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ABSTRACT

The closure of magnetospheric currents in the high latitude ionosphere makes the

high latitude thermosphere a very dynamic environment. The composition and dy-

namics of this region become even more complex during geomagnetic disturbances

as the electric fields from the magnetosphere now have the ability to substantially

alter the winds and composition of this region. This complexity is especially appar-

ent in mass spectrometer observations of composition changes, with heavier gases

(N2,O2, andAr) showing substantial enhancements while lighter gases (He and O)

normally exhibit moderate to severe depletions. Quantifying the changes in atomic

and molecular oxygen can be particularly difficult as most mass spectrometers are

not able to discern between ambient molecular oxygen and the molecular oxygen cre-

ated by atomic oxygen-satellite surface interactions - one usually measures the total

oxygen content O + 2O2 and assumes that any molecular oxygen above 250 km is

due to the recombination of atomic oxygen on a satellite surface. High resolution

simulations presented in this thesis suggest that large amounts of molecular oxygen

can be transported upwards by vertical winds during geomagnetic storms and that

the neglect of this transport effect will lead to substantial overestimations of atomic

oxygen number densities by mass spectrometers at higher altitudes. These overes-

timations can be quite significant; a simulated total oxygen depletion of one-half at

280 km could mean that the atomic oxygen number densities at 280 km are actually

one-seventh of their normal values while the simulated molecular oxygen concentra-

tions are 25 times larger than normal.

keywords: thermosphere, composition, mass spectrometer
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Chapter 1

Introduction

On March 6, 1989, a very large and complex sunspot group, Active Region 5395,

rotated around the eastern limb of the Sun and into full view of the Earth. This

region erupted almost immediately, producing one of the most intense solar flares

ever observed, an X15/3B class flare that would last over ten hours [Joshi, 1993].

Several more flares would be observed over the next three days, with at least one

X-class flare being observed daily. The production of high energy protons had also

increased dramatically over this time period, with the solar proton flux exceeding

its quiet-time value by three orders of magnitude. Then, at 18:37 UT on March 10,

another flare erupted that would last for 141 minutes. This flare would eventually be

classified as an X4.5/3B flare, but the accompanying coronal mass ejection (CME)

was headed towards the Earth at a speed of 770 km/sec [Feynman and Hundhausen,

1994] and would change our perceptions about the near-Earth space environment.

The leading edge of this CME reached the Earth on the evening of March 12

and caused the high-energy proton flux to increase to 100 times its normal value.

By the morning of March 13, geosynchronous satellites like GOES-6 and GOES-7

were no longer flying in the protective cocoon of the Earth’s magnetosphere as the

magnetopause had been compressed to 4.7 RE, half of its typical 10 RE distance [Allen

et al., 1989]. Data corruption, “single-event” upsets (SEUs) and other minor satellite

operation anomalies were widespread during this time period, affecting satellites at
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all altitudes. Japan’s geostationary CS-3B communications satellite was particularly

hard-hit by the increased particle flux, losing half of its dual redundant command

circuitry [Allen et al., 1989]. Seven other geostationary communications satellites

had problems maintaining operational attitude, requiring 177 thruster adjustments

that shortened their operational lifetimes by a year [Allen et al., 1989].

The increased particle flux also had a pronounced effect on the thermosphere and

ionosphere. Bright red aurora were observed over most of North America and Europe

on the nights of March 12-13 and 13-14. The Aurora Australis was also visible at

unusually low latitudes, with sky watchers in New Zealand, western Australia, and

South Africa being treated to the same vivid red displays seen over most of North

America and Europe. Ionospheric densities in the D- and E-regions were substantially

enhanced, causing a HF (High-frequency) communications blackout on the sunlit side

of the Earth. LORAN (LOng RAnge Navigation), GPS (Global Positioning System),

and other navigational systems were also being disrupted as scintillation effects and

TEC (Total Electron Content) variations were causing substantial signal degradation.

VHF (Very-high-frequency) radio communications, on the other hand, were extremely

robust, propagating far beyond their normal line-of-sight ranges (a more complete

discussion of the ionospheric response to the March 13-14 storm can be found in Yeh

et al., 1992).

The auroral electrojets had also intensified and expanded equatorwards, causing

ground induced currents (GICs) to flow in high voltage transformers, power trans-

mission lines, telecommunication cables, and pipelines. High voltage transformers in

Europe and North America were particularly susceptible to the effects of these GICs,

with the voltage surges causing transformer cores to saturate. This resulted in volt-

age fluctuations that tripped protective relays in many areas of the United States and

Sweden [Allen et al., 1989]. It also caused some transformers to overheat, shortening

their operational lifetimes (a ten million dollar transformer at a Salem, New Jersey

power plant was so badly damaged that it eventually had to be replaced). The most

spectacular effect of these GICs occurred in Quebec - the entire Hydro-Quebec power

system collapsed in just 90 seconds - leaving 6 million people without electricity in
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sub-zero temperatures.

The enhanced electrojet currents also caused Joule heating rates in the upper

atmosphere to increase, producing substantial density enhancements throughout most

of the thermosphere. Low Earth orbit (LEO) satellites were now traveling through

regions that were five to nine times denser than normal [Allen et al., 1989], causing

the decay rates of these objects to accelerate. These accelerated decay rates also

tended to be quite erratic, with the U. S. Air Force Space Command temporarily

losing track of 1300 satellites (it would eventually take the U. S. Air Force Space

Command a week to identify all of the ‘missing’ satellites).

Since the time of that storm, the use of satellites and other technologies that are

susceptible to changes in the near-Earth space environment has mushroomed, leading

to a concerted effort by many governments to understand how solar activity affects

the near-Earth space environment, e.g. the Canadian Geospace Monitoring (CGSM)

program and the U. S. National Space Weather Program (NSWP). Understanding

how the upper atmosphere distributes and dissipates energy from the magnetosphere

is one of the more challenging problems that these programs must solve and is the

primary motivation for this thesis. With this in mind, the remainder of this chapter

will provide overviews on the upper atmosphere, relevant observational results, and

previous thermospheric modelling efforts.

1.1 The Neutral Atmosphere

1.1.1 Temperatures

The neutral component of the Earth’s atmosphere is most commonly described by its

thermal characteristics. This results in four distinct regions, with each region being

known as a sphere and the boundary between adjacent regions being referred to as a

pause (Figure 1.1). The lowest region in this paradigm is the troposphere, which has

a typical lapse rate of 6.5 K/km (this “typical” lapse rate often exhibits significant

variability as the heating of the Earth’s surface by solar radiation frequently results

in substantial convective activity and strong vertical motions). These decreasing
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Figure 1.1: Temperature structure of the neutral atmosphere. Neutral temperatures

are from the Mass Spectrometer and Incoherent Scatter model [Hedin, 1991] at 45◦N,

0◦E for March 21. The variability of neutral temperatures in the thermosphere is quite

evident (F10.7 values for solar minimum and maximum were 80 and 210 respectively).

temperatures persist until one reaches the tropopause, which occurs around 18 km in

the tropics. The height of the tropopause is significantly lower in the polar regions,

with tropopause altitudes typically being in the range of 8-10 km.

The concentrations of some trace atmospheric constituents also change quite

abruptly at the tropopause; water vapour number densities decrease sharply while

the number density of ozone often increases by an order of magnitude over the next

few kilometers. These rapidly increasing concentrations of ozone absorb significant

amounts of solar UV radiation, reversing the temperature gradient in the strato-

sphere. This results in a strongly stratified region that inhibits vertical motions -
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thunderstorms can only penetrate a few km into the lower stratosphere before being

dissipated.

The temperatures in the stratosphere eventually reach a maximum at the strato-

pause and then begin to decrease again in the mesosphere. The decreasing tempera-

tures in the mesosphere means that vertical motions in this region are not strongly

damped (like the troposphere), allowing dynamical motions and radiation processes

to play significant roles in the evolution of this region. The interplay between these

two processes allows the second temperature minimum at the mesopause to be the

coldest place on Earth, with temperatures routinely dropping to 130 K in the summer

months [Theon et al., 1967; Lübken and von Zahn, 1991; Lübken, 1999].

The temperatures in the lower portion of the thermosphere increase quite dramat-

ically, with lapse rates of -15 K/km being quite common to altitudes of 150 km. The

presence of such large lapse rates in this region of the atmosphere is due to two fac-

tors: the absorption of solar ultraviolet (UV) radiation at wavelengths below 175 nm

and a paucity of effective cooling mechanisms at these altitudes. The presence of such

large temperature gradients cannot be maintained indefinitely and the temperatures

in the thermosphere eventually approach an asymptotic value (known as the exo-

spheric temperature) that persists for several hundred kilometers. The dependence

of thermospheric temperatures on the absorption of solar radiation also means that

the temperatures in the thermosphere are highly variable in space and time. Solar

cycle and local time variations are usually the most obvious (recall Figure 1.1), but

many other effects can also be seen in thermospheric temperatures, e.g. geomagnetic

activity, seasonal variations, etc.

1.1.2 Density Structure

The density and composition of the atmosphere is also quite variable, with variations

in latitude, longitude, and time of day being easily discernible in the climatologies

of most neutral species. While a complete understanding of a species distribution

requires a detailed knowledge of its horizontal variations, considerable insight into a

species distribution can be gained if one only considers vertical variations. If one does
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this, the continuity equation for species s can be written as

∂ns

∂t
+∇ · (nsus) = Ps − Ls (1.1)

where ns is the number density of species s, us is the drift velocity of species s, Ps is

the production rate of species s, and Ls is the loss rate of species s. The product nsus

is also known as the flux of a species and requires a knowledge of the species drift

velocity us. Colegrove et al. [1965, 1966] have shown that the vertical component of

the species flux can, in the absence of strong vertical motions, be written as

(nsus)z = −Ds

[

∂ns

∂z
+
ns(1 + αs)

Ts

∂Ts
∂z

+
nsmsg

kTs
− ns

∑

t6=s

(ntut)z
nDst

]

−Kz

[

∂ns

∂z
+
ns

Ts

∂Ts
∂z

+
nsm̄g

kTs

]

(1.2)

where αs is the molecular thermal diffusion coefficient of species s, Ts is the temper-

ature of species s, ms is the mass of an individual particle in species s, Kz is the

eddy diffusion coefficient, g is the gravitational field strength at height z, and k is

Boltzmann’s constant. The mean mass m̄ and molecular diffusion coefficient Ds are

determined by the expressions

m̄ =
∑

s

nsms/
∑

s

ns (1.3)

Ds =

(

∑

t6=s

nt

nDst

)−1

(1.4)

with Dst being the binary diffusion coefficient between species s and species t.

While equations (1.1) and (1.2) allow one to determine the vertical distribution

of most species, considerable simplifications can still be made if one considers the

chemical and dynamical timescales of the species in question. If the chemical timescale

of the species is much longer than the dynamical timescale of the species, one can

ignore the effects of chemistry, i.e. Ps and Ls are negligible. Most long chemical

timescale neutral species are also close to diffusive equilibrium, allowing one to set

the vertical flux of these species to zero (atomic hydrogen is the notable exception).

Defining Λ = Kz/Ds and integrating equation (1.2) from a reference altitude zo to z
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gives the steady-state distribution

ns(z) = ns(zo)

[

Ts(zo)

Ts(z)

]

exp



−
z
∫

zo

(

1

Hs

+
Λ

Hm

)

(1 + Λ)−1dz′





× exp



−αs

T
∫

To

(1 + Λ)−1 d (lnT ′)



 (1.5)

where the scale heights

Hs =
kTs
msg

, Hm =
kTs
m̄g

(1.6)

have been introduced. Since mixing processes are much faster than diffusive processes

below 80 km, i.e. Λ ≫ 1, one can simplify equation (1.5) to

ns(z) = ns(zo)

[

Ts(zo)

Ts(z)

]

exp



−
z
∫

zo

dz′

Hm



 (1.7)

in this region. This shows that the number density of any species with a long chemical

timescale in these regions of the atmosphere will decrease exponentially with the same

scale height Hm, i.e. any long chemical timescale species will have the same mixing

ratio at any altitude where mixing/turbulence dominates. This can be clearly seen

in Figure 1.2, where the profiles of N2, O2, and Ar parallel each other below 100 km.

Since these species are also the dominant constituents in these regions, the mean

molecular weight of air does not change appreciably in the mixing dominated region

of the atmosphere. Because of this, the mixing dominated region of the atmosphere

is known as the homosphere.

The effectiveness of mixing processes decreases rapidly above 100 km, allowing

molecular diffusion to become the dominant process above 120 km, i.e. Λ ≪ 1. Under

these conditions, equation (1.5) simplifies to

ns(z) = ns(zo)

[

Ts(zo)

Ts(z)

](1+αs)

exp



−
z
∫

zo

dz′

Hs



 . (1.8)

This shows that the number density of any long chemical timescale species in the

diffusion dominated regime of the atmosphere will decrease exponentially with its

own scale height Hs. Since the scale heights of the individual species are inversely
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Figure 1.2: Constituents of the neutral atmosphere. Profiles of the individual species

are from the Mass Spectrometer and Incoherent Scatter model [Hedin, 1991] at 45◦N,

0◦E for March 21 (the F10.7 value was 80).

proportional to the species mass, lighter species will have larger scale heights, and as

a consequence of this, are more abundant than the heavier species at higher altitudes.

This is quite evident in Figure 1.2, where the number densities of N2 and O2 decrease

much more rapidly than the number densities of lighter species like H, He, and O.

The effects of vertical transport are also discernible in Figure 1.2, with the number

densities of H and He decreasing at a rate that is much slower than that predicted

by scale height considerations. This tendency for species in the molecular diffusion

dominated regime of the atmosphere to ‘separate out’ has led to the designation of

this region of the atmosphere as the heterosphere. The dependence of neutral species

scale heights on temperature also means that solar cycle and local time variations
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will be present in heterospheric number densities, with order of magnitude variations

being quite common (Figure 1.3).
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Figure 1.3: Density structure of the neutral atmosphere. Neutral densities are from

the Mass Spectrometer and Incoherent Scatter model [Hedin, 1991] at 45◦N, 0◦E for

March 21. The variability of the neutral number density in the upper thermosphere is

obvious (F10.7 values for solar minimum and maximum were 80 and 210 respectively).

1.2 Absorption of Solar Ultraviolet Radiation

As solar ultraviolet photons penetrate into the atmosphere, they can interact with the

ambient species through three basic mechanisms: absorption, emission, and scatter-

ing. Scattering is normally negligible at UV wavelengths as the Rayleigh scattering

cross section of most thermospheric species is usually several orders of magnitude

smaller than the species’ absorption cross section [Huffman, 1992]. The plethora of
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UV emission lines and bands in the thermosphere provides a wealth of information

on the structure, dynamics and energetics of this region, but the retrieval of this

information is not trivial and will only be discussed as needed in subsequent sec-

tions of this thesis. Absorption, which is crucial to understanding the ionosphere and

thermosphere, will be presented in the following paragraphs.

The absorption of UV radiation in the thermosphere generally proceeds through

three processes: photoionization, photodissociation, and the combination of these two

processes, dissociative photoionization. Photodissociation occurs when the energy of

the photon is greater than the dissociation threshold of the species in question, i.e.

O2 + hν(< 2242 Å) → O+O (1.9)

N2 + hν(< 1026 Å) → N+ N (1.10)

[Rees, 1989]. The wavelengths given in equations (1.9) and (1.10) correspond to

the production of two atoms in their electronic ground states; photons with energies

greater than the dissociation threshold of that species can also result in electronically

excited states, e.g.

O2 + hν(< 1749 Å) → O+O(1D). (1.11)

If the energy of the incident photon is greater than the ionization threshold of the

species that the photon is interacting with, photoionization can occur, i.e.

N2 + hν(< 796 Å) → N+
2 + e− (1.12)

O2 + hν(< 1026 Å) → O+
2 + e− (1.13)

O + hν(< 911 Å) → O+ + e− (1.14)

[Rees, 1989]. The wavelengths given in equations (1.12)-(1.14) correspond to the

production of the ion in its electronic ground state; photons with energies greater than

the ionization threshold can generate an ion in an electronically excited state and/or

an energetic photoelectron. Molecular nitrogen and oxygen can also be photoionized

dissociatively if the photons are sufficiently energetic, i.e.

N2 + hν(< 510 Å) → N+ +N + e− (1.15)
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O2 + hν(< 662 Å) → O+ +O+ e− (1.16)

[Rees, 1989]. These processes are responsible for atomic oxygen becoming the domi-

nant neutral species above 200 km and for the significant populations of electronically

excited species in the thermosphere and ionosphere.

A more quantitative description of solar UV radiation absorption can be obtained

through the application of the Beer-Lambert absorption law

dI(s, λ) = −
∑

t

nt(s) σ
a
t (s, λ) I(s, λ) dsλ (1.17)

where

I(s, λ) = intensity of the photon flux along pathlength s at wavelength λ

nt(s) = number density of species t

σa
t (s, λ) = absorption cross section of of species t at wavelength λ

dsλ = incremental path length traveled by the photons.

This equation shows that the change in photon flux is proportional to the intensity

of the photon flux, the absorption cross section, the number density of the absorb-

ing species and the incremental path length traveled by the photons. Integrating

equation (1.17) along the path length of the photons gives

I(s, λ) = I∞(λ) exp



−
∑

t

s
∫

∞

nt(s
′) σa

t (s
′, λ) ds′λ



 (1.18)

where I∞(λ) is the unattenuated photon flux at the top of the atmosphere at wave-

length λ. The argument of the exponential in equation (1.18) is also known as the

optical depth

τ(s, λ) =
∑

t

s
∫

∞

nt(s
′) σa

t (s
′, λ) ds′λ (1.19)

and is a measure of the atmosphere’s ability to absorb radiation, i.e. a large optical

depth will attenuate the photon flux quickly while a small optical depth will allow

most of the photons to pass through.

While equation (1.19) is correct, its evaluation can become quite tedious as a de-

tailed knowledge of the species distributions and absorption cross sections is necessary.



12

Considerable insight into the absorption of solar UV radiation can be gained if a few

simplifying assumptions are made. If the thermosphere is modeled as a horizontally

stratified, single species constant scale height gas, i.e.

n(z) = n(zo) exp

[

−(z − zo)

H

]

and the photon flux is treated as a monochromatic stream of photons propagating

through the atmosphere at a solar zenith angle χ, i.e. s and z are related through the

expression ds = − dz secχ, then equation (1.18) becomes

I(z, χ) = I∞ exp



−
∞
∫

z

n(z′ ) σ secχ dz′





= I∞ exp [ − σ secχ H n(z) ] . (1.20)

Since the rates of photodissociation and photoionization are proportional to the

photon energy deposition rate, all of these processes can be discussed in terms of the

photon energy deposition rate, which, in terms of the preceding approximations, is

Pc (z, χ) = σ n(z) I(z, χ)

= σ n(zo) I∞ exp

{[

−(z − zo)

H

]

− n(zo)σH secχ exp

[

−(z − zo)

H

]}

.

(1.21)

Equation (1.21), which is also known as the Chapman production function, obtains

its maximum value at

zm = zo +H ln [n(zo)H σ secχ] (1.22)

(this expression can be obtained by setting the derivative of equation (1.21) equal to

zero). Substituting equation (1.22) into equation (1.21) yields

Pc (zm, χ) =
I∞

eH secχ
=

I∞ cosχ

eH
(1.23)

which, in conjunction with equation (1.22), allows one to rewrite the Chapman pro-

duction function as

Pc (z, χ) = Pc (zm, χ = 0) exp

{

1 −
[

(z − zmo)

H

]

− secχ exp

[

− (z − zmo)

H

]}

(1.24)
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Figure 1.4: Chapman production function for different solar zenith angles. The max-

imum energy deposition rate decreases and is shifted to higher altitudes as the path

length that the radiation must traverse increases.

where zmo is the altitude where the zero zenith angle Chapman production function

obtains its maximum value. Plots of equation (1.24) for various values of χ are

presented in Figure 1.4. The shift of the maximum energy deposition rate to higher

altitudes as the zenith angle increases is quite evident. The merging of the profiles

above the peak production rate is also obvious; this is due to the low gas densities at

higher altitudes limiting the production rate, i.e. for z ≫ zmo

Pc (z, χ) → Pc (zm, χ = 0) exp

[

− (z − zmo)

H

]

. (1.25)

The rapid decrease below the production peak is due to the photon flux having been
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totally attenuated, i.e. for z ≪ zmo

Pc (z, χ) → Pc (zm, χ = 0) exp

[

− secχ exp

[

− (z − zmo)

H

]]

. (1.26)

1.3 The Ionosphere

The ionosphere is usually defined as “that region of the atmosphere where significant

numbers of free thermal (< 1 eV) electrons and ions exist” [Schunk and Nagy, 2000].

The presence of these free electrons and ions in the atmosphere is primarily due

to two processes: the ionization of neutral species by solar radiation, which was

described in the previous section, and by energetic particle impact, which is usually

most pronounced at higher latitudes (describing the passage of electrons through the

atmosphere is beyond the scope of this thesis as they are not attenuated like photons -

they collide with the ambient neutral species many times before becoming part of the

thermal electron population). Once these ions and electrons are produced, they can be

influenced by many processes: diffusion, recombination, plasma instabilities, electric

fields, magnetic fields, neutral winds and wave disturbances can all play a significant

role in the evolution of this region at times.

Despite this complexity, the vertical density structure of the ionosphere exhibits

a ‘layered’ structure at all latitudes. Typical profiles of the mid latitude ionosphere

are shown in Figure 1.5 and clearly illustrate this layering phenomenon. The most

prominent layer in these profiles is the F-region, which, depending on the time of day,

has a maximum number density of 105-106 particles/cm3 in the 250-350 km region.

The lower boundary of the F-region also depends on the time of day, with altitudes

of 120-150 km being typical. The second electron number density maximum in the

105-110 km region is associated with the E-region, which has a lower boundary near

85-95 km. The ‘ledge’ in electron number densities below the E-region boundary is,

not surprisingly, known as the D-region. The large altitude ranges associated with

these boundaries is not simply due to solar flux or diurnal variations; the radio wave

propagation and ionospheric composition communities employ different criteria in

determining the altitudes of these boundaries.
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Figure 1.5: Density structure of the ionosphere. Electron densities are from the

International Reference Ionosphere [Blitza, 2001] at 45◦N, 0◦E for March 21. The

variability of the electron number densities is quite evident (annual average sunspot

numbers for solar minimum and maximum were 20 and 120 respectively).

The quasi-neutrality of the terrestrial ionosphere dictates that the number of

electrons and negative ions at any altitude must be equal to the number of positive

ions at that altitude (negative ions are extremely rare above 85 km, so the number

density of positive ions is usually equal to the number density of the electrons above

altitudes of 85 km). A ‘typical’ profile of the positive ion distributions in the terrestrial

ionosphere is presented in Figure 1.6. The large concentration of O+ ions in the F-

region is not unexpected as atomic oxygen is the primary neutral constituent at these

altitudes. The presence of O+
2 ions in the D- and E-regions can also be predicted from

neutral constituent considerations, but the paucity of N+
2 ions and the presence of
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Figure 1.6: Constituents of the ionosphere. Profiles of the ionospheric species are

from the International Reference Ionosphere [Blitza, 2001] and TRANSCAR [Blelly

et al., 1996], a first principles ionospheric model.

significant NO+ concentrations in the D- and E-regions is somewhat surprising. The

presence of H+(H2O)n and other water vapour cluster ions (WVCIs) is even more

surprising; the remainder of this section will explain how the ion distributions in the

various regions of the terrestrial ionosphere are maintained.

