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Abstract

This thesis serves to address the problem of non-standardized preprocessing of intracranial

electroencephalography (iEEG) recordings by implementing a software workflow that com-

piles some of the most common steps followed for the preparation of this type of data. This

workflow improves the consistency, replicability, and ease of use of sEEG preprocessing, fa-

cilitating the replication and extension of previous studies and the combination of separately

preprocessed inter-institutional datasets. Automatic detection of artifacts for iEEG data was

also explored as a potential step to include in the preprocessing workflow. Despite training the

models with cross-institutional data, poor performance was observed when tested on external

datasets, showing the need for more and higher quality cross-institutional datasets to develop

truly generalizable models. Future work is needed to include other common preprocessing

methods, validate the developed tool with external datasets, and ensure compliance with BIDS

standards to establish a standardized preprocessing tool for iEEG recordings.

Keywords: Intracranial Electroencephalography (iEEG), Stereoelectroencephalography

(SEEG), BIDS, Data Preprocessing, Artifact Detection, Machine Learning, Epilepsy, Signal

Processing.
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Summary for Lay Audience

In this thesis, I seek to address a common problem in neuroscience research related to a brain

monitoring technology called intracranial electroencephalography (iEEG). This technology,

where electrodes are surgically implanted inside of the skull for recordings, is essential for un-

derstanding, treating and completing research on epilepsy. Currently, there is no standardized

preparation of iEEG data for epilepsy research, which hinders the comparison between studies

developed in different institutions and extension of previous findings.

To tackle this issue, I developed a new software workflow that compiles common pre-

processing steps for iEEG data. This tool aims for a more consistent preparation of the data

between different research settings, making it easier for researchers to replicate and extend

findings and to combine data from different institutions. This initial version of the workflow

only supports preprocessing of stereoelectroencephalography (SEEG) data, a type of iEEG,

chosen due to its common usage in clinical settings compared to other iEEG techniques.

The presented thesis presents a validation of the developed workflow using local datasets.

More testing with external datasets is needed to confirm broader usability and generalizability.

Additionally, the workflow currently supports only SEEG recordings and limited file formats

and preprocessing methods, which require expansion to increase their utility.

I also explored automatic artifact detection for iEEG, which is another fundamental step

in iEEG preprocessing with no clear standardized or validated methodology. Although the

models tested in this work show promise, they did not perform well enough to be included in

the final preprocessing workflow developed. This highlights the need for larger and higher-

quality datasets from multiple institutions to develop reliable models that can be standardized

in the preprocessing workflow.

Despite these advances, several primary limitations remain to ensure the workflow is uni-

versally applicable in epilepsy and neuroscience research. These include the need to perform

more extensive testing, increase the number of available methods, improve computational ef-

ficiency, and adhere to the BIDS standards. This project not only provides a practical tool for
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researchers, but also summarizes the challenges and complexities involved in managing and

analyzing iEEG data, highlighting the need for further innovation in this field.
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Chapter 1

Introduction

1.1 Overview

This chapter gives a brief overview of different concepts required to understand the devel-

oped work. It starts by giving a definition of epilepsy along with its classification according

to the International League Against Epilepsy (ILAE). Special focus is given to temporal lobe

epilepsy and drug resistant epilepsy, as they are strongly tied to the use of intracranial elec-

troencephalography (iEEG). Presurgical evaluation for epilepsy surgery is later covered, where

iEEG is used as part of Phase II of the presurgical investigation.

Intracranial electroencephalography is also covered, describing its basics and how it is used

for presurgical evaluation. The last section of the chapter covers an introduction to machine

learning and how it can be used to analyze iEEG recordings. At the end of this chapter, an

overview of this work is presented, along with its scope and objectives.

1
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1.2 Epilepsy definition

1.2.1 Definition and overview

Epilepsy is defined as a chronic noncommunicable disease of the brain characterized by the

presence of recurrent seizures [48, 115]. Epileptic seizures are defined as an uncontrolled

excessive electrical activity in the brain, which result in episodes of signs and/or symptoms

including involuntary movement and loss of consciousness [115, 42]. Seizures, the primary

symptom of epilepsy, can potentially cause brain damage, resulting in significant behavioral,

neurological, and cognitive alterations in affected individuals [24]. Furthermore, patients with

epilepsy frequently suffer from a range of comorbidities, including but not limited to central

nervous diseases such as stroke and dementia, psychiatric disorders such as depression and

anxiety, and other non-neurological disorders such as heart disease and hypertension [160, 84].

The classification of epilepsy types plays a crucial role in the clinical assessment and man-

agement of patients experiencing seizures. It not only has a direct clinical impact on the diag-

nosis, treatment and outcome for patients but also is relevant to epilepsy research [133]. The

ILAE has defined and redefined this classification of epilepsy since the 1960s [58, 56, 57].

Their most recent definition, released in 2017, presents a multilevel classification, which starts

with the type of seizures, followed by the epilepsy types and finally the epilepsy syndromes, as

shown in Figure 1.1.

The initial level of epilepsy classification separates seizures into three groups: generalized

onset, focal onset, and unknown onset, each specifying the nature and origin of seizure activity

[133, 43, 8]. Focal seizures originate in a small defined region of the brain and are further sub-

divided into five other subgroups according to the latest revision from the ILAE. Generalized

seizures affect both hemispheres of the brain [43, 8].

The second level of the framework, shows the different types of epilepsy defined by the

ILAE. Generalized epilepsy is characterized by the presence of generalized spikes or seizures

on electroencephalography (EEG) recordings. On the other hand, focal epilepsy includes sev-
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eral unifocal and multifocal seizures as well as seizures originating in one hemisphere. Fur-

thermore, in their recent revision, the ILAE included a new group of combined generalized and

focal epilepsies, which includes patients with both focal and generalized seizures [133].

Figure 1.1: Graphical representation of the framework to classify epilepsy. Reproduced from
[133] with permissions.

Additional to the definition provided by the ILAE, different forms of focal epilepsy are

often named after the lobe where the onset zone (referring to the origin of the seizures) is

located as either parietal, frontal, occipital or temporal [132].

The final level of the classification is trying to identify the specific epilepsy syndrome. The

ILAE recommends, when possible, the diagnosis for a patient with epilepsy to be performed

at all three levels. However, it also acknowledges that it is common to find cases where the

epilepsy classification is the final level. According to the ILAE, epilepsy syndromes refer to a

group of characteristics that often occur together, including seizure types and imaging features

[133]. In 2021, the ILAE provided a more detailed description of these syndromes along with

a methodology for their identification [157].

1.3 Diagnosis and treatment of epilepsy

Initial treatment for epilepsy typically involves Anti-seizure Medications (ASM), although

these medications do not successfully control or eliminate seizures for all patients. About
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one-third of epilepsy patients are diagnosed with drug-resistant epilepsy (DRE), defined by the

persistence of seizures despite adequate trials of two different anti-epileptic drugs, according to

the ILAE [90, 137]. Similarly, sustained seizure freedom is defined as the freedom of seizures

for a minimum of twelve weeks or for a period three times longer than the previous longest

seizure-free period, whichever is longer [128]. Approximately, 30 to 50% of patients with

temporal lobe epilepsy (TLE) develop resistance to ASM [117].

1.3.1 Epilepsy surgery

Epilepsy surgery is considered the most effective treatment option following the unsuccessful

management of seizures after two adequate trials of ASM. [131]. The primary objective of

epilepsy surgery is to either completely remove or effectively disconnect the epileptogenic

zone (EZ), which is the brain area necessary for initiating seizures [130]. This group of well-

selected patients is defined based on the knowledge that certain forms of epilepsy tend to have

a poor prognosis with ASM but an excellent surgical outcome [128, 38].

Once a patient is identified as a potential candidate for epilepsy surgery, a presurgical eval-

uation must be performed to select the ideal candidates for epilepsy surgery. The goal of this

process is to evaluate how well the EZ can be estimated and if the EZ is possible to disconnect

or remove safely [128]. The EZ can only be estimated as it is a hypothetical concept; however,

its boundaries can be approximated by using other zones that are believed to be directly related

to it. Some of these regions are shown in Subfigure a in Figure 1.2, including the seizure onset

zone (SOZ) as the brain region where seizure are generated, the irritative zone as the tissue

that generates interictal epileptiform discharges (IEDs), and the high-frequencies zone (HFO

zone) as the area where HFOs are evoking from [163]. As shown in plot c in Figure 1.2, dif-

ferent surgical strategies can be followed to try to disconnect or remove the EZ based on these

aforementioned zones.

To define as reliable as possible the EZ, multiple diagnosis modalities are utilized depend-

ing on the complexity of each clinical case. The first stage of presurgical evaluation includes
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clinical evaluation, long-term video-EEG monitoring (electroencephalography accompanied

with video recordings) and magnetic resonance imaging (MRI) with epilepsy protocol and

neuropsychological testing [128].

Figure 1.2: a. Examples of conceptual zones that can be used to estimate the EZ. b. Graphical
representation of the connections between the epileptogenic network (green) and the healthy
tissue network (blue). c. Examples of surgical strategies for epilepsy surgery, including resec-
tion of zones (red rectangles) or disconnection of networks (purple dotted line). d. Graphical
representation of the conceptual zones that can be estimated using different modalities. Repro-
duced from [163] with permissions.

Frequently other investigations are conducted, including functional studies with different

modalities such as MRI (functional MRI or fMRI), SPECT or Wada tests. If a testable hy-

pothesis cannot be generated at this point, phase II of the presurgical investigation including

intracranial electroencephalography is directed, where electrodes are placed inside the brain

to record brain activity [128, 80]. Intracranial monitoring is often indicated for patients with

Temporal Lobe Epilepsy (TLE) that present normal MRI, bilateral mesial temporal sclerosis

in the MRI, dual pathology or electroclinical discordance; as well as in extratemporal epilepsy

[128].
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1.4 Intracranial Electroencephalography

A subset of patients with epilepsy require the implantation of intracranial electrodes for presur-

gical evaluation after non-invasive modalities fail to accurately delineate the EZ. In this sec-

tion, we will review the basics of iEEG, along their use in clinical practice for epilepsy and an

overview of some research conducted using this modality.

1.4.1 Basics of iEEG

Intracranial EEG refers to the placement of electrodes inside of the skull for the recording

of brain electrophysiological activity. Compared to the traditional electroencephalography or

scalp EEG, which is recorded from the scalp, iEEG exhibits a signal-to-noise ratio up to 100

times greater than that of conventional scalp EEG, primarily because it bypasses the attenuation

effects of the skull and scalp [118, 12]. Due to this, the amplitude of measurements from iEEG

are as 10 times higher compared to scalp EEG and they are less affected by external artifacts,

such as physiological noise (for example, from the heart) or electro-magnetic noise from the

recording room [118, 102].

Intracranial EEG offers highly localized recordings, as electrodes are strategically placed in

targeted brain regions to maximize the diagnosis precision. This results in a better localization

of the source of the signal compared to non-invasive EEG, where techniques such as source

modeling and solving the inverse problem are needed to have an estimation of the source [102,

118]. Simultaneous recording from multiple regions is also possible using iEEG, which allows

the analysis of multiple locations at the same time and the interaction between them [102].

Nevertheless, iEEG also has notable drawbacks when compared to scalp EEG, primarily

due to its invasive nature and the associated surgical risks [80, 118]. Scalp EEG and other

non-invasive modalities such as magnetoencephalography (MEG) also offer a more complete

spatial coverage of the brain as electrodes are placed around all the scalp [102]. On the other

hand, iEEG is often placed in specific regions of interest, resulting in a sparse spatial sampling
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[80]. Furthermore, the limited accessibility of iEEG in clinical setting compared to scalp EEG

also presents a challenge [80].

Intracranial electrodes include grid or strip electrodes for cortical surface application, and

depth electrodes, which penetrate into the brain to target specific structures [102, 164, 118].

The first type of electrodes are known as subdural electrodes and the modality of iEEG is re-

ferred as electrocorticography (ECoG). The second is known as stereoelectroencephalography

(SEEG) or stereotactic EEG, which uses semi-rigid shafts or leads with several contacts for

recording, usually regularly-spaced [62, 102].

ECoG, compared to SEEG, offers extensive coverage of cortical areas, enabling functional

mapping of these regions; however, its sensitivity to neural activities in sulci is lower, and

it cannot access deeper brain structures. Furthermore, more potential complications are as-

sociated with subdural electrodes compared to SEEG, including intracranial hemorrhage and

infections [9].

Clinically, there is a notable shift towards preferring SEEG over subdural electrodes in the

last 10 years in North America, while the SEEG approach has been employed in Europe for

many decades [2]. This growing preference for SEEG may be attributed to its lower risk pro-

file, reducing complications such as intracranial hemorrhage and infections, as well as recent

innovations in imaging and robotics [81]. Another clinical advantage of SEEG is the avoidance

of craniotomy, referred to as the temporary removal of a part of the scalp, which is required

for ECoG. SEEG implantation is considered a minimally invasive option, as will be detailed

later, which also makes the removal of electrodes easier compared to ECoG [80, 2]. Due to

this increased importance of SEEG, the work presented on this thesis will mainly focus on this

type of iEEG modality.

The origin of electrophysiological activity recorded with intracranial electrodes depends

on multiple factors, starting with the type of electrode. To explain this, it is first necessary

to introduce the concept of local field potential (LFP). Any transmembrane current (current

going from one side of the membrane to the other) in the brain leads to a change in voltage
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both inside the cell (referred to as intracellular) as well as outside of it (extracellular) [20].

The superposition of these extracellular deflections at a particular point in the extracellular

space is called the local field potential or LFP, and synaptic activity is thought to be primarily

responsible for it [20]. The LFP can be recorded with micro or macro electrodes placed in

the extracellular space of brain tissue, including SEEG electrodes. However, the extent of

the neuronal population captured in an LFP is still unclear. Previous research has shown that

several factors could affect the extent of the captured LFP when using intracranial electrodes,

including the use of micro or macro electrodes or the recording configuration [94]. Other

factors such as the neuron morphology and volume conduction (referring to the capturing of

activity from sources far from the recording location) also influence the LFP [94]. On the other

hand, ECoG electrodes capture a smooth version of the LFP as they are placed on the surface

of the brain. It is believed that these electrodes mostly capture synaptic activity orthogonal to

the cortex, however, volume conduction is also present in the recordings [20, 150].

In clinical practice, implantation of SEEG electrodes requires the positioning of the elec-

trodes with respect to the target region, corresponding to those brain regions suspected to be

part of the EZ. This positioning is defined using a 3D stereotactic frame (reason for which it is

called stereo-EEG). This technique allows the targeting of deep structures through their refer-

encing to a standardized coordinate Talairach atlas [148, 102]. Then, burr holes (small holes in

the skull) are used to insert the shafts.

In standard clinical practice, typically 5 to 20 depth electrode shafts are implanted to de-

lineate the EZ. Each shaft comprises 10 to 12 cylindrical contacts, each 2 mm in length and

approximately 0.8 mm in diameter, usually spaced at regular intervals [80, 118, 102]. After im-

plantation, iEEG brain signals, along video recording, are captured for an average duration of

five to fourteen days depending on the case’s complexity. During this period, data are visually

analyzed by the clinical team (epileptologist) to try to localize the potential onset of seizures

as part of the presurgical evaluation, explained furthermore in the next section [36, 118].

The sampling rate for human iEEG recordings varies across facilities, typically ranging
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from 1 kHz and 3 kHz [118]. Research into sampling rates has primarily examined their influ-

ence on detecting crucial events in iEEG recordings, suggesting the importance of sampling at

least at least at 1 kHz [28, 61]; however, no standardize practice is defined yet.

Figure 1.3: Example of physiological high-frequency oscillations (HFOs) recorded using
SEEG electrodes for recordings. Data was recorded during wakefulness from an adult pa-
tient with left temporal DRE. Top panel shows two bipolar signals after filtering between 0.5
and 100 Hz. Bottom panel shows a zoomed version of the same recording after high-pass fil-
tering of 150 Hz. Reproduced from [49] with permissions.

Recorded iEEG activity can be broadly classified into three distinct phases: ictal, interictal,

and post-ictal. The period when seizures occur is referred to as ictal, while the period between

the seizures is referred to as interictal and the period just after the seizure is defined as post-

ictal [44]. Even though interpretation of iEEG activity is not as standardized compared to scalp

EEG, prior efforts have been presented to improve the reading and analysis of these recordings.

As for physiological activity, previous investigations have described patterns of physiological

activity across regions, but they have been reported to be difficult to see in clinical practice.

Other physiological characteristics, such as the presence of physiological high-frequency os-

cillations (HFOs) in the pre- and postcentral gyri, the mesiotemporal region and the occipital

lobe, as shown in Figure 1.3. HFOs consist of the presence of ripples (80–250 Hz) and fast

ripples (>250 Hz), and can be seen both in scalp EEG and iEEG [80, 52]. The next subsection

will cover more details on pathological patterns that can be seen in iEEG recordings.
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1.4.2 iEEG for identification of SOZ

As previously mentioned, iEEG is used in epilepsy as part of the presurgical evaluation to try to

determine the location of the EZ. Intracranial recordings are usually associated with the seizure

onset zone (SOZ), the region of the brain where seizures are generated [163]. Identification of

the SOZ using iEEG is still a field of development and multiple biomarkers have been proposed.

In this section, we will discuss a few of the well known biomarkers for delineation of the SOZ.

Specific biomarkers have been found for interictal and ictal periods. Interictal epileptiform

discharges (IEDs), also known as interictal spikes, are the most traditional biomarkers in inter-

ictal iEEG activity, often present in regions with higher epileptic activity [80, 87]. According

to the International Federation of Clinical Neurophysiology, a waveform has to fulfill at least

four of the following criteria to be classified as an IED [49]:

• Presence of di-phasic or tri-phasic wave with sharp morphology.

• Different duration compared to the ongoing background activity.

• Asymmetric shape, with a sharp ascending phase and a more slow decaying phase.

• A slow-wave follows the transient.

• The background activity is disrupted by the waveform.

• The distribution of negative and positive potentials suggests it is a spike generated in

the brain. Frauscher et al. indicate that it is not common for IEDs to have positive

and negative polarities when using a referential montage, which helps differentiate IEDs

from potential artifacts [49].

Previous studies have demonstrated good concordance between spike density and the SOZ

for 56% of patients; however, it has been shown that using spikes for the delineation of the

SOZ provides good sensitivity but low specificity [14, 80]. Figure 1.4 shows an example of

high-amplitude spikes recorded using SEEG electrodes.
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Figure 1.4: Examples of interictal epileptiform discharges (IEDs) in SEEG recordings. Figure
shows that the recordings from the contacts B1 to B5 have presence of high-amplitude spikes
and spike-slow waves. Reproduced from [49] with permissions.

HFOs are another interictal biomarker of the EZ, considered a very promising option lately.

Despite its promises, it has been found that the mapping of the EZ using HFOs is not always
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accurate, which could be related to the fact that there exist both pathological and physiological

HFOs, and the properties that differentiate them vary across regions [80, 52]. Furthermore,

these ripples could be confused with certain non-cerebral artifacts, such as electrode and mus-

cle artifacts, hindering even more their correct identification [49].

Similar biomarkers can also be defined for the ictal period, which remains as the gold

standard for delineation of the SOZ [80]. The most common ictal electrographic features are

the reduction of background activity, followed by the appearance of high frequency activity

and a subsequent slow potential (low-frequency activity) [80, 44]. It has been found that these

features can be seen at the onset of seizures for regions inside the SOZ [44]. Other seizure-

onset ictal patterns have been described for SEEG, including low-frequency high-amplitude

periodic spikes, sharp activity at frequencies lower than 13 Hz and burst of high-amplitude

polyspikes [49]. A further description of these is outside of the scope of this thesis as focus

was given to interictal activity, as it will be described later.

Other approaches can be used for the clinical delineation of the SOZ using iEEG, including

electrical stimulation [80]; however, it is considered to be outside of the scope for this work.

1.4.3 Modern analysis techniques

Despite advancements in iEEG biomarkers for identifying the EZ, epilepsy resective surgery

results in seizure freedom in only 50% to 70% of cases, possibly related to the inherent sub-

jectivity of current analysis [153, 39, 15]. As previously mentioned, ictal features remain the

gold standard for delineating the EZ and have thus received the most extensive research fo-

cus. Recently, interictal features have garnered attention for their potential in delineating the

EZ, though they often lack the specificity required for definitive diagnosis, as it is the case

of HFOs [80, 52]. Furthermore, current approaches require a large time of hospitalization for

monitoring, associated with a high cost and low accessibility [36, 118].

For these reasons, recent efforts have been made towards discovering new biomarkers and

enhancing localization of the EZ through the usage of more computer-driven quantified analy-
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sis [80]. One notable approach that multiple researchers have followed is the use of normative

maps, which define a normal range of variation for specific features for healthy individuals to

identify potential abnormalities in patient data [149].

Frauscher et al. were pioneers in this area, developing an atlas that characterized normal

iEEG activity during periods of resting wakefulness [51]. In this study, the authors analyzed

the statistical distribution of normalized Power Spectrum Density (PSD) curves across healthy

brain regions using data from intracranial recordings, as exemplified in Figure 1.5. Frequencies

between 0.5 Hz and 80 Hz were analyzed and profiles were created using Welch’s method for

the PSD curves with recordings coming from 106 subjects [51].

A further study by Bernabei et al., expanded the atlas with additional data from 38 sub-

jects [15]. Furthermore, they also investigated the usefulness of these profiles on distinguish-

ing channels from the SOZ and irritative zone from the not affected regions by statistically

comparing the PSD distribution of these different groups. Several regions were found to have

significant differences; however, many clinically relevant regions for epilepsy did not show any

differences, including the hippocampus and the amygdala [15]. Further features were explored

in this study, including connectivity between regions, which resulted in a better prediction of

the SOZ.

Similar studies have been developed by other authors, where other features such as band-

power have been explored, showing potential pathways for better ways to delineate the EZ

[149, 156]. Despite their contributions, these studies present several limitations that require

careful consideration.

A critical limitation of these studies is that they aim to distinguish healthy brain character-

istics using data exclusively from patients with epilepsy, which could compromise the validity

of the normative atlas. Therefore, the construction of these profiles of so called normality

are based on a very intensive data selection and cleaning of the data to try to identify all of

the potential channels contaminated with pathological events, artifacts or that are inside of the

clinically-defined SOZ.
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Figure 1.5: Example of spectral profiles developed by Frauscher et al.. Each panel shows a
different statistical distribution of normalized power between 0.5 Hz and 80 Hz, with the red
solid line representing the median of the distribution on each frequency point, the red overlay
the region between 25 and 75 percentiles, and the dotted red lines showing the maximum and
minimum. The color bar shows the percentage of channels that showed a peak in PSD in the
specific frequency band in which it is located. Reproduced from [51] with permissions.

Depending on the study, even further criteria are used, including the time distance of the

analyzed event from ictal periods. Most of these cleaning steps are performed manually by a

specialist, which is not only time consuming but also injects potential subjectivity into the pro-

cess. Moreover, these analyses require extensive data samples to ensure robust generalization,

highlighting the critical need for their reproducibility. The lack of standardized preprocess-

ing protocols for iEEG data complicates these efforts, interfering with both the replication and

extension of research findings.

Automation or semi-automation of some of these cleaning steps, such as the detection
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of pathological events or artifacts, presents as a promising avenue to streamline these analy-

ses. Implementing standardized preprocessing methods together with automation could signif-

icantly facilitate the execution, replication, and expansion of analyses in iEEG studies

1.5 Brain Imaging Data Structure (BIDS) for iEEG

Standards to structure large datasets are necessary to ensure good sharing practices and facil-

itate further processing of the data. The Brain Imaging Data Structure (BIDS) standard is a

specification designed to organize neuroscience data and metadata with the aim of promot-

ing transparency, reusability and reproducibility [70]. This standard was originally written for

Magnetic Resonance Imaging (MRI) data; however, through a community-driven process, it

has been extended to other modalities, including MEG and EEG [70, 113, 121].

In 2019, an extension of this specification was published for iEEG data [70]. Figure 1.6

shows an example of a directory compliant with the iEEG-BIDS specification, highlighting the

most important parts of the specification.

A summary of the most important parts of the iEEG-BIDS specification are shown below:

• The two original data formats supported to store the iEEG recording data were the Euro-

pean Data Format (EDF) and the BrainVision Core Data Format; however, it has been ex-

tended to EEGLAB files, Neurodata Without Borders and Multiscale Electrophysiology

Format version 3 (MEF3) according to the official documentation. EDF and BrainVision

data formats are still recommended over the others.

• A sidecar JSON file (_ieeg.json) has to be specified, showing the metadata from the

iEEG recording data, including but not limited to the reference scheme (for example,

“bipolar”), sampling frequency and powerline frequency.

• The electrodes localization given by coordinates should be stored in the _electrodes.tsv

file, usually in 3D space. The term electrode is used as a reference to “a single point

https://bids-specification.readthedocs.io/en/stable/modality-specific-files/intracranial-electroencephalography.html
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Figure 1.6: Example of a iEEG-BIDS directory for a session with electrical stimulation along
with example pictures. First layer shows the different subjects’ subfolders and the stimuli di-
rectory. (b) Shows the files associated with the recording data, in this case in BrainVision
Core format. (c) The information related to the channels in the recording are stored in the
_channels.tsv file. (d) The events of importance during the iEEG recording are stored in the
_events.tsv file, in this case, showing stimulation events. (e) The _electrodes.tsv file is intended
to store information about the electrodes, including their spatial location. (f) The _coordsys-
tem.json file should show the information of the coordinate system used to define the electrodes
location. (g) Shows other images that can be stored as part of the directory. Reproduced from
[70] with permissions under Creative Commons License.
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of contact between the acquisition system and the recording site” [70]. The coordinate

system specifications used to define the electrode coordinates should be stored in the

_coordsystem.json file.

• The channels’ information should be stored in the _channels.tsv file. A channel rep-

resents one time series recorded with the recording system [70]. The information in-

cludes but is not limited to the channel name, the type of channel (for example, SEEG

and ECoG), sampling frequency and filters cutoff frequencies if any was applied during

recording [70].

• Any events of importance during the recording can be stored in the _events.tsv file. This

could include, for example, electrical stimulation events, indicated by the onset (time at

which the event started relative to the beginning of the recording), duration of the event

and event label.

For more information, please refer to the original article for the iEEG-BIDS specification

and the official documentation [70]. These efforts pave the way for standardizing the prepro-

cessing of iEEG recordings by facilitating the development of workflows based on the BIDS

standard.

1.6 Preprocessing of iEEG data

As noted earlier, iEEG recordings exhibit a signal-to-noise ratio approximately ten times greater

than standard scalp EEG, which historically suggested minimal artifact presence. Despite this,

studies have shown that iEEG recordings still capture electrical potentials generated outside

the brain, contradicting earlier assumptions of minimal contamination [102, 101]. Similar to

the case of scalp EEG, it has become a common practice to apply preprocessing steps to the

data to reduce the effect of these potential artifacts and enhance signals of interest before any

further analysis.

https://bids-specification.readthedocs.io/en/stable/modality-specific-files/intracranial-electroencephalography.html
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It is relevant to highlight that recent trends in scalp EEG analysis have shifted towards

minimizing preprocessing, questioning its necessity [33]. Preprocessing is commonly a time-

consuming and highly customized task; therefore, the study by Delorme investigated the utility

of preprocessing when using the data for further analysis, finding no significant differences for

most preprocessing steps when compared to using raw data [33]. Although it is important to

consider the results from this study, the author emphasized on how these findings apply for

EEG acquired in a very controlled environment and might not extend to other data acquired in

different conditions [33, 35]. Similar research has been done for iEEG data by evaluating the

results of statistical comparisons and machine learning classification tasks when using clean vs

raw data; however, no concrete generalizable results have been found [98, 101].

Despite the fact that preprocessing has become a common practice for iEEG analysis, iEEG

analysis traditionally relies on ad hoc workflows [140]. Despite efforts to standardize iEEG

data preprocessing, most studies continue to employ custom workflows tailored to specific re-

search needs, incentivized as well by the lack of a software package that integrates common

preprocessing steps [140, 101, 98]. The importance of standardization and automation of pre-

processing has been recognized for MEG and EEG fields, where there have been different

efforts to solve this by the development of software tools like PREP pipeline for EEG [16].

