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Abstract

Predictive models are a powerful tool to understand and improve physical systems. Predictive models

not only can be used to improve current materials, but they also gain fundamental understanding

of the underlying processes. There are numerous theoretical and numerical models introduced in

the field of polymer composites and nanocomposites. Different methods best describe a system at a

specific time and length scale. In this thesis, I utilize coarse-grained Molecular Dynamics (CGMD),

multiphase-field (MPF), and Lattice Boltzmann (LB) methods to study different aspect of polymer

composites and nanocomposites.

Starting at the nanoscale, we study the dispersion and orientation patterns of nanorod-polymer

systems using coarse-grained Molecular Dynamics. We particularly focus on the phase behaviour of

nanorods in an unentangled polymer melt as a function of the nanorod concentration. The system

is comprised of flexible polymer chains and multi-thread nanorods that are equilibrated in the

isothermal-isobaric (NPT) ensemble. All interactions are purely repulsive except for those between

polymers and rods. Results with attractive vs repulsive polymer–rod interactions are compared and

contrasted. The concentration of rods has a direct impact on the phase behavior of the system. At

lower concentrations, rods phase separate into nematic clusters, whereas at higher concentrations

more isotropic and less structured rod configurations are observed. A detailed examination of the

conformation of the polymer chains near the rod surface shows extension of the chains along the

director of the rods (especially within clusters). The dispersion and orientation of the nanorods

are a result of the competition between depletion entropic forces responsible for the formation of

rod clusters, the enthalpic effects that improve mixing of rods and polymer, and entropic losses of

polymers interpenetrating rod clusters.

Physical and mechanical properties of semi-crystalline polymers depend on their degree of crys-

tallization and crystal morphology. Producing semi-crystalline material with desired properties is

only possible when the crystallization process and structure is well-understood and can be predicted.

We introduce a coarse-grained model of polymer crystallization using a multiphase-field approach.

The model combines a multiphase-field method, Nakamura’s kinetic equation, and the equation

of heat conduction for studying microstructural evolution of crystallization under isothermal and

non-isothermal conditions. The multiphase-field method provides flexibility in adding any number

of phases with different properties making the model effective in studying blends or composite ma-

terials. We apply our model to systems of neat PA6 and study the impact of initial distribution

of crystalline grains and cooling rate on the morphology of the system. The relative crystallinity

(conversion) curves show qualitative agreement with experimental data. We also investigate the

impact of including carbon fibers on the crystallization and grain morphology. We observe a more

homogeneous crystal morphology around fibers. This is associated with the higher initial volume
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fraction of crystal grains and higher heat conductivity of the fiber (compared to the polymer ma-

trix). Additionally, we observe that the crystalline grains at the fiber surface grow perpendicular

to the surface. This indicates that the vertical growth observed in experiments is merely due to

geometrical constraints imposed by the fiber surface and neighbouring crystalline regions.

The production of fiber-reinforced thermoplastics involves processes performed under flow con-

ditions. Therefore, it is crucial to understand the dynamics of fibers in flow to obtain high quality

fiber-reinforced composites. We introduce a new LBM where the continuous distribution function

is discretized using distribution mass function that in addition to a mean value also has a variance.

This introduces extra independent degrees of freedom to recover the second and third moments of

Maxwell-Boltzmann equation fully. This eliminates the error terms that appear in the standard

LBM and extends the applicability of LBM to compressible flows. The variance terms can further

be utilized to incorporate thermal and viscoelastic features. As the variance terms appear as part of

the discretization scheme, they consistently appear in the derivation and no ad-hoc manipulation of

the equations is required to recover the correct second and third moments. Furthermore, there are

only 6 extra terms (or 9 for a non-symmetric general stress tensor) introduced in this model. Thus,

we expect the algorithm to be more memory efficient and have shorter runtimes than multi-lattice

models.

Keywords: Polymer Composite, Molecular Dynamics, Multiphase-Field, Lattice Boltzmann, Conformational

Entropy, Crystal Morphology



Summary for Lay Audience

One approach to addressing issues like global warming and transportation safety is through lightweight-

ing. This involves replacing materials used in vehicles with lighter alternatives without sacrificing

performance. Composite materials, which combine the best properties of different substances, enable

the creation of high-performance lightweight materials. However, achieving the desired end product

requires the testing of diverse ingredient materials and processing techniques. This is financially

demanding due to the substantial requirement for materials and labour.

This is where mathematics and technology offer a solution: computer simulations. Computer

simulations enable the execution of numerous virtual experiments across a wide range of conditions.

This not only enhances our comprehension of the underlying physics that drives the real-world

observations, but it also reduces the range of possibilities that must be tested in the laboratory. As

a result, they save both material usage and labour hours. In this thesis, I use 3 different simulation

methods to study polymer composites (polymers are long and chain-like molecules).

The properties of materials are determined by the behaviour of their molecules. So, it is important

to understand how materials work at the molecular level to predict their properties and improve

them. In the first simulation, I looked at the shape and arrangement of the molecules in a material

that is a mix of a polymer melt and fibers.

In the second simulation, I combined different mathematical models to reproduce how a polymer

looks under the microscope when it crystallizes. It is important to understand how crystal regions

are distributed in a polymer material because the degree of crystallinity and distribution of the

crystals affect the performance of the material.

The production of fiber-reinforced polymers involves the liquid mixture flowing through pipes

and/or into molds. Therefore, it is crucial to understand how fibers behave in a flow to obtain

high quality fiber-reinforced composites. For the third simulation, I expanded a previous simulation

method that only applied to simple fluids like water to account for compressible fluids. The model

can be further expanded to reproduce viscoelastic flows like polymers.

iv
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Chapter 1

Introduction

Polymer composites are made up of a polymeric matrix and a reinforcement component like fibers.

Polymer composites are high performance material with applications in a variety of industries such

as the automotive and aerospace industries. These hybrid material offer a lightweight alternative to

traditional materials. Substituting the material used in vehicles with lighter counterparts without

compromising their performance is known as lightweighting and is one of the main applications of

polymer composites. Lightweighting improves efficiency of vehicles and provides a way to tackle

problems such as global warming, and transportation safety. However, producing such high perfor-

mance materials is more complicated than a simple mixing of the components and requires a deep

understanding of interactions and assembly of different components on different length scales as well

as the impact of processing on the final product.

1.1 A pinch of history

Material science has had a profound historic significance, shaping the course of human civilization

and revolutionizing various industries, throughout the ages. The discovery of materials like iron

and steel propelled societies into the Iron Age, leading to advancements in warfare, agriculture,

and transportation. During the industrial revolution, the invention of new materials, such as al-

loys, enabled the mass production of consumer goods, transforming economies and improving living

standards. Later in the 19th century, John Wesley Hyatt and his brother, Isaiah, invented a new

material called Celloloid in hopes of winning a $10,000 prize announced by a New York billiard

ball manufacturer [1]. This extravagant prize was offered as the manufacturers were dealing with a

shortage of Ivory, the main ingredient of billiard balls. Apparently, John and Isaiah never received

their prize but they definitely changed the course of material industry.

Celluloid was made out of natural cellulose. It took another 40 years before fully synthetic

polymers were introduced with the work of Leo Baekland. Baekeland and Thurlow, his lab assistant,

knew the potential of phenol-formaldehyde resins. Particularly, they tried to find a replacement for

shellac—used to insulate electrical cables in the early years of the 20th century. In February 1909,

Baekeland announced the successful production of “Bakelizers” and went on to mass production in

his house lab in 1910. By 1930, his company, Bakelite Corporation, grew to a large corporation with

a 128-acre plant in Bound Brook, New Jersey [1].

1
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Bakelite could be molded and exhibited better properties than Celloloid even though it was

cheaper. However, the pure resin was very brittle. To overcome this, Baekland had to blend it with

strengthening substances, particularly, cellulose. In this way, Baekland also introduced the concept

of plastic composites [1].

As plastics were becoming more and more pertinent in the industry and to everyday living,

understanding polymers attracted increasing numbers of scientists and engineers. The pioneering

work of Hermann Staudinger with the title “Über Polymerisation” set up the field of “polymer

science” just over a 100 years ago [2]. 2 years later, in 1922, Staudinger and his colleague, Jakob

Fridschi, published a paper “Über Isopren und Kautschuk” that showed experimental evidence that

caoutchouc and its hydrogenated derivative have similar colloidal properties, despite the fact that

the hydrogenated derivative did not show colloidal aggregation due to lack of double-bonds. This

paper is where for the first time the terminology “Macromolecule” is used.

Polymeric materials have many advantages such as high impact and energy dissipation, forma-

bility, and are particularly lightweight. This makes them a perfect candidate to be used in the

industries like automotive and aerospace to improve efficiency of vehicles. However, polymers are

not as strong as metals which poses a safety risk and limits their use [3]. A solution to this challenge

is the use of polymer composite materials. Composites are materials with two or more distinct

components with a distinct interphase [3]. Composites typically offer not only better strength but

also improved corrosion and fatigue resistance. Additionally, the variety of matrix and reinforcement

materials provides flexibility in design.

The concept of composites might initially come across as far-fetched, but the fundamental concept

behind their creation is deeply intuitive and has been understood by humans for a long time. We

frequently blend diverse elements, like different ingredients in our food, to produce novel substances

that inherit qualities from each constituent. This practice can even be observed in mythological

narratives, where superior beings are often portrayed as a fusion of human and animal attributes,

symbolizing the amalgamation of mental and physical strengths. So as we see the notion of combining

diverse elements to yield a new substance with the favourable attributes of its constituents is far

from novel. Composite materials emerged based on this very principle.

However, the creation of mixtures is a more intricate task than mere ingredient mixing. The

proportions of various ingredients and the mixing process itself significantly influence the final blend.

Likewise, in the realm of polymer composites, achieving the desired end product necessitates the

exploration of diverse ingredient materials and processing techniques. This endeavour is financially

demanding due to the substantial requirement for materials and labour.

Another obstacle in the manufacturing of high-performance polymer composites, especially nano-

composites, lies in their complex hierarchical structure and the involvement of various phenomena

occurring across different time and length scales. This complexity imposes difficulties on the quantity

of data attainable through experiments, consequently curtailing both the ability to design these

materials intentionally and control the properties of the final product.

This is where technology and mathematics offer a solution through the utilization of mathematical

models and computer simulations. Predictive models enable the execution of numerous virtual

experiments across a wide range of conditions. This approach not only enhances our comprehension

of the underlying physical processes driving real-world observations, but it also reduces the range of

possibilities that must be tested in the laboratory. As a result, predictive models play a pivotal role
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in advancing our understanding of the relationship between structure and properties in composite

materials, while also significantly saving both material usage and time expenditure.

In this thesis, I utilize coarse-grained Molecular Dynamics (CGMD), the Lattice Boltzmann

Method (LBM), and Phase-Field (PF) methods to study different aspects of polymer composites

and nanocomposites from molecular phase separation to microstructure distribution. But before

going into details of the models used and new results obtained from my research, in this chapter,

I provide a brief background and review of the existing work in the field. The rest of this chapter

is organized as follows: An introduction and description of different available computational and

theoretical models is given in 1.2. In 1.3, I provide examples of how these methods are applied

in the field of polymer composites (PCs) and polymer nanocomposites (PNCs). The purpose of

section 1.2 is to provide a brief background for the readers who are new to the field and for sake of

completeness.

1.2 Mathematical models of polymer composite

As mentioned before, polymer composites (PCs) and polymer nanocomposites (PNCs) have a hierar-

chical structure meaning that they have two or more critical length scales [4]. Therefore, a complete

understanding of their physical and mechanical properties is only achievable when studied across all

the relevant scales. A variety of theoretical and computational methods have been applied to such

systems [5]. In Fig.1.1, a simple diagram of different computational methods with their relevant time

and length scale is shown. In this thesis, I emphasize bottom-up approaches to modelling polymer

composites. As a result, I start by discussing simulation methods at smaller scales such as ab initio

Molecular Dynamics (AIMD) and Molecular Dynamics (MD) first and move on to larger scales as

the chapter proceeds. Bottom-up modelling refers to an approach where the parameters required

for a practical model are obtained from smaller scale simulations rather than experimental data.

Bottom-up methods are easier to generalize as they are governed by first-principle models of physics

and chemistry.

1.2.1 Molecular Dynamics

Imagine a system of N nuclei with coordinates {R1, ...,RN} = R, momenta {P1, ...,PN} = P ,

and masses M1, ...,MN and Ne electrons described by coordinates {r1, ..., rNe
} = r, momenta

{p1, ...,pNe
} = p, masses m1 = ... = mNe

= m, and spins {s1, ..., sNe
} = s. Nuclear spin is

ignored in the present discussion. The non-relativistic Hamiltonian of this system is

H = K(P1, ...,PN ,p1, ...,pNe
) + U(R1, ...,RN , r1, ..., rNe

) (1.1)

=

N∑
i=1

P 2
i

2Mi
+

Ne∑
i=1

p2
i

2mi
+
∑
i>j

e2

|ri − rj |
+
∑
i>j

ZiZje
2

|Ri −Rj |
−
∑
i,j

Zie
2

|Ri − rj |
(1.2)

= KN (P ) +Ke(p) + Uee(r) + UNN (R) + UeN (R, r) (1.3)
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Figure 1.1: Computational and simulation methods and their corresponding time and length scales. The various
methods noted in the figure will be discussed in the text. (*) is retrieved from [6].

where e is the charge of an electron, and Zie is the charge of the ith nucleus. To determine the state

of the system, we have to solve the time-independent Schrödinger’s equation:

HΨ(x,R) = EΨ(x,R) (1.4)

where x = (r, s) is the full set of electron positions and spins, and Ψ is an eigenfuntion of H with

eigenvalue E. Taking advantage of the fact thatMi >> m for i = 1, ..., N and therefore nuclei move

considerably slower than electrons, one could simplify Eq. 1.4. This approximation is known as the

Born-Oppenheimer approximation [7] and is the basis of Molecular Dynamics (MD) methods. With

this assumption, we can separate the wave function as follows:

Ψ(x,R) = ψ(x,R)χ(R) (1.5)

where χ(R) is the nuclear wave function and ψ(x,R) is the electronic wave function. Plugging (1.5)

into (1.4), we get a new eigenvalue equation

Heψ(x,R) = ε(R)ψ(x,R) (1.6)

where

ε(R) = E − (KN + UNN )χ(R)

χ(R)
. (1.7)

and

He = Ke + Uee + UeN (1.8)
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is the electronic Hamiltonian. KN and Ke are the kinetic energy contributions of nuclei and elec-

trons, respectively. Uab denote potential energy interactions between components a and b. The

new eigenvalue equation then gives a set of eigenfunctions ψn(x,R) and eigenvalues εn(R) which

parametrically depends on the positions of the nuclei. For each solution, there is a corresponding

nuclear eigenvalue equation:

(KN + UNN + ε(R))χ(R) = Eχ(R). (1.9)

The nuclear dynamics can be determined by solving the time dependent Schrödinger’s equation for

the time dependent nuclear wave function X(R, t) on the surface of the electronic potential corre-

sponding to eigenvalue εn(R). In other words, we assume that electrons instantaneously respond

to the nuclear motion and the wave function takes the adiabatic form. Now, if we also assume

that the nuclei move in a classical regime, we end up with the classical equations of motion on the

ground-state surface for the nuclei:

Ṙi =
Pi
Mi

Ṗi = −∇iE0(R)

(1.10)

where E0(R) = ε0(R)+UNN (R). As can be seen, Eq. 1.10 is Newton’s equations of motion (in the

Hamiltonian form). The potential E0(R) can be specified empirically or from ab initio methods, or a

combination of both [8]. The functional forms that describe the potential E0(R), or the interatomic

interactions, are called force fields. Therefore, this type of MD simulation is known as the force-field

method. There are newer MD algorithms where the ab initio calculations are done on the fly as

the simulation progresses (known as ab initio Molecular Dynamics (AIMD))[9, 10]. AIMD offers

flexibility in including reactions and electronic polarization at the price of computation time and

simulation domain size. This limits the application of ab initio methods, either as a way to compute

force-field parameters or in form of AIMD, but with advances in computer hardware and algorithms,

I see such methods being utilized more often.

The properties of real world materials are usually relevant to the average atomic behaviour on a

much longer time scale than the rapid electron motion or even atomic motion. Moreover, performing

ab initio or MD simulations on such long time-scales is computationally extremely expensive. A

solution to this problem can be achieved by mapping the fine electronic/atomic system to a coarser

system of reduced resolution. This approach is called coarse-graining. In the coarse-grained (CG)

system, the sites correspond to a group of atoms in the original system. The effective interactions

between different CG sites then needs to be defined such that the main properties of the fine-

grained system are retained. Coarse-graining is a complicated process as the mapping between the

microscopic details and the CG space is not trivial and not always clear [11]. However, it offers

insight into molecular features that are the origin of mesoscopic and macroscopic behaviours.

1.2.2 Monte Carlo

The macroscopic thermodynamic observables originate from the microscopic features of the system.

However, it is daunting to solve the equations of motion for every single particle in a system of

realistic length scale and this level of detail is not necessary to recover equilibrium macroscopic

variables. The equilibrium thermodynamic observables can, in fact, be computed from the ensemble
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averages of the relevant microscopic functions [12].

Take a(x) to be a microscopic phase space function where x = (r0, ..., rN ,p0, ...,p3N ) and A is

the corresponding macroscopic (equilibrium) observable. Then, we can write

A = ⟨a(x)⟩ = 1

Z

∫
a(x)f(H(x))dx (1.11)

where H(x) is the Hamiltonian of the system and

Z =

∫
f(H(x))dx (1.12)

is the normalization factor which is better known as the partition function. f is called the distribution

function and its form depends on the choice of ensembles. The partition function plays a fundamental

role in statistical physics and is directly related to different equilibrium macroscopic variables.

There are different ways one could calculate the integrals above to determine the equilibrium

macroscopic quantities. One way is to approximate the integrals by a summation over a subset of

the phase space points, also known as a sample of the phase space. Imagine an integral of the form

Eq. 1.11 in 1 dimension

I =

∫
g(x)f(x)dx (1.13)

where f(x) is a probability distribution function (not necessarily the same as the f in Eq. 1.12)

such that

f(x) ≥ 0, (1.14)∫
f(x)dx = 1. (1.15)

In this case, one can define an estimator

G =
1

M

M∑
i=1

g(xi) (1.16)

where xi is the ith random variable of a set of drawn random variables {x1, ..., xM}. The random

variables are drawn randomly from the distribution function f(x). Then,

⟨G⟩ = ⟨ 1

M

M∑
i=1

g(xi)⟩ ≈
1

M

M∑
i=1

⟨g(x)⟩ = ⟨g(x)⟩ = I. (1.17)

According to the central limit theorem, it is then guaranteed that

I = lim
M→∞

G. (1.18)

This class of probabilistic algorithms are called Monte Carlo algorithms. The method was first

introduced by Ulam and Metropolis after the second World War [13].

Now, one question that may occur to you is: How would one pick the M phase space points to

then calculate the above summations? This problem is known as sampling. A sampling method is

an algorithm that can produce a sequence of values of random variables X = {X1, X2, ...} such that
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for any subset Ω of Ω0

P {Xk ∈ Ω} =

∫
Ω

f(x)dx ≤ 1 (1.19)

where P is the probability, and f(x) is a probability distribution function defined on Ω0. Imagine

our 1D probability distribution function f(x) ≥ 0 to be defined on [a, b] such that∫ b

a

f(x)dx = 1. (1.20)

Then the cumulative distribution function F (x) can be defined as

F (X) =

∫ X

a

f(x)dx ≤ 1 (1.21)

where X ∈ [a, b] and

f(x) =
dF

dX
. (1.22)

Consider y(x) to be a nondecreasing function of x. Since y and x map into each other, we have

X ≥ x ⇐⇒ y(X) ≥ y(x). (1.23)

Consequently, the cumulative probability distributions are the same

FX(X) =

∫ X

x

f(x)dx =

∫ y(X)

y(x)

f̃(y)dy = FY (Y ). (1.24)

Typical random number generators generate sequences that are uniformly distributed on the

interval [0, 1]:

r(n) =

1 0 ≤ r ≤ 1,

0 otherwise.
(1.25)

with cumulative distribution

R(ξ) =


0 ξ < 0,

ξ 0 ≤ ξ ≤ 1,

1 ξ > 1.

(1.26)

Now, if we assume that there exists a transformation such that n = y(x) where y(x) is a nonde-

creasing function of x, based on above discussion, the cumulative probabilities should be the same

for n and x

F (X) = ξ (1.27)

where ξ ∈ [0, 1]. Therefore, one can solve Eq. 1.27 for a set of random numbers {ξ1, ..., ξM} to find

{X1, ..., XM}. By setting xi = Xi, then we get a sampling of M values of the distribution f(x). This

type of sampling is called “simple sampling”. Simple sampling is the most basic method but there

are other algorithms such as Metropolis method that can be utilized to sample the phase space.

The Metropolis method was inspired by the independence of equilibrium states of a system from

the kinetic of the system [13, 14]. This technique explores the phase space by a Markov chain where

at each step, the system either moves to a new state (accepted move) or the move is rejected and it
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stays at the current state (rejected move). The probability of a move being accepted must follow the

detailed balance relation [15]. The advantage of Metropolis method is that almost all probability

distributions can be sampled by it regardless of the complexity of the distribution. However, the

Markov chain nature of the algorithm creates correlations between successive states and the sampling

is correct only asymptotically. Further information on the Metropolis method and other Monte Carlo

methods can be found in the literature [12, 15, 16].

1.2.3 Dissipative Particle Dynamics

MD and MC methods are typically utilized to study nano and micro scale properties of systems.

Moving up to more mesoscopic methods, we start with Dissipative Particle Dynamics (DPD). DPD

is a mesoscopic particle based method where the “particles” represent regions of the fluid rather

than atoms. The equation of motion of particle i is

ṙi = vi = pi/mi (1.28)

ṗi =
∑
j ̸=i

FC
ij + FD

ij + FR
ij (1.29)

where r is the position of the particle, p is the momentum vector, and “ ˙ ” represents time derivative

[17]. There are three types of force applied to the particles, conservative (FC), dissipative (FD),

and random (FR). The forces are assumed to be pairwise additive. The conservative force is usually

defined as a linear function of particle separation such that

FCij = aCwC(rij)r̂ij (1.30)

where ac is a coefficient related to fluid compressibility, wC(rij) is the conservative weight function,

and r̂ij is the unit vector connecting particle i to j. The weight function is typically softer than

molecular potentials such as LJ potentials allowing for larger time steps. This is one of the main

attractions of DPD as it makes simulations on longer time scales possible [16].

The dissipative forces are defined as

FDij = −γwD(rij)(rij · vij)r̂ij (1.31)

where γ is the friction coefficient, and wD(rij) is the dissipative weight function. The random forces

are defined as

FRij = σζijwR(rij)r̂ij (1.32)

where σ is the amplitude of the noise, and wD(rij) is the random weight function. ζij is a Gaussian

noise with the following stochastic properties:

⟨ζij(t)⟩ = 0 (1.33)

⟨ζij(t)ζkl(t′)⟩ = (δikδjl + δjkδil)δ(t− t′). (1.34)

ζij is symmetric to conserve momentum and wD(rij) and wR(rij) are chosen to satisfy the fluctua-

tion–dissipation theorem [18, 19].
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While DPD was originally proposed as a method to simulate fluids on a mesoscale, often now, it

is used as a momentum conserving thermostat (e.g. in place of Langevin thermostat) in Molecular

Dynamics simulations.

1.2.4 Lattice Boltzmann

Historically, the Lattice Boltzmann model was developed as a successor of the Lattice Automata

where the boolean variables on each grid point were replaced by particle distributions [20]. But as was

later shown [21], it is possible to derive the lattice Boltzmann equation directly from discretizing the

Boltzmann equation in velocity space, time, and space. In this section, I will cover the fundamental

theory behind the model and leave the algorithmic and implementation details to chapter 4.

The continuous linearized Boltzmann Equation is written as

Df

Dt
≡ ∂tf(ξ,x, t) + ξα∂αf(ξ,x, t) = C (f − feq) (1.35)

where Df/Dt is the material derivative of the distribution function f . f(ξ,x, t) represents the

density normalized probability of finding a particle at position x and time t with microscopic ve-

locity ξ and is a function of microscopic velocity ξ, space x, and time t. For sake of brevity, I

replace all f(ξ,x, t) with f and use the expanded form only when necessary. The Einstein summa-

tion convention is used in ξα∂αf(ξ,x, t). The C (f − feq) is the collision operator and feq is the

particle distribution at equilibrium. The collision operatorC is a linear function of (f − feq). The

macroscopic properties then are defined as the moments of the f

ρ =

∫
fdξ, (1.36)

ρu =

∫
fξdξ, (1.37)

ρkBT =
1

2

∫
f(ξ − u)2dξ. (1.38)

where u is the macroscopic velocity, T is the temperature, ρ is the mass density, kB is the Boltzmann

constant. It can be shown that the equilibrium distribution for an ideal gas feq takes a Maxwell-

Boltzmann form [22]

feq(ρ, ξ,u, T ) =
ρ

(2πkBT )d/2
exp

(
(ξ − u)2

2kBT

)
(1.39)

where d is the dimension. Writing out the moments of this equilibrium distribution function while

imposing conservation of mass, momentum, and energy, we see that the macroscopic variables indeed

turn out to be the moments of feq

ρ =

∫
feqdξ, (1.40)

ρu =

∫
feqξdξ, (1.41)

ρkBT =
1

2

∫
feq(ξ − u)2dξ. (1.42)

The moments of the collision operator C can also be determined applying conservation of mass,
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momentum, and energy

0 =

∫
C(f)dξ, (1.43)

0 =

∫
C(f)ξdξ (1.44)

0 =
1

2

∫
C(f)(ξ − u)2dξ. (1.45)

Now to derive the Lattice Boltzmann equations from 1.35, we need to discretize f in velocity space,

physical space, and time.

Velocity discretization

Hermite polynomials are a great candidate for discretization of the Boltzmann equation in phase/ve-

locity space as their generating function is a Gaussian resembling the form of the equilibrium dis-

tribution feq. In addition, they form a complete basis in R [20, 21]. It also can be shown that the

expansion coefficients of the series are directly related to the moments of the distribution feq. Thus,

using the Gauss-Hermite quadrature rule, one can recover the exact moments up to a certain degree

using a model with sufficient number of discrete velocities. For example, the truncated equilibrium

distribution

feq ≈ ρg(ξ)
{
1 + ξαuα + (uαuβ + (T − 1)δαβ) (ξαξβ − δαβ)

}
:= ρg(ξ)Q(ρ, ξ, T ), (1.46)

where g(ξ) is the Hermite generating function, would be a good approximation to recover macroscopic

behaviour of a simple fluid. Then, the discretized version of this distribution would take the form

feqi = ρwiQ(ρ, ξi, T ) = ρwi

{
1 + ξiαuα + (uαuβ + (T − 1)δαβ) (ξiαξiβ − δαβ)

}
. (1.47)

where wi is the quadrature weight associated with the ith discrete velocity. The change of variable

ei = ξi/
√
3 is typically done to avoid appearance of extra factors of

√
3 in the moments:

feqi = ρwi

{
1 +

eiαuα
c2s

+
(uαuβ + (T − 1)δαβ) (eiαeiβ − δαβ)

2c4s

}
. (1.48)

where cs is the speed of sound.

The first two moments are explicitly

ρ =

q−1∑
i=0

feqi (1.49)

ρuβ =

q−1∑
i=0

feqi eiβ (1.50)

where uβ is the βth component of the velocity. Different LB models in a d-dimensional space are

distinguished by the number of velocities q that they use which is reflected in the name of the model

DdQq. The most commonly used LB models are D1Q3 in 1D, D2Q9 in 2D, and D3Q15, and D3Q19

in 3D.
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The discretization of the distribution function f can be done similarly

fi(x, t) =
wi
g(ei)

f(ei,x, t) (1.51)

where g(ei) is added to satisfy the quadrature as fs do not necessarily have a Maxwellian form,

unlike feq. We can finally rewrite the Boltzmann equation with the discrete-velocity distributions

∂tfi + eiα∂αfi = Ci (1.52)

where Ci is the discrete collision operator.

Space and time discretization

The discrete-velocity Boltzmann Equation is a first-order hyperbolic partial differential equation

(PDE) which can be reduced to an ordinary differential equation (ODE) along the characteristic

curves x0α = xα − eiα∆t where eiα is the discrete velocity by which fi travels to neighbouring sites

(x0α + eiα∆t falls on a lattice site). Thus,

dfi
dt

:= ∂tfi + eiα∂αfi = Ci(x, t). (1.53)

This ODE can be integrated along the characteristics to get

fi(x+ ei∆t, t+∆t)− fi(x, t) =

∫ ∆t

0

Ci(x+ eis, t+ s)ds. (1.54)

Using the Euler’s method, one gets

fi(x+ ei∆t, t+∆t)− fi(x, t) = Ci(x, t)∆t (1.55)

which is known as the Lattice Boltzmann equation. The Lattice Boltzmann equation can also

be recovered using a second order discretization in space and time. We will discuss this and the

consequences in chapter 4.

A careful look at Eq. 1.55 reveals that the operations on the RHS all take place at time t and the

results are then propagated to the neighbouring sites at t + ∆t. Therefore, the lattice Boltzmann

algorithm is naturally divided into two steps:

1. A local step where distributions are repopulated after relaxation, known as the collision step,

2. The streaming step where the populations are propagated to the neighbouring sites.

Collision Operator

So far, I have used the linear collision operator Ci without discussing its exact form. The original

collision operator of the Boltzmann equation is a complicated integral accounting for binary colli-

sion of particles. Although there are methods suggested in the literature to numerically solve this

integral [23, 24], they tend to be computationally costly. Moreover, as it only accounts for binary

collisions, it is limited to modelling gases. One could instead use approximations for the collision
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operator that provide reasonable macroscopic results. The linearized collision operator, also known

as Bhatnagar–Gross–Krook (BGK) approximation, is the most commonly used approximation.

The most commonly used BGK collision operator is the single relaxation time

Ci = −1

τ
(fi − feqi ) (1.56)

where τ is the relaxation time [25]. This approximation usually provides satisfactory results and

it’s commonly used due to its simplicity. More complicated collision operators with multiple relax-

ation times can be introduced to improve stability and/or expand LBM to model more complicated

systems.

The Lattice Boltzmann Method (LBM) has been successfully used to study a wide range of

simple and complex fluids [26–29]. We further discuss the method and its history in chapter 4.

1.2.5 Phase-field

Phase-field models are a class of mesoscopic models used to describe materials with heterogeneous

structure [30]. The main characteristic/advantage of this modelling technique is the diffuse treatment

of interfaces. This approach allows tracking the evolution of the (multi-domain) system without the

need to track every individual interface which makes it faster and easier to implement and therefore

more attractive compared to conventional sharp-interface models.

The diffuse interface treatment of binary systems goes back over a century ago to van der Waals’s

liquid-gas model [31]. Later, Cahn and Hilliard derived an expression for the free energy of a flat

interface between coexisting phases using the diffuse interface approach and studied the spinodal

decomposition of the system [32]. Langer introduced the concept of non-conserved order parameters

for separating coexisting phases [33]. Allen and Cahn extended the Cahn-Hilliard approach to

non-conserved order parameters to study the kinetics of an interface, particularly an antiphase

boundary1[34]. The flexibility and capability of the phase-field method has made it a popular tool

to study microstructure evolution [35–37].

The applications of the phase-field method are usually divided into two types, one where the order

parameters correspond to well-defined physical quantities and the other where the field variables are

defined for the mere purpose of avoiding tracking of boundaries [37, 38]. The phase-field model used

in Chapter 3 to study the crystallization of PolyAmide-6 (PA6) falls into the second category. For

this purpose, I utilize the multiphase-field model introduced by Steinbach et al. and Nestler et.

al [35, 39–41]. In the rest of this subsection, I provide a brief introduction to the multiphase-field

model and leave more detailed description of the crystallization model for chapter 3.

For sake of simplicity, at this point I only apply the model to 2 phases and no bulk driving force.

In this case, the system can be described in terms of a single order parameter ϕ. The free energy of

such a system can be written as

F(ϕ,∇ϕ) =
∫
V

f(ϕ,∇ϕ)dr (1.57)

1An antiphase boundary (APB) refers to a specific interface within a crystalline material where there is a transition
between two regions characterized by opposite atomic arrangements. In other words, on one side of the boundary, the
atomic structure exhibits a specific pattern, while on the other side, it is the exact opposite arrangement
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where f is the free energy density, and

N=2∑
α=1

ϕα(r, t) = 1 (1.58)

where r is the position vector and t is the time. Thus, if phase 1 is described by ϕ, the second phase

would be described by 1− ϕ.

The free energy density can be split into two main contributions: interfacial and bulk

f(ϕ,∇ϕ) = fint(ϕ,∇ϕ) + fb(ϕ, c). (1.59)

For now, I ignore bulk contributions fb(ϕ, c) = 0 and the impact of conservative field c. The

interfacial contribution is defined as

fint(ϕ,∇ϕ) = ϵa(ϕ,∇ϕ) + 1

ϵ
ω(ϕ) (1.60)

where ϵ is a constant related to the length of the diffuse interface, and the first term on the RHS is

a(ϕ,∇ϕ) = γ12(∇ϕ · ∇ϕ) (1.61)

where γ12 is the interfacial energy density between two phases [42]. The most commonly used

potential terms ω(ϕ) are double-well and double-obstacle potentials:

ωwell(ϕ) = γ12ϕ
2(1− ϕ)2, (1.62)

ωobs(ϕ) = γ12ϕ(1− ϕ). (1.63)

Figure 1.2: The evolution of the phase field profile is shown. ϕ is initially 0 everywhere except at x = 10 where it
is 1. The phase corresponding to ϕ = 1 grows and the boundary between the phases moves into the domain until it
reaches its equilibrium (dashed pink curve)

Based on “model A” of Hohenberg and Halperin [30], the evolution equation of the non-conserved
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order parameter is
∂ϕ

∂t
= −1

ϵ
M12

δF
δϕ

(1.64)

where M12 is the mobility for interface between the two phases. Then, from variational calculus

[43], we have
∂ϕ

∂t
= −M12

ϵ

(
∂f

∂ϕ
−∇ · ∂f

∂(∇ϕ)

)
. (1.65)

Plugging in the free energy functional into this equation, we get the evolution equation of the

order parameter ϕ
∂ϕ

∂t
= −γ12

ϵ2
M12

(
ϕ(1− ϕ)(1− 2ϕ)− 2ϵ2∇2ϕ

)
(1.66)

when the double-well potential is used. As an example, the evolution of ϕ in 1D (x ∈ [0, 10] in

unit length) is shown in Fig. 1.2. The system is initialized so that ϕ(10σ) = 1 and ϕ is zero

everywhere else. We see that the phase corresponding to ϕ = 1 grows and the boundary between the

phases moves into the domain until it reaches its equilibrium (dashed pink curve). In chapter 3, we

will discuss the generalization of the phase-field model to many phases, namely, the multiphase-field

(MPF) model and how it can be utilized to study the crystal morphology of neat and fiber-reinforced

polymers.

