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Generalized average local ionization energy and its

representations in terms of Dyson and energy orbitals

Sviataslau V. Kohut, Rogelio Cuevas-Saavedra, and Viktor N. Staroverov∗

Department of Chemistry, The University of Western Ontario,

London, Ontario N6A 5B7, Canada

(Dated: August 2, 2016)

Abstract

Ryabinkin and Staroverov [J. Chem. Phys. 141, 084107 (2014)] extended the concept of average

local ionization energy (ALIE) to correlated wavefunctions by defining the generalized ALIE as

Ī(r) = −
∑

j λj |fj(r)|2/ρ(r), where λj are the eigenvalues of the generalized Fock operator and fj(r)

are the corresponding eigenfunctions (energy orbitals). Here we show that one can equivalently

express the generalized ALIE as Ī(r) =
∑

k Ik|dk(r)|2/ρ(r), where Ik are single-electron removal

energies and dk(r) are the corresponding Dyson orbitals. The two expressions for Ī(r) emphasize

different physical interpretations of this quantity; their equivalence enables one to calculate the

ALIE at any level of ab initio theory without generating the computationally expensive Dyson

orbitals.
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I. INTRODUCTION

The average local ionization energy (ALIE) was introduced by Politzer and co-workers1–8

as an aid in interpreting the results of electronic structure calculations by the Hartree–Fock

(HF) and Kohn–Sham (KS) self-consistent field (SCF) methods. It is defined9 as

Ī(r) = − 1

ρ(r)

N∑
i=1

εi|φi(r)|2, (1)

where N is the number of electrons in the system, φi(r) is the spatial part of the ith

occupied canonical spin-orbital, εi is the corresponding eigenvalue, and ρ(r) =
∑N

i=1 |φi(r)|2

is the total electron density. By Koopmans’ theorem, each −εi provides an estimate of the

ionization energy associated with the removal of an electron from the ith orbital, so Ī(r)

may be interpreted as the average energy required to remove an electron from the point

r. Politzer and co-workers extensively studied the ALIE and showed that it is a useful

descriptor of chemical reactivity and other molecular properties.1–8 We note in passing that

the right-hand side of Eq. (1) may be cast in a form that is explicitly invariant under unitary

transformation of the orbitals.9,10

The ALIE concept as defined by Eq. (1) or its orbital-invariant form9,10 is applicable

only to one-determinantal SCF methods. To overcome this limitation, Ryabinkin and

Staroverov11 suggested a generalization of Eq. (1) to correlated wavefunctions. They de-

fined the generalized ALIE as

Ī(r) = − 1

ρ(r)

∑
j

λj|fj(r)|2, (2)

where λj and fj(r) are, respectively, the eigenvalues and spatial parts of the eigenfunctions

of the generalized Fock operator for the ground-state wavefunction of the system, ΨN . The

eigenfunctions fj(r), called “energy orbitals”,11 span the same space as the one-electron

basis functions used to construct ΨN , and the summation in Eq. (2) extends over all such

orbitals.

Although Eq. (2) correctly reduces to Eq. (1) for one-determinantal SCF methods,11 it no

longer has the form of a weighted average of electron removal energies. This is because the

eigenvalues λi are generally not approximations to ionization energies. However, Eq. (2) can

be rewritten in an orbital-invariant form as a sum of the local kinetic energy per electron and

formal potential energy contributions,11 similarly to how Eq. (1) was rewritten in Refs. 10
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and 9. For this reason, Ryabinkin and Staroverov11 re-interpreted the negative of the ALIE

as the average local electron energy, ε̄(r) = −Ī(r).

In this work, we show that the generalized ALIE of Eq. (2) can be equivalently expressed

as

Ī(r) =
1

ρ(r)

∑
k

Ik|dk(r)|2, (3)

where dk(r) are the Dyson orbitals of the system and Ik are the corresponding ionization

energies. The Dyson orbitals (generalized overlap amplitudes)12–15 are usually defined as

dk(r1) =
√
N
∑
σ1

∫
ΨN−1∗
k (x2, . . . ,xN)

×ΨN(x1,x2, . . . ,xN) dx2 · · · dxN , (4)

where xi = riσi is the collective (spatial and spin) electron coordinate and ΨN−1
k are the

eigenfunctions of the (N − 1)-electron Hamiltonian for the same external potential. The

ionization energies here are

Ik = EN−1
k − EN , (5)

where EN and EN−1
k are the total energy eigenvalues associated with ΨN and ΨN−1

k , respec-

tively. The summation in Eq. (3) extends over all Dyson orbitals, that is, over all ΨN−1
k .

