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Multiplicative potentials for kinetic energy and exact exchange
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Abstract

Harriman showed that within finite basis sets of one-electron functions that form linearly inde-

pendent products (LIP), differential and integral operators can be represented exactly and unam-

biguously by multiplicative (local) potentials. Although almost no standard basis sets of quantum

chemistry form LIPs in a numerical sense, occupied self-consistent field (SCF) orbitals routinely do

so. Using minimal LIP basis sets of occupied SCF orbitals, we construct multiplicative potentials

for electronic kinetic energy and exact exchange that reproduce the Hartree–Fock and Kohn–Sham

Hamiltonian matrices and electron densities for atoms and molecules. The results highlight fun-

damental differences between local and nonlocal operators and suggest a practical possibility of

developing exact kinetic energy functionals within finite basis sets by using effective local potentials.
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I. INTRODUCTION

Introduction of finite basis sets into quantum mechanics amounts to replacing opera-

tors on an infinite-dimensional Hilbert space with finite matrices that act within finite-

dimensional subspaces. Although the eigenvalues and eigenvectors of a finite-dimensional

matrix are generally different from those of the original operator, agreement between the

two sets of solutions can be improved systematically by enlarging the basis set. As a result,

this discretization is sometimes viewed as a mere device for finding approximate solutions

to eigenvalue problems.

In some situations, however, use of finite basis sets gives rise to essentially new effects.

For instance, the unique mapping from ground-state densities to external potentials gen-

erally does not exist within finite basis sets,1 and the very Kohn–Sham scheme cannot be

exact in general.2 In a series of papers,3–6 Harriman studied relationships between quantum-

mechanical operators and their matrix representations and arrived at several striking con-

clusions for basis sets of a particular type, namely, those whose functions form linearly

independent products (LIP). Within LIP basis sets (i) there is no distinction between lo-

cal (multiplicative) potentials and nonlocal operators; (ii) multiplicative potentials can be

reconstructed from their matrix representations; (iii) an electron density unambiguously im-

plies the corresponding one-electron reduced density matrix (1-RDM); (iv) unique mapping

from densities to potentials v(r) is restored.7 These results have startling implications for

quantum chemistry, e.g., the possibility of determining 1-RDMs from electron densities,8,9

unambiguous reconstruction of Kohn–Sham potentials from their matrix representations,10

and analytic Kohn–Sham inversion for many-electron densities.7

The initial wave of excitement generated by Harriman’s results subsided when it was

found11–14 that almost no standard basis sets of quantum chemistry qualify as LIP sets. It

turns out, however, that occupied self-consistent field (SCF) orbitals of small atoms and

molecules routinely form LIPs.10,11 This fact makes it possible to apply the LIP-basis-set

machinery to a much broader range of chemically relevant systems than formerly recognized.

Construction of exchange-correlation potentials from their matrix representations was

reported by us elsewhere.10 Here, we construct and present multiplicative potentials by

means of which one can faithfully reproduce every part of Hartree–Fock and Kohn–Sham

Hamiltonians including the kinetic energy operator and the Fock exchange.
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II. METHODOLOGY

We begin by reviewing the parts of Harriman’s theory3,4 that are relevant to our purposes.

Then we derive the working equations, first for complex-valued orthonormal basis sets, then

for real nonorthogonal basis functions.

A. Complex-valued orthonormal basis functions

Consider a complex Hilbert space H, finite- or infinite-dimensional, of one-electron

position-dependent functions (orbitals) with an orthonormal basis {φk},

∫

φ∗
k(r)φl(r) dr = δkl. (1)

Any Hermitian spinless operator Ĝ fromH toH is uniquely represented by an integral kernel

G(r, r′), and the operation Ĝφ = ψ (φ, ψ ∈ H) is then realized as

∫

G(r, r′)φ(r′) dr′ = ψ(r). (2)

In an infinite-dimensional H, one can draw a clear distinction between local (multiplica-

tive) and nonlocal operators. Integral kernels associated with local operators have the special

form

G(r, r′) = v(r)δ(r− r′), (3)

where the function v(r) is often referred as a “local potential”. This kernel is completely

determined by v(r).