1.2.6 Classical Density Functional Theory

The Classical Density Functional Theory (C-DFT) is based on the variational principle that the

functional derivative of the free energy with respect to density should be zero at equilibrium [44].

This method is found attractive by the scientific community as it recovers and connects microscopic

details of a system to its macroscopic properties, but it is computationally faster than molecular

simulations. Its formalism also has roots in statistical mechanics making the model mathematically

more robust compared to phenomenological models [45]. The model was originally adopted from

Hohenberg and Kohn’s Quantum Density Functional Theory (Q-DFT) and used to predict interfacial

behaviour of classical liquids at interfaces and near hard walls [46]. Since then the model has been

applied to a variety of physical phenomena such as phase transition [47], polymeric systems [48],

polymer nanocomposites [49, 50], and biological systems [45, 51].

Consider a system of N particles in the presence of external field ψ. The Hamiltonian for such

a system is defined as

H(rN ,pN ) = K(pN ) + U(rN ) + Ψ(rN ) (1.67)

where

Ψ(r) =

N∑
i=1

ψ(ri) =

∫
ψ(r)ρ(r)dNr. (1.68)

The microscopic density ρ(r) is then defined as

ρ(r) =

N∑
i=1

δ(r − ri) (1.69)
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with equilibrium value

ρ(1)(r) = ⟨
N∑
i=1

δ(r − ri)⟩. (1.70)

The angle brackets ⟨·⟩ shows ensemble averages and δ(r) is the Dirac delta function. From statistical

mechanics, the grand canonical potential of our system is

ΩG = F − µN = F +

∫
ψ(r)ρ(1)(r)dNr − µN (1.71)

where F is the intrinsic free energy. Now let us define a functional Ω of an average density n(r):

Ω[n(r)] = F [n(r)] +

∫
ψ(r)n(r)dNr − µ

∫
n(r)dNr (1.72)

where n(r) does not necessarily have to be the equilibrium density. It can be shown that for a

functional of this form the minimum of the functional occurs at the equilibrium phase space density

[52]. Moreover, the intrinsic free energy functional F can be proven to be a unique functional of the

equilibrium single-particle density ρ(1)(r). Therefore, from the combination of these theorems (also

known as Hohenberg-Kohn theorems), we have

ΩG = Ω[ρ(1)(r)] ≤ Ω[n(r)]. (1.73)

The above theorems and results provide a tool to calculate density profiles and the grand canonical

potential using variational calculus. But in order to do so, one has to know the form of the free

energy. The exact form of the free energy is only known for non-interacting hard spheres (ideal

fluids):

F id = kBT

∫
ρ(1)(r)

[
ln

(
Λ3ρ(1)

)
− 1

]
dr (1.74)

where Λ is the de Broglie thermal wavelength [52]. For more complicated systems, the free energy

functional needs to be approximated. As the exact form is known for ideal fluids, it seems logical to

split the free energy into the known ideal contribution, and an excessive part that contains all the

other contributions (due to interactions):

F = F id + Fex. (1.75)

As the excessive part is formally unknown, it needs to be approximated. Various approaches have

been introduced to approximate the excess free energy functional for atomic fluids and a detailed

description of such methods can be found in the literature [53, 54].

In the case of polyatomic molecules, finding the free energy functional is a trickier task as inter-

particle interactions are present even in the ideal case. In 1986, Chandler, McCoy, and Singer

extended the application of C-DFT to polyatomic systems using a segment-based method [55]. In

this model, the ideal free energy includes contributions from a gas of non-interacting polymers as

well as the intramolecular bonding between the particles while the excessive free energy contains all

the intermolecular couplings. The intramolecular correlation functions are determined using single

chain Monte Carlo simulations. The intermolecular correlation functions, on the other hand, are

expanded to a linear order around the uniform fluid reducing their calculation to finding the pair
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correlation functions of the bulk fluid. This is typically done using the Polymer Reference Interaction

Site Model (PRISM) which will be discussed in more depth in the next section. In this scheme, the

attractive interactions are usually dealt with using a mean-field approach. This version of C-DFT

shares conceptual similarities with the simpler self-consistent mean field theory with the advantage

of accounting for local packing effects.

The weighted density approximation (WDA) is commonly used to approximate free energy func-

tionals for both polymeric and atomic systems [49, 53, 54]. The main idea is to replace the density

ρ(r) with a local average density ρ̄(r) so that the excessive free energy could be well approximated

by a local function even when the local density may surpass that of close packing. In this case, the

average (smoothed) density is defined as

ρ̄(r) =

∫
dr′ρ(r′)w(|r − r′|r, ρ̄(r)) (1.76)

where w is a weight function. The excessive free energy then is

Fex [ρ(r)] =

∫
drρ(r)fex(ρ̄(r)) (1.77)

where fex is the nonideal free energy of a bulk fluid. A variety of weighting functions have been

developed for different physical problems leading to different versions of WDA [53].

1.2.7 Polymer Reference Interaction Site Model

In the previous section, I mentioned that the free energy functional is often split into two contri-

butions: ideal and excessive. I also mentioned that the excessive part is the contribution that is

formally unknown and needs to be either found from microscopic simulations or be approximated. It

can be shown that the excess free energy and grand canonical functionals are generating functionals

for a hierarchy of density correlation functions h(n)(rn) and direct correlation functions c(n)(rn),

respectively [52]. After some functional calculus and algebra, one can derive an integral equation,

famously known as the Ornstein-Zernike (OZ) relation, relating density and direct correlation func-

tions:

h(2)(r, r′) = c(2)(r, r′) +

∫
c(2)(r, r′′)ρ(1)(r′′)h(2)(r′′, r′)dr′′. (1.78)

where h(2)(r, r′) = g(2)(r, r′)− 1 and

g(2)(r, r′) =
1

ρ(1)(r)ρ(1)(r′)
⟨
∑
i

∑
j

δ(r − ri)δ(r
′ − rj)⟩ (1.79)

is the pair distribution function. In an isotropic system, g(2)(r, r′) only depends on the separation

|r− r′| and is specifically called the radial distribution function or g(r). The direct pair correlation

function c(2)(r, r′) is defined as the functional derivative of the single-particle direct correlation

function c(1)(r)

c(2)(r, r′) =
δc(1)(r)

δρ(1)(r′)
= − 1

kBT

δ2Fex
[
ρ(1)

]
δ2ρ(1)(r)

(1.80)
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where

c(1)(r) = − 1

kBT

δFex
[
ρ(1)

]
δρ(1)(r)

. (1.81)

The OZ equation can be solved recursively to get

h(2)(r1, r2) = c(2)(r1, r2) +

∫
c(2)(r1, r3)ρ

(1)(r3)c
(2)(r3, r2)dr3

+

∫ ∫
c(2)(r1, r3)ρ

(1)(r3)c
(2)(r3, r4)c

(2)(r2, r4)dr3dr4

+ . . . . (1.82)

This shows that the correlation between two particles is a result of their direct correlation plus an

indirect correlation through their interaction with other particles in the medium.

The above equations are derived for atomic fluids. Andersen and Chandler extended the idea to

molecular fluids and introduced the Reference Interaction Site Model (RISM) [56, 57]. Schweizer and

Curro further generalized the RISM to describe polymeric fluids resulting in the Polymer Reference

Interaction Site Model (PRISM) [58, 59].

In the RISM formalism, each molecule is represented by spherically symmetric interaction sites

and the structure of the fluid is described in terms of site-site distribution functions. As the inter-

action sites on a molecule can interact with the other sites on the same molecule as well as sites on

other molecules, the governing equations of the PRISM are generalized OZ equations that relate the

site-site intermolecular pair correlation function hij(r) to intramolecular pair correlation function

wij(r) and direct correlation function cij(r):

h(r) =

∫
dr′
∫
dr′′w(|r − r′|)c(|r − r′′|)

(
w(r′′) + ρ(1)h(r′′)

)
(1.83)

where h(r), c(r), and w(r) are N×N matrices (for N total sites) with site-site correlation functions

hij(r), cij(r), and wij(r) as elements. This equation is commonly presented in its Fourier space

form for sake of simplicity:

ĥ(k) = ŵ(k)ĉ(k)
(
ŵ(k) + ρ(1)ĥ(k)

)
(1.84)

where the hat sign shows the functions in Fourier space and k is the wavevector. Detailed derivation

of the RISM/PRISM equations can be found in the literature [52].

Since the correlation functions in 1.83 are unknown, a closure relation, relating h(r), w(r), c(r)

and the intermolecular potential, is required. There are different closure relations that one can

use depending on the physical system. The closure relations are divided into two classes of atomic

and molecular. The Percus-Yevick (PY), Hyper-netted chain (HNC), and Martynov-Sarkisov (MS)

are the commonly used atomic closures [60]. The site-site PY approximation relates the direct

correlation function to the pair distribution function

cij(r) =
(
1− eβUij

)
gij(r), |r| > dij (1.85)

where β = 1/kBT , Uij is the total site-site interaction potential, and dij is the distance of closest

approach between site i and j.
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On the other hand, the site-site HNC describes the direct correlation function as

cij(r) = hij(r)− ln

(
gij(r)

)
− βUij(r), |r| > dij . (1.86)

Certain closure approximations perform better for certain systems and conditions. For instance,

the HNC closure has proven to be more accurate than the PY closure when Coulomb interactions

and significant disparities in site diameters are present. On the other hand, the PY closure typically

yields more accurate predictions when hard-core and short-range pairwise interactions are the only

interactions in the system [60].

Molecular closure relations were invented to incorporate chain connectivity correlations (man-

ifesting in w(r)) and tackle some inconsistencies arising from using atomic closure relations [61].

For polymer nanocomposites, it has been shown that the Percus-Yevick (PY) closure for polymer-

polymer and polymer-particle sites with the Hyper-netted chain (HNC) for the particle-particle

sites provides reasonable results [49, 50, 59, 62–65]. Recently, a new closure approximation, known

as triple-modified Verlet (MV), was introduced by Zhou and Schweizer that showed improvements

compared to combined PY-HNC method [66].

One of the challenges of generalizing the RISM formalism to polymers is the dependency of

hij(r) and wij(r) on each other. Originally, this was overcome by the ideal chain assumption and

Flory ideality theorem [49, 50, 59, 62–65, 67–70]. Although this is a reasonable assumption for

homopolymer melts, in other cases, the nonideality and excluded volume effects play an important

role and need to be considered. For this purpose, a self-consistent PRISM model was introduced

by Schweizer, Honnell, and Curro [71]. This model is being used to study homopolymer melts, and

polymer-nanoparticle melts with bare and grafted particles as well as anisotropic particles [72–76].

1.2.8 Self-Consistent Mean-Field Theory

Generally, in field-theoretic approaches, a free energy F is defined as a non-local functional of one

or more potential fields ψ(r) [77]. Then, the partition function of the system is expressed as a

functional integral of the Hamiltonian:

Z =

∫
e−F [ψ] Dψ (1.87)

where
∫
Dψ is the integral over all possible functions ψ(r). By extension, the ensemble average of

some observable A is defined as

⟨A⟩ = 1

Z

∫
eF [ψ]A[ψ] Dψ. (1.88)

Evaluating the above equations for practical models of fluids is difficult and cannot be done in

closed form. Therefore, approximations are necessary to be able to utilize these equations and find

the thermodynamic variables of interest. The mean-field approximation, commonly referred to as

Self-Consistent Mean-Field Theory (SCMFT) in the polymer community, is one way to do so. This

approximation is based on assuming that a single field configuration ψ0 dominates the integrals

above. The free energy functional F [ψ] is typically generalized to be complex and since we have an
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exponential integrand, then the mean-field ψ0 corresponds to the saddle points of F such that

δF [ψ]

δψ(r)

∣∣∣∣
ψ=ψ0

= 0. (1.89)

Due to neglect of all other configurations (i.e. coarse-graining or homogenizing), mean-field models

do not determine density correlations. Consequently, they do not successfully treat local packing

or interaction effects in dense melts [49]. SCMFT is however relatively accurate when dealing

with polymer melts at the mesoscale due to screening effects of intermolecular interactions. This is

especially true for systems of concentrated high-molecular-weight polymer melts as the concentration

fluctuations become insignificant [78].

The effective Hamiltonian is typically a function of the local density ρ(r). Therefore, Self-

Consistent Mean-Field Theory relates the local density and mean-field potential. By solving the

SCMFT equations, one finds the density profile for the system. This is similar to Classical Density

Functional Theory in that the structure and thermodynamic properties of the system are described

in terms of a local density function [78, 79]. The difference lies in how the effective Hamiltonian or

Free energy functional is defined and treated. Further information on Self-Consistent Mean-Field

Theory models in different context and its relation to Classical Density Functional Theory (C-DFT)

can be found in the literature [50, 77, 78, 80, 81].

1.2.9 Continuum models

In the models considered so far, the internal structure of materials at nano- or meso-scale was explic-

itly taken into account. Another class of modelling tools, perhaps the oldest, known as continuum or

micromechanical models exist that study mechanics of materials as continuous media. The idea of a

representative volume element (RVE) is central to such models as it has to statistically represent the

local mechanical properties [82]. Micromechanical models have the capability of including interfaces,

discontinuities, and couple mechanical and thermodynamic properties.

In the context of fiber-reinforced polymers, linear elasticity is usually assumed for both the fibers

and the polymeric matrix:

σf = Cfεf (1.90)

σp = Cpεp (1.91)

where σ is the stress tensor, C is the stiffness tensor, and ε is the strain tensor. The superscripts f

and p stand for fiber and polymer, respectively. As the microstructures are homogenized or coarse-

grained in such models, they usually ignore the interfacial matrix-fiber effects and only work with

average stress σ̄ and strains ε̄:

σ̄ =
1

V

∫
σ(x)dx, (1.92)

ε̄ =
1

V

∫
σ(x)dx. (1.93)

A linear relation between the average stress and strain, like the component-wise quantities, is con-
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sidered:

σ̄ = Cε̄ (1.94)

The total average stress and strain is then assumed to be the superposition of contributions from

the fibers and the matrix:

σ̄ = vf σ̄
f + vpσ̄

p, (1.95)

ε̄ = vf ε̄
f + vpε̄

p. (1.96)

where vf and vp are the volume fractions of the fiber and polymer. The concentration of stress

and strain at the fiber is associated with tensors that relate the stress and strain of the fiber to the

average stress and strain:

ε̄f = Aε̄, (1.97)

σ̄f = Bσ̄. (1.98)

Finite Element, Halpin-Tsai, Mori-Tanaka, and Equivalent-continuum models are some of the pop-

ular continuum models used for polymer-fiber composites. As the next chapters of this thesis are

mostly focused on micro- and meso-scale models of polymer-fiber composites, I do not go into details

of continuum models. The more in-depth descriptions of such models can be found in the literature

[82–87].

In section 1.2, a brief discussion of the theoretical foundations of different modelling approaches

that are commonly used in studying fiber-reinforced polymers was provided. The subsequent section

will summarize studies conducted in the field of polymer composites and polymer nanocomposites

using these methods.

1.3 Application of Mathematical methods in polymer com-

posite modelling

In the last quarter century, there has been significant attention from both industry and academia

towards polymer nanocomposites, driven by their superior properties when compared to polymer

blends. In this section, I provide a survey of the literature in the field with a focus on theoretical

and computational studies. I would like to note that this list is not exhaustive and studies most

relevant to the topic of the thesis are presented here. However, there are excellent review articles

available for interested readers [50, 82, 84, 88–91].

1.3.1 Molecular Dynamics

In the field of polymer nanocomposites (PNCs), ab initio Molecular Dynamics simulations are con-

ducted to analyze interfacial interactions between nanofillers and polymers [92], and to calculate

structural and electronic properties [93–95]. However, AIMD is most commonly used to parametrize

MD force fields [84, 90]. The force fields then can be used in all-atom Molecular Dynamics simula-

tions to study polymer nanocomposites.
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All-atom Molecular Dynamics simulations are a popular tool for studying and predicting prop-

erties of nanocomposites with specific chemistry. Schwab and Denniston studied the curing and

thermodynamic properties of a UPPH resin by means of all-atom Molecular Dynamics [96]. The

measured material properties from their simulations showed good agreement with reported values

for the same class of material. In a follow-up work, Schöller et al. investigated the impact of fiber

surface and sizing on the distribution and degree of crosslinking [97]. They found that adding the

fiber surface reduces the diffusivity in the normal direction to the surface resulting in a lower overall

conversion degree of the radical reaction of the final system, compared to a pure resin.

Milano et al. investigated the interfacial behaviour of Polystyrene and gold nanoparticles with

and without coating by performing all-atom MD simulations [98]. They observed ordering of polymer

chains at the interface of the nanoparticles in both cases. However, the ordering was less significant

for the coated nanoparticles.

Ndoro and colleagues studied the interfacial properties of grafted and ungrafted silica nanoparti-

cles in a Polystyrene matrix using all-atom MD [99]. Their nanoparticles were spherical and grafted

polymer chains had the same length as the matrix chains. They found that flatter surfaces induce

more structure compared to ones with more curvature. They also found that higher densities of

grafting limits penetration of matrix chains, as one would expect.

All-atom MD provide a great insight into the interfacial and microscopic properties of PNCs.

However, systems that are of industrial interest are at much larger length and time scales and it

is not clear how the microscopic interfacial behaviours affect the overall properties of the material.

One way to bridge between different length scales is by coarse-graining as defined previously.

coarse-grained Molecular Dynamics (CGMD) is another class of MD simulations that is com-

monly used in the field of polymer composites and nanocompsites [82, 89, 90]. Starr et al. studied

the structural and conformational effects as well as the dynamics of systems with attractive and

repulsive polymer-nanoparticle interactions [100]. To this end, they conducted CGMD simulations

of a single icosahedral nanoparticle embedded in a polymer melt. They found that the chains near

the nanoparticle surface are elongated and flattened. This behaviour was found to be almost inde-

pendent of temperature, or the interaction nature and strength, for the range of interactions applied

in their study.

Liu et al. studied the impact of polymer-nanoparticle interaction, nanoparticle size, and nanopar-

ticle loading on the interfacial properties of polymer nanocomposites [101]. They found that the

nanoparticle interfacial layer consists of different segments of different polymer chains which was

found to be in good agreement with experimental results of Chen et al. [102].

One of the main barriers in producing high performance PCs and PNCs is the phase separation

of the reinforcement agents from the matrix. Smith and colleagues investigated the nanoparticle

aggregation and depletion effects of spherical nanoparticles in an unentangled melt by means of

CGMD simulations [103]. They used two or five nanoparticles in their simulations. They determined

the potential of mean force of the nanoparticles as a function of molecular weight and strength of

the polymer–nanoparticle interaction. For weaker nanoparticle–polymer interactions, they observed

strong depletion effects caused by the polymer matrix that promoted aggregation. An analysis of the

nanoparticle second virial coefficient showed that nanoparticle aggregation increased with molecular

weight for relatively weak polymer–nanoparticle interactions.

The shape of nanoparticles can play an important role in the properties of the composite. Toep-
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perwein et al. studied the impact of inclusion of nanorods on the structure and entanglement

network of a polymer matrix [104]. For this purpose, they utilized MC and CGMD simulations. All

interactions in the system (i.e. rod-rod, polymer-polymer, and rod-polymer) were attractive. The

polymer-nanorod interactions were stronger to mimic a more realistic system (i.e. ϵpp = ϵnn ≤ ϵnp).

They found that increasing the aspect ratio of the nanorods promotes their cluster aggregation.

Performing a primitive path analysis [105], they also found that the inclusion of nanoparticles does

not alter the underlying primitive path mesh of the polymer itself. They then concluded that me-

chanical enhancement in polymer nanocomposites should not be associated with the alteration in

the polymer network but with contact and entanglement of the polymer and the inclusion.

Using coarse-grained Molecular Dynamics, Gao et al. investigated the effect of inter-component

interaction strength, temperature, filler concentration, cross-linking density, external shear, aspect

ratio, and nanorod grafting on the dispersion patterns and kinetics of polymer nanocomposites [106].

For a system in which the polymers were attracted to both rods and polymers, and rods repelled

rods, they found that there exists an optimum polymer-rod attraction strength that promotes good

dispersion. On the other hand, adding attractive interactions between the rods facilitated formation

of nanorod clusters. They also examined the impact of nanorod loading on the dispersion for the

system with attractive nanorod-nanorod interactions. They varied the loading from 4.7% to 36.3%.

They observed an increase in aggregation with increase in nanorod loading. Moreover, they found

that higher cross-linking density or adding an external shear can be used to improve dispersion of

the nanorods.

In a recent article, Lu, Wu, and Jayaraman conducted coarse-grained Molecular Dynamics sim-

ulations on polymer-rod nanocomposites with homogeneous and patchy surface to understand the

effect of nanorod design on final PNCs morphology [107]. In this study, the polymer-polymer, and

polymer-nanorod interactions were purely repulsive while the nanorods interacted with an attrac-

tive potential. For short nanorods, they observed percolated nanorod structure for the system with

patchy rods whereas the simple nanorods phase-separated to a cluster. In the case of long nanorods,

both designs exhibited formation of ordered aggregates, either finite-sized or percolating. They also

looked into the conformation of polymers at the nanorod interface where they discovered that al-

though the average radius of gyration (Rg) of the polymers remained the same as that of a pure

melt, the interfacial chains stretched out and expanded.

Li et al. studied the morphology and mechanical properties of polymer-nanorod composites

where nanorod networks are formed due to nanorod attractive interactions [108]. They found that

in the presence of the nanorod networks, the stress transferred along the backbone of the network

rather than the polymer-nanorod interface. Moreover, they observed improved nanorod structures

upon increasing the nanorod volume fraction as well as increasing the length-to-diameter ratio which

in turn, led to improved mechanical properties.

CGMD is a great tool to study properties material at larger scales than All-atom MD. However,

even at this level of CGMD, performing simulations of highly concentrated PNCs is quite costly.

Therefore, such systems have been studied less compared to dilute systems.

1.3.2 Monte Carlo

Monte Carlo (MC) technique is a stochastic method that is used to study interfacial behaviour and

structural properties of PNCs [109–118].
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In a series of papers, Vacatello utilized MC simulations to study structural properties and chain

dimensions of polymer melts in the presence of spherical particles [111, 112, 119]. They studied

the impact of particle diameter, and particle volume fraction. They observed that the interfacial

polymer segments were densely packed near particle surface similar to planar solid surfaces. The

average size of the polymer chains was found to decrease in the presence of particles regardless of

the size of the particle. They also examined the order parameter of chain segments (of size 5 beads)

with respect to nearest particles and concluded that the interfacial segments align with the surface

of the particle.

Termonia studied the conformation of polymer chains at the nanoparticle interface for dense

melts of high molecular weight [120]. They used a Lattice Monte Carlo with the unit lattice length

being equal to that of a statistical segment for the chains. Their results showed the presence of an

interfacial region within which the chains orient tangentially to the filler surface. In addition, they

studied the polymer density as a function of the distance from the filler surface. They found that

in the interfacial region defined above the density of the polymer is lower. However, the density of

the chain-ends were found to be higher in this region.

Pandey et al. studied the conformational characteristics of a Polyethylene melt near a silica

slab and highly curved silica nanoparticles using preferential sampling techniques [121] combined

with a connectivity-altering Monte Carlo algorithm [122]. They examined the local density of the

polymer in proximity of the filler surface. They observed that an increase in the curvature of the

particles (decrease of radius) results in a decrease in the length of the train segments (sequences in

actual contact with the surface [123]). However, the number of polymer segments in contact with

nanoparticles increased. They found that the increased number of contacts stems from more chains

interacting with the particle (not different segments of the same chain.) This also appeared to affect

the influence of curvature on the bound layer (interfacial region) thickness. Compared to previous

studies, Pandey and coworkers observed a more modest decrease in the bound layer thickness as a

result of increased curvature.

The number of Monte Carlo studies dedicated to systems of polymer-nanorod mixtures is un-

derwhelming compared to that of polymer-nanoparticle systems. Savenko and Dijkstra studied the

phase behaviour of a polymer-nanorod system for different polymer-to-nanorod diameter ratios. In

this study, they conducted Monte Carlo simulations of a polymer-nanorod system using an effective

Hamiltonian that accounted for the effect of the polymer matrix implicitly [124]. The polymers

were assumed to be noninteracting but excluded from the surface of the rods by a distance equal

to their radius of gyration. Their phase diagrams showed regions of the isotropic (I), nematic (N),

smectic-A (Sm), and crystalline (K) phases. They observed that the phase diagram for large poly-

mer chains exhibits an isotropic gas-liquid type phase separation. Moreover, the phase diagram

showed I-N-Sm and I-Sm-K triple points and broad coexistence of I-N, I-Sm, and I-K phases. A

decrease in the polymer-to-nanorod diameter ratio resulted in a shift of the I-N-Sm triple point to

higher values of polymer packing fractions leading to a broad I-K coexistence region. At the lowest

polymer-to-nanorod diameter ratio, they observed an I-N-K and an N-Sm-K triple point.

Jiang and colleagues studied physical and optical properties of films of gold nanorods and Poly(2-

vinylpyridine) using transmission electron microscopy (TEM) and MC simulations [125]. They

observed that the dispersion of nanorods evolves from side-by-side alignment to end-to-end linking

as the volume fraction of the nanorods is increased.
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Monte Carlo methods provide a computationally efficient approach to study equilibrium prop-

erties of PNCs. However, MC simulations have been less commonly employed to investigate the

structural characteristics of dense mixtures of nanoparticles and polymers. This is due to the in-

herent difficulties in executing moves that involve nanoparticles. As a result, MC simulations have

been predominantly employed in scenarios where nanoparticles remain stationary.

1.3.3 Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD) is a popular mesoscopic method to study soft matter [16, 17,

126]. Polymers and polymer nanocomposites have not been an exception [50, 82, 127–130].

Lin et al. studied the self-assembly of grafted nanoparticles (i.e. nanoparticles with polymer

chains grafted onto them) with different shapes [131]. The results showed a positive relationship

between the length (Lg) and number (Ng) of grafted polymers with the dispersion of the nanoparticle,

i.e. dispersion improves when Lg and Ng of grafted polymers is increased. Different superstructures

were observed for different nanoparticle geometries. In the case of nanorods, spherical structures

formed at low Lg and Ng and transformed to side-by-side packing as length and number of grafted

polymers was increased. The interplay of enthalpic solvophilicity and excluded volume effect resulted

in “fillet-like” shapes at large Ng and small Lg while at large Ng and Lg, ribbon-like structures

appeared (see Fig. 7 in Ref. [131]). Further increase in the length and number of grafted chains led

to complete dispersion of the nanorods in the polymer.

Khani and coworkers studied the self-assembly and phase behaviour of grafted nanorods in a

homopolymer matrix [132]. The length and density of grafted chains as well as graft-matrix in-

teractions were chosen as control parameters. For a non-interacting graft-matrix system, at low

grafting densities, the graft length did not have a significant impact on the phase behaviour leading

to the conclusion that the depletion forces are dominant in this limit. However, beyond this limit,

increasing the length and density of the grafted chains resulted in better dispersion due to the bal-

ance between excluded volume and depletion effects. The graft-matrix attractions did not affect the

dispersion patterns at low grafting densities. But they observed a larger dispersion window with

dispersion occurring at relatively lower degrees of grafting when the attractions were stronger. Rich

and complicated structures were observed in the presence of repulsive forces between the matrix and

the grafted chains.

Dissipative Particle Dynamics is a mesoscopic method that recovers hydrodynamics and can be

applied to larger time scales than molecular simulations as it allows for larger time steps. However,

like any coarse-grained model, care should be taken setting parameters to get correct hydrodynamic

behaviour. DPD was originally proposed as a method to simulate fluids on a mesoscale. However,

it is more often used as a momentum conserving thermostat (e.g. in place of Langevin thermostat)

in Molecular Dynamics simulations.

1.3.4 Classical Density Functional Theory

Classical Density Functional Theory (C-DFT) has been used to study the depletion effects in

polymer-nanoparticle systems [49, 133–135]. Patel and Egorov conducted C-DFT simulations of

two hard spheres in a solution of freely jointed polymers [133, 134]. They measured the colloid-

colloid excess mean force, potential of mean force, and the second virial coefficient for different
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polymer densities, chain lengths, and colloid/polymer size ratios. They observed an increase in the

depletion attraction, pushing the spheres closer, when the density was increased. The colloid-colloid

second virial coefficient was found to monotonically decline with the solution density. For a specific

density, however, the second virial coefficient decreased when either the polymer chain length or the

colloid size was increased, corresponding to higher tendency towards forming colloidal aggregates

for larger colloids or longer chains.

Frischknecht and Yethiraj performed the first three-dimensional DFT calculations to determine

two- and three-body interactions among nanoparticles in an athermal polymer melt [136]. They

found three-body interactions to have a significant role in such systems even with purely repulsive

interactions. They then conclude that systems of polymer nanocomposites cannot be modelled

accurately unless these interactions are accounted for.

Shou et al. studied morphological properties of a rod-diblock copolymer system using a SCMFT/DFT

technique [137]. They found that the aspect ratio of the rods affects their spatial distribution. A

transition from cylindrical to lamellar morphology was observed when the length of the rods was

increased. To determine the mechanical properties of the mixture, the final configuration of the

simulations were imported into a Lattice Spring model and the elastic response of the system was

measured. They found that higher rod aspect ratios result in an improvement of the Young’s mod-

ulus.

Bryk developed a DFT model to study mixtures of polymer and hard rods [138]. The model was

then applied to study the phase separation of such systems. A demixing similar to hard-sphere-rod

systems is predicted. They observed that the critical packing fraction decreased as a function of the

chain length.

1.3.5 Polymer Reference Interaction Site Model

Hooper and Schweizer performed Polymer Reference Interaction Site Model (PRISM)-based sim-

ulations of a pair of spherical nanoparticles in a homopolymer melt and studied the structural

properties of the system [63]. They investigated the impact of the particle-to-monomer size ratio,

chain length, and monomer-particle interaction strength and range. They observed four nanoparticle

arrangements. For weak polymer-particle attractions, direct contact aggregation of the particles was

dominant due to depletion effects. At moderate attraction ranges, polymer-bridged contact between

the particles was observed while for long range attractions, a stable polymer bound layer around

the nanoparticles was formed and led to steric stabilization. For long range and strong attractions,

They found particles arrangements similar to polymer-bridged case but this time with a bound layer

around the particles. This configuration was called a tele-bridged configuration.

Hall and Schweizer extended the application of PRISM to study the morphology and phase

behaviour of anisotropic nanoparticles in a dense absorbing polymer melt [139]. They compared the

result for 3 nanoparticle geometries, namely, rods, disks, and cubes. At the infinitely dilute regime,

the second virial coefficient curves as a function of interaction strength took a concave shape with

small variations in the middle and sharp declines at low and high interaction strengths. This was

associated with depletion effects at low interaction strengths, steric stabilization at intermediate

strengths, and polymer-induced bridging at high strengths. In this work, they also studied the

effect of nonzero filler concentration on the nanoparticle Potential of mean-field, and depletion and

bridging induced phase separation. However, the filler concentration and aspect ratio (for the rods)
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were picked under the threshold for isotropic-nematic transition which were not addressed in this

work. They observed that the miscibility region broadened (larger range of interaction strengths)

with a decrease in the dimensionality of the nanoparticles (cubes being least miscible). The tendency

to phase separation via polymer bridging showed a monotonic behaviour as a function of nanoparticle

dimensionality, i.e. rods required a much higher interfacial attraction to induce strong bridging.

Tripathy and colleagues studied the structure and phase behaviour of athermal and attractive

nanorods in a dense polymer matrix [140]. They studied polymers of diameter d = 0.5 and rods with

diameters, D = 0.5, 1, 2, and 5 (in LJ units). The aspect ratio of the rods was varied in the range

of 1 to 100. The polymer nanocomposite has a total volume fraction of 0.4, and the volume fraction

of nanoparticles was 0.004. They observed nanoparticle arrangements similar to those described by

Schweizer et al. [63, 139]. However, they found the limits of these regimes sensitive to the aspect

ratio, surface roughness, and nanorod thickness. The region of miscibility between depletion-driven

and bridging-driven phase separations diminished rapidly with increasing aspect ratio, particularly

when the interactions between polymer and nanoparticles were attractive.

In a follow-up work, they compared the structure and phase behaviour obtained from PRISM

theory and MD simulations of 1% volume fraction of nanorods in a polymer melt [141]. They found

that PRISM theory predicts a slower narrowing of the dispersion window as a function of nanorod

aspect ratio which was attributed to using the equivalent-site approximation for rigid rods.

Polymer Reference Interaction Site Model has been widely used to study dispersion and mor-

phology of PNCs. The advantage of using PRISM lies in equilibrium nature of the model as the

equilibration time of polymer nanocomposites systems, especially in the presence of long polymer

chains, is considerably long. However, PRISM theory has limitations when applied to PNCs. As

a liquid-state theory, PRISM cannot predict the behaviour of the crystalline state, particularly at

higher filler loadings [60].

