrap affinity column (Amersham Pharmacia, NJ), and 

purified by FPLC. Proteins were eluted with an imidazole gradient from 20 to 200 mM 

imidazole in 50 mM HEPES at pH 7.4 and 150 mM NaCl. For TxH6-R14, the cell 

supernatant was loaded to Ni-NTA agarose beads, washed and eluted using 200 mM 

imidazole, and further purified by FPLC using a superdex-200 column (Pharmacia-

Biotech). Histidine-tagged RGS4, Gi1α, and were grown in Escherichia coli and purified 

as described previously (Zhao et al., 2010).   

 

4.3.2  RECEPTOR- AND AGONIST-STIMULATED GTPASE ASSAY 

Sf9 membranes overexpressing M2 muscarinic receptor or 2-adrenergic receptor and 

heterotrimeric G proteins were prepared as indicated previously (Cladman and Chidiac, 

2002).  Baculovirus encoding the 2a-adrenergic receptor was generously provided by  



164 

 

Figure 4.1 

 

 

 

 

Fig. 4.1. Diagram of constructs used in this study.  Tx- and H6-tagged full-length 

RGS14 (1) (TxH6-RGS14), truncated versions of the protein which contain the RB 

domains (2) (aa205-490, R14-RBD), RB domains with active (3) or inactive GoLoco 

domain (4) (aa299-544, R14-RBD/GL, R14-RBD/GL(LLAA)), or the wild type (5) or 

inactivated GoLoco domain (6) (aa444-544, R14-GL or R14-GL(LLAA)). 
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Dr Johnny Näsman (Åbo Akademi University, Turku, Finland), and other baculoviruses 

were as described previously (Cladman et al., 2002;Mao et al., 2004). Sf9 cell 

membranes (8 µg protein/tube) were assayed for agonist-stimulated GTP hydrolysis at 

30ºC for 5 minutes in the absence or presence of the indicated purified proteins in 

reaction buffer (20 mM Hepes, pH 7.5, 1 mM EDTA, 1 mM DTT, 0.1 mM PMSF, 10 

mM NaCl, 2 mM MgCl2 (7.5 mM free Mg
2+

) 1 μM GTP, 1 mM ATP, [γ-
32

P] GTP 

(1×10
6
 cpm per assay) and protease inhibitors) in a total reaction volume of 50 µL.  The 

assay was stopped by adding ice-cold 5% (w/v) Norit in 0.05 M NaH2PO4.  The reaction 

mixture was centrifuged and the level of 
32

Pi in the resulting supernatant was determined 

by liquid-scintillation counting.  The nonspecific GTPase activity was defined as that in 

the presence of either the M2 muscarinic receptor inverse agonist tropicamide (10 μM) or 

the 2-adrenergic receptor inverse agonist rauwolscine (10 μM), as appropriate, and 

these values were subtracted from the total counts per minute to yield agonist- and 

receptor-dependent GTP hydrolysis rates.   

 

4.3.3 GTP S BINDING ASSAY 

Purified His6-Gαi1 (100 nM) was incubated for 1 hour at 4°C in binding buffer (20 mM 

Hepes (pH 8.0), 1 mM EDTA (pH 8.0), 100 mM NaCl, 1 mM DTT, 2 mM MgCl2, 0.1 

mg/ml BSA, 0.1% Lubrol, PMSF and 1 μg/ml leupeptin, 10 μg/ml aprotinin) in the 

presence or absence of 1 µM RGS14 or its truncated mutants.  Binding assays were 

initiated by adding 0.5 μM [
35

S]-GTPγS (1.25×10
5
 cpm/pmol).  The incubation continued 

for 30 minutes at 30ºC.  The assay was terminated by adding ice-cold stop buffer (20 mM 

Tris (pH 8.0), 10 mM MgCl2, 100 mM NaCl, 0.1% Lubrol, 1 mM GTP and 0.1 mM 
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DTT).  Quenched samples were filtered through nitrocellulose membranes (Millipore) 

followed by washing four times with 2 mL ice-cold wash buffer (20 mM Tris (pH 8.0), 

100 mM NaCl, 10 mM MgCl2).  Radioactivity was measured using liquid-scintillation 

counting.  The nonspecific binding was determined in the presence of 100 μM unlabeled 

GTPγS, and these values were subtracted to yield specific binding. 

 

4.3.4 PROTEIN-PROTEIN INTERACTION ASSAY 

Different mutants of RGS14 (500 nM) were incubated with equimolar amount (500 nM) 

of GST-tagged RGS4 or RGS5.  The protein mixture was incubated on a rotating 

platform at 4ºC for 2 hours in binding buffer (50 mM Tris (pH 7.5), 0.6 mM EDTA, 150 

mM NaCl, 1 mM DTT, 0.1% Triton-X 100, PMSF 2 μg/ml leupeptin, and 20 μg/ml 

aprotinin).  Glutathione Sepharose 4B beads (20 µL bed volume) were then added into 

the protein mixture and incubated overnight.  The protein mixture was washed three 

times with binding buffer and the pellets were resuspended in 2X Laemmli buffer.  

Eluted proteins were separated on a 12% SDS gel and transferred to a Polyvinylidene 

Fluoride Transfer (PVDF) membrane (Pall Corporation) for immunoblotting. 

 

4.3.5 IMMUNOBLOTTING 

Membranes were incubated with blocking buffer (Tris-Buffered Saline Tween-20 

(TBST) with 5% skim milk) for 1 hour and then probed with anti-His or anti-GST 

antibody (1:1000) (Santa Cruz biotechnology) diluted in blocking buffer overnight on a 

rotating platform at 4ºC.  Blots were subsequently washed 3 times with TBST and then 



167 

 

incubated with HRP-conjugated secondary antibody (1:2000) (Promega) diluted in TBST 

for 1 hour at room temperature.  After another 3 washes with TBST, the blot was 

visualized by LumiGLO Reserve Chemiluminescence substrate (KPL, Inc) using a 

FluorChem 8000 imaging system.  
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4.4 RESULTS  

4.4.1 RGS14 STIMULATES M2 MUSCARINIC RECEPTOR-ACTIVATED G PROTEIN 

GTPASE ACTIVITY.   

A previous study from our labs showed that full-length RGS14 acts as a GAP on 

receptor-activated Gi/o proteins, however, for reasons that are unclear the isolated RGS 

domain of RGS14 exhibited little or no discernable GAP activity (Hepler et al., 2005).  

These results suggested two possibilities: 1) The isolated RGS domain of RGS14 on its 

own is not sufficient to act as a GAP under such conditions, thus amino acid residues 

outside the RGS domain may act to enhance its GAP activity.  2)  The observed GAP 

activity of full length RGS14 comes from domains other than the RGS domain.  To test 

these possibilities, first, we examined the potential GAP activity of a truncated form of 

RGS14 lacking the RGS domain but containing the RBD and GoLoco domains (R14-

RBD/GL, Construct 3) using a receptor-stimulated GTPase assay.  As shown in Figure 

4.2, full-length RGS14 enhanced the agonist-dependent, receptor-stimulated steady-state 

GTPase activity of all four Gi/o proteins (Figure 4.2A).  In contrast, R14-RBD/GL 

displayed little or no effect on GTP hydrolysis even at micromolar concentrations (Figure 

4.2B).  These results argue against the possibility that RGS14 contains a second GAP 

domain. 

 

4.4.2  R14-RBD/GL INCREASES RECEPTOR-DEPENDENT GAP ACTIVITY OF RGS 

PROTEINS.  