When H is finite-dimensional, the distinction between local and nonlocal operators is

blurred.3 Consider a K-dimensional space with an orthonormal basis φk (k = 1, 2, . . . , K).

The integral kernel of Ĝ on this space has finite rank and can be expanded as

G(r, r′) =

K
∑

k=1

K
∑

l=1

Gklφk(r)φ
∗
l (r

′), (4)

where

Gkl =

∫

dr

∫

φ∗
k(r)G(r, r

′)φl(r
′) dr′. (5)

The Hermitian matrixG represents Ĝ in the basis set {φk}. According to Harriman’s theory,

if {φk} is a LIP basis set, then there exists a unique local potential ṽ(r) associated with
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G(r, r′), such that
∫

φ∗
k(r)ṽ(r)φl(r) dr =

∫

dr

∫

φ∗
k(r)G(r, r

′)φl(r
′) dr′ (6)

for all k and l, whether Ĝ is multiplicative or not on the infinite-dimensional space. Our

objective here is to calculate this ṽ(r) for various types of Ĝ. Before we elaborate, let it be

clear that ṽ(r) 6= G(r, r) and that, for any finite basis set {φk}, there are infinitely many

local potentials whose matrix representations satisfy Eq. (6).10,15 We are interested here in

the unique potential ṽ(r) associated with G(r, r′) through Harriman’s theory.

Equation (6) is the key to understanding everything. Its right-hand side looks like a coef-

ficient in the Fourier expansion of G(r, r′) in orthonormal functions φk(r)φ
∗
l (r

′), so the left-

hand side leads one to consider an expansion of ṽ(r) in nonorthogonal products φk(r)φ
∗
l (r).

This suggests treating G(r, r′) as an element of a vector space Er of integral-operator kernels

on H and ṽ(r) as an element of a vector space Fr of potentials associated with those kernels.

The former space is spanned by the orthogonal functions φk(r)φ
∗
l (r

′), so its dimension is K2.

The space Fr contains the products φk(r)φ
∗
l (r) and its dimension depends on how many of

these products are linearly independent, that is, on the underlying basis {φk}. There is a

mapping from Er to Fr effected by the linear “collapse” operator δ̂ defined by

δ̂Φ(r, r′) = Φ(r, r), (7)

where Φ(r, r′) is an element of Er and Φ(r, r) is the corresponding element of Fr. In general,

this mapping is many-to-one.

Now comes the crucial argument.4 If the K2 products φk(r)φ
∗
l (r) do happen to be linearly

independent, then the dimensions of Er and Fr are equal and the mapping from Er to Fr is

invertible, so it becomes possible to reconstruct ṽ(r) from G.4 Careful development of this

idea requires properly symmetrized product functions.

The kernel G(r, r′) is Hermitian-symmetric,

G(r, r′) = G∗(r′, r), (8)

but the K2 functions φk(r)φ
∗
l (r

′) with k 6= l are not, so the actual dimension of Er might be

lower than K2. A convenient properly symmetrized basis for Er is

Φkl(r, r
′) =



















φk(r)φ
∗
k(r

′) (k = l)
1

2
[φk(r)φ

∗
l (r

′) + φl(r)φ
∗
k(r

′)] (k < l)

1

2i
[φk(r)φ

∗
l (r

′)− φl(r)φ
∗
k(r

′)] (k > l)

, (9)
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where i is the imaginary unit. (Note that Harriman normalizes these functions to unity,3

but we will see below that the factors chosen above lead to simpler working equations). The

K2 Hermitian-symmetric functions Φkl(r, r
′) are orthogonal, so the dimension of Er is indeed

K2. In terms of this symmetrized basis, Eq. (4) becomes

G(r, r′) =
K2

∑

kl=1

βklΦkl(r, r
′), (10)

where kl is treated as a single collective index and

βkl =
〈Φkl|G〉

〈Φkl|Φkl〉
(11)

are real coefficients. Note that Eq. (4) represents G(r, r′) as a bilinear form, whereas Eq. (10)

is a linear form.

