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Abstract
This thesis investigates three research objectives on three different problems: (1) al-

gorithm design for problems in which the input can be grouped into a small number of
classes, demonstrated on the high multiplicity strip packing problem; (2) algorithm de-
sign for problems with multiple interdependent sub-problems, demonstrated on the thief
orienteering problem; and (3) algorithm design using neural networks with few layers,
demonstrated on the k-median problem.

(1) The two-dimensional strip packing problem consists of packing in a rectangular
strip of width 1 and minimum height a set of n rectangles, where each rectangle has width
0 < w ≤ 1 and height 0 < h ≤ hmax. We consider the high-multiplicity version of the
problem in which there are only K different types of rectangles. For the case when K = 3,
we give an algorithm that produces solutions requiring at most height 3

2hmax + ϵ plus the
height of an optimal solution, where ϵ is any positive constant. For the case when K = 4,
we give an algorithm yielding solutions of height at most 7

3hmax + ϵ plus the height of an
optimal solution. For the case when K > 3, we give an algorithm that gives solutions of
height at most ⌊ 3

4 K⌋ + 1 + ϵ plus the height of an optimal solution.
(2) We consider routing an agent called a thief through a weighted graph G = (V, E)

from a start vertex s to an end vertex t. A set I of items each with weight wi and profit pi

is distributed among V \ {s, t}. The thief, who has a knapsack of capacity W, must follow a
simple path from s to t within a given time T while packing in the knapsack a set of items
taken from the vertices along the path of total weight at most W and maximum profit. The
travel time across an edge depends on the edge length and current knapsack load.

The thief orienteering problem (ThOP) is a generalization of the orienteering problem,
the longest path problem, and the 0-1 knapsack problem. We prove that there exists no
approximation algorithm for ThOP with constant approximation ratio unless P = NP, and
we present a polynomial-time approximation scheme (PTAS) for ThOP when G is directed
and acyclic (DAG) that produces solutions using time at most T (1 + ϵ) for any constant
ϵ > 0. We show how to transform instances of ThOP on outerplanar and series-parallel
graphs into equivalent instances of ThOP on DAGs; therefore, yielding a PTAS for these
graph classes as well. We present a fully polynomial-time approximation scheme (FPTAS)
for ThOP on arbitrary undirected graphs where the travel time depends only on the lengths
of the edges and T is the length of a shortest path from s to t plus a constant K. Finally, we
present a FPTAS for a version of the problem where the input graph is a clique.

(3) The k-median problem (KMP) is a classical clustering problem where given n loca-
tions one wants to select k locations such that the total distance between every non-selected
location and its nearest selected location is minimized. We present a modified Hopfield
network for KMP and experimentally evaluate it against several neural networks and lo-
cal search algorithms, demonstrating that our algorithm produces solutions very quickly
with competitive approximation ratios. We describe several improvements to our algorithm
which could help us match the state-of-the-art algorithms.

Keywords LP-relaxation, combinatorial optimization, two-dimensional strip pack-
ing, high multiplicity, approximation algorithm, thief orienteering problem, knapsack prob-
lem, dynamic programming, approximation scheme, series-parallel, outerplanar, hopfield
networks, k-median problem, neural networks, local search
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Summary for Lay Audience
Many real-life applications require computing solutions to complex optimization prob-

lems: Using a computer requires solving a series of scheduling problems to coordinate the
execution of its various processes, ordering a package from Amazon requires solving a va-
riety of packing and scheduling problems to transport and deliver products, using Google
Maps to give directions requires solving network routing problems to provide an optimum
path, and so on. Moreover, businesses in fields such as manufacturing, supply chain man-
agement, and other operations research fields are faced with an even larger number of
complicated optimization problems to solve; modeling each business’s unique industrial
challenge requires adding a variety of constraints to classical problem formulations and
hence the same algorithm cannot be used to solve all of the problems, even if the problems
are closely related. Research that creates new and improved algorithms for optimization
problems enables many of today’s technologies. Hence, the design and analysis of efficient
algorithms for these problems is of critical importance.

This thesis focuses on the design and analysis of efficient algorithms for optimization
problems. In particular, we investigate three research objectives on three different prob-
lems: (1) algorithm design for problems in which the input can be grouped into a small
number of classes, demonstrated on the high multiplicity strip packing problem; (2) al-
gorithm design for problems with multiple interdependent sub-problems, demonstrated on
the thief orienteering problem; and (3) algorithm design using neural networks with few
layers, demonstrated on the k-median problem.

(1) We design an approximation algorithm for the high multiplicity strip packing prob-
lem, which involves efficiently placing rectangles inside of a bigger rectangle, that takes
advantage of the small number of input classes to outperform the more general algorithms
that treat all the input items individually.

(2) We design an approximation algorithm for a restricted version of the thief orien-
teering problem, which involves selecting a route between two points and collecting items
along that route and placing them in a knapsack, that can compute solutions arbitrarily
close to an optimal solution at the expense of taking longer to compute solutions.

(3) We design a modified Hopfield neural network for the k-median problem, which in-
volves identifying a number of cluster centers such that the input locations are all assigned
to a nearby cluster, and perform an experimental evaluation against other local search al-
gorithms and neural networks.

We conclude this thesis with a discussion of future research that could improve or ex-
tend our work.
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Chapter 1

1 Introduction
Many real-life applications require computing solutions to complex optimization problems:
Using a computer requires solving a series of scheduling problems to coordinate the execu-
tion of its various processes, ordering a package from Amazon requires solving a variety of
packing and scheduling problems to transport and deliver products, using Google Maps to
give directions requires solving network routing problems to provide an optimum path, and
so on. Moreover, businesses in fields such as manufacturing, supply chain management,
and other operations research fields are faced with an even larger number of complicated
optimization problems to solve; modeling each business’s unique industrial challenge re-
quires adding a variety of constraints to classical problem formulations and hence the same
algorithm cannot be used to solve all of the problems, even if the problems are closely
related. Research that creates new and improved algorithms for optimization problems en-
ables many of today’s technologies. Hence, the design and analysis of efficient algorithms
for these kinds of problems is of critical importance.

In this thesis we focus on the design and analysis of efficient algorithms for optimization
problems. We explore network, packing, resource allocation, and clustering optimization
problems. As part of this core research focus, we investigate three specific objectives:
• Objective 1: Create algorithm design techniques for solving problems in which the

input can be grouped into a small number of classes and take advantage of this prop-
erty to find efficient solutions.
• Objective 2: Create algorithm design techniques for solving optimization problems

that contain multiple interdependent sub-problems that accurately model real-life op-
timization problems.
• Objective 3: Create algorithm design techniques for neural networks with few layers

to efficiently solve optimization problems.
In Chapter 1.1 we provide background on optimization problems, computational com-

plexity theory, and approximation algorithms. Next, in Chapter 1.2 we provide the motiva-
tion of our research and in Chapter 1.3 we describe some core algorithm design techniques
that can be applied to optimization problems. Finally, in Chapter 1.4 we summarize the
problems we investigated and describe our contributions.

This thesis is presented in the integrated-article format. In Chapter 2 we provide liter-
ature review corresponding to all of our contributions. Chapters 3-6 are integrated articles
from relevant topics completed during the duration of the author’s PhD: Chapter 3 inves-
tigates Objective 1, Chapters 4 and 5 investigate Objective 2, and Chapter 6 investigates
Objective 3, and each of the articles provide detailed descriptions of the novel work. Chap-
ter 7 concludes the thesis and discusses many possible future research directions. The
included articles are:
• Chapter 3: High Multiplicity Strip Packing.
• Chapter 4: Thief Orienteering on Directed Graphs.
• Chapter 5: Thief Orienteering on Undirected Graphs.
• Chapter 6: A Modified Hopfield Network for K-Median.
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1.1 Background

1.1.1 Optimization Problems
Problems in which the goal is to find the best solution from all possible solutions are called
optimization problems. Often, solutions must satisfy a number of constraints to be consid-
ered a feasible solution. The standard form of a continuous optimization problem is:

minimize f (x)
subject to gi(x) ≤ 0, for all i = 1, ...,m

h j(x) = 0, for all j = 1, ..., p
and x ∈ Rn

where x is a vector of variables, f is an objective function, gi(x) ≤ 0 is an inequality con-
straint, and h j(x) = 0 is an equality constraint. Finding the best solution from all feasible
solutions is equivalent to minimizing the objective function. Maximization problems can
be solved by negating the objective function.

Continuous optimization problems allow the variables to take on an infinite number of
values and hence there are an infinite number of feasible solutions. In discrete optimization
problems, the solution space (the set of all possible solutions) includes a finite number of
feasible solutions. A combinatorial optimization problem is a discrete optimization prob-
lem in which the variables used to express a feasible solution take on values from a discrete
set.

All of the above formats of optimization problems are typically very difficult to solve,
as trying to choose the best solution from among many possible solutions can take a large
amount of computational resources.

1.1.2 Complexity Theory
Many algorithms that aim to compute exact solutions to optimization problems are found
to take an exponentially increasing amount of time as the size of the optimization prob-
lem increases. In the field of computational complexity theory, optimization problems are
grouped into different classes depending on the amount of computational resources re-
quired, such as the amount of storage or the time needed to compute a solution. The time
complexity function measures the number of computational operations performed by an al-
gorithm. The space complexity function measures the amount of memory required by an
algorithm.

A decision problem is a problem with a yes or no answer, and all optimization problems
have an equivalent decision problem; for example, for the optimization problem of finding
the shortest path between two vertices u and v, the equivalent decision problem is to ask
whether there is a path between u and v of length at most k, where k ≥ 0. A deterministic
algorithm always produces the same output for a given input and the complexity class P
is the set of decision problems that can be solved exactly by deterministic algorithms in
polynomial time, which means the time complexity function of the algorithm is polynomial
with respect to the size of the input to the problem (in terms of the number of bits).
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Let there exist an oracle that can be consulted during an algorithm to determine the op-
timal choices to make during each step in order to select an optimal solution. The complex-
ity class NP is the set of decision problems that can be solved exactly in polynomial time
by non-deterministic algorithms that consult the oracle in order to perform the minimum
number of computations to select an optimal solution. It is currently unknown whether
P = NP.

A decision problem P1 reduces to a decision problem P2 if there is a polynomial time
algorithm that transforms instances p1 of P1 to instances p2 of P2 such that the solution to
p1 is yes if and only if the solution to p2 is also yes. The complexity class NP-complete is
the set of decision problems in NP such that for a problem p in NP-complete, every other
problem in NP can be reduced to p in polynomial time. In other words, the existence of
a deterministic polynomial time algorithm that exactly solves a problem in NP-complete
implies the existence of deterministic polynomial time algorithms that exactly solve every
problem in NP.

A problem P1 is in the complexity class NP-hard if there is a problem P2 in NP-
complete that can be reduced to P1 in polynomial time. Note that NP-hard problems do not
need to be in NP. There are currently no known deterministic polynomial time algorithms
that compute exact solutions to NP-complete and NP-hard problems.

For some problems, it is not known whether the problem belongs to the complexity
class NP-hard. Many researchers devote their time to proving the complexity of a problem.
One common approach to proving that a problem P1 is NP-hard is to show that P1 reduces
to another problem P2, where P2 is already known to be NP-hard. As the logic goes, if P1

is not NP-hard, then polynomial-time algorithms designed for P1 could indirectly solve P2

in polynomial time as well via the transformation. This argument forms the basis of a proof
that P1 is also NP-hard. We employ a similar tactic in Chapter 4 to prove the complexity
of the thief orienteering problem.

The complexity class APX is the set of problems in NP for which there are efficient
algorithms that can produce solutions that are within a constant factor of the optimal solu-
tions. Since many important problems belong to the complexity class NP-hard, researchers
often design approximation algorithms to at least be able to compute approximation solu-
tions within a reasonable timeframe.

1.1.3 Approximation Algorithms
An α-approximation algorithm for some optimization problem is a polynomial-time algo-
rithm that, for all instances of the problem, produces a solution whose value is within a
factor of α of the value of an optimal solution; careful and detailed analysis is typically
needed to show that an approximation algorithm indeed has this worst-case performance.
In this situation, we say that the α-approximation algorithm has an approximation ratio
of α. A common convention is that α > 1 for minimization problems and α < 1 for
maximization problems.

In this thesis, we often characterize the optimal solution for a problem on instance I
as OPT(I), and we let SOL(I) be a solution output by an approximation algorithm for the
same instance I. Hence, the approximation ratio is computed for minimization problems
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using the ratio α = SOL(I)
OPT(I) and computed for maximization problems using the ratio α =

OPT(I)
SOL(I) .

It is important to provide the distinction between heuristics and approximation algo-
rithms. Heuristics are algorithms that typically produce approximate solutions but do not
provide approximation ratios; these algorithms are usually studied empirically using exper-
imental evaluation of the running times of the algorithm on a variety of inputs. Heuristics
might not have a corresponding approximation ratio due to either the underlying strategy
being not well understood or the approach being very complicated to analyze; however, if
an approximation ratio is proven for a heuristic algorithm, that algorithm is then considered
to be an approximation algorithm. The design and analysis of approximation algorithms in-
cludes mathematical rigor to provide performance guarentees on the algorithms. This thesis
mainly is concerned with the design and analysis of approximation algorithms.

A polynomial-time approximation scheme (PTAS) is an algorithm that accepts as input
a parameter ϵ > 0 and produces solutions such that α = (1+ϵ) (for minimization problems)
or α = (1 − ϵ) (for maximization problems). When the running time of an approximation
scheme is polynomial in 1

ϵ
, it is called a fully polynomial-time approximation scheme (FP-

TAS).
Asymptotic analysis describes the performance of an approximation algorithm as the

value of an optimal solution becomes very large. Many approximation ratios have the form
A + C

OPT(I) , where A is a factor not dependent on OPT(I) called the asymptotic approxima-
tion ratio and C is an additive constant. When OPT(I) is small, the additive constant of
the approximation ratio might be significant; however, in the asymptotic setting, additive
constants are insignificant.

1.2 Motivation

1.2.1 Modeling Industrial Challenges
Each of our research objectives stems from a real industrial challenge that can be modeled
using the problem formulations that we study.

In Chapter 3, we study algorithm design techniques for solving problems in which
the input can be grouped into a small number of classes. Many industrial packing and
scheduling problems have a small number of distinct object classes compared to the total
number of objects. For example, consider the scenario of a large retail business transporting
additional stock of its most popular products. Problem formulations that group the input
model important industrial challenges and hence designing algorithms for these problems
is of great value.

In Chapters 4 and 5, we study algorithm design techniques for solving optimization
problems that contain multiple interdependent sub-problems. A problem is said to have
two or more interdependent sub-problems if the solution for one sub-problem influences the
quality of the solution for the other sub-problems [17]. Many problems in manufacturing or
supply chains have multiple constraints, layers of complexity, and/or contain a combination
of interdependent sub-problems that are not reflected in any of the classical formulations of
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the closest related optimization problems. In some cases, these constraints can be so critical
as to significantly alter the approach taken to solve the problem [88]. These problems
need to be considered as a whole – without optimizing their sub-problems individually.
However, most classical problems do not include many problems with interdependent sub-
problems. There is a gap between current optimization research problems and their real-
world applications, and so there is a strong motivation to research optimization problem
formulations that can model practical problems of modern importance.

In Chapter 6, we apply algorithm design techniques using neural networks with few
layers to efficiently solve optimization problems. Machine Learning techniques can be
applied to metaheuristics to improve their performance in solving tasks without being ex-
plicitly programmed for each individual optimization problem by helping to select the best
subordinate heuristic, helping to tune the parameters, and helping to evolve the solutions
[98]. The fields of Communications and Signal Processing in particular have seen great
success in applying machine learning techniques to overcome the randomness in real-life
datasets that are too large for humans to find meaningful patterns [41].

1.2.2 New Algorithm Design Techniques
Beyond the industrial applications of our research, we also aim to contribute new algorithm
design techniques.

Algorithms that assume the input contains a small number of item classes can apply
algorithmic techniques that produce solutions that are often of better quality as compared to
the solutions produced by algorithms for the non-high multiplicity versions of the problems.
For example, in the Bin Packing Problem (BPP) the goal is to pack the input items into a
minimum number of bins. The best approximation ratio for BPP is 3/2 unless P = NP;
however, an algorithm that assumes the input of BPP can be partitioned into K item classes
solves BPP exactly in polynomial time [69].

Many of the classical formulations of NP-hard optimization problems, which are prob-
lems that have many feasible solutions but require an exceedingly large number of com-
putational resources to compute an optimal solution, were studied in restricted formats to
simplify the complexity of the problems. Problems were simplified by removing difficult
to satisfy constraints or by adding restrictive constraints that make the problems easier.
Research was conducted this way because these optimization problems are very difficult;
however, this decision led to the design of algorithms that were not able to readily model
complex industrial challenges. Over the last 50 years the design and analysis of algorithms
for NP-hard optimization problems has grown and hence a recent trend has involved study-
ing optimization problems with a larger number of difficult to satisfy constraints.

1.3 Algorithm Design Techniques
As described above, researchers often want to design algorithms that can produce fast and
accurate feasible solutions to optimization problems. Below we list some core design tech-
niques that appear in the design of many approximation algorithms; in fact, we make use
of almost all of these techniques in the rest of this thesis.
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1.3.1 Greedy
Greedy algorithms make a sequence of decisions in order to build up a solution, where each
decision is intended to be the optimal choice at that particular moment (and without regard
to future decisions). Greedy algorithms are often easy to design and have low running
times in comparison to other algorithms designed for the same problem. For these reasons,
it is not a bad idea when designing algorithms for a new problem to begin with a greedy
approach. In the worst case, this initial algorithm design can serve as a benchmark for
comparison of future algorithm designs, and in the best case, the greedy algorithm might
actually perform quite well.

The problem with greedy algorithms is that making a series of choices that are optimal
in-the-moment often leads to getting stuck in local optimal solutions. These local optima
represent optimal solutions within a neighboring set of candidate solutions, but they are not
necessarily a global optimal solution (a solution with the best value).

1.3.2 Local Search
Local search algorithms transition from feasible solution to feasible solution by making a
small (or local) change to the solution, sometimes referred to as a swap operation. De-
termining which part of the solution is to be swapped out, and what part of the solution
space is to be swapped in, can differ drastically from one algorithm design to the next, but
the general principles of this approach suggest that the swap operation makes only a small
change to the solution in order to improve its quality. Similar to what was described for
greedy approaches, local search algorithms often get stuck in local optimal solutions.

The main difference between greedy and local search algorithms are that greedy ap-
proaches start with an empty solution and gradually build up to a feasible solution; in con-
trast, local search algorithms start with a feasible solution and are only permitted to transi-
tion to other feasible solutions. Depending on the design of the local search algorithm, the
running time can be quite large; hence, great care must be taken to design polynomial-time
local search algorithms.

1.3.3 Dynamic Programming
Dynamic programming algorithms divide problems into subproblems, store optimal solu-
tions to these subproblems in a table, and then piece together the optimal solutions to the
subproblems in order to find an optimal solution to the original problem.

When applying a dynamic programming approach to a problem with a overlapping
subproblem characteristic, identified by finding the same subproblems over and over again
as part of the original problem (and performing repetitive work to solve those repeating
subproblems), a time-memory trade-off is achieved: at the expense of writing information
down in a table (using storage space), time can be saved by looking up previously calculated
results stored in the table instead of repeating those calculations.

When applying a dynamic programming approach to a problem without a optimal sub-
structure characteristic, identified when the optimal solution to a subproblem is part of an
optimal solution to the original problem, infeasible results can be returned; therefore, dy-
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namic programming algorithms should only be used on optimization problems that exhibit
optimal substructure.

1.3.4 Linear Program Rounding
A linear program can be expressed in the general form:

maximize cT x
subject to Ax ≤ b,
and x ≥ 0

where x is a vector of variables, c and b are vectors of coefficients, and A is a matrix
of coefficients. The expression cT x is known as the objective function. We can use a
linear program to solve minimization problems by negating the objective function. The
inequalities Ax ≤ b and x ≥ 0 are constraints on the mathematical model.

An integer program is a linear program where all the variables are restricted to be
integers. The problem of finding optimal solutions for integer programs is NP-hard [100];
however, solutions for linear programs can be computed in polynomial time [105].

Linear program rounding (LP-rounding) is described by the following process:
1. Formulate an NP-hard problem as an integer program and relax the integrality con-

straints of the integer program to obtain a linear program
2. Solve the linear program
3. Transform the solution of the linear program into a feasible solution for the NP-hard

problem by rounding the values of non-integral variables to integer values
Some of the design decisions in a LP-rounding algorithm include the precise details of

formulating the integer and linear programs, and whether the transformation to a feasible
solution is performed randomly or using deterministic decisions.

1.4 Contributions
The contributions of this thesis apply several of the algorithm design techniques described
in Section 1.3 to investigate the research objectives proposed in Chapter 1.

1.4.1 High Multiplicity Strip Packing
The two-dimensional strip packing problem consists of packing in a rectangular strip of
width 1 and minimum height a set of n rectangles, where each rectangle has width 0 <
w ≤ 1 and height 0 < h ≤ hmax. We consider the high-multiplicity version of the problem
(HMSP) in which there are only K different types of rectangles.

HMSP can be relaxed to the two-dimensional fractional strip packing problem, which
permits horizontal cuts on the rectangles, and can be represented using the configuration
linear program, which is a technique that uses a variable for each possible multiset of
rectangles whose total width fits in the rectangular strip. We use the algorithm of Karmarkar
and Karp [99] to compute a basic feasible solution to the linear program in polynomial
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time of height at most LIN + ϵ, where LIN is the height of an optimal fractional packing
and ϵ > 0. Basic feasible solutions to this linear program consist of a set of at most
K configurations stacked on top of one another, and a simple algorithm can round the
fractional rectangles in a basic feasible solution to whole rectangles to produce solutions
of height at most LIN + K + ϵ.

Our algorithm takes as input the fractional packing computed by the linear program
and applies different rounding techniques to the fractional rectangles depending on whether
their heights are small or large. Large fractional rectangles can be made whole within fur-
ther increasing the height of the packing by a large amount but small fractional rectangles
need to be merged together and packed elsewhere in the packing.

For the case when K = 3, we give an algorithm that produces solutions requiring at most
height 3

2hmax+ϵ plus the height of an optimal solution, where ϵ is any positive constant. For
the case when K = 4, we give an algorithm yielding solutions of height at most 7

3hmax + ϵ
plus the height of an optimal solution. For the case when K > 3, we give an algorithm that
gives solutions of height at most ⌊ 3

4 K⌋ + 1 + ϵ plus the height of an optimal solution.

1.4.2 Thief Orienteering on Directed Graphs
We consider the scenario of routing an agent called a thief through a weighted graph G =
(V, E) from a start vertex s to an end vertex t. A set I of items each with weight wi and profit
pi is distributed among V \ {s, t}. The thief, who has a knapsack of capacity W, must follow
a simple path from s to t within a given time T while packing in the knapsack a set of items
taken from the vertices along the path of total weight at most W and maximum profit. The
travel time across an edge depends on the edge length and current knapsack load. The thief
orienteering problem (ThOP) is a generalization of the orienteering problem, the longest
path problem, and the 0-1 knapsack problem. We prove that there exists no approximation
algorithm for ThOP with constant approximation ratio unless P = NP.

We adapt a classic dynamic programming approach for the 0-1 knapsack problem that
builds a profit table containing the weights and profits of the item subsets so that it can
represent the path along the graph G from which the items were collected and it can store
the travel times needed to collect each item subset. For directed and acyclic graphs we
can visit the vertices in topological order to ensure that we only update the profit table a
single time for each vertex. To keep the size of the profit table small, the parameters of the
problem (weight, profit, and traveling time) need to be rounded carefully to ensure that the
our algorithm produces solutions close to optimal ones.

We present a polynomial-time approximation scheme (PTAS) for ThOP when G is
directed and acyclic that produces solutions that use time at most T (1 + ϵ) for any constant
ϵ > 0. We also present a fully polynomial-time approximation scheme (FPTAS) for ThOP
on arbitrary undirected graphs where the travel time depends only on the lengths of the
edges and T is the length of a shortest path from s to t plus a constant K. Finally, we present
a FPTAS for a restricted version of the problem where the input graph is a clique.
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1.4.3 Thief Orienteering on Undirected Graphs and Special Graph
Classes

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the
plane in such a way that its edges intersect only at their endpoints. An outerplanar graph
is a planar graph for which all of its vertices belong to the outer face.

A series-parallel graph G = (V, E, t1, t2) has two terminal vertices t1, t2 and is defined
inductively:
• G = ({t1, t2}, (t1, t2), t1, t2) is series-parallel.
• if G1 = (V1, E1, t1, t2) and G2 = (V2, E2, t′1, t

′
2) are series-parallel then the series com-

position G = (V1 ∪ V2, E1 ∪ E2, t1, t′2) is series-parallel if t2 = t′1.
• if G1 = (V1, E1, t1, t2) and G2 = (V2, E2, t′1, t

′
2) are series-parallel then the parallel

composition G = (V1 ∪ V2, E1 ∪ E2, t1, t2) is series-parallel if t1 = t′1 and t2 = t′2. A
graph created from a parallel composition is a parallel graph.

We take advantage of the properties of outerplanar and series-parallel graphs in order
to transform them into the desired DAGs using a polynomial number of additional vertices
and edges such that the DAG has the same set of simple paths between s and t as the
original undirected graph. For example, the endpoints of chords of an outerplanar graph
(the edges that do not belong to the outer face) are quite restricted due to the constraint that
the chords cannot intersect each other. Additionally, within a series-parallel graph many
of the vertices have degree at most 2; only the vertices that serve as a terminal for some
series-parallel subgraph can have degree of 3 or more, and hence directing many of the
paths is less complicated.

We give polynomial-time algorithms for transforming instances of the problem on
outerplanar and series-parallel graphs into equivalent instances of the thief orienteering
problem on directed acyclic graphs; therefore, yielding polynomial-time approximation
schemes for the thief orienteering problem on these graph classes that produce solutions
using at most time T (1 + ϵ) for any ϵ > 0.

1.4.4 Modified Hopfield Network for K-Median
The k-median problem (KMP) is a classical clustering problem where given n locations one
wants to select k locations such that the total distance between every non-selected location
and its nearest selected location is minimized. We present a modified Hopfield network
for KMP and experimentally evaluate it against several neural networks and local search
algorithms.

By designing a new neuron update function, our algorithm uses a local search approach;
however, instead of randomly selecting facilities and clients to swap, our algorithm uses a
metric called inner value to determine which facilities are the least valuable to a solution
and should be swapped out and which clients are the most valuable to a solution and should
become facilities. We show that using this metric allows our network to produce accurate
solutions very quickly. Moreover, we show how we can adapt our algorithm so that multiple
facilities could be swapped out in a single swap operation.
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2 Literature Review
In this chapter we provide additional literature review (beyond what is included in the
papers) for the four contributions of the thesis.

2.1 High Multiplicity Strip Packing

2.1.1 Introduction
Packing problems typically involve maximizing the number of objects that can be placed
into a container or minimizing the number of containers needed to hold a set of objects.
Many industrial problems can be modeled as packing problems involving rectangles and
squares. Solutions for rectangle packing problems are useful, for example, for loading
pallets and shipping containers for storage and transport, for designing transistor layouts
for computer chips, and for optimizing workflow in a workplace.

There is a quantifiable difference between good and bad solutions in the industrial envi-
ronment. Wasted space during storage and transport costs companies resources: time might
need to be spent re-packing containers, additional containers might need to be shipped, or
product might be lost if certain weight restrictions are not satisfied. Many companies still
use trial-and-error approaches while packing items for storage and transport.

High multiplicity problems have their input partitioned into relatively few groups that
consist of identical objects. High multiplicity problems are important because the number
of distinct object types is typically small in practice. Additionally, algorithms for high
multiplicity problems generally produce solutions closer to optimal than algorithms for
non high multiplicity problems.

In Chapter 3, we consider the two-dimensional high multiplicity strip packing problem
(HMSP): given K distinct rectangle types, where each rectangle type Ti has ni rectangles
each with width 0 < wi ≤ 1 and height 0 < hi ≤ 1, the goal is to pack these rectangles into
a strip of width 1 without rotating or overlapping the rectangles such that the total height of
the packing is minimized. In this thesis we focus on the cases when there are three distinct
rectangle types and when there are four distinct rectangle types.

Very little research has been done on HMSP; however, we find HMSP important and
worth studying because the non high multiplicity version of the problem, the two-dimensional
strip packing problem, has been researched extensively and finds applications in areas such
as wood and glass cutting, storage and transportation, and paging of articles in newspa-
pers [117]. Moreover, we note that some other famous packing problems, such as the bin
packing problem, has had its high multiplicity variant (the cutting stock problem) studied
extensively.

Efficient algorithms for packing problems translate into improved industrial practices
that reduce company expenses and improve product delivery. Furthermore, algorithm de-
sign techniques specifically developed for rectangle and square packing problems have
contributed to the design of efficient algorithms for other types of optimization problems.
As research into packing problems expands, more industrial problems will be solved using
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these algorithms and more packing and optimization problems will be able to leverage the
algorithmic techniques that are discovered.

Packing problems come in many shapes and sizes, and small variations in the defini-
tion of a packing problem can produce seemingly similar but many times very different
problems. We review the literature on several classic packing problems: the bin packing
problem, the cutting stock problem, the rectangle packing problem, and the strip packing
problem. The algorithm design and analytical techniques used on these related packing
problems both inform the approaches used in this thesis and also help direct our future
research directions.

The rectangle packing and strip packing problems are very similar to HMSP; each of
these problems involves packing rectangles into a rectangular container. The bin packing
and cutting stock problems are fundamental problems in optimization, and the relationship
between them is similar to the relationship between the strip packing problem and HMSP:
the latter problem is a high multiplicity version of the former. We describe the term high
multiplicity in more detail later on in this section.

2.1.2 The Bin Packing Problem
The bin packing problem (BP) (see Figure 2.1) is one of the earliest packing problems
considered in the literature: the problem is NP-hard [60] and no approximation algorithm
for it can have approximation ratio smaller than 3

2 unless P = NP. It has the following
definition:
Definition Given a set A = {a1, a2, ..., an} of n items, each of size 0 < size(ai) ≤ 1, pack all
the items into the smallest possible number of unit capacity bins.

A practical application of this problem encodes transport trucks as bins and products
as items. In this model, the size of an item is the product’s weight, and the capacity of
a bin is the truck’s carrying capacity. By minimizing the total number of bins needed to
hold all the items, we also minimize the number of transport trucks needed to carry all of
the product; therefore, algorithms that minimize the number of required bins can help a
transport company minimize its delivery expenses.

The bin packing problem is theoretically significant: as one of the earlier NP-hard
problems studied many of the approaches that are used to evaluate the performance of
approximation algorithms were first designed for algorithms for the bin packing problem
[35].

Over the many years of research on BP, a large variety of algorithms have been designed
(see Table 2.1). Some of the most important ones are the following:
• First-Fit. The items are packed from the input one at a time into the first bin in which

they fit.
• Best-Fit. The items are packed from the input one at a time into the best bin in terms

of maximizing the space used in the bins.
• First-Fit Decreasing. Same as First-Fit but the items are first sorted in non-increasing

order.
• Best-Fit Decreasing. Same as Best-Fit but the items are first sorted in non-increasing

order.



Chapter 2 – Literature Review 13

A = { }

,,
size1 size3

,
size4

,
size5 size6

,
size2

Bins:

Figure 2.1: The bin packing problem: given a set A = {a1, a2, ..., an} of n items, pack them
into the smallest possible number of bins.

• Refined First-Fit Decreasing. The items are partitioned into groups depending on
their sizes. Only items within the same group are packed into the same bins together,
but the packing still follows the rules of First-Fit Decreasing.
• Best Two-Fit. The items are packed according to First-Fit Decreasing. Then, if a bin

contains more than a single item, the algorithm checks if the smallest item in the bin
can be replaced by two un-packed items in order to fill the bin more fully. The two
items with the largest size that can replace the single item are chosen.

There are several common techniques used in these algorithms, such as sorting the
items, partitioning items into groups based on their size, and using different algorithms
for different item groups. These techniques are widely used on many other packing prob-
lems.

Approximation Algorithms
Year Authors Approximation Ratio
1974 Johnson, Demers, Ullman, Garey, Graham [95] 3

2
Asymptotic Approximation Algorithms

Year Authors Approximation Ratio
1980 Yao [174] 11

9 −
10−7

OPT (I)
1985 Johnson and Garey [96] 71

60
1991 Friesen and Langston [57] 71

60
Polynomial Time Approximation Schemes

Year Authors Approximation Ratio
1981 De la Vega and Lueker [166] 1 + ϵ
1982 Karmarkar and Karp [99] 1 + O( log2 OPT(I)

OPT (I) )
2013 Rothvoß [146] 1 + O( log OPT(I)∗log log OPT(I)

OPT (I) )

Table 2.1: Significant algorithms, and their performances, for the bin packing problem.
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In addition to the classic bin packing problem, there are several variants of the problem
that have been proposed. These variants change the definition of the problem by allow-
ing rotations, allowing overlaps, allowing the dimensions of the bins to be adjusted, and
packing irregularly shaped objects, to name a few. In many instances, these variants have
applications in niche situations. Since the algorithm of Johnson et al. [95] has matched the
theoretical bound on the best possible (unless P = NP) approximation ratio of 3

2 , research
either works to improve the running time of these approximation algorithms, the running
time of exact algorithms, or the performance of algorithms for problem variants.

2.1.3 The Cutting Stock Problem
The cutting stock problem (CS) first appeared in the literature under the name of the trim
problem in 1957 [48] and some of the first work on solving this problem was done by
Gilmore and Gomory [66–68] who formulated this problem as an integer program. The
cutting stock problem is known to be NP-hard and no approximation algorithm for it can
have approximation ratio smaller than 3

2 unless P = NP [90]. It has the following defini-
tion:
Definition Given a set A = {a1, a2, ..., aK} of K item types and a set N = {n1, n2, ..., nK} of
K item multiplicities, where all ni items of type ai have size 0 < size(ai) ≤ 1, pack all the
items into the smallest possible number of unit capacity bins.

This problem can model many industrial challenges of cutting raw materials into smaller
units for customers. For example, a business might stock standard length pieces of wood,
but customers might request non-standard lengths of wood. The business wants to min-
imize the cost of cutting their standard material to the requested size. A solution to the
cutting stock problem is equivalent to selecting the minimum number of standard-length
materials needed to fulfill the customers orders.

Note that the cutting stock problem is equal to the bin packing problem where the input
objects are partitioned into K types. However, there is a significant difference between
the cutting stock problem and the bin packing problem; while the input to the bin packing
problem consists of n item sizes, the input to the cutting stock problem consists of only K
item sizes and K item multiplicities. Thus, when the value of n is large and the value of K
is small the size of the input for the cutting stock problem is small compared to the size of
the input for bin packing (see Figure 2.2). This is a very important observation as we wish
to design algorithms whose running times are polynomial in the size of the input.

Recall that an algorithm is efficient if its time complexity is polynomial in its input size.
Algorithms for the bin packing problem that consider individually each item would not run
in polynomial time if applied to the cutting stock problem. Bin packing algorithms are
given n items as input, so considering each item individually incurs a number of operations
that depends on the value of n, the size of the input; however, cutting stock algorithms are
given K item types as input, so when the total number of items is larger than K, considering
each item individually incurs a number of operations that depends on the value of n, but a
polynomial time cutting stock algorithm must incur a number of operations that polynomi-
ally depends on the value of K, the size of the input. When n is much larger than K, the
time complexities of bin packing algorithms applied to the cutting stock problem can be
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Figure 2.2: a) In the bin packing problem n sizes of items must be given in the input. b) In
the cutting stock problem only K sizes of items and K multiplicities must be given in the
input. Even if the value of n is very large, if the value of K is small the size of the input for
the cutting stock problem is small.

exponential in their input sizes. Polynomial time algorithms for the cutting stock problem
must consider each object type and not individual objects.

In 1985, Marcotte [121] showed that when K = 2 the cutting stock problem has a
particular property called integer round-up. To have the integer round-up property, the
optimal value of an integer programming formulation of the problem must be the least
integer greater than or equal to an optimal value of its linear programming relaxation. Orlin
[133] used this property to design a polynomial time algorithm that solves cutting stock
when K = 2 exactly. Mcormick et al. [123] later improved upon the running time of the
algorithm to O(log2 β log n). However, algorithms for cutting stock when K > 2 proved to
be more difficult and Table 2.2 shows the progression over the years.

Fixed K Algorithms
Year Authors Additive Constant
2005 Filippi and Agnetis [53] K − 2
2007 Filippi and Agnetis [52] 1 (2 < K ≤ 6)
2007 Filippi and Agnetis [52] 1 + ⌊K−1

3 ⌋ (K > 6)
2010 Jansen and Solis-Oba [90] 1
2013 Goemans and Rothvoß [69] 0

Not Fixed K Algorithms
Year Authors Additive Constant
1982 Karmarkar and Karp [99] O(log2 K)
2013 Rothvoß [146] O(log K ∗ log log K)

Table 2.2: Significant algorithms, and their performances, for the cutting stock problem.

Most algorithms for CS have been linear program based algorithms that extend the
work of Gilmore and Gomory [66–68]. Therefore, most of the techniques proposed have
been related to transforming fractional solutions into integer solutions while minimizing
the increase to the number of bins that this causes. Since the problem has been solved
for the case when K is constant, future work attempts to improve the running time of
these algorithms, design algorithms for arbitrary values of K, or focus on variants of the
problem.



Chapter 2 – Literature Review 16

2.1.4 The Rectangle Packing Problem
The rectangle packing problem (RP) (see Figure 2.3) is NP-hard [5] and has been studied
since the early 1980’s. It has the following definition:
Definition Given a set A = {a1, a2, ..., an} of n rectangles, where each rectangle ai has width
wi and height hi, and a rectangular container of width W and height H, pack the maximum
subset of rectangles from A into the rectangular container, without rotating or overlapping
any of the rectangles.

RP is very useful in modeling the problem of cutting rectangular patterns out of raw
material. Consider a rectangular piece of fabric of width W and height H, and a set A =
{a1, a2, ..., an} of n rectangular cutting patterns, where each cutting pattern ai has width
wi and height hi. Solving the rectangle packing problem is equivalent to maximizing the
number of patterns that can be cut from the rectangular piece of fabric, which in turn leads
to a cost-effective strategy of cutting the fabric.

Fixed Width

Fixed 
Height

A = { } , , , , , , , , , , 
size1 size2 size3 size4 size5 size6 size7 size8 size9 size10 size11

Figure 2.3: The rectangle packing problem: given a set A = {a1, a2, ..., an} of n items, pack
the maxmimum subset of them into a rectangular container.

Similarly to the bin packing problem, algorithms such as FFD can be modified to work
on RP. When FFD is applied to the two-dimensional rectangle packing problem, it is con-
sidered to be a level oriented algorithm. In a level oriented algorithm, the bottom of the
rectangular container is considered the first level of the packing. Rectangles are packed in
the first level until a rectangle r is found that is too wide to be packed in the remaining space
at the bottom of the container. The bottom of the second level of the packing is defined by
a horizontal line drawn from the top of the tallest rectangle packed in the first level. Sub-
sequent levels are defined in the same way. When FFD is applied to the two-dimensional
rectangle packing problem, it has an approximation ratio of 1.7 [31].

Surprisingly, much of the work done on RP focuses on its variations, such as pack-
ing rectangles with profits or packing squares (see Table 2.3). Moreover, many of these
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algorithms approximate very close to optimal solutions and quite a few PTAS have been
presented.

Approximation Algorithms
Year Authors Approximation Ratio
1983 Baker et al. [5] 4

3 (unit-weight squares)
2004 Caprara and Monaci [22] 3 + ϵ (rectangles with profits)
2007 Jansen and Zhang [91] 2 + ϵ (rectangles with profits)
2009 Harren [78] 5

4 + ϵ (squares with profits)
Polynomial Time Approximation Schemes

Year Authors Approximation Ratio
2005 Fishkin et al. [56] 1 + ϵ (rectangles with profits into square container)
2005 Fishkin et al. [56] 1 + ϵ (squares with profits equal to area)
2005 Fishkin et al. [55] 1 + ϵ (squares with augmentation)
2008 Jansen and Solis-Oba [89] 1 + ϵ (squares with profits)
2012 Lan et al. [108] k2+3k+2

k2 (rectangle side length at most 1
k )

2012 Lan et al. [108] 1 + ϵ (squares without profits)

Table 2.3: Significant algorithms, and their performances, for the rectangle packing prob-
lem.

2.1.5 The Two-Dimensional Strip Packing Problem
The two-dimensional strip packing problem (SP) (see Figure 2.4) has the following defini-
tion:
Definition Given n rectangles with widths w1, w2, ..., wn and heights h1, h2, ..., hn, where
0 < wi ≤ 1 and 0 < hi ≤ 1 for i = 1, 2, ..., n, the goal is to pack all the rectangles without
rotations or overlaps in a rectangular strip of width 1 and minimum height.

SP, while similar to RP, allows the rectangular container to have unbounded height; this
means that all items in SP can always be packed, while some items in RP might be left un-
packed. Operations researchers have long known that packing problems such as SP apply to
industrial or commercial situations in which objects are packed on floors, shelves, wooden
pallets, trucks, etc., where two specific dimensions of the objects needed to be optimized.
However, the applications of SP go well beyond physically packing objects into containers.
As early as the 1960’s, Codd [34] defined an application of SP to scheduling memory access
for multiprogrammed computer systems, and by the 1970’s, Garey and Graham [62] had
applied SP to scheduling tasks for multiprocessor computer systems. SP has continued to
be an important and well-studied problem with modern applications in areas as diverse as
resource allocation, scheduling, manufacturing, and transportation.

When the heights of all rectangles in the input to SP are equal, the problem is equivalent
to the bin packing problem; therefore, since the bin packing problem is NP-hard, SP is also
NP-hard. Thus, SP can not be approximated with approximation ratio better than 3

2 unless
P = NP.
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Figure 2.4: The strip packing problem: given n rectangles, pack them all in to a rectangular
strip with minimum height.

Algorithms for SP steadily progressed over the years seeing many improvements to
their approximation ratios, until recently in 2014 Harren et al. [79] presented the current
best-known algorithm whose approximation ratio is 5

3 (see Table 2.4).
Note that while Harren et al. [79] have the current best-known approximation ratio for

SP, and while they have stated that they do not see how to use their recent technique to
improve their algorithm, they still believe that it is possible to achieve an approximation
ratio of 3

2 . Towards that end, recent researchers have been considering SP in a restricted
sense, such as Nadiradze and Wiese’s [128] algorithm that computes solutions of height
at most (1.4 + ϵ)OPT (I) in pseudo-polynomial time, Galvez et al.ś [59] algorithm that
computes solutions of height at most (4

3 +ϵ)OPT (I) in pseudo-polynomial time, and Jansen
and Rau’s [92] algorithm that computes solutions of height at most ( 4

3+ϵ)OPT (I) in pseudo-
polynomial time (but runs significantly faster than Galvez et al.ś algorithm), where ϵ > 0
is a constant. As far as we are aware, these are the cutting-edge algorithms for SP.

As seen in Table 2.4, a large number of papers have been published on SP; however, as
seen below, many of these papers recycle old techniques. Here is a list of a few of the most
important algorithms:
• Bottom-Up Left-Justified. This describes a family of algorithms which all follow

the same pattern: rectangles are packed one at a time in the lowest part of the packing
that is wide enough to fit them and pushed towards the left wall of the strip as far as
possible. The only difference in the algorithms of this family are the order in which
the rectangles are packed, with rectangles being sorted by non-increasing width being
favoured by Baker et al. [6].
• First-Fit Decreasing-Height. This is a Level-Oriented algorithm; within a level, all

rectangles are packed such that their bottom edge lies on a common line with the
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Approximation Algorithms
Year Authors Approximation Ratio
1980 Baker et al. [6] 3
1980 Coffman et al. [36] 2.7
1980 Sleator [156] 2.5
1994 Schiermeyer [151] 2
1997 Steinberg [157] 2
2009 Harren and Van Stee [80] 1.9396
2014 Harren et al. [79] 5

3 + ϵ

Asymptotic Approximation Algorithms
Year Authors Approximation Ratio
1980 Baker et al. [6] 3
1981 Coffman et al. [36] 3

2
1981 Golan [70] 4

3
1981 Baker and Katseff [4] 5

4
Polynomial Time Approximation Schemes

Year Authors Approximation Ratio
1998 De la Vega and Zissimopoulos [43] 1 + ϵ (no narrow or wide items)
2000 Kenyon and Remila [104] (1 + ϵ)OPT (I) + O( 1

ϵ2
)

2009 Jansen and Solis-Oba [93] (1 + ϵ)OPT (I) + 1

Table 2.4: Significant algorithms, and their performances, for the strip packing problem.

base of the level and all rectangles are pushed towards the left wall of the strip as far
as possible. When no more rectangles can be packed within a level, the next level
is created with its base at the point of the tallest rectangle in the previous level. In
the First-Fit version of the algorithm, rectangles are packed one at a time within the
lowest level where it fits. Note that level-oriented algorithms are adapted from bin
packing algorithms, as each level can be viewed as a bin.
• Split Fit. This algorithm partitions the input rectangles into wide and narrow groups.

The wide rectangles are packed first one on top of the other, while the narrow rectan-
gles might be packed beside the wide ones if they fit, or they might be packed above
otherwise. This is of the most popular techniques across all of the later algorithms,
with some algorithms creating many partitions of the input and using different pack-
ing techniques for each group.
• Reverse-Fit. This algorithm is similar to Split-Fit in the sense that it packs wide

and narrow rectangles differently, but the core technique featured in this algorithm
is the idea of packing a level that is left-justified and packing a second level that
is right-justified and dropping the second level on the first. This technique is used
on rectangles that are all narrow and sorted by non-increasing height; therefore, the
right-most rectangles of the second level can frequently fit in the empty space left
above the right-most rectangles of the first level.
• Steinberg’s Algorithm. This algorithm provided an elegant way to use the previous

techniques of partitioning the input into groups of differently sized rectangles. Multi-
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ple packing techniques are created and the algorithm matches a technique to a group
of rectangles if certain constraints are met. Steinberg’s algorithm is frequently used
as a sub-routine in the state-of-the-art algorithms.
• BCS Structural Lemma. This lemma is just as popular as Steinberg’s algorithm in

the state-of-the-art algorithms, and is used to show that there exists efficient packings
that possess a ”nice structure”.

Note that the best-known algorithm by Harren et al. uses Steinbergs’s algorithm and
the BCS lemma as sub-routines and re-arranges the rectangles to make a slightly better
packing.

Proof techniques for many of the algorithms described above often try to prove a similar
property: that the packing produced by their algorithm is more than half full. Authors have
proven this property in different ways. Baker et al. [6] proved that any arbitrarily drawn
horizontal line in their packing intersects less empty space than occupied space. Coffman
et al. [36] used a different approach; they bounded the total width of the rectangles on a
level including the first rectangle on the next level.

As SP is the closest related packing problem to our own topic, HMSP, it is important to
review the algorithmic techniques and proofs of correctness used to address that problem
to find inspiration for our own work. Indeed, our own algorithms share several techniques
with some of the algorithms listed above, such as sorting rectangles, using different tech-
niques depending on the sizes of the rectangles, and carefully considering the possible
structures of the packing.

2.1.6 High Multiplicity Problems
Practical problems that can be solved using packing algorithms often include a small num-
ber of different types of items. For example, a company might have a shipment containing
only a few different products, but they ship these products in bulk. Therefore, a packing
algorithm can group identical products together and pack the groups, instead of packing
individual items.

As defined by Hochbaum and Shamir [83], a high multiplicity problem has its input
”partitioned into relatively few groups (or types), and in each group all the inputs are iden-
tical.” The number of items within a type is called the multiplicity of that type. Note that
high multiplicity problems represent the input of a problem very compactly, as we only
need a list of types and a list of multiplicities and not a list of the individual items in the
input. For example, consider the difference between the bin packing and cutting stock
problems described above: the bin packing problem takes as input a list of n items, while
the cutting stock problem takes as input a list of K types and a list of K multiplicities. Ide-
ally, an algorithm for a high multiplicity problem takes advantage of the fact that there are
many items with identical dimensions to find a better solution than a general algorithm that
considers every item to be unique.

Each of the problems listed above has high multiplicity variants. For example, as de-
scribed above, the cutting stock problem is the high multiplicity variant of the bin packing
problem. However, we could easily group the input by item types for the rectangle packing
and strip packing problems as well. Several approximation algorithms for high multiplicity
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problems produce solutions closer to the optimal ones than approximation algorithms for
their respective general problems.

Even before Hochbaum and Shamir coined the term “high multiplicity”, researchers
were exploring problem variants that include groups consisting of identical items. Not
all papers describe these problem variants as ”high multiplicity” either, which can make
searching for them difficult. For example, in 1980 Psaraftis [140] worked on a job schedul-
ing problem where there were K distinct groups of jobs and jobs within each group are
identical. Instead of referring to the problem as a high multiplicity variant of job schedul-
ing, Psaraftis simply calls his problem Sequencing Groups of Identical Jobs. In 1990,
Dessouky et al. [45] presented an algorithm for scheduling identical jobs on uniform par-
allel machines; it is important to note however, that while Dessouky et al. worked on what
is essentially a high multiplicity problem, the time complexity of their algorithm was not
a polynomial function of a high multiplicity encoding of the input. As we have discussed
before in the context of the cutting stock problem, it is challenging to design a polynomial
algorithm when the input is so compact.

Hochbaum and Shamir [83] introduced several high multiplicity scheduling problems
such as the ”weighted number of tardy jobs problem” and the ”total weighted tardiness
problem”, which both accept groups of identical jobs as input. Some high multiplicity
problems have been shown to be polynomially solvable, such as the high multiplicity vari-
ants of single-machine scheduling with earliness and tardiness [33] and the multiprocessor
scheduling problem with 2 job lengths [123], while others have been proven to be NP-
hard, such as the high multiplicity variant of minimizing service and operation costs of
periodic scheduling [8]. Plenty of research is being conducted on high multiplicity variants
of different scheduling problems.

Beyond packing and scheduling problems, high multiplicity variants appear in graph
problems as well. In 1982, Lengauer [112] created a compact ”high multiplicity” represen-
tation for circuits in very large scale integrated circuitry (VLSI). Galperin and Wigderson
[58] expanded this representation to include graphs, which established a new avenue of
research in what is essentially high multiplicity graph problems. The compact graph rep-
resentation, and its application to graph problems, has been advanced through the likes of
Lengauer and Wanke [113], Lozano and Balcazar [118], Papadimitriou and Yannakakis
[136], and Turan [163], to name a few. An example high multiplicity graph problem would
be a variant of the traveling salesman problem where there are only a few cities but they
are each visited a large number of times [40].

2.2 Thief Orienteering

2.2.1 Introduction
Network routing problems typically involve selecting a path P from some vertex u to some
vertex v in order to minimize objectives such as (i) the length of P, (ii) the time needed
to traverse P, (iii) the cost of traversing P, and so on. Examples of problems that can be
modeled as network routing problems include planning routes for vehicles to take, routing
signals over telephone networks, and planning factory workflows [103].
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Using the above examples, poor solutions to network routing problems could result
in longer commutes, unstable telephone network coverage, slow internet connections, and
wasted money through sub-optimal workflow. To make matters more complicated, network
routing problems often involve selecting multiple paths at the same time for different enti-
ties to traverse and hence a large number of people or systems could be impacted by these
poor solutions.

Multi-objective optimization refers to problems that involve more than one objective
function that need to be simultaneously optimized, and often these objectives conflict with
each other. In the above example of selecting a path P from u to v, the goal of a multi-
objective optimization problem might be to minimize both travel time and cost of traversing
P; however, the fastest paths from u to v might incur a high cost.

A problem is said to have two or more interdependent sub-problems if the solution
for one sub-problem influences the quality of the solution for the other sub-problems [17].
Problems with multiple interdependent sub-problems are important because many real-life
problems have multiple constraints, layers of complexity, and/or contain a combination of
interdependent sub-problems, and so there is a strong motivation to research optimization
problem formulations that can model practical problems of modern importance.

In Chapters 4 and 5, we consider the thief orienteering problem (ThOP), which includes
the 0-1 knapsack problem and the orienteering problem as sub-problems (we introduce
each of these sub-problems further below). Very little research has been done on ThOP;
however, we find ThOP important and worth studying because many classical problem for-
mulations do not include multiple interdependent sub-problems, in many cases algorithms
for classical problems cannot be re-used for these sub-problems, and yet ThOP can model
important industrial challenges.

The aim of this thesis’s literature review on ThOP is not to provide an exhaustive list of
approaches that have been proposed for this problem; rather, there are some key points that
we wish to make: (i) introduce the sub-problems of ThOP, (ii) describe a particular FPTAS
for the 0-1 knapsack problem (iii) call to attention the traveling thief problem [17], and (iv)
compare in detail how our approach in Chapter 4 differs from a FPTAS that was designed
for the packing while traveling problem [139].

2.2.2 The 0-1 Knapsack Problem
The 0-1 knapsack problem (KP) (see Figure 2.5) is a classic NP-hard [101] problem that
has been studied since the 1950’s and over a thousand papers have been published on it
and its related variants [20]. It is also one of the sub-problems included in ThOP. It has the
following definition:
Definition Given a set I = {i1, i2, ..., in} of n items, where each item i j has profit p j

and weight w j, pack a subset S of the items into a knapsack with capacity W such that∑
i j∈S w j ≤ W and

∑
i j∈S p j is maximized.

This problem has many practical applications in storage and transportation, but a less
obvious application includes capital budgeting [130]: In this application, the capacity W of
the knapsack represents an expenditure limit, and the goal is to select a subset of projects
to invest in, where each project has a particular expense (the weight) and also an expected
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future return (the profit). By selecting a subset of items with maximum profit, we also
choose which projects to invest in that maximizes the potential future earnings while not
exceeding the current budget.

I = { }

,,
weight1
profit1

, ,,

Knapsack

w2
p2

w3
p3

w4
p4

w5
p5

w6
p6

Figure 2.5: The knapsack problem: given a set I = {i1, i2, ..., in} of n items, pack a subset of
them with maximum profit into a knapsack.

If the reader is interested in seeing the full body of related work on KP and its variants,
we direct the reader to the recent surveys [19, 20]. However, since ThOP specifically
includes the 0-1 knapsack problem as a sub-problem, and because in Chapters 4 and 5
we modify a simple FPTAS for KP, we restrict our commentary to fully-polynomial time
approximation schemes for KP (see Table 2.5 for some recent results), and in particular to
a simple FPTAS that we make use of in Chapters 4 and 5.

Polynomial Time Approximation Schemes
Year Authors Running Time
1975 Sahni [147] nO(1/ϵ)

1975 Ibarra and Kim [87] O(n log n + ( 1
ϵ
)4 log 1

ϵ
)

1979 Lawler [110] O(n log n + ( 1
ϵ
)4)

2004 Kellerer and Pferschy [102] O(n log 1
ϵ
+ ( 1
ϵ
)3 log2 1

ϵ
)

2015 Rhee [143] O(n log 1
ϵ
+ ( 1
ϵ
)

5
2 log3 1

ϵ
) (randomized)

2018 Chan [26] O(n log 1
ϵ
+ (1
ϵ
)

12
5 /2Ω(

√
log( 1

ϵ )))

2019 Jin [94] O(n log 1
ϵ
+ ( 1
ϵ
)

9
4 /2Ω(

√
log( 1

ϵ )))

2023 Deng et al. [44] Õ(n + ( 1
ϵ
)

11
5 /2Ω(

√
log( 1

ϵ ))) (randomized)
2024 Chen et al. [30] Õ(n + (1

ϵ
)2)

Table 2.5: Significant FPTAS for the knapsack problem. The notation Õ() is a variation of
the big-O that ignores logarithmic factors and Ω defines a lower bound.