1.3.6 Self-Consistent Mean-Field Theory

Self-Consistent Mean-Field Theory (SCMFT) has commonly been used to study phase behaviour

of polymer nanocomposites [49, 50, 82, 142–148]. Surve et al. studied the polymer adsorption

characteristics, pair-interaction potentials, and phase and percolation behaviour of a mixture of

spherical nanoparticles in a polymer melt using a combination of Self-Consistent Mean-Field Theory

and McMillan-Mayer framework [149]. For low polymer concentrations, their results showed a phase

separation between the polymer and nanoparticles due to a bridging attraction while at higher

polymer concentrations, the mixture was stabilized by the polymer excluded volume effects. The

particle-to-polymer size ratio was found to directly affect the pair interactions and phase behaviour

such that smaller particles improved the stability of the mixtures.

They further extended their model to study the phase behaviour of polymer-nanorod systems

[150]. The effect of polymer adsorption strength, polymer concentration, the relative sizes of rods

and polymer, and rod aspect ratio on the isotropic-nematic phase transition as well as percolation

transition was studied. In the presence of non-adsorbing polymer, they found that the depletion

forces led to a large two-phase region, expanding with increased polymer concentration. On the

other hand, the addition of adsorbing polymers resulted in a more diverse phase behaviour, with

high polymer concentrations causing repulsive interactions that stabilized the rods. At a fixed

volume fraction of rods and polymers, they observed the dispersion to go from immiscible at weak
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interactions to stable and then immiscible again as strength of polymer-particle interaction was

increased. Further increase of the interactions led to another stable phase for the highest attractions.

This phase behaviour was called “reenterant”.

Self-Consistent Mean-Field Theory is highly effective for describing long-wavelength concentra-

tion patterns. However, due to its mean-field nature, the intermolecular pair correlations are not

determined. This limits the ability of the method to address local packing or polymer-particle

interfacial behaviour.

1.3.7 Summary and Motivation

In this section, I reviewed some of the computational and theoretical studies that have been done

in the field of polymer composites and nanocomposites. A majority of the literature is dedicated

to understanding systems of spherical particles in a polymer matrix under athermal conditions (i.e.

only excluded volume interactions were applied). In addition to depletion forces, the structural

properties of the polymer chains at the interface and the phase behaviour of the mixtures were

investigated. In spite of providing a great insight into depletion effects, athermal systems are not

commonly adopted in practice due to poor performance. Some of the studies mentioned above

examined the impact of polymer-particle and particle-particle attractions on the phase behaviour

of polymer nanocomposites. The presence of such interactions and their interplay with depletion

effects was found to significantly affect the phase and mechanical behaviour of the system.

Surface treatments like functionalization or adding sizing agents not only result in more uniform

dispersion of nanoparticles but also improve the interfacial interactions between the rods and the

polymer matrix which is critical for achieving good mechanical properties [3, 151–154]. Stronger

interfacial adhesion facilitates the stress transfer from the matrix to the nanorods thus improving the

interfacial shear stress (IFSS) strength and performance of the nanocomposite [155–159]. Therefore,

it is interesting and useful to investigate polymer nanocomposites (PNCs) systems with attractive

polymer-rod interactions. In chapter 2, we study the phase behaviour of a polymer-nanorod melt

where the interactions between the polymer and the nanorods is attractive. Additionally, we inves-

tigate the interfacial behaviour of the polymers at the nanorod surface.

High- and ultrahigh-density (>50%) polymer nanocomposites have been less studied due to the

practical difficulties in their production. However, recently several methods have been implemented

to overcome some of these barriers [160–162]. Moreover, performing simulations, especially molecular

simulations, of dense systems of polymer nanocomposites were too computationally costly until

recently. Therefore, most of the computational studies have focused on dilute systems. It has also

been shown that high- and ultrahigh-density polymer nanocomposites exhibit exceptional properties

such as improved toughness [163] and have potential to be used in energy storage and conversion

devices [164]. Therefore, they are of high interest. Since both lower and higher concentrations are

practically relevant, it is important to understand the impact of concentration on the properties of

a polymer-nanorod composite system and discover any possible behaviour changes from lower to

higher concentrations. Hence, in chapter 2, we utilize coarse-grained Molecular Dynamics (CGMD)

simulation to study the effect of concentration on the phase behaviour of a polymer-nanorod melt

over a wide range of concentrations up to 0.44 particle fractions.
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1.4 Models of polymer crystallization

Crystalline polymers are versatile materials with many applications. For example, polyethylene

is known for its excellent chemical resistance and is used in pipes and tubes to transport water

and chemicals. Dry-cleaning covers are also thin films of polyethylene. Other examples include

polypropylene which is often used for packaging, polyamides and polyesters which play an important

role in the fashion industry and clothing [165].

Unlike small molecules, polymeric materials never reach 100 percent crystallinity and therefore

are usually referred to as semi-crystalline polymers. As the degree of crystallinity directly impacts

the properties of the product, there has been a lot of effort dedicated to understand mechanisms of

polymer crystallization experimentally [166–168], computationally [169–171], and theoretically [165,

172–174].

As the conditions of processing affect the crystallization of the polymer, it is important to

understand the kinetics of crystallization to be able to predict the degree of crystallization of the

final product. A long line of kinetic theories of polymer crystallization started with Avrami equation

which was independently derived by Andrei Kolmogorov in 1937, Melvin Avrami in 1939, and Robert

Franklin Mehl and his graduate student W.A. Johnson in 1939 [175–177]. The original Avrami kinetic

equation was derived based on an instantaneous nucleation assumption, that is, a certain number

of germ nuclei exist at the beginning which may, or may not, grow into crystalline grains through

the process. Two modes of transformation are considered: growth and ingestion by growing nuclei

of crystals. Then, the changes in the number of germ nuclei N(t) can be related to the volume of

the new/crystalline phase by

N(τ) = N̄(1− V (τ)) (1.99)

where N̄ is the initial number of germ nuclei, τ = ndt is the characteristic time and n is probability of

formation of growth nuclei per germ nucleus per unit time, and V (τ) is the volume of the new phase

per unit volume of space. Avrami then defined extended volumes Vex based on the Taylor expansion

of the functional V [N(τ)] in terms of N . Conceptually, these extended volumes correspond to the

volume of the growing nuclei without considering any overlap between them (undisturbed nuclei).

Avrami showed that if there are N(t′) nuclei at time t′ that each grow to volume v(t, t′) at later

time t, then the total transformation volume is found to be

Vex(t) =

∫ t

0

N(t′)v(t, t′)dt′ (1.100)

where Vex(t) is the total (extended) volume. In the subsequent paper, he considered the case where

the centre of the grains are randomly distributed. Using this assumption, he derived a relation

between the transformed volume and the extended volume as

V = 1− exp(−Vex). (1.101)

Often in the literature, it is mentioned that the Avrami equation (Eq. 1.101) is specific to isothermal

conditions despite the fact that it is explicitly mentioned in the original papers that no condition

was used to derive the above equation except for the local random distribution of grains [172, 178].
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Figure 1.3: The Hoffman-Lauritzen model and relevant dimensions are illustrated.a and b are the width and thickness
of the stem, respectively. L is the length of the growth front, and d is the length of the stem. g shows the rate of
lateral growth and G shows the rate of perpendicular growth (crystal growth rate) [188].

However, he further derived the equations for the isothermal case arriving at the equation below:

V (t) = 1− exp (−k(θ)tm) (1.102)

where V is the relative crystallinity (transformed volume) at time t, m is the Avrami index, θ is

the temperature, and k is the isothermal crystallization rate accounting for nucleation and growth

rate. Eq. 1.102 although successful in providing a clearer picture of crystallization mechanisms, has

limited application in modelling crystallization during processing of materials as such processes are

almost always non-isothermal. This was the motivation for introducing non-isothermal models such

as Ozawa and Nakamura models [179, 180].

Another theory broadly used in the polymer community to model crystallization is the Hoffman-

Lauritzen (HL) model [173, 181, 182]. In the framework of classical nucleation theory [174, 183,

184], this model was proposed to theoretically describe the crystallization of linear polymer chains

into chain-folded lamellae observed in the experiments by Keller et al. and other groups in the late

1950’s [185–187]. In this model, the crystallization starts with deposition of a polymer segment onto

a crystal surface. The polymer segments that crystallize onto the substrate are called stems and are

used to describe the crystallization process. In this sense, the HL model is a coarse-grained model.

An illustration of the HL model is shown in Fig. 1.3.

After the formation of the first stem, the attached segments fold regularly next to each other

and grow in the lateral direction g. If σl and σf are respectively the lateral and folding surface free

energy, then the free energy of formation for an n-fold layer is

∆F = 2bdσl + 2bdnσf − 2bd(n+ 1)∆Hf (1.103)

where b is the thickness of a stem, d is the length of the stem, and ∆Hf is the heat of fusion. Different

chains may crystallize onto the substrate until the entire length of the substrate (denoted by L) is

filled with crystallized chains. The completion of the growth front can either happen very quickly

before formation of new nuclei or numerous nuclei form and growth front grows slowly. Hoffman and

Lauritzen defined two different regimes to address each case. In regime I, corresponding to rapid
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completion of layers, the growth rate is found to be

G = rdbL =
ST
aNA

bL (1.104)

where rd is the stem deposition rate, ST is the total flux of nucleating polymers (stem formation),

and NA is Avogadro’s number. In regime II, where numerous nuclei form and spread slowly, the

growth rate is

G = b
√
rdg = b

√
ST g

aNA
(1.105)

where rdg is the surface nucleation rate. It is worth mentioning that Hoffman and Lauritzen did

not consider chain-end effects in their derivations. In the above equations, ST needs to be found

in terms of model quantities. I do not go into details of the derivation of this quantity here but

it is important to point out that they split the contribution of the free energy of fusion into the

activation energy of forward and backward reactions [188, 189]. This leads to a Turnbull and Fisher

type [190] equation for the growth rate:

G = G0exp

(
− U

R(T − T∞)

)
exp

(
− Kg

T∆Tζ

)
(1.106)

where U is the activation energy for segmental jump rate [189, 191], R is the universal gas constant,

ζ = 2T/(T om+T ), and ∆T = (T om−T ) where T om is the equilibrium melting temperature. For regime

I,

Kg =
4bσlσfT

o
m

∆HfkB
, (1.107)

and for regime II,

Kg =
2bσlσfT

o
m

∆HfkB
. (1.108)

Hoffman et al. also showed that under appropriate conditions, i.e. heterogeneous and instantaneous

formation of nucleation sites, the bulk rate constant Z3 in the bulk crystallization isotherm

χ = χ0

[
1− exp(Z3t

3)

]
(1.109)

is related to the growth rate as

Z3 =
4πv0
3

G3 (1.110)

where χ0 is the maximum crystallinity at the end of stage 1, and vo is the number of growth centres

per volume. In this model, Hoffman divided the crystallization process into two stages: stage

1 where crystallization is nucleation-controlled and stage 2 where crystallization of short chains

is driven towards completion and interlamellar links are removed. Stage 2 is considered to be

diffusion-controlled. This idea was later used by Patel and Spruiell to find the half-time factor in

the non-isothermal kinetic model of Nakamura [192].

The above models have had a reasonable amount of success in predicting the evolution of the

overall crystallinity of polymer samples. However, they do not provide much information about the

shape or distribution of the crystalline microstructure. Microstructures generally refer to compo-

sitional or structural inhomogeneities in materials caused by processing and are known to directly
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influence the properties of the final product [38].

Huang and Kamal presented a model for the morphological solidification of polymers, addressing

the challenging multi-scale nature of polymer crystals and the complexities in their modeling [193].

They assessed existing morphological modeling approaches at the time, including Voronoi, modified

Avrami-Evans, cellular automata, and phase-field models, highlighting their geometric, phenomeno-

logical, and computationally demanding nature. Emphasizing the necessity for more quantitative

and computationally manageable models, they incorporated insights from phase-field and nucleation

theories to define their model variables and set up the model. The model involved coupled equations

of an envelope growth equation tracking spherulite boundaries and impingement, and a lamellar ori-

entation equation replicating the Maltese cross morphology of the spherulites. The growth velocity

of the envelope was determined by the HL equation and lamellar orientation was reproduced using

the Frank equation [194]. To address nucleation, they embedded nucleation seeds and defined a

critical nucleus radius larger than which nuclei would be stable and grow. The chain conformation

effects in the initial crystallization stages were ignored in this model. The results were compared to

Polyethylene experiments. The obtained spherulitic growth and impingement kinetics showed good

agreement with the experiments. In these simulations, the growth velocity and the position of the

nuclei were measured from experiments and used as an input.

Molnar and coworkers introduced a probabilistic method of polymer crystal nucleation and

growth [195]. The model, in conjunction with experimental data, was used to estimate spherulite

size, distribution, and nucleus density in the absence and presence of nucleating agents. In their

model, the growth front of the spherulites was not tracked and the conversion degree and spherulite

size distribution was estimated based on the phase transition time. The conversion curves generated

by their model under isothermal conditions showed good agreement with experimental results.

Phase-field models are a powerful tool to study free boundary problems and systems with different

phases [37, 38, 196]. Xu et al. studied spatio-temporal growth of isotactic polystyrene single

crystals during isothermal crystallization using a phase-field model [197]. Wang et al. introduced a

phase-field model to study isothermal crystallization of polymer melts [198]. Their model was able

to reproduce various single crystal morphologies found in isotactic polystyrene such as dendritic,

lamellar branching, faceted hexagonal, and spherulitic structures.

Bahloul et al. modified the phase-field model proposed by Kobayashi for solidification and

dendritic growth [199] to account for crystallization characteristics of polymeric material [200]. The

main equations of the model are the phase-field and heat equations:

∂ϕ

∂t
= −M δF(m(T ), ϕ)

δϕ
, (1.111)

∂T

∂t
=

κ

ρCp
∇2T +

∆H

Cp

∂ϕ

∂t
(1.112)

where ϕ is the phase-field order parameter or crystallinity, M is the mobility corresponding to the

inverse of the characteristic time of attachment of atoms at the interface, and F is the free energy

functional. In the heat equation, T stands for the temperature and κ, ρ, and Cp are respectively

the thermal conductivity, density, and heat capacity. The second term on the right hand side of the

heat equation is the source term corresponding to the latent heat of crystallization. The phase-field

equation is coupled to the heat equation through function m(T ) in the local free energy. The heat
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equation is coupled to the phase-field parameter through the source term. Anisotropy and noise

are added to the interface to reproduce dendritic patterns of crystalline areas. The improvement

to Kobayashi’s model was made by modifying the mobility M and the source coefficient ∆H
Cp

to

incorporate Hoffman-Lauritzen theory. Comparing their results to experiments [201, 202], they state

that their model quantitatively predicts the growth rate and reproduces accurate morphologies in a

specific range of temperatures. Later in a follow-up work, Bahloul and colleagues performed full-field

micromechanical simulations on the microstructures generated by their modified phase field model

to predict the effective mechanical properties [203]. As will be discussed, the main challenge in using

Kobayashi-type models in modelling polymer composites is the computational cost associated with

reproducing details like dendritic branches.

Polymers often show up in the industry in form of composite materials due to improved func-

tionality and performance. However, the addition of reinforcing components such as fibers affects

the crystallization process. Therefore, new assumptions and methods are required in their mod-

elling. Krause et al. studied the spherulitic growth of a fiber-reinforced polymer using computer

simulations [204]. Mehl and Rebenfeld generalized the Avrami model to account for the influence

of fibers in the presence of both thermal and athermal nucleation [205, 206]. Benard et al. took

on an analytical approach based on the geometric method of Avrami to study the impact of fiber

inclusion on isothermal crystallization polymers [207]. Haudin and Chenot developed a set of differ-

ential equations based on the Avrami model [208]. This allowed them to numerically solve spherulite

evolution in polymer injection molding without oversimplifying assumptions. They also studied the

size distribution of the spherulites using their model. Later, they extended their model to long-fiber

thermoplastic composites including the impact of fiber surface transcrystallinity [209]. Galeski et

al. proposed an analytical model of crystallization kinetics for polymer composites with fibers and

nanofibers [210]. Ruan and co-workers investigated the crystallization of short fiber-reinforced com-

posites during the cooling phase by means of a multi-scale model that coupled the macroscopic heat

equation to the mesoscopic crystal morphology [211, 212].

1.4.1 Summary and Motivation

In this section, I reviewed some of the most commonly used crystallization models for polymeric

systems. Avrami’s model and its derivatives have shown great success in modelling the crystallization

kinetics of polymers. Although crystal structure and processing conditions are accounted for in the

derivation of such models, they do not explicitly reproduce the microstructure of the semi-crystalline

polymer. But, they only describe the overall kinetics and degree of crystallinity of the material. The

Hoffman-Lauritzen (HL) model describes the nucleation and growth of crystals assuming that chain

folding is the main mechanism of crystallization. This model provides a relation to calculate crystal

growth rate of crystal lamellae. However, it does not provide a method to locate and track crystal

microstructure.

Phase-field methods offer a convenient way to track boundaries of multi-phase systems. Kobayashi

proposed a phase-field model for solidification and dendritic growth. To achieve this, he coupled

the evolution equation of the order parameter with heat conduction equation. He also introduced

a noise term at the diffuse boundaries to reproduce the dendritic shapes. This model has been

adopted by the polymer community to model spherulitic growth and polymer crystallization. The

results obtained from such models show good agreement with experiments. The main challenge in
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using Kobayashi-type models in modelling polymer composites is the computational cost. The den-

dritic branches reproduced by such models is at the nanoscale. The length fibers in fiber-reinforced

polymers can be between several microns to several millimetres. Therefore, simulating such systems

would require a massive amount of memory and time.

In chapter 3, we propose a coarse-grained model of polymer crystallization using a multiphase-

field approach. The multiphase-field method (MPF) is coupled with the Nakamura model and

the equation of heat conduction to model the non-local crystallization of polymeric materials on a

microstructural length scale. The MPF is a generalization of the classical phase-field method to

numerous locally present phases [39]. This readily allows for the inclusion of extra phases such

as fibers and the study of their impact on the crystallization of the polymeric material. In our

model, rather than tracking the evolution of every single nucleus, we define crystalline regions the

crystallinity of which are predicted by the Nakamura model. The coarse-grained definition of our

crystalline region enables us to model larger domains relevant to fiber-reinforced systems.

1.5 Chapter Outline

In this chapter, I provided an overview of different theoretical and computational methods commonly

used to study soft material particularly polymers and polymer composites. In this thesis, I will apply

three of the methods discussed, namely, Molecular Dynamics, Lattice Boltzmann, Phase-Field to

study different aspects of polymer composites and nanocomposites.

In chapter 2, I employ coarse-grained Molecular Dynamics (MD) simulations to shed light on the

phase-behaviour of nanorods in a polymer melt at the nanoscale. The chapter addresses the impact

of nanorod concentration on their dispersion and orientation in the melt. I start the chapter with

describing the methodology and simulation details followed by a results section.

Chapter 3 addresses the non-isothermal crystallization of polymers and their crystal morphology.

In this chapter, I present a novel coarse-grained model that can capture certain microstructural

properties of the material while keeping computational costs low. This chapter is arranged as

follows: In section 3.2, we describe our model and the comprising equations. In section 3.3, we

share our experimental findings of our Differential Scanning Calorimetry (DSC) and Polarized Light

Microscopy (PLM). We discuss the numerical implementation of the model and details regarding

numerical constants and parameters in section 3.4.1 followed by 3.4 where we share the results of

our simulations and the comparisons to experimental data. We finish off the article with a summary

of the model and the results in 3.5.

In chapter 4, we introduce a new velocity discretization method for the Lattice Boltzmann

Method (LBM) which allows for systematic extension of the LBM to compressible flows as well as

conserved energy and viscoelastic fluids. We first derive the evolution equations for the new LBM.

This is followed by several test cases including sound wave propagation and Poiseuille flow. We

also show that our model satisfies Galilean invariance, even when a density gradient is present, by

reproducing a Couette flow in the presence of gravity.



Chapter 2

Dispersion and Orientation

patterns in polymer-nanorod melts

Mixtures of anisotropic fillers, especially nano-fibers (NFs) and nano-tubes (NTs) in polymer matri-

ces have shown a great potential to produce high performance materials and therefore have received

a lot of attention from scientific and engineering communities [84, 88, 213–220]. On top of the intrin-

sic properties of the nanorods, their distribution and orientation in the polymer matrix, interaction

with the matrix, and aspect ratio play a crucial role in the overall performance of the material [154,

221–223]. A larger aspect ratio of the nanofillers is known to increase the efficiency of the poly-

mer nanocomposite [154, 223] and previous computational works have studied the effect of nanorod

length [104, 224]. However, in this study, we have polymer chains and nanorods with fixed lengths

in all simulations and instead turn our focus to the effect of concentration on dispersion patterns of

nanorods in a system with polymer-rod attractions.

One of the main barriers in enhancing properties of polymeric materials through adding NTs or

NFs is the formation of aggregates which leads to problems such as non-uniform stress distribution

and slippage [225, 226]. In spite of the development of preparation and processing techniques such

as in situ polymerization and surface modification that have been successful in promoting better

dispersion of nanorods in a polymer matrix [217, 221, 225, 227–234], there is a need for a deeper

understanding of the underlying physics that leads to the observed phase behaviour in nanorod-

polymer systems. As a result, it has been under an extensive examination both theoretically [109,

139, 150, 235] and computationally [100, 104, 106, 107, 124, 140, 141, 236–238]. An overview of the

studies in this field was provided in chapter 1.

The dispersion patterns of nanorods in a pool of attracting polymer chains is a less explored

field and is the focus of this paper. To get a better idea of what is driving the phase behaviour in

the system we contrast our results with those of a system with purely repulsive nanorod-polymer

interactions but otherwise identical. Using coarse-grained Molecular Dynamics (CGMD), we sim-

ulated a polymer-nanorod melt where all interactions were repulsive except for polymer-rod and

looked at the dispersion and orientation of rods as well as the conformation of polymer chains at the

rod interface. This work is the result of my collaboration with Venkat Balasubramanian, and Colin

Denniston and it has been published in the Journal of Chemical Physics [239].

This chapter is designed as follows: In section 2.1, we go over the simulation setup and details.

34
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Section 2.2 is dedicated to results and discussion where we first describe the dispersion patterns of

the rods by means of auto-correlation of a number density, and rod-rod distances and then delve

into orientational behaviour of the nanocomposite melt. We sum up the paper by pointing out the

main findings in section 2.3.

2.1 Methodology

In this work, we adopt a coarse-grained approach to model the polymer-nanorod mixture. The melt

is comprised of a mix of polymer chains and rigid nanorods. Each polymer molecule is composed of

np = 32 consecutive beads (monomers) connected via Finitely Extensible Non-linear Elastic (FENE)

bonds (cf. Fig. 2.1a). The Kremer-Grest FENE potential[240]

Ub = −1

2
KR2

b ln

[
1−

(
r

Rb

)2
]
+ 4ϵb

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
H

(
2

1
6 σ

)
(2.1)

is used to implement all the bonded interactions necessary for the monomer inter-connectivity. The

first term on the RHS is attractive in nature with K = 30ϵbσ
−2 being the effective elastic constant

where ϵb = 1.0ϵ and ϵ = mσ2

τ2 is the Lennard-Jones energy constant. Here, m is the Lennard-

Jones(LJ) unit mass, σ is the LJ length scale, and τ is the LJ time scale. Rb = 1.5σ is the maximum

bond extension in any direction [240]. On the other hand, the second term on the RHS represents

the repulsive portion of the potential with the cut-off length rc = 21/6σ, at the minimum if the

LJ potential, enforced through the Heaviside function H(x) (i.e. shifted-truncated LJ). This form

of potential also eliminates nonphysical bond crossings [240]. The excluded volume of the polymer

chains is implemented through a repulsive 12− 6 LJ potential similar to the one used for the FENE

bonds between the polymer beads. The interaction cutoff of the polymer-polymer interactions is

also set to rpp = 21/6σ and the strength is ϵpp = 1.0ϵ. Interactions between the polymers and

rods are also of a 12 − 6 LJ potential form with strength ϵrp = 1.0ϵ. However, the cutoff length

for these interactions is set to rrp = 2.5σ creating attraction between the polymer chains and the

nanorods. To help understand the effect of attractive forces, we compare our results to systems

that are identical except for lacking the attractive part of the potential by setting rrp = 21/6σ (and

adding a constant shift so that they are zero at the cutoff).

The rigid rods in our system consist of four individual threads (sub-rods) which are assembled

in a helical pattern as shown in Fig.2.1b. Each thread is comprised of nr = 16 point particles

(monomers) of mass m and diameter σ where m and σ are the LJ unit mass and length, respectively.

The monomers are interconnected along the backbone via the FENE bonds described in Eq. 2.1

and rigidity of the rods is ensured by a harmonic angle potential Uh for every monomer triad along

the backbone

Uh = k (θ − θ0)
2

(2.2)

where k = 1000 (LJ units) is the spring constant, θ is the angle formed by a triad at any given time

during the simulation and θ0 is its equilibrium value. A rigid conformation is obtained by penalizing

any bending of the rods by setting θ0 = 180◦ during the energy minimization step. However, at

equilibration and production stages, each rod is treated as a rigid body to reduce computational

cost of the simulation without compromising the physics. The diameter and length of the rods are

respectively D ≈ 2.35σ and L ≈ 13.35σ giving them an aspect ratio of about 5.5. Atoms are spaced
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(a) (b)

(c)

Figure 2.1: An example of polymer chain is shown in (a) while (b) shows a lateral view of a nanorod. A random
initial configuration shown in (c) (before energy minimization), is generated using moltemplate package for each
realization. The nanorods are shown in cyan(green) and the polymer chains are shown as purple lines. The VMD
software was used for visualizations [241].
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approximately 1.15σ along the rod and 0.85σ between atoms in neighboring threads. The multi-

thread design of the nanorods is different from most previous studies where single thread nanorods

[104, 106, 107, 140, 155, 238, 242–246], hollow nanotubes [89, 247], or smooth (sphero)cylinders

were used [109, 248, 249]. This gives the nanorods a new surface roughness, which has been shown

to play a role in the phase behaviour of polymer-nanorod composites [250]. Moreover, the multi-

threaded nanorods are incommensurate with the polymers (where the typical atomic spacing is

around 1.35σ) eliminating possible artificial adhesion at the surface [251, 252]. This makes the

multi-threaded design a good candidate for further studies of fibre pullout and interfacial slippage.

All the simulations are done using the open source package LAMMPS [253]. The details of the

simulation and equilibration procedures are discussed in the next subsection.

One of the main objectives of the present work is to investigate the effect of nanorod inclusion

on the conformation of the polymer chains in the melt, especially the chains at the interface of the

nanorods. As a measure of the shape and size of the polymers, we calculated the radius of gyration

tensor Rg of a chain from the particle coordinates as

R2
gαβ

=
1

M2

[
np∑
i=1

mi(ri,α − rcom,α)(ri,β − rcom,β)

]
(2.3)

where R2
gαβ

is the element of the tensor R2
g on the αth row and βth column, M is the total mass

of the chain, np is the number of beads in the chain, and mi is the mass of the ith bead. The ri,α

represents the position of the ith bead in α = x, y, z direction and similarly, the ri,β is the position

of the ith bead in β = x, y, z direction. The rcom is the position of the centre of mass of the polymer

chain. Then the |Rg| was found by

|Rg| =
√
λ21 + λ22 + λ23 (2.4)

where λi is the ith eigenvalue of the gyration tensor. A set of 10 realizations of a pure melt, at the

same temperature and pressure as the production runs examined in the results section, are run and

the average radius of gyration of the polymer is measured to be R0 ≈ 3σ. This value is used as a

reference throughout the paper.

A fixed number of polymer chains Np = 1000 is used across realizations whereas the total number

of rigid rods Nr in the melt is varied in order to achieve different concentrations of nanofillers. We

quantify the concentration of the rods ϕc by simply taking the ratio of the total number of rod

monomers to the total number of particles N

ϕc =
number of rod beads

total number of beads
=

(4 ·Nr)nr
N

(2.5)

where np = 32, nr = 16, Np = 1000, N = Npnp + (4 ·Nr)nr, 60 ≤ Nr ≤ 500, and 0.1 ≤ ϕc ≤ 0.5.

Lastly, to improve results statistically, for each value of ϕc, 10 independent realizations were

carried out and the results were averaged over the realizations. Throughout the paper, all quantities

are presented in dimensionless LJ units.
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Figure 2.2: The equilibration scheme is shown in (a). (b) shows the total energy, volume, and mass density during
the last stage of equilibration and the production for a system of ϕc = 0.44. In (c), the RMSD for the nanorods and
polymers as a function of time are demonstrated. The value of the RMSD is normalized by the pure melt average
radius of gyration R0.
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2.1.1 Equilibration procedure

The simulation is started from a random initial configuration (see Fig.2.1c) generated using the

moltemplate package [254]. Following the procedure in [255], a soft interaction of the form

U = A

[
1 + cos

(
πr

rc

)]
for r < rc (2.6)

is then applied between all the components where rc is the cut-off length. The potential amplitude A

is linearly increased from 0 to 100ϵ over 1000τ . This allows for the overlapping particles to rearrange

themselves without making the simulation unstable. At this point, the molecules are at a reasonable

separations to be able to turn on the LJ interactions (and the soft potential U is turned off). As

the last step before equilibration, the box (system) is relaxed.

The equilibration procedure consists of 4 stages as shown in Fig. 2.2a. We start off the equi-

libration with a short NVT run where a Langevin thermostat [256, 257] is applied to keep the

temperature at T = 1 in all subsequent steps. In the next step, we turn on a Berendsen barostat

[258] at the target pressure of P = 0.25 and let the system evolve under the isothermal-isobaric

(NPT) ensemble for 1 million steps. Then the system is compressed by increasing the pressure

stepwise in three more steps up to the final P = 1. The packing density of the mixture is defined

as dp =
Total Volume of particles
Volume of simulation box and the final pressure is chosen to achieve a melt-like packing density

of 0.3 ≤ dp ≤ 0.5 [65, 107, 139]. The system is run at P = 1 and T = 1 for 9 million steps (or 19

million steps for the highest concentration) before the production. This careful stepwise protocol

ensures that the mixture does not get trapped in a kinetically favourable state. To confirm that

the system is in true equilibrium, we monitored the thermodynamic parameters as well as the root-

mean-squared-displacement (RMSD). In Fig. 2.2 (b), the total energy, volume, and mass density of

the system at the last stage of equilibration and the production for a typical system at ϕc = 0.44

are illustrated. The values of these thermodynamic variables are levelled off and fluctuating around

a mean value by the end of equilibration and during production. As the equilibration time increases

with concentration, especially when nanorod-polymer attractions are at play, here, we only present

the data for the highest concentration.

The structural equilibration of polymeric systems is a slower process compared to relaxation of

thermodynamic variables [259]. Therefore, we also measured the root-mean-squared-displacement

of the particles as a function of time to make sure that the polymers and the rods move reasonable

distances during equilibration [255, 260]. In Fig. 2.2 (c), we show the evolution of the RMSD for

the nanorods and polymers. As can be seen, both the rods and the polymers move multiple R0, the

average radius of gyration of a polymer in the pure melt, during the process validating the fact that

the system is not stuck in a glassy state. We should mention that the particle RMSD is different

from the RMSD of the centre of mass (COM). This takes into account the rotational motion of

the molecules as well as the COM displacement which are both crucial to the equilibration process.

However, we tracked the RMSD of the centre of mass of the constituents to make sure that the

rotational motion is not taking over in the above graphs. The RMSD of COM for the rods and the

polymers are plotted in Fig. A.2 (a) in the Appendix demonstrating they also move several R0.

To investigate the effect of attractive interactions on the phase behaviour of the nanorod-polymer

melt, we compare some of the results for our system to a system with all repulsive interactions. The

all-repulsive system is equilibrated following the same protocol as the attractive system. Similar to
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Fig. 2.2, in Fig. A.1 of the Appendix, the evolution of the thermodynamic variables and particle

RMSD at the highest concentration ϕc = 0.44 are shown. The RMSD of centre of mass for the

all-repulsive case is presented in Fig. A.2 (b).

In addition to the equilibration procedure described above, we also tested equilibration proce-

dures involving parallel tempering (with up to 8 replicas) and just letting systems evolve for much

longer time periods. The final states found were the same to those described here but did not find

those states any faster than the procedure described above.

2.2 Results

2.2.1 Dispersion and phase Separation

Rigid rods and nano particles have long been known to have poor dispersion in polymer melts.

However achieving optimal dispersion of the rods throughout the melt is extremely important when

considering the mechanical and structural properties of the resulting material. As mentioned earlier,

chemically treating the surfaces of the rigid rods has shown to improve dispersion as it boosts their

interactions with the polymer matrix [227, 233, 261, 262]. Therefore, due to their practical relevance,

we mainly focus on a system of nanorod-polymer composite in which the polymer-rod interactions

are attractive while all other interactions are hard-core repulsive. To understand the effect of the

attractive polymer-rod interaction, the results are compared and contrasted with systems that have

purely repulsive polymer-rod interactions but are otherwise identical.

In Fig. 2.3, we present snapshots of our system at the lowest concentration, i.e. ϕc = 0.1, as

it equilibrates. Fig. 2.3a (a) shows the system at an initial stage of the equilibration. As can be

seen, the system starts out in a fairly random configuration with a lot of empty space between the

components (lower packing density and larger box size). Fig. 2.3 (b) shows the system after 2.5

million timesteps at P = 0.5. We can see the early stages of the agglomeration of rods with a few

clusters of rods appearing. Fig. 2.3 (c) depicts a later stage when 5 million timesteps have elapsed

and at P = 0.75. As can be seen, the evolution of clusters continues and the shape of the clusters

changes. Fig. 2.3 (d) shows the system at P = 1.0 and packing density dp = 0.33 after 20 million

steps. We can see that distinct aggregates are formed and some regions are filled with only polymers

(at lower concentrations). This phase separation has been observed in experiments [232, 237] as well.

In most previous computational studies where formation of such clusters were studied, an attractive

interaction between rods were at play [107, 242]. However, the formation of such clusters in a system

with rod-rod repulsive forces suggests the significance of entropic effects in this phenomenon.

To quantitatively investigate the phase separation visually observed in the simulations, we divide

the system into voxels and in each voxel we compute an order parameter related to the number

density difference defined as

ρn =
pn − rn
pn + rn

(2.7)

where pn is the number of polymer monomers and rn the number of rod monomers in the voxel.

To examine the ordering in the system it is useful to look at various spatial correlation functions.