The collapse operator transforms the functions Φkl(r, r
′) into real one-electron functions

gkl(r) =



















φk(r)φ
∗
k(r) (k = l)

1

2
[φk(r)φ

∗
l (r) + φl(r)φ

∗
k(r)] (k < l)

1

2i
[φk(r)φ

∗
l (r)− φl(r)φ

∗
k(r)] (k > l)

, (12)

where gkl(r) ≡ Φkl(r, r). By Lemma 1 of the Appendix, the functions gkl(r) are linearly

independent if the products φk(r)φ
∗
l (r) are. Thus, if {φk} is a LIP basis set, then the

dimension of Fr is also K
2 and the potential is given by

ṽ(r) =
K2

∑

kl=1

αklgkl(r), (13)

where αkl are some real coefficients.

In terms of the symmetry-adapted basis functions, Eq. (6) becomes

〈gkl|ṽ〉 = 〈Φkl|G〉 =







ReGkl (k ≤ l)

ImGkl (k > l)
, (14)

where we evaluated 〈Φkl|G〉 by combining Eqs. (5) and (9). The prefactors of 1
2
in Eq. (9)

were chosen precisely so that the right-hand side of Eq. (14) contain matrix elements Gkl

rather that their multiples.

Substitution of Eq. (13) into Eq. (14) gives

K2

∑

kl=1

〈gij|gkl〉αkl =







ReGkl (k ≤ l)

ImGkl (k > l)
. (15)
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This system of linear equations allows one to determine the coefficients αkl from the matrix

elements of G. Thus, within a LIP basis set, one can always recover ṽ(r) from G. If some

products φk(r)φ
∗
l (r) are linearly dependent, then the mapping from Er to Fr is many-to-one

and cannot be inverted.

B. Real-valued nonorthogonal basis functions

For real and nonorthonormal basis sets, some of the equations of Sec. IIA require non-

trivial modifications. Consider a basis set of linearly independent real functions fk(r)

(k = 1, 2, . . . , K) that are not necessarily orthogonal or normalized. The integral kernel

of any Hermitian operator Ĝ in this basis is a symmetric function given by

G(r, r′) =
K
∑

k=1

K
∑

l=1

(S−1GS−1)klfk(r)fl(r
′), (16)

where S is the matrix of overlap integrals

Skl =

∫

fk(r)fl(r) dr (17)

and G is the matrix of Ĝ in the basis {fk}, that is,

Gkl =

∫

fk(r)Ĝfl(r) dr. (18)

Although the number of linearly independent functions fk(r)fl(r
′) is K2, only their M =

K(K + 1)/2 symmetrized combinations

Φkl(r, r
′) =

1

2
[fk(r)fl(r

′) + fl(r)fk(r
′)] (k ≤ l) (19)

can contribute to the expansion

G(r, r′) =

M
∑

kl=1

bklΦkl(r, r
′), (20)

where kl is again a single collective subscript and bkl are coefficients whose values are ir-

relevant for our purposes. Equation (20) shows that the dimension of Er is now M . The

same conclusion can be reached by inspecting Eq. (9) and noting that, for real basis sets,

the functions Φkl(r, r
′) with k > l become purely imaginary and therefore do not contribute.

The corresponding collapsed real functions gkl(r) are

gkl(r) = fk(r)fl(r) (k ≤ l). (21)
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If these products are linearly independent, the dimension of Fr is also M and G(r, r′) is in

a one-to-one correspondence with the potential

ṽ(r) =
M
∑

kl=1

aklgkl(r), (22)

where akl are yet unknown coefficients, such that

Gkl =

∫

fk(r)ṽ(r)fl(r) dr. (23)

It is essential that the functions gkl(r) do not lose their linear independence under any

nonsingular linear transformation of {fk} (Lemma 2 in the Appendix).