With the recent trend towards machine learning solutions for iEEG, it is fundamental to

have standardized preprocessing practices that allow replication of findings and combination

of datasets prior analysis [16, 104]. Similarly, for non-machine learning related studies, this is

also fundamental to allow for replication or extension of studies.

1.6.1 Overview of preprocessing steps for iEEG

As described in literature, there are certain steps that are commonly used and recommended to

preprocess iEEG data. In this section, an overview of each of these steps will be given focusing

on their main purpose as part of the preprocessing.
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Re-referencing

As described by Mercier et al., recording of iEEG has to be performed using a reference [102].

Electrical potentials recorded by the equipment represents a voltage difference between two

points, usually the electrode contact of interest and a reference that can be either external,

such as an electrode on the skin, or internal as an electrode contact in the white matter of

the brain; this is referred to as online referencing [102]. Common practice involves applying

re-referencing post-acquisition, a process known as offline re-referencing.

Intracranial EEG signals are composed not only by local brain activity around the electrode

contact but also a mixture of other sources either from other parts of the brain through the

volume conduction effect or from outside the brain, as it is the case of line noise activity from

the room and recording equipment connected to the electrical grid [102]. Offline re-referencing

alleviates some of these components as it reduces power line noise interference and volume

conduction effects, increasing the signal-to-noise ratio (SNR) of the signals [102]. There are

several re-referencing schemes that can be used, each of them with their own advantages and

disadvantages. Here, priority will be given to re-referencing schemes for SEEG recordings as

the workflow was initially developed for this type of iEEG electrodes.

Bipolar re-referencing is a standard choice for re-referencing, consisting of the re-reference

of each channel to its adjacent contact in the same electrode shaft, performed by the subtraction

of the two [98, 102, 103]. This scheme results in a signal composed by the activity near the

two electrode contacts and the volume-conducted activity in between [102].

Another popular scheme is common average referencing (CAR). In this scheme first an

average signal of all clean channels is computed and then it is subtracted from all channels,

aiming to isolate common noise prevalent across all channels [102, 98]. A big difference

between CAR and bipolar referencing is that the latest gives more relevance to local activity,

while the first one highlights widely distributed features in the signals [102].

Laplacian re-referencing is similar to bipolar re-referencing but instead of using two elec-

trode contacts, each channel is re-referenced against the two adjacent contacts within the same



20 Chapter 1. Introduction

shaft [102, 98, 97]. This is usually performed as the subtraction of the channel signal with the

average signal from the two adjacent contacts [98, 97]. There are other re-referencing schemes

used, such as gray-white matter reference (GWR), however, it is outside of the scope of this

project to discuss all of them.

Previous studies have shown that Laplacian referencing typically outperforms other re-

referencing schemes, followed by bipolar referencing, which has been shown to perform better

than CAR when analyzing a multitude of tasks [97, 98, 101]. However, it is important to

remember that the selection of a re-referencing scheme should be tailored to the specific objec-

tives of each study, depending on whether the focus is given to local or global neuronal activity

[102].

Drift correction

Similar to scalp EEG, iEEG is also affected by slow drifts or low-frequency waves, on top

of which the cortical activity is actually found [30]. These drifts are often considered arti-

facts arising from various sources, including changes in electrode impedance [30]. Slow drifts

induce both a noisy trend to the signals, as well as a DC-offset that makes the signal to be

centered around zero.

High-pass filtering and detrending are commonly used to attenuate slow drifts in iEEG data.

High-pass filtering refers to applying a filter to attenuate activity below a specific cutoff, usually

ranging between 0.1 Hz and 2 Hz, which removes both the DC-offset and the trend in the data

[30, 102]. Detrending is based on the fit of a low order polynomial (often a linear function) to

the data and then the subtraction of them [30, 102]. Demeaning is another alternative, based

on the centering of each signal around zero by the subtraction of the mean; however, this only

deals with the DC-offset and not the trend in the data. High-pass filtering is often the preferred

approach, especially for long-duration data.
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Power line interference (PLI) filtering

Electrophysiological recordings, such as scalp EEG and iEEG, are susceptible to electrical

noise, commonly known as power line interference (PLI). There are different approaches fol-

lowed to minimize the effect of PLI, but the most common one is notch filtering, where all of

the data between a range of frequencies around the fundamental line noise frequency is filtered.

The main disadvantage of this approach is the loss of any other physiological information be-

hind the line noise that could be present in the attenuated frequency band. Waveform distortion

is also a known issue when applying notch-filtering [29, 86].

To overcome these limitations, alternative methods such as adaptive filtering, independent

component analysis, and spatial filtering techniques have been developed. For this work, three

techniques were implemented and evaluated for this work: removePLI, Zapline and Cleanline.

The removePLI technique employs a time-based regression approach to mitigate PLI. Briefly,

the signal of interest is first band-pass filtered around the fundamental frequency of the power

line (50 Hz or 60 Hz). A lattice adaptive notch filter is then used to find the fundamental line

frequency on the band-pass filtered data. Once the fundamental frequency is found, the har-

monic frequencies are computed recursively and a discrete time-oscillator is used to generate

the harmonic sine waves. Finally, a simplified recursive least squares algorithm is used to fit the

harmonic sinusoids to the original signal, which should represent the best power line harmonic

fits to the original signal. Then, the clean signal would be calculated as the error between the

best fit and the original signal [86].

The Cleanline algorithm is also based on regression but in frequency domain instead of in

time domain and it is implemented in a widely-used toolbox (EEGLAB) [16]. This method

transforms the data into frequency domain using the multi-taper transform. Similarly to the

previous method, it is assumed that the line noise is represented with sine waves; therefore,

a regression in frequency domain is conducted between the amplitude and phase of the sine

waves around the frequency of interest (the line frequency) and the multi-taper result. Thomp-

son F-test is utilized to find and discard only those frequencies with sine waves with significant
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non-zero [16].

Zapline diverges from regression-based methods, employing a decorrelation strategy to

isolate and remove noise. The first step of this algorithm is the separation of the data poten-

tially contaminated by the fundamental line frequency (Xn) and its harmonics from the clean

data (Xb), achieved with a square filter. Then, the main idea behind the method is trying to

distinguish the part of Xn that is actually contaminated with powerline. To accomplish this a

denoising matrix D is computed using the join decorrelation method [32]. Briefly, a filter is

applied Xn to enhance the potential line interference. Then, the main components of the biased

Xn are computed, which should represent the line noise contaminated components of Xn. Prin-

cipal component analysis (PCA) is then used to remove the parts of Xn contaminated with this

line noise components. Finally, the clean signal is obtained as a summation of this cleaned Xn

and Xb [29].

Artifact detection

Signal-to-noise ratio in intracranial EEG has been found to be around 100 times higher com-

pared to the non-invasive scalp EEG [118, 12]. The recording of electrophysiological activity

from inside the brain makes it less susceptible to attenuation caused by the scalp and it also

reduces the influence of external noise sources such as movement artifacts [118, 102]. Nev-

ertheless, several studies have found different types of transient artifacts in iEEG recordings,

including artifacts caused by eye movement, blinks and muscle movements [116, 12, 78].

As iEEG is typically recorded in brains of patients with epilepsy, electrodes are subject to

epileptiform activity. This is not only limited to seizure or ictal activity, but also epileptiform

activity often present in interictal periods. When studying the underlying physiological activity

from iEEG data, pathological activity is not of interest and it is usually excluded. This is the

case for cognitive studies and investigations studying normal activity of the brain using iEEG

[15, 51].

In the case of scalp EEG, multiple artifact detection techniques have been proposed and a
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few of them are included in commonly used software packages. Some of these include Artifact

Subspace Reconstruction (ASR) available in EEGLAB, ICLabel based on the identification of

noise-related ICA components, also available in EEGLAB; and Autoreject available through

the MNE Python package [107, 124, 75]. Nevertheless, none of these tools have been validated

for usage in iEEG data. Currently, there are no recommended tools for iEEG artifact detection,

possibly making this preprocessing step the hardest to standardize.

Downsampling

Downsampling refers to the offline process of reducing the number of temporal samples in

recorded data; in other words, reducing the sampling rate of the signal. This is a common step

used in EEG studies and it has been used for iEEG as well [142]. After downsampling, it is

important to apply a low pass filter to avoid aliasing on the resampled data, which is a distortion

of the signal due to the presence of waves that cannot be sampled properly with the utilized

sampling rate [31].

Channel localization

As iEEG is commonly performed along with other imaging modalities, such as computer to-

mography (CT) and MRI, electrodes positions in the brain can be obtained and aligned with

a segmentation of the brain images, which can be used to identify the most relevant brain re-

gion recorded by each channel. It is also a common practice to use this localization to discard

any signals from electrode contacts located outside of the brain or surrounded mostly by white

matter [102].

There are generally two approaches for labeling electrode contacts based on brain segmen-

tation as shown in Figure 1.7: performing a segmentation in the individual space or using an

atlas-based approach in a normalized space (also referred to as template). As stated previously,

iEEG is usually acquired along with a preoperative MRI and a postoperative CT. The con-

tacts location can be obtained from the latter and the former is the modality commonly used
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to get the anatomical segmentation; therefore, an alignment or coregistration between them is

required, which is then referred to as individual space.

Figure 1.7: Electrode contacts localization workflow based on individual or normalized space.
Reproduced from [102] with permissions under Creative Commons License.

As aforementioned, MRI segmentation can be directly performed using tools like SynthSeg

[17], representing the individual space approach, or by registering the MRI to a template,

such as MNI152 space, and applying an atlas to obtain the brain parcels [102, 46, 45]. These

atlases are usually based on average characteristics across subjects, for which it could be less

accurate than the individual space parcellation. Figure 1.8 summarizes the workflow that can

be followed to obtain the region for each iEEG channel.

In case of using a monopolar reference scheme such as CAR, the region for each electrode

can be defined by creating a volumetric mask around the estimated centroid of the contact

and then counting the region with the most amount of voxels from this mask [102]. Bipolar

case is more complex as the obtained signal represents the activity near the two contacts and

in between them. One approach is using a virtual sensor in between the two contacts, as

an average of their two original positions. However, this can lead to misleading information,

especially if the two contacts that form the bipolar channel are located in different brain regions
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[102].

Figure 1.8: Diagram showing the different ways to identify the region by iEEG channel. The
left side shows the case where a segmentation file is available, in which case it is required to
give the iEEG coordinates in the same space as the segmentation. The right side shows the
possible paths to follow when a segmentation has not been previously calculated, including
the alignment to a common space or the calculation of the segmentation when an MRI file is
available. If neither an MRI image nor a plot is available, the only option left is to give the
iEEG coordinates in a common space to use a predefined plot in that space.

1.6.2 Common preprocessing steps: a brief literature review

A non-exhaustive literature review was conducted to assess the usage of the specified prepro-

cessing steps in existing studies. Twenty six studies were reviewed in total, which represents

a small selection of studies to span the range of preprocessing methods in previous publica-

tions.Table 1.1 shows a summary of the different preprocessing methods applied on each of

these studies.

During this review, it was noted that different PLI attenuation methods were used in these

studies, including simple notch filtering, adaptive filtering and rejection of channels with high

line noise interference. In addition, CAR and bipolar were the two most common re-referencing

schemes used in the reviewed publications. Finally, artifact detection was noted to be focused

sometimes only in non-cerebral artifacts, but detection of pathological artifacts or both non-

cerebral and pathological events was also found during this review.
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Paper Modality Re-ref Drift PLI AD AL DS
Rockhill et al. [129] SEEG CAR None None X X
Groen et al. [65] ECoG CAR None Notch X X X
Li et al. [96] Both CAR HPF Notch
Bernabei et al. [15] Both BIP HPF Notch X X X
Frauscher et al. [51] Both BIP DM Other X X X
David et al. [27] SEEG BIP None None X X
Kini et al. [88] ECoG CAR None Notch
Sumsky & Greenfield [141] Both CAR HPF Notch
Taylor et al. [149] Both CAR None Notch X X X
Wang et al. [156] Both CAR HPF Notch X X X
Nejedly et al. [111] SEEG None None Rejection X X
Michelmann et al. [103] SEEG BIP HPF None X X
Chen et al. [23] SEEG CAR None Notch X X X
Kalamangalam et al. [82] ECoG None DM Notch X X
Gomez-Ramirez et al. [67] Both None HPF Notch
Das et al. [25] Both BIP None Notch X X
Jiang et al. [79] SEEG BIP None Notch X X
Jensen et al. [77] SEEG BIP None None
Jedynak .et al [76] SEEG BIP None None X
Gunnarsdottir et al. [66] SEEG CAR HPF Notch X X
Quitadamo et al. [126] SEEG BIP None None X X
Sun et al. [143] SEEG BIP HPF Notch X X
Sinha et al. [138] Both CAR HPF Notch X X
Medvedev et al. [100] Both None HPF Notch X
Lai et al. [91] ECoG None None Notch X
Thomschewski et al. [151] Both None HPF Notch

Table 1.1: Summary of non-review studies analyzed during the literature review. Here, the
columns refer to: Re-ref to the montage chosen for re-referencing, Drift to the correction
method used for slow-drifts, PLI to the method used to decrease power line interference, AD
shows the studies that employed artifact detection (marked with an X), AL shows the studies
that performed anatomical localization of the electrodes (marked with an X), and DS shows
those studies that performed downsampling to the raw data with an X.

1.6.3 Existing Solutions and Limitations

Multiple software packages have been developed for the analysis of scalp EEG recordings,

which have been recently used for preparation and processing of iEEG data. In this section, we

will briefly discuss some of these tools, focusing on their usability for iEEG preprocessing and

limitations. Support for each discussed preprocessing step will also be discussed.
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• Magnetoencephalography and Electroencephalography in Python (MNE-Python):

This is an open-source Python module initially developed for the preparation, processing,

and analysis of EEG and MEG data [92]. Support for other functional neuroimaging data

has also been added to the package, including SEEG, ECoG and fNIRS.

According to the official documentation, MNE is capable of reading multiple file types

supported by the BIDS-iEEG standard, which will be discussed in the following section,

including EDF, BrainVision Core Data Format and EEGLAB files. Extraction of epochs

is also supported; however, it requires loading of the full data first, which could be com-

putationally intensive depending on the file size. Support for the described common

preprocessing steps:

– Downsampling: Resampling is available for both continuous and epoched data,

which by default uses the Fast Fourier Transform (FFT) method. This method

computes the frequency components of the original signal and truncates the higher

components according to the desired new number of samples in the signal. The

main limitation of this method is the nature of FFT, which assumes periodicity for

the signal, which could not be true for neural signals.

– Drift correction: The official documentation recommends high-pass filtering for

drift correction. Demeaning and detrending are only supported for epoch objects.

The only supported PLI reduction method by MNE-Python is notch filtering, al-

lowing the use of both finite impulse response (FIR) and infinite impulse response

(IIR) filters.

– PLI attenuation: The only supported PLI reduction method by MNE-Python is

notch filtering, allowing the use of both finite impulse response (FIR) and infinite

impulse response (IIR) filters.

– Re-referencing: Re-referencing in MNE-Python is not designed for SEEG or ECoG;

therefore, there are no predefined montages for re-referencing of iEEG recordings.
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CAR can be calculated with this package; however, information about the bad chan-

nels to exclude for the average reference calculation must be given. Bipolar re-

referencing is available but it requires inputting all the combinations of monopolar

channels that will form the new bipolar channels, making the process very manual

and time consuming.

– Channel localization: MNE-Python only supports localization of the most relevant

brain region for each channel through Freesurfer parcellations. Therefore, either

the positions of the channels have to be specified in the same space as fsaverage

(MNI-305 space) or Freesurfer must be executed for the subject of interest before.

MNE-Python defines the region for each channel only based on the closest region

to each given coordinate. Moreover, when re-referencing to bipolar, the position of

the new channel is always set to (0, 0, 0) according to the official documentation,

then it is not possible to identify the closest brain region after re-referencing. Other

re-referencing schemes such as Laplacian re-reference are not supported.

– Artifact detection: This library has availability of multiple methods designed to

detect artifacts in MEG/EEG data; however, most of them require external channels

to work, such as electrocardiography (ECG) or electrooculography (EOG) channels

to detect heart and ocular artifacts. Autoreject is an external package that can be

used along with MNE-Python; however, it is optimized for MEG/EEG data and has

not been validated for iEEG recordings [75].

Overall, MNE-Python is an open-source package that is optimized for MEG and scalp

EEG data, not for iEEG, which makes it difficult to develop a complete preprocessing

workflow for iEEG datasets using this tool. Main limitations were found on extraction

of epochs of interest for large files, re-referencing, definition of the most relevant brain

region per channel and artifact detection. The following limitations were also found for

this tool:
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– Even though MNE-Python counts with vast documentation, it is still a tool that

requires coding expertise to use it to preprocess iEEG datasets, limiting its usability

for a group of users.

– No predefined preprocessing pipelines for iEEG has been developed using MNE,

which promotes ad hoc workflows, hindering reproducibility across research cen-

ters.

– MNE has developed a MNE-BIDS-Pipeline for distributed computing systems,

where multiple computers can compute in parallel to speed up the process. How-

ever, it only supports MEG and EEG datasets, which limits the scalability of the

tool for iEEG preprocessing.

– As there is no predefined preprocessing workflow for iEEG data, quality control

(QC) of the outputs has to be performed with adhoc scripts, which could potentially

limit the QC for experienced users.

• Brainstorm:

Brainstorm is an open-source application developed for the processing of brain record-

ings, including MEG, EEG, fNIRS, ECoG and SEEG [147]. Brainstorm was designed

mostly for usage through a graphical user interface (GUI) to mitigate the need of pro-

gramming skills for its usage. Within its functions, you can find preprocessing of the

data, visualization in time, frequency and time-frequency domain and functional con-

nectivity analysis. Brainstorm is capable of reading multiple iEEG-BIDS file formats

like EDF, BrainVision Data Format, Neurodata Without Borders and EEGLAB datasets.

Similar to MNE-Python, Brainstorm allows the extraction of epochs based on events;

however, no information on how to create a script for this was found.

Support for the described common preprocessing steps:

– Downsampling: Resampling can be performed in both the GUI and through the

process_resample() function. No information about the methods used was
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found.

– Drift correction: This can be achieved either through the implementation of a high-

pass filter. According to the documentation, high-pass filters are FIR filters de-

signed with a Kaiser window, and time and frequency responses can be visualized

for QC. Linear detrending and DC-offset removal are also available. Polynomial

detrending is not supported.

– PLI attenuation: Notch filtering through an IIR filter, for which the frequencies to

filter and the notch bandwidth must be given. No other methods were found in the

documentation or through the GUI.

– Re-referencing: Multiple predefined re-referencing schemes are available for iEEG

data, including bipolar montage and common average reference (CAR). Unlike

MNE, when applying bipolar re-referencing, the new virtual channel is positioned

in the middle of the two contacts. This was found to be the best tool for re-

referencing SEEG/ECoG data within the ones investigated.

– Channel localization: Region identification for each channel is supported by Brain-

storm both by providing the coordinates for each contact in both MNI or subject

space. If provided in subject-space, the MRI and parcellation files can be given.

Two other options are the estimation of the parcellations from the given MRI using

different options such as FastSurfer and FreeSurfer (which require prior manual in-

stallation of the tools in the system) and the registration of the MRI to MNI space.

If using coordinates in MNI space, default anatomies and parcellation can be used,

including Freesurfer templates and the AAL parcellation. Both surface and volume

parcellations are supported and the region for each channel is assigned by creating

a sphere of a customizable radius around the given coordinate. Therefore, bipolar

channels use a sphere located in the midpoint of the two contacts.

The main limitation found for this preprocessing step was the lack of documen-

tation of whether this can be achieved when doing batch processing for multiple
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subjects and no options were found to reproduce this when using the pipeline cre-

ation tool for the automatic generation of scripts.

– Artifact detection: Detection of heart and ocular artifacts is possible when ECG or

EOG channels are available. Otherwise, the automatic artifact detection available

is based on the identification of events above a certain magnitude threshold for a

given frequency band; in more detail, the signals are bandpass filtered using the

given frequency range and then it labels as artifacts all the events above the specific

threshold.

Brainstorm is designed to be used mainly as a GUI-based application; thus, although

a scripting tutorial is provided, there is no formal documentation for each of the func-

tions and the help provided for each of them in the terminal is also very brief. The

recommended process, according to the documentation, for scripting is the automatic

generation of the scripts through the GUI, without any proper review of the generated

code. Based on the information found, the following limitations were found for this tool:

– The transparency of preprocessing workflows developed with Brainstorm is limited

to the understanding of the scripts automatically generated, which is difficult due

to the limited available documentation.

– The reproducibility of the workflows is also limited both in the case of using GUI,

as it is almost impossible to share, or if using automatically generated scripts, since

it would be required to understand the code to adapt it to other datasets or needs,

which is difficult due to the lack of sufficient documentation.

– The usability of the tool when using the GUI is good but there could be a big

learning curve before knowing how to properly use the tool. Furthermore, there

are no predefined ways to QC the preprocessing, making the preprocessing process

less standardizable.
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– No documentation available on how to parallelize Brainstorm processes on dis-

tributed computer systems was found, limiting the scalability of the tool.

– Even though Brainstorm can be installed without a MATLAB license, some of its

features are only available when installed with MATLAB desktop, as it uses some

dependencies from Signal Processing and Parallel Processing, which require the

acquisition of a paid license.

• EEGLAB:

EEGLAB is another open-source MATLAB toolbox for the processing of electrophysi-

ological signals, including scalp EEG and MEG [34]. Some of the available functional-

ities include time/frequency analysis, preprocessing and visualization of the data. This

tool offers most tutorials and information for usage through their GUI; however, some

tutorials are also provided on how to write scripts using EEGLAB functions.

EEGLAB provides information on how to use the software for iEEG data, detailing sup-

port for reading multiple iEEG formats (EDF, MEF3 and Neurodata Without Borders).

Viewing of recordings and event extraction is also available; however, it references Fiel-

trip (discussed below) for further iEEG processing, implying only basic support for iEEG

data in EEGLAB.

Support for the described common preprocessing steps:

– Downsampling: Resampling of the loaded data can be performed either through a

GUI or command. Resampling methods from MATLAB are used by EEGLAB.

– Drift correction: For drift correction, EEGLAB suggests using a highpass filter. A

FIR filter is used by default and the order of the filter can be customized.

– PLI attenuation: Besides common bandpass filtering, the Cleanline algorithm, pre-

viously described, can also be used if the corresponding plugin is installed.

– Re-referencing: Not available for iEEG data.
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– Channel localization: Not available for iEEG data.

– Artifact detection: Detection of artifacts is available through the Artifact Sub-

space Reconstruction (ASR) method, in which artifacts are detected by first learn-

ing about the properties of a given clean portion of data in a subspace calculated

through principal component analysis (PCA) and then identifying these artifacts

are segments with deviant statistical properties in this reduced space [19]. ASR,

similar to Autoreject, hasn’t been validated in iEEG. Detection of periods based on

their standard deviation is also available.

Overall, EEGLAB can be used to perform some preprocessing steps that are common

between iEEG and scalp EEG. Nevertheless, important features such as re-referencing

and channel localization are not available for iEEG data, requiring custom scripts or the

use of a combination of tools to build a complete preprocessing workflow, limiting its

reproducibility and scalability. Furthermore, proper documentation of the functions is

not available, lowering its usability when scripting.

• Fieldtrip:

Fieldtrip, similar to Brainstorm and EEGLAB, is another MATLAB toolbox designed

for processing and analysis of MEG, EEG and iEEG recordings [114]. Unlike EEGLAB

and Brainstorm, Fieldtrip doesn’t support usage without the MATLAB desktop appli-

cation; therefore, a paid license is required for its usage. Another difference from the

previously described tools is that Fieldtrip is not GUI based, but all of the documentation

and tutorials are based on scripting.

According to the online documentation, several BIDS compliant iEEG file formats are

supported, including EDF, EEGLAB file format and BrainVision Data Format. However,

the official documentation outlines that the function used to read EDF+ files has been

found to be incompatible with some acquisition systems such as EGI ‘Net Station’.

Support for the described common preprocessing steps:
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– Downsampling: All of the preprocessing steps are computed using the preprocess-

ing function ft_preprocessing. The parameter resamplefs along with the prior

function can be used to resample the given data. The function ft_resampledata

can also be utilized for the same purpose. Fieldtrip applies an anti-aliasing low

pass filter along with the downsampling. Three methods are available (resample,

downsample and decimate) but no further information about their differences was

found.

– Drift correction: High-pass filtering, demeaning and linear detrending are all sup-

ported by Fieldtrip. This can be indicated as part of the ft_preprocessing con-

figuration or using separate functions. High-pass filter order and type can be cus-

tomized, supporting both Butterworth IIR and FIR filters.

– PLI attenuation: Fieldtrip supports the attenuation of power line noise either us-

ing a notch filter or through the function ft_preproc_dftfilter. This function

supports two methods for PLI attenuation: fitting of sine waves to the specified

frequencies (similar to the removePLI method previously discussed) or spectrum

interpolation for the given frequency band. Alternatively to using this function, the

configuration for the ft_preprocessing function can also be adjusted accord-

ingly.

– Re-referencing: Re-referencing from monopolar to bipolar, laplace and common

average reference schemes are supported. To use the automatic grouping offered by

Fieldtrip, the channels must be named using an alphanumeric code, where letters

represent the group and numbers represent the order of the channel in its group.

Channels that are not found to be part of any group are kept as original.

– Channel localization: The only information found for channel localization was in

the online tutorials, where the region identification per channel can only be per-

formed through the manual identification and labeling of each contact using the

acquired postoperative CT image. A parcellation file also has to be given to iden-
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tify the regions per channel. No information about any scripting process to achieve

this was found.

– Artifact detection: The only semi-automatic method for artifact detection supported

by Fieldtrip is based on the bandpass filtering of the data, z-transformation of the

signals, and further detection of outliers using a given threshold. Predefined func-

tions are given to detect muscle, eyes or heart artifacts; however, these functions

are not optimized for iEEG, as Fieldtrip is designed for analysis of different types

of electrophysiological recordings.

From all the investigated tools, this is the one that has a better support for scripted pre-

processing of iEEG data, as even a previous protocol has been proposed for the stan-

dardization of iEEG preprocessing using Fieldtrip [140]. Nevertheless, the following

limitations were found for this tool:

– Although the code to preprocess data with Fieldtrip is quite simple, there is no

predefined approach to QC the results from each step, which would then require

custom scripts to do so, limiting the usability and transparency of the preprocessing.

– Fieldtrip offers support for code execution on distributed computing systems through

qsub, a tool developed by Fieldtrip developers. However, there is no predefined way

to use it in preprocessing workflows built with Fieldtrip, for which coding exper-

tise is required to implement appropriate preprocessing workflows on distributed

computing systems. This negatively affects the usability and scalability capacities

of the tool for preprocessing workflows.

– Information about how to read complete iEEG directories was not found, with spe-

cial focus on the BIDS format. This implies that ad hoc scripts have to be developed

to properly parse large iEEG directories, decreasing the usability of the toolbox.

Furthermore, this hinders the transparency of the preprocessing workflows devel-

oped as it becomes more challenging to understand and adapt previously shared
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preprocessing scripts.

– Although multiple tutorials are offered online, no official documentation on the

available functions can be found. Inspecting the code in the Github repository

or command line help are then the only ways to get more information about the

available functions and parameters when developing a preprocessing workflow, a

process in which some users might not feel comfortable.

– As previously mentioned, unlike EEGLAB and Brainstorm, Fieldtrip does not offi-

cially support usage on any other platform but MATLAB desktop, constraining its

usage to users that can access a license.

Not all the available software tools were included in this review, leaving out some pipelines that

could be used for preprocessing. The PREP pipeline is a MATLAB plugin based on EEGLAB

for preprocessing of scalp EEG recordings. It doesn’t support computation for iEEG data

and has been labeled as outdated according to the EEGLAB website. Other pipelines include

the Automated Pipeline for Infants Continuous EEG (APICE) and the Harvard Automated

Processing Pipeline for Electroencephalography (HAPPE); however, like the Prep Pipeline,

they were designed for scalp EEG, not iEEG data [33].

