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Derivation and reinterpretation of the Fermi–Amaldi functional

Ivan P. Bosko and Viktor N. Staroverov∗

Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada

(Dated: September 13, 2023)

The Fermi–Amaldi correction to the electrostatic self-repulsion of the particle density is usually
regarded as a semiclassical exchange functional that happens to be exact only for one- and closed-
shell two-electron systems. We show that this functional can be derived quantum-mechanically and
is exact for any number of fermions or bosons of arbitrary spin as long as the particles occupy the
same spatial orbital. The Fermi–Amaldi functional is also size-consistent for such systems, provided
that the factor N in its expression is understood as an orbital occupation number rather than the
total number of particles. These properties of the Fermi–Amaldi functional are ultimately related to
the fact that it is a special case of the self-exchange energy formula. Implications of these findings
are discussed.

A key objective of density-functional theory (DFT) is
to devise accurate, broadly applicable approximations to
the generally unknown total energy functional of the elec-
tron density. Explicit density functionals that are exact
for a particular class of many-particle systems are espe-
cially prized as starting points and guides for developing
practical density-functional approximations.1–7

The electrostatic self-repulsion (Coulomb) energy of
the particle density ρ(r),

EJ [ρ] =
1

2

∫∫

ρ(r)ρ(r′)

|r− r
′|
dr dr′, (1)

is the simplest approximation to the electron-electron in-
teraction energy, W . The model W = EJ [ρ] is notably
employed in the Thomas–Fermi theory8–10 and is known
to have poor accuracy for real atoms and molecules. For
one-electron systems in particular, the exact W is zero,
whereas EJ [ρ] gives a spurious non-zero value known as
the one-electron self-interaction error. The difference be-
tween EJ [ρ] and the exactW grows with electron number
N , more so ifN is fractional.11,12 Within the Kohn–Sham
DFT,13 the self-interaction error and all other short-
comings of EJ [ρ] are supposed to be corrected by the
exchange-correlation functional.14

Fermi and Amaldi15 recognized the self-interaction
problem with EJ [ρ] early on and proposed a simple scal-
ing correction which is usually justified as follows.10,16,17

In a system of N indistinguishable electrons, electron i
can be associated with an average one-electron density
ρi(r) = ρ(r)/N . Under this assumption, each electron
experiences the Coulomb potential of the remainingN−1
electrons, given by

ṽ(r) =

N−1
∑

i=1

∫

ρi(r
′)

|r− r
′|
dr′ =

N − 1

N

∫

ρ(r′)

|r− r
′|
dr′. (2)

The total electron-electron interaction energy is then

WFA[ρ] =
1

2

N
∑

i=1

∫

ρi(r)ṽ(r) dr =
N − 1

N
EJ [ρ], (3)

which one can write more suggestively as

WFA[ρ] = EJ [ρ]−
1

N
EJ [ρ]. (4)

The second term on the right-hand side of Eq. (4) is the
Fermi–Amaldi correction to EJ [ρ].
Under uniform coordinate scaling of the density,18 the

Fermi–Amaldi correction behaves like the exchange en-
ergy of the Kohn–Sham DFT and therefore may be
treated as an approximate exchange functional

EFA
X [ρ] = −

1

N
EJ [ρ] = −NEJ [ρ/N ]. (5)

One may also regard the term −EJ [ρ]/N as approximat-
ing the exchange-correlation energy.19 The spin-polarized
version of Eq. (5) can be obtained either by retracing
the original argument for spin-polarized systems20 or by
applying the spin-scaling relation21 to Eq. (5) with N
treated as a density functional.
The following facts about the Fermi–Amaldi correction

are well known.19

(1) EFA
X [ρ] gives the Hartree–Fock (HF) exchange en-

ergy for one- and closed-shell two-electron systems.

(2) Energies, densities, and other properties obtained
using Eq. (4) are generally poor relative to both
experimental and HF values.