The equivalence of Eqs. (2) and (3) means that the generalized ALIE of Ryabinkin and

Staroverov, despite its appearance, preserves and even strengthens the original interpretation

of Ī(r) as a weighted average of electron removal energies, as a proper generalization should.

We will now prove and discuss this result.

II. PROOF

Consider the ground state of a system of N electrons described by the electronic wave-

function ΨN which satisfies the stationary Schrödinger equation,

ĤNΨN(x1,x2, . . . ,xN) = ENΨN(x1,x2, . . . ,xN), (6)

where the Hamiltonian is

ĤN(r1, r2, . . . , rN) =
N∑
i=1

ĥ(ri) +
N−1∑
i=1

N∑
j>i

r−1
ij (7)
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with

ĥ(ri) = −1

2
∇2
i + v(ri). (8)

Let us partition this Hamiltonian as

ĤN(r1, r2, . . . , rN)

= ĥ(r1) +
N∑
j>1

r−1
1j + ĤN−1(r2, . . . , rN), (9)

where ĤN−1 is of the same type as Eq. (7). Substitute Eq. (9) into Eq. (6), multiply the

result from the left by NΨN∗, rearrange, and integrate over x2 · · ·xN to obtain

N〈ΨN |EN − ĤN−1|ΨN〉2···N

= N〈ΨN |ĥ(r1)|ΨN〉2···N +N〈ΨN |
N∑
j>1

r−1
1j |ΨN〉2···N , (10)

in obvious notation. Next we will show that the left-hand side (LHS) of Eq. (10) is equal

to −
∑

k Ik|dk(x1)|2, while the right-hand side (RHS) is equal to
∑

j λj|fj(x1)|2, which will

establish the equivalence of Eqs. (2) and (3).

Consider first the LHS of Eq. (10),

LHS = N〈ΨN |EN − ĤN−1|ΨN〉2···N . (11)

To work out this expression we invoke the expansion of ΨN in Dyson orbitals,16

ΨN(x1,x2, . . . ,xN)

=
1√
N

∑
k

dk(x1)Ψ
N−1
k (x2, . . . ,xN), (12)

where ΨN−1
k are the solutions of the eigenvalue problem

ĤN−1ΨN−1
k = EN−1

k ΨN−1
k . (13)

Substituting Eq. (12) into Eq. (11) and using the orthonormality of the ionic wavefunctions,

〈ΨN−1
l |ΨN−1

k 〉 = δlk, (14)

we obtain

LHS =
∑
kl

d∗l (x)dk(x)(EN − EN−1
k )δlk

= −
∑
k

Ik|dk(x)|2, (15)
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where Ik is given by Eq. (5) and the summation is over all Dyson orbitals of the system.

The RHS of Eq. (10) consists of two terms. For the first term we have

N〈ΨN |ĥ(r1)|ΨN〉2···N =
[
ĥ(r1)γ(x1,x

′
1)
]
x′

1=x1

, (16)

where

γ(x1,x
′
1) = N

∫
ΨN(x1,x2, . . . ,xN)

×ΨN∗(x′1,x2, . . . ,xN) dx2 · · · dxN (17)

is the one-electron reduced density matrix (1-RDM). The second term may be written as

N〈ΨN |
N∑
j>1

r−1
1j |ΨN〉2···N

= N(N − 1)

∫
r−1
12 |ΨN |2 dx2 · · · dxN

= 2

∫
r−1
12 Γ(x1,x2; x1,x2) dx2, (18)

where

Γ(x1,x2; x
′
1,x

′
2)

=
N(N − 1)

2

∫
ΨN(x1,x2,x3, . . . ,xN)

×ΨN∗(x′1,x
′
2,x3, . . . ,xN) dx3 · · · dxN (19)

is the two-electron reduced density matrix (2-RDM).