Most studies examine the radial distribution function g(r) (a mass-density correlation function).

Some of the correlation functions we examine are similar, namely the density autocorrelation and rod-

rod centre of mass correlation functions, but we will also analyze orientational correlation functions
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(a) (b)

(c) (d)

Figure 2.3: A nanorod-polymer melt with nanorod concentration ϕ = 0.1 and nanorod-polymer interaction strength
ϵrp = 1. As the system evolves, the (a) initial random configuration at P = 0 progress to phase separate and form (d)
distinct rod aggregates after equilibration at P = 1. (b) and (c) show intermediate stages at P = 0.5 and P = 0.75
respectively. The considerable change in the system configuration is partial evidence of full equilibration of the system.
(d) shows the final configuration of the system after 9× 106 equilibration steps and 106 production steps. The matrix
polymer chains are shown as purple dots for illustration purposes.



42 CHAPTER 2. DISPERSION AND ORIENTATION PATTERNS

(a) (b)

Figure 2.4: (a) shows the auto-correlation function of the number density difference ρn as a function of radial
distance from the origin for selected concentrations while (b) shows the intercept of the auto-correlation function with
Cρρ(r) = 0 axis as a function of concentration.

to provide a complete picture of the spatial correlation of the system. First, the auto-correlation

function of the density-difference characterizes the distribution of particles inside the simulation box.

The auto-correlation function for ρn is

Cρρ(r) =
⟨ρn(0).ρn(r)⟩ − ⟨ρn⟩2

⟨ρ2n⟩
(2.8)

and is found using Fast Fourier Transforms, and the Wiener-Khinchin theorem [263]. Fig. 2.4(a)

shows the Cρρ(r) as a function of radial distance from the reference point (r = 0). Since we have a

periodic boundary condition, we only plot the function for one octant of the simulation box. The

3D distribution obtained from the calculations is mapped onto the radial distance by averaging all

the discrete values of the Cρρ(r) within distance r and r + δr, where δr = 2.5σ, and assigning the

mean value to the point at r.

At lower concentrations, Cρρ drops from 1 at low r and becomes negative beyond a characteristic

length r0. In Fig. 2.4(b), the characteristic length r0 corresponding to the zero-crossing of Cρρ as

a function of the concentration is illustrated. We observe an overall decrease in Cρρ as we increase

the concentration of rods which is reflected in r0 going down as concentration goes up. From

the definition of ρn, the decrease at higher concentrations shows that the correlation between the

composition of voxels decreases as function of concentration which implies that the polymers and

the rods are becoming better mixed in systems with higher rod concentrations.

Another important indicator of the structure of the system is the distance of nanorods from

each other in the melt. In Fig. 2.5(a), we show the probability of finding the centre of mass of

the nanorods at a distance ∆r from each other. By increasing this shell radius to include larger

distances, the number of rods within the shell increases just due to the larger volume. Therefore, we

normalize the probability by the volume of the shell. Similar to g(r) graphs, peaks in the rod-rod

distance plot show spatial order in the system. As can be seen, the graphs show a first peak around

3.15σ at all concentrations which corresponds to the distance between neighbouring rods. Since this

value is larger than the direct contact distance of two rods, this shows that polymers interpenetrate

the space between the rods. Polymers between the rods were also observed directly in snapshots of

the system configurations, such as the ones shown in Fig. 2.6. Fig. 2.6 shows the snapshots of
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systems at concentrations (a) ϕc = 0.1, (b) ϕc = 0.2, (c) ϕc = 0.33, and (d)ϕc = 0.44.

(a) (b)

Figure 2.5: In (a), probability density function is shown for the pairwise distance between the centre of mass of the
rigid rods in the melt. (b) shows the average volume of the system as a function of the concentration. The patterns
in (a), and (b) suggest that the melt becomes more mixed and less ordered at concentrations higher than ϕc ≈ 0.25.

Moreover, in Fig. 2.5(a), the peaks slowly diminish as the concentration goes up which implies

there is less order at higher concentrations. The system becoming more mixed is also manifested in

the average volume of the system. In Fig. 2.5(b), we see the average volume versus concentration.

The volume initially grows linearly, but beyond ϕc ≈ 0.25, as the system becomes less ordered

(particularly the rods), the rate of growth increases. This is likely related to the well-known fact

that a system of orientationally disordered rods require more volume than orientationally ordered

rods at equilibrium. The orientation of rods and the corresponding order of the system will be

discussed in greater depth in the next section.

To provide a better picture of the processes responsible for the above results, we compare the

result of our system (with rod-polymer attractive interactions) to a system with all repulsive inter-

actions. Fig. 2.7(a) shows the Cρρ(r) for a system with repulsive forces between all components.

Compared to Fig. 2.4(a), the graphs cross Cρρ(r) = 0 at larger distances and we do not observe

as significant a decrease in the zero-crossing as concentration increases. As a matter of fact, while

the correlation curves at first decrease with concentration, they go up again beyond ϕc = 0.27. The

slower drop of Cρρ suggests that neighbouring voxels contain similar type of atoms. In other words,

the rods and polymers are more fully phase separated. This is also observed from direct visualiza-

tions. Fig. 2.7 (c) shows snapshots of an all-repulsive system at a concentration of ϕc = 0.44. A full

phase separation is observed for the all-repulsive system.

The lack of any attractive forces implies the phase separation for the system with all purely

repulsive forces is entirely driven by entropic effects (excluded volume) similar to depletion forces

seen in systems of spherical colloids of two different sizes [264–267]. This type of depletion-induced

phase separation is also observed in mixtures of nanorods in non- or weakly-adsorbing polymer

solutions [109, 124, 139, 140, 236].

In contrast, the rods in the corresponding system with attractive rod-polymer interactions are

better dispersed in the polymer melt as shown in Fig. 2.6(d). In order to increase their contact

surface with the rods, the polymers break up the large clusters of rods into smaller ones as well

as penetrate into the space between rods within the clusters. This becomes more evident if we

compare the rod-rod centre of mass results for the repulsive and attractive cases. Similar to Fig.
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(a) (b)

(c) (d)

Figure 2.6: Snapshots of the rod-polymer system at concentrations (a) ϕc = 0.1, (b) ϕc = 0.2, (c) ϕc = 0.33, and
(d)ϕc = 0.44 are shown. Initially, increasing the concentration of the rods results in the growth of the size of the
clusters, but further increase breaks the clusters up and makes the system more uniformly mixed. This is attributed
to the interplay of entropic and enthalpic effects.
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(a)

(b)

(c)

Figure 2.7: The auto-correlation function of the number density (a), and the rod-rod centre of mass distance (b)
for a system with all-repulsive interactions are illustrated. In (c), a system at ϕc = 0.44 with repulsive interactions
between all components is visualized. (a)-(c) show both quantitatively and visually that rods aggregate via direct
contact in the fully repulsive system. Regardless of the rod concentration, all the rods phase separate into a single
cluster in this case.
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2.5 (a), Fig. 2.7(b) shows the probability density of rod-rod centre of mass distance. The maximum

probability happens at a distance close to the diameter of the rods ∆r ≈ 2.35σ which means the

rods directly touch within a cluster for the repulsive system while for the system with rod-polymer

attractions, the first peak happens at a larger distance which suggests that polymers are present

between the rods within a cluster. One might interpret this as polymers gluing the rods together and

therefore determine formation of cluster to be energetically driven [106, 141]. However, as shown

by the Cρρ(r) graphs, introducing the rod-polymer attraction splits the larger clusters into smaller

ones and does not promote formation of clusters. Although the polymers are present within clusters

(polymer-bridged), polymer-bridging does not seem to be the source of aggregation at the specific

interaction strengths studied in this work. The details of the effect of the rod-polymer attraction

strength on the phase behaviour will be studied in a future work.

The difference in the behaviour of the fully repulsive system and attractive system can be in-

terpreted as follows. The phase separation of the polymers and the rods in the repulsive system is

an entropic process and since there is no other processes to compete with, increasing the number

of rods does not alter the behaviour of the system significantly. However, in the presence of the

rod-polymer attractive interactions, the enthalpic effect that tries to increase the contact surface of

rods and polymers competes with the entropic effect pushing the system away from phase separation,

and formation of clusters. As a result, increasing the number of rods steers the attractive system

towards a more mixed configuration as it boosts the energetic interactions.

Another interesting result illustrated in Fig. 2.3c is the orientation of rods within the aggregates.

As can be seen, the rods within a cluster align laterally and in parallel. In other words, they form

a nematic phase within each cluster. The formation of a nematic phase of nanorods in solutions of

polymers has been mentioned in the literature [235, 268] and is the topic of the next section.

2.2.2 Orientation and Order

Rod clusters

In the previous section, we observed that the nanorods tend to phase separate into clusters that

visually seem to have nematic order. In this section, we further investigate this possible ordering

and phase behaviour. We start with an examination of the orientational order of the rods as a

function of their position. An orientational correlation Crr can be defined as

Crr (|∆r|) =
〈
|êri (r) · êrj(r +∆r)|

〉
(2.9)

where êri and êrj are the end-to-end vectors of the ith and jth nanorods and ∆r = |∆r| is the

distance between the centre of mass of the nanorods. The value of Crr is 1 for a fully orientationally

ordered state and 0.5 for an isotropic state.

Fig. 2.8 shows Crr as a function of ∆r for a range of concentrations for the attractive system (a)

and repulsive system (b). In both systems, the neighbouring rods at short distances are very corre-

lated and Crr takes values near one. However, moving away from a reference rod, the orientational

correlation between the rod and other rods fades away and Crr decreases. At lower concentrations,

this decay is slower in the presence of the attractive forces while in the all-repulsive system, Crr

stays near 1 before a sharp drop at ∆r ≈ 8σ. Moreover, we can see a shift towards smaller Crr

values as the concentration of rods increases in the attractive system. This is on par with what
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(a) (b)

Figure 2.8: Orientational correlation between different rigid rod directors. (a) and (b) are the attractive and
repulsive cases, respectively. The nearby rods align in the same direction which results in values close to 1 in low
∆r for both cases, but this value decreases as ∆r increases more gradually in the attractive case. The concentration
seems to have small to nothing impact on the Crr pattern in the all repulsive system.

we have already seen in Fig. 2.5: the order of the nanocomposite melt diminishes somewhat as the

concentration of the rods increases. In contrast, the concentration does not seem to have much effect

on the orientational correlation of the all-repulsive system.

Figure 2.9: The order parameter ⟨q⟩ as a function of rod concentration is depicted. For the attractive system (solid
circles) we see a distinct decreasing pattern in the value of ⟨q⟩. For the all-repulsive system (diamonds), the decreasing
pattern is similarly observed, but it is not as monotonic and distinct. Values for the all-repulsive system have been
shifted right by 0.01 to make them easier to distinguish from the values for attractive system.

To further investigate the order of the system, we look at the order parameter tensor Q and its

eigenvalues. The Q is a traceless tensor defined as

Qαβ =

〈
êαêβ − 1

3
δαβ

〉
(2.10)

where ê is the unit vector (along the length) of a rod, α, β = x, y, z, and the angle brackets denote

the expectation value over all rods [28]. The eigenvalues of this matrix show the order along the
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corresponding eigenvectors. The average value of the largest eigenvalue ⟨q⟩ over several realizations
is plotted as a function of concentration in Fig. 2.9 where the attractive and repulsive cases are

represented by circles and diamonds, respectively. One more time, we see that the overall order

of the nanocomposite decreases as a function of concentration. Although this decrease is observed

in both (a) and (b), it is more pronounced in the attractive case (a change from lowest to highest

concentrations of around 0.3 for the attractive case versus 0.15 for the all-repulsive).

Although ⟨q⟩ shows the order along the global director (corresponding eigenvector), it does not

provide a lot of information on the uni- or bi-axiality of the system and a look at the other eigenvalues

of tensor Qαβ is necessary. We use a pair of order parameters (s1, s2) as defined in [269, 270]

s1 = q1 − q3 (2.11)

s2 = q2 − q3 (2.12)

where q3 ≤ q2 ≤ q1 = q are the eigenvalues of the Q-tensor. Based on definition, the eigenvalues

take values on the interval
[−1

3 ,
2
3

]
which in turn translates to s1, s2 ∈ [−1, 1]. However, since we

have the condition q3 ≤ q2 ≤ q1 = q, all the points lie in the region s1, s2 ∈ [0, 1]. Therefore, we

only show this region of the s1 − s2 triangle. In Fig. 2.10, the order parameter pairs are plotted

for different concentrations. The origin (0, 0) corresponds to the isotropic state, the dashed-lines

represent uniaxial states, the rest show biaxial states. The boundaries of the triangle (black solid

lines) are physically impossible states. In Fig. 2.10(a), for the attractive system, we see a monotonic

decrease in the value of s1 as a function of concentration and the points move towards the origin

as the concentration is increased. Similar to ⟨q⟩, the decrease in s1 as a function of concentration

is again about half as much over the range of concentrations studied for the all-repulsive system

compared to the system with attractive rod-polymer interactions.

Comparing Fig. 2.10 (a) and (b), we can also see that overall, the attractive system has a more

uniaxial order (the points are closer to the x-axis or the dashed-line). This agrees with what we have

seen in Fig. 2.8 where Crr of the attractive system in Fig. 2.8 (a) shows deeper valleys compared

to Crr of the all-repulsive case in Fig. 2.8 (b).

(a) (b)

Figure 2.10: The eigenvalues of the order parameter Q are plotted in s1 − s2 space. (a) shows the system with rod-
polymer attractions and (b) shows the all-repulsive system. The isotropic state is at the origin (0, 0), the dashed-lines
represent uniaxial states, and the rest of the region inside the triangle corresponds to biaxial states.

To summarize, at low concentrations, the system with attractive interactions has more orien-
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tational order and correlations over a longer range than the all-repulsive system. This appears to

be due to the presence of ribbon-like configurations of orientationally aligned rods stretching across

the system (cf. Fig. 2.6a) in the attractive case whereas the rods are in more of a compact clump

in the repulsive case. At intermediate concentrations, the ribbons break up into clusters which

are internally orientationally aligned and with sizes similar to those seen in the repulsive case (cf.

Fig. 2.8). The size of these clusters seems related to that of the rod length (the correlations in

Fig. 2.8b drop at a length scale that is almost exactly half of the rod length). This seems likely

to be due to the fact, apparent in the snapshots (cf. Fig. 2.6 and Fig. 2.7c), that the rods do not

just orient with their neighbour but also form layer-like clusters where the rod centers-of-mass line

up in a plane with their long axis oriented normal to the plane. Within the layer, the rods form

close-packed structures. However, the orientation and layering of neighboring clusters are not cor-

related. As such, as we add slightly more rods we primarily just add new clusters so the decay of

the order parameter at intermediate concentrations is primarily due to averaging over more clusters.

At high concentrations, the orientational order for the all-repulsive system starts to level off, and

perhaps even start to increase (cf. Fig. 2.9). At the same time, the all-repulsive system starts to

pick up some small longer range correlations in orientational order (Crr > 0.5 in Fig.2.8b). i.e. as

we pack in more rods the all-repulsive system starts to gain some true long range liquid crystal-like

ordering. In contrast, the system with attractive interactions becomes more orientationally isotropic

as we increase the number of rods. As we saw in the previous subsection, the attractive system also

becomes more mixed as we increase the number of rods whereas the all-repulsive system fully phase

separated into a single clump of rods separate from the polymer melt. This suggests that the inter-

facial polymers play a role in this difference in behaviour between the attractive and all-repulsive

rod-polymer systems.

Interfacial polymers

The phase separation of rods, and nematic ordering within the aggregates, has important ramifi-

cations for the nanocomposite’s mechanical properties, for example non-uniform stress distribution

and slippage [225, 226]. However, another factor that plays a determining role in understanding

the mechanics of fracture of polymer-nanorod composites is the behaviour of polymer chains at the

polymer-nanorod interface. Unlike nanorod dispersion patterns, the interfacial behaviour has not

been studied significantly in the literature which is the motivation for the work in this section. In

their recent MD article, Lu et. al found that the polymer chains near nanorod surfaces take on

more extended conformations while the chains far away behave like chains in a pure melt [107]. Our

simulations tell a similar story.

In a polymer melt, the radii of gyration of individual chains are distributed in a Gaussian

distribution with mean R0. We measure the radius of gyration of the polymer chains within a

distance of 5σ from the surface of rods (“nearby”) and compare them to those in a melt (polymers

far from the rods are still in the polymer melt phase so are distributed nearly identical to those

in a pure melt). The difference in probability density of the radius of gyration for nearby chains

from pure melt is shown for all concentrations in Fig. 2.11. If we look at the difference between

the probability densities for polymers near rods and the pure melt for the attractive polymer-rod

interactions, as shown in Fig. 2.11(a), we see a clear pattern where ∆P is negative for RG/R0 < 1

and positive for RG/R0 > 1. This can be interpreted as near-rod polymers have fewer compact
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(RG < R0) and more expanded (RG > R0) chains. We also observe a longer tail in Fig. 2.11(b)

which means there are polymers that are extended up to twice their pure melt conformation. The

system with purely repulsive interactions shows completely opposite behavior (cf. Fig. 2.11b). In

this case, near-rod polymers have more compact (RG < R0) and fewer expanded (RG > R0) chains.

Note that while both of these case involve polymers nearby rods, we have seen earlier that in the

attractive case these polymers completely interpenetrate the rod clusters whereas in the repulsive

case these polymers are at the interfacial surface between a melt-like region of polymers and a single

big cluster of rods (with no polymer interpenetration). In other words, in the repulsive case the

near-rod polymers are effectively experiencing the effect of a hard wall that they cannot penetrate

and so if we think of the polymer configuration as a random walk, when this walk “hits” the wall

(formed by the cluster of rods) it is just reflected back into the melt. These reflections result in the

observed more compact configurations seen here and in most other polymer melts near hard walls

[271].

By contrast, the presence of the rods in the melt results in stretching of polymer chains for the

attractive system. However, we have not yet addressed the direction in which the polymers stretch.

The chains can extend along the length of the rods or perpendicular to the direction of clusters.

Therefore it is interesting to see if there is also some kind of orientational correlation between the

rods and polymers. To measure this, we defined a rod-polymer correlation function such that

Crp (|∆r|) =
〈
|êri (r) · ê

p
j (r +∆r)|

〉
(2.13)

where êri and êpj are the director of the ith rod and the end-to-end vector of the jth polymer and

∆r = |∆r| is the distance between the centre of mass of the rod and polymer. Fig. 2.12 shows the

values of this correlation parameter at different concentrations.

As can be seen, for all concentrations in the attractive case shown in Fig. 2.12a, polymers near

rods are most elongated along the rod and the correlation decays as the distance increases. An

interesting feature of this plot is the behaviour of Crp as a function of concentration. The overall

correlation goes up as the concentration increases up to ϕc ≈ 0.3 and then declines. By fitting

an exponential, we have defined a length scale ℓrp which is plotted in the inset as a function of

concentration. The ℓrp inclines at the beginning which corresponds to growth of cluster size and

reaches a peak around ϕc = 0.3. This agrees with what we have already seen in the previous

sections. The initial rise in the number of rods results in larger ordered clusters where polymers

sneak in between the rods and stretch along the director of the cluster. However, further increase

in the number of rods leads to a less ordered system, particularly in the rod orientations, with an

abundance of rod surfaces for the polymers to interact with. Therefore, the polymer chains show

less preference to align with any specific rod.

The correlations for the repulsive case, Fig. 2.12b, are much lower in magnitude and are shorter

range, dropping sharply to 0.5 at fixed distance similar to what is seen for the rod-rod correlations

in Fig. 2.8b. As noted above, these polymers are at the surface of a rod cluster that, due to the

rod-rod correlations, forms a corrugated surface. It would appear that these polymers have a small

tendency to follow these corrugations which results in the observed Crp correlations, which just die

off at distances where the rods that form these corrugations are no longer correlated.

Lastly in this section, we look at the orientation of polymers with respect to each other by

introducing a polymer-polymer segmental correlation function like the ones defined for rod-rod and
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(a)

(b)

Figure 2.11: (a) depicts the difference of probability densities of the normalized radius of gyration of the near
polymer chains and the pure melt in the original system while (b) shows the same quantity in the all-repulsive one.
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(a) (b)

Figure 2.12: Orientational correlation Crp between director of rods and polymers’ end-to-end vector are shown for
(a) the original system and (b) the all-repulsive system. The inset in (a) shows the length scale ℓrp as a function of
concentration.

rod-polymer

Cpp (|∆r|) =
〈
|êpi (r) · ê

p
j (r +∆r)|

〉
(2.14)

where ei and ej are the end-to-end vectors of the ith and jth polymer segments and ∆r = |∆r| is
the distance between the centre of mass of the segments. Here, we show the results for segments of

length 16 beads (half of a polymer length). In Fig. 2.13(a), the relative orientational correlation,

∆Cpp = Cpp−Cppmelt
, is shown for the attractive system. While this is typically quite small implying

there is only a slight tendency for polymers to align, it is clearly nonzero. At lower concentrations,

the behaviour is very close to the melt. However, as more rods are added to the system, ∆Cpp

increases and the polymers are more orientationally correlated. This is because the polymers that

are aligned with a certain rod are aligned with each other. This becomes even more obvious when

∆Cpp is scaled by the concentration ϕc as illustrated in Fig. 2.13(b). As can be seen, the scaled

correlation functions collapse implying that the increase in the correlation is a direct result of increase

in the number of rods.

In contrast, for the all-repulsive system shown in Fig. 2.13(c), the increase in the number of rods

does not affect ∆Cpp by much and its value only fluctuates around zero. This agrees with what we

have seen so far: the rods in the all-repulsive system aggregate into a big cluster with no polymers in

between, i.e. direct contact. Therefore, due to lack of contact with the polymers, they cannot alter

the conformation of the polymers. This being said, we see some positive values at smaller distances.

This is attributed to the polymers at the surface of the large cluster.

An interesting comparison can be made to work by Gorkunov and Osipov [272] who looked at

adding nanoparticles into a liquid crystal matrix. They found that adding isotropic nanoparticles

into the liquid crystal dilutes the liquid crystal and lowers order of the system and consequently, the

nematic-isotropic transition temperature. On the other hand, they found that anisotropic particles

mimic their nematic host, aligning with the liquid crystal, and as a result improving the nematic

ordering of the system. We see a similar effect here: In the absence of polymer-nanorod attractive

forces, the polymer chains form random walk blobs (see Fig.2.11b) and effectively, play the role of

the isotropic nanoparticles in a pool of nanorods. However, when the attractive interactions are

present, the polymers attempt to increase their contact surface with the rods. As a result, they take
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(a)

(b)

(c)

Figure 2.13: The relative orientational correlation parameter ∆Cpp = Cpp −Cppmelt as a function of the polymer-
polymer pairwise distance ∆rpp. (a) shows the relative orientational correlation ∆Cpp for the original system while (b)
shows the scaled relative orientational correlation ∆Cpp/ϕc for the same system. (c) shows ∆Cpp for the all-repulsive
system (not scaled).
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on more elongated conformations (see Fig.2.11a) and like anisotropic nanoparticles, they reinforce

the nematic ordering of the nanorods. This is reflected in the difference between ⟨q⟩ for attractive

and repulsive cases in Fig. 2.9.

There is one caveat in this comparison. Single molecule nanoparticles only have degrees of

freedom associated with translation and rotation, but polymer chains have significantly more degrees

of freedom (they can change shape). Although aligning with the rods can be favourable, the polymer

pays the cost in loss of conformational entropy. At lower concentrations, the population of elongated

chains is low enough that the ordering effects can easily compensate for it. However, by adding

considerable number of rods, the conformational entropy decreases deeply and drives the system

towards a less ordered configuration. As a result, we see a change of trend as the concentration goes

up and ⟨q⟩ of the attractive system becomes less than that of the all-repulsive system for high ϕc.

2.3 Discussion and Conclusions

The dispersion and orientation patterns of nanorods in polymer melts with either attractive or

repulsive rod-polymer interactions has been examined as a function of the rod concentration. We

see three competing effects: i) entropy of the rods; ii) energetic interactions between the rods and

polymers and; iii) entropy of the polymers. The all-repulsive interaction system completely phase

separates at all rod concentrations whereas the system with attractive polymer-rod interactions does

not. This strongly implicates the role of entropy, in the form of the depletion effect (related to the

free volume per particle), as the main driver of phase separation in the system.

The attractive polymer-rod interactions set up a competition between entropic and enthalpic

effects (as this is a constant pressure system it is more appropriate to discuss in terms of enthalpy

than energy). Since the strength of the enthalpic effects are proportional to the number of rods in

the system, the dispersion patterns show direct correlation with the rod concentration. At lower

concentrations, entropic processes are dominant and ordered clusters of nanorods are created. How-

ever, due to the presence of the attractive forces, the rods do not completely phase separate and

polymers interpenetrate between the rods of a cluster. At higher concentrations, the energetic effects

become significant and the dispersion of the rods improves with the overall cluster size diminish-

ing with concentration. The polymer interpenetration between the rods is typically referred to as

“polymer bridging” and, at least at very strong polymer-rod interactions, is often argued to create

an effective rod-rod attraction leading to the formation of rod clusters. As mentioned above, this

does not appear to be the case here as the phase separation seems entirely entropically driven at

the strength of polymer-rod interaction we have studied here.

The orientational ordering of the rods also appears to be strongly affected by a competition

between entropy of the rods and entropy of the polymers. In all systems, the global orientational

order of the rods decreases as the concentration of rods increases. However, in the system with

repulsive rod-polymer interactions at low concentrations there is no long-range correlations in the rod

orientations implying that the observed system averaged orientational order is primarily a function

of having a limited number of oriented clusters and as we add more rods to the system the number

of uncorrelated clusters increases hence lowering the average orientational order. However, at the

highest concentrations of rods we do start to see weak long-range correlations in the rod orientations

implying true orientational order may start to set in at these concentrations. The polymers in
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the repulsive interaction system show no orientational order and are somewhat compacted at the

boundary between the rod phase and polymer melt phase. Such compaction is consistent with

the depletion effect being responsible for the full phase separation seen in that system. As the

concentration of rods increases, the long range orientational order of the rods decreases. In contrast,

the system with attractive rod-polymer interactions shows true long range orientational order at

low concentrations of rods. As the concentration of rods increases, these clusters break up and the

orientational order decreases to the point where, at the highest concentrations, there is no long

range correlations between rod orientations. In the system with attractive interactions the polymers

close to and interpenetrating rod clusters are stretched out and oriented along the rods. As a result,

increased rod ordering, while entropically favorable for the rods, would result in a considerable loss

of entropy for the polymers in the system which prevents the long range orientational order at high

rod concentrations. This competition between the entropy of the rods and that of the polymers

seems to be a under appreciated facet of these systems.



Chapter 3

Polymer Crystallization: A

multiphase-field study

3.1 Introduction

Polymer composites are commonly used in various industries due to their multifaceted advantages.

These materials offer a compelling combination of enhanced mechanical properties, including high

strength and durability, often surpassing those of traditional materials [273, 274]. Their lightweight

nature makes them particularly desirable in aerospace and automotive applications, contributing to

fuel efficiency and improved overall performance.

The main ingredients of polymer composites are a polymer-based matrix and a reinforcing mate-

rial such as fibers, and nanofibers. Over the recent decades, semi-crystalline polymers have become

increasingly popular as the matrix material due to their ease of manufacture and recyclability. Prod-

ucts made from these polymers are commonly shaped through extrusion or injection molding. As

the properties of a product derived from semi-crystalline polymers heavily rely on the formed mor-

phology and the degree of crystallization during the manufacturing process, investigations into the

kinetics of crystallization and crystal morphology hold significant importance [83, 200, 212, 275].

An introduction to crystallization models of polymers and their history is provided in chapter 1.

The work presented in this chapter was led by the author in collaboration with Ahmed Elmoghazy,

Juliane Blarr, Benedikt Scheuring, Andreas Prahs, Daniel Schneider, Wilfried V. Liebig, Kay A.

Weidenmann, Colin Denniston, and Britta Nestler. This work, in the form a manuscript, has been

submitted for publication and is currently under review.

Motivation and Originality As mentioned above, microstructure and morphology have a di-

rect impact on the physical and mechanical properties of the material. The typical kinetics used

to model and predict crystallization of polymers are at a macroscopic and industrial scale. Experi-

ments, including our own (discussed in section 3.3.2), indicate that crystallization results in intricate

microstructures. Therefore, understanding the evolution and distribution of these microstructures

is imperative.

The previous attempts to reproduce crystallization at microstructure level are mostly based

on Kobayashi based phase-field models or probabilistic Avrami-based models. In Kobayashi-based

56
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models, the order parameter describes the crystallinity. This allows for the development of models

for spherulitic and dendritic growth but limits the application of such models to larger scales.

Particularly, simulating systems with fibers becomes extremely costly computationally as the fibers

are several orders of magnitude larger than the dendritic branches. The probabilistic Avrami-based

models generate randomly dispersed nuclei and model their evolution based on the Avrami equation.

The main challenge for such models is tracking of the boundaries and their interaction. This becomes

even more challenging when applied to a system with several components.

In this work, the multiphase-field method (MPF) is coupled with the Nakamura model and

the equation of heat conduction to model the non-local crystallization of polymeric materials on a

microstructural length scale. The MPF is a generalization of the classical phase-field method to

numerous locally present phases [39]. This readily allows for the inclusion of extra phases such as

fibers and the study of their impact on the crystallization of the polymeric material. MPF has been

successfully used to study mircostructral behaviour of materials [276–279].

In our model, the phase-field order parameter defines the crystalline areas, whereas the crystal-

lization kinetic, within a crystallizing phase, is governed by the Nakamura model. This allows for

a more coarse-grained description of the system compared to models at spherulitic level but still

accounts for the inhomogeneities at the micro-scale. The dependency of crystallization on tempera-

ture is also accounted for through the Nakamura model and the crystallization rate constant (defined

later).

Overall, our approach yields heterogeneous crystal morphologies observed in experiments of

semicrystalline polymers and predicts the impact of the cooling process and non-isothermal crys-

tallization on such morphologies. Moreover, the present model enables to account for phases that

remain completely free of crystallinity such as fibers in fiber reinforced polymers.

Outline In section 3.2, we describe our model and the equations involved. In section 3.3, we

share the experimental findings of our Differential Scanning Calorimetry (DSC) and Polarized Light

Microscopy (PLM). In section 3.4, we discuss the numerical implementation of the model and details

regarding numerical constants and parameters. This is followed by the results of our simulations

and the comparisons to experimental data. We conclude the article with a summary of the model

and the results in 3.5.

Notation In this chapter, we use a direct tensor notation. Thus, scalar fields are written as α and

vectors as a. The scalar product between two vectors is given by a · b.

3.2 Modeling and theory

The main objective of the present work is to address the non-locality of crystalline structure in semi-

crystalline polymeric materials and composites. To achieve this, we use a multiphase-field (MPF)

method to follow the evolution of crystalline grains while the crystallinity of each grain evolves

according to an Avrami-type model. In this section, we explain each theory and how they have been

utilized to successfully reproduce the crystallization of polymeric materials.
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3.2.1 Multiphase-field Method

Free energy functional In this work, we employ a multiphase-field method to track the evolution

of the crystalline phase. The starting point of the modeling is given by the free energy functional

F(ϕ,∇ϕ, χ) =

∫
V

f(ϕ,∇ϕ, χ) dV. (3.1)

Here, f denotes the free energy density and ϕ is the tuple of order parameters, i.e., ϕ = {ϕ1, . . . , ϕN},
where N is the number of phases. The tuple of the gradients of the order parameters is abbreviated

by ∇ϕ = {∇ϕ1, . . . ,∇ϕN} and the relative crystallinity is denoted by χ.

Since the order parameters are interpreted as the volume fractions of the corresponding sub-

regions, the summation constraint
N∑
α=1

ϕα(x, t) = 1 (3.2)

has to be fulfilled where x is the position vector, and t is the time.

Subsequently, an additive decomposition of the free energy density is assumed:

f(ϕ,∇ϕ, χ) = fint(ϕ,∇ϕ) + fb(ϕ, χ), (3.3)

with fint as the interfacial contribution and fb the bulk contribution. The interfacial contribution

consists of the potential and gradient contributions:

fint(ϕ,∇ ϕ) = fpot(ϕ) + fgrad(ϕ,∇ ϕ). (3.4)

Following [35], we consider a gradient contribution fgrad of the following form

fgrad(ϕ,∇ϕ) = ϵ

N∑
β=2

β−1∑
α=1

γαβ (ϕα∇ϕβ − ϕβ∇ϕα) . (ϕα∇ϕβ − ϕβ∇ϕα) (3.5)

where γαβ is the interfacial energy density between two phases, and ϵ is a constant related to the

width of the diffuse interface [42]. Since it allows for stabilized interface kinetics [280] and it is

numerically more efficient, we use a multi-obstacle potential for the potential contribution fpot,

fpot =
16

ϵπ2

N∑
β=2

β−1∑
α=1

γαβϕαϕβ (3.6)

Anywhere the order parameters do not fulfill the Gibbs simplex, given by

G =

{
ϕ :

N∑
α=1

ϕα(x, t) = 1, ϕα ≥ 0 ∀α

}
, (3.7)

fpot = ∞ is enforced. The bulk free energy fb is defined as the interpolation of the phase-specific

bulk free energies

fb =
∑
α

ϕαf
α
b (χα), (3.8)

where fαb is the bulk free energy of phase α and it depends on the relative crystallinity of the
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corresponding phase. The phase-specific bulk free energy for each phase is defined as a quadratic

function of the difference between relative crystallinity χα and its equilibrium value χeqα , i.e.

fαb (χα) = Aα(χ
eq
α − χα)

2 (3.9)

where Aα is the driving force coefficient of phase α.

Evolution equation of the order parameter In this work, the order parameter evolution is

described by

∂ϕα
∂t

= − 1

ϵN∗

N∗∑
α̸=β

Mαβ

(
δF
δϕα

− δF
δϕβ

)
(3.10)

where Mαβ is the individual mobility for each α− β interface [281] and N∗ is the number of locally

active phases. The mobility of the phase-field evolution can be set to that of a Hoffman-Lauritzen

type model [188] to have the growth of the crystalline area to be consistent with the folded-chain

crystal models. We further discuss the exact form of the mobility used in our model in section 3.4.1.