(3) The Kohn–Sham potential derived from EFA
X [ρ] de-

cays asymptotically as −1/r, which is the correct
behavior of exact exchange-correlation potentials
for Coulombic systems.22

(4) The Fermi–Amaldi correction is not size-consistent:
in the limit of infinite separation between two sys-
tems, EFA

X [ρA + ρB ] 6= EFA
X [ρA] + EFA

X [ρB ].

Due to its low accuracy for many-electron atoms
and molecules, the Fermi–Amaldi exchange functional is
not used for energy calculations on its own. Instead,
it serves as an ingredient of other density-functional
approximations23–27 or as a source of “guide potentials”
in Kohn–Sham inversion28–30 and optimized effective po-
tential techniques.31–33

We will now show that the Fermi–Amaldi correction
can be derived without any semiclassical assumptions.
The derivation will reveal that, with a proper reinter-
pretation of the factor N , the Fermi–Amaldi functional
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is size-consistent and exact for an entire class of many-
particle systems. A number of other insights will result.
Consider a system of N identical particles, either

fermions or bosons, each with a spin quantum number
s (s = 0, 1/2, 1, 3/2, . . .). The total number of spin states
of each particle is 2s+1, referred to as spin multiplicity.
In self-consistent field theories, particles are described by
spin-orbitals, that is, one-particle wavefunctions of the
form ψ(x) = φ(r)σ(ω), where φ(r) is a spatial orbital,
σ(ω) is a one-particle spin function, and x = (r, ω) is a
collective coordinate of the particle.
If all N particles occupy the same spatial orbital, say

φ1(r), then the normalized molecular orbital wavefunc-
tion of the system can be written as

Φ = φ1(r1)φ1(r2) · · ·φ1(rN )Θ(ω1, ω2, . . . , ωN ), (6)

where Θ is an N -particle spin function normalized to
unity. The function Φ should be either symmetric (for
bosons) or antisymmetric (for fermions) with respect to
particle interchange. The symmetry of Φ is determined
solely by Θ. The restriction to one spatial orbital implies
that N ≤ 2s+1 if the particles are fermions. For bosons,
N is unlimited.
Let us evaluate the expectation value of the particle-

particle Coulomb repulsion operator

Ŵ =

N
∑

i<j

1

rij
(7)

with the wavefunction of Eq. (6). Since Ŵ is spin-
independent, the factor Θ is irrelevant. It does not even
have to be a spin eigenfunction. Each term 1/rij con-
tributes equally, and the number of such terms is the
number of all possible pairs of particles. Therefore,

W = 〈Φ|Ŵ |Φ〉 =
N(N − 1)

2
J11, (8)

where

J11 =

∫∫

|φ1(r1)|
2|φ1(r2)|

2

r12
dr1dr2 (9)

is the Coulomb integral. The total particle density de-
rived from Φ is

ρ(r) = N |φ1(r)|
2, (10)

so the total Coulomb energy is just

EJ [ρ] =
N2

2
J11. (11)

Combining Eqs. (8) and (11), we arrive at Eq. (4).
Thus, the Fermi–Amaldi correction of Eq. (5) is the

exact exchange functional for any N -particle system de-
scribed with a product of N spin-orbitals that have
one common spatial part. The nature of the particles
(fermions or bosons) and the behavior of the total wave-
function under particle interchange are irrelevant.

Exchange interactions within one spatial orbital are
known as self-exchange.11,34 The logic leading to Eq. (11)
shows that, at least in one-orbital systems, the self-
exchange has nothing to do with the indistinguishability
of particles or their spins but depends only on EJ [ρ] and
N . This occurs because the Coulomb repulsion operator
is spin-independent.
The above derivation of Eq. (5) suggests that there ex-

ists an intimate connection between the Fermi–Amaldi
functional and the self-exchange energy. To elucidate
this relationship in its full extent, we consider expecta-
tion values of Ŵ for three different types of many-particle
wavefunctions, namely, Hartree products, Slater determi-
nants, and permanents.
A simple Hartree product of orthonormal spin-orbitals

has the form

ΦH = ψ1(x1)ψ2(x2) · · ·ψN (xN ). (12)