1.3.1 The D-region

The production of positive ions and free electrons in the D-region has been studied

extensively since the 1960s and is now fairly well understood. The three most impor-

tant sources of ionization in this region are the solar Lyman-α line at 1215.7 Å, which
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ionizes nitric oxide (NO), solar UV photons in the 1027-1118 Å interval, which ionizes

the metastable O2(
1∆g) state, and solar X-rays in the 2-8 Å interval, which ionizes

N2 and O2 (solar X-rays actually ionize all of the neutral constituents in the D-region,

but N2 and O2 are the principal constituents). Cosmic rays and precipitating magne-

tospheric particles also contribute to the D-region ionization rates, with cosmic rays

becoming the primary ionization source below 65 km. Most of these sources exhibit

strong solar activity and diurnal variations, but the ionization rates do not drop to

zero at night as the galactic cosmic ray flux is essentially constant and the Lyman-α

flux always contains a scattered geocorona component, i.e. Lyman-α photons that

have been resonantly scattered from atomic hydrogen in the exosphere.

These ionization processes produce N+
2 , O

+
2 , NO

+, O+, and N+ ions at D-region

heights, but the N+
2 , N

+, and O+ ions are rapidly converted to O+
2 and NO+ through

the reactions

N+
2 + O2 → O+

2 + N2 (1.27)

N+
2 + O → NO+ + N (1.28)

O+ + O2 → O+
2 + N (1.29)

O+ + N2 → NO+ + N (1.30)

N+ + O2 → O+
2 + N (1.31)

N+ + O2 → NO+ + O (1.32)

leaving NO+ and O+
2 as the dominant positive ions in the upper D-region [Turunen

et al., 1996]. The O+
2 ions can also form proton hydrates (the H+(H2O)n group of

WVCIs) through the reaction chain

O+
2 + O2 + M → O+

4 + M (1.33)

O+
4 + H2O → O+

2 (H2O) + O2 (1.34)

O+
2 (H2O) + H2O → H3O

+(OH) + O2 (1.35)

H3O
+(OH) + H2O → H+(H2O)2 + OH (1.36)

H+(H2O)2 + H2O + M → H+(H2O)3 + M (1.37)
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[Fehsenfeld and Ferguson, 1969; Good et al., 1970], with the final hydration orders

being determined by a balance between the clustering reactions

H+(H2O)n + H2O + M ⇀↽ H+(H2O)n+1 + M (1.38)

and dissociative recombination

H+(H2O)n + e → H + (n−m)(H2O) + (H2O)m. (1.39)

The reaction rates associated with clustering reactions (1.38) are very sensitive to

the temperature and the water vapour content of the atmosphere, allowing hydration

orders of 2-4 to dominate under normal conditions (hydration orders as high as 20

have been observed near the summer mesopause at high latitudes [Bjorn and Arnold,

1981]). Atomic oxygen also plays an important role in this reaction chain as it can

prevent the switching of O2 and H2O in the second step of the reaction sequence by

reacting with the O+
4 ion

O+
4 + O → O+

2 + O3. (1.40)

This reaction increases in importance as one moves higher into the D-region and is

believed to be the primary reason why the concentrations of H+(H2O)n decrease so

rapidly in the upper D-region.

There is also an appreciable number of NO hydrates, i.e. NO+(H2O)n, in the

middle of the D-region. The NO+(H2O) ion is primarily formed by the reaction

sequence

NO+ + N2 + M → NO+(N2) + M (1.41)

NO+(N2) + CO2 → NO+(CO2) + N2 (1.42)

NO+(CO2) + H2O → NO+(H2O) + CO2 (1.43)

[Fehsenfeld and Ferguson, 1969], with the second and third order NO hydrates forming

in a similar manner (Figure 1.7). The third order NO hydrate then reacts with water

vapour to form the third order proton hydrate,

NO+(H2O)3 + H2O → H+(H2O)3 + HNO2, (1.44)
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Figure 1.7: Positive ion chemistry of the D-region. There are four reaction channels:

the first involves atomic and molecular ions (O+, O+
2 , N

+
2 , NO

+, and O+
4 ), the second

is associated with proton hydration processes (H+(H2O)n, n = 1 to 8), the third is

associated with the NO hydration process and the fourth involves clustering between

ions and other minor constituents (CO2, OH, and HO2). (From Turunen et al., 1996.)
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allowing more higher order proton hydrates to form through equation (1.38).

The presence of negative ions in the lower D-region is also due to three-body

reactions, with O− and O−
2 forming through the electron attachment reactions

e− + O2 + M → O−
2 + M (1.45)

e− + O3 → O− + O2. (1.46)

These ions then initiate reaction chains that eventually culminate in the production

of NO−
3 ions, with the two most probable chains being

O−
2

O2−→ O−
4

CO2−→ CO−
4

NO−→ NO−
3 (1.47)

O− O2−→ O−
3

CO2−→ CO−
3

NO−→ NO−
2

O3−→ NO−
3 (1.48)

[Wayne, 2000]. Many other negative ions exist in the lower D-region, e.g. O−
4 , OH−,

and HCO−
3 , but our understanding of negative ion chemistry in the D-region is still

quite rudimentary and will not be discussed any further in this thesis.

1.3.2 The E-region

The E-region, like the upper D-region, is composed primarily of NO+, O+
2 and elec-

trons (Figure 1.6). The primary sources of ionization in this region are the photoion-

ization of O2 in the 800-1027 Å interval and N2, O2, and O in the 10-100 Å interval,

which generates substantial numbers of N+
2 , O

+
2 and O+ ions. The O+ and N+

2 ions

are rapidly converted to O+
2 and NO+ through reactions (1.27)-(1.30), with the effects

of reaction (1.28) becoming more important as one moves higher into the E-region.

The O+
2 ions can also react with N2 and NO, i.e.

O+
2 + N2 → NO+ + NO (1.49)

O+
2 + NO → NO+ + O2 (1.50)

which increases the NO+ concentrations at the expense of O+
2 . The electron densities

at E-region altitudes are also high enough that one must account for the effects of

dissociative recombination

O+
2 + e− → O + O (1.51)

NO+ + e− → N + O (1.52)
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which further exacerbates the NO+ concentration excess as most O+
2 ions will collide

with NO and form NO+ through reaction (1.50) before they encounter an electron.

The strong diurnal variation in the E-region number densities is primarily due

to the large drop in the UV photon flux at night. Resonantly scattered Lyman-α

photons and starlight from O and B type stars in the 911-1026 Å interval become the

primary sources of ionization and allow ion densities of 102-103 cm−3 to be maintained

throughout the night. Resonantly scattered photons at 304 Å, 584 Å, and Lyman-β

also make a small contribution to the nighttime ionization rates at their respective

wavelengths (a more detailed discussion on the ionization rates of the nighttime E-

region can be found in Titheridge [2000]).

1.3.3 The F-region

The F-region is normally divided into three subregions: the F1-region (where pho-

tochemistry dominates), the F2-region (a transition region where chemistry and dif-

fusion both play an important role), and the topside ionosphere (where diffusion

dominates). The primary source of ionization in the F1-region is the photoioniza-

tion of atomic oxygen by UV photons in the 200-911 Å interval, which produces

large amounts of O+. The O+ ions are then converted to NO+ and O+
2 through re-

actions (1.29)-(1.30), which can then recombine through reactions (1.51) and (1.52).

The concentrations of molecular oxygen and nitrogen play a pivotal role in this region

as they limit the ability of reactions (1.29)-(1.30) to create NO+ and O+
2 ions, causing

the composition of the F1-region to change from molecular ions in the lower F1-region

to O+ ions in the upper F1-region (the O+ number density increases exponentially

with height in the F1-region as the photoionization rate, which is proportional to the

atomic oxygen number density, decreases at a rate that is much slower than the loss

rate imposed by reactions (1.29)-(1.30)). The dependence of the ion number densities

on the photoionization rates also means that the ion densities in the F1-region exhibit

a pronounced diurnal variation, like the D- and E-regions below it.

The inability of an atomic oxygen ion to recombine with an electron means that

the photochemical lifetime of an O+ ion will increase with altitude (atomic recom-
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bination reactions cannot conserve energy and momentum simultaneously unless the

excited ‘intermediate’ state decays through a radiative transition). This increasing

photochemical lifetime means that the O+ ions will be influenced more and more by

transport processes as one moves higher into the F-region, with the F2-region density

peak occuring where transport and photochemical production rates are equal. The

subsequent decrease in ion number densities is primarily controlled by a balance be-

tween the ionospheric pressure gradient and gravity, which allows H+ to become the

dominant ion by 1000 km.

1.4 High Latitude Electrodynamics

The high latitude ionosphere can exhibit substantial deviations from the behaviour

described in the previous section as it is coupled to the magnetosphere through electric

fields, particle precipitation, and field-aligned currents (Figure 1.8). There are usu-

ally two types of field-aligned currents; Region-1 field-aligned currents and Region-2

field-aligned currents. Region-1 field-aligned currents occur on the polewards edge of

the auroral zone (they flow into the ionosphere in the morning sector and away from

the ionosphere in the evening sector) and are believed to close near the magnetopause

or in the distant magnetotail [Toffoletto and Hill, 2000]. Region-2 field-aligned cur-

rents occur on the equatorwards edge of the auroral zone (they flow down into the

ionosphere on the duskside and up on the dawnside) and close in the inner plasma

sheet and ring current regions [Schield et al., 1969; Wolf, 1983]. During geomagneti-

cally disturbed periods, the Region-1 and Region-2 current patterns expand to lower

latitudes, with the average latitudinal width of the Region-1 and Region-2 current

patterns increasing by 20% [Iijima and Potemra, 1978].

The upwards flowing components of the Region-1 and Region-2 current systems are

primarily composed of precipitating magnetospheric electrons, causing these regions

to charge up negatively. Field-aligned currents flowing down into the ionosphere are

carried by upwards flowing ionospheric electrons, causing the ionospheric portion of

these regions to charge up positively. The resultant charge distribution produces
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an electric field pattern in the auroral zone that is directed towards the upwards

flowing current regions in the evening and morning sectors. The electric fields in the

polar cap region, on the other hand, are quite variable in space and time as they are

a consequence of magnetic reconnection near the dayside magnetopause; the upper

example in Figure 1.9 exhibits an essentially constant strength across the polar cap

region while the lower example exhibits relatively large values in the morning flank

of the polar cap region.

At ionospheric heights, the current density J and the “effective” electric field

E+ 1
c
(un ×B) are normally related through the Ohm’s Law expression

J = σ

(

E+
1

c
(un ×B)

)

(1.53)

where σ is the conductivity tensor, un is the neutral velocity vector, B is the ge-

omagnetic field vector, and c is the speed of light (a more thorough discussion on

the validity of this expression can be found in Schunk and Nagy [2000]). If one de-

composes the ’effective’ electric field into components that are perpendicular to and

parallel with the geomagnetic field, then equation (1.53) can also be written as

J = σ‖E‖ + σP

(

E⊥ +
1

c
(un ×B)

)

+ σH b×
(

E⊥ +
1

c
(un ×B)

)

(1.54)

where b is the unit vector parallel to B and σ‖, σP , and σH are the parallel, Pedersen

and Hall conductivities respectively. Expressions for the parallel, Pedersen, and Hall

conductivities are given by

σ‖ = e2(
ne

meνe
+
∑

i

ni

miνi
) (1.55)

σP = e2(
ne

meνe

ν2e
ν2e + ω2

e

+
∑

i

ni

miνi

ν2i
ν2i + ω2

i

) (1.56)

σH = e2(
ne

meνe

νeωe

ν2e + ω2
e

−
∑

i

ni

miνi

νiωi

ν2i + ω2
i

) (1.57)

where ωi =
eB
mi

is the gyrofrequency of ion species i, ωe =
eB
me

is the electron gyrofre-

quency, νi is the ion-neutral collision frequency for ion species i, νe is the electron-

neutral collision frequency, ni is the number density of ion species i, and ne is the
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Figure 1.8: Schematic diagram of currents and electric fields in the high latitude iono-

sphere. The field-aligned current pattern (panel (a)) has been adapted from Iijima

and Potemra (1978). Regions where these currents flow down into the ionosphere

tend to charge up positively and regions where these currents flow upwards tend to

charge up negatively, producing an electric field pattern in the auroral zone that is

directed towards the upwards flowing current regions in the evening and morning

sectors (panel (b)). The electric field pattern that is directed from dawn-to-dusk in

the polar cap region is a consequence of magnetic reconnection near the dayside mag-

netopause. The horizontal currents (panel (c)) connect the upwards and downwards

flowing field-aligned current regions. The resulting E×B drift velocities (panel(d))

are anti sunwards in the polar cap region and sunwards in the morningside and af-

ternoonside auroral zones. (From Wolf, 1995.)
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Figure 1.9: OGO-6 electric field measurements in the high latitude thermosphere dur-

ing disturbed conditions. The electric field in the evening sector is directed northwards

(polewards) in both examples and reaches values of 60-80 mV/m in the eveningside

auroral zone. The electric field in the morning sector is directed southwards (equa-

torwards) in both examples and reaches very large values in the auroral zone. The

characteristics of the electric field in the polar cap region are very different: the upper

example has an essentially uniform strength across the polar cap region (Type A elec-

tric field pattern) while the lower example has relatively large values in the morning

flank of the polar cap region (Type B electric field pattern). (Reprinted from Planet.

Space Sci., Vol. 20, J. W. Heppner, Electric field variations during substorms: OGO-6

measurements, pp. 1475-1498, Copyright 1972, with permission from Elsevier.)
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electron number density. It should be noted that there are two components to the

perpendicular current: the Pedersen current, which is in the direction of E⊥, and the

Hall current, which is perpendicular to both E⊥ and B.

1.5 Observations of the disturbed high latitude thermosphere

1.5.1 Neutral Density Changes

Neutral density enhancements during geomagnetically disturbed periods have been

inferred from the orbital decay of satellites since the dawning of the space age [Jacchia,

1959, 1961; Groves, 1961; Jacchia and Slowey, 1963, 1964; Moe, 1966; Roemer, 1966,

1971; Jacchia, Slowey and Verniani, 1967]. The large altitude and latitude ranges of

these studies revealed several characteristics about these enhancements

i) the relative amplitudes of these enhancements increased with height (Figure 1.10)

ii) the higher latitude density enhancements tended to be larger than those occur-

ring at middle and lower latitudes and

iii) the higher latitude density enhancements normally preceded the density en-

hancements at middle and lower latitudes

Unfortunately, satellite-decay derived density values also had very poor spatial resolu-

tion as the measured values had to be averaged over arcs of 30o or more (Figure 1.11).

The deployment of accelerometers on-board LEO satellites in the late 1960s provided

much better spatial resolution (Figures 1.12-1.14) and revealed that density depletions

could sometimes occur in the lower regions of the auroral thermosphere. (Figure 1.12).

1.5.2 Composition changes

Most quantitative observations of thermospheric composition changes in the 1970s

and early 1980s were obtained from mass spectrometers on-board low Earth orbit

(LEO) satellites. Inferring absolute number densities from these measurements was

not a trivial task as the calibration factor that related the number densities in the

ion source to the ambient number densities had to account for the high orbital speed
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Figure 1.10: Atmospheric drag on seven satellites during the November 1960 storm

period. The decelerations experienced by the seven satellites during the storms of

November 12-14 and November 15-17 are presented in the upper panel of this figure

and have been ’normalized’ to the mean deceleration experienced by these satellites

during the geomagnetically quiet periods that preceded and followed the November

12-17 time period. The perturbations in the satellite decelerations tend to increase

with height and follow the ap index (lower panel) quite closely. (From Jacchia, 1961.)
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Figure 1.11: Satellite drag as a function of angular distance from perigee. The ratio

of the drag D to the drag at perigee DP is plotted for several orbital eccentricities

and highlights the spatial averaging that occurs in any orbital drag determination of

the neutral density. (From King-Hele, 1966.)
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Figure 1.12: Neutral density measurements from the LOGACS accelerometer during

the May 24-25, 1967 time period. Orbit 36 occurred during geomagnetically quiet

conditions while orbits 53 and 54 were made during disturbed conditions. There is a

moderate density depletion in the 140-160 km region and significant density enhance-

ments above 170 km on orbit 53. Both of these features are less prominent on orbit

54. (Reprinted from Space Research, Vol. 12, L. L. DeVries, Analysis and interpre-

tation of density data from the Low-G accelerometer calibration system (LOGACS),

pp. 777-789, Copyright 1972, with permission from Elsevier.)
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Figure 1.13: SETA neutral mass densities at 200 km during the July 20-26, 1983

time period. The neutral density enhancements during the July 23-25 storm period

are on the order of 50% and coincide with the increase in the Kp index. The density

scale is in units of 10−13 g cm−3 and also serves as the scale for the Kp values in the

vertical plane. The neutral density measurements extend from −80o to 80o latitude;

the latitude scale has been extended past 80o so the Kp values can be displayed clearly.

(From Forbes et al., 1996.)
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Figure 1.14: CHAMP neutral mass densities at 410 km during the April 16-22 2002

time period. Neutral density enhancements derived from the CHAMP accelerometer

(top) near 1530 LT (left) and 0430 LT (right) are on the order of 100% at 410 km

and coincide with the increase in the Kp index (black solid line, scaled on the right

hand side of each panel). Densities from an NCAR TIEGCM simulation of this

period (middle) and the empirical NRLMSISE00 model (bottom) are also shown for

comparison purposes. The neutral density colour scales are in units of 10−15 g cm−3

and have been individually scaled to illustrate the dynamic range of each data set.

(From Forbes et al., 2005.)
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(≈ 8 km/sec) of the satellite and the large temperature difference that frequently

existed between the ambient atmosphere and the ion source region (temperatures in

the ion source region were normally 300-350 K [von Zahn, 1974] while temperatures in

the thermosphere could range from 500-1500 K). Atomic oxygen and other reactive

species also had a tendency to react with any satellite surface they collided with,

making the determination of these number densities particularly difficult as high

speed gas-surface interactions were not very well understood during this time period.

Closed ion source mass spectrometers, e.g. the gas analyzers on OV3-6 [Philbrick,

1974], OGO-6 [Carignan and Pinkus, 1968], ESRO-4 [Trinks and von Zahn, 1975],

S3-1 [Philbrick, 1976], Dynamics Explorer 2 [Carignan et al., 1981] and the Neutral

Atmosphere Composition Experiment on the Atmosphere Explorer series of satellites

[Pelz et al., 1973], addressed the calibration issue by allowing the ambient species

to be thermally accommodated in an antechamber before entering the ionization

region (Figure 1.15). This ensured that any non-reactive ambient species entering the

ionization region would have been at the same temperature as the accommodation

chamber surfaces, eliminating any uncertainties about incomplete accommodation in

these measurements. It also allowed one to relate the number densities in the ion

source to the ambient number densities through the expression

ns = na

[

(

Ta
Ts

)1/2

F (S) cos2
(α

2

)

+ 1

]

(1.58)

where

na = the ambient number density

ns = the number density inside the mass spectrometer ion source

Ta = the ambient temperature

Ts = the temperature inside the mass spectrometer ion source

α = the angle of attack (the angle between the satellite velocity vector

and the normal of the ion source opening)

F (S) = the velocity correction function

F (S) = exp(−S2) +
√
π · S[1 + erf(S)]



33

with

S = the speed ratio ( V cosα / Vth )

V = the velocity of the satellite with respect to the atmosphere

Vth = the thermal (most probable) speed of the ambient species

[Hedin et al., 1964]. If the angle of attack was small, the large orbital speed of a

LEO satellite allowed the number densities in the ionization region to become much

larger than the ambient number densities, reducing the statistical uncertainties in the

measurements and extending the measurement range of the spectrometer.

Unfortunately, the closed ion source solution also exacerbated the reactive species

issue as almost all of the ambient atomic oxygen entering the accommodation chamber

would be adsorbed or recombine with an atomic oxygen atom that was already ad-

sorbed on one of the accommodation chamber surfaces. The molecular oxygen created

during this recombination process was indistinguishable from the ambient molecular

oxygen being thermalized in the accommodation chamber, introducing substantial

uncertainties into the interpretation of the atomic oxygen and molecular oxygen mea-

surements (Figure 1.16). However, Hedin et al. (1973) were able to demonstrate that

ambient atomic oxygen densities could be inferred from the atomic and molecular

oxygen densities in the ion source through the expression

no
a =

[

no
s +

1√
2
2no2

s

](

Ts
Ta

)1/2

+

(

C

Ta

)1/2(
d no

w

dt

)

(1.59)

if the ambient molecular oxygen number densities were negligible (no
w is the surface

density of adsorbed O in the accommodation chamber and C is a constant that

accounts for geometry of the accommodation chamber). If the ambient molecular

oxygen densities were not negligible, the total ambient oxygen content, O+ 2O2, was

determined.

This inability of closed ion source mass spectrometers to differentiate between

atomic and molecular oxygen led to the development of quasi-open ion source mass

spectrometers, e.g. the Open Source Spectrometer (OSS) on the Atmosphere Ex-

plorer series of satellites [Nier et al., 1973], the Neutral and Ion Mass Spectrometer

(NIMS) on the Aeros series of satellites [Krankowsky et al., 1974], and the Upper
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Figure 1.15: Schematic diagram of the ESRO-4 mass spectrometer. Ambient atoms

and molecules entered the spherical antechamber (A) through a knife-edged orifice

(OR). The antechamber had an inner diameter of 40 mm, which ensured that any

particles entering the ionization region (I) would have been thermally accommodated

to the temperature of the antechamber walls, i.e. they would have undergone several

collisions with the antechamber walls before entering the ionization region. A 75 eV

beam of electrons then ionized the thermally accommodated particles, which were

focused by the ion lenses (IL and T) into the monopole spectrometer (M). (Reused

with permission from H. Trinks and U. von Zahn, Review of Scientific Instruments,

46, 213 (1975). Copyright 1975, American Institute of Physics.)
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Figure 1.16: Neutral number densities in the ion source of the OGO-6 mass spectrom-

eter. These number densities were obtained during geomagnetically quiet conditions

on September 27, 1969 at 1000 GMT and show that most of the atomic oxygen has

recombined into molecular oxygen. (From Taeusch et al., 1971.)
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Atmosphere Composition Spectrometer (UACS) on the S85-1 satellite [Kayser et al.,

1986]. These mass spectrometers allowed the ambient gas into the ionization region

after passing through a series of high transmission grids (Figure 1.17), which ensured

that a small percentage of the ambient particles would not have collided with any

of the ion source surfaces before being ionized. Since the ionization process did not

change the momentum of the particles appreciably, these ionized particles were still

quite energetic, with energies of 0.37 eV/amu being typical [Nier, 1985]. Any ambient

particles that did collide with an ion source surface usually underwent several more

collisions in the ion source region before being ionized, creating a second, much larger

population of low energy ions in the ion source.

In the “normal” mode of operation, the low and high energy ion populations were

drawn out of the ionization region by the potential difference across the ion source

(this potential difference was created in the OSS ion source by keeping the potential

of the third grid above the potential of the ion source housing and the potential of

the focusing plates below the potential of the ion source housing). The ions were

then directed into the analyzer section of the spectrometer where the appropriate

low energy ion populations were selected and counted. Laboratory studies with high

speed molecular beams had demonstrated that most of the low energy ion species

produced in the OSS ion source had been largely accommodated [Hayden et al., 1974],

which allowed the ambient densities to be determined from the ion source number

densities through equation (1.58) if an additional factor that accounted for the effects

of incomplete accommodation was incorporated into the data processing.

Quasi-open ion source spectrometers operating in this “normal” mode were not

able to differentiate between atomic and molecular oxygen as the low energy ions being

measured in this mode had been created from particles that were essentially accom-

modated, introducing the same ambiguities that plagued closed ion source source

measurements. However, if the potential difference across the ion source region was

set to zero, the low energy ion species were not able to leave the ion source as they did

not have enough energy to overcome the negative space charge of the electron beam.