In Chapters 4 and 5, we use a very simple FPTAS in order to keep the analysis of our
algorithm simple. Williamson and Shmoys [170] describe a very simple dynamic program-
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ming approach to KP that builds a table where each entry A[ j] is a list of tuples (w, p), for
all items i j ∈ I. A tuple (w, p) in the list of A[ j] indicates that there is a subset S of the first
j items of I such that the weight of the items in S is w ≤ W and the profit of the items in S
is p (see Figure 2.6).

Row Entry

Item 1

Item 2

Item 3

(0, 0) (w1, p1)

(0, 0) (w1, p1) (w2, p2) (w1+w2, p1+p2)
21

22

23
.
.
.

Number
of

Tuples

Figure 2.6: An entry A[ j] in the knapsack profit table is a list of tuples (w, p) that are
restricted to selecting subsets of only the first j items.

The tuples in the list of entry A[1] of Williamson and Shmoys’s profit table include
the empty set (0, 0) with no profit or weight and the set containing only the first item
(w1, p1) with the weight and profit of item i1. To build the list of tuples in the entry A[ j]
corresponding to item i j, for j = 2, 3, ..., |I|, first the tuples from entry A[ j − 1] are copied
to entry A[ j] and then for each tuple in A[ j − 1] a new tuple is created and appended to the
list at entry A[ j] that includes the old tuple plus the item i j (as long as including i j does not
exceed the carrying capacity W).

A tuple (w, p) dominates another tuples (w′, p′) if p ≥ p′ and w ≤ w′. Dominated tuples
are removed from each list of A such that no tuple in the list of each entry A[ j] dominates
another tuple in the same list. Therefore, it is assumed that each list A[ j] keeps only one
tuple for each unique profit value - the tuple with the lowest weight.

To make a FPTAS, the profit of each item is rounded down to the nearest multiple of
ϵPmax

n , where Pmax is the largest profit among the items. Since dominated tuples are removed,
the number of tuples in each entry of the table is at most O( n2

ϵ
) and hence the running time

of the algorithm is O( n3

ϵ
).

2.2.3 The Orienteering Problem
The orienteering problem (OP) was introduced in 1987 by Golden, Levy, and Vohra [71],
based on an outdoor sport where locations are visited along a path from a start point to an
end point. Tsiligirides [162] designed several algorithms for this problem under the name
of the generalized traveling salesman problem. Golden et al. [71] show that OP is NP-hard
by reducing it to the traveling-salesman problem. It has the following definition:
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Definition Given a weighted graph G = (V, E) with n vertices, where each vertex ui has a
score si and vertex u1 represents the start vertex and un represents the end vertex, select a
simple path from the start to end vertices that maximizes the total score but does not exceed
the time limit T , where the time it takes to travel over edge (u, v) is the length of (u, v).

A practical application of this problem includes modeling a truck that delivers fuel to
a large number of customers on a daily basis [71]. The vertices of the graph represent the
customer locations, the edges between vertices represent the cost of traveling between cus-
tomers, and the time limit represents a day of work. A customer’s fuel supply is critical
and hence a measure of urgency can be assigned to each customer; therefore, by maximiz-
ing the score of the OP, we also visit the most critical customers each day to avoid any
customers from running out of fuel.

Since the score of a vertex is independent to the time it takes to travel to that vertex, it
can be difficult to select vertices that belong to an optimal solution [63]. The most difficult
instances of OP are when an optimal solution includes roughly half of the total number of
vertices, as this involves the largest number of feasible solutions [164].

Research on OP includes heuristics, approximation algorithms, and exact algorithms,
as well as research into restricted versions of the problem and variants such as the team ori-
enteering problem, the time dependant orienteering problem, and the orienteering problem
with time windows. We discuss some of these problem variants in Chapter 7 as potential
future directions for ThOP. For a broader list of related work, we direct the reader to recent
surveys [73, 165]. Table 2.6 lists several of the most influential algorithms for OP; how-
ever, as stated previously our particular approach modifies an algorithm for KP instead of
modifying an algorithm for OP, so we do not discuss these algorithms in detail, instead, we
simply wish to inform the reader of the problem definition.

2.2.4 The Thief Orienteering Problem
The thief orienteering problem (ThOP) was introduced in 2018 by Santos and Chagas [150]
by combining the orienteering problem and the 0-1 knapsack problem, which are both NP-
hard problems. Later in Chapter 4, we show that ThOP is also NP-hard. ThOP has the
following definition:
Definition Given a weighted graph G = (V, E) with n vertices, where two vertices are
designated the start and end vertices, and a set I of items stored in the vertices of V , where
each item i j ∈ I has a non-negative weight w j and profit p j, select a path from the start
vertex to the end vertex, while collecting items from each vertex to maximize the profit
in the knapsack without exceeding its carrying capacity W or the time limit T . The time
needed to travel from city to city depends on the current weight in the knapsack.

A practical application of this problem includes modeling the collection of goods from
customers for proper disposal [150]. Each customer product has a benefit, and the vehicle
driver has limited storage capacity and limited working hours. Additionally, the vehicle
speed slows down as it collects more products. By optimizing the solution to ThOP, we
also pick up the products from the customers with the most benefit each day.

Table 2.7 shows all of the related work on ThOP; note that beside this thesis’s contri-
butions, the rest of the research has been on heuristics. This is likely due to the difficulty
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Exact Algorithms
Year Authors Algorithm Type
1990 Laporte and Martello [109] branch-and-bound
1992 Ramesh et al. [141] branch-and-bound
1994 Leifer and Rosenwein [111] cutting plane
1998 Fischetti et al. [54] branch-and-cut
1998 Gendreau et al. [63] branch-and-cut

Heuristics
1984 Tsiligirides [162] monte-carlo and vehicle routing
1987 Golden et al. [71] centre-of-gravity
1991 Ramesh and Brown [142] four-phase
1996 Chao et al. [27] five-phase
1998 Gendreau et al. [64] tabu search
2001 Tasgetiren [159] genetic
2002 Liang et al. [116] ant colony
2009 Schilde et al. [152] pareto ant colony
2010 Sevkli and Sevilgen [153, 154] strengthened particle swarm
2012 Liang et al. [115] multi-level neighborhood search
2014 Camposet al. [21] greedy randomized adaptive search
2015 Marinakis et al. [122] memetic-greedy randomized adaptive search
2018 Kobeaga et al. [106] evolutionary
2019 Santini [149] adaptive neighbourhood search
2023 He et al. [81] genetic

Approximiation Algorithms
1998 Arkin et al. [2] (2 + ϵ)-approximation (Euclidean)
2003 Blum et al. [15] 4-approximation
2004 Bansal et al. [7] 3-approximation
2007 Blum et al. [16] PTAS (rooted orienteering)
2008 Chen and Har-Peled [29] PTAS (fixed-dimensional Euclidean)
2012 Chekuri et al. [28] (2 + ϵ)-approximation
2022 Gottlieb et al. [72] PTAS (rooted orienteering)

Table 2.6: Significant algorithms, and their performances, for the orienteering problem.

in designing approximation algorithms for ThOP with guaranteed approximation rations,
which we discuss further in Chapter 4. In order for us to design our approximation algo-
rithms, we needed to impose additional restrictions on ThOP such as the input graph being
from a particular graph class, or the thief’s travel time over an edge being independent of
the weight in the knapsack.

Since the approaches used in the heuristic algorithms by other researchers are so dras-
tically different than the approach used in this thesis, we do not think it would be very
useful to describe in detail how the heuristics work. Instead, we offer another problem,
the packing while traveling problem, that has some overlap in methodology to our own
results.
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Heuristics
Year Authors Algorithm Type
2018 Santos and Chagas [150] local search and genetic
2020 Chagas and Wagner [23] ant colony
2020 Faêda and Santos [50] genetic
2022 Chagas and Wagner [24] swarm inteligence and randomization
2023 Huynh et al. [86] ant colony and local search

Approximation Algorithms
2023 Bloch-Hansen et al. [12] PTAS (DAGs)
2024 Bloch-Hansen and Solis-Oba [13] PTAS (series-parallel graphs)

Table 2.7: All algorithms for the thief orienteering problem.

2.2.5 The Packing While Traveling Problem
The packing while traveling problem (PWTP) was introduced in 2017 by Polyakovskiy
and Neumann [139] and was shown to be NP-hard. PWTP is very similar to ThOP, but in
PWTP the thief must follow a fixed path. PWTP has the following definition:
Definition Given is a weighted graph G = (V, E), a sequence N = {u1, u2, ..., un+1} of
unique vertices, and a set I of items, each with weight wi and profit pi, distributed among
the first n cities. There is a single vehicle that visits the cities of N in sequence and may
collect any items when it visits a city, as long as the selected items do not exceed its carrying
capacity W. The time needed to travel from vertex to vertex depends on the current weight
in the vehicle. The vehicle has a constant rent rate defining how much money needs to
be paid per unit time, and so the transportation cost of the selected items is the product
of the rent rate and the total traveling time. The goal is to select a subset of I of weight
not exceeding W such that the difference between the profit of the selected items and the
transportation cost is maximized.

A practical application of this problem includes modeling a supplier that travels a single
major route and has to decide whether or not to purchase goods for future sales [139]. De-
ciding to include goods incurs a transportation cost and affects the total travel time along
the route, which may incur addtional expenses if the vehicle was rented. By optimiz-
ing the solution to PWTP, we also select the optimal goods to purchase along that single
route.

Approximation Algorithms
Year Authors Algorithm Type
2019 Neumann et al. [131] FPTAS

Exact Algorithms
2017 Polyakovskiy and Neumann [139] mixed-integer and branch-infer-and-bound

Heuristics
2019 Roostapour et al. [144] evolutionary

Table 2.8: Significant algorithms, and their performances, for the packing while traveling
problem.
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As shown in Table 2.8, there is not a lot of related work on PWTP. We wish to highlight
the work of Neumann et al. [131] because, out of all of the related work we have discussed
so far, this is the most similar to our contributions in Chapter 4. Below we describe how our
contributions extend upon and differ from the results of Neumann et al. It might help the
reader to first familiarize themselves with Chapter 4 before reading this comparison.

The objective function of PWTP can take on positive and negative values and Neumann
et al. [131] show that there is no polynomial-time algorithm with finite approximation ratio
for the original objective function of PWTP unless P = NP. Instead, they consider a
different objective function for PWTP in which the objective function is the amount that
can be gained over the cost when the vehicle travels empty. Similar to our approach, they
first design an exact algorithm using dynamic programming and then they round down the
values of the profits of the items to keep the running time polynomial.

Observe a key difference between PWTP and ThOP: in ThOP there is a time limit and
any solution that exceeds the time limit is infeasible; in contrast, in PWTP there is no
time limit but rather solutions that take more time have a higher transportation cost. This
difference is significant when the profits are rounded, because two tuples in the PWTP
table that have both been rounded to the same benefit (profit minus transportation cost)
are both feasible solutions and since Neumann et al. take the tuple with the least weight
they are guaranteed to keep the best tuple. In contrast, for two tuples in ThOP that have
been rounded to the same value of profit and weight, it is possible that only one of those
tuples represents a feasible solution that satisfies the time limit, and hence an algorithm
that discards the wrong tuple can produce solutions that are arbitrarily far below an optimal
solution.

A second key difference between PWTP and ThOP concerns rounding the weights of
the items. Neumann et al. do not need to round the weights of the items in order to keep the
size of their table polynomial: If multiple tuples have the same benefit, they keep the tuple
with the lowest weight. In ThOP, when multiple tuples have the same profit, we need to
keep one tuple per unique weight: the tuple with the smallest travel time. These additional
tuples need to be kept because a solution using the tuple with the smallest weight might
exceed the time limit (for example, by carrying the items for a long distance).

Our approach differs from Neumann et al.ś approach in several ways. First, since ThOP
does not include a fixed route, our algorithm needs to store information relating to which
path the thief takes. Second, since in ThOP the travel time does not directly impact the
profit, we need to explicitly track the time needed to carry item subsets along each path,
whereas Neumann et al.ś algorithm implicitly includes this information by transforming
the travel time into a travel cost and including it with the profit. Finally, the PTAS that we
present in Chapter 4 produces solutions that might slightly exceed the time limit in order to
guarantee that our algorithm selects enough of the items from an optimal solution in order
to get a near maximum profit.

2.2.6 The Traveling Thief Problem
The traveling thief problem (TTP) was introduced in 2013 by Bonyadi, Michalewicz, and
Barone [17] by combining the traveling-salesman problem and the 0-1 knapsack problem,



Chapter 2 – Literature Review 29

which are both classic NP-hard problems, and hence TTP is NP-hard. TTP differs from
ThOP due to the fact that in TTP every vertex in the graph must be visited. It is not as
closely related to ThOP as PWTP was, but we mention in it this section anyways as it is yet
another routing problem that includes the 0-1 knapsack problem as a sub-problem. It has
the following definition:
Definition Given is a weighted graph G = (V, E) with n vertices, where one vertex is
designated the start vertex, and a set I of items stored in the vertices of V , where each item
i j ∈ I has a non-negative weight w j and profit p j. There is a thief that begins at the start
vertex and visits each vertex exactly once and returns to the start vertex, while collecting
items from visited cities whose total weight does not exceed the carrying capacity W of
a knapsack. The time needed to travel from city to city depends on the current weight in
the knapsack. The knapsack has a constant rent rate defining how much money needs to
be paid per unit time, and so the transportation cost of the selected items is the product
of the rent rate and the total traveling time. The goal is to select a subset of I of weight
not exceeding W such that the difference between the profit of the selected items and the
transportation cost is maximized.

As shown in Table 2.9, which lists a sample of the related work, there are many more
heuristics designed for TTP than exact algorithms. For further reading, we direct the reader
to a survey on the heuristics for TPP [82].

Heuristics
Year Authors Algorithm Type
2014 Polyakovskiy et al. [138] local search and evolutionary
2014 Faulkner et al. [51] local search
2014 Bonyadi et al. [18] solve sub-problems independently
2016 Mei et al. [124] co-evolution and memetic
2016 Wagner [167] ant swarm
2017 Blank et al. [10] greedy
2018 Wagner et al. [168] regression, clustering, and classification
2018 Yafrani and Ahiod [49] hill climbing and simulated annealing
2018 Yafrani et al. [173] hill climbing
2020 Maity and Das [119] local search
2021 Myszkowski and Laszczyk [127] diversity based selection
2022 Nikfarjam et al. [132] quality diversity and evolutionary
2022 Chagas and Wagner [25] weighted-sum

Exact Algorithms
2017 Wu et al. [172] dynamic and constraint programming

Table 2.9: Significant algorithms, and their performances, for the orienteering problem.
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2.3 Hopfield Networks and the K-Median Problem
Machine learning techniques are sometimes integrated into meta-heuristics for solving
combinatorial optimization problems. Metaheuristics are general-purpose algorithms that
can be applied to a large variety of problems, including optimization problems [98], and
include a family of methods that guide local improvement procedures while exploring the
solution space [65]. These metaheuristics often generate large volumes of data that de-
scribe candidate solutions, such as the sequence of search operators (e.g. for a local search
algorithm, the initial solution and the sequence of swap operations), the local optima, and
other values, and so machine learning techniques are often used to help filter through the
large amount of information produced by the metaheuristics.

The use of machine learning techniques described above is in aid to other heuristics;
it is also possible that machine learning techniques are used as the primary approach to
solving optimization problems. Recent research in communications and signal processing
has produced neural networks that perform well for solving optimization problems in signal
processing when the data is random, dynamic, and mathematically complex [41], and future
research directions have been suggested for applying learning-based techniques to other
types of optimization problems.

Neural networks are a type of machine learning technique that consist of processing
units called neurons that are connected to each other and can accept input and produce
output. These neurons are named after the neurons in the brain, and similarly to how our
brains work, neural networks aggregate the input and output of many neurons to solve
complex tasks. The connections between neurons can be given a weight that influences
the strength with which they influence each other, and networks choose the connection
weights by a special process called training. Neurons in a network are typically organized
into a sequence of layers, where each layer receives as its input the output of the previous
layer. Many types of neural networks contain a large number of layers hence are quite
complicated to analyze.

In Chapter 6 we investigate a special kind of neural network called a Hopfield neural
network that contains only a single layer; such a network is not very complicated and could
be analyzed easier. In contrast to the previously described neural networks that receive
input into a layer and produce output, a Hopfield network does not output anything; rather,
state values of the neurons correspond to the values of a solution. The transition between
states in a Hopfield network is driven by an energy function that is carefully designed for
each problem to reflect their particular constraints and carried out through neuron updates.
Neurons periodically update their state values based on the state values of the other neurons
in the network and the connection weights for each neuron pair. Network states that violate
the problem constraints should add large amounts of energy to the network, and hence
network states with lower energy correspond to solutions that are closer to an optimal
one. A Hopfield network is said to be stabilized when the state values of the neurons
remain unchanged during update functions, which occurs when the energy of the network
cannot be lowered any further; note that stabilization can happen when the network has
only reached a local optimal solution.

In Chapter 6 we present a modified Hopfield network for the k-median problem; our
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network uses a local search approach, so in the following sections we aim to: (i) present ex-
isting local search and neural network approaches to the k-median problem and (ii) discuss
other problems that Hopfield networks have been applied to.

2.3.1 The K-Median Problem
The k-median problem (KMP) (see Figure 2.7) is a classic clustering problem and is NP-
hard [61]. It has the following definition:
Definition Given a graph G = (V, E) with n vertices and nonnegative length di j for every
edge (i, j), choose k vertices as medians that minimizes the sum of distances from each
vertex to its nearest median.

A practical application models the optimal placement of facilities among a collection of
clients. In this application, k facilities should be opened in a particular location in order to
serve a list of nearby clients. By selecting the medians that minimize the sum of distances
from each vertex to its nearest median, we also choose locations to open the facilities so
that the total distance from the clients to their nearest facility is minimized.

0 1

2 3
4

Figure 2.7: An instance of the k-median problem: given a graph G = (V, E) with n vertices
and nonnegative length di j for every edge, choose k = 2 vertices as medians that minimizes
the sum of distances from each vertex to its nearest median.

Readers interested in seeing related work on KMP are directed to the surveys in [42,
134, 158]. Since in Chapter 6 the algorithm we describe is a combination of neural network
and local search algorithm, in this section we restrict our commentary to the most closely
related literature (see Table 2.10).

The algorithm of Arya et al. [3] transitions from feasible solution to feasible solution by
considering swap operations, where each operation swaps a facility with a client by turning
the facility into a client and the client into a facility. When the algorithm considers only a
single swap at a time (a single facility is swapped with a single client), Arya et al. prove
that the approximation ratio is 5, but when the algorithm is allowed to swap p facilities
with p clients, Arya et al. prove that the approximation ratio is 3 + 2

p .
Cohen-Addad et al. [37] augment Arya et al.ś multi-swap local search algorithm by

changing the objective function: In the new scheme, the sum of distances from each client
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Local Search Algorithms
Year Authors Approximation Ratio
2000 Korupolu et al. [107] k(1 + ϵ) (metric k-median)
2001 Arya et al. [3] 5 (single swap) and 3 + ϵ (multi swap)
2006 Pan and Zhu [135] 5
2018 Peng et al. [137] 3 + ϵ
2019 Cohen-Addad et al. [38] 1 + ϵ (planar graphs)
2022 Cohen-Addad et al. [37] 2.836 + ϵ
2023 Cohen-Addad et al. [39] 2.671 + ϵ

Neural Networks
2002 Merino and Perez [47] Hopfield network
2003 Merino et al. [125] recurrent neural network
2008 Domı́nguez and Muñoz [46] recurrent neural network
2012 Shamsipoor et al. [155] Hopfield network (capacitated k-median)
2016 Mishrra and Barman [126] Hopfield network
2020 Haralampiev [75–77] Hopfield network and boltzmann machine
2023 Rossiter [145] modified Hopfield network

Table 2.10: Local search algorithms and neural networks designed for the k-median prob-
lem.

to both its closest facility and its second-closest facility is minimized. This new objective
can avoid some of the local optima that the previous local search algorithms produced. This
work was further improved by carefully selecting an initial solution for the local search
algorithm [39].

The algorithm of Pan and Zhu [135], runs the algorithm of Arya et al. p times and
constructs a reduced version of the problem that omits any facilities common to the p
solutions and any clients served by those facilities. The motivation behind this approach is
that the common facilities from even a few local optima have a high likelihood of belonging
to a global optimal solution and hence should be kept; furthermore, solving the reduced
problem is less complicated and can help move past the local optimal where the algorithm
might get stuck. This algorithm outperforms Arya et al.ś algorithm in practice.

On the machine learning side of KMP, many neural networks have been used to help
pre-process the input in order to reduce the number of candidate solutions [160], and neural
networks have been used to enhance the solutions output by other heuristics [129], but only
a couple of neural networks have been specifically designed to solve KMP as a standalone
approach.

Domı́nguez and Muñoz [47] were the first to apply a Hopfield network approach to
KMP: They designed a single layer network that was divided into two disjoint groups of
neurons, where one group of neurons represented potential facilities and another group
represented potential clients. Furthermore, within each group of neurons, they were further
divided into sub-groups where only a single neuron within the same sub-group could be
active at the same time, which meant that when the network stabilized the solution was
always feasible. The network begins with a random solution and then, by updating the
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values of the neurons and computing the energy of the network it interchanges the active
neuron within a group of neurons with the neuron with the maximum input. Their Hopfield
network was compared against two other simple algorithms, an interchange algorithm [161]
and a random search algorithm, with the Hopfield network producing the best solutions in
the smallest amount of time.

Merino et al. [125] proposed three different recurrent neural networks for KMP, all of
which were built similarily to [47] in terms of having separate neurons for facilities and
clients. In the first approach, they let their neural network solve KMP several times and
take the best solution. In the second approach, their neural network is initialized so that all
vertices are considered to be facilities and serve themselves. Iteratively, the two facilities
that are closest to each other are compared and one of them is deactivated, until there is only
k facilities active. In the third approach, the neural network contains only a single active
facility; iteratively, the client that is furthest from any active facility is turned into a facility,
until there are k facilities. Like the previous work, the neural networks were compared
against the interchange algorithm [161], and the authors concluded that the performance of
their three models depended on the size of the network and the value of k.

Domı́nguez and Muñoz [46] proposed several recurrent neural networks to improve
upon their previous Hopfield network, and performed experiments on the well-known
benchmark instances of the OR Library [9]. They compared their networks against the
variable neighborhood search (VNS) [74] and demonstrated results that outperform VNS
when the computational time is limited.

Haralampiev [75–77] built a neural network architecture for some facility location prob-
lems (including KMP) with the goal of solving them with only minimal parameter tuning.
Haralampiev built the network using similar rules as the previous works, dividing the neu-
rons into groups for facilities and clients and enforcing rules on sub-groups to ensure that
a client is served by exactly one facility at a time. The main difference in Haralampiev’s
network is a temperature variable that influences whether a neuron is activated or deacti-
vated; by using the temperature variable, the network can explore additional solutions even
if they reduce the quality of the solution.

Rossiter’s [145] modified Hopfield network is the closest work to that which is pre-
sented in Chapter 6. Rossiter’s network maintains two sets of values for each neuron, the
activation value and the inner value. Rossiter’s network is initialized with all facilities
receiving activation values that are arbitrarily close to 1 (indicating that each facility is ac-
tive). The inner values of the client neurons are computed using the product of a facilities
activation value and the distance between a client neuron and a facility neuron. Iteratively,
a facility is randomly chosen to be updated; if that facility currently has one of the top k
inner values then its activation value is set to 1, and otherwise its activation value is set to 0.
After updating the activation value of a facility neuron, the values of the rest of the neurons
are updated further based on the connections to the facility neurons. The algorithm termi-
nates once there are k facilities active. Rossiter compares the modified Hopfield network
against the neural network of Haralampiev [75–77] and the local search algorithm of Arya
et al. [3].
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2.3.2 Hopfield Networks for Other Problems
Hopfield [84] introduced the Hopfield neural network in 1982 to implement content ad-
dressable memory, which is a memory capable of storing items and retrieving an item
based on only partial information. The proposed neural network contained only a single
fully-connected layer of neurons that perform asynchronous parallel processing.

Hopfield and Tank [85] later applied their network to solve combinatorial optimization
problems, proposing a general energy function for Hopfield networks with n neurons:

E = −
1
2

n∑
i=1

n∑
j=1

Ti jViV j −

n∑
i=1

ViIi

Where Vi are the neuron state variables, T is a matrix of neuron connection weights,
and Ii is an input bias to add input to neuron i. Table 2.11 lists several problems for which
a Hopfield neural network has been designed for.

Hopfield Neural Networks
Year Authors Problem
1982 Hopfield [84] content addressable memory
1985 Hopfield and Tank [85] traveling salesman problem
1988 Wilson and Pawley [171] traveling salesman problem
1990 Aiyer et al. [1] traveling salesman problem
1990 Kamgar-Parsi and Kamgar-Parsi [97] traveling salesman problem
1990 Kamgar-Parsi and Kamgar-Parsi [97] k-means
1996 Liang [114] quadratic assignment problem
2004 Chen et al. [32] vertex cover
2004 Salcedo-Sanz and Yao [148] terminal assignment problem
2009 Wang et al. [169] maximum diversity
2020 Manjunath et al. [120] traveling salesman, vertex cover, maximum cut

Table 2.11: Hopfield networks being applied to optimization problems.

Hopfield and Tank [85] designed a Hopfield network for the traveling salesman problem
by representing each city by n neurons to indicate where in the tour the city should be
visited. Since in the traveling salesman problem each city should be visited exactly one
time, then in the Hopfield network exactly one neuron out of the group of n neurons that
correspond to a specific city should be active. The resulting network had n2 neurons and
was represented in a n by n matrix. Hopfield and Tank encoded the problem constraints into
the energy function by adding additional energy into the network if (i) the sum of the neuron
state values within a row of the matrix is not 1, (ii) the sum of the values within a column
is not 1, and (iii) the sum of values in the matrix is not n. Several researchers [1, 97, 171]
later attempted to recreate Hopfield and Tank’s network for the traveling salesman problem
and noted that the formulation returned many low-quality and infeasible solutions.

Kamgar-Parsi and Kamgar-Parsi [97] claimed that Hopfield networks are better suited
for clustering problems, and created a k by n matrix representation and energy function
specific to the k-means problem following the guidelines of Hopfield and Tank, where each
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vertex was represented by k neurons to indicate which cluster it should belong to and viola-
tions of the constraints of the problem add additional energy into the network. The Hopfield
network performed much better on the k-means problem than it had on the traveling sales-
man problem (in running time, solution quality, and scalability), which Kamgar-Parsi and
Kamgar-Parsi attributed to requiring a smaller matrix and having simpler constraints to
impose on that matrix.

Several modifications to the Hopfield network have been presented, such as including
an additional group of neurons [114], including additional processing steps after the net-
work stabilizes [32], and integrating the Hopfield network with genetic algorithms [148],
to try and produce feasible solutions more often or to avoid becoming stuck in local op-
tima.
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3 Paper 1: High Multiplicity Strip Packing
A preliminary version of this paper was first published in 2022 (pp. 215-227) in the Pro-
ceedings of the 7th International Symposium on Combinatorial Optimization (ISCO) by
Springer Nature [14]. The Version of Record for the preliminary paper is available online
at: https://doi.org/10.1007/978-3-031-18530-4 16. An extended version of this paper was
later submitted to the journal of Theory and Computing Systems and is currently under
review.

This paper investigates the case when the input of a problem can be grouped into a
small number of classes and whether approximation algorithms can take advantage of this
case to outperform the more general algorithms that treat all the input items individually.
This researched is explored in the context of the strip packing problem.



High Multiplicity Strip Packing with Three

Rectangle Types

Abstract

The two-dimensional strip packing problem consists of packing in a rect-
angular strip of width 1 and minimum height a set of n rectangles, where
each rectangle has width 0 < w ≤ 1 and height 0 < h ≤ hmax. We
consider the high-multiplicity version of the problem in which there are
only K different types of rectangles. For the case when K = 3, we give
an algorithm that produces solutions requiring at most height 3

2
hmax+ ϵ

plus the height of an optimal solution, where ϵ is any positive constant.
For the case when K = 4, we give an algorithm yielding solutions of
height at most 7

3
hmax + ϵ plus the height of an optimal solution. For the

case when K > 3, we give an algorithm that gives solutions of height at
most ⌊ 3

4
K⌋+ 1 + ϵ plus the height of an optimal solution.

Keywords: LP-relaxation, two-dimensional strip packing, high multiplicity,
approximation algorithm

1 Introduction

The two-dimensional strip packing problem (SP) is defined as follows.

Definition 1 Given n rectangles with widths w1, w2, ..., wn and heights h1, h2, ...,
hn, where 0 < wi ≤ 1 for i = 1, 2, ..., n, the goal is to pack all the rectangles without
rotations or overlaps in a rectangular strip of width 1 and minimum height.

This is a well-studied problem with applications in areas as diverse as
resource allocation, scheduling, manufacturing, and transportation, among
others. SP is equivalent to the classical bin packing problem if all rectangles
have the same height, and since the bin packing problem is NP-hard [7] then
SP is also NP-hard; therefore, the best possible approximation ratio achievable
in polynomial time for SP is 3

2 unless P = NP.
Baker et al. [1] designed the first approximation algorithm for SP which has

approximation ratio 3. Coffman et al. [4] presented an algorithm with approx-
imation ratio 2.7, Sleator [15] improved the approximation ratio to 2.5, and
Schiermeyer [14] and Steinberg [17] further reduced the approximation ratio to
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2. Harren and Van Stee [8] later presented an algorithm with approximation
ratio 1.9396. The best known approximation algorithm for SP is from Harren
et al. [9] with approximation ratio 5

3 + ϵ. Several Asymptotic Polynomial Time
Approximation Schemes (APTAS) have been presented as well: Kenyon and
Rémila [13] gave an APTAS with an additive constant of O( 1

ϵ2 ), and Jansen
and Solis-Oba [11] improved Kenyon and Rémila’s additive constant to 1. Sviri-
denko [16] presented a polynomial time algorithm that computes a solution
of value OPT + O(

√
OPT logOPT ), where OPT is the value of an optimal

solution.
In this paper we study the two-dimensional high multiplicity strip packing

problem (HMSP), in which there is only a fixed numberK of different rectangle
types. A preliminary version of this paper was published at the proceedings of
the 7th International Symposium on Combinatorial Optimization (ISCO 2022)
[3]. This paper extends the previous work by including all proofs of correctness
for the algorithm for the case when K = 3, an algorithm for the case when
K = 4, an algorithm for any fixed value for K, and experimental results for
our algorithm for the case when K = 3.

Note that the input to HMSP can be described using a list of only 3K
numbers: the width wi, height hi, and number ni of rectangles of each type
Ti. Therefore, a challenging issue faced when designing an approximation algo-
rithm for the problem is to ensure that its running time is a polynomial
function of the size of the input. Observe that even describing a feasible solu-
tion for the problem using a polylogarithmic number of bits is not trivial as
this requires specifying the positions of n rectangles in the packing; therefore,
it is unknown whether HMSP belongs to the class NP.

We present an algorithm for HMSP for the case when K = 3 that computes
solutions of value at most OPT + 3

2hmax + ϵ, where OPT is the value of
an optimum solution, hmax is the height of the tallest rectangle, and ϵ is a
positive constant. In addition we performed an experimental evaluation of this
algorithm and our results show that our algorithm performs much better than
the above theoretical upper bound. This algorithm is an improvement over
the works of Yu and Solis-Oba [18] and Bloch-Hansen and Solis-Oba [2] whose
algorithms computed solutions of value at most OPT + 5

3hmax + ϵ.
Our approach uses a formulation of HMSP that allows fractional rectangles

in the solution called the two-dimensional fractional strip packing problem
(FSP). We show that a solution for FSP can be converted into a solution
for HMSP by a careful shifting, re-shaping, and combining of the fractional
rectangles to form whole rectangles while increasing the height of the solution
by at most 3

2hmax + ϵ. Our analysis is nearly tight as it is not hard to see
that there are instances for which the corresponding fractional and integral
solutions differ by hmax.

We also give two additional algorithms: (i) an algorithm for the case when
K = 4 that computes solutions of value at most OPT + 7

3hmax + ϵ and (ii) an
algorithm that for any fixed K computes solutions of height at most OPT +
⌊ 3
4Khmax⌋+ hmax + ϵ.

2
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The rest of the paper is organized in the following way. In Section 2 we
describe how to compute a near optimum solution for FSP. In Sections 3-5
we present our algorithm for the case when K = 3. In Section 6 we describe
a polynomial time implementation of the algorithm. In Section 7 we present
our algorithm for the case when K = 4. In Section 8 we describe an algorithm
for the case when K > 3. Finally, in Section 9 we describe our experimental
results for the case when K = 3.

2 Solving FSP in Polynomial Time

HMSP can be relaxed to the two-dimensional fractional strip packing problem
(FSP) by allowing horizontal cuts on the rectangles. A solution to FSP con-
sists of a set of configurations. A base configuration Cj consists of a multiset
of rectangle types whose total width is at most 1 (see Figure 1). A base con-
figuration can be specified by indicating the number of rectangles of each type
Ti in it. For example, the base configuration shown in Figure 1 consists of 4
rectangles of type T1, 2 rectangles of type T2, and 3 rectangles of type T3, so
that base configuration can be represented with the tuple (4,2,3).

A group of rectangles following a base configuration can be stacked on top
of each other as shown in Figure 1, so that any horizontal line parallel to the
base of the strip drawn across any part of the group will intersect the same
multiset of rectangle types. This group of rectangles is called a configuration.
A vertical line drawn across any part of a configuration will intersect either
only rectangles of the same type, or empty space. The height of a vertical
line intersecting rectangles of a configuration is called the height of the con-
figuration. The configurations are stacked one on top of the other to form a
fractional packing. Note that the number of possible configurations is O(nK ).

1 

T1 T1 T1 T1 T2 T2 T3

T3 T3

T3

T3

T3

Configuration 

T1 T1 T1 T1 T2 T2
Height of the
configuration

Fig. 1: A configuration with base configuration (4,2,3). The fractional rectan-
gles are shaded in a darker color.

For a configuration Cj let ni,j be the number of rectangles of type Ti in its
base configuration, for i = 1, 2, ..., k. Let xj be a variable denoting the height
of Cj . Let J be the set of all possible configurations. FSP can be expressed as
the following linear program, hereafter referred to as linear program (1):

3
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Minimize:
∑

Cj∈J

xj

Subject to:
∑

Cj∈J

xjni,j ≥ nihi, for each rectangle type Ti

xj ≥ 0, for each j ∈ J

(1)

where ni is the number of rectangles of type Ti and hi is the height of each
rectangle of type Ti. The objective function is to minimize the total height of
the packing.

We denote with OPT (I ) the height of an optimal packing for instance I
of HMSP and denote with LIN (I ) an optimal solution to the corresponding
instance of FSP. It is not hard to see that LIN (I ) ≤ OPT (I ).

Note that FSP is identical to the fractional bin packing problem; in the
latter problem a base configuration is a set of items that fit within a single bin
and a solution to linear program (1) gives the fractional number of bins needed
to pack all the items. Therefore, we can use an algorithm of Karmarkar and
Karp [12] to compute a basic feasible solution for linear program (1) in time
O(K 9 logK log2 K

ϵ ) of value at most LIN (I ) + ϵ for any fixed ϵ > 0.
In any basic feasible solution, the number of nonzero variables is at most

the number of constraints [10]. Thus, the number of nonzero variables, and
therefore, the number of configurations used in a basic feasible solution for
linear program (1) is at most the number of rectangle types, K .

A simple algorithm for HMSP is to compute a basic feasible solution for
linear program (1) and replace each fractional rectangle with a whole one of the
corresponding type, shifting surrounding rectangles upwards as needed. Since
a basic feasible solution for (1) uses at most K configurations and replacing the
fractional rectangles with whole ones increases the height of a configuration
by at most hmax, this algorithm computes a solution to HMSP of height at
most OPT (I ) +Khmax + ϵ.

3 Algorithm for HMSP with Three Rectangle
Types

When K = 3 a basic feasible solution for linear program (1) consists of at
most three configurations. Our algorithm performs several steps: 1) the frac-
tional solution of the linear program is divided in two parts: SCommon and
SUncommon, and the fractional rectangles in SCommon are replaced with whole
ones of the corresponding types; 2) in SUncommon the rectangles in each config-
uration are sorted and SUncommon is further partitioned into vertical sections;
3) the vertical sections are grouped according to the heights of the fractional
rectangles in them; and 4) the fractional rectangles in each group are combined
and/or replaced with whole ones depending on their heights.

We assume for now that the fractional solution computed by solving linear
program (1) consists of three configurations: C1, C2, and C3. We show in later

4
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sections how to deal with the cases when the fractional solution has two or
one configuration.

Step 1: Partitioning the Packing. For notational simplicity, in the
sequel we assume hmax = 1. The three configurations of the solution for linear
program (1) are stacked one on top of the other as shown in Figure 2a. Rect-
angles are rearranged horizontally within the configurations so that rectangles
of the same type appearing in all three configurations are placed together in
a section on the left side of the packing called SCommon. In the remaining
portion of the packing, called SUncommon, each rectangle type is packed in at
most 2 configurations (see Figure 2b), as the common rectangle types in the 3
configurations are in SCommon.

C3

C2

C1

SUncommon

T1T1T1T1

T3

T3

T3

T3

T3

T3

T3

T3

SCommon

T1T1

T1T1T1T1T1T1

T1T1T1T1T1T1

T1T1T1T1T1T1

T1T1T1T1T1T1

T1T1T1T1T1T1

T1T1T1T1T1T1

T1T1T1T1T1T1

T2 T2 T2

T2 T2 T2

T2 T2 T2

T2 T2 T2

T2 T2 T2

T1T1T1T1T1T1T1T1T1T1T1

T1T1T1T1T1T1T1T1T1T1T1

T1T1T1T1T1

T1T1T1T1T1

T1

T1

T2 T2 T2 T2 T2 T2
T1

T1

T3

T3

T3

T3

T2 T2 T2 T2

(a)

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2 T2 T2 T2 T2T2

C3

C2

C1

s1 s2 s3 s4

SUncommon

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T3

T3

T3

T3

T3

T3

T2 T2 T2 T2

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

(b)

Fig. 2: (a) Replacing the fractional rectangles in SCommon with whole rect-
angles increases the height of the packing by at most 1. (b) Within each
configuration, the rectangles in SUncommon are sorted according to their frac-
tional values. SUncommon consists of four vertical sections: s1, s2, s3, and s4.

The fractional rectangles in SCommon are replaced with whole rectangles
of the corresponding types, increasing the height of the packing by at most 1
(see Figure 2a). In the sequel, we discuss only how to process the fractional
rectangles in SUncommon.

Step 2: Sorting SUncommon. Within each configuration, we place the
fractional rectangles in SUncommon at the top of the configuration. Let r be
a fractional rectangle. The ratio between the height of r and the height of a
rectangle of the same type as r is called the fractional value of r. We sort the
rectangles so that fractional rectangles are sorted in non-decreasing order of
their fractional values (see Figure 2b).

Step 3: Grouping Vertical Sections. We draw a vertical line at each
point where two rectangles of different types are packed side-by-side within a
configuration. These vertical lines partition SUncommon into vertical sections
(see Figure 2b). Vertical sections are indexed from left to right starting at index
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1 for the leftmost section. Within some vertical section si, let C1(i), C2(i), and
C3(i) refer to the part of C1, C2, and C3 that is located within si, respectively.

Within a vertical section si, each configuration has a single rectangle
type. Let f1(i), f2(i), and f3(i) represent the fractional values of the fractional
rectangles packed in si at the top of C1, C2, and C3, respectively.

We classify the vertical sections si ∈ SUncommon into three cases, depending
on the three fractional values f1(i), f2(i), and f3(i) as follows:

� SCase1 includes all sections si such that f1(i) + f2(i) + f3(i) ≤ 1.
� SCase2 includes all sections si such that f1(i) + f2(i) + f3(i) > 1 and either
f1(i) + f2(i) ≤ 1, f1(i) + f3(i) ≤ 1, or f2(i) + f3(i) ≤ 1.

� SCase3 includes all sections si such that f1(i) + f2(i) > 1, f1(i) + f3(i) > 1,
and f2(i) + f3(i) > 1. Note that for each si ∈ SCase3

f1(i) + f2(i) + f3(i) >
3

2
(2)

Intuitively, vertical sections classified into SCase3 contain fractional rect-
angles with large fractional values and hence if they were to be replaced with
whole rectangles of the corresponding type (as we did in SCommon) then the
height of the packing would increase by only a small amount. In contrast,
replacing the fractional rectangles with whole ones in vertical sections classi-
fied into SCase1 should be avoided as this would cause a large increase in the
height of the packing; instead, the small fractional rectangles in SCase1 are
combined and placed in another region of the packing. We use a mixture of
these two techniques to process fractional rectangles belonging to SCase2.

Step 4: Combining and/or Rounding Fractional Rectangles into
Whole Ones. We carefully decide which fractional rectangles to combine into
whole rectangles and which to replace with whole rectangles depending on the
number of rectangle types in each configuration and the fractional values of
the fractional rectangles. Therefore, Step 4 of our algorithm consists of several
cases and the remaining subsections describe how our algorithm computes an
integer packing for each of them.

Each one of the configurations C1, C2, and C3 in SUncommon could have
one, two, or three different rectangle types. First we consider the cases when
(i) each configuration has two rectangle types and (ii) one configuration has
three types, another has two types, and the last one has one type, as these are
the most complex cases for getting rid of the fractional rectangles.

3.1 Two Rectangle Types Per Configuration

We denote with Bi,j , for i,j = 1,2,3, a vertical line that separates two adjacent
vertical sections belonging one to SCasei and the other to SCasej (see Figure
3). In the sequel, we say that the rectangles in a configuration define boundary
Bi,j if the rectangles adjacent to Bi,j on the left and right sides are of different
types. A rectangle r might intersect vertical sections of two or more cases;
hereafter, we call such a rectangle a vertically split rectangle (see Figure 3).
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C3

C2

C1

s1

SCase1

s2 s3 s4

SCase2 SCase3

Vertically Split Rectangle

Fig. 3: The fractional rectangles in C1 with fractional values f1l and f1r define
B1,1, the fractional rectangles in C2 with fractional values f2l and f2r define
B2,3, and the fractional rectangles in C3 with fractional values f3l and f3r
define B1,2.

Since in this section we assume that within SUncommon each configuration
contains exactly two different rectangle types, then within SUncommon the
rectangles in each configuration define at most one boundary Bi,j .

3.1.1 Ordering the Configurations

If no vertical sections are classified into SCasei, for some i = 1, 2, 3, we say
that SCasei is empty. We order the configurations as follows:

� If SCase3 is empty or SCase2 is empty then order the configurations so that
the rectangles in the bottom configuration define B1,2 or B1,3, respectively.

� Otherwise, order the configurations so that the rectangles in the middle con-
figuration define B2,3 and if SCase1 and SCase2 are not empty the rectangles
in the bottom configuration must define B1,2. Note that the rectangles in
the middle configuration cannot define B2,3 and B1,2 because the middle
configuration has only rectangles of two different types.

After ordering the configurations as above, let the configuration packed at
the top be C1, the one in the middle be C2, and the one at the bottom be C3

(see Figure 3). If we re-order the configurations later on, we will not re-name
them; for example, if we re-order the configurations such that C1 and C3 swap
positions, then C1 would now be on the bottom.

Having the rectangles in C2 define B2,3, if possible, allows flexibility for
shifting the rectangles in C2 ∩ SCase3 as we show; for some of our algorithm’s
cases we shift these rectangles downwards into empty space if the rectangles in
C3 ∩ SCase3 take up less height than the rectangles in C3 ∩ SCase2. Therefore,
ordering the configurations as described above is important to our algorithm.
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Let fil and fir be the fractional values of the leftmost and rightmost frac-
tional rectangles in configuration Ci, respectively, for each i = 1, 2, 3 (see
Figure 3).

We use a variable called numWide to track how many wide rectangle types
appear in a packing, where a rectangle type is considered to be wide if it is
the leftmost type in its configuration and it is packed, at least partially, within
SCase2 or SCase3. Because the sum of fractional values of fractional rectangles
in a vertical section belonging to SCase1 can be arbitrarily small, but the sum
of fractional values in vertical sections belonging to SCase2 or SCase3 are at
least 1, the presence (or absence) of these wide rectangle types is important in
deciding whether we can re-use the empty space left behind when fractional
rectangles are shifted around in SCase1 and SCase2 as we later explain.

We initialize variable numWide to 0. If any fractional rectangles with frac-
tional value f1l are packed within any vertical section of SCase2 or SCase3, we
increase the value of numWide by one. If any fractional rectangles with frac-
tional value f2l are packed within any section of SCase2 or SCase3, we increase
the value of numWide by one.

3.1.2 Pairing Configurations

Our algorithm for processing fractional rectangles sometimes needs to pair the
two configurations at the top of the packing. To explain how configurations
are packed, assume that C1 is the configuration at the top of the packing and
C2 is the middle configuration. When pairing C1 with C2, we flip C1 upside
down (see Figure 4a). Let F1 be the set of fractional rectangles in each vertical
section si ∈ SCase1, and let F2 be the set of fractional rectangles from C1 and
C2 in each vertical section si ∈ SCase2 where f1(i) + f2(i) ≤ 1. We remove
the sets F1 and F2 from their original positions in the packing. If F1 ∪ F2 is
not empty we shift up the remaining rectangles in C1 so that the tops of the
topmost rectangles in C1 lie on a common line and the distance between C1

and C2 in vertical section s1 is 1. This creates a region in SCase1 and SCase2

of height at most 1 between C1 and C2 where we will pack F1 and F2; we call
this region CA1 (see Figure 4b). If F1∪F2 is empty, then region CA1 has initial
height zero, but its height might be increased later as explained below.

We re-shape each fractional rectangle r ∈ F1 ∪F2 so that its area does not
change but it has the full height of a rectangle of the same type as r.

Lemma 1 Let C1 and C2 be paired as described above. The re-shaped fractional
rectangles in F1 ∪ F2 can be packed in region CA1.

Proof Let vertical section si ∈ SCase1 have width Wi and let CA1(i) be the part of
CA1 within si. The total empty area Ai in CA1(i) is Ai ≥ Wi ∗ 1 = Wi. Since each
of C1(i), C2(i), and C3(i) has only one fractional rectangle type, the total area ai of
the fractional rectangles in C1(i), C2(i), and C3(i) is
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C3
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C1
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SCase1

s2 s3 s4

SCase2 SCase3
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C3
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C1
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SCase1
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SCase2 SCase3

empty

empty

CA1

empty

emptyempty
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Fig. 4: (a) C1 has been flipped upside down and the sets F1 and F2 are
highlighted in blue and green, respectively. (b) Rectangles in C1 have been
shifted upwards to create the region CA1 to hold the rectangles in F1 ∪F2 and
the rest of the fractional rectangles have been rounded up.

ai ≤ (Wi ∗ f1(i)) + (Wi ∗ f2(i)) + (Wi ∗ f3(i)) ≤ Wi ≤ Ai,

as the height of each rectangle is at most 1 and f1(i)+f2(i)+f3(i) ≤ 1 for si ∈ SCase1.
A similar argument can be made for the vertical sections si ∈ SCase2 for which

f1(i) + f2(i) ≤ 1. □

Observe how in Figure 4b the fractional rectangles with fractional value f1r
are not wide (as they are not leftmost in their configuration) and so the empty
space left behind after moving these fractional rectangles to CA1 does not have
the same width as CA1. This is important because the empty space left behind
from moving the non-wide fractional rectangles with fractional value f1l (that
belong only to SCase1) can have an arbitrarily small height, and hence the
empty space in C1 left over after moving the fractional rectangles in SCase1

and SCase2 to CA1 cannot be included in CA1 as only the height of the shorter
of the two empty spaces (from fractional rectangles with fractional value f1l
and f1r) can be added to CA1, as we do not know the number and heights of
the rectangles that will be packed in CA1.

In contrast, in Figure 4b if the fractional rectangles with fractional value f1l
were wide, then the empty space left behind from moving these wide fractional
rectangles would extend to the left side of SUncommon and since f1r > f1l the
empty space remaining after moving the rightmost rectangles to CA1 would
have at least the same height, and so the empty space from C1 left over after
moving the fractional rectangles in SCase1 and SCase2 has height f1lh1l and
width equal to CA1 making CA1 taller. Since the fractional values of wide
rectangles appear in a vertical section belonging to SCase2 and/or SCase3, then
their fractional values are bounded as stated in the definitions of SCase2 and/or
SCase3, ensuring that the increase in height to CA1 is not arbitrarily small.

Corollary 1 After re-shaping the fractional rectangles in F1 ∪F2 we can pack them
in CA1 so that there is at most one fractional rectangle of each type in CA1.
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Proof We combine the fractional rectangles in F1 ∪ F2 such that a whole rectangle
is formed whenever a sufficient number of pieces of the same type have been packed.
When fractional rectangles of the same type do not form a whole rectangle, they
merge to become one larger fractional rectangle. Therefore, at most one fractional
rectangle of each type may remain. By Lemma 1 the rectangles can be packed in
CA1. □

We round up the fractional rectangles from C1 and C2 in each vertical
section si ∈ SCase2 where f1(i) + f2(i) > 1 and for each vertical section si ∈
SCase3. Rounding up a fractional rectangle r means replacing it with a whole
rectangle of the same type as r and shifting rectangles up as needed to make
room for the whole rectangle. When shifting rectangles from C1 we need ensure
that the tops of the topmost rectangles in C1 lie on a common line. Finally,
we round up the fractional rectangles in C3 ∩ SCase2 (see Figure 4b).

Note that after pairing two configurations and re-shaping rectangles some
whole rectangles might be vertically split by the boundaries B1,2 and B2,3.
Because of the way in which region CA1 was defined, the two pieces of a whole
rectangle that is vertically split by any of those boundaries are placed side-by-
side forming a whole rectangle. However, pieces of fractional rectangles that
are vertically split might be placed in different parts of the packing. Later we
show how to shift these fractional pieces to form whole rectangles.

3.1.3 Rounding Fractional Rectangles

Recall that the variable numWide counts the number of wide rectangles as
defined earlier and that if no vertical sections belong to a particular SCasei

we say that SCasei is empty. We provide different algorithms for rounding
fractional rectangles into whole ones based on which of SCase1, SCase2, and
SCase3 are not empty and what the value of numWide is.

Lemma 2 If none of SCase1, SCase2, and SCase3 are empty, then numWide > 0.

Proof Assume that numWide = 0 and none of SCase1, SCase2, and SCase3 are
empty. Because of how we ordered the configurations, the rectangles in C2 define the
boundary B2,3 and therefore the fractional rectangles in C2 with fractional value f2l
are packed in SCase2, contradicting the assumption that numWide = 0. □

By Lemma 2, we do not need consider the case when none of SCase1,
SCase2, and SCase3 are empty and numWide = 0. For the rest of the cases in
this subsection, the intuition behind each approach is that we need to identify
which of the fractional rectangles belonging to SCase2 should be rounded up,
and which of the empty spaces leftover after moving fractional rectangles in
SCase2 can be used to place rectangles without increasing the total height of
the packing by more than 1

2 . To see how we do this, note that the sum of
fractional values in vertical sections v belonging to SCase2 is more than 1, and
so if one of the fractional values in v is small then another of the fractional
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values must be large; therefore, if the large fractional rectangles are wide then
they can be moved to CA1 and the empty space left behind after moving them
can be included in CA1, and if the large fractional rectangles are not wide
they can be rounded up to increase the height of the packing by only a small
amount.

For simplicity and without loss of generality, in the sequel we assume that
none of the configurations computed by solving linear program (1) contain any
empty space, so the width of the base configuration of each configuration C
is equal to 1. Additionally, we assume that for some configuration Ci, if its
leftmost and rightmost rectangle types til and tir are both in SCase1 ∪SCase2,
then filhil < firhir where hil and hir are the corresponding heights of the
whole rectangles of type til and tir, respectively. Note that if the opposite is
true the analysis is very similar, so we omit it.

3.1.4 Rounding Fractional Rectangles: One Wide Rectangle

Let hil and hir be the height of the rectangles corresponding to fractional values
fil and fir, respectively, for i = 1, 2, 3. Because of the way the configurations
were ordered, C2 must contain the wide rectangle type with fractional value f2l
as the rectangles in C2 define B2,3. If f2l is large enough then rounding up the
wide fractional rectangles is a good solution; otherwise, the empty space left by
moving the wide rectangles to CA1 increases the height of CA1 by f2lh2l; note
that if the wide rectangle’s fractional value is small, then another fractional
value in SCase2 must be large and can therefore be rounded up instead.

C3

C2

C1

s1

SCase1

s2 s3 s4

SCase2 SCase3

empty

empty

CA1 D1

empty

emptyempty

(a)

C1

C2

C3

s1

SCase1

s2 s3 s4

SCase2 SCase3

empty

empty

CA1 D2
empty

empty

(b)

Fig. 5: numWide = 1 and f1(i)+f2(i) ≤ 1 for all vertical sections si ∈ SCase2.

Lemma 3 If none of SCase1, SCase2, and SCase3 are empty, numWide = 1, and
f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that

produces an integer packing of height at most 3
2 plus the value of the solution for

linear program (1).

Proof Our algorithm will produce two solutions and choose the one with shorter
height. For the first solution, pair C1 and C2 and re-shape, pack, and round rectangles
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as explained in Section 3.1.2 (see Figure 5a). The height increase in SCase1 and
SCase2 caused by creating CA1 is at most h1 − f1lh1l − f2lh2l ≤ h1 − f2lh2l, where
h1 = max{h1l, h1r, h2l, h3l} (note that CA1 re-uses the space that was occupied by
the fractional rectangles of fractional values f1l and f2l).

In SCase3, the height increase caused by rounding up the fractional rectangles
with fractional values f1r and f2r is at most (1− f1r)h1r + (1− f2r)h2r; hence the
height increase caused by pairing C1 and C2 is at most D1 = max{h1 − f2lh2l, (1−
f1r)h1r + (1 − f2r)h2r}. The height increase caused by rounding up the fractional
rectangles in C3 with fractional value f3r is at most (1 − f3r)h3r (see Figure 5a).
Therefore, the total height increase is at most max{∆A,∆B}, where ∆A = h1 −
f2lh2l + (1 − f3r)h3r ≤ 2 − f3r − f2lh2l, as h1 ≤ 1 and h3r ≤ 1 and ∆B = (1 −
f1r)h1r + (1− f2r)h2r + (1− f3r)h3r ≤ 3− f1r − f2r − f3r < 3

2 as h1r ≤ 1, h2r ≤ 1,

and f1r + f2r + f3r > 3
2 by (2).