In this section we have described some of the main tools for iEEG analysis and preprocess-

ing. Fieldtrip and Brainstorm stand out as the options that include the most support for iEEG

preprocessing; however, poor usability when scripting, lack of predefined QC checkpoints and

difficult scalability stand out among their core limitations for iEEG preprocessing. The devel-

opment of a workflow that improves transparency, reproducibility and scalability then emerges

as a promising avenue for improving exchange practices and standardization of iEEG prepro-

cessing.



1.7. Machine learning for iEEG analysis 37

1.7 Machine learning for iEEG analysis

This section provides an overview of Machine Learning (ML), with focus on its application

to iEEG research. The main purpose of this section is to introduce potential machine learning

solutions that could help automating the detection of artifacts in iEEG recordings as part of the

data preprocessing.

1.7.1 Machine learning overview

Machine learning is the field of study that involves giving computers the ability to learn from

data and take decisions without being explicitly programmed to do so. The learning process

for machine learning algorithms can be classified between supervised, unsupervised, semi-

supervised and reinforced learning [69, 74]. Description of each of them is beyond the scope

of this introduction, but the focus will be towards supervised learning, where the algorithm is

trained using a desired output so that the machine learns patterns or characteristics to get to

this outcome.

Supervised learning can be further classified based on learning tasks or problems to solve

between classification and regression. The first refers to a problem where the outcome is a

class, for example, defining if a picture shows a dog or a cat; while a regression problem

is characterized for predicting a quantitative or continuous outcome, as the prediction of the

value of a currency.

Machine learning algorithms can also be classified between traditional/conventional meth-

ods and deep learning algorithms. Deep learning refers to the learning process through the

transformation of data using successive stacked layers; therefore, the word deep in its name.

The main idea behind it is that deep learning is able to learn complex and non-linear patterns

in the data through transformations to the input data that allow a representation where the task

can be achieved more easily.

Most deep learning algorithms are based on Neural Networks or artificial neural networks
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(ANNs), which are computational models inspired by the biological neural networks. Over

the years, a variety of deep learning algorithms have been developed, such as convolutional

neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks

(GANs), and transformers. Here, we will focus on the first two networks (RNNs and CNNs)

as these are the most relevant ones for the presented work.

CNNs are among the most popular deep learning models, inspired by the animal visual cor-

tex, making them particularly effective for computer vision tasks. CNNs operate by identifying

specific features within an input image to perform tasks such as image and pattern recognition.

It is known that the architecture of CNNs enables a hierarchical feature extraction process:

initial layers capture basic elements like edges and colors, which progressively increase in

complexity through deeper layers of the network [7].

Convolutional layers are the main component of CNNs, as they allow the network to learn

different features present in the input data. In these layers, convolutional operations are per-

formed between a kernel (also referred as filter) and the input, creating filtered outputs that

highlight relevant features within the data. This represents only the basis of CNNs as there are

multiple parts that are not covered here, such as the subsampling process done by the pooling

layers and the fully-connected layers used at the end of the network.

Recurrent neural networks (RNNs) are another widely used deep learning architecture,

ideal for processing sequential data such as text or audio recordings. The difference of RNNs

relies on their ability to process data sequentially while remembering or taking in consideration

data previously seen, referred to as short-term memory. This is particularly important for tasks

where the context is very important, such as text generation and speech recognition. It has also

gained popularity in the field of electrophysiology due to the sequential nature of biological

signals [5].

Basic RNNs uniquely depend on recurrent connections for the short-term memory. For

this reason, simple RNNs suffer from a problem called vanishing gradient, which hinders the

learning of long short-term dependencies in the data. Long Short Term Memory networks
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(LSTMs) were designed to tackle this problem by the utilization of special memory blocks

through the addition of an input gate, an output gate and a forget gate to the architecture of a

simple RNN. Gated Recurrent Units (GRU) are a further modification of LSTMs with faster

training process due to their lower computational complexity [22, 37].

Outside of deep learning approaches, traditional methods can be found. There are many

traditional methods, varying depending on both the type of learning (for example, supervised

vs unsupervised) and the tasks (regression or classification). This discussion will be centered

on the algorithms employed in this study: logistic regression and tree-based methods.

Logistic regression is a classification algorithm designed to identify a function that distin-

guishes between classes based on input features [69, 74]. Commonly, a linear boundary is used

and the Sigmoid function or logistic is used to calculate the probability of a particular instance

to be part of a specific class. In the case of multiclass problems, the softmax function is com-

monly used for the estimation of probabilities. Logistic regression can be seen as a shallow

ANN with a logistic activation function.

Decision trees, known as CART (Classification And Regression Trees), can be applied to

both classification and regression tasks. These models partition the feature space using if-else

decision nodes, effectively categorizing the data. Splitting of the features in classification tasks

is usually guided by errors such as the Gini index or entropy metric [69, 74].

Tree-based methods employ ensemble techniques that combine multiple decision trees

through either boosting or bagging. Bagging refers to the training of multiple decision trees by

randomly sampling the training data with replacement (called bootstrapping). The final deci-

sion, in the case of classification tasks, is usually taken following the majority vote. Random

Forests extend bagging by not only sampling the training data but also sub-sampling features

for each tree, which reduces overfitting and improves model accuracy.

Boosting is another ensemble method where trees are grown sequentially, each designed

to correct the errors of its predecessor, progressively improving the model’s predictive perfor-

mance. There are different ways to achieve this, including adaptive boosting, where trees are
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trained on weighted samples of the dataset depending on the previous tree errors, or gradient

boosting, where residual errors from the previous tree are used for training [69, 74].

While each machine learning algorithm has its own set of advantages and limitations, a de-

tailed comparison is beyond the scope of this thesis. However, one important fact to highlight

is that the computational cost of deep learning tends to be higher when compared to traditional

methods. Therefore, it is important to follow the principle of parsimony—choosing the sim-

plest model capable of performing the desired task—to justify the cost of using deep learning

architectures when preferred over simpler approaches [63].

1.7.2 Machine learning applications for iEEG

Machine learning is a tool that has been used to identify complex patterns in biological data,

including iEEG recordings. This subsection will focus on a previous review by Mirchi et

al. about main applications of machine learning for analysis of iEEG datasets [104]. The

review specifically targeted articles published before 2020, utilizing data from SEEG or ECoG

recordings.

Figure 1.9 shows the classification of the articles performed by the authors,with the majority

addressing seizure-related studies, constituting 58% of the total research focus, followed by

motor tasks, cognitive tasks and finally sleep staging. For the interest of this work, focus will

be given to the first class. For the seizure class, the authors found that most research was

focused on seizure prediction or detection, referring to the identification of the ictal/preictal

periods [104].

The review also noted that a significant majority of the studies, 63%, employed standard

supervised machine learning techniques, followed by 18% using deep learning approaches.

Some of the typically used standard algorithms were shallow ANNs and support vector ma-

chines (SVM); while for deep learning, RNNs and CNNs were common [104].

Moreover, this article explored some of the most commonly used features as inputs for

the models. In the case of seizure detection, time-frequency representations of iEEG data
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were commonly utilized; along with other features, such as entropy or kurtosis. For SOZ

localization, HFOs and IEDs were used as inputs due to their close relationship to the EZ

[73, 50, 1].

Figure 1.9: Visual representation of the classification of articles reviewed in the work done by
Mirchi et al.. Reproduced from [104] with permissions under Creative Commons License.

1.7.3 Automatic artifact detection for preprocessing of iEEG recordings

As previously mentioned, iEEG recordings are commonly affected by two types of artifacts,

pathological events and non-cerebral artifacts. It was previously believed that iEEG was not

affected by non-cerebral artifacts due to its high SNR compared to scalp EEG; however, arti-

facts such as eye blinks and muscle movement have been now reported during iEEG recording.

As iEEG is commonly recorded from brains with epilepsy, pathological events such as spikes

and pathological oscillations are also present, which are considered artifacts when analyzing

the underlying baseline (non-pathological) activity. Despite the importance of detecting these

pathological and noise events in iEEG as part of the preprocessing workflow, there is not a
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recommended approach to conduct this artifact identification, hindering its standardization as

a preprocessing step for iEEG.

In the literature, there have been several studies on automatic detection of specific inter-

ictal pathologies in iEEG. These have mainly focused on either IEDs or HFOs as they are

both known biomarkers for epilepsy [73, 50, 1]. IEDs can appear as spikes, sharp waves,

spike-and-slow wave complex, sharp-and-slow-wave complex or multiple spike-and-slow wave

complexes [47, 1, 83]; while HFOs refers to the presence of ripples (80–250 Hz) or fast ripples

(>250 Hz) [80, 52].

Automatic detection of HFOs in scalp EEG and iEEG has been proposed in the past, mostly

inspired by the difficulties on visual detection due to the HFOs short duration and low SNR

[161, 85]. It has been previously reported that the annotations of HFOs for a 10 minutes

recording with 10 channels can take up to 10 hours [161]. Traditional approaches for detection

rely on thresholding techniques, where features such as root mean square (RMS) amplitude of a

filtered version of the signals or the envelope of the signals obtained through Hilbert transform

have been used [91, 158]. More recently, machine learning techniques have been proposed to

improve classification of HFOs, which include traditional machine learning techniques such as

SVM and LDA, and deep learning techniques such as convolutional neural networks (CNN)

or Long Short-Term Memory cells (LSTM), which will be further cover in the next subsection

[100, 91].

One of the main challenges related to HFOs detection is the existence of both physiological

and pathological HFOs. As mentioned in the first chapter, the properties to differentiate phys-

iological from pathological HFOs have been found to vary across brain regions, which further

hinders their classification [80, 52]. Automatic HFOs detectors have also been found to have a

low specificity or high false positive rate, mainly due to the misclassification of artifacts, such

as false oscillations due to filtering of spikes [134, 105, 151]. Furthermore, inter-rater agree-

ment on classification has been reported between 40% and 80%, which has a direct impact on

training and evaluation of detection models [110, 139].
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In the case of IEDs, traditional approaches have also been proposed, including template

matching and thresholding [59, 127]. Most of these approaches are commonly affected by

artifacts with similar morphology such as muscle artifacts or eye blinks, and they fail to capture

the high degree of variability in IEDs morphology across subjects [1, 59]. Machine learning

techniques have been proposed to solve these limitations, including deep learning approaches

like LSTMs and CNNs, and traditional methods such as SVM [1, 59]. However, the lack

of cross-institutional large databases for training and validation is currently one of the primary

limitations of machine learning solutions [1]. Low inter-rater agreement has also been observed

for the identification of IEDs, making the development of standard data sets even more difficult.

[13, 10].

Detection of both HFOs and IEDs tend to suffer from low sensitivity due to the misclas-

sification of artifacts as pathological events. There have been previous approaches to try to

distinguish artifacts from pathological HFOs and IEDs; however, they lack either evaluation

on external datasets or insufficient generalizability reported [127, 162].

Most of these automatic detection algorithms focus on detecting specific types of patholog-

ical events due to their clinical importance. For preprocessing of iEEG, pathological events are

considered as artifacts in studies focusing on the underlying physiological activity [102]. In

these cases, it is mostly relevant to classify the data between physiological or artifacts, which

could potentially be pathological or non-cerebral artifacts like eye blinks. This artifact detec-

tion task has not been so widely approached in literature, discussed only by two authors based

on the conducted literature review [111, 99].

The first study published focuses on the implementation of convolutional neural networks

for the classification of interictal segments of three seconds from two institutions between

pathological, non-cerebral artifact or baseline activity [111]. Bandpass envelopes were com-

puted using Hilbert transform to construct the input image for the following bands: 20–100 Hz,

80–250 Hz, 200–600 Hz and 500–900 Hz. According to the paper, generalizability to an exter-

nal dataset was good, with an average F1-score of 0.81 [111]. However, this work presented
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two important limitations. First, no open-source model or code was referenced in the publica-

tion, which makes it impossible to use or validate the results. Secondly, the sampling rate of

the recordings used for training was 5 kHz, significantly higher than the average sampling rates

used in clinical practice for iEEG (typically between 1 kHz and 3 kHz [118]), which preclude

its usage on external data recorded on a lower sampling rate.

A second study was released afterwards, which included the addition of a third small

dataset, used for external testing [99]. A random forest algorithm with customized 68 features

extracted from the data was used in this case. This work downsampled the data to 1200 Hz

before training since their dataset was recorded at that particular frequency, highlighted the

previously mentioned limitation of the first study. However, the classifier performance on the

external dataset reported a very low precision for the non-cerebral artifacts class, showing a

possible large amount of false positives for this class. Based on the low sensitivity of the base-

line class, it can be assumed that this classifier overestimated many baseline clips as artifacts

[99].

The first study from Nejedly et al. used one of their two datasets for training and validation

and the other one for testing [111]. On the other hand, the work from Long et al. included

a third dataset for testing, reason why the original two datasets from Nejedly et al. were

only used for training and validation [99]. This hinders a direct comparison between the two

algorithms, which is important to define whether deep learning actually provides a significant

advantage against traditional machine learning. No comparison with simpler models was given

in either of the two papers, fundamental to justify the use of a more complex solution based on

the parsimony principle for machine learning.
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1.8 Thesis Outline

1.8.1 Problem statement

Preprocessing is fundamental in the field of iEEG, commonly required before inspection and

further analysis of the data for research purposes, as shown by the conducted literature review.

Preprocessing can be decomposed into multiple steps, including but not limited to: prepro-

cessing of the signals through conventional signal processing methods such as filtering, iden-

tification of segments of interests (for example, HFOs, IEDs or segments free of artifacts) and

curation of demographic data for each subject.

Typically, these preprocessing steps are carried out in ad hoc, standalone, and predomi-

nantly manual workflows as there is no standardized approach used [140], which complicates

the reproducibility or continuation of research findings. Moreover, implementing preprocess-

ing workflows with existing tools requires substantial coding expertise, constituting a challenge

for those with limited software computing experience. These commonly used tools do not in-

tegrate quality-control checkpoints to validate the computed preprocessing steps, limiting the

transparency of the workflows. The large amount of data recorded from ieeg electrodes makes

this process even more difficult, as monitoring over several days with multiple electrodes can

result in large files that are difficult to manipulate without the appropriate expertise, highlight-

ing the need for a tool that facilitates data extraction and preparation prior to further analysis.

In this thesis, the development of an open source preprocessing workflow for iEEG-BIDS

datasets is proposed, trying to improve usability, transparency, reproducibility, scalability and

portability compared to existing options.

As previously discussed, artifact detection, including identification of non-cerebral noise

and pathological events, has been proposed as an important preprocessing step for iEEG record-

ings and it was found to be commonly used in iEEG research literature. Nevertheless, a stan-

dardized and broadly validated method to achieve this hasn’t been defined yet, hindering its

incorporation to the proposed preprocessing workflow. In this work, we investigate in detail
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this preprocessing step by developing and comparing different automatic artifact detectors for

interictal iEEG data in order to evaluate their performance and generalizability, and to gain

insight into the main challenges in this field for the standardization of artifact detection for

iEEG.

1.8.2 Objectives

The objectives chosen for this thesis work are presented below:

General objective:

• To advance the reproducibility and reliability of epilepsy research through the develop-

ment of a standardized preprocessing workflow for iEEG recordings and the application

of advanced machine learning techniques for the automated detection and classification

of artifacts and pathologies in interictal iEEG data.

Specific objectives:

• To design and implement a workflow that integrates essential preprocessing steps for

BIDS-iEEG datasets such as filtering and channel re-referencing, aiming for improve-

ments in usability, transparency, reproducibility, scalability and portability compared to

existing solutions.

• To evaluate the developed preprocessing workflow by comparing its results with existing

tools, aiming for improvements in usability and validation of each preprocessing step.

• To evaluate multiple machine learning algorithms and conduct a comparative analysis

of their performance in detecting artifacts and pathological events within interictal iEEG

recordings, including a comparison between deep learning and traditional machine learn-

ing approaches.

• To investigate the generalizability of machine learning solutions in detecting artifacts and

pathological events within interictal iEEG recordings by evaluating the performance of
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the models in external data.

• To validate the practical utility of machine learning models by engaging in a qualitative

assessment with clinical experts to review their reliability in identifying artifacts and

pathological events in continuous interictal iEEG recordings.

The primary goal is to publish all developed code and tools related to the preprocessing

workflow and machine learning investigations, aiming to support and facilitate further research

and development in the field. However, it must be highlighted that the development and main-

tenance of a comprehensive software tool takes efforts beyond the scope of this work. This

project does not aim to outperform existing machine learning models but rather to explore

a variety of features and model types. It emphasizes evaluating the generalizability of these

models to enhance our understanding and development of more effective artifact detectors for

iEEG.



Chapter 2

Methodology

As the first part of this project, a software workflow to preprocess iEEG datasets was developed.

In the next sections, the steps followed for the design and development of this workflow will

be covered, detailing all of the different components of this tool.

2.1 Development and design of a preprocessing workflow

The initial step in the development of the preprocessing workflow consisted of a literature

review focused towards papers describing recommendations for iEEG preprocessing. This

includes mostly review papers covering either the state-of-art of iEEG or the usefulness of spe-

cific preprocessing steps [102, 140, 98, 101, 97]. Other relevant papers related to preprocessing

for scalp EEG were also reviewed [16, 34]. The most common preprocessing steps found were

previously described in the subsection Overview of preprocessing steps for iEEG in the Intro-

duction chapter. This section will describe the steps followed for the design and development

of the preprocessing workflow.

The proposed SW workflow is based on Python and it was named iEEGPrep. Currently, the

totality of the workflow can only be executed using SEEG recordings, temporarily excluding its

full usage for ECoG data. Re-referencing and channel identification, further described below,

are the steps that currently only work for SEEG data. SEEG was chosen as the first type

48
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of iEEG electrodes to support due to their increasing use in clinical practice, as previously

discussed. Snakebids was used as the base of the workflow, which is a Python package that

extends Snakemake to enable the creation of pipelines for the processing of BIDS datasets

[122]. Snakemake is a workflow management system designed to create reproducible and

scalable data analyses, as described by their official documentation [108]. The creation of

workflows using Snakemake is based on the definition of rules that specify how to generate

output files based on the given input files, and these are defined via a human readable Python-

based language. These rules can be executed in parallel and are easily scaled to large computing

environments such as computing clusters [108]. Snakebids is another Python package that

extends Snakemake capabilities by simplifying the creation of workflows designed to process

BIDS datasets [122]. Workflows created using Snakemake and Snakebids are reproducible

with different BIDS datasets and in different computing environments, particularly useful for

the creation of the proposed preprocessing workflow.

A visual overview of the implemented workflow is shown in Figure 2.1. All of the pre-

viously reviewed preprocessing steps were considered; however, artifact detection was not

included in this first iteration of the tool, as no open-source validated implementation for iEEG

data was found. Although epoching or epoch extraction was not discussed in the previous sec-

tion, it is also a common step used at the beginning of the preprocessing to extract segments

of interest for the analysis; for example, a clip during a cognitive task [102]. Therefore, it was

included as a first potential step in the workflow.

This pipeline was designed in a flexible way, such that the preprocessing steps to be run

can be customized. For example, if desired, the data can go only through downsampling, re-

referencing and PLI attenuation, without the need to run the others. However, the order of the

steps was fixed; as an example, it is not possible to run re-referencing before downsampling.

Besides the preprocessing of the data, a QC component was also added to the workflow, which

not only informs the user about the compliance of the input directory with the BIDS standard

but also produces outputs for each preprocessing step to ease the manual inspection of the
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results without the need to code any further in-house validation, as shown on the right part of

Figure 2.1.

Figure 2.1: Overview of the preprocessing workflow implemented. A BIDS-iEEG directory
is received as the input, which is processed by running different preprocessing steps such as
downsampling and re-referencing. Quality-control (QC) steps are also executed, including a
validation of the BIDS directory and the generation of a report at the end. This report, along
with the clean preprocessed files are the main outputs of the workflow.

Next, a description of each of the different parts of the workflow will be presented, detailing

the methods employed for each step along with information related to their implementation,

like SW packages used.

2.1.1 Input

As aforementioned, the input for the workflow has to be a BIDS-iEEG directory. Currently only

EDF format is supported for reading and writing of SEEG data, part of the two recommended
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by the BIDS specification. This format was chosen over the BrainVision Core Data Format as

the local available SEEG data is stored in EDF, and being able to process these local data was

the initial priority for the project.

The input data are parsed using Snakebids, which utilizes Snakemake to allow the directed

acyclic graph (DAG) of jobs that need to be executed based on the input and desired output.

Snakebids relies on Pybids, another Python package, to parse the BIDS directory as the work-

flow input [159].

2.1.2 Epoch extraction

The initial step following input parsing is the extraction of epochs or clips of interest for the

user from the EDF files. Epoch extraction is configured using two parameters: the start point

and the duration of the epoch.

Two alternatives are supported for defining the start point. Users may utilize annotations or

events within the EDF file to determine the start point. These events can be easily written as

well using packages like MNE Python or Fieldtrip in MATLAB [64, 92, 114]. Alternatively, the

start point can be identified based on channel indices, enabling the extraction of clips starting

from a specified time-point for every channel. The duration of the epoch can be specified either

by the number of samples to extract or by the event’s duration in seconds.

Then, the algorithm searches for all the corresponding events in the given EDF file and

generates new EDF files based on the number of events identified. Pyedflib, another Python

package, is being used as the primary tool for the input/output (I/O) of EDF files throughout

the workflow [109].

2.1.3 Downsampling

The implemented downsampling process is a wrapper around MNE implementation with two

modifications:
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• MNE requires to load the whole data to be able to resample it, being very memory con-

suming when managing big files, which is not uncommon in SEEG recordings. My

wrapper uses the multiprocessing Python package to process each of the channels inde-

pendently in parallel, constrained by the amount of processes available as indicated by

the user, minimizing any potential memory issues.

• Before preprocessing, the channels present in the EDF file and the _channels.tsv file are

compared and only those present in both are preserved. This speeds up the processing

by discarding any part of the data that is not relevant.

The parameters used for the MNE method (mne.io.Raw.resample()) were kept as de-

fault. This method uses a reflection of the signal mirrored on the first and last value of it,

followed by zeros, to deal with the potential edge effects of the resampling. By default, a rect-

angular or Dirichlet window is used to taper the Fourier spectrum before the padding, which

intends to alleviate any potential sharp transitions in the signal after resampling (known as

ringing).

Downsampling was chosen as the first step as, if executed, it alleviates the computational

cost of the following steps, since it reduces the amount of data stored compared to the original

file.

2.1.4 Drift correction

Three methods for drift correction were implemented:

• High-pass filtering: As high-pass filtering is the most common method for drift correc-

tion according to the literature and it is also the recommended option for long-duration

data, it was defined as the default method for this preprocessing step. The implemen-

tation of high-pass filtering was recovered from the EEG-ASR-Python repository, also

based on the Clean Rawdata plug-in for EEGLab in MATLAB.

https://github.com/moeinrazavi/EEG-ASR-Python
https://github.com/sccn/clean_rawdata
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Briefly, this implementation designs a high-pass filter using the Kaiser method, built

based on a given transition band and a desired attenuation. Then, the Scipy function

scipy.signal.filtfilt() is used to filter the signal, which applies the filter twice

(once forward and once backwards) to avoid phase changes to the input data [155]. This

function also deals with edge effects by applying padding to the input signal.

• Demeaning: As previously described, demeaning just refers to the subtraction of the

mean for each channel. Numpy package was used to achieve this [68].

• Linear detrending: Although from the reviewed studies, no paper was found to use

detrending, it has been described as an alternative for drift correction [102]; therefore, it

is also supported in iEEGPrep. Scipy implementation for detrending was utilized through

the function scipy.signal.detrend(). Currently, there is no supported method for

polynomial detrending.

2.1.5 Re-referencing

Although there are multiple re-referencing options, priority was given to the bipolar scheme

since it is one of the most commonly used schemes as described in literature. As of now, only

re-referencing from monopolar (all signals referenced to the same electrode, either external

or internal) to bipolar is supported. As suggested by Mercier et al., the bipolar referencing

was computed from the most inner to the most external electrode contact (e1-e2, e2-e3, etc.),

equivalent to the methods followed in the common toolbox Brainstorm and Fieldtrip [114, 147].

Reading and writing of the EDF files was done through the Pyedflib library.

2.1.6 Power Line Interference (PLI) attenuation

Four methods are supported for PLI attenuation:

• Notch filtering: as it is the most common approach to reduce PLI, notch filtering is sup-

ported through a finite impulse response (FIR) filter designed with the window method
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through the function scipy.signal.firwin().

• Cleanline: The Cleanline algorithm, which was initially developed for EEGLAB in

MATLAB, was converted in-house to Python code from the original repository. In this

repository, two implementations of the algorithm can be found. The new implementation

was the one chosen for the re-implementation in Python.

• Zapline: Similarly to Cleanline, the original Zapline algorithm was written in MATLAB

and can be used as an independent tool or as a plug-in for EEGLAB [29, 89]. The original

implementation of Zapline was then converted to Python code for its usage in iEEGPrep.

• removePLI: The algorithm was re-written in Python based on the original source code

in Github.

Bipolar re-referencing is known to remove noise with broad spatial distribution, i.e., noise

shared amount channels [152, 103]. Therefore, it was decided to first re-reference to remove

any potential PLI shared across channels and then run PLI attenuation to correct any other line

noise that was not properly attenuated with the re-referencing.

Previous studies have also shown that some PLI attenuation algorithms decrease their per-

formance if high-pass filtering is applied after the algorithm instead of before [16]. As no

significant information about the order of re-referencing and drift correction was found, the

same order followed in previous scalp EEG pipelines was used [16, 54, 11, 60].

2.1.7 Channel localization

To be able to define the region of the brain where each channel is located, three pieces of data

are required:

1. A pre-operative MRI to compute the segmentation of the individual brain. As previously

described, this can be performed either through an individual space segmentation or a

registration to a common space where an atlas with multiple anatomical labels is defined.

https://github.com/sccn/cleanline
https://github.com/mrezak/removePLI
https://github.com/mrezak/removePLI
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2. A post-operative CT to define the coordinates of each contact electrode. The definition

of these coordinates is outside of the scope of the workflow being developed so it was

assumed that they were already available, as also required by the iEEG-BIDS standard.

3. Information about the reference scheme used to define the channels since the previous

coordinates are usually given per channel.

There are two options that could have been followed to get the estimated brain region

for each channel: receive the MRI and offer a way to segment it or receive a precomputed

segmentation from the start. The main disadvantage of the first approach is that it would

constrain the segmentation to the options supported by the workflow. Another disadvantage is

that MRI images are not always available, specially in open SEEG datasets such as the HUP

iEEG Epilepsy dataset (ds004100, accessible from OpenNeuro, an online platform for sharing

neuroscience BIDS-compliant data).

The main limitation of the second approach is that it forces the user to use another tool

beforehand to get the segmentation file. However, there are multiple tools to achieve this, such

as SynthSeg or FreeSurfer-volumetric approach [17]. Another limitation is the constraint of

the input segmentation file to the supported file formats and also the availability of a table in a

supported format that specifies the labels for the segmentation (since the segmentation file only

contains integers assigned to each brain region that have to be map to a label usually indicated

with a table). This second approach was then chosen for iEEGPrep as it is useful when dealing

with datasets with predefined coordinates or those with MRI available.

There are two approaches to define brain segmentation data. Volumetric-based data par-

tition the 3D volume of the brain into different regions and these classification is stored in a

voxel level, while surface-based data use meshes to represent the boundaries of each segmented

brain structure [95]. Volumetric-based data are often used when the entire 3D brain volume

is segmented, specially for subcortical regions since surface-based data are more common for

cortical segmentation [95]. Both methods present advantages and disadvantages outside of the

scope of this thesis, but it is important to mention as currently iEEGPrep only supports usage

https://openneuro.org/datasets/ds004100
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of volumetric-based data, chosen based on the availability of multiple whole-brain atlases and

tools for generating volumetric-based segmentation files.

Currently, to allow channel localization, iEEGPrep must receive a NIfTI file with the seg-

mentation and the _electrodes.tsv file must have the (x,y,z) coordinates of each electrode contact

defined in the same space as the parcellation. In other words, if it is desired to use an atlas for

parcellation, the user must guarantee that the coordinates are in the common space used by the

atlas; if using an individual subject segmentation, then the coordinates must be in the same

space as the resulting segmentation image.