The energetic ion populations, on the other hand, were able to overcome this retarding
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Figure 1.17: Schematic diagram of the AE-C Open Source Spectrometer. The ambient

gas particles entered the the spectrometer from the left and passed through three high

transmission grids that minimized the effects of any stray electric fields. These gas

particles were then ionized by a 75 eV beam of electrons and collimated by the J1-

J2 focusing plates (the electron beam is perpendicular to the plane of the figure

and is represented by the dot in the middle of the ion source assembly SH). These

collimated ions were then directed into the electric and magnetic field analyzers, where

the desired ions were selected and counted. (From Nier et al., 1973.)
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potential quite easily as the ambient particles they had been created from were totally

unaccommodated, i.e. the energetic ion populations had been created from ambient

particles that had not collided with any of the ion source surfaces. This exclusion of

the low energy ion populations from subsequent analysis in the spectrometer ensured

that there were no recombination ambiguities in these “fly-through” mode measure-

ments of atomic and molecular oxygen. More details about the “fly-through” mode

of AE-C and the procedures used in converting the ion source densities to ambient

number densities can be found in Nier et al. (1974).

Now that the potential issues in the interpretation of closed and quasi-open mass

spectrometers have been identified, some typical examples of mass spectrometer in-

ferred composition changes in the thermosphere can be presented. The first example

(Figure 1.18) was obtained by the ESRO-4 spectrometer over the North American

continent during the geomagnetic storm of October 29, 1973. The changes in the

number densities of argon (AR), molecular nitrogen (N2), atomic oxygen (O), and

helium (HE) have been plotted in the middle panel and show that there is a well

defined “disturbance zone” extending from high to middle latitudes. The number

densities of argon were substantially enhanced in this “disturbance zone” while the

number densities of molecular nitrogen exhibited a smaller but still significant en-

hancement. The number densities of helium, on the other hand, were substantially

reduced in this zone and the number densities of atomic oxygen appeared to exhibit

a minor decrease in this region. However, it must be emphasized that ESRO-4 was

a closed source mass spectrometer that could not measure atomic oxygen directly;

the atomic oxygen number densities being presented in the middle panel were derived

from the total oxygen content densities under the assumption that the ambient O2

number densities were negligible. Outside of this “disturbance zone”, all of the con-

stituents exhibited a minor increase. A more complete discussion on the morphology

and evolution of these “disturbance zones” can be found in Prölss (1980).

Observations of these “disturbance zone” perturbations in thermospheric compo-

sition were usually limited to the upper thermosphere as the low eccentricity orbits

required to make these measurements were not very conducive to long satellite life-
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Figure 1.18: Composition changes at 280 km during the geomagnetic storm of Octo-

ber 29, 1973. The development of the geomagnetic storm can be clearly seen in the

Kp index (uppermost panel). The associated changes in the number densities of argon

(AR), molecular nitrogen (N2), atomic oxygen (O), and helium (HE) are presented in

the middle panel while changes in the N2/O ratio are presented in the lower panel. In

this style of presentation, a relative change of three meant that the disturbed num-

ber densities were three times greater than the quiet-time number densities while a

relative change of one meant that there has been no change in the number densi-

ties. The quiet-time number densities used in the determination of these ratios were

obtained from the reference orbit denoted in the upper panel. (Reprinted from J.

Atmos. Terr. Phys., Vol. 59, M. Zuzic, L. Scherliess, and G. W. Prölss, Latitudinal

structure of thermospheric composition perturbations, pp. 711-724, Copyright 1997,

with permission from Elsevier.)
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times (a satellite in a low eccentricity orbit at 200 km would have a lifetime of ap-

proximately 3 months if its orbit could not be raised). Because of this constraint,

measurements of thermospheric composition change below 250 km were usually con-

fined to localized regions around a particular latitude. A typical closed ion source

measurement from the mass spectrometer on-board the S3-1 satellite at an altitude

of 160 km is presented in Figure 1.19 and shows that the molecular nitrogen densities

around 60◦N have doubled while the argon number densities have increased by an

order of magnitude (bottom panel). The atomic oxygen number densities have been

reduced to one-half of their pre-storm values (lower middle panel) and were inferred

from the total oxygen content densities by removing the molecular oxygen component,

i.e.

nO = n(O+2O2) − 2

(

O2

N2

)

model

× nN2

where (O2/N2)model is the O2/N2 ratio from Jacchia (1971). The errors introduced by

this approximation were believed to be quite small as the effects of vertical transport

were assumed to be negligible.

Another example of composition change in the lower thermosphere is presented

in Figure 1.20 and was obtained from the OSS on AE-D when it was operating

in “fly-through” mode at high latitudes. The measured molecular oxygen number

densities (solid line, lower panel) were 4 times larger than the the quiet-time values

that preceded the storm. The measured molecular oxygen densities were also two

times larger than the diffusive equilibrium calculations of O2 using the measured

temperatures and molecular nitrogen number densities (dotted line, lower panel),

which suggested that transport by vertical winds may be playing an important role

in the evolution of O2 during this storm. Unfortunately, most OSS measurements of

atomic and molecular oxygen were made in the “normal” mode of operation, with the

unambiguous “fly-through” mode of operation being restricted to the 200 km region

[Nier et al., 1976].

Most of the LEO satellite missions investigating the upper atmosphere in the late

1960s and early 1970s also carried instruments that were capable of measuring at-
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Figure 1.19: Composition changes at 160 km during the November 8-15, 1974 storm

period. The evolution of two geomagnetic storms during the November 8-10 and

November 11-15 1974 time periods is quite evident in the Kp index (top panel). The

associated changes in the number densities of argon (Ar/Ar quiet) and molecular nitro-

gen (N2/N2 quiet) are presented in the bottom panel while the changes in atomic oxygen

(O/O quiet) and the O/N2 ratio are presented in the middle two panels. The quiet-time

number densities used in the determination of these ratios were obtained from five

quiet-time orbits that preceded the storms. More details about the determination of

the atomic oxygen number densities can be found in the text. (Reprinted from Space

Research, Vol. 17, C. R. Philbrick, J. P. McIsaac, and G. A. Faucher, Variations

in atmospheric composition and density during a geomagnetic storm, pp. 349-353,

Copyright 1977, with permission from Elsevier.)
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Figure 1.20: High latitude O2 number densities at 200 km during the geomagnetic

storm of January 11, 1974. The evolution of the storm is quite discernible in the ap

index (top panel). The neutral temperatures increased from 780 K to 1160 K during

this storm (middle panel) while the “fly-through” mode number densities (solid line,

lower panel) increased by a factor of 4. These values are two times larger than

the diffusive equilibrium calculations (dotted line, lower panel), which suggests that

transport by vertical winds may be playing an important role in the distribution of

O2 during this storm. (Reprinted from Space Research, Vol. 19, W. E. Potter, D. G.

Kayser, and A. O. Nier, Thermospheric variations as an indicator of magnetic storm

heating and circulation, pp. 259-262, Copyright 1979, with permission from Elsevier.)
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mospheric emissions in the far ultraviolet (FUV) region. Nadir observations of the

130.4ñm triplet by photometers onboard the OGO-4 satellite [Meier, 1970; Meier

and Prinz, 1971] showed that several depressions in this dayglow were associated

with atomic oxygen depletions during geomagnetically active conditions. Subsequent

observations of the 130.4ñm triplet by OGO-6 during geomagnetically disturbed con-

ditions [Strickland and Thomas, 1976] confirmed the existence of these atomic oxygen

depletions in the auroral zone and also showed that atomic oxygen enhancements

could exist at lower latitudes. However, the very large line-centre opacity of the at-

mosphere at the centre of these resonance lines made any quantitative interpretation

of the atomic oxygen concentrations in these depletions very difficult.

This issue was eventually circumvented by making observations of the FUV day-

glow at several wavelengths; observations made by the S3-4 satellite at 130.4, 135.6,

and 164.1 nm during the spring of 1978 [Conway et al., 1988] showed that the inferred

atomic oxygen column densities in these depletions were approximately 70% of their

quiet-time values (the ratios of these emission lines allowed atomic oxygen column

densities in the depletions to be deduced as the optical depths of these emission lines

were quite different - see Conway et al., 1988 for more details). Despite this success,

the low orbital altitudes of these satellite missions meant that most observations of

the FUV emission lines were confined to the orbital plane of the satellite, i.e. only a

narrow range of latitudes or longitudes was scanned each orbit.

The deployment of spin-scan imaging photometers on the Dynamics Explorer 1

(DE-1) satellite mission produced the first global scale images of FUV emissions,

allowing composition changes in the thermosphere to be observed simultaneously over

a wide range of latitudes and longitudes [Frank et al., 1981; Frank and Craven, 1988].

However, the relatively wide bandwidth of the filter used in these airglow observations

meant that there were several emissions were present in the FUV images: the OI

triplet at 130.4 nm, the OI doublet at 135.6 nm, and emissions from the N2 Lyman-

Birge-Hopfield (LBH) molecular bands. This complication caused the subsequent

analysis of these images to be split into two categories: empirical [Craven et al.,

1994; Nicholas et al., 1997; Immel et al., 1997, 2000] and first principles modelling
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[Gladstone, 1994; Meier et al., 1995; Strickland et al., 1999; Drob et al., 1999; Immel

et al., 2001; Strickland, 2001; Strickland et al., 2001].

The empirical studies were largely focused on quantifying the temporal and spa-

tial distribution of the airglow depletions during geomagnetically disturbed condi-

tions by comparing the FUV images obtained during geomagnetic disturbances to

quiet time FUV images/climatologies. The most significant decreases in the FUV

brightness (30− 40%) were normally observed equatorwards of the auroral oval after

sustained periods (∼ 6 hours) of intense geomagnetic activity (average AE greater

than 700 nT). These decreases usually extended to the middle latitudes, with mea-

surable decreases exisiting as far south as 30o N. More moderate decreases (15−30%)

were also observed southwards of the auroral oval after prolonged periods of moderate

geomagnetic activity (average AE ∼ 300-400 nT), but these decreases usually did not

extend as far equatorwards. The spatial extent of these depletions also tended to be

greater when the By component of the IMF was positive; the largest FUV depletion

recorded by DE-1 was obtained during the geomagnetic disturbance of October 22,

1981 (Figure 1.21) with the depletion in emissions extending from the terminator in

the morning sector to local noon and persisting continuously for several orbits.

Relating the intensity of the airglow image to the composition of the thermo-

sphere was (and still remains) a formidable task as first principles calculations of the

photoelectron and photon excited dayglow require a substantial amount of forward

modelling. Early studies by Gladstone [1994] and Meier et al. [1995] were able to

reproduce the salient features in the quiet time dayglow images acquired by DE-1,

validating the photoelectron and multiple scattering codes used in these airglow mod-

els. Subsequent simulations with the airglow model used in the Meier et al. [1995]

study suggested that the OI 135.6 nm/ N2 LBH intensity ratio could be used to infer

thermospheric composition changes through the O/N2 column density ratio if the

lower boundary in the column density evaluations was below all of the emission rate

maxima [Strickland et al., 1995]. The relatively wide bandwidth of the filter used in

the DE-1 FUV observations precluded the use of this technique on DE-1 data, but

Strickland et al. [1999] were able to demonstrate that O/N2 column density ratios
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Figure 1.21: DE-1 images of the FUV dayglow during geomagnetically quiet and

disturbed conditions in late 1981. The image of the FUV airglow in the upper panel

was obtained on September 24, 1981 (Day 267) and shows that the brightness of

the FUV dayglow during geomagnetically quiet conditions is primarily controlled by

the solar zenith angle. Significant deviations from this pattern can occur during

geomagnetically disturbed conditions; the geomagnetic disturbance on October 22,

1981 (Day 295) had a significantly brighter auroral oval and a large depletion in the

sub-auroral zone. Contours of constant zenith angle at 50o, 60o, 70o, and 80o have

been included on both panels. (From Strickland et al., 1999.)

could still be inferred from DE-1 airglow images (Figure 1.22) if larger uncertainties

in the column density ratios were tolerated. The availability of coincident DE-1 and

DE-2 data from the solar proton event of July 13, 1982 provided an exemplary vali-

dation opportunity for this new technique; the overall consistency between the in-situ

DE-2 column density ratios and the column density ratios deduced from the DE-1

airglow images showed that this technique was quite capable of inferring composition
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Figure 1.22: O/N2 column density ratios derived from a DE-1 image of the FUV

dayglow on October 22, 1981. The O/N2 column ratios have been derived from the

geomagnetically disturbed airglow image in the previous figure and shows that there

is a substantial depletion in the atomic oxygen column density over North America,

with the O/N2 column density ratios being approximately 40% of their quiet time

values. (From Strickland et al., 1999.)

changes in the thermosphere. This success also allowed DE-1 derived composition

changes to be incorporated into more detailed studies of selected geomagnetic storms

from the 1981-1983 time period [Immel et al., 2001; Strickland, 2001; Strickland et

al., 2001; Immel et al., 2006].

The development of sensitive line scanning imaging spectrographs for satellite-

borne FUV imagers, i.e. the Global Ultraviolet Imager (GUVI) on the Thermosphere

Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite [Christensen et

al., 1994; Paxton et al., 2004] and the Special Sensor Ultraviolet Spectrographic

Imager (SSUSI) on the Defense Meteorological Support Program (DMSP) series of

weather satellites [Paxton et al., 1992], finally allowed simultaneous images of the

FUV airglow to be acquired at high spectral resolution. However, the large amounts

of data being generated by such high resolution observations would quickly exceed the

telemetry bandwidth available to the satellite if all of it was transmitted to a ground
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station; most GUVI studies focused on a few wavelength regions that provided all

of the information necessary to infer thermospheric temperatures and composition:

the Lyman-α doublet at 121.6 nm, the OI triplet at 130.4 nm, the OI doublet at

135.6 nm, and two broadband regions of the N2 LBH spectrum (141.0-152.8 nm

and 167.2-181.2 nm). The inclusion of the final three wavelength regions, i.e. the

OI doublet at 135.6 nm and the two broadband regions of the N2 LBH spectrum,

allowed the Strickland et al. [1995] methodology to be used in the processing of GUVI

composition data, producing accurate, high resolution maps of the O/N2 column

density ratio under a wide variety of geophysical conditions [Christensen et al., 2003;

Strickland et al., 2004; Zhang et al., 2004; Meier et al., 2005; Crowley et al., 2006;

Goncharenko et al., 2006; Tsugawa et al., 2007; Hecht et al. 2008; Stephan et al.,

2008].

Early GUVI studies on thermospheric composition, e.g. Christensen et al. [2003]

and Strickland et al. [2004], demonstrated that the inferred O/N2 column density ra-

tios were in very good agreement with empirical climatologies: the O/N2 column

density ratios exhibited a pronounced latitudinal gradient during solstice conditions

(Figure 1.23) that reflected the latitudinal gradient present in atomic oxygen con-

centrations (thermospheric atomic oxygen number densities tend to be greater in the

winter hemisphere and lower in the summer hemisphere during solstice condtions).

Localized decreases in the O/N2 column density ratios were also observed around

the magnetic poles, with the decreases in the O/N2 column density ratios reflecting

the level of geomagnetic activity. Subsequent composition studies, e.g. Zhang et al.

[2004], Meier et al. [2005], Goncharenko et al. [2006], and Hecht et al. [2008], were

more focused on understanding the changes in the O/N2 column density ratios during

geomagnetic disturbances; large depletions in the O/N2 column density ratios could

extend over a wide range of longitudes, penetrate into the opposite hemisphere, and

persist for extended periods of time (Figure 1.23).

Composition changes in the lower thermosphere have also been inferred from

ground-based observations of bright auroral emission lines at high latitude obser-

vatories since the late 1980s [Christensen et al. 1997; Hecht et al. 1989, 1991, 1995,
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Figure 1.23: O/N2 column density ratios derived from GUVI images of the airglow

during the April 27-29, 2002 time period. There is a pronounced latitudinal gradient

in all of the O/N2 column density maps that reflects the gradients in atomic oxygen

during solstice conditions. There is also a large decrease in the O/N2 column density

ratios during the geomagnetic disturbance of April 28 (middle panel) that extended

all the way to the equator at 300oE. (From Goncharenko et al., 2006.)
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1999, 2000, 2006, 2008]. These changes in thermospheric composition were normally

quantified by the forward modelling of the N+
2 427.8 nm (blue), OI 630.0 nm (red),

and OI 844.6 nm brightness ratios: a model atmosphere and a Maxwellian electron

energy distribution with energy flux Q and characteristic energy Eo were adjusted

until the brightness ratios generated by the electron transport code of Strickland et

al. [1989] were in agreement with the observed brightness ratios. This adjustment

procedure was usually accomplished by varying three parameters: Q, Eo, and fo, a

dimensionless factor that was used to scale the atomic oxygen number density profile

of the model atmosphere (this scaling of the atomic oxygen number density profile

by a constant really should have been interpreted as a change in the atomic oxygen

column density, but the usage of this terminology is now widespread). A typical plot

of fo as a function of time during moderate auroral activity shows that the inferred

atomic oxygen column densities can decrease by 50% in a timespan of 30 minutes

(Figure 1.24).

1.6 Previous Modelling Efforts

When the neutral density enhancements produced by geomagnetic disturbances were

first observed, two very different mechanisms were proposed to explain how the energy

from the solar wind was being transferred to the upper atmosphere:

i) hydromagnetic waves being generated by the interaction of the solar wind with

the magnetosphere were propagating into the upper F-region, where the ex-

ponentially increasing neutral densities were causing the waves to dissipate

[Dessler, 1959]

ii) large scale electric fields and high energy particle precipitation were heating

the auroral thermosphere, which then transported the energy to lower latitudes

through conduction and convection [Cole, 1962; 1966]

These widely disparate ideas led Thomas and Ching [1969] to develop a Green’s func-

tion solution to the one-dimensional thermospheric heat flow equation, which allowed
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Figure 1.24: Inferred atomic oxygen column densities over Poker Flat, Alaska on

February 13, 1994. The atomic oxygen scaling factor fo (upper trace) is the constant

that the atomic oxygen number density profiles have to be multiplied by to reproduce

the observed brightness ratios. There was a significant decrease in the atomic oxy-

gen column densities around 10 UT, right after a localized Joule heating event had

occurred. (From Christensen et al., 1997.)

them to study the dynamical response of the upper atmosphere to a wide variety of

heat sources. By comparing the theoretically predicted density perturbations with a

typical satellite drag inferred density perturbation profile, they were able to demon-

strate that most of the energy must be deposited in the lower thermosphere, with the

maximum of the energy deposition occuring in the 140-160 km region. The six hour

time lag between the maximum of the geomagnetic disturbance and the maximum

in the satellite drag derived density enhancements could also be reproduced quite

readily if the heat source had a duration of 4-5 hours (the six hour time lag between

the maximum of the geomagnetic disturbance and the maximum in the inferred den-
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sity perturbations was the average time lag obtained from the satellite drag studies

of Roemer [1966] and Jacchia, Slowey and Verniani [1967]). A subsequent study on

the thermospheric response to impulsive heating events by Volland [1969] confirmed

that “the heat input responsible for the geomagnetic activity effect occurs primarily

in the lower thermosphere between 100 and 200 km altitude” and that the time delay

between the geomagnetic disturbance maximum and the maximum in the inferred

density enhancements was “a natural response of the thermosphere to a pulse-type

disturbance.”

The study by Thomas and Ching [1969] was also able to demonstrate that hy-

drostatic equilibrium was “remarkably valid for atmospheric changes occurring over

time scales of the order of tens of minutes or greater”, with the largest departures

from hydrostatic equilibrium occurring above 300 km shortly after the heat source

had reached its maximum value. This partitioning of the thermospheric response

into two distinct phases did not gain widespread acceptance in the literature; the

one-dimensional study of Hays et al. [1973] on thermospheric composition changes

during disturbed conditions assumed that hydrostatic equilibrium was always valid

and did not allow the altitudes of the pressure levels to change over the course of the

simulation, i.e. the atmospheric pressure was kept constant, forcing any changes in the

neutral temperature to be balanced by a change in the thermospheric density. These

two assumptions substantially reduced the simulated response, limiting the vertical

wind speeds in the model to a few metres per second and the changes in the N2/O2

and N2/O ratios at 500 km to factors of 2 and 10 respectively. However, the simulated

N2/O ratios were in excellent agreement with OGO-6 measurements, allowing these

simulation results to gain widespread acceptance in the literature (this agreement was

quite fortuitous as OGO-6 measurements of atomic oxygen were always derived from

the total oxygen content, which assumed that any measured molecular oxygen was

due to the recombination of ambient atomic oxygen on ion source surfaces).

A subsequent study by Bates [1974] argued that the thermospheric response at

the onset of widespread Joule heating would occur primarily at constant pressure,

i.e. the thermosphere was free to expand upwards, but the pressure forces acting on
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individual fluid elements was not allowed to change. Such an expansion would alter

the composition and dynamics of the upper thermosphere in a matter of minutes:

neutral densities would double, N2/O ratios would triple, vertical wind speeds in

excess of 100 m/s would exist for a few minutes, and neutral temperatures would

increase by several hundred degrees. Bates also argued that the solution presented in

the Hays et al. [1973] study was

... a steady state solution for which the maximum amount of input energy

goes into horizontal expansion. Under these conditions, vertical expansion

is obviously minimal, and that conclusion is verified by the computations

of [Hays et al. [1973]]

while

... the solution presented in this paper is a dynamical solution for which

the maximum possible amount of energy goes into vertical expansion ...

after the onset of widespread Joule heating, the solution presented here

will be much closer to reality than the steady state solution of [Hays et

al. [1973]]. At later times, however, the converse will be true ...

Unfortuneately, these results also failed to gain widespread acceptance in the litera-

ture as most subsequent studies on the response of the thermosphere to large energy

inputs have assumed that the thermospheric response is hydrostatic; any studies that

have allowed for non-hydrostatic effects did not examine the inital response of the

thermosphere in any detail.

The first two-dimensional study on the thermospheric response to enhanced heat-

ing in the auroral zones was undertaken by Volland and Mayr [1971], who solved

the linearized Navier-Stokes equations using a transfer function approach, i.e. the

’system transfer function’ coefficients obtained from the solution to the linearized

Navier-Stokes equations were combined with the spherical harmonic coefficients of

the enhanced auroral zone heat source to yield spherical harmonic coefficients for the

perturbations produced by the enhanced heating rates. They found that the smaller
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wavenumber (longer wavelength) components of the density response were able to

reproduce most of the salient features in the available satellite drag data: the density

perturbations in the auroral zone of the model were two times larger than the density

perturbations in the equatorial region of the model and the maximum in the auroral

zone density perturbations preceded the maximum in the equatorial region density

perturbations by 3.5 hours. The rapid attenuation of the larger wavenumber (shorter

wavelength) phenomena in the density response, on the other hand, was not in ac-

cord with observations: the simplified treatment of the ion-drag and viscous terms in

the linearized Navier-Stokes equations did not provide enough dissipation at higher

frequencies, forcing the authors to suppress these frequencies in the system transfer

function coefficients. This additional damping ensured that the higher frequency,

shorter wavelength components of the density response were being dissipated, but it

also precluded any quantitative analysis of these features in the density response as

well.