For the second solution, re-order the configurations so that fractional rectangles
with fractional value f1l appear in the bottom configuration, and fractional rectan-
gles with fractional value f3l appear in the top configuration, then pair C2 and C3

(note that these are now the top two configurations) and re-shape, pack, and round
rectangles as explained in Section 3.1.2 (see Figure 5b). We only consider the case
when f3r + f2l > 1 (see Figure 5b); the case when f3r + f2l ≤ 1 is similar.

The height increase caused by creating CA1 is at most h2 − f2lh2l − f3lh3l,
where h2 = max{h1l, h1r, h2l, h3l}. In SCase2 and SCase3, the height increase caused
by rounding up the fractional rectangles with fractional values f2l, f2r, and f3r is
at most max{(1 − f2l)h2l, (1 − f2r)h2r} + (1 − f3r)h3r; hence the height increase
caused by pairing C2 and C3 is at most D2 = max{h2 − f2lh2l − f3lh3l,max{(1 −
f2l)h2l, (1 − f2r)h2r} + (1 − f3r)h3r}. The height increase caused by rounding up
fractional rectangles in C1 with fractional value f1r is at most (1−f1r)h1r. Therefore,
the total height increase is at most max{∆C ,∆D}, where ∆C = (1− f1r)h1r +h2 −
f2lh2l−f3lh3l and ∆D = (1−f1r)h1r+max{(1−f2l)h2l, (1−f2r)h2r}+(1−f3r)h3r.

Selecting the better of the two solutions produces an increase in the height of the
solution by max{min{∆A,∆C},min{∆A,∆D},min{∆B ,∆C},min{∆B ,∆D}}.
� min{∆A,∆C}: ∆A = 2−f3r−f2lh2l and ∆C = (1−f1r)h1r+max{h2l, h3l}−
f2lh2l − f3lh3l. Note that ∆A ≤ 2 − f3r and since h1r, h2l, h3l ≤ 1 then
∆C ≤ (1− f1r) + (1− f3l) = 2− f1r − f3l. Since f3r + f1r > 1 as fractional
rectangles with fractional values f3r and f1r appear in SCase3 then either
f3r > 1

2 or f1r > 1
2 and so min{∆A,∆C} ≤ 3

2 .
� min{∆A,∆D}: ∆A = 2 − f3r − f2lh2l and ∆D = (1 − f1r)h1r +max{(1 −
f2l)h2l, (1−f2r)h2r}+(1−f3r)h3r. Recall our assumption that f3r+f2l > 1
(the case when f3r + f2l ≤ 1 is similar), therefore either f3r > 1

2 or f2l >
1
2 .

If f3r > 1
2 then ∆A < 3

2 − f2lh2l <
3
2 . If f2l >

1
2 then ∆D ≤ (1− f1r) + (1−

f3r) +max{1− f2l, 1− f2r} = 2− f1r − f3r +max{1− f2l, 1− f2r}:
– If 1− f2l > 1− f2r then ∆D ≤ 3− f1r − f3r − f2l < 3− 1

2 − f1r − f3r < 3
2

as f1r + f3r > 1.
– If 1− f2r > 1− f2l then ∆D ≤ 3− f1r − f2r − f3r ≤ 3

2 by (2).

Therefore, min{∆A,∆D} ≤ 3
2 .

� min{∆B ,∆C} ≤ 3
2 and min{∆B ,∆D} ≤ 3

2 because ∆B ≤ 3
2 .

□

12

Chapter 3 – Paper 1: High Multiplicity Strip Packing 48



Observe that in the first solution, depicted in Figure 5a, there might be a
fractional rectangle r in C1 that is vertically split by B2,3 such that one piece
of r is re-shaped and packed as explained in Section 3.1.2, while the other piece
is rounded up to the height of a rectangle of the same type as r. These pieces
are marked in Figure 5a. Note that the two pieces can be placed beside each
other to form a whole rectangle without further increasing the height of the
packing. Similarly the fractional rectangles in Figure 5b can be combined to
form whole rectangles without affecting the height of the packing. In the sequel
we will not explicitly explain how fractional rectangles that are vertically split
are combined to form whole rectangles, instead the figures will show how to
do this.

Lemma 4 If none of SCase1, SCase2, and SCase3 are empty and numWide = 1,
then C1’s rectangles cannot define B2,2, B2,3, or B3,3.

Proof Note that if C1’s rectangles defined B2,2, then the value of numWide would be
2 because rectangles in C1 with fractional value f1l would appear in SCase2 and since
the rectangles in C2 define B2,3 then rectangles with fractional value f2l would also
appear in SCase2. Similarly, it is not possible that C1’s rectangles define boundaries
B2,3 or B3,3. □

Lemma 5 If none of SCase1, SCase2, and SCase3 are empty, numWide = 1, and
f1(i)+f2(i) > 1 for at least one si ∈ SCase2, then there is an algorithm that produces

an integer packing of height at most 3
2 plus the value of the solution for linear program

(1).

Proof By Lemma 4, C1’s rectangles cannot define B2,2, B2,3, or B3,3. Note that if
C1’s rectangles defined B1,1, then f1(i)+f2(i) ≤ 1 for all vertical sections si ∈ SCase2

since the rectangles in C2 define B2,3 and thus fractional rectangles with fractional
values f1r and f2l would appear within SCase1 and so f1r + f2l would be at most 1.
Therefore, the rectangles in C1 and C3 must create a coinciding boundary B1,2 so
that f1r + f2l could be larger than 1, as required by the Lemma.

Since f1r + f2l > 1, then f1r > 1
2 and/or f2l >

1
2 . If f1r > f2l, then re-order the

configurations so that fractional rectangles with fractional value f1r appear in the
bottom configuration. Pair C2 and C3 and re-shape, pack, and round rectangles as
explained Section 3.1.2. The height increase caused by pairing C2 and C3 is at most
1: for sections si where f1(i) + f2(i) ≤ 1 the height increase caused by creating CA1

is at most 1, and for sections si where f1(i)+ f2(i) > 1 the height increase caused by
rounding up f1(i) and f2(i) is also at most 1. The height increase caused by rounding

up fractional rectangles with fractional value f1r is at most 1
2 (see Figure 6a) so the

total height increase is at most 3
2 .

If f2l > f1r, then re-order the configurations so that fractional rectangles with
fractional value f2l appear in the bottom configuration, pair C1 and C3, and re-
shape, pack, and round rectangles as explained in Section 3.1.2. The height increase
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caused by pairing C1 and C3 is at most 1 and the height increase caused by rounding
up fractional rectangles with fractional value f2l is at most 1

2 (see Figure 6b). □

C1

C2

C3

s1

SCase1

s2 s3 s4

SCase2 SCase3

empty

empty

CA1 1

empty

emptyempty

empty empty empty

(a)

C2

C1

C3

s1

SCase1

s2 s3 s4

SCase2 SCase3

empty

empty

CA1 1

empty

emptyempty

empty empty empty

(b)

Fig. 6: numWide = 1 and f1(i) + f2(i) > 1 for at least one vertical section
si ∈ SCase2.

3.1.5 Rounding Fractional Rectangles: Two Wide Rectangles

Because of the way the configurations were ordered, when there are two wide
rectangle types in SUncommon C1 must contain a wide rectangle type with
fractional value f1l and C2 must contain a second wide rectangle type with
fractional value f2l, as the rectangles in C3 define B1,2. Either the fractional
rectangles with fractional value f3r can be rounded up and the two wide frac-
tional rectangle types with fractional values f1l and f2l are moved to CA1

and the empty space left behind after moving these wide rectangles can be
included in CA1, or one of the wide rectangle types can be rounded up and
the other wide fractional rectangle type is moved to CA1 and the empty space
left behind after moving these wide rectangles can be included in CA1.

Lemma 6 If none of SCase1, SCase2, and SCase3 are empty, numWide = 2, and
f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that

produces an integer packing of height at most 3
2 plus the value of the solution for

linear program (1).

Proof Note that the rectangles in C1 cannot create B1,1 as otherwise numWide < 2.

� If (1 − f3r)h3r ≤ 1
2 then re-order the configurations so that fractional

rectangles with fractional value f3r appear in the bottom configuration. If
(1− f3r)h3r > 1

2 :

– If (1−f1l)h1l ≤ 1
2 re-order the configurations so that fractional rectangles

with fractional value f1l appear in the bottom configuration.
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– If (1−f2l)h2l ≤ 1
2 re-order the configurations so that fractional rectangles

with fractional value f2l appear in the bottom configuration.

Pair the top two configurations, and re-shape, pack, and round fractional
rectangles as explained in Section 3.1.2. These solutions are very similar
as that in Figure 6a. The height increase caused by pairing the top two
configurations is at most 1. The height increase caused by rounding up the
fractional rectangles in the bottom configuration is at most 1

2 . To see this
note that if (1 − f3r)h3r > 1

2 then h3r > 1
2 and f3r < 1

2 as h3r ≤ 1;
furthermore, f1r > 1

2 and f2r > 1
2 since f1r + f3r > 1 and f2r + f3r > 1

(as fractional values f1r, f2r, and f3r appear in SCase3). So the total height
increase is at most 3

2 .
� If (1−f3r)h3r > 1

2 , (1−f2l)h2l >
1
2 , and (1−f1l)h1l >

1
2 , then h1l >

1
2 , h2l >

1
2 , and h3r > 1

2 . Pair C1 and C2 and re-shape, pack, and round fractional
rectangles as explained in Section 3.1.2 (see Figure 7). The height increase
in SCase1 and SCase2 caused by creating CA1 is at most h1− f1lh1l − f2lh2l,
where h1 = max{h1l, h1r, h2l, h3l}. In SCase3, the height increase caused by
rounding up the fractional rectangles with fractional values f1r and f2r is
at most (1 − f1r)h1r + (1 − f2r)h2r; hence the height increase caused by
pairing C1 and C2 is at most D1 = max{h1 − f1lh1l − f2lh2l, (1− f1r)h1r +
(1 − f2r)h2r}. The height increase caused by rounding up the fractional
rectangles in C3 with fractional value f3r is at most (1− f3r)h3r. Therefore,
the total height increase is at most max{∆A,∆B}, where:
– ∆A = h1 − f1lh1l − f2lh2l + (1 − f3r)h3r = h1 + h3r − (f1lh1l + f2lh2l +

f3rh3r) ≤ 2 − 1
2 (f1l + f2l + f3r) < 3

2 , as h1 ≤ 1, h1l > 1
2 , h2l > 1

2 ,
1 ≥ h3r > 1

2 , and f1l + f2l + f3r > 1, and
– ∆B = (1− f1r)h1r + (1− f2r)h2r + (1− f3r)h3r ≤ (1− f1r) + (1− f2r) +

(1 − f3r) = 3 − f1r − f2r − f3r < 3
2 as h1r ≤ 1, h2r ≤ 1, h3r ≤ 1, and

f1r + f2r + f3r > 3
2 by (2).

□

Lemma 7 If none of SCase1, SCase2, and SCase3 are empty, numWide = 2, and
f1(i) + f2(i) > 1 for at least one vertical section si ∈ SCase2, then there is an

algorithm that produces an integer packing of height at most 3
2 plus the value of the

solution for linear program (1).

Proof Note that if C1’s rectangles defined B2,3 or B3,3, then f1(i) + f2(i) ≤ 1 for
all vertical sections si ∈ SCase2 since the rectangles in C2 define B2,3 and there-
fore rectangles with fractional values f1l and f2l would appear within SCase1 (so
f1l+f2l ≤ 1) and they would be the only fractional values in SCase2∩(C1∪C2). Addi-
tionally, note that C1’s rectangles cannot define B1,1 or B1,2, as otherwise numWide
could not have value 2. Therefore, C1’s rectangles must define boundary B2,2 so that
f1(i) + f2(i) > 1 for at least one vertical section si ∈ SCase2 and f1r + f2l > 1, as
required by the Lemma.

15

Chapter 3 – Paper 1: High Multiplicity Strip Packing 51



C3

C2

C1

s1

SCase1

s2 s3 s4

SCase2 SCase3

empty

empty
CA1

emptyempty
D1

Fig. 7: numWide = 2, f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2,
(1− f3r)h3r > 1

2 , (1− f2l)h2l >
1
2 , and (1− f1l)h1l >

1
2 .

Similar to the analysis in the proof of Lemma 6, if (1 − f3r)h3r ≤ 1
2 , or if

(1 − f3r)h3r > 1
2 and (1 − f2l)h2l ≤ 1

2 or (1 − f1l)h1l ≤ 1
2 , then we re-order the

configurations so that the fractional value f3r, f2l, or f1l appears in the bottom
configuration, respectively. The height increase caused by pairing the top two config-
urations is at most 1. The height increase caused by rounding up fractional rectangles
in the bottom configuration is at most 1

2 , and so the total height increase is at most
3
2 .

Hence, we only need to consider the case when (1−f3r)h3r > 1
2 , (1−f2l)h2l >

1
2 ,

and (1−f1l)h1l >
1
2 . Note that then f3r < 1

2 , f2l <
1
2 , f1l <

1
2 , h2l >

1
2 , h1l >

1
2 , and

f1r > 1
2 as f1r+f2l > 1. Consider the fractional values f1l, f2l, and f3r, and re-order

the configurations so that the two largest fractional values among them are in the
bottom and middle configurations. If f1l ≥ f2l ≥ f3r or f2l ≥ f1l ≥ f3r, then ensure
that fractional value f1l appears in the bottom configuration. If f1l ≥ f3r ≥ f2l,
f3r ≥ f1l ≥ f2l, f2l ≥ f3r ≥ f1l, or f3r ≥ f2l ≥ f1l, then ensure that fractional
value f3r appears in the bottom configuration. Pair the top two configurations, and
re-shape, pack, and round fractional rectangles as explained in Section 3.1.2. We
consider below just the case when f1l ≥ f2l ≥ f3r; the other cases are similar.

Observe that f1l+f2l >
2
3 as f1l+f2l+f3r > 1 (see Figure 8). The height increase

in SCase1 and SCase2 caused by creating CA1 is at most h1 − f2lh2l − f3lh3l ≤
h1−f2lh2l, where h1 = max{h1l, h2l, h3l, h3r}. In SCase3, the height increase caused
by rounding up the fractional rectangles with fractional values f2r and f3r is at most
(1− f2r)h2r + (1− f3r)h3r.

Note that (1 − f1l)h1l > (1 − f1r)h1r, as f1r > 1
2 and so (1 − f1r)h1r ≤ 1

2

but (1 − f1l)h1l >
1
2 . Thus the fractional rectangles with fractional value f2r (and

the whole rectangles of the same type beneath them in the middle configuration)
can be shifted downwards into the empty space above the fractional rectangles with
fractional value f1r (see Figure 8). Hence, the height increase caused from pairing
the top two configurations is at most D1 = max{h1 − f2lh2l, (1 − f2r)h2r + (1 −
f3r)h3r − ((1− f1l)h1l − (1− f1r)h1r)}.
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The height increase caused by rounding up the fractional rectangles in the bottom
configuration with fractional value f1l is at most (1 − f1l)h1l. Therefore, the total
height increase is at most max{∆A,∆B}, where:
� ∆B = (1−f2r)h2r+(1−f3r)h3r−((1−f1l)h1l−(1−f1r)h1r)+(1−f1l)h1l ≤
(1− f2r)+ (1− f3r)+ (1− f1r) = 3− f1r − f2r − f3r ≤ 3

2 by (2), as h1r, h2r,
and h3r are at most 1.

� ∆A = h1 − f2lh2l + (1 − f1l)h1l ≤ 2 − f1l − f2lh2l as h1 ≤ 1 and h1l ≤ 1.
Since ∆A is a decreasing function on f1l + f2l and f1l + f2l >

2
3 then an

upper bound for the value of ∆A can be obtained when f1l + f2l =
2
3 and

so f1l =
2
3 − f2l, therefore ∆A ≤ 2 − 2

3 + f2l − f2lh2l =
4
3 + f2l − f2lh2l <

4
3 + f2l − f2l

2(1−f2l)
because (1 − f2l)h2l >

1
2 . Then ∆A < 4

3 +
f2l−2f2

2l

2(1−f2l)
. The

right hand side of this inequality takes its maximum value when f2l = 1−
√
2
2

and so ∆A < 4
3 + 3

2 −
√
2 = 17

6 −
√
2 < 3

2 .
□

C1

C2

C3

s1

SCase1

s2 s3 s4

SCase2 SCase3

empty

empty

CA1

empty

empty

empty
D1

Fig. 8: numWide = 2, f1(i) + f2(i) > 1 for at least one vertical section si ∈
SCase2, (1−f3r)h3r > 1

2 , (1−f2l)h2l >
1
2 , (1−f1l)h1l >

1
2 , and f1l ≥ f2l ≥ f3r.

3.1.6 Rounding Fractional Rectangles: Some SCasei is Empty

If there is some SCasei that is empty, then the problem becomes simpler and
we address the remaining cases as follows:

� If SCase1 is not empty, but SCase2 and SCase3 are both empty, pair C1 and
C2 re-shape and pack all fractional rectangles in CA1 as explained in Section
3.1.2. Therefore we obtain a solution of height at most 1 plus the value of
the solution for linear program (1).
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Fig. 9: If S = SCase1 ∪ SCase2 and numWide = 0, then there is exactly one
vertical section si ∈ SCase2. (a) The largest fraction is more than 1

2 , and (b)
the largest fraction is less than 1

2 .

� If SCase2 is not empty, but SCase1 and SCase3 are both empty, then
numWide > 0 and we can use Lemmas 3-7.

� If SCase3 is not empty, but SCase1 and SCase2 are both empty, round up all
fractional rectangles. Since f1(i) + f2(i) + f3(i) >

3
2 for every vertical section

si ∈ SCase3 then we obtain a solution of height at most 3
2 plus the value of

the solution for linear program (1).
� If both SCase1 and SCase2 are not empty, but SCase3 is empty, and
numWide = 0, there must be only one vertical section si ∈ SCase2 as other-
wise the boundary B2,2 must exist, but that would mean that at least one
fractional rectangle with fractional value a or c must be within SCase2 and
therefore numWide would have value larger than zero.

– If the largest fractional value in the section si ∈ SCase2 is more than
1
2 , re-order the configurations so that the fractional rectangles with that
fractional value appear in the bottom configuration and then pair the top
two configurations, and re-shape, pack, and round fractional rectangles as
explained in Section 3.1.2 (see Figure 9a). The height increase caused by
creating CA1 is at most 1 and the height increase caused by rounding up
the fractional rectangles in the bottom configuration is at most 1

2 .
– Otherwise, re-order the configurations such that for the section si ∈

SCase2 the fractional value in the top configuration in SCase2 is the
smallest, and the boundary defined by the rectangles in the bottom config-
uration does not occur to the left of the boundary defined by the rectangles
in the middle configuration. Pair the top two configurations and re-shape,
pack, and round fractional rectangles as explained in Section 3.1.2, then
flip the middle configuration upside down. Note that the rounded-up rect-
angles in SCase2 in the bottom configuration can use the empty space left
behind by the fractional rectangles in the middle configuration (see Figure
9b).
The height increase caused by creating CA1 is at most 1. Note that since
the middle configuration is flipped upside down, the empty space leftover
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after removing the fractional rectangles from the middle configuration can
be used by the rounded up rectangles in the bottom configuration; there-
fore, the height increase caused by rounding up the fractional rectangles
in the bottom configuration is at most 1

2 , as the fractional values the mid-
dle and bottom configurations sum to more than 1

2 , so the total height
increase is at most 3

2 .

� If both SCase1 and SCase2 are not empty, but SCase3 is empty, and
numWide > 0, then we can use Lemmas 3-7.

� If both SCase1 and SCase3 are not empty, but SCase2 is empty, and
numWide = 0, then re-order the configurations so that the fractional rect-
angles in the bottom configuration are the largest of fractional values f1r,
f2r, and f3r. Note that fractional values f1l and f2l are not within SCase3, as
numWide = 0 , and the rectangles in the bottom configuration create B1,3,
so fractional value f3l is not within SCase3 either. Pair the top two configu-
rations, and re-shape, pack, and round fractional rectangles as explained in
Section 3.1.2. The height increase from pairing the top two configurations is
at most 1, and the height increase from rounding up the fractional rectan-
gles in SCase3 in the bottom configuration is at most 1

2 , so the total height
increase is at most 3

2 .
� If both SCase1 and SCase3 are not empty, but SCase2 is empty, and
numWide > 0, then we can use Lemmas 3-7.

� If both SCase2 and SCase3 are not empty, but SCase1 is empty, then
numWide = 2, and we can use Lemmas 3-7.

Theorem 1 If K = 3 and the fractional solution computed by solving linear program
(1) has exactly three configurations, and if each of those configurations has exactly
two different rectangle types in SUncommon, then there is an algorithm that produces
an integer packing of height at most 3

2 plus the value of the solution for linear program
(1).

3.2 Three Rectangle Types in a Configuration

In this section we consider the case when the fractional solution obtained
from solving linear program (1) has three configurations, one configuration
has exactly three rectangle types, one configuration has exactly two rectangle
types, and one configuration has exactly one rectangle type. The algorithms
described in this section are modifications of the algorithms described in the
previous section to account for the existence of a configuration with three
rectangle types. Note that only a single configuration in SUncommon can pack
three rectangle types, as otherwise at least one of the rectangle types would
be common to all three configurations.

3.2.1 Ordering the Configurations

We order the configurations as follows:
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� The top configuration contains only one rectangle type.
� The rectangles in the middle configuration define B2,3, if it exists. Note that
the rectangles in the middle configuration can define both B1,2 and B2,3 if
it contains three rectangle types.

After ordering the configurations as above, let the configuration packed at
the top be C1, the one in the middle be C2, and the one at the bottom be C3.

Let a be the fractional value of the fractional rectangles in C1. If C2 contains
three rectangle types, then let b, c, and d be the fractional values in C2 and
let e and f be the fractional rectangles in C3. Otherwise, if C2 contains two
rectangle types, then let b and c be the fractional values in C2 and let d, e,
and f be the fractional rectangles in C3.

Initialize variable numWide to 0. Increase numWide in the following way:

� If any fractional rectangles with fractional value a are packed within any
vertical section of SCase2 or SCase3, increase the value of numWide by one.

� If any fractional rectangles with fractional value b are packed within any
vertical section of SCase2 or SCase3, increase the value of numWide by one.

� If C2 contains three rectangle types:

– If any fractional rectangles with fractional value e are packed within any
vertical section of SCase2 or SCase3, increase the value of numWide by
one.

� If C2 contains two rectangle types:

– If any fractional rectangles with fractional value d are packed within any
vertical section of SCase2 or SCase3, increase the value of numWide by
one.

We provide different algorithms for rounding fractional rectangles into
whole ones based on which of SCase1, SCase2, and SCase3 are not empty and
what the value of numWide is.

3.2.2 Rounding Fractional Rectangles: One Wide Rectangle

Note that because C1 has only one rectangle type, if none of SCase1, SCase2,
and SCase3 are empty, then numWide > 0. Therefore, the fractional rectangles
with fractional value a are wide and either they can be rounded up or the
empty space remaining after moving them to CA1 can be included in CA1.

Lemma 8 If none of SCase1, SCase2, and SCase3 are empty, numWide = 1 and
f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that

produces an integer packing of height at most 3
2 plus the value of the solution for

linear program (1).
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Fig. 10: None of SCase1, SCase2, and SCase3 are empty, numWide = 1, f1(i)+
f2(i) ≤ 1 for all vertical sections si ∈ SCase2, and (a) (1 − a)ha ≤ 1

2 and (b)
(1− a)ha > 1

2 so f > 1
2 .

Proof Since the rectangles in C2 define B2,3, if C2 had only two rectangle types
then numWide > 1; hence C2 must have three rectangle types. So, in C2 frac-
tional rectangles with fractional value b are in SCase1 (but not SCase2, as otherwise
numWide > 1), fractional rectangles with fractional value c are in SCase2 (but not
SCase3, as these rectangles define B2,3), and only the fractional rectangles with frac-
tional value d are in SCase3. In C3 fractional value e cannot be within SCase2 or
SCase3, as otherwise numWide > 1.

If (1−a)ha ≤ 1
2 then re-order the configurations so that fractional rectangles with

fractional value a appear in the bottom configuration (see Figure 10a); otherwise
(1−a)ha > 1

2 , so a < 1
2 and f > 1

2 because a+f > 1 as both fractional values appear
in SCase3 (see Figure 10b). Pair the top two configurations, and re-shape, pack, and
round fractional rectangles as explained in Section 3.1.2. The height increase caused
by pairing the top two configurations is at most 1. The height increase caused by
rounding up fractional rectangles with fractional value a (if (1 − a)ha ≤ 1

2 ) or f (if

(1− a)ha > 1
2 ) is at most 1

2 so the total height increase is at most 3
2 . □

Note that by the proof of Lemma 8, C2 must have three rectangle types
and the rectangles in C2 do not define the boundary B2,2 (and neither do
the rectangles in C1 or C3 define this boundary); therefore, there is only one
vertical section in SCase2 and since a+f > 1 (as the fractional rectangles with
fractional values a and f both appear in a vertical section in SCase3) then
a+ c ≤ 1 and hence we do not need to consider the case when numWide = 1
and f1(i) + f2(i) > 1 for at least one vertical section si ∈ SCase2.

3.2.3 Rounding Fractional Rectangles: Two Wide Rectangles

Similar to the algorithm in Section 3.1.5, we try to take advantage of the
presence of two wide rectangles by moving these fractional rectangles to CA1

and including in CA1 the empty space left behind after moving these rectangles.
Additionally, since the fractional rectangles with fractional value a belong to
a vertical section in SCase3 we know that the sum of a and the rightmost
fractional values of C2 or C3 must be more than 1.
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Fig. 11: S = SCase1 ∪ SCase2 ∪ SCase3, numWide = 2, and f1(i) + f2(i) ≤ 1
for all vertical sections si ∈ SCase2. (a) C2’s leftmost fractional value is packed
within SCase2 and (1− a)ha > 1

2 . (b) C3’s leftmost fractional value is packed
within SCase2 and (1 − a)ha > 1

2 , (1 − e)he < 1
2 , and f > 1

2 . (c) C2 has only
two rectangle types and (1− a)ha > 1

2 , (1− e)he <
1
2 , and f > 1

2 .

Lemma 9 If none of SCase1, SCase2, and SCase3 are empty, numWide = 2 and
f1(i) + f2(i) ≤ 1 for all vertical sections si ∈ SCase2, then there is an algorithm that

produces an integer packing of height at most 3
2 plus the value of the solution for

linear program (1).

Proof First assume that C2 has three rectangle types and C3 has two rectangle types.
We need to consider two cases.

� C2’s leftmost fraction is packed within SCase2. Therefore, C2 cannot cre-
ate either B1,1 or B1,2, C3 must define B1,2, and fractional value e does
not appear in SCase2 or SCase3 (see Figure 11a). We process the fractional
rectangles using the same approach as in Lemma 8.

� C3’s leftmost fraction is packed within SCase2. Therefore, C2 must define
B1,2 and C3 could create either B2,2, B2,3, or B3,3 (see Figure 11b). If
(1− a)ha ≤ 1

2 then re-order the configurations so that fractional rectangles
with fractional value a appear in the bottom configuration. Otherwise, if
(1 − a)ha > 1

2 and (1 − c)hc ≤ 1
2 (or (1 − e)he ≤ 1

2 ), then re-order the
configurations so that fractional rectangles with fractional value c (or e)
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appear in the bottom configuration. Pair the top two configurations, and re-
shape, pack, and round fractional rectangles as explained in Section 3.1.2.
The height increase caused by pairing the top two configurations is at most
1. The height increase caused by rounding up fractional rectangles in the
bottom configuration is at most 1

2 . To see this note that if (1 − a)ha > 1
2

then ha > 1
2 and a < 1

2 as ha ≤ 1; therefore, when this happens d > 1
2 and

f > 1
2 since a+ d > 1 and a+ f > 1 (as fractional values a, d, and f appear

in SCase3). So the total height increase is at most 3
2 . Hence, we only need

to consider the case when (1− a)ha > 1
2 , (1− c)hc >

1
2 , and (1− e)he >

1
2 ,

which can be addressed using the approach from the proof of Lemma 7 and
it increases the height of the packing by at most 3

2 .

Assume now that C2 has two rectangle types and C3 has three rectangle types.
Note that fractional rectangles in C2 with fractional value b are packed within SCase2,
because the rectangles in C2 define boundary B2,3, and so C3 must create B1,2 (see
Figure 11c).

Again, similar to the analysis above, if (1 − a)ha ≤ 1
2 then re-order the config-

urations so that fractional rectangles with fractional value a appear in the bottom
configuration. Otherwise, if (1 − a)ha > 1

2 and (1 − b)hb ≤ 1
2 (or (1 − e)he ≤ 1

2 ),
then re-order the configurations so that fractional rectangles with fractional value
b (or e) appear in the bottom configuration. Pair the top two configurations, and
re-shape, pack, and round fractional rectangles as explained in Section 3.1.2. The
height increase caused by pairing the top two configurations is at most 1. The height
increase caused by rounding up fractional rectangles in the bottom configuration is
at most 1

2 . To see this note that if (1− a)ha > 1
2 then ha > 1

2 and a < 1
2 as ha ≤ 1;

therefore, when this happens c > 1
2 and f > 1

2 since a+ c > 1 and a+f > 1 (as frac-
tional values a, c, and f appear in SCase3). So the total height increase is at most
3
2 .

Finally, when (1−a)ha > 1
2 , (1−b)hb > 1

2 , and (1−e)he > 1
2 , using the approach

from the proof of Lemma 7 increases the height of the packing by at most 3
2 . □
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Fig. 12: None of SCase1, SCase2, and SCase3 are empty, numWide = 2, f1(i)+
f2(i) > 1 for at least one vertical section si ∈ SCase2, and (a) a > 1

2 and (b)
a < 1

2 so c > 1
2 and d > 1

2 .
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Lemma 10 If numWide = 2, and f1(i) + f2(i) > 1 for at least one vertical section
si ∈ SCase2, then there is an algorithm that produces an integer packing of height at
most 3

2 plus the value of the solution for linear program (1).

Proof Note that if C2 has two rectangle types then f1(i) + f2(i) ≤ 1 for all vertical
sections si ∈ SCase2 since the rectangles in C2 define boundary B2,3 and so fractional
values a and b would appear within SCase1 and SCase2 and so a + b would be at
most 1; therefore, C2 must have three rectangle types.

Additionally, note that since C2 has three rectangle types, its rectangles must
also define B1,2 or B2,2, as otherwise f1(i) + f2(i) ≤ 1 for all sections si ∈ SCase2.
The rectangles in C2 cannot define B1,1 as then the rectangles in C3 would have to
define B1,2 and so numWide would have value 1.

We first consider when the rectangles in C2 define B1,2, which means that the
rectangles in C3 define either B2,2, B2,3, or B3,3, all of which are handled the same
way.

Since a+ c > 1, then a > 1
2 and/or c > 1

2 .

� If a > 1
2 then re-order the configurations so that fractional rectangles with

fractional value a appear in the bottom configuration, pair the top two con-
figurations, and re-shape, pack, and round fractional rectangles as explained
in Section 3.1.2 (see Figure 12a). The height increase caused by pairing the
top two configurations is at most 1. The height increase caused by round-
ing up fractional rectangles with fractional value a is at most 1

2 so the total
height increase is at most 3

2 .
� If a < 1

2 then c > 1
2 ; also d > 1

2 , and f > 1
2 as fractional values a, d, and f

appear in SCase3. Re-order the configurations so that fractional rectangles
with fractional value c appear in the bottom configuration, pair the top
two configurations, and re-shape, pack, and round fractional rectangles as
explained in Section 3.1.2 (see Figure 12b). The height increase caused by
pairing the top two configurations is at most 1. The height increase caused
by rounding up fractional rectangles with fractional values c and d is at most
1
2 so the total height increase is at most 3

2 .

For the case when the rectangles in C2 define B2,2, which means that the rect-
angles in C3 define B1,2, we use the same approach as in Lemma 8. □

When only SCase1 is not empty, or when only SCase3 is not empty, we
can use the algorithms described in Section 3.1 for the same cases. Note that
when only SCase2 or SCase3 are empty, then numWide > 0 since there is
a configuration containing a single rectangle type, and hence the algorithms
from Lemmas 8-10 can be used. When only SCase2 is not empty or when only
SCase1 is empty, then numWide > 0 and the algorithms from Lemmas 8-10
can be used.

Theorem 2 If K = 3 and the fractional solution computed by solving linear program
(1) has exactly three configurations, one configuration has three rectangle types, one
configuration has two rectangle types, and one configuration has only one rectangle
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type, then there is an algorithm that produces an integer packing of height at most 3
2

plus the value of the solution for linear program (1).

3.3 Fewer Than Three Configurations

C2

C1

s1

SCase1

s2

SCase2

empty

CA1

a

emptyc

1

b

Fig. 13: When there are only two configurations, a vertical section is classified
as SCase1 if f1(i) + f2(i) ≤ 1 and classified as SCase2 if f1(i) + f2(i) > 1.

We have described how to round a fractional packing with exactly three
configurations computed by solving linear program (1). When the fractional
packing has fewer than three configurations we need to group the vertical
sections in a different manner. When there are only two configurations, a
vertical section si is classified as SCase1 if f1(i) + f2(i) ≤ 1 and classified as
SCase2 if f1(i) + f2(i) > 1. Pair the two configurations and re-shape, pack, and
round fractional rectangles as explained in Section 3.1.2 (see Figure 13). Note
that the height increase caused by pairing the two configurations is at most 1.

When there is only one configuration, all fractional rectangles are rounded
up for a height increase of the packing of at most 1.

3.4 Differing Number of Rectangle Types in Each
Configuration

We have described how to round SUncommon when each configuration has
exactly two rectangle types, or when one configuration has three rectangle
types, one configuration has two rectangle types, and one configuration has
only one rectangle type. In all of the other remaining possible combinations
of the number of rectangle types in each configuration there is at least one
configuration with only a single rectangle type, and so the approach used in
Sections 5.1-5.6 can be applied for all of these remaining cases.
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4 Polynomial Time Implementation

Recall that the input to HMSP is represented as a list of 3K numbers, not
a list specifying the dimensions of n rectangles; therefore, any algorithm that
specifies individual locations of rectangles in a solution for HMSP will not run
in polynomial time.

We represent a configuration as a list of O(K ) numbers: for 1 ≤ i ≤ K we
specify the rectangle type Ti, the number of rectangles of type Ti packed side-
by-side, and the number of rectangles of type Ti packed on top of each other
(note that this last number might not be integer).

Since there are at most K configurations, and we create at most one addi-
tional configuration by creating CA1 during the rounding process, then at most
O(K 2 ) numbers are needed to specify the packing in SUncommon. Similarly,
the packing in SCommon is specified using at most O(K ) numbers, for a total
of O(K 2 ) numbers to specify the entire packing.

The number of rectangles of type Ti that are packed side-by-side in
SCommon is equal to the minimum of the number of rectangles of type Ti that
are packed in each of C1, C2, and C3. The number of rectangles of type Ti that
are packed vertically in SCommon is equal to the rounded up sum of the num-
ber of rectangles of type Ti that are packed one-on-top of the other in each of
C1, C2, and C3. Therefore, finding the number of rectangles of each type that
belong in SCommon requires O(K 2 ) operations.

Processing SCommon requires O(K ) operations as for 1 ≤ i ≤ K our algo-
rithm only needs to round up the fractional values for each rectangle type Ti.
Sorting the rectangles in each configuration in SUncommon by their fractional
values requires O(K 2 ) operations.

Ordering the configurations as specified in Sections 4 and 5 requires O(K)
operations, computing the value of the numWide variable requiresO(K) opera-
tions, and checking which of the cases specified in the lemmas of Sections 4 and
5 are present in the fractional packing requires O(K) operations. Re-shaping,
packing, and rounding fractional rectangles as described in Section 3.1.2
requires O(K 2 ) operations. Finally, packing leftover vertically split fractional
rectangles as shown in the figures requires O(K) operations.

Note that the above analysis holds regardless of how many rectangle types
are in each configuration of SUncommon.

Theorem 3 There is a polynomial time algorithm for HMSP with three rectangle
types that computes solutions of value at most OPT + 3

2 + ϵ for ϵ > 0.

Proof As shown in Section 2, an optimal fractional solution to FSP can be computed
in polynomial time. Our algorithm transforms fractional packings obtained by solving
linear program (1) into integer packings with height of at most 3

2 + ϵ plus the height
of the corresponding fractional packing, where ϵ is a positive constant. Finally, as
shown above our algorithm can be implemented in polynomial time. □

26

Chapter 3 – Paper 1: High Multiplicity Strip Packing 62



5 4-Type Algorithm

When K = 4 a basic feasible solution for linear program (1) consists of at most
four configurations. Our algorithm for this case performs the same four steps
as for the case when K = 3.

When there are only one or two configurations, the fractional rectangles
can be rounded as described in Section 3.3. Note that when K = 4 but there
are only three configurations in the fractional solution of linear program (1),
we cannot use our 3-type algorithm described above, as that algorithm takes
advantage of where the at most three case boundaries Bi,j , i ̸= j are located,
but when K = 4 there can be up to eight boundaries, and these are not
accounted for in the algorithms we described above. Therefore, when K =
4 but there are three configurations, we pair the top two configurations as
described in Section 3.1.2 and round up the fractional rectangles in the bottom
configuration to produce a packing of height at most 2 plus the value of the
solution for linear program (1). In the sequel we only consider the case where
the solution of linear program (1) has 4 configurations.

5.1 Grouping Vertical Sections

Recall that within a vertical section si, each configuration has a single rectangle
type. Let i be the smallest section index for which the sum of the smallest
three fractions in section si is more than 1, if such a section exists; otherwise,
we set i = 0. We order the configurations so that f1(i) ≤ f2(i) ≤ f3(i) ≤ f4(i),
where f1(i), f2(i), f3(i), and f4(i) represent the fractional values of the fractional
rectangles packed in si of C1, C2, C3, and C4, respectively.

We classify the vertical sections si ∈ SUncommon into 4 cases, depending
on the four fractional values f1(i), f2(i), f3(i), and f4(i) as follows:

� SCase1 includes all sections si such that f1(i) + f2(i) + f3(i) + f4(i) ≤ 1.
� SCase2 includes all sections si such that f1(i) + f2(i) + f3(i) + f4(i) > 1 and
f1(i) + f2(i) + f3(i) ≤ 1.

� SCase3 includes all sections si such that f1(i) + f2(i) + f3(i) > 1 and f1(i) +
f2(i) ≤ 1.

� SCase4 includes all sections si such that f1(i) + f2(i) > 1.

If no section si exists for which the sum of the smallest three fractions is
more than 1, then cases SCase3 and SCase4 will be empty.

5.2 Case1: f1(i) + f2(i) + f3(i) + f4(i) ≤ 1

For every section si ∈ SCase1, we remove the fractional rectangles in C1,
C2, C3, and C4 (see Figure 14), including the parts rCase1 for vertically split
fractional rectangles. We re-shape the fractional rectangles so that they have
the full height of a rectangle of the same type but only a fraction of its width,
and then we pack them side-by-side in CA1: to create CA1 all rectangles in C1

are shifted upwards, including rectangles in SCase2, SCase3, and SCase4, until
there is empty space of height 1 between C1 and C2 in section si. After shifting
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Fig. 14: When K = 4 and the fractional packing has exactly four configura-
tions, our algorithm partitions the packing into at most 4 cases.

the rectangles the tops of the topmost rectangles in C1 must lie on a common
line.

The creation of CA1 increases the height of the packing by at most 1.

5.3 Case2: f1(i) + f2(i) + f3(i) + f4(i) > 1 and
f1(i) + f2(i) + f3(i) ≤ 1

For every section si ∈ SCase2, we remove the fractional rectangles in C1, C2,
and C3 (see Figure 14), including the parts rCase2 for vertically split fractional
rectangles. We re-shape the fractional rectangles so that they have the full
height of a rectangle of the same type but only a fraction of its width, and then
we pack them side-by-side in CA1 as described above. Fractional rectangles in
C4 are rounded up.

The creation of CA1 and rounding fractional rectangles in C4 increases the
height of the packing by at most 2.

5.4 Case3: f1(i) + f2(i) + f3(i) > 1 and f1(i) + f2(i) ≤ 1

For every section si ∈ SCase3, we remove the fractional rectangles in C1 and
C2 (see Figure 14), including the parts rCase3 for vertically split fractional
rectangles. We re-shape the fractional rectangles so that they have the full
height of a rectangle of the same type but only a fraction of its width, and then
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we pack them side-by-side in CA1 as described above. Fractional rectangles in
C3 and C4 are rounded up.

Note that we ordered the configurations based on the fractional values of
the fractional rectangles in the leftmost section si of SCase3, so f1(i) + f2(i) +
f3(i) > 1 and f1(i) ≤ f2(i) ≤ f3(i) ≤ f4(i). Hence, f4(i) ≥ f3(i) >

1
3 ; therefore,

rounding up the fractional rectangles in C3 and C4 increases the height of
the packing by at most 4

3 , and when including the height increase caused by
creating CA1 the total height increase for this case is at most 7

3 .

5.5 Case4: f1(i) + f2(i) > 1

For every section si ∈ SCase4 the fractional rectangles in C1 and C2 are
rounded up, increasing the height of the packing by at most 1 (see Figure 14).
Additionally, the fractional rectangles in C3 and C4 are rounded up, and by the
same reasoning shown for SCase3, the height increase is at most 4

3 . Therefore,
the height increase for this case is at most 7

3 .

Theorem 4 If K = 4 there is an algorithm that produces an integer packing of
height at most 7

3 plus the value of the solution for linear program (1).

6 K-Type Algorithm

Our algorithm for the case when K > 4 also performs four steps. The first two
steps are the same as the cases when K = 3 and K = 4. However, we per-
form one additional pre-processing step: if there are any rectangle types whose
widths are greater than half the width of the strip, we place these rectangles
leftmost within their configurations. Additionally, we order the configurations
so that configurations containing these wide rectangles are placed at the bot-
tom of the packing so that two configurations containing wide rectangles of
the same type are put in adjacent positions. Observe that this ensures that
wide rectangles are whole (see Figure 15).

6.1 Pairing Configurations

If there are an odd number of configurations, let C0 be the configuration at the
top of the packing, and let each subsequently lower configuration be C1, C2, ...,
CK−1, respectively. Otherwise, if there are an even number of configurations,
let them be C1, C2, ..., CK , respectively, from top to bottom. Pair configu-
rations C2i−1 and C2i for i = 1, 2, ..., ⌊K

2 ⌋. Add a region Rj,j+1 of height 1
between each pair of configurations Cj and Cj+1, shifting rectangles upwards
as necessary, but ensure that the rectangles whose widths are greater than half
the width of the strip still remain at the bottom of the packing (see Figure 16).
If there is an odd number of configurations, the final configuration (topmost)
will simply have all of its fractional rectangles rounded up.
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Fig. 15: Configurations with wide rectangle types are adjacent and near the
bottom.

For every paired configurations Cj and Cj+1, a vertical section si is classi-
fied as SCase1 if fj(i) + fj+1(i) ≤ 1 and classified as SCase2 if fj(i) + fj+1(i) >
1.

Note that since rectangle types whose widths are greater than half the
width of the strip were packed together at the bottom of the packing and are
already whole, these rectangles are not considered for the remainder of this
section.

6.2 Processing Fractional Rectangles

Consider paired configurations Cj and Cj+1. For any vertically split fractional
rectangle r ∈ SCase1 ∩ SCase2, put the fractional piece rCase2 of r located in
SCase2 into a set F . Round up the remaining fractional rectangles contained
in SCase2.

Add to the set F all the fractional rectangles from each vertical section
si ∈ SCase1. Using fractional rectangles from F , form as many whole rect-
angles as possible. Note that all fractional rectangles in SCommon and SCase2

(excluding the pieces rCase2) are rounded up and therefore represent an integer
number of whole rectangles of each type. Since there was an integer number
of whole rectangles given as input to HMSP, then the fractional rectangles in
F must yield an integer number of whole rectangles of each type. Therefore,
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Fig. 16: The K configurations are stacked; if there is an odd number of con-
figurations, the topmost configuration is rounded up instead of paired. After
creating the regions Rj,j+1, the rectangles whose widths are greater than half
the width of the strip are again grouped at the bottom of the configuration.

any leftover fractional rectangles in F must have been used to round up other
rectangles and can be discarded.

6.3 Packing Rectangles into the Regions Rj,j+1

Consider one by one the regions Rj,j+1. Pack the rectangles from F one by one
into Rj,j+1 until the next rectangle r does not fit. Split r and pack in Rj,j+1

the largest fraction of r that fits; the other piece of r is put back in F . Note
that either Rj,j+1 is completely full (width-wise) or the set F is empty. If F
is not empty, continue packing rectangles from F starting with the fractional
piece of r, if any, into the remaining regions in the same manner. Note that
the rectangles from F must fit within these regions as we did not leave empty
space (width-wise) in any region and the total width of the rectangles in F
was at most the total width of all the regions combined.

Lemma 11 After packing the whole rectangles from F into the regions Rj,j+1 as

described above, at most ⌊K2 ⌋ − 1 rectangles were split.
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Proof When rectangles from F are packed into the first region Rj,j+1, at most one
fractional rectangle is leftover (the final rectangle that did not fit in the region). This
fractional rectangle combines with the fractional rectangle packed at the beginning of
the next region to form a whole rectangle. Combining the fractional rectangle located
at the end of a region with the fractional rectangle located at the beginning of the
next region accounts for ⌊K2 ⌋ − 1 whole rectangles, as the final region will only have
a fractional rectangle at the beginning of the region and not at the end of it. □

6.4 Packing the Split Rectangles

We create additional regions R1, R2, ..., R⌊ 1
4K⌋ at the top of the packing of

width equal to the width of the strip to pack the rectangles that were split
(see Figure 17). These regions have width 1, the same as the rectangular strip,
instead of having just the width of SUncommon. Since the height of SCommon is
increased by at most 1, then as long as K > 2 these regions are located above
SCommon. Note that SCommon could be empty, so that the width of SUncommon

is equal to the width of the full strip.

C4

C3

C2

C1

C6

C5

C8

C7

R1

R2

s1 s2

SCase1 SCase2

C9

R1,2

R3,4

R5,6

R7,8

SUncommonSCommon

Fig. 17: The configurations have been paired, the fractional rectangles have
been processed, and the split rectangles have been made whole and packed in
regions placed at the top of the packing.
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Lemma 12 The ⌊K2 ⌋−1 split rectangles can be packed using at most ⌊K4 ⌋ additional
regions of height 1.

Proof Note that none of the split rectangles are wide, hence we can pack at least
two of these split rectangles into each region. Since there are fewer than ⌊K2 ⌋ whole

rectangles, packing them at least two to a region will use at most ⌊K4 ⌋ additional
regions. □

Note that ifK is even, then the height increase of SUncommon is at most ⌊K
2 ⌋

from the regions created between each pair of configurations and an additional
⌊K

4 ⌋ from the final regions added to the top of the packing. If K is odd, then

the height increase of SUncommon is at most ⌊K
2 ⌋+ ⌊K

4 ⌋+1, where the term 1
is from rounding up the un-paired configuration.

Theorem 5 If K > 3 then there is an algorithm that produces an integer packing of
height at most OPT + ⌊ 34K⌋+1 plus the value of the solution for linear program (1).

7 Experimental Results

We compared our rectangle packing algorithm for the case when the input
contains three types of rectangles with the fractional packings produced by
solving linear program (1). We implemented our algorithm for 3 rectangle
types using Java. The commercial integer and linear program solver Cplex
12.7, configured using default settings, was used to compute optimal fractional
solutions. For each test instance we pre-computed the list of possible base
configurations to provide to the linear program.

Our algorithm for three rectangle types produces integer packings of height
at most 3

2hmax+ϵ plus the height of the fractional packing where ϵ is a positive
constant, but as we show, its experimental performance is much better than
its theoretical upper bound.

7.1 Input Data

We used randomly generated sets of rectangles of 3 types to evaluate our
algorithm. Note that the running time of our algorithm depends on K, so the
number of rectangles in the input does not have much effect on the running
time of the algorithm. For each rectangle type, we randomly generate a width,
a height, and a multiplicity, but we performed different tests changing the
intervals over which we selected the random values. The width and height of
the rectangles were always rounded to two decimal places. For every test case
we generated one thousand trials.

The structure of the fractional packing impacts how well our algorithm
performs. When all of the heights of the fractional rectangles are nearly the
full height of their corresponding rectangle types, our algorithm simply rounds
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them up and so it computes near-optimum solutions. In contrast, when some
of the heights of the fractional rectangles are much smaller than the heights
of their corresponding rectangle types, our algorithm needs to apply a combi-
nation of rounding techniques usually leading to solutions with larger heights.
Therefore, when analyzing our experimental results, we divide the test cases
into groups based on the structure of the fractional packing.

7.2 Test Cases

We studied the impact that rectangle type width has on the performance of our
algorithm. For w = 1, 2, ..., 10, we generated packings where the upper bound
on the randomly generated widths was 1

w . For example, when w = 5 the widths
of the rectangle types were randomly generated from the interval [0.01, 0.20].
The running time of our algorithm quickly increases when we decrease the
upper bound for the rectangle widths because the need to pre-compute the
base configurations to be given as input to Cplex, so we limited the maximum
value of w to be 10 for the majority of our test cases. We also performed a
smaller number of experiments where the widths of the rectangle types were
randomly generated from the interval [0.01, 0.05].

We also studied the impact that rectangle type height has on the perfor-
mance of our algorithm. For each value of w noted above, we chose height
intervals of size 0.10, 0.25, 0.50, and 1. We used the following height intervals
(the minimum height is 0.01):

� [0.9− 0.1h, 1− 0.1h] for h = 0, 1, ..., 9.
� [0.75− 0.25h, 1− 0.25h] for h = 0, 1, 2, 3.
� [0.50− 0.50h, 1− 0.50h] for h = 0, 1.
� [0.01, 1].

7.3 Experimental Results

In this section we present only a sample of our experimental results, but the
observations that we make in this section will cover all of our experiments 1.

Figure 18 shows how the widths and heights of the rectangle types impact
the height of the packings computed by our algorithm. On the x-axis, each
label represents the value of h used for that test case, and the height was
randomly generated using the interval [0.9 − 0.1h, 1 − 0.1h]. On the y-axis,
each label represents the mean of the difference between the height of the
packing computed by our algorithm and the height of the fractional packing
obtained by solving linear program (1); the mean is taken over the thousand
tests performed for each value of w and h. Each individual line on the figure
represents the change in value of h for a particular value of w (recall that the
width of the rectangles was randomly generated using the interval [0.01, 1

w ]).
So, looking at the chart from left to right shows results of our test cases of taller

1The complete results are available at www.csd.uwo.ca/∼ablochha/2DHMSPP Journal
RawData.pdf
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Fig. 18: Average height increase with respect to optimal fractional packing.
Each data line represents a different value used for w when selecting the rect-
angle widths and the x-axis shows the value used for h when selecting the
height from the interval [1−0.1h, 0.9−0.1h]. From left to right the chart shows
taller to shorter rectangles, and from top to bottom the series of lines show
narrower to wider rectangles.

to shorter rectangles, and looking at the series of lines from top to bottom
shows results of our test cases of narrower to wider rectangles.

Rectangle Heights. The height increase in a packing caused by rounding
up a fractional rectangle depends on the height of the rectangle type (see Figure
18). Instances generated using shorter rectangle types resulted in our algorithm
producing solutions that were closer to the optimal fractional solutions. The
correlation between the height of the rectangles and the height increase of the
packing was observed in each of our tests cases. Note that if the heights of all
the rectangle types are the same, then the fractional values for each fractional
rectangle will also be the same (see the full results), which leads to a simpler
problem.

Rectangle Widths. Our results do not include the trivial case when all
rectangle types have widths larger than 1

2 ; however, we did consider cases when
some of the rectangle types have widths larger than 1

2 . Within a particular
height interval, the instances that contained rectangles wider than 1

2 have the
lowest height increase with respect to the optimal fractional packing. To see
this, observe in Figure 18 the data points corresponding to h = 1 on the x-axis;
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Test Case Description Trials Avg Min Max

1 Configurations have 3, 2, and 1 rectangle types 163 0.913 0.48 1.3

2 Configurations have 3, 1, and 1 rectangle types 41 0.834 0.48 1.16

3 Configurations have 2, 2, and 2 rectangle types 389 0.941 0.34 1.38

4 Configurations have 2, 2, and 1 rectangle types 326 0.877 0.19 1.35

5 Configurations have 2, 1, and 1 rectangle types 71 0.828 0.44 1.26

6 Configurations have 1, 1, and 1 rectangle types 10 0.718 0.15 0.98

7 Our Algorithm Total 1000 0.901 0.15 1.38

8 Simple Algorithm Total 1000 2.041 0.65 2.9

Table 1: One thousand trials. Widths are generated from the interval
[0.01, 0.05], heights are generated from the interval [0.90, 1]. The results are
separated into categories depending on how many different rectangle types
appear in each configuration, and within these categories the mean average
height increase, minimum height increase, and maximum height increase is
listed with respect to the height of an optimal fractional packing. Note that
in all 1000 trials the fractional packing contained three configurations.

the bottommost line represents the results where w = 1 and the maximum
rectangle width was 1, and lines above it represent larger and larger value of
w. Our results show that for many of the fractional packings that include one
or more rectangle types wider than 1

2 either each of the configurations contain
a single rectangle type, SCase2 and SCase3 are both empty, or there are fewer
than three configurations (see the full results). Each of these situations are
simple to solve and most of their solutions increase the height by less than 1.

As we reduced the maximum width allowed for each rectangle type, the
solutions computed by our algorithm had heights that were further away from
the height of an optimal fractional packing. In the full results we can see that
the fraction of the instances that had three configurations increased when we
reduced the maximum width (recall that the theoretical upper bound on the
height increase is worse for rounding three configurations). For the instances
where the maximum rectangle width was 1

10 and the height was from the
interval [0.90, 1], the average height increase of our algorithm was 0.874; in
contrast, when the maximum rectangle width was 1 and the height was from
the interval [0.90, 1], the average height increase of our algorithm was 0.409.

To get instances that pushed our algorithm towards its theoretical upper
bound, we generated inputs that contained rectangle types that are tall and
narrow. In Table 1 we show results for a test case where rectangle widths
were randomly chosen from the interval [0.01, 0.05] and heights from [0.90, 1].
Under the column labeled “Description” we give a description of the data that
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is included for that test case. For example, test case 1 includes 163 trials in
which there was a configuration with three different rectangle types, another
configuration with two different rectangle types, and a configuration with only
a single rectangle type. Test case 7 includes all of the results from the 1000
trials using our algorithm, while test case 8 includes all of the results from the
1000 trials using a simple algorithm that only rounds up fractional rectangles.
Under the “Trials” column, we list the number of instances that are included
in each test case, and under the “Avg”, “Min”, and “Max” columns we list the
mean average height increase, minimum height increase, and maximum height
increase, respectively, within each test case with respect to the height of an
optimal fractional packing. Note that in all 1000 instances shown in Table 1
all fractional packings contained three configurations.

The results shown in Table 1 include some of the largest height increases
with respect to the fractional packing that we were able to produce in our
experiments. Observe that in test cases 2, 5, and 6, when at least two of the
three configurations have only a single rectangle type, the problem becomes
simpler: as explained in Section 3.1 the boundaries between the cases are
defined by the configuration that has multiple rectangle types, and often one
of the configurations with a single rectangle type can be rounded up without
increasing the height of the packing by a large amount. As seen in the table,
122 of the 1000 trials had this simpler structure (test cases 2, 5, and 6) and for
them the average height increases (0.834, 0.828, and 0.718, respectively) were
the lowest within the table.