The analog of Eq. (14) for real basis functions is

〈gkl|ṽ〉 = 〈Φkl|G〉 = Gkl. (24)

After substituting Eq. (22) into Eq. (24) we obtain

M
∑

ij=1

Wkl,ijaij = Gkl, (25)

where i ≤ j, k ≤ l and

Wij,kl = 〈gij|gkl〉 =

∫

fi(r)fj(r)fk(r)fl(r) dr (26)

are elements of the four-center M ×M overlap matrix W. As long as the basis functions

{fk} form LIPs, W is nonsingular and Eq. (25) has a unique solution.

C. Local potentials for nonlocal operators

What happens if G is a matrix representation of a nonlocal operator such as the Hartree–

Fock exchange or the differential operator for the kinetic energy? Within a LIP basis set,

solution of Eq. (25) will give a multiplicative potential ṽ(r) that faithfully reproduces the

effect of Ĝ in that basis set. In fact, all operators within a LIP basis set can be represented

by effective local potentials.4

From the computational point of view, there is no difference in applying Eq. (25) to

matrices of local or nonlocal operators generated using the same LIP basis set. We will see,

however, that multiplicative potentials for nonlocal operators tend to have rather compli-

cated shapes.
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D. LIP basis sets

Construction of unambigious local potentials for nonlocal operators requires LIP basis

sets. No complete (infinite) basis set can be a LIP basis4,16 and, as mentioned above, virtually

no standard finite basis set of Gaussian-type or Slater-type atomic orbitals (AO) has this

property in a numerical sense. Fortunately, occupied canonical Hartree–Fock (HF) and

Kohn–Sham (KS) SCF orbitals routinely form LIPs, at least for small atoms and molecules.

Occupied SCF orbitals span only a small subspace of the original AO basis set but, within

one-determinantal SCF methods, they are sufficient to reproduce exactly the ground-state

electron density and total electronic energy of the original AO basis set, even if the latter is

complete (infinite).

Here, we consider a set of functions to be a LIP basis set if the smallest eigenvalue of

W (for normalized products) is above a threshold of λmin = 10−9. For the systems reported

here, we have λmin ≈ 3× 10−3 for Be, λmin ≈ 4× 10−4 for Ne, and λmin ≈ 5× 10−9 for HCN.

The capacity of occupied SCF orbitals to form LIPs for a given system does not vary much

with the size of the underlying AO basis set.10

III. IMPLEMENTATION

Construction of a multiplicative operator ṽ(r) reproducing the matrix of an arbitrary

Hermitian operator Ĝ within a LIP basis sets {φi} of occupied SCF orbitals amounts to

solving the M ×M system of linear equations

Wa = vech(G), (27)

where Wij,kl = 〈φiφj|φkφl〉, Gij = 〈φi|Ĝ|φj〉, and a is a column vector of expansion coeffi-

cients akl of ṽ(r) by Eq. (22) in terms of orbital products gkl = φkφl. The operation vech()

takes a symmetric matrix and stacks the rows of its upper triangular half into a single

column vector.

To illustrate this method, we applied it to matrices of four different operators: the

exchange-only potential vX(r) in the local density approximation (LDAx), the Fock exchange

operator K̂, the multiplicative exchange potential vX(r) generated from HF SCF wavefunc-

tions by the modified method of Ryabinkin, Kohut, and Staroverov (HF-mRKS),17–19 and

the one-electron kinetic energy operator t̂ = −1
2
∇2 of the HF and KS SCF schemes. The

8



LDAx potential represents local and semilocal exchange-correlation approximations the KS

density-functional theory, K̂ represents orbital-dependent integral operators, HF-mRKS rep-

resents optimized effective potentials (OEPs) for orbital-dependent functionals (it produces

the same HF electron density as K̂),17–21 and t̂ represents differential operators.

All HF and LDAx matrices were generated with the Psi4NumPy program.22 HF-mRKS

potentials vX(r) and their matrix representations were obtained by the method of Ref. 19.