The inability of the Volland and Mayr [1971] model to simulate shorter wavelength

phenomena at the onset of a geomagnetic disturbance was not considered to be a

major issue in its subsequent development as the elimination of the larger wavenumber

components in the system transfer function allowed the authors to incorporate a

more realistic composition scheme into the model, i.e. the inclusion of the horizontal

and vertical transport terms in all of the species’ continuity equations allowed the

thermospheric number densities to deviate from diffusive equilibrium. Simulations

employing this new composition scheme [Mayr and Volland, 1972, 1973, 1976; Mayr

and Hedin, 1977; Mayr and Trinks, 1977; Hedin et al., 1977] predicted that the

number densities of argon and molecular nitrogen would be enhanced at all altitudes

in the auroral thermosphere while the number densities of helium would be depleted

throughout the auroral thermosphere. Atomic oxygen concentrations, on the other

hand, were expected to exhibit an altitude-dependent behaviour; the atomic oxygen

number densities in the lower auroral thermosphere were predicted to decrease (since

vertical transport was the dominant process in this region) and increase slightly at

higher altitudes (where thermal expansion was the more important process). Outside
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of the auroral zone, all of the thermospheric species were expected to exhibit minor

increases as the meridional wind system being generated by the enhanced heating

rates would transport all of these species equatorwards.

Most of these predictions were in very good agreement with mass spectrometer

observations; a simulation of the moderate geomagnetic storm on February 12, 1974

(max ap ≈ 50) was able to reproduce the observed changes in the molecular ni-

trogen (N2) and helium (He) number densities at different altitudes and latitudes

(Figure 1.25). The simulated changes in the atomic oxygen (O) number densities

were also in fairly good agreement with measurements at lower latitudes, but the

predicted increases in the upper auroral thermosphere were not observed; the atomic

oxygen number densities being measured by the Neutral Atmosphere Composition

Experiment (a closed ion source mass spectrometer) were actually much lower than

the values preceding the storm. This discrepancy between the simulated and mea-

sured atomic oxygen density ratios in the upper auroral thermosphere was not a

very important issue in this study as most mass spectrometer studies during this

time period were still trying to quantify the effects of geomagnetic storms on ther-

mospheric composition. Additional studies with this model in the 1980s [Mayr et

al., 1984a, b, 1987, 1990] employed a system transfer function with a much larger

range of wavenumbers, which allowed the authors to study gravity wave generation,

propagation, and dissipation in the auroral regions.

The ability of the system transfer function approach to reproduce most of the

observed composition changes during moderate geomagnetic disturbances could not

be extended to more disturbed conditions as the linearization procedures employed in

this approach were only valid when the wind speeds in the simulation were much less

than the local sound speed. The computational resources needed to solve the two-

dimensional Navier-Stokes equations during very disturbed conditions would not be

available to upper atmospheric modellers for several more years, forcing most of these

modellers to assume that any vertical motions in the regions of enhanced heating

were still hydrostatically balanced, i.e. the pressure gradient and the force of gravity

were the only forces acting in the vertical direction. This assumption ensured that
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Figure 1.25: Daily average number density ratios during the February 9-15, 1974

time period. The simulated number density ratios (solid lines) are in fairly good

agreement with the measured number density ratios (triangles) when one considers

non-reactive species at higher altitudes, i.e. molecular nitrogen (N2) and helium (He)

at 65oN, 300 km and 20oN, 300 km. The simulated atomic oxygen ratios are also

in fairly good agreement with the measured ratios outside of the auroral zone, but

the moderate enhancements seen in the auroral zone of are model are not consistent

with the large depletions being measured by the Neutral Atmosphere Composition

Experiment on the AE-C satellite. Number density ratios from the MSIS (dashed

line) and Jacchia 71 (dot-dash line) empirical models have also been included for

comparison purposes. All of the number density ratios were normalized to their pre-

storm values on February 9 (day 40). (From Hedin et al., 1977.)
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the pressure field in these simulations would always be a monotonically decreasing

function of height, allowing a pressure coordinate system to be employed. Besides

simplifying the evaluation of the vertical velocity and pressure fields, the assumption

of hydrostatic equilibrum also eliminated vertically propagating sound waves from

the thermospheric response, permitting explicit time stepping methods to use a much

larger time step.

These simplifications, when combined with the rapidly expanding database of ion

density and electric field measurements in the early 1970s, e.g. Heppner [1972], Banks

et al. [1973], and Bates and Hunsucker [1974], allowed Richmond and Matsushita

[1975] to simulate the thermospheric response to a large, isolated substorm. They

found that the vertical and meridional winds in the auroral zone of the model were

an order of magnitude larger than the transfer function results: the vertical winds

were now able to reach speeds of 40 m/sec at the peak of the Joule heating rates

and the meridional winds were flowing away from the region of enhanced heating at

speeds of 100 m/sec. The zonal winds in the auroral oval were also much larger,

approaching speeds of 400 m/sec at 400 km. An analysis of these wind fields revealed

that the nonlinear advection terms were playing an important role in the evolution of

the zonal winds; the vertical and meridional wind fields were transporting significant

amounts of momentum upwards and equatorwards, reducing the ion drag forcing in

the auroral oval through most of the simulation. Such large wind speeds would have

also generated substantial composition changes in the auroral regions but the mixing

ratios of the individual species were not allowed to vary during the simulation.

Self-consistent thermosphere-ionosphere general circulation models (TIGCMs) are

also able to reproduce these inferred composition changes and have become the defacto

standard in modelling composition changes.

This thesis is composed of five chapters. Chapter 2 provides the prerequisite back-

ground and parameterizations for the physical processes implemented in the model.

A concise overview of the model numerics is then presented in Chapter 3, along with

a brief discussion on suggested numerical upgrades. The results obtained from the

various versions of the model will be presented in Chapter 4 and the physics of these
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processes discussed. Chapter 5 will provide brief summary of the main results of this

thesis and suggestions for future work.
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Chapter 2

Model Description I : Physics

2.1 Governing Equations

If one assumes that the atmosphere can be represented by an ideal, mean mass gas,

the time-dependent Navier-Stokes equations for a flow that is viscous, compressible,

and thermally conducting can be written as

∂ρ

∂t
+∇ · (ρun) = 0 (2.1)

∂ρun

∂t
+∇ · [ρun un + pI− τ ] = ρf (2.2)

∂e

∂t
+∇ · [(e+ p)un − un · τ + q] = ρ(f · un) +Q− C (2.3)

[Oran and Boris, 2001] where I is the unit tensor, τ is the viscous stress tensor, f is

the force per unit volume, q is the heat flow vector, Q is the heating rate, and C is

the cooling rate due to radiative emissions. The viscous stress tensor is given by the

expression

τ = 2µD− 2

3
µ(∇ · un)I (2.4)

= µ [∇un + (∇un)
T ]− 2

3
µ(∇ · un)I (2.5)

where D is the deformation tensor

D =
1

2
[∇un + (∇un)

T ] (2.6)

It should be noted that this definition of the deformation tensor is not unique and

one must be aware of which form of the deformation tensor is being employed. The

heat flow is given by

q = −λ∇T. (2.7)
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where λ is the thermal conductivity. These are the equations that were originally

used in the model.

If one now assumes that the atmosphere is a ‘true’ multiple component gas that is

viscous, compressible, and thermally conducting, the time-dependent Navier-Stokes

equations become

∂ρ

∂t
+∇ · (ρun) = 0 (2.8)

∂ns

∂t
+∇ · (nsun) +∇ · (nsuds) = Ps − Ls (2.9)

∂ρun

∂t
+∇ · [ρunun + pI− τ ] = ρf (2.10)

∂e

∂t
+∇ · [(e+ p)un − un · τ + q] = ρ(f · un) +Q− C (2.11)

[Oran and Boris, 2001] where ns is the number density of species s, Ps−Ls is the net

production rate of species s, and uds is the diffusion velocity of species s. The heat

flow is now written as

q = −λ∇T +
∑

s

ρshsuds + p
∑

s

αsuds (2.12)

= −λ∇T + T
∑

s

ρscpsuds + p
∑

s

αsuds (2.13)

where hs is the enthalpy of species s and αs is the thermal diffusion coefficient of

species s. However, the thermal diffusion contribution to the heat flow is usually

ignored in most atmospheric simulations, allowing one to simplify the heat flow ex-

pression to

q = −λ∇T + T
∑

s

ρscpsuds. (2.14)

The diffusion velocities uds are found by inverting the matrix equation

∑

k

nsnk

n2Dsk
(udk − uds) = Gs (2.15)

with the source terms Gs defined as

Gs = ∇
(ns

n

)

−
((

ρs
ρ

)

−
(ns

n

)

)(∇p
p

)

+ αs

(∇T
T

)

. (2.16)
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These diffusion velocities uds are subject to the constraint that

∑

s

ρsuds = 0 (2.17)

which ensures that no net mass flux can be generated by interspecies diffusion. In

thermospheric simulations, the horizontal components of the diffusion velocities are

frequently ignored and hydrostatic equilibrium is often assumed, which allows one

rewrite (2.15) and (2.16) as

∑

k

nsnk

n2Dsk
(udk − uds) =

[

∇vns + (1 + αs)
(ns

T

)

∇vT +
nsmsg

kT

]

(2.18)

where ∇v is the vertical component of the gradient operator in the coordinate em-

ployed by the model.

2.2 UV/EUV Heating rates

The original version of the model utilized a UV/EUV heating rate profile that was

representative of average winter daytime conditions [Chang and St.-Maurice, 1991].

This profile was always kept constant throughout the simulation as the original runs

of the model were not concerned with compositional feedbacks; they were only inter-

ested in having the UV/EUV heating rate provide a realistic background temperature

profile for the thermosphere. The current/new emphasis on trying to incorporate

compositional feedbacks into the model has dictated that a more realistic UV/EUV

heating rate profile would be required. The processes and rate coefficients used in the

construction of this new neutral gas heating rate are based on the heating rates and

rate coefficients used in the 1995 version of the globally averaged NCAR TIME-GCM

[Roble, 1995].

2.2.1 Schumann-Runge Heating Rates

The heating rates in the Schumann-Runge continuum (SRC) of molecular oxygen were

calculated using scheme of Zhu [1994], which is essentially the parameterization of

Strobel [1978] with updated cross-sections and fluxes (the updated cross-sections and
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fluxes are the values recommended by the World Meteorological Organization [1985]

and Nicolet [1989] respectively). In these parameterizations, the SRC is split into

two regions: SRC1 (125 - 152 nm) and SRC2 (152 - 175 nm). The absorption cross-

section of O2 in the SRC1 region is essentially constant, allowing one to parameterize

the heating rate in this region as

QSRC1 = ǫSRC FSRC1 σSRC1 exp (−σSRC1 NO2
) × nO2

(2.19)

where σSRC1 is the average absorption cross-section of O2 in this region (1.1×10−17cm2),

NO2
is the total column abundance of O2 along the solar radiation path, and ǫSRC FSRC1

is the product of the SRC efficiency factor and the integrated flux in the SRC1 re-

gion (0.65 ergs cm−2 sec−1). In the SRC2 region, the absorption cross-section of O2

tends to decrease exponentially as the wavelength increases, i.e., σSRC2 ∝ exp(−Mλ),

allowing one to decompose the heating rate in this region into 2 subintervals, i.e.

QSRC2 = ǫSRC

[(

ISRC2,l

M

)

exp(−σSRC2,l NO2
)

+

(

ISRC2,s − ISRC2,l

M

)

exp(−σSRC2,m NO2
)

−
(

ISRC2,s

M

)

exp(−σSRC2,s NO2
)

]

× nO2

NO2

(2.20)

where l refers to the long-wavelength end of the SRC2 interval, s refers to the short-

wavelength end of the SRC2 interval, and m refers to the wavelength where the 2

subintervals meet (166 nm). The absorption cross-sections of O2 at 175, 166, and 152

nm are 3.0 × 10−19cm2, 2.0 × 10−18cm2, and 1.5 × 10−17cm2 respectively while the

values of ǫSRC ISRC2,l/M and ǫSRC ISRC2,s/M are 0.12 ergs cm−2 sec−1 and 0.04 ergs

cm−2 sec−1 respectively. The heating rates in the SRC1 and SRC2 regions are then

added together to obtain the net heating rate for the SRC region.

The heating rate in the Schumann-Runge bands (SRB) is much more difficult to

parameterize as the absorption cross-section of O2 exhibits significant variability in

this interval. Most methods that do attempt to parameterize the heating rates in

the SRB region divide the SRB into smaller intervals, allowing the transmittances in
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these intervals to be more easily determined. The heating rates in the SRB are then

derived from these individual transmittances.

In Strobel’s [1978] parameterization, the SRB heating rate is calculated by sum-

ming the heating rate in each 500 cm−1 interval and then fitting this sum to an

appropriately chosen expression, i.e.,

QSRB =
19
∑

i=1

FSRB,i σSRB,i Tri nO2

=
19
∑

i=1

FSRB,i

(

1

αi + βiN
1/2
O2

)

Tri nO2

=
nO2

(aNO2
+ bN

1/2
O2

)
(2.21)

where FSRB,i is the integrated solar flux in interval i, σSRB,i is the absorption cross-

section of O2 in interval i, Tri is the transmittance in interval i, and αi and βi are

the coefficients that determine the absorption cross-section of O2 in interval i. The

values of a and b are then computed from the values of QSRB/nO2
and NO2

. Zhu

[1994] has recently developed a more sophisticated SRB parameterization that fits a

Malkmus model [Malkmus, 1967] to the atmospheric transmittance, i.e.

τ = exp

{

−πy
2

[

(

1 +
4k

πy
NO2

)1/2

− 1

]}

(2.22)

and then determines the SRB heating rate as

QSRB =
ǫ FSRB σSRB nO2

(

1 + 4σSRB

πySRB
NO2

)1/2
exp

{

−πySRB

2

[

(

1 +
4σSRB

πySRB

NO2

)1/2

− 1

]}

. (2.23)

In the Malkus model of atmospheric transmittance, k is the mean band strength and

y is a constant that relates the mean line half-width to the mean line spacing. In the

SRB heating rate expression, ǫ FSRB has a value of 1.28 ergs cm−2 sec−1, σSRB has a

value of 2.07×10−20 cm2, and ySRB has a value of 0.0152. The SRB parameterization

of Zhu [1994] is currently being used in the model.

2.2.2 Ozone Heating Rates

The heating rates due to the absorption of radiation in the Chappius, Hartley, and

Huggins bands of ozone are also calculated using Zhu’s [1994] parameterization. The
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absorption cross-sections of O3 in the Chappius and Hartley bands are essentially

constant, allowing one to approximate these heating rates as

QCh = FCh σCh exp (−σChNO3
) × nO3

(2.24)

QHa = ǫHa FHa σHa exp (−σHaNO3
) × nO3

(2.25)

where FCh and FHa are the integrated fluxes in the Chappius and Hartley bands

(3.7 ×105 ergs cm−2 sec−1 and 5130 ergs cm−2 sec−1 respectively), σCh and σHa are

the average absorption cross-sections of O3 in these regions (2.85 × 10−21 cm2 and

8.7×10−18 cm2 respectively), NO3
is the column density of O3 along the solar radiation

path, and ǫHa is the heating efficency in the Hartley band. This heating efficiency is

determined by the polynomial

ǫHa = c0 + c1x + c2x
2 + c3x

3 (2.26)

[Mlynczak and Solomon, 1993], where x is

x = log 10 ( p ) + 3, 10−4mb < p < 10−2mb (2.27)

and the coefficients c0, c1, c2, and c3 are 0.669650, -0.009682, 0.033093, and -0.017938

respectively. The heating rate in the Huggins band of O3 can be parameterized as

QHu =
1

MNO3

[I1 + (I2 − I1) exp(−σHuNO3
e−Mλlong)

−I2 exp(−σHuNO3
e−Mλshort)]× nO3

(2.28)

where I1 is 70 ergs cm−2 sec−1 Å−1, I2 is 50 ergs cm−2 sec−1Å−1, M = 0.0127 Å,

λshort is 2805 Å, λlong is 3015 Å, and σHu is 0.0115 cm2. It should be noted that

all of Zhu’s [1994] ozone heating parameterizations are based on Strobel’s [1978]

parameterizations with updated cross-sections and fluxes, just as in case of the SRC

parameterization.

2.2.3 Exothermic Chemical Heating Rates

The heating by exothermic chemical reactions is usually broken down into four cat-

egories: heating by neutral oxygen/hydrogen chemistry, heating by neutral nitrogen

chemistry, heating by the quenching of O(1D) and heating by ion chemistry.
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The heating rate due to exothermic chemical reactions involving hydrogen and

oxygen is only important in the mesosphere and lower thermosphere of the model.

A summary of the reactions used in the determination of this heating rate can be

found in Table 2.1. Since all of the products in these reactions are neutral molecules,

the amount of energy being released in a particular reaction can be determined by

multiplying the reactant number densities, the reaction rate, and the amount of energy

released together. As an example, consider the reaction

H + O3
β14−→ OH+O2 + 3.34 eV

The total heating rate (in ergs cm−3 sec−1) due to this chemical reaction will be

QH,O3
= ǫ14 × β14 × nH × nO3

× (3.34 / 6.2415× 1011)

where ǫ14 is the heating efficiency of the reaction and 6.2415× 1011 is the conversion

factor from eV to ergs. The neutral gas heating rate due to hydrogen/oxygen chem-

istry is then calculated by summing the heating rates of the individual reactions in

this category. It should be noted that the heating efficiency of the preceding reaction

is 0.6; all of the other reactions in this group have an efficiency of one.

The neutral gas heating rates due to the quenching of O(1D) and exothermic

nitrogen chemistry are important in the lower and middle regions of the thermosphere.

A summary of the reactions used in the determination of these heating rates can

be found in Tables 2.2 and 2.3. Since all of the products in these reactions are

neutral molecules, these heating rates can also be determined by multiplying the

reactant number densities, the reaction rates, and the amount of energy released

together. This procedure is very similar to the procedure used in the determination

of the oxygen/hydrogen chemistry heating rates - the only difference is that all of the

reactions in these two categories have a unit heating efficiency.

The heating caused by exothermic ion chemistry is also important in the lower

and middle regions of the thermosphere. A summary of the reactions used in the

determination of this heating rate can be found in Tables 2.4 and 2.5. The heating



65

Reaction Reaction Rate

O + O +M
β1−→ O2 +M+ 5.12 eV β1 = 9.59× 10−34 exp(480

T
)

O + O2 +M
β2−→ O3 +M+ 1.10 eV β2 = 6× 10−34 (300

T
)2.8

O+O3
β3−→ O2 +O2 + 4.06 eV β3 = 8× 10−12 exp(−2060

T
)

O + OH
β4−→ O2 +H+ 0.72 eV β4 = 2.2× 10−11 exp(117

T
)

O + HO2
β5−→ OH+O2 + 2.33 eV β5 = 3.0× 10−11 exp(200

T
)

O + H2
β6−→ OH+H + 0.08 eV β6 = 1.6× 10−11 exp(−4570

T
)

OH + O3
β7−→ HO2 +O2 + 1.73 eV β7 = 1.6× 10−12 exp(−940

T
)

OH + OH
β8−→ H2O+O+ 0.73 eV β8 = 4.2× 10−12 exp(−242

T
)

OH + HO2
β9−→ H2O+O2 + 3.06 eV β9 = 4.8× 10−11 exp(215

T
)

OH + H2
β10−→ H2O+H+ 0.65 eV β10 = 7.7× 10−12 exp(−2100

T
)

HO2 +O3
β11−→ OH+O2 +O2 + 1.23 eV β11 = 1.4× 10−14 exp(−580

T
)

HO2 +HO2
β12−→ H2O2 +O2 + 1.71 eV β12 = 2.3× 10−13 exp(590

T
)

H + O2 +M
β13−→ HO2 +M+ 2.11 eV β13 = 5.5× 10−32 (300

T
)1.6

H+O3
β14−→ OH+O2 + 3.34 eV β14 = 1.4× 10−10 exp(−470

T
)

H + HO2
β15−→ H2 +O2 + 2.41 eV β15 = 4.2× 10−11 exp(−350

T
)

H + HO2
β16−→ OH+OH+ 1.61 eV β16 = 4.2× 10−10 exp(−950

T
)

H + HO2
β17−→ H2O+O+ 2.34 eV β17 = 8.3× 10−11 exp(−500

T
)

H + H +M
β18−→ H2 +M+ 4.52 eV β18 = 5.7× 10−32 (300

T
)1.6

Table 2.1: Oxygen/hydrogen chemistry reaction rates (From Roble, 1995)

Reaction Reaction Rate

N(4S) + O2
β19−→ NO +O+ 1.40 eV β19 = 1.5× 10−11 exp(−3600

T
)

N(2D) + O2
β20−→ NO +O(1D) + 1.84 eV β20 = 5× 10−12

N(4S) + NO
β21−→ N2 +O+ 2.68 eV β21 = 1.6× 10−10 exp(−460

T
)

N(2D) + O
β22−→ N(4S) + O + 2.38 eV β22 = 4.5× 10−13

N(2D) + e
β23−→ N(4S) + e + 2.38 eV β23 = 3.6× 10−10 ( Te

300
)1/2

N(2D) + NO
β24−→ N2 +O+ 5.63 eV β24 = 7× 10−11

N(4S) + OH
β25−→ NO +H+ 2.10 eV β25 = 5× 10−11

NO +O3
β26−→ NO2 +O+ 2.08 eV β26 = 1.8× 10−12 exp(−1370

T
)

NO + HO2
β27−→ NO2 +OH+ 0.35 eV β27 = 3.5× 10−12 exp(250

T
)

Table 2.2: Nitrogen chemistry reaction rates (From Roble, 1995)
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Reaction Reaction Rate

O(1D) + O2
β28−→ O(3P) + O2 + 1.96 eV β28 = 3.2× 10−11 exp(67

T
)

O(1D) + N2
β29−→ O(3P) + N2 + 1.96 eV β29 = 1.8× 10−11 exp(107

T
)

Table 2.3: O(1D) quenching rates (From Roble, 1995)

Reaction Reaction Rate

NO+ + e
β36−→ N(4S) + O + 2.75 eV (20%) β36 = 4.2× 10−7 (300

Te
)0.85

NO+ + e
β36−→ N(2D) + O + 0.38 eV (80%) β36 = 4.2× 10−7 (300

Te
)0.85

O+
2 + e

β37−→ O(3P) + O(3P) + 6.95 eV (15%) β37 = 1.6× 10−7 (300
Te

)0.55

O+
2 + e

β37−→ O(1D) + O(3P) + 4.98 eV (85%) β37 = 1.6× 10−7 (300
Te

)0.55

N+
2 + e

β38−→ N(4S) + N(4S) + 5.82 eV (10%) β38 = 1.8× 10−7 (300
Te

)0.39

N+
2 + e

β38−→ N(2D) + N(4S) + 3.44 eV (90%) β38 = 1.8× 10−7 (300
Te

)0.39

Table 2.4: Recombination rates (From Roble, 1995)

rates due to the reactions in Table 2.4 can be obtained by multiplying the reactant

number densities, the reaction rates, and the amount of energy released together as

both of the products in these reactions are neutrals. The heating rates due to the

reactions in Table 2.5 are a bit more difficult to determine as one must now consider

how much of the energy being released in these reactions is being acquired by the

neutral species (this was not a concern in the other categories as both of the products

were neutrals). Following Stolarski [1975,1976], the energy gained by each product

was set equal to the inverse ratio of its mass, i.e. Qion = Ereaction×mneutral/(mneutral+

mion) and Qneutral = Ereaction ×mion/(mneutral +mion).

2.2.4 Ion/Neutral and Electron/Neutral Heating Rates

The neutral gas heating rate due to electron and ion collisions with the neutrals was

calculated by assuming that the energy being lost by ions and electrons in collisions

with the neutrals was equal to the heating rate of the neutrals by these collisions.