We have previously shown that R14-RBD/GL potentiates steady-state receptor-promoted 

GAP activity of RGS4 on Gαi2 and Gαo, apparently by increasing the affinity of RGS4 

for Gαi2 and Gαo (Hepler et al., 2005).  Here, we tested whether this activity was also 
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2004).  We found that 1 µM R14-RBD/GL does indeed enhance the GAP activity of a 

submaximally activating concentration of RGS4 on all four Gi/o protein subtypes (Figure 

4.3), leading to 70-160% increases under the conditions tested. These effects do not 

appear to be dependent on the M2 muscarinic receptor per se, as comparable effects were 

found with 2-adrenergic receptor-activated G proteins (Figure 4.4A). We also examined 

whether R14-RBD/GL could enhance the GAP activity of other RGS proteins.  Indeed, 

R14-RBD/GL facilitated the GAP activity of each R4 subfamily RGS protein that we 

tested, including RGS4, RGS5 (Figure 4.4B), and RGS16 (data not shown).  It is unlikely 

that the observed increases in GTPase activity could be attributable to the GDI activity of 

the GoLoco domain since (i) this would be expected to limit nucleotide exchange and 

thus inhibit/decrease the RGS GAP effects under steady-state conditions and (ii) the 

positive effect occurs with G protein subunits which are considered to be insensitive to 

the GDI activity of the protein.  Still, it is conceivable that the GoLoco domain, through 

its ability to bind to G , could somehow facilitate RGS effects on the latter, and further 

experiments were designed to test this possibility. 

 

4.4.3 THE ENHANCEMENT OF RGS PROTEIN GAP ACTIVITY BY RGS14 IS NOT DUE 

TO ITS GOLOCO MOTIF.   

We next investigated which domain or region within the C-terminal half of RGS14 might 

be involved in the observed enhancement of RGS protein function.  To do this, we used 

three other constructs, namely R14-RBD/GL(LLAA) (construct 4), which contains an 

altered GoLoco domain that has greatly reduced GDI activity (Figure 4.8A), and the 

shorter truncation mutants R14-GL and R14-GL(LLAA) (constructs 5 and 6), which lack  
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Fig. 4.2. Effect of RGS14 on M2 muscarinic receptor stimulated GTPase activity.  

Membranes derived from Sf9 cells co-expressing the M2 muscarinic acetylcholine 

receptor plus heterotrimeric Gαi1, Gαi2, Gαi3 or Gαo were assayed with the agonist 

carbachol (100 µM) either alone or in the presence of full-length RGS14 (A) or R14-

RBD/GL (B) at the concentrations indicated. Nonspecific signal with each membrane 

was defined as that observed in the absence of RGS protein and in the presence of  

inverse agonist tropicamide (10 µM) and this was subtracted to yield the values indicated. 

Bars represent mean values ± S.E.M of three independent experiments. 
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Figure 4.2 
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Fig. 4.3. Effect of R14-RBD/GL on RGS4 GAP activity.  Membranes derived from Sf9 

cells co-expressing the M2 muscarinic acetylcholine receptor plus heterotrimeric Gαi1, 

Gαi2, Gαi3 or Gαo were assayed with the agonist carbachol (100 µM) either alone or in 

the presence of either R14-RBD/GL, RGS4 or both R14-RBD/GL and RGS4 at the 

concentrations indicated. Nonspecific signal with each membrane was defined as that 

observed in the absence of RGS protein and in the presence of tropicamide (10 µM) and 

this was subtracted to yield the values indicated. Bars represent mean values ± S.E.M. of 

three independent experiments.  ## P<0.01, *** P<0.005 compared to agonist alone (One 

way ANOVA with Tukey's Multiple Comparison Test). 
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Figure 4.3 
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Figure 4.4 
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Fig. 4.4. Effect of R14-RBD/GL on steady-state GTPase activity.  Membranes derived 

from Sf9 cells co-expressing the α2-adrenergic receptor plus heterotrimeric Gαi2 (A) or 

M2 muscarinic acetylcholine receptor plus heterotrimeric Gαi3 were assayed with the 

agonist epinephrine (alpha2-adrenergic receptor (10µM)), or carbachol (M2 muscarinic 

acetylcholine receptor (100 µM)) either alone or in the presence of RGS proteins as 

indicated.  Nonspecific signal was defined as that observed in the absence of RGS protein 

and in the presence of rauwolscine (α2 adrenergic receptor (10µM)), or tropicamide (M2 

muscarinic acetylcholine receptor (10 µM)) and this was subtracted to yield the values 

indicated. Data represent mean values ± S.E.M. of three independent experiments. ** 

P<0.01, compared to agonist alone, ## P<0.01, compared to RGS protein alone, (One 

way ANOVA with Tukey's Multiple Comparison Test).   



175 

 

both the RGS domain and RB domains, and respectively contain an active or an inactive 

GoLoco domain. All three of these constructs showed little or no effect on receptor-

driven Gα GTPase activity in the absence of RGS proteins (Figure 4.5A).  In the presence 

of RGS proteins, as shown in Figure 4.5B, mutation of the GoLoco motif results in at 

most a slight decrease in activity (P > 0.05), while removal of the region encompassing 

the RB domains has a more profound effect (P<0.001).  These trends were confirmed in 

dose response experiments with increasing concentrations of the various RGS14 

constructs.  Figure 4.5C shows that R14-RBD/GL and R14-RBD/GL(LLAA) are able to 

enhance RGS protein GAP activity in a dose-dependent manner, whereas the GoLoco 

domain alone has little or no effect.  Overall, these results clearly suggest that the 

GoLoco domain alone is not sufficient to increase GTP hydrolysis, whereas residues 300-

444, where both of the RB domains are located, is primarily responsible for this RGS 

GAP enhancing activity. 

 

4.4.4 THE RB DOMAIN REGION OF RGS14 CAN DIRECTLY INTERACT WITH RGS 

PROTEINS.   

Our previous study suggested that the enhanced GAP effect of R14-RBD/GL may reflect 

an increase in RGS domain affinity for G proteins.  Here we examined whether the RB 

domain can directly interact with RGS proteins.  In pull-down experiments using purified 

components, R14-RBD/GL directly interacted with both RGS4 and RGS5, however, the 

GoLoco domain alone showed no appreciable binding to the RGS proteins (Figure 4.6A).  

This result reinforces the idea that residues outside the GoLoco motif are responsible for  
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Fig. 4.5. R14-RB domains enhance the GAP activity of RGS proteins on Gα 

proteins.  Membranes derived from Sf9 cells co-expressing the M2 muscarinic 

acetylcholine receptor plus heterotrimeric Gαi3 were assayed with the agonist carbachol 

(100 µM) either alone or in the presence of different mutants of RGS14 (A), RGS4 or 

both RGS14 and RGS4 (B and C) at the concentrations indicated. Nonspecific signal with 

each membrane was defined as that observed in the absence of RGS protein and in the 

presence of the inverse agonist tropicamide (10 µM) and this was subtracted to yield the 

values indicated.  Data represent mean values ± S.E.M. of three independent experiments. 

## P<0.01, *** P<0.005 compared to agonist alone (One way ANOVA with Tukey's 

Multiple Comparison Test). 
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Figure 4.5 
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Fig. 4.6.  Protein-protein interaction between R14-RB domains and RGS proteins. 

Purified His6-R14-RBD/GL, His6-R14-GL (A) or R14-RBD (B) was incubated with an 

equimolar amount of GST-tagged RGS4 or RGS5 for 2 hours at 4ºC.  Glutathione 

Sepharose 4B beads were then added into the protein mixture and incubation continued 

overnight.  The protein mixture was washed three times with binding buffer and the 

beads were separated by SDS-page and transferred to a PVDF membrane for 

immunoblotting.  Data are representative of three independent experiments. 
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Figure 4.6 
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the effect of R14-RBD/GL on RGS domain GAP activity, and further suggests that this 

activity may due to a direct interaction between the RB domains and the RGS protein.   

 

We next generated a construct lacking both the RGS domain and the GoLoco domain 

(R14-RBD, construct 2), and examined its ability to interact with RGS proteins.  As 

shown in Figure 4.6B, this domain is sufficient to interact with RGS proteins. No binding 

was observed between R14-RBD and the GST control protein.  Since the RGS domain of 

RGS14 is homologous to those of RGS4 and RGS5 (43% identical, and 19% similar), 

this result also suggests that it is possible that interdomain interactions within RGS14 

may be important for RGS14 GAP activity.   

 

4.4.5 THE RB DOMAINS OF RGS14 ARE SUFFICIENT TO ENHANCE RGS PROTEIN 

GAP ACTIVITY.   