The expectation value of Ŵ with this wavefunction is

W = 〈ΦH |Ŵ |ΦH〉 =
N
∑

i<j

[ii|jj]

=
1

2

N
∑

i=1

N
∑

j=1

[ii|jj]−
1

2

N
∑

i=1

[ii|ii], (13)

where

[ij|kl] =

∫∫

ψ∗

i (x1)ψj(x1)r
−1
12 ψ

∗

k(x2)ψl(x2) dx1dx2

(14)

is the standard quantum chemistry notation for two-
particle repulsion integrals in terms of spin-orbitals.35

Simple Hartree products of orthonormal orbitals are un-
common in modern quantum chemistry but can be con-
ceptually and practically useful.36

A Slater determinant is a fully antisymmetrized lin-
ear combination of Hartree products, as appropriate for
fermions. It is given by

ΦF =
1

(N !)1/2

N !
∑

k=1

(−1)pk P̂k {ψ1(x1)ψ2(x2) · · ·ψN (xN )} ,

(15)

where P̂k is the operator generating the kth permutation
of the particles and pk is the number of transpositions
associated with that permutation. The expectation value
of Ŵ with ΦF is35

W = 〈ΦF |Ŵ |ΦF 〉 =
1

2

N
∑

i=1

N
∑

j=1

([ii|jj]− [ij|ji]) . (16)

For bosons, the properly symmetrized linear combina-
tion of Hartree products is a permanent of spin-orbitals.
A minor complication with permanents is that they may
contain any particular spin-orbital more than once. Let
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the number of distinct occupied spin-orbitals be K (1 ≤
K ≤ N) and let mi be the occupation number of the ith
spin-orbital. Introducing K group functions defined by

gi(m) = ψi(x1)ψi(x2) · · ·ψi(xm), (17)

we write the normalized permanent for N =
∑K

i=1mi

bosons as37

ΦB =

∑N !

k=1 P̂k {g1(m1)g2(m2) · · · gK(mK)}

(N !m1!m2! · · ·mK !)1/2
. (18)

The factors mi! in the denominator account for the fact
that permutations within each group gi(m) do not change
the N -particle spin-orbital product. The expectation
value of Ŵ with ΦB is37

W =〈ΦB |Ŵ |ΦB〉 =
1

2

K
∑

i=1

mi(mi − 1)[ii|ii]

+

K
∑

i<j

mimj([ii|jj] + [ij|ji]). (19)

To proceed further, we need to convert Eqs. (13), (16)
and (19) to equivalent expressions in terms of spatial or-
bitals. We assume that each of the wavefunctions ΦH ,
ΦF , and ΦB is constructed from K distinct spin-orbitals
(K = N for ΦH and ΦF , but K ≤ N for ΦB) given by

ψi(x) = φiσ(r)σ(ω), (20)

where φiσ(r) is the spatial part of ψi(x). We will also
need the occupation numbers of φiσ(r), which we denote
by niσ. For fermions, all niσ = 1. For bosons, niσ = mi.
According to Eqs. (13), (16) and (19), the wavefunc-

tions ΦH , ΦF , and ΦB constructed from a given set of
K spin-orbitals generally produce different expectation
values W . We will now see that all three values become
equal if the orbitals φiσ(r) have zero differential overlap
(ZDO) for like spins, that is,

φiσ(r)φjσ(r) = 0 everywhere for i 6= j. (21)

The ZDO condition is less stringent than the require-
ment of infinite separation between φiσ(r) and φjσ(r),
which will be invoked later to discuss the issue of size-
consistency. Note also that Eq. (21) refers to molecular
orbitals, not to atomic basis functions as in the ZDO
approximation to the HF method.38