The energy lost by electrons in elastic electron-neutral collisions is usually formu-
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Reaction Reaction Rate

O+
2 +N(4S)

β30−→ NO+ +O+ 4.21 eV β30 = 1× 10−10

O+
2 + NO

β31−→ NO+ +O2 + 2.813 eV β31 = 4.4× 10−10

N+ +O2
β32−→ O+

2 +N(4S) + 2.486 eV β32 = 4× 10−10

N+ +O2
β33−→ NO+ +O+ 6.699 eV β33 = 2× 10−10

N+ +O
β34−→ O+ +N+ 0.98 eV β34 = 1× 10−12

N+
2 +O2

β35−→ O+
2 +N2 + 3.52 eV β35 = 6× 10−11

Table 2.5: Ion chemistry reaction rates (From Roble, 1995)

lated in terms of the linear 13-moment energy exchange term

Le,n = − nemeνen
(me +mn)

3k (Te − Tn) (2.29)

where νen is momentum transfer collision frequency between the electrons and the

neutral species that the electrons are colliding with [Schunk and Nagy, 2000]. Since

it has been assumed that all of the energy being lost by the electrons is being gained

by the neutral species, one can write the heating rate of the neutral species due to

elastic electron collisions as

Qn,e =
nemeνen

(me +mn)
3k (Te − Tn). (2.30)

Substituting the appropriate expressions for the momentum transfer collision frequen-

cies into the preceding equation yields

QN2,e = 1.77× 10−19nenN2
[1− (1.21× 10−4)Te]Te(Te − Tn) (2.31)

QO2,e = 1.21× 10−18nenO2
[1 + (3.6× 10−2)

√
T e]

√
T e(Te − Tn) (2.32)

QHe,e = 2.46× 10−17nenHe

√
T e(Te − Tn) (2.33)

QO,e = 7.9× 10−19nenO[1 + (5.7× 10−4)Te]
√
T e(Te − Tn) (2.34)

QH,e = 9.63× 10−16nenH[1− (1.35× 10−4)Te]
√
T e(Te − Tn) (2.35)

[Schunk and Nagy, 2000], with the heating rates in units of eV cm−3 sec−1. These

rates do not have a significant impact on the neutral gas heating rate as the small

mass ratio, i.e. me/(me +mn), usually inhibits the transfer of energy from electrons

to the neutrals.
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The energy lost by electrons in inelastic electron-neutral collisions is much more

complicated to parameterize as one must now account for the excitation of vibra-

tional and rotational modes in the neutral species. This requires a knowledge of the

excitation cross-sections, which are usually not well-known [Schunk and Nagy, 2000].

To get around this limitation, theoretically derived cross-sections are frequently used

and analytical functions fitted to the calculated cooling rates. These cooling rates are

then used to determine the neutral heating rates due to inelastic electron collisions

by (again) assuming that all of the energy being lost by the electrons is being gained

by the neutral species. The following excitations were considered :

N2 rotation : QN2,rot = 2.9× 10−14 ne nN2
(Te − Tn)/

√
T e (2.36)

O2 rotation : QO2,rot = 6.9× 10−14 ne nO2
(Te − Tn)/

√
T e (2.37)

N2 vibration : QN2,vib = 2.99× 10−12 ne nN2
exp [ f(Te − 2000)/2000Te ]

×
[

exp (−g Te − Tn
TeTn

)− 1

]

(2.38)

O2 vibration : QO2,vib = 5.2× 10−13 ne nO2
exp [ h(Te − 700)/700Te ]

×
[

exp (−2270
Te − Tn
TeTn

)− 1

]

(2.39)

O(1D) excitation : QO(1D) = 1.57× 10−12 ne nO exp [ d(Te − 3000)/3000Te ]

×
[

exp (−22713
Te − Tn
TeTn

)− 1

]

(2.40)

O fine structure : QO,fine = ne nO [A1 (A2 + A3 + A4)A5 ] (2.41)

where

d = 2.4× 104 + 0.3(Te − 1500)− 1.947× 10−5(Te − 1500)(Te − 4000)

f = 1.06× 104 + 7.51× 103 tanh [1.10× 10−3(Te − 1800)]

g = 3300 + 1.233(Te − 1000)− 2.056× 10−4(Te − 1000)(Te − 4000)

h = 3300− 839 sin [1.91× 10−4(Te − 2700)]

A1 = 3.0× 1010/

{

T 1/2
e

[

5 + 3 exp

(

−0.02

A6

)

+ exp

(

−0.028

A6

)]}

A2 = 0.02 [ (4.75× 10−21) Te + 6.82× 10−17 ]

[

exp

(

−0.02

A5

)

− exp

(

−0.02

A6

)]

A3 = 0.028 [(2.3× 10−21)Te + 1.16× 10−17 ]

[

exp

(

−0.028

A5

)

− exp

(

−0.028

A6

)]
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A4 = 0.008 [(3.0× 10−21)Te + 2.20× 10−17 ]

[

exp

(

−0.008

A5

)

− exp

(

−0.008

A6

)]

A5 = 8.63× 10−5 Te

A6 = 8.63× 10−5 T

The expression for O(1D) is from Rees and Roble [1975]; references for all of the other

expressions can be found in Schunk and Nagy [2000].

There are two types of collisions that contribute to the exchange of energy between

ions and neutrals. The first type of collision is a non-resonant collision, which involves

an unlike ion and neutral, e.g. O+ and N2. This type of collision is usually modeled

as an elastic collision that is being caused by a long-range polarization attraction

(due to the induced dipole in the neutral) and a short-range repulsion. Since this

kind of collision is elastic, one can follow the same arguments presented in the elastic

electron neutral collision section to obtain

Qn,i =
nimi νin
(mi +mn)

3k (Ti − Tn). (2.42)

The ion-neutral momentum transfer collision frequency for a non-resonant ion-neutral

collision is given by the expression

νin = 2.21π
nnmn

mi +mn

(

γne
2

µin

)
1

2

(2.43)

[Dalgarno et al., 1958], where γn is the polarizability of the neutral species and µin

is the reduced mass of the ion and neutral. This now allows one to rewrite equa-

tion (2.42) as

Qn,i = 3ni nn
2.21π

(mi +mn)
(µinγne

2)
1

2 k(Ti − Tn) (2.44)

= 3

(

mi

mi +mn

)

Cin ni nn k (Ti − Tn). (2.45)

The neutral species polarizabilities and Cin values can be found in Tables 2.6 and 2.7

respectively. Since O+ and O+
2 are the only ions of consequence at altitudes where
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Species γn(cm
3)

N2 1.76× 10−24

O2 1.60× 10−24

O 0.77× 10−24

He 0.21× 10−24

Table 2.6: Neutral gas polarizabilities.

(From Schunk and Nagy, 2000.)

O+
2 O+

N2 4.13× 10−10 6.82× 10−10

O2 - 6.64× 10−10

O 2.31× 10−10 -

He 0.70× 10−10 1.32× 10−10

Table 2.7: Nonresonant ion-neutral

collision frequency coefficients. (From

Schunk and Nagy, 2000.)

ion-neutral heating is important, the following heating rates were included :

QN2,O+ =

(

12

11

)

× 6.82× 10−10 nO+ nN2
k(Ti − Tn) (2.46)

QO2,O+ = ( 1.0 ) × 6.64× 10−10 nO+ nO2
k(Ti − Tn) (2.47)

QHe,O+ =

(

24

9

)

× 1.32× 10−10 nO+ nHe k(Ti − Tn) (2.48)

QN2,O
+
2

=

(

24

15

)

× 4.13× 10−10 nO+
2
nN2

k(Ti − Tn) (2.49)

QO,O+
2

= ( 2.0 ) × 2.31× 10−10 nO+
2
nO k(Ti − Tn) (2.50)

The second type of collision that contributes to the exchange of energy between

ions and neutrals is a resonant collision, in which an electron from a neutral species

is transferred to an ion species, i.e., the ion becomes a neutral and the neutral be-

comes an ion. This charge exchange usually results in a large transfer of energy and

momentum to the neutral species as very little energy is lost in the charge exchange

process. Only two resonant charge exchanges were considered, O+ −O and O+ − H,

which contribute to the neutral gas heating rate as

QO,O+ =

(

3

2

)

× 3.67× 10−11 nO+ nO k(Ti − Tn) T
1/2
R [ 1− 0.064 log10(TR) ]

2 (2.51)

QH,O+ =

(

48

17

)

× 6.61× 10−11 nO+ nH k(Ti − Tn) T
1/2
i [ 1− 0.047 log10(Ti) ]

2 (2.52)

[Schunk and Nagy, 2000], where TR is the reduced temperature of the ions and neu-

trals, i.e. TR = (Ti + Tn)/2. The O+ − O reaction is the dominant process in deter-

mining the neutral gas heating rates at higher altitudes and is quite controversial as
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the O+ −O collision frequency is not well known (a more complete discussion about

the controversy surrounding the O+−O collision frequency can be found in Buotsano

[1995]). Once the heating rates for all of the electron-neutral and ion-neutral collisions

have been determined, they are added together and converted to ergs cm−3 sec−1 by

multiplication of the appropriate conversion factor.

2.3 Cooling Rates

Despite the veritable plethora of emission lines in the IR region, only a few of these

emissions are strong enough to affect the energetics of the thermosphere: NO at

5.3µm, CO2 at 15µm, and atomic oxygen at 63µm and 147µm. Incorporating these

emissions into an atmospheric model is usually accomplished through a parameteriza-

tion scheme as the numerical solution to the radiative transfer equation in the meso-

sphere and thermosphere is complicated by several factors: the upper mesosphere

and thermosphere are not in a state of local thermodynamic equilibrium (LTE), most

of the important deactivation rates in the emission rate calculations are not that

well known, and most of the deactivation rates also depend upon the atomic oxygen

number densities, which are not that well known either.

The importance of the atomic oxygen emissions at 63µm and 147µm was first

demonstrated by Bates [1951] in his study on the rate of energy loss in an optically thin

atmosphere. However, treating the thermosphere as an optically thin medium will

lead to a substantial overestimate of the atomic oxygen emissions in the 100-150 km

region [Stewart, 1968; Craig and Gille, 1969]. To compensate for this, Kockarts and

Peetermans [1970] developed an emission rate parameterization that contained Bates’

“optically thin” parameterization and a “masking factor” (1 − χ) which accounted

for the effects of absorption and induced emission, i.e.

C63µm = (1− χ)× 1.69× 10−18 nO exp(−228
T
)

1 + 0.6 exp(−228
T
) + 0.2 exp(−326

T
)

(2.53)

C147µm = (1− χ)× 4.59× 10−20 nO exp(−326
T
)

1 + 0.6 exp(−228
T
) + 0.2 exp(−326

T
)
. (2.54)

More recent airglow observations by Grossmann and Offermann [1978] have suggested
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that the observed 63µm emission rates above 120 km are much smaller than those

predicted by equations (2.53) and (2.54), with non-LTE effects being the suspected

cause. These uncertainties have led many modelers, e.g. Roble [1987], to reduce the

atomic oxygen 63µm and 147µm emissions by factor of 2. The current version of

the model does not reduce these emission rates by a factor of 2 and uses a simplified

time-independent ‘masking factor’ that resembles the masking factors used in the

CTIP/CMAT models developed by Fuller-Rowell et al. (more details on the numerical

implementation of these masking factors can be found in the Ph.D. thesis of Matthew

Harris ]2000]). This simplification will have no effects on the results of this thesis as

the masking factor is only important when one is trying to reproduce the temperature

climatology of the lower thermosphere.

The CO2 emissions in the 15 µm band were originally parameterized in the model

as

C15µm = 1.3× 10−13 g10 exp

(

−960

T

)

nCO2

(

∑

M

kM [M ]

)

×
[

1− (1 + ξ)e−ξ
]

(2.55)

[Chamberlain and McElroy, 1966], where

∑

M

kM [M ] = ( 4.4nO2
+ 1.467nN2

)× 10−15 T exp

(

− 41

T 1/3

)

+1.5× 10−11 exp

(

−800

T

)

nO (2.56)

is the collisional deactivation rate for CO2 and

ξ =
109

nCO2

(

1 +
A

∑

M kM [M ]

)

(2.57)

is a factor that accounts for absorption of radiation in the 15 µm band. This expression

is valid if the number densities of CO2 are less than 109 cm−3, i.e. above 100 km in

the Earth’s atmosphere. If this formula is used at lower altitudes where the CO2

number densities are much larger, significant errors can occur (Figure 2.1).

Although these errors were tolerated in the original version of the code, the cur-

rent emphasis on modeling composition/energetics feedbacks more accurately has de-

manded that a more realistic parameterization be incorporated into the model. The
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Figure 2.1: CO2 15 µm cooling rate parameterizations. The parameterization of

Chamberlain and McElroy [1966] substantially underestimates the cooling rates in

the lower thermosphere, with order of magnitude errors occurring near 80 km.

Fomichev et al. [2002] scheme was chosen for this task. This scheme is an improved

version of the scheme developed by Fomichev et al. [1998], with a more accurate

treatment of the non-LTE region, i.e. the errors in the non-LTE regions of the more

“extreme” temperature profiles are now less than 5% above 100 km.

The Fomichev et al. [2002] scheme determines the 15 µm emissions on the dimen-

sionless log-pressure grid

x = ln

(

1000

p(mb)

)

(2.58)

which means that the variables used in the determination of the cooling rates must

be interpolated onto the dimensionless log-pressure grid. Once this interpolation has
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been performed, the cooling rates from x = 2.0− 12.5 (z < 85 km) are calculated as

ǫ(x0) =
3
∑

j=−5

[ aj(x0) + bj(x0)ψ0 ] ψj (2.59)

where ǫ(x0) is the cooling rate (in erg g−1 s−1) at grid point x0 and ψj is the exponential

part of the source function at grid point j, i.e.

ψj = exp(−hv/kTj) = exp(−960.217/Tj). (2.60)

Nine different layers/grid points (j = −5,−4, ..., 3) are used in the cooling rate cal-

culation to ensure that radiative exchanges between the different atmospheric layers

are being properly accounted for. The distances of these layers/levels from the level

where the cooling rate is being determined can be found in Table 1 of Fomichev et

al. [1998].

In the region x = 12.75 − 16.50 (85 km < z < 115 km), the cooling rates are

determined by the expression

ǫ(xj) = 2.55521× 1011 × CCO2
(xj) (1− λ(xj)) ǫ(xj) / µ(xj) (2.61)

where CCO2
(xj) is the mixing ratio of CO2 at level j, λ(xj) is the quantum survival

probability at level j, µ(xj) is the mean molecular mass (in g/mole) at level j, and

ǫ(xj) is the cooling rate derived from the Kutepov and Fomichev [1993] recurrence

formula (more details about the determination of ǫ(xj) can be found in Fomichev et

al., [1998]). The quantum survival probability at level j, λ(xj), is determined by the

expression

λ(xj) = 1.5988/(1.5988 + Z10) (2.62)

with the collisional deactivation rate, Z10, given by

Z10 = ρ(xj) [CN2
(xj) kN2

+ CO2
(xj) kO2

+ CO(xj) kO ]

= ρ(xj) {CN2
(xj)[ 5.5× 10−17

√
T + 6.7× 10−10 exp(−83.3 T−1/3) ]

+CO2
(xj)[ 1.0× 10−15 exp( 23.37− 230.9 T−1/3 + 564 T−2/3 ) ]

+CO2
(xj) [ 3× 10−12] } . (2.63)
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CN2
(xj), CO2

(xj), and CO(xj) are the mixing ratios of N2, O2, and O, respectively,

at level j. The quenching rates of CO2 by N2 and O2, i.e. kN2
and kO2

, are not

particularly contentious. The quenching rate of CO2 by O, on the other hand, is.

Laboratory measurements by Shved et al. [1991] and Pollock et al. [1993] have

suggested that the value of kO is (1.5±0.5)×10−12cm3/s and (1.2±0.2)×10−12cm3/s

respectively. Analysis of satellite observations suggest that kO is much higher, with

values of (3− 6)× 10−12cm3/s being common, e.g. Sharma and Wintersteiner [1990],

Rogers et al. [1992], and Lopez-Puertas et al. [1992]. A value of 3 × 10−12cm3/s was

selected for these simulations because this value usually works well in most simulations

of planetary thermospheres, e.g. Bougher et al. [1994] and Roble [2000].

Above x = 16.5 (z > 115km), the 15 µm cooling rates are determined by the

expression

ǫ(xj) = 2.55521× 1011 × CCO2
(xj) (1− λ(xj)) [Φ(16.5)− ψj ] / µ(xj) (2.64)

where Φ(16.5) is the radiative flux at x = 16.5. Once the 15 µm cooling rates have

been computed at all of the points on the dimensionless log-pressure grid, they are

interpolated back onto the model grid.

The NO emission at 5.3µm also plays an important role in the cooling of the

thermosphere [Gordiets, 1978]. The non-LTE parameterization developed by Kockarts

[1980] is currently being used in the model, i.e.

C5.3µm = 4.985× 10−12 nNO

(

6.5× 10−11nO

6.5× 10−11nO + 13.3

)

exp

(

−2714.7

T

)

. (2.65)

It assumes that NO can be modeled as a two level molecule (v = 0, 1) with the NO(v =

1) deactivation rates being controlled by atomic oxygen, i.e. k10(N2) < k10(O2) <<

k10(O). While there is little debate about the dominance of the k10(O) deactivation

rate, the actual value of the rate is still in question. Recent calculations [Duff and

Sharma, 1997] and measurements [Dodd et al., 1999] suggest that the deactivation rate

is approximately 2.5 × 10−11 cm3/s at room temperature, which is nearly one-third

of the previously accepted value of 6.5 × 10−11 cm3/s [Fernando and Smith, 1979].

Sharma and Roble [2001] have implemented this newer value in the globally averaged
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NCAR TIME-GCM and found that there are significant changes in the thermal and

density structure of the thermosphere unless the CO2−O deactivation rate is doubled

to 6× 10−12cm3/s, which is the currently the largest value supported by observation.

The ’older’ Fernando and Smith [1979] value is still being used in the model as there

is no general consensus within the thermospheric community on which rate value is

correct.

2.4 Composition

To model the physics of the thermosphere and upper mesosphere with any degree of

realism, one must have a knowledge on how N2, O2, O, NO, and CO2 are distributed

in these regions. The composition fractions of N2, O2, and O originally employed

in the model are shown in Figure 2.2. The O and O2 composition fractions were

not particularly realistic at the lowest altitudes, but these values were tolerated at

the time as this region of the model was not deemed to be that important to the

simulation. Profiles of NO and CO2 were obtained from the measurements of Trinks

et al. [1978] and Allen et al. [1981] respectively.

The current emphasis on the more realistic treatment of compositional effects has

led to several improvements in how the various constituents are treated in the model.

The Trinks et al. [1978] NO profile has been updated with a NO profile obtained from

the SME/HALOE climatology of NO [Siskind et al., 1998]. This profile is shown in

Figure 2.3 and is representative of disturbed conditions at 60oN in January (disturbed

conditions in the SME/HALOE climatology are defined as Ap > 15 and F10.7 > 120).

The CO2 profile of Trinks et al. [1978] has also been updated with the ‘average’ profile

used in the study of Fomichev et al. [1998]. These profiles remain constant through

a simulation.

The treatment of N2, O2, and O have also been improved in the model. The

’background’ values of these species are now much more realistic, with the composition

fractions below 130 km now being equal to the composition fractions of MSIS-90e

[Hedin, 1990]. At higher altitudes, the ’background’ profiles of N2, O2, and O are
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Figure 2.2: Composition fractions employed in the Chang and St.-Maurice [1991]

simulations. The O and O2 composition fractions were not particularly realistic at

the lowest altitudes. The O and N2 composition fractions also exhibited unrealistically

large “jumps” at 300 km. (Adapted from Chang and St.-Maurice, 1991)

assumed to be in diffusive equilibrium. Once the simulation starts, these composition

fractions are allowed to evolve as the effects of transport and molecular diffusion are

now being accounted for.

The more self-consistent treatment of the neutral gas heating rates in the model

also dictates that the distributions of many minor neutral species in the thermosphere

and upper mesosphere are now required. The profile of N(4S) was obtained from the

MSIS-90e model [Hedin, 1990]. The atomic hydrogen profile is a blend of Thomas’

[1996] climatology and MSIS; the average December profile for 60oN was used below

94 km and a suitably scaled MSIS profile was used above 94 km. The profiles of O3,

HO2, and OH were calculated by the methodology of Brasseur and Solomon [1986].

In this methodology, the profiles of O, O2 and H are already known and a very simple
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Figure 2.3: Nitric oxide density profiles
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hydrogen-oxygen chemistry, i.e.

O + O2 +M
β2−→ O3 +M

O+O3
β3−→ O2 +O2

O+OH
β4−→ O2 +H

O+HO2
β5−→ OH+O2

O3 + hν
JO3−→ O2 +O2

H+O2 +M
β13−→ HO2 +M

H+O3
β14−→ OH+O2

is solved under the assumption of photochemical equilibrium, yielding

nO3
=

β2nOnO2
nM

JO3
+ β3nO + β14nH

(2.66)

nHO2
=

β13nHnO2
nM

β5nO

(2.67)

nOH =
β5nHO2

nO + β14nHnO3

β4nO

=
β5nHO2

nO + β13nHnO2

β4nO

(2.68)

The profile of N(2D) is also determined under the assumption of photochemical equi-

librium, i.e.

N2 + hν
JN2−→ N(2D) + N(4S)

NO+ + e
β36−→ N(2D) + O

N+
2 + e

β38−→ N(2D) + N(4S)

N+
2 +O

β41−→ N(2D) + NO+

N+ +O2
β32a−→ N(2D) + O+

2

N(2D) + O2
β20−→ NO+O(1D)

N(2D) + O
β22−→ N(4S) + O
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N(2D) + NO
β24−→ N2 +O

N(2D) + e
β23−→ N(4S) + e

N(2D)
β42−→ N(4S) + hν

N(2D) + O+
2

β43−→ N+ +O2

N(2D) + O+ β44−→ N+ +O

which yields

nN(2D) =
0.5JN2

nN2
+ 0.8β36nNO+ne + 0.9β38nN+

2
ne + β41nN+

2
nO + β32anN+nO2

β20nO2
+ β22nO + β23ne + β24nNO + β42 + β43nO+

2
+ β44nO+

The O(1D) profile was modeled as a Chapman profile above 160 km, i.e.

nO(1D) = 2.8× 104 exp

{

1−
(

z − 200

26

)

− exp

[

−
(

z − 200

26

)]}

.

Below 160 km, the O(1D) profile was determined by interpolation of the following

data

Altitude (km) Number Density (cm−3)

80 1.00× 102

115 3.00× 102

140 9.50× 102

155 2.25× 103

160 3.36× 103

It should be noted that no attempt was to made to calculate the O(1D) profile using

photochemical equilibrium considerations as this would have required a knowledge of

the O2 photolysis rates.

2.5 Other Thermospheric Parameters

2.5.1 Transport Coefficients

Theoretical expressions for the transport coefficients of a multicomponent gas depend

on how the interactions between the various species are modeled. For thermospheric
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species j Aj Cj

N2 3.43× 10−6 56

O2 4.03× 10−6 56

O 3.90× 10−6 75.9

He 3.84× 10−6 299

H 1.22× 10−6 379

Table 2.8: Numerical coefficients used in the viscosity and thermal conductivity ap-

proximations. (From Banks and Kockarts, 1973.)

simulations, the viscosity and thermal conductivity of the individual species are fre-

quently parameterized as

µi = Ai T
0.69 (2.69)

λi = Ci T
0.69 (2.70)

where Ai and Ci are experimentally fitted coefficients. The values of these coeffi-

cients can be found in Table 2.8. These individual expressions are then weighted

by their respective composition percentages to obtain the final viscosity and thermal

conductivity expressions for the multicomponent mixture, i.e.