The instances from Table 1 that have the highest average height increases
are in test cases 1 and 3, with height increases of 0.913 and 0.941, respectively.
Recall that these test cases are the most complicated versions of the problem
and required multiple different strategies to transform the fractional rectangles
into whole ones. As seen in the table, 552 of the 1000 trials had this more
complicated structure, which represents a majority of the instances. We did
not perform additional experiments with even narrower rectangles because of
the increased running time.

7.4 Final Observation

We compared our HMSP algorithm for three rectangle types against optimal
fractional solutions computed by Cplex. Even though our algorithm has a worst
case performance of 1.5 + ϵ plus the height of an optimal fractional packing,
its average performance was better. Our algorithm produces solutions that
are closest to the optimal fractional packings on instances where the rectangle
types are short and wide and produces solutions that are furthest from the
optimal where the rectangles are tall and narrow. Moreover, for instances that
have at most two configurations our algorithm performs significantly better
than when there are three configurations.
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Chapter 4

4 Paper 2: Thief Orienteering on Directed Graphs
A preliminary version of this paper was first published in 2023 (pp. 87-98) in the Pro-
ceedings of the 34th International Workshop on Combinatorial Algorithms (IWOCA) by
Springer Nature [12]. The Version of Record for the preliminary paper is available on-
line at: https://doi.org/10.1007/978-3-031-34347-6 8. An extended version of this paper
was later submitted to the journal of Theoretical Computer Science and is currently under
review.

This paper investigates optimization problems that contain multiple interdependent sub-
problems and presents several approximation algorithms for restricted versions of the thief
orienteering problem.



Algorithms for the Thief Orienteering Problem on

Directed Acyclic Graphs

Abstract

We consider the scenario of routing an agent called a thief through a weighted
graph G = (V,E) from a start vertex s to an end vertex t. A set I of items
each with weight wi and pro�t pi is distributed among V \ {s, t}. The thief,
who has a knapsack of capacity W , must follow a simple path from s to t
within a given time T while packing in the knapsack a set of items taken
from the vertices along the path of total weight at most W and maximum
pro�t. The travel time across an edge depends on the edge length and current
knapsack load.

The thief orienteering problem (ThOP) is a generalization of the orien-
teering problem, the longest path problem, and the 0-1 knapsack problem.
We prove that there exists no approximation algorithm for ThOP with con-
stant approximation ratio unless P = NP, and we present a polynomial-time
approximation scheme (PTAS) for ThOP when G is directed and acyclic that
produces solutions that use time at most T (1 + ϵ) for any constant ϵ > 0.
We also present a fully polynomial-time approximation scheme (FPTAS) for
ThOP on arbitrary undirected graphs where the travel time depends only on
the lengths of the edges and T is the length of a shortest path from s to t
plus a constant K. Finally, we present a FPTAS for a restricted version of
the problem where the input graph is a clique.

Keywords: thief orienteering problem, knapsack problem, dynamic
programming, approximation algorithm, approximation scheme

1. Introduction

The thief orienteering problem (ThOP) is de�ned as follows. Let G =
(V,E) be a weighted graph with n vertices, where two vertices s, t ∈ V are
designated the start and end vertices, and every edge e = (u, v) ∈ E has
a length du,v ∈ Q+. In addition, let there be a set I of items, where each
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item ij ∈ I has a non-negative integer weight wj and pro�t pj. Each vertex
u ∈ V \ {s, t} stores a subset Su ⊆ I of items such that Su ∩ Sv = ∅ for
all u ̸= v and

⋃
u∈V \{s,t} Su = I. There is an agent called a thief that has

a knapsack with capacity W ∈ Z+ and the goal of the problem is for the
thief to travel a simple path from s to t within a given time T ∈ Q+ while
collecting items in the knapsack taken from the vertices along the path of
total weight at most W and maximum total pro�t.

The amount of time needed to travel between two adjacent vertices u, v
depends on the length of the edge connecting them and on the weight of the
items in the knapsack when the edge is traveled; speci�cally, the travel time
between adjacent vertices u and v is du,v/V where V = Vmax − w(Vmax −
Vmin)/W , w is the current weight of the items in the knapsack, and Vmin and
Vmax are the minimum and maximum velocities of the thief.

ThOP is a generalization of the orienteering problem [9], the longest path
problem, and the 0-1 knapsack problem, so it is NP-hard. The problem was
�rst formulated by Santos and Chagas [16] in 2018, and they provided the
�rst two heuristics for ThOP: An iterated local search algorithm and a biased
random-key genetic algorithm. In 2020, Faêda and Santos [6] presented a
genetic algorithm for ThOP. Chagas and Wagner [4] designed a heuristic
using an ant colony algorithm which they later further improved [5].

While ThOP is a relatively new problem, the closely related family of
travelling problems, such as the travelling thief problem [3] and some variants
of orienteering [17], are well-studied and have applications in areas as diverse
as route planning [7, 8, 12], circuit design [3], and logistics [11], among others.

In 2017, Polyakovskiy and Neumann [14] introduced the packing while
travelling problem (PWTP). This is a problem similar to ThOP, but in
PWTP the thief must follow a �xed path and the goal is to maximize the
di�erence between the pro�t of the items collected in the knapsack and the
transportation cost. Polyakovskiy and Neumann provided two exact algo-
rithms for PWTP, one based on mixed-integer programming and another
on branch-infer-and-bound. In 2019, Roostapour et al. [15] presented three
evolutionary algorithms on variations of PWTP. Most recently, Neumann
et al. [13] presented an exact dynamic programming algorithm and a fully
polynomial-time approximation scheme (FPTAS) for PWTP. Their dynamic
programming algorithm, unfortunately, cannot be applied to ThOP because
in ThOP we must bound both the total weight of the items and the travelling
time of the thief.
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To the best of our knowledge, study on ThOP to this date has focused on
the design of heuristics and no previous work has presented an approximation
algorithm for it.

In this paper we show that ThOP cannot be approximated within a con-
stant factor unless P = NP and we present a dynamic programming-based
polynomial-time approximation scheme (PTAS) for ThOP when the input
graphs are directed acyclic graphs (DAGs) and the time used by the thief is
at most T (1 + ϵ) for any constant ϵ > 0.

There are several challenges involved in the design of a PTAS for ThOP
on DAGs. To achieve polynomial running time the parameters of the problem
(weight, pro�t, and travelling time) need to be rounded to keep the size of
the dynamic programming table polynomial. Rounding weights needs to be
done carefully because (1) rounding the weights of small weight items with
high pro�t can yield solutions with pro�t much smaller than the optimum one
and (2) rounding the weights of items located far away from the destination
vertex can cause large errors in the travelling times.

We solve the �rst problem through enumeration by ensuring that a con-
stant number of the items with largest pro�t in an optimum solution belong
also to the solution computed by our algorithm. We solve the second problem
by using actual item weights and not rounded item weights when computing
travelling times, and by allowing the thief slightly more time to travel from
s to t.

Variations of our algorithm yield FPTAS on special versions of ThOP on
arbitrary undirected graphs, like (i) the case when Vmin = Vmax, edge lengths
are integer, and T is equal to the length L of a shortest path from s to t plus
a constant K, and (ii) the case when Vmin = Vmax, edges have unit length,
and the input graph is a clique. This latter case is a generalization of the
knapsack problem when the items are partitioned into groups and we must
select items only from a certain number of these groups.

The rest of the paper is organized in the following way. We begin in
Section 2 by proving the inaproximability of ThOP. In Section 3 we present
an exact algorithm for ThOP on DAGs using dynamic programming and in
Section 4, we transform this algorithm into a PTAS that produces solutions
that use time at most T (1 + ϵ). In Section 5 we show our algorithm can be
converted to a FPTAS for a restricted version of ThOP on undirected graphs.
In Section 6 we present our FPTAS for ThOP on cliques. A preliminary
version of this paper appeared in [1], and this extended version includes
the complete proofs for the lemmas and theorems that were omitted in [1],
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including a correction to Lemma 2 and Theorem 3 as our algorithm needs
time T (1 + ϵ) and not time T . We also include the algorithm for the case
when the input graph is a clique with unit length edges.

2. Inapproximability

We �rst show that even when the input graph is a clique, each vertex
has at most one item, and edge lengths are only 1 or 2, ThOP has no PTAS
unless P = NP. To prove this we show that ThOP is a generalization of the
rooted orienteering problem.

In the rooted orienteering problem (OP) we are given a weighted complete
graph G = (V,E) with metric distances w : E → Z+, vertex pro�ts π : V →
Z≥0, root vertex s′ ∈ V , and a path length limit L ∈ Z≥0. The goal in this
problem is to compute a path starting at s′ of total length at most L for
which the sum of the pro�ts of the vertices in the path is maximum.

Theorem 1. There is no PTAS for ThOP unless P = NP. This is true even
when the input graph is a clique, every vertex has at most one item, and edge
lengths are only 1 or 2.

Proof. Blum et al. [2] proved that there is no PTAS for OP even if the input
graph is a clique, edge lengths are 1 or 2, and the root vertex has zero pro�t.
Consider an instance of this restricted version of OP. We create an instance
of ThOP on {1, 2}-metrics, by performing the following steps:

1. Set s to be the root vertex and add an ending vertex t to the input
graph G = (V,E) of OP.

2. Add an edge from every vertex of G to t of length 1.
3. Assign velocities vmax = vmin = 1, knapsack capacity W = |V |, and

time limit T = L+ 1.
4. Finally, for each vertex v ∈ V where pro�t π(v) > 0, add an item i to

I with weight wi = 1 and pro�t pi = π(v), and place i as the only item
in the subset Iv of items associated with vertex v.

A solution for this instance of ThOP yields a solution of the same value
for the corresponding instance of OP, as a solution for ThOP includes all
items stored at the vertices of the selected path. Hence, a PTAS for ThOP
would be a PTAS for OP.
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To build to our main result in this section, we consider the optimization
version of the classic longest path problem. In this problem, we are given an
arbitrary simple connected unweighted graph G = (V,E), and the goal is
to compute a path P in G with a maximum number of edges. The longest
path problem has no approximation algorithm with constant approximation
ratio, unless P = NP [10]. Furthermore, for any ϵ > 0, there is no algorithm
for the longest path problem with approximation ratio O(log1−ϵ n), unless
NP ∈ DTIME(2O(log1−ϵ n)).

Theorem 2. There is no approximation algorithm for ThOP with constant
approximation ratio, unless P = NP. Furthermore, for any ϵ > 0, there is
no approximation algorithm for ThOP with approximation ratio 2O(log1−ϵ n)

unless NP ⊆ DTIME(2O(log1−ϵ n)). These hardness results hold even if the
input graph has bounded degree, all edges have unit length, and each vertex
stores only one item of unit weight and pro�t.

Proof. The longest path problem [10] is a special case of ThOP, where s and
t are the endpoints of a longest path in the input graph G = (V,E), every
edge has length 1, every vertex u ∈ V \{s, t} stores one item of weight 1 and
pro�t 1, the capacity of the knapsack is W = |V | − 2, the bound on the time
is T = |V |−1, and Vmin = Vmax. Since there are O(|V |2) possible choices for
the endpoints of a longest path in G then the inapproximability properties
of the longest path problem [10] apply also to ThOP.

The fractional version of ThOP allows the thief to select a fraction of
each item.

Corollary 1. The fractional version of ThOP cannot be approximated in
polynomial time within any constant factor unless P = NP.

Proof. Consider the same reduction as in the proof of Theorem 2. Note than
an optimal fractional solution must collect the whole items stored in the
vertices of an optimal path.

3. Algorithm for Thief Orienteering on DAGs

To simplify the description of our algorithms, for each vertex u that does
not store any items we add to I a new dummy item of weight 0 and pro�t 0
and store it in u; hence, every vertex stores at least one item (see Figure 1).

5
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We can assume that the minimum and maximum velocities Vmin and Vmax

are δ and 1, respectively, where δ ∈ Q+ and δ ≤ 1. Then, the travel time
from vertex u to vertex v when the knapsack's total weight is w just prior to
leaving vertex u is equal to du,v/η, where η = 1− (1−δ)w

W
.

Since DAGs have no cycles, every path from s to t is a simple path. We
index the vertices of the graph using a topological ordering. We delete from
G all vertices that are unreachable from s and all vertices that cannot reach
t. For a vertex u, let u.index be the index of the vertex as determined by
the topological ordering.

Note that s and t have the lowest and highest indices, respectively. Addi-
tionally, observe that the indices of the vertices encountered along a simple
path from s to any vertex u appear in increasing order. We index the items
stored in the vertices so that item indices are unique and items in vertex u
have smaller indices than items in vertex v if u.index < v.index. Let the
items stored in the vertices of the input graph G be i1, i2, ..., i|I|.

s
(1, 0, 0)

2
(2, 3, 2)

3
(3, 2, 1)

4
(4, 1, 1)

t
(5, 0, 0)

Figure 1: An example of a DAG that has two possible paths from s to t. In each vertex
u there is a triplet (index, pro�t, weight) for each item in Iu.

We de�ne the parents of a vertex u to be the vertices v such that (v, u) is a
directed edge of G. Our algorithm for ThOP on DAGs is shown in Algorithm
1.

3.1. Pro�t Table

Let S be a subset of items. In the sequel, we de�ne the travel time of S
to a vertex u as the minimum time needed by the thief to collect all items in
S while travelling along a simple path psu from s to u that includes all the
vertices storing the items in S. Path psu is called a fastest path of S to u.
Additionally, we de�ne the total travel time of S as the travel time of S to t

6
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Algorithm 1 ThOPDAG(G = (V,E),W, T, s, t, I, δ)
1: Input: DAG G, knapsack capacity W , time limit T , start vertex s, end

vertex t, vertex item assignments I, and minimum velocity δ.
2: Output: An optimum solution for ThOP.
3: Delete from G vertices unreachable from s and vertices that cannot reach

t.
4: Compute a topological ordering for G.
5: Index V by increasing topological ordering and index items as described

above.
6: Let A be an empty pro�t table. Set A[1] = (0, 0, 0,−1).
7: for i = s .index to t .index do

8: Let u be the vertex with index i.
9: Call UpdateProfitTable(W,T, δ, A, u).
10: end for

11: Return BuildKnapsack(A, I).

and the total travel time of S through u as the travel time of S to t using a
simple path that includes u.

De�nition 1. Let Sz = {i1, ..., iz} for all z = 1, ..., |I|, and let vertex u hold
item iz. A subset S of Sz is a feasible subset with respect to u if it has weight
wS =

∑
ij∈S wj ≤ W and total travel time through u at most T .

Our algorithm builds a pro�t table A where each entry A[j], for j =
1, ..., |I|, corresponds to the item ij with index j, and A[j] is a list of tu-
ples (w, p, time, prev). Let u be the vertex that contains item ij; a tuple
(w, p, time, prev) in the list of A[j] indicates that there is a subset S of Sj
such that:

� the weight of the items in S is w ≤ W ,

� the pro�t of the items in S is p,

� the travel time of S to u is time ≤ T ,

� a fastest path of S to u includes a vertex storing iprev. Note that item
iprev does not need to be in S.

7
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A tuple (w, p, time, prev) dominates a tuple (w′, p′, time′, prev′) if p ≥ p′,
w ≤ w′, and time ≤ time′. We remove dominated tuples from each list of
A such that no tuple in the list of each entry A[j] dominates another tuple
in the same list. Therefore, we can assume each list A[j] has the following
properties: (i) the tuples are sorted in non-decreasing order of their pro�ts,
(ii) there might be multiple tuples with the same pro�t and these tuples are
sorted in non-decreasing order of their weights, and (iii) if several tuples in
A[j] have the same pro�t p and weight w, only the tuple with the smallest
value of time is kept in A[j].

3.2. UpdatePro�tTable

Algorithm 2 shows how we update the pro�t table with the items stored
in vertex u. The start vertex s ∈ V has no parents and holds a single
item i1 of weight and pro�t 0; therefore, we initialize A[1] to store the tuple
(0, 0, 0,−1).

When two (or more) di�erent paths from s to t are routed through some
intermediate vertex u, it is vital that subsets of items corresponding to each
of the paths are recorded correctly: The entries in the pro�t table A must
represent the item subsets of each path from s to u, but none of the tuples
in A should contain information from items stored in vertices from disjoint
sections of two di�erent paths.

Every item is stored in a unique vertex; therefore, by including in each
tuple (w, p, time, prev) the value prev, which indicates that the tuple was
built using a tuple from the entry A[prev] corresponding to item iprev, the
pro�t table stores the necessary information to determine which of the par-
ents of a vertex u were used to create the tuples at entries A[j] of the items
ij stored in u.

Observe that travel times need to be computed when creating the tuples
for the �rst item of a vertex u; however, this travel time is the same for the
tuples corresponding to the other items stored in u.

3.2.1. Selecting a Solution from the Pro�t Table

Recall that the vertex with the largest index is t; therefore, t is visited
last by Algorithm 1 and its last item i|I| corresponds to the �nal entry in
the pro�t table A. Therefore, after executing Algorithm 1 the last entry
in A contains the list of all dominating tuples whose weights are at most
W and total travel times are at most T . Within this list there exists a
tuple (w∗, p∗, time∗, prev∗) with maximum pro�t, and this tuple represents a

8
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Algorithm 2 UpdatePro�tTable(W,T, δ, A, u)
1: Input: Knapsack capacity W , time limit T , minimum velocity δ, pro�t

table A, and vertex u.
2: Output: The entries of the pro�t table A corresponding to u's items are

updated to represent the subsets of items found along all paths from s
to u.

3: for each item ij of u do

4: Let w be the weight and p the pro�t of ij.
5: if ij is u's �rst item then

6: A[j] = ∅.
7: for each parent v of u do

8: Let idv be the index of v's last item.
9: for each (w′, p′, time′, prev′) ∈ A[idv] do
10: Let du,v be the distance from v to u.
11: Let η = 1− (1− δ)w′/W .
12: Let travel = du,v

η
.

13: if time′ + travel ≤ T then

14: Append (w′, p′, time′ + travel, idv) to A[j].
15: end if

16: end for

17: end for

18: else

19: Copy all tuples of A[j − 1] into A[j].
20: For each tuple (w′, p′, time′, prev′) in A[j], prev′ = j − 1.
21: end if

22: for each (w′, p′, time′, prev′) ∈ A[j] do
23: if w + w′ ≤ W then

24: Append (w + w′, p+ p′, time′, prev′) to A[j].
25: end if

26: end for

27: Remove dominated tuples from A[j].
28: end for

feasible subset S of S|I| with respect to t with maximum pro�t. Algorithm 3
shows how to recover S from the information stored in the pro�t table.

Algorithm 3 considers one item at a time, starting with t's last item i|I|
and determines whether i|I| belongs in the solution. The next item considered

9
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Algorithm 3 BuildKnapsack(A, I )
1: Input: Pro�t table A and vertex item assignments I.
2: Output: The subset of items along a simple path from s to t with the

most pro�t.
3: path = ∅, knapsack = ∅.
4: Let j = |I|, the index of t's last item, and let u = t.
5: Let (w, p, time, prev) be the tuple with maximum pro�t from A[j].
6: while j ≥ 0 do
7: Let η = 1− (1− δ)w/W .
8: If u /∈ path, prepend u to path.
9: Let wj be the weight of item ij with index j and pj be its pro�t.
10: if u is the vertex where the item with index j − 1 is located then
11: if a tuple (w, p, time, prev′) is in A[j − 1] then
12: (w, p, time, prev) = (w, p, time, prev′).
13: else

14: Append the item ij with index j to knapsack.
15: (w, p, time, prev) = (w − wj, p− pj, time, prev′).
16: end if

17: j = j − 1.
18: else

19: Let uα be the vertex where item prev is located.
20: Let duα,u be the distance from uα to u.
21: if a tuple (w, p, time′ = time− duα,u

η
, prev′) is in A[prev] then

22: j = prev.
23: (w, p, time, prev) = (w, p, time′, prev′).
24: else

25: Append the item ij with index j to knapsack.
26: j = prev.
27: (w, p, time, prev) = (w − wj, p− pj, time− duα,u

η
, prev′).

28: end if

29: end if

30: end while

31: return path.

by the algorithm is iprev∗ , and so on. Consider an item ij located at some
vertex u. Let entry A[j] contain a tuple τ = (w, p, time, prev). If item ij−1 is
also located at u, then a tuple (w, p, time, prev′) in A[j−1] indicates that ij is

10
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not in the (partial) solution corresponding to tuple τ . If A[j−1] corresponds
to an item not located at u, then let the vertex uα store item iprev; then a
tuple (w, p, time′, prev′) in A[prev] with time′ = time− duα,u

η
indicates that

ij was not used to create tuple τ .
If there is no tuple (w, p, time′, prev′) in A[j−1] (or A[prev]) as described

above then ij belongs in the (partial) solution corresponding to τ .

3.3. Algorithm Analysis

Recall that the items are indexed such that for two items with indices h
and j where h < j, item ih must belong to a vertex whose index is less than
or equal to the index of the vertex containing item ij.

To prove that our algorithm is correct we must prove that each entry
A[z] of the pro�t table is such that for every feasible subset S of Sz with
respect to the vertex holding item iz the entry A[z] contains either (i) a tuple
(wS, pS, timeS, prev), where wS =

∑
ij∈S wj, pS =

∑
ij∈S pj, and timeS is the

travel time of S to the vertex u storing iz, or (ii) a tuple (w′, p′, time′, prev′)
that dominates (wS, pS, timeS, prev). This implies that A contains a tuple
representing a simple path from s to t whose vertices store a maximum pro�t
set S∗ of items of weight at most W and total travel time at most T .

Lemma 1. Let 1 ≤ z ≤ |I| and let vertex u hold item iz. For each feasible
subset S of Sz with respect to u there is a tuple (w, p, time, prev) in the pro�t
table A at entry A[z] such that w ≤ wS =

∑
ij∈S wj and p ≥ pS =

∑
ij∈S pj.

Proof. We use a proof by induction on the number of entries of the pro�t
table A. The base case is trivial as there are only two feasible subsets of S1

with respect to s, and so A[1] stores the tuple (0, 0, 0,−1).
Assume that the lemma holds true for every feasible subset S of Sq with

respect to the vertex holding item iq for all q = 1, ..., z−1. Let S be a feasible
subset of Sz with respect to the vertex holding item iz; we show that there
is a tuple (w, p, time, prev) ∈ A[z] such that w ≤ wS and p ≥ pS. Let u be
the vertex storing iz. We consider two cases:

� Case 1: Item iz ∈ S. Let S ′ = S − {iz}.

� If iz is u's �rst item, let uα be a parent of u, let iα be the last
item at uα, and let timeα be the travel time of S ′ from uα to u.
By the induction hypothesis, there is a tuple (w′, p′, time′, prev′)
in A[α] such that w′ ≤ wS′ and p′ ≥ pS′ . Lines 7 to 17 and 22
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to 26 in Algorithm 2 consider all parents uα of u and add tuples
(w′ + wz, p

′ + pz, time′ + timeα, prev
′) to A[z] where w′ + wz ≤

wS′ + wz = wS, p′ + pz ≥ pS′ + pz = pS, and time′ + timeα ≤ T .

� If iz is not u's �rst item, then item iz−1 is also located at u. By
the induction hypothesis, there is a tuple (w′, p′, time′, prev′) in
A[z − 1] such that w′ ≤ wS′ and p ≥ pS′ . Lines 19 to 26 in
Algorithm 2 add the tuple (w′ + wz, p

′ + pz, time′, prev′) to A[z].

� Case 2: Item iz /∈ S. Since S is a feasible subset with respect to u, by
the induction hypothesis, either (i) there is a tuple (w, p, time, prev) in
A[z − 1] such that w ≤ wS and p ≥ pS that Algorithm 2 would have
copied to A[z] in lines 19-20 if iz is not u's �rst item, or (ii) there is a
tuple (w, p, time, prev) in A[α] (where iα is the last item in some vertex
uα as de�ned above) such that w ≤ wS and p ≥ pS that Algorithm 2
would have copied to A[z] in lines 7-17 if iz is u's �rst item.

4. PTAS for Thief Orienteering on DAGs

Algorithm 1 might not run in polynomial time because the size of the
pro�t table might become too large. We can convert Algorithm 1 into a
PTAS by carefully rounding down the pro�t and rounding up the weight and
travel times associated with each item.

Note that if we simply use rounded weights in the pro�t table described
in Section 3.1, then we might introduce a very large error to the travel times
computed by Algorithm 2. To prevent this, we modify the pro�t table so that
every entry A[j] holds a list of tuples (wr, wt, p, timer, prev), where each tuple
indicates that there is a subset S of Sj in which the sum of their rounded
weights is wr, the sum of their true weights is wt, the sum of their rounded
pro�ts is p, the rounded travel time of S to the vertex u holding item ij is
timer, and the path of S to u corresponding to this tuple includes the vertex
which contains iprev. Let Pmax be the maximum pro�t of an item that can be
transported within the allotted time T from the vertex that initially stored
it to the destination vertex. Our PTAS is described in Algorithm 4.

Algorithm UpdateProfitTable∗ is a slight modi�cation of Algorithm 2 that
is described in Algorithm 5. Travel times are rounded up to the nearest
multiple of ϵT

n
.

A tuple (wr, wt, p, timer, prev) dominates a tuple (w′
r, w

′
t, p

′, time′r, prev
′)

if p ≥ p′, wr ≤ w′
r, timer ≤ time′r, and wt ≤ w′

t. Therefore, we can assume

12
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Algorithm 4 ThOPDAGPTAS(G = (V ,E ),W, T, s, t, I, δ, ϵ)
1: Input: DAG G, knapsack capacity W , time limit T , start vertex s, end

vertex t, item assignments I, minimum velocity δ, and constant ϵ > 0.
2: Output: A solution for ThOP of pro�t at least (1− 3ϵ)OPT that uses

time at most T (1 + ϵ), where OPT is the value of an optimum solution.
3: Delete from G vertices unreachable from s and vertices that cannot reach

t.
4: Compute a topological ordering for G.
5: Index V by increasing topological ordering and index items as described

in Section 3.
6: Let K = 1

ϵ
.

7: Let S be the set of all feasible subsets S of S|I| with respect to t such
that |S| ≤ K.

8: for each S ∈ S do

9: Let A be an empty pro�t table. Set A[1] = (0, 0, 0, 0,−1).
10: Let W ′ = W −∑

ij∈S wj.
11: Round down the pro�t of each item in I −S to the nearest

multiple of ϵPmax

|I| .
12: Round up the weight of each item in I − S to the nearest

multiple of ϵW ′
|I|2 .

13: for i = s .index to t .index do

14: Let u be the vertex with index i.
15: Call UpdateProfitTable∗(W,T, δ, A, u, S).
16: end for

17: end for

18: Select the pro�t table A∗ storing the tuple with maximum pro�t.
19: Return BuildKnapsack(A∗, I).

each list A[j] has the following properties: (i) the tuples are sorted in non-
decreasing order of their rounded pro�ts, (ii) there might be multiple tuples
with the same rounded pro�t and these tuples are sorted in non-decreasing
order of their rounded weights, (iii) there might be multiple tuples with the
same rounded weight and these tuples are sorted in non-decreasing order of
their rounded travel times, and (iv) if several tuples in A[j] have the same
rounded values of pro�t, weight, and travel time, only the tuple with the
smallest true weight is kept in A[j].
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Algorithm 5 UpdatePro�tTable*(W,T, δ, A, u, S)
1: Input: Knapsack capacity W , time limit T , minimum velocity δ, pro�t

table A, vertex u, and item subset S.
2: Output: The entries of the pro�t table A corresponding to u's items are

updated to represent the subsets of items found along all paths from s
to u.

3: for each item ij of u do

4: Let wt, wr, and pr be the weight, rounded weight, and rounded pro�t
of ij, respectively. If ij ∈ S, set wr = wt and pr = pro�t of ij.

5: if ij is u's �rst item then

6: A[j] = ∅.
7: for each parent v of u do

8: Let idv be the index of v's last item.
9: for each (w′

r, w
′
t, p

′
r, time′r, prev

′) ∈ A[idv] do
10: Let du,v be the distance from v to u.
11: Let η = 1− (1− δ)w′

t/W .
12: Let travel = du,v

η
.

13: if time′r + travel ≤ T (1 + ϵ) then
14: Append (w′

r, w
′
t, p

′
r, t

′
r, idv) to A[j], where t′r is the

nearest multiple of ϵT
n

that is larger than or equal to
time′r + travel.

15: end if

16: end for

17: end for

18: else

19: Copy all tuples of A[j − 1] into A[j].
20: For each (w′

r, w
′
t, p

′
r, time′r, prev

′) in A[j], set prev′ = j − 1.
21: end if

22: for each (w′
r, w

′
t, p

′
r, time′r, prev

′) ∈ A[j] do
23: if wr + w′

r ≤ W then

24: Append (wr + w′
r, wt + w′

t, pr + p′r, time′r, prev
′) to A[j].

25: end if

26: end for

27: if ij ∈ S then remove tuples that do not include ij from A[j].
28: Remove dominated tuples from A[j].
29: end for
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4.1. PTAS Analysis

Since the weights of items are rounded up, the solution produced by
Algorithm 4 might have unused space where the algorithm could not �t any
rounded items. However, an optimal solution would not leave empty space
if there were items that could be placed in the knapsack while still travelling
from s to t in at most T time, so we need to bound the maximum pro�t lost
due to the rounding of the weights and pro�ts, and we also need to bound
the increase in travel time caused by the rounding.

Lemma 2. For any constant ϵ > 0, Algorithm 4 computes a feasible solution
with pro�t at least (1−3ϵ)OPT that uses travel time at most (1+2ϵ)T , where
OPT is the pro�t of an optimum solution.

Proof. Let SOPT be the set of items in an optimum solution and let OPT =∑
ij∈SOPT

pj. If |SOPT | ≤ K then Algorithm 4 computes an optimum solution;
hence, for the rest of the proof we assume that |SOPT | > K. Let SK be the
set of the K items with largest pro�t from SOPT , where K = 1

ϵ
, and let

W ′ = W −∑
ij∈SK

wj. Let SA be the set of items in the solution selected by
our algorithm, and let SOL =

∑
ij∈SA

pj.
In the sequel, we will use w′

j and p′j to refer to the rounded weight and
pro�t of item ij, and wj and pj to refer to the true weight and pro�t of item ij.
Given a set X of items let weight(X) =

∑
ij∈X wj, weight

′(X) =
∑

ij∈X w′
j,

profit(X) =
∑

ij∈X pj, and profit ′(X) =
∑

ij∈X p′j. We let profit ′(SK) =

profit(SK) and weight ′(SK) = weight(SK ).
For this proof a subset S of S|I| is feasible if weight

′(S) ≤ W and the total
travel time of S using the real weights of the items in S (not their rounded
weights) is at most (1 + ϵ)T . Recall that our algorithm considers solutions
that include every possible feasible subset of at mostK items in the knapsack.
Therefore, our algorithm must have included SK in the knapsack in one of
the iterations and �lled the remainder of the knapsack using the pro�t table.
Let S∗

A be the solution computed by our algorithm in the iteration where it
chose to include the items of SK in the knapsack, and let SOL∗ =

∑
ij∈S∗

A
pj.

Since our algorithm returns the best solution that it found over all iterations,
then SOL ≥ SOL∗.

To compare SOL∗ to OPT , we round up the weight of each item in
SOPT − SK to the nearest multiple of ϵW ′

|I|2 ; note that the weights and pro�ts
of the items in SK are not rounded.
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Rounding up the weight of a single item increases the weight of that item
by at most ϵW ′

|I|2 , so weight ′(SOPT ) ≤ weight(SOPT ) +
ϵW ′
|I| ≤ W + ϵW ′

|I| as
|SOPT | ≤ |I|. Let AOPT be a subset of SOPT −SK with weight ′(AOPT ) ≤ W ′

and maximum rounded pro�t.
Note that AOPT ∪SK is a feasible set of items. Let î1, î2, ..., îD be the set

of items in AOPT ∪SK listed in increasing order of index, and let Ĉj be the set
formed by the �rst j items of AOPT∪SK for all j = 0, 1, ..., D. We show that in
the entry of the pro�t table corresponding to item îj our algorithm must have
included a tuple τ ∗ = (w∗

r , w
∗
t , p

∗, time∗r, prev
∗) that corresponds to a feasible

subset such that w∗
t ≤ weight(Ĉj ), w∗

r ≤ weight ′(Ĉj), p∗ ≥ profit ′(Ĉj), and
time∗r is at most (1 + ϵ)timej + ϵT

mj

n
, where mj is the number of vertices in

the path selected by the optimum solution from s to the vertex u storing the
tuple τ and timej is the time needed by the optimum solution to transport
the items in Ĉj to u. To show that this tuple exists, we use a proof by
induction on the number of items in Ĉj.

The base case, when j = 0, so |Ĉ0| = 0, is trivial as our algorithm adds
to the pro�t table the entry (0, 0, 0, 0,−1). Assume then that the claim is
true for Ĉj with j < D. In Ĉj+1, îj+1 is the item with largest index. By the
induction hypothesis, there is an entry of the pro�t table corresponding to
îj storing a tuple τ ∗ = (w∗

r , w
∗
t , p

∗, time∗r, prev
∗) as above.

Let u be the vertex storing îj, v be the vertex storing îj+1, and let du,v
be the distance between u and v in the path P selected by OPT from s
to v. Our algorithm considers transporting the items corresponding to the
tuple τ ∗ from u to v and that would add a tuple (w′′

r , w
′′
t , p

′′, time′′r , prev
′′)

to the entry A[π(̂ij+1)] corresponding to item îj+1, where by the induction
hypothesis w′′

t = w∗
t ≤ weight(Ĉj). Since our algorithm removes dominated

tuples from the pro�t table, then entry A[π(̂ij+1)] must store a tuple τ∼ =
(w∼

r , w
∼
t , p

∼, time∼r , prev
∼) such that w∼

r ≤ w′′
r , w∼

t ≤ w′′
t , p∼ ≥ p′′, and

time∼r ≤ time′′r . Since w∼
t ≤ w′′

t ≤ weight(Ĉj), then the time time∼uv that
the thief needs to carry weight w′′

t from u to v following the path selected
by OPT is at most the time timeuv needed in the optimum solution to carry
the items in Ĉj from vertex u to vertex v.

In line 14 of Algorithm 5 we round the traveling times, and since a path
between u and v has muv ≤ n vertices, then the number of times that we
round traveling times when computing the tuples needed to produce τ∼ from
τ ∗ is mj + muv ≤ n and so time∼r ≤ time∗r + timeuv + ϵT muv

n
. Hence, by

the induction hypothesis, time∼r ≤ (1 + ϵ)timej + timeuv + ϵT
mj+muv

n
≤
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(1 + ϵ)timej+1 + ϵT
mj+muv

n
, where timej+1 = timej + timeuv is the time

needed by the optimum solution to transport Ĉj+1 from s to v.
After adding item îj+1 to the tuple τ∼ and removing duplicated tuples,

the pro�t table must include a tuple (w#
r , w

#
t , p

#, time#r , prev
#) such that

w#
r ≤ w+

r + weight ′(̂ii+j) ≤ weight ′(Ĉj+1), p# ≥ profit ′(Ĉj+1), time#r ≤
(1 + ϵ)timej+1 + ϵT

mj+muv

n
, and w#

t ≤ weight(Ĉj+1), as for tuples with the
same rounded weight, pro�t, and travel times the algorithm selects that with
smallest true weight.

Hence, our algorithm will compute a tuple (wr, wt, p, timer, prev), where
wr ≤ weight ′(AOPT ∪SK), wt ≤ weight(AOPT ∪SK), p ≥ profit ′(AOPT ∪SK),
and timer ≤ (1 + ϵ)timeD + ϵT n

n
≤ (1 + 2ϵ)T , where timeD ≤ T is the time

needed by the optimum solution to transport the items in AOPT ∪ SK from
s to t.

Since

SOL∗ ≥ p∗ ≥ profit ′(AOPT ∪ SK) (1)

we need to bound profit ′(AOPT ∪ SK).
Let S−

OPT = SOPT−SK−AOPT , this set includes the items in the optimum
solution whose pro�t is not included in the right hand side of (1). Note that
if S−

OPT is empty, then SK ∪ AOPT = SOPT and so SOL∗ ≥ profit ′(SOPT ). If
S−
OPT is not empty, we show that weight ′(S−

OPT ) ≤ ϵW ′
|I| +wL, where wL is the

largest weight of the items in S−
OPT . To see this, recall that weight

′(SOPT ) ≤
W + ϵW ′

|I| and note that weight(SK) + weight ′(AOPT ) ≤ W , but by the way
in which AOPT was de�ned the empty space that SK ∪ AOPT leave in the
knapsack is not large enough to �t the rounded weight of another item from
S−
OPT . Therefore,

weight ′(S−
OPT ) = weight ′(SOPT )− (weight(SK) + weight ′(AOPT ))

≤ W +
ϵW ′

|I| − (W − wL)

=
ϵW ′

|I| + wL

(2)

Now we bound profit ′(S−
OPT ). If S

−
OPT consists of only one item ij, then

since the least pro�table item in SK has pro�t at most 1
K
OPT and ij is

not in SK , then pj ≤ 1
K
OPT , which means that profit ′(S−

OPT ) ≤ 1
K
OPT =
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ϵOPT . If S−
OPT consists of two or more items, we can partition S−

OPT into
the singleton {iL} consisting of the item with largest weight wL and the set
i∗ of remaining items, which by (2) has weight ′(i∗) ≤ ϵW ′

|I| .

Item iL is not in SK , so it has pro�t pL ≤ 1
K
OPT . As for i∗ we show that

profit ′(i∗) ≤ 1
K
OPT :

� W ′−weight ′(AOPT ) <
ϵW ′
|I| = W ′

K|I| , as otherwise the items i∗ would have
been included in AOPT , and so

weight ′(AOPT ) =
∑

ij∈AOPT

w′
j > W ′ − W ′

K|I| >
K − 1

K
W ′, as |I| ≥ 1 (3)

� There is at least one item iψ in AOPT with w′
ψ ≥ W ′

K|I| . To see this, note

that if all of the items in AOPT had weight strictly less than W ′
K|I| , then∑

ij∈AOPT
w′
j <

W ′
K|I| |AOPT | < 1

K
W ′, as |AOPT | ≤ |I|, which contradicts

(3).

� By de�nition, AOPT includes items from SOPT−SK with weight ′(AOPT ) ≤
W ′ and maximum pro�t, and since the items i∗ are not in AOPT

then profit ′(i∗) ≤ p′ψ, as otherwise the items i∗ would be in AOPT

instead of iψ. Since item iψ is not in SK then p′ψ ≤ 1
K
OPT and so

profit ′(i∗) ≤ 1
K
OPT .

Therefore, profit ′(S−
OPT ) = profit ′(iL)+profit ′(i∗) ≤ 2

K
OPT . Since SOPT =

SK∪AOPT∪S−
OPT then profit ′(AOPT )+profit ′(SK) = profit ′(SOPT )−profit ′(S−

OPT ) ≥
profit ′(SOPT )− 2

K
OPT . By (1),

SOL∗ ≥ profit ′(AOPT ) + profit ′(SK)

≥ profit ′(SOPT )−
2

K
OPT

≥ profit(SOPT )−
ϵPmax
|I| |SOPT | −

2

K
OPT

≥ OPT − ϵPmax − 2ϵOPT ≥ (1− 3ϵ)OPT

Since SOL ≥ SOL∗, then SOL ≥ (1− 3ϵ)OPT .

Theorem 3. There is a PTAS for ThOP on DAGs that produces solutions
with travel time at most T (1 + ϵ) for any constant ϵ > 0.

18

Chapter 4 – Paper 2: Thief Orienteering on Directed Graphs 94



Proof. As shown by Lemma 2, Algorithm 4 computes solutions with pro�t at
least (1−3ϵ)OPT . The pro�t table A has |I| entries, and each entry A[j] can
have at most O(PrWrTr) tuples, where Pr is the number of di�erent values
for the rounded pro�t of any subset of items, Wr is the number of di�erent
values for the rounded weight of any subset of items of total weight at most
W , and Tr is the maximum number of rounded travel times. Since pro�ts
are rounded down to the nearest multiple of ϵPmax

|I| then Pr is O( |I|
2

ϵ
). Since

weights of items not in the selected feasible subsets S are rounded up to the
nearest multiple of ϵW ′

|I|2 , then Wr is O( |I|
2

ϵ
); Tr is O(n

ϵ
).

Algorithm 4 iterates through the list at each entry A[j] exactly once if ij
is not the last item in a vertex u; if ij is the last item in a vertex u, then our
algorithm iterates through the list at entry A[j] once for each outgoing edge of
u. Thus, for each feasible subset S with at most K items the algorithm loops
through |I| rows in the pro�t table, iterates over a particular row at most
n = |V | times, and each row can have at most O( |I|

4n
ϵ3

) tuples in it; since the
number of feasible subsets S is O(|I| 1ϵ ) the running time is O(n

2

ϵ3
|I|5+ 1

ϵ ).

Corollary 2. There is a PTAS for ThOP on DAGs when Vmin = Vmax that
produces solutions with travel time at most T .

Proof. Without loss of generality we can assume that Vmin = Vmax = 1, so the
travel time between vertices u and v is du,v. Therefore, in Algorithms 4 and 5
we do not need to keep rounded travel times or real item weights in the tuples.
Hence, a tuple (wr, p, time, prev) dominates a tuple (w′

r, p
′, time′, prev′) if

p ≥ p′, wr ≤ w′
r, and time ≤ time′. Since the algorithm now uses real travel

times, the solution produced by the algorithm uses total travel time at most
T .

5. Thief Orienteering on Undirected Graphs

In this section we consider the case when the input graph G = (V,E) is
undirected and has integer edge lengths of at least 1 and Vmin = Vmax. Notice
that if Vmin = Vmax the travel time for any edge is equal to the length of the
edge and it is independent of the weight of the items in the knapsack. First,
we consider when T is equal to the length L of a shortest path from s to t.

Theorem 4. There is a FPTAS for ThOP where Vmin = Vmax and the time
T is equal to the length L of a shortest path from s to t.
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Proof. Delete from G every edge (u, v) that does not belong to a shortest
path from s to t. If the input graph G is undirected, direct the remaining
edges towards the endpoint closer to t. Note that G is now a DAG. We
modify Algorithm 1 so that it rounds down the pro�t of each item to the
nearest multiple of ϵPmax

|I| , and a tuple with pro�t p dominates a tuple with
pro�t p′ if p ≥ p′ and w ≤ w′. Observe that since the paths from s to
t are shortest paths, the travel times for both of these tuples must be the
same, and hence the weights and travel times of the items do not need to be
rounded up.

Furthermore, this modi�ed Algorithm 1 does not need to consider all
possible feasible subsets S of at most K items because in Section 4 we needed
to consider all these subsets to bound the maximum pro�t loss due to the
rounding of the weights. Hence, this modi�ed Algorithm 1 is a FPTAS.

In the rest of this section we show that Theorem 4 can be extended to
the case when T = L+K, where K > 0 is a integer constant. In the sequel
we assume that the input graph is undirected. It is not hard to see how our
ideas can be extended to directed graphs. Note that when T = L + K we
cannot simply transform G into a DAG using the same process as described
in the proof of Theorem 4, as in this version of the problem a feasible solution
might include edges that do not belong to a shortest path between s and t.

Let u.dist be the shortest distance from vertex u to t, let σ be a path
from s to t with length at most L + K, and let the vertices in σ be s =
u1, u2, u3, ..., u|σ| = t. If σ includes an edge (ui, ui+1) that does not belong
to any shortest path from ui to t or, more formally, if ui.dist < ui+1.dist +
dui,ui+1

, then we say that (ui, ui+1) is part of a detour.

De�nition 2. A simple path σ from s to t decomposes into a unique list
D = D1, D2, ..., DnD

of vertex disjoint detours, where D might be empty.
Each detour Di forms a longest subpath of σ where no edge (u, v) of Di

belongs to a shortest path from u to t, for all i = 1, 2, ..., nD. All edges (u, v)
in σ that do not belong to a shortest path from u to t belong to exactly one
detour; hence, the list D is unique.

We show a few examples of detours in Figure 2; note that we have omitted
the items information. Next, we show that the number of edges that belong
to detours is at most the constant K. This fact will help us to reduce the
running time of our algorithm, as it enumerates all possible sets of detours.
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Figure 2: Let σ be the path from s to t that includes the blue edges. The red edges belong
to a shortest path (of length s.dist = 100) between s and t, the green edges belong to a
shortest path (of length v3.dist = 50) between v3 and t, and the purple edge belongs to a
shortest path (of length v5.dist = 60) between v5 and t. The path σ decomposes into the
unique list D = D1, D2 of detours where D1 = {s, v2} and D2 = {v3, v5, v6}.

Lemma 3. A simple path σ from s to t of length at most L+K has at most
K edges (u, v) such that (u, v) is in a detour.

Proof. We use a proof by contradiction. Assume that path σ from s to
t of length at most L + K includes edges (u1, v1), (u2, v2), ..., (ua, va) with
a > K that do not belong to any shortest path from ui to t. Let ℓ(u, v)
be the length of the subpath of σ from u to v and let ua+1 = t. Then
dui,vi+ℓ(vi, ui+1)+ui+1.dist > ui.dist, for all i = 1, 2, ..., a. Since ℓ(ui, ui+1) =
dui,vi + ℓ(vi, ui+1) then ℓ(ui, ui+1) ≥ ui.dist − ui+1.dist + 1 as all edges have
length at least 1.

Therefore, ℓ(s, t) = ℓ(s, u1) +
∑a

i=1 ℓ(ui, ui+1) ≥ ℓ(s, u1) +
∑a

i=1(ui.dist−
ui+1.dist + 1) = ℓ(s, u1) + u1.dist + a ≥ L + a. Since the length ℓ(s, t) of σ
is at most L+K but a > K then we have reached a contradiction.

Corollary 3. A simple path σ from s to t of length at most L+K decomposes
into a list D containing at most K detours.

Note that by the de�nition of a detour, for a simple path σ from s to t the
edges (u, v) that do not belong to any detours must belong to a shortest path
from u to t. We show next how to decompose σ into alternating subpaths
of detours and subpaths that are shortest paths between their �rst and last
vertices.
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Corollary 4. A simple path σ from s to t of length at most L+K decomposes
into subpaths σ = P1, D1, P2, D2, ..., Pr, Dr, Pr+1 where r ≤ K, each Di is a
detour, and each Pi is a shortest path between its �rst and last vertices.

Proof. Let Pi = ui1 , ui2 , ..., uie . Each edge (uij , uij+1
) is in a shortest path

from ui to t as otherwise the edge would belong to a detour. Hence, uij .dist =
duij ,uij+1

+ uij+1
.dist for each i = 1, ..., e − 1. Therefore, the length of Pi is∑e−1

j=1 duij ,uij+1
=

∑e−1
j=1(uij .dist− uij+1

.dist) = ui1 .dist− uie .dist and thus Pi
is a shortest path between ui1 and uie .

The remaining subpaths in σ are the detours D1, D2, ..., DnD
and by

Corollary 3, nD ≤ K.

In the sequel we say that a path σ from s to t decomposes into a list D
of detours.

5.1. Building the Lists of Detours

We de�ne the pro�t of a path as the maximum pro�t achievable by col-
lecting items of total weight at most W along that path.

Let σ∗ be a simple path from s to t with maximum pro�t of length at
most L+K. If σ∗ is a shortest path from s to t, then Theorem 4 provides an
FPTAS for it. Hence, in the sequel we assume that σ∗ is not a shortest path
from s to t, and so it must have at least one detour. The path σ∗ decomposes
into a unique list D∗ = D∗

1, D
∗
2, ..., D

∗
nD∗ of nD∗ detours, where n∗

D ≤ K (by
Corollary 3), D has at most K edges (by Lemma 3), and the subpaths of σ∗

that do not belong to any detours are shortest paths between their �rst and
last vertices (by Corollary 4).

Since we do not know how many detours are in D∗, or which vertices are
in each of them, our algorithm to compute a path σ from s to t of length at
most L+K and near maximum pro�t will generate the set D of all possible
valid lists of detours as shown in Algorithm 6.

De�nition 3. A list D of detours D1, D2, ..., DnD
is valid if there exists a

simple path σ from s to t of length at most L+K that decomposes into D.

Note that D∗ must be included within the set D computed by Algorithm
6. For each listD ∈ D we will create a DAG GD containing all the paths from
s to t of length at most L+K that go through the detours in D. Algorithm
4 will then be used on these DAGs, and the highest pro�t path found will be
output.
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Algorithm 6 GenerateDetours(G = (V ,E ))

1: Input: Graph G.
2: Output: The set D of all valid detours for paths from s to t in G.
3: Let D = ∅.
4: for each subset SV of V such that 2 ≤ |SV | ≤ 2K do

5: for nD = 1 to K do

6: for each possible partitioning of SV into a list D of nD detours do
7: Compute a shortest path σ from s to t inG that decomposes

into D.
8: if σ has length at most L+K then

9: D = D ∪D.
10: end if

11: end for

12: end for

13: end for

14: Output D.

5.2. Transforming the Problem into a Shortest Paths Problem

We transform the problem of �nding in a given graph G a simple path
with maximum pro�t from s to t of length at most L+K into the problem of
�nding in a collection of directed graphs shortest paths with maximum pro�t
from s to t. We create a graph GD from G with the following properties:
(i) for each simple path σ in G from s to t of length at most L + K that
decomposes into a valid list D of detours there is an equivalent shortest path
in GD from s to t, and (ii) for every shortest path from s to t in GD there is
an equivalent simple path σ in G of length at most L+K that decomposes
into a valid list D of detours.

De�nition 4. An undirected path σ from s to t in G and a directed path σD
from s to t in GD are equivalent if they include the same vertices and edges.

To ensure that all paths in G from s to t that travel through D are
shortest paths in GD we will carefully reduce the lengths of the edges in D
(allowing some of them to have negative lengths) so that a shortest path in
GD must travel through D. Algorithm 7 describes how to construct GD. For
any detour Di in D, an internal vertex of Di is any vertex that is not the
�rst or last vertex of Di.
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Algorithm 7 DetourToDAG(G = (V ,E ), D, s, t, I)

1: Input: Graph G, valid list of detours D, start vertex s, end vertex t,
and item assignments I.

2: Output: A DAG GD containing paths from s to t equivalent to the
paths from s to t in G that travel through all of the detours in D.

3: Let GD be a copy of G, with the same item assignments I.
4: For each vertex u ∈ GD compute u.dist.
5: for each internal vertex ui ∈ Di, for all Di ∈ D do

6: Delete from GD all edges incident on ui except for (ui−1, ui)
and (ui, ui+1), where ui−1 is the vertex preceding ui in Di

and ui is the vertex preceding ui+1 in Di.
7: end for

8: Let σ be a simple path from s to t that decomposes into D.
9: for each Di ∈ D do

10: Direct the edges in Di from its �rst to its last vertex according to the
order in which the vertices appear in σ.

11: end for

12: Index the directed edges ED = e1, e2, ..., emD
of the detours in D in the

order they appear in σ.
13: for directed edge ei with endpoints (ui, vi), for all i = 1, 2, ...,mD do

14: dui,vi = ui.dist− vi.dist− 1.
15: end for

16: Delete any edges (u, v) in GD that do not belong to any detours of D
such that u.dist = v.dist.

17: Direct any remaining undirected edges in GD towards the endpoint closer
to t.

18: Output the DAG GD.

Corollary 5. Let D be a valid list of detours. For each simple path σ in
G from s to t that decomposes into D, the graph GD output by Algorithm 7
contains all the edges of σ and hence σ is a path in GD from s to t.

Proof. Recall that a path σ in G from s to t that decomposes into D has the
form P1, D1, P2, D2, ..., Pr, Dr, Pr+1, where each Di is a detour in D and each
Pj is a shortest path between its �rst and last vertices for all i = 1, 2, ..., r and
j = 1, 2, ..., r+1. Since initially GD was a copy of G and the only edges that
are deleted from GD are edges not in detours incident on internal vertices of
detours or edges (u, v) not in D for which u.dist = v.dist, then all the edges
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of σ are also directed in GD.

Let σ be a simple path from s to t in G of length at most L + K that
decomposes into the non-empty valid list D = D1, D2, ..., DnD

of detours and
let GD be the graph output by Algorithm 7. By Corollary 5, σ is a path in
GD from s to t. To avoid confusion, let σD denote the directed version of
path σ when referring to the graph GD. For any two vertices u and v of σ,
let ℓ(u, v) be the length of the subpath in σ between u and v and let ℓD(u, v)
be the length of the subpath in σD between u and v. Let d′u,v be the length of
edge (u, v) in GD. For a vertex u, let u.dist be the length of a shortest path
in G from u to t; note that Algorithm 7 does not change the value u.dist,
the algorithm only modi�es the lengths of edges in GD and not those in G.

Let ED = e1, e2, ..., emD
be the list of all edges in D in the order in which

they appear when σD is traversed from s to t. We will prove in the next lemma
that for edge ez with endpoints (uz, vz), ℓD(s, vz) = s.dist − vz.dist − z, for
all z = 1, 2, ...,mD.

Lemma 4. Let σ be a simple path from s to t in G of length at most L+K
that decomposes into the non-empty valid list D of detours, let GD be the
graph output by Algorithm 7, and let σD denote the directed version of path
σ when referring to the graph GD. Let ED = e1, e2, ..., emD

be the list of all
edges in D in the order in which they appear when σD is traversed from s to
t. For edge ez with endpoints (uz, vz), ℓD(s, vz) = s.dist− vz.dist− z, for all
z = 1, 2, ...,mD.

Proof. We use a proof by induction on the edges in ED. For the base case
we consider the �rst edge e1 with endpoints (u1, v1). In line 14 of Algorithm
7 edge (u1, v1) is assigned length d′u1,v1 = u1.dist − v1.dist − 1 (note that in
GD we allow negative lengths but only for the edges in the detours). By
Corollary 4, ℓ(s, u1) = s.dist − u1.dist (as the subpath of σ from s to u1 is
a shortest path between s and u1) and since all edges in the subpath of σD
from s to u1 have the same lengths as the corresponding edges in σ, then
ℓD(s, u1) = s.dist − u1.dist, and since ℓD(s, v1) = ℓD(s, u1) + d′u1,v1 , then
ℓD(s, v1) = s.dist− u1.dist+ u1.dist− v1.dist− 1 = s.dist− v1.dist− 1.

Assume now that the claim holds true for every edge eq in ED with
endpoints (uq, vq), for all q = 1, 2, ..., j − 1, so that ℓD(s, vq) = s.dist −
vq.dist − q. We show for the edge ej in ED with endpoints (uj, vj) that
ℓD(s, vj) = s.dist− vj.dist− j.
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Edge ej with endpoints (uj, vj) is assigned length d′uj ,vj = uj.dist −
vj.dist − 1 in line 14 of Algorithm 7. Let ej be part of detour Di. We
need to consider two cases:

� Case 1: Edge ej is the �rst edge of Di. Since ℓD(s, vj) = ℓD(s, vj−1) +
ℓD(vj−1, uj) + d′uj ,vj , by the induction hypothesis ℓD(s, vj−1) = s.dist−
vj−1.dist−(j−1). By Corollary 4 ℓ(vj−1, uj) = vj−1.dist−uj.dist (as the
subpath of σ from vj−1 to uj is a shortest path between these vertices)
and all edges in the subpath of σD from vj−1 to uj have the same lengths
as the corresponding edges in σ, then ℓD(vj−1, uj) = vj−1.dist−uj.dist.
Since d′uj ,vj = uj.dist− vj.dist− 1, then ℓD(s, vj) = s.dist− vj−1.dist−
(j−1)+ vj−1.dist−uj.dist+uj.dist− vj.dist−1 = s.dist− vj.dist− j.