As previously described, only monopolar to bipolar re-referencing is supported; therefore,

channel localization was only designed for these two reference schemes. Two options are

provided for the localization: volumetric localization or point-based localization.

• Point-based localization: For the unipolar case, the coordinate given in the _electrodes.tsv

file will be used to find the nearest voxel in the NIfTI file containing the parcellation. The

region containing this voxel will be assigned to the channel. On the other hand, in case

of re-referencing to bipolar, the average coordinate of the two contacts composing the

bipolar channel will be used to find the respective voxel.

The disadvantage of this approach is that it could be misleading for monopolar channels

if the contact is very close to the boundary of multiple regions. For bipolar channels,

as mentioned before, it could not properly represent the region where the captured sig-

nals are coming from, especially if the two contacts forming the channel are in different

regions.

• Volumetric localization: Designed to try to overcome the limitations from point-based

localization. Briefly, the idea is to create a volume around the contacts part of the channel

that represents the region where the signals are more likely to be coming from; i.e., try

to represent the potential field captured by the contacts by using a volume mask.

As shown in Figure 2.2, bipolar scheme captures activity around the two contacts form-
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ing the channel and volume-conducted activity in between them [102]. On the other

hand, monopolar schemes tend to capture both local and global activity compared to the

bipolar reference.

Based on this information, for bipolar channels a cylindrical mask is created around the

two contact coordinates, represented as the orange cylinder on Figure 2.2. This mask was

generated by first creating a line between the voxels closest to the coordinates of the two

electrode contacts in the bipolar channel using the Bresenham’s Algorithm and dilating

it to have a diameter of 1 mm. The function skimage.morphology.dilation() from

the Python package scikit-image was used for the dilation [154]. The diameter size

was chosen only based on the common diameter range for each contact, usually varying

between 0.8 to 2 mm [102], as no estimation of the potential field was found.

For the monopolar case, as a simplification of the actual potential field, only the local

field around the contact recording was considered. Therefore, a sphere of 1 mm is used

around the given coordinate for each contact.

Figure 2.2: Graphical representation of a bipolar (left) and monopolar (right) potential fields
in black and the three-dimensional figure used to represent it in the SEEG workflow (orange).
Adapted from [146].

Even though this volumetric estimation can represent somehow better the potential field

captured by each channel compared to the point-based approach, it is still an estimation

and must be interpreted with caution. Special caution has to be taken for monopolar

cases, where there is a big influence from the volume-conduction that is not considered
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by either the point-based or the volumetric approach.

2.1.8 BIDS Validation

As part of the quality control results produced by iEEGPrep, a validation of the input BIDS

directory provided by the user is performed. This validation is composed of two steps. The first

is the execution of the official BIDS-Validator tool, which checks if a directory is compliant

with the BIDS standard [18]. The flag --ignoreSubjectConsistency is used by default to

speed up the execution of this step, avoiding checking if any given file file for one subject is

present in all the other subjects.

It was noted that not all aspects of the iEEG-BIDS standard were checked by the official

BIDS-Validator tool. Therefore, the following requirements are checked as a second layer of

the validation through in-house scripts using Python:

• All channels present in the _channels.tsv file must also be present in the corresponding

EDF file.

• The physical unit indicated for each channel in the _channels.tsv file must be the same

as the one present in the corresponding EDF file.

• The filters applied to each channel must match between the _channels.tsv and the EDF

files.

• The sampling rate indicated in the _channels.tsv, the EDF file and the _ieeg.json sidecard

must match.

• Electrodes coordinates in the _electrodes.tsv file must be numeric.

• All contacts part of the channels in the _channels.tsv must be present in the _elec-

trodes.tsv.
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• The number of channels per type of channel must match between the _channels.tsv and

the corresponding EDF file. Currently the types checked are: "EEG", "EOG", "ECG",

"EMG", "ECOG", "SEEG".

• The length of the file indicated in the sidecar _ieeg.json must match the actual length of

the recording stored in the EDF file.

2.1.9 Outputs

After all of the steps are executed, their outputs are used to compute specific metrics that are

useful to quality-control the workflow; thus, giving the user the opportunity of checking if the

obtained results are the desired ones without the need of creating any other scripts. These

results are compiled on a HTML document to ease the visualization in any Internet browser.

One report is created for every EDF file produced. A description of the QC information for

each step in the workflow is provided below:

• Raw information: Information about the EDF file being analyzed, indicating the name

of the file, measurement date, sampling frequency, number of signals in the file and the

duration.

• BIDS Validation Results: The official bids-validator outputs are attached in the HTML,

along with the results from the in-house iEEG-BIDS validator, showing any potential

structural issues in the input dataset.

• Epoching: Details about the number of epochs of interest along with their duration is

displayed.

• Downsampling: The original, target and final sampling rates are shown along with any

channels discarded during the step (due to their absence in the _channels.tsv file. Size

comparison between the original and downsampled files is also detailed.
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PSD comparison between input and output channels is displayed as a way to quality-

control the downsampled signals. Welch’s method is used to compute the PSD and

Plotly, a Python package for plotting, is used to visualize it, allowing the interaction

with the figure (for example, zooming, hiding/showing channels, etc.) [72].

• Drift correction: First, information about the method used, along with the corresponding

parameters and any discarded channels are shown. As QC outputs, a table comparing the

original and new mean of each channel is displayed, along with a PSD comparison (same

as in the previous step). If a high-pass filter is used, the time and frequency response of

the filter is also given.

• Re-referencing: If any channels were discarded, they are displayed. A table showing the

combination of monopolar channels to form the bipolar equivalents is also displayed.

• PLI attenuation: Information about the method used is attached along with a PSD com-

parison between before and after the step for each channel.

• Region identification: The main output for this final step is the amount of channels per

region found. This is summarized in a table for the user.

An example of the HTML report generated by the workflow can be found in the Appendix

A.

2.1.10 Execution of the workflow

As a large amount of coding is needed to compute each of the preprocessing steps, they were

first compiled in a Python package. Poetry was used to manage the dependencies needed for

the installation of the package [40].

The workflow can be then executed through the command line with the command:

run . py [−h ] [−− p a r t i c i p a n t _ l a b e l PARTICIPANT_LABEL

[ PARTICIPANT_LABEL . . . ] ] [−− run− a l l ] [−− epoch ] [−−downsample ]
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[−− f i l t e r ] [−− r e r e f e r e n c e ] [−− P L I _ r e j ] [−− r e g i o n s − i d ]

b i d s _ d i r o u t p u t _ d i r p a r t i c i p a n t [−− c o r e s CORES]

This command only shows the most important flags for the workflow, please refer to Snake-

bids official documentation for more information. As shown in the command, the workflow is

designed to run only on a participant level as all the outputs are produced in a subject level, no

group level analysis is currently being conducted. A description of the parts of the command

is given below:

• The fixed arguments are then bids_dir and output_dir, which should be replaced

with the path to the input iEEG-BIDS directory and the output directory.

• The last part (participant) is not a flag and should be kept as it indicates Snakebids to

run the workflow on a subject level.

• The flag --participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]

can be used to indicate the subjects to be preprocessed.

• The flag --cores CORES can be used to indicate the amount of cores available for proper

scalability. If it is not indicated, Snakemake will automatically estimate the number of

cores available in the system.

• The flag --run-all can be used to indicate the workflow to run all of the preprocessing

steps.

• The other flags can be used to run specific parts of the workflow. For example, if only

--epoch and --downsample are used, then only these two steps will be executed by the

app. This gives more flexibility to the workflow. The QC steps are always computed,

including the report generation. If none of these flags are given, the workflow will run

all of the steps by default.

The parameters for each step can be customized using a YAML configuration file. This

allows for a more human-readable customization of the preprocessing compared to common
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tools like Fieldtrip and EEGLAB, which require some amount of knowledge of coding, making

it not accessible for people without this skill [140]. An example of this configuration file is

shown in the Appendix B.

2.2 Development of an Automatic iEEG Artifact Detector

The second part of the work presented on this thesis consisted on the development and testing

of an automatic detector of artifacts in EEG recordings. As aforementioned, artifact detection

was the only preprocessing step left-out of the initial version of the developed workflow due to

the lack of a standardized and validated method for iEEG. In this section, I will cover the devel-

opment and testing of different machine learning models as solutions for this artifact detection

problem, centered on the identification of both pathological and noise events in interictal iEEG

recordings. Focus was given to interictal data as it is often the part of the data used for analysis

of physiological activity using iEEG recordings [51].

2.2.1 Datasets used and data preprocessing

Three datasets were used for training and evaluation of the model. The first two datasets con-

sisted 193118 and 155182 3-seconds iEEG clips from St. Anne’s University Hospital (FNUSA)

and Mayo Clinic respectively [112]. The FNUSA dataset was collected from 14 patients di-

agnosed with DRE during awake resting state using depth electrodes while the Mayo dataset

was acquired during the first night after electrode implantation using depth or ECoG elec-

trodes from 25 patients with DRE; in specific, 1227 of the total 155182 clips came from strip

electrodes while the rest from depth electrodes. Referencing montage for these datasets was

common-average and both were released with a sampling frequency of 5 kHz.

Both datasets were annotated by three expert reviewers into four categories: muscle and

machine artifacts (non-cerebral artifacts), baseline activity, pathophysiological events (for ex-

ample, HFOs and IEDs) and powerline noise [112]. Figure 2.3 shows examples of clips for
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each of these classes. These data were used in the previously discussed paper using CNNs for

artifact detection [111].

The third dataset used was released along with the study from Long et al., which imple-

mented an iEEG artifact classifier using random forests [99]. This dataset contained eight

minutes of recordings from three subjects while completing a visual task. It was collected at

the University of Florida Neuromedicine Hospital using depth electrodes and a sampling rate

of 1.2 kHz and annotated by two epileptologists. Data were re-referenced to bipolar montage

before release [99]. Annotations were used to extract segments of a duration of 3 seconds to

match the clips of the first two datasets, as the model was trained on the epochs of this length.

Figure 2.3: Examples for each of the classes present in the FNUSA and Mayo datasets. These
correspond to (a) power line noise, (b) muscle artifact, (c) baseline jump artifact, (d) phys-
iological or baseline signal, and (e) pathological signal showing an HFO riding on a spike.
Recovered from [112] with permissions under Creative Commons License.

A clinical qualitative assessment of the model was conducted using data from two patients

diagnosed with DRE and implanted with depth electrodes as part of the phase II of the presurgi-

cal investigation as part of the Western Epilepsy Program at the London Health Science Center

(LHSC). Only two patients were evaluated, primarily due to time constraints and availability

of clinical fellows for review; however, as the goal of this review was only to explore the be-

havior of the model and not to actually quantify its performance, this was considered sufficient

as a first step to explore the response of the mode. Both patients’ recordings were initially

sampled at 2048 Hz with an online external reference. It can be appreciated that this sampling
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rate is different to the one used in the other datasets; therefore, all datasets were downsampled

to 1024 Hz for standardization, as it was required to build the input for the model in the same

way as the training data.

A total of four minutes from seven channels were assessed—four from the first subject

and three from the second patient from the LHSC database. These four-minutes epochs were

selected based on previous clinical annotations in the recording files. The annotation ’awake

trigger’ was used to extract these epochs as it indicates a period of awake resting state, chosen

to match the characteristics of the FNUSA dataset, used for training of the models. Annota-

tions and recordings were also inspected to corroborate that no ictal activity was present in

these segments. Table 2.1 shows the most relevant clinical information for these two patients.

Based on this clinical information and the preprocessing explained below, signals from chan-

nels recording from regions potentially within the SOZ were chosen for qualitative evaluation,

as interictal pathological events are more likely to be observed for these channels, which are

assumed to be detected by the model.

Subject ID Sex Age
Diagnosis

Type of epilepsy Laterality Lobe localization Lesional MRI
A M 51 Focal Bilateral Temporal Yes
B F 32 Generalized Bilateral Temporal/Insular No

Table 2.1: Summary of relevant clinical characteristics of the patients from the LHSC dataset
used for qualitative evaluation of the developed iEEG classifier.

Preprocessing of the three external datasets included downsampling to 1024 Hz, a power of

2, which is optimal for subsequent computational processes. The FNUSA and Mayo datasets

were utilized for training, necessitating additional preprocessing to balance the datasets.

Inspection of the FNUSA and Mayo datasets revealed that some subjects had significantly

more clips than others, with ratios as high as 21:1. To prevent overfitting, the datasets were

modified to balance the number of samples per subject. The median number of samples per

subject was calculated, and the number of clips per patient was downsampled to this median,

ensuring the class distribution for each individual was maintained. Preserving this distribution
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was crucial as the data were used for cross-validation. It is generally advised not to alter the

original distribution of validation data to ensure the model’s performance insights are applica-

ble to new datasets with similar distributions. A summary of the total number of clips and their

distribution per classification category for all the datasets used during training, validation and

testing of the model is presented in Table 2.2.

Classification category FNUSA Mayo Clinic University of Florida Hospital
Non-cerebral artifact 19322 33685 16
Pathology 30630 14969 798
Baseline activity 28712 32214 697
Total 78664 806868 1511

Table 2.2: Summary of the number of clips per category for the three datasets used for training,
validation and testing of the proposed iEEG classifier.

Data from LHSC used for qualitative evaluation of the results were preprocessed using

the developed tool iEEGPrep. First, the preoperative MRI for each subject was segmented

using Synthseg. Preprocessing of the recordings then included: epoch extraction of 4 minutes

during awake resting state (marked in the annotations of the EDF files), downsampling to

1024 Hz, drift correction using a high pass filter with transition band from 0.1 Hz to 0.2 Hz,

re-referencing to bipolar montage, PLI attenuation using Cleanline and region identification

for each channel using the computed parcellation from Sythseg. Channels potentially located

inside the SOZ were selected based on this region identification step and the diagnosis for

each subject, which included temporal lobe in the SOZ for both of them. For evaluation using

the model, the four minutes of continuous data were segmented into 3-second clips with no

overlapping between them.

A summary of how each of these datasets was used for this study is presented below:

• The FNUSA and Mayo Clinic datasets were combined and used for training and valida-

tion of the evaluated machine learning models. Signals from both of these datasets are

referenced to a common average reference (CAR montage), as previously described.

• The third dataset from the University of Florida Neuromedicine Hospital was used for
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comparison of the best deep learning and the best traditional machine learning models,

focusing on their capability of generalizability to external data. It is important to high-

light that these data were published after re-referencing to bipolar montage, which is

different to the reference of the training data.

This presents an even bigger challenge for the model as it then implies the evaluation of

the generalizability of the model not only to external data but also to other referencing

methods.

• The fourth local dataset from LHSC was used for qualitative evaluation of the model

when applied to continuous data. As previously mentioned, the main aim of this last

step was to explore the behavior of the model and to better understand its performance

obtained in the previous step of external testing. To match the dataset used for external

testing, a bipolar referencing method was also used for this dataset.

2.2.2 Feature selection

Building on previous studies, my aim was to test both traditional machine learning and deep

learning models, requiring the computation of inputs suitable for both approaches. For this

reason, inputs for each of the two cases were computed. Following the methodology of Nejedly

et al., time-frequency maps were computed using the envelope of bandpass signals derived

from the Hilbert transform [111]. Due to the selection of a lower sampling rate for this study,

the frequency bands from the previous paper were adjusted to: 20–100 Hz, 80–250 Hz, 200–

500 Hz and 450–510 Hz. Specific information on why these bands were chosen was not given

in the original paper; however, they are likely to be related to the expected frequencies for

ripples and fast ripples for HFOs (80–250 Hz and >250 Hz respectively) [99, 52].

As illustrated in Figure 2.4, the process of computing time-frequency maps using the

Hilbert transform involves three key steps. First, the signal is bandpass filtered within each

frequency band of interest using a 3rd order Butterworth zero-phase filter, implemented with
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the MNE library, similar to how it was previously done [111]. Then, the Hilbert transform is

computed on this bandpass signal using the function scipy.signal.hilbert() and the en-

velope can be estimated as the squared absolute value of the result from the function. Finally,

the envelope for each frequency band is normalized using the z-score function from Scipy. As

shown in Figure 2.4, the resulting image consists of five rows: the top four rows represent the

computed results for each frequency band in descending order, and the bottom row displays the

z-score version of the original data clip, similar to the methods followed on the study published

by Nejedly et al. [111].

For the traditional machine learning models implemented in this study, discrete features

were computed following methods similar to those described by Long et al. [99]. In line with

this previous study, Daubechies 4 (db4) wavelets were utilized to decompose the z-scored clips

using discrete wavelet transform (DWT) [99].

Figure 2.4: Hilbert transform computed for a bandpass version of the original signal on each of
the frequency bands of interest. Envelope computed through the Hilbert transform represents
one row in the resulting time-frequency map.

Briefly, DWT decomposes a signal through an iterative filtering process. Initially, the origi-

nal signal is divided into two components using a high-pass and a low-pass filter. The high-pass

filtered signal yields the detail coefficients, while the low-pass filtered signal, which retains

frequencies up to half the original signal’s maximum frequency, is downsampled to half the

original sampling rate. The high-pass filtered signal yields the detail coefficients, while the

low-pass filtered signal, which retains frequencies up to half the original signal’s maximum
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frequency, is downsampled to half the original sampling rate [53].

This process of decomposition, including the design of the filters, is executed using wavelets,

which are small-duration, wave-like functions. Various types of wavelets exist, such as Morlet,

Haar, and Daubechies (db) wavelets. Daubechies wavelets are often a common choice for EEG

from their similar spike-wave pattern. Wavelets are subcategorized by their order, which de-

fines the number of samples used and consequently the smoothness of the wavelet [53, 6]. For

example, the selected db4 wavelets refer to a Daubechies wavelet of order four. The maximum

level of signal decomposition depends on the wavelet, reached when the decomposed signal

has fewer samples than the wavelet function.

The function pywt.wavedec() from the PyWavelets Python package was used to decom-

pose the iEEG signals using a db4 wavelet [93]. Since no maximum level was specified, the

package automatically calculated it, resulting in eight decomposition levels. This function re-

turns the approximation coefficients of the last level of decomposition and the detail coefficients

of all levels. The following fourteen features were computed for each array of coefficients:

• 12 statistical features: 5th Percentile, 25th Percentile, 75th Percentile, 95th Percentile,

median, mean, standard deviation, variance, root mean square, Kurtosis and skewness.

These features help to measure the variability of the data, potentially allowing the iden-

tification of events with high variability such as noise or HFOs. Similar features have

already been proposed for epilepsy-related applications such as seizure identification

[145, 55, 99].

• Shannon entropy, which helps measure the randomness or non-stationarity of a signal

and has been previously shown to work as a feature to identify epileptic activity [3, 26,

136, 99].

• Number of times the signal crosses its mean value and the zero amplitude value. These

features have been previously proposed for identification of interictal spikes and certain

artifacts in scalp EEG, and other scalp EEG applications [125, 4, 144, 99].
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Based on the fact that we had eight detail coefficients and one approximation coefficient

from the pywt.wavedec() results, and that we computed 14 features for each, the input of the

discrete models consisted of 126 features.

2.2.3 Selection of hyperparameters

As previously detailed, both deep learning and traditional machine learning models were im-

plemented. Details about the models used are shown below. As it will be explained in the

next subsection, k-fold cross-validation (CV) was used to choose the best parameters for each

model. The description below shows the models evaluated in this work along with the parame-

ters tested for each model. The complete grid of parameters tested for each model can be found

in the Appendix E.

• Traditional machine learning models: The best hyperparameters for each model were

chosen using grid search cross-validation with 10 folds. Below, the best hyperparameters

found are detailed. For the hyperparameters not shown, it can be assumed that they were

left as default.

– Logistic Regression: This was the simplest model tested, necessary to justify the

need of more complex solutions. The function LogisticRegression() from

sklearn was used for this purpose [120]. The hyperparameters tuned were:

* The inverse regularization strength C, designed to prevent overfitting of the

model.

* Algorithm used to solve the optimization problem (solver). Multiple algo-

rithms are available but for this thesis, the Newton’s method and SAGA solvers

were tested as they are recommended for multinomial problems by scikit-learn

official documentation.

Furthermore, the L2 penalty (Ridge Regularization) was used.



70 Chapter 2. Methodology

– Random Forest: Inspired by the previous work from Long et al., a random forest

was also implemented using the sklearn function RandomForestClassifier().

The hyperparameters tuned were:

* Number of estimators: referring to the total number of trees in the forest.

* Maximum depth of each tree in the forest.

* The maximum numbers of features considered when searching the best split

for each tree in the forest (max_features).

* Criterion: the metric used to guide the splits for each tree. Gini impurity and

entropy were the metrics considered.

Furthermore, the minimum samples per leaf parameter was set to 0.05.

– Extreme Gradient Boosting: Extreme Gradient Boosting was implemented through

the function XGBClassifier() from the package XGBoost [21], as a tree-based

alternative to random forests that can work better for small datasets. The hyperpa-

rameters tuned were:

* Number of estimators: number of boosting rounds.

* Maximum depth of each tree.

* The learning rate used by the model.

• Deep learning models: For the deep learning (DL) models, no parameters were tuned

but at least 3 architectures per model of different complexity were tested and compared

(more details about the comparison in the next subsection). Below a brief description of

the architectures is provided. Diagrams of each of the architectures implemented can be

found in the Appendix F. All of the deep learning models were built and trained using

Pytorch’s library [119].

– CNN: Each CNN architecture comprised four 2D convolutional layers, followed

by data flattening and three linear layers. A skip connection via concatenation,
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inspired by DenseNet [71], was implemented between the outputs of the first and

third convolutional layers, forming the input for the fourth convolutional layer. This

skip connection was introduced to mitigate the rapid overfitting observed during

model training. Dropout in the linear layers, 2D max pooling, batch normalization

after every convolution were also included to further address the overfitting. The

three CNN architectures differed only in the number of filters per convolutional

block: the small CNN had half the number of filters of the medium CNN, which in

turn had half the number of filters of the large CNN.

– CNN + LSTM: The second model combined CNNs and LSTMs to evaluate whether

the inclusion of memory cells could better capture temporal dependencies in the

data. For this case, six 2D convolutional layers were used. The number of layers

was increased to match the model complexity (in terms of parameters) of the previ-

ous CNN model, since most linear layers were removed in this configuration. Skip

connections through concatenation were implemented between the outputs of the

first and third convolutional layers, and between the output of this concatenation

and the output of the fifth convolutional block. The output from the CNN was fed

into a LSTM, and the LSTM’s output was then passed through a linear layer. The

same overfitting prevention mechanisms as in the CNN model were used, with an

additional dropout rate of 0.5 in the LSTM block.

2.2.4 Training and evaluation

The training and evaluation process comprised four main steps: (1) selecting hyperparameters

for each model using cross-validation, (2) comparing similar models based on cross-validation

results, (3) comparing the best deep learning model with the best traditional model, and (4)

conducting a qualitative clinical evaluation of the best model. Each step is detailed below.
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Selection of the best hyperparameters

The hyperparameters tested for each traditional machine learning model implemented (logistic

regression, random forest and XGBoosting classifier) are detailed in the Appendix E. Hyperpa-

rameter selection was conducted using Grid Search CV, which evaluates different hyperparam-

eter combinations via cross-validation and selects the best combination based on the average

scoring across CV folds. The F1-score macro was used as the scoring metric (further discussed

below), and group 10-fold cross-validation was the chosen CV method. Unlike standard k-fold

CV, group k-fold CV allows separation of subjects between training and validation; i.e., clips

coming from a single subject cannot be splitted between the training and the validation sets. A

combined version of the curated FNUSA and Mayo datasets was used for both the traditional

and DL models in this step.

For the DL models, group 10-fold CV with two repetitions was used; however, Pytorch

models are not supported by sklearn’s GridSearchCV. As a workaround, data splits for each

fold were computed manually, and each architecture was trained and validated per fold.Various

metrics were computed for each fold (detailed later in Results), resulting in 20 values per

metric for each tested architecture. Then, the different architectures were compared using

statistical tests based on the distribution of these values to define the best-performing CNN

and CNN+LSTM models. Although cross-validation is not commonly used for deep learning

models, it was employed here due to the significant variation observed in results when changing

the validation set.

Comparison of similar models

After selection of the best hyperparameters for each traditional model, a comparison between

the models was performed to identify the best traditional model. Each algorithm (logistic

regression, random forest, and XGBoost classifier) was evaluated using repeated group 10-

fold cross-validation with the optimal hyperparameters identified. Five repetitions were used,

providing at least 50 samples for each metric computed per model.
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Statistical comparisons of the means of the distribution for each metric were conducted for

each pair of models. Permutation testing with 100000 resamples and false discovery rate (FDR)

correction were used for this purpose, implemented through the functions scipi.stats.permutation_test()

and fdrcorrection() from statsmodels package [135].

A similar comparison was conducted between the two DL models (CNN and CNN+LSTM);

however, the models were not retrained with the best hyperparameters as in the previous case.

The only hyperparameters tested for the DL models were the number of filters per convolu-

tional block, and they were tested by manually training the architecture for each of the different

folds. Therefore, it was not necessary to retrain the best architectures for comparison as these

were already previously calculated. The distributions per metric were then compared using the

same procedure as in the traditional models.

Deep learning vs traditional machine learning evaluation

Once the best traditional machine learning and DL models were found, we compared them to

define whether DL provided any significant improvement compared to non-DL models. These

two models were retrained using the whole training dataset (composed by the FNUSA and

Mayo datasets) and the third dataset from the University of Florida was used as the external

test set.

Clinical insights

As previously mentioned, a qualitative assessment of the final chosen model was conducted in

a clinical setting at the University Hospital from the London Health Sciences Centre (LHSC).

Four minutes of awake resting data from seven channels in two patients with DRE who un-

derwent iEEG were annotated using the model. These annotations were reviewed by a clinical

fellow from the Western Epilepsy Program at LHSC to assess the model’s performance. The

annotations were presented using the open-source software EDFbrowser, which allows the vi-

sualization of the time series in similar way as inspected during clinical evaluation. The clinical
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fellow was asked to qualitatively assess her level of agreement with the model outputs and to

provide insights into any discrepancies.

2.2.5 Metrics used for evaluation

To compare the different architectures and models, five metrics were used. To explain these

metrics, first the following concepts must be understood, which will be explained for a binary

classification problem:

• True positives (TP): refers to the amount of positive samples that were correctly classi-

fied as positive.

• True negatives (TN): refers to the amount of negative samples that were correctly clas-

sified as negative.

• False positives (FP): refers to the amount of negative samples that were incorrectly

classified as positive.

• False negatives (FN): refers to the amount of positive samples that were incorrectly

classified as negative.

Based on these concepts, the metrics used for the comparison of the models and architec-

tures can be found below:

• Accuracy: The accuracy is defined as the number samples correctly labeled divided by

total number of samples. This metric is not ideal for unbalanced datasets.

• Macro precision: In a binary classification, precision is calculated using the formula:

Precision =
TP

T P + FP
(2.1)

which can be interpreted as the fraction of samples classified as positives that were actu-

ally positives. Macro precision refers as the average precision across classes, so in this
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case it would be:

Macro-Precision =
Precisionnoise + Precisionphys + Precisionpath

3
(2.2)

where Precisionnoise, Precisionphys and Precisionpath correspond to the precision

calculated for the noise, physiology or baseline, and pathology classes respectively.

Macro precision does not take in consideration the amount of samples per class, which

makes it a better option for unbalanced datasets compared to micro precision, where

precision is calculated across classes without considering any split.

• Macro recall: Recall for a binary classification is defined as:

Recall =
T P

T P + FN
(2.3)

which gives a fraction of how many of all the positive samples were actually classified

as positive by the model. Similar to precision, the macro recall was used for the compar-

isons.

• Macro F1-score: The F1-score is a balanced metric between precision and recall and

can be calculated using the formula:

F1-score =
2 · Precision · Recall
Precision + Recall

(2.4)

The macro version of the F1-score was used for the comparisons done. This was consid-

ered as the most important metric as it is the one that better balances the ability of the

model to detect positive samples per class while not overestimating any of the classes.
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Results

3.1 Validation of the Preprocessing Workflow

This section will focus on the validation of the designed workflow. Each of the steps was val-

idated sequentially, following the same order as the one used by iEEGPrep, by comparing the

outputs of the developed app to the outputs from Fieldtrip for one channel. Fieldtrip was cho-

sen above other options like EEGLAB since the proposed protocol for iEEG analysis written

by Stolk et al. was developed using this tool, which simplified the scripting process.