µ =
∑

i

Ai (
ni

n
) T 0.69 (2.71)

λ =
∑

i

Ci (
ni

n
) T 0.69. (2.72)

2.5.2 Body Forces

Three forces are being accounted for : gravity, coriolis, and ion drag. The Coriolis

force per unit mass, fc, is determined from the expression −2Ω× un, where Ω is the

angular rotation rate of the Earth (equal to 7.29× 10−5s−1) and un is the neutral gas

velocity vector. In the coordinate system of the model, this yields

fc = 2Ωw sin θ er + 2Ωw cos θ eθ − 2Ω(u sin θ + v cos θ) eφ (2.73)
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The ion drag force per unit mass is evaluated as 1
ρc
(J×B), where J is the current

density in the ionosphere and B is the magnetic field of the Earth. In the coordinate

system of the model, this yields

fion =
1

ρc
[ (− JφBθ) er + ( JφBr ) eθ + ( JrBθ − JθBr ) eφ ] (2.74)

The gravitational force per unit mass is evaluated using the gravitational field strength

g, which is evaluated as

g =
980.6

( 1 + ( z
RE

)2 )
cm/sec2. (2.75)

2.6 Ionospheric Parameterizations

2.6.1 Ion Density Profiles

The ion density profiles used in these simulations are shown in Figure 2.4. The ’weak

case’ ion density profile is taken from St-Maurice and Schunk [1981] and has an F-

region peak ion density of 105 cm−3 and an E-region peak density of 3.5 × 105 cm−3

(the enhanced E-region peak at 110 km is due to the effects of particle precipitation).

The ’strong case’ ion density profile has an essentially constant ion density of 106 cm−3

above 200 km and has been chosen to study the response of the thermosphere under

extremely disturbed conditions. It should be noted that both of these ion profiles

do not carry any information about the composition of the ionosphere; the original

version of the model assumed that the ionosphere was composed entirely of NO+.

A more realistic ion composition scheme has been introduced into the model, with

the NO+, O+
2 , and O+ composition percentages corresponding to a TRANSCAR

simulation.

2.6.2 Geomagnetic field

In most geophysical simulations, the geomagnetic field of the Earth is derived from a

magnetic potential, i.e.,

B = −∇ΦM . (2.76)
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Figure 2.4: Ion density profiles. (Adapted from Chang and St.-Maurice, 1991.)

This magnetic potential is compiled from a global distribution of ground-based and

satellite magnetometer measurements that are fit to a spherical harmonic series of

the form

ΦM(r, θ, φ) = RE

∞
∑

n=1

n
∑

m=0

(
RE

r
)n+1(gmn cosmφ+ hmn sinmφ)Pm

n (cos θ), (2.77)

(r is the distance from the centre of the Earth, θ is the colatitude with respect to

the North pole, and φ is east longitude). If one only considers the first term in the

expansion of the magnetic potential, i.e.,

ΦM (r, θ, φ) = RE(
RE

r
)2g10(cos θ) =

m cos θ

r2
(2.78)

then the axial-centred dipole approximation of the geomagnetic field is obtained, ie.

B =
2m cos θ

r3
er +

m sin θ

r3
eθ (2.79)
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where m is the dipole moment at the Earth’s centre. In this approximation, the

geographical and geomagnetic poles are coincident and the magnetic field is only a

function of latitude and altitude (only m = 0 terms can contribute to the magnetic

potential series expansion in these simulations as the model assumes that there are

no variations in longitude). If variations in altitude are also ignored, the magnitude

of the geomagnetic field (in gauss) can be written as

B(θ) = 0.586× (0.25 + 0.75 cos2 θ)0.5. (2.80)

2.6.3 Currents

The decomposition of ionospheric currents into components that are parallel and

perpendicular to the magnetic field can provide great insights into the physics of these

currents once the underlying structure and shape of the magnetic field is known. The

axially-centred dipole approximation to the magnetic field currently being used in

the model allows a particularly simple geomagnetic coordinate system to be adopted:

b, which is a unit vector in the direction of B; φ, which is a unit vector parallel to

the geographical longitudinal vector; and a, which is the unit vector that makes the

resulting coordinate system orthogonal. Rewriting equation (1.54) in terms of this

coordinate system yields

J = σ‖Eb b +
[

σP

(

Ea +
vφ
c
B
)

− σH

(

Eφ −
va
c
B
) ]

a

+
[

σP

(

Eφ −
va
c
B
)

+ σH

(

Ea +
vφ
c
B
) ]

φ (2.81)

which can also be written in matrix form as








Jb

Ja

Jφ









=









σ‖ 0 0

0 σP −σH
0 σH σP

















Eb

Ea +
vφ
c
B

Eφ − va
c
B









Multiplying both sides of the preceding equation by the transformation matrix from

geomagnetic to geographic coordinates gives








Jr

Jθ

Jφ









=









σrr σrθ σrφ

σθr σθθ σθφ

σφr σφθ σφφ

















Er − w
c
Bθ

Eθ +
w
c
Br

Eφ +
1
c
(uBθ − vBr)








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with

σrr = σ‖ sin2 I + σP cos2 I (2.82)

σrθ = ( σ‖ − σP ) sin I cos I (2.83)

σrφ = − σH cos I (2.84)

σθr = ( σ‖ − σP ) sin I cos I (2.85)

σθθ = σP sin
2 I + σ‖ cos2 I (2.86)

σθφ = σH sin I (2.87)

σφr = σH cos I (2.88)

σφθ = − σH sin I (2.89)

σφφ = σP (2.90)

The dip angle I is the angle between the geomagnetic field line and the local “hori-

zontal” θ − φ surface and is normally evaluated as tan(I) = 2 cot θ.

Now that the currents in the ionosphere have been transformed into expressions

that are compatible with the grid of the thermospheric model, one can start to con-

sider other issues in the implementation of the model electrodynamics, i.e. how is

the electric field going to be parameterized and are there going to be any restrictions

placed on how the currents are modeled in the ionosphere.

If one follows the methodology of Richmond and Matsushita [1975], one can assume

that the atmosphere is “shallow” in the sense of Phillips [1966], which implies that

the vertical current densities in the ionosphere will be negligible when compared

to the horizontal current densities in the ionosphere. This assumption is usually

implemented in most numerical models by setting the radial component of the current

equal to zero, which implies that

Er −
w

c
Bθ = (−1)[ σrθ(Eθ +

w

c
Br) + σrφ(Eφ +

1

c
(uBθ − vBr)) ]/σrr (2.91)

The current density expression can then be written as
(

Jθ

Jφ

)

=

(

σ ′
θθ σ ′

θφ

σ ′
φθ σ ′

φφ

)(

Eθ +
w
c
Br

Eφ +
1
c
(uBθ − vBr)

)
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with

σ ′
θθ =

σ‖ σP

σ‖ sin2 I + σP cos2 I
(2.92)

σ ′
θφ =

σ‖ σH sin I

σ‖ sin2 I + σP cos2 I
(2.93)

σ ′
φθ =

−σ‖ σH sin I

σ‖ sin2 I + σP cos2 I
(2.94)

σ ′
φφ =

σH cos2 I

σ‖ sin2 I + σP cos2 I
+ σP (2.95)

Since σ‖ ≫ σP and σ‖ ≫ σH , one can approximate the preceding conductivities as

σ ′
θθ ≈ σP

sin2 I
(2.96)

σ ′
θφ ≈ σH

sin I
(2.97)

σ ′
φθ ≈ − σH

sin I
(2.98)

σ ′
φφ ≈ σP (2.99)

which now allows one to approximate the current densities as

Jθ =
σP

sin2 I

(

Eθ +
w

c
Br

)

+
σH
sin I

(

Eφ +
u

c
Bθ −

v

c
Br

)

(2.100)

Jφ = − σH
sin I

(

Eθ +
w

c
Br

)

+ σP

(

Eφ +
u

c
Bθ −

v

c
Br

)

(2.101)

If the zonal component of the electric field is set to zero, i.e. Eφ = 0, the current

densities simplify to

Jθ =
σP

sin2 I

(

Eθ +
w

c
Br

)

+
σH
sin I

(u

c
Bθ −

v

c
Br

)

(2.102)

Jφ = − σH
sin I

(

Eθ +
w

c
Br

)

+ σP

(u

c
Bθ −

v

c
Br

)

(2.103)

If one also assumes that the atmosphere is in hydrostatic equilibrium, then the vertical

velocity u will be zero and the current density expressions can be further simplified

to

Jθ =
σP

sin2 I

(

Eθ +
w

c
Br

)

− σH
sin I

(v

c
Br

)

(2.104)

Jφ = − σH
sin I

(

Eθ +
w

c
Br

)

− σP

(v

c
Br

)

(2.105)



87

which are the expressions originally used in Richmond and Matsushita [1975] and

Chang and St.-Maurice [1991]. It should be noted that the assumption of hydrostatic

equilibrium in the current expressions is not consistent with the original intentions

of the model, but the effects of this assumption are not anticipated to be of much

consequence as the terms involving the vertical velocity u also contained Bθ, which

was very small in any of the regions where the vertical velocity was large.

If the “shallow” / “thin shell” approximation is not made, then the parallel electric

fields in the ionosphere must be set zero as solving equation 2.81 in a self-consistent

manner is a daunting task. The easiest way to avoid this complication is to rewrite

the geographic electric field components in terms of Ea, Eb, and Eφ, i.e.









Jr

Jθ

Jφ









=









− σ‖ sin I σP cos I −σH cos I

− σ‖ cos I −σP sin I σH sin I

0 σH σP

















Eb

Ea − 1
c
wB

Eφ +
1
c
(uBθ − vBr)









and then set Eb equal to zero, which yields









Jr

Jθ

Jφ









=









σP cos I −σH cos I

−σP sin I σH sin I

σH σP









(

Ea − 1
c
wB

Eφ +
1
c
(uBθ − vBr)

)

If the zonal component of the electric field is again set to zero, i.e., Eφ = 0, the

current densities become








Jr

Jθ

Jφ









=









σP cos I −σH cos I

−σP sin I σH sin I

σH σP









(

Ea − 1
c
wB

1
c
(uBθ − vBr)

)

This expression for the current densities is now being employed in the model. When

the preceding equation is compared to the Chang and St.-Maurice [1991] current den-

sity expressions, there are two obvious differences: there is now a radial component

to the current densities and the effects of vertical winds are being accounted for.

This newer expression for the current densities should have some effect on the ther-

mospheric response as the radial component of the current density will provide an

extra acceleration term via ion-drag. The parameterization of the electric field will
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be discussed in Chapter 4 as some of its characteristics will vary from simulation to

simulation.
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Chapter 3

Model Description II : Numerics

3.1 Introduction

The selection of an appropriate numerical scheme is usually the most involved part

of the simulation process and normally requires one to consider the following issues

in computational fluid dynamics (CFD):

• the mathematical behaviour of the equations

• the spatial and temporal discretizations used in the numerical scheme

• the implementation of appropriate boundary conditions

• and the generation of the numerical grid

The substantial progress made in most of these fields since 1991 suggests that most of

the numerics in the model should be substantially rewritten, but time constraints have

not allowed for this possibility. Despite this, several easy to implement upgrades have

been incorporated into the model, enhancing its numerical stability. An overview of

the numerics currently being implemented in the model, as well as possible upgrades,

will be presented in the following sections of this chapter.

3.2 The mathematical behaviour of the Navier-Stokes equations

The Navier-Stokes equations are a mixed parabolic-hyperbolic set of equations, i.e.

the eigenvalues of the Navier-Stokes equations are a mixture of real and complex

eigenvalues. This mixed behaviour of the equations makes the choice of a numerical

scheme particularly daunting as the numerical scheme must be able to cope with
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the parabolic behaviour in certain regions of the model domain and the hyperbolic

behaviour in the remaining regions of the model domain. The hyperbolic behaviour

of the solution can be especially difficult to simulate as the solution in a hyperbolic

region can develop strong shocks/steep gradients, which may introduce numerical

oscillations into the solution. These numerical oscillations are normally reduced by

• using the conservative form of the Navier-Stokes equations, and

• introducing small amounts of artificial viscosity into the numerical scheme.

It should be emphasized that the conservative form of the Navier-Stokes equations

does not add any new physics to the simulation; it is just a form of the Navier-Stokes

equations that is more stable numerically as the solution variables are physically

conserved quantities, i.e. mass, momentum, and energy.

This stability can be most easily illustrated by considering the propagation of a

normal 1-D shock, as presented in Figure 3.1. The conservative and non-conservative

forms of the N-S equations for such a situation are

∂ρ

∂t
+
∂(ρu)

∂r
= 0 (3.1)

∂(ρu)

∂t
+
∂(ρu2 + p)

∂r
= 0 (3.2)

and
∂ρ

∂t
+ ρ

∂u

∂r
+ u

∂ρ

∂r
= 0 (3.3)

∂u

∂t
+ u

∂u

∂r
= −∂p

∂r
(3.4)

respectively. If one attempts to determine the velocity u using the non-conservative

form
∂u

∂t
+ u

∂u

∂r
= −∂p

∂r

the discontinuity in u will be amplified by the numerical evaluation of the u ∂u
∂r

and

∂p
∂r

terms. The conservative form

∂(ρu)

∂t
+
∂(ρu2 + p)

∂r
= 0
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Figure 3.1: Variation of flow properties across a normal shock wave. (From Anderson,

1995.)
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on the other hand, will not be influenced by any of the discontinuities in ρ or u as

the quantities ρu and ρu2 + p are continuous across the shock. A more thorough

discussion of this topic can be found in the text Computational Fluid Dynamics by

J. D. Anderson. Another important, but frequently overlooked property of the con-

servative form is that the locations and speeds of the shocks are accurately captured;

non-conservative forms tend to propagate shocks at slower speeds [Roache, 1975].

If one now substitutes the spherical form of the divergence and gradient operators

into equations (2.1)-(2.3), the Navier-Stokes equations become

∂U

∂t
+
∂F

∂r
+

2F

r
+

1

r

∂G

∂θ
+

G

r
cotθ +

1

r sin θ

∂H

∂φ
= S (3.5)

whereU is a vector containing the solution variables, F, G, andH are the components

of the solution vector flux and S is a vector that contains the sources and sinks

associated with the solution vector U, i.e.

U =



















ρ

ρu

ρv

ρw

e



















(3.6)

F =



















ρu

ρu2 + p− τrr

ρuv − τrθ

ρuw − τrφ

(e+ p)u− uτrr − vτrθ − wτrφ − λ∂T
∂r



















(3.7)

G =



















ρv

ρuv − τθr

ρv2 + p− τθθ

ρvw − τθφ

(e+ p)v − uτθr − vτθθ − wτθφ − λ
r
∂T
∂θ



















(3.8)
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H =



















ρw

ρuw − τrφ

ρvw − τθφ

ρw2 + p− τφφ

(e+ p)w − uτrφ − vτθφ − wτφφ − λ
rsinθ

∂T
∂φ



















(3.9)

S =



















0

ρfr + 2p
r
+ ρv2

r
+ ρw2

r
− τθθ

r
− τφφ

r

ρfθ +
p
r
cot θ − ρuv

r
+ ρw2

r
cot θ + τrθ

r
− τφφ

r
cot θ

ρfφ − ρuw
r
− ρvw

r
cot θ +

τφr
r

+
τθφ
r
cot θ

ρufr + ρvfθ + ρwfφ +Q− C



















(3.10)

Although the preceding form of the Navier-Stokes equations is physically conservative,

the numerical efficiency of this particular form is very poor (5 operations have to be

performed on the flux vector to advance the solution). Multiplying equation (3.5) by

r2 sin θ and combining some like terms gives

∂

∂t

[

(r2 sin θ)U
]

+
∂

∂r

[

(r2 sin θ)F
]

+
∂

∂θ
[ (r sin θ)G ]

+
∂

∂φ
[ (r2 sin θ)H ] = [ (r2 sin θ)S ] (3.11)

This form is much more efficient numerically (only 3 operations have to be performed

on the flux vector to advance the solution now). It should be emphasized that this

form of the Navier-Stokes equations is still physically conservative; the r sin θ and

r2 sin θ terms are only geometry factors that have no affect on the “physics” of the

simulations.

If development time and CPU resources were not an issue, equation (3.11) would

be the starting point of this thesis. However, such 3-D simulations are still not

practical on current workstations and zonal symmetry must be invoked, i.e. any

derivatives with respect to φ are set to zero. Equation (3.11) becomes

∂

∂t

[

(r2 sin θ)U
]

+
∂

∂r

[

(r2 sin θ)F
]

+
∂

∂θ
[ (r sin θ)G ] = [ (r2 sin θ)S ]

and is the form of the Navier-Stokes equations currently being used in this thesis.
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3.3 Grid Discretization

Grid discretization (which is also known as grid generation) is the process of decom-

posing the physical space that one is modeling into smaller regions/computational

cells. Determining the shape and size of these computational cells is an important

issue in the design of a numerical model as the stability and accuracy of the numeri-

cal scheme being implemented in the model is usually determined by how accurately

the variables are represented in the computational domain. However, one must also

balance this desire for accuracy with the computational time and/or power available

to the modeler (doubling the number of points used in a finite difference scheme

typically quadruples the runtime of the program).

Since the spherical coordinate system is an orthogonal coordinate system, one

obvious choice in the grid discretization procedure would be to create altitude and

latitude grids with uniform spacings, e.g. ∆z = 1km, ∆θ = 0.1o. Unfortunately,

such a choice would not be very efficient numerically as very different resolutions are

required in the upper and lower regions of the model (a fairly small ∆z is needed at

the lower altitudes to correctly resolve the changes that are occurring in most of the

thermospheric variables at these altitudes while a much coarser ∆z is required at the

higher altitudes to maintain numerical stability). The original grid in the model tried

to accommodate these conflicting requirements by using an unequally spaced altitude

grid with a minimum cell size of 2.5 km at the lower boundary and a maximum cell

size of 25 km at the upper boundary. An unequally spaced grid was also employed

in latitude to resolve features in the electrojet and polar regions of the model more

clearly (more details on the grid used in the original version of the model can be

found in Table 2 of Chang and St.-Maurice [1991]).

Although unequally spaced grids can increase the resolution in a particular region

of a model, they can also degrade the stability and accuracy of the the numerical

model if the changes in the cell sizes/grid spacing becomes too large. To overcome

this, the governing equations can be transformed from ‘physical space’ to a ‘compu-

tational space’ where the grid spacing is uniform. This transformation from ‘physical
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Function Grid : x = x(ξ)

Exponential exp(aξ)−1
exp(a)−1

Hyperbolic Tangent 1− tanh(α(1−ξ)))
tanh(α)

Hyperbolic Sine sinh(αξ)
sinh(α)

Error Function 1− erf(α(1−ξ))
erf(α)

Tangent (0 ≤ α ≤ π
2
) tan(αξ)

tan(α)

Arctangent 1− arctan(α(1−ξ))
arctan(α)

Sine (0 ≤ α ≤ π
2
) 1− sin(α(1−ξ))

sin(α)

Logarithm 1− ln(1+α(1−ξ))
ln(1+α)

Inverse Hyperbolic Tangent (0 ≤ α ≤ π
2
) arctanh(α(1−ξ))

arctanh(α)

Quadratic (0 ≤ α ≤ 1) (1− α)ξ + αξ2

Table 3.1: Common grid stretching functions.

space’ to ‘computational space’ can be accomplished by a variety of analytical func-

tions or by solving anther system of partial differential equations (a more complete

discussion of grid generation techniques can be found in the texts Numerical Grid

Generation: Foundations and Applications and Grid Generation Methods). This re-

quirement for extra resolution in the boundary region of a model is fairly common

in the simulation of viscous flow, which has led to the proposal of many different

stretching functions. Some of the more commonly used functions are presented in

Table 3.1. Thompson and Mastin [1984] have analyzed the truncation errors and

grid point distributions associated with most of these functions and concluded that

the hyperbolic sine, hyperbolic tangent, and exponential functions are usually the

best-suited functions for resolving boundary-layer type phenomena.

Since computing power has increased dramatically since 1991, it was decided that

the vertical discretization of the model should be updated with a newer 121 point

grid based on one of the stretching functions recommended by Thompson and Mastin

[1984]. While the hyperbolic tangent function is usually considered to be the best



96

overall function, it has one drawback: the cell sizes at the upper and lower boundaries

must satisfy the criterion

∆ztop∆zbottom < ( H/(N − 1))2

where H is the altitude range covered by the discretization and N is the number

of points used in the discretization. This means that as one increases the number

of points used in the discretization, one must make the product of ∆ztop ∆zbottom

smaller, limiting the ability of this function to generate stretched grids with large

differences between ∆ztop and ∆zbottom (∆ztop ∆zbottom < 9.507 km for H = 370 km

and N = 121 pts). The hyperbolic sine function, on the other hand, requires the cell

sizes at the upper and lower boundaries to satisfy the condition

∆ztop ∆zbottom > (H/(N − 1))2

which provides much more flexibility in designing stretched grids with a large differ-

ence between ∆ztop and ∆zbottom.

After extensive experimentation with the grid parameters, 4 of the most suitable

grids were chosen for further analysis. Plots of the cell sizes and of the cell size

changes for these grids can be found in Figures 3.2 and 3.3 respectively. The high

resolution grid based on the hyperbolic tangent function generates an almost ideal

cell size distribution, with minimal changes in the cell sizes and resolution where it

is needed. However, it would also be the most expensive to implement numerically

as its upper boundary cell size of 9.5 km would reduce the time step of the model

substantially. The lower resolution hyperbolic tangent function based grid is also

adept at minimizing the changes in the cell sizes, but clusters too many grid points

at the lower altitudes (recall that ∆ztop ∆zbottom < 9.507 km). The grid based on the

hyperbolic sine function also prevents the cell sizes from changing too quickly, but

clusters too many grid points at the lower altitudes like the lower resolution hyper-

bolic tangent based grid. The exponential based grid, on the other hand, provides

resolution that is comparable to the high resolution hyperbolic tangent based grid

to heights of 300 km, the principal region of interest in this model. However, the
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Figure 3.2: Grid cell sizes for selected grids. The high resolution hyperbolic tangent

grid (blue curve) offers the best spatial resolution but would require the most CPU

time. The exponential grid (magenta curve) offers better spatial resolution than

the low resolution hyperbolic tangent (red curve) and hyperbolic sine (green curve)

grids below 300 km and would require the same amount of CPU time as these lower

resolution grids. The large changes in the cell sizes of the original grid (black curve)

are quite evident.

exponential based grid allows the cell sizes to change most quickly, but these rapid

changes in cell size are confined to the upper altitudes of the model, where the vari-

ables are not expected to change that quickly. Despite this apparent weakness, the

time-step associated with the exponential grid is comparable to the hyperbolic sine

and low resolution hyperbolic tangent grids as the upper boundary cell sizes of these

three grids are all quite comparable. Because of this desired resolution and larger

time-step (when compared to the high resolution hyperbolic tangent grid), the grid

based on the exponential function was chosen as the new vertical grid for the model.
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Figure 3.3: Grid cell size ratios for selected grids. The changes in the grid cell size of

the high resolution hyperbolic tangent grid (blue curve) are never larger than 3.5%

while changes in the grid cell size of the exponential grid (magenta curve) can exceed

8% near the upper boundary. The changes in the grid cell sizes of the low resolution

hyperbolic tangent (red curve) and hyperbolic sine (green curve) grids fall in between

these two extremes.

Now that the stretching function for the vertical grid has been determined, the me-

chanics of transforming the equations from physical space to the computational space

will be discussed. The chain rule of calculus allows one to write the derivative with

respect to altitude as
∂

∂r
=
∂ξ

∂r

∂

∂ξ
(3.12)

which now lets one rewrite the Navier-Stokes equations as

∂

∂t
[ (r2 sin θ)U ] +

∂ξ

∂r

∂

∂ξ
[ (r2 sin θ)F ] +

∂

∂θ
[ (r sin θ)G ] = (r2 sin θ)S. (3.13)
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Stretching functions for the latitudinal grid have also been investigated, with the

hyperbolic sine formulation showing some promise. However, time constraints did

not allow these changes to be incorporated into the model.