� Case 2: Edge ej is not the �rst edge of Di. Since ℓD(s, vj) = ℓD(s, uj)+
d′uj ,vj , and by the induction hypothesis ℓD(s, uj) = s.dist − uj.dist −
(j−1), then ℓD(s, vj) = s.dist−uj.dist−(j−1)+uj.dist−vj.dist−1 =
s.dist− vj.dist− j.

Corollary 6. Let σ be a simple path from s to t in G of length at most
L+K that decomposes into the non-empty valid list D = D1, D2, ..., DnD

of
detours and let GD be the graph output by Algorithm 7. The path σD in GD

has length L−mD, where mD is the number of edges in D.

Proof. Let ED = e1, e2, ..., emD
be the list of all edges in D in the order in

which they appear when σD is traversed from s to t. By Lemma 4 for edge ez
with endpoints (uz, vz), ℓD(s, vz) = s.dist−vz.dist−z, for all z = 1, 2, ...,mD.
Then, since ℓD(s, t) = ℓD(s, vmD

) + ℓD(vmD
, t), where emD

= (umD
, vmD

) and
by Corollary 4 ℓ(vmD

, t) = vmD
.dist (as the subpath of σ from vmD

to t
contains no edges that belong to a detour) and since the edges in the subpath
of σD from vmD

to t have the same lengths as the corresponding edges in σ,
then ℓD(vmD

, t) = vmD
.dist; therefore, σD has length ℓD(s, t) = ℓD(s, vmD

) +
ℓD(vmD

, t) = s.dist−vmD
.dist−mD+vmD

.dist = s.dist−mD = L−mD.

By Lemma 4 and Corollary 6, we can see that the length of a shortest
path in GD from s to t is less than the length of a shortest path in G from
s to t. This is important, because we do not want the shortest paths in G
from s to t which do not decompose into D to also be shortest paths in GD

from s to t. We show that all the shortest paths in GD from s to t must
decompose into D as this is critical to our algorithm.
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Lemma 5. Let σ be a simple path from s to t in G of length at most L+K
that decomposes into the non-empty valid list D = D1, D2, ..., DnD

of detours
and let GD be the graph output by Algorithm 7. The path σD is a shortest
path in GD from s to t and every shortest path in GD from s to t decomposes
into D.

Proof. By Corollary 6, the path σD in GD from s to t that corresponds to
the path σ has length L−mD, where L is the length of a shortest path in G
and mD is the number of edges in D.

Assume, for the sake of contradiction, that there exists a path σ′
D in GD

from s to t with length smaller than L−mD. Since there are only mD edges
that belong to detours, and the edges in σ′

D that belong to detours are the
only edges whose lengths were changed with respect to the lengths of the
edges in the corresponding path σ′ in G, then it must be the case that for
some detour edge (u, v) the algorithm set its length to a value smaller than
u.dist−v.dist−1. However, this is not possible because line 14 of Algorithm
7 sets the length of each detour edge (u, v) to u.dist− v.dist− 1, and so σD
is a shortest path from s to t in GD.

Additionally, assume for the sake of contradiction, that there exists a
shortest path σ′

D in GD from s to t that does not include all the edges in D.
Since only mD edges belong to detours, and the edges in GD that belong to
detours are the only edges whose lengths were changed with respect to the
lengths of the corresponding edges in G, then it must be the case that for
some detour edge (u, v) the algorithm set its length to a value smaller than
u.dist−v.dist−1. However, this is not possible because line 14 of Algorithm
7 sets the length of each detour edge (u, v) to u.dist−v.dist−1, and so every
shortest path in GD from s to t decomposes into D.

Corollary 7. Let D be a valid list of detours in G. For the graph GD output
by Algorithm 7 corresponding to D (i) for every path σ′ from s to t in G of
length ∆ ≤ L + K that decomposes into D, GD has an equivalent shortest
path σ′

D from s to t that decomposes into D and (ii) for every shortest path
σ′
D from s to t in GD there is an equivalent path σ′ from s to t in G of length

∆ ≤ L+K that decomposes into D.

Proof. (i) Let σ′ be a path from s to t in G of length ∆ ≤ L + K that
decomposes into D. By Corollary 5 σ′ is also a path of GD from s to t that
decomposes into D, and by Lemma 5 σ′ is a shortest path in GD from s to t.
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Since GD has the same vertices, edges, and item assignments as G then the
two paths σ′ in G and GD are equivalent.

(ii) By Lemma 5, σ′
D decomposes into D. Since Algorithm 7 initially

creates GD by copying G and it does not add any extra edges to GD, then
σ′
D is also a path in G from s to t that decomposes into D. Since D is a valid

list of detours, then the length of the path σ′
D in G is at most L+K.

Algorithm 8 ThOPLengthLPlusK(G = (V ,E ),W, T,K, s, t, I, ϵ)

1: Input: Graph G, knapsack capacity W , time limit T ≤ L+K, constant
K, start vertex s, end vertex t, item assignments I, and constant ϵ > 0,
where L is the length of a shortest path from s to t.

2: Output: A path with length at most T from s to t with pro�t at least
(1− ϵ) times the maximum possible pro�t.

3: Let bestPath be an empty path.
4: Let D be the set of all possible valid lists of detours as described in

Section 5.1.
5: for each D ∈ D do

6: GD = DetourToDAG(G ,D , s , t , I ).
7: Let D have mD edges and let T ′ = L−mD.
8: path = ThOPDAGPTAS ∗(GD ,W ,T ′, s , t , I , 1 , ϵ).
9: if pro�t of path > pro�t of bestPath then

10: bestPath = path.
11: end if

12: end for

13: Return bestPath.

Our algorithm for ThOP where Vmin = Vmax and the time T is equal to
the length L of a shortest path from s to t plus a constant K is described in
Algorithm 8. Since some edges in GD might have negative lengths algorithm
ThOPDAGPTAS ∗ uses a slightly modi�ed UpdateProfitTable algorithm that
discards the condition time′ + travel ≤ T on line 13 of Algorithm 2. There-
fore, the pro�t tables produced by Algorithm ThOPDAGPTAS ∗ might con-
tain infeasible solutions whose total travel time is greater than T , but this
is not a problem since we select the best solution that does not exceed the
time limit T .

Theorem 5. There is a FPTAS for ThOP where Vmin = Vmax and the time
T is equal to the length L of a shortest path from s to t plus a constant K.
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Proof. Let σ∗ be a path from s to t with length ∆ ≤ L+K with maximum
pro�t, and let D∗ be the list of detours that σ∗ decomposes into. The list
D∗ is valid; therefore, since Algorithm 8 considers all possible valid lists
of detours, then Algorithm 8 considers the list of detours D∗ in one of its
iterations.

By Corollary 4 and Corollary 7 the problem of �nding a path in G from
s to t that decomposes into the list D of detours, has length at most L+K,
and has maximum pro�t is equivalent to �nding a shortest path in GD from
s to t with maximum pro�t. For every valid list of detours, and in particular,
for the list D∗, Algorithm 8 �nds a path in G from s to t that decomposes
into D∗, has length at most L+K, and has pro�t at least (1−ϵ)OPT , where
OPT is the value of an optimum solution.

Note that when the pro�t tables produced by Algorithm ThOPDAGPTAS ∗

contain multiple tuples with the same pro�t, only the tuple with the small-
est weight is kept in the pro�t table, as Vmin = Vmax and paths from s
to t are shortest paths and so the travel time times for these tuples must
be the same, and hence the weights and travel times of the items do not
need to be rounded up; therefore, each pro�t table produced by Algorithm
ThOPDAGPTAS ∗ has at most O(Pr) tuples, where Pr is the number of dif-
ferent values for the rounded pro�t of any subset of items. Moreover, since
the item weights are not rounded then Algorithm ThOPDAGPTAS ∗ does
not need to iterate over all possible subsets using at most K items. Hence,
Algorithm ThOPDAGPTAS ∗ has time complexity O(n|I|2).

Furthermore, the number of possible lists of detours is polynomial with
respect to the constant K and verifying whether a list of detours is valid
requires computing a constant number of shortest paths, so Algorithm 8 is a
FPTAS.

6. Thief Orienteering on Cliques

In this section we study a version of ThOP where the graph is a clique,
every edge has length 1, and Vmin = Vmax so the travel time of an edge does
not depend on the current load in the backpack. A clique is a graph where
every pair of vertices is connected by an edge. Observe that solving ThOP
on a clique is equivalent to �nding the T − 1 vertices that a path σ from s
to t in G should include for the thief to collect items of maximum value and
total weight at most W .
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Note that since all edges have length 1 and Vmin = Vmax, the order in
which a path σ traverses the vertices does not matter when computing the
best path. Therefore, we index the vertices in V from 1 to |V | assigning to
s index 1 and t index |V |.

6.1. Clique Pro�t Table

De�nition 5. Let Sz = {i1, ..., iz} for all z = 1, ..., |I|, and let vertex u hold
item iz. A subset S of Sz is a feasible subset (for ThOP on cliques) if it has
weight wS =

∑
wj ≤ W and the items in S belong to a most T − 1 di�erent

vertices.

Our algorithm builds a clique pro�t table where each entry A[j], for j =
1, ..., |I|, corresponds to the item ij with index j, and A[j] is a list of tuples
(w, p, ν). A tuple (w, p, ν) in the list of A[j] indicates that there is a subset
S of Sj such that:

� the items in S are stored in the vertices in ν, where |ν| ≤ i,

� the weight of the items in S is w ≤ W , and

� the pro�t of the items in S is p.

A tuple (w, p, ν) dominates a tuple (w′, p′, ν ′) if p ≥ p′, w ≤ w′, and
|ν| ≤ |ν ′|. We remove dominated tuples from each list of A such that no
tuple in the list of each entry A[j] dominates another tuple in the same list.
Therefore, we can assume each list A[j] has the following properties: (i) the
tuples are sorted in non-decreasing order of their pro�ts, (ii) there might
be multiple tuples with the same pro�t and these tuples are sorted in non-
decreasing order of their weights, and (iii) if several tuples in A[j] have the
same pro�t p and weight w, only the tuple with the smallest value of |ν| is
kept in A[j].

6.2. Computing the Clique Pro�t Table

Algorithm 9 shows how we update the clique pro�t table with the items
stored in vertex u. The start vertex s holds a single item i1 of weight and
pro�t 0; therefore, we initialize A[1] to store the tuple (0, 0, ∅).
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Algorithm 9 UpdateCliquePro�tTables(W,T,A, u)
1: Input: Knapsack capacity W , time T , clique pro�t table A, and vertex

u.
2: Output: The entries of the clique pro�t table are updated to represent

the subsets of items taken from at most T − 1 vertices along a path from
s to t that routes through u.

3: for each item ij of u do

4: Let w be the weight and p the pro�t of ij.
5: Copy all tuples of A[j − 1] into A[j].
6: for each tuple (w′, p′, ν ′) ∈ A[j] do
7: if (u ∈ ν ′) OR (u /∈ ν ′ AND |ν ′| < T − 1) then
8: if w + w′ ≤ W then

9: Append (w + w′, p+ p′, ν ′ ∪ u) to A[j].
10: end if

11: end if

12: end for

13: Remove dominated tuples from A[j].
14: end for

6.3. Algorithm Analysis

Our algorithm for ThOP on cliques is shown below. The algorithm com-
putes a path σ from s to t and a set S of items such that the sum of pro�ts
of the items is maximum, the sum of weights of the items is at most W ,
σ contains at most T + 1 vertices (including s and t), and the items from
S are located at the vertices in σ. Algorithm BuildKnapsack recovers the
set of items from the selected path with maximum pro�t by using a similar
approach as in Algorithm 3.

A similar inductive proof as to the proof of Lemma 1 shows that for each
feasible subset S of Sz the clique pro�t table contains a tuple (wS, pS, νS)
(or a dominating tuple (w′

S, p
′
S, ν

′
S)) at entry A[z], where wS =

∑
ij∈S wj,

pS =
∑

ij∈S pj, |νS| ≤ T − 1, and νS is the set of vertices that stores the
items in S.

Theorem 6. There is a FPTAS for ThOP when the graph G is a clique,
every edge has length 1, and Vmin = Vmax.

Proof. We modify Algorithm 10 so that it rounds down the pro�t of each item
to the nearest multiple of ϵPmax

|I| . Note that each entry of the clique pro�t

31

Chapter 4 – Paper 2: Thief Orienteering on Directed Graphs 107



Algorithm 10 ThOPClique(G = (V ,E ),W, T, s, t, I)
1: Input: Clique graph G, knapsack capacity W , time limit T , start vertex

s, end vertex t, and item assignments I.
2: Output: An optimum solution for ThOP.
3: Index vertices and items as described in Section 3.
4: Let A be an empty clique pro�t table. Set A[1] = (0, 0, ∅).
5: for i = 2 to |V | − 1 do
6: Let u be the vertex with index i.
7: Call UpdateCliqueProfitTables(W,T,A, u).
8: end for

9: Return BuildKnapsack(A, I).

table contains at most T tuples with the same pro�t (one for each value of
|ν|), and the weights of the items do not need to be rounded up; therefore,
each entry in the clique pro�t table has at most O(PrT ) tuples, where Pr is
the number of di�erent values for the rounded pro�t of any subset of items
and T < n is the time limit. Hence, this modi�ed Algorithm 10 has time
complexity O( |I|

ϵ
n2) and so it is a FPTAS.
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Chapter 5

5 Paper 3: Thief Orienteering on Undirected Graphs
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This paper investigates techniques for transforming instances of the thief orienteering
problem on undirected outerplanar and series-parallel graphs into equivalent instances of
the thief orienteering problem on directed acyclic graphs.



The Thief Orienteering Problem on

Series-Parallel Graphs

Abstract

In the thief orienteering problem an agent called a thief carries a knap-
sack of capacity W and has a time limit T to collect a set of items of total
weight at most W and maximum profit along a simple path in a weighted
graph G = (V,E) from a start vertex s to an end vertex t. There is a set
I of items each with weight wi and profit pi that are distributed among
V \{s, t}. The time needed by the thief to travel an edge depends on the
length of the edge and the weight of the items in the knapsack at the
moment when the edge is traversed.
There is a polynomial-time approximation scheme for the thief orien-
teering problem on directed acyclic graphs that produces solutions that
use time at most T (1 + ϵ) for any ϵ > 0. We give a polynomial-time
algorithm for transforming instances of the problem on outerplanar and
series-parallel graphs into equivalent instances of the thief orienteering
problem on directed acyclic graphs; therefore, yielding a polynomial-time
approximation scheme for the thief orienteering problem on these graph
classes that use time at most T (1 + ϵ) for any ϵ > 0.

Keywords: thief orienteering problem, knapsack problem, approximation
algorithm, approximation scheme, outerplanar, series-parallel

1 Introduction

Let G = (V,E) be a weighted graph with n vertices, where two vertices s, t ∈ V
are designated the start and end vertices, respectively. Let there be a set I
of items, where each item ij ∈ I has a non-negative integer weight wj and
profit pj . Each vertex u ∈ V \ {s, t} stores a subset Su ⊆ I of items such that
Su ∩ Sv = ∅ for all u ̸= v and

⋃
u∈V \{s,t} Su = I. Additionally, every edge

e = (u, v) ∈ E has a length du,v ∈ Q+.
In the thief orienteering problem (ThOP) the goal is for an agent called a

thief to travel a simple path in G between s and t within a given time T ∈ Q+

while collecting items in a knapsack with capacity W ∈ Z+ taken from the
vertices along the path of total weight at most W and maximum total profit.

The time needed to travel between two adjacent vertices u, v depends on
the length of the edge connecting them and on the weight of the items in
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the knapsack when the edge is traveled; specifically, the travel time between
adjacent vertices u and v is du,v/V where V = Vmax − w(Vmax − Vmin)/W , w
is the current weight of the items in the knapsack, and Vmin and Vmax are the
minimum and maximum velocities of the thief.

ThOP is a generalization of the knapsack and longest path problems that
has not been extensively studied, but related travelling problems such as the
travelling thief problem [4] and some variants of orienteering [12] are well-
studied and have applications in areas such as route planning [10] and circuit
design [4].

ThOP was first formulated in 2018 by Santos and Chagas [13] and several
heuristics have since been designed for it [5, 6, 9]. In 2023, Bloch-Hansen
et al. [3] proved that there exists no approximation algorithm for the thief
orienteering problem with constant approximation ratio unless P = NP , and
they presented a polynomial-time approximation scheme (PTAS) for ThOP
when the input graph G is directed and acyclic (DAG) that produces solutions
that use time at most T (1 + ϵ) for any ϵ > 0.

In this paper we consider ThOP on two special classes of graphs: outerpla-
nar and series-parallel. These kinds of graphs have applications in diverse areas
such as scheduling [15], chemoinformatics [14], VLSI [7], physics [2], and elec-
trical circuits [8]. Our motivation for studying ThOP on this graph class was
production optimization, an important problem in the manufacturing industry.

The manufacturing of a product might require several stages involving
different resources, equipment, and personnel. The goal of production opti-
mization is to design and schedule the stages needed to manufacture a product
at minimum cost. A directed graph can be used to model the different manu-
facturing possibilities for a product, with vertices representing manufacturing
stages and edges denoting the order in which the stages need to be performed
[16]. Every vertex has attributes like cost of the manufacturing stage, resources
needed, completion time, and personnel required. Edges indicate time needed
to move the (partial) product from one stage to another. The best plan for
manufacturing a product then corresponds to a path in the directed graph
from the vertex corresponding to the start of the manufacturing process to
the vertex corresponding to the completion of the product. This best path
must satisfy several constraints like production time, resource cost, and num-
ber of personnel needed to fabricate the product, and so this problem can be
modelled with the thief orienteering problem. Due to the sequential nature of
many manufacturing processes, the different production plans corresponding
to the various ways to manufacture a process can be conveniently modelled
using series-parallel graphs [1].

Another application for ThOP on series-parallel graphs includes system
reliability, which is fundamental in system design. A series system consists of a
sequence S of subsystems, and the failure of any subsystem causes the failure of
the entire system. To prevent this, redundant subsystems are added in parallel
to ensure a minimum level of reliability. These systems are called series-parallel
systems [11]. To determine the optimal number of redundant subsystems, a
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series-parallel graph can be used to model the problem. Each vertex in the
graph corresponds to a different number of possible copies of each subsystem.
Vertices have costs indicating the cost of the redundant subsystems and they
also have profits indicating the reliability achieved with the corresponding
redundant systems. An edge from a vertex u to an adjacent vertex v in the
sequence S is given length equal to the number of subsystems represented
by u. The goal is to find a minimum cost path from a vertex s representing
the beginning of the sequence S to a vertex corresponding to the end of the
sequence that achieves a failure rate no larger than a maximum bound W , and
that uses at most a given number T of additional subsystems. This problem can
also be modelled with the thief orienteering problem on series-parallel graphs.

Our strategy for dealing with outerplanar and series-parallel graphs is to
first transform them into DAGs and then to use the PTAS of [3] that produces
solutions of time at most (1 + ϵ)T . The transformation into DAGs is not easy
as we need to preserve all simple paths from s to t while avoiding the formation
of cycles. To achieve this, we create copies of the vertices and edges of the
input graph and carefully select the directions of the edges so every simple
undirected path in the input graph has a corresponding, equivalent directed
path in the DAGs produced by our algorithm.

The main challenge in achieving polynomial running time when transform-
ing this class of graphs into DAGs is to preserve all the different paths from s
to t without adding a very large number of vertices and edges or creating any
cycles. We show how to overcome these challenges by exploiting the special
structures of outerplanar and series-parallel graphs. For series-parallel graphs
we need to create at most two copies of each vertex and edge, but assigning
the correct directions to the edges is not easy. For outerplanar graphs we need
to create several copies of every vertex and edge.

In the rest of the paper we present our algorithm to transform instances of
ThOP on series-parallel graphs into equivalent instances of ThOP on DAGs.

In Sections 2 and 3 we present our algorithms to transform instances of
ThOP on outerplanar and series-parallel graphs into equivalent instances of
ThOP on DAGs.

2 Thief Orienteering on Outerplanar Graphs

A planar graph is a graph that can be embedded in the plane, i.e., it can
be drawn on the plane in such a way that its edges intersect only at their
endpoints. An outerplanar graph is a planar graph for which all of its vertices
belong to the outer face.

Let G be an undirected outerplanar graph. Consider each vertex u, u ̸= s,
u ̸= t, in G that has degree 1. A simple path from s to t cannot route through
u. Therefore, we can delete these vertices u, and any subsequent vertices v ̸= s,
v ̸= t with degree 1 that are exposed from this process.

If s has degree 1 we direct all edges away from s along a simple path to
the closest vertex v (or t if t is closer) that has degree at least 3 and rename v
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s

s

c1

c2 c3

t

Fig. 1 An example outerplanar graph that has vertices of degree 1. Note that s is re-named,
vertices other than s or t with degree 1 are removed, and the cut vertices c1, c2, and c3 are
labelled.

to s. Similarly, if t has degree 1 let v (or s if s is closer) be the closest vertex
to t with degree at least 3; direct all edges away from v along the simple path
to t and rename v to t (see Figure 1).

Note that for the cases when (i) G is a tree, (ii) there is only one simple
path in G from s to t, or (iii) all vertices in G have degree less than 3, then
directing the edges from s to t transforms the instance of ThOP on G into
an equivalent instance on a DAG. Therefore, in the sequel we assume that at
least one vertex in G has degree at least 3 and that there is more than one
simple path in G from s to t.

2.1 Cut Vertices

A cut vertex is a vertex whose removal from a connected graph G disconnects
it into at least 2 non-empty connected components. Consider a shortest path
p between s and t. Let c1, c2, ..., ck−1 be the cut vertices, other than s and
t, along p in increasing order of distance to s (see Figure 1). Let c0 = s and
ck = t. For each cx from x = 1, 2, ..., k, we define the graph Gℓx that includes
the cut vertices cx−1 and cx and all vertices and edges in all simple paths
between cx−1 and cx (see Figure 2).

s c1 c2 c3

t

Fig. 2 The outerplanar graph from Figure 1 after identifying the subgraphs Gℓx .
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2.2 Transforming Gℓx into a DAG

Consider one of the graphs Gℓx . For the purpose of transforming Gℓx into a
DAG, if s is not in Gℓx we temporarily let s = cx−1. Additionally, if t is not
in Gℓx , then we temporarily let t = cx. Observe that either in Gℓx s and t
are adjacent or Gℓx has a cycle containing s and t. In the former case, Gℓx is
trivially transformed into the desired DAG by directing the edge from s to t,
so we assume below that Gℓx contains a cycle. Moreover, if Gℓx contains no
chords, then all of the edges in Gℓx can be directed away from s and towards
t to form an equivalent instance of ThOP on a DAG. Therefore, we assume
that Gℓx contains at least one chord.

Draw the graph Gℓx so that its vertices lie on a circle and s and t are on
the left and right sides of the circle, respectively. We index the vertices in Gℓx

as follows: (i) s has index 1, (ii) in a clockwise-manner, increasingly index all
the vertices around the circle starting from s and up to but excluding t, (iii)
in a counter-clockwise-manner, continue indexing all the vertices around the
circle from s to t, so that t has the largest index. Hence, the vertices in the
top portion of the circle are s = 1, 2, 3, ..., i, t and the vertices in the bottom
portion are s = 1, i+1, i+2, ..., t−1, t (see Figure 3). The path s, 2, 3, ..., i, t is
called the top path and s, i+1, ..., t−1, t is called the bottom path. The top and
bottom paths form the outer circle. The index of a vertex u will be denoted
as u.index.

1

6

2

7

ts

3 4 5

8 9
Fig. 3 An example of a subgraph Gℓx after indexing the vertices; the graph consists of a
cycle with chords. Vertex 2 has two incident chords: the first chord is red and the second
chord is green.

A vertex u might have several chords incident on it. We call the chord (u, v)
incident on u for which v has the lowest index of the endpoints of the chords
incident on u, the first chord of u. Similarly, the second chord of u is the chord
(u, v′) where v′ has the second lowest index among the other endpoints of the
chords incident on u, and so on.

We transform Gℓx = (Vx, Ex) into a DAG by first creating a graph
−→
G ℓx =

(Vx, Ex) where Vx = Vx and Ex contains the non-chord edges in Ex. We direct
the edges of Ex away from s and toward t; then we add new vertices and edges
to Ex as explained below.
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2.2.1 Adding Directed Chords to G
The undirected chords of Gℓx must be transformed into directed chords of G
carefully to ensure that G is acyclic, all simple paths in Gℓx between s and t
also exist in G, and no additional simple paths between s and t exist in G that
did not exist in Gℓx .

For an undirected chord (u, v) in Gℓx , the thief might take a path that
travels the chord from u to v or a path that travels it from v to u. In order to

include both paths in
−→
G ℓx , we add to

−→
G ℓx several copies of u and v. For each

vertex u ∈ Vx incident on z different chords, we add to Vx z copies of u: û1,
û2, ..., ûz; we call u an original vertex and each ûi is called a duplicate vertex.
Each one of these duplicates of u stores the same set of items as u.

For each undirected chord (u, v) in Gℓx we add to
−→
G ℓx two different types

of directed chords that correspond to the different types of simple paths from
s to t in Gℓx that traverse (u, v). The first type of directed chord has the form
(u, v̂j), where u is an original vertex and v̂j is a duplicate vertex. The second
type of directed chord has the form (ûi, v̂j), where ûi and v̂j are duplicate

vertices. We add these two types of directed chords to
−→
G ℓx as follows:

� (a) For every undirected chord (u, v) in Gℓx , we add two directed chords of

the first type to
−→
G ℓx : the directed chords (u, v̂j) and (v, ûi), where (u, v) is

v’s jth chord and u’s ith chord. The lengths of these two directed chords are
both du,v, the length of the undirected chord. These chords allow the thief
to travel from u to v or from v to u. In Figure 4 we show an example of the
first type of directed chords: chords (1, 6̂1) and (6, 1̂1).

� (b) For every undirected chord (u, v) in Gℓx that is the ith chord of u, where
i > 1, and the first chord of v (note that (u, v) cannot be the jth chord of
v with j > 1 because the input graph is outerplanar), we add the directed

chords (ûh, v̂1) for every h < i, each of length du,v, to
−→
G ℓx . For example,

for chord (2, 9) in Figure 3 the algorithm adds the directed chord (2̂1, 9̂1) as
shown in Figure 5 because (2, 9) is the second chord of vertex 2.
Note that if vertex u has several chords we need to create several duplicates
of u, where the ith duplicate ûi is incident to directed chords of the form
(ûi, v̂1) where vertices v̂1 are the i + 1, i + 2, ..., neighbors of u. These

directed chords allow directed paths in
−→
G ℓx corresponding to paths in Gℓx

that go through two chords (v, u), (u,w) incident on u while preventing
these directed paths from going back to vertex u or one of its duplicates,
hence avoiding the creation of cycles (for us, a cycle is a path that includes
two copies of the same vertex).

2.2.2 Connecting Duplicate Vertices to the Top and Bottom
Paths

Let a vertex v contain several chords in its chord list where the endpoints of
these chords have indices i, i+ x, i+ y, ..., i+ z. In the sequel, we say that the
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Fig. 4 Directing the chord (1, 6) of Figure 3: vertices 1̂1 and 6̂1 are added to G along with
directed chords (1, 6̂1) and (6, 1̂1).
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Fig. 5 Directing the chords incident on vertex 2 of Figure 3.

chords of v span the vertices with indices from i to i+ z; the start of the span
of v’s chords is i and the end of the span of v’s chords is i + z. Note that
v’s chords do not need to connect to every index from i to i + z, but for any
missing index q the corresponding vertex u does not have any incident chords
on it. For example, in Figure 3 vertex 2 has a span from vertex 7 to 9, but
vertex 8 has no incident chords.

For v’s first chord (v, u′), vertex u′ is called the start of v’s span. For v’s
last chord (v, u′′), vertex u′′ is called the end of v’s span. All vertices u in Gℓx

such that u′.index < u.index < u′′.index are in the middle of v’s span.

1

6

2 3

7 8 9

s t

4

1

6

2 3

7 8 9

s t

4

Fig. 6 The chords of vertex 1 span vertices 6 to 8. The chords of vertex 8 span vertices 1
to 4. The chords of vertex 4 span vertices 8 and 9. Vertices 1, 6, and 8 are located at the
start of a span. Vertices 2, 3, and 7 are located in the middle of a span. Vertices 4, 8, and 9
are located at the end of a span.
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Let the chords of v span the vertices from i to i+ z and let u be incident
on j chords, where i ≤ u.index ≤ i + z. Let vertex q be the vertex following
vertex u in the outer circle: So either q.index = u.index+ 1, or u is adjacent

to t and hence q = t. We add the following directed edges to
−→
G ℓx :

� (a) If vertex u is the start of v’s span: For each duplicate vertex ûi where
i < j add a directed edge (ûi, q) with length du,q and for ûj add a directed
edge (ûj , q̂1) with length du,q. Note that if Gℓx has a node v incident on

chords (v, u) and (v, q) then the directed edges (v, ûj) and (q, v̂2) are in
−→
G ℓx

and so we add the directed edge (ûj , q̂1) to
−→
G ℓx instead of edge (ûj , q) as

this latter edge would create a cycle. For example, in Figure 6 (left) vertex
8 is located at the start of the span of the chords of vertex 4; vertex 8 has 3
chords in its chord list so j = 3, and hence for the duplicates 8̂1 and 8̂2 we
add the directed edges (8̂1, 9) and (8̂2, 9) and for the duplicate 8̂3 we add the
directed edge (8̂3, 9̂1). Observe that we do not add the directed edge (8̂3, 9)
because then the path 4, 8̂3, 9, 4̂2 would visit the items in vertex 4 twice.

� (b) If u is in the middle of v’s span: If u has one incident chord (note that
u cannot have more than one incident chord), then add a directed edge
(û1, q̂1) with length du,q. If u has no incident chords, then we add duplicate
vertex û1 and a directed edge (û1, q̂1) with length du,q (see in Figure 8 chord
(8̂1, 9̂1)). As explained above, these edges are incident on q̂1 and not on q to
avoid the creation of cycles.

� (c) If u is the end of v’s span: For each duplicate vertex ûi add the directed
edge (ûi, q) with length du,q (see in Figure 7 chords (1̂1, 2) and (6̂1, 7)). Since
q is not in v’s span, directed edge (ûi, q) cannot create cycles.

We illustrate the above algorithm using several examples. In Figure 7 we
show how the duplicate vertices 1̂1 and 6̂1 are connected to the top and bottom
paths.

In Figure 8 we show how the duplicate vertices for vertex 2 are connected
to the top and bottom paths. Vertex 7 is the start of a span, so vertex 7̂1
cannot directly connect to vertex 8; instead, vertex 7̂1 must connect to vertex
8̂1, as described in the first rule above. Vertex 8 has no chords incident on it,
but since it is in the middle of a span, the duplicate vertex 8̂1 must be created
and we add a directed edge from it to vertex 9̂1, as described in the second
rule. Finally, vertex 9 is at the end of a span, so by the third rule we add the
directed edge (9̂1, t).

Note that vertex 2 is the start of a span from the chords of vertex 9;
therefore, by the first rule since vertex 2 has two chords in its chord list we
add directed edges (2̂1, 3) and (2̂2, 3̂1).

2.3 Algorithm Analysis

Algorithm 1 transforms an outerplanar graph G = (V,E) into a DAG G.
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Fig. 7 Processing the chord (1, 6): the directed edges (1̂1, 2) and (6̂1, 7) are added.
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Fig. 8 Connecting the duplicate vertices for vertex 2. Note that a copy of 8, 8̂1, was created,
even though vertex 8 has no incident chords, because 8 is in the middle of a span from vertex
2.

Algorithm 1 OuterPlanarToDAG(G = (V ,E ), s, t, I)

1: Input: Outerplanar graph G, start vertex s, end vertex t, and item
assignments I.

2: Output: A DAG G containing paths from s to t equivalent to those in G.
3: Process vertices with degree 1 as described at the beginning of Section 2.
4: Let p be a shortest path from s to t.
5: Let c1, c2, ..., ck−1 be p’s cut vertices.
6: for each x = 1 to k − 1 do
7: Create Gℓx and transform it into a DAG as described in Section 2.2.
8: end for
9: Output the DAG G created by transforming each Gℓx .

1
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2

7

ts

3 4 5

8 9
Fig. 9 A path σ in G that routes through the red non-chord (s, 6), the blue chords (6, 1)
and (1, 7), the blue non-chords (7, 8) and (8, 9), the green chord (9, 2), and the green non-
chords (2, 3), (3, 4), (4, 5), and (5, t).

Definition 1 An undirected path σ from s to t in G and a directed path σ′ from s
to t in G are equivalent if both have the same number of vertices, each vertex in σ

9
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Fig. 10 The path σ′ in G corresponding to σ′ in Figure 9 routes through the red non-chord
(s, 6), the blue chords (6, 1̂1) and (1̂1, 7̂1), the blue non-chords (7̂1, 8) and (8, 9), the green
chord (9, 2̂2), and the green non-chords (2̂2, 3̂1), (3̂1, 4̂1), (4̂1, 5), and (5, t).

and the corresponding vertex in σ′ store the same set of items, and every edge in σ
and its corresponding edge in σ′ have the same length.

Lemma 1 Algorithm 1 transforms an instance of ThOP on an undirected outerpla-
nar graph G into an instance of ThOP on a directed graph G with no cycles, so all
paths from s to t in G are simple.

Proof Algorithm 1 transformed the graph G into the directed graph G by adding
several duplicate vertices corresponding to existing vertices inG and several duplicate
edges corresponding to existing edges in G and then directing all the edges. Note
that two vertices in G are adjacent only if the corresponding vertices in G are also
adjacent.

To prove that there are no cycles in G, we show that there are two possible forms
of cycles in G and prove that neither exist. Since all directed edges in G correspond
to undirected edges in G, a cycle in G would be either (1) two anti-parallel directed
edges in G corresponding to an undirected edge (u, v) in G or (2) a directed cycle in
G corresponding to a cycle in G.

(1) For each undirected non-chord (u, v) in G there are no corresponding anti-
parallel directed edges in G because Algorithm 1 directs all non-chords added to G
towards a vertex with a higher index. For each undirected chord (u, v) in G, two
types of directed chords are added to G. For the first type, the two directed chords
(u, v̂j) and (v, ûi) are added to G, and since these two edges end at different duplicate
vertices they do not create anti-parallel directed chords. For the second type, for each
undirected chord (u, v) in G that is the ith chord of u, where i > 1, and the first
chord of v the directed chords (ûh, v̂1), for every h < i, are added. Observe that this
process does not add anti-parallel directed chords between two vertices in G, because
that would require that (u, v) is the jth chord of v with j > 1.

(2) Consider a cycle C of G that contains edges (u, v) and (u′, v′) where u and
v are in the top path and u′ and v′ are in the bottom path; then, the directed edges
added to G corresponding to C cannot form a cycle as non-chord edges are always
directed toward a vertex with larger index. Hence, the only cycles of G that could
create a directed cycle in G are those where only non-chord edges are either in the
top path or in the bottom path. Consider a simple cycle C : u, v1, v2, ..., vz , u where
u is the only vertex of C in the top path (the case where u is in the bottom path
is similar). Then, Algorithm 1 will add the directed edges shown in Figure 11 for
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this cycle C. As the figure shows, there are no directed cycles because (i) every edge
directed from the top path to the bottom path ends at a duplicate vertex; (ii) vertices
v1, v2, ..., vz−1 have only one chord so each duplicate vertex v̂i has only one outgoing
edge, and these edges are all non-chords that end at duplicate vertices; and (iii) every
edge directed from the bottom path to the top path starts at an original vertex.

Therefore, since there are no anti-parallel directed edges or directed cycles in G,
then all paths from s to t in G are simple.

u ... q

q'... ...

Fig. 11 A simple cycle C : u, v1, v2, ..., vz , u in G, where u is the only vertex of C in the
top path, is not encoded as a directed cycle in G because the algorithm does not add any
directed edges from the duplicate vertices of v1, v2, ..., vz back to u or any of its duplicates.
The original vertices are shaded red and the part of C that exists in G is shaded green.

□

Lemma 2 Algorithm 1 transforms an instance of ThOP on an undirected outerpla-
nar graph G into an instance of ThOP on a directed graph G such that for every
simple path σ from s to t in G, there is an equivalent directed path σ′ from s to t in G.

Proof We prove that for every simple path σ in G from s to t, there is an equivalent
directed path σ′ in G from s to t. To do this, we show how to select the directed edges
in G that correspond to the undirected edges in σ and we show that these directed
edges form a path from s to t in G.

Consider a simple path σ in G from s to t. We construct an equivalent path σ′

in G by considering the edges in σ one-by-one and including the corresponding edges
in σ′ in the following manner:

� If the next edge (u, v) in σ is v’s jth chord:

– If the edge most recently included in σ′ is a directed chord (w, ûh) of the
first type, then (u, v) is the kth chord of u with k > h ≥ 1 and hence (u, v)
is the first chord of v and so the algorithm in Section 2.2.1 (b) added to G
the directed edge (ûh, v̂1), which is included in σ′. For example, in Figure
9 after the chord (6, 1̂1) is included in σ′, the directed chord (1̂1, 7̂1) is
included in σ′.
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– If the edge most recently included in σ′ is a directed chord (ŵi, ûh) of the
second type, then h = 1 (by the algorithm in Section 2.2.1 (b)) and so
(u, v) is not the first chord of u. Therefore, the algorithm in Section 2.2.1
(b) added to G the directed edge (û1, v̂1), which is included in σ′.

– If σ′ is empty or if the edge most recently included in σ′ is a non-chord
edge (w, u) where u is an original vertex, then the directed chord (u, v̂j) is
included in σ′: Since u is an original vertex and (u, v) is the jth chord of
v, then the algorithm in Section 2.2.1 (a) added to G the directed chord
(u, v̂j) of the first type. For example, in Figure 9 after the non-chord edge
(s, 6) is included in σ′, the directed chord (6, 1̂1) is included in σ′.

– If the edge most recently included in σ′ is a non-chord edge (w, ûh), where
ûh is a duplicate vertex, then h = 1 (by the algorithm in Section 2.2.2 (b))
and so (u, v) is not the first chord of u. Therefore, the algorithm in Section
2.2.1 (b) added to G the directed edge (û1, v̂1), which is included in σ′.

� If the next edge (u, v) in σ is a non-chord edge:

– If σ′ is empty or if the edge most recently included in σ′ is a non-chord
edge (w, u) where u is an original vertex, then the directed edge (u, v)
is included in σ′; since the algorithm in Section 2.2.1 included all of the
original non-chord edges from G, then (u, v) must be in G. For example,
in Figure 9 after the non-chord edge (4̂1, 5) is included in σ′, the directed
non-chord edge (5, t) is included in σ′.

– Otherwise, if the edge most recently included in σ′ is (w, ûi) where ûi is
a duplicate vertex we consider several cases:

* Let vertex u have j chords in its chord list. If u is located at the
start of a span and i < j then the directed non-chord edge (ûi, v)
is included in σ′; otherwise, if i = j the directed non-chord edge
(ûj , v̂1) is included in σ′. Note that the algorithm in Section 2.2.2
(a) added these edges to G. For example, in Figure 9 after the
directed chord (9̂1, 2̂2) is included in σ′, the directed non-chord
edge (2̂2, 3̂1) is included in σ′.

* If u is in the middle of a span then i must be 1 so the directed edge
(û1, v̂1) is included in σ′; note that the algorithm in Section 2.2.2
(b) added this edge to G. For example, in Figure 9 after the directed
non-chord edge (7̂1, 8̂1) is included in σ′ (or alternatively, (2̂2, 3̂1)),
the directed non-chord edge (8̂1, 9̂1) is included in σ′ (alternatively,
(3̂1, 4̂1)).

* Otherwise, the directed non-chord edge (ûi, v) is included in σ′;
note that the algorithm in Section 2.2.2 (c) added this edge to G.
For example, in Figure 9 after the directed chord (3̂1, 4̂1) is included
in σ′, the directed non-chord edge (4̂1, 5) is included in σ′.

Each of the duplicate vertices created by Algorithm 1 stores the same items as
the corresponding vertices in G. Moreover, each of the directed edges created by
Algorithm 1 have the same length as the corresponding edges in G. As shown above,
for any path σ in G from s to t, the corresponding edges in σ′ form a path from s to
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t (see Figures 9 and 10). Therefore, for any simple path σ in G from s to t, there is
an equivalent simple path σ′ in G from s to t. □

Lemma 3 Algorithm 1 transforms an instance of ThOP on an undirected outerpla-
nar graph G into an instance of ThOP on a directed graph G such that for every
directed path σ′ from s to t in G, there is an equivalent simple path σ from s to t in G.

Proof Note that the duplicate vertices created by the algorithm in Section 2.2.1 have
the same index as the corresponding original vertices. We now prove that a path σ′

in G cannot visit multiple vertices with the same index; to see this, we use a proof
by contradiction.

Assume that a path σ′ exists in G that starts and ends at vertices with the same
index. Since two vertices in G are adjacent only if the corresponding vertices in G
are also adjacent, and since there are no self-loops in G, then it must be the case
that the path σ in G corresponding to σ′ is a cycle C. Since non-chord edges in G
are directed to the endpoint with the higher index, then C cannot have one edge
belonging to the top path and another edge belonging to the bottom path; therefore,
C must be of the form u, v1, v2, ..., vz , u where u is the only vertex of C in the top
path (the case where u is in the bottom path is similar).

As previously described in the proof of Lemma 1, Algorithm 1 creates a directed
graph G with the directed edges shown in Figure 11 for the above cycle C. Observe
that C does not induce in G a path starting and ending at vertices with the same
index as u as explained at the end of the proof of Lemma 1.

Since there are no cycles in G, a path σ′ from s to t in G cannot visit multiple
vertices with the same index, and Algorithm 1 only adds directed edges to G cor-
responding to existing edges in G, then for any directed path σ′ from s to t in G,
selecting the corresponding undirected edges in G forms an equivalent simple path
σ from s to t. □

Theorem 1 There is a PTAS for the thief orienteering problem when the graph
G is an undirected outerplanar graph that produces solutions that use time at most
T (1 + ϵ) for any ϵ > 0.

Proof Algorithm 1 transforms an undirected outerplanar graph G into a DAG G by
creating at most two additional vertices per chord, at most one additional vertex for
each vertex u ∈ V incident on no chords, and at most degree(u) additional edges
per vertex u ∈ V , and so Algorithm 1 runs in polynomial time. By Theorem 2 in
[3], Algorithm 3 in [3] is a PTAS for the thief orienteering problem when the input
graph G is a DAG that produces solutions that use time at most T (1 + ϵ) for any
ϵ > 0. Therefore, by Lemmas 1, 2, and 3 the combination of algorithms 1 and 3 [3] is
a PTAS for the thief orienteering problem when the input graph G is an undirected
outerplanar graph that produces solutions that use time at most T (1 + ϵ) for any
ϵ > 0. □
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3 Thief Orienteering on Series-Parallel Graphs

A series-parallel graph G = (V,E, t1, t2) has two terminal vertices t1, t2 and
is defined inductively:

� G = ({t1, t2}, (t1, t2), t1, t2) is series-parallel.
� if G1 = (V1, E1, t1, t2) and G2 = (V2, E2, t

′
1, t

′
2) are series-parallel then the

series composition G = (V1 ∪ V2, E1 ∪ E2, t1, t
′
2) is series-parallel if t2 = t′1.

� if G1 = (V1, E1, t1, t2) and G2 = (V2, E2, t
′
1, t

′
2) are series-parallel then the

parallel composition G = (V1 ∪ V2, E1 ∪E2, t1, t2) is series-parallel if t1 = t′1
and t2 = t′2. A graph created from a parallel composition is a parallel graph.

We can take advantage of the properties of a series-parallel graph G in
order to transform it into the desired DAG G using a polynomial number of
additional vertices and edges such that the DAG has the same set of simple
paths between s and t as G. Note that the start and end vertices s and t might
not be the two terminals in a series-parallel graph.

3.1 Removing Vertices with Degree 1

Let G be an undirected series-parallel graph. If there is only one simple path
from s to t in G or if all vertices in G have degree less than 3, then directing
the edges away from s and towards t produces the desired DAG. Therefore, in
the sequel we assume that at least one vertex in G has degree 3 or higher and
that there is more than one simple path in G from s to t.

Consider a vertex u of degree 1, where u ̸= s and u ̸= t. A simple path from
s to t cannot route through u, so we delete these vertices u, and any subsequent
vertices v ̸= s, v ̸= t with degree 1 that are exposed from this process.

However, if s or t have degree 1 they must be kept in the graph. If s has
degree 1 we direct away from s all edges along a simple path to the closest
vertex v of degree at least 3; we rename v to s as any path from s to t must
route through v. Similarly, if t has degree 1 let v be the closest vertex to t with
degree at least 3; direct all edges away from v along the simple path to t and
rename v to t.

3.2 Cut Vertices

A cut vertex is a vertex whose removal from a connected graph G disconnects
it into at least 2 non-empty connected components.

Consider a shortest path p between s and t. Let c1, c2, ..., ck−1 be the
cut vertices, other than s and t, along p in increasing order of distance to s
(see Figure 12). Let c0 = s and ck = t. If the removal of c0 splits G into
two connected components, we delete the component that does not contain
t. Similarly, if the removal of ck splits G into two connected components, we
delete the component that does not contain s. If deleting these components
causes s or t to have degree 1, then the process described in Section 3.1 is used
to rename them.
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c1 c3
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c2 c4

Fig. 12 Identifying the subgraphs Gℓx in a series-parallel graph.

For each cx from x = 1, 2, ..., k, we define the graph Gℓx that includes the
vertices cx−1 and cx and all vertices and edges in all simple paths between
cx−1 and cx. We transform each graph Gℓx into a DAG as described below. We
then combine these DAGs to produce the DAG G for the input graph G.

3.3 Transforming Gℓx into a DAG

The undirected edges of Gℓx must be transformed into directed edges of G
carefully to ensure that G is acyclic, all simple paths in Gℓx also exist in G, and
no additional simple paths exist in G that did not exist in Gℓx .

Definition 2 An undirected path σ from s to t in G and a directed path σ′ from s
to t in G are equivalent if both have the same number of vertices, each vertex in σ
and the corresponding vertex in σ′ store the same set of items, and every edge in σ
and its corresponding edge in σ′ have the same length.

Consider one of the graphs Gℓx . If all vertices in Gℓx have degree at most 2,
directing all edges of Gℓx away from cx−1 and towards cx creates a DAG with
one simple path that is equivalent to the one simple path in G from cx−1 to cx.
So, in the sequel we assume that each graph Gℓx contains at least one vertex
of degree larger than 2 and so either Gℓx is a parallel graph or it contains a
parallel sub graph.

Lemma 4 If neither s nor t are in Gℓx , then transforming Gℓx into a DAG that
contains paths from cx−1 to cx equivalent to those paths in G from cx−1 to cx is
achieved by simply directing all edges in Gℓx away from cx−1 and towards cx.

Proof Assume that a simple path σ in G from cx−1 to cx viewed as a directed path
includes an edge (u, v) directed towards cx−1 (consider, for example, the edge (u, v)
on the left side of Figure 13). Since σ is traversed from cx−1 to cx the only way in
which this edge (u, v) exists in σ is if σ traverses through a parallel subgraph Gi of
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Gℓx , reaches the terminal bi of Gi closest to cx and then continues to vertex u. But
then note that to reach bi the path σ must first traverse through the other terminal
ai of Gi; hence it would be impossible for σ to go from v to cx without going again
through one of the terminals of Gi. □

For the rest of this section we assume that one or both of s and t are in
Gℓx (see Figure 14).

v u

cx-1 cx

v u

cx-1 cx

Fig. 13 A subgraph Gℓx that does not contain either s or t (left) and so the edges are
directed from s to t (right).

s

biai

t

Fig. 14 A subgraph Gℓx containing several parallel subgraphs. Both s and t are contained
in Gℓx , so there are no other subgraphs Gℓx as there are no cut vertices in a shortest path
from s to t.

A parallel subgraph Gi of Gℓx with terminals ai and bi is a maximal parallel
subgraph of Gℓx if there is no other parallel subgraph of Gℓx with terminals ai
and bi that contains Gi. For example, in Figure 14 the parallel subgraph Gi

with terminals ai and bi includes 11 vertices and 13 edges.
Let G1, G2, ..., Gp be the maximal parallel subgraphs of Gℓx indexed such

that if Gj is a subgraph of Gi then 1 ≤ j < i ≤ p. Note that Gj and Gi

can have at most one terminal in common. To transform Gℓx into a DAG, we
process the maximal parallel subgraphs G1, ..., Gp in Gℓx in increasing order
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of index. If Gℓx contains both s and t, then any path σ from s to t in G must
stay within Gℓx and so the rest of G can be deleted.

In the sequel we might refer to multiple different parallel subgraphs of Gℓx

at the same time, so we describe here a consistent notation. The index i cor-
responds to the maximal parallel subgraph Gi of Gℓx that is currently being
processed, the index j corresponds to a maximal parallel subgraph Gj con-
tained within Gi, and the index k corresponds to a maximal parallel subgraph
Gk that contains Gi. Hence, when processing Gi all the maximal parallel sub-
graphs with indices j < i have already been processed and we have yet to
process the maximal parallel subgraphs with indices k > i. Additionally, note
that both s and t must be in at least one parallel subgraph because if, for
example, s is a vertex of degree 1 or 2 in a graph Gℓx then, as described in
Section 3.1, s would be renamed to a vertex of degree at least 3. Let Gs and
Gt be the smallest indexed maximal parallel subgraphs that contain s and t,
respectively.

To simplify the description of our algorithm we first modify Gℓx as follows.
If vertex a is a common terminal of two or more maximal parallel subgraphs
Ga1

, Ga2
, ..., Gar

, then we modify Gℓx by replacing a with r vertices a1, a2, ...,
ar. Vertex ag, for all g = 1, 2, ..., r, is adjacent to all neighbours u of a in Gag

that are not in any other maximal subgraph Gah
, h ̸= g; the length of edge

(ag, u) is the same as the length of (a, u). Each one of these vertices ai has the
same set of items as a and vertices ah and ah+1 are connected with an edge
(ah, ah+1) of length 0 for all h = 1, 2, ..., r − 1. Note that this transformation
creates some paths in which the same item appears multiple times. We will fix
this later by merging all vertices ah back into a single vertex a. We say that
terminal vertices a1, a2, ..., ar are entangled.

Important Note. We always assume that for each maximal parallel sub-
graph Gi of Gℓx the terminal ai is on the left and terminal bi is on the right,
as shown in the figures.

Below we explain how to transform Gℓx into a DAG using three steps.

3.3.1 Step 1: Edges Close to s and t

Consider the maximal parallel subgraph Gi of Gℓx with terminals ai and bi. If
Gi = Gs, then for each simple path p from s to ai that does not route through
either t or bi, the edges of p are directed away from s and towards ai. Similarly,
for each simple path p from s to bi that does not route through either t or ai,
the edges of p are directed away from s and towards bi (see Figure 15).

If Gi = Gt, then direct to t the edges in each simple path p from ai to t
and from bi to t that does not route through either s, ai, or bi (see Figure 15).

Finally, if Gi = Gs = Gt, then for each simple path p from s to t that does
not route through either ai or bi, the edges in p are directed away from s and
towards t (see Figure 15).

Note that for some of the maximal parallel subgraphs Gi of Gℓx , Step 1
might not direct any edges.
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ss
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Fig. 15 Edges in the lowest indexed maximal parallel subgraph Gi of Gℓx containing s or
t are directed away from s and towards t.

3.3.2 Step 2: Transforming a Parallel Subgraph Gi of Gℓx

into Several DAGs

We transform the maximal parallel subgraph Gi of Gℓx with terminals ai and
bi into several DAGs, as explained below. Note that if s or t is a terminal of
Gi then all the edges of Gi have been directed already in Step 1 and hence we
do not need to perform Step 2; therefore, for the remainder of this section we
assume that neither s nor t is a terminal of Gi.
(a) Splitting Gi Let Ĝi = (V̂i, Êi, ai, bi) be the subgraph of Gi that includes
the terminals ai and bi of Gi, all vertices of Gi that do not belong to any
maximal parallel subgraph Gj of Gi, and all undirected edges between these

vertices. For example, in the left side of Figure 16 Ĝi does not include the
simple paths from s to the terminals or from the terminals to t, as these edges
were directed during Step 1.

s

t

ss

t

...

...

...

...

...

...

sss

tttt

Fig. 16 (Left) The maximal parallel subgraph Gi is shown before being processed by Step

2; Ĝi consists of a single connected parallel subgraph (shown in blue). (Right) After Gi has
been processed by Step 2 the simple paths between a′i and b′i are directed from a′i to b′i
and the simple paths between b′′i and a′′i are directed from b′′i to a′′i . Any edges incident on
the original terminals ai and bi before processing Gi are now incident on the corresponding
terminals of G′

i and G′′
i .

The subgraph Ĝi consists of one or more connected components. Multi-
ple components might be present if Gi contains multiple maximal parallel
subgraphs; since each maximal parallel subgraph Gj of Gi must have been

processed before Gi, Ĝi does not include the directed edges of the DAGs cre-
ated for the maximal subgraphs Gj . Let the connected components of Ĝi be

Ĝi1 , Ĝi2 , ..., Ĝiq (see Figure 17).

We create two copies of each Ĝiw : G
′
iw

and G′′
iw
. Each of the edges in these

copies has the same length as the corresponding edge in Ĝiw , and the two
copies u′ and u′′ of a vertex u in Ĝiw , store the same items as u. We call u′

18

Chapter 5 – Paper 3: Thief Orienteering on Undirected Graphs 129



a''1 b''1

a'1 b'1
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a''3 b''3

a'3 b'3

G1

G3

G2

a4

a''1 b''1

a'1 b'1

a''2 b''2

a'2 b'2
b'4

G4

a''3 b''3

a'3 b'3

G1

G3

G2

a'4

a''4 b''4

Fig. 17 (Left) The maximal parallel subgraph Gi = G4 is shown before being processed by
Step 2 and since the maximal parallel subgraphs G1, G2, and G3 are each contained within
G4 (so each is transformed into DAGs before G4 is processed) then Ĝi consists of multiple

components. The vertices and edges of Ĝ41 , Ĝ42 , and Ĝ43 are shown in blue. (Right) After

Gi has been processed by Step 2, the components of Ĝi have been duplicated and their
incident edges have been directed.

and u′′ duplicate vertices. Note that this step duplicates the terminals ai and
bi of Gi.

For the remainder of the description of the algorithm, we use the following
notation. A vertex v′ marked with the prime symbol (′) represents the copy
of a vertex v that belongs to the first copy G′

ℓ of a subgraph Ĝℓ and a vertex
v′′ marked with the double prime symbol (′′) represents the copy of vertex v
that belongs to the second copy G′′

ℓ of Ĝℓ.