Now consider the integral operator Ĝ with the kernel

G(x1,x
′
1) = ĥ(r1)γ(x1,x

′
1) + 2

∫
Γ(x1,x2; x

′
1,x2)

r12

dx2 (20)

and observe that the RHS of Eq. (10) is

RHS = G(x,x). (21)

The operator Ĝ, known as the generalized Fock operator,17 arises in various problems of

electronic structure theory.18–26 It is Hermitian for variational methods and non-Hermitian

otherwise.17 Let us symmetrize Ĝ as

F̂ =
1

2

(
Ĝ+ Ĝ†

)
(22)
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and consider the Hermitian eigenvalue problem

F̂ fj(x) = λjfj(x). (23)

Since F̂ is Hermitian, its eigenvalues are real and the eigenfunctions form a complete or-

thonormal set, so that

G(x,x) = F (x,x) ≡ 〈x|F̂ |x〉

=
∑
ij

〈x|fi〉〈fi|F̂ |fj〉〈fj|x〉 =
∑
j

λj|fj(x)|2, (24)

where the summation is over all eigenfunctions fj(x). From Eqs. (21) and (24) it follows

that

RHS =
∑
j

λj|fj(x)|2. (25)

Comparison of Eqs. (15) and (25) gives, after eliminating the spin variable,

−
∑
k

Ik|dk(r)|2 =
∑
j

λj|fj(r)|2, (26)

where dk(r) is the spatial part of dk(x) and fj(r) is the spatial part of fj(x). Equation (26)

implies that the representations of Ī(r) by Eqs. (2) and (3) are equivalent. This concludes

the proof for exact wavefunctions.

When the wavefunction ΨN is approximate, the corresponding Dyson orbitals should be

understood as the overlap amplitudes between ΨN and wavefunctions ΨN−1
k constructed

within the frozen-orbital approximation using the same correlation model as for ΨN . In par-

ticular, the Dyson orbitals defined in this manner for an HF SCF wavefunction ΨN will coin-

cide with the canonical HF orbitals of ΨN . For a finite-basis-set full configuration-interaction

(CI) ΨN , ΨN−1
k will span the full CI space of the cationic wavefunctions constructed using

the same one-electron basis set as ΨN . Such provisions are necessary for Eq. (26) to hold at

all levels of ab initio theory, not just for exact wavefunctions.

It is interesting to note that the generalized ALIE naturally arises as an ingredient of

various exact expressions for the exchange-correlation potential vXC(r) of the KS density-

functional theory.24–28 In fact, the equivalence of Eqs. (2) and (3) is implied by the equiva-

lence of the two exact expressions for vXC(r) derived in Refs. 24 and 28. The above proof of

this equivalence is direct. It is also noteworthy that the LHS of Eq. (26) generally contains

more terms than the RHS because the number of Dyson orbitals is generally greater than

the number of eigenfunctions of the generalized Fock operator.
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III. DISCUSSION

The results of Section II suggest two complementary views on the meaning of the gener-

alized ALIE. According to Eq. (11), Ī(r) may be defined for an arbitrary ΨN as

Ī(r1) = − N

ρ(r1)

∑
σ1

〈ΨN |EN − ĤN−1|ΨN〉2···N , (27)

which emphasizes the connection between Ī(r) and electron removal energies and leads to

Eq. (3). Alternatively, one may write

Ī(r) = − 1

ρ(r)

([
ĥ(r)ρ(r, r′)

]
r′=r

+ 2

∫
P (r, r2)

|r− r2|
dr2

)
, (28)

where ρ(r, r′) =
∑

σ γ(x,x′) is the spin-free 1-RDM and

P (r, r2) =
∑
σσ2

Γ(x,x2; x,x2) (29)

is the pair function. From Eq. (28) it follows that11

−
∫
ρ(r)Ī(r) dr =

∑
j

λj = Eelec + Vee, (30)

where Eelec is the total electronic energy (without the internuclear repulsion) and Vee is the

(double-counted) electron-electron interaction energy. The ALIE representations by Eqs. (3)

and (28) can also be related to the one-particle Green’s function of the system, as implied

by Ref. 29.