3.4 Non-dimensionalization of the equations

Now that the appropriate form of the Navier-Stokes equations have been decided

upon, one must then decide if these equations should be put into a non-dimensionalized

form, i.e. if the variables should be divided by an appropriate/characteristic value

pertinent to that variable. The most obvious benefit of this non-dimensionalization

procedure is that all of the numerical values of the variables are now much closer to

one, which should reduce the possibility of a numerical overflow/underflow occurring.

However, this non-dimensionalization also makes the debugging of the program much

more difficult as the numbers are no longer meaningful ’physically’. Despite this

possible drawback, the disparate magnitudes of some variables in the model dictated

that non-dimensionalization was a necessity (typical values of r are ∼ 108 cm and the

mass densities near the upper boundary can be as small as ∼ 10−20 g/cm3 ).

The selection of the characteristic values is usually at the discretion of the modeler.

In the original version of the model, the characteristic values were defined in terms

of three fundamental quantities :

length [ L ] = 107 cm,

mass [M ] = 1010 gram,

time [ t ] = 103 seconds.

Any other characteristic value could then be derived from these three quantities by

dimensional analysis, e.g.

velocity [ LT−1 ] = 1.0× 104 cm sec−1

density [ML−3 ] = 1.0× 10−11 g cm−3

This non-dimensionalization is still being used in the model.
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3.5 Numerical Technique

The original version of the code solved the Navier-Stokes equations with an ex-

plicit MacCormack scheme [MacCormack, 1969]. This scheme is a predictor-corrector

method with second-order accuracy in time and space. In the predictor step, a tempo-

rary solution at the next time step is obtained by replacing the temporal and spatial

derivatives with first order forward differences, i.e.

U[n+ 1, i, j] = U[n, i, j] −
(

∆t

∆ξ

)

· (F[n, i+ 1, j]− F[n, i, j])

−
(

∆t

∆θ

)

· (G[n, i, j + 1]−G[n, i, j]) + ∆t · S[n, i, j]

(3.14)

where U, F, G and S are now defined as

U [n, i, j] = (r2 sin θ)U [n, i, j] (3.15)

F [n, i, j] = (r2 sin θ)

(

∂ξ

∂r

)

F [n, i, j] (3.16)

G [n, i, j] = (r sin θ)G [n, i, j] (3.17)

S [n, i, j] = (r2 sin θ)S [n, i, j] (3.18)

This estimate of the solution at the next time level is then averaged with the solution

at the current time step to form a solution at the intermediate time step n+ 1
2
, i.e.

U[n +
1

2
, i, j] =

1

2
(U[n+ 1, i, j] +U[n, i, j] ).

The solution at the intermediate time step n + 1
2
is then advanced to the next time

level by replacing the temporal and spatial derivatives with first order backward

differences, i.e.

U[n + 1, i, j] = U[n +
1

2
, i, j]− 1

2

(

∆t

∆ξ

)

(F[n + 1, i, j]− F[n+ 1, i− 1, j])

− 1

2

(

∆t

∆θ

)

(G [n + 1, i, j] − G [n+ 1, i, j − 1] )

+

(

∆t

2

)

· S [n+ 1, i, j]) (3.19)
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While this presentation of the MacCormack scheme provides some insight into how

the scheme was derived, it is not very efficient numerically. It has been implemented

in the model in the following manner

U [n + 1, i, j] = U[n, i, j]−
(

∆t

∆ξ

)

· (F[n, i+ 1, j]− F[n, i, j])

−
(

∆t

∆θ

)

· (G [n, i, j + 1] − G [n, i, j] ) + ∆t · S[n, i, j]

U [n + 1, i, j] = U[n + 1, i, j]−
(

∆t

∆ξ

)

· (F[n+ 1, i, j]− F[n+ 1, i− 1, j])

−
(

∆t

∆θ

)

· (G [n+ 1, i, j] − G [n + 1, i, j − 1] )

+

(

∆t

2

)

· S [n+ 1, i, j])

U[n + 1, i, j] =
1

2

(

U[n, i, j] +U [n + 1, i, j]
)

(3.20)

It should be noted that the forward-backward differencing of the spatial derivatives is

not sacrosanct; second order accuracy can also be obtained if backwards differences

are used in the spatial derivatives of the predictor step and forwards differences are

used in the spatial derivatives of the corrector step. To avoid any type of biasing due

to the one-sided differencing of the spatial derivatives, the forwards and backwards

differencing of the spatial derivatives was alternated between the predictor and the

corrector steps and between the r and θ derivatives. A summary of the differentiation

sequence can be found in Table 1 of Chang and St.-Maurice [1991].

When viscous terms are present in F and G, the spatial derivatives of the viscous

terms must be differenced correctly to maintain the second order accuracy of the

MacCormack scheme [Tannehill et al., 1997]. This was accomplished in the follow-

ing manner. The r-derivative terms appearing in F are differenced in the opposite

direction to that used for ∂F
∂r
, while the θ derivatives are approximated with cen-

tral differences. Similarly, the θ derivative terms appearing in G are differenced in

the opposite direction to that used for ∂G
∂θ

, while the r derivatives are approximated

with central differences. This sequence can also be found in Table 1 of Chang and

St.-Maurice [1991].

The robustness, programming simplicity, and second order accuracy of MacCor-
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mack’s original 1969 scheme led to its widespread adoption in the CFD community

[Anderson, 1995]. While the second order accuracy of the original 1969 scheme was

adequate for most simulations, the simulation of boundary layers, shear layers, and

hypersonic flows required much more accurate algorithms to reproduce the observed

flow patterns. Eli and Turkel [1974] were the first to increase the accuracy of MacCor-

mack’s original scheme by increasing the spatial accuracy of the inviscid terms to 4th

order. Carpenter [1984] then extended MacCormack’s original scheme to a true 2-4

(2nd order time, 4th order space) scheme by replacing the inviscid derivatives with

4th order compact differences and the viscous terms with third order upwind finite

differences. There have been many other ‘extended’ MacCormack schemes proposed

since 1984, with almost all of these schemes tailoring the treatment of the spatial

derivatives to the task at hand: stability, resolution of smaller scale phenomena, low

dispersion errors/long time integration, etc. The possibility of incorporating one of

these extended MacCormack schemes into the model should be seriously considered

in any future upgrades.

3.6 Smoothing/Filtering/Artificial Dissipation

In most simulations of nonlinear phenomena, there is a tendency for the smaller

scale features on the computational mesh to grow with time, especially in regions of

steep gradients. This spurious growth of the shorter wavelength features can allow

positive definite quantities like the mixing ratios of individual species to become

negative, which is clearly unacceptable in any physically realistic simulation. Even

more disconcerting is the fact that these numerical oscillations sometimes grow to

the point where they dominate the entire simulation, creating regions of negative

temperatures and pressures in the solution (the solution has now “blown up”in CFD

terms).

The most common way of incorporating artificial viscosity into Mac-Cormack-
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based schemes is to add the artificial viscosity at each step of the simulation, i.e.,

U [n + 1, i, j] = U[n, i, j]−
(

∆t

∆ξ

)

· (F[n, i+ 1, j]− F[n, i, j])

−
(

∆t

∆θ

)

· (G [n, i, j + 1] − G [n, i, j] )

+ ∆t · S[n, i, j] + D [n, i, j] (3.21)

U [n + 1, i, j] = U[n + 1, i, j]−
(

∆t

∆ξ

)

· (F[n+ 1, i, j]− F[n+ 1, i− 1, j])

− (
∆t

∆θ
) · (G [n + 1, i, j] − G [n+ 1, i, j − 1] )

+

(

∆t

2

)

· S [n+ 1, i, j]) + D [n+ 1, i, j]) (3.22)

where

D [n, i, j] = Cr
| p[n, i+ 1, j]− 2p[n, i, j] + p[n, i− 1, j] |
p[n, i+ 1, j] + 2p[n, i, j] + p[n, i− 1, j]

×(U[n, i+ 1, j]− 2U[n, i, j] +U[n, i− 1, j])

+Cθ
| p[n, i, j + 1]− 2p[n, i, j] + p[n, i, j − 1] |
p[n, i, j + 1] + 2p[n, i, j] + p[n, i, j − 1]

×(U[n, i, j + 1]− 2U[n, i, j] +U[n, i, j − 1])

D [n, i, j] = Cr
| p[n, i+ 1, j]− 2p[n, i, j] + p[n, i− 1, j] |
p[n, i+ 1, j] + 2p[n, i, j] + p[n, i− 1, j]

×(U[n, i+ 1, j]− 2U[n, i, j] +U[n, i− 1, j])

+Cθ
| p[n, i, j + 1]− 2p[n, i, j] + p[n, i, j − 1] |
p[n, i, j + 1] + 2p[n, i, j] + p[n, i, j − 1]

×(U[n, i, j + 1]− 2U[n, i, j] +U[n, i, j − 1])

[Anderson, 1995]. This method of adding artificial viscosity also has to be tuned

for each type of simulation (via the Cr and Cθ parameters) and is activated when

pressure oscillations are detected.

The artificial viscosity methods considered so far are ‘naive methods’ that smear

any discontinuities/shocks over several computational cells and ignore any physics

that may already be known about the governing equations. Overcoming these limita-

tions has been an active area of research in the CFD community for the last thirty-five

years and has led to the development of algorithms that add artificial viscosity so in-

telligently that shocks and discontinuities can now be resolved within one or two
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computational cells without oscillations. These newer, more intelligent schemes can

usually be incorporated into existing MacCormack schemes by adding the correct

amount of artificial viscosity after the corrector step, i.e.

U[n+ 1, i, j] =
1

2
(U[n, i, j] +U[n + 1, i, j]) + (Di+ 1

2
,j+ 1

2
−Di− 1

2
,j− 1

2
). (3.23)

Most of these schemes determine the “correct” amount of artificial viscosity, Di+ 1

2
,j+ 1

2
−

Di− 1

2
,j− 1

2
by imposing monotonicity and positivity constraints on the numerical fluxes

in the computational cells (i.e., the convective portion of the algorithm cannot allow

maxima to increase, minima to decrease, or new extremum to be created). Some of

these schemes also account for the “flow” of information in the solution by construct-

ing solutions to the Euler system of equations, which ignore the effects of viscosity

and thermal conduction. Despite this fact, these schemes often generate solutions

that are often superior to those obtained with Navier-Stokes schemes utilizing naive

finite difference schemes [Toro, 1999].

The second way of dealing with the spurious growth of shorter wavelength features

on the computational grid is to filter these features out of the solution with an appro-

priately designed filter/smoother. One of the most commonly used filters/smoothers

is the one dimensional 3 point operator

Uf [n, i, j] = (1− Â)U[n, i, j] +
Â

2
(U[n, i+ 1, j] − U[n, i− 1, j] )

where Â is a constant that determines the strength of the damping rate (a more

thorough discussion of this filter can be found in Haltiner and Williams [1980]).

Increasing the number of points employed in the filter/smoother allows one to control

the range of wavenumbers dissipated by the filter much more effectively, with filter

lengths of 10 - 20 points being typical. There are also more sophisticated filters

that identify where the shorter scale oscillations are occurring and then smooth these

regions only, e.g. Forester [1977]. However, these more sophisticated filters are rarely

used in practice as the computational overhead associated with them can easily double

the runtime of a simulation.

When the original version of the code was written, it was decided that artificial

viscosity would not be incorporated into the predictor and corrector steps; all shorter
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wavelength phenomena would be removed by applying the one-dimensional filter

ff [n, i] = 0.5 (f [n, i+ 1] + f [n, i− 1]), i = 2, 4, 6, ... (3.24)

as most of the aforementioned intelligent artificial viscosity schemes were still consid-

ered to be ‘cutting-edge’ numerics (St.-Maurice, private communication). Since the

temperature, density, and pressure exhibit significant variations with height, these

variables can only be smoothed latitudinally; all of the other variables are smoothed

in both directions. The incorporation of a more up-to-date scheme should also be con-

sidered in any future upgrades, but time constraints have not allowed this endeavour

to be considered.

3.7 Boundary Conditions

The 2 dimensionality of the model dictates that boundary conditions have to be

applied at the upper and lower boundaries of the model, as well as at the equatorward

and poleward edges of the grid. The boundary conditions at the lower boundary are

the easiest to implement: all of the variables at the lower boundary have been assumed

to be constant throughout the simulation, i.e.,

u = v = w = 0

T = 221.3 K

ρ = 1.306× 10−8 g/cm3

p = 8.304 dynes/cm2.

This choice is consistent with having a large pool of matter at the lowest altitudes

that will absorb any disturbance coming from above [Chang and St.-Maurice, 1991].

The upper boundary conditions are much more problematic as these boundary con-

ditions must provide a physically realistic background and cope with the waves being

generated in the model. To accomplish this, the radial derivatives of the neutral

winds and temperature were set to zero through a first order extrapolation, i.e.,

u(n, I − 1, j) = u(n, I, j)
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v(n, I − 1, j) = v(n, I, j)

w(n, I − 1, j) = w(n, I, j)

T (n, I − 1, j) = T (n, I, j)

where I is the index of the upper boundary cell in the r direction and I − 1 is the

index of the cell immediately beneath the upper boundary cell in the r direction.

These conditions are consistent with the assumption that there is no heat flow or

diffusion of momentum at the upper boundary. The neutral pressures and densities

at the upper boundary were assumed to satisfy hydrostatic equilibrium. The original

version of the model implemented this by setting the ratio

ρ (n, I − 1, j)/ρ (n, I, j)

equal to the same constant for the entire simulation. This has now been changed to

allow neutral temperature changes at the upper boundary to be incorporated into the

assumption of hydrostatic equilibrium.

3.8 Determination of the Initial Conditions

The initial conditions of the model were obtained by setting all of the meridional

derivatives equal to zero and then allowing the model to run until the temperature

changes between two consecutive time-steps at every altitude was < 10−6 K. The

resulting temperature and number density profiles were then substituted back into

the 2-D model and allowed to run with a zero electric field for 3 hours. No appreciable

differences were noted between the initial and final profiles, verifying the validity of

the initial condition profiles. It should be emphasized that the initial conditions are

intended to provide a reasonably realistic background; no attempts have been made

to ‘tune’ the model so that it will reproduce climatological mean values.

Profiles of the new mixing ratios are shown in Figures 3.4-3.6 and are much more

realistic as the atomic oxygen mixing ratios are now much more reasonable in the

lower thermosphere and the ‘discontinuities’ in the atomic oxygen and molecular

nitrogen mixing ratios at 300 km have been eliminated. The initial neutral density
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Figure 3.4: Initial composition fractions of molecular nitrogen in selected versions

of the model. The N2 composition fractions in the current version of the model

(blue curve) are more realistic in the lower thermosphere and do not exhibit a large

discontinuity at 300 km.

profile is also much more reasonable as it now exhibits an exponential increase as one

moves into the mesosphere, unlike the original profile which exhibited a much gentler

increase in mass density (Figure 3.7). The new temperature profile is a bit cooler at

most altitudes, but is still quite reasonable (Figure 3.8).
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Figure 3.5: Initial composition fractions of molecular oxygen in selected versions of the

model. The O2 composition fractions in the current version of the model (blue curve)

are more realistic in the lower thermosphere and do not exhibit a small discontinuity

at 300 km.
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Figure 3.6: Initial composition fractions of atomic oxygen in selected versions of the

model. The atomic oxygen composition fractions in the current version of the model

(blue curve) are more realistic in the lower thermosphere and do not exhibit a large

discontinuity at 300 km.
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Figure 3.7: Initial density profiles in selected versions of the model. The initial density

profile in the current version of the model (blue curve) is much more realistic near

the lower boundary.
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Figure 3.8: Initial temperature profiles in selected versions of the model. The initial

temperature profile in the current version of the model (blue curve) is slightly cooler

at most altitudes.
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Chapter 4

Results and Discussion

In this chapter, several model runs will be presented: a ’reference run’ that will be

examined in some detail so the physics of the processes that control the response of

the thermosphere can be elucidated and several other runs that will highlight how the

temporal characteristics of the electric field can influence the thermospheric response.

The location and width of the imposed electric field will be the same for all of these

simulations: a Gaussian function of 0.5◦ half-width, centred on the geomagnetic field

line that emerges from the Earth’s surface at 70◦N. The electric field will always attain

a maximum value of 100 mV/m, but the rate at which it increases, i.e. the ’ramp-

up’ time, will vary. The ’reference run’ will have a ’ramp-up’ time of 1000 seconds

so that the numerical results from this version of the model can be compared with

the results obtained by Chang and St.-Maurice [1991]. Additional runs with quicker

’ramp-up’ times of 60 seconds (1 minute), 300 seconds (5 minutes) and 600 seconds

(10 minutes) will also be presented and compared to the ’reference run’ results. Once

the electric field achieves its maximum value, it will be left on at this value for the

simulations that are investigating the effects of variable ’ramp-up’ times. It should

be emphasized that large changes in the electric field strength over time spans of 5-

10 minutes are not uncommon during disturbed conditions; the 60 second ’ramp-up’

time, on the other hand, is a bit more contentious, but will allow one to see how

quickly the thermosphere can respond to rapid energy inputs.
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4.1 Zonal winds

4.1.1 In the auroral zone

Contour plots of the ’reference run’ zonal winds at 15 minutes, 30 minutes, 45 minutes,

60 minutes, 90 minutes, and 120 minutes are shown in Figure 4.1 (a positive wind

corresponds to an eastward wind while a negative wind corresponds to a westward

wind). The most obvious feature of these contour plots is that the zonal wind speeds

increase quite quickly during the first 45 minutes of the simulation. This rapid accel-

eration is initially due to the ions being driven in the E x b direction by the electric

field. The zonal momentum balance plots at the 15 minute mark of the simulation

clearly illustrate this, with the ion drag terms (the green curves in Figure 4.2) be-

ing significantly larger than any of the other terms present. It should be noted that

the advection terms are also playing a role; the meridional advection terms (the red

curves in Figure 4.2) act as a source of momentum near the edges of the electric field

at most heights while the vertical advection terms (the blue curves in Figure 4.2) act

as a sink of momentum in the electric field region at all altitudes. Viscosity is only

playing a minor role at this point in the simulation; it is a small sink of momentum at

the higher heights that is comparable to the vertical advection contribution at these

heights.

As time progresses, the contributions of the advection terms to the overall zonal

momentum balance increase, with the meridional advection terms becoming com-

parable to the ion drag terms at the higher altitudes by the 30 minute mark of the

simulation (Figure 4.3). Although the advection terms are becoming more important,

it should be noted that the ion drag term is not as large as it was at the 15 minute

mark of the simulation as the differences between the ion and neutral velocities are

not as pronounced now. The Coriolis contribution to the momentum balances is also

starting to become more important at the lower heights, essentially balancing the ion

drag outside of the auroral zone (this will be discussed more thoroughly in the next

section).
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Figure 4.1: Zonal winds in the auroral zone for the ’reference run’ simulation. The

wind speeds have been contoured in 25 m/s intervals and reach their maximum values

around the 60 minute mark of the simulation.
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Figure 4.2: Zonal momentum balances in the auroral zone at the 15 minute mark of

the ’reference run’ simulation. The ion drag terms (the green curves) are the dominant

acceleration mechanism at the 15 minute mark of the simulation, with the meridional

and vertical advection terms (the red and blue curves respectively) making making

minor contributions.
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Figure 4.3: Zonal momentum balances in the auroral zone at the 30 minute mark

of the ’reference run’ simulation. The ion drag and the meridional advection terms

(the green and red curves respectively) are providing most of the zonal acceleration

at higher altitudes while the vertical advection terms (the blue curves) are acting as

sink of momentum in the electric field region at all altitudes.
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By the 60 minute mark of the simulation, the zonal winds in the auroral zone

have achieved an essentially steady state solution, with an approximate balance be-

tween the ion drag, advection, and viscous terms occurring at all heights (Figure 4.4).

However, the relative contributions of the meridional advection, vertical advection,

and viscous terms to the zonal momentum balance are a function of height; the ver-

tical and meridional advection terms balance ion drag at the lower altitudes, vertical

advection balances ion drag at 180 km, while viscosity and meridional advection

are balancing ion drag at the highest heights. It should be emphasized that these

results are not new; Richmond and Matsushita [1975], Mikkelsen et al. [1981], Fuller-

Rowell [1984,1985], and Chang and St.-Maurice [1991] have all noted the prominent

role played by advection terms in the development of zonal winds during disturbed

conditions.

It should also be noted that the assumption of zonal symmetry in these simula-

tions will cause the zonal wind speeds in the auroral zone to be larger than those

obtained by most other three dimensional models. The most obvious reason for this

is the lack of dissipation in the zonal direction: any dynamical responses produced

by the model can only be dissipated as they propagate meridionally. Another much

more subtle reason is that the total energy input in a two dimensional model will al-

most always be larger than the total energy input in an equivalent three dimensional

model (the energy sources in a three dimensional model are not zonally symmetric

under most circumstances as this defeats the purpose of making the model three di-

mensional). Sun et al. [1995] have carried out a two dimensional/three dimensional

model comparison to determine how large the differences in the modeled responses

could be and found that the zonal winds could be overestimated by a factor of two.

However, their results were obtained in Cartesian geometry on a much coarser grid,

which makes a comparison of their results to the results of this thesis problematic.

Despite all of these issues in the simulation of zonal winds during disturbed condi-

tions, observations of high localized transonic zonal winds in the dawn sector of the

polar cap region have been obtained by the Wind And Temperature Spectrometer

(WATS) on the DE-2 satellite [Balthazor and Bailey, 2006], with most of these ob-



118

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

fo
rc

e 
pe

r 
un

it 
m

as
s 

(m
/s2 ) 120 km

−0.60

−0.40

−0.20

0.00

0.20

0.40 180 km

80 75 70 65 60

−0.40

−0.20

0.00

0.20

0.40

0.60

Geographic latitude (degrees)

fo
rc

e 
pe

r 
un

it 
m

as
s 

(m
/s2 ) 240 km

− u dw/dr
 − v/r dw/dθ
ion drag

80 75 70 65 60
−0.80
−0.60
−0.40
−0.20

0.00
0.20
0.40
0.60
0.80

Geographic latitude (degrees)

300 km

Coriolis
metric terms
viscosity

Figure 4.4: Zonal momentum balances in the auroral zone at the 60 minute mark of

the ’reference run’ simulation. The ion drag, meridional advection, vertical advection,

and viscosity terms (the green, red, blue, and black curves respectively) are all playing

a role in the determination of the final wind speeds.
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servations occuring in the 300-600 km region. The simulation results presented in

Figure 4.1 are in fairly good agreement with these observations.

The ’ramp-up’ time of the electric field has very little effect on the evolution

of the zonal winds once the wind speeds exceed 200 m/s (Figure 4.5). The zonal

acceleration time series derived from these wind speed time series (through 2nd order

finite differencing) are presented in Figure 4.6 and show that the maximum zonal

accelerations occur when the electric field has obtained its maximum value. They

also show that there are three stages in the evolution of the zonal acceleration time

series: an initial stage where the zonal acceleration is linear, an intermediate stage

where the zonal acceleration continues to increase at a slower, non-linear rate, and

a final stage, where the zonal acceleration has already reached its maximum value

and is decreasing in an approximately exponential manner. The first two stages in

the zonal acceleration time series are caused by ion-drag and occur before the electric

field has obtained its maximum value; the differences between these two stages are

largely due to the increases in neutral density (Figure 4.7), i.e. the ions are not

able to transfer as much momentum to the neutrals during the second stage as the

enhanced neutral densities do not allow the ions to be accelerated to the velocities

that they were obtaining in the first stage. This means that, for the conditions of

these simulations, the effects of Joule heating (through the increases in density) play

an important role in the evolution of the zonal winds. A more thorough analysis of

this effect will be pursued at a later date.