For each undirected edge (u, v) where u is in Ĝiw and v is in Gi but not in
Ĝiw (see the red edges in Figure 17), we delete (u, v) from Gi and proceed as
follows:

� If v is not a duplicate vertex (this occurs when s or t is a terminal of a
maximal parallel subgraph Gj contained within Gi) then add the undirected
edge (u′, v) to G′

iw
and add the undirected edge (u′′, v) to G′′

iw
.

� If v is a duplicate vertex, then after removing both edges (u, v′) and (u, v′′)
add the undirected edge (u′, v′) to G′

iw
and add the undirected edge (u′′, v′′)

to G′′
iw
.

(b) Processing the terminals of Gi. For each vertex v contained in Gi but
not in Ĝi, that is adjacent to ai or bi, we proceed as follows:

� For each directed edge (ai, v) of Gi (remember that some edges of Gi were
assigned a direction in Step 1) delete (ai, v) and add directed edges (a′i, v)
to G′

i1
and (a′′i , v) to G′′

i1
.

� For each directed edge (v, ai) of Gi delete (v, ai) and add directed edges
(v, a′i) to G′

i1
and (v, a′′i ) to G′′

i1
.

� For each directed edge (bi, v) of Gi delete (bi, v) and add directed edges
(b′i, v) to G′

iq
and (b′′i , v) to G′′

iq
.
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� For each directed edge (v, bi) of Gi delete (v, bi) and add directed edges
(v, b′i) to G′

iq
and (v, b′′i ) to G′′

iq
.

For example, in Figure 16 (left) the red and green directed edges are inci-
dent on ai and bi but in Figure 16 (right) the red and green directed edges
(which have been duplicated) are incident on a′i, a

′′
i , b

′
i, and b′′i .

We refer to the set of subgraphs G′
i1
, G′

i2
, ..., G′

iq
simply as G′

i, and all the

subgraphs G′′
i1
, G′′

i2
, ..., G′′

iq
as G′′

i .

(c) Transforming G′
i and G′′

i into DAGs. If Gi contains both s and t and
they are connected by an undirected edge (note that this can only happen
if s is a terminal of a maximal parallel subgraph contained within Gi and t
is a terminal of a different maximal parallel subgraph contained within Gi,
as otherwise the edge would have already been directed in Step 1) then this
edge is directed towards t. Then, we transform each G′

i and G′′
i into DAGs by

directing every undirected edge in G′
i from left to right and every undirected

edge in G′′
i from right to left (see Figure 16).

(d) Connecting G′
i and G′′

i to Gℓx . The above steps (a) - (c) allow paths to
traverse from the left terminal of G′

i to its right terminal and from the right
terminal of G′′

i to its left terminal.
After the edges of G′

i and G′′
i have been directed, for any undirected edges

(u, v) where u is a terminal of Gi and v is not in Gi edges need to be added
to the directed graphs G′

i and G′′
i to connect them to the rest of Gℓx . These

edges will allow paths to traverse between the newly created DAGs G′
i and

G′′
i and any adjacent maximal parallel subgraphs and/or any maximal parallel

subgraph Gk containing Gi.
Note that if Gk contains Gi, it might also contain other maximal parallel

subgraphs that were already transformed into DAGs, so some of the edges that
we will add to G′

i and G′′
i to connect them to Gk will be incident on vertices

that have already been processed and some others will be incident on vertices
that have not been processed yet (see Figure 18).

Observation 1 Each terminal ai and bi of a maximal parallel subgraph Gi of Gℓx
has at most one neighbor v that is contained in Gℓx but not contained in Gi.

Observation 1 follows from the definitions of series and parallel composi-
tions and from the creation of entangled vertices for shared terminals.

We add undirected edges to G′
i and G′′

i to connect them to Gℓx as follows:

� For all undirected edges (ai, v
′) and (ai, v

′′) where v′ and v′′ are not in
Gi, delete (ai, v

′) and (ai, v
′′) and add undirected edges (a′i, v

′) to G′
i and

(a′′i , v
′′) to G′′

i (see the bottom image in Figure 18). Note that the vertices v′

and v′′ correspond to duplicates of a vertex that has already been processed.
� For each undirected edge (v, ai) where v has not yet been processed and v is
not in Gi, add undirected edges (a′i, v) and (a′′i , v) to G′

i and G′′
i , respectively

(see the middle image in Figure 18).
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� The same two steps above are repeated for each vertex v adjacent to bi that
is not in Gi, and the new edges are incident to b′i and b′′i . Each Ĝiw is then

deleted, so that the terminals ai and bi and all undirected edges of Ĝi are
removed. Note that the duplicate copies of each of these vertices and edges
still exist in G′

i and G′′
i .

...

...
...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Two Unprocessed
Parallel Graphs

One Processed and
One Unprocessed

Parallel Graphs

Two Processed
Parallel Graphs

G1G2

Fig. 18 (Top) Two adjacent maximal parallel undirected subgraphs G1 and G2 were orig-
inally connected by a single edge between terminals b2 and a1, shown in red. (Middle) Since
the maximal parallel subgraphs are processed in increasing order of index, G1 was trans-
formed into two DAGs first, and the edge between b2 and a1 transformed into the edges
between b2 and a′1 and a′′1 . (Bottom) After G2 has been transformed into two DAGs, there
is a single edge between b′2 and a′1 and a single edge between b′′2 and a′′1 .

3.3.3 Step 3: Edges Connecting Nested Parallel Graphs
Containing s or t

When Gi contains s and/or t, we need to change some of the edges in the above
DAGs created for Gi; however, the specific edges that need to be modified
depend on where in Gi vertices s and t are located.

Recall that since Gi is a maximal parallel subgraph, it was created from the
parallel composition of a group of series-parallel subgraphs Gi1 , Gi2 , ..., Gim .
Let the parallel components pci1, pci2, ..., pcim of Gi be these series-parallel
subgraphs, excluding the terminals of Gi (see Figure 19). Note that a parallel
component of Gi might contain multiple maximal parallel subgraphs.

If a parallel component pcih either contains no maximal parallel subgraphs
or it does not contain s or t, then the edges in the DAGs for pcih have already
been correctly directed in Steps 1 and 2. Therefore, we only consider parallel
components pcih of Gi that contain at least one maximal parallel subgraph
and s and/or t. Each maximal parallel subgraph Gj in a parallel component
pcih of Gi was previously processed, and so the two terminals aj and bj of Gj
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ai

a1 b1 as a3 b3

bi

a4 b4 at bt a6 b6

s

bs

s

t

pci1

pci2

Fig. 19 This maximal parallel subgraph Gi contains two parallel components pci1 (blue)
and pci2 (red), each of which contain three maximal parallel subgraphs. Note that the parallel
component pci1 contains s and the parallel component pci2 contains t.

pci1

a'i

a'1 b'1 a's a'3 b'3

b'i

b's

a''i b''i

a''1 b''1 a''s a''3 b''3b''s

s

Fig. 20 The parallel component pci1 from Figure 19 after processing Step 2 but before
processing Step 3.

were transformed into four terminals a′j , a
′′
j , b

′
j , and b′′j of two DAGs G′

j and
G′′

j (see Figure 20).
Intuitively, the algorithm that we describe below modifies the edges of the

DAGs corresponding to a parallel component pcih of Gi containing s or t such
that (i) when a maximal parallel subgraph Gj of pcih contains s but not t,
paths in the DAGs corresponding to Gi are directed outwards away from Gj ;
(ii) when a maximal parallel subgraph Gj of pcih contains t but not s, paths
in the DAGs corresponding to Gi are directed inwards towards Gj ; and (iii)
when a maximal parallel subgraph Gj of pcih contains both s and t, paths in
the DAGs corresponding to Gi can travel away from s through Gj and possibly
through several maximal parallel subgraphs containing Gj in increasing order
of index, then traverse exactly one parallel component of one of these maximal
parallel subgraphs, and finally return to t. Note that in a series-parallel graph
a simple path cannot start at s, travel through maximal parallel subgraphs in
increasing order of index, then in decreasing order of index, and then again
in increasing order as such a path would have to traverse twice through some
terminal of a maximal parallel subgraph.

If a parallel component pcih of Gi contains s or t, we modify the DAGs
corresponding to the parallel component pcih as described below.
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pci1

a'i

a's a'3 b'3

b'i

b's

a''i b''i

a''1 b''1 a''s b''s

s

Fig. 21 The parallel component pci1 of Figure 19 contains s but not t and so some of the
DAGs for each Gj of pci1 have been deleted and some of the edges (highlighted in red) have
been added.

pci2

a'i

a'4 b'4 a't

b'i

b't

a''i b''i

a''t a''6 b''6b''t

t

Fig. 22 The parallel component pci2 of Figure 19 contains t but not s and so some of the
edges for each G′

j of pci2 and G′′
j of pci2 (highlighted in red) have been added.

(a) No maximal parallel subgraph contains s and t. If pcih contains at
least one of s and t, but no maximal parallel subgraph Gj of pcih contains
both s and t, then:

� If a simple path σ1 exists between the terminal ai of Gi and a terminal of
Gs that does not traverse through Gt or bi, we add a directed edge (u′′

a, a
′
i)

(see the left maximal parallel subgraphs in Figures 21 and 23), where ua is
the single vertex of pcih adjacent to ai (see Observation 1). Then, we delete
G′

j for each maximal parallel subgraph Gj of pcih reachable by σ1 such that
Gj ̸= Gs and Gs is not contained within Gj . These steps allow paths to
traverse from s to the left terminal of Gi and then onto the right terminal
of Gi without creating cycles.
Similarly, if a simple path σ2 exists between bi and Gs that does not traverse
through Gt or ai, we add a directed edge (u′

b, b
′′
i ) (see the right maximal

parallel subgraph in Figure 21), where ub is the vertex of pcih adjacent to bi.
Then, we delete G′′

j for each maximal parallel subgraph Gj of pcih reachable
by σ2 such that Gj ̸= Gs and Gs is not contained within Gj . These steps
allow paths to traverse from s to the right terminal of Gi and then onto the
left terminal of Gi without creating cycles.
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� If a simple path σ1 exists between ai and a terminal of Gt that does not
traverse through Gs or bi, we add a directed edge (a′′i , u

′
a) (see the left

maximal parallel subgraph in Figure 22), where ua is the vertex of pcih
adjacent to ai. Then, we delete G

′′
j for each maximal parallel subgraph Gj of

pcih reachable by σ1 such that Gj ̸= Gt and Gt is not contained within Gj .
If a simple path σ2 exists between bi and Gt that does not traverse through
Gs or ai, we add a directed edge (b′i, u

′′
b ) (see the right parallel subgraphs

in Figures 22 and 23), where ub is the vertex of pcih adjacent to bi, and we
delete G′

j for each maximal parallel subgraph Gj of pcih reachable by σ2

such that Gj ̸= Gt and Gt is not contained within Gj . These two changes
allow paths to traverse both terminals of Gi before reaching t.

� We delete G′′
j for each maximal parallel subgraph Gj contained within pcih

such that Gj ̸= Gs, Gj ̸= Gt, Gs and Gt are not contained within Gj ,
and Gj is reachable from a simple path between Gs and Gt that does not
traverse through either ai or bi. This step simplifies the DAGs as we are not
interested in paths from t to s.

pci3

a'i

a's a'3 b'3

b'i

b's

a''i b''i

a''1 b''1 a''s b''s

s

a't b't

a''t b''t

t

a''5 b''5

Fig. 23 A parallel component pci3 containing both s and t, but not in the same maximal
parallel subgraph Gj . The edges highlighted in red have been added.

(b) A maximal parallel subgraph contains s and t. If pcih contains both
s and t within the same maximal parallel subgraph Gj , then we need to change
a few edges incident on the terminals of Gi (see Figure 24):

� For each directed edge (u′′, a′′i ), where u
′′ is in G′′

i but not in pcih, delete the
edge and add the directed edge (a′′i , u

′), where u′ is the other duplicate of
u′′. This allows paths to traverse from s towards the left terminal a′′i of G′′

i

to then go towards the right through a different parallel component pc′im.
� For each directed edge (b′′i , u

′′), where u′′ is in G′′
i but not in pcih, delete

the edge and add the directed edge (u′, b′′i ), where u′ is the other duplicate
of u′′. These last two changes allow paths from s to a′′i to then traverse
through another parallel component pc′im to reach b′′i and then return to
t. Note that a path σ′ from s to t traveling through b′′i must have already
traveled through a′′i , so the edges (u′′, a′′i ) and (b′′i , u

′′) cannot be in σ′.
� For each directed edge (u′, b′i), where u′ is in G′

i but not in pcih, delete the
edge and add the directed edge (b′i, u

′′). This allows paths that traverse from
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s towards the right terminal b′i of G
′
i to then go towards the left through a

different parallel component pc′′im.
� For each directed edge (a′i, u

′), where u′ is in G′
i but not in pcih, delete the

edge and add the directed edge (u′′, a′i). These last two changes allow paths
from s to b′i to then traverse left to reach a′i and then return to t. Note that a
path σ′ from s to t traveling through a′i must have already traveled through
b′i, so the edges (u′, b′i) and (a′i, u

′) cannot be in σ′.
� Finally, if Gi is the lowest indexed maximal parallel subgraph that contains
Gs, Gs = Gt, and neither s nor t is a terminal of Gs, then we delete the edges
(u′, a′s), (a

′′
s , u

′′), (b′s, u
′), and (u′′, b′′s ), where u

′ is in G′
i and u′′ is in G′′

i but
neither are in Gs. Then, add the directed edges (a′s, u

′′), (u′, a′′s ), (u
′′, b′s),

and (b′′s , u
′); these edges allow paths from s that traverse both terminals of

G′
i or G

′′
i to reach t (see Figure 24).

These changes are done because a path σ from s to t in G entering Gs

through bs must have traveled through as and must then travel to t, and so
the edges (a′′s , u

′′) and (u′′, b′′s ) cannot be in the DAGs as they create cycles.
To see this, note that if the edges (a′′s , u

′′) and (u′′, b′′s ) existed then a path
σ′ that exits G′′

s from a′′s and traverses through some parallel component
pc′′ih to a′′i and then traverses to the right to b′′i would then continue towards
b′′s , which then can reach a′′s , creating a cycle. Similarly, (u′, a′s) and (b′s, u

′)
cannot be in the DAGs.

After a maximal parallel subgraph Gi has been transformed into the DAGs
G′

i and G′′
i , the remaining undirected edges from Gi and any isolated vertices

are deleted. Additionally, for any vertex for which all its entangled vertices are
contained within Gi, these vertices are merged into a single vertex.

If as is an entangled vertex with the right terminal bh of a maximal parallel
subgraph Gh that appears to the left of Gs, then because of the above changes
when entangled vertices are merged, a′s will be merged with b′′h (instead of b′h)
and a′′s will be merged with b′h (see the bottom-right of Figure 25). Similarly,
if bs is an entangled vertex with the left terminal ah of the maximal parallel
subgraph Gh to the right of Gs, then b′s will be merged with a′′h and b′′s will be
merged with a′h.

Note that the two DAGs G′
i and G′′

i might each contain a vertex corre-
sponding to every vertex of Gi. Additionally, G

′
i and G′′

i might each contain
a directed edge corresponding to every undirected edge of Gi. Therefore, G

′
i

and G′′
i have at most twice as many vertices and edges as Gi.

4 Algorithm Analysis

Algorithm 2 transforms an undirected series-parallel graph G = (V,E) into a
DAG G.

We say that a directed path σ enters a maximal parallel subgraph Gi =
(Vi, Ei, ai, bi) when σ includes an edge where one endpoint is either ai or bi, the
other endpoint u is in Gi, and the edge is directed towards u. Similarly, we say
that a directed path σ exits Gi when it includes an edge where one endpoint
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pci3
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a'i

a'1 b'1 a's a'3 b'3
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a''4

b'4
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Fig. 24 A parallel component pcist of a maximal parallel subgraph Gi contains DAGs for
each maximal parallel subgraph Gj contained within Gi. Since pcist contains both s and t
within a maximal parallel subgraph Gj of Gi, the edges highlighted in red have been added.

a1 as b3bs

s

a1 b1 as a3 b3bs

s

a's a'3 b'3b's

a''1 b''1 a''s b''s

s

a'1 b'1 a's a'3 b'3b's

a''1 b''1 a''s a''3 b''3b''s

s

t

Fig. 25 Parallel component pci1 from Figure 24 is shown as if the terminals of Gs were
entangled with the adjacent parallel subgraphs. (Top-left) The parallel component is shown
is it appears in the undirected graph G. (Top-right) Terminal as and its entangled vertex
are highlighted in orange and terminal bs and its entangled vertex are highlighted in purple.
(Bottom-left) Some of the adjacent parallel subgraphs adjacent to Gs are deleted and hence
it is clear which entangled vertices to merge. (Bottom-right) If Gs = Gt, then after changing
the edges during Step 3 the entangled pairs need to be adjusted so as to not form a cycle.
The pairs of vertices of the same colors will be merged together.

is either ai or bi, the other endpoint u is not in Gi, and the edge is directed
to u. Finally, we say that a path σ traverses through Gi if σ both enters and
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Algorithm 2 SeriesParallelToDAG(G = (V ,E ), s, t, I)

1: Input: Series-Parallel graph G, start vertex s, end vertex t, and item
assignments I.

2: Output: A DAG G containing paths from s to t equivalent to the paths
from s to t in G.

3: Process vertices with degree 1 as described at the beginning of Section 3.
4: Let p be a shortest path from s to t and let c1, c2, ..., ck−1 be its cut

vertices.
5: for each x = 1 to k do
6: Build Gℓx as described in Section 3.2 and index the maximal parallel

subgraphs G1, ..., Gp of Gℓx such that if Gj is a subgraph of Gi, then
j < i.

7: for each i = 1 to p do
8: Transform Gi into a directed graph as described in Section 3.3.
9: Output the DAG G created by joining the DAGs for the graphs Gℓx .

exits Gi. We extend the notation of entering, exiting, and traversing maximal
parallel subgraphs to parallel components as well.

Algorithm 2 transforms an undirected series-parallel graph G into a
directed graph G by adding duplicate vertices and edges of existing vertices
and edges in G and then directing all the edges. Note that two vertices in G
are only adjacent if the corresponding vertices in G are also adjacent.

For each maximal parallel subgraph Gi of G Algorithm 2 creates two
directed graphs G′

i and G′′
i , where a

′
i and b′i are the terminals of G′

i and a′′i and
b′′i are the terminals of G′′

i . Recall that we assume that when drawing G′
i and

G′′
i the terminals a′i and a′′i are always drawn on the left and the terminals b′i

and b′′i are drawn on the right. We use pcih to refer to the hth parallel com-
ponent in Gi, and we use pc′ih and pc′′ih to refer to the corresponding directed
subgraphs created for pcih by the algorithm.

Lemma 5 Algorithm 2 transforms an instance of ThOP on an undirected series-
parallel graph G into an instance of ThOP on a DAG G, so all paths from s to t in
G are simple.

Proof To prove that there are no cycles in G, we note that since all directed edges
in G correspond to undirected edges in G, a cycle in G would be either (1) two anti-
parallel directed edges in G corresponding to an undirected edge (u, v) in G or (2) a
directed cycle in G corresponding to a cycle in G.

(1) For each undirected edge (u, v) in G there are no corresponding anti-parallel
directed edges in G: When Algorithm 2 creates two copies (u′, v′) and (u′′, v′′) of an
undirected edge (u, v) of G, these edges are incident on different copies of u and v,
thus they do not form a cycle.

(2) For each simple cycle C in G, we show that the corresponding directed edges
in G do not form a cycle. Consider a simple cycle C in G. Observe that C must be
fully contained within some parallel subgraph. Let Gi be the lowest indexed maximal
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parallel subgraph that contains C. Note that C must include both terminals ai and
bi of Gi and so C contains a path that traverses a parallel component pcih of Gi

from ai to bi and a path that traverses a different parallel component pcim of Gi

from bi to ai.
To show that the directed edges in G corresponding to C do not form a cycle, we

must consider five cases depending on whether the parallel subgraph Gi contains s,
t, or neither:

� If Gi does not contain s or t, then either (i) the algorithm in Lemma 4 directs
the edges in G corresponding to the edges in Gi away from cx−1 and toward
cx and this does not form cycles, or (ii) the algorithm in Section 3.3.2 directs
the edges in G′

i and G′′
i corresponding to Gi; in this case, there is a path σ′

in G from a′i to b′i but since Algorithm 2 does not add any incident edges to
b′i directed towards vertices inside G′

i or G
′′
i then σ′ cannot be extended to

traverse back to a′i to create a cycle (see Figure 18 (bottom)). Similarly, a
path σ′ in G from b′′i to a′′i cannot be extended to create a cycle.

� If Gi contains s but not t, then by statement (ii) in the preceding argument
there is a path σ′ in G from a′i to b′i, but there are no incident edges to b′i
directed towards vertices inside G′

i or G
′′
i (see Figure 21). Similarly, a path

σ′ in G from b′′i to a′′i cannot be extended to create a cycle.
� If Gi contains t but not s, then by the same statement (ii) above there is a
path σ′ in G from a′i to b′i but the algorithm in Section 3.3.3(a) ensures that
the only incident edges to b′i directed towards G′

i or G
′′
i lead only to t, and

so σ′ cannot be extended to create a cycle (see Figure 22). Similarly, a path
σ′ in G from b′′i to a′′i cannot be extended to create a cycle.

� If Gi contains both s and t but no maximal parallel subgraph Gj contained
within Gi contains both s and t, then the above arguments show that there
is path σ′ in G from a′i to b′i (or from b′′i to a′′i ) but σ

′ cannot be extended
to create a cycle (see Figure 23).

� If Gi contains both s and t in the same maximal parallel subgraph Gj

contained within Gi, then there exists no path σ′ in G from a′i to b′i, as all
paths from a′i are directed towards t. To see this, note that the algorithms in
Section 3.3.3(b) add only one outgoing directed edge in G incident to a′i and
it leads to a′′s , whose only outgoing directed edge leads to t (see Figure 24).
However, there is a path σ′ from a′′i to b′′i because the algorithms in Section
3.3.3(b) add edges from a′′i towards each of the other parallel components
of Gi that lead to b′′i (see Figure 24). If there is also a path σ′′ in G from
b′′i that enters G′′

i then σ′′ leads to t, but since in this case the algorithms
in Section 3.3.1 and 3.3.2(b) does not add any incident edges to t directed
towards a′′i then σ′′ cannot be extended to create a cycle.
Similarly, a path σ′ in G from b′i to a′i corresponding to a subpath in C from
bi to ai cannot be extended to create a cycle.

□

Lemma 6 Algorithm 2 transforms an instance of ThOP on an undirected series-
parallel graph G into an instance of ThOP on a DAG G such that for every simple
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path σ from s to t in G, there is an equivalent (see Definition 2) directed path σ′

from s to t in G.

Proof Consider a simple path σ from s to t in G and let t1, t2, ..., td be the ter-
minals of maximal parallel subgraphs of G included in σ in the order in which they
appear in a traversal of σ from s to t. These terminals split σ into a set of subpaths
called segments: <t0, t1>, <t1, t2>, ..., <td, td+1>, where t0 = s and td+1 = t. We
gradually construct a directed path σ′ of G equivalent to σ by considering one by
one these segments. Throughout this construction we maintain the invariant that for
the subpath of σ from s to any ti there is an equivalent directed path in G from s
to a vertex corresponding to ti that can be extended to include a directed subpath
equivalent to the next segment <ti, ti+1>.

Recall that after partitioning G into the subgraphs Gℓx , if a subgraph Gℓx contains
no maximal parallel subgraphs or if neither s nor t are in Gℓx then the edges in
Gℓx are directed from its left terminal to its right terminal, and so all segments
<ti, ti+1> belonging to one of these subgraphs Gℓx can be contracted to a single
segment; moreover, adjacent contracted segments can be further contracted to a
single segment. Hence for the remainder of this proof, we consider only subgraphs
Gℓx that have at least one maximal parallel subgraph that contains s and/or t.

If terminal t1 ̸= t is in Gs but is not a terminal of Gs, then observe that Gs

contains within it at least one maximal parallel subgraph Gj , t1 is either the terminal
aj or bj , and Gj lies on a simple path between the terminals of Gs. The edges in Gj

are directed away from s by the algorithm in Section 3.3.1 and hence Gj would not
have been duplicated by the algorithm in Section 3.3.2. In this case we rename t1 so
that it is either a terminal of Gs or t, whichever occurs first in σ. Similarly, if td ̸= s
is in Gt but is not a terminal of Gt, we rename td so that it is either a terminal of
Gt or s, whichever occurs first in σ. The remaining terminals are renamed so that t2
is the next terminal included in σ after t1 in the order of a traversal of σ from s to
t. Hence for the remainder of this proof, if t1 ̸= t we assume it is a terminal of Gs,
and if td ̸= s we assume it is a terminal of Gt.

Recall that the algorithm in Section 3.3.2(a) constructs the DAGs G′
j and G′′

j
corresponding to a parallel subgraph Gj by creating two copies of Gj ; therefore,
there can be two duplicate vertices in G that correspond to each terminal ti of σ.
Hence, when selecting a directed path in G equivalent to a segment <ti+1, ti+2> we
must carefully consider which of the two vertices in G corresponding to each terminal
needs to be chosen.

We use a proof by induction on the terminals ti that the invariant holds for all
subpaths of σ from s to ti.
We first show that the invariant holds for a simple path from s to t in G
that is contained in Gs and for the first segment <s, t1> of σ.

1. If the simple path σ from s to t in G is contained within Gs, then the
algorithm in Section 3.3.1 adds directed edges to G from s to vertices corre-
sponding to the terminals of Gs and from s to t; the algorithms in Section
3.3.2(a)-(c) create two DAGs G′

s and G′′
s containing paths between the ver-

tices corresponding to terminals of Gs and from these vertices to t, ensuring
that regardless of whether σ traverses through zero, one, or two terminals
of Gs in G there is a path σ′ equivalent to σ (see Figure 16).
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2. If the first segment of G is <s, t1>, where s is not a terminal of Gs, then
t1 must be a terminal of Gs; therefore, the algorithms in Sections 3.3.1
and 3.3.2(a)-(c) create paths in G from s to t′1 and t′′1 (the duplicates of t1
created for the DAGs G′

s and G′′
s ), and each of these paths is equivalent to

<s, t1>. Since only one of these two directed paths can be extended to an
equivalent path for the next segment <t1, t2>, we show how to select the
correct path so that the invariant holds, by considering four cases: either
(a) t1 is to the right of s and t2 is to the right of t1, (b) t1 is to the right of
s and t2 is to the left of t1, (c) t1 is to the left of s and t2 is to the left of
t1, and (d) t1 is to the left of s and t2 is to the right of t1.

Given a path σ from s to t, we determine whether a terminal ti is to
the left or to the right of terminal ti+1 as follows:

� If ti and ti+1 are in the same maximal parallel subgraph, let Gh be the
smallest maximal parallel subgraph containing ti and ti+1.

– If ti and ti+1 are terminals of Gh then the terminal corresponding to
ah is to the left of the other one.

– If ti is a terminal of Gh and ti+1 is not: if ti corresponds to ah then ti
is to the left of ti+1; otherwise, ti is to the right of ti+1. Similarly, if
only ti+1 is a terminal of Gh: if ti+1 corresponds to ah then ti+1 is to
the left of ti; otherwise, ti+1 is to the right of ti.

– If neither ti or ti+1 are terminals of Gh, then ti must be a terminal of a
maximal parallel subgraph Gj contained within Gh and ti+1 must be a
terminal of a different maximal parallel subgraph contained within Gh

that is adjacent to Gj . If ti corresponds to the terminal aj then ti+1 is
to the left of ti; otherwise, ti is to the left of ti+1.

� Otherwise, if ti and ti+1 are not in the same maximal parallel subgraph.
If ti corresponds to the terminal ap of a maximal parallel subgraph Gp

and ti+1 corresponds to the terminal bq of a maximal parallel subgraph
Gq then ti+1 is to the left of ti; otherwise ti is to the left of ti+1.
Similarly, we can determine if s is to the left of t1 and if t is to the left
of td.

(a) If t1 is to the right of s and t2 is to the right of t1 then the segment
<t1, t2> must exit Gs and so t1 must be either vertex b′s or vertex b′′s .
If Gs contains both s and t then the terminal b′′s of G′′

s is the vertex
corresponding to t1; otherwise, the terminal b′s of G′

s corresponds to t1
(see Figure 26).

Let Gk be the largest-indexed maximal parallel subgraph containing
Gs. To show that the directed path corresponding to <s, t1> can be
extended to a vertex corresponding to t2 we consider three cases: (i)
t2 = t, (ii) the segment <t1, t2> exits Gk, and (iii) the segment <t1, t2>
stays in Gk.
(i) If t2 = t, then Gs does not contain t, because the segment <t1, t2>

exits Gs (see Figure 26). The algorithms in Sections 3.3.1 and 3.3.2(b)
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t1 t2

t1

t2

Fig. 26 When t1 (purple) is to the right of s and t2 (red) is to the right of t1, the segment
<t1, t2> exits Gs. (Left) Gs does not contain t and so b′s is the vertex corresponding to t1.
(Right) Gs contains t and so b′′s is the vertex corresponding to t1.

and (c) direct the simple paths in G from b′s to t, ensuring the existence
of a path in G equivalent to <t1, t> that extends from <s, t1>.

(ii) If <t1, t2> exits Gk then the terminal bs of Gs is also a terminal
of Gk and so the segment <t1, t2> enters an adjacent series-parallel
subgraph Gℓx (note that in this case σ can not return to Gk and
hence Gk does not contain t). So, t1 must be vertex b′s. If Gℓx does
not contain t, then the algorithms in Lemma 4 direct all simple paths
in Gℓx from b′s to t2, ensuring the existence of a path in G equivalent
to <t1, t2> that extends from <s, t1>. If Gℓx contains t, then the
algorithms in Section 3.3.2 direct the simple paths in Gℓx from b′s to
t2, ensuring the existence of a path in G equivalent to <t1, t2> that
extends from <s, t1>.

(iii) If <t1, t2> stays within Gk then the terminal bs of Gs is not a ter-
minal of Gk, and <t1, t2> either exits Gs into a maximal parallel
subgraph Gp containing Gs or exits Gs into a maximal parallel sub-
graph Gq adjacent to Gs (see Figure 27). In either case, the algorithms
in Section 3.3.2(a)-(c) create the directed graphs G′

p and G′′
p or the

directed graphs G′
q and G′′

q and the algorithm in Section 3.3.2(d) con-
nects G′

s to G′
p or G′

q. If Gs contains t, then the algorithm in Section
3.3.3(b) connects b′′s to G′

p or G′
q. This ensures the existence of a path

in G equivalent to <t1, t2> that extends from <s, t1>.
(b) If t1 is to the right of s and t2 is to the left of t1, then the terminal

b′′s of G′′
s is the vertex that corresponds to t1 (see Figure 28). If the

terminal bs of Gs is also a terminal of a maximal parallel subgraph Gr

containing Gs, then additional vertices were added by the algorithm as
described in Section 3.3 before beginning any of the steps so that b′s, b

′′
s ,

b′r, and b′′r were entangled, but then b′′s and b′r were merged together by
the algorithm in Section 3.3.3 and so the terminal b′′s is incident on edges
directed towards the left that enter the other parallel components of Gi

(that do not contain s).
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s

Gs

t1 t2
b'k

Fig. 27 When t1 (purple) is to the right of s and t2 (red) is to the right of t1, and the
segment <t1, t2> stays in Gk. (Left) Segment <t1, t2> exits into an adjacent maximal
parallel subgraph Gq . (Right) Segment <t1, t2> exits into a maximal parallel subgraph Gp.

The algorithms in Sections 3.3.2(a)-(d) direct edges from b′′s to the
left toward either the vertices corresponding to the terminal as or ar,
thus segment <s, t1> can be extended to <t1, t2>.

a's b's

a''s b''s

s

Gs

a's b's

a''s b''s

s

t

Gs

t1 t1t2 t2

Fig. 28 When t1 (purple) is to the right of s and t2 (red) is to the left of t1, the segment
<t1, t2> is still contained within Gs. (Left) Gs does not contain t and so b′′s is the vertex
corresponding to t1. (Right) Gs contains t and so b′′s is the vertex corresponding to t1.

(c) If t1 is to the left of s and t2 is to the left of t1: If Gs contains both
s and t then the terminal a′s of G′

s is the vertex corresponding to t1;
otherwise, the terminal a′′s of G′′

s is the vertex that corresponds to t1 (see
Figure 29). The proof to show that for path <s, t1>, <t1, t2> there is
an equivalent path in G is similar to the proof for the above case (a).

(d) If t1 is to the left of s and t2 is to the right of t1, then the terminal a′i
of G′

s is the vertex that corresponds to t1 (see Figure 30). The proof to
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Fig. 29 When t1 (purple) is to the left of s and t2 (red) is to the left of t1, the segment
<t1, t2> exits Gs. (Left) Gs does not contain t and so a′′s is the vertex corresponding to t1.
(Right) Gs contains t and so a′s is the vertex corresponding to t1.

show that for path <s, t1>, <t1, t2> there is an equivalent path in G is
similar to the proof for the above case (b).

a's b's

a''s b''s

s

Gs

a's b's

a''s b''s

s

t

Gs

t1 t1t2 t2

Fig. 30 When t1 (purple) is to the left of s and t2 (red) is to the right of t1, the segment
<t1, t2> is still contained within Gs. (Left) Gs does not contain t and so a′s is the vertex
corresponding to t1. (Right) Gs contains t and so a′s is the vertex corresponding to t1.

3. If the first segment is <s, t1>, and s is a terminal of Gs we consider two
cases. If t1 = t or t1 is the other terminal of Gs, then the algorithm in
Section 3.3.1 directs the paths from s to the other terminal of Gs and from
s to t if t is contained in Gs, ensuring that the path in G from s to t1 is
equivalent to the corresponding subpath in σ and that this path can be
extended to <t1, t2>.

When t1 is not t or a terminal of Gs, the algorithms in Sections 3.3.2 and
3.3.3 ensure the existence of two paths in G equivalent to <s, t1>: one path
from s to t′1 and one from s to t′′1 . Since only one of these directed paths can
be extended to an equivalent path for the next segment <t1, t2>, we show
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how to select the correct one so that the invariant holds, by considering eight
cases. Let Gp be the lowest-indexed series-parallel subgraph containing Gs

(if such a series-parallel subgraph exists) and let Gq be a maximal parallel
subgraph adjacent to Gs (if such a maximal parallel subgraph exists).

(a) s = as, t1 is to the right of s, and t2 is to the right of t1. Since s = as
the algorithms in Section 3.3.2 do not duplicate any of the vertices in
Gs (see Figure 31). Therefore, t1 must be vertex bs. If t2 = t then
if Gs is contained within another maximal parallel subgraph then the
algorithm in Section 3.3.2(b) directed the edge from bs to t and if Gs

is not contained within another maximal parallel subgraph then one of
the subgraphs Gℓx consists of only the two vertices t1 and t2 and the
algorithm at the beginning of Section 3.3 directed the path away from s
and towards t, ensuring that in G the path from s to t1 can be continued
towards t2. Otherwise, if t2 ̸= t then the algorithm in Section 3.3.2(d)
ensures that in G the path from s to t1 can be continued towards t2.

s a'3 b'3bs

Gs

t1 t2

Fig. 31 s = as and so the vertices of Gs were not duplicated. Vertice t1 (purple) is to the
right of s and t2 (red) is to the right of t1. The segment <t1, t2> exits Gs.

(b) If s = as, t1 is to the right of s, and t2 is to the left of t1 then t1 must be
bs because of the properties of series-parallel graphs as <s, t1>, <t1, t2>
is part of a simple path σ from s to t. If t2 = t then the algorithm in
Section 3.3.1 ensures the directed path from s to t if t is in Gs, and the
algorithm in Section 3.3.2(b) ensures the directed path from s to t if t is
not in Gs. If t2 ̸= t then t1 must be also a terminal of a maximal parallel
subgraph containing Gs and so the algorithms in Sections 3.3.2(a)-(c)
ensure a directed path in G equivalent to <s, t1>, <t1, t2>.

To avoid being repetitive, from this point on we will not continue
making reference to the algorithms in Section 3.3, but we will explain
what the terminals t1 and t2 are and we will make reference to a figure
illustrating each case.

(c) s = as, t1 is to the left of s, and t2 is to the right of t1. Let Gp be the
smallest indexed maximal parallel subgraph containing t1. Then, vertex
t1 must be terminal ap of Gp as t2 is to the right of t1. If Gp contains
both s and t, then the terminal a′′p of G′′

p is the vertex corresponding to

34

Chapter 5 – Paper 3: Thief Orienteering on Undirected Graphs 145



s

a'0 b'0

bs

Gs

s bs

t

Gs

a''0 b''0

t1

t1 t2

t2

Fig. 32 s = as and so the vertices of Gs were not duplicated. t1 (purple) is to the right
of s and t2 (red) is to the left of t1. (Left) Gs does not contain t and so bs is the vertex
corresponding to t1. (Right) Gs contains t and so bs is the vertex corresponding to t1 and
t2 = t as this is the only feasible path.

t1; otherwise, the terminal a′p of G′
p is the vertex that corresponds to t1

(see Figure 33).

s bs

a''p

Gs

a'1 b'1

a''1 b''1

a'p

s bs

t

Gs

a''p

a'1 b'1

a''1 b''1

a'p
t1

t1

t2 t2

Fig. 33 t1 (purple) is to the left of s and t2 (red) is to the right of t1; observe that the
segment <s, t1> exits Gs into the maximal parallel subgraph Gp containing Gs. (Left) Gp

does not contain t and so a′i is the vertex corresponding to t1. (Right) Gp contains both s
and t and so a′′i is the vertex corresponding to t1.

(d) s = as, t1 is to the left of s, and t2 is to the left of t1. If the segment
<s, t1> enters a maximal parallel subgraph Gq that does not contain Gs,
then either the vertex b′′q corresponds to t1, or the vertex a′′q corresponds
to t1 if Gs and Gq have a common terminal; otherwise, if the segment
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<s, t1> enters a maximal parallel subgraph Gp containing Gs then the
vertex a′′p corresponds to t1 (see Figure 34).

s bs

a''p

Gs

s bs

t

Gs

a''q b''qs bsa''q b''q

Gs

b''0

a'1 b'1

a''1 b''1

a'pb'0

s bs

t

Gs

a''pb''0

a'1 b'1

a''1 b''1

a'pb'0

t1t2t1t2

t1t2t1t2

Fig. 34 s = as and so the vertices of Gs were not duplicated. t1 (purple) is to the left of
s and t2 (red) is to the left of t1. (Top-left) The segment <s, t1> exits Gs into a maximal
parallel subgraph Gp containing Gs and the vertex a′′p corresponds to t1. (Bottom-left)
The segment <s, t1> exits Gs and enters an adjacent maximal parallel subgraph Gq so
the vertex b′′q corresponds to t1. (Top-right) The segment <s, t1> exits Gs into a maximal
parallel subgraph Gp containing Gs and the vertex a′′p corresponds to t1. (Bottom-right)
The segment <s, t1> exits Gs and enters an adjacent maximal parallel subgraph Gq so the
vertex b′′q corresponds to t1.

(e) The remaining four cases when s = bs are simply mirror images of the
cases when s = as.

Assume that a directed path σ′ equivalent to the subpath of σ from s to ti
has been selected that can be extended to a vertex of G corresponding to
ti+1. We show how to construct a directed path equivalent to the subpath
of σ from s to ti+1 that can be extended to a vertex corresponding to ti+2.

1. If ti+1 = t, then by the assumption a directed path σ′ equivalent to σ exists.
2. If ti+1 ̸= t, then by the assumption, σ′ can be extended to reach a vertex

of G corresponding to ti+1; however, G can have two duplicate vertices
corresponding to ti+1. Since only one of these duplicate vertices can extend
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the directed path σ′ to a vertex corresponding to ti+2, we show how to select
the duplicate vertex in G that corresponds to ti+1 so that the invariant
holds, by considering eight cases.

(a) If ti+1 is the right terminal br of some maximal parallel subgraph Gr

of G, ti+1 is to the right of ti, and ti+2 is to the right of ti+1, then
the terminal b′r of G′

r is the vertex that corresponds to ti+1 (see Figure
35). The algorithms in Sections 3.3.1 and 3.3.2 and Lemma 4 direct the
simple paths in G from b′r to the right ensuring the existence of a path
in G equivalent to <ti+1, ti+2> that extends from <ti, ti+1>.

a''2 b''2a''r b''r

a'2 b'2a'r b'r
ti ti+1 ti+2

Fig. 35 ti+1 (purple) is the right terminal br of Gr, ti+1 is to the right of ti (blue), and
ti+2 (red) is to the right of ti+1. b

′
r is the vertex that corresponds to ti+1.

(b) If ti+1 is the right terminal br of a maximal parallel subgraph Gr, ti+1

is to the left of ti, and ti+2 is to the left of ti+1.
� If ti+1 is a terminal of Gs which contains both s and t, then the
terminal b′s of G′

s is the vertex corresponding to ti+1 and ti+2 = t (see
Figure 36 (left)). Note that even if the terminal as is common with
the terminal br of Gr of a maximal parallel subgraph adjacent to Gs,
ti+1 cannot correspond to as because that implies that either ti = s,
but the terminals ti were not defined to include s, or ti = bs, but
then both terminals of Gs have been traversed and the path σ can not
return to t.

� Otherwise, the terminal b′′r of G′
r is the vertex that corresponds to ti+1

(see Figure 36 (right)). Note that if ti+1 corresponds to the terminal
as of Gs which contains only s, and if the terminal as is common with
the terminal br of Gr of a maximal parallel subgraph adjacent to Gs,
then vertex b′′r is still the vertex that corresponds to ti+1.
Note that if ti+1 is the terminal br of Gr, Gr contains Gs, and Gs

contains t, then it must be the case that the path σ has already traversed
from s to ai before reaching ti+1. To see this, note that the segment
<ti, ti+1> enters Gr, which implies that σ previously exited Gr, but σ
could not have exited Gr using br as then this terminal would have been
visited twice. Hence, σ exited Gr using ar. Therefore, σ has traversed
both terminals of Gr and thus must traverse the parallel component of
Gr that contains t (as otherwise σ could never reach t). The algorithm in
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Section 3.3.3(b) kept the edge incident on b′′r that is directed towards G′′
r

and hence in this case there exists a path in G equivalent to <ti+1, ti+2>
that extends from <ti, ti+1>.

a'1 b'1 a's a'3 b'3b's

a''1 b''1 a''s a''3 b''3b''s

s

t

Gs

a'1 b'1 a's a'3 b'3b's

a''1 b''1 a''s a''3 b''3b''s

s

t
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b'0

b''0

b'4

b''4

b'r

b''r

b'k

b''k
ti

ti+1

ti+2

titi+1

ti+2

Fig. 36 ti+1 (purple) is the right terminal br of Gr, ti+1 is to the left of ti (blue), and ti+2

(red) is to the left of ti+1. (Left) ti+1 is a terminal of Gs which also contains t and so b′s is
the vertex that corresponds to ti+1. Note that in this case ti+2 = t due to how we renamed
the terminals ti. (Right) In all other cases, b′′r is the vertex that corresponds to ti+1.

(c) If ti+1 is the left terminal ar of Gr, ti+1 is to the right of ti, and ti+2 is
to the right of ti+1.
� If ti+1 is a terminal of Gs which contains both s and t, then the
terminal a′′s of G′′

s is the vertex corresponding to ti+1 (and t2 = t, see
Figure 37 (Left)).

� Otherwise, the terminal a′r of G
′
r is the vertex that corresponds to ti+1

(see Figure 37 (Right)).
Note that this case is symmetric to case (b) above, and so the proof

is similar.

a'1 b'1 a's a'3 b'3b's
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b''0

b'4
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b''r

b'k
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ti+1 ti+2

ti ti+1

ti+2

Fig. 37 ti+1 (purple) is the left terminal ar of Gr, ti+1 is to the right of ti (blue), and
ti+2 (red) is to the right of ti+1. (Left) ti+1 is a terminal of Gs which contains t and so
a′′s is the vertex that corresponds to ti+1. (Right) In all other cases, a′r is the vertex that
corresponds to ti+1.

(d) If ti+1 is the left terminal ar of a maximal parallel subgraph Gr, ti+1 is
to the left of ti, and ti+2 is to the left of ti+1 then the terminal a′′r of
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G′′
r is the vertex that corresponds to ti+1 (see Figure 38). Note that this

case is symmetric to case (a) above.

a''2 a''r b''rb''2

a'2 a'r b'rb'2

titi+1ti+2

Fig. 38 ti+1 (purple) is the left terminal ar of Gr, ti+1 is to the left of ti (blue), and ti+2

(red) is to the left of ti+1. a
′′
r is the vertex that corresponds to ti+1.

(e) If ti+1 is the right terminal br of a maximal parallel subgraph Gr, ti+1

is to the right of ti, and ti+2 is to the left of ti+1 then there are four
possibilities:
(i) If Gr contains both s and t in the same maximal parallel subgraph

and if the segment <ti, ti+1> exits a parallel component containing s
then the terminal b′r of G′

r is the vertex that corresponds to ti+1 (see
Figure 39 (Top-right)).

(ii) If Gr contains both s and t in the same maximal parallel subgraph and
if the segment <ti, ti+1> exits a parallel component not containing s
then the terminal b′′r of G′′

r is the vertex that corresponds to ti+1 (see
Figure 39 (Bottom-right)).

(iii) If Gr does not contain both s and t in the same maximal parallel
subgraph and if the segment <ti, ti+1> exits a parallel component
containing s then the terminal b′′r of G′′

r is the vertex that corresponds
to ti+1 (see Figure 39 (Top-left)).

(iv) If Gr does not contain both s and t in the same maximal parallel
subgraph and if the segment <ti, ti+1> exits a parallel component not
containing s then the terminal b′r of G′

r is the vertex that corresponds
to ti+1 (note that in this case the segment <ti, ti+1> must enter a
parallel component containing t) (see Figure 39 (bottom-left)).

(f) If ti+1 is the left terminal ar of a maximal parallel subgraph Gr, ti+1 is to
the right of ti, and ti+2 is to the left of ti+1, then it must be the case that
the terminal ar is common with the terminal bp of a maximal parallel
subgraph Gp adjacent to Gr. To see this, note that the a terminal is the
left terminal of a maximal parallel graph and any path approaching the
a terminal (that is not common with any other b terminal) from the left
side must continue to the right. Therefore, ti+1 is also the right terminal
bp and hence this case is identical to case (e) above.

(g) If ti+1 is the left terminal ar of a maximal parallel subgraph Gr, ti+1

is to the left of ti, and ti+2 is to the right of ti+1 then there are four

39

Chapter 5 – Paper 3: Thief Orienteering on Undirected Graphs 150



a'1 b'1 a's a'3 b'3b's

a''1 b''1 a''s a''3 b''3b''s

s

t

Gs

a'r

a''r

a'0

a''0

a'4

a''4

b'0

b''0

b'4

b''4

b'r

b''r

a'1 b'1 a's a'3 b'3b's

a''1 b''1 a''s a''3 b''3b''s

s

t

Gs

a'r

a''r

a'0

a''0

a'4

a''4

b'0

b''0

b'4

b''4

b'r

b''r

a'i

a's a'3 b'3

b'i

b's

a''i b''i

a''1 b''1 a''s b''s

s

a'0

a''0

b'0

b''0

a'4

a''4

b'4

b''4

a'i

a't

a'3 b'3

b'i

b't

a''i b''i

a'1 b'1

a''t b''t

t

a'0

a''0

b'0

b''0

a'4

a''4

b'4

b''4

ti

ti

ti

ti

ti+1

ti+1

ti+1

ti+1

ti+2 ti+2

ti+2 ti+2

Fig. 39 ti+1 (purple) is the right terminal br of Gr, ti+1 is to the right of ti (blue), and
ti+2 (red) is to the left of ti+1. (Top-left) The segment <ti, ti+1> exits a parallel component
containing s and so the terminal b′′r of G′′

r is the vertex that corresponds to ti+1. (Bottom-
left) The segment <ti, ti+1> exits a parallel component not containing s and so the terminal
b′r of G′′

r is the vertex that corresponds to ti+1. (Top-right) Gr contains both s and t and
the segment <ti, ti+1> exits a parallel component containing s and so the terminal b′r of
G′′

r is the vertex that corresponds to ti+1. (Bottom-right) Gr contains both s and t and the
segment <ti, ti+1> exits a parallel component not containing s and so the terminal b′′r of
G′′

r is the vertex that corresponds to ti+1.

possibilities. Note that this is symmetric to case (e) above and hence we
omit the figures.
(i) If Gr contains both s and t in the same maximal parallel subgraph

and if the segment <ti, ti+1> exits a parallel component containing s
then the terminal a′′r of G′′

r is the vertex that corresponds to ti+1.
(ii) If Gr contains both s and t in the same maximal parallel subgraph and

if the segment <ti, ti+1> exits a parallel component not containing s
then the terminal a′r of G′

r is the vertex that corresponds to ti+1.
(iii) If Gr does not contain both s and t in the same maximal parallel

subgraph and if the segment <ti, ti+1> exits a parallel component
containing s then the terminal a′r of G′

r is the vertex that corresponds
to ti+1.

(iv) If Gr does not contain both s and t in the same maximal parallel
subgraph and if the segment <ti, ti+1> exits a parallel component not
containing s then the terminal a′′r of G′′

r is the vertex that corresponds
to ti+1 (note that in this case the segment <ti, ti+1> must enter a
parallel component containing t).
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(h) If ti+1 is the right terminal br of a maximal parallel subgraph Gr, ti+1 is
to the left of ti, and ti+2 is to the right of ti+1, then it must be the case
that the terminal br is common with the terminal ap of a maximal parallel
subgraph Gp adjacent to Gr. To see this, note that the b terminal is the
right terminal of a maximal parallel graph and any path approaching the
b terminal (this is not common with any other a terminal) from the left
side must continue to the right. Therefore, ti+1 is also the left terminal
ap and hence this case is identical to case (g) above.

Algorithm 2 creates at most two vertices per vertex in G, and the vertices in
G store the same items as the corresponding vertices in G. Moreover, Algorithm 2
creates at most two directed edges for each edge in G, and the edges in G have the
same length as the corresponding edges in G. As shown above, for any path σ in G
from s to t, there is an equivalent simple path σ′ in G from s to t. □

Lemma 7 Algorithm 2 transforms an instance of ThOP on an undirected series-
parallel graph G into an instance of ThOP on a directed graph G such that for every
directed path σ′ from s to t in G, there is an equivalent simple path σ from s to t in G.

Proof Given a path σ′ from s to t in G we include in σ the undirected edges corre-
sponding to the directed edges in σ′ and so we only need to show that σ′ does not
traverse through two vertices storing the same set of items.

Recall that Algorithm 2 makes at most two duplicate vertices corresponding to
each vertex in G. For a maximal parallel subgraph Gi of G, one of these duplicate
vertices v′ is in G′

i and the other duplicate vertex v′′ is in G′′
i . If Gi does not contain

s or t, then no path from s to t in G could visit both v′ and v′′ because Algorithm 2
does not add any edges to G for a path σ′ to exist that traverses from G′

i to G′′
i or

from G′′
i to G′

i.
Recall that for parallel components pcih in a maximal parallel subgraph Gi that

contain s or t, but not both within the same maximal parallel subgraph Gj , the
algorithm in Section 3.3.3(a) deletes one of G′

j or G′′
j for each maximal parallel

subgraph Gj in Gi, except Gs and Gt; hence the only vertices for which their two
duplicate copies exist in Gi are located in the DAGs for Gs and Gt. For G

′
s and G′′

s ,
a path σ′ from s to t must either traverse and exit G′

s or traverse and exit G′′
s ; in

either case, σ′ cannot traverse through the two duplicate vertices of a vertex of Gs.
Similarly, a path σ′ from s to t must either traverse G′

t and then go to t or traverse
G′′

t and then go to t; in either case, σ′ cannot traverse through the two duplicate
vertices of the same vertex of Gt.

For a parallel component pcih in Gi that contain s and t within the same max-
imal parallel subgraph Gj , a path σ′ from s to t must traverse one of the parallel
components pc′ih or pc′′ih created for parallel component pcih, but σ

′ cannot traverse
both. To see this, observe that if σ′ traverses pc′′ih toward the left terminal a′′i of G′′

i ,
then by the algorithm in Section 3.3.3(b) σ′ cannot reach pc′ih, but it can traverse
to the right to a different parallel component pc′im and onto b′′i , from where it still
cannot reach pc′ih. Note that when σ′ traverses from b′′i back into pc′′ih, σ

′ continues
toward t and this does not create a cycle. Similarly, σ′ can traverse pc′ih to the right
terminal b′i from where it cannot reach pc′′ih but it can traverse to the left to a dif-
ferent parallel component pc′′im and onto a′i, from where it must continue toward t.
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Therefore, σ′ is unable to traverse multiple duplicate vertices that correspond to the
same vertex in G. □

Theorem 2 There is a PTAS for the thief orienteering problem when the graph G
is an undirected series-parallel graph that produces solutions that use time at most
T (1 + ϵ) for any ϵ > 0.

Proof Algorithm 2 transforms an undirected series-parallel graph G into a DAG G
by creating at most one additional vertex for each vertex in G and creating two
directed edges for each undirected edge in G, and so Algorithm 2 runs in polynomial
time. By Theorem 2 in [3], Algorithm 3 in [3] is a PTAS for the thief orienteering
problem when the input graph G is a DAG that produces solutions that use time at
most T (1 + ϵ) for any ϵ > 0. Therefore, by Lemmas 5, 6, and 7 the combination of
Algorithm 2 and Algorithm 3 in [3] is a PTAS for the thief orienteering problem when
the input graph G is an undirected series-parallel graph that produces solutions that
use time at most T (1 + ϵ) for any ϵ > 0. □
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Chapter 6

6 Paper 4: A Modified Hopfield Network for the K
Median Problem
This paper is currently in preparation.

This paper investigates a non-traditional technique, the Hopfield network, and its ap-
plication to the k-median problem. A local search algorithm designed by modifying the
typical Hopfield network model is presented and experimentally evaluated against neu-
ral networks and local search algorithms from the literature, and our modified Hopfield
network is shown to produce solutions very quickly with competitive approximation ra-
tios.



A Modi�ed Hop�eld Network for the K-Median

Problem

Abstract. The k-median problem is a classical clustering problem where
given n locations one wants to select k locations such that the total
distance between every non-selected location and its nearest selected
location is minimized. The problem has a large number of applications
in a variety of �elds, including network design, resource allocation, and
data mining.

We present a modi�ed Hop�eld network for the k-median problem. Our
main contribution is the design of a synchronous neuron update function
that acts like a single-swap local search algorithm. We experimentally
evaluate our modi�ed Hop�eld network against Rossiter's modi�ed Hop-
�eld network, Haralampiev's competition-based neural network, and the
local search algorithms of Arya et al., Pan and Zhu, and Cohan-Addad
et al. We show that our modi�ed Hop�eld network converges to local
optimal in very few iterations and hence has runtimes almost �fty times
smaller than Rossiter's network and hundreds of times smaller than Har-
alampiev's network. The solutions produced by our algorithm are often
better than the other neural networks and single-swap local search algo-
rithms, and we propose how to implement a multi-swap version of our
algorithm.