Overlap matrices W of canonical SCF orbitals were evaluated analytically by expanding

each orbital in an AO basis and evaluating four-center AO overlap integrals using standard

formulas.23,24 We have also verified that, in each case, the calculated ṽ(r) has exactly the

same matrix representation in the LIP basis set of occupied SCF orbitals as the parent

operator Ĝ.

IV. RESULTS

Multiplicative real-space potentials (e.g., external vext, Hartree vH, LDAx vX, exact vXC)

constructed by standard SCF codes in the usual way will be referred to as “conventional”.

It is instructive to compare conventional potentials v(r) to potentials ṽ(r) recovered from

matrix representations of v(r) in LIP basis sets.

We find that when one starts with a conventional local exchange potential vX(r), the

potential ṽX(r) recovered from the matrix of vX(r) in a LIP basis set of occupied SCF

orbitals is generally quite different from vX(r), especially near atomic nuclei. The dependence

of ṽX(r) on the underlying AO basis set is not very strong but is more pronounced than for

vX(r). This is seen in Figs. 1 and 2 for three standard Gaussian basis sets of increasing size:

def2-SVP (small), def2-TZVP (medium), and def2-QZVP (large).25

Figure 1 shows three conventional LDAx potentials and their reconstructions from the

occupied-occupied subblocks of the Kohn–Sham matrices generated using three different

AO basis sets. The def2-QZVP ṽX(r) is closer to the def2-TZVP ṽX(r) than the latter is

to the def2-SVP ṽX(r), which suggests that ṽX(r) is converging to the AO basis-set limit.

Similar examples involving full exchange-correlation potentials may be found in our Ref. 10.

Increasing the size of the LIP basis set (e.g., by including a few low-lying virtual orbitals)

can improve the agreement between ṽX(r) and vX(r).
10

Figure 2 depicts analogous reconstructions for the external and Hartree potentials. Sur-
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FIG. 1. LDAx potentials (vX, red) of Ne and their reconstructions (ṽX, blue) from the corresponding

matrix representations of vX in the basis of the occupied Kohn–Sham orbitals generated using AO

basis sets of varying size. The inset shows the same data on the logarithmic r-scale.
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FIG. 2. External and conventional Hartree potentials (red) from LDAx SCF calculations for Ne

and their reconstructions (blue) from the corresponding matrix representations in the basis of the

occupied Kohn–Sham orbitals. The inset shows the Hartree potentials separately.

prisingly, the agreement between the sums vext(r) + vH(r) and ṽext(r) + ṽH(r) is very good,

even though each of ṽext(r) and ṽH(r) separately is quite different from the respective original.

Potentials ṽX(r) recovered from matrices of the Fock exchange operator K̂ are generally

quite different from potentials ṽX(r) recovered from LDAx and HF-mRKS matrices (Fig. 3),

as well as from conventional LDAx and OEP-like potentials.26–28 Specifically, potentials ṽX(r)

recovered from HF matrices exhibit oscillations absent in the analogous potentials recovered

from LDAx and HF-mRKS Hamiltonian matrices. These oscillations are manifestations of
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HF, and HF-mRKS matrices in the LIP basis set of the corresponding occupied SCF orbitals. The

inset shows the same data on the logarithmic r-scale.

the nonlocality of the operator K̂.

Unlike exchange, the one-electron kinetic energy operator t̂ is always strictly nonlocal

in both HF and KS scheme. As a result, reconstructions ṽkin(r) of this operator from the

kinetic energy parts of HF and KS matrices are very similar (Fig. 4).

We also compared the multiplicative kinetic potentials ṽkin(r) to the functional derivative

vTF(r) =
δTTF

δρ(r)
(28)
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FIG. 6. Same as in Fig. 4 for the Be atom. In contrast to Fig. 5, the three reconstructed potentials

are similar.

of the Thomas–Fermi (TF) kinetic energy functional

TTF[ρ] = CF

∫

ρ5/3(r) dr, (29)

where CF = 3
10
(3π2)2/3, evaluated for the LDAx SCF density (Fig. 4). There is very little

resemblance between vTF(r) and ṽkin(r).