For a fixed set of N spin-orbitals, ΦH , ΦF , and ΦB

produce the same total particle density

ρ(r) =
∑

σ

K
∑

i=1

niσ|φiσ(r)|
2 (22)

and hence the same Coulomb self-repulsion energy

EJ [ρ] =
1

2

∑

σ

∑

τ

K
∑

i=1

K
∑

j=1

niσnjτJ
στ
ij , (23)

where τ is an alternative spin index and

Jστ
ij =

∫∫

|φiσ(r1)|
2|φjτ (r2)|

2

r12
dr1dr2. (24)

Equations (22)–(24) hold for any set of orthonormal spin-
orbitals, not only for ZDO orbitals.
Now consider Eqs. (13), (16) and (19) for systems de-

scribed with ZDO orbitals. All integrals [ii|ii] and [ii|jj]
appearing in these expressions survive the spin integra-
tion to give Jσσ

ii and Jστ
ij , respectively. The integrals

[ij|ji] survive only if the ZDO spin-orbitals ψi(x) and
ψj(x) are identical (the result is J

σσ
ii ). Using these rules,

we obtain the same final result in all three cases,

W = EJ [ρ] + Eself
X [ρ], (25)

where EJ [ρ] is given by Eq. (23) and

Eself
X [ρ] = −

1

2

∑

σ

K
∑

i=1

niσJ
σσ
ii (26)

is the total self-exchange energy. In fact, Eq. (25) holds
not just for ΦH , ΦF , and ΦB , but for any normalized
linear combination of permuted products P̂kΦH of ZDO
orbitals.
Introducing particle densities associated with individ-

ual orbitals,

ρiσ(r) = niσ|φiσ(r)|
2, (27)

and using the fact that

EJ [ρiσ] =
n2iσ
2
Jσσ
ii , (28)

we rewrite the self-exchange energy of Eq. (26) as an
orbital-dependent density functional11

Eself
X [ρ] = −

∑

σ

K
∑

i=1

EJ [ρiσ]

niσ
. (29)

For ZDO orbitals, this functional identical with the full
exact exchange but, unlike the latter, is not invariant un-
der any unitary transformation of {φiσ} that breaks the
ZDO condition.39 Quantities whose definitions are tied to
a particular set of orbitals are not uncommon. The av-
erage local ionization energy40–42 is another example.43

So far we have used the spin-unrestricted formalism.
To obtain the spin-restricted version of Eq. (29), we as-
sume that all φiσ(r) with a given i are identical and equal
to φi(r). The occupation number of φi(r) is

ni =
∑

σ

niσ, (30)

and the associated orbital density is

ρi(r) = ni|φi(r)|
2. (31)



4

Repeating the arguments following Eq. (26) for this spe-
cial case, we obtain

Eself
X [ρ] = −

K
∑

i=1

EJ [ρi]

ni
. (32)

Equations (29) and (32) can be further simplified if
all distinct spatial orbitals are equally occupied and in-
finitely separated from one another. Examples of such
systems include all one-electron atoms and ions, all
closed-shell two-electron systems in the spin-restricted
Hartree–Fock (RHF) formalism, infinitely stretched H2

in the spin-unrestricted Hartree–Fock (UHF) formalism,
systems consisting of any number of infinitely separated
ground-state He atoms, infinitely stretched HeLi+, etc.
Counterexamples are Li and Be atoms, and He atom clus-
ters at finite internuclear separation R.
In the limit of infinite mutual separation of all disinct

occupied spatial orbitals, the system consists of nonin-
teracting one-orbital fragments, so the total Coulomb en-
ergy become strictly additive over fragment densities. If,
in addition, each fragment contains the same number of
particles, say n, both Eqs. (29) and (32) reduce to the
following explicit functional of the total density

Eself
X [ρ] = −

1

n
EJ [ρ]. (33)