Keywords: Hop�eld Networks · K-Median Problem · Neural Networks ·

Local Search · Combinatorial Optimization · Approximation Algorithms.

1 Introduction

The k-median problem (KMP) is de�ned as follows. Given a graph G = (V,E)
with n vertices and nonnegative distance di,j for every edge (i, j) such that
di,j = dj,i, select k vertices, called facilities or medians, to minimize the sum of
distances between every non-selected vertex and the facility closest to it. The
problem has the following integer programming formulation:
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Minimize :

n∑

i=1

n∑

j=1

di,jxi,j (1a)

Subject to :

n∑

j=1

xi,j = 1 , i = 1, ...n (1b)

n∑

i=1

Fi = k (1c)

xi,j ≤ Fi , i = 1, ...n; j = 1, ...n (1d)

Fi , xi,j ∈ {0, 1} (1e)

where n is the number of vertices in the graph, k is the number of facilities or
medians, di,j is the distance (cost) of vertex i serving vertex j, Fi = 1 represents
that vertex i is a facility, and xi,j = 1 represents that vertex j is being served
by vertex i.

Equation (1a) represents the goal of minimizing the total distance from the
clients to their nearest facility, equation (1b) requires that every vertex is served
by exactly one other vertex, equation (1c) requires that exactly k facilities are
selected, equation (1d) requires that only active facilities can serve other vertices,
and equation (1e) requires that the variables Fi and xi,j are restricted to the
values 0 and 1.

KMP is a well-known problem in the facility location literature [13]; the k
selected vertices represent facilities and the non-selected vertices are the clients
to be served. Not only is KMP applicable to a variety of �elds such as network
design [1], data mining [24], and web access [20], but KMP is also critical to
several modern unsupervised and semi-supervised machine learning models [9].
KMP is known to be NP-hard [21], and Jain et al. [19] proved that KMP cannot
be approximated within a factor strictly less than 1 + 2

e ∼ 1.736, unless NP ⊆
DTIME(nO(log logn)).

Many of the successful approximation algorithms for KMP are either based
on linear program rounding or local search algorithms. On the linear program
rounding side, the current best result is the 2.670-approximation of Cohen-Addad
et al. [10], which improved on the 2.675-approximation of Byrka et al. [5], and
the 2.732-approximation of Li and Svensson [22]. All of the above approaches
involve rounding fractional solutions produced by either linear programs or the
convex combination of two integer solutions. For the euclidean k-median prob-
lem, Cohen-Addad et al. [9] have improved the approximation ratio to 2.406.

On the local search algorithm side, the current best result is the (2.836 +
ϵ)-approximation of Cohen-Addad et al. [8], which improved on the (3 + 2

p )-

approximation of Arya et al. [2], where p is the number of facilities swapped
out in one swap operation; whereas Arya et al. perform arbitrary multi-swaps,
Cohen-Addad et al. constructed a new objective function that considers both
the closest and second-closest facility for each client. Peng et al. [30] also created
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a local search algorithm that achieves a (3 + 2
p )-approximation ratio, and Pan

and Zhu [28] presented a local search algorithm that performs well in practice
but no analysis was given as to its approximation ratio.

Arya et al. [2] have also shown that any local search algorithm that performs
single swap operations to produce a solution that cannot be further improved
by any single-swap has an approximation ratio of at most 5. A swap operation
transforms the current solution s into a new feasible solution s′ by removing a
facility from the solution s and adding a new facility.

There have also been many heuristics designed for KMP: the interchange
algorithm [34], tree search [6], Kohonen maps [23], and more. Additionally,
several neural networks have been designed for KMP: Merino, Muñoz-Pérez,
and Jerez-Aragonés [11, 25, 26] designed a Hop�eld network and several recur-
rent neural networks, Mishrra and Barman [27] designed two Hop�eld networks,
Haralampiev [14�16] designed a competition-based neural network, and Rossiter
[32] designed a modi�ed Hop�eld network. Our work builds on the algorithm of
Rossiter: We identify some �aws in Rossiter's algorithm, we design a new neu-
ron update function, and we improve on the (already fast) speed of Rossiter's
network.

In this paper, we present a modi�ed Hop�eld network for KMP and we show
that in practice it produces solutions that are very close to optimal solutions.
Our modi�ed Hop�eld network runs almost �fty times faster than Rossiter's [32]
and several hundred times faster than Haralampiev's [14�16]. By running our
algorithm several times and improving upon the best solutions that it �nds, our
algorithm produces approximation ratios that are often better than the other
neural networks and single-swap local search algorithms.

The rest of the paper is organized in the following way: In Section 2 we
describe a typical Hop�eld neural network formulation for KMP, in Section 3
we present our modi�ed Hop�eld network model, in Section 4 we describe our
network's algorithm, in Section 5 we present our experimental results, in Section
6 we explain the performances of the algorithms, and in Section 7 we provide
our conclusions and future research directions.

2 A Typical Hop�eld Network Formulation

Hop�eld [17] �rst introduced the Hop�eld network in 1982 as a neural network
with a single layer consisting of arti�cial neurons. Each neuron i updates itself
at regular time intervals according to Equation (2) based on the values of the
other neurons in the network, the weights of the connections between neuron i
and the rest of the neurons in the network, and the threshold value θi for neuron
i. Assume that neurons have updated their activation values at time t, then time
t + 1 is the next time that the neurons will update themselves. The activation
value (output value) of neuron i at time t+ 1 is:

Vi(t+ 1) =

{
1 if

∑N
j=1 Ti,jVj(t) ≥ θi ,

0 otherwise
(2)
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where N is the number of neurons in the network, Ti,j is the weight of the neuron
connection between neurons i and j, Vj(t) is the activation value of the neuron
j at time t, and θi is the threshold value of the neuron i.

The activation values of the neurons in the network describe a unique con�g-
uration or state of the network; when neural networks are designed to represent
optimization problems, the state of the network corresponds to a solution to
the optimization problem, but the solution is not necessarily a feasible solution.
Hop�eld and Tank [18] showed that a Hop�eld network can optimize a function
of the following form:

E = −1

2

N∑

i=1

N∑

j=1

Ti,jViVj −
N∑

i=1

ViIi (3)

where N is the number of neurons, Vi is the neuron state variable, Ti,j is the neu-
ron connection matrix, and Ii is the input bias. Equation (3) is called an energy

function, and the basic idea is that desirable network states should correspond
to low energy con�gurations, which in term should represent good solutions for
the optimization problem being modeled. The energy function is a description of
the activation values of the neurons (neurons whose activation values are 1 are
said to be active) in the network; therefore, attempting to minimize the energy
in a neural network described by a well-designed energy function should cause
the network to reach a state where the active neurons represent high-quality
feasible solutions. Equation (3) is a Lyapunov function, and its main property
is that it always decreases or remains constant as the neurons are updated.

Hop�eld networks implemented using Equation (3) tend to become stuck
in local optimal solutions that often do not even represent feasible solutions
to the corresponding optimization problem. Equation (3) can be improved by
including the problem constraints in such a way that network states that violate
the constraints have increased energy; therefore, the only way to reach low-energy
states is to �nd feasible solutions.

A neural network can model KMP by using a single layer of neurons divided
into two groups: The �rst group of neurons, corresponding to the variables Fi

from equation (1), represent whether vertex j is an active facility, and the second
group of neurons, corresponding to the variables xi,j from equation (1), represent
whether client i is being served by facility j.

F1 x1,1 x2,1 x3,1

F2 x1,2 x2,2 x3,2

F3 x1,3 x2,3 x3,3

Table 1: Matrix representation of the neurons in a three location k-median prob-
lem. The �rst column contains only the facility neuron variables. Each row begins
with a facility neuron and the following neurons are the client-facility neurons
that can be served by that facility.
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This results in N = n2 + n neurons and can be visualized in a tabular
format as an n × (n + 1) neuron matrix (see Table 1). The �rst column of the
matrix contains the facility neurons that correspond to the variables Fi and
represent whether a given vertex is an active facility. The remaining columns of
the matrix contain the client-facility neurons that correspond to the variables
xi,j and represents whether vertex j is being served by vertex i.

Let V (i, j) be a function that maps the client-facility neuron variable xi,j to
its corresponding neuron state variable Vh. We de�ne this function as V (i, j) =
Vn∗i+j where n is the number of vertices (see Table 2). The indices for the facility
neuron variables Fi range from 1 to n so they can be represented using Vi from
1 to n.

V1 V4 V7 V10

V2 V5 V8 V11

V3 V6 V9 V12

Table 2: Matrix representation of the neurons in a three location k-median prob-
lem. The neuron state variables V1 to Vn correspond to the Fi facility neuron
variables and the remaining neuron state variables Vn+1 to Vn2+n correspond to
the xi,j client-facility neuron variables.

To encourage low energy states to correspond to feasible solutions, constraint
terms can be added to Equation (3):

E =C1

n∑

i=1

n∑

j=1

V (i, j)Di,j (4a)

+C2((
n∑

i=1

Vi)− k)2 (4b)

+C3

n∑

i=1

((
n∑

j=1

V (i, j))− 1)2 (4c)

+C4((
n∑

i=1

n∑

j=1

V (i, j))− n)2 (4d)

+C5

n∑

i=1

n∑

j=1

(1− Vi)V (j, i) (4e)

where V (i, j) corresponds to the client-facility neuron state variable representing
client i being served by facility j, V (i) corresponds to the facility neuron state
variable representing facility i, and the terms C1 through C5 are constants,
chosen by the network designer, that amplify the amount of energy added to the
network when the constraint is violated.
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The �rst constraint, represented by Equation (4a), adds energy to the net-
work corresponding to the distance between each facility and the clients that
it serves. Larger distances between clients and facilities results in more energy
added to the network and so achieving low-energy con�gurations requires as-
signed clients to nearby facilities.

The second constraint, represented by Equation (4b), adds energy to the net-
work unless exactly k facilities neurons are active (facilities are active if their
activation value is 1). Since KMP requires exactly k facilities to be selected,
having more than k or less than k facilities active represents an infeasible solu-
tion and hence this constraint helps low-energy con�gurations to correspond to
feasible solutions to KMP.

The third constraint, represented by Equation (4c), adds energy to the net-
work unless a client is served by exactly one facility. KMP does not allow frac-
tional solutions in which a client might be partially served by several facilities
and hence each client must be assigned to exactly one facility to be a part of a
feasible solution.

The fourth constraint, represented by Equation (4d), adds energy to the net-
work unless exactly n client-facility neurons are active (facilities are considered
clients that are served by themselves). Since KMP requires each client to be
assigned to a facility, having less than n clients assigned to facilities represents
an infeasible solution and hence this constraint helps low-energy con�gurations
to correspond to feasible solutions to KMP.

Finally, the �fth constraint, represented by Equation (4e), adds energy to
the network if a client-facility neuron xi,j is active but the corresponding facility
neuron Fi is not active. In feasible solutions, only active facilities can serve the
clients.

If Equation (4) is rearranged into the form of Equation (3), we can derive the
connection values T and the input bias values I. Since the constraint terms are
de�ned for subsets of neurons, the connection matrix T is de�ned by a piecewise
function:

Ti,j =





−2C2 if i and j are facility neurons

2C5 if i is a facility neuron and j is a client-facility neuron served by i

−2C3 − 2C4 if i and j are client-facility neurons in the same column

−2C4 if i and j are client-facility neurons in di�erent columns

0 otherwise

and the input bias values are de�ned as:

Ii =

{
2C2k if i is a facility neuron

−C1D(i) + 2C3 + 2C4n− C5 if i is a client-facility neuron

where D(i) is a distance function that takes a client-facility neuron i and returns
the distance between the represented client and facility and is de�ned as D(i) =
D⌊(i−1)/n⌋,((i−1)modn)+1.
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At this point, we would like to point out that a typical hop�eld network would
asynchronously update its neurons using Equation (2), attempting to minimize
Equation (4), and when the energy function cannot be decreased any further
the network con�guration would correspond to a feasible solution to KMP with
(hopefully) good quality. Our proposed neural neural network does not behave
this way.

3 Our Modi�ed Hop�eld Network Model

Our proposed neural network makes several modi�cations to the Hop�eld net-
work formulated in Section 2. First, while a typical Hop�eld network's neurons
asynchronously update according to the equations that we described in Section
2, our Hop�eld network is updated in a synchronous manner, which we describe
in detail in Section 4.

In our network design, each neuron will contain two variables: the activation

value and the inner value. The activation value is used to determine which
facilities are active or whether a client is being served by a particular facility,
and the inner value represents how close clients are to facilities and vice-versa.
We show an example in Figure 1 using a small graph G = (V,E) with n = 5
vertices in which vertices with indices 0 through 3 form a small cluster such that
they each have distance 1 from each other, and the vertex with index 4 is located
much further away. Let the vertices with indices 1 and 3 be the currently active
facilities.

Looking at the activation values in Figure 1 (the rightmost matrix), we can
see that in the �rst column of the matrix (corresponding to the facility neuron
values Fi) the facility neuron variables F1 and F3 (colored in green) are both
set to 1, indicating that these are the active facilities. The remaining columns
of the activation value matrix represent the client-facility neuron variables, and
we can see that x1,1, x3,0, x3,2, x3,3, and x3,4 (colored in blue) are all set to 1,
indicating that facility 1 serves itself and facility 3 serves clients 0, 2, 3, and 4.

0 1

2 3
4

1

1

99 0 00
1
2
3
4

0 1 2 3 4

1
0

2.9
0

0 0 0 0
.9 1 .9 .9 .1
0 0 0 0 0
.9 .9 .9 1 .1
0 0 0 0 0

0 00
1
2
3
4

0 1 2 3 4

1
0
1
0

0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 1 1 1
0 0 0 0 0

Activation ValuesInner Values

Fig. 1: The modi�ed Hop�eld network is represented using two matrices: The �rst
matrix contains the inner values and the second matrix contains the activation
values.
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Looking at the inner values in Figure 1 (the leftmost matrix), we can see that
the facility neuron variables have values 1 and 2.9. The inner values of these fa-
cility neurons represent how close the facilities are to the clients they currently
serve; in other words, how valuable these facilities might be to a potential solu-
tion. Consider facility f3: The vertices with indices 0, 1, and 2 are all a distance
of 1 away from f3 and hence can be served at a low cost, which is represented
in the inner value matrix as a high inner value of 0.9. Facility f3 can serve itself
at no cost and so the client-facility neuron variable x3,3 has the maximum value
of 1, but the vertex with index 4 is a distance of 99 away and so the inner value
of the client-facility neuron x3,4 is only 0.1. The inner value of f3 is the sum of
the client-facility inner values that are assigned to f3; note that the activation
value of x3,1 is 0 because that vertex is not assigned to f3 (it is a facility that
serves itself) and so the inner value of x3,1 is not added to the inner value of f3.

The connection values for our modi�ed Hop�eld network are not derived
from the energy function; instead, we have carefully chosen how the neurons can
update each other, and we do not add an input bias I to our neurons. There
are several di�erent ways that the neuron connections can be in�uenced, and we
introduce the most basic way �rst.

In the �rst column of the inner value matrix in Figure 1, the facility neuron
variables corresponding to the active facilities have the only non-zero values; this
is because we calculate the inner value of an active facility neuron Fi as the dot
product of the cells xi,1, xi,2, ..., xi,n from both the inner value and activation
value matrices. More speci�cally,

innerV alue[i, 0] =
n∑

j=0

innerV alue[i, j + 1]× activationV alue[i, j + 1]

Note that when a vertex with index j is served by a facility with index i we
refer to its corresponding client-facility neuron as xi,j , but this neuron is located
in the matrices at column j + 1 because column 0 is reserved for the facility
neurons.

We can also see that in the rest of the columns of the matrix, the client-
facility neuron variables corresponding to the active facilities have the only non-
zero variables; this is because we calculate the inner value of a client-facility
neuron xi,j such that

innerV alue[i, j + 1] = activationV alue[i, 0]×D′[i, j]

where the matrix D′ stores normalized distances between the vertices.
To normalize the distance values, we scale each of the distances di,j between

vertex pairs to the range [0, 1] and then subtract the resulting value from 1.
Normalizing the distances in this manner allows for intuitive matrix manipula-
tions. For example, activation values for active and inactive facilities are 1 and
0, respectively, and so multiplying these activation values by the distance to a
potential client creates either a non-zero inner value (for client-facility neurons
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corresponding to active facilities) or a zero inner value (for client-facility neurons
corresponding to inactive facilities).

Facilities that serve themselves do so at no cost. Using the original distances,
consider a facility fa that only serves itself versus a facility fb that serves itself
and several nearby clients: The most valuable facility in this example is clearly
fb as it is serving multiple neighbours, but facility fa is contributing less total
cost to the solution, which might make facility fa seem more desirable since our
goal is to minimize the total cost. In contrast, using our normalized distances,
facility fa has an inner value of 1 (for serving itself) but facility fb would have a
much higher inner value because each close client that it serves would increase
its inner value by a large amount.

Normalizing the distances in this manner and calculating the inner value
as described above makes it intuitively clear which facilities are contributing
the most to a potential solution. Additionally, having zeros for inner values
corresponding to client-facility neurons for inactive facilities is much simpler
than storing large values (or in�nity) to represent inactive client-facilities using
the original distances.

Another modi�cation that we made to the Hop�eld network is related to
how constraints are imposed on the network: In a typical Hop�eld network, the
neuron's activation values steer the network towards a lower energy function,
where network states that violate the problem constraints add additional energy
to the network. Our network does not do that; instead, we incorporate the con-
straint terms from Equation (4) directly into our neuron update operations. For
example, instead of a client-facility neuron activating because its input crossing
a threshold, it activates because it has the largest inner value in its column of
the inner value matrix. Our network still transitions between di�erent states and
stabilizes at low energy feasible solutions for KMP, but we �nd that it converges
on local optima in fewer iterations than the Hop�eld networks from previous
researchers.

In the next section we describe our synchronous algorithm that coordinates
the neuron updates, enforces the problem constraints, and drives the network
towards lower energy states.

4 The Modi�ed Hop�eld Network Algorithm

Our modi�ed Hop�eld network algorithm synchronously updates neurons in a
series of rounds by applying a carefully constructed sequence of manipulations
to the inner values. Algorithm 1 shows a high-level description of what occurs
in each round of the algorithm. We start by initializing our modi�ed Hop�eld
network to a feasible solution to KMP by randomly picking k of the facility
neuron variables Fi and setting their values to 1. Then, in a loop, our algorithm
(i) deactivates the active facility with the lowest inner value, (ii) updates the
inner values of all the neurons, and (iii) activates the inactive facility with the
highest inner value. If, after activating the next facility, the solution was not an
improvement over the previous solution, our algorithm terminates. Hence, our
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algorithm is a single swap local search algorithm that transitions from feasible
solution to feasible solution by removing one facility and adding one facility.

Algorithm 1 Modi�edHop�eld(G, k)

1: Input: Graph G = (V,E) and the number k of facilities.
2: Output: A feasible solution for KMP.
3: Compute the normalized distance matrix D′.
4: Initialize activationV alue[][] with k random active facilities.
5: Initialize innerV alue[][] to zero.
6: Initialize stabilized to false.
7: Call UpdateNeurons(activationV alue, innerV alue,D′).
8: while stabilized is false do
9: Let prevEnergy equal the sum of the �rst column of innerV alue.
10: Deactivate the facility neuron Flow with the lowest inner value.
11: Call FindBestFacility(activationV alue, innerV alue,D′, Flow).
12: Activate the inactive facility Fhigh with the highest inner value.
13: Call UpdateNeurons(activationV alue, innerV alue,D′).
14: Let energy equal the sum of the �rst column of innerV alue.
15: if prevEnergy ≥ energy then

16: stabilized is true.
17: activationV alue[low, 0] = 1; activationV alue[high, 0] = 0.
18: end if

19: end while

20: Return the set of k active facilities.

Recall that each neuron has two values, its activation value and its inner
value. We store these values in the n × n + 1 matrices activationV alue and
innerV alue, such that the �rst column of the matrix holds the values for the
facility neurons and the remaining columns of the matrix hold the values for
the client-facility neurons. The matrices can be interpreted so that row i begins
with the facility neuron and continues with all of the client-facility neurons
corresponding to that facility (all the clients that the facility could potentially
serve), and column j > 0 contains all the client-facility neurons corresponding
to that client (all neurons correspond to the same vertex in G and the column
contains one neuron for each facility it might be served by).

The method UpdateNeurons(activationV alue, innerV alue) is quite simple
and updates the client-facility inner values, client-facility activation values, and
facility inner values, in that order:

� Updating the client-facility inner values: For each client-facility neuron
xi,j , set innerV alue[i, j + 1] = activationV alue[i, 0]×D′

i,j .
� Updating the client-facility activation values: For the client-facility

neuron xi,j in the column j+1 with the highest inner value, set activationV alue[i, j+
1] = 1; for the rest of the client-facility neurons in column j + 1, set their
activationV alue to 0.
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� Updating the facility inner values: For the facility neuron Fi, set innerV alue[i, 0] =∑n
j=0 innerV alue[i, j + 1]× activationV alue[i, j + 1].

Our modi�ed Hop�eld network algorithm transitions from feasible solution to
feasible solution by deactivating a facility and then activating a di�erent facility,
so that after performing this facility swap operation there is k active facilities.
When k facilities are active, observe that after calling method UpdateNeurons,
updating the client-facility inner values produces non-zero inner values only for
client-facility neurons within rows of innerV alue corresponding to active facili-
ties, and hence if there were k active facilities prior to calling this method then
there are exactly k rows of non-zero inner values after invoking the method.
Then, updating the client-facility activation values enforces the constraint that
each client is assigned to exactly one facility, as we only activate the single
client-facility neuron in each column with the largest inner value, and also this
enforces the constraint that exactly n clients are assigned to facilities. Note also
that each client-facility neuron must be assigned to an active facility. Finally,
updating the facility inner values assigns inner value to the active facility neu-
rons corresponding to the sum of distances of assigned client-facility neurons,
hence the sum of column 0 of innerV alue represents the energy of our modi�ed
Hop�eld network, which we are trying to maximize. Therefore, these methods
satisfy all the constraints from Equation (4).

When exactly k facilities are active, the inner values of the client-facility
neurons are updated based on the distance from each client to each active facility.
The client j is assigned to the facility closest to client j by identifying the client-
facility neuron with the largest value in column j+1 of innerV alue and setting
the corresponding cell in activationV alue to 1 and setting the rest of the values
in that column of activationV alue to 0 (in the case of ties, the facility with the
lowest index is assigned the client). Therefore, after updating the inner values
of the facility neurons, a facility fa with a lower inner value than a facility fb
means that the clients that fa is serving are located further away from fa than
the distance between fb and its clients.

We deactivate the facility neuron with the lowest inner value on line 10 of
Algorithm 1 (in the case of ties, the facility with the lowest index is deactivated),
as this suggests that it is serving clients the furthest away. Next, we show how
to select the facility to activate.

4.1 Finding the Best Facility Neuron to Activate

Our algorithm for �nding the best facility neuron to activate is shown in Algo-
rithm 2. Algorithm 2 starts by setting all the inner values of the facility neurons
to 0, as we will re-compute them in a speci�c way to select which facility we
want to activate. In line 4, we zero out the inner values of client-facility neurons
corresponding to the deactivated facility as those clients can no longer be served
by that facility and hence one of the remaining k − 1 active facilities will now
have the highest inner value for serving those clients.
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Algorithm 2 FindBestFacility(activationV alue, innerV alue,D′, Flow)

1: Input: The activation value matrix activationV alue, the inner value matrix
innerV alue, the normalized distances D′, and the deactivated facility Flow.

2: Output: The inner values of the facility neurons are updated.
3: Set the facility neuron inner values to 0.
4: Set all values in row low of innerV alue to 0.
5: Let maxV alues be an array holding the maximum inner value for columns j > 0.
6: Let facilityV alues be an array holding facility activation values where inactive

facilities have value 1 and active facilities have value 0.
7: Compute the client-facility inner values using facilityV alues.
8: Zero out columns in innerV alue corresponding to active facilities.
9: for each value v in innerV alues from column 1 to n+ 1 do
10: Let v be in row i and column j.
11: if v > maxV alues[j] then
12: v = v + (v −maxV alues[j]).
13: else

14: v = 0.
15: end if

16: innerV alues[i, j] = v.
17: end for

18: for i = 0 to n do

19: innerV alues[i, 0] =
∑n

j=0 innerV alues[i, j + 1].
20: end for

During calls to Algorithm 2 there are only k− 1 active facilities. Since these
facilities will belong to the solution after �nishing Algorithm 2, we focus on
computing the inner values of client-facility neurons corresponding to inactive
facilities. To identify the best candidate facility, we apply a series of manipula-
tions to the inner value matrix according to three logical rules:

1. The k−1 active facilities will serve themselves, and so we zero out the inner
value of client-facility neurons in rows and columns corresponding to any of
the k − 1 active facilities,

2. A candidate facility will only serve a client if it is closer to that client than
the closest of the k− 1 active facilities, and so we zero out the inner value of
client-facility neurons if their inner value is less than or equal to the largest
inner value of the k − 1 active facilities in the same column, and

3. A candidate facility that is closer to a client than the closest active facility
represents an improvement to the solution, and so we increase the inner value
of client-facility neurons if their inner value is greater than the largest inner
value of an active facility in the same column.

1) Facilities serve themselves. In lines 6-8 of Algorithm 2 the variable
facilityV alues is set to 1 for inactive facilities and 0 for active facilities. When
this modi�ed facilityV alues is used to update innerV alues, it creates zeros for
the inner values of client-facility neurons corresponding to rows and columns of
the remaining k−1 active facilities, since those facilities will serve themselves and
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Fig. 2: Continuing from the example in Figure 1, facility 1 had the lowest inner
value and was deactivated. During Algorithm 2, the �rst column in innerV alues
is set to 0, the inner values of the client-facility neurons are updated, and the
inner values of client-facility neurons corresponding to any of the k−1 remaining
active facilities are set to 0 (colored in red).

hence should not contribute inner value to any candidate facilities, and creates
non-zero values for inner values in rows and columns corresponding to inactive
facilities (see Figure 2). This means that potential facilities are evaluated only
on how well they can serve the client locations.

2) Candidate facility underperforms active facility. In lines 11-15 of Al-
gorithm 2 the inner value v of a client-facility neuron x in column j is compared
against the maximum inner value from the remaining k − 1 active facilities in
column j, which was stored in the variable maxV alues[j] in line 5. If v is at
most maxV alues[j], then the client-facility neuron x is not closer to facility i
than it is to the remaining k − 1 active facilities, and so assigning client j to
facility i would not improve the solution. Hence, innerV alue[i, j] is set to 0 (see
Figure 3). This means that a potential facility f is evaluated only based on the
clients that would actually be assigned to f and not based on the closeness of f
to its nearby clients.

3) Candidate facility outperforms active facility. In lines 11-15 of Algo-
rithm 2 if v is greater than maxV alues[j], then the client-facility neuron x is
closer to facility i than any of the remaining k − 1 active facilities, and so as-
signing client j to facility i would improve the solution. By increasing the inner
value by the di�erence between innerV alues[i, j] and maxV alues[j], the mag-
nitude of the improvement is re�ected in the updated inner value (see Figure
4). For example, in Figure 4 choosing to activate facility 4 is an improvement
to the solution because facility 4 can serve itself at no cost, but in the previous
solution facility 3 was serving facility 4 at a large cost (and this improvement
takes into account the fact that client 1 now needs to be served by some facility
at a non-zero cost).
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Fig. 3: Candidate facilities should not be assigned clients if they cannot serve
them better than the remaining k− 1 active facilities, and so the inner values of
client-facility neurons in a column j that are less than or equal to the maximum
inner value from an active facility in that column are set to 0 (colored in red).
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Fig. 4: Candidate facilities that are closer to a client than the closest active
facility represent an improvement to the solution, and so the inner values of
client-facility neurons in a column j that are greater than the maximum inner
value from an active facility in that column are increased (colored in blue).

Finally, in lines 18-20 the inner value of a facility neuron Fi is set to the sum
of the inner values of the client-facility neurons in row i (see Figure 5). Note
that we do not take the dot product with the activation value matrix because
we have not assigned clients to facilities yet.
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Fig. 5: After computing the inner values of the client-facility neurons correspond-
ing to inactive facilities, the best candidate facility is the facility neuron with
the largest inner value (colored in blue).

Note since we start with k active facilities, we only ever deactivate one facility
at a time, and we always re-activate one facility, then at the end of each iteration
of the algorithm there always are exactly k active facilities.

5 Experimental Results

We compared our modi�ed Hop�eld network with �ve other algorithms for KMP:
Arya et al.'s single-swap local search algorithm [2], the local search algorithm
of Pan and Zhu [28], the local search algorithm of Cohen-Addad et al. [8], the
competition-based neuron network of Haralampiev [14�16], and the modi�ed
Hop�eld network of Rossiter [32]. We give a brief description of how each of
these algorithms work below.
Arya et al.'s Local Search. The algorithm begins with a random feasible
solution for KMP. In the single-swap algorithm, for a given solution S a client i
of S is considered for activation as a facility and each currently active facility j
in S is considered for deactivation (so that one client is swapping roles with one
facility). For each such swap, the cost of the resulting solution S′ is calculated,
and the best solution is selected. To ensure that this algorithm runs in polyno-
mial time, we implemented the suggestion of Cohen-Addad and Mathieu [7] and
terminate the algorithm if after considering swapping each client i with each
facility in S no solution S′ can be created such that cost(S′) ≤ (1−1/n)cost(S).
In the multi-swap algorithm, we randomly select two of the active facilities and
two of the clients and swap them.
Pan and Zhu's Local Search. The single-swap local search algorithm of Arya
et al. is run three times and the selected facilities from each solution are recorded.
The set of common facilities Fc across the three solutions are identi�ed, and a
new reduced input is created that does not include the vertices from Fc or any
of the clients whose closest facility is in Fc. The single-swap algorithm is run
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on this reduced input, and the facilities in the solution to this smaller problem
are combined with Fc and used as the starting point for one more run of the
single-swap algorithm.
Cohen-Addad et al.'s Local Search. Arya et al.'s local search algorithm is
used, but for the purposes of calculating the cost of the solution, a new objective
function is used: The cost associated with a particular facility i includes not only
the clients closest to i, but also the clients whose second closest facility is i. This
new objective function is used throughout the algorithm in order to select which
swap operations to perform. We show results for both a single-swap and a multi-
swap version of this algorithm.
Haralampiev's Competition-Based Neural Network. This neural network
uses 2×n× k neurons to represent KMP, where the �rst set C of n× k neurons
represent each client being assigned to one of k clusters and the second set F of
n×k neurons represent whether a facility is assigned to one of the k clusters. The
set F is divided into subgroups of size n where each subgroup contains neurons
for every vertex from the input but only one neuron from a subgroup can be
active at a time (corresponding to the active facility for a particular cluster).
The set C is divided into subgroups of size k, where only one neuron from a
subgroup can be active at a time, and corresponds to the assignment of a client
to a particular cluster. The facility neuron i assigned to cluster j takes input
from all the client neurons that are also assigned to cluster j, using the distance
between client and facility as the connection weight. With a high probability, the
facility neuron from cluster j with the lowest value is activated (corresponding to
the lowest cost assignment of clients to facilities); however, with low probability
the algorithm can activate a facility that does not have the lowest value, which
is done to help the network avoid getting stuck in local optimal solutions.
Rossiter's Modi�ed Hop�eld Network. Similar to our network, Rossiter
uses n+n2 neurons to represent KMP, where each neuron has both inner values
and activation values. However, this network is initialized so that all facility
neurons are nearly active with activation values that are arbitrarily close to 1,
and the inner values and activation values of each of the client-facility neurons are
updated based on these facility activation values. Repeatedly, a facility neuron
is randomly chosen to be updated: If a facility neuron's inner value is in the top
k facility inner values then its activation value is increased to 1, and otherwise
its activation value is decreased to 0. The algorithm terminates when there are
k active facilities.

5.1 Input Data

We used a variety of inputs obtained from network benchmarks for KMP, the
traveling salesman problem, networks constructed from North-American cities,
and randomly generated networks. We give a brief description of how each input
was generated below.
Random-Small. We randomly generated networks where the number n of ver-
tices was one of [20, 30, 40, 50, 60, 70, 80, 90, 100] and the value of k was one of
[2, 3, 4, 5, 6, 7, 8, 9, 10]. For each n and k pair we performed 100 tests.
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Random-Large.We randomly generated networks where n was one of [500, 600,
700, 800] and k was one of [20, 30, 40, 50]. For each n and k pair we performed 3
tests.
Cities USCA312. We used John Burkardt's USCA312 dataset [4] which pro-
vides a list of 312 cities across North-America. The dataset converts a city's
longitude and latitude into an equivalent x and y coordinate pair which we used
to construct the graph. We created tests from this dataset by randomly select-
ing n vertices, where n was any multiple of 10 between 30 and 300, and using k
values between 2 and 10. For each n and k pair we performed 100 tests.
OR-Library P-Median. We used the dataset for KMP from the OR-Library
[3] which contains 40 tests labeled pmed1 through pmed40. The n values range
from 100 to 900 and the k values range from 5 to 200. For each n and k pair we
performed a single test.
TSPLib. We used the TSPLib dataset [31] which contains inputs for the trav-
eling salesman problem. Each input has over 1000 locations speci�ed by x and y
coordinates, and the dataset was adapted for KMP by García et al. [12]. There
are several tests per problem with k values ranging from 5 to 5000.

For each test case that we report, we also provide the values of n and k. For
inputs where the optimal solution was not known, we used the Coin-OR solver
[33] to produce optimal solutions.

5.2 Testing Environment

We implemented the algorithms using python making extensive use of the Py-
Torch framework [29], which allows the e�cient expression of matrices as tensors.
This greatly improves performance as we structured most of the calculations as
matrix operations which can be executed in parallel. The experiments were per-
formed on a computer using an Intel Core i5-8300H 2.30GHz (4 cores) with 8GB
of RAM.

5.3 Initialization Strategies

We begin by presenting the results of our modi�ed Hop�eld network using three
di�erent strategies to select the active facilities at the beginning of Algorithm 1.
We use the results from these experiments to determine the best initialization
strategy.

In Section 4 we described how to initialize our modi�ed Hop�eld network
by activating k random facilities. We observed in our preliminary testing that
our algorithm was very fast, and so our network could be re-initialized multiple
times in order to perform multiple �runs� of the network using di�erent sets of
initial facilities each time, where the start point of a run is the initialization of
the active facilities and the end point of a run is when a neuron update fails to
improve the solution. Our motivation in developing our initialization strategies
was to try and use previous solutions to identify valuable facilities to include in
future runs of the algorithm. In Table 3 we provide results for three di�erent
initialization strategies, described below:
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Random Initialization. This is the initialization strategy described in Section
4. Using this strategy, each run of our modi�ed Hop�eld network randomly
selects k facilities to use as the starting point of the network. No information is
shared between di�erent runs of the algorithm. This initialization strategy can
be viewed as the baseline by which our next two strategies can be compared
against.

Tally Initialization. In this initialization strategy, we draw inspiration from
the algorithm of Pan and Zhu [28], where they identify the common facilities
selected from multiple solutions, construct a reduced problem that omits those
common facilities and clients served by them, and �nd a set of good facilities for
the reduced problem. While Pan and Zhu identify their common facilities over
three runs of their algorithm, we instead maintain a frequency table that counts
how many times each facility appears in a solution returned by our algorithm,
as we found that in three runs our network often did not have any facilities
common to all three solutions. Let r represent a parameter for the number of
runs. We build the frequency table over the �rst r runs and remove the top ⌊k/4⌋
facilities to create the reduced problem. Then, we initialize a reduced version of
the problem (using random sets of starting facilities from the remaining vertices)
and solve it another r times, storing the set of facilities that produced the best
solution to the reduced problem. Finally, we perform one last run initialized
using the 3k/4 best facilities from the reduced problem and the top k/4 facilities
from the frequency table.

Best Facility Initialization. In this initialization strategy, our goal is to ad-
dress a weak point of our algorithm: We designed a single-swap algorithm that
can get stuck in local optimal solutions when improvements require swapping
more than one facility. To strengthen our algorithm, each run is initialized using
the facilities from our best solution produced so far (the very �rst run uses k
random facilities), but we deactivate several of the facilities with the lowest inner
values (we keep either k − 3 or ⌊0.9k⌋ facilities, whichever is fewer, but keeping
at least 1 facility). A random set of facilities is then activated to bring the total
to k active facilities.

We include a selection of the results here1. In each table, the values in a single
column correspond to the same algorithm, with the name of the algorithm listed
at the top of the column. The rows are labeled with the type of input used and
the n and k pair, followed by statistics for each algorithm.

For each test we report two statistics per algorithm: the approximation ratio
and the total runtime in seconds. The approximation ratio is calculated as S/S∗

where S is the value of the solution computed by an algorithm and S∗ is the
value of an optimal solution. The total runtime of a test is calculated by starting
a timer when an algorithm begins initialization and ending the timer when a
solution is returned. When there are multiple tests for a single n and k pair
we return the mean average approximation ratio and average runtime of each
algorithm for the n and k pair.

1 The complete results are available at www.csd.uwo.ca/∼ablochha/ThesisHop�eldResults.zip
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40 Runs (random) 40 Runs (tally) 40 Runs (best)
Test n k Ratio Time (s) Ratio Time (s) Ratio Time (s)

random-small
20 5 1.02 0.05 1.03 0.13 1.02 0.05

50 5 1.05 0.08 1.04 0.21 1.04 0.08

100 5 1.05 0.13 1.05 0.35 1.05 0.13

random-large

500 50 1.14 1.04 1.12 2.89 1.10 0.55

600 50 1.12 1.85 1.12 4.30 1.06 0.89

700 50 1.13 2.50 1.12 6.04 1.08 1.13

800 50 1.13 3.61 1.12 8.24 1.07 1.58

USCA312
100 10 1.22 0.12 1.22 0.36 1.21 0.11

200 10 1.19 0.22 1.18 0.68 1.16 0.21

300 10 1.19 0.30 1.19 0.93 1.16 0.27

pmed

500 167 1.48 0.66 1.51 2.56 1.38 0.48

600 200 1.47 1.21 1.50 3.49 1.34 0.72

800 80 1.13 3.37 1.13 11.99 1.08 1.77

900 90 1.11 7.67 1.12 19.02 1.08 2.32

TSPLib
1304 500 1.55 20.21 1.52 61.76 1.39 8.61

1400 500 3.08 6.64 2.89 16.76 3.21 6.77
1432 500 1.07 56.73 1.09 115.08 1.05 21.25

Table 3: Initialization Strategies: Ratios and runtimes of our modi�ed Hop�eld
network for a selection of the test results for the randomized, North-American
cities, k-median, and traveling salesman problem datasets. We use three di�erent
initialization strategies. The best performance for each test case is bolded.

The intuition behind the tally initialization strategy is that the most com-
monly occurring facilities across many solutions are valuable and might also
belong to an optimal solution. Additionally, as seen in the results presented in
this section, the approximation ratios produced by our modi�ed Hop�eld net-
work are best when the value of k is smaller, and hence our network should be
able to produce high-quality solutions for the reduced problem. The intuition
behind the best facility initialization is to essentially allow our network to con-
tinue from a previous run after performing a multi-swap operation to remove
the least valuable facilities.

We show the results of our three initialization strategies in Table 3, with the
best approximation ratio and runtime for each test case bolded. The standard
deviations of the approximation ratios are fairly similar for each initialization
strategy at roughly 0.02. The standard deviations for each individual test case
can be found in the full results.
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It is clear that our best performing initialization strategy is best facility
initialization, as it not only produces the lowest approximation ratios but also
computes solutions in the least amount of time. In particular, for the tests on
the large random graphs with n = 800 and k = 50, the best facility initialization
had mean approximation ratios of 1.07 and runtimes of 1.15 seconds, compared
to the random initialization with mean ratios of 1.13 and runtimes of 3.61 sec-
onds. The tally initialization consistently performed the worst both in terms of
approximation ratios and runtimes, with the exception of the input from the
TSPLib with n = 1400 and k = 500 where its approximation ratio was the best,
but we interpret this as just a random occurrence due to how each algorithm
incorporates a random selection of facilities.

For all of the remaining test cases, we report results of our algorithm using
the best facility initialization strategy.

5.4 Performing Multiple Runs

Each of the three initialization strategies described above bene�ts from perform-
ing multiple network runs: Random initialization can result in poor choices in
starting facilities and so additional runs allow a variety of facilities to be selected,
tally initialization bene�ts from performing multiple runs to �nd the most fre-
quently selected facilities, and best facility initialization essentially performs a
random multi-swap on the best solution seen so far which also bene�ts from
trying multiple swaps.

Table 4 shows the results of running our algorithm di�ering amounts of times
using the best facility initialization strategy. The standard deviations are as large
as 0.09 when only 5 runs of the algorithm are performed, shrink to roughly 0.06
with 10 runs, and are reduced to roughly 0.04 and 0.02 when 20 and 40 runs are
performed, respectively.

As expected, running the algorithm more times produces better results (see
Table 4); however, for some of the test cases, such as the small random graphs,
USCA312, and TSPLib, the improvement over performing 20 runs is minimal,
while for the larger random graphs and the pmed dataset the improvements are
still signi�cant (an improvement of 0.03 for n = 600 and k = 50). Because our
algorithm can perform 40 runs very quickly, we decided to use this number of
runs to compare against the other algorithms instead of increasing the number
of runs even further. As we see in the following tables, our algorithm is often
still faster than the competing algorithms using 40 runs.

5.5 Comparing Against the Neural Networks

For each test using the neural networks, we allotted Rossiter's modi�ed Hop�eld
network and Haralampiev's competition-based neural network 4 runs and the
best solution found was returned, and we allotted our modi�ed Hop�eld network
40 runs as we previously determined this was enough runs to allow our best
facility initialization strategy to improve the best found solutions. Note that our
network completes its 40 runs faster than the other neural networks complete
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5 Runs 10 Runs 20 Runs 40 Runs
Test n k Ratio Time (s) Ratio Time (s) Ratio Time (s) Ratio Time (s)

random-small
20 5 1.06 0.01 1.05 0.01 1.03 0.03 1.02 0.05
50 5 1.09 0.01 1.07 0.02 1.05 0.04 1.04 0.08
100 5 1.09 0.01 1.07 0.03 1.06 0.06 1.05 0.13

random-large

500 50 1.16 0.08 1.13 0.16 1.10 0.29 1.10 0.55
600 50 1.15 0.10 1.09 0.23 1.09 0.42 1.06 0.89
700 50 1.11 0.18 1.10 0.31 1.08 0.59 1.08 1.13
800 50 1.11 0.26 1.11 0.38 1.09 0.80 1.07 1.58

USCA312
100 10 1.27 0.02 1.24 0.03 1.22 0.06 1.21 0.11
200 10 1.21 0.03 1.20 0.05 1.17 0.10 1.16 0.21
300 10 1.21 0.04 1.19 0.07 1.17 0.14 1.16 0.27

pmed

500 167 1.54 0.07 1.47 0.12 1.41 0.27 1.38 0.48
600 200 1.50 0.11 1.40 0.20 1.36 0.38 1.34 0.72
800 80 1.09 0.29 1.10 0.50 1.09 0.70 1.08 1.77
900 90 1.13 0.39 1.11 0.56 1.10 1.16 1.08 2.32

TSPLib
1304 500 1.49 1.30 1.46 1.85 1.43 3.67 1.39 8.61
1400 500 3.24 0.60 3.43 1.31 3.12 1.94 3.21 6.77
1432 500 1.06 4.41 1.06 5.58 1.06 10.34 1.05 21.25

Table 4: Performing Multiple Runs: Ratios and runtimes of our modi�ed Hop�eld
network for a selection of the test results for the randomized, North-American
cities, k-median, and traveling salesman problem datasets.

their 4 runs, and that Haralampiev's algorithm could not complete the TSPLib
test cases within a reasonable timeframe.

Table 5 shows the results of performing tests on the neural networks, with
the best approximation ratio and runtime for each test case bolded. While Har-
alampiev's algorithm produced many of the best approximation ratios for these
selected test cases, the time it takes to perform only 4 runs of the algorithm is
over a hundred times longer than the time used by our algorithm for many of
the inputs. The prohibitively long runtime of Haralampiev's network prevented
us from including its results on the TSPLib dataset. Despite the amount of ex-
tra time Haralampiev's network was allotted to solve each input, our algorithm
managed to produce solutions with approximation ratios that were close and
even a few solutions that were better (the larger pmed inputs).

Rossiter's algorithm computed solutions to the small random graphs the
quickest (given that we performed ten times as many network runs), but as the
size of the graph increased it required more time than our algorithm to produce
its solutions, to the point where on the large random graphs with n = 800 and
k = 50 Rossiter's algorithm's 4 runs took �ve times longer than our algorithm's
40 runs. For the largest input graph with n = 13509 and k = 5000, Rossiter's
algorithm took 6 hours per run while our algorithm took only 30 seconds.
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Our Network (40) Rossiter (4) Haralampiev (4)
Test n k Ratio Time (s) Ratio Time (s) Ratio Time (s)

random-small
20 5 1.02 0.05 1.10 0.02 1.04 0.09
50 5 1.04 0.08 1.07 0.06 1.02 0.41
100 5 1.05 0.13 1.07 0.12 1.01 1.07

random-large

500 50 1.10 0.55 1.10 1.62 1.09 81.48
600 50 1.06 0.89 1.11 2.63 1.06 127.00
700 50 1.08 1.13 1.10 4.45 1.06 150.43
800 50 1.07 1.58 1.09 8.08 1.05 192.40

USCA312
100 10 1.21 0.11 1.25 0.12 1.16 0.71
200 10 1.16 0.21 1.21 0.32 1.10 2.45
300 10 1.16 0.27 1.18 0.62 1.10 5.60

pmed

500 167 1.38 0.48 1.39 1.78 1.31 83.92
600 200 1.34 0.72 1.33 2.67 1.36 89.69
800 80 1.08 1.77 1.09 6.13 1.15 54.56
900 90 1.08 2.32 1.10 10.67 1.14 67.08

TSPLib
1304 500 1.39 8.61 1.38 36.71 - -
1400 500 3.21 6.77 1.81 43.08 - -
1432 500 1.05 21.25 1.09 55.19 - -
13509 5000 1.96 1364.86 1.69 57219 - -

Table 5: Comparing Against the Neural Networks: Ratios and runtimes of the
solutions computed by the neural networks for a selection of the test results for
the randomized, North-American cities, k-median, and traveling salesman prob-
lem datasets. We allotted our algorithm 40 runs and the other neural networks
4 runs. The best performance for each test case is bolded.

5.6 Comparing Against the Local Search Algorithms

For each test using the local search algorithms, we allotted a runtime of 5 seconds
on all but the largest graphs for the competing algorithms and continued to run
our network 40 times. For the TSPLib inputs with 1000 vertices, we allotted
the local search algorithms 100 seconds, and for the input with 13509 vertices,
we allotted the local search algorithms 10000 seconds, in order to give these
algorithms more time than our algorithm took. Given the current solution S, if
the local search algorithms consider all possible swap operations and fail to �nd
a new solution of cost at most (1− 1/n)cost(S), they will terminate before their
given time limit.

We compared both the single-swap and multi-swap (we allowed two facilities
to swap at once) algorithms of Arya et al. and Cohen-Addad et al. The multi-
swap algorithms have much higher runtimes, so in order to complete the tests
in a reasonable time we allotted these algorithms a maximum of one second on
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the small random graphs and the USCA312 dataset. In the tables, we divide
these results using a slash; for example, the result 1.06/1.03 indicates that the
single-swap algorithm produced solutions with mean approximation ratio 1.06
and the multi-swap algorithm produces solutions with ratio 1.03.

Table 6 shows the results of performing the tests using the local search algo-
rithms, with the best approximation ratio and runtime for each test case bolded.
For all but the USCA312 dataset, our modi�ed Hop�eld network outperformed
the single-swap local search algorithms. When the local search algorithms were
allowed to swap out two facilities at a time, Arya et al's multi-swap algorithm
produced approximation ratios lower than ours on a number of the test cases,
and the performance of the multi-swap algorithms were signi�cantly better on
some of the larger TSPLib inputs.

Our Network (40) Arya (s/m) Pan Cohen-Addad (s/m)
Test n k Ratio Time (s) Ratio Time (s) Ratio Time (s) Ratio Time (s)

random-small
20 5 1.02 0.05 1.06/1.03 0.01/1.00 1.07 0.03 1.08/1.04 0.02/1.00
50 5 1.04 0.08 1.04/1.01 0.03/1.00 1.03 0.11 1.04/1.03 0.08/1.00
100 5 1.05 0.13 1.02/1.01 0.09/1.00 1.02 0.29 1.03/1.03 0.29/1.00

random-large

500 50 1.10 0.55 1.14/1.07 5.00/5.00 1.12 4.84 1.19/1.10 5.00/5.00
600 50 1.06 0.89 1.20/1.09 5.00/5.00 1.16 3.08 1.20/1.09 5.00/5.00
700 50 1.08 1.13 1.21/1.09 5.00/5.00 1.17 5.96 1.23/1.10 5.00/5.00
800 50 1.07 1.58 1.22/1.11 5.00/5.00 1.24 3.14 1.22/1.11 5.00/5.00

USCA312
100 10 1.21 0.11 1.03/1.03 0.24/1.00 1.03 0.97 1.04/1.05 0.58/1.00
200 10 1.16 0.21 1.02/1.04 0.58/1.00 1.02 2.80 1.03/1.05 1.45/1.00
300 10 1.16 0.27 1.01/1.04 1.48/1.00 1.01 4.31 1.03/1.05 2.75/1.00

pmed

500 167 1.38 0.48 1.58/1.11 5.00/5.00 1.34 8.35 1.55/1.11 5.00/5.00
600 200 1.34 0.72 1.52/1.09 5.00/5.00 1.40 9.90 1.62/1.12 5.00/5.00
800 80 1.08 1.77 1.30/1.08 5.00/5.00 1.22 13.46 1.35/1.09 5.00/5.00
900 90 1.08 2.32 1.36/1.09 5.00/5.00 1.23 15.81 1.39/1.08 5.00/5.00

TSPLib
1304 500 1.39 8.61 2.16/1.20 100/100 1.79 123.67 2.02/1.21 100/100
1400 500 3.21 6.77 3.10/1.47 100/100 3.23 129.42 3.35/1.50 100/100
1432 500 1.05 21.25 1.43/1.03 100/100 1.29 130.49 1.40/1.05 100/100
13509 5000 1.96 1364.86 2.34/1.84 1000/1000 2.25 4337 2.32/1.89 1000/1000

Table 6: Comparing Against the Local Search Algorithms: Ratios and runtimes
of the solutions computed by the local search algorithms for a selection of the
test results for the randomized, North-American cities, k-median, and traveling
salesman problem datasets. We allotted our algorithm 100 runs and the other
local search algorithms 5 seconds. The best performance for each test case is
bolded. For the algorithms of Arya et al. and Cohen-Addad et al., both the
single-swap (s) and multi-swap (m) results are listed.

5.7 Approximation Ratio Versus Number of Facilities

When looking at Table 5, we noticed that for the large random graphs the neural
networks all consistently performed better when the number of vertices increased
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but the number of facilities stayed the same. We noticed the same trend for the
USCA312 inputs as well. To observe the impact of the number of facilities, we
include in Tables 7 and 8 one last set of results using the inputs from USCA312
where n = 30.

Our Network (40) Rossiter (4) Haralampiev (4)
Test n k Ratio Time (s) Ratio Time (s) Ratio Time (s)

USCA312

30 2 1.02 0.04 1.08 0.02 1.02 0.02
30 3 1.05 0.05 1.12 0.03 1.05 0.03
30 4 1.08 0.05 1.16 0.03 1.13 0.04
30 5 1.09 0.06 1.23 0.03 1.13 0.05
30 6 1.12 0.06 1.31 0.03 1.23 0.05
30 7 1.22 0.06 1.44 0.03 1.39 0.06
30 8 1.14 0.06 1.29 0.03 1.29 0.06
30 9 1.25 0.06 1.57 0.03 1.46 0.07
30 10 1.27 0.06 1.68 0.03 1.51 0.08

Table 7: Approximation Ratio Versus Number of Facilities: Ratios and runtimes
of the solutions computed by the neural networks for a selection of the test
results from USCA312. The best performance for each test case is bolded.

Our Network (40) Arya (s/m) Pan Cohen-Addad (s/m)
Test n k Ratio Time (s) Ratio Time (s) Ratio Time (s) Ratio Time (s)

USCA312

30 2 1.02 0.04 1.02/1.02 0.01/1.00 1.02 0.02 1.03/1.03 0.02/1.00
30 3 1.05 0.05 1.04/1.02 0.01/1.00 1.04 0.03 1.05/1.03 0.02/1.00
30 4 1.08 0.05 1.04/1.02 0.01/1.00 1.04 0.04 1.06/1.03 0.03/1.00
30 5 1.09 0.06 1.05/1.02 0.01/1.00 1.05 0.06 1.06/1.03 0.04/1.00
30 6 1.12 0.06 1.05/1.02 0.02/1.00 1.04 0.08 1.05/1.03 0.04/1.00
30 7 1.22 0.06 1.04/1.02 0.03/1.00 1.04 0.10 1.06/1.04 0.07/1.00
30 8 1.14 0.06 1.06/1.02 0.02/1.00 1.05 0.10 1.08/1.04 0.06/1.00
30 9 1.25 0.06 1.06/1.02 0.03/1.00 1.05 0.12 1.08/1.04 0.09/1.00
30 10 1.27 0.06 1.06/1.02 0.04/1.00 1.05 0.13 1.09/1.05 0.10/1.00

Table 8: Approximation Ratio Versus Number of Facilities: Ratios and runtimes
of the solutions computed by the local search algorithms for a selection of the
test results from USCA312. The best performance for each test case is bolded.
For the algorithms of Arya et al. and Cohen-Addad et al., both the single-swap
(s) and multi-swap (m) results are listed.
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As shown in Table 7, all of the neural network approaches produce worse
approximation ratios when the number of facilities increases. Note that when
n = 30 and k = 2, our algorithm produced the same mean approximation ra-
tios as Haralampiev's network of 1.02, but when k was increased to 10, our
algorithm performed signi�cantly better with mean ratios of 1.27 compared to
Haralampiev's 1.51. For this particular set of inputs, our modi�ed Hop�eld net-
work outperformed the other neural networks.

As shown in Table 8, the single-swap local search algorithms produce worse
approximation ratios when the number of facilities increases, but this same ef-
fect is not nearly as pronounced (or even existent) in the multi-swap algorithms.
Arya et al.'s multi-swap algorithm produced the best results for these tests, but
note that a single run of the algorithm (which was terminated due to hitting
the time limit) took a hundred times longer than Arya et al.'s single-swap algo-
rithm (which terminated before the time limit due to not �nding any signi�cant
improvements).

6 Analysis

We provide observations on the performances of the di�erent algorithms on the
inputs and the parameters that we chose for our algorithm. While interpreting
the results, please note that even though our runtime might sometimes exceed
that of the other algorithms, it is because we perform many more runs than the
other algorithms.