Based on the ability of the RBD region to bind to RGS proteins, we further tested its 

ability to enhance RGS protein GAP activity.  As shown in Figure 4.7A, R14-RBD can 

increase RGS protein GAP activities to a level similar to R14-RBD/GL and R14-

RBD/GL (LLAA).  On the other hand, the GoLoco domain alone has no significant 

effect.  Figure 4.7B suggests that the RB domain alone is able to enhance the GAP 

activity of RGS4 in a dose-dependent manner.   
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Fig. 4.7. Effect of isolated RGS14 RB domains on RGS4 GAP activity.  Steady-state 

GTPase assays were preformed in the presence of agonist carbachol (100 µM) either 

alone or in the presence of RGS4 (300nM) with or without various RGS14 constructs (A) 

or at increasing concentrations of R14-RBD in the presence of RGS4 (300nM) (B). 

Nonspecific signal with each membrane was defined as that observed in the absence of 

RGS protein and in the presence of tropicamide (10 µM) and this was subtracted to yield 

the values indicated.  Data represent mean values ± S.E.M. of at least three independent 

experiments. * P<0.5 compared to agonist alone (One way ANOVA with Tukey's 

Multiple Comparison Test). 
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Figure 4.7 
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4.4.6 REMOVAL OF THE RGS DOMAIN ENHANCES RGS14 GDI ACTIVITY.   

If the RB domains act as an anchor to enhance interactions between RGS proteins and G 

proteins, then it follows that the RGS domain in turn may alter the activities of other 

RGS14 functional domains.  We used a single-turnover GTPγS binding assay to address 

this issue.  We compared the GDI activity of full-length RGS14 and the truncated mutant 

forms of RGS14 which lack the RGS domain or both RGS and RB domains (Constructs 

1, 2, and 4).  Full-length RGS14 exhibited significantly lower GDI activity compared to 

R14-RBD/GL (Figure 4.8B), while the additional removal of the RBD region resulted in 

little or no further change (Figure 4.8B).  This result suggests that the RGS domain may 

interfere with the productive association between the GoLoco motif and G protein. 

  



184 

 



Fig. 4.8.  Effect of the RGS domain on RGS14 GDI activity. Purified His6-Gαi1 was 

incubated for 1 hour at 4°C in binding buffer in the presence or absence of RGS14 or its 

mutants.  Binding assays were initiated by adding [
35

S]-GTPγS.  The incubation 

continued for 30 minutes at 30ºC.  The assay was terminated by adding ice-cold stop 

buffer.  Samples were filtered through nitrocellulose membranes (Millipore) followed by 

washing four times with 2mL ice-cold wash buffer.  Radioactivity was measured using 

liquid-scintillation counting.  The nonspecific binding was determined in the presence of 

100 μM unlabeled GTPγS, and these values were subtracted to yield specific binding.  

Data represent mean values ± S.E.M. of at least three independent experiments. * P<0.5, 

** P<0.01 compared to agonist alone (One way ANOVA with Tukey's Multiple 

Comparison Test). 
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Figure 4.8 
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4.5 DISCUSSION 

Our study reveals novel biochemical properties of RGS14 and suggests that at least some 

of its domains have multiple functions. Most notably, the C-terminal half of RGS14, 

which contains the RB and GL domains, promotes the GAP activity of several different 

RGS proteins, and this RGS-enhancing effect maps to the region in and around the RB 

domains (amino acids 300-444).  The increase in GAP activity appears to reflect an RB 

domain-mediated increase in the affinity between the RGS protein and its target G 

protein (Hepler et al., 2005), and the phenomenon is evident with multiple types of Gi/o 

proteins, RGS proteins, and GPCRs.  In contrast to this positive modulatory effect on 

GAP activity, it appears that the RGS14 RGS domain itself may interfere with the GDI 

activity of the RGS14 GoLoco motif, indeed, the truncated forms of RGS14 lacking the 

RGS domain were found to have increased effects on G i/G o nucleotide exchange 

compared to full length RGS14.   

 

The apparent ability of the RGS domain to impede GoLoco GDI activity, as well as the 

complex effects of G i1 on the ability of RGS14 to modulate Ras/Raf signalling reported 

by Shu and co-workers (Shu et al., 2010), imply that interdomain interactions within 

RGS14 dictate its ability to engage its various functions.  The present results similarly 

seem to point to an additional interdomain interaction wherein amino acid residues in and 

around the RB domains facilitate the GAP activity of the RGS domain in full length 

RGS14.  Such a mechanism would be consistent with observations showing 1) the GAP-

enhancing effects of R14-RBD and R14-RBD/GL on other RGS proteins, 2) the binding 
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of purified R14-RBD/GL and R14-RBD to RGS4 and RGS5, 3) that full length RGS14 is 

approximately 10 fold more potent as a GAP compared to the isolated RGS14 RGS 

domain in single turnover GTP hydrolysis assays with Gαi1 and Gαo (Hollinger et al., 

2001), and 4) that unlike full length RGS14 (Figure 4.2A), the isolated RGS domain has 

limited GAP activity in membrane-based assays of receptor-driven G protein activity 

(Hepler et al., 2005).   

 

The GAP-enhancing function of the greater RB region of RGS14 potentially could 

manifest itself in vivo not only as an interdomain effect, but also between RGS14 and 

other RGS proteins.  It is not clear to what extent this could occur with the full length 

protein, as it is conceivable that the RGS domain of RGS14 might sterically interfere 

with the binding of other RGS proteins to the “RGS-enhancing” domain in cells. 

However, this would not be an issue if the RGS domain were absent, for example due to 

partial proteolysis of the full length protein or alternative splicing of RGS14 mRNA.  

 

Presently available data suggest that RGS14 in humans can exist as four or more different 

splice variants (UniProtKB/Swiss-Prot entry: O43566; reference: 

http://www.expasy.org/cgi-bin/get-all-varsplic.pl?O43566). Studies to date have 

examined the full length form (isoform 1; UniProtKB/Swiss-Prot O43566-7; GenBank 

EAW85012.1) and a short variant (isoform 2; UniProtKB/Swiss-Prot  O43566-4; 

GenBank AAM12650.1) containing part of the RGS domain and part of the first small G 

protein binding domain whose function remains unclear (Martin-McCaffrey et al., 
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2004a;Cho et al., 2005;Martin-McCaffrey et al., 2005).  In addition, there are two 

uncharacterized intermediate-length variants that contain the full RB and GoLoco 

domains and surrounding sequence but from which the RGS domain is either mostly 

missing (isoform 3; UniProtKB/Swiss-Prot O43566-5; GenBank: AAY26402.1) or 

completely absent (isoform 4; UniProtKB/Swiss-Prot O43566-6; GenBank: 

BAC85600.1).  Knowledge about RGS14 mRNA splicing is less extensive in other 

species, however variants similar to human isoform 3 have been tentatively identified in 

mouse (GenBank: BAB22436.1) and chimpanzee (NCBI Reference Sequence: 

XP_001141818.1), and additionally a chimpanzee homologue of isoform 4 has been 

described (NCBI Reference Sequence: XP_001141745.1).   

 

The existence of similar variants across species suggests that isoforms of RGS14 lacking 

the RGS domain may function in a way distinct from the full length protein. Notably, 

isoforms 3 and 4 are structurally similar to R14-RBD/GL, and thus the present results 

may shed light on the functions of these uncharacterized protein species. Based on our 

findings, we hypothesize that either or both of these naturally occurring forms of RGS14 

may a) promote the GAP activity of subfamily B/R4 RGS proteins at GPCR-activated 

Gi/o proteins and b) have increased GoLoco GDI activity relative to full length RGS14.   