There is yet another instructive way of expressing the generalized ALIE. The pair function

may be cast as

P (r, r2) =
1

2
ρ(r) [ρ(r2) + ρXC(r, r2)] , (31)

where ρWF
XC (r, r2) is the exchange-correlation hole. Then Eq. (28) becomes11

Ī(r) = −
[
τL(r)

ρ(r)
+ v(r) + vH(r) + vhole

XC (r)

]
, (32)

where

τL(r) = −1

2

[
∇2

rρ(r, r′)
]
r′=r

(33)

is the Laplacian form of the kinetic energy density,

vH(r) =

∫
ρ(r2)

|r− r2|
dr2 (34)
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is the electrostatic potential of ρ(r), and

vhole
XC (r) =

∫
ρXC(r, r2)

|r− r2|
dr2 (35)

is the exchange-correlation hole potential. The square brackets in Eq. (32) contain the sum

of a local kinetic energy per electron and formal potential contributions.

Although Dyson orbitals are neither orthogonal nor normalized, nor even linearly inde-

pendent, they do have the property that12

ρ(r) =
∑
k

|dk(r)|2. (36)

By contrast, the eigenfunctions of the generalized Fock operator are orthonormal, but

ρ(r) 6=
∑
j

|fj(r)|2. (37)

This means that the generalized ALIE is a weighted average of the ionization energies Ik,

but not an average of the eigenvalues λi.

Observe that if ΨN is a single Slater determinant and ΨN−1
i are single determinants

within the frozen-orbital (Koopmans) approximation, then the Dyson orbitals are the same

as canonical spin-orbitals, di(x) = φi(x), and Ii = −εi.15 For a one-determinantal ΨN , energy

orbitals also coincide with the canonical orbitals, fi(x) = φi(x), and the eigenvalues of F̂

become λi = niεi, where ni = 0 or 1 is the occupation number of the canonical spin-orbital

φi(r).11 This means that for HF and KS wavefunctions, Eqs. (2) and (3) both correctly

reduce to Eq. (1). It is also evident that, for one-determinantal wavefunctions, Eq. (28)

reduces to the ALIE expression derived by Ayers et al.10 and by Bulat et al.9

Equation (30) is a generalization of the well-known result from the HF theory that the

sum of the occupied HF orbital eigenvalues equals the total electronic energy with a double-

counted electron interaction. The product λj|fj(r)|2 may therefore be interpreted as an

orbital-like contribution to the total electronic energy density with a weight λj. It is for this

reason that Ryabinkin and Staroverov termed the eigenfunctions fj(r) “energy orbitals”.

The original ALIE of Eq. (1) is now widely used as a tool for studying molecular properties

and reactivity,1–8,30–33 and in other contexts.34 The generalized ALIE of Eq. (1) holds an even

greater promise because it allows one to go beyond the level of one-determinantal methods

and study inherently multireference systems. It is therefore of interest to discuss practical

aspects of computing this quantity.
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FIG. 1: Generalized ALIE computed by Eqs. (2) and (32) from a full-valence CASSCF wavefunction

of the LiF molecule at Re. The ALIE is shown along the internuclear axis.

IV. COMPUTING THE ALIE

We have discussed three distinct expressions for the generalized ALIE: Eqs. (2), (3),

and (32). Equation (3) is impractical for computing Ī(r) because it requires all of the

Dyson orbitals and associated electron removal energies of the system (quantities that are

themselves challenging to compute). Equations (2) and (32) require at most the 2-RDM,

but Eq. (32) is unsuitable when Gaussian basis sets are employed, as we will now show.