The variational derivatives in Eq. 3.10 are evaluated using the Euler-Lagrange equation [43]

δF
δϕα

=
∂f

∂ϕα
− div

(
∂f

∂∇ϕα

)
(3.11)

where div stands for divergence operator (∇·).

3.2.2 Heat conduction and crystallization

Heat conduction Processing of thermoplastics always involves heat transfer. Therefore, it is cru-

cial to account for its impact on crystallization. As crystallization is an exothermic phase transition,

it is important to account for the heat generated during the process. In the present model, the heat

source term that accounts for the crystallization enthalpy depends on the crystallization and cooling

rates. Thus, the equation of heat conduction reads

∂θ

∂t
=

κ

ρCv
∇2θ +

X∞∆Hf(θ̇)

Cv

∂χ̄

∂t
(3.12)

where θ is temperature, and ∇2θ denotes the Laplacian of the temperature field. κ(ϕ) is the phase

dependent heat conductivity coefficient, and Cv(ϕ) is the phase dependent specific heat. The phase

dependent parameters are linearly interpolated at the interface. The numerical values of these

parameters can be found in Table 3.4. The second term on the right hand side of Eq. 3.12 is

the heat source term where X∞ is the maximum crystallinity coefficient, ∆Hf(θ̇) is the cooling-

rate dependent crystallization enthalpy. The dependency of the crystallization enthalpy on the

cooling rate is found by fitting experimental data. The local average crystallinity χ̄ is defined as the

interpolation of the phase dependent crystallinities:

χ̄ =
∑
α

χαϕα (3.13)

where ϕα is the phase-field order parameter associated with phase α.
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Crystallization described by the Nakamura model The multiphase-field model, discussed

above, tracks the boundaries of the crystalline regions, i.e. where crystallization can happen and

where it cannot. The degree of crystallinity inside the crystalline regions evolves following the

Nakamura model. The Nakamura model can be directly derived from the Avrami model assuming a

constant ratio of nucleus growth rate to spontaneous nucleation rate (isokinetic condition)[180]. We

use the differential form of the Nakamura model to track the degree of crystallinity in the crystalline

areas [192]

∂χα
∂t

= nαKα(θ, θ̇)(1− χα)

(
ln

(
1

1− χα

))(nα−1)/nα

(3.14)

where χα is the crystallinity of phase α, nα is the Avrami coefficient, and Kα is the crystallization

rate constant which is a function of temperature and its rate of change. Kα is typically associated

with the crystallization half-time and can be found from experimental data through a half-time

analysis [192]. There are empirical [282] and theoretical [188] equations that describe the relation

between half-time and temperature. In this work, we use Ziabicki’s empirical formulation for our

crystallization rate constant [282]

Kα(θ, θ̇) = Kmax,α(θ̇)exp

(
− 4ln(2)

(θ − θmax,α)
2

D2
α

)
. (3.15)

Here, the parameters Kmax,α, θmax,α, and Dα can be found by fitting DSC measurements, as

described in the subsequent sections. This equation has been successfully used in modelling similar

systems [283, 284].

Governing equations The governing equations considered for modeling the non-local crystal-

lization of the semi-crystalline PA6 are the evolution equation for the order parameter, the heat

conduction and the Nakamura model in its differential form. They are collated in Tab. 3.1 for

convenience.

Phase-field Evolution
∂ϕα

∂t
= − 1

ϵN∗

∑N∗

α ̸=β Mαβ

(
δF
δϕα

− δF
δϕβ

)

Heat Conduction ∂θ
∂t

= κ
ρCv

∇2θ + X∞∆H(θ̇)
Cv

∂χ̄
∂t

Crystallinity Evolution
∂χα

∂t
= nαKα(θ, θ̇)(1− χα)

(
ln
(

1
1−χα

))(nα−1)/nα

Table 3.1: The governing equations, constituting the non-local crystallization model in this work, are the evolution
of the order parameter, the equation of heat conduction, and the differential form of the Nakamura model.
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3.3 Experimental Data and Results

Material Information TechnylStar XS 1352 BL PA6 was purchased from DOMO Chemicals

GmbH (Leuna, Germany). Granules of weight of approximately 9 mg were used as samples. Since

polyamide is a hygroscopic polymer and therefore tends to absorb water, the samples were dried in

a vacuum oven at 50 °C for 24 h before testing. The experiments were carried out by Juliane Blarr

and Benedikt Scheuring.

3.3.1 DSC Measurements

Experimental procedure of the DSC measurements Non-isothermal Differential Scanning

Calorimetry (DSC) measurements were performed with a Mettler Toldeo DSC 3 series with auto-

matic sample changer according to DIN EN ISO 11357-1 in aluminum trays and nitrogen atmosphere.

Measurements were performed at heating and cooling rates of 0.6K/min, 5K/min, 20K/min, and 50

K/min. To reduce the test time, all measurements were performed in a temperature range of 25 -

250 °C except for the experiments at 0.6 K/min cooling rate. At 0.6K/min cooling rate, a temper-

ature range of 100 - 250 °C was investigated. To account for fluctuations in the measurement data,

at least two cooling processes were recorded for each cooling rate.

The results of the DSC measurements with cooling rates ranging from 0.6K/min to 50K/min

are shown in Fig. 3.1 as a plot of heat flow versus temperature.

Figure 3.1: Non-isothermal DSC exotherms are shown at various cooling rates: (red) 50K/min, (orange) 20K/min,
(blue) 5K/min, and (purple) 0.6K/min. The increase in cooling rate results in stronger signals, and lower crystal-
lization temperature.

Results and discussion of the DSC measurements In Fig. 3.1, we observe that an increase

in the cooling rate results in broadening of the DSC exotherms plus a significant increase in the

DSC signal. The DSC signal is directly correlated with the crystallization rate such that a more

pronounced DSC signal is detected at a higher crystallization rate [285]. Therefore, increasing the

cooling rate seems to increase the overall rate of crystallization. The temperature where the peak

signal is observed at is called the crystallization temperature Tc. We observe a shift of Tc to lower
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temperatures when the cooling rate is increased. The horizontal shift of the DSC curves to lower

temperatures is attributed to the effect of the cooling rate on nucleation[286].

Crystallization begins after an initial delay which depends on the interplay between the incuba-

tion and residence time. The incubation time is the time required for the critical nucleus to form

at that specific temperature. Dependent upon temperature, incubation time is longer at higher

temperatures. The residence/induction time is the time it takes for the sample to sense the change

in the temperature and adjust during a non-isothermal scan. Successful nucleation occurs when

the residence time at a given temperature is more than the incubation time at that temperature

[286, 287]. At lower cooling rates, this criterion is met at higher temperatures and hence the shift

to the right in the DSC exotherms. Conversely at higher cooling rates, the residence time is no

longer sufficient for stable nucleation at high temperatures and crystallization happens only at lower

temperatures [286].

The absolute crystallinity of the sample is determined by the ratio

X∞ =
∆Hf −∆Hcold

∆H0
× 100, (3.16)

where ∆Hf corresponds to the enthalpy of fusion after the second heating and as shown in Fig.

3.1, it depends on the cooling rate. ∆Hcold is the enthalpy released during cold crystallization, and

∆H0 = 204.8 J g−1 [288] is the enthalpy of fusion of perfect crystals of PA6. It is to be noted that no

cold crystallization enthalpy was detected at any cooling rates in our experiments. The calculated

X∞ as well as crystallization temperature Tc and heat of fusion ∆Hf for different cooling rates are

collated in table 3.2.

Cooling rate [Kmin−1] Tc [
◦C] ∆Hf [J g

−1] X∞ [%]

0.6 196.9 67.22 32.8

5 183.2 58.17 28.4

20 168.88 62.28 30.4

50 156.61 55.20 26.9

Table 3.2: Crystallinity properties for PA6 for different cooling rates

3.3.2 Light Microscopy Experiments

Optical microscopy is a powerful method in analyzing the crystalline structure, defects, and orienta-

tion of materials such as polymers, liquid crystals, and semiconductors. Polarized light microscopy

(PLM) is used in particular to examine crystals [289–293]. In PLM, the light from a transmitted

light microscope passes through two polarization filters, each rotated by 90°, which ensure that

the light is extinguished in the final image. In contrast to amorphous areas, crystals are optically

anisotropic or birefringent objects which, when introduced into the beam path between the polariz-

ers, cause a change in the plane of polarization. As a result, complete extinction no longer occurs and

corresponding structures become visible. Hence, we utilize PLM with an integrated cooling/heat-

ing chamber to study the impact of cooling rate on spherulite size and distribution as well as the

crystallization rate and crystallization temperature range.
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Experimental setup and procedure Thin slices of thickness 7µm were made from a granulate

grain of PA6. This was done using a rotary microtome (HM 355 S, ThermoFisher Scientific). To

avoid any undesirable reflections or refractions, the slices were wetted with kerosene oil before being

placed on the slide. The temperature chamber was located externally and connected by a tube to

the test area under the optical microscope, so that cooling could be performed directly under the

microscope.

Experiments were performed on two samples. Each sample was heated and cooled at three dif-

ferent cooling rates: 50K/min, 20K/min and 5K/min. The PLM was conducted using transmitted

light with crossed polarizers on a BX-51 (Olympus) machine. In addition, a λ/4 plate was used to

improve contrast. In images taken with a λ/4-plate, amorphous regions appear as magenta, while

the crystalline regions generally appear as yellow or blue, depending on the orientation of the crys-

tallites in the beam path. The microscopy images were taken at 9 frames per second (fps) at 50×
magnification. In the generated videos, the temperature was superimposed.

Results and discussion of Microscopy Experiments Fig. 3.2 shows the evolution of crys-

tallization at the cooling rate 5K/min captured by PLM. The images are chronologically arranged

from left to right. We initially see a uniform magenta colour indicating that the entire sample is

amorphous and liquid. Further cooling of the sample results in formation of crystalline regions. This

can be seen in the middle image where several yellow regions appear. These regions seem to form

linear stripes. The cooling is continued until no change in the structure of the sample is detected.

The final structure of the sample is shown in the image on the right. The yellow stripes already

visible in the second image are more pronounced, and the formerly magenta-coloured areas appear

as blue dots. In the solid state, therefore, crystalline phases of either orientations (appearing in

yellow or blue) have formed in the amorphous areas.

(a) (b) (c)

Figure 3.2: Images of a sample cooled down at 5K/min (a) initial state (θ = 215◦C), (b) during the crystallization
process (θ = 203.5◦C) and (c) final state (θ = 196.9◦C, after no change in the crystallization structure can be seen
anymore.) Yellow and blue regions show crystalline areas while magenta demonstrates amorphous regions.

We observe that most of the crystallization sites form instantaneously at a start temperature

followed by a relatively rapid growth. The stripe-like patterns of crystals were originally assumed

to be the result of sample preparation. However, even after melting the sample and performing

cooling experiments, these stripe-like crystalline areas are observed. This leads us to believe that

such patterns are formed following the grooves of the cover glasses/slides. This is further confirmed

after comparing the results to the experiments performed at 50K/min cooling rate.

Fig. 3.3 shows PLM snapshots of the sample cooled at 50K/min. Like before, the images are
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(a) (b) (c)

Figure 3.3: Images of a sample cooled down at 50K/min (a) initial state (θ = 205◦C), (b) during the crystallization
process (θ = 188◦C) and (c) final state (θ = 173.3◦C). Yellow and blue regions show crystalline areas while magenta
demonstrates amorphous regions.

chronologically ordered from left to right. Similar stripes of crystalline areas are observed and they

seem to form very early on in the crystallization process. However, we see slightly finer and milder

yellow regions in the images for 50K/min cooling rate. This is expected as the polymer chains do

not have sufficient time to form folded crystals at high cooling rates resulting in smaller crystals.

There are advantages to using PLM but there are also barriers. Generally, in PLM images, it

can be difficult to distinguish between different regions due to the changes caused by rotation of

the sample. When the sample is rotated in the beam path, the colours of the crystalline regions

interchange, and overall it could be difficult to clearly delineate amorphous and crystalline regions,

especially in the presence of fine crystals.

Moreover, we could not obtain detailed material characteristic information of the star-branched

PA6 used in our experiments. However, we suspect that the 7 µm thickness of our samples is probably

considerably larger than a single crystal layer [294]. This can lead to superposition effects during

imaging and some errors in the analysis of the images.

3.4 Numerical studies and results

3.4.1 Numerical implementations

Determination of crystallization parameters using Ziabicki model In 1968, Ziabicki ex-

tended the Turnbull-Fisher model to describe the kinetics of systems with anisotropic nuclei in

isothermal and non-isothermal conditions [282]. Later, he further generalized his model to account

for transient and athermal effects [282]. The extended crystallization kinetics function takes the

form of a Gaussian function with the empirical parameters Kmax, D and θmax. The parameters

could also be presented as cooling rate-dependent functions by evaluating the DSC measurements

for different cooling rates and fitting the parameters on a power function for D and θmax, and a

linear function for Kmax as suggested by Sierra et al. [295]. Since the crystallization enthalpy is

also shown to be cooling rate-dependent, the term dH could also be linearly fitted in the same way.

The crystallization rate constant parameter Kc(θ, θ̇) takes the form:

Kc(θ, θ̇) = Kmax,c(θ̇)exp

(
− 4ln(2)

(θ − θmax,c(θ̇))
2

Dc(θ̇)2

)
(3.17)
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where subscript c stands for the crystalline phase and

θmax,c(θ̇) = C1 × θ̇−C2 (3.18a)

Kmax,c(θ̇) = C3 × θ̇ + C4 (3.18b)

Dc(θ̇) = C5 × θ̇C6 (3.18c)

dH(θ̇) = −C7 × θ̇ + C8. (3.18d)

The value of the coefficients above are shown in table 3.3. A plot of Kc as a function of temperature

for different cooling rates is shown in Fig. 3.4. To validate these values, the crystallization evolution

predicted by the Nakamura model using the fitted coefficients are compared to the experimental

results. Fig. 3.5 shows the relative crystallinity as a function of temperature (a) and time (b). The

solid lines indicate the results of the Nakamura model using our fitted coefficients and the cross

points indicate the experimental data (measured as explained in 3.3).

C1[1/s] C2[−] C3[s/K] C4[1/s] C5[1/s] C6[−] C7[s/K] C8[J/Kg]

430.15 0.0207 0.0679 0.0063 29.78 0.2596 14.5 67.07

Table 3.3: Crystallization parameters for the Ziabicki model (Eq. 3.17) obtained from fitting the DSC measurements.

Figure 3.4: Kc parameter for different cooling rates as a function of temperature. The parameter is derived from
the fitted empirical parameters. A clear trend of higher amplitude, wider base and a shift of the curves to the left is
shown as the cooling rate increases.
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(a) (b)

Figure 3.5: Empirical crystallization parameters are validated by comparing the experimental results to the predic-
tions of the model

Numerical implementation As mentioned in the theory section, our model consists of the heat

conduction equation, the multiphase-field equation, and the Nakamura equation. The heat con-

duction and Nakamura equations are discretized using an implicit finite difference method. As

the Nakamura model contains nonlinear terms, an iterative Newton method is utilized to find the

crystallinity values.

The phase-field evolution equation is explicitly discretized using a second-order finite difference

method. To avoid interface pinning and premature grain shrinkage, the driving force coefficient Ac

(for crystal phase) in Eq. 3.9 is calibrated to always fulfill

|∆Wαβ
bulk|

γαβ+γn

ε

≈ 1 (3.19)

where |∆Wαβ
bulk| is the driving force due to crystallization. γαβ and γn are the surface tension in

the tangential and normal directions, respectively. The value of Ac also directly affects the critical

radius of the grains, meaning that the critical radius decreases when a larger Ac is applied. Fig. 3.6

shows the relation between Ac and the critical radius. This is expected as a larger driving force can

overcome the higher surface tension of smaller crystalline grains.

In Eq. 3.9, the equilibrium crystallinity χeqα is assumed to be 1, driving the system towards

the maximum crystallinity. This means that initially, when crystallinity is low, we get the highest

driving force and the driving force vanishes when full crystallinity is achieved.

We use a mobility Mca between the crystalline and amorphous phase that is a function of the

temperature and cooling rate, and has the same shape as the crystallization rate constant K. In

order to improve the stability of the phase-field evolution a stabilizing factor is multiplied by the

normalized Kc giving rise to the mobility

Mca =
(∆x)2

4∆t(γca + γn)

Kc(θ, θ̇)

Kmax,c(θ̇)
(3.20)

where Kc is the crystallization rate constant for the crystal phase (see. Eq. 3.17), and Kmax,c is the
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Figure 3.6: Graph relating the driving force prefactor (Ac) to critical radius

crystallization parameter obtained from Eq. 3.18b.

The mobility between the PA6 phases (crystalline and amorphous) and the fiber phase, Mαf , is

considered to be 0. This ensures the stability of the fiber phase and prevents the polymeric phases

from leaking into and taking over areas occupied by the fiber phase. The details of the numerical

values for each parameter can be found in Table 3.4.

In this work, we only consider instantaneous formation of crystalline regions at t = 0, i.e.

crystalline regions are initially distributed in the amorphous phase. Since the Nakamura equation,

which controls the degree of crystallinity of the crystalline areas, has to be non-zero to get any

evolution, we initialize the crystallinity of the crystalline regions to a very small non-zero value.

The crystallinity only evolves in the crystalline phase and does not evolve in the amorphous phase

nor the fiber phase. However, since the mobility between the amorphous and crystalline phase is

not zero, the crystal grains can grow into and take over amorphous regions where the crystallization

can then take place.

3.4.2 Pure Matrix

Single grain We begin by investigating the simplest system consisting of a single crystalline grain.

The initial radius of the grain is 6 µm and the initial temperature of the domain is set to 200 °C. A
Dirichlet boundary condition with a constant cooling rate is applied to the left and right boundaries,

while the top and bottom boundaries are periodic. As mentioned before, an initial non-zero value

of crystallinity is required for the crystallinity to evolve according to Nakamura model. Thus, we

set the initial crystallinity degree of the crystalline areas to the small value 0.1%. As a result, the

crystalline areas should not be interpreted as crystal nuclei but regions where some nuclei germs

exist and there is potential for crystallization. Fig. 3.7 shows the phase-field order parameter field

(upper row) and crystallinity field (lower row) after reaching the glass transition temperature Tg for

different cooling rates, namely, 5, 20, 35, and 50 K/min. As can be seen, at higher cooling rates,

the final size of the crystalline area is smaller compared to lower cooling rates. As the grain grows,
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Table 3.4: Summary of all model parameters

Parameter Value Unit

Thermal Properties

Thermal Conductivity (κ)
PA6 0.25 [296] W/(m·K)
Carbon fiber 100 [297] W/(m·K)

Specific Heat Capacity (Cp)
PA6 (100% amorphous) 512 J/(kg·K)
PA6 (100% crystalline) 4310* J/(kg·K)
Carbon Fiber 700 [297] J/(kg·K)

Density (ρ)
PA6 1130 [298] kg/m³
Carbon Fiber 1800[297] kg/m³

PA6 Crystallinity Properties

Tmax Eq. 3.18a K
D Eq. 3.18c K
Kmax Eq. 3.18b s−1

Phase-field Parameters

Surface Tension (PA6)
Normal component (γn) 37.19 [249] mN/m
Tangential component (γαβ) 0.4·(γn) mN/m

Mobility (Mαβ)
PA6 Eq. 3.20 -
Carbon Fiber 0 -

Numerical Parameters

Mesh Size 0.5, 1 µm
Box Size 500 Cells
Time Step 0.01 s
Diffuse interface width 4 Cells

* Linearly approximated from 100% amorphous and 30% crystalline

the crystallinity evolves in the newly acquired areas by a rate determined by the temperature and

cooling rate at these new areas. As crystallization at different locations happens at different times

and temperatures, different levels of crystallinity are observed even inside a crystalline phase, leading

to inhomogeneous crystallinity distributions.

The temperature field at different times during the simulation for the cooling rate of 15 K/min

is shown in Fig. 3.8. At the beginning, the temperature field is more or less uniform stripes (in

the vertical direction). After onset of crystallization, we observe higher temperatures around the

crystalline area as a result of the released crystallization heat. As we reach the end of the simulation

and crystallization slows down, we see the temperature gradient going back to an almost uniform

pattern of stripes. We would like to point out that the effect of the crystallization heat is reduced

by the influence of a Dirichlet boundary conditions which are predominant for a simulation box of

this size.
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(a) 5 K/min (b) 20 K/min (c) 35 K/min (d) 50 K/min

Figure 3.7: The final morphologies of a single grain under different cooling rates are illustrated. The top row shows
the phase-field order parameter field. The bottom row shows the crystallinity field.

(a) (b) (c) (d)

Figure 3.8: The evolution of the temperature field for cooling rate 20 K/min is shown. (a) t = 5s, relative
crystallinity ≈ 0 (b)t = 100s, relative crystallinity = 0.003 (c)t = 150s, relative crystallinity = 0.54 (d)t = 200s,
relative crystallinity = 1

Case I: large grains The primary goal of this study is to develop a model that is capable of

predicting the microstructure of semi-crystalline polymers and capturing the heterogeneous nature

of such microstructures. Therefore, the natural next step is to study systems with multiple grains

and the resulting microstructures. In this section, we investigate the crystallization behaviour of

pure PA6 by simulating a 2D system of 500x500 cells and dx = 1µm under different cooling rates.

The cooling rates selected for this study as with the single grain, are 5 K/min, 20 K/min, 35 K/min,

and 50 K/min. Initially, 100 crystalline grains of radius between 4 and 10 µm and initial crystallinity

degree of 0.1% are randomly dispersed in the amorphous phase leading to an initial crystal grain

volume fraction of 6%. The initial morphology of the system is shown in Fig. 3.9a.

Fig. 3.10 shows the final (after reaching Tg) morphology of the system for different cooling rates.

At the lowest cooling rate of 5 K/min, we observe fewer but larger grains covering almost the entire

simulation box. We also see fewer grain boundaries. This is expected as the slower cooling rate

provides sufficient time for the grains to grow and enough time for crystallinity to reach high values

everywhere. As we increase the cooling rate, we see that the size of the grains becomes smaller and
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(a) (b)

Figure 3.9: The initial configuration of the system is shown for (a) 100 grains of radius between 4 and 10 µm (b)
185 grains of radius 2.5 and 3 µm.

gradients in crystallinity increase leading to fine grain morphologies. This prediction of the impact

of cooling rate on morphology agrees with what we see in the experiments (see section 3.3.2) and

other experimental work [286, 299].

(a) 5 K/min (b) 20 K/min (c) 35 K/min (d) 50 K/min

Figure 3.10: Final morphologies under different cooling rate are shown. System is initialized with 100 grains of
radius between 4 and 10 µm (6% area density). As expected, a higher conversion rate and larger crystalline areas are
observed for lower cooling rates.

Case II: small grains To study the impact of initial grain structure on the final results, we

examine the crystal morphology of pure PA6 for a system with higher number of initial crystalline

grains and smaller radii. Initially, we randomly disperse 185 crystalline grains of radii between 2.5

and 3 µm, and initial crystallinity of 0.1%. This gives a similar initial crystal grain volume fraction

as the previous example (6%). We apply and study the system under the same cooling rates as

before. The simulation box is in 2D with 500x500 cells and dx = 0.5µm. The initial morphology of

the system is shown in Fig. 3.9b.

Fig. 3.11 shows the final morphology of the system for different cooling rates. Similar to the

other examples we have discussed so far, we see larger grains and more uniform crystallinity inside
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each grain when the cooling rates are lower. Increasing cooling rates results in smaller grains and

larger variability in the crystallinity field.

Comparing the results in Fig. 3.10 and Fig. 3.11, in general, we see that more of the system

crystallizes when more but smaller grains are embedded initially. However, we observe a more

distinct difference between the morphologies in Fig. 3.10 and Fig. 3.11 at higher cooling rates. This

is due to the fact that at lower cooling rates, the crystallinity has time to evolve to values near

1. Moreover, the temperature gradient across the simulation box is less steep and crystallization

heat release is more uniform across the simulation box. All of these results in a more uniform

growth of the grains and their crystallinity. In this case, the initial size of the grains has less of an

impact compared to the number of initial grains on the total crystallinity as most grains reach their

maximum size (considering impingement constraints).

Alternatively at high cooling rates, the number of initial grains and their size both play an

important role in the final morphology. In this case, the grains do not have ample time to grow

and are smaller in size. Also, due to the rapid decrease of temperature at the boundaries, there

are steeper gradients across the simulation box. The combination of these leads to more localized

crystallization (i.e. limited to the location of the initial grains) and therefore more heterogeneity in

the morphology.

(a) 5 K/min (b) 20 K/min (c) 35 K/min (d) 50 K/min

Figure 3.11: Typical morphologies (after reaching Tg) for a system initialized with 185 crystalline grains of radius
between 2.5 and 3 µm and at different cooling rates. At low cooling rates, a more uniform morphology is obtained
while more inhomogeneous structures are observed for high cooling rates. Note that the box size is half of the one in
Fig. 3.10.

Relative Crystallinity So far we discussed the resulting morphologies of our simulation and

the impact of initial size and distribution of crystalline grains as well as cooling rate on these

morphologies. It is informative to look at the relative crystallinity of our systems too as it can

directly be compared to the results obtained from our DSC measurements. Fig. 3.12 shows the

evolution of the relative crystallinity for case I and case II discussed above. The solid lines show

the results of the simulations and the cross points show the results of the DSC measurements. The

relative crystallinity is defined as the average crystallinity over the simulation box divided by the

maximum:

χ̂ =
⟨χ̄⟩

max{χ̄}
(3.21)

where

⟨χ̄⟩ = 1

A

∫
A

χda (3.22)
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(a) (b)

Figure 3.12: Evolution curves of relative crystallinity are shown for different cooling rates. (a) is initialized with
100 crystalline grains while (b) is initialized with 185 crystalline grains. The curves provide qualitative agreements
with experiments.

with A denoting the area of the simulation domain. As can be seen, our model correctly recovers

the form of the crystallinity evolution curves. We also observe that lowering cooling rates results in

the crystallization starting later and taking longer which is consistent with experimental DSC data.

The gap between different curves grows as the cooling rate is decreased similar to the experimental

curves. However, our model predicts a longer delay prior to the onset of crystallization compared

to the experiments (a shift to the right). This difference is present in Fig. 3.5 but it is considerably

smaller. Thus, this could be due to ignoring the smaller peaks that are observed in the DSC

exotherms at the beginning of crystallization. Moreover, to compare the impact of cooling rate on

the final morphology, we initialized all systems with similar density of grains, range of radii, and

initial degree of crystallinity. In reality, the cooling rate and processing method affect the nucleation

process as mentioned in section 3.3. One would expect a higher number of nuclei for systems with

higher cooling rates [286] and we observe a better agreement with the experimental results for the

system with larger number of initial nuclei (see Fig. 3.12b). The influence of nucleation is included

through the Nakamura equation. However, further investigation on the relation between nucleation

and initial crystalline grain distribution is required to obtain quantitatively accurate results, which

will be investigated in future work.

The relation between relative crystallinity and temperature is also commonly investigated to

collect information about the crystallization process. Fig. 3.13 shows the relative crystallinity

as a function of temperature obtained from our simulations. Similar to evolution plots, we see a

good qualitative agreement with Fig. 3.5. The shape of the curves and their order matches the

experimental results. However, a shift to lower temperatures is observed in this case. We believe

this has the same origin as the shift in the relative crystallinity evolution curves. Comparing Fig.

3.13a and Fig. 3.13b, we can clearly see the impact of the initial conditions. The curves for a system

with lower number and larger size of grains are slightly shifted to higher temperatures and the slopes

of the curves are marginally less steep.
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(a) (b)

Figure 3.13: Relative crystallinity is shown as a function of temperature for different cooling rates. (a) is initialized
with 100 crystalline grains while (b) is initialized with 185 crystalline grains. The curves provide qualitative agreements
with experiments.

3.4.3 Inclusion of Fibers

In this section we include different orientations a single discontinuous carbon fiber with a diameter

of 15 µm and length of 150 µm in a PA6 matrix. The fiber is added to the multiphase-field model

as a third phase that does not crystallize. As mentioned before, the mobility between the fiber and

the other two phases (amorphous and crystalline) is 0. The thermal properties for the carbon fiber

are shown in Table 3.4.The presence of fiber in a polymer matrix affects the nucleation process of

the polymer. The surface of the fiber acts as a local nucleation site for the polymer around it. This

phenomenon is called transcrystallinity. To account for this, we initialize the area at the interface

and around the fiber in our simulations with a higher density of crystalline grains. We populate

the interface of the fiber and the matrix with a maximum of 50% crystallinity. This value is chosen

somewhat arbitrarily as we did not have access to experimental data for the specific matrix and

fiber used in our experiments. This parameter can be simply adjusted for different systems and

upon access to experimental or molecular data. The areas away from the fiber are initialized with

6% volume fraction of the crystalline grains similar to the pure matrix simulations.

Single fiber: Horizontal We first look at a single fiber placed horizontally in the centre of

the box. Fig. 3.14 shows the initial and final distribution of grains for a typical system with the

horizontal fiber. Results for two cooling rates, 25 K/min and 50 K/min, are shown. The higher

number of initial grains inevitably lead to higher crystallinity around the fiber. The effect of the

cooling rate discussed in the previous sections can also be seen here. The lower cooling rate allows

for more time for the grains to grow and crystallize leading to less defined boundaries between them.

On the other hand, the higher cooling rate exhibits more obvious heterogeneity in the crystallinity

field.

Also, we observe that shape of the grains and their boundaries are perpendicular to the fibers.

Fig. 3.15 shows an enhanced version of Fig. 3.14(b). The grains near the fiber take ellipsoidal shapes

and the boundaries between them create vertical curves. This behaviour has also been observed in

experimental works [300, 301]. We do not introduce any source of preferred directionality in our

model. Thus, it seems that such patterns appear merely due to geometrical constraints imposed
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(a) (b) (c)

Figure 3.14: Initial and final morphology for crystallization field around a Carbon fiber horizontally placed in the
middle of the domain. (a) Initial distribution, (b) 25 K/min, (c) 50 K/min

Figure 3.15: A magnified image of the fiber is shown. The vertical growth from the surface for the fiber is evident
from the shape and boundaries of the crystalline grains.

by neighbouring grains and the fiber surface (the grain has no other space to grow except for

perpendicular to the fiber and outwards).

The fiber also affects the heat conduction and the temperature field as it has different thermal

properties compared to the matrix material. Fig. 3.16a shows the temperature field for a system with

a horizontal carbon fiber in the centre of the box. The cooling rate for this system was 25 K/min.

The carbon fiber has a higher thermal conductivity and a lower volumetric heat capacity than the

PA6 matrix around it. The fiber acts as a heat conductor between the right and left boundaries

of the domain and facilitates heat flow. This leads to lower but more uniform temperatures at and

around the fiber. As a result, we expect a more uniform crystallization rate, especially around the

fiber, leading to more homogeneous morphologies. We would like to point out that due to the small

gradients of temperature in our system this effect might be subtle.
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(a) (b)

Figure 3.16: Temperature field for PA6 matrix with a horizontal (a) and vertical (b) fiber for cooling rate 25 K/min,
at t= 80s

Single fiber: Vertical Alternatively, one can place the fiber in the matrix in a vertical orientation.

We place the fiber in the middle. The initial distribution of the crystalline grains as well as the final

morphology of the crystallinity field for the different cooling rates are shown in Fig. 3.17. Similar

to before, we see that the higher density of crystal grains around the fiber and the better heat

conduction of the fiber result in more homogeneous crystallinity fields around the fiber. However,

unlike the horizontal fiber, a vertical fiber in the middle does not facilitate the heat transfer across

the entire sample as much (the Dirichlet BC dictates the heat transfer, see Fig. 3.16.) Thus, we

see a more heterogeneous structure in this case. Ellipsoidal grain shapes with a tendency to grow

perpendicular to the fiber surface are observed in this case as well.

3.5 Conclusion

Physical and mechanical properties of semi-crystalline polymers depend on their degree of crystal-

lization and crystal morphology. In this work, we introduce a multiphase-field method coupled with

the Nakamura model and heat conduction equation to model the non-local crystallization of poly-

meric materials on a microstructural length scale. The multiphase-field base of our model provides

an efficient and easy way to track the boundaries of the crystalline areas. This makes it possible to

study heterogeneous crystal structures. It also allows for adding any number of phases with different

properties making the model a good candidate to study polymer blends and composites. The crys-

tallization inside crystalline areas is controlled by a kinetic model, which was the Nakamura model in

this work. The dependency of the crystal growth rate on temperature is added by a Turnbell-Fisher

type of equation. The kinetic model and temperature dependency can be adjusted to match the

processing conditions and specific materials under study.

We applied our model to neat PA6 and in the presence of fibers. For pure matrix, we observe

that lower cooling rates result in more homogeneous structures with larger grains. More hetero-
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(a) (b) (c)

Figure 3.17: Initial and final morphology for crystallization field around a carbon fiber vertically placed in the
middle of the domain. (a) shows the initial distribution. (b) depicts the final morphology for a system cooled at 25
K/min while (c) depicts the same for a system cooled at 50 K/min

geneous structures emerge as the cooling rate is increased. This heterogeneity stems from sharper

temperature gradients and the short crystallization time available to the crystalline grains. At lower

cooling rates, the initial size of the grains does not have a major impact on the final morphology as

enough time is given for most grains to grow to their possible maximum crystallinity, considering

impingement constraints. The initial number of grains does seem to have a more noticeable effect

on the morphology. At higher cooling rates, both of these quantities seem to influence the final

structure considerably.

In the presence of the carbon fiber, we observe a more homogeneous morphology around the

fiber. This is associated with two effects: higher initial crystal grain volume fraction and high

conductivity of the carbon fibers. All the crystalline grains near the fiber surface experience a

similar cooling rate and crystallize at the same rate. The heat of crystallization is also transferred

quickly from the region. The higher initial crystal grain volume fraction also means that most regions

start crystallizing at the same time. These lead to the more homogeneous morphologies observed

around the fiber. We also observe that the crystalline grains grow perpendicular to the fiber surface.

This indicates that this vertical growth seen in experiments is merely because of the geometrical

constraints applied to the interfacial grains.