This functional looks like the Fermi–Amaldi correction of
Eq. (5) except that it contains n instead of N in the de-
nominator. Unlike the original Fermi–Amaldi functional,
however, Eq. (33) is manifestly size-consistent. For one-
orbital systems, where n = N , Eq. (33) becomes identical
with Eq. (5). Note that, for one-orbital systems, the dif-
ference between the spin-restricted and spin-unrestricted
formalisms disappears.
Thus, the Fermi–Amaldi correction is essentially a spe-

cial case of the self-exchange energy formula. Since the
self-exchange is the exact exchange for ZDO orbitals,
Eq. (33) is also exact for any Hartree product, Slater de-
terminant, or permanent in which all distinct spatial or-
bitals are infinitely separated and equally occupied. This
is possible within both the RHF and UHF formalisms.
Table I confirms that the revised Fermi–Amaldi func-

tional of Eq. (33) is exact for a Slater determinant in-
volving infinitely separated spatial orbitals of equal oc-
cupation n. For electrons, n = 2 within the RHF for-
malism and n = 1 within the UHF formalism. The ratio
EJ/E

HF
X is exactly n in all cases. We used the nearly

saturated universal Gaussian basis set44 (UGBS) here,
but the same conclusions would have been reached using
any basis set.
When applied to many-particle systems with non-ZDO

orbitals such aso found in atoms (Table II), Eqs. (29),
(32), and (33) are only approximations to the exact ex-
change. The accuracy of Eqs. (29) and (32) is deter-
mined by how closely the distinct occupied orbitals sat-
isfy the ZDO condition. Atomic orbitals overlap substan-
tially, which explains the large relative error of Eself

X [ρ] in

TABLE I. Examples of Slater determinants (ΦF ) for which
the revised Fermi–Amaldi correction of Eq. (33) is identical
with the HF exchange functional. The energies (in units of
Eh) were calculated using the HF/UGBS orbitals.

Systema ΦF N n EJ E
HF
X

H UHF 1 1 0.312500 −0.312500
H2 (R → ∞) UHF 2 1 0.625000 −0.625000
H2 (R → ∞) RHF 2 2 0.512932 −0.256466
He RHF 2 2 2.051538 −1.025769
He2 (R → ∞) RHF 4 2 4.103076 −2.051538
He4 (Rij → ∞) RHF 8 2 8.206152 −4.103076
HeLi+ (R → ∞) RHF 4 2 5.354911 −2.677455

a
R is the internuclear distance.

TABLE II. HF, LDA, and Fermi–Amaldi-type exchange en-
ergies (in units of Eh) for various atoms. The HF and LDA
values are self-consistent and calculated using the DGDZVP
basis set. The Fermi–Amaldi-type energies are evaluated us-
ing the HF/DGDZVP orbitals.

Atom N HF LDA Eq. (5) Eq. (32)a

He 2 −1.0245 −0.8534 −1.0245 −1.0245
Be 4 −2.6379 −2.2799 −1.7766 −2.5863
Ne 10 −12.0603 −10.9414 −6.6099 −10.0575
Mg 12 −15.9332 −14.5314 −7.9754 −13.0864
Ar 18 −30.0902 −27.7605 −12.8533 −23.3047
Ca 20 −35.1146 −32.5100 −14.2346 −26.8846
Zn 30 −69.5781 −65.4080 −25.8884 −48.3889
Kr 36 −93.5924 −88.3718 −32.4969 −62.9519
Cd 48 −148.7203 −141.3078 −46.5337 −94.3478
Xe 54 −178.8458 −170.3750 −53.2975 −110.9894
Errorb 0.0% 8.5% 51.2% 22.0%

a Self-exchange evaluated using canonical HF orbitals.
b Mean absolute percentage error with respect to the HF values.

terms of canonical orbitals (22.0%). This result can be
improved to 17.3% by using the Edmiston–Ruedenberg
orbitals39 that minimize the inter-orbital repulsion. The
22.0% error of Eq. (32) is better than the 51.2% error
of Eq. (5) but poorer than the 8.5% accuracy of the
local density approximation (LDA). The revised Fermi–
Amaldi functional of Eq. (33) gives dismal results for real
atoms (>300% error, not included in Table II) because it
is based on the drastic assumption that Jij = 0 for i 6= j,
which does not hold for atoms even approximately.