The shapes of ṽX(r) and ṽkin(r) vary considerably with the size of the LIP basis set. For

Ne, there are 5 occupied SCF orbitals that form M = 15 distinct orbital products, of which

only 6 (1s1s, 1s2s, 2s2s, 2px2px, 2py2py, 2pz2pz) actually contribute because of symmetry

restrictions. For the Be atom, the SCF orbitals generate onlyM = 3 product basis functions

(1s1s, 1s2s, 2s2s). This basis set is too small to reveal the fundamental differences between

12



−80

−60

−40

−20

0

20

40

60

80

−4 −3 −2 −1  0  1  2  3  4

HCN, def2−TZVP

H C N
v~ X

(z
),

  E
h

z,  a
0

LDAx

HF

HF−mRKS
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FIG. 8. Analog of Fig. 7 for multiplicative kinetic potentials. In contrast to Fig. 7, the three

reconstructions are somewhat similar.

local and nonlocal potentials. As a consequence, the local exchange potential ṽX(r) for

Be recovered from HF matrices shows less deviation from the corresponding LDAx and

HF-mRKS potentials than for Ne (Fig. 5). The LDAx, HF, and HF-mRKS local kinetic

potentials for Be (Fig. 6) are even closer to one another than they were for Ne.

The nonlocal nature of Fock exchange is revealed more clearly in calculations on many-

electron molecules such as HCN (Figs. 7 and 8), where the number of occupied SCF orbitals

is large enough to produce LIP basis sets of considerable size. For HCN in particular,

there are 14 occupied orbitals and M = 28. The local exchange potential extracted from

the HF/def2-TZVP matrix for this system shows dramatic oscillations that are completely
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absent in potentials ṽX(r) obtained from LDAx and HF-mRKS matrices (Fig. 7). The local

kinetic potentials recovered from the LDAx, HF, and HF-mRKS matrices, however, are

similar to one another (Fig. 8), as expected.

V. CONCLUSION

The takeaways from this work are as follows. First, the effect of any nonlocal operator

Ĝ within a LIP basis set can be reproduced exactly by an associated basis-set-specific local

potential ṽ(r). Construction of ṽ(r) requires solving Eq. (25) using the matrix G of Ĝ as

input and delivers the result in the form of Eq. (22).

Second, occupied SCF orbitals form natural minimal LIP basis sets for many atoms and

molecules. Such basis sets are sufficient to reproduce the ground-state density and energy

within the HF and KS scheme for any underlying AO basis set. This technology can be

practically useful for Kohn–Sham inversions and similar purposes.

Third, local potentials reproducing matrices of conventional local operators within basis

sets of occupied SCF orbitals differ from the originals substantially but not beyond recogni-

tion. By contrast, local potentials reproducing matrices of nonlocal operators such as K̂ and

t̂ tend to have intricate shapes. Potentials ṽ(r) associated with such operators are relatively

insensitive to the underlying AO basis set or to the SCF method (HF, HF-mRKS, LDA,

or some other density-functional approximation). This suggests a possibility of modeling

the kinetic and exchange energy functionals by local density-functional approximations for

basis sets of occupied SCF orbitals. The same principle may be useful for developing ki-

netic energy functionals (see Ref. 29 and references therein). It is also possible to construct

noninteracting many-electron Hamiltonians with local potentials whose eigenfunctions are

finite-basis-set configuration interaction wavefunctions,30 but such potentials have no clear

physical meaning and transcend Harriman’s theory.
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APPENDIX

The following important properties of LIP basis sets complement Theorem 1 of Harriman.4

Lemma 1. Let fi(r) be K complex-valued functions and qi(r) their linear transformations

given by

qi(r) =

K
∑

k=1

Aikfk(r). (A1)

If the K2 products fi(r)f
∗
j (r) are linearly independent and the transformation matrix A is

nonsingular, then the products qi(r)q
∗
j (r) are also linearly independent.