Overall, our model provides results qualitatively in agreement with experiments. However,

further understanding of the properties of the coarse-grained crystal grains and their relation to

spherulites, and a detailed knowledge of the initial nuclei density is required to achieve better quan-

titative agreement with experiments.
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Compressible Lattice Boltzmann

The solutions of the equations of fluid dynamics are usually so complex that they are analytically

only solvable in specific and limited cases. The field of computational fluid dynamics (CFD) emerged

to address this problem by introducing and using numerical methods that can find the solutions of

the fluid dynamics equations. The conventional CFD methods are numerical methods applied to the

equations of fluid dynamics. The methods represent the fluid variables as values at various points

throughout the domain. For example, in the Finite Difference method (FDM), the fluid field is

discretized onto a grid of nodes. In the Finite Volume method (FVM), each node represents the

average properties of its encompassing unit cell. In the Finite Element method (FEM), the system

is divided to sub-domains and resulting vertcies. Then the continuous fluid field is approximated by

interpolating the values on the vertices.

Despite their overall success, the conventional CFD models suffer from some shortcomings. The

main challenge in using conventional CFD models lies in the difficulty of discretization of the non-

linear terms in the Navier-Stokes equations and non-locality of the derivative approximations. The

Lattice Boltzmann Method (LBM) offers an alternative to such methods.

Lattice Boltzmann Method (LBM), with its roots in kinetic theory, has proven to be a powerful

tool to study fluid dynamics [20, 302]. One of the advantages of LBM over conventional CFD

models is local nature of the node operations, i.e. the collision. This makes LBM easy to parallelize

and implement. In addition, LBM recovers numerically exact conservation laws and offers excellent

stability properties inherited from the implicit trapezoidal rule. A short introduction to standard

LBM is provided in section 1.

The applications of LBM do not stop at simple fluids, but it has been used to study multiphase

flows [26, 303–305], liquid crystals [28, 306, 307], flows in confined spaces [239, 308–310] as well as

viscoelastic fluids [29, 311, 312], fluid-particle dynamics [27, 313, 314], and turbulence [315].

4.1 Introduction

Despite all the efforts, the majority of previous LBM based studies focus on isothermal flows in

the incompressible limit while compressible, thermal, and viscoelastic systems are less studied. In

this chapter, we introduce a new LBM capable of addressing some of the challenges in simulating

compressible, thermal, and viscoelastic flows. As the first step, we apply our method to successfully

77
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model compressible flows.

High-speed compressible flows are commonly found in different fields such as explosion physics,

aerophysics, and astrophysics. However, standard LBM is only valid at low Mach numbers and

for weakly compressible flows. At high Mach number or in the presence of density variations, the

compressibility effects and error terms in the method become significant. This poses challenges

in modelling and simulating these compressible flows using the Lattice Boltzmann (LB) method,

particularly those involving shocks and discontinuities [316].

Several attempts have been made to include compressibility effects in LBM. Alexander et al.

proposed an LBM where the equilibrium distributions were adjusted so that a flexible speed of sound

can be set [317]. As they pointed out, their model was limited to isothermal compressible flows. Yan

and colleagues proposed a three-speed-three-energy-level lattice Boltzmann model for compressible

Euler equation [318]. The model was found to simulate strong discontinuity phenomena but suffered

from too many degrees of freedom and parameters to set. Kataoka and Tsutahara introduced an

LBM on an extended lattice with an extra variable to adjust specific-heat of the fluid [319].

Ji et al. proposed a Finite Volume-Lattice Boltzmann method for compressible flows [320].

Finite Volume method (FVM) is one of the most popular methods in computational fluid dynamics.

FVM is designed based on conservation of quantities inside a cell in the system. Therefore, any

changes in a quantity is balanced by that quantity’s flux. This requires that the fluxes are evaluated

at the cell interface. There are different methods to evaluate the flux. The proposed method by

Ji et al. used LB to solve the local Riemann problem across the interface. Their model showed

superiority compared to the conventional Godunov scheme and was able to capture shock wave,

contact discontinuity and rarefaction waves.

Sun formulated an adaptive-velocity LBM on a hexagonal lattice for compressible and thermal

flows [8, 321]. In this model, the local velocity set is chosen dynamically allowing the mean flow

to have a high Mach number. The model was able to capture shock waves. However, the model

suffered from huge computational cost when the relaxation time was not set to 1.

The thermal LB models suggested so far can be divided two classes in terms of number of

distribution functions used: single population and double population.

In an early attempt, Alexander and colleagues developed a Lattice Bhatnagar-Gross-Krook model

to recover the full thermohydrodynamic equations. In this model, which counts as a single population

model, an extended hexagonal lattice was employed and the equilibrium distribution was expanded

up to second order in macroscopic velocity [322]. To test the model, they conducted 2D simulations of

adiabatic sound propagation and Couette flow in the presence of heat transfer. Their results showed

good agreement with theoretical predictions at low temperature differences. Qian introduced a

similar multispeed model for 1D, 2D, and 3D on a standard lattice [323]. Chen et al. improved the

conventional Thermal Lattice Boltzmann mentioned above by introducing higher-order expansion

of the equilibrium distribution and higher number of discrete velocities [324]. As a result, they were

able to eliminate the non-linear deviation present in the previous models. As a single-relaxation time

was used in all of these models, they all suffered from constant Prandtl number. The boundaries and

boundary conditions also imposed a challenge as multispeed models required access to neighbouring

sites beyond the nearest neighbours. Moreover, the multispeed LB models were found to be unstable

except for small variations in temperature. McNamara and coworkers addressed the instability issues

of the multispeed models by introducing an extra relaxation time for the energy moments and using
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Lax-Wendroff advection to provide an adjustable time step [325]. Despite their success in addressing

the stability issues, they concluded that the model did not offer any advantage over explicit Navier-

Stokes (NS) solvers as the stabilization methods used were shared between both approaches and

computation time was similar.

Karlin et al. introduced the consistent Lattice Boltzmann model for weakly compressible flows.

[326]. In this model, they used an H-theorem and applied the Gauss-Hermite quadrature to the

H-function. By including the conservation of energy, they were able to remove the spurious bulk

viscosity present in iso-thermal models. Also, they were able to achieve this on standard lattices

which made their model more efficient compared to multispeed models. In a follow-up work, they

extended the applicability of the consistent model to thermal flows [327]. In the original consistent

model, the deviation terms generated by the low symmetry of the regular lattices was not addressed

and limited the use of the model to weakly compressible fluids. These limitations were overcome

by introducing new discrete equilibrium distributions obtained from the guided equilibria method

[328] and correction terms that eliminated the deviation terms to recover Navier-Stokes and Fourier

equations. A downside of this approach is the ad-hoc nature of the correction terms. As the finite-

difference correction terms are derived to eliminate the deviations from the emerging macroscopic

equation, they cannot be generalized to different LBMs.

Another approach proposed to overcome some of the challenges of multispeed models was by

introducing a second distribution function. The extra distribution function is then used to solve

for the energy equation [329]. This approach resulted in a more stable LBM and did not require

extended lattices which made it attractive for simulating thermal flows. However, the momentum

and energy equation had to be coupled via the source/force terms in the LB equations. The original

double-population model suffered from complexity and non-locality [20]. Karlin et al. found that

applying the conservation law to total energy rather than internal energy on the second lattice

results in a local coupling between the two lattices and a major simplification of such models [330].

Generally, the double-population method requires large memory space, especially in 3D, and longer

computation time as the LBE is solved for several distribution.

To address the lack of Galilean invariance in conventional LBM, Frapolli et al. proposed the

co-moving Galilean Reference Frame [331]. They argued that the errors and numerical instabilities

observed in conventional LBM for flows at high Mach numbers is due to streaming particle popula-

tions with fixed discrete velocities, i.e. using the “at rest” reference frame. The co-moving Galilean

Reference Frame introduces uniformly shifted lattices, where the reference frame is consistently

shifted across the numerical domain. They found that this approach works well for unidirectional

compressible flows but is less effective for flows with significant variations in velocity and temperature

[332].

Dorschner et al. suggested that these limitations can be removed if tailored discrete velocities

rather than fixed velocities were used. Based on this principle, they introduced the “Particle on

Demand” or the PonD model [333]. In the PonD model, the kinetic equations are reconstructed in

local reference frames defined by the actual local fluid velocity and temperature. In the streaming

step, a predictor-corrector iteration loop is implemented to find the particle populations in the

co-moving reference frame. The co-moving reference frame is the reference frame/gauge in which

the particle velocities are determined by the fluid velocity and temperature at the monitored site.

Their model was able to capture Galilean invariance and conserve mass, momentum, and energy
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conservation.

Many biological and industrial fluids have viscoelastic properties. In order to understand and

utilize such systems, one has to have a proper grasp of their viscoelastic properties. Designing

predictive models facilitates both of these processes. To formulate a new model, one has to study

different aspects of a system thoroughly. A model also can reveal the fundamental principles un-

derlying a process. Moreover, predictive models can shed light on possible pathways to modify a

system towards a desired outcome.

In an early work, Giraud et al. proposed an Lattice Boltzmann Method for simple viscoelastic

fluids [334]. Two non-propagating parameters were introduced and coupled to the viscous stress

tensor to include memory effects. The degree of viscoelasticity was controlled by a relaxation time.

The model provided good qualitative results but it was suggested by the authors that further inves-

tigation and tuning was needed to achieve quantitative results. This model was further extended to

two-component viscoelastic systems by Wagner et al. and was used to model rising of a bubble in a

viscoelastic fluid [335].

The model was extended to 3D by Lallemand et al. [336]. In this case, they introduced 5

non-propagating parameters into the D3Q27 model leading to a D3Q32 model. They analyzed the

model’s dispersion equation to derive the hydrodynamic equations, establish conditions for isotropy

and Galilean invariance, and optimize stability. Their findings indicated that their LBM exhibited

memory effects and, in the linear regime, behaved like a viscoelastic fluid as described by the Jeffreys

model [337].

In a different approach, Ispolatov and Grant introduced viscoelasticity to their LBM by adding a

Maxwell stress tensor as a forcing term [338]. The model was found to predict viscoelastic behaviour

but only for a limited range parameters and only qualitatively. The method appears constrained by

stability requirements to small relaxation times [339]. Additionally, the macroscopic equations have

not been derived to ensure that the body force was consistently incorporated.

Wagner derived a viscoelastic constitutive equation specifically for gases from the BGK model

[311]. Unlike conventional viscoelastic models used for polymeric liquids, their model was non-

objective, meaning it explicitly incorporates inertial effects. The difference between their model and

Oldroyd-B were illustrated through exact solutions for simple shear and elongational flows, showing

how the predicted viscoelastic responses for a gas differ from those in polymeric liquids.

Malaspinas and coworkers extended the approach of Denniston et al. [306] to incompressible

viscoelastic fluids [29]. The mass and momentum equations were solved using standard LBM where

the viscoelastic stress tensor was coupled through the forcing term. The viscoelastic stress tensor

was then evolved by an advection-diffusion type LBM. The model was compared to a high accuracy

Fourier pseudospectral algorithm for the Taylor–Green vortex case and the results for the energy

decay of the solvent and of the polymers, using the Oldroyd-B constitutive equation, were found

to be in good agreement. Their simulation of a Poiseuille flow was found to match the analytical

solution. However, the model suffered from instabilities at high Weissenberg numbers which was

attributed to the viscoelastic stress tensor boundary conditions.

As mentioned before, one of the challenges of using models with several distribution functions

simultaneously on different lattices is the computational cost (memory and time). In this chapter,

we introduce a new LBM where the continuous distribution function is discretized using distribution

mass function that in addition to a mean value also has a variance. This introduces extra independent
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degrees of freedom to recover the second and third moments of the Maxwell-Boltzmann distribution

fully. As will be discussed, this eliminates the error terms that appear in the standard LBM (see

Eq. (5) in [340]) and extends the applicability of LBM to compressible flows. The variance terms

can further be utilized to incorporate thermal and viscoelastic features. As the variance terms

appear as part of the discretization scheme, they consistently appear in the derivation and no

ad-hoc manipulation of the equations is required to recover the correct second and third moments.

Furthermore, there are only 6 extra terms (or 9 for a non-symmetric general stress tensor) introduced

in this model. Thus, we expect the algorithm to be more memory efficient and have shorter runtimes

compared to multi-lattice models.

In the introduction chapter, we derived the most basic form of Lattice Boltzmann equation.

However, our model for thermal and viscoelastic flows involves a more complicated form of the LBE

with a new discretization. As a starting point, following Dellar [341], we derive the LB equation by

discretizing a velocity-discretized Boltzmann equation in space and time for a generic distribution

function, forcing term, and collision operator. Then, we introduce a new discretization method in

the velocity space. Using a Chapman-Enskog expansion, we will show that this new discretization

method recovers the macroscopic Navier-Stokes equations followed by a discussion of implementation

and test runs. Finally, we conclude the chapter by summarizing the results and discussing the

potentials and limitations of the model.

4.2 Theory

4.2.1 Multi-Relaxation Time Forced Lattice Boltzmann

Let us start with the discrete-velocity Boltzmann equation in the most general form

∂tfi + eiα∂αfi = −Lij(fj − feqj )−

[
wi
g(ξ)

F · ∂f
∂ξ

∣∣∣∣
ξ=ei

]
(4.1)

where fi is the discrete-velocity distribution function, and ei are the discrete velocities that fi travels

to neighbouring sites by. Lij is the collision operator, F is an acceleration field, wi is the quadrature

weights, and g is the Hermite generating function. For sake of brevity, we call the RHS of the above

equation Ci

−Lij(fj − feqj )−

[
wi
g(ξ)

F · ∂f
∂ξ

∣∣∣∣
ξ=ei

]
= −Lij(fj − feqj ) + Φi = Ci(x, t) (4.2)

As shown in the introduction, one can solve the above equation using the method of characteristics

dfi
dt

= Ci (4.3)

where d/dt is the complete derivative with respect to t. Taking the integral of both sides, we get

fi(x+ ei∆t, t+∆t)− fi(x, t) =

∫ ∆t

0

Ci(x, t) (4.4)
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Now, if we perform the trapezoidal rule to solve the integral, we find

fi(x+ ei∆t, t+∆t)− fi(x, t) =
Ci(x, t) + Ci(x+ ei∆t, t+∆t)

2
∆t− ∆t3

12

d2Ci
dt2

∣∣∣∣
t

. (4.5)

Reorganizing 4.5, we can write

fi(x+ei∆t, t+∆t)−Ci(x+ ei∆t, t+∆t)

2
∆t = fi(x, t)−

Ci(x, t)

2
∆t+Ci(x, t)∆t−

∆t3

12

d2Ci
dt2

∣∣∣∣
t

, (4.6)

or

f̄i(x+ ei∆t, t+∆t) = f̄i(x, t) + Ci(x, t)∆t+O
(
∆t3

)
(4.7)

where

f̄i(x, t) = fi(x, t)−
Ci(x, t)

2
∆t. (4.8)

Eq. 4.7 is the Lattice Boltzmann equation in terms of the auxiliary distributions f̄i. The fact that

the Lattice Boltzmann can be recovered using the method above shows that the discretized (in space

and time) Lattice Boltzmann equation is actually accurate up to the second order. To benefit from

this higher order accuracy, one can use Eq. 4.7 instead of Eq. 1.55 as the LB evolution equation

with the caveat that the macroscopic moments need to be corrected to match physical parameters.

This is due to the fact that it is the moments of fi and not f̄i that were matched with the moments.

We get to these correction terms soon but first, we have to make sure that Eq. 4.7 is all in terms of

f̄i for it to be used as an evolution equation.

We start with the definition of Ci:

Ci = −Lij(fj − feqj ) + Φi

= −Lij(f̄j − Cj
∆t

2
− feqj ) + Φi

=
∆t

2
LijCj − Lij(f̄j − feqj ) + Φi (4.9)

Taking all the terms with C to one side and performing some linear algebra, we get

Ci −
∆t

2
LijCj =

(
δij −

∆t

2
Lij
)
Cj = −Lij(f̄j − feqj ) + Φi, (4.10)

and finally, we have C in terms of f̄i:

Cj =

(
I− ∆t

2
L
)−1

ji

(−Lik(f̄k − feqk ) + Φi). (4.11)

Therefore, Eq. 4.7 can be rewritten fully in terms of f̄i as

f̄i(x+ ei∆t, t+∆t) = f̄i(x, t) +

(
I− ∆t

2
L
)−1

ij

(
−Ljk(f̄k − feqk ) + Φj +O

(
∆t3

))
. (4.12)

Operating the collision step for more complicated models than the simple Single-Relaxation Time
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(SRT) is only manageable in moment space. So for a general collision operator, we can define it as

L = M−1SM (4.13)

where M is f -to-moment transformation matrix, and S is the relaxation time matrix. Plugging this

definition into RHS of 4.12 and simplifying,(
I− ∆t

2
L
)−1

ij

(−Ljk(f̄k − feqk ) + Φj) +O
(
∆t3

)
=

(
I− ∆t

2
M−1SM

)−1 (
M−1SM(f̄ − feq) +Φ+O

(
∆t3

))
=

(
M−1M − ∆t

2
M−1SM

)−1 (
M−1SM(f̄ − feq) +Φ+O

(
∆t3

))
=

(
M−1(I− ∆t

2
S)M

)−1

(M−1SM(f̄ − feq) +Φ+O
(
∆t3

)
)

=

(
M−1(I− ∆t

2
S)−1M

)
(−M−1SM(f̄ − feq) +Φ+O

(
∆t3

)
)

=

(
M−1(I− ∆t

2
S)−1S(m̄−meq)

)
+

(
M−1(I− ∆t

2
S)−1

)
(F +O

(
∆t3

)
)

= M−1

((
S−1 − ∆t

2
I
)−1

(m̄−meq) +

(
I− ∆t

2
S

)−1

(F +O
(
∆t3

)
)

)
(4.14)

where m shows the moment vector, and Φ is the force vector in f space while F is the forcing term

in moment space. Eq. 4.14 shows the collision in moment space which is then returned to f space

by an M−1 transformation.

For a Single-Relaxation Time (SRT) model, Lij = δij/τ and S is a diagonal matrix with all

entries equal 1/τ . Then, the evolution equation simply turns to

f̄i(x+ ei∆t, t+∆t) = f̄i(x, t) +
∆t

τ + ∆t
2

(f̄k − feqk + τΦi). (4.15)

Since the discretization in velocity space is performed by matching the moments of f and fi,

the macroscopic quantities recovered by equation 4.12 would not provide the actual macroscopic

values one would expect and need corrections. To find the relation between the moments of fi and

f̄i, we use Eq. 4.8. However, this equation involves the moments of the collision operator and the

forcing term. For a system with conservation of mass, and momentum, the moments of the collision

operator are ∑
i

Lij(fj − feqj ) = 0 (4.16)∑
i

Lij(fj − feqj )eiα = 0 (4.17)
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and the moments of the forcing term are∑
i

Φi = F0 = 0 (4.18)∑
i

Φieiα = Fα, α = x, y, z (4.19)∑
i

Φieiαeiβ = Fαuβ + Fβuα, α = x, y, z, β = x, y, z. (4.20)

Now that we have the moments of all the terms, we can find the relation between the moments of

fi and f̄i. Generally,

m̄ = m− ∆t

2

((
S−1 − ∆t

2
I
)−1

(m̄−meq) +

(
I− ∆t

2
S

)−1

(F +O
(
∆t3

)
)

)
. (4.21)

If the a-th moment of the distribution f is conserved, then we have

ma = meq
a , (4.22)

and as a result,(
I+

∆t

2

(
S−1 − ∆t

2
I
)−1

)
ni

m̄i =

(
I+

∆t

2

(
S−1 − ∆t

2
I
)−1

)
ni

mi −
∆t

2

(
I− ∆t

2
S

)−1

ni

Fi.

(4.23)

This can be further simplified to get

m̄n = mn − ∆t

2
Fn. (4.24)

As can be seen, the relaxation time matrix is absent in Eq. 4.24. This is the result of the conservation

law. The above derivation is general and can be applied to any moment that is conserved. Let us

show this for the simplest case of density of a single-relaxation time model. In this case, S = − 1
τ δij

and F = 0. Thus,

ρ̄ = ρ− ∆t

2

((
−τ − ∆t

2

)−1

(ρ̄− ρ) +

(
1 +

∆t

2τ

)−1

F0

)
(4.25)

which can be rearranged to get

ρ̄

(
1− ∆t

2τ +∆t

)
= ρ

(
1− ∆t

2τ +∆t

)
− ∆t

2

(
2τ

2τ +∆t

)
F0 (4.26)

where ρ is the density. Finally, we can simplify this to get

ρ̄ = ρ− ∆t

2
F0 = ρ (4.27)
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Similarly, for the macroscopic velocity, we multiply Eq. 4.8 by eiα and sum over i:

∑
i

{
f̄ieiα = fieiα − Cieiα

2
∆t

}
. (4.28)

Applying conservation of momentum and 4.19, we get

ρ̄ūα = ρūα = ρuα − ∆t

2
Fα +O

(
∆t4

)
(4.29)

where uα is the macroscopic velocity in the α direction (α = x, y, z).

The correction terms for the stress tensor can also be derived from Eq. 4.21. If conservation

of energy is considered, a correction equation without any dependency on relaxation time can be

derived for the temperature field as well. Conservation of total energy implies

∑
i

fie
2
i =

∑
i

feqi e
2
i =

d

2
ρT + ρu2, (4.30)

and ∑
i

Lij(fj − feqj )eiαeiα = 0 (4.31)

where d is the dimension. Then the correction relation for the temperature is

T̄ = T − ∆t

2
(2Fαuα). (4.32)

The error terms in the above equations are of order O
(
∆t4

)
. Therefore, the Lattice Boltzmann

equation is the same as the velocity-discretized Boltzmann equation at least up to second order. We

later use this result to perform the Chapman-Enskog on the velocity-discretized Boltzmann equation

rather than the LBE. However, one has to be careful as the definition of the relaxation time would

change from τ to τ +∆t/2.

4.3 New Velocity discretization

As mentioned in the previous chapter, the standard Lattice Boltzmann Method solves the discretized

Boltzmann equation. The discretization of the particle distribution f in the standard models is

equivalent to using a delta function as the probability mass function:

f =
∑
i

fipi(ei) =
∑
i

fiδ(ξ − ei). (4.33)

Then the Lattice Boltzmann Equation (LBE) is recovered by plugging Eq. 4.33 into the linearized

Boltzmann equation

∂tf + ξα∂αf +
Fα
ρ
∂ξαf = −1

τ
(f − feq) (4.34)



86 CHAPTER 4. COMPRESSIBLE LATTICE BOLTZMANN

and integrating over the velocity space:

∂t

∫ (∑
i

fiδ(ξ − ei)

)
dξ +

∫ (
ξα∂α

∑
i

fiδ(ξ − ei)

)
dξ

+

∫ (
Fα
ρ
∂ξα

∑
i

fiδ(ξ − ei)

)
dξ

= −1

τ

∫ (∑
i

fiδ(ξ − ei)−
∑
i

feqi δ(ξ − ei)

)
dξ. (4.35)

This yields ∑
i

{
∂tfi + eα∂αfi = −1

τ
(fi − feqi ) +

Fα
ρ
fi

}
(4.36)

which if we insist that it holds for all i, is the Lattice Boltzmann Equation (LBE) at the zeroth

moment order. In this case, the moments of the distribution function are∫
fdξ =

∑
i

∫
fipidξ =

∑
i

fi = ρ (4.37)∫
fξαdξ =

∑
i

∫
fipiξαdξ =

∑
i

fieiα = ρuα (4.38)∫
fξαξβdξ =

∑
i

∫
fipiξαξβdξ =

∑
i

fieiαeiβ = Παβ (4.39)∫
fξαξβξγdξ =

∑
i

∫
fipiξαξβξγdξ =

∑
i

fieiαeiβeiγ = Qαβγ (4.40)

where ρ and u are the macroscopic density and velocity, respectively. Using this discretization

method on standard lattices (lattices with only nearest neighbour velocities), it is possible to set

the zeroth to second moments of the equilibrium distribution function feqi so that the macroscopic

equations of hydrodynamic can be recovered. However, this is not possible for the third moments.

This is because on standard lattices, the diagonal 3rd moment Qααα cannot be set independently

and depends on the first moment:

Qααα =
∑
i

fieiαeiαeiα = |eiα|2
∑
i

fieiα =

(
∆x

∆t

)2

ρuα. (4.41)

As a result, error terms of the form ρuαuβuγ and uα∂βρ (when T ̸= 1/3) appear in the viscous stress

tensor leading to lack of Galilean invariance.

In this work, we replace the delta function with a new probability mass function that has a

variance, bαβ , in addition to a mean, eiα. The continuous particle population can then be written

as

f =
∑
i

fipi(ei, bαβ) (4.42)

where bαβ is a symmetric tensor that depends only on position x and time t. This term appears in

the second moment of the distribution and can be interpreted as the microscopic stress tensor. In
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this formulation, the discrete moments are found from the continuous moments:∫
fdξ =

∫ ∑
i

fipi(ei, bαβ)dξ (4.43)

=
∑
i

∫
fipi(ei, bαβ)dξ (4.44)

=
∑
i

fi = ρ. (4.45)

Similarly, ∫
fξαdξ =

∑
i

fieiα = ρuα. (4.46)

The zeroth and first moments are similar to standard discretization. However, if we apply the same

method to higher moments, we see the variance terms emerge:∫
fξαξβdξ =

∫ ∑
i

fipi(ei, bαβ)ξαξβdξ

=
∑
i

fi(eiαeiβ + bαβ) = Παβ (4.47)

Similarly,∫
fξαξβξγdξ =

∑
i

fi(eiαeiβeiγ + eiαbβγ + eiγbαβ + eiβbγα) = Qαβγ (4.48)∫
fξαξβξγξδdξ = fi(eiαeiβeiγeiδ + eiαeiβbγδ + eiδeiαbβγ + eiγeiδbαβ + eiβeiγbδα

+eiαeiγbβδ + eiδeiβbαγ + bαβbγδ + bδαbβγ + bαγbβδ) = Sαβγδ.

(4.49)

The variance terms bαβ present in the discrete moments above cannot simply be obtained from

multiplying fi by ei and summing over i as in standard LBM. The introduction of the second

moment b terms provide enough independent degrees of freedom to be able to set the third moments

of the distribution function to that of the Maxwell-Boltzmann distribution exactly and eliminate

the error terms in the macroscopic momentum equation.

Assuming that force Fα is independent of ξ, we can find the moments of the discrete forcing

term from the moments of the continuous forcing term:∫ (
Fα
ρ
∂ξαf

)
dξ =

Fα
ρ

∫
∂f

∂ξα
dξ

=
Fα
ρ
f

∣∣∣∣
Ωξ

= 0 (4.50)

where Ωξ indicates the velocity space. As f is a symmetric function, the result of the integral is
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zero. For the higher moments, we use the integration by parts method to evaluate the integrals∫ (
Fα
ρ
∂ξαf

)
ξαdξ =

Fα
ρ

∫
∂ξαfξαdξ

=
Fα
ρ

[
fξα

∣∣∣∣
Ωξ

−
∫
fdξ

]

= −Fα
ρ

∑
i

fi = −Fα (4.51)

We emphasize that the discrete moments are obtained from the continuous moments of f (i.e.

integrals of f over the velocity space). Similarly,∫ (
Fα
ρ
∂ξαf

)
ξαξβdξ = −Fα

ρ

∑
i

fieiβ − Fβ
ρ

∑
i

fieiα

= −(Fαuβ + Fβuα). (4.52)

The conservation of mass, momentum, and energy require the moments of the collision operator to

be zero. For the linearized single-relaxation time collision operator, this manifests as∫
−1

τ
(f − feq) dξ = 0 (4.53)∫

−1

τ
(f − feq) ξαdξ = 0 (4.54)∫

−1

τ
(f − feq) ξαξαdξ = 0. (4.55)

The Einstein summation convention is used for the last equation above (sum over xx, yy, and zz).

We consider the single-relaxation time model in this section for sake of simplicity. The extension to

Multi-Relaxation Time is straightforward. Substituting Eq. 4.42, we get∫
−1

τ
(f − feq) dξ =

∫
−1

τ

∑
i

(
fipi(ei, bαβ)− feqi pi(ei, b

eq
αβ)
)
dξ

= −1

τ

∑
i

∫ (
fipi(ei, bαβ)− feqi pi(ei, b

eq
αβ)
)
dξ

= −1

τ

∑
i

[∫
fipi(ei, bαβ)dξ −

∫
feqi pi(ei, b

eq
αβ)dξ

]
= −1

τ

∑
i

(fi − feqi ) = 0 (4.56)

To get the evolution equation of our Lattice Boltzmann model, we multiply the continuous Boltz-

mann equation by n continuous velocities ξ to get the n-th moment and integrate over the velocity

space. Then we plug in the definition of the discretized distribution f =
∑
fipi to obtain the discrete
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velocity evolution equations:

∑
i

{
∂tfi + ∂α(fieiα) = −1

τ
(fi − feqi )

}
, (4.57)

∑
i

{
∂tfieiβ + ∂α(fi(eiαeiβ + bαβ))−

Fβ
ρ
fi = −1

τ
(fieiβ − feqi eiβ)

}
, (4.58)

∑
i

{
∂t(fi(eiβeiγ + bβγ)) + ∂α(fi(eiαeiβeiγ + eiαbβγ + eiγbαβ + eiβbγα))

− Fγeiβ + Fβeiγ
ρ

fi = −1

τ

(
fi(eiβeiγ + bβγ)− feqi (eiβeiγ + beqβγ)

)}
, (4.59)∑

i

{
∂t(fi(eiβeiγeiδ + eiδbβγ + eiγbβδ + eiβbγδ)) + ∂α

(
fi(eiαeiβeiγeiδ + eiαeiδbβγ

+ eiγeiδbαβ + eiβeiδbγα + eiαeiγbβδ + eiγeiβbαδ + eiβeiαbγδ

+ bαβbγδ + bβγbαδ + bαγbβδ

)
− Fδ(eiβeiγ + bβγ) + Fγ(eiβeiδ + bβδ) + Fβ(eiδeiγ + bδγ)

ρ
fi

= −1

τ

(
fi(eiαeiβeiγ + eiαbβγ + eiγbαβ + eiβbγα)

− feqi (eiαeiβeiγ + eiαb
eq
βγ + eiγb

eq
αβ + eiβb

eq
γα)

)}
. (4.60)

Note that for the first moment and up, the variance terms b appear as we derive the evolution equa-

tions from the continuous moments and not from multiplying Eq. 4.57 by velocities ei. Rearranging

Eq. 4.58 and 4.57, we get

∑
i

{
∂tfi + ∂α(fieiα) = −1

τ
(fi − feqi )

}
, (4.61)

∑
i

{
∂tfieiβ + ∂α(fieiαeiβ) = −1

τ
(fi − feqi )− ∂α(fibαβ) +

Fα
ρ
fi

}
(4.62)

Comparing the new evolution equations to the standard model, the zeroth moment appears to be

the same. However, in the first moment equation, an extra −∂α(ρbαβ) term appears on the RHS

of Eq. 4.62. The extra term resembles the forcing term −∂αPnid proposed by He et al. to obtain

the Navier-Stokes equation for nonideal gases [342, 343]. However, −∂α(ρbαβ) term in our equation

is more general as it includes the non-equilibrium contributions through bαβ = beqαβ + bneqαβ . beqαβ is

related to the macroscopic stress tensor. We will further discuss the form of beqαβ later in the chapter.

For the the second moment, Eq. 4.59 cannot directly be evolved by standard LB algorithms.

But, it can be split into two evolution equations that can be, one for the mean contribution and one
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for the variance contribution:∑
i

{
∂t

(
fi

(
eiβeiγ −

c2

3
δαβ

))
+ ∂α

(
fieiα

(
eiβeiγ −

c2

3
δαβ

))
= −1

τ
(fi − feqi )

(
eiβeiγ −

c2

3
δαβ

)
− ∂α(fi(eiγbαβ + eiβbγα)) +

Fγeiβ + Fβeiγ
ρ

fi

}
, (4.63)∑

i

{
∂t(fib̄βγ) + ∂α(fieiαb̄βγ) = −1

τ
(fib̄βγ − feqi b̄

eq
βγ)

}
. (4.64)

where

b̄αβ = bαβ +
c2

3
δαβ . (4.65)

As evolving Eq. 4.63 and 4.64 simultaneously is a more strict condition than evolving their sum,

the evolution of the sum is satisfied. The term −∂α(ρuγbαβ + ρuβbγα)) (after applying summation

over i) can be added to the LB solver as a correction term and contributes to recovering the correct

viscous stress term in the macroscopic equations. This correction term cannot be obtained by

simply introducing a forcing term such as −∂αPnid as that would only produce a term of form

−uβ∂αPnid − uα∂βP
nid. This correction term also appears as a result of the discretization of the

distribution function f . The consistent derivation of the correction terms makes the model easy to

generalize.

Similarly for the third moment, we separate Eq. 4.60 into two equations:

∑
i

{
∂t

(
fi

(
eiβeiγeiδ −

c2

3
(eiδδβγ + eiγδδβ + eiβδγδ)

))
+ ∂α

(
fieiα

(
eiβeiγeiδ −

c2

3
(eiδδβγ + eiγδβδ + eiβδγδ)

))
= −1

τ
(fi − feqi )

(
eiβeiγeiδ −

c2

3
(eiδδβγ + eiγδδβ + eiβδγδ)

)
+

1

ρ

(
(bβγ + eiβeiγ)Fδ + (bδβ + eiδeiβ)Fγ + (bγδ + eiγeiδ)Fβ

)
fi

− ∂α

(
fi

[
bαβ(bγδ + eiγeiδ) + bαγ(bδβ + eiδeiβ) + bαδ(bβγ + eiβeiγ)

])}
, (4.66)∑

i

{
∂t

(
fi
[
eiδ b̄βγ + eiγ b̄δβ + eiβ b̄γδ

])
+ ∂α

(
fieiα

[
eiδ b̄βγ + eiγ b̄δβ + eiβ b̄γδ

])
= −1

τ
(

(
fi
[
eiδ b̄βγ + eiγ b̄δβ + eiβ b̄γδ

])
−
(
feqi

[
eiδ b̄βγ + eiγ b̄δβ + eiβ b̄γδ

])}
(4.67)

where Eq. 4.67 is already satisfied by Eq. 4.64. Similar to the second moment, the standard LB

algorithm (i.e. Eq. 4.15) with a modified forcing term Φi can be applied to the above equations for

the evolution of fi. The b’s also can be evolved using the standard LB algorithm. However, there

lies a challenge in realizing Eq. 4.66. Since the present model is applied on a standard lattice, the

diagonal moments of the forcing term, i.e. β = γ = δ, in the LBE are set by the first moments of

this term. In other words, ∑
i

Φieiαeiαeiα =
c2

3

∑
i

Φieiα (4.68)

which cannot produce b cross terms, for example, bαβbγδ. Therefore, the evolution equation of the
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third moment deviates from Eq. 4.66. There are possible ways to improve this constraint but we

do not discuss this matter here as the current work only addresses an isothermal compressible flow

and the exact form of the third moment evolution equation does not impact the systems addressed

in this work. On the other hand, the third moment evolution equation plays an important role in

systems with conserved energy and it will be discussed in future work.