The Fermi–Amaldi correction and self-exchange are of-
ten present in self-interaction correction schemes.11,45–47

In particular, the Vosko–Wilk scheme45 for an arbitrary
exchange functional EX [ρ] may be written in the spin-
unpolarized form as

EVW
X [ρ] = EX [ρ]−N (EX [ρ/N ] + EJ [ρ/N ]) . (34)

The right-hand side of Eq. (34) contains the conventional
Fermi–Amaldi correction, as pointed out by Engel and
Dreizler.48 The Perdew–Zunger scheme11 applied to an
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arbitrary EX [ρ] in the spin-unpolarized form is

EPZ
X [ρ] = EX [ρ]−

K
∑

i=1

(

EX [ρi] +
1

2
EJ [ρi]

)

, (35)

where K = N/2 and ρi(r) = 2|φi(r)|
2. Here, the

right-hand side contains the self-exchange functional of
Eq. (32) for electrons (ni = 2).

The proposed theory of the Fermi–Amaldi correction
also suggests that, at least for one-orbital densities, the
many-particle self-interaction error can be defined un-
ambiguously. As shown above, Eq. (5) is the exact ex-
change functional for any permissible number of particles
(fermions or bosons) occupying one spatial orbital. This
implies that the quantity

∆N = EX [ρ]−
1

N
EJ [ρ] (36)

should vanish for any N -particle one-orbital density
(N ≤ 2s + 1 for spin-s fermions). An approximate
exchange functional EX [ρ] that violates the condition
∆N = 0 for a particular N can be said to have an N -
particle self-interaction error of magnitude |∆N |. Eval-
uation of ∆N for standard exchange functionals of the
electron density gives instructive results.49

In summary, we have shown that the Fermi–Amaldi
correction of Eq. (5) is the exact exchange functional
for any system of fermions or bosons described with a
product of spin-orbitals that share the same spatial part.
The symmetry of this product under particle interchange
is irrelevant. The Fermi–Amaldi functional becomes size-
consistent for such one-orbital systems if the denominator
N is understood as an orbital occupation number rather
than the total number of particles. Our derivation also
reveals that the Fermi–Amaldi correction is in effect a
special case of the orbital-dependent self-exchange energy
formula. More precisely, the self-exchange energy func-
tional of Eq. (29) reduces to the Fermi–Amaldi-type pure
density functional of Eq. (33) for systems with equally
occupied and infinitely separated orbitals.

The self-exchange is equivalent to the full exact ex-
change for systems where occupied same-spin orbitals
have ZDO. That is why fully localized molecular orbitals
are best suited for the Perdew–Zunger self-interaction
correction scheme.11,46 For real atoms and molecules,
Eqs. (29) and (33) are not exact and their errors reflect
the extent to which the orbitals used in the calculation
violate the ZDO and infinite separation conditions, re-
spectively.

The analytic form of the exact functionals of Eqs. (5)
and (33) serves as a reminder that the exact universal
density functional must depend explicitly on the particle
number.50,51 The fact that orbital occupation numbers
naturally arise in rigorously derived density functionals
such as EFA

X [ρ] lends support to the broader use of orbital
occupancies as ingredients of density-functional approxi-
mations.
This work also has implications for the Levy–Perdew–

Sahni DFT,52 an alternative to the Kohn–Sham scheme
based on a Schrödinger-like differential equation for the
square root of the electron density. The revised Fermi–
Amaldi functional of Eq. (33) gives the exact exchange
energy of the fictitious one-orbital reference system of the
Levy–Perdew–Sahni scheme, and is to that theory what
the HF-type exchange functional is to the Kohn–Sham
DFT. In other words, Eq. (33) is the “exact exchange”
of the Levy–Perdew–Sahni DFT. Such realizations revive
the hopes of devising usefully accurate approximations to
the Levy–Perdew–Sahni universal functional and thereby
fulfilling the promise of orbital-free DFT.53
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