4.1.2 In the sub-auroral zone

Contour plots of the ’reference run’ zonal winds at 30 minutes, 60 minutes, 90 minutes,

120 minutes, 150 minutes, and 180 minutes are shown in Figure 4.8. The maximum

and minimum values of these contour plots have been set to 40 m/s and -40 m/s

respectively so the zonal winds in the auroral zone do not ‘wash out’ the zonal wind

system that exists outside of the auroral zone.

There are three features to this wind system : winds that radiate outwards from

the auroral region during the first hour of the simulation, a second, slowly propa-
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Figure 4.5: Zonal wind time series at selected altitudes in the centre of the auroral

zone as a function of electric field ’ramp-up’ time. The zonal winds at 180 km (upper

left panel) and 300 km (lower left panel) are not very sensitive to the ’ramp-up’ time

of the electric field as all of the wind speed time series exhibit the same behaviour

once the wind speed exceeds 200 m/s. This can be more clearly seen in the right

panel zonal wind time series, which have all been ’time-lagged’ to coincide with each

other.
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Figure 4.6: Zonal acceleration time series at selected altitudes in the centre of the

auroral zone as a function of electric field ’ramp-up’ time. The zonal accelerations at

180 km (upper left panel) and 300 km (lower left panel) are not very sensitive to the

’ramp-up’ time of the electric field as all of the acceleration time series exhibit the

same behaviour. This can be more clearly seen in the right panel zonal acceleration

time series, which have all been ’time-lagged’ to coincide with each other.
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gating, westwards wind that propagates equatorwards in the final two hours of the

simulation, and a weak “jet” that appears on the equatorial side of auroral zone in

the final hour of the simulation. A quick inspection of the zonal momentum balance

plots indicates that the ion drag and Coriolis terms are the dominant terms out-

side of the auroral zone in the latter part of the simulation (Figures 4.9-4.11), which

suggests that the slowly propagating wind is a geostrophically-balanced flow. This

conclusion is not particularly surprising as the assumption of zonal symmetry does

not allow any zonal pressure gradients to exist in the model. If one were to allow

zonal pressure gradients to exist in the model, one would observe the fore mentioned

slowly propagating wind and superposed wave-like perturbations outside the auroral

zone, substantially altering the geostrophic balance of this flow. The wind system

that radiates outwards during the first hour of the simulation and the weak ’jet’ on

the equatorial side of the auroral zone in the final hour of the simulation are due to

the Coriolis deflection of meridional wind system features that will be discussed more

thoroughly in the next section of this chapter.
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Figure 4.8: Zonal winds outside of the auroral zone for the ’reference run’ simulation.

The wind speeds have been contoured in 1 m/s intervals and are predominantly

westwards outside of the auroral region.
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Figure 4.9: Zonal momentum balances outside of the auroral zone at the 60 minute

mark of the ’reference run’ simulation. The Coriolis terms (the cyan curves) are

slightly larger than the ion drag terms (the green curves) at most altitudes, producing

a small, westwards zonal acceleration that drives the geostrophically balanced flow of

Figure 4.8.
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Figure 4.10: Zonal momentum balances outside of the auroral zone at the 120 minute

mark of the ’reference run’ simulation. The Coriolis terms (the cyan curves) are

slightly larger than the ion drag terms (the green curves) at most altitudes, producing

a small, westwards zonal acceleration that drives the geostrophically balanced flow of

Figure 4.8.
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Figure 4.11: Zonal momentum balances outside of the auroral zone at the 180 minute

mark of the ’reference run’ simulation. The Coriolis terms (the cyan curves) are

slightly larger than the ion drag terms (the green curves) at most altitudes, producing

a small, westwards zonal acceleration that drives the geostrophically balanced flow of

Figure 4.8.
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Figure 4.12: ’Reference run’ meridional winds for the first hour of the simulation.

The wind speeds have been contoured in 5 m/s intervals and reach their maximum

values in the upper thermosphere near the 20 minute mark of the simulation.

4.2 Meridional Winds

Contour plots of the ’reference’ run meridional winds at 10 minutes, 20 minutes,

30 minutes, 40 minutes, 50 minutes, 60 minutes, 75 minutes, 90 minutes, 120 minutes,

and 180 minutes are shown in Figures 4.12-4.13. It should be noted that a positive

(negative) meridional wind corresponds to a southward (northward) wind and that

the meridional winds at 60 minutes appear in both figures.

During the first 20 minutes of the simulation, the meridional winds are being

driven by Joule heating above altitudes of approximately 150 km. This is quite evident
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Figure 4.13: ’Reference run’ meridional winds for the final two hours of the simulation.

The wind speeds have been contoured in 5 m/s intervals and are predominantly

equatorwards during this part of the simulation.
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in the meridional momentum balance plots of Figure 4.14, where the large pressure

gradient terms (the blue curves in Figure 4.14) are driving the meridional winds away

from the centre of the auroral zone, i.e. there is a large positive pressure gradient

on the equatorial side of the auroral zone that is driving the winds equatorwards

and a large negative pressure gradient on the polar side of the auroral zone that is

driving the winds polewards. It should be emphasized that this pressure gradient is

due to changes in thermospheric density; the changes in neutral temperature are only

making a significant contribution to the pressure gradient in the centre of the auroral

zone (Figure 4.15). The ion drag terms (the green curves in Figure 4.14) and the

advection terms (the red curves in Figure 4.14) are opposing this pressure gradient

driven motion, i.e. the ion drag and the advection terms are essentially negative when

the pressure gradient term is positive and vice-versa, while the viscosity term, once

again, is acting as a minor sink of momentum at the higher altitudes (the black curves

in Figure 4.14). The zonal winds also play a role in the auroral region through the

Coriolis and metric terms (the cyan and magenta curves in Figure 4.14 respectively);

these effects are fairly small at the fifteen mark of the simulation but will become

much more important as the zonal wind speeds increase.

At altitudes between 110 km and 130 km, the meridional winds are moving equa-

torwards on both sides of the auroral zone, in contrast to the Joule heating driven

winds at the higher altitudes. This equatorwards motion is due to a large ion drag

acceleration in this region (the green curve in Figure 4.14a), which is a consequence

of the ion-neutral collision frequency allowing the ions to be accelerated in the elec-

tric field direction (the ion-neutral collision frequency keeps the ions ’bound’ to the

neutrals at lower altitudes and allows them to E ×B drift at higher altitudes). The

pressure gradient also has a role to play at these altitudes; it acts as a source of

momentum outside the convection channel and as a sink of momentum inside the

convection channel.

By the 30 minute mark of the simulation, the meridional winds on the equatorial

side of the auroral zone have reached speeds of 150 m/s while the winds on the polar

side of the auroral zone have only been accelerated to speeds of approximately 75
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Figure 4.14: Meridional momentum balances at the 15 minute mark of the ’reference

run’ simulation. The meridional pressure gradients (the blue curves) are the dominant

momentum term above 150 km, causing the meridional winds to radiate away from

the auroral zone. The ion drag term at 120 km (the green curve in the uppermost left

panel) is larger than the pressure gradient at this altitude, creating an equatorwards

wind that flows across the entire auroral zone at this height.
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(panel b); the upper auroral zone is the only exception.
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m/s (Figure 4.12). This asymmetry in the meridional wind speeds of the auroral zone

becomes even more pronounced at the 40 minute mark of the simulation, with the

wind speeds on the polar side of the auroral zone only reaching values of 20 m/s (wave-

like perturbations on the order of 200 m/s can still be found outside of the auroral

zone). Most of this asymmetry can be attributed to the rapidly increasing zonal

wind speeds in the auroral zone; the Coriolis and centrifugal (w2 cot θ/r) terms are

both generating substantial equatorwards accelerations that, when added together,

can almost overcome the pressure gradient term on the polar side of the auroral zone

(Figures 4.16 -4.17). These two terms actually do overcome the Joule heating driven

pressure gradient in the 200-300 km region by the 50 minute mark of the simulation,

with the meridional winds on the polar side of the upper auroral zone now moving

equatorwards (Figure 4.12). The reflection of gravity waves off of the polar boundary

can also be observed at the 60 minute of the simulation, which suggests that the

boundary conditions at the polar boundary can still be improved upon.

The importance of the zonal winds in the evolution of the meridional wind system

can also be demonstrated by setting the Coriolis and centrifugal (w2 cot θ/r) terms

in the meridional momentum equation to zero. A contour plot of the meridional

wind field at the 60 minute mark of such a simulation is presented on the right hand

side of Figure 4.18. The meridional winds on the polar side of auroral zone are now

much stronger as the Coriolis and centrifugal terms are not decelerating the gas now

(an equatorwards acceleration will decelerate the gas if it is moving polewards). The

meridional winds on the equatorial side of the auroral zone, on the other hand, are

now weaker as the Coriolis and centrifugal terms are not being allowed to accelerate

the gas equatorwards.

If the contour values of Figure 4.18 are adjusted to better represent the maximum

and minimum of the wind field, one can see that the magnitudes of the meridional

winds are much more symmetrical below altitudes of 220 km (Figure 4.19), which

suggests that these winds are primarily being driven by Joule heating. The asymmetry

in the auroral zone above 250 km is still quite pronounced and is due to a large pressure

build-up in the polar region of the model (Figure 4.20). This large pressure build-up
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Figure 4.16: Meridional momentum balances at the 30 minute mark of the ’reference

run’ simulation. The meridional pressure gradients (the blue curves) are the dominant

momentum term outside of the auroral zone. They also play an important role in the

auroral zone, but they are not as effective in this region as the Coriolis (cyan) and

centrifugal (magenta) terms are opposing them.
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Figure 4.17: Meridional momentum balances at the 45 minute mark of the ’reference

run’ simulation. The meridional pressure gradients (the blue curves) are the dominant

momentum term outside of the auroral zone. They also play an important role in the

auroral zone, but they are not as effective in this region as the Coriolis (cyan) and

centrifugal (magenta) terms are opposing them.
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Figure 4.18: Meridional wind speeds at the 60 minute mark of two simulations with

different meridional momentum source terms. The meridional winds produced by the

simulation with the ’modified’ meridional momentum source term are presented in

the right panel and are weaker (stronger) on the equatorial (polar) side of the auroral

zone (see the text for more details about the ’modified’ meridional momentum source

term).
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Figure 4.19: Meridional wind speeds at the 60 minute mark of a simulation with a

’modified’ meridional momentum source term. The meridional wind speeds in this

simulation are much more symmetric about the auroral zone.
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Figure 4.20: Pressure perturbations at the 60 minute mark of the ’reference run’

simulation.
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is caused by the polewards transport of material, which, in the zonal symmetry of

the model, must ‘pile up’ in the polar region. The only way to avoid this pressure

build-up is to replace the coordinate system of the model with one that avoids pole

singularities and/or relaxes the assumption of zonal symmetry, i.e. makes the model

three dimensional so material can be advected over the polar region. Small scale

oscillations in the pressure gradient term are also quite apparent in some of the

meridional momentum balance plots, but these oscillations are most likely numerical

artifacts as the finite difference methods currently being employed in the model cannot

simulate these smaller scale features with any degree of accuracy.

The most identifiable feature in the meridional wind field in the latter parts of

the simulation is the jet that develops on the equatorward side of the auroral zone

(Figure 4.13). This jet dominates the meridional wind system in the 150 km - 250

km altitude interval and, by the end of the simulation, has reached the 30 degree

meridian. The appearance of this jet after the development of large zonal winds in the

convection channel is no coincidence: most of the equatorwards acceleration driving

this jet is being provided by the Coriolis and centrifugal terms. The importance of the

zonal winds in the evolution of this jet can, once again, be demonstrated most easily

by setting the Coriolis and centrifugal terms to zero in the meridional momentum

equation. Contour plots of the meridional wind field at the 90 and 120 minute marks

of such a simulation are presented in Figure 4.21.

The effects of Joule heating at the lower altitudes is quite obvious and no jet

has formed in the lower auroral zone, as expected (see previous paragraph). This

explanation of the meridional jet contradicts the explanation of Fuller-Rowell [1985],

who proposed that

... the lower thermosphere meridional jet on the equatorward side peaking

at 135 km appears to be ’fed’ by a weaker jet at 115 km on the poleward

side. The altitude, and hence mass density difference, of the layers ex-

plains the velocity differences on the poleward and equatorward sides;

i.e., mass continuity can be satisfied by a smaller wind velocity on the
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Figure 4.21: Meridional winds at the 90 and 120 minute marks of the simulation with

the modified meridional momentum source term.
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poleward side due to the higher density at the lower altitude.

and Chang and St.-Maurice [1991], who state that the ’jet’ is

... a remnant of the circulation pattern induced by Joule heating during

the simulation.

The asymmetry about the convection channel at higher altitudes also becomes more

pronounced when the Coriolis and centrifugal terms are set to zero in the merid-

ional momentum equation; the lack of an equatorwards acceleration allows a larger

pressure build-up to occur in the polar regions, which in turn, generates stronger

equatorwards winds. It should now be quite obvious that the Coriolis and centrifugal

terms are playing a pivotal role in the dynamics of the meridional wind field when

large zonal winds are present and should not be neglected in any high resolution simu-

lations that involve large zonal wind speeds, i.e., any high resolution simulations that

employ Cartesian or cylindrical coordinates should incorporate a centrifugal effect

into the source term of the meridional momentum equation. Even more insight into

the evolution of the meridional and zonal wind fields could be obtained by decompos-

ing the wind fields into rotational and divergent components, but such an undertaking

is beyond the scope of this thesis.

The meridional jet and the equatorwards winds at 110 km also make the merid-

ional winds in the lower thermosphere quite variable; vertical profiles of the meridional

winds at 69.7◦ and 70.3◦ latitude are plotted in Figure 4.22 and exhibit significant

differences above 130 km. The wind shears on the poleward side of the auroral zone

are especially large, but such wind shears are not that uncommon in the lower ther-

mosphere (Larsen [2002] and references therein). While it is tempting to compare

the wind shears obtained in these runs with actual observations, the omission of the

background winds in this simulation severely limits its ability to reproduce such ob-

servations; Fuller-Rowell [1985], Brinkmann et al. [1992], and Parish et al. [2003]

have all demonstrated the importance of the background winds in the evolution of

the lower thermosphere wind system during disturbed conditions.



142

−150 −100 −50 0 50 100

100

150

200

250

300

350

400

450

Wind speed (m/s)

A
lti

tu
de

 (
km

)

a)

15 minutes
30 minutes

−50 0 50 100 150 200
Wind speed (m/s)

b)

45 minutes
60 minutes

Figure 4.22: Meridional winds in the auroral zone at selected times of the ’reference

run’ simulation. The wind shears on the poleward side of the auroral zone at 70.3oN

(panel a) are much stronger than the wind shears on the equatorial side of the auroral

zone at 69.7oN (panel b).
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The ’ramp-up’ time of the electric field has a very significant impact on the merid-

ional wind speeds (Figure 4.23), with the quicker ’ramp-up’ times generating substan-

tially larger wind speeds in the early parts of the simulation. The different ’ramp-up’

times also excited waves of different frequencies in the lower thermosphere as the

meridional acceleration time series derived from the meridional wind time series at

180 km could not be ’time-lagged’ to coincide with each other. The waves being

generated at 300 km were essentially monochromatic, allowing the meridional accel-

eration time series to be aligned (not shown). When the meridional accelerations at

300 km were plotted with the neutral densities at 300 km, they exhibited the same 3

stage behaviour exhibited by the zonal acceleration time series: an initial stage where

the meridional acceleration increased quadratically, an intermediate stage where the

meridional acceleration continued to increase at a slower, non-linear rate, and a fi-

nal stage, where the meridional acceleration has already reached its maximum value

and is decreasing (not shown). The transition between the first and second stages of

the meridional acceleration coincided with the neutral density increase, so the same

arguments made in the zonal wind section can be applied to this situation.
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Figure 4.23: Meridional wind time series at selected altitudes in the auroral zone as
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panel) and 300 km (left panel) are quite sensitive to the ’ramp-up’ time of the electric

field; the maximum wind speeds at 180 and 300 km can vary by 25 and 100 m/s

during the initial acceleration phase.
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4.3 Vertical winds

4.3.1 In the auroral zone

Contour plots of the ’reference’ run vertical winds at 10 minutes, 20 minutes, 30

minutes, 40 minutes, 50 minutes, and 60 minutes are presented in Figure 4.24. The

most obvious feature of these contour plots is that the vertical winds reach their

maximum values very early in the simulation. To highlight this rapid acceleration

of the vertical winds, time series of the vertical wind speeds at altitudes of 120 km,

180 km, 240 km, and 300 km at 70oN have been plotted in Figure 4.25. There are

essentially two components to these time series: a ’DC’ component that follows the

evolution of the electric field in this simulation which eventually ’levels off’ at the

1000 second mark of the simulation, and an oscillating component in the latter part

of the time series that can be attributed to waves in the simulation.

This rapid acceleration of the vertical winds in the first 20 minutes of the sim-

ulation is, not surprisingly, due to Joule heating. This can be clearly seen in the

vertical momentum balance plots of Figure 4.26, where the vertical pressure gradient

term exceeds the gravitational field strength (the black curves) at all of the heights

presented. It should also be noted that there are other sources of vertical momentum

in the auroral zone: the meridional advection term, − v
r
(∂u
∂θ
), is a source of momen-

tum at the higher altitudes (the red curves) while the Coriolis force (the cyan curves)

and the w2/r ’metric’ term (the magenta curves) are making minor contributions at

all of the heights being presented. Ion drag (the green curves), viscosity (the yellow

curves), and vertical advection (the blue curves) are all sinks of vertical momentum,

with ion drag being the most important at lower altitudes and viscosity becoming

important at higher altitudes.

The dominance of the Joule heating driven pressure gradients in the first 20 min-

utes of the simulation persists throughout the simulation in the lower regions of the

auroral zone (Figures 4.27-4.28). The ion drag (green) term also remains the principal

sink of momentum at these altitudes, with the meridional advection (red), vertical

advection (blue) and Coriolis (cyan) terms making minor contributions to the overall
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Figure 4.24: ’Reference run’ vertical winds for the first hour of the simulation. The

wind speeds have been contoured in 5 m/s intervals and reach their maximum values

around the 20 minute mark of the simulation. The downwards (negative) component

of the vertical wind speed field has been set to zero to enhance the legibility of the

plot.
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Figure 4.25: Vertical wind time series at 70oN for selected altitudes.

balance. It should be emphasized that an essentially steady state balance is achieved

in this region by the 30 minute mark of the simulation, resulting in a persistent posi-

tive (radially upwards) acceleration of 0.015 m/s2. The evolution of the vertical wind

field at higher altitudes is not as easy to interpret as the pressure gradient term can-

not be used as a proxy for Joule heating as the pressure gradient is not greater than

the gravitational field strength at these heights. The Coriolis, meridional advection

and w2/r terms are opposing the pressure gradient-gravitational field differences at

the higher altitudes (Figures 4.27-4.28).

The vertical wind speeds are also very sensitive to the effects of the electric field

’turn-on’ time (Figure 4.29). Vertical wind speeds in excess of 100m/s have been

observed by ground-based Fabry-Perot interferometers (FPIs) at high latitudes since

the early 1980s [Rees et al., 1984; Sica et al., 1986; Conde and Smith, 1995; Smith

and Hernandez, 1995; Price et al., 1995; Innis et al., 1996, 1997; Ishii et al., 2001],

so the results being presented here are not unreasonable. It should be re-emphasized

that the 1 minute ’ramp-up’ time results may not be the most physically realistic -
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Figure 4.26: Vertical momentum balances in the auroral zone at the 15 minute mark

of the ’reference run’ simulation. The vertical pressure gradient terms (the black

curves) are the dominant acceleration mechanism at the 15 minute mark of the sim-

ulation, with the meridional advection terms (the red curves) making making minor

contributions at most heights.
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Figure 4.27: Vertical momentum balances in the auroral zone at the 30 minute mark of

the ’reference run’ simulation. The vertical pressure gradient terms (the black curves)

are the dominant acceleration mechanism at the minute mark of the simulation, with

the meridional advection terms (the red curves) making making minor contributions

at most heights.
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Figure 4.28: Vertical momentum balances in the auroral zone at the 60 minute mark of

the ’reference run’ simulation. The vertical pressure gradient terms (the black curves)

are the dominant acceleration mechanism at the minute mark of the simulation, with

the meridional advection terms (the red curves) making making minor contributions

at most heights.
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Figure 4.29: Vertical wind time series at selected altitudes in the auroral zone as a

function of electric field ’ramp-up’ time. The vertical winds at 180 km (right panel)

and 300 km (left panel) are quite sensitive to the ’ramp-up’ time of the electric field;

the maximum wind speeds at 180 and 300 km can vary by 50 and 200 m/s during

the initial acceleration phase.

they are being presented to see how quickly the thermosphere can respond to large

energy inputs.

4.3.2 In the sub-auroral zone

Contour plots of the ’reference run’ vertical winds at 30 minutes, 60 minutes, 90

minutes, 120 minutes, 150 minutes, and 180 minutes are presented in Figure 4.30 and

clearly show the propagation of waves away from the auroral region. The generation

and propagation of gravity waves in the auroral regions of the thermosphere is an

active area of research, but time limitations have not allowed this topic to be explored
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Figure 4.30: Vertical winds outside of the auroral zone for the ’reference run’ simula-

tion. The wind speeds have been contoured in 0.2 m/s intervals and clearly illustrate

that waves are propagating away from the auroral region.

in any detail.

4.4 Density and Composition Changes

Contour plots of the ’reference’ run density perturbations at 10 minutes, 20 minutes,

30 minutes, 40 minutes, 50 minutes, 60 minutes, 75 minutes, 90 minutes, 120 minutes,

150 minutes, and 180 minutes are presented in Figures 4.31-4.32 (the density pertur-

bation is defined as the percentage change in neutral density). Associated changes in

the composition fractions of atomic oxygen, molecular oxygen and molecular nitrogen
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Figure 4.31: Density perturbations for the first hour of the ’reference run’ simulation.

The density perturbations have been contoured in intervals of 1% and reach their

maximum values at the upper boundary of the auroral zone.

are plotted in Figures 4.33-4.34, 4.35-4.36, and 4.37-4.38 respectively.

During the first 20 minutes of the ’reference run’ simulation there is a significant

increase in neutral densities above 150 km in the auroral zone (Figure 4.31). This

rapid increase in the neutral densities ’mirrors’ the increase in the strength of the

electric field, which strongly suggests that these neutral density increases are due to

the effects of Joule heating. An examination of the continuity balances at 180 km

and 300 km confirms this, with the velocity divergence terms almost balancing the

vertical advection term (the velocity divergence terms represent the expansion of the

neutral gas due to Joule heating - see Figure 24 in Chang and St.-Maurice [1991]).
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Figure 4.32: Density perturbations for the final two hours of the ’reference run’

simulation. The density perturbations have been contoured in intervals of 1%.
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This upwelling in the auroral region can also be seen in the composition fractions of

the various species, with the atomic oxygen composition fractions decreasing in the

auroral region and the molecular oxygen and nitrogen composition fractions increasing

in the auroral region (Figures 4.33,4.35, and 4.37 respectively). At altitudes between

110 km and 130 km, one observes a density depletion on the poleward side of the

convection channel. This depletion was also obtained in the model runs of Chang

and St.-Maurice [1991] and is due to the meridional wind ’jet’ at these altitudes

(see section 4.3) transporting the neutral gas into the auroral region where it is

then transported upwards. The LOGACS accelerometer observed a similar density

depletion during a strong geomagnetic storm in May 1967 (Figure 1.12), providing

some evidence that this phenomenon is real.

As the simulation progresses, the density depletion on the polar side of the au-

roral zone continues to grow