For drift-correction and PLI attenuation, comparison between the different supported meth-

ods will also be presented. For PLI removal, comparisons between methods using synthetic

data will be shown in this chapter as well.

Region identification will be the exception for this validation process as Fieldtrip does

not support the localization of channels given the coordinates in advance. Therefore, for this

preprocessing step, visual validation using 3D Slicer will be presented.

Finally, the advantages of the developed tool compared to the experience in Fieldtrip will

be briefly discussed to highlight some of the advantages of iEEGPrep.

76
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3.1.1 Validation of each preprocessing step

As previously mentioned, the validation of the steps consisted in four main parts:

• All steps will include a visual assessment by comparing iEEGPrep output with Fieldtrip

result for one channel. Plots in the time, frequency and time-frequency domain will be

shown.

• For all steps, the correlation without lag between each channel preprocessed with iEEG-

Prep and Fieldtrip was calculated both in time and frequency domain. To calculate the

frequency spectrum for each channel, Welch’s method was used with a window of 3 s

and an overlap of 50%. The distribution of these errors will be shown after each prepro-

cessing step to do a qualitative analysis of these differences.

• For PLI attenuation and drift correction, a statistical comparison between the different

methods will be presented. Time, frequency and time-frequency plots will also be shown.

• For PLI attenuation, as the advanced methods were re-implemented from MATLAB

code, a validation of each of the algorithms using simulated data was performed. Dif-

ferent metrics were used to compare the two implementations through statistical testing,

which will be presented later in this chapter.

Epoch extraction

The epoch from the selected EDF file used for the validation was chosen to be four minutes

of data from the event ’awake trigger’, present in annotations for the file. In iEEGPrep, this

required only changing one line of the configuration file as follows:

event: ['awake trigger', 'duration', 240]

The obtained epochs from iEEGPrep and Fieldtrip were first confirmed to have the same

dimensions. Figure 3.1 shows the first 60 seconds for both epochs for the channel LPIn02,
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which corroborates that iEEGPrep was able to find and extract the desired epoch. This channel

will be used for comparisons in the following steps and was chosen since the bipolar channel

LPIn2-3 was noted to have significant power line interference.

Figure 3.1: Time plots for the first 60 seconds extracted by iEEGPrep and Fieldtrip from the
channel LPIn02.

To do a more quantitative comparison between the outputs, correlation with zero lag in

time and frequency domain were calculated for each pair of channels. Zero lag means that the

signals are compared using the same time/frequency values; i.e., no lag is added to any of the

signals before measuring their similarity using correlation. Therefore, a high correlation with

zero lag shows a good similarity between the two signals compared starting from the same

time or frequency value. Figure 3.2 shows the distribution of these values for the preprocessed

EDF file. It can be seen that both the distribution of correlation values in both the time and

frequency domain are around 9.99e−1, corresponding to a similarity of 99%.

Downsampling

Following the epoch extraction, downsampling from 2048 Hz to 200 Hz was performed, fol-

lowing the downsampling performed in prior ieeg studies [51, 15, 149, 156]. As it can be

seen in Figure 3.3, the signals now look less noisy; i.e., some high frequency components

were removed, as expected from the process. Qualitatively speaking, no significant difference

was observed between the signals outputted from iEEGPrep and Fieldtrip, as it can be seen in

Figure 3.3. Further qualitative evaluation was performed in the frequency and time-frequency

domain, but no differences were observed, as shown in Figures C.2 and C.3 in the Appendix C.
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Figure 3.2: Distribution of correlation values with zero lag in time domain (left) and frequency
domain (right) between the different pairs of channels present in the extracted epochs using
iEEGPrep and Fieldtrip. The amplitude scales for both plots show values very close to 9.99e−1
(or 0.99), highlighting the strong correlations observed across both time and spectral domains.

Figure 3.3: Time plots for the first 60 seconds of the downsampled signal from the LPIn02
channel using iEEGPrep and Fieldtrip.

Similarities between the signals for the whole file were quantified using the correlation

value with no lag in both time and frequency domain. As it can be observed from Figure

3.4, both the distribution of values in the time and frequency domain were found to be around

9.99e−1, showing a high degree of similarity between the signals downsampled using iEEG-

Prep and Fieldtrip.

Drift correction

As aforementioned, the validation of drift correction was subdivided in two parts.

Comparison against Fieldtrip output using real data
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Figure 3.4: Distribution of correlation values with zero lag in time domain (left) and frequency
domain (right) between the different pairs of channels present in the downsampled epochs
using iEEGPrep and Fieldtrip. The amplitude scales for both plots show values very close to
9.99e−1 (or 0.99), highlighting the strong correlations observed across both time and spectral
domains.

First, drift correction was applied to the resulting data from the previous step (downsam-

pling). The method used for this first part was high-pass filtering, as it is the most common one

and the one recommended for long duration data. For the iEEGPrep implementation, the tran-

sition band for the FIR filter was chosen to go from 0.1 Hz to 0.2 Hz. In Fieldtrip, the default

Butterworth high-pass filter was used with a cut-off frequency of 0.25 Hz.

Figure 3.5: Time plots for the first 60 seconds of the detrended signal from the LPIn02 channel
using iEEGPrep and Fieldtrip. It is possible to see that the slow trends previously visible in
Figure 3.3 were attenuated after drift correction.

As shown in Figure 3.5, when comparing to the downsampled signal from Figure 3.3, it can

be noted that the low frequency trends were attenuated and now the signal is more closed to be
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centered at zero in the y axis. One detail that is visible is that the signals do not look completely

similar, which differed from the previous preprocessing steps. In the plots from Figure 3.5,

this is especially noticeable in the first seconds, as the Fieldtrip output seems to have a peak

not visible in the iEEGPrep output. This difference was further confirmed when looking at

the correlation values from Figure 3.6, showing lower values compared to the previous steps;

nevertheless, a correlation above 98% was observed in the time and frequency domain, still

showing a very high degree of similarity between the outputs.

Due to this subtle decrease of the correlation values, statistical comparison of the frequency

components was performed, as shown in Figure 3.7. Permutation testing with 100000 resam-

ples and false discovery rate correction was used to check if there was any significant differ-

ence between the means of the distributions for each component. Corrected p-values of 0.3396,

0.3243, 0.4694 and 0.4892 were obtained for the 0 Hz, 0.33 Hz, 0.67 Hz and 1 Hz components

respectively, showing non-significant differences between the components distributions.

Figure 3.6: Distribution of correlation values with zero lag in time domain (left) and frequency
domain (right) between the different pairs of channels present in the high-pass filtered epochs
using iEEGPrep and Fieldtrip. Values obtained show a correlation above 98% for both cases.

As expected, from the transition band and cut-off frequencies used, the main differences

are seen at the lowest frequencies. For the 1 Hz component, no visible difference is perceived.

As shown by Figure 3.7, the only visible variation in the distributions between Python and
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MATLAB is observed at 0.33 Hz, which reflects how the Fieldtrip filter is attenuating higher

frequencies compared to iEEGPrep implementation, regardless the fact that the Fieldtrip filter

was tuned to try to mimic the output given by iEEGPrep; nevertheless, this difference was not

found to be significant. These subtle differences can be further observed in the time-frequency

map shown in the Appendix C.

Figure 3.7: Statistical comparison of the first four frequency components between the differ-
ent pairs of channels present in the high-pass filtered epochs using iEEGPrep and Fieldtrip.
Components were calculated using Welch’s method. No statistical significant differences were
observed.

Comparison between the different implemented methods

As the second validation for drift correction, a qualitative comparison between the different

implemented methods was performed. As shown in Figure 3.8, high-pass filtering was the

only method where the original low frequency oscillations observed in the downsampled signal

(Figure 3.3) were considerably attenuated.

A visual comparison of the first four frequency components, calculated through Welch’s

method, is shown in Figure 3.9. In line with what was seen on the time domain for the LPIn02

signal, high-pass filtering is the only method with a visible change for the first two components.

Linear detrending and demeaning do not seem to have any visible effect in the frequency re-

sponse, possibly due to a dynamic change of the linear trend and mean of the signal across
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time, which can be already perceived from Figure 3.5.

Figure 3.8: Time plots for the first 60 seconds of the detrended signal from the LPIn02 channel
using iEEGPrep and Fieldtrip.

Figure 3.9: Distribution of amplitude values of the first four frequency components for the
channels before (Original, in red) and after drift correction. High-pass filtering was the only
method that showed a visual difference for the first two frequency components. Components
were calculated using Welch’s method.

Re-referencing

After applying drift correction to the test EDF file, the channels were re-referenced to a bipolar

montage, as this is the only re-reference montage available at this point in iEEGPrep. As
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previously mentioned, iEEGPrep and Fieldtrip use the same convention to execute the re-

referencing; therefore, no substantial differences were expected.

As shown in Figure 3.10, the correlation values obtained oscillate between 0.98 and 1,

similar to the ones found after high-pass filtering. When looking at individual signals, with

the example case of the LPIn2-3 (or LPIn02-LPIn03) channel, no evident differences were

visually observed, as shown in Figure 3.11 for the frequency domain. Further validation using

time-frequency maps did not show visible differences, as shown in the Appendix C.

Figure 3.10: Distribution of correlation values with zero lag in time domain (left) and frequency
domain (right) between the different pairs of channels present in the re-referenced epochs by
iEEGPrep and Fieldtrip. Values obtained show a correlation above 98% for both cases.

Figure 3.11: Frequency spectrum plots for the first 60 seconds from the channel LPIn2-3 using
iEEGPrep and Fieldtrip. Frequency domain signal was calculated using Welch’s method.
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PLI attenuation

The validation of this step is composed of three different parts: a comparison between Fieldtrip

and iEEGPrep outputs for previously re-referenced data, a validation of each advanced PLI

attenuation methods through a comparison between the MATLAB and the in-house Python

implementations using simulated data, and finally a comparison between the different imple-

mented advanced methods using simulated data.

Comparison against Fieldtrip output using real data

As briefly mentioned before, channel LPIn2-3 was chosen as the case of study for this re-

port as it showed a significant power line noise contamination, which is visible in Figure 3.11

in the peak around 60 Hz. Cleanline was chosen as the PLI attenuation method for this first

comparison, as it is recommended by EEGLAB, one of the most used EEG analysis tools. Fig-

ure 3.12 shows how both the MATLAB and Python implementation successfully attenuate the

peak around 60 Hz. The same correlation values computed in previous steps were calculated

but no difference compared to the distribution from the re-referencing step was seen. The figure

showing the correlation values distribution can be found in the Appendix C.

Figure 3.12: Frequency spectrum plots for the first 60 seconds from the channel LPIn2-3 using
iEEGPrep and Fieldtrip after PLI attenuation using Cleanline algorithm. Frequency domain
signal was calculated using Welch’s method.

Comparison against MATLAB’s implementation for the used advanced PLI attenuation

methods

Three advanced PLI attenuation methods were re-implemented in Python for iEEGPrep:

the new implementation of the Cleanline algorithm, Zapline and removePLI. As these al-
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gorithms were initially implemented in MATLAB, a comparison between the in-house re-

implementation in Python and the original MATLAB was performed to quality control for

any possible mistakes in the process. To do so, hundred EEG channels with a sampling rate

of 400 Hz were simulated as random pink noise plus frequency components at 60 Hz and its

harmonics. An example of these signals is shown in the left column of Figure 3.13, where PLI

peaks in the fundamental frequency and two harmonics are visible.

Figure 3.13: An example of a signal from the 100 SEEG channels simulated for validation of
PLI attenuation methods for the two considered cases. Left column shows the case A, where
peaks at the fundamental frequency and its harmonics were induced into the data. Right column
shows case B, where more broadband line noise was injected into the simulated data.

Two metrics were used to compare MATLAB’s original implementation to the Python one

for iEEGPrep: SNR and attenuation. Both metrics were computed in decibels. SNR was

calculated using the following equation:

SNR (dB) = 10 · log10

(
average power of clean signal

average power of remainder noise

)
(3.1)

where the average power was estimated as the mean of the squared signal and the remainder

noise was calculated as the subtraction of the filtered signal with the simulated pink noise signal
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before the injection of PLI.

Attenuation (dB) =
n=3∑
n=1

20 · log10

(
BP f ilt,nω0−5 Hz−>nω0+5 Hz

BPnoisy,nω0−5 Hz−>nω0+5 Hz

)
(3.2)

where ω0 represents the fundamental frequency (60 Hz), n the harmonic number (1 for fun-

damental, 2 for the second harmonic, etc.) and BP the bandpower for a signal between two

frequencies. The numerator of the fraction corresponds to the bandpower of the filtered signal

between the harmonic frequency minus 5 Hz and plus 5 Hz, and the denominator is the equiva-

lent but for the simulated signal with the PLI. The bandpower from f1 to f2 was then calculated

as follows:

BP f1−> f2 (dB) =
∫ f 2

f1
W( f ) d f (3.3)

where W( f ) is the value from the Welch’s method result at a specific frequency f . The integral

was calculated through the trapezoidal rule implemented in Numpy.

Figure 3.14: Comparison between the Cleanline implementation in MATLAB and Python us-
ing signal-to-noise ratio (SNR) and the attenuation in decibels. No statistical significant differ-
ences were found between the means of the distributions for both metrics, with p-values above
0.4. A power of 87.1% was achieved with a hypothetical effect size of 0.14 dB for the SNR
comparison, while a power of 81.7% was achieved with a hypothetical effect size of 1.1 dB for
the attenuation comparison.

Figures 3.14, 3.15 and 3.16 show the distribution of these metrics computed for each chan-
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nel using Cleanline, Zapline and removePLI respectively. Statistical significance was computed

using permutation testing with 100000 repetitions and FDR correction. No statistically signif-

icant differences were found for any of the methods, neither in SNR nor in attenuation values,

showing a visually identical distribution for all cases.

Figure 3.15: Comparison between the Zapline implementation in MATLAB and Python using
signal-to-noise ratio (SNR) and the attenuation in decibels. No statistical significant differ-
ences were found between the means of the distributions for both metrics, with p-values above
0.4. A power of 85.1% was achieved with a hypothetical effect size of 0.14 dB for the SNR
comparison, while a power of 80.9% was achieved with a hypothetical effect size of 1.1 dB for
the attenuation comparison.

Furthermore, a power analysis for each of the comparisons was conducted, aiming to deter-

mine the likelihood that the test would detect a meaningful difference if one exists. This power

analysis was conducted by simulating data under a hypothetical effect size. More specifically,

the compared groups were simulated using a normal distribution with the mean of each original

group (metrics from MATLAB and Python) and the standard deviation of the combined data

from both groups. A hypothetical difference was then added to one of the two groups as the

original data did not show any statistically significant difference. This difference was chosen

to verify the minimum differences between the means of the two groups that the statistical test

is capable of detecting as significant. The significance level was also set to 0.05 in this case

and the minimum power considered sufficient was 80%.
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In the case of the SNR comparisons, Zapline was the case the showed the highest minimum

difference that can be detected with the statistical comparison, with a power of 85.1% when

using a hypothetical effect size of 1 dB. On the other hand, the minimum difference that can be

detected in the attenuation test to achieve a power above 80% was found to be close to 1.1 dB

for all the different methods. Based on these results, the validation was considered satisfactory.

Figure 3.16: Comparison between the removePLI implementation in MATLAB and Python
using signal-to-noise ratio (SNR) and the attenuation in decibels. No statistical significant
differences were found between the means of the distributions for both metrics, with p-values
above 0.3. A power of 85.1% was achieved with a hypothetical effect size of 0.14 dB for the
SNR comparison, while a power of 81.1% was achieved with a hypothetical effect size of 1.1
dB for the attenuation comparison.

Comparison between the different implemented methods

As a final step of the PLI attenuation step, a comparison between the different implemented

methods was performed. First, two cases of simulated data were evaluated and then the meth-

ods were also compared using real data from the test EDF file previously used.

Figure 3.13 shows the two simulated cases, one with sharp peaks in the fundamental and

harmonics and the other with more broadband noise. The main used to compare the different

methods was the SNR in decibels. Other metrics such as RMSE in time domain and RMSE in

frequency domain with the Welch’s method results were also considered, results that are shown

in the Appendix C.
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Figure 3.17: Distribution of SNR on the simulated SEEG channels in case A for the different
advanced PLI attenuation methods implemented in iEEGPrep. Zapline showed a significantly
higher attenuation compared to the other methods, as indicated by its more negative dB values.
No statistically significant difference was found between the Zapline and removePLI methods.

Figure 3.18: Distribution of attenuation values (dB) on the simulated SEEG channels in case
A for the different advanced PLI attenuation methods implemented in iEEGPrep. Zapline
showed a significantly higher SNR compared to the other methods. No statistical significance
was found between Cleanline and removePLI methods.

As shown in Figure 3.17, the Cleanline algorithm showed a significantly better SNR com-

pared to removePLI for case A, with a p-value of 1.14e−3. No significant difference was found

between Cleanline and Zapline when using SNR; however, the attenuation values did show a

significant difference between these two methods, with a p-value of 9.375e−3, as shown in Fig-

ure 3.18. Cleanline also showed a better performance when using other metrics such as RMSE,
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further described in the Appendix C. No statistically significant differences were observed be-

tween Zapline and removePLI for most metrics, with the exception of RMSE in frequency

domain. Visually, no major differences were observed in the frequency domain for the three

methods, which is exemplified in Figure 3.19. Case B showed more drastic results compared to

case A, with Zapline being the only method able to successfully remove the broadband noise;

however case A was considered more relevant to this work as it is the standard method for

testing PLI. Results for case B can be further seen in the Appendix C.

Figure 3.19: Example of power spectral density curves obtained through Welch’s method for
one simulated signal filtered for case A through the different advanced line noise attenuation
algorithms implemented in iEEGPrep. Orange and blue signals show simulated signal before
and after PLI attenuation respectively.

Then, it was intended to verify if the same behavior was observed when using real data. The

previously re-referenced EDF file was further preprocessed using iEEGPrep with Cleanline,

Zapline and removePLI. The same channel LPIn2-3 was used to qualitatively compare the

results. As shown in Figure 3.20, when looking at the average frequency characteristics across

time, all of the methods are able to remove the previously observed peak around 60 Hz in

Figure 3.11.

As Welch’s method only gives an average frequency characteristic, time-frequency maps
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were then plotted to verify that the power line noise was successfully attenuated across time.

Before power line noise attenuation, line noise predominated mainly in the first part of the

signal, being the component with higher amplitude, which can be seen in the supplemental

Figure C.7 in the Appendix C; therefore, the same time frame was plotted after the application

of the PLI reduction.

Similar to the results found in case A, when applied to real data, Cleanline was the algo-

rithm that seemed to have a better performance when visually compared, as shown in Figure

3.21. In this case, Zapline seemed to attenuate considerably the noise but it did not remove

it completely. The analyzed channel did not show constant line noise contamination across

time, as it predominated mainly at the beginning of the signal. Since Zapline is based on the

extraction of the line noise component across the whole signal, it is possible that it was not able

to remove all of the contamination due to this noise variability across time.

Figure 3.20: Power spectral density plot for the channel LPIn2-3 in the preprocessed EDF file
using the different advanced PLI attenuation methods.

The method removePLI showed a good attenuation with the exception of the beginning

of the signal. This is probably related to its removal of the noise through an iterative fitting

across time; therefore, the worst fit could be expected to be at the beginning of the signal. This
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was also seen when looking at the time plot, where a big artifact is shown at the beginning,

compared to Cleanline and Zapline, which can be observed in the supplemental Figure C.13 in

the Appendix C.

Figure 3.21: Time-frequency map from 0 Hz to 70 Hz of the first 60 seconds of the re-
referenced signal with PLI attenuation from the channel LPIn2-3 using the implemented ad-
vanced PLI attenuation methods. Colorbar scale is the same for all plots.

From three the performed evaluations, Clealine showed better performance in one of the

simulated cases and also when using in real data. Simulated case with broadband PLI was the

only one where Cleanline did not perform well, with Zapline being the only method able to

remove the PLI. Further validation using more complex simulated data or large SEEG sam-

ples is required to determine the best method for SEEG preprocessing; however, the findings

presented here show some of the strengths and limitations of each implemented algorithm.

Channel localization

The last preprocessing step validated was identification of the brain region for each channel.

Only a visual validation was performed for this case by looking at the original CT and MRI

along with the used parcellation file and electrodes positions. 3D Slicer, an open-source soft-
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ware for visualization and processing of medical images and meshes was used for this purpose

[41]. The parcellation tested was in the same space as the pre-operative T1w image (consid-

ered subject space) and SynthSeg was used to segment the pre-operative MRI, resulting in a

parcellation with FreeSurfer’s volumetric regions of interest (ROI) [17].

Figure 3.22: Coronal 2D view of the location of the monopolar channels part of the bipolar
channel LAIn9-10 and the virtual midpoint between them. Left frame shows the position of
the channel LAIn09 in the gray region (corresponding to ROI ctx-lh-insula). The picture in the
middle shows the position of the channel LAIn10 near the intersection between the ROI ctx-
lh-insula (gray) and ctx-lh-parstriangularis (red). The right plane shows the virtual midpoint
between these two monopolar channels lying in the CSF (blue). The yellow region corresponds
to the ROI Left-Cerebral-White-Matter.

Next, we present one case showing the contribution of having a volume mask for region

identification for a bipolar channel instead of just using the midpoint between the two contacts

part of the channel. The bipolar channel chosen for this demonstration was LAIn9-10, which

is expected to be close to the left anterior insula. This channel was chosen as it resulted in

different regions identified when using a volumetric mask compared to the mid point between

the contacts.

As shown in Figure 3.22, the ROI were the contact corresponding to LAIn9 is located cor-

responds to ctx-lh-insula (which represents the left insula gray matter) and LAIn10 is located

near the intersection between this gray region and the ctx-lh-parstriangularis (red ROI, abbre-

viation for left pars triangularis grey matter). Based on the location of the contacts, it would

be expected that the assigned ROI for the bipolar channel LAIn9-10 was ctx-lh-insula, as it

seems that the region between and around the two contacts part of the channel would mostly

correspond to the gray area. However, when looking at the mid coordinate between both con-
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tacts in Figure 3.22, we can see that this virtual point ends up lying in a small part of the ROI

constituting the cerebrospinal fluid (CSF).

As previously explained, in a bipolar configuration, the captured signal mainly comes the

regions around each contact and in the middle of them from volume conduction. When looking

at the different planes in Figure 3.22, the CSF does not seem to have predominance neither

around the contact nor in between, but the middle point ended up lying in a small section of

the ROI just in between the contacts. Therefore, when running iEEGPrep with point-based

localization of the bipolar channel, CSF is assigned to LAIn9-10. On the other hand, when

using the volumetric approach, the channel is assigned to the ROI ctx-lh-insula, with a 62% of

the mask inside it, followed by CSF with 17%.

This case shows how using a volumetric mask might give a better intuition of where the

signals captured by an SEEG channel might come from. The main result from this step in

iEEGPrep just shows the biggest region per channel; nevertheless, to increase the transparency

of the results, a supplemental JSON file is given, showing the distribution of the volumetric

mask across ROIs per channel, which should facilitate the QC of the results.

3.1.2 Comparison against existing solutions

The process of validation allowed a direct comparison of not only the outputs of iEEGPrep

and Fieldtrip but also their usability for the user. The main function used by Fieldtrip for

preprocessing is called ft_preprocessing, which receives a structure array object with the

desired configuration, indicating the desired steps to run and some specific parameters for

each step, like the high-pass filter frequency. Contrary to iEEGPrep, when using this function

Fieldtrip does not allow a quality control of the preprocessing between the different steps and

no online information was found with respect to the order of the steps.

To be able to QC each step, several calls of the ft_preprocessing had to be implemented

in a script, which can also be achieved by using individual functions available for each prepro-

cessing function. Furthermore, additional code had to be used to achieve these QC results;
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for example, the computation of a transformation to frequency domain for each channel. The

code used for the preprocessing of the file using Fieldtrip can be found in the Appendix D. In

iEEGPrep, several QC metrics and plots are already pre-computed and outputted in a HTML

report for the user.

Through snakebids, iEEGPrep allows for an easy reading of large iEEG-BIDS datasets.

On the other hand, Fieldtrip requires the input of the path specific for each file as part of the

information of the configuration structure array passed to ft_preprocessing, as shown in

line 3 from the code in the Appendix D. This would require a for loop and the use of another

tool such as glob to parse the directory.

The re-referencing step was also found to be more rigid compared to my implementation, as

the electrodes have to be named using only letters for the electrode name and numbers for the

order of the contacts. The developed tool, iEEGPrep, supports parsing of monopolar channels

with names with the following formats:

• Text + number. Example: LPIn09

• Text + number + dash + number. Example: LPIn1-9.

• Text + number + text + number. Example: LIn1A-9.

This eases the parsing of monopolar channels for re-referencing compared to Fieldtrip.

Overall, compared to existing tools previously discussed in the Introduction section like

Fieldtrip and Brainstorm, iEEGPrep provides improvements in the following points:

• Usability: My tool allows an easier parsing of iEEG-BIDS datasets with help of Snake-

bids, as shown with its comparison to Fieldtrip. In addition, prior tools rely on auto-

matic generation of code or the direct scripting of pipelines, which make it difficult to

configure for inexperienced users, especially considering the poor code documentation

available. iEEGPrep allows the configuration of the preprocessing steps through a simple

human-readable YAML file, easing the usability of my tool. Finally, the independence
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of iEEGPrep from paid-based software, like MATLAB, allows its usage to all users in-

dependently of their access to private licenses.

• Scalability: Main existing solutions available for iEEG preprocessing do not support

direct scalability of workflows in distributed computing systems. Fieldtrip was the only

tool from the analyzed group that provides documentation for usage in distributed sys-

tems using qsub; however, no straightforward approach for its usage for preprocessing is

available, hindering its implementation for users less experienced in coding. iEEGPrep

improves the scalability of the iEEG preprocessing through Snakemake, which allows

users to easily scale the workflow based on the available resources through the CLI (like

the number of cores or memory available). Future work should focus on better documen-

tation for the users, as it will be later discussed.

• Transparency and Reproducibility: Additionally, based on the YAML configuration

file used by iEEGPrep, my tool facilitates both the understanding of how the methods

are implemented thanks to the availability of descriptions for each method and their

corresponding parameters in this file. This improves the transparency of my implemen-

tation compared to previous solutions, which do not provide easily accessible documen-

tation of their methods and parameters used, forcing the user to review the code to try

to understand the implementations of the methods and their parameters. Furthermore,

iEEGPrep improves the transparency and reproducibility of preprocessing applied prior

further analysis for published studies or datasets as it only requires the sharing of this

single human-readable YAML file. Availability of qc checkpoints in iEEGPrep also im-

proves the easy review of the effect of each preprocessing step on the data, enhancing the

transparency of the results, a feature that was not found in any other prior solution.

• Portability: The development of iEEGPrep using open-source software and Python as

the base language, allows the containerization of the tool and dependencies management,

which is considered part of the future work for this thesis.
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• Availability of PLI attenuation methods: iEEGPrep supports the usage of four differ-

ent PLI attenuation methods without any additional installation required, which is not

available in any other reviewed software tool. This allows users to use their preferred

method or easily test results using different methods.

3.2 Validation of the Automatic iEEG Artifact Detector

3.2.1 Datasets information

Initially, we inspected the datasets used for training and validation. Figure 3.23 presents two

example clips from each class used for training. During this inspection, many instances from

the noise and baseline classes appeared almost indistinguishable. Even some instances from

the baseline class seemed noisier than those in the noise group. For example, in the bottom

left signal from Figure 3.23, the first part of the signal contains fast oscillations that could be

interpreted as noise. No clear visual differences were neither observed when transforming the

images to time-frequency maps. On the other hand, the pathological class seemed to be mostly

characterized by spikes, making it easier to distinguish from the other two groups.

3.2.2 Performance evaluation

As explained in the methodology, the evaluation of the models consisted in three steps: hyper-

parameter tuning, selection of the best traditional and deep learning models, and evaluation of

the best global model. Next, the results for each step are presented. Finally, the insights gained

from the clinical qualitative assessment are shown.