 

Previous studies have examined the functions of the various domains of RGS14 

piecemeal using both biochemical and cell-based approaches, and it may be of interest to 

reconsider some of these findings in light of the present results.  For example, Traver and 
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colleagues investigated the effect of full length and truncated forms of RGS14 on M2 

muscarinic receptor-mediated ERK activation.  Their results showed that both the 

GoLoco and RGS domains are required for RGS14 to maximally inhibit carbachol-

stimulated ERK activation (Traver et al., 2004).  One interpretation of this is that the 

GoLoco domain can prevent the G protein from being activated by the receptor, while the 

RGS domain promotes rapid signal termination, thus the GoLoco and RGS domains work 

individually to inhibit ERK phosphorylation (Traver et al., 2004).  Based on the current 

results, an alternative explanation is that the enhancement of the RGS14 GAP activity by 

its RB domains may increase the inhibitory effect of the RGS14 RGS domain on 

receptor-stimulated G protein signalling, and thus contribute to the greater inhibitory 

effect of the full length protein relative to the isolated RGS domain. Intriguingly, a 

truncation mutant containing both RBD and GoLoco domains produced a greater 

inhibitory effect than a shorter construct lacking the RBD (Traver et al., 2004), and we 

interpret this to mean that the larger of these two modified RGS14 proteins may have 

promoted the GAP activity of other endogenous RGS proteins present in the cell.   

 

Intramolecular binding has been demonstrated in other multidomain RGS proteins, and 

the present results suggest the possibility that RGS12, which like RGS14 contains both a 

GoLoco motif and a tandem RB domains along with its RGS domain (with comparable 

domain positioning) may also contain a GAP-enhancer function.  Indeed, Snow et al. 

previously hypothesised that regions outside the RGS domain of RGS12 may mediate its 

GAP activity and/or receptor selectivity.  They used different experimental approaches 
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and showed that the RGS12 N terminal domain can selectively bind to the alternative 3’ 

exon form of RGS12 (Snow et al., 1998;Snow et al., 2002).  However, the functional 

consequence of this interaction on RGS12 GAP activity was not reported.   

 

Regarding the function of the RGS14 GoLoco domain, previous studies have shown that 

its GDI activity can be potentiated by phosphorylation at the threonine residue adjacent to 

the N-terminus of the GoLoco motif (Hollinger et al., 2003), which could potentially 

reflect a phosphorylation-dependent change in tertiary structure.  Here we used single-

turnover GTP S binding assays to compare the GDI activity of full-length RGS14 and its 

truncated mutants lacking the RGS domain or both RGS domain and RB domains.  Our 

results suggest that the RGS domain limits RGS14 GDI activity (Figure 4.8B).  It is 

possible that the interaction between the RB domains and the RGS domain interferes with 

the interaction between the GoLoco domain and G protein, thus limiting GDI activity.  In 

our membrane-based assay, the GoLoco domain of RGS14 alone had little or no effect on 

steady-state GTP hydrolysis either in the absence or the presence of RGS proteins, and 

moreover the presence of the GoLoco domain did not appear to diminish steady-state 

RGS GAP activity, implying that little or no GDI effect occurred. In contrast, in solution-

based steady-state GTPase assays in which nucleotide exchange is driven by Ric-8A, full 

length RGS14 produced a decrease rather than an increase in GTP turnover (Vellano et 

al., 2011), implying that the GDI effect takes precedence under such conditions.  
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Overall, the results of our labs and others indicate that each of the multiple functions of 

RGS14 may manifest itself or remain quiescent under a given set of conditions depending 

upon intramolecular interactions, post-translational modifications, interactions with other 

proteins, and cellular context. The present findings advance our understanding of RGS14 

function, and also raise a number of interesting questions about RGS14 and its splice 

variants. Future studies will aim to further elucidate how intramolecular interactions 

within RGS14 are altered by the binding of various partners such as heterotrimeric and 

small G proteins, and how this impacts on the ability of RGS14 to function as a signal 

integrator between these two types of guanine nucleotide-dependent signalling pathways.  
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5 GENERAL DISCUSSION 

5.1 SUMMARY OF RESEARCH PROJECTS 

My studies have focused on two GoLoco motif containing proteins, G18 and RGS14.  

The overall objective of this research was to elucidate the mechanisms by which G18 and 

RGS14 regulate G protein activity.  The specific aims of my work were: 

1.  To characterize the effects of G18 on Gi/o protein activities and the 

respective contributions of its amino terminal domain and carboxyl 

terminal GoLoco motifs. 

2. To characterize the effects of G18 on RGS protein GAP activity. 

3. To characterize the effect of the GoLoco and small G protein binding 

domains of RGS14 on RGS protein GAP activities. 

The proposed studies reveal key aspects of how the different G protein binding domains 

within G18 and RGS14 work in combination to selectively regulate G protein mediated 

GPCR signaling. The study of how G protein activation and deactivation steps are 

regulated by multi-G protein binding domain containing proteins not only helps us further 

understand the basic aspects of G protein function, but also gives us a better idea of how 

G proteins can regulate cell signaling under normal and pathological conditions.  

 

In Chapter 2, we demonstrate that the N-terminus of G18 exhibits a novel G protein 

regulatory activity.  We have identified the N-terminal region of G18 as a novel G protein 

interacting domain, which is sufficient to bind with relatively high affinity to the 

active/transition state of both Gαi1 and Gαo.  Thus, besides three GoLoco motifs, G18 
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contains a fourth G protein binding domain.  When examining the biochemical activities 

of this domain, we found that it promotes nucleotide exchange on Gαi1, but inhibits net 

nucleotide turnover on Gαo without having effects on GTP hydrolysis.  Thus, the N-

terminal region of G18 may potentially play a role in differentiating signals between 

different G protein subtypes.  Since G18 contains multiple G protein binding domains 

that exhibit distinct regulatory activity, we also examined the overall effect of G18 on G 

protein activity under steady-state condition.  Interestingly, in solution based assays, full-

length G18 acts as a GEF on Gαi1, suggesting that the N-terminal domain is dominant 

under this experimental condition.  However, in membrane based, agonist/receptor-

stimulated GTPase assays, full-length G18 inhibits RGS protein promoted GTP 

hydrolysis in a dose dependent manner, and apparently acts as a GDI.  Thus, the effect of 

G18 on G protein activity may depend on its cellular localization.  That is, free 

intracellular Gαi1 could be a substrate for G18 GEF activity, whereas the GoLoco motifs 

would appear to inhibit receptor-dependent Gαi1 activation at the plasma membrane. 

 

In Chapter 3, we looked at the potential interaction and cross-talk between RGS proteins 

and G18 in regulating G protein activity.  We observed endogenous expression of G18 in 

primary aortic smooth muscle cells both at the mRNA and protein levels.  Both 

endogenous and overexpressed G18 exhibited a cytosolic expression pattern, whereas co-

expression of Gαi recruits G18 to plasma membrane (Figure 5.1).  We also identified a 

direct interaction between G18 and RGS5, another G protein regulator that is selectively 

expressed in the vascular system (Manzur and Ganss, 2009).  The interaction between 

G18 and RGS5 leads to an increase in the GAP activity of RGS5, but has little or no  
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Figure 5.1 

 

 

 

 

 

 

 

 

Fig. 5.1.  Co-localization between G18 and Gi1.  CHO cells were seeded in 10 cm 

plates and transiently transfected with plasmid encoding Flag-G18 ± EE-Gi.  48 hours 

after transfection, cells were fixed and subjected to immunofluorescence study (B).  Blots 

or fixed cells were probed with anti-Flag antibody (1:500), anti-EE antibody (1:500) 

AlexaFluor 488 goat-anti rabbit or AlexaFluor 594 goat-anti mouse secondary antibodies 

(Invitrogen).  Data are representative of three independent experiments.    
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effect on either G18 GDI or GEF activities.  The underlying mechanism of this 

enhancement in RGS5 GAP activity by G18 is unclear, but our observations are 

consistent with a mechanism wherein active G protein, can form a three protein complex 

with RGS5 and G18 which results in increased RGS5 GAP activity, GDP-bound Gα 

protein in contrast competes with RGS5 for G18 binding. 