6.1 Initialization Strategies

In Table 3 we presented results of our modi�ed Hop�eld algorithm using a va-
riety of strategies for choosing the initial active facilities during each run of our
algorithm. In our �rst initialization strategy we simply randomly chose k fa-
cilities. Due to the speed of our algorithm, our network was able to complete
many runs in the same time as the competing algorithms could complete far
fewer runs. However, this random initialization strategy did not take advantage
of the solutions from previous runs to help improve the future runs. To attempt
to use information from previous network runs to aid the future runs, we tried
two more initialization strategies: The tally initialization strategy and the best
facility initialization strategy.

The intuition behind the tally initialization strategy is threefold: (i) the most
frequently appearing facilities from solutions produced after random initializa-
tions are likely valuable facilities that might belong to optimal solutions, as
suggested by Pan and Zhu [28], and so these facilities are desirable and should
be included in future runs of the algorithm; (ii) the most frequent facilities from
our frequency table represent facilities that were part of a local optimal solution,
and by selecting several of these facilities and combining them with a di�erent
set of other facilities, we can increase the chances of breaking through the local
optima; and (iii) our algorithm performs better when the number k of facilities
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is smaller, and so once the most frequent facilities from the tally have been re-
moved to create the reduced problem, our algorithm should �nd solutions to the
reduced problem with good approximation ratios.

In practice, the tally initialization strategy did not perform as well as we had
hoped. When Pan and Zhu tried their approach, all of the facilities in their set of
common facilities appear together in each solution they produced; in contrast, we
do not know whether the most frequently selected facilities appeared alongside
any of the other frequently selected facilities. It could, for example, be the case
that two frequently selected facilities are actually very close to each other and
either one or the other of these two facilities appear in every solution but both
facilities should not be active in the same solution, and yet our algorithm might
select them both because they are both so frequently selected. We believe that
in order for this strategy to become valuable, we might need to change how we
determine which facilities to select.

The intuition behind the best facility initialization strategy is similar: The
best solution found so far was a local optimal solution for which our algorithm
could not improve any further with its neuron update function, and hence by
including several facilities with the top inner value from the best solution com-
bined with a set of random facilities, we can attempt to break through the local
optima. Essentially, this initialization strategy allows our network to perform
a single multi-swap operation between runs where multiple facilities with the
lowest inner value are swapped out and a random set of facilities are swapped
in.

Table 3 shows that this strategy almost always produced the best approxima-
tion ratios out of all the proposed strategies. This is likely due to reducing some
of the randomness of selecting facilities and instead trying to prioritize selecting
facilities that were previously shown to be valuable. Moreover, this initialization
strategy produced solutions faster than the other strategies; the speed increase
is due to a smaller number of iterations being performed before reaching a lo-
cal optima, likely because the initial set of facilities in each run includes many
facilities that were part of a di�erent local optimal solution.

We notice an outlier approximation ratio on the TSPLib input with n = 1400
and k = 500, where the ratio (3.21) is signi�cantly higher than the rest of the
test cases. We believe what happened is that the �best facilities� that were being
re-used in each run of the network were actually not very good facilities at all,
but because the graph is fairly large, our algorithm was able to keep generating
improved solutions (even if only minimally improved) using the same set of �best
facilities� and therefore was unable to make a better set of initial facilities. We
could avoid this type of result in the future by requiring improvements to pass
a speci�c threshold, otherwise we could re-randomize the initial facilities in the
next run.

Since the best facility initialization produced the lowest approximation ratios
and runtimes, we used this strategy for the remaining test cases, but we believe
that other techniques could be applied to improve the approximation ratio of
our algorithm.
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6.2 Performing Multiple Runs

Since our algorithm can complete a single run very quickly, we are able to per-
form more runs of our network than the competing algorithms within the same
timeframe. The speed of our algorithm is a core strength of our modi�ed Hop-
�eld network, and taking advantage of the speed allows our algorithm to compete
against the other algorithms by learning from previous runs.

The results in Table 4 show that running our algorithm multiple times and
taking the best solution results in lower approximation ratios. We tried perform-
ing up to 100 runs of the network, but the bene�t to the approximation ratio
started to decline after performing 40 runs, so we decided to compare the results
of our algorithm using 40 runs against the competing algorithms.

We note that while our algorithm did not bene�t very much from adding
additional runs past 40, this is related to the speci�c initialization strategy used
to assign the starting facilities. For example, we previously described an addition
to the best facility initialization strategy where if a signi�cant improvement is
not found, then the next run will be initialized using random facilities. This
would allow the algorithm to pursue a group of facilities but later abandon them
if it cannot improve the solution further using that initial group. A strategy like
this would require more runs to be e�ective, and so we could consider performing
network runs until a solution is produced that is better than some threshold t
of our choosing.

6.3 Comparing Against the Neural Networks

As seen in the previous tables, the runtimes of our Modi�ed hop�eld network are
very low. The greatest strength of the modi�ed Hop�eld network of Rossiter [32]
was its speed, and our algorithm is already ten to �fty times faster depending on
the size of the input. We attribute the speed of our network to the small number
of iterations required to converge to a local optimal solution. For example, for
a graph with n = 500, our algorithm terminates after 5 − 30 iterations while
Rossiter's algorithm terminates after 2000− 3000 iterations.

Haralampiev's algorithm produces solutions that are closest to the optimal for
some of the test cases, but as shown in Table 7 there are many test cases in which
our algorithm performs signi�cantly better. Haralampiev takes signi�cantly more
time to produce solutions than any of the other algorithms that we tested. For
the smaller inputs that we used, such as random-small and USCA312 where
n < 300, the runtime of Haralampiev's network only takes a few seconds and
therefore makes for a good choice of algorithm; however, for larger inputs where
n > 500 the runtime of Haralampiev's network becomes signi�cantly slower than
the modi�ed Hop�eld networks. We did not even run Haralampiev's network on
the TSPLib dataset because the tests could not be completed within several days
of runtime.

We brie�y discuss how some of the characteristics of each algorithm might
in�uence their performance.
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Haralampiev. Haralampiev's network �ips the activation value of a facility ac-
cording to the temperature parameter, which can allow the algorithm to explore
beyond solutions that would otherwise produce local optima for the modi�ed
Hop�eld networks. This feature of the algorithm allows it to produce solutions
that are much closer to optimal solutions, but it causes an increased number of it-
erations of the algorithm because sometimes the network transitions to solutions
with higher costs before eventually �nding lower cost solutions. This strategy is
e�ective for avoiding getting stuck in local optima but has a drastic increase on
the runtime of the algorithm.

Rossiter. Rossiter's modi�ed Hop�eld network runs signi�cantly slower than
our modi�ed Hop�eld network, and we attribute this to the number of iterations
required for a single run of the network to reach a local optimal solution. As
described previously, the facility neurons of Rossiter's modi�ed Hop�eld net-
work are initialized arbitrarily close to 1 and the algorithm terminates when
there are k facility neurons with activation value 1. In the worst case, all n of
Rossiter's facility neurons can have their activation values �rst increased to 1, for
n iterations, before n− k facility neurons have their activation values decreased
to 0, for a total of 2n − k iterations. Moreover, Rossiter's algorithm randomly
chooses which facility to update in each iteration and sometimes a facility is cho-
sen but its activation value is not modi�ed, and hence the algorithm sometimes
performs many multiples of n iterations before stabilizing. This large number of
iterations causes the runtime of Rossiter's network to be signi�cantly larger than
our network, as our network converges to local optimal solutions in less than 50
iterations even when n > 1000.

The approximation ratio of Rossiter's modi�ed Hop�eld network can be ar-
bitrarily large. When Rossiter's network is �rst initialized, all of the facility
neurons are essentially active and hence the facilities all serve themselves to
achieve an inner value of 1. As previously described, when a facility neuron is
updated, its activation value is increased to 1 if its inner value is in the top
k inner values; however, in the �rst iteration of the algorithm, since all of the
facility neurons have the same inner value, the �rst facility to be activated is es-
sentially randomly chosen. Since Rossiter includes no mechanism to deactivate a
facility neuron, this can result in approximation ratios that are arbitrarily large.
This might explain some of the results where Rossiter's approximation ratios are
signi�cantly higher than ours, such as on the traveling salesman problems (see
the Appendix for more results).

6.4 Comparing Against the Local Search Algorithms

The local search algorithms can also quickly produce solutions close to the op-
timal when the values of n and k are small, with the algorithm of Pan and Zhu
achieving the best approximation ratios when comparing only the single-swap
algorithms. When two facilities can be swapped out in a single operation, the
algorithm of Arya et al. outperforms the algorithms of Pan and Zhu and Cohen-
Addad et al. While our modi�ed Hop�eld network frequently outperforms the
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single-swap algorithms in using much less time, it is itself outperformed by the
much slower multi-swap algorithms.

We brie�y discuss how some of the characteristics of each algorithm might
in�uence their performance.

Arya. Arya et al.'s algorithm will exhaustively search all combinations of client
and facility swaps if the improvement threshold is not met, which means that,
depending on which swap operations are improving, this algorithm can spend a
lot of time without actually transitioning to another solution. This is more often
seen on the multi-swap version of the algorithm, where the algorithm terminated
due to reaching the time limit, while the single-swap version of the algorithm
often terminated due to not �nding any more signi�cant improvements. When
only a single facility is being swapped out, there are nk possible combinations
of swaps, but when two facilities are swapped out, there are n2k2 possible com-
binations of swaps.

Pan. Pan's algorithm consistently produces solutions that are closest to the
optimal out of the three basic local search algorithms implemented. This is likely
due to the fact that Pan's algorithm correctly identi�es high value facilities
that appear in multiple local optima. This algorithm runs slower than Arya's
algorithm due to having to run Arya's algorithm �ve times: Three times to create
the list of common facilities, a fourth time on the reduced problem where the
common facilities are excluded, and a �fth time using the common facilities plus
the solution to the reduced problem.

Cohen-Addad. This algorithm consistently performs the worst of the three
basic local search algorithms implemented. The runtime is likely increased by
solving a more complicated objective function, which may cause it to perform
fewer iterations within the timeframe we allotted it for our experiments.

Our Modi�ed Hop�eld Network. Our algorithm converges to local optimal
solutions in a small number of iterations. Intuitively, our algorithm attempts to
identify the best single-swap operation during each iteration, and so it makes
sense that it should outperform the algorithm of Arya et al., which simply tries
many combinations of swaps and accepts the �rst signi�cant improvement that
it �nds. However, since the results showcase our algorithm when it only swaps a
single facility at a time, our network gets stuck in more local optimal solutions
than the multi-swap algorithms.

6.5 Single-Swap Versus Multi-Swap

Arya et al. proved that single-swap local search algorithms that produce solutions
that cannot be further improved by any single-swap have approximation ratio at
most 5 and multi-swap local search algorithms that cannot be further improved
by any p-swap have approximation ratio at most (3+ 2

p ), where p is the number
of facilities swapped out in one swap operation; so it can be expected that the
multi-swap algorithms would perform better in practice. Our results con�rm
this intuition: Arya et al.'s multi-swap algorithm outperformed its single-swap
version and the single-swap algorithms of Pan and Zhu and Cohen-Addad et

Chapter 6 – Paper 4: A Modified Hopfield Network for the K Median Problem 184



30

al. Additionally, Arya et al.'s multi-swap algorithm frequently outperformed our
modi�ed Hop�eld network.

Local search algorithms that can only swap out a single facility per opera-
tion can transition to solutions in which no further improvements can be found
by changing only a single facility. Such solutions are not necessarily optimal;
solutions exist for which the only improvements di�er by two or more facilities.
Therefore, single-swap local search algorithms can get stuck in local optimal
solutions that multi-swap local search algorithms could improve upon. This is
especially noticeable in Table 8 for the USCA312 inputs with only 30 vertices, as
Arya et al.'s single-swap algorithm consistently terminates in only a fraction of a
second due to not �nding signi�cant improvements, but Arya et al.'s multi-swap
algorithm is able to consistently �nd solutions with better approximation ratios.

The performance of the multi-swap algorithms is even more noticeable on
some of the TSPLib inputs, as shown in Table 6, where the multi-swap algorithm
produces solutions with better approximation ratios compared to the solutions
produced by the single-swap algorithm. However, the multi-swap local search al-
gorithm of Arya et al. requires a signi�cant amount of extra time. The algorithm
is not complicated, it simply randomly selects two facilities to deactivate and
randomly selects two clients to activate; however, there are many combinations
of choosing two facilities and the algorithm might have to evaluate many sets
before it �nds an improvement.

6.6 Approximation Ratio Versus Number of Facilities

Tables 7 and 8 show that the neural networks and the single-swap local search
algorithms all produce solutions with worse approximation ratios when the num-
ber of facilities is increased while the multi-swap local search algorithms tend to
produce equally good solutions no matter the number of facilities.

Our modi�ed Hop�eld network deactivates the facility with the lowest inner
value, as this suggests that the facility is the least valuable to the solution, but it
is not necessarily true that the best single-swap operation results from deactivat-
ing this particular facility. For example, consider an input which contains a large
cluster and a single outlier vertex that is located far away from the cluster. It is
reasonable to believe that in an optimal solution the outlier should be a facility
that serves itself but is not assigned any other clients. This facility might appear
as the facility with the lowest inner value in our algorithm and deactivating it
might not �nd any replacement facilities that improve the solution; however, it
is possible that swapping one of the facilities located in the cluster could lead
to an improvement, even though they did not have the lowest inner value in our
network. Hence, our algorithm might become stuck in local optimal solutions
even when single-swap operations still exist that could improve the solution.
In contrast, Arya et al.'s single-swap local search algorithm simply tries many
combinations of swap operations, and in the above example it is reasonable to
think that this algorithm could �nd a better solution than our modi�ed Hop�eld
network.
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We believe that when the number k of facilities increases, the probability of
our algorithm getting stuck in local optimal solutions, where the facility with
the lowest inner value is not the best facility to swap out, also increases. Future
improvements to the way in which a facility neurons inner value is calculated
could lead to performance improvements in these situations.

7 Conclusion

In the k-median problem we are given n locations and want to select k locations
such that the total distance between each unselected location and its nearest
selected location is minimized. We present a modi�ed Hop�eld network for KMP
and compare it against several local search and neural network algorithms.

We empirically show that our modi�ed Hop�eld network converges to local
optimal solutions very quickly; the time needed to perform a single run of our
algorithm is the least compared to all of the algorithms implemented, and this
enabled us to perform many more runs of our algorithm than the competing
algorithms for each test case, while still maintaining comparable total runtimes.
Even though both Rossiter's algorithm and our algorithm are both modi�ed
Hop�eld networks that use some similar techniques (such as inner value), our
algorithm consistently produced solutions with better approximation ratios using
less time as compared to Rossiter's algorithm. Haralampiev's algorithm was able
to produce better solutions than us for some of the test cases but required much
more time to do so, such as the large random graphs and the USCA312 inputs
with larger numbers of vertices, but our algorithm was able to produce better
solutions for other test cases.

When compared against the single-swap local search algorithms, our modi-
�ed Hop�eld network often produced solutions with better approximation ratios
using less time, except on the USCA312 dataset. When we allowed Arya et al.'s
local search algorithm to swap out two facilities at a time, this multi-swap algo-
rithm began to outperform our algorithm on a number of the test cases. In some
instances, such as the large graphs from the TSPLib dataset, the multi-swap al-
gorithm produced ratios less than 1.5 while our algorithm produced ratios more
than 3.0.

Given the increase in solution quality observed when allowing the local search
algorithms to swap out multiple facilities at a time, we believe that our algorithm
could be greatly improved by allowing it to swap out multiple facilities. Careful
consideration will be required to implement an e�cient multi-swap operation, as
after deactivating the worst facilities our current algorithm relies on the inner

value of the facility neurons to select replacements, and attempting to activate
multiple facilities based on their inner value can be deceiving: Two candidate
facilities might receive inner value for serving each other or for both serving
a particular client, but if they were both to be activated they should serve
themselves and a particular client can only be assigned to one of them.

Simple modi�cations to Algorithms 1 and 2 transform our algorithm into
a multi-swap local search algorithm. To perform a p-swap, where p facilities
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are swapped with clients, the algorithm is modi�ed as follows: (i) the p active
facilities with the lowest inner value are deactivated; (ii) the inner values of
the inactive candidate facilities are calculated as previously described in Algo-
rithm 2; (iii) one-at-a-time, the inactive facility f with the highest inner value is
recorded, its distance to each client it would potentially serve is used to update
the array maxV alues, the rows and columns of the inner value matrix corre-
sponding to f are zeroed-out, and the inner values of the client-facility neurons
are re-calculated, until p candidate facilities have been selected; and (iv) if ac-
tivating the p facilities does not produce a better solution then the previous set
of facilities is restored and the algorithm terminates, otherwise the algorithm
continues.

By activating the p facilities with the highest inner value one-at-a-time, up-
dating the array maxV alues between activating each facility, and re-calculating
the inner values of the client-facility neurons, we solve the issue where the in-
ner value of multiple facility neurons could include serving the same client (or
facilities serving each other). The bene�t of performing a multi-swap operation
in our modi�ed Hop�eld network is that we will not need to try multiple swap
operations before accepting a new set of facilities to activate; rather, correctly
updating the neuron's inner values will inform our algorithm exactly which fa-
cilities should be selected in the new solution. Because we update the values
of our neurons using e�cient matrix calculations, the runtime of our algorithm
should not increase by much in order to perform these multi-swaps. We believe
this strategy can perform multi-swap operations faster than the multi-swap local
search algorithm of Arya et al., because Arya et al.'s multi-swap algorithm is
quite simple and might try a potentially very large number of swap operations
before accepting a new solution.
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Chapter 7

7 Conclusions
In this thesis we investigated three specific research objectives which resulted in approxi-
mation algorithms for the high multiplicity strip packing problem (HMSP) and thief orien-
teering problem (ThOP), and a heuristic for the k-median problem (KMP). In the case of the
approximation algorithms, our work represents the first known approximation algorithms
for these problems.

Below we provide a summary of the results in Section 7.1 and discuss future research
directions for each problem in Section 7.2.

7.1 Summary
In Chapter 3 we gave an algorithm for HMSP for the case when K = 3 that produces
solutions requiring at most height 3

2hmax + ϵ plus the height of an optimal solution, where ϵ
is any positive constant and hmax is the height of the tallest rectangle, and for the case when
K = 4, an algorithm that produces solutions requiring at most height 7

3hmax + ϵ plus the
height of an optimal solution. Additionally, we gave an algorithm for the K-type problem
that produces solutions requiring at most height ⌊ 3

4 K⌋ + 1 + ϵ plus the height of an optimal
solution. These are the current best-known results for HMSP.

In Chapter 4 we proved that there exists no approximation algorithm for ThOP with
constant approximation ratio unless P = NP, and we presented a PTAS for ThOP when the
input graph G is directed and acyclic that produces solutions that use time at most T (1 + ϵ)
for any constant ϵ > 0. We also presented a FPTAS for ThOP on arbitrary undirected
graphs where the travel time depends only on the lengths of the edges and the time limit
T is the length of a shortest path from s to t plus a constant K. Finally, we presented a
FPTAS for a restricted version of ThOP when the input graph G is a clique. These are the
first approximation algorithms that have been designed for ThOP.

In Chapter 5 we gave an algorithm that transforms instances of ThOP on arbitrary undi-
rected outerplanar graphs into equivalent instances of ThOP on DAGs in polynomial time,
and another algorithm that transforms instances of ThOP on arbitrary undirected series-
parallel graphs into equivalent instances of ThOP on DAGs in polynomial time. These
algorithms allow our PTAS from Chapter 4 to produce solutions for undirected outerplanar
graphs and undirected series-parallel graphs that use time at most T (1 + ϵ).

In Chapter 6 we presented a modified Hopfield network for KMP that uses a local
search approach. By using a simple neuron update function based on the inner value met-
ric, our algorithm quickly produces solutions that are close to optimal. We experimentally
evaluated our algorithm against several neural networks and local search algorithms and
demonstrated that our algorithm was the fastest and produced solutions with competitve
approximation ratios. Our algorithm was outperformed, with respected to approximation
ratios, by the multi-swap local search algorithms; however, we propose future improve-
ments to our algorithm so that it can also swap multiple facilities in a single swap opera-
tion.
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7.2 Future Work
We conclude this thesis by presenting some future work for each of the topics studied. In
Section 7.2.1 we talk about our work on high multiplicity strip packing, in Section 7.2.2
we talk about our work on thief orienteering, and in Section 7.2.3 we talk about our work
on Hopfield networks.

7.2.1 HMSP
In this section we discuss improvements to the algorithms presented in Chapter 3, discuss
limitations of the approaches that we used, and describe additional algorithms and experi-
ments that could be performed.

Improvements to the Algorithm for the Three Type Problem

In Chapter 3 we described how we solved HMSP by first solving FSP and then transforming
fractional rectangles into whole ones. We showed a trivial algorithm that simply replaces
all fractional rectangles with whole ones, shifting surrounding rectangles upwards as neces-
sary, that produces solutions of height at most LIN(I)+K+ϵ, where ϵ is a positive constant
and LIN(I) is the height of an optimal fractional solution. When there are at most three
rectangle types, we improved upon this with a simple algorithm that produces solutions of
height at most LIN(I)+ 5

3 +ϵ, and then we showed more complicated techniques that can be
used to produce solutions of height at most LIN(I)+ 3

2 + ϵ. Since it is easy to see that there
are some inputs for which the best rounding of the fractional solution produces a height of
LIN(I) + 1 + ϵ, a natural question is whether we can improve our algorithm further.

Perhaps the best way to attempt these improvements is to carefully consider the cases
of our algorithms and try to find improvements that work for a single case. If such an
improvement can be found, we should investigate whether that approach would work on
some of the remaining cases, and if not, then we should identify the limitations of our
approach. In such a way, we could either (1) prove that there exists specific cases that can
not be improved, which shows that our algorithm is tight, or (2) find an improvement to our
algorithm.

More specifically, we wish to discover whether some variation of our algorithm can
produce solutions of height at most LIN(I) + 1 + ϵ. For example, we currently round
up all fractional rectangles in S Case3, in which the sum of all fractional values is at least
3
2 ; however, an improved algorithm would be restricted to only rounding up all fractional
rectangles if the sum of their fractional values is at least 2, so that the height increase of
rounding up these fractional rectangles is at most 1.

Making this change to the definition of S Case3 is the easy part; the hard part is determin-
ing how to round the fractional rectangles in the vertical sections whose fractional values
sum between 1 and 2. Some possible approaches include attempting to guarantee that the
empty space left behind by fractional rectangles packed in CA1 sums to at least 1, or en-
suring that we only round up “sufficiently large” rectangles. It is entirely possible that our
algorithm cannot be improved, but we would like to be able to prove that.
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Improvements to the Algorithm for the Four Type Problem

We described an algorithm for HMSP for the case when K = 4 that produces solutions
of height at most LIN(I) + 7

3 + ϵ, where ϵ is a positive constant and LIN(I) is the height
of an optimal fractional solution. This algorithm was a natural extension our first simple
algorithm for HMSP for the case when K = 3 in the sense that (1) in S Case1 all fractional
rectangles are packed in CA1, (2) in S Case2 the bottom fractional rectangles are rounded up
and the top fractional rectangles are packed in CA1, and (3) in S Case3 all fractional rectangles
are rounded up. Note that this algorithm does not use any of the empty space left behind
when fractional rectangles are re-located to CA1.

Therefore, we can try to improve upon this algorithm by borrowing a few ideas from
our improved three type algorithm. Here are how the ideas might be adapted to the four
type problem:
• Divide the algorithm into several algorithms that assume a given number of rectangle

types in each configuration. For example, one algorithm could assume that C1 has
four rectangle types, C2 has four rectangle types, C3 has three rectangle types, and
C4 has one rectangle type. Another algorithm could assume that each configuration
has three rectangle types, which again is similar to our improved algorithm for the
three type problem.
• Leverage the existence of a ”wide” leftmost rectangle, that is at least partially con-

tained within S Case2 or S Case3, in order to calculate how much empty space is left
behind when fractional rectangles are re-located to CA1. Infer properties of the pack-
ing, such as the presence or absence of vertical sections in a particular case, if such a
“wide” rectangle does not exist.

It is reasonable to think that we can use some of the existing empty space, and that
the height of this empty space might be as large as 1

3 . In this case, we could design an
algorithm that produces solutions of height strictly less than LIN(I) + 7

3 + ϵ, which would
be an improvement.

Improvements to the Algorithm for the K Type Problem

We described an algorithm for HSMP when K is constant. Recall that a simple algorithm
could produce a solution to HMSP of height at most LIN(I) + K + ϵ, where ϵ is a positive
constant and LIN(I) is the height of an optimal solution to FSP, and our K-type algorithm
produces solutions of height at most LIN(I) + ⌊ 3

4 K⌋ + 1 + ϵ.
Our best algorithm for K = 4 produces solutions of height at most LIN(I) + 7

3 + ϵ. If,
for cases of HMSP when K > 4, we simply applied this algorithm on four of the possible
configurations and rounded up the remaining configurations (simply replace fractional rect-
angles with whole rectangles, shifting other rectangles as necessary), then this algorithm
would produce solutions of height at most LIN(I) + (K − 5

3 ) + ϵ for all K ≥ 4, which is
strictly an improvement over the simple algorithm described above.

Recall that in the algorithms we described in the previous chapters, we sometimes take
fractional rectangles whose fractional values sum to at most 1 and pack them in a sin-
gle region of height 1. Intuition suggests that we could take fractional rectangles whose
fractional values sum to at most 2 and pack them in two regions that each have height 2;
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however, this is not necessarily the case. Depending on the dimensions and multiplicities
of the fractional rectangles, it is possible that the fractional rectangles can not be packed
evenly in the two regions. More specifically, the situation might arise where the only way
to pack all of the rectangles into the two regions is for one of the rectangles to be split with
one of its pieces packed in the first region and its other piece packed in the second region.
Note that in this situation there is no way to ensure an integer packing.

Therefore, we can not take the easy approach to the K type problem by defining this
case: ”if the sum of the fractional values is at most K

2 then pack the fractional pieces in K
2

regions that each have height 1”, together with the case: ”if the sum of the fractional values
is more than K

2 then round up the fractional rectangles”; such an algorithm could produce
solutions of height at most LIN(I) + K

2 + ϵ for any even value for K. Unfortunately, this
algorithm could not guarantee that the solutions are always integer packings.

Moreover, it is even difficult to pack fractional rectangles whose fractional values sum
to at most 3

2 into two regions that each have height 1. Note that if we attempt to pack the
fractional rectangles into too many regions, then the height increases by too much. For
example, when K = 4, if we take a group of fractional rectangles whose fractional values
sum to at most 2 and pack them into into four regions that each have height 1, then the
height would increased beyond what our current algorithm achieves.

However, perhaps it would be possible to borrow ideas from our algorithm for the three
type problem and make use of the empty space left behind when small fractional rectangles
are moved. Perhaps we could prove that as K gets larger the empty space left behind after
moving small fractional rectangles becomes larger as well, which would lead to a good
algorithm for the K type problem.

K Type Problem Constrained to a Fixed Number of Configurations

Recall from Chapter 3 that when there are K rectangle types, the solution output by the
linear program might have any number of configurations ranging from 1 to K. So, we
could consider a variant of the problem where K is large, but the number of configurations
is, for example, only three. While this makes the problem easier than the more general K
type problem, note that is still more complicated than the regular three type problem.

The algorithm for the three type problem that produces solutions of height at most
LIN(I) + 5

3 + ϵ [11] would work for this variant; however, our improved algorithm for the
three type problem would not work, because it makes assumptions about the structure of
the packing (such as each configuration having at most two rectangle types) that would not
hold true if K > 3. These assumptions are critical because they allow us to calculate the
size of the empty space left when small fractional rectangles are moved to CA1. When we
allow more than three rectangles types to be packed in the three configurations, there could
be many more vertical divisions that separate different vertical sections within S Case1 as
compared to the three type problem, which negatively interferes with the amount of empty
space available for CA1.

However, it is a good exercise to consider this variant of the problem, because it forces
us to design an algorithm that does not make assumptions about how many rectangle types
exist in the input. This is an important step towards building an algorithm for the K type
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problem, as we actually can not extend our best three type algorithm beyond K = 3, even if
we use the strategy described above where the first three configurations are rounded as in
our improved three type algorithm and the remaining configurations are rounded according
to the simple algorithm.

Integrality Gap of the Linear Program

Recall from Chapter 3 that we defined a linear program that represents the fractional strip
packing problem and that an optimal solution to the fractional strip packing problem might
have smaller height than the corresponding optimal integer solution. This is because the
fractional solution might horizontally cut some rectangles and thus reduce the height by
spreading the fractional pieces out width-wise. The integrality gap refers to the maximum
difference of heights between an optimal fractional solution and its corresponding optimal
integer solution.

It is easy to construct an instance of HMSP such that the difference in heights between
an optimal fractional solution and its corresponding optimal integer solution is just shy
of 1: consider an input consisting of exactly one rectangle whose height is 1 and whose
width approaches 0. An optimal integer solution must pack this rectangle as-is resulting
in a height of 1, but an optimal fractional solution can horizontally cut the rectangle into
fractional pieces whose heights approach 0 and pack them side-by-side resulting in a height
that approaches 0. Therefore, the difference in heights of these two packings approaches 1,
which is a lower bound on the integrality gap. With our improved algorithm for the three
type problem we have established an upper bound on the integrality gap, as our algorithm
produces solutions of height at most LIN(I) + 3

2 + ϵ.
Note that the problem of closing the integrality gap is related to our work on improving

our algorithm for the three type problem: if we can prove that the integrality gap is 3
2 , then

we have also proved that our algorithm is tight and can not be improved. In contrast, if
we can improve our algorithm for the three type problem to produce solutions of height at
most LIN(I) + 1 + ϵ, then we have also proved that the integrality gap is 1. Since we do
not currently know how to improve our algorithm, and since we do currently know how to
prove the integrality gap, then we have two different directions to try pursuing in order to
achieve the same goal.

Experimental Evaluation of the Algorithms

We have mentioned several times throughout this thesis that high multiplicity algorithms
generally perform better than their non high multiplicity counterparts, but this is simply
an observation based on the approximations ratios of these algorithms. There is value
in conducting experimental evaluations that compare not only different high multiplicity
algorithms for the same problem against each other, but also high multiplicity algorithms
against their non high multiplicity counterparts.

We implemented our algorithms, as described in Chapter 3, using the commercial inte-
ger and linear program solver CPLEX by IBM to solve the fractional strip packing problem.
This allowed us to make our first observations for the three type problem, such as the dif-
ference in running times between a simple algorithm and our improved algorithm and the
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difference in solutions between our algorithm and an optimal solution.
Next, we can implement several of the algorithms for the non high multiplicity strip

packing problem, such as the algorithm by Harren et al. [79]. By performing experiements
for a variety of values of K, we can determine whether our three type algorithm outperforms
the algorithm of Harren et al. and we can better analyze our K type algorithm.

Three-Dimensional High Multiplicity Strip Packing

A natural step beyond HMSP is to consider the same problem in three dimensions. In
the three-dimensional high multiplicity strip packing problem (3DHMSP), the length and
width of the container are fixed and the goal is to minimize the height needed to pack all
cuboids from the input. This variant of the problem models physical object packing much
better than the two dimensional version of the problem.

3DHMSP can be approached in a similar way as HSMP: by rounding the solution output
by a linear program. Recall that for HMSP we rounded solutions obtained from solving the
fractional strip packing problem. These solutions consisted of configurations, which in turn
consist of base configurations.

3DHMSP can be relaxed to the three-dimension fractional strip packing problem (3DFSP),
which permits horizontal cuts on the cuboids; a solution to 3DFSP might have a lower
height due to the possibility of packing fractional pieces in regions where whole rectan-
gles cannot fit. A linear program can be formulated for 3DFSP similarly to the linear
program for FSP shown in Chapter 2: all cuboids from the input must be packed in ex-
actly one configuration each, all configurations used in the solution to 3DFSP must have
a positive height, all configurations’ lengths and widths must be at most the length and
width of the container, and the objective function must minimize the total heights of the
configurations.

Therefore, a solution to 3DFSP consists of a set of configurations. A base configuration
C j consists of a multi set of cuboid types whose total width is at most 1 and whose total
length is at most 1, i.e., a base configuration is a set of cuboids that can be packed in the
container without needed to put any of the cuboids on top of another cuboid. A group of
cuboids following a base configuration can be stacked on top of each other so that any hor-
izontal plane parallel to the base of the container across any part of the group will intersect
the same multiset of cuboid types. A vertical line drawn across any part of the configuration
will intersect either only cuboids of the same type, or empty space. A fractional solution
might include configurations whose uppermost cuboids have been cut on a plane that is
parallel to the base. The height of a vertical line intersecting cuboids of a configuration is
called the height of the configuration.

If an optimal solution to such a linear program can be found in polynomial time, then
we might be able to adapt our algorithm for HMSP to work for 3DHMSP. Some points of
concern include the difficulty of finding a base configuration that fits in a 1 x 1 bin.

High Multiplicity Rectangle Packing

We reviewed some of the related work on the rectangle packing problem in Chapter 2,
but we could not find any literature on the high multiplicity rectangle packing problem
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(HMRP). HMRP has the following definition:
Definition Given K distinct rectangle types, where each rectangle type Ti has ni rectangles
each with width 0 < wi ≤ 1 and height 0 < hi ≤ 1, and a rectangular container of width
W and height H, pack the maximum subset of the rectangles into the rectangular container,
without rotating or overlapping any of the rectangles.

Like the other high multiplicity problems mentioned previous, the input to HMRP is
compact: it can be described using a list of only 3K + 2 numbers: the width wi, height
hi, number ni of rectangles of each type Ti, and the width and height of the rectangular
container.

We suggest an approach to solving it based on our work on HMSP: we start by solving
the corresponding FSP. The constraints of the linear program must be modified such that the
rectangles packed in each configuration have width at most that of the rectangular container.
Note that a solution to FSP might need to be adjusted in two ways to become a feasible
solution to HMRP: (1) any fractional rectangles will have to be transformed into whole ones
and (2) the height of a solution to FSP might be greater than the height of the rectangular
container.

We can use rounding techniques similar to what we described in Chapter 3. If the
resulting packing does not fit within the rectangular container, several strategies could be
used:
• A careful consideration of the structure of the packing, as in the work of Harren et al.

[79], could be used to shift rectangles within the rectangular container until they fit.
• A configuration could be selected to be removed from the rectangular container or

specific rectangles could be selected to be removed from the rectangular container so
that all remaining rectangles fit.

Alternatively, consideration could be put towards selecting a different formulation for
the linear program and other rounding schemes.

High Multiplicity Scheduling Problems

Note the similarity between packing problems and scheduling problems. Some scheduling
problem on identical machines can be represented as a series of rectangular containers
(one for each machine) with fixed width and unbounded length, and the input jobs are
rectangles that need to be packed in the containers. The length of the packing within one of
these containers represents the amount of time needed to process the jobs scheduled on the
corresponding machine, and the maximum length from any of these containers represents
the time needed to complete all of the jobs.

Observe that when these containers are oriented vertically and placed side-by-side,
they resemble the strip packing problem. However, a clear distinction between schedul-
ing problems and the strip packing problem exists: if a rectangle’s width is larger than the
width of a rectangular container representing a machine, then the implication is that the
job represented by that rectangle must be scheduled on two or more machines in parallel.
Therefore, depending on the definition of the scheduling problem under consideration, all
of the rectangles in the input might have the same width (if no jobs can be scheduled in
parallel on multiple machines). Such a problem essentially becomes a one-dimensional
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problem.
Similarities are often drawn between scheduling problems and the bin packing problem,

as the rectangular containers representing the machines are similar to bins. However, there
is a critical difference: in the bin packing problem the goal is to minimize the number of
fixed-sized bins, but in some scheduling problems there is one bin per machine, each with
unbounded height, and the goal is to minimize the maximum height of the packing across
all of the bins.

Therefore, while many similarities exist between scheduling problems, strip packing
problems, and bin packing problems, scheduling problems are actually a distinct set of
problems. Moreover, there are a large number of different scheduling problems based on
whether the jobs are identical, the machines are identical, the jobs take differing amounts of
time on different machines, certain jobs must be sequenced in particular orders, and many
other factors.

One way for a scheduling problem to have a high multiplicity encoding is when there
are relatively few distinct job lengths (encoded as rectangle heights) in the input, but
there are many other ways to make a high multiplicity scheduling problem such as hav-
ing few distinct machine processing powers, few distinct delayed start times, and so on.
Our work on HMSP might be applicable to some variants of high multiplicity scheduling
problems.

7.2.2 Thief Orienteering Problem
In this section we discuss improvements to the algorithms presented in Chapters 4 and 5,
discuss limitations of the approaches that we used, and describe additional algorithms and
experiments that could be performed.

Exceeding the Time Limit

In Chapter 4, the PTAS that we presented produces solutions that use time at most T (1+ ϵ).
While this exceeds the time limit, the problem is still interesting because many practical
applications will allow the time limit to be exceeded in exchange for a profit penalty; for
example, in the case of ThOP modeling a vehicle routing problem where the vehicle is col-
lecting goods from different locations, the vehicle might be late to service future customers
and hence those customers could be issued a refund. However, a future area of research
could investigate whether the PTAS could produce solutions without exceeding the time
limit.

The PTAS that we designed exceeds the time limit because in order to keep the size of
the profit table polynomial we need to discard some tuples. Two tuples that have the same
rounded profit and rounded weight are equivalent with respect to the carrying capacity of
the knapsack, but because travel time is dependent on the true weight of the tuple, these
two tuples might differ in terms of their travel times.

If we were able to design a metric that could determine which of the tuples with the
same rounded profit and rounded weight is objectively the best, we would not need to
exceed the time limit. Alternatively, if we were able to prove that we only need to keep a
polynomial number of tuples that all share the same rounded weight and rounded profit, we
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would not need to exceed the time limit. Finally, another approach could be to decide on
a specific metric by which to keep only a single tuple and update the analysis to bound the
amount of profit lost by missing out on items due to traveling too slow with respect to the
specific metric used.

Transforming Additional Graph Classes to DAGs

In Chapter 5, we transformed instances of ThOP on undirected outerplanar and series-
parallel graphs into equivalent instances of ThOP on DAGs. Our strategy involved adding
vertices and edges and using the structures of outerplanar and series-parallel graphs to in-
form us on how many additional vertices and edges are needed and which vertices can be
incident on each other. For example, our algorithm for transforming instances of ThOP
on undirected outerplanar graphs into equivalent instances of ThOP on DAGs created ad-
ditional vertices depending on the number of chords incident on a vertex. In contrast, our
algorithm for transforming series-parallel graphs creates DAGs with at most twice as many
vertices as the input graph.

Future research can investigate additional classes of graphs and take advantage of their
structures in order to transform them into DAGs while creating only a small number of
additional vertices and edges. Each additional graph class that we can successfully trans-
form increases the usefulness of our PTAS from Chapter 4. Beyond investigating special
kinds of graphs, we also aim to investigate approximation algorithms for ThOP on arbitrary
undirected graphs.

Experimental Evaluation of the Algorithms for Industrial Challenges

In Chapter 5, we described two applications that can be modeled using ThOP on series-
parallel graphs: production optimization and systems reliability. Many researchers cur-
rently perform experimental evaluations of their algorithms for these applications on well-
known benchmarks. We could implement both our PTAS from Chapter 4 and our series-
parallel transformation from Chapter 5 and perform experimental evaluations to see how
our approach compares to the existing literature.

Because our PTAS currently exceeds the time limit T , we would need to decide how
best to remove items from the solutions produced by our algorithm in order to reduce the
time. A simple approach could remove items with the smallest profit until we find a feasible
solution, but this might not be the best way to reduce the total travel time. Future research
could investigate how best to keep the largest possible profit of the solutions if we need to
reduce their total travel time.

ThOP Variants

The orienteering problem has multiple popular variants: The team orienteering problem,
the orienteering problem with time windows, and the time dependent orienteering problem.
Future research can investigate these variants for ThOP.

The team thief orienteering problem considers the problem where there are M thiefs
that all need to select a path from s to t and each item can only be collected by a single
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thief. The goal in the problem is to produce a solution where all of the thiefs travel to
t within the time limit, none of the thiefs exceed their knapsack’s carrying capacity, and
the total profit among all of the thiefs is maximized. This adds complexity because in
addition to building the profit table as before, an algorithm would need to consider placing
a particular item into each of the M thief’s knapsacks.

The thief orienteering problem with time windows considers the problem when items
can only be collected from a particular vertex during a predefined time window. The thief
can choose to travel to a vertex and wait until the items become available, but if the thief
arrives after the window closes the items will not be collectable. This adds addtional com-
plexity, because the profit table will need to contain more tuples to represent the possibil-
itity that the thief chooses to (i) not wait at vertex u and (ii) wait at vertex u until the time
window opens.

The time dependent thief orienteering problem considers the problem when the travel
time across edge (u, v) changes depending on what time it is. For example, this models the
practical scenario of traffic congestion on highways during particular times of the day. For
each edge (u, v), the distance du,v is predetermined based on the departure time of vertex
u. This adds complexity because now it might be more efficient for the thief to wait at a
particular vertex u in order to achieve a better departure time, and that requires keeping
more tuples in the profit table.

Each of the above problem variants are well-studied with respect to the orienteering
problem, and would be valuable directions for future research on ThOP.

Approximation Algorithms for TTP

As shown in Chapter 2, there are currently no approximation algorithms for TTP. This is
likely due to an inability to approximate TTP within a constant factor unless P = NP.
However, using the techniques developed in Chapter 4, we could investigate whether it is
possible to design a PTAS for a restricted version of TTP. Then, similar to what we did
in Chapter 5, we could aim to generalize the PTAS. Finally, we could implement these
algorithms and compare them against the existing heuristics for TTP.

7.2.3 Modified Hopfield Network for K-Median
In Chapter 6, we presented our modified Hopfield network algorithm that swaps out one
facility at a time to transition from feasible solution to feasible solution. Our algorithm was
arguably the best performing neural network and also the best performing single-swap local
search algorithm, but the multi-swap local search algorithms of Arya et al. and Cohan-
Addad et al. produced solutions with better approximation ratios (albeit with increased
runtimes). We have identified several areas in which we can improve our algorithm in
order to make it more competitive.

Swapping Multiple Facilities

Our algorithm currently deactivates a single facility and then, given that there are k−1 facil-
ities still active, finds the best facility to activate. Performing only single swaps sometimes
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prevents our algorithm from being able to access a global optimal solution, because it is
possible that from the current network state that two facilities would need to be deactivated
and two inactive facilities would need to be activated in order to reach a global optimal
solution, but by only deactivating either of them it could be possible that none of the other
inactive facilities could be activated to improve the solution. In this case, our algorithm,
after deactivating one of the active facilities, would re-activate that same facility again and
then terminate, instead of transitioning to the global optimal solution. In other words, the
two facilities would have to be swapped at the same time.

Without adjusting our current algorithm, if we deactivated two facilities and attempted
to find two replacements, then two candidate facilities that are currently deactivated and
nearby to each other could possibly both get high inner values, which might suggest that
we could activate them both, but it could be the case that once one of them is activated that
the other facility neuron’s inner value decreases. This can occur because they were both
able to serve the same clients (and serve each other), but once one of these facility neurons
is activated the other facility neuron will no longer receive any inner value unless it can
actually serve the clients at a lower cost.

To avoid this issue, we propose the following modifications to the neuron update func-
tion. After deactivating the q facilities with the lowest inner values, identify the replace-
ment facilities one-at-a-time: (i) after identifying the first (and best) replacement facility f
using our previous algorithm, the array maxValues should be updated to reflect any clients
that are best served by f ; (ii) the rows and the columns of the inner value matrix corre-
sponding to f should be zeroed-out (to avoid selecting f again); and (iii) the inner values
of the client-facility neurons corresponding to the remaining candidate facilities should be
re-calculated given that f will be an active facility in the next solution.

These modifications will increase the runtime of our algorithm slightly, but not by the
amount observed by the multi-swap algorithm of Arya et al. Because we implement our al-
gorithm using efficient matrix calculations, and since the inner values inform our algorithm
which facilities to activate, we do not need to try large numbers of swap operations like the
simpler local search algorithms. Changing our algorithm to a multi-swap algorithm might
help us improve its approximation ratio from 5 to (3+ 2

p ), where p is the number of facilities
swapped in on swap operation, if we can prove that when our algorithm terminates there
does not exist any remaining p-swaps that could improve the solution.

Improving the Inner Value Metric

We created the inner value metric to represent how valuable a facility is in terms of how
close it is to its clients. In our modified Hopfield network we deactivate the facility with
the lowest inner value; intuitively, we want to replace the facility that is least valuable to
the solution with a more valuable facility. When k facilities are active the inner values of
the facility neurons are calculated as:

innerValue[i, 0] =
n∑

j=0

innerValue[i, j + 1] × activationValue[i, j + 1]

However, this definition of inner value does not lead to the facility with the lowest
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inner value being the least valuable to a solution. Consider a graph that has a large cluster
of vertices that are close together and a single vertex located far away from the cluster.
Let there be several facilities active in the cluster and let the single distant vertex also be
an active facility f . It is easy to imagine that the facilities in the middle of the cluster
might have high inner values (much larger than 1) and facility f might have an inner value
of exactly 1 (because it only serves itself). Therefore, our algorithm would deactivate f
because it has the lowest inner value.

In this example, there are several active facilities within the cluster and so a candidate
facility f ′ to replace f would also be located in the cluster and hence any improvement to
the solution would likely be small, because all of the clients within the cluster are already
assigned to facilities that are nearby. However, because facility f is so distant from the
cluster, the cost of the solution will be much higher if f is a client being served by a facility
within the cluster, and hence our algorithm would reactivate f . Since f was deactivated
and then re-activated, the swap operation would not improve the solution and so our algo-
rithm would reach a local optima and terminate. Observe that it is entirely possible that an
improvement could be found by changing which facilities are active within the cluster, as
long as f remains active as well.

To address this issue, the inner value metric needs to consider the cost of replacing a
facility. Facility f had a low inner value because it did not serve any additional clients, but
deactivating f has a large cost to the solution because none of the other facilities can serve
it cheaply. We can borrow from the techniques of Cohen-Addad et al. [37] and identify the
second-closest facility for each client. Under the new definition, the inner value of f would
be 1 (for serving itself) plus the difference between 1 and the distance to the second-closest
facility. Note that we used a similar technique in our neuron update function, but we need
to apply it again when determining which facility to deactivate.

Adding this improvement to the algorithm should cause our network to get stuck in
fewer local optimal solutions and to find more improving swap operations, leading to better
approximation ratios. Since we plan to transform our algorithm into a multi-swap local
search algorithm, this improvement might also allow us to get close to the approximation
ratio of Cohen-Addad et al. [37].

Improving the Neuron Update Function

When our modified Hopfield network has k active facilities, we assign clients to their clos-
est facility. If a client is equally close to multiple facilities, we assign it to the facility with
the lowest index. Note that this tie-breaking rule might produce unintended results. Con-
sider that facility f1 and f2 are both equally close to client c1, but facility f2 serves another
client c2 and c2 is closer to f2 than to f1. When breaking ties using the lowest index, client
c1 is assigned to facility f1 and hence f1 and f2 both serve themselves and a single additional
client each. However, it is easy to imagine that a better solution might be to have facility f2

serve both c1 and c2; this would cause facility f1 to have a lower (and more accurate) inner
value and so the algorithm might replace it with a more valuable facility.

The intuition behind our improved tie-breaking strategy is to assign clients to the facility
that is already serving the most clients. The difficulty of this strategy is that we are trying
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to determine which facility has been assigned the most clients when we have not finished
assigning the clients yet. We believe that in most inputs, tie-breaking will be a infrequent
(but important) edge case, and so we propose assigning clients to facilities over the course
of two passes: In the first pass, we iterate over the clients and either assign them to their
closest facility or add them to a tie-breaking list and continue with the next clients, and
in the second pass, we iterate over the tie-breaking list and assign clients to their closest
facility that currently has the highest inner value. Ties could occur again, and in this case we
could either assign them to the lowest index or repeat the process, but we believe just trying
to break ties in this manner a single time might improve the quality of the solutions.

Simulated Annealing

As mentioned above, since our algorithm performs single swap operations it can get stuck
in local optimal solutions where swapping out only a single facility does not produce a
better solution. Another approach to avoid getting stuck in these local optima, besides
performing multi swaps, is to borrow a technique from Haralampiev [76] (and many others)
and include a temperature parameter in our algorithm. This temperature parameter can be
used to allow our algorithm to perform swap operations that do not improve the quality of
the solution, and tuning the parameter can control the probability at which the algorithm
might make these swaps. The benefit of this approach is that a sequence of single swaps
could be performed that do not improve the solution quality but transition the state of the
network closer to a global optimal solution.

Allowing our algorithm to perform swaps that reduce the quality of the solution will
undoubtedly cause the running time to increase, as it will perform a larger number of itera-
tions before getting stuck in a local optimal solution. However, as shown in Chapter 6, our
current algorithm reaches local optima in a small number of iterations and hence runs very
quickly. We can add a temperature parameter to our algorithm and still remain competitive
with respect to the running time of the other algorithms that we compared it against.

Learning from Previous Solutions

We implemented several initialization strategies in our modified Hopfield network that at-
tempt to identify the most valuable facilities from previous solutions and include them in
future solutions. Our best performing initialization strategy, the best facility initialization,
activates the facilities with the highest inner value from the best solution found so far and
randomly selects the remaining facilities. This strategy essentially allows a multi-swap of
the less valuable facilities to attempt to break free of a local optimal solution.

Given that we plan on implementing a multi-swap algorithm, we might want to re-visit
the initialization strategies to design a better technique, as the usefulness of a single multi-
swap between runs will decrease. We can borrow from the ideas of Rossiter [145]: Rossiter
created a search tree where a parent vertex p contains a set of k facilities and the children
of p contain solutions that are restricted to using less facilities or clients. In other words,
the search tree allows the size of the problem to be reduced in order to further explore the
value of selecting specific facilities. If the solutions contained along a specific path of the
tree are not high-quality enough, then the next runs of the network can explore a different
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path of the search tree.
This idea combines the best parts of the initialization strategies that we tried: reducing

the problem size and exploring multiple solutions that include a core set of valuable facil-
ities. With the speed of our algorithm, we will be able to implement an extension such as
the search tree and still produce solutions within a fast timeframe.

Analyzing the Approximation Ratio

Arya et al. [3] proved that any single swap local search algorithm for the k-median problem
that produces solutions that cannot be further improved by a single-swap operation has an
approximation ratio of 5. Even though our approach uses a modified Hopfield network,
the core method involves transitioning from a feasible solution to another feasible solution
by deactivating a single facility and activating another facility, which means that our ap-
proach is also a single swap local search algorithm. However, we currently cannot ensure
that the solutions produced by our modified Hopfield network cannot be further improved
by some additional single-swap operation; for example, see the discussion above on the
improvements to the inner value metric and the neuron update function.

If we can prove that the suggested improvements to our algorithm guarantee that our
local optimal solutions cannot be further improved with single-swap operations, then it
follows that our algorithm has an approximation ratio of 5. Note that in Arya et al.’s analysis
they consider a sequence of arbitrary swaps, whereas our algorithm uses the inner value
metric to select the swap; therefore, in the future we can investigate whether there is a
tighter bound on our algorithm’s approximation ratio.

Additionally, once we implement p-swaps to our algorithm, which allow p facilities
to be swapped with p clients, we will need to show that the solutions produced by our
algorithm cannot be further improved by any p-swap. Such a proof would mean that our
algorithm would have an approximation ratio of (3 + 2

p ).

Experimental Results using GPUs

The experimental results that we presented in Chapter 6 were produced using a computer
that was not using a GPU. However, our modified Hopfield network is implemented us-
ing the pytorch library which enables efficient matrix calculations that take advantage of
the GPU. The runtimes of our algorithm could be significantly sped up if we performed
experimental results using a computer with a GPU.

Modified Integer Program for K-Median

Our modified Hopfield network uses n+n2 neurons based on the integer program presented
in Chapter 6. Domı́nguez and Muñoz [46] presented a different integer program formula-
tion:
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Minimize :
n∑

i=1

n∑
j=1

k∑
q=1

di, jxi,qy j,q (7.1a)

Subject to :
k∑

q=1

xi,q = 1 , i = 1, ...n (7.1b)

Subject to :
n∑

j=1

y j,q = 1 , i = 1, ...k (7.1c)

where n is the number of locations in KMP, k is the number of facilities, di, j is the distance
between location i and facility j, and

xi,q =

1 if i is assigned to the cluster q,
0 otherwise

y j,q =

1 if j is the center of the cluster q,
0 otherwise

The n×k facility neurons y j,q represent whether a particular vertex j is a facility assigned
to cluster q and the n × k client-facility neurons xi, j represent whether a particular vertex i
is a client assigned to cluster q. Constraint (7.1b) requires that a client is only assigned to a
single cluster and constraint (7.1c) requires that a cluster is only assigned a single facility.
If 2 × n × k < n + n2 then this integer program formulation will result in our modified
Hopfield network using fewer neurons and hence a smaller matrix representation, which
could speed up our algorithm. Domı́nguez and Muñoz [46] show that integer program
(7.1) is equivalent to the integer program described in Chapter 6.

Broader Experimental Evaluations

Our current experimental evaluation compares the performance of the algorithms of Arya et
al. [3], Pan and Zhu [135], Cohen-Addad et al. [37], Haralampiev [76], and Rossiter [145].
However, it might be useful to also include in our evaluation the algorithms of Merino and
Perez [47], Merino et al. [125], and Domı́nguez and Muñoz [46], as these networks are
very similar to Hopfield networks.

Additionally, because we plan to improve our algorithm in a variety of ways, we believe
the performance of our algorithm will outperform the competing neural network and local
search algorithms. Therefore, we plan to also experimentally evaluate its performance
against the state-of-the-art linear program rounding algorithms, which currently have the
best theoretical bounds.

K-Median Problem Variants

The k-median problem is a classic member of the facility location family of problems. In
the uncapacitated facility location problem, instead of requiring k facilities to be active,
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there is a cost associated with activating a facility and the goal is to minimize the total cost
to serve all the clients. In the capacitated facility location problem, each facility has an
upper bound on the number of clients it can serve. There is also a capacitated k-median
problem where exactly k facilities should be selected but they each have an upper bound on
the number of clients that they can serve.

Future research can investigate how to modify the Hopfield network to activate a flexi-
ble number of facilities and incorporate their activation costs into the energy function. For
the capacitated problem, consideration is required to determine how best to assign clients
to facilities in the network when an activate facility already is full; determining which of
the clients that are currently being served should be swapped out could have large impacts
on the solution quality.

Other Optimization Problems

Kamgar-Parsi and Kamgar-Parsi [97] have previously designed a Hopfield network for the
k-means problem. Future research could apply our modified Hopfield network to not only
the k-means problem, but to other popular clustering problems such as the k-medoids prob-
lem and variations of these problems.

In addition to investigating more clustering problems, in the future we can use our
techniques to design a new modified Hopfield network for other optimization problems
such as the traveling salesman problem and packing problems.
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algorithm for the p-median problem. In Ibero-American Conference on Artificial
Intelligence, pages 460–469. Springer, 2002.

[48] K. Eisemann. The trim problem. Management Science, 3(3):279–284, 1957.

[49] Mohamed El Yafrani and Belaı̈d Ahiod. Efficiently solving the traveling thief prob-
lem using hill climbing and simulated annealing. Information Sciences, 432:231–
244, 2018.



Chapter 7 – Conclusions 210
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