Selection of the best hyperparameters

As aforementioned, hyperparameter tuning for the traditional machine learning models was

performed using 10 fold cross validation using macro F1-score as the metrics. Description
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Figure 3.23: Examples of instances per class in the FNUSA and Mayo datasets used for training
and validation.

of the evaluated models and their tuned hyperparameters were previously described in the

subsection Selection of best hyperparameters under the Methodology chapter. Furthermore,

the grid of hyperparameters tested for each model can be found in Appendix E. Below, the

best hyperparameters found per model are shown. Those hyperparameters not discussed were

not included in the grid search and they were kept as default according to the corresponding

package used.
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• Logistic Regression:

– Inverse of regularization strength C of 1.

– Solvers: Newton-Conjugate-Gradient method (newton-cg with l2 penalty (Ridge

regression).

– Multinomial loss.

• Random Forest:

– Criteria function for splits: entropy.

– A maximum depth per tree of 3.

– An inspection of 50% of all the features when looking for the best fit.

– A minimum percentage of 5% of all the samples per leaf.

– 250 estimators or trees in the forest.

• Extreme Gradient Boosting:

– A learning rate of 0.001.

– A maximum depth per tree of 4.

– 1000 estimators or trees used.

In the case of the two deep learning models tested, three architectures were compared for

each of them. Figure 3.24 shows the results from the comparison between the three architec-

tures implemented for the CNN model. All the box plots were generated using the Python

package Seaborn.

As it can be observed, no statistical differences were obtained between the three architec-

tures. No visible differences between the median and mean were neither observed. Following

the parsimony principle, the simplest architecture (CNN-Small) was chosen as the final CNN

model. Similarly, no significant statistical differences were obtained between the means of the
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metrics distributions for the CNN+LSTM architectures. Then, the simplest model was also

chosen as the final one.

Figure 3.24: Comparison between the tested CNN architectures. Metrics used were accuracy,
macro precision, macro recall and macro F1-score. CNN-S, CNN-M and CNN-L refer to the
implemented small, medium and large architectures respectively. Box plot shows the interval
between the 25% and 75% percentiles, the black line inside the box shows the median and the
white dot the mean of each distribution.

Figure 3.25: Comparison between the tested CNN+LSTM architectures. Metrics used were ac-
curacy, macro precision, macro recall and macro F1-score. CNN+LSTM-S, CNN+LSTM-M
and CNN+LSTM-L refer to the implemented small, medium and large architectures respec-
tively. Box plot shows the interval between the 25% and 75% percentiles, the black line inside
the box shows the median and the white dot the mean of each distribution.
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Comparison of similar models

After selection of the best hyperparameters, a direct comparison between the traditional models

was performed using 10 fold cross-validation with five repetitions. Figure 3.26 shows the box

plots with the distributions of metrics computer per model. Significant statistical differences

were obtained between the logistic regression model and the other two tree-based methods,

which justifies the need of complex models. No significant differences were observed between

the XGBoost classifier and the random forest; however, the last one was selected as the final

traditional model due to its explainability simplicity compared to XGBoosting.

Figure 3.26: Comparison between the different traditional machine learning models after hy-
perparameter tuning. Metrics used were accuracy, macro precision, macro recall and macro
F1-score. XGBoost, RF and LR correspond to the XGBoost, random forest and logistic regres-
sion classifiers respectively. Box plot shows the interval between the 25% and 75% percentiles
while the black line inside the box shows the median and the white dot the mean of each dis-
tribution.

On the other hand, Figure 3.27 shows the distribution per metric for the chosen deep learn-

ing models. With p-values around 0.11, no statistically significant differences were obtained

for any of these metrics. Nevertheless, the CNN model was selected as the best deep learn-

ing model since all of the metrics shows a better performance when only visually comparing

the mean and median for each metric, as observed in Figure 3.27; besides the known higher

computational complexity of LSTM networks compared to CNNs [123].
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Figure 3.27: Comparison between the different deep learning models after architecture se-
lection. Metrics used were accuracy, macro precision, macro recall and macro F1-score.
CNN-Small and CNN+LSTM-Small correspond to the smallest implemented CNN and
CNN+LSTM models respectively. Box plot shows the interval between the 25% and 75%
percentiles while the black line inside the box shows the median and the white dot the mean of
each distribution.

Deep learning vs traditional machine learning evaluation

As aforementioned, to compare the best deep learning model (CNN-Small) against the best

traditional machine learning model (random forest), both were retrained using the complete

dataset used for cross-validation; i.e., FNUSA and Mayo curated datasets, and then they were

tested on the external dataset from the University of Florida. As described in the Methodol-

ogy chapter, the data from University of Florida used a different referencing method (bipolar)

compared to the two datasets used for training (CAR), then this test not only evaluates gen-

eralizability of the models to external data but also to a different referencing method. After

training, the following metrics were obtained for both models using the dataset from Univer-

sity of Florida:

Model Accuracy Macro precision Macro recall Macro F1-score
CNN-Small 0.312 0.333 0.317 0.25
Random Forest 0.354 0.477 0.564 0.316

Table 3.1: Metrics obtained from testing of best deep learning and traditional machine learning
models on the external dataset from the University of Florida.
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As observed, the metrics drastically dropped for both models compared to the CV results.

Several factors could explain this discrepancy. One primary reason could be the differences

in the dataset labeling processes. For the FNUSA and Mayo datasets, continuous recordings

were annotated by three reviewers. On the other hand, the University of Florida dataset was

annotated by first detecting potential outlier events in the continuous recording, followed by

filtering these events using an IEDs detection algorithm. Therefore, when inspecting the data, it

was noted that most events in the University of Florida dataset contained some transient event

similar to a spike, which two reviewers classified as pathological events, noise, or baseline

activity. This difference in the annotation methods could be one of the reasons for such a

change in the metrics.

To try to explain these results, the metrics for each class were computed for the best model,

the random forest, along with the confusion matrix for better explainability, which are shown

in Table 3.2 and Figure 3.28 respectively. The results showed how the noise class was sig-

nificantly overestimated, particularly for the baseline class, where even more samples were

misclassified as noise than as baseline. Some other samples from the pathology class were also

misclassified as noise. This caused the precision for the noise class to drop drastically to 0.02

while actually detecting all the true positives. Thus, it is evident that the model is drastically

overestimating the noise class, similar to the results previously found [99].

Class Precision Recall F1-score Number of samples
Noise 0.02 1.00 0.05 16
Pathology 0.99 0.37 0.54 798
Baseline 0.42 0.32 0.36 697
Macro average 0.48 0.35 0.36 1511

Table 3.2: Metrics obtained per class for the best implemented model on the external dataset
from the University of Florida.

For the pathology class, the model showed a very high precision but low recall, contrary

to the previous case. The confusion matrix shows that only three baseline clips were misclas-

sified as pathological. However, many pathological events were misdiagnosed as baseline or

noise, thereby reducing the recall. Finally, for baseline, neither a good precision or recall were
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Figure 3.28: Confusion matrix for the random forest on the external dataset from the University
of Florida Neuromedicine Hospital.

obtained since many pathological events were misclassified as baseline and many true baseline

events were misdiagnosed as noise.

To gain a better understanding of the results, both correctly and incorrectly classified sam-

ples from each class were examined. For true pathological events, correctly classified samples

tended to exhibit more prominent spikes compared to incorrectly classified ones. For events

misclassified as noise, these samples indeed appeared noisier compared to those correctly clas-

sified as either pathology or baseline, with the model displaying high confidence in some cases,

such as the top left event in Figure G.4. Additional examples are provided in the Appendix G.

As mentioned before„ one possible cause of the mismatch between the model’s output and

the reviewer criteria could be the differing annotation processes used. High disagreement rates

between reviewers when annotating HFOs and IEDs, reported to be as high as 60%, could also

contribute to the high error rate in the pathological class [110, 139, 13, 10]. Additionally, the

different referencing method used in the dataset from the University of Florida compared to the
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training data could also have an impact on these results.

The random forest evaluated in this work, which resulted as the best traditional machine

learning model, has some resemblance to the one presented by Long et al. in their published

work [99]. In addition, the datasets and their split for training and testing was very similar.

Therefore, it is important to compare my results from the ones presented in this previous work.

Before diving into the results, despite the similarities of the models, it is important to acknowl-

edge some of the main differences in the training methods between this thesis and the work

from Long et al.:

• Dataset split: In both this thesis and the previous work from Long et al., the FNUSA

and Mayo Clinic datasets were combined for training of the model while the data from

the University of Florida were used as an external testing set. However, in this published

work, the authors splitted the combined dataset into training and testing once again,

which resulted in two testing sets: an internal set (from the same institutions used for

training) and an external set (the one from the University of Florida), which differs from

the approach followed in this thesis. In addition, Long et al. did not perform a similar

curation of the data set to balance the number of samples per subject followed in this

thesis for the training data set [99].

• Input selection: The input for the traditional models in this thesis, including the random

forest, was uniquely based on features calculated from DWT components, while Long et

al. calculated features for other frequency bands besides the ones obtained from DWT.

Features used also differ a little between the two works, as some tailored features were

used by Long et al. [99].

• Probability threshold moving (PTM): The paper from Long et al. described the tuning

of the threshold for each class based on the validation data, which was not performed in

this thesis, where the default method of assigning the class with the highest probability

was used [99].
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When talking about results, Long et al. showed better generalizability results compared

to the ones presented on Table 3.2, with F1-scores of 0.148, 0.795 and 0.539 for the artifact,

pathology and baselines classes respectively. However, it was not expected to replicate the

results from this work due to the following reasons:

• Features that cannot be directly obtained from the iEEG data were also considered in

their work, which have a high importance for their model including anatomical location

of the channel, whether a channel is inside or outside of the soz, and the state of con-

sciousness during the recording (awake or sleep). While these features could play an

important role in the classification of interictal iEEG signals, I wanted to test models us-

ing features uniquely coming from the recordings, as these other features are not always

available and it requires further data preparation before the usage of the model.

• In the work from Long et al., even though the signals from the test data used bipolar

referencing, some features from this test data were calculated using the monopolar CAR

version of the signals instead. The authors justify this by describing how some morpho-

logical characteristics of the signals might change after re-referencing to bipolar, which

might negatively affect the model performance. The released dataset only contains the

bipolar signals, which make it impossible to use any monopolar information in this the-

sis. Therefore, even though the authors of this previous research claim to have a model

that generalized to CAR and bipolar, the test results are based on the original signals

using CAR before they were combined into the bipolar channels. On the other hand, I

tested my models using only the bipolar signals to check their generalizability to another

referencing method, which can also justify the decrease of the performance compared to

the work from Long et al.

• Finally, this previous paper applies prior probability adjustment (PPA) to modify the

probabilities for each class as outputted by the model considering the differences in the

class distributions between the dataset used for training and test dataset. Nevertheless,
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applying PPA on a dataset and then reporting the model performance on this same data

might not be ideal as the model’s outputs were modified to adjust the test set, which

might bias the results presented. No similar methods were applied in this thesis.

As it will be discussed in the next chapter, future work is required to evaluate the direct

effect of re-referencing differences in the performance of artifact detectors.

3.2.3 Clinical insights

As a final step in the evaluation of the best model (the random forest), multiple channels from

two subjects from the LHSC were annotated with the model’s outputs and converted to EDF

format for inspection by a clinical fellow at the University Hospital, as previously explained.

The recordings were then loaded into EDFBrowser and visualized using an amplitude scale

between 30 µV/mm and 70 µV/mm, and a time scale of 30 mm/s, closely matching the usual

configuration for reviewing iEEG data in the hospital. Adjacent channels were also visualized

during the review to provide the reviewer with more spatial context. The main observations

gathered from this review process are presented below:

• All reviewed recordings contained a significant number of samples labeled as noise,

but the reviewer could not identify any noisy patterns in the data. To provide a visual

comparison, some manually identified noisy events from other recordings were shown.

These events were clearly visible, typically having a very high amplitude compared to

the baseline (e.g., eye blinks) or a high degree of high-frequency noise with an amplitude

higher than the baseline activity. Therefore, it is likely, as expected from the previously

obtained metrics on the University of Florida dataset, that the model is overestimating

the number of noisy segments and classifying even clips with an unnoticeable amount

of noise as noisy. Figure 3.29 shows one of these clips that the model labeled as noise,

but the reviewers did not agree. As observed in the image, no clear differences are seen

between the segment labeled as baseline and the one classified as noise.
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Figure 3.29: Example of one segment of data at the time 0:00:57 (left of the image) classified as
noise (class 0) that was not verified as such by the expert reviewer. Middle segment at 0:01:00
shows a clip classified as baseline (class 2) by the model. Annotated channel with the model
was LMHc1-2.

Figure 3.30: Example of two segments of data originally classified as baseline (left) and noise
(right) for channel LAM1-2 that were classified as pathological due to LVFA by the expert
review.
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• The reviewer validated the pathological events corresponding to interictal spikes; how-

ever, many clips containing only HFOs were not identified as pathological by the model.

When reviewing the data, the reviewer annotated channels exhibiting low voltage fast

activity (LVFA) as pathological, which the model missed in most cases. Afterwards, the

signal was high-pass filtered using a cutoff frequency of 80 Hz to verify if these oscilla-

tions had frequencies in the rage of HFOs, which was confirmed. Figure 3.30 illustrates

one of these cases where the model annotated two clips as baseline and noise, while

the reviewer indicated that they contained pathological activity through LVFA. These

signals were then high-pass filtered, clearly revealing the oscillations in the HFOs fre-

quency range for both the annotated channel LAm1-2 as for LAm2-3, as shown in Figure

3.31.

Figure 3.31: Signals shown in Figure 3.30 but with an applied high-pass filtered with cut-off
frequency at 80 Hz. It shows two segments of data originally classified as baseline (left) and
noise (right) for channel LAM1-2 that were classified as pathological due to LVFA by the
expert review.

This could indicate that the training data lacked sufficient pathological events with only

HFOs and no spikes. As previously mentioned, this was noticed when originally inspect-

ing the training datasets, as most pathological events seemed to have interictal spikes, as
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exemplified in Figure 2.3.



Chapter 4

Conclusions

4.1 Thesis Contributions

This thesis serves to address the challenge of non-standardized preprocessing of iEEG data.

The main contribution of this work is the exhaustive research conducted to compile various

useful preprocessing steps for iEEG. To this end, a comprehensive literature review of common

preprocessing steps and an evaluation of how different methods applied to scalp EEG could be

adapted to iEEG were conducted. Such research concludes in the development of a software

workflow design that allows for more standardized preprocessing of scalp EEG datasets. This

process facilitates a more consistent, transparent, reproducible, and user-friendly approach to

data preparation, which is crucial for improving reproducibility and extension of results across

different research environments.

The developed workflow integrates different preprocessing steps—such as line noise atten-

uation and re-referencing—that ensure datasets are prepared consistently before subsequent

analysis. The workflow also includes user-friendly interfaces to assist researchers and clini-

cians in navigating through the preprocessing stages efficiently, regardless of the user’s exper-

tise level. The configuration of the complete pipeline through a single human-readable YAML

file also simplifies the sharing of the preprocessing parameters between research centers, bene-
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fiting the reproduction and extension of previous studies and the seamless integration between

preprocessed inter-institutional datasets.

Artifact detection for iEEG has not been standardized and validated; however, it is still

a fundamental part of preprocessing not included in iEEGPrep. Multicenter released iEEG

datasets were used to compare different deep learning and traditional machine learning mod-

els for artifact detection in interictal iEEG data, resulting in a random forest using features

from discrete wavelet transform coefficients as the best model found. Even though the best

models shows a good performance on the cross-validation results, testing on a external dataset

and qualitative assessment in a clinical setting, showed poor generalizability of the model on

recordings from institutions not used for training; possibly justified by inter-institutional dif-

ferences between the recordings and their annotation, poor inter-rater agreement previously

reported and insufficient training data to capture inter-subject and inter-institutional variability.

The analysis conducted not only proposes potential models for artifact detection in interic-

tal iEEG data, but, more importantly, it highlights some of the main remaining challenges to

develop good machine learning models for this task.

4.2 A more standardized preprocessing of iEEG recordings

In this work, an initial version of a software workflow for the preprocessing of iEEG-BIDS

datasets was presented. Validation against the commonly used tool Fieldtrip showed that each

of the steps work as expected. Main differences were found due to variations between the

drift correction implemented in iEEGPrep and Fieldtrip; however, they were found to be not

statistically significant. Nevertheless, the observed differences highlight the importance of cre-

ating a tool that allows a more standardized preprocessing of iEEG datasets to minimize these

potential variations between studies and preprocessed datasets. The implemented workflow,

iEEGPrep, tries to achieve this by concatenating all of the configuration information into one

human-readable YAML file, which can be easily shared by research groups after its usage.
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Different methods implemented for drift correction and PLI attenuation were also com-

pared. High-pass filtering showed the best performance on reducing both the mean and low

frequency oscillations in iEEG data, which was expected based on previous recommendations.

For PLI attenuation, Zapline showed a significantly higher performance when using simulated

data; however, Cleanline showed a better performance when visually comparing the algorithms

using real data. Further evaluation using large iEEG datasets should be performed to have a

solid conclusion of the best algorithm for this type of data; nevertheless, the analysis showed

the strengths and limitations of each of these methods. Zapline showed a better attenuation

when the line noise is relatively stable across time, while Cleanline and removePLI seemed to

deal better with dynamic PLI. The method removePLI presented more artifacts at the begin-

ning of the signals, possibly caused through its time-based sequential fitting of noise. Cleanline

showed to be the most robust algorithm as it worked well both for simulated and real signals.

Direct comparison against Fieldtrip also highlighted the strengths of the developed tool,

mainly towards usability and scalability. My workflow iEEGPrep allows for a configuration

of the parameters through a human-readable YAML file, which should be easier to an user

with no coding experience compared to building a script for preprocessing using Fieldtrip.

Furthermore, Snakemake makes distribution of computation resources, either when using local

or distributed systems, easier for the user compared to the configuration needed in Fieldtrip

through scripting.

A comparison against other previous solutions was also previously discussed, showing ad-

vantages for iEEGPrep in usability, reproducibility, scalability, portability, transparency and

availability of PLI methods. Easy configuration through a human-readable YAML file boosts

the usability and transparency of the tool, while also making it easy to share between studies

and research settings. The use of Snakemake and Snakebids facilitates the scalability of the

tool and parsing of iEEG-BIDS directories. iEEGPrep also offers a human-readable report that

shows the effect of each preprocessing step on the dataset; enhancing the transparency of the

results. Finally, iEEGPrep is developed completely with open-source tools, which removes the
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need of a paid license compared to these other MATLAB-based toolboxes.

Even though several benefits of iEEGPrep were presented and discussed here, further work

is required before public release of this workflow. This includes but it is not limited to:

• Reorganization of the outputs in a BIDS compliant approach.

• Support for other re-referencing techniques such as Laplacian and CAR, and support of

ECoG preprocessing.

• Proper software packaging and testing of the tool.

• Testing with external large BIDS-iEEG datasets.

To my knowledge, this is the first automated toolbox for preprocessing of iEEG data. This tool

aims the standardization of iEEG data preparation prior to experimental or clinical analysis,

enhancing the reproducibility, accessibility, and quality control, in iEEG related studies.

4.3 Automatic Artifact Detection for iEEG

Artifact detection has been described as an important preprocessing step for iEEG recordings,

particularly applicable to interictal data, where there is a combination of the baseline activity

with pathological events and non-cerebral artifacts. Nevertheless, no standardized and vali-

dated approach has been defined for interictal iEEG data, which led to the temporary exclusion

of this step from iEEGPrep. To tackle this limitation, this work also presented the training and

evaluation of multiple traditional machine learning and deep learning models for classifying

interictal clips of iEEG recordings. For traditional models, the tested simple model was found

to perform significantly worse than the more complex ones, justifying the need for more so-

phisticated solutions to target this problem. On the other hand, it was found that the addition of

LSTM cells to CNN architectures did not result in a significant performance increase, perhaps

driven by the very small duration of the clips used for this classification.
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The best traditional model (a random forest) exhibited a better performance compared to the

best deep learning model. This highlights the importance of comparing traditional algorithms

when implementing deep learning solutions, as deep learning models do not always achieve a

better performance. In spite of the good validation metrics of the models and the use of two

institutions for training, the performance of the best models on external datasets was found

to be poor, reflecting on a low generalizability of the solution. Potential reasons for the poor

performance of both models on external data include the lack of sufficient inter-institutional

data for training and the different referencing method used in the test dataset compared to the

training data. Other factors, such as non-standardized selection and labeling of clips and inter-

rater variability, could also contribute. Overestimation of the noisy clips and misidentification

of pathological events were found to be the most significant causes of the low macro metrics.

Clinical insights obtained from qualitative evaluation of the random forest’s output con-

firmed the overestimation of the noise class by the model. The clinical reviewer was unable to

corroborate any of the clips classified by the algorithm as noisy. Furthermore, misidentification

of epochs contaminated with HFOs but no spikes was also recorded.

In this work we showed that the introduction of an non-cerebral artifact class to detection of

interictal pathologies resulted in a high specificity but low recall for pathologies identification,

contrary to the low specificity and high recall seen in previous HFOs and IEDs detectors. This

shows that the addition of this extra class can result in an increase of the specificity for these

detectors; however, further work is needed to achieve a better balance between specificity and

recall. Based on the analysis presented, the following recommendations are given for future

developments of interictal artifact detectors:

• Better sharing practices are needed to improve the development of interictal artifact de-

tectors. Inter-institutional data are required to build robust machine learning classifiers.

Furthermore, efforts are needed to reduce inter-rater disagreement in labeling interictal

pathologies, as this directly impacts model performance. This could involve having a

group of experts review the same recordings to reach a consensus on the labels. It is also
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recommended to release future datasets as continuous recordings with annotations rather

than as epochs of data, since publishing clips limits the algorithms to the chosen epoch

length and impedes validation on continuous data. Formats like EDF can be used to store

the recordings along with the corresponding labels.

• Non-cerebral artifacts labeling should focus on large artifacts that can be confirmed in

a clinical setting, with special attention to those that can be misclassified as pathologies

when using traditional IEDs and HFOs detectors.

• Further research is needed to determine the best methods for detecting artifacts in iEEG

recordings, including the investigation of epoch lengths used as inputs for the models and

the normalization techniques used prior to classification. In this study, since the dataset

was released in clips, each segment was z-scored separately. This could remove some

important features, such as the commonly observed higher amplitude of non-cerebral

artifacts compared to baseline activity. Normalization of the data is fundamental for

iEEG classification tasks, but other approaches, such as normalizing larger epochs of

data, could help the model learn other important time-dependent features like amplitude

variation.

• Future implementation of artifact detection could focus on two step approaches, similar

to those used for HFOs and IEDs detection. In these approaches, potential events are first

identified with a non-machine learning algorithm (for example, a simple thresholding ap-

proach), and then machine learning is only used to classify these events. To achieve this,

more detailed annotations of the datasets would also be useful, where not only segments

of data are annotated as pathological or non-cerebral artifacts but also specify the type of

pathology or artifact. This could be similar to how it is done for other datasets like heart

arrhythmia datasets, where specific details of the type of arrhythmia are provided [106].

• Addition of spatial information to the inputs could also be beneficial to increase the per-

formance of the developed models. During data assessment with the clinical reviewer, it
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was noted that adjacent channels were often loaded, providing information such as the

propagation of interictal spikes. Incorporating this data into the model inputs could po-

tentially help the algorithms differentiate between pathological events and non-cerebral

artifacts.

Future work in this area should be focused on increasing the quantity and quality of avail-

able data before the testing of new algorithms. Inter-institutional cooperation is required to

generate datasets that can generalize better. Finally, closer collaboration with the clinical envi-

ronment is encouraged to better understand how to design the datasets, which could improve

agreement between automatic detectors and clinical expert criteria.

4.4 Remaining challenges, future work & limitations of this

study

While this thesis made significant contributions towards standardizing preprocessing of iEEG

datasets through the development of a software workflow and the investigation of automatic in-

terictal artifact detection, several challenges and limitations remain that must be acknowledged

and addressed in future work. Currently, this author is focusing on the following work, which

are considered limitations of the thesis:

1. External testing of the workflow

The developed preprocessing workflow has been tested only with local BIDS data. Fur-

ther testing on available external datasets is necessary to confirm its usability across

different research settings.

2. BIDS compliance

Although iEEGPrep receives and validates iEEG-BIDS datasets, the outputs of the model

are not yet BIDS compliant. Additional work is needed to ensure both inputs and outputs

adhere to BIDS standards, qualifying this tool as a BIDS app.
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3. Limited supported methods

Several preprocessing steps in iEEGPrep currently support only specific methods or in-

puts, such as EDF files and re-referencing from monopolar to bipolar schemes. Ex-

panding support to include other BIDS recording formats, like BrainVision Core Data

Format, and preprocessing settings, such as common average referencing, is essential for

enhancing the workflow’s usability.

4. Scalability and computational resources

The current version of the pipeline was tested only on the computing clusters of the

Digital Research Alliance of Canada, which possess substantial computing resources. It

is necessary to test the workflow in environments with fewer computational resources

to ensure scalability. Additionally, comparing the computational costs of this workflow

with common tools like EEGLAB or Fieldtrip is also necessary.

5. Better software practices

To release this workflow as a publicly available tool, improved software practices are

needed. These include comprehensive software documentation, tool packaging, and the

implementation of continuous integration/continuous development (CI/CD) practices.

Some other limitations and future work currently outside of my scope include:

1. User dependency

Although designed for user-friendliness, the effectiveness of the software workflow still

relies on the user’s ability to correctly set configuration parameters and interpret outputs.

Variability in user expertise and interaction with the software may lead to inconsistent

data processing results.

2. Impact of referencing changes on automatic artifact detection

In this work, to compare the best deep learning solution against the best traditional ma-

chine learning model, their performance was evaluated by assessing their generalizability
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to an external dataset. However, for this test dataset, a different re-referencing approach

(bipolar referencing) was used compared to the training data, which used CAR. This

could have had a negative impact on the model performance, as the morphology of the

signals might vary depending on the chosen referencing method. This is considered as a

limitation of this study, as it depends on the open-datasets found. Future work is needed

to assess the direct impact of changes in referencing between training and test data on

the model generalizability.

3. Model generalizability

Although it was not the primary goal, the best models for interictal iEEG artifact detec-

tion demonstrated poor generalizability in both external and local datasets. Enhancing

the collection and annotation of large, inter-institutional datasets is needed. Furthermore,

labeling extensive clinical recording segments using machine learning alone is computa-

tionally intensive. A two-step approach—initially identifying potential events with less

resource-intensive methods, followed by machine learning-based labeling—should be

explored to improve the feasibility of automatic artifact detectors.

4. Data sharing practices

As previously mentioned, larger inter-institutional datasets are needed to improve the

generalizability of the artifact detectors for interictal iEEG recordings, annotated using

consistent approaches. Furthermore, efforts are needed to improve the inter-rater agree-

ment before training of the machine learning models to reduce the potential rater biases

in the algorithms.

5. Double-step artifact detection

As a possible future avenue in the field of artifact detection in iEEG, it is worth investi-

gating a two-step approach, where events of interest are first detected using a simple al-

gorithm, such as thresholding techniques, and then machine learning is used to determine

whether these events are artifacts or not. This This addresses one of the limitations of
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this work which is the segmentation of continuous ieeg recordings into non-overlapping

3-second clips. This could have a direct influence on model performance if events of in-

terest, such as spikes, are incorrectly split between two clips. Furthermore, if the model

is trained with the events of interest always at a specific position within the window (e.g.,

by building the clips around these events), it could help increase the model performance,

as it could focus on specific parts of the image instead of also addressing the task of

identifying when the event is occurring.

In addition, it would reduce the computational cost compared to running a machine learn-

ing model on large continuous datasets and could also allow models to focus only on

classifying these events rather than also on identifying them in continuous data.
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Appendix A

iEEGPrep Report

In the next pages, a printed version of the HTML report generated by iEEGPrep as part of the

quality-control part of the workflow is presented. This PDF was generated by printing to PDF

the original HTML, which can be found on my personal website. The Latin Filler visible in

the report is a temporary filling that will be replaced with information about each section later

on the development of this tool.
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https://mcespedes99.github.io/assets/prerendered/report.html


sEEGPrep Report

Raw Information
Et quis adipisicing ipsum exercitation est amet adipisicing anim laboris. Aute et laborum quis ex ad officia deserunt sit laborum esse. Consequat do officia reprehenderit magna fugiat velit duis
labore proident qui et labore laborum elit. Quis dolor id amet non aliquip Lorem dolor quis aliqua non nisi nisi.