 

In Chapter 4, we looked at the molecular mechanisms of how different molecular 

domains of RGS14 contribute to its effects on G protein activity.  We identified a region 

within RGS14 (amino acid residues 300-444) where the tandem Ras bindng domains are 

located is sufficient to enhance the GAP activities of the RGS domains.  It appears to do 

this by directly interacting with the RGS proteins and increasing the binding affinity 

between RGS proteins and G proteins.  Since the RGS domain of RGS14 exhibits a 

relatively weak effect on steady-state GTP hydrolysis, we also examined the ability of 

this GAP enhancing region to restore the GAP activity of the R14-RGS domain.  

Interestingly, a construct that encodes the RB domain and the amino acid residues 

between the RGS domain and Ras binding domain (amino acids 205-490) is able to 

modestly enhance GAP activity of the RGS14-RGS domain.  This suggests that the 

amino acid residues between the RGS domain and the Ras binding domain may also 

contribute to RGS14 GAP activity.  In addition, the interaction between RGS domain and 

RB domain not only contains a GAP enhancing activity, it also seems to interfere with 

the predictive binding between GoLoco domain of RGS14 and G protein and thus inhibit 

GDI activity. 
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5.2 EFFECTS OF GOLOCO PROTEINS ON RECEPTOR-STIMULATED G PROTEIN 

SIGNALING 

The effects of GoLoco proteins on nucleotide exchange on Gα proteins have been well 

studied.  However, little is known about their effects on receptor-G protein coupling or 

receptor-mediated G protein activation.  It has been observed that the high affinity 

binding of agonist to 5-HT1 receptor coupled to Gi is inhibited up to 70% by the addition 

of an AGS3-GoLoco peptide.  This inhibition would appear to be primarily due to the 

interaction between the GoLoco motif and the G protein, since an inactive mutation of 

this peptide which does not bind to G protein has little or no effect on receptor-G protein 

coupling (Peterson et al., 2000).  Thus, it has been suggested that the binding between the 

GoLoco motif and Gα protein may not simply be replacing Gβγ subunits.  The binding of 

Gβγ subunits which seems to be able to maintain the receptor’s high affinity for agonists, 

but the GoLoco motif on the other hand may stabilize the receptor under a conformation 

that has low affinity for agonists (Nanoff and Freissmuth, 1997).  Similarly, in a separate 

study using BRET, agonists binding greatly decreased the BRET signal obtained between 

α2 adrenergic receptor and AGS3 in the presence of Gα proteins (Oner et al., 2010a).  

These two studies reinforce the possibility that GoLoco-G protein interactions and 

agonist activation of the receptor might be mutually inhibitory.  Supporting this idea, the 

BRET signal obtained from AGS3 and G proteins coupling is decreased about 30-40% 

upon receptor activation.  This decrease is Gβγ independent, since both basal and 

receptor-mediate BRET signal between AGS3 and Gαi1 were unchanged by co-

expression of the carboxyl terminus of GRK2, which binds Gβγ, and apparently 

activation of the receptor can lead to a physical dissociation of AGS3 and Gα.   
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Chapter 2 and Chapter 4 of this thesis examined the abilities of two GoLoco proteins, 

G18 and RGS14, to inhibit receptor–stimulated G protein activation respectively.  

Interestingly, the two proteins exhibit different effects on receptor-driven G protein 

activity in our membrane based steady-state GTPase assays.  G18 exhibits inhibitory 

activity through either its GoLoco motifs or N-terminal domain whereas RGS14 serves as 

a GAP via its RGS domain with no evidence of a GDI activity under these experimental 

conditions.  Since both G18 and RGS14 contain more than one G protein binding 

domain, their net activities toward G proteins may depends on which domains are 

dominant in a particular circumstance, which may also vary in the presence and absence 

of the receptor. 

 

In solution based steady-state GTPase assays, full-length RGS14 acts as a GDI both in 

the presence and absence of a receptor-independent GEF, Ric-8 (Vellano et al., 2011), 

whereas RGS14 increased receptor-stimulated GTP hydrolysis via its RGS domain, 

reflecting its GAP activity (Chapter 4).  One possible explanation for this difference is 

that even though Ric-8 is a GEF, the rate of nucleotide exchange in the presence of Ric-8 

is still not fast enough to reveal the GAP activity of the RGS domain (i.e. nucleotide 

exchange may still be rate limiting).  Another interpretation is that in the presence of the 

receptor or Gβγ subunits, which interfere with the binding between GoLoco motif and G 

proteins, perhaps the GoLoco cannot function as a GDI.  In single turnover GTPase 

assays, both full-length protein and isolated RGS domain of RGS14 exhibit GAP 

activities indicating that the RGS domain is functioning.  However, the EC50 of full-

length RGS14 is 10 times lower than the isolated RGS domain of RGS14, suggesting that 
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isolated R14-RGS has lower affinity and/or is a relatively weak GAP, and this may also 

account for the loss of GAP activity in solution based stead-state GTPase assays.  Thus, 

amino acid residues outside the RGS box may act as an adaptor to facilitate RGS14 GAP 

activity (Hollinger et al., 2001).  Indeed, in Chapter 4, we identified that the tandem Ras 

binding domains region of RGS14 contains a novel GAP enhancing activity, which is 

sufficient to increase not only R14-RGS but also other RGS proteins GAP activities.   

 

The effect of G18 on G protein signaling is multifaceted and complex.  In solution-based 

steady-state GTPase assays using purified Gαi1, the GEF activity of its N-terminal 

domain appears to predominate over the GDI activity of the GoLoco motifs, thus full 

length G18 increases nucleotide turnover.  However, in the presence of the receptor, 

which also acts as a GEF upon ligand binding, the net effect of G18 on Gi1 appeared to 

be predominately mediated via its GoLoco motifs (Chapter 2, (Zhao et al., 2010)).  

Coupling between G18 and Gαi in the presence or absence of receptor was also examined 

in living cells.  Even though we observed direct interaction between the N-terminus of 

G18 and activated Gαi/o proteins in vitro, little or no BRET signal was detected between 

this region and G protein in cells (Oner et al., 2010b).  The difference may be due to the 

C-terminal location of the R-luc tag in the BRET study, which was optimized for 

detecting GoLoco-G protein binding.  Also, the G proteins might be in their inactive 

GDP-bound state rather than active state in the BRET assays, and thus the affinity for the 

N-terminal domain of G18 may be relatively low.  Interestingly, a modest but detectable 

BRET signal was observed when using constitutively active Gαi1 (Gαi1Q204L) and G18 

(Oner et al., 2010b), suggesting that G18 may couple to active G protein.  Our results 
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suggest the possibility that such as interaction may occur through a different region other 

than the GoLoco motifs, specifically, the proline-rich N-terminus which binds to 

activated Gαi1.  Similar to AGS3, G18-Gαi1 and receptor can form a complex, which 

suggests that G18 may be able to regulate receptor-mediated signaling in cells (Oner et 

al., 2010b).  However, this hypothesis needs to be examined experimentally. 

 

The effect of G18 on Gαo is dominated by its N-terminal domain both in solution and in 

membrane based assays.  Thus, even though the GoLoco motif is Gαo insensitive, G18 

may still serve as a regulator for Gαo signaling (Kimple et al., 2004;Cao et al., 

2004;Zhao et al., 2010).  It will be interesting to see if G18 can regulate Gαo activity in a 

cellular context, and whether nucleotide concentration may affect G18’s effect on Go 

signaling. 