In d dimensions, the quadrature is defined by the n discrete velocities ei and a set of weights wi

giving rise to aDdQn discrete Boltzmann equation. The new discretization method introduces 6 new

variables bαβ . This provides enough degrees of freedom on the D3Q19 lattice to set the equilibrium

distributions such that all the moments up to the 3rd moment exactly match the moments of the

Maxwell-Boltzmann distribution. We pick an isotropic choice of 4th central moments to have enough

equations to get a unique solution. The central moments of feqi are defined as

meq =



ρ

ρux

ρuy

ρuz
2
3ρu

2
x

2
3ρu

2
y

2
3ρu

2
z

2
3ρuxuy
2
3ρuxuz
2
3ρuyuz

0

0

0

0

0

0

1
9ρ
((
u2x + u2y − 2u2z

)
c2 − 6u2yu

2
z + 6u2x

(
2u2y − u2z

))
1
9ρ
(
u2x − u2y

) (
6u2z + c2

)
1
9ρ
((
u2x + u2y + u2z

)
c2 − 6

((
u2y + u2z

)
u2x + u2yu

2
z

))



(4.69)

Note that the second moments are 2
3ρuαuβ which is different from the standard model where they

are ρuαuβ . The rest 1
3uαuβ is carried by the microscopic stress tensor bαβ :

bαβ =
Pαβ
ρ

− c2

3
+
uαuβ
3

(4.70)

where Pαβ is the deviatoric stress. Now we can solve the linear system of 19 equations

meq
a =

∑
Maif

eq
i (4.71)
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and find the set of feqi that satisfies it. After some algebra, we find the transformation matrix M

shown in Table 4.1

As we convert between the moment and f -space at several points in the algorithm, it would be

ideal to avoid the need for computing the inverse of theM matrix. Therefore, M is orthogonlized by

using combinations of the central moments. Then the equilibrium distributions can be found using

feqi = wi
∑
a

Maim
eq
a Na (4.72)

where wi is the Hermite quadrature weights, andN is the normalization vector. We use the transpose

of M as M−1 =MT (M is orthogonal).

4.3.1 Chapman-Enskog Analysis

Here we perform the Chapman-Enskog analysis to show that our model recovers the governing

macroscopic equations, i.e. Navier-Stokes-Fourier equations. We do this in a slightly nontraditional

way. Typically the Chapman-Enskog expansion is applied to the LB equation. We showed in section

4.2.1 that the discrete velocity Lattice Boltzmann Equation is accurate up to at least second order in

time. Thus, we can perform our Chapman-Enskog on the discrete velocity LB equation (continuous

in time and space) instead. The only caveat is to remember that the relaxation times in these

derivations are τ +∆t/2.

4.3.2 Zeroth-order Approximation

If we substitute fi ≈ feqi into Eq. 4.57 and 4.58 and sum over i (integrate), we get

∂tρ+ ∂α(ρuα) = 0 (4.73)

∂t(ρuβ) + ∂αΠ
eq
αβ + Fβ = 0 (4.74)

In the simplest model, the energy is defined as half of the trace of the stress tensor

Etot =
1

2

∑
i

fie
2
i =

1

2
Παα =

3

2
ρT +

1

2
ρu2 (4.75)

where an ideal gas model relates the stress tensor Pαβ to the temperature of the system

Pαβ = ρTδαβ . (4.76)

Therefore, the evolution equation for the energy reads

1

2

(
∂tΠ

eq
γγ + ∂αQ

eq
αγγ + 2Fγγuγ

)
=
1

2
∂t(Π

eq
xx +Πeqyy +Πeqzz)

+
1

2
∂α(Q

eq
αxx +Qeqαyy +Qeqαzz) + Fxxux + Fyyuy + Fzzuz = 0

(4.77)

where TrΠ(1) = Π
(1)
γγ = 0. For sake of brevity, we can simply multiply both sides by 2 to avoid
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

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 c 0 −c 0 0 0 c c −c −c c c −c −c 0 0 0 0

0 0 c 0 −c 0 0 c −c c −c 0 0 0 0 c c −c −c

0 0 0 0 0 c −c 0 0 0 0 c −c c −c c −c c −c

− c2

3
2c2

3 − c2

3
2c2

3 − c2

3 − c2

3 − c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3 − c2

3 − c2

3 − c2

3 − c2

3

− c2

3 − c2

3
2c2

3 − c2

3
2c2

3 − c2

3 − c2

3
2c2

3
2c2

3
2c2

3
2c2

3 − c2

3 − c2

3 − c2

3 − c2

3
2c2

3
2c2

3
2c2

3
2c2

3

− c2

3 − c2

3 − c2

3 − c2

3 − c2

3
2c2

3
2c2

3 − c2

3 − c2

3 − c2

3 − c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3
2c2

3

0 0 0 0 0 0 0 c2 −c2 −c2 c2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c2 −c2 −c2 c2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2 −c2 −c2 c2

0 − 2c3

3 0 2c3

3 0 0 0 c3

3
c3

3 − c3

3 − c3

3
c3

3
c3

3 − c3

3 − c3

3 0 0 0 0

0 0 − 2c3

3 0 2c3

3 0 0 c3

3 − c3

3
c3

3 − c3

3 0 0 0 0 c3

3
c3

3 − c3

3 − c3

3

0 0 0 0 0 − 2c3

3
2c3

3 0 0 0 0 c3

3 − c3

3
c3

3 − c3

3
c3

3 − c3

3
c3

3 − c3

3

0 0 0 0 0 0 0 c3 c3 −c3 −c3 −c3 −c3 c3 c3 0 0 0 0

0 0 0 0 0 0 0 c3 −c3 c3 −c3 0 0 0 0 −c3 −c3 c3 c3

0 0 0 0 0 0 0 0 0 0 0 c3 −c3 c3 −c3 −c3 c3 −c3 c3

0 c4

2
c4

2
c4

2
c4

2 −c4 −c4 −c4 −c4 −c4 −c4 c4

2
c4

2
c4

2
c4

2
c4

2
c4

2
c4

2
c4

2

0 c4

2 − c4

2
c4

2 − c4

2 0 0 0 0 0 0 − c4

2 − c4

2 − c4

2 − c4

2
c4

2
c4

2
c4

2
c4

2

c4

6 − c4

3 − c4

3 − c4

3 − c4

3 − c4

3 − c4

3
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
c4

6
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Table 4.1: The population-to-moment transformation. c = ∆x/∆t is the lattice velocity.
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carrying the 1/2 factor through the derivation. Substituting the definitions of the moments, we get

∂tΠ
eq
γγ + ∂αQ

eq
αγγ + 2Fγγuγ =∂t(Pxx + ρu2x + Pyy + ρu2y + Pzz + ρu2z)

+ ∂α(2Pαxux + Pxxuα + ρu2xuα)

+ ∂α(2Pαyuy + Pyyuα + ρu2yuα)

+ ∂α(2Pαzuz + Pzzuα + ρu2zuα). (4.78)

Substituting the equation of state in Eq. 4.76 and applying the product rule

∂α(abc) = c∂α(ab) + b∂α(ac)− bc∂α(a), (4.79)

we get

∂tΠ
eq
γγ + ∂αQ

eq
αγγ + 2Fγγuγ =3∂t(ρT )− 2∂α(ρTδαx + ρuαux)ux

− 2∂α(ρTδαy + ρuαuy)uy − 2∂α(ρTδαz + ρuαuz)uz

+ ∂α(ρuα)
(
u2x + u2y + u2z

)
+ ∂α

(
ρuα(u

2
x + u2y + u2z)

)
+ 3∂α(ρTuα) + 2∂α(ρTuα) (4.80)

If we simplify the above equation, we finally get

∂tΠ
eq
γγ + ∂αQ

eq
αγγ = 3ρ(∂tT + uα∂αT )− 2∂α(ρT )uα + 2∂α(ρTuα) = 0, (4.81)

which leads to

(∂tT + uα∂αT ) = −2

3
T∂αuα. (4.82)

4.3.3 First-order Approximation

Now let’s assume a small deviation from the equilibrium such that fi ≈ feqi +f (1). Then for a single

relaxation time model, macroscopic evolution equations are

∂tρ+ ∂α(ρuα) = 0 (4.83)

∂t(ρuβ) + ∂αΠ
eq
αβ = −∂αΠ(1)

αβ (4.84)

∂tΠ
eq
βγ + ∂αQ

eq
αβγ = −1

τ
Π

(1)
βγ (4.85)

∂tQ
eq
βγδ + ∂αS

eq
αβγδ = −1

τ
Q

(1)
βγδ. (4.86)

Thus, one can find the non-equilibrium moments at a certain level by solving the equation one

order higher using the equilibrium moments. For the momentum equation, we have to find Π
(1)
αβ and

therefore have to solve the third-moment equation (4.85):

∂tΠ
eq
βγ + ∂αQ

eq
αβγ = ∂t(Pβγ + ρuβuγ) + ∂α(Pαβuγ + Pγαuβ + Pβγuα + ρuαuβuγ) (4.87)

= ∂t(Pβγ) + ∂t(ρuβuγ) + ∂α(Pαβuγ + Pγαuβ + Pβγuα) + ∂α(ρuαuβuγ). (4.88)
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Applying the product rule of Eq. 4.79 and using the first and second moment equations

∂tρ = −∂α(ρuα), (4.89)

∂t(ρuβ) = −∂αΠeqαβ , (4.90)

we can write

∂tΠ
eq
βγ + ∂αQ

eq
αβγ = ∂t(Pβγ) + ∂t(ρuβ)uγ + ∂t(ρuγ)uβ − (∂tρ)uβuγ

+ ∂α(Pαβuγ + Pγαuβ + Pβγuα) + ∂α(ρuαuβuγ) (4.91)

= ∂t(Pβγ)− ∂αΠ
eq
αβuγ − ∂αΠ

eq
αγuβ + (∂αρuα)uβuγ

+ ∂α(Pαβuγ + Pγαuβ + Pβγuα) + ∂α(ρuαuβuγ) (4.92)

= ∂t(Pβγ)− ∂α(Pαβ + ρuαuβ)uγ − ∂α(Pαγ + ρuαuγ)uβ + (∂αρuα)uβuγ

+ ∂α(Pαβuγ + Pγαuβ + Pβγuα) + ∂α(ρuαuβuγ) (4.93)

= ∂t(Pβγ)− ∂α(Pαβ)uγ − ∂α(Pαγ)uβ − (∂αρuαuβuγ)

+ ∂α(Pαβuγ + Pγαuβ + Pβγuα) + ∂α(ρuαuβuγ) (4.94)

= ∂t(Pβγ)− ∂α(Pαβ)uγ − ∂α(Pαγ)uβ + ∂α(Pαβuγ + Pγαuβ + Pβγuα) (4.95)

Assuming that Pαβ = P (ρ, T ), we have

∂tΠ
eq
βγ + ∂αQ

eq
αβγ = ∂ρ(Pβγ)∂tρ+ ∂T (Pβγ)∂tT − ∂α(Pαβ)uγ − ∂α(Pαγ)uβ

+ ∂α(Pαβuγ + Pγαuβ + Pβγuα) (4.96)

= −∂ρ(Pβγ)∂α(ρuα) + ∂T (Pβγ)∂tT − ∂α(Pαβ)uγ − ∂α(Pαγ)uβ

+ ∂α(Pαβuγ + Pγαuβ + Pβγuα)

= −∂ρ(Pβγ)uα∂αρ− ∂ρ(Pβγ)ρ∂αuα + ∂T (Pβγ)∂tT − ∂α(Pαβ)uγ (4.97)

− ∂α(Pαγ)uβ + ∂α(Pαβuγ + Pγαuβ + Pβγuα)

= −∂ρ(Pβγ)uα∂αρ− ∂ρ(Pβγ)ρ∂αuα + ∂T (Pβγ)∂tT + Pαβ∂αuγ

+ Pαγ∂αuβ + ∂α(Pβγuα) (4.98)

= −∂ρ(Pβγ)uα∂αρ− ∂ρ(Pβγ)ρ∂αuα + ∂T (Pβγ)∂tT + Pαβ∂αuγ

+ Pαγ∂αuβ + uα∂αPβγ + Pβγ∂αuα (4.99)

= (Pβγ − ρ∂ρ(Pβγ))∂αuα + ∂T (Pβγ)(∂tT + ∂αTuα)

+ Pαβ∂αuγ + Pαγ∂αuβ . (4.100)

Substituting Pαβ = ρTδαβ , gives

∂tΠ
eq
βγ + ∂αQ

eq
αβγ = (ρTδβγ − ρ∂ρ(ρTδβγ))∂αuα

+ ∂T (ρTδβγ)(∂tT + ∂αTuα) + ρTδαβ∂αuγ + ρTδαγ∂αuβ (4.101)

= ρδβγ(∂tT + ∂αTuα) + ρT∂βuγ + ρT∂γuβ . (4.102)
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The term with derivative of temperature can be further simplified by invoking the isothermal con-

dition:

ρδβγ(∂tT + ∂αTuα) = 0. (4.103)

The final momentum equation is

∂t(ρuβ) + ∂αΠ
eq
αβ = ∂α

(
η

(
∂βuγ + ∂γuβ

))
(4.104)

On the other hand, if the conservation of energy and Eq. 4.82 are invoked, the momentum equation

turns out to be

∂t(ρuβ) + ∂αΠ
eq
αβ = ∂α

(
η

(
∂βuγ + ∂γuβ − 2

3
δβγ∂αuα

))
(4.105)

where the viscosity η = ρTτ . Eq. 4.104 and 4.105 are the Navier-Stokes equation with different bulk

viscosities. In either case, the equations are exactly recovered with no error terms in the macroscopic

momentum equation.

4.4 Implementation

So far, we have discussed and covered the theoretical basis of the model and showed that it correctly

recovers the Navier-Stokes (NS) equation. In this section, we focus on the numerical aspect and

implementation of the model.

Evolution Equation As demonstrated in Eq. 4.61-4.66, one can separate the evolution equation

of the first moment contribution ei and second moment contribution b. For a single-relaxation time,

this yields the set of evolution equations that are solved in our algorithm

∑
i

{
∂tfi + ∂α(fieiα) = −1

τ
(fi − feqi )

}
, (4.106)

∑
i

{
∂tfieiβ + ∂α(fieiαeiβ) +

Fα
ρ
fi = −1

τ
(fi − feqi )− ∂α(fibαβ)

}
, (4.107)

∑
i

{
∂t

(
fi

(
eiβeiγ −

c2

3
δαβ

))
+ ∂α

(
fieiα

(
eiβeiγ −

c2

3
δαβ

))
= −1

τ
(fi − feqi )

(
eiβeiγ −

c2

3
δαβ

)
− ∂α(fi(eiγbαβ + eiβbγα))−

Fαeiβ + Fβeiα
ρ

fi

}
, (4.108)∑

i

{
∂t(fib̄βγ) + ∂α(fieiαb̄βγ) = −1

τ
(fib̄βγ − feqi b̄

eq
βγ)

}
, (4.109)

where

b̄αβ = bαβ +
c2

3
δαβ . (4.110)

Consequently,

b̄eqαβ =
Pαβ
ρ

+
uαuβ
3

(4.111)

As can be seen, the evolution of fi’s and b’s are coupled through the b derivative terms. These

derivative terms are calculated on the interior sites using the isotropic differential operators proposed
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by Ramadugu et al. [344]:

∂α(ρbαβ) =
1

3

q∑
i=1

wieiαρbαβ(x+ ei) +O(∂3) (4.112)

where the prefactor 1/3 is a lattice dependent constant. At the boundaries, however, we do not

use the isotropic derivatives as a Halfway bounce-back method is employed. We further discuss the

boundary conditions later in this chapter. A consequence of using the Halfway bounce-back is that

we do not define any nodes inside the wall and therefore the isotropic derivatives cannot be used.

Instead, we utilize second-order finite differences for the boundaries such that:

∂x(ρbxβ) =
ρbxβ(x+∆x)− ρbxβ(x−∆x)

2∆x
(4.113)

∂y(ρbyβ) =
ρbyβ(y +∆y)− ρbyβ(y −∆y)

2∆y
(4.114)

∂z(ρbzβ) = ±ρbzβ(x± 2∆x)− 4ρbzβ(x±∆x) + ρbzβ(x)

2∆z
(4.115)

where forward and backward (+ and − in Eq. 4.115) finite differences are applied in the z direction

for the bottom and top walls, respectively.

At the beginning of each simulation, the geometry is set up and f̄i, ρ, ū, and T arrays are

initialized. f̄i is defined in 4.8. The macroscopic properties are received from the user and the f̄i’s

are set to the equilibrium values. The collision step is then performed in the moment space and

the post-collision f̄∗i is found from transforming the post-collision moments. Next, the collision is

performed on the ρb̄ terms to get the post-collision b̄∗. This is followed by a streaming step where

the populations travel to neighbouring sites via ei velocities. The second moment b̄ is carried by the

f̄ ’s such that:

ρ(x+ ei∆t, t+∆t)b̄αβ(x+ ei∆t, t+∆t) =
∑
i

f̄∗i (x, t)b̄
∗
αβ(x, t). (4.116)

Then the macroscopic variables are computed from the moments of f̄i:

ρ(t+∆t) =
∑
i

f̄(t+∆t) (4.117)

ρ(t+∆t)ūα(t+∆t) =
∑
i

f̄(t+∆t)eiα (4.118)

(4.119)

where for the isothermal case, T is left as the initial value. The MD calculations are then done

and forces exerted on the fluid by the particles and by the fluid on the particles are found. We

will shortly discuss the coupling between the MD particles and the fluid. Finally, the macroscopic

properties are corrected as described in Sec. 4.2.1. The total mass, velocity, and energy can be

outputted as a LAMMPS thermo output. The local properties can output into an .xdmf file and be

visualized in visualization software. A concise summary of the algorithm is provided in the form of

a pseudo-code in Algorithm 1.
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Algorithm 1 LAMMPS psuedo-code illustrating calls for lb/fluid

for n = 1 to Nt do ▷ Loop over Nt timesteps
ev set()

fix→initial integrate()
lb/fluid:

calculate m∗/m−meq(ρ(t),u(t), T ) on local subgrid
calculate f∗i on local subgrid
calculate b̄∗ on local subgrid
calculate/comm f̄k(t+∆t), b̄(t+∆t) =

∑
f̄kb̄

calculate/comm ρ =
∑
k f̄k, ρū =

∑
k f̄kek

calculate ∂α(ρbαβ)
fix→post integrate()

LAMMPS neighbor list update and particle communication

force clear()
fix→pre force()

force→compute(),
where force ∈ {pair, bond, angle,dihedral, improper, kspace}

comm→reverse comm()

fix→post force()
lb/fluid: if (fixviscouslb)

calculate and comm interpolation weights
calculate and comm Force on fluid Ff
comm particle FH(t+∆t) mass field

end if
lb/viscous: Fi(t+∆t) = FH,i +mi/(mi +mn,i)Fx,i

fix→final integrate()
lb/fluid:

calculate ∂α(ρuγbαβ + ρuβbαγ)
calculate/comm u(t+∆t) = ū+∆t/(2ρ) (∂α(ρbαβ) + F )

fix→end of step()
lb/fluid: output fluid ▷ If output to write

output→write() ▷ If output to write
end for
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4.4.1 Boundary Conditions

For anyone who has worked with Partial Differential Equation (PDE)s before, the necessity of

boundary conditions is obvious. The specific solution to a PDE and the integration constants can be

only determined based on the initial and boundary conditions. Physically, the initial and boundary

conditions set the geometry of the problem. So it is very clear that from both the mathematical

and physical point of view, these conditions need to be specified to be able to model a particular

physical problem.

When it comes to hydrodynamics, the LBM recovers the Navier-Stokes (NS) equations at the

macro-scale. Thus, the initial and boundary conditions typically applied to NS equations can be

applied to LBE at the macro-scale. But the LBE solves the evolution equation of the particle

populations fi. Therefore, it requires initial and boundary conditions for these particle populations.

It would not be an exaggeration to state that finding the right boundary conditions for an LBM is one

of the most important and challenging parts of the design. This is particularly because the physical

macroscopic conditions do not generate enough constraints to uniquely determine the boundary

conditions for all of the mesoscopic distributions. As a result, a great number of approaches have

been proposed to handle the LBE boundary conditions. Examples of different methods can be found

in the literature [20, 345–349]. For the current work, we used a halfway bounce back method for

the solid walls and periodic boundary conditions everywhere else which we will describe in the next

section.

Periodic Boundary Conditions

Periodic boundary conditions can be used when the solution of a flow is periodic in a specific

direction. Physically, this corresponds to isolating a unit cell in a repeating flow pattern. The

particle distributions that leave the simulation box are assumed to re-enter the box instantaneously

in the periodic directions. Therefore, the periodic boundary conditions always conserves mass and

momentum.

Implementing periodic boundary conditions in the LBM is straightforward. During the streaming

step, the unknown incoming populations on one side are given by the exiting populations on the

other side:

fi(xα, t+∆t) = f∗i (xα + L− eiα∆t, t) (4.120)

where L is the length of the box in the α direction.

Bounce Back Boundary Conditions

The no-flow, no-slip boundary condition is the most commonly used boundary condition in hydro-

dynamics. The most popular method that is used to impose a no-slip boundary condition in LBM

is the bounce-back method. The main idea behind the bounce-back approach is quite simple; the

populations that hit a rigid wall are reflected to where they came from. The no-slip boundary con-

dition is enforced by bouncing back the populations rather than streaming forward which implies

that the fluid and the boundary have the same velocity. The bounce-back also ensures conservation

of mass as no particle passes through the boundary and all are returned to the fluid (no-flow).

There are two approaches to the bounce-back method:
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Figure 4.1: Time evolution of the bounce-back method at the bottom wall. The incoming populations are reflected
in the opposite direction at the next timestep.

1. Fullway bounce-back: In the fullway bounce-back, solid nodes inside the wall are created. The

population entering the wall first resides on the solid node and is returned into the bulk in the

next streaming step.

2. Halfway bounce-back: In the halfway bounce-back, there is no need for solid nodes. The

populations entering the wall are returned to their current site immediately and leave in the

opposite direction in the next timestep.

Both bounce-back schemes result in a boundary located approximately +∆x
2 from the boundary

nodes. It has been shown that the fullway bounce-back method is a first order method while the

halfway method is accurate up to second order [20]. In our simulations, we use the halfway bounce-

back method. For a stationary wall, this means

fj(x, t+∆t) = f∗i (x, t) (4.121)

where ei = −ej . This is demonstrated for a bottom wall in Fig. 4.1 The bounce-back can be

easily extended to include moving walls. The main principle is adding/taking a certain amount of

momentum to/from the bounce-back populations so that the outcome is Galilean invariant. Thus,

the modified bounce-back for a moving wall with the velocity U is

fj(x, t+∆t) = f∗i (x, t)− 2wiρw(eiαUα)/c
2 (4.122)

where wi is the discretization weight, ρw is the density at the wall, and c is the lattice constant.

4.4.2 Coupling MD particles to the fluid

The production of fiber-reinforced thermoplastics is often done under flow conditions, for example,

extrusion and injection molding. Thus, it is crucial to understand the dynamics of fibers in flow to

obtain high quality fiber-reinforced composites. To study the dynamics and behaviour of fibers and

nanorods in a flow, we couple our Lattice Boltzmann Method to the Molecular Dynamics particles

in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [253]. In this section, we

will derive the force coupling between the Molecular Dynamics (MD) particles and the fluid. The

goal here is to achieve an immersed boundary style method [350] where the velocity of the particle (or
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node on the surface of the extended particle) exactly matches the velocity of the fluid (interpolated

to the location of the particle/surface node) at the end of each time step. This section has been

published in the journal of Computer Physics Communications in collaboration with C Denniston,

M.G. Cole-André, F.E. Mackay, S.T.T. Ollila, and T. Whitehead [314]. This was included as a

modification to lb/fluid package in the open-source software LAMMPS.

Similar to other constraints in LAMMPS such as the SHAKE algorithm [351, 352], the force

coupling is done by finding the set of constraining forces (equal and opposite for the particles/fluid)

that ensure that particles’ velocity match the (interpolated) velocity of the fluid at the particles’

location at the end of the time step. As we will see, the algorithm below does this exactly in two

limits, first when the particles are far apart and second when they are very densely packed. Between

these limits there is a finite, but bounded, error (difference between the velocities). Just as with

other constraints in LAMMPS, the total number of degrees of freedom (DOF) in the system are

reduced by these constraints.

An interpolation stencil is used to interpolate values from the fluid mesh to the particle location

(which typically does not coincide with a mesh point). The weight from mesh site j at particle

(node) i location is denoted as ζij . By construction we require that
∑
j ζij = 1. This can then be

used to interpolate the value of the fluid density to particle i’s location as

ρi =
∑
j

ρ(xj)ζij , (4.123)

where ρ(xj) is the density at the mesh site xj . However, for the fluid velocity we use a mass-weighted

average for the interpolation so that

ui =

∑
j ρ(xj)u(xj)ζij∑

j ρ(xj)ζij
. (4.124)

In other words, we actually interpolate the momentum density to the location of the particle and then

divide by the mass density interpolated to the particle site. This helps ensure an exact conservation

of momentum in the algorithm.

“Spreading” is the converse process to interpolation, and is the term used to describe how the

particle properties are distributed onto the fluid mesh. The main thing needed to be “spread” is

the equal-and-opposite force to the hydrodynamic force on the i’th particle F iH . In the previous

version of the package the spreading weight of particle i onto fluid mesh site j was always equal to

the interpolation weight ζij . In the current version this will only be true for a limiting case. We

denote the spreading weight of particle i at lattice site j as ηij . We will not require this sum to be

one but will need the normalization which is denoted

ηiA =
∑
j

ηij . (4.125)

To derive the required constraining forces, we need to also consider the velocity-Verlet algorithm

[353] typically used in MD (variants work fairly similarly). In LAMMPS, the particle velocity at the

end of the step is computed from the half-step velocity (cf. Algorithm 1) in the final integrate
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step:

vi(t+∆t) = vi(t+∆t/2) +
∆t

2mi

[
−FiH +

mi

mi +mi
n

Fix

]
, (4.126)

where mi is the particle mass, mi
n is the fluid mass constrained to move with the particle (which

we will determine below), FiH is the constraining force on the particle (making it move with the

fluid), and Fix is the other forces (inter-particle or other MD forces) on the particle. Note that the

particle and accompanying fluid move together so form a pseudo-particle with total mass mi +mi
n.

The corresponding step for the fluid is from Eq. (4.29) which in terms of the specific forces in Eq.

(4.126) and converted from momentum densities to total momentum for fluid site j is

ρjuj∆x
3 = ρjūj∆x

3 +
∆t

2

∑
i

[
FiH +

mi
n

mi +mi
n

Fix

]
ηij
ηiA

. (4.127)

As an aside, we note that these equations conserve the total momentum P in the system:

∆P = ∆Pparticles +∆Pfluid (4.128)

=
∑
i

[
mivi(t+∆t)−mivi(t+

∆t

2
)

]
(4.129)

+
∑
j

[ρju(xj)− ρjū(xj)]∆x
3 (4.130)

=
∆t

2

∑
i

[
−FiH +

mi

mi +mi
n

Fix

]
(4.131)

+
∆t

2

∑
i

[
FiH +

mi
n

mi +mi
n

Fix

]∑
j

ηij
ηiA

(4.132)

=
∆t

2

∑
i

Fix. (4.133)

where in Eq.(4.132) we have made use of Eq. (4.126) and (4.127) and switched the order of summa-

tion for the second term. To go from Eq.(4.132) to Eq. (4.133) we have made use of Eq. (4.125) to

find the sum over j to be one. Note that if Newton’s third law is obeyed by the MD algorithm (which

is the case) we should have
∑
iF

i
x = 0 if the Fix are inter-particle forces and this sum will result in

the total external force on the system if external forces are present. As a result, total momentum is

conserved, or changes in accordance to Newton’s laws in the presence of external forces.

We now turn to determining FiH and mi
n using the constraint that we want the end-of-step

velocities vi(t + ∆t) and uj interpolated to the i’th particle position to be identical. Using the

interpolated velocity definition Eq. (4.124) with the final fluid velocity we get

ui(t+∆t) =

∑
j ζij

(
ρjū(xj) +

∆t
2∆x3

∑
s

{
FsH +

ms
n

ms+ms
n
Fsx

}
ηsj
ηsA

)
∑
j ρjζij

, (4.134)

= ūi +
∆t

2∆x3

∑
s

{
FsH +

ms
n

ms +ms
n

Fsx

} ∑
j ζijηsj

ηsA
∑
j ρjζij

, (4.135)

where the first term is the interpolated half-step fluid velocity at particle i’s location, and we

have switched the order of summation in the second term. Now taking the difference between the
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interpolated final fluid velocity and the particle velocity (Eq. (4.126)) we get

ui(t+∆t) − vi(t+∆t) = (ūi − vi(t+∆t/2)) (4.136)

+
∆t

2
FiH

( ∑
j ζijηij

ηiA
∑
j ρjζij∆x

3
+

1

mi

)
(4.137)

+
∆t

2

Fixm
i
n

mi +mi
n

( ∑
j ζijηij

ηiA
∑
j ρjζij∆x

3
− 1

mi
n

)
(4.138)

+
∆t

2∆x3

∑
s̸=i

{
FsH +

ms
n

ms +ms
n

Fsx

} ∑
j ζijηsj

ηsA
∑
j ρjζij

, (4.139)

where we have separated out the term in the sum over particles corresponding to particle i. At this

point we have not specified mi
n, F

i
H , or ηij and we will use the goal of minimizing the magnitude of

this expression (difference between the final velocities) to determine these quantities.

We note two limiting cases:

1. Isolated Particles case where there is only one particle or all particles are separated. In this

case for any mesh site j only one particle contributes and ζijηsj = 0 for i ̸= s. As a result the

last line is zero and the choice

mi
n

?
=
ηiA

∑
j ρjζij∆x

3∑
j ζijηij

(4.140)

will zero the third line (the
?
= is used here as we will modify this slightly below). Finally

FiH =
2

∆t

mim
i
n

mi +mi
n

(ūi − vi(t+∆t/2)) (4.141)

will zero the first two lines yielding ui(t +∆t) = vi(t +∆t) as desired. Note that this is the

same coupling force expression derived in Ref.[313] except that now mi
n and the times scale

for the impulse are fully specified.

2. Coinciding Particles case where particles are either isolated or exactly coincide so for any mesh

site j either only one particle i has ζij ̸= 0 or there are Q particles that exactly coincide. With

a slight modification of mi
n,

mi
n ≡

η2iA
∑
j ρjζij∆x

3∑
j ζijηij

(4.142)

and defining the spreading weight ηij as

ηij = ζij
|ζij |∑Q
r=1 |ζrj |

, (4.143)

we will show below that this zeros the difference between the particle and interpolated fluid

velocity in both this case and in the isolated particle case, with the choice of Eq.(4.141) in all

cases.

To see that Equations (4.141), (4.142), and (4.143) work for both limiting cases, first note that in

case 1 the sum in the denominator Eq.(4.143) always has only one term, which cancels with the term

in the numerator and the spreading weight ηij = ζij , the interpolation weight. As a result, in case
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1 the spreading normalization ηiA = 1 and so Eq.(4.142) and (4.140) become numerically identical.

Thus these expressions again yield ui(t+∆t) = vi(t+∆t) as desired for case 1.

For limiting case 2, the denominator in Eq.(4.143) is Q|ζij |, where particle i is one of the Q

coinciding particles (so all have same interpolation weight), and ηij =
1
Qζij . The normalization then

becomes ηiA = 1/Q. In this case, the effect will be that the Q coinciding particles equally split the

properties of one “super” pseudo-particle with a total full weight of ζij . Further, the last line in the

velocity difference equation, Eq.(4.139) can be rewritten as identical terms to the first terms in the

brackets on the previous two lines (so a total of Q such terms). As ηiA = 1/Q in this case, we once

again get ui(t+∆t) = vi(t+∆t) as desired.

In the more general case where the interpolation weights for multiple particles may overlap, but

not perfectly coincide, Eq.(4.143) is a weighted sum of the Q particles contributing to a fluid mesh

site j. In this case we may not get ui(t+∆t) = vi(t+∆t) exactly, but it should be very close.

One downside to using Eq.(4.143) is that it requires two passes over the particles to compute.

The first pass works out

w1,j =
∑
s

|ζsj |, (4.144)

which is stored in an array (with dimensions of the fluid mesh size) and in the second pass over the

particles we work out

ηij =
1

w1,j
ζij |ζij |, (4.145)

for each particle. While more expensive that a single pass, the overall fluid-particle force calculation

is still O(N) for N particles. In most examples of using the lb/fluid package this calculation is

a small part of the total computational load so that the extra work is negligible and well worth

the cost. Significantly, this removes the need for the user to specify a correct value for mi
n. This

seemed to be a significant issue for many users of the first version of lb/fluid as poor choices for mi
n

resulted in poor performance, especially in thermostating of the particles when a fluid with thermal

fluctuations was used.