Proof. Let f be a column vector of K functions

f =

















f1

f2
...

fK

















(A2)

with a similar definition for q. Then q = Af. The original product basis may be written in

vector form as

vec(ff†) =



















































f1f
∗
1

f1f
∗
2

...

f1f
∗
K

f2f
∗
1

f2f
∗
2

...

f2f
∗
K

...

fKf
∗
K



















































, (A3)

where the dagger (†) means Hermitian conjugation and the operation vec(), defined to be

row-major here, takes a matrix and stacks its transposed rows into a single column vector.
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The transformed products are given by

vec(qq†) = vec
[

(Af)(Af)†
]

= vec
[

A(ff†)A†
]

(A4)

The transformation from the old products to the new ones may be written as

vec(qq†) = U vec(ff†), (A5)

where

U = A⊗A† (A6)

is direct (Kronecker) product, a K2 ×K2 matrix with elements Uij,kl = AikA
∗
jl. One of the

basic properties of the Kronecker product31 applied to Eq. (A6) gives

(A⊗A†)−1 = A−1 ⊗ (A†)−1. (A7)

Another property of Kronecker products31 ensures that

det(A⊗A†) = [det(A)]K [det(A†)]K = |det(A)|2K (A8)

Either of Eqs. (A7) and (A8) implies that U is nonsingular if and only if A is nonsingular.

This concludes the proof.

Lemma 2. Let fi(r) be K real-valued functions and qi(r) their linear transformations by

a nonsingular real matrix A. If theM = K(K+1)/2 products fi(r)fj(r) (i ≤ j) are linearly

independent, then the products qi(r)qj(r) are also linearly independent.

Proof. Using the symbols f and q as defined in Lemma 1 we write the original product

basis as

vech(ffT ) =













































f1f1

f1f2
...

f1fK

f2f2
...

f2fK
...

fKfK













































, (A9)
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where the operation vech(), defined to be row-major here, takes a symmetric matrix and

stacks the transposed rows of its upper triangular part into a single column vector. The

transformed products are

vech(qqT ) = vech
[

(Af)(Af)T
]

= vech
[

A(ffT )AT
]

. (A10)

The transformation from the old products to the new ones may be written as

vech(qqT ) = Us vech(ff
T ), (A11)

where

Us = A⊗s A (A12)

is the symmetric Kronecker product, an M ×M matrix which we define implicitly by its

action on the upper triangular part of an arbitrary symmetric K ×K matrix S,

(A⊗s A)vech(S) = vech(ASAT ). (A13)

Note that our definition of the operation ⊗s differs of necessity in details from the one found

in the literature.32–34

Observe that by virtue of Eq. (A13)

(A⊗s A)(B⊗s B)vech(S) = (A⊗s A)vech(BSBT )

= vech(ABSBTAT ) = (AB⊗s AB)vech(S) (A14)

Therefore,

(A⊗s A)(B⊗s B) = AB⊗s AB (A15)

Setting B = A−1 or A = B−1 in Eq. (A15) we find that

(A⊗s A)−1 = A−1 ⊗s A
−1 (A16)

This means that the transformation matrix Us is nonsingular if only if A is nonsingular and

concludes the proof.

Another demonstration that Us is nonsingular can be given in terms of eigenvalues of A.

If vi is an eigenvector of A and λi is the associated eigenvalue, then

(A⊗s A) vech(viv
T
j ) = vech

[

(Avi)(Avj)
T
]

= λiλjvech(viv
T
j ) (i ≤ j) (A17)
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This implies that

det(A⊗s A) =
K
∏

i≤j

λiλj =

(

K
∏

i=1

λi

)K+1

= [det(A)]K+1 (A18)

The last result means that Us is nonsingular if and only if A is nonsingular.
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34 E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected

Applications (Kluwer, New York, 2002).

19


	Multiplicative potentials for kinetic energy and exact exchange.
	Citation of this paper:

	tmp.1728320113.pdf.UD11t