 

5.3 REGULATION OF RGS GAP ACTIVITY BY ADAPTER DOMAINS 

Apart from the RGS14 RGS domain, many RGS proteins exhibit relatively weak GAP 

activity and require molecular adapters to target them to G proteins,   For example, RGS9-1 

is specifically expressed in retina and regulates transducin-mediated cell signals (Anderson et 

al., 2009).  The Gαt effector PDE-γ can increase the affinity between RGS9-1 and Gαt by 

over 20 fold (Skiba et al., 2000).  Interestingly, a splice variant of RGS9-1, RGS9-2, contains 

a C-terminal domain that shares sequence homology to PDE-γ, and this C-terminus of RGS9-

2 serves a similar role as PDE-  and promotes RGS9-2 GAP activity.  In addition, it also has 

the ability to increase RGS9-1 GAP activity to a similar level as PDE-γ (Martemyanov et al., 

2003).  There are ~100 amino acids between the RGS domain and the two Ras binding 
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domains of RGS14, but the biological function of this region remains unknown.  In 

chapter 4, we examined if the “GAP enhancing domain” is able to restore the GAP 

activity of R14-RGS domain.  Our current data, as well as unpublished observations 

suggest that this region maybe required as an adaptor domain for the RB domain to target 

the R14-RGS domain.  Interestingly, it seems to be not required for the former to target 

other RGS proteins.  Moreover, sequence BLAST results indicate that this region shares 

homology with the C-terminal domain of RGS9-2 (Identities = 20/52 (39%), Positives = 

27/52 (52%)).  The alignment of these three potential adapter domains exhibits ~27% 

identical or similar residues.  Most of the similar residues are hydrophobic amino acids or 

positively charged residues that are important for protein folding, indicating that these 

proteins may share a similar secondary structure.  Several studies imply that both N-

terminal domain and the C-terminal domain of PDE-  contribute to stabilization of the 

RGS9-Gα complex (Slep et al., 2001;Guo and Ruoho, 2011).  Taken together, the amino 

acid residues between the RGS domain and the Ras binding domains of RGS14 may act 

as an anchor domain which is necessary for RGS14 GAP activity.  

 

Although the crystal structure of full length RGS14 has not been solved, the structures of 

the RGS domain, the second Ras binding domains and GoLoco motif either alone or 

coupled with binding partners have been studied by NMR and crystallography, 

respectively (Kimple et al., 2002;Soundararajan et al., 2008).  However, the structure of 

the region between the RGS domain and the Ras binding domains still remains unknown. 
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The fact that the R14-Ras binding region is able to enhance the GAP activity of multiple 

RGS proteins suggests a common regulatory mechanism wherein it increases affinity 

between RGS protein and G protein, thus enhancing the GAP activities.  G18 also 

exhibits RGS enhancing activity but this activity is limited to RGS5, as it was not 

observed with other RGS proteins that have been tested (Chapter 3).  Thus, although both 

G18 and RGS14 are able to enhance RGS protein GAP activities, the domains of these 

two GoLoco proteins that mediate these RGS-enhancing effects appear to be dissimilar. 

 

RGS4 and RGS5 share a high degree of sequence similarity in their RGS domains (56% 

identical and 82% positive).  The fact that G18 increases RGS5 GAP activity but not that 

of RGS4 suggests that amino acid residues outside the RGS domain may be important in 

regulating RGS5 GAP activity.  Indeed, unlike RGS4, the short N-terminus of RGS5 

seems to have an inhibitory effect on RGS5 GAP activity (Zhou et al., 2001).  Thus, the 

binding of RGS5 to G18 may cause a conformational change in RGS5 that favors GAP 

activity.  Another possibility is that as discussed in Chapter 3, since G18 may also 

interact with GTP-bound Gα proteins, the three proteins may form a complex where GTP 

hydrolysis is more rapid than with RGS5-Gα-GTP. 

 

5.4 ALTERNATIVE SPLICING IN MULTI-G PROTEIN BINDING DOMAIN 

CONTAINING PROTEINS 

Many signaling proteins are found to have alternative splice variants.  Insertion or 

deletion of complete protein domains is one of the most common mRNA splice 

mechanisms (Kriventseva et al., 2003).  Using this mechanism, different variants may 

exist that distinct cellular localizations, functions and molecular activities.  On the other 
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hand, comparing sequence differences between splice isoforms of a single gene may also 

provide important information regarding functional domain prediction (Wheelan et al., 

2000). 

 

A database search indicates that there is a short isoform of G18 (GenBank ID: 

AAB47489.1) which contains the N-terminal 14 amino acids as well as residues from 62 

to 160, where the three tandem GoLoco motifs are located (Figure 5.2).  The human G18 

gene consists of 4 exons separated by three introns.  The short isoform of G18 is missing 

the second exon plus the first quarter of the third exon.  Interestingly, the amino acid 

sequence corresponding to this missing region may be sufficient to account for the novel 

GEF domain of G18 (Figure 5.3).  These results suggest that a single gene may encode 

different protein isoforms that contain distinct biochemical and cellular functions.  

RGS14 presents as a more complicated situation.  As discussed in Chapter 4, there are 4 

potential alternate isoforms, none of which encode a functional RGS domain, which 

suggests that these forms may all serve a cellular role other than as a GAP, consistent 

with our observation of the ability of the RB domains to enhance GAP activity of most 

R4 family proteins.  The shorter forms of RGS14 thus may act as molecular adapters to 

facilitate the activities of other RGS proteins.  RGS12 is another relatively large RGS 

protein that shares a high level of sequence homology with RGS14.  It also contains an 

RGS domain, and two tandem Ras binding domains followed by a GoLoco domain.  

Splice variant isoforms have also been found in RGS12, most of which involve on the N- 
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Figure 5.2 

 

 

Fig. 5.2.  Amino acid sequence of G18 and potential splice variant.  Prolines in the N-

terminus of G18 are labeled in red and three GoLoco motifs are underlined.   
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Figure 5.3 
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Fig. 5.3.  The effect of G18-short (G18-s) on nucleotide exchange.  Purified His6-Gαi1 

(100 nM) was preincubated with G18 and its mutants (1 µM) at 4ºС.  Binding assays were 

initiated by adding 0.5 μM [35S] GTPγS (1.25×105 cpm/pmol) at 30ºС.  The binding of 

GTPγS to Gα proteins was measured after 30 min of incubation.  Nonspecific binding was 

estimated in the presence of excess unlabeled GTPγS, and these values were subtracted from 

the results.  The data are presented as the mean ± S.E.M. of 3 independent experiments 

performed in duplicate.  ** P<0.01, compared to G protein alone (One way ANOVA with 

Tukey's Multiple Comparison Test). 
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terminal PDZ domain and the C-terminus of the protein (Snow et al., 1998;Chatterjee and 

Fisher, 2000).  It is possible that RGS12 may also contain splice variants that exhibit 

activity similar to the Ras binding domains of RGS14.  However, further experiments are 

required to test this hypothesis. 

 

5.5 CONTRIBUTIONS OF THIS THESIS TO THE FIELD OF G PROTEIN REGULATION 

RESEARCH 

5.5.1 PHYSIOLOGICAL RELEVANCE OF G18 ON REGULATING RECEPTOR-DEPENDENT 

AND -INDEPENDENT G PROTEIN SIGNALING 

Most studies focus on the biochemical activities of G18, little is known regarding how 

G18 is functioning in a cellular context.  Data from Chapter 2 and Chapter 3 of the 

current thesis along with the work of other groups have highlighted the potential 

regulatory role of G18 on Gi/o signaling (Kimple et al., 2004;Cao et al., 2004).  

Alteration in Gi and Go signaling has been suggested to play important mechanistic roles 

under different pathological conditions.  In addition, we have shown that G18 activity 

and expression patterns may also vary depending on the cellular environment.  Thus 

understanding the cellular function of G18 may provide insight regarding how G protein 

signaling is regulated, and further help us to identify novel druggable targets for future 

therapeutical use.  

 

G18 was found to be primarily expressed in the cardiovascular system and immune 

systems (Cao et al., 2004;Zhao et al., 2010).  The important role of GPCR mediated 

signals in the cardiovascular system has been clearly demonstrated.  Altered Gi/o 
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mediated cell signaling has been linked to many pathological conditions, such as 

hypertension, hypertrophy and finally can lead to heart failure (Sato and Ishikawa, 2010).  

In general, Gi signaling serves a protective role in the cardiovascular system.  An 

increase in Gi expression in human heart failure can be viewed as an adaptational 

response of the heart (El-Armouche et al., 2003).  For example, an increase in myocardial 

Gαi level occurs as one of the earliest events in animal models of hypertention (Anand-

Srivastava, 1996).  Expression of Gi was increased up to about 40% in the aorta of 6 

week old spontaneously hypertensive rats (SHR) rats compared to normotensive rats 

(WKY), whereas Gs expression was unchanged (Anand-Srivastava, 1992).  In addition, 

temporal inactivation of Gi/o delayed hypertension development in SHR (Li and Anand-

Srivastava, 2002).  Interestingly, the expression of G18 is also elevated in aortic smooth 

muscle cells isolated from SHR rats compared to WKY rats (Figure.5.4).  Thus, the 

inhibitory effect of G18 on Gi activation could conceivably have a protective role under 

hypertensive condition.   