Info

Filename bids/sub-EPL31LHS0026/ses-V02SE06/ieeg/sub-EPL31LHS0026_ses-V02SE06_task-full_rec-regionID_run-01_clip-
01_ieeg.edf

Measurement Date 2022-10-30 12:32:23

Sampling frequency (Hz) 200.0

Signals in file 80

Duration 00:04:00.000000 (HH:MM:SS)

BIDS Validation Results
BIDS Validator Results
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

bids-validator@1.14.0

1: [ERR] The compulsory file /dataset_description.json is missing. See Section 03 (Modality agnostic files) of the BIDS specification. (code: 

57 - DATASET_DESCRIPTION_JSON_MISSING)

Please visit https://neurostars.org/search?q=DATASET_DESCRIPTION_JSON_MISSING for existing conversations about this issue.

1: [WARN] Tabular file contains custom columns not described in a data dictionary (code: 82 - CUSTOM_COLUMN_WITHOUT_DESCRIPTION)

./sub-EPL31LHS0026/ses-V02SE06/ieeg/sub-EPL31LHS0026_ses-V02SE06_task-full_run-01_events.tsv

Evidence: Columns: time_abs, time_rel, event not defined, please define in: /events.json, /task-full_events.json,/run-

01_events.json,/task-full_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-

full_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-full_run-01_events.json,/sub-

EPL31LHS0026/ses-V02SE06/sub-EPL31LHS0026_ses-V02SE06_events.json,/sub-EPL31LHS0026/ses-V02SE06/sub-EPL31LHS0026_ses-V02SE06_task-

full_events.json,/sub-EPL31LHS0026/ses-V02SE06/sub-EPL31LHS0026_ses-V02SE06_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE06/sub-EPL31LHS0026_ses-

V02SE06_task-full_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE06/ieeg/sub-EPL31LHS0026_ses-V02SE06_events.json,/sub-EPL31LHS0026/ses-

V02SE06/ieeg/sub-EPL31LHS0026_ses-V02SE06_task-full_events.json,/sub-EPL31LHS0026/ses-V02SE06/ieeg/sub-EPL31LHS0026_ses-V02SE06_run-

01_events.json,/sub-EPL31LHS0026/ses-V02SE06/ieeg/sub-EPL31LHS0026_ses-V02SE06_task-full_run-01_events.json

./sub-EPL31LHS0026/ses-V02SE07/ieeg/sub-EPL31LHS0026_ses-V02SE07_task-full_run-01_events.tsv

Evidence: Columns: time_abs, time_rel, event not defined, please define in: /events.json, /task-full_events.json,/run-

01_events.json,/task-full_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-

full_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-full_run-01_events.json,/sub-

EPL31LHS0026/ses-V02SE07/sub-EPL31LHS0026_ses-V02SE07_events.json,/sub-EPL31LHS0026/ses-V02SE07/sub-EPL31LHS0026_ses-V02SE07_task-

full_events.json,/sub-EPL31LHS0026/ses-V02SE07/sub-EPL31LHS0026_ses-V02SE07_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE07/sub-EPL31LHS0026_ses-

V02SE07_task-full_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE07/ieeg/sub-EPL31LHS0026_ses-V02SE07_events.json,/sub-EPL31LHS0026/ses-

V02SE07/ieeg/sub-EPL31LHS0026_ses-V02SE07_task-full_events.json,/sub-EPL31LHS0026/ses-V02SE07/ieeg/sub-EPL31LHS0026_ses-V02SE07_run-

01_events.json,/sub-EPL31LHS0026/ses-V02SE07/ieeg/sub-EPL31LHS0026_ses-V02SE07_task-full_run-01_events.json

./sub-EPL31LHS0026/ses-V02SE08/ieeg/sub-EPL31LHS0026_ses-V02SE08_task-full_run-01_events.tsv

Evidence: Columns: time_abs, time_rel, event not defined, please define in: /events.json, /task-full_events.json,/run-

01_events.json,/task-full_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-

full_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-full_run-01_events.json,/sub-

EPL31LHS0026/ses-V02SE08/sub-EPL31LHS0026_ses-V02SE08_events.json,/sub-EPL31LHS0026/ses-V02SE08/sub-EPL31LHS0026_ses-V02SE08_task-

full_events.json,/sub-EPL31LHS0026/ses-V02SE08/sub-EPL31LHS0026_ses-V02SE08_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE08/sub-EPL31LHS0026_ses-

V02SE08_task-full_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE08/ieeg/sub-EPL31LHS0026_ses-V02SE08_events.json,/sub-EPL31LHS0026/ses-

V02SE08/ieeg/sub-EPL31LHS0026_ses-V02SE08_task-full_events.json,/sub-EPL31LHS0026/ses-V02SE08/ieeg/sub-EPL31LHS0026_ses-V02SE08_run-

01_events.json,/sub-EPL31LHS0026/ses-V02SE08/ieeg/sub-EPL31LHS0026_ses-V02SE08_task-full_run-01_events.json

./sub-EPL31LHS0026/ses-V02SE09/ieeg/sub-EPL31LHS0026_ses-V02SE09_task-full_run-01_events.tsv

Evidence: Columns: time_abs, time_rel, event not defined, please define in: /events.json, /task-full_events.json,/run-

01_events.json,/task-full_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-

full_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_run-01_events.json,/sub-EPL31LHS0026/sub-EPL31LHS0026_task-full_run-01_events.json,/sub-

EPL31LHS0026/ses-V02SE09/sub-EPL31LHS0026_ses-V02SE09_events.json,/sub-EPL31LHS0026/ses-V02SE09/sub-EPL31LHS0026_ses-V02SE09_task-

full_events.json,/sub-EPL31LHS0026/ses-V02SE09/sub-EPL31LHS0026_ses-V02SE09_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE09/sub-EPL31LHS0026_ses-

V02SE09_task-full_run-01_events.json,/sub-EPL31LHS0026/ses-V02SE09/ieeg/sub-EPL31LHS0026_ses-V02SE09_events.json,/sub-EPL31LHS0026/ses-

V02SE09/ieeg/sub-EPL31LHS0026_ses-V02SE09_task-full_events.json,/sub-EPL31LHS0026/ses-V02SE09/ieeg/sub-EPL31LHS0026_ses-V02SE09_run-

01_events.json,/sub-EPL31LHS0026/ses-V02SE09/ieeg/sub-EPL31LHS0026_ses-V02SE09_task-full_run-01_events.json

Please visit https://neurostars.org/search?q=CUSTOM_COLUMN_WITHOUT_DESCRIPTION for existing conversations about this issue.

2: [WARN] The recommended file /README is missing. See Section 03 (Modality agnostic files) of the BIDS specification. (code: 101 - 

README_FILE_MISSING)

Please visit https://neurostars.org/search?q=README_FILE_MISSING for existing conversations about this issue.

        Summary:                  Available Tasks:        Available Modalities: 

        20 Files, 367.92GB        full                    iEEG                  

        1 - Subject                                                             

        4 - Sessions                                                            

If you have any questions, please post on https://neurostars.org/tags/bids.

RAW INFORMATION BIDS VALIDATION
RESULTS EPOCHING DOWNSAMPLIG DETRENDING REREFERENCING PLI REGIONS ID
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EEG/iEEG BIDS Validator Report
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Info: Test PASSED. All channels present on the channels.tsv file were found in the

corresponding EDF file.

Info: Test PASSED. Units in the channels.tsv file match the units in the EDF file.

Info: Test PASSED. Filters defined in the channels.tsv match with the defined filters in the

EDF file.

Info: Test PASSED. Sampling frequency in the files channels.tsv, EDF and json file match.

Info: Test PASSED. All electrodes positions in the electrodes.tsv file are numeric, as

required by the BIDS standard.

Info: Assuming unipolar reference as the parameter 'iEEGReference' is not set to

'bipolar' in the json file.

Info: Test PASSED. All the contacts forming the channels in the channels.tsv and EDF

files are present in the electrodes.tsv.

Info: Test PASSED. Number of channels specified in the json file match the number of

channels in the channels.tsv and EDF files.

Warning: Length specified in the edf file (86387 seconds) doesn't seem to match the

length indicated in the JSON file (23.997).

Epoch rule report
Events found
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Epoch start event Relative start time Duration Clip number

awake trigger 05:02:08.458008 00:04:00.000000 clip-01

Downsamplig rule report
Sampling rates
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Original
sampling

rate

Target
sampling

rate

New
sampling

rate
Discarded channels

2048.0 200 200.0

['Patient Event', 'C149', 'C150', 'C151', 'C152', 'C153', 'C154', 'C155', 'C156', 'C157', 'C158', 'C159', 'C160', 'C161', 'C162', 'C163', 'C164', 'C165', 'C166', 'C167', 'C168', 'C169',
'C170', 'C171', 'C172', 'C173', 'C174', 'C175', 'C176', 'C177', 'C178', 'C179', 'C180', 'C181', 'C182', 'C183', 'C184', 'C185', 'C186', 'C187', 'C188', 'C189', 'C190', 'C191', 'C192', 'C193',

'C194', 'C195', 'C196', 'C197', 'C198', 'C199', 'C200', 'C201', 'C202', 'C203', 'C204', 'C205', 'C206', 'C207', 'C208', 'C209', 'C210', 'C211', 'C212', 'C213', 'C214', 'C215',
'C216', 'C217', 'C218', 'C219', 'C220', 'C221', 'C222', 'C223', 'C224', 'C225', 'C226', 'C227', 'C228', 'C229', 'C230', 'C231', 'C232', 'C233', 'C234', 'C235', 'C236', 'C237',
'C238', 'C239', 'C240', 'C241', 'C242', 'C243', 'C244', 'C245', 'C246', 'C247', 'C248', 'C249', 'C250', 'C251', 'C252', 'C253', 'C254', 'C255', 'C256', 'DC1', 'DC2', 'DC3',

'DC4', 'DC5', 'DC6', 'DC7', 'DC8', 'DC9', 'DC10', 'DC11', 'DC12', 'DC13', 'DC14', 'DC15', 'DC16', 'TRIG', 'OSAT', 'PR', 'Pleth']

Size comparison
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Original size (MB) Downsampled size (MB) Compression rate

273.25 14.27 19.14

PSD QC
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Normalized PSD
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Detrending rule report
General information
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Method used: HighPass
Discarded channels: []
Transition band (Hz): [0.1, 0.2]

Comparison of channels mean
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Channel Original mean New mean

LOFr1 23.048317 -0.002896

LOFr2 47.710714 0.015531

LOFr3 33.249204 -0.027254

LOFr4 10.846365 0.008861

LOFr5 10.147426 -0.105171

LOFr6 17 601156 0 090834

Highpass filter information
Suspendisse potenti. Quisque blandit urna vitae maximus tempor.

Filter time response

Filter frequency response
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PSD QC
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Rereferencing rule report
General information
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Discarded channels: []

Bipolar channels found
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Bipolar channel Unipolar channels

LOFr1-2 ('LOFr1', 'LOFr2')

LOFr2-3 ('LOFr2', 'LOFr3')

LOFr3-4 ('LOFr3', 'LOFr4')

LOFr4-5 ('LOFr4', 'LOFr5')

LOFr5-6 ('LOFr5', 'LOFr6')

LOFr6 7 ('LOFr6' 'LOFr7')
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PLI rule report
General information
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Method: Cleanline
Line frequency (Hz): 60
Bandwidth (Hz): 8

PSD QC
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Region Identification rule report
General information
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Discarded channels: []

Regions report
Suspendisse potenti. Quisque blandit urna vitae maximus tempor. Nunc dictum et elit luctus scelerisque. Pellentesque sodales placerat ante eu vulputate. Interdum et malesuada fames ac ante
ipsum primis in faucibus. Maecenas nunc erat, accumsan et scelerisque eget, laoreet eget orci. Donec porta at justo vel ultricies. Integer vel libero sit amet justo rhoncus tempor vitae semper
magna. Nunc at augue facilisis, viverra ante id, malesuada orci.

Region Number of
channels Channels

Left-Cerebral-White-
Matter 21 ['LOFr1-2' 'LOFr2-3' 'LOFr7-8' 'LPCg2-3' 'LPCg3-4' 'LPCg4-5' 'LPCg5-6'\n 'LPCg6-7' 'LPCg7-8' 'LPCg8-9' 'LPCg9-10' 'LAm5-6' 'LAHc5-6' 'LAHc6-7'\n

'LAHc7-8' 'LAHc8-9' 'LAHc9-10' 'LPHc4-5' 'LPHc5-6' 'LPHc6-7' 'LPHc7-8']

ctx-lh-lateralorbitofrontal 3 ['LOFr3-4' 'LOFr4-5' 'LOFr5-6']

CSF 12 ['LOFr6-7' 'LOFr9-10' 'LTePo5-6' 'LTePo6-7' 'LTePo7-8' 'LPIn3-4' 'LPIn4-5'\n 'LPIn5-6' 'LPIn7-8' 'LPIn8-9' 'LPIn9-10' 'RAm8-9']

ctx-lh-parsorbitalis 1 ['LOFr8-9']

ctx-lh-posteriorcingulate 1 ['LPCg1-2']

Created on February 17, 2024. © Some rights reserved.
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Appendix B

iEEGPrep snakebids.yaml

Below, the customizable part of the configuration YAML file used with iEEGPrep workflow is

shown. Note that this doesn’t represent the complete file as it was only intended to show the

part of it that can be customized by the user.

In particular, two parts are important. First the pybids_inputs can be modified to detect

the different files needed by the pipeline. This follows Snakebids standard, so please refer to

the original documentation for more information. After the indicator Pipeline parameters, the

parameters for the different preprocessing steps are given along with an explanation for their

customization.

bids_dir: '/path/to/bids_dir'
output_dir: '/path/to/output_dir'

# Resources
local_scratch: '/tmp'
local_scratch_env: 'SLURM_TMPDIR'

#enable printing debug statements during parsing -- disable if generating dag
visualization↪→

debug: False

derivatives: False #will search in bids/derivatives if True; can also be path(s) to
derivatives datasets↪→

#list of analysis levels in the bids app
analysis_levels: &analysis_levels
- participant
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#mapping from analysis_level to set of target rules or files
targets_by_analysis_level:
participant:
- '' # if '', then the first rule is run

#this configures the pybids grabber - create an entry for each type of input you want
to grab↪→

# indexed by name of input
# dictionary for each input is passed directly to pybids get()

pybids_inputs:
edf:
filters:
# datatype: 'ieeg'
# suffix: 'ieeg'
extension: '.edf'

wildcards:
- subject
- session
- task
- run

events:
filters:
suffix: 'events'
extension: '.tsv'

wildcards:
- subject
- session
- task
- run

channels:
filters:
suffix: 'channels'
extension: '.tsv'

wildcards:
- subject
- session
- task
- run

electrodes:
filters:
suffix: 'electrodes'
extension: '.tsv'

wildcards:
- subject
- session

json:
filters:
suffix: 'ieeg'
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extension: '.json'
wildcards:
- subject
- session
- task
- run

parc:
filters:
suffix: 'orig'
extension: '.mgz'

wildcards:
- subject
- session
- acquisition
- task
- run

custom_path: /path/to/sub-{subject}_desc-synthsegcortparc_dseg.nii.gz

# ---------------- Pipeline parameters-------------------
# Event: [label or index, 'duration' or 'n_samples', amount as seconds or int]
event: ['awake trigger', 'duration', 240] # 4 min 'awake trigger'

# 1. Parameters for downsampling step:
# (1.a) Target sampling rate
# Default: 200 Hz
target_srate: 1024

# 2. Parameters for detrending step:
# (2.a) Detrend method
# Options: 'LinearDetrend','HighPass' (default), 'Demean'
detrend_method: 'HighPass'

# (2.b) Transition band of high pass filter used in detrending step (if selected)
highpass: [0.1, 0.2]

# 3. Parameters for PLI attenuation
# (3.a) Power line interference removal method
# Options: 'Cleanline', 'Zapline', 'NotchFilter' (default), 'PLIremoval'
methodPLI: 'Cleanline'

# (3.b) Electrical grid fundamental frequency
# Default: 60 Hz
lineFreq: 60

# (3.c) Bandwidth for Notch filter (TODO) or Cleanline
# Note: in 'Cleanline', the bandwidth represents the frequency range
# (around the theoretical fundamental and harmonic frequencies) in which
# to search for possible peaks associated with line noise.
# Default: 4 (ex: if lineFreq=60, the range would go from 58 to 62)
bandwidth: 8

# (3.d) Number of harmonics to remove when using Notch Filter
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# Default: 1 (only removes fundamental frequency)
n_harmonics: 1

# 4. Parameters for region identification step
# (4.1) Boolean to discard signals from electrodes located in white matter or
# 'unknown' region
# Default: True (discards the signals)
discard_wm_un: True
reference_edf: 'bipolar' # 'unipolar' or 'bipolar'
vol_version: True

# 4. Parameter for regions identification and rereferencing step
# (4.1) Column names in tsv file with electrodes information
# Format: [{type of channel}, {channel label}, {x position}, {y position}, {z

position}, {group}]↪→

# Default: ['type', 'label', 'x', 'y', 'z', 'group'] or None (both options are equivalent)
tsv_cols: ['type', 'label', 'x', 'y', 'z', 'orig_group']

# Color table required to asign labels for each value in the parcellation file
colortable: /path/to/colortable.tsv

# QC
bids_validator_flags: '--ignoreSubjectConsistency'



Appendix C

iEEGPrep validation

Below, extra validation Figures for the validation of each of the preprocessing steps are shown.

This is an extension to the results presented in Chapter 2.

C.1 Epoch extraction

Figure C.1: Frequency spectrum plots for the first 60 seconds extracted from the channel
LPIn02 by iEEGPrep and Fieldtrip. Frequency domain signal was calculated using Welch’s
method.
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C.2 Downsampling

Figure C.2: Frequency spectrum plots for the first 60 seconds of the downsampled signal from
the channel LPIn02 using iEEGPrep and Fieldtrip. Frequency domain signal was calculated
using Welch’s method with a window of 3 s and an overlap of 50%.

Figure C.3: Time-frequency map of the first 60 seconds of downsampled data from the channel
LPIn02 using iEEGPrep and Fieldtrip. Maps were calculated using short-time Fourier Trans-
form (STFT) with a window of 3 s and an overlap of 50%.
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C.3 Drift correction

Figure C.4: Time-frequency map of the first 60 seconds of detrended data from the channel
LPIn02 using iEEGPrep and Fieldtrip. Maps were calculated using short-time Fourier Trans-
form (STFT) with a window of 3 s and an overlap of 50%.

Figure C.5: Time-frequency map of the first 60 seconds of detrended data from the channel
LPIn02 using the different methods implemented in iEEGPrep. Maps were calculated using
short-time Fourier Transform (STFT) with a window of 3 s and an overlap of 50%. Colorbar
scale of the three maps is the same. Only high-pass filtering shows a significant reduction of
slow frequency oscillations.
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C.4 Re-referencing

Figure C.6: Time-frequency map from 0 Hz to 20 Hz of the first 60 seconds of the re-referenced
signal from the channels LPIn02 and LPIn03 using iEEGPrep and Fieldtrip.

Figure C.7: Time-frequency map from 0 Hz to 70 Hz of the first 60 seconds of the re-referenced
signal from the channels LPIn02 and LPIn03 using iEEGPrep and Fieldtrip. A predominance
of line noise can be observed.
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C.5 PLI attenuation

Comparison against Fieldtrip output using real data

Figure C.8: Distribution of correlation values with zero lag in time domain (left) and frequency
domain (right) between the different pairs of channels present in the re-referenced epochs with
PLI attenuation for iEEGPrep and Fieldtrip.

Comparison between the different implemented methods

Figure C.9: Distribution of time domain RMSE on the hundred simulated sEEG channels in
case A for the different advanced PLI attenuation methods implemented in iEEGPrep.
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Figure C.10: Distribution of frequency domain RMSE on the hundred simulated sEEG chan-
nels in case A for the different advanced PLI attenuation methods implemented in iEEGPrep.

Figure C.11: Distribution of SNR on the simulated sEEG channels in case B for the different
advanced PLI attenuation methods implemented in iEEGPrep.
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Figure C.12: Example of power spectral density curves obtained through Welch’s method for
one simulated signal filtered for case B through the different advanced line noise attenuation
algorithms implemented in iEEGPrep. Orange and blue signals show simulated signals before
and after PLI attenuation respectively.

Figure C.13: Time plot of the first 60 seconds of the re-referenced signal with PLI attenuation
from the channels LPIn02 and LPIn03 using the implemented advanced PLI attenuation meth-
ods.



Appendix D

Fieldtrip code

Below, the code used for preprocessing of one EDF file with Fieldtrip is found. This was used

as part of the validation for sEEGPrep discussed in Chapter 2.

1 clear; clc;
2

3 filename = '/bids_dir/sub-EPL31LHS0026/ses-V02SE06/ieeg/...
4 sub-EPL31LHS0026_ses-V02SE06_task-full_run-01_ieeg.edf';
5

6 %% Get the epoch
7 % define trials
8 cfg = [];
9 cfg.dataset = filename;

10 cfg.trialfun = 'trialfun_annotation';
11 cfg = ft_definetrial(cfg);
12 cfg = ft_definetrial(cfg);
13 % read the data
14 cfg.continuous = 'yes';
15 % cfg.channel = {'LPIn2', 'LPIn3'}; %idx=73,74
16 data = ft_preprocessing(cfg);
17 idx = 73;
18

19 % Save data
20 signals = data.trial(1);
21 signals = signals{1};
22 save('epoching.mat', "signals");
23

24 labels = data.label;
25 save('unipolar_labels_matlab.mat', "labels");
26

27 %% Downsample
28 % the default functionality in ft_resampledata applies a firls
29 % anti-aliasing filter that has its cutoff at the new Nyquist frequency
30 cfg = [];
31 cfg.resamplefs = 200;
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32 data = ft_resampledata(cfg, data);
33

34 % Save data
35 signals = data.trial(1);
36 signals = signals{1};
37 save('Downsampling.mat', "signals");
38

39 %% Drift correction using high-pass
40

41 cfg = [];
42 cfg.demean = 'yes';
43 cfg.baselinewindow = 'all';
44 cfg.padding = 4*60;
45 cfg.padtype = 'data';
46 cfg.hpfilter = 'yes';
47 cfg.hpfreq = 0.25;
48 cfg.hpfiltord = 3;
49 data = ft_preprocessing(cfg, data);
50

51 % Save data
52 signals = data.trial(1);
53 signals = signals{1};
54 save('Highpass.mat', "signals");
55

56

57 %% Re-reference
58

59 depths = {'LOFr*', 'LPCg*', 'LAm*', 'LAHc*', 'LPHc*', 'LTePo*', 'LAIn*', 'LPIn*',...
60 'ROFr*', 'RPCg*', 'RAm*', 'RAHc*', 'RPHc*', 'RAIn*', 'RPIn*'};
61 for d = 1:numel(depths)
62 cfg = [];
63 cfg.channel = ft_channelselection(depths{d}, data.label);
64 cfg.reref = 'yes';
65 cfg.refchannel = 'all';
66 cfg.refmethod = 'bipolar';
67 reref_depths{d} = ft_preprocessing(cfg, data);
68 end
69

70 % Append together
71 cfg = [];
72 data = ft_appenddata(cfg, reref_depths{:});
73

74 % Save data
75 signals = data.trial(1);
76 signals = signals{1};
77 save('Reref.mat', "signals");
78

79 labels = data.label;
80 save('bipolar_labels_matlab.mat', "labels");
81

82 %% Run cleanline
83 data = signals;
84 signals = [];
85 signals.data = data;
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86 signals.srate = 200;
87 lineNoiseIn = struct('lineNoiseMethod', 'clean', ...
88 'lineNoiseChannels', 1:size(data,1),...
89 'Fs', 200, ...
90 'lineFrequencies', [60],...
91 'p', 0.01, ...
92 'fScanBandWidth', 8, ...
93 'taperBandWidth', 2, ...
94 'taperWindowSize', 4, ...
95 'taperWindowStep', 1, ...
96 'tau', 100, ...
97 'pad', 2, ...
98 'fPassBand', [0 100], ...
99 'maximumIterations', 10);

100 [signal, lineNoiseOut] = cleanLineNoise(signals, lineNoiseIn);
101 signals = signal.data;
102 save('cleanline.mat', "signals");



Appendix E

Models hyperparameters tested using

GridSearchCV

Below, we show the parameters tested for each of the implemented traditional machine learning

models. The parameters were tested using the grid search CV with the function GridSearchCV()

from sklearn package. 10-fold CV was used for this purpose.

• Logistic Regression:

1 param_grid = {'logistic__C': [0.001, 0.01, 0.1, 1, 10, 100],
2 "logistic__penalty":["l2"],
3 'logistic__solver': ['saga', 'newton-cg'],
4 'logistic__multi_class': ['multinomial']}

• Random Forest:

1 param_grid = dict({'n_estimators': [250, 500, 750, 1000],
2 'max_depth': [3, 5, 7],
3 'max_features' : [0.5, 0.75],
4 'min_samples_leaf': [0.05],
5 'criterion': ['gini', 'entropy']
6 })

• Extreme Gradient Boosting:

1 param_grid = dict({'n_estimators': [500, 750, 1000],
2 'max_depth': [2, 3, 4],
3 'learning_rate' : [0.001, 0.01]
4 })
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Appendix F

Deep learning models evaluated using

cross-validation

Next, the deep learning architectures tested during selection of the best parameters can be

found. These Figures were produced with the Python package torchview and later edited.

171



172 Chapter F. Deep learning models evaluated using cross-validation

Figure F.1: Small size CNN architecture implemented, referred as CNN-Small.
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Figure F.2: Medium size CNN architecture implemented, referred as CNN-Medium.
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Figure F.3: Large size CNN architecture implemented, referred as CNN-Large.
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Figure F.4: Small size CNN+LSTM architecture implemented, referred as CNN+LSTM-Small.
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Figure F.5: Medium size CNN+LSTM architecture implemented, referred as CNN+LSTM-
Medium.
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Figure F.6: Large size CNN+LSTM architecture implemented, referred as CNN+LSTM-Large.



Appendix G

Additional results for models comparison

In the next pages, additional Figures to the results presented in Chapter 2 are shown. The same

section names from the Results section from Chapter 2 were used to facilitate the correspon-

dence between the two parts.
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G.1 Comparison of similar models

Figure G.1: Comparison between the different deep learning models after architecture selection
per class. CNN-Small and CNN+LSTM-Small correspond to the smallest implemented CNN
and CNN+LSTM models respectively.



180 Chapter G. Additional results for models comparison

G.2 Deep learning vs traditional machine learning evalua-

tion

Figure G.2: Examples of correctly classified samples from the noise class.

Figure G.3: Examples of correctly and incorrectly classified samples from the baseline or
physiology class
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Figure G.4: Examples of correctly and incorrectly classified samples from the pathology class
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Copyright Transfers and Reprint

Permissions

In the next pages, the permissions to reproduce Figures 1.1, 1.2 and 1.5 are found.
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that it was reprinted or adapted with permission from another source, then you
should seek additional permission from that source to reuse the material.

9. 2. EXCEPT FOR THE EXPRESS WARRANTY STATED HEREIN AND TO
THE EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR PROVIDES
THE LICENSED MATERIAL "AS IS" AND MAKES NO OTHER
REPRESENTATION OR WARRANTY. LICENSOR EXPRESSLY DISCLAIMS
ANY LIABILITY FOR ANY CLAIM ARISING FROM OR OUT OF THE
CONTENT, INCLUDING BUT NOT LIMITED TO ANY ERRORS,
INACCURACIES, OMISSIONS, OR DEFECTS CONTAINED THEREIN, AND
ANY IMPLIED OR EXPRESS WARRANTY AS TO MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LICENSOR
BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR
FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT,
PUNITIVE, OR EXEMPLARY DAMAGES, HOWEVER CAUSED, ARISING
OUT OF OR IN CONNECTION WITH THE DOWNLOADING, VIEWING OR
USE OF THE LICENSED MATERIAL REGARDLESS OF THE FORM OF
ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF
WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE
(INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF
PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF
THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION
APPLIES NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE
OF ANY LIMITED REMEDY PROVIDED HEREIN.