4.4.3 Interpolation Stencils 1

The algorithm above requires a choice of interpolation stencil with weights ζij which interpolated

particle i information at location rpi = (xpi, ypi, zpi) to fluid mesh site rfj = (xfj , yfj , zfj). The

stencil weight

ζij = ϕ(∆xij)ϕ(∆yij)ϕ(∆zij)

where ∆rij = (rpi − rfj)/∆x and ∆x is the lattice spacing. Three different stencils are provided in

the package with the choice specified by the user in the input script:

1. Trilinear stencil: This is a standard 2-point linear interpolation (in each dimension) so

ϕ(∆) = 1− |∆|, |∆| < 1. (4.146)

1This section has been published in the journal of Computer Physics Communications in collaboration with C
Denniston, M.G. Cole-André, F.E. Mackay, S.T.T. Ollila, and T. Whitehead [314]
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2. Three-point immersed boundary stencil: This is a commonly used immersed boundary stencil

[350],

ϕ(∆) =

 1
3 (1 +

√
1− 3∆2), |∆| ≤ 0.5

1
6 (5− 3∆−

√
1− 3(1−∆)2), 0.5 < |∆| < 1.5.

(4.147)

3. Keys’ cubic spline interpolation stencil: This 4-point stencil is often used for scaling images and

video as it preserves detail better than linear interpolation. Keys showed that this produces

third-order accuracy [354]. The stencil is

ϕ(∆) =

 3
2 |∆|3 − 5

2∆
2 + 1, |∆| ≤ 1

− 1
2 |∆|3 + 5

2∆
2 − 4|∆|+ 2, 1 < |∆| < 2.

(4.148)

These stencils are all zero outside their defined range. The default stencil (used if not otherwise

specified by the user) is the trilinear stencil.

There are advantages and disadvantages to each stencil. The trilinear stencil’s main advantage

is that it extends at most ∆x from the particle which allows particles to approach walls (and each

other) without significant overlap of the stencil. The disadvantage of the trilinear stencil is that

it has stronger commensurability effects from the underlying mesh [355]. The immersed boundary

stencil reduces these mesh effects [350] but at the cost of reduced accuracy. In addition, the re-

weighting necessary for densely packed nodes in the spreading stencil ηij somewhat negates the

stencil smoothness over the mesh. The 4-point stencil produces similar results to the trilinear

stencil. It produces a more accurate interpolation at the cost of extending up to 2∆x from the

particle. However, the stencil accuracy appears to be one of the smaller discretization errors overall

so usually one of the other two stencils would be preferred.
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4.5 Results

4.5.1 Fourier Analysis

The governing macroscopic equations of our model were derived in section 4.3.1. In this section,

we measure the physical properties of our fluid. We also compare these results to our theoretical

predictions to validate our model. The dynamic/shear viscosity and bulk viscosity are related to

the rate of decay of density waves in the system. Thus, we initially introduce a sound wave in the

system and measure these quantities from the decay of such waves. As a starting point, we perform

a Fourier analysis of the sound waves in our LB fluid. The analysis is applied to a Single-Relaxation

Time (SRT) model. The continuity equation reads

∂tρ+ ∂α(ρuα) = 0 (4.149)

and the momentum equation is

∂t(ρuβ) + ∂α(ρuαuβ) = −∂β(ρT ) + η∂α

(
∂βuα + ∂αuβ

)
. (4.150)

The momentum equation 4.150 can be simplified by using the product rule in Eq. 4.79 and the

continuity equation

ρ∂tuβ + ρuα∂αuβ = −∂β(ρT ) + ∂α

(
η(∂αuβ + ∂βuα)

)
(4.151)

Now let’s assume a small perturbation in the form of a right travelling wave with the wave

number k and angular frequency ω ( k, ω > 0 )

ρ = ρ0 + a0e
−γtei(kx−ωt) (4.152)

u = b0e
−γtei(kx−ωt) (4.153)

(4.154)

where a0, and b0 are constants with no dependence on space or time. The constants can be complex

but they are small in value:

a0 = |a0| eiδa , |a0| ∼ 0 (4.155)

Plugging 4.152 and 4.153 into 4.149, we get

a0(−γ − iω)e−γtei(kx−ωt) + ρ0b0(ik)e
−γtei(kx−ωt) +O (a0b0) = 0 (4.156)

which in turn gives

b0 = a0
(γ + iω)

ikρ0
. (4.157)

The complex coefficient relating a0 and b0 implies ρ and u are not in phase but have a phase shift.
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Similarly, if we plug 4.152-4.153 into the momentum equation 4.151, we get

ρ0b0(−γ − iω) +O
(
b20, a0b0

)
= −ik (a0T ) +O (a0c0) + (ik)η0(ik)(2)b0 +O (a0b0, b0c0) . (4.158)

where η0 = ρ0Tτ . Substituting for b0, we have

ρ0(γ + iω)a0
(γ + iω)

ikρ0
= ik (a0T ) + 2k2η0a0

(γ + iω)

ikρ0
(4.159)

which can be further simplified to

(γ + iω)2 = −k2 (T ) + 2k2
η0
ρ0

(γ + iω). (4.160)

An equation for the decay rate γ can be found by equating the imaginary parts on each side of this

equation:

γ = k2
η0
ρ0

(4.161)

And the real part can be solved to get a dispersion relation:

γ2 − ω2 = −k2T + 2
η0
ρ0
k2γ. (4.162)

It is worth noting that since a bulk viscosity is 2/3η0, the effective viscosity appearing in Eq. 4.161

is equal to the shear viscosity. Substituting Eq. 4.161 in Eq. 4.162, we get an equation for ω

ω2 = k2T − k4
η20
ρ20

(4.163)

Eq. 4.161 and 4.163 can be used to measure η0 from a sound wave analysis. To do so, we initialize

our system with a sinusoidal perturbation

ρijk = ρ0 +Acos(2π
k

Nz
) (4.164)

where ρ0 is the base density inputted by the user. ρ0 = 1 and A = 0.0001 in the rest of this chapter

unless mentioned otherwise. The size of the simulation box for the simulations in this section is set

to 20µm× 20µm× 80µm and k = 2π/80 = 0.07854.

Fig. 4.2(a) shows the evolution of the density at centre of the simulation box. The results for

viscosities η0 = 0.0625, 0.125, 0.25, 0.5 are shown. We see that the waves are damped out faster at

higher viscosities. This qualitative observation agrees with the prediction of Eq. 4.161. To check

if our model reproduces the correct bulk viscosity, we fit the ρ versus t data to find the damping

factor γ. Fig. 4.2 shows the measured damping factor as a function of the input viscosity. As can

be seen, the damping factor is a linear function of the viscosity. The slope of the line is found to be

0.0062317 which matches the expected value k2/ρ0 = 0.0061685 with about 1% error.

Moreover, one would expect changing the effective viscosity η0 to have a negligible impact on

the angular frequency as it only appears as the coefficient of k4. This is also observed in Fig. 4.2(a)

where the frequency of the waves seem to coincide.

One of the advantages of our new LBM is the flexibility in setting the temperature. Fig. 4.3

shows the square of the measured angular frequency as a function of temperature for input viscosities
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(a)

(b)

Figure 4.2: (a) shows the density oscillation at z=0 for different viscosities as a function of time. (b) shows the
damping factor of the sound waves as function of viscosity. Higher viscosities damp out the waves faster as expected.
A linear relation between γ and η is found as predicted by the wave analysis. The slope of the line is k2/ρ0
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(a) (b)

Figure 4.3: The squared angular frequency ω2 is plotted versus T for η = 0.125 (a) and η = 0.5 (b)

η = 0.125pg/µmµs (a) and η = 0.5pg/µmµs (b). A linear relationship between the ω2 and T is

observed at both viscosities. This is expected, based on Eq. 4.162, as the k4 term is small compared

to k2T term and ω2 ≈ k2T . The slope of the fitted lines correctly correspond to the value of k2 with

less than 1% error.

4.5.2 Poiseuille Flow

The bulk viscosity was measured above based on the damping of the sound waves. In this section, we

measure the shear viscosity using a Poiseuille flow. A Poiseuille flow can be generated by applying

a body force or a pressure gradient along the channel and parallel to stationary walls. In our case,

we apply a body force acceleration of a = 0.00001 µmµs2 , which is very close to the gravitational

acceleration on earth g, in the y direction. the velocity profile when a body force acceleration a in

the y direction is applied can be found from the momentum equation (Eq. 4.150):

∂t(ρuβ) + ∂α(ρuαuβ) = −∂β(ρT ) + η∂α

(
∂βuα + ∂αuβ

)
+ ρaβ . (4.165)

In steady-state, nothing changes with time. Thus, ∂t = 0. The walls of the channel are set

up with normals in the z direction and a bounce back boundary condition (BC) is applied at the

walls. Periodic boundary condition (BC)s are used in the x and y directions. Therefore, everything

is translationally invariant in these directions, i.e. ∂x = ∂y = 0. There is also no driving force

applied in the x direction resulting in no velocity in that direction, i.e. ux = 0. The walls and

conservation of mass impose uz = 0. Considering all the above conditions and an incompressible

regime (Ma = umax/cs < 0.35), Eq. 4.165 transforms into

0 = 0 + η∂z

(
∂yuz + ∂zuy

)
+ ρay. (4.166)

which in turn has a solution of form

uy(z) = − 1

2η
ρayz(z −H) (4.167)
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where uy is the velocity in the y-direction, η is the dynamic viscosity, ay is the y component of

the acceleration (rest of them are zero), and H is the height of the channel in the z-direction. Fig.

4.4(a) and (b) illustrate the uy profile for fluids at different temperatures and two relaxation times

τ = 1µs and τ = 2µs, respectively. For these simulations, we observe that the fluid reaches larger

velocities at higher temperatures. Based the Chapman-Enskog expansion, we expect the viscosity

and temperature to be related by

η = ρTτ (4.168)

where τ is the relaxation time. To confirm this relation, we measure the viscosity η from the

Poiseuille flow profiles and fit a linear equation to the data. The viscosity is found using

η =
ρayH

2

8umaxy

. (4.169)

Fig. 4.4(c) shows the measured η as a function of temperature for both relaxation times. As

can be seen, the viscosity versus temperature data fits perfectly to a line and the slope of the lines

correspond to the correct value of ρτ for both systems confirming Eq. 4.168.

4.5.3 Couette Flow and Galilean Invariance

As discussed in section 4.3, the standard LBM on standard lattices is not capable of generating

independent third moments. This leads to appearance of error terms in the macroscopic momentum

equation and limits the applicability of the model to the incompressible limit. The error terms also

introduce a dependence on the frame and break the Galilean invariance of the model [20, 303]. These

error terms are typically negligible in the incompressible and low velocity regimes but significant

when a density gradient is applied. In this section, we show that our model is Galilean invariant

even in the presence of density gradients and in the compressible regime.

We test the Galilean invariance of our system in a Couette flow example. Two simulations

are conducted: In the first system, the bottom wall is stationary and the top wall moves in the y

direction at the speed of 2U . In the second system, the bottom wall moves at the speed of U in the

-y direction and the top wall moves in the y direction at the speed of U . In both systems, a body

force is applied in the -z direction to create a density gradient. A periodic boundary condition is

applied in the x and y directions. The solid walls are set up normal to the z direction and bounce

back boundary conditions are invoked. Schematic diagrams of both systems are illustrated in Fig.

4.5.

The velocity profile for this problem can be analytically found by solving Eq. 4.104:

∂t(ρuβ) + ∂α(ρuαuβ) = −∂β(ρT ) + ∂α

(
η(∂αuβ + ∂βuα)

)
+ ρaβ (4.170)

where ρaβ is the body force term. For the above geometry and under steady state conditions, Eq.
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(a)

(b)

(c)

Figure 4.4: The velocity profile for a Poiseuille flow at different temperatures and τ = 1µs is shown in (a). (b) shows
the velocity profile for a system with the relaxation time τ = 2µs. (c) shows the measured viscosity as a function
of temperature. A linear relation between viscosity and temperature is obtained. The slope of the line is ρτ which
agrees with the theoretical prediction.
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Figure 4.5: The velocity profile for a Couette flow in the presence of a gravitational field is depicted. (a) stationary
bottom wall and moving top wall (b) top and bottom walls moving at the same velocity in the opposite directions
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4.170 can be simplified to get

0 = ∂α

(
η(∂αux + ∂xuα)

)
(4.171)

0 = ∂α

(
η(∂αuy + ∂yuα)

)
(4.172)

0 = −∂z(ρT ) + ∂α

(
η(∂αuz + ∂zuα)

)
+ ρaz. (4.173)

After further simplification, we get

0 = τT∂z

(
ρ(∂zuy)

)
(4.174)

0 = −T∂z(ρ) + ρaz. (4.175)

The density profile obtained from integrating Eq. 4.175 is

ln(ρ) =
az
T
z + c0, (4.176)

or in the exponential form

ρ = c1exp
(az
T
z
)
. (4.177)

Substituting 4.177 into Eq. 4.174 and integrating, the velocity comes out to be

uy =
c2
c1

exp

(
−az
T

z

)
+ c3. (4.178)

To find the integration constants c1, c2, c3, we apply the boundary conditions:

uy(z = 0) = ub (4.179)

uy(z = H) = ut (4.180)

where H is the hight of the channel (distance between the plates), ub is the velocity of the bottom

plate, and ut is the velocity of the top wall. The final velocity profile has the form of

uy = (ut − ub)

[
1− e−(az/T )z

1− e−(az/T )H

]
+ ub. (4.181)

In our system, az = −g = −980 cm/s2, ∆u = ut − ub = 2U = 1 cm/s, T = 1/6 cm2/s2, and

ρ = 0.001184 g/cm3. Fig. 4.6 demonstrates the velocity profiles obtained from analytical solution

above as well as the results for the standard LB and our new model. The profiles for the current

model, the standard model, and the analytical solution are shown as solid lines, dashed lines, and

star points. As can be seen, switching the frame of reference results in a new profile in the standard

model and Galilean invariance is broken. On the other hand, the velocity profile remains the same

after a change of reference frame for the model proposed in this chapter. The profiles also exactly

overlap with the analytical solution.
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Figure 4.6: The velocity profile obtained from standard LB, our model, and analytical solutions for two types of
Couette flow are shown. Our model produces velocity profiles that exactly match the analytical solution (star points)
and do not depend on the frame of reference.

4.6 Extension to Viscoelastic Fluids

The proposed LBM in this chapter can be easily extended to thermal and viscoelastic flows. As

mentioned earlier in the chapter, the b terms can be interpreted as the microscopic stress tensor.

The viscoelasticity then can be included through a constitutive equation and equilibrium values of

the b’s. A common viscoelastic model is the Oldroyd-B model, originally introduced by Oldroyd

in 1950 [356]. The main feature of viscoelastic material is the memory effects and dependence of

stress and strain on their past values. This could be accounted for through time derivatives and

integrals. However, Oldroyd realized that the basis vectors of the reference frames are also affected

by these operations. So to have equations of state that do not depend on the observer’s reference

frame, Oldroyd suggested using the material reference frame, i.e. the frame that is moving with the

material. This methodology was later given the name of “Material Frame Indifference”.

The Oldroyd-B model utilizes the upper convected time-derivative, defined as

δσ

δt
=
Dσ

Dt
− σ · ∇u− (∇u)T · σ (4.182)

where D/Dt is the material derivative, and ε = 1
2 (∇u + ∇uT ) is the strain rate tensor. The

Oldroyd-A model, on the other hand, emerges from the lower convected time-derivative of the stress

tensor:
δσ

δt
=
Dσ

Dt
+ σ · ∇u+ (∇u)T · σ. (4.183)

Then, the constitutive equations for Oldoryd-A and Oldroyd-B are(
1 + λx

δ

δt

)
σ = 2µeff

(
1 + λd

δ

δt

)
ε (4.184)
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where for Oldroyd-A, δ/δt is defined by Eq. 4.183 and for Oldroyd-B, δ/δt is defined by Eq. 4.182.In

Eq. 4.184, λx is the relaxation time, λd is the retardation time, and µeff is an effective viscosity.

The Oldroyd-B model is the more popular model used by the polymer community as it provides

more consistent results with experiments. For example, the Weissenberg effect, where fluid rises

near the inner cylinder in flow between vertical concentric rotating cylinders, is correctly predicted

by the Oldroyd-B model. In contrast, the Oldroyd-A model predicts that the fluid falls near the

inner cylinder. In steady simple shear, both models predict a viscosity independent of shear rate

and a first normal stress difference quadratic in the shear rate. However, the Oldroyd-B model’s

second normal stress difference vanishes, while in the Oldroyd-A model, it is negative and equal in

magnitude to the first normal stress difference. In uniaxial extensional flow, the extensional viscosity

for Oldroyd-B becomes infinite at λxε =
1
2 , whereas for Oldroyd-A, it becomes infinite at λxε = 1.

These differences underline the importance of selecting the appropriate model based on the physical

context and the mathematical representation of the material properties.

Using our model and defining a viscous stress contribution to the stress tensor, one can impose

a constitutive equation that has the form of a lower convected Maxwell model on the viscous stress

tensor. More detailed investigation of this will be done in future work.

4.6.1 Nanofibers in shear flow: Jeffery’s Orbits

The production of fiber-reinforced thermoplastics involves processes performed under flow conditions.

Therefore, it is crucial to understand the dynamics of fibers in flow to obtain high quality fiber-

reinforced composites. The behaviour of fibers under flow conditions directly impacts the orientation,

distribution, and mechanical properties of the final composite materials [357]. Accurate modelling

and simulation of fiber dynamics, which take into account factors like fiber-matrix interactions

and fiber flexibility, non-uniform stiffness, and surface characteristics, enable better prediction and

control of these properties [358]. As mentioned before, the LBM implemented in LAMMPS has the

ability to include particles and can be utilized to simulate behaviour of fibers under flow. In this

section, we demonstrate this for nanorods in a simple fluid.

Jeffery Orbits Investigation of the dynamics of non-spherical particles in a flow dates back as

early as 1922 with Jeffery’s work on ellipsoidal particles in a laminar viscous flow [359]. In this

theoretical work, Jeffery derived the equations of motion for an ellipsoidal particle in a simple shear

flow. For an ellipsoid of aspect ratio ar = length of semi-major axis
length of semi-minor axis in a flow with far-field velocity U ,

he showed that the angular motion of the ellipsoid can be described by

tanθ =
Car√

a2rcosϕ+ sinϕ
(4.185)

tanϕ = artan

(
2π

TJ
t

)
(4.186)

where θ is the angle between the particle’s major axis and the vorticity axis, and ϕ is the angle

between the projection of the major axis onto the flow plane and the direction of the gradient of the

velocity. These angles are shown in a schematic plot in Fig. 4.7(a). The period of the motion TJ is

then found to be

TJ =
2π

γ̇

(
ar +

1

ar

)
(4.187)
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where γ̇ = U/H is the shear rate and H is the length of the channel (distance between the plates

in a Couette flow). The orbit constant C is determined by the initial orientation of the particle.

According to Eq. 4.185 and 4.186, the ellipsoid is expected to follow a family of closed loops around

the vorticity axis, known as Jeffery orbits. The specific orbit depends on C and the initial orientation

of the particle. The existence of such orbits were verified by the experimental work of Trevelyan et

al. [360].

Jeffery’s work, although groundbreaking, only applied to inertialess ellipsoidal particles and far

from any solid boundary. Bretherton showed that Jeffery orbits would describe the motion of any

body of revolution if the appropriate “equivalent aspect ratio” is used [361]. Cox studied the total

force and torque on a long slender body in a shear flow [362] and found a relationship between the

geometric and equivalent aspect ratios such that

ae =
1.24ar√
ln(ar)

(4.188)

where ae is the equivalent aspect ratio.

The original Jeffery’s model did not account for inertia or confinement effects. Subramanian and

Koch conducted a theoretical investigation of motion of a torque-free slender axisymmetric fiber in

a simple shear flow [363]. They found that for small Reynolds numbers Re, the fiber slowly drifts

towards the flow plane (i.e. θ = π/2). Reynolds number Re is a dimensionless number that shows

the balance between inertial and viscous forces in a flow [20]. At Re beyond a critical value, the

fiber was found to cease rotation and stay close to the shear plane (i.e. ϕ = π/2) and align with the

flow direction. Yu and coworkers studied the rotation of a neutrally buoyant spheroid in a Couette

flow [364]. They found that increasing the Reynolds number shifts the behaviour of the particle

away from the Re = 0 limit where the particle follows the Jeffery orbits. They also discovered that

the initial orientation can affect the shape of the orbits when inertial effects are strong.

Mao and Alexeev studied the motion of a solid spheroid particle in a simple shear flow using a

Lattice Boltzmann-Immersed Boundary method [365]. They particularly examined the individual

effects of particle and fluid inertia on the motion of the particle. They found that the total inertial

effects can be estimated using superposition of the particle and fluid effects. They also found that

increasing Reynolds number results in an increase in the period of rotation. Our algorithm accounts

for inertial effects as the MD particles and LB fluid carry a mass. However, the purpose of this section

is not to study such effects and to only showcase the capability of our algorithm in incorporating

fibers in a fluid. Therefore, we focus on low Reynolds number regimes where the impact of inertia

is not strong.

Simulation Details Our simulation is set up with a single nanorod randomly placed in the fluid.

The rod, similar to the ones used in chapter 2, consists of 4 threads. This configuration was used in

chapter 2 to avoid commensurability between the different components of the melt. In this section,

we use the multithreaded configuration as it gives the rods a mesh independent size [355]. The rod

initial configuration is generated using the open-source package moltemplate [254]. The geometric

aspect ratio of the rod is 7.12 with a diameter equal to 2 µm and a length equal to 14.24 µm.

The simulation box has dimensions of 60µm×60µm×60µm. This box size is selected to minimize

confinement and finite-size effect while keeping the simulation time reasonable. Periodic boundary
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(a)

(b)

Figure 4.7: The geometry and relevant angles for Jeffery’s orbits are illustrated for (a) an ellipsoid and (b) a rod.
The director of the rod is used as the major axis.
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Figure 4.8: The simple shear flow induced by moving the bottom and top walls is illustrated.

conditions are applied in the x and y directions. Two parallel plates with bounce back boundary con-

ditions are used in the z direction. The bottom and top plates move at the same speed 0.0025µm/µs

and in the opposite directions in the y direction. The flow field is illustrated in Fig. 4.8.

Results To study the angular motion of the rod, we define angle coordinates similar to those by

Jeffery. We use the director d̂ of the rod as the major axis as shown in Fig. 4.7(b). θ is angle between

the vorticity axis (i.e. X) and the director d̂. ϕ is the angle between the projection of the director

on to the flow plane (i.e. Y Z) and the gradient axis (i.e. Z). Fig. 4.9(a) shows the rod’s trajectory.

The motion of the rod follows closed loops as predicted by the Jeffery’s model. Depending on the

initial orientation and orbit constant, the path falls on different orbits. For particles starting in the

flow plane, i.e. C = ∞, the particle stays in the flow plane and undergoes circular motion.

In Fig. 4.9(b) and (c), we show the evolution of the ϕ and θ. As can be seen, both angles follow

a period motion as predicted by Jeffery’s model. The period of the oscillation is found to be 1.03s.

The equivalent aspect ratio is found to be 6.68µm. This value is slightly higher than predictions

based on Cox’s equation (Eq. 4.188). This is not unexpected as his model provides an estimation

for a long slender rod while our rods are small-sized bead rods with non-negligible thickness.

As demonstrated in this section, our MD-LBM algorithm is capable of simulating systems of

fiber/nanorod-fluid and can be utilized to study behaviour of fiber-reinforced polymers.
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(a)

(b)

(c)

Figure 4.9: The director trajectories for a rod is depicted in (a). Depending on the initial angle (indicated by
parameter C), the rod rotates on different trajectories. (b) shows the evolution of the azimuthal angle of the director
of the rod and (c) shows the evolution of the polar angle. Our results (blue solid curves) match the orbits obtained
from theoretical methods (orange dashed curves)
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4.7 Conclusion

In this chapter, we have developed a new Lattice Boltzmann Method. The new model discretizes the

particle distribution function using a mass function that has a mean and a variance. This provides

enough independent degrees of freedom to be able to match the moments of the discretized distri-

bution with the moments of the Maxwell-Boltzmann distribution. As a result, the hydrodynamic

equations generated by the model do not contain the error terms typically present in the standard

LBM and are suitable for compressible flows.

The Chapman-Enskog expansion of our LBE recovers the Navier-Stokes equations where the

shear viscosity is found to be η = ρTτ and τ is the relaxation time. We conducted Poiseuille flow

simulations at different temperatures and measured the viscosity to confirm this relation. We found

that the measured viscosity as a function of temperature creates a line with the slope ρτ as expected.

Under isothermal conditions that we studied in this work, from the Chapman-Enskog expansion, we

expect the secondary viscosity of the fluid to be 2
3η. This was confirmed by analyzing the damping

of sound waves in the fluid.

One of the challenges of modelling compressible flows using the standard LBM is the lack of

Galilean invariance when there is a density gradient. We showed that our model does not suffer this

issue by simulating a Couette flow in the presence of gravity. The velocity profiles obtained from

our simulations exactly match the analytical solutions.

The production of fiber-reinforced thermoplastics involves processes performed under flow or

press conditions. Therefore, it is crucial to understand the dynamics of fibers in flow or under

pressure to obtain high quality fiber-reinforced composites. As an example, we coupled our model

with Molecular Dynamics particles and studied the dynamics of nanorods under shear flow. We

found that our nanorods follow the Jeffery orbits as expected.

One of the main advantages of the new formulation is that it is generalizable as the equilibrium

variance terms (microscopic stress) are set directly by the choice of the equilibrium moments. The

work presented here is the first step in creating a Lattice Boltzmann Method (LBM) that can

model compressible, thermal, and viscoelastic flows. The impact of processing on the behaviour of

nanocomposites then can be studied by including MD particles as demonstrated for simple fluids

above.
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Conclusion

One approach to addressing issues like global warming and transportation safety is through lightweight-

ing. This involves replacing materials used in vehicles with lighter alternatives without sacrificing

performance. Composite materials, which combine the best properties of different substances, enable

the creation of high-performance lightweight materials. However, producing these advanced materi-

als is complex, requiring a thorough understanding of the interactions and assembly of components

at various scales, as well as the effects of processing on the final product.

Predictive models are a powerful tool to understand physical systems and advance technology.

Predictive models not only can be used to improve current materials, but they also gain fundamental

understanding of the underlying processes. There are numerous theoretical and numerical models

introduced in the field of polymer composites and nanocomposites. Different methods best describe

a system at a specific time and length scale. In the introduction chapter, a survey of available

computational and theoretical methods and the state of each field was provided. In this thesis, I

utilized coarse-grained Molecular Dynamics, Phase-Field, and Lattice Boltzmann methods to study

different aspect of polymer composites and nanocomposites.

In chapter 2, the dispersion and orientation patterns of nanorods in polymer melts with either

attractive or repulsive rod-polymer interactions were examined as a function of the rod concentra-

tion. The phase behaviour of the nanocomposites was mainly controlled by the interplay of three

competing effects: i) entropy of the rods; ii) energetic interactions between the rods and polymers

and; iii) entropy of the polymers. We observe when only repulsive interactions were applied between

all components, the rods completely phase separate at all rod concentrations whereas the system

with attractive polymer-rod interactions does not behave as such. This strongly implicates the role

of entropy, in the form of the depletion effect (related to the free volume per particle), as the main

driver of phase separation in the system.

The attractive polymer-rod interactions set up a competition between entropic and enthalpic

effects (as this is a constant pressure system it is more appropriate to discuss in terms of enthalpy

than energy). Since the strength of the enthalpic effects is proportional to the number of rods in the

system, the dispersion patterns show direct correlation with the rod concentration. At lower con-

centrations, entropic processes are dominant and ordered clusters of nanorods are created. However,

due to the presence of the attractive forces, the rods do not completely phase separate and polymers

interpenetrate between the rods of a cluster. At higher concentrations, the energetic effects become

121
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significant and the dispersion of the rods improves with the overall cluster size diminishing with

concentration. The polymer interpenetration between the rods is typically referred to as ”polymer

bridging” and, at least at very strong polymer-rod interactions, is often argued to create an effec-

tive rod-rod attraction leading to the formation of rod clusters. As mentioned above, this does not

appear to be the case here as the phase separation seems entirely entropically driven at the strength

of polymer-rod interaction we studied.

One interesting question that has not been thoroughly investigated yet is the impact of polymer

and rod polydispersity on the phase behaviour of the composite. This is an important question as

most polymerization processes produce some level of polydispersity. Moreover, depending on the

processing method, the fibers and nanofibers used as enforcement agents could contain some level of

size distribution. Our group is currently conducting Molecular Dynamics simulation of polydisperse

polymer-nanorod systems to shed light on the impact of polydispersity on dispersion and orientation

patterns of polymer nanocomposites.

In chapter 3, we studied the crystallization process of PolyAmide-6 (PA6) and introduced a

Multiphase-field model to study heterogeneity in such systems. Physical and mechanical proper-

ties of semi-crystalline polymers depend on their degree of crystallization and crystal morphology.

Producing semi-crystalline material with desired properties is only possible when the crystalliza-

tion process and structure is well-understood and can be predicted. In chapter 3, we introduced

a multiphase-field method coupled with the Nakamura model and heat conduction equation to

model the non-local crystallization of polymeric materials on a microstructural length scale. The

multiphase-field base of our model provides an efficient and easy way to track the boundaries of the

crystalline areas. This makes it possible to study heterogeneous crystal structures. It also allows for

adding any number of phases with different properties making the model a good candidate to study

polymer blends and composites. The crystallization inside crystalline areas is controlled by a kinetic

model, which was the Nakamura model in this work. The dependency of the crystal growth rate on

temperature is added by a Turnbell-Fisher type of equation. The kinetic model and temperature

dependency can be adjusted to match the processing conditions and specific materials under study.

We applied our model to pure PA6 and PA6 with fibers. For the pure matrix, lower cooling

rates produced more homogeneous structures with larger grains, while higher cooling rates resulted

in more heterogeneous structures due to sharper temperature gradients and shorter crystallization

times. At lower cooling rates, the initial grain size had minimal impact on final morphology as

grains had sufficient time to reach maximum crystallinity. However, the initial number of grains

significantly influenced morphology. At higher cooling rates, both the initial grain size and number

significantly affected the final structure.

In the presence of carbon fibers, we observed more homogeneous morphology around the fibers

due to higher initial crystal grain volume fraction and the high thermal conductivity of the fibers.

This resulted in similar cooling rates and crystallization times for grains near the fiber surface, with

rapid heat transfer from the region. The higher initial volume fraction meant simultaneous crystal-

lization in most regions, leading to homogeneity. Additionally, crystalline grains grew perpendicular

to the fiber surface, reflecting geometrical constraints on interfacial grains.

Overall, our model’s results align qualitatively with experiments, but further understanding of

coarse-grained crystal grains, their relation to spherulites, and detailed knowledge of initial nuclei

density is needed for better quantitative agreement with experiments. Choosing the right kinetic
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model and parameters play an important role and requires further investigation as well. The cur-

rent model does not include any mechanical elements. Future work will be dedicated to including

mechanical properties in the multiphase-field model to examine the impact of crystal morphology

on such properties.

In chapter 4, we have developed a new Lattice Boltzmann Method. The new model discretizes

the particle distribution function using a mass function that has a variance in addition to a mean

value. This provides enough independent degrees of freedom to be able to match the moments of

the discretized distribution with the moments of the Maxwell-Boltzmann distribution. As a result,

the hydrodynamic equations generated by the model do not contain the error terms, present in the

standard LBM, making the model suitable for compressible flows.

As demonstrated above, our model is capable of simulating fluids at different temperatures. It

was also shown that the expected hydrodynamic equations from the Chapman-Enskog expansion

were recovered. And last but not least, we showed that our model is Galilean invariant under all

conditions including in the presence of a density gradient.

The natural next step is to expand the developed LBM to viscoelastic fluids as outlined in the

chapter.



Appendix A

A.1 Equilibration

Figure A.1: Equilibration procedure is schematically shown in (a). Thermodynamic parameters (b) and RMSD
(c) are shown for the system at ϕc = 0.44 and all-repulsive interactions. The thermodynamic properties plateau for
the last 5 × 106 steps which shows that the system is properly equilibrated. Both the polymers and the rods move
a considerable distance during the equilibration process which shows that the system is not trapped in a kinetically
favourable state.

The equilibration of the all-repulsive system, like the original simulations, consists of 5 stages:

1. 106 steps of NVT at T = 1.0 and low packing density

2. 106 steps of NPT at T = 1.0 and P = 0.25

124
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3. 2× 106 steps of NPT at T = 1.0 and P = 0.5

4. 2× 106 steps of NPT at T = 1.0 and P = .75

5. 14× 106 (or 24× 106 for ϕc = 0.44) steps of NPT at T = 1.0 and P = 1.0

The final pressure is chosen to achieve a system with a melt-like packing density of 0.3 ≤ dp ≤
0.5. The analysis is done based on the last 5 × 106 steps (production). The reported results

are averaged over at least 11 uncorrelated configurations for each realization. Fig. A.1 presents

the thermodynamic and the particle Root-Mean-Squared-Displacement (RMSD) for an all-repulsive

system at the highest concentration ϕc = 0.44. As can be seen, the thermodynamic parameters are

reasonably constant and stable for the last 5 × 106 timesteps which shows that the system has at

least reached a steady state. The RMSD for both the polymers and the rods takes values of a several

times the average radius of gyration of polymers in pure melt R0 implying that the system is not

stuck in a local minimum and is truly equilibrated.

(a) (b)

Figure A.2: The Root-Mean-Squared-Displacement of the centre of mass for the attractive (a) and repulsive (b)
cases are shown.

The RMSD’s shown in Fig. 2.2 and A.1 are particle RMSD and take into account the rotational

motion of the molecules. We also track the RMSD of centre of mass (COM) of the molecules to

further ensure that the nanorods and the polymers move at least a couple of R0 before production.

We show the RMSD of COM for the polymers and the nanorods in Fig. A.2 (a) for the original

system and in Fig. A.2 (b) for the all-repulsive system.
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333B. Dorschner, F. Bösch, and I. V. Karlin, “Particles on Demand for Kinetic Theory”, Physical

Review Letters 121, 130602 (2018).
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