 

Chapter 3 of this thesis discussed the combined effects of G18 and RGS5 on G protein 

activation and provided direct evidence of the positive effect of G18 on RGS5 GAP 

activity.  Gene expression studies revealed that the activity and expression pattern of 

RGS5 in vivo is dynamically regulated, suggesting its role in the regulation of adaptive 

processes and vascular remodeling (Manzur et al., 2009).  Besides regulating normal 

vascular function such as blood pressure, RGS5 was also shown to be an important 

regulator of tumor vessel angiogenesis (Berger et al., 2005).  The mRNA level of RGS5  
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Figure 5.4 
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Fig. 5.4. Expression of G18 in WKY and SHR cells.  Aortic smooth muscle cells isolated 

from normotensive rat (WKY) or spontaneous hypertensive rat (SHR) were lysed and cell 

lysate were subjected to SDS-page and immunoblotting using anti-G18 antibody (1:1000).  
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was found to be unregulated up to 5 fold in pancreatic islet tumors compared to normal 

pancreas.  In situ hybridization analyses showed that RGS5 was expressed in cells that 

are closely associated with tumor blood vessels, and it also temporally and quantitatively 

coincided with tumor-induced angiogenic activity (Berger et al., 2005).  Furthermore, 

strong RGS5 expression was not only found in tumor angiogenesis, but also during the 

wound healing process, suggesting that RGS5 may also play a role in vascular cell 

migration (Lovschall et al., 2007).  The molecular mechanisms of how RGS5 regulates 

pericyte maturation and angiogenesis still remains to be investigated.  Consistent with the 

expression pattern of RGS5, in a subcellular localization study of G18, we found that 

beside its cytosolic localization, G18 also localized at the lamellipodia of the smooth 

muscle cell (Figure.5.5).  Lamellipodia are a characteristic feature at the front, leading 

edge, of motile cells, thus this localization of G18 may reflect its potential role in wound 

healing and cell migration.  Thus, G18 may also play a role in RGS5 mediated regulation 

of cell migration via direct interaction and enhancement of RGS5 GAP activity.  

Moreover, G18 itself may also alter vascular remodeling through an RGS5 independent 

pathway. 

 

G protein mediated cell signaling has also been suggested to regulate multiple aspects of 

the immune response.  So far, the only G proteins that have been found interact with G18 

are the Gαi/o subfamily proteins.  In lymphocytes, Gαi2 and Gαi3 expression 

significantly exceeds the average expression present in a panel of cell types and tissues, 

whereas Gαi1 expression is relatively low (Kehrl, 2004).  Numerous studies implicate 

GPCRs that signal through Gi in the regulation of lymphocyte function including T-cell 
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differentiation and cytokine production.  The most striking functional role of Gi is its 

regulation of lymphocyte migration (Bargatze and Butcher, 1993).  As discussed above, 

RGS5 acts as a key gene in abnormal vascular tumor morphology.  Loss of RGS5 leads 

to pericyte maturation, and vascular normalization.  In addition, RGS5
-/-

 tumors also 

exhibit an enhanced influx of immune effector cells and markedly prolong the survival of 

tumor-bearing mice (Hamzah et al., 2008).  Thus, since G18 has a profound effect on 

regulating both Gi proteins activity and RGS5 function, it may inhibit Gαi triggered 

integrin activation, firm adhesion of lymphocytes to high endothelial venules and 

transmigration.  At the same time, it may also contribute to RGS5 dependent alteration of 

immune cell influx (Zhou et al., 2001). 

 

Besides their effects on receptor dependent G protein signaling, many GoLoco proteins 

have been found to be involved in receptor independent G protein signaling such as 

asymmetric and symmetric cell division (see introduction).  Among these proteins, G18 

may be of particular interest, since it contains a GEF domain in addition to the three 

GoLoco motifs.  Furthermore, the GEF activity of G18 is predominant in the absence of 

the receptor, suggesting this domain may indeed activate G proteins when they are not 

coupled to the receptor (Chapter 2).  Most studies have indicated that the role of G 

protein signaling in cell division is independent of the receptor.  Thus receptor 

independent GEFs are critical for nucleotide exchange on Gα subunits as well as subunit 

rearrangement, and Gβγ signaling.  The only GEF that has been suggested to play such a 

role is Ric-8 (Afshar et al., 2004;Hess et al., 2004).  A recent report demonstrates that the 

GoLoco-G protein complex is required for the proper function of Ric-8 which is 
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necessary for mitotic spindle orientation (Woodard et al., 2010).  To complete the G 

protein cycle, RGS proteins have also been suggested to be involved in the process (Hess 

et al., 2004).  Compared to the Ric-8/GoLoco-G protein complex/RGS pathway, G18 

holds an advantage in that the GEF domain and GoLoco motifs are located within a 

single protein.  This certainly makes the whole process simpler and easier where the C-

terminus GoLoco-Gα complex may serve as a substrate for the N-terminal domain to act 

as a GEF.  Furthermore, the direct coupling between G18 and RGS5 in cells also 

provides a mechanism to turn off the pathway, thus, RGS5 may serve a termination role 

corresponding to the function of RGS7 in C. elegans.   

 

5.5.2 PHYSIOLOGICAL RELEVANCE OF RGS14 ON REGULATION OF RGS PROTEIN 

GAP ACTIVITY 

Chapter 4 of this thesis uncovered a previously unidentified GAP enhancing activity of 

the Ras binding region of RGS14.  Thus the RB domains of RGS14 and possibly those of 

RGS12 may act as integrators of heterotrimeric G protein signaling and monomeric G 

protein Ras/Raf signaling pathways.  It has been suggested that the binding of Gαi1 and 

Raf to RGS14 tends to be mutually inhibitory (Shu et al., 2010).  Functionally, co-

expression of Gαi1 reversed RGS14 inhibition of PDGF signaling (Shu et al., 2010).  Our 

data suggests that the RGS domain and the RB domains of RGS14 may undergo an 

intramolecular interaction and that this interaction may increase the affinity between the 

RGS domain and G protein and further promotes GAP activity of the RGS domain.  At 

the same time, removal of the RGS domain leads to an enhancement in RGS14 GDI 

activity.  Taken together, it is possible that RGS-RBD-Gα can form a complex and 

facilitates GTP hydrolysis, and after terminating the heterotrimeric G protein activation, 
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the RGS domain dissociates from Gα, which in turn releases the RB domain from the 

complex and allows it to interact with small G proteins and activate the Ras/Raf mediated 

MAP kinase pathway. 

 

The RB domains of RGS14 also participate in determining the subcellular localization of 

RGS14.  The nuclear localization of RGS14 depends on its RGS and RB domains, 

whereas the RB domains are sufficient for RGS14 localization to centrosomes (Shu et al., 

2007).  However, the functional consequence of RB domain-centrosome colocalization 

still remains unknown.  Co-expression of inactive GDP-bound Gα protein but not active 

GTP-bound Gα protein recruits RGS14 to the plasma membrane, suggesting that even 

though the GDI activity of the GoLoco motif is inhibited by the RGS-RBD interaction 

(Chapter 4), it may be important for targeting RGS14 to the cell membrane.   

 

5.6 FUTURE DIRECTIONS 

The novel findings of this thesis provide some interesting and exciting information 

regarding how GoLoco motif containing proteins regulate receptor-stimulated G protein 

activation, as well as how various domains within a single protein work together and 

modulate each other’s activity.  This thesis also raises some important questions that may 

be addressed in the future, and will be important to further enhance our knowledge of 

regulation of cell signaling by GoLoco motif containing proteins. 
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5.6.1 FURTHER CHARACTERIZING THE INTERACTION BETWEEN N-TERMINUS OF G18 

AND G PROTEINS 

Chapter 2 of this thesis identified a novel interaction between the proline rich N-terminus 

of G18 and Gαi1/o.  However, this interaction may not be limited within the Gαi/o 

subfamily of G proteins.  The data from earlier reports suggested that there is no 

appreciable binding between the C-terminus GoLoco motifs to other G proteins such as 

Gαs, and Gαq, (Kimple et al., 2004;Cao et al., 2004).  However, the interaction between 

the N-terminal domain or full-length G18 and these G proteins remain unknown.   

 

The amino acid residues important for the binding between the N-terminal domain of 

G18 and the G protein still remain to be elucidated.  As mention in the discussion of 

Chapter 2, the relatively high proportion of proline residues of this region is of particular 

interest.  The unique side chain structure and its effects on overall protein conformation 

may contribute to the observed interaction.  In addition, the overall amino acid 

composition of the N-terminal region of G18 shares a common sequence feature of 

unfolded proteins and suggests that it may be highly flexible in solution.  Thus, this 

region may be able to adopt different conformations for binding to different partners. 

 

Another interesting observation is that the interaction between the N-terminal domain of 

G18 and Gαi or Gαo proteins results in different functional consequences.  The reason for 

these seemingly opposite effects remains unclear.  However, studies on another receptor 

independent GEF, Ric-8, suggest that it preferentially interacts with the nucleotide-free 

state of G proteins, thus it may stabilize G proteins under their nucleotide free state and 
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prevent nucleotide association.  Interestingly, in a recent paper, the Tall group has 

examined the apparent GEF activity of Ric-8B on Gs (Chan et al., 2011).  However, due 

to the high affinity between Ric-8 and nucleotide free G protein, this activity is only 

observed under high concentration of GTP.  It is currently unknown if G18 shares a 

similar mechanism, and ongoing experiments are trying to address this issue by looking 

at the nucleotide exchange process in more detail.  We are currently examining the effect 

of G18 on GDP dissociation from the G protein.  Another potential interesting 

experiment will be to perform the nucleotide titration assays and to see if the different 

effects of G18 on Gi and Go are due to changing in the affinity between G protein and 

GTP after binding to G18. 

 

5.6.2 CELLULAR FUNCTION OF G18 AND ITS SPLICE VARIANTS 

Chapter 2 of this thesis suggests that even though via different mechanisms, G18 can 

inhibit receptor-stimulated activation of both Gi and Go proteins.  This observation 

indicates that it may reverse the inhibitory role of Gi signaling on AC activity and cAMP 

production.  Looking directly looking at cAMP production upon overexpression of 

different G protein binding domains of G18 may provide some insight information of 

how G18 regulates G protein function inside cells and which G protein binding domain is 

responsible for its effect.  Another interesting project would be to look at the expression 

patterns, regulation and activities of the short splice variants of G18.  The distinct domain 

composition suggests that their biochemical as well as physiological functions may be 

different.  Consistent with this hypothesis, GTPγS binding assays have shown that unlike 

the full-length protein which exhibits little or no effect on nucleotide exchange on Gαi1 
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due to opposite effects of its GEF and GDI activities, whereas the short isoform of G18 

exhibit a profound GDI activity (Figure 5.3).   

 

Besides different G protein binding domains, other binding partners and post-

translational modifications may also regulate the cellular function of G18.  For example, 

little or no GDI activity is observed when G18 is coupled to RGS5 in a receptor 

stimulated steady-state GTPase assay, suggesting that when coupling to RGS5, G18 may 

rather enhance RGS5 GAP activity.  Thus its cellular function may vary under different 

circumstances.  Another potential mechanism that may regulate G18 function is 

phosphorylation.  It has been suggested that the fragment of G18 in the major 

histocompatibility complex immunoprecipitates was actually phosphorylated at Ser-59, 

which is just upstream of the first GoLoco motif (Cao et al., 2004).  Phosphorylation of 

RGS14 at a corresponding site dramatically increased its GDI activity (Hollinger et al., 

2003).  This suggests that phosphorylation may influence the interaction between G18 

and G protein and provide a regulatory mechanism for signal input or subcellualr 

location. 

 

Finally, it would be interesting to look at the potential role of G18 in cell division.  

Similar to other GoLoco motif containing proteins, in smooth muscle cell, the subcellular 

localization of endogenous G18 involves its association with microtubules both during 

interphase and during mitosis (unpublished observation, Figure 5.5, 5.6).  Thus, G18 may 

play a role in regulating microtubule dynamics and spindle pole organization.  
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Overexpression and siRNA approaches may be used to elucidate the effects of G18 on 

microtubule assembly and spindle pole orientation. 

 

5.6.3 CHARACTERIZING RGS14 GAP ADAPTER DOMAIN AND ENHANCING DOMAIN 

Chapter 4 of this thesis provides more detailed information regarding the GAP enhancing 

activity of the RGS14 Ras binding region on different RGS proteins.  However, the 

mechanism underlying this is still unclear.  The specific binding site on both the RGS 

protein and the RB domains still remain to be solved.  It is currently unknown whether 

the binding of the RGS proteins and Rap/Raf kinase to the RB domains share a similar 

binding site, or whether the binding of small G protein binding is able to inhibit the GAP 

enhancing activity of the RB domains.  It has been suggested that small G protein binding 

has no effect on the GAP or GDI activities of full-length RGS14 (Mittal and Linder, 

2006), however, RB domains are not directly involved in those activities.  Future 

experiments might be directed at examining the effect of RGS14-RB domains on GAP 

activity upon the binding of small G proteins. 

 

5.7 GENERAL CONCLUSION 

The major components of GPCR-mediated signal transduction are transmembrane 

receptors, second messengers and effectors.  The amplitude and duration of the signal 

output may also be regulated by different accessory proteins.  Chapter 2, Chapter 3 and 

Chapter 4 of the current thesis focus on two accessory proteins of G protein signaling 

G18 and RGS14.  In addition, these two proteins both contain more than one G protein 

binding domains that are able to modulate G protein activity via different mechanisms.   



220 

 

Figure 5.5 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5.  Co-localization between G18 and β-tubulin during interphase.  Primary 

aortic smooth muscle cells were fixed and subjected to immunoflurescence study.  fixed 

cells were probed with anti-G18 antibody (1:500), anti β-tubulin antibody (1:500) and 

AlexaFluor 488 goat-anti rabbit or AlexaFluor 594 goat-anti mouse secondary antibodies 

(Invitrogen).  DAPI was used to stain the nuclei. 
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Fig. 5.6.  Co-localization between G18 and β-tubulin during Mitosis.  Primary aortic 

smooth muscle cells were serum starved for 24 hours, and 20 hours after serum 

replacement, cells were fixed and subjected to immunoflurescence study.  fixed cells 

were probed with anti-G18 antibody (1:500) and anti β-tubulin antibody (1:500) and 

AlexaFluor 488 goat-anti rabbit or AlexaFluor 594 goat-anti mouse secondary antibodies 

(Invitrogen). 
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Figure 5.6 
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We have discovered a novel G protein interacting domain located N-terminal to the 

GoLoco motifs of G18, and this domain has the ability to alter nucleotide exchange on 

Gα proteins.  We have also identified a novel interaction between G18 and RGS5 which 

enhances RGS5 GAP activity but has a seemingly negligible effect on G18 function.  

Finally, we characterize an intramolecular interaction between the RGS domain and the 

small G protein binding domain of RGS14 and how this interaction affects RGS14 GAP 

and GDI activities.  Thus, our general conclusion is: GoLoco motif containing proteins 

G18 and RGS14 are the organizers of G protein signaling that also modulate RGS 

function.  Although the physiological function and regulation of G18 and RGS14 still 

remain to be elucidated, data presented in this thesis provide some insight information 

regarding how these two proteins regulate G protein activation and deactivation cycle and 

their own activity from both molecular and biochemical perspectives.  This information 

will assist us to better interpret the mechanisms of the cellular function of these two 

proteins.  Furthermore, it will also help us to understand how G protein signaling is 

regulated by different accessory proteins. 
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