10. Termination and Cancellation

10. 1. The License and all rights granted hereunder will continue until the end of the
applicable period shown in Clause 5.1 above. Thereafter, this license will be
terminated and all rights granted hereunder will cease.

10. 2. Licensor reserves the right to terminate the License in the event that payment
is not received in full or if you breach the terms of this License.

11. General

11. 1. The License and the rights and obligations of the parties hereto shall be
construed, interpreted and determined in accordance with the laws of the Federal
Republic of Germany without reference to the stipulations of the CISG (United
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Nations Convention on Contracts for the International Sale of Goods) or to
Germany ́s choice-of-law principle.

11. 2. The parties acknowledge and agree that any controversies and disputes
arising out of this License shall be decided exclusively by the courts of or having
jurisdiction for Heidelberg, Germany, as far as legally permissible.

11. 3. This License is solely for Licensor's and Licensee's benefit. It is not for the
benefit of any other person or entity.

Questions? For questions on Copyright Clearance Center accounts or website issues
please contact springernaturesupport@copyright.com or +1-855-239-3415 (toll free in
the US) or +1-978-646-2777. For questions on Springer Nature licensing please visit
https://www.springernature.com/gp/partners/rights-permissions-third-party-distribution

Other Conditions:

Version 1.4 - Dec 2022

Questions? customercare@copyright.com.
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OXFORD UNIVERSITY PRESS LICENSE
TERMS AND CONDITIONS

May 20, 2024

This Agreement between Mr. Mauricio Cespedes Tenorio ("You") and Oxford University
Press ("Oxford University Press") consists of your license details and the terms and
conditions provided by Oxford University Press and Copyright Clearance Center.

License Number 5793211283572

License date May 20, 2024

Licensed content
publisher Oxford University Press

Licensed content
publication Brain

Licensed content title Atlas of the normal intracranial electroencephalogram:
neurophysiological awake activity in different cortical areas

Licensed content
author Frauscher, Birgit; von Ellenrieder, Nicolas

Licensed content date Mar 1, 2018

Type of Use Thesis/Dissertation

Institution name

Title of your work Data preparation and machine learning for intracranial
electroencephalography

Publisher of your
work University of Western Ontario

Expected publication
date Jul 2024

195



Permissions cost 0.00 USD

Value added tax 0.00 USD

Total 0.00 USD

Title of new work Data preparation and machine learning for intracranial
electroencephalography

Institution name University of Western Ontario

Expected presentation
date Jul 2024

Portions Figure 4

Requestor Location

Mr. Mauricio Cespedes Tenorio
1635 Richmond St

London, ON N6G 2B8
Canada
Attn: Western University

Publisher Tax ID GB125506730

Total 0.00 USD    

Terms and Conditions

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF
MATERIAL FROM AN OXFORD UNIVERSITY PRESS JOURNAL

1. Use of the material is restricted to the type of use specified in your order details.

2. This permission covers the use of the material in the English language in the following
territory: world. If you have requested additional permission to translate this material, the
terms and conditions of this reuse will be set out in clause 12.

3. This permission is limited to the particular use authorized in (1) above and does not
allow you to sanction its use elsewhere in any other format other than specified above, nor
does it apply to quotations, images, artistic works etc that have been reproduced from
other sources which may be part of the material to be used.

4. No alteration, omission or addition is made to the material without our written consent.
Permission must be re-cleared with Oxford University Press if/when you decide to
reprint.
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5. The following credit line appears wherever the material is used: author, title, journal,
year, volume, issue number, pagination, by permission of Oxford University Press or the
sponsoring society if the journal is a society journal. Where a journal is being published
on behalf of a learned society, the details of that society must be included in the credit
line.

6. For the reproduction of a full article from an Oxford University Press journal for
whatever purpose, the corresponding author of the material concerned should be informed
of the proposed use. Contact details for the corresponding authors of all Oxford
University Press journal contact can be found alongside either the abstract or full text of
the article concerned, accessible from www.oxfordjournals.org Should there be a problem
clearing these rights, please contact journals.permissions@oup.com

7. If the credit line or acknowledgement in our publication indicates that any of the
figures, images or photos was reproduced, drawn or modified from an earlier source it
will be necessary for you to clear this permission with the original publisher as well. If
this permission has not been obtained, please note that this material cannot be included in
your publication/photocopies.

8. While you may exercise the rights licensed immediately upon issuance of the license at
the end of the licensing process for the transaction, provided that you have disclosed
complete and accurate details of your proposed use, no license is finally effective unless
and until full payment is received from you (either by Oxford University Press or by
Copyright Clearance Center (CCC)) as provided in CCC's Billing and Payment terms and
conditions. If full payment is not received on a timely basis, then any license preliminarily
granted shall be deemed automatically revoked and shall be void as if never granted.
Further, in the event that you breach any of these terms and conditions or any of CCC's
Billing and Payment terms and conditions, the license is automatically revoked and shall
be void as if never granted. Use of materials as described in a revoked license, as well as
any use of the materials beyond the scope of an unrevoked license, may constitute
copyright infringement and Oxford University Press reserves the right to take any and all
action to protect its copyright in the materials.

9. This license is personal to you and may not be sublicensed, assigned or transferred by
you to any other person without Oxford University Press’s written permission.

10. Oxford University Press reserves all rights not specifically granted in the combination
of (i) the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC’s Billing and Payment terms and
conditions.

11. You hereby indemnify and agree to hold harmless Oxford University Press and CCC,
and their respective officers, directors, employs and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.

12. Unless otherwise specified, inclusion under a Creative Commons license or any other
Open Access license allowing onward reuse is prohibited.

13. Where permission to translate has been agreed, the credit line and any
copyright/disclaimer notices provided by OUP shall be included on the same page as the
Material, translated into the language of the new work, except for trademark names:

Translated and reproduced by permission of Oxford University Press on behalf of the
<Society Name>. Translation Disclaimer: OUP and the <Society Name> are not
responsible or in any way liable for the accuracy of the translation. The Licensee is solely
responsible for the translation in this publication/reprint.

14. Other Terms and Conditions:

v1.5
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Questions? customercare@copyright.com.
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This is a License Agreement between Mauricio Cespedes Tenorio (“User”) and Copyright Clearance Center, Inc. (“CCC”)

on behalf of the Rightsholder identi�ed in the order details below. The license consists of the order details, the

Marketplace Permissions General Terms and Conditions below, and any Rightsholder Terms and Conditions which are

included below.

All payments must be made in full to CCC in accordance with the Marketplace Permissions General Terms and

Conditions below.

LICENSED CONTENT

REQUEST DETAILS

NEW WORK DETAILS

ADDITIONAL DETAILS

REQUESTED CONTENT DETAILS

Order Date 21-Jun-2024

Order License ID 1496964-1

ISSN 1950-6945

Type of Use Republish in a

thesis/dissertation

Publisher John Wiley

Portion Image/photo/illustration

Publication Title Epileptic disorders

Article Title Learn how to interpret and

use intracranial EEG

�ndings

Date 01/01/1999

Language English

Country United States of America

Rightsholder John Wiley & Sons - Books

Publication Type e-Journal

Start Page 1

End Page 59

Issue 1

Volume 26

URL http://www.epilepticdisord

ers.com

Portion Type Image/photo/illustration

Number of Images /

Photos / Illustrations

2

Format (select all that

apply)

Electronic

Who Will Republish the

Content?

Academic institution

Duration of Use Life of current edition

Lifetime Unit Quantity Up to 499

Rights Requested Main product

Distribution Worldwide

Translation Original language of

publication

Copies for the Disabled? No

Minor Editing Privileges? No

Incidental Promotional

Use?

No

Currency USD

Title Data Preparation and

Machine Learning for

Intracranial

Electroencephalography

Instructor Name Mauricio Cespedes Tenorio

Institution Name University of Western

Ontario

Expected Presentation

Date

2024-07-19

The Requesting Person /

Organization to Appear on

the License

Mauricio Cespedes Tenorio
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RIGHTSHOLDER TERMS AND CONDITIONS

No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is

granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto. You may

not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley material. This

Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing

process. In no instance may the total amount of Wiley Materials used in any Main Product, Compilation or Collective work

comprise more than 5% (if �gures/tables) or 15% (if full articles/chapters) of the (entirety of the) Main Product, Compilation or

Collective Work. Some titles may be available under an Open Access license. It is the Licensors' responsibility to identify the

type of Open Access license on which the requested material was published, and comply fully with the terms of that license

for the type of use speci�ed Further details can be found on Wiley Online Library

http://olabout.wiley.com/WileyCDA/Section/id-410895.html.

Marketplace Permissions General Terms and Conditions

The following terms and conditions (“General Terms”), together with any applicable Publisher Terms and Conditions, govern

User’s use of Works pursuant to the Licenses granted by Copyright Clearance Center, Inc. (“CCC”) on behalf of the applicable

Rightsholders of such Works through CCC’s applicable Marketplace transactional licensing services (each, a “Service”).

1) De�nitions. For purposes of these General Terms, the following de�nitions apply:

“License” is the licensed use the User obtains via the Marketplace platform in a particular licensing transaction, as set forth in

the Order Con�rmation.

“Order Con�rmation” is the con�rmation CCC provides to the User at the conclusion of each Marketplace transaction. “Order

Con�rmation Terms” are additional terms set forth on speci�c Order Con�rmations not set forth in the General Terms that

can include terms applicable to a particular CCC transactional licensing service and/or any Rightsholder-speci�c terms.

“Rightsholder(s)” are the holders of copyright rights in the Works for which a User obtains licenses via the Marketplace

platform, which are displayed on speci�c Order Con�rmations.

“Terms” means the terms and conditions set forth in these General Terms and any additional Order Con�rmation Terms

collectively.

“User” or “you” is the person or entity making the use granted under the relevant License. Where the person accepting the

Terms on behalf of a User is a freelancer or other third party who the User authorized to accept the General Terms on the

User’s behalf, such person shall be deemed jointly a User for purposes of such Terms.

“Work(s)” are the copyright protected works described in relevant Order Con�rmations.

2) Description of Service. CCC’s Marketplace enables Users to obtain Licenses to use one or more Works in accordance with

all relevant Terms. CCC grants Licenses as an agent on behalf of the copyright rightsholder identi�ed in the relevant Order

Con�rmation.

3) Applicability of Terms. The Terms govern User’s use of Works in connection with the relevant License. In the event of any

con�ict between General Terms and Order Con�rmation Terms, the latter shall govern. User acknowledges that Rightsholders

Title, Description or

Numeric Reference of the

Portion(s)

Figure 5 and Figure 7

Editor of Portion(s) Frauscher, B.; Mansilla, D.;

Abdallah, C.; Astner‐
Rohracher, A.; Beniczky, S.;

Brazdil, M.; Gnatkovsky, V.;

Jacobs, J.; Kalamangalam,

G.; Perucca, P.; Ryvlin, P.;

Schuele, S.; Tao, J.; Wang,

Y.; Zijlmans, M.; McGonigal,

A.

Volume / Edition 26

Page or Page Range of

Portion

1-59

Title of the Article /

Chapter the Portion Is

From

Learn how to interpret and

use intracranial EEG

�ndings

Author of Portion(s) Frauscher, B.; Mansilla, D.;

Abdallah, C.; Astner‐
Rohracher, A.; Beniczky, S.;

Brazdil, M.; Gnatkovsky, V.;

Jacobs, J.; Kalamangalam,

G.; Perucca, P.; Ryvlin, P.;

Schuele, S.; Tao, J.; Wang,

Y.; Zijlmans, M.; McGonigal,

A.

Publication Date of

Portion

2024-02-23
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have complete discretion whether to grant any permission, and whether to place any limitations on any grant, and that CCC

has no right to supersede or to modify any such discretionary act by a Rightsholder.

4) Representations; Acceptance. By using the Service, User represents and warrants that User has been duly authorized by

the User to accept, and hereby does accept, all Terms.

5) Scope of License; Limitations and Obligations. All Works and all rights therein, including copyright rights, remain the sole

and exclusive property of the Rightsholder. The License provides only those rights expressly set forth in the terms and

conveys no other rights in any Works

6) General Payment Terms. User may pay at time of checkout by credit card or choose to be invoiced. If the User chooses to

be invoiced, the User shall: (i) remit payments in the manner identi�ed on speci�c invoices, (ii) unless otherwise speci�cally

stated in an Order Con�rmation or separate written agreement, Users shall remit payments upon receipt of the relevant

invoice from CCC, either by delivery or noti�cation of availability of the invoice via the Marketplace platform, and (iii) if the

User does not pay the invoice within 30 days of receipt, the User may incur a service charge of 1.5% per month or the

maximum rate allowed by applicable law, whichever is less. While User may exercise the rights in the License immediately

upon receiving the Order Con�rmation, the License is automatically revoked and is null and void, as if it had never been

issued, if CCC does not receive complete payment on a timely basis.

7) General Limits on Use. Unless otherwise provided in the Order Con�rmation, any grant of rights to User (i) involves only

the rights set forth in the Terms and does not include subsequent or additional uses, (ii) is non-exclusive and non-

transferable, and (iii) is subject to any and all limitations and restrictions (such as, but not limited to, limitations on duration of

use or circulation) included in the Terms. Upon completion of the licensed use as set forth in the Order Con�rmation, User

shall either secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall

render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work.

User may only make alterations to the Work if and as expressly set forth in the Order Con�rmation. No Work may be used in

any way that is unlawful, including without limitation if such use would violate applicable sanctions laws or regulations, would

be defamatory, violate the rights of third parties (including such third parties’ rights of copyright, privacy, publicity, or other

tangible or intangible property), or is otherwise illegal, sexually explicit, or obscene. In addition, User may not conjoin a Work

with any other material that may result in damage to the reputation of the Rightsholder. Any unlawful use will render any

licenses hereunder null and void. User agrees to inform CCC if it becomes aware of any infringement of any rights in a Work

and to cooperate with any reasonable request of CCC or the Rightsholder in connection therewith.

8) Third Party Materials. In the event that the material for which a License is sought includes third party materials (such as

photographs, illustrations, graphs, inserts and similar materials) that are identi�ed in such material as having been used by

permission (or a similar indicator), User is responsible for identifying, and seeking separate licenses (under this Service, if

available, or otherwise) for any of such third party materials; without a separate license, User may not use such third party

materials via the License.

9) Copyright Notice. Use of proper copyright notice for a Work is required as a condition of any License granted under the

Service. Unless otherwise provided in the Order Con�rmation, a proper copyright notice will read substantially as follows:

“Used with permission of [Rightsholder’s name], from [Work’s title, author, volume, edition number and year of copyright];

permission conveyed through Copyright Clearance Center, Inc.” Such notice must be provided in a reasonably legible font size

and must be placed either on a cover page or in another location that any person, upon gaining access to the material which is

the subject of a permission, shall see, or in the case of republication Licenses, immediately adjacent to the Work as used (for

example, as part of a by-line or footnote) or in the place where substantially all other credits or notices for the new work

containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder and CCC,

and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee speci�ed in the Order

Con�rmation, in addition to the use fee itself and any other fees and charges speci�ed.

10) Indemnity. User hereby indemni�es and agrees to defend the Rightsholder and CCC, and their respective employees and

directors, against all claims, liability, damages, costs, and expenses, including legal fees and expenses, arising out of any use of

a Work beyond the scope of the rights granted herein and in the Order Con�rmation, or any use of a Work which has been

altered in any unauthorized way by User, including claims of defamation or infringement of rights of copyright, publicity,

privacy, or other tangible or intangible property.

11) Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT,

INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS

PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, EVEN

IF ONE OR BOTH OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total liability of the

Rightsholder and CCC (including their respective employees and directors) shall not exceed the total amount actually paid by

User for the relevant License. User assumes full liability for the actions and omissions of its principals, employees, agents,

a�liates, successors, and assigns.
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12) Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS.” CCC HAS THE RIGHT TO GRANT TO USER THE

RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER

WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE

REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS, OR OTHER PORTIONS OF THE WORK (AS

OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER

CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.

13) E�ect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of the

License set forth in the Order Con�rmation and/or the Terms, shall be a material breach of such License. Any breach not

cured within 10 days of written notice thereof shall result in immediate termination of such License without further notice.

Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated by

payment of the Rightsholder’s ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated

immediately for any reason (including, for example, because materials containing the Work cannot reasonably be recalled) will

be subject to all remedies available at law or in equity, but in no event to a payment of less than three times the Rightsholder’s

ordinary license price for the most closely analogous licensable use plus Rightsholder’s and/or CCC’s costs and expenses

incurred in collecting such payment.

14) Additional Terms for Speci�c Products and Services. If a User is making one of the uses described in this Section 14, the

additional terms and conditions apply:

a) Print Uses of Academic Course Content and Materials (photocopies for academic coursepacks or classroom

handouts). For photocopies for academic coursepacks or classroom handouts the following additional terms apply:

i) The copies and anthologies created under this License may be made and assembled by faculty members individually

or at their request by on-campus bookstores or copy centers, or by o�-campus copy shops and other similar entities.

ii) No License granted shall in any way: (i) include any right by User to create a substantively non-identical copy of the

Work or to edit or in any other way modify the Work (except by means of deleting material immediately preceding or

following the entire portion of the Work copied) (ii) permit “publishing ventures” where any particular anthology would

be systematically marketed at multiple institutions.

iii) Subject to any Publisher Terms (and notwithstanding any apparent contradiction in the Order Con�rmation arising

from data provided by User), any use authorized under the academic pay-per-use service is limited as follows:

A) any License granted shall apply to only one class (bearing a unique identi�er as assigned by the institution, and

thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays,

poems or articles;

C) use is limited to no more than the greater of (a) 25% of the text of an issue of a journal or other periodical or (b)

two articles from such an issue;

D) no User may sell or distribute any particular anthology, whether photocopied or electronic, at more than one

institution of learning;

E) in the case of a photocopy permission, no materials may be entered into electronic memory by User except in

order to produce an identical copy of a Work before or during the academic term (or analogous period) as to

which any particular permission is granted. In the event that User shall choose to retain materials that are the

subject of a photocopy permission in electronic memory for purposes of producing identical copies more than one

day after such retention (but still within the scope of any permission granted), User must notify CCC of such fact in

the applicable permission request and such retention shall constitute one copy actually sold for purposes of

calculating permission fees due; and

F) any permission granted shall expire at the end of the class. No permission granted shall in any way include any

right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the

Work (except by means of deleting material immediately preceding or following the entire portion of the Work

copied).

iv) Books and Records; Right to Audit. As to each permission granted under the academic pay-per-use Service, User

shall maintain for at least four full calendar years books and records su�cient for CCC to determine the numbers of

copies made by User under such permission. CCC and any representatives it may designate shall have the right to

audit such books and records at any time during User’s ordinary business hours, upon two days’ prior notice. If any

such audit shall determine that User shall have underpaid for, or underreported, any photocopies sold or by three

percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC shall bear the costs of any
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such audit. Any amount determined by such audit to have been underpaid by User shall immediately be paid to CCC

by User, together with interest thereon at the rate of 10% per annum from the date such amount was originally due.

The provisions of this paragraph shall survive the termination of this License for any reason.

b) Digital Pay-Per-Uses of Academic Course Content and Materials (e-coursepacks, electronic reserves, learning

management systems, academic institution intranets). For uses in e-coursepacks, posts in electronic reserves, posts in

learning management systems, or posts on academic institution intranets, the following additional terms apply:

i) The pay-per-uses subject to this Section 14(b) include:

A) Posting e-reserves, course management systems, e-coursepacks for text-based content, which grants

authorizations to import requested material in electronic format, and allows electronic access to this material to

members of a designated college or university class, under the direction of an instructor designated by the college

or university, accessible only under appropriate electronic controls (e.g., password);

B) Posting e-reserves, course management systems, e-coursepacks for material consisting of photographs or

other still images not embedded in text, which grants not only the authorizations described in Section 14(b)(i)(A)

above, but also the following authorization: to include the requested material in course materials for use

consistent with Section 14(b)(i)(A) above, including any necessary resizing, reformatting or modi�cation of the

resolution of such requested material (provided that such modi�cation does not alter the underlying editorial

content or meaning of the requested material, and provided that the resulting modi�ed content is used solely

within the scope of, and in a manner consistent with, the particular authorization described in the Order

Con�rmation and the Terms), but not including any other form of manipulation, alteration or editing of the

requested material;

C) Posting e-reserves, course management systems, e-coursepacks or other academic distribution for

audiovisual content, which grants not only the authorizations described in Section 14(b)(i)(A) above, but also the

following authorizations: (i) to include the requested material in course materials for use consistent with Section

14(b)(i)(A) above; (ii) to display and perform the requested material to such members of such class in the physical

classroom or remotely by means of streaming media or other video formats; and (iii) to “clip” or reformat the

requested material for purposes of time or content management or ease of delivery, provided that such “clipping”

or reformatting does not alter the underlying editorial content or meaning of the requested material and that the

resulting material is used solely within the scope of, and in a manner consistent with, the particular authorization

described in the Order Con�rmation and the Terms. Unless expressly set forth in the relevant Order

Conformation, the License does not authorize any other form of manipulation, alteration or editing of the

requested material.

ii) Unless expressly set forth in the relevant Order Con�rmation, no License granted shall in any way: (i) include any

right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the Work

(except by means of deleting material immediately preceding or following the entire portion of the Work copied or, in

the case of Works subject to Sections 14(b)(1)(B) or (C) above, as described in such Sections) (ii) permit “publishing

ventures” where any particular course materials would be systematically marketed at multiple institutions.

iii) Subject to any further limitations determined in the Rightsholder Terms (and notwithstanding any apparent

contradiction in the Order Con�rmation arising from data provided by User), any use authorized under the electronic

course content pay-per-use service is limited as follows:

A) any License granted shall apply to only one class (bearing a unique identi�er as assigned by the institution, and

thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays,

poems or articles;

C) use is limited to not more than the greater of (a) 25% of the text of an issue of a journal or other periodical or

(b) two articles from such an issue;

D) no User may sell or distribute any particular materials, whether photocopied or electronic, at more than one

institution of learning;

E) electronic access to material which is the subject of an electronic-use permission must be limited by means of

electronic password, student identi�cation or other control permitting access solely to students and instructors in

the class;

F) User must ensure (through use of an electronic cover page or other appropriate means) that any person, upon

gaining electronic access to the material, which is the subject of a permission, shall see:
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a proper copyright notice, identifying the Rightsholder in whose name CCC has granted permission,

a statement to the e�ect that such copy was made pursuant to permission,

a statement identifying the class to which the material applies and notifying the reader that the material has

been made available electronically solely for use in the class, and

a statement to the e�ect that the material may not be further distributed to any person outside the class,

whether by copying or by transmission and whether electronically or in paper form, and User must also

ensure that such cover page or other means will print out in the event that the person accessing the material

chooses to print out the material or any part thereof.

G) any permission granted shall expire at the end of the class and, absent some other form of authorization, User

is thereupon required to delete the applicable material from any electronic storage or to block electronic access to

the applicable material.

iv) Uses of separate portions of a Work, even if they are to be included in the same course material or the same

university or college class, require separate permissions under the electronic course content pay-per-use Service.

Unless otherwise provided in the Order Con�rmation, any grant of rights to User is limited to use completed no later

than the end of the academic term (or analogous period) as to which any particular permission is granted.

v) Books and Records; Right to Audit. As to each permission granted under the electronic course content Service, User

shall maintain for at least four full calendar years books and records su�cient for CCC to determine the numbers of

copies made by User under such permission. CCC and any representatives it may designate shall have the right to

audit such books and records at any time during User’s ordinary business hours, upon two days’ prior notice. If any

such audit shall determine that User shall have underpaid for, or underreported, any electronic copies used by three

percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC shall bear the costs of any

such audit. Any amount determined by such audit to have been underpaid by User shall immediately be paid to CCC

by User, together with interest thereon at the rate of 10% per annum from the date such amount was originally due.

The provisions of this paragraph shall survive the termination of this license for any reason.

c) Pay-Per-Use Permissions for Certain Reproductions (Academic photocopies for library reserves and interlibrary loan

reporting) (Non-academic internal/external business uses and commercial document delivery). The License expressly

excludes the uses listed in Section (c)(i)-(v) below (which must be subject to separate license from the applicable

Rightsholder) for: academic photocopies for library reserves and interlibrary loan reporting; and non-academic

internal/external business uses and commercial document delivery.

i) electronic storage of any reproduction (whether in plain-text, PDF, or any other format) other than on a transitory

basis;

ii) the input of Works or reproductions thereof into any computerized database;

iii) reproduction of an entire Work (cover-to-cover copying) except where the Work is a single article;

iv) reproduction for resale to anyone other than a speci�c customer of User;

v) republication in any di�erent form. Please obtain authorizations for these uses through other CCC services or

directly from the rightsholder.

Any license granted is further limited as set forth in any restrictions included in the Order Con�rmation and/or in these

Terms.

d) Electronic Reproductions in Online Environments (Non-Academic-email, intranet, internet and extranet). For

“electronic reproductions”, which generally includes e-mail use (including instant messaging or other electronic

transmission to a de�ned group of recipients) or posting on an intranet, extranet or Intranet site (including any display or

performance incidental thereto), the following additional terms apply:

i) Unless otherwise set forth in the Order Con�rmation, the License is limited to use completed within 30 days for any

use on the Internet, 60 days for any use on an intranet or extranet and one year for any other use, all as measured

from the “republication date” as identi�ed in the Order Con�rmation, if any, and otherwise from the date of the Order

Con�rmation.

ii) User may not make or permit any alterations to the Work, unless expressly set forth in the Order Con�rmation

(after request by User and approval by Rightsholder); provided, however, that a Work consisting of photographs or

other still images not embedded in text may, if necessary, be resized, reformatted or have its resolution modi�ed
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without additional express permission, and a Work consisting of audiovisual content may, if necessary, be “clipped” or

reformatted for purposes of time or content management or ease of delivery (provided that any such resizing,

reformatting, resolution modi�cation or “clipping” does not alter the underlying editorial content or meaning of the

Work used, and that the resulting material is used solely within the scope of, and in a manner consistent with, the

particular License described in the Order Con�rmation and the Terms.

15) Miscellaneous.

a) User acknowledges that CCC may, from time to time, make changes or additions to the Service or to the Terms, and that

Rightsholder may make changes or additions to the Rightsholder Terms. Such updated Terms will replace the prior terms

and conditions in the order work�ow and shall be e�ective as to any subsequent Licenses but shall not apply to Licenses

already granted and paid for under a prior set of terms.

b) Use of User-related information collected through the Service is governed by CCC’s privacy policy, available online at

www.copyright.com/about/privacy-policy/.

c) The License is personal to User. Therefore, User may not assign or transfer to any other person (whether a natural

person or an organization of any kind) the License or any rights granted thereunder; provided, however, that, where

applicable, User may assign such License in its entirety on written notice to CCC in the event of a transfer of all or

substantially all of User’s rights in any new material which includes the Work(s) licensed under this Service.

d) No amendment or waiver of any Terms is binding unless set forth in writing and signed by the appropriate parties,

including, where applicable, the Rightsholder. The Rightsholder and CCC hereby object to any terms contained in any

writing prepared by or on behalf of the User or its principals, employees, agents or a�liates and purporting to govern or

otherwise relate to the License described in the Order Con�rmation, which terms are in any way inconsistent with any

Terms set forth in the Order Con�rmation, and/or in CCC’s standard operating procedures, whether such writing is

prepared prior to, simultaneously with or subsequent to the Order Con�rmation, and whether such writing appears on a

copy of the Order Con�rmation or in a separate instrument.

e) The License described in the Order Con�rmation shall be governed by and construed under the law of the State of New

York, USA, without regard to the principles thereof of con�icts of law. Any case, controversy, suit, action, or proceeding

arising out of, in connection with, or related to such License shall be brought, at CCC’s sole discretion, in any federal or

state court located in the County of New York, State of New York, USA, or in any federal or state court whose geographical

jurisdiction covers the location of the Rightsholder set forth in the Order Con�rmation. The parties expressly submit to the

personal jurisdiction and venue of each such federal or state court.

Last updated October 2022
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