Consider the HF eigenvalue problem[
−1

2
∇2 + v(r) + vH(r) + K̂

]
φHF
i (r) = εHF

i φHF
i (r), (38)

where K̂ is the Fock exchange operator. If we multiply this equation by φHF*(r), sum over

i from 1 to N , and divide by ρHF(r) =
∑N

i=1 |φHF
i (r)|2, we obtain9,35

τHF
L (r)

ρHF(r)
+ v(r) + vH(r) + vhole

X (r) =
1

ρHF(r)

N∑
i=1

εHF
i |φHF

i (r)|2, (39)

where vhole
X (r) is the exchange-hole potential.36 The RHS and LHS of Eq. (39) are equal in

a complete basis set, but not when φHF
i and other quantities are given in terms of finite-

basis-set expansions. In particular, when Gaussian basis sets are used, the LHS of Eq. (39)

oscillates wildly and diverges at the nuclei and at large r, whereas the RHS remains smooth

and bounded.37 The LHS and RHS of the inverted KS equation behave similarly.38

The eigenvalue problem for the operator F̂ ,∫
F (x,x′)fj(x

′) dx′ = λjfj(x), (40)

9



may be viewed as a generalization of the HF eigenvalue problem to post-HF wavefunctions.

If we start with Eq. (40), expand the 1-RDM and 2-RDM in F (x,x′) in terms of orthonormal

energy orbitals, multiply the result by f ∗j (x), sum over j, divide by ρ, and simplify, we obtain

the identity24

τL(r)

ρ(r)
+ v(r) + vH(r) + vhole

XC (r) =
1

ρ(r)

∑
j

λj|fj(r)|2. (41)

This identity expresses the equivalence of Eqs. (2) and (32) in a complete basis set. Just like

Eq. (39), Eq. (41) does not hold when its ingredients are obtained in terms of finite-basis-

set expansions. This is because the RHS of Eq. (41) contains the spectral representation

of F (r, r) which is appropriate both for complete and finite basis sets, whereas the LHS

of Eq. (41) is derived by manipulations that are legitimate only in a complete basis set.

Discrepancies between the LHS and RHS of Eq. (41) in finite basis sets can be dramatic: in

calculations using Gaussian-type basis functions, the RHS remains well-behaved, whereas

the LHS oscillates and diverges at the nuclei and at large r (Fig. 1).

Thus, when a finite basis set is employed, the ALIE should be computed either by Eq. (2)

or Eq. (3), but not by Eq. (32). However, the high computational cost of Dyson orbitals

makes Eq. (3) impractical and leaves Eq. (2) (together with its nondiagonal variants25,26) as

the most suitable method.

V. NUMERICAL ILLUSTRATIONS

The following illustrative calculations of the generalized ALIE were carried out using our

implementation of Eq. (2) in the gaussian 09 program.39 Several modules of gaussian

09 already provide matrix elements of the generalized Fock operator, so we only needed

to extract the generalized Fock matrix, symmetrize it if necessary, diagonalize, and then

assemble Ī(r).

For systems that are adequately represented by a single Slater determinant, the ALIE

computed from a correlated wavefunction such as full-valence CASSCF should be similar to

the ALIE computed from a HF wavefunction. This is indeed the case for a typical closed-

shell molecule (LiF) at the experimental equilibrium internuclear separation, Re = 2.9553a0

(Fig. 2). For systems with substantial multireference character, however, the HF and full-

valence CASSCF ALIEs are qualitatively different—this is illustrated by Fig. 3 for a LiF

molecule stretched to 3Re. The key difference between the HF and CASSCF ALIEs for
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FIG. 2: ALIEs for the LiF molecule at Re computed from HF and full-valence CASSCF wavefunc-

tions and shown along the internuclear axis. Note the logarithmic scale for Ī(z). The two curves

are similar.
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FIG. 3: ALIEs for a stretched LiF molecule (3Re) computed from HF and full-valence CASSCF

wavefunctions and shown along the internuclear axis. Note the logarithmic scale for Ī(z). The

CASSCF ALIE has a step near z = 5a0.

a stretched LiF is the upshift of the correlated ALIE around the more electronegative F

atom and the resulting step of Ī(r). Similar upshifts appear in exact exchange-correlation

potentials of all stretched heteronuclear diatomics and are responsible for the dissociation

of such molecules into neutral atoms rather than pairs of ions.40–45 In fact, ALIEs generated

from accurate correlated wavefunctions encapsulate the complete information about the

height and position of the steps in molecular exact exchange-correlation potentials.45

At 3Re, the CASSCF ALIE in LiF assumes values of about 0.2 Eh around the Li atom and

0.6–0.7 Eh around the F atom (Fig. 3). These values are consistent with the corresponding
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FIG. 4: Color maps of the ALIEs from the HF and full-valence CASSCF wavefunctions of the LiF

molecule computed at the equilibrium distance (Re), for a moderately stretched bond (1.5Re), and

for a nearly dissociated molecule (3Re).

exact first ionization energies of the isolated Li and F atoms: ILi = 0.198 Eh and IF = 0.641

Eh,46 as should be the case for an accurate generalized ALIE.11,45 The HF ALIE does not

behave this way because it has neither correct asymptotic values nor the step structure

(Fig. 3).

Figure 4 conveys the same message as Figs. 2 and 3 in the form of ALIE color maps

in the plane containing the internuclear axis of the LiF molecule. For R = Re, the HF

and full-valence CASSCF ALIEs are similar but become distinct with increasing R. In the

CASSCF ALIE map for R = 3Re, Ī asymptotically approaches ILi ≈ 0.2 Eh in all directions.

This is because the generalized ALIE has the property11 limr→∞ Ī(r) = I, where I is the

first ionization energy of the system, and because the ionization energy of a highly stretched

heteronuclear diatomic is equal to the ionization energy of its less electronegative atom.

Another instructive way to represent the ALIE is to construct a molecular isodensity

surface, typically for a density value defining the van der Waals surface of the molecule

(e.g., 0.001 e/a3
0), and then “paint” that surface with colors according to the magnitude of

the ALIE. This method has been extensively used by the Politzer group for studying chemical

12



FIG. 5: HF and MP2 ALIEs on the 0.001 e/a3
0 isodensity surfaces of the pyrrole molecule (C4H5N).

The N atom (atom 1) is at the top. Each density is generated from the same wavefunction as the

corresponding ALIE. The white dots marks the points with the lowest ALIE values on the surface.

reactivity in terms of the HF and KS ALIEs.1–8 Such rendering can be particularly effective

for comparing the ALIEs derived from one-determinantal and correlated wavefunctions.

Consider, for instance, the heterocyclic pyrrole molecule (C4H5N) whose five atoms forming

the ring are labeled 1 through 5 starting with the nitrogen. On the van der Waals surface of

this molecule, the HF ALIE attains the smallest values roughly halfway between atoms 2 and

3 (and in the equivalent position between atoms 4 and 5), whereas the ALIE computed by the

second-order Møller–Plesset (MP2) perturbation theory has the smallest value near atoms

3 and 4 (Fig. 5). One can say that, according to the MP2 ALIE map, it is easier to remove

an electron from atoms 3 and 4 than from atoms 2 and 5, whereas the HF ALIE prediction

does not reveal a clear preference. Experiments show that electrophilic attack on pyrrole in

the gas phase indeed occurs predominantly at atoms 3 and 4 (β position).47–49 Examples like

this demonstrate that a correlated ALIE can give qualitatively correct reactivity predictions

where the HF ALIE would be at odds with experiment.

VI. CONCLUSION

We have demonstrated that the generalized ALIE, Ī(r), can be represented in a complete

(infinite) basis set by any of the following three simple expressions: Eqs. (2), (3), or (32).

Equation (3) preserves the meaning of Ī(r) as a weighted average of ionization energies,

while Eqs. (2) and (32) suggest a re-interpretation of −Ī(r) as an average local electron

energy. Equation (3) provides a clearer physical interpretation of the ALIE than Eq. (2),
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while the latter is more convenient for practical calculations of Ī(r) because Dyson orbitals

are less accessible than the generalized Fock matrix.

Ref. 11 assumed that Eqs. (2) and (32) could be used interchangeably for computing the

ALIE. In this work, we showed that Eq. (32) is unsuitable for computing Ī(r) when the

parent 2-RDM is given in terms of Gaussian basis functions. Thus, Eq. (2) is the only viable

general method for calculating the ALIE.

The equivalence of Eqs. (2) and (3) proved in this work is significant because it allows

one to compute the generalized ALIE, a molecular descriptor related to all first ionization

energies and Dyson orbitals of the system, without generating those energies and orbitals

themselves. It opens up practically unlimited possibilities for exploring molecular properties

through the ALIE concept at any level of ab initio theory beyond the HF and approximate

density-functional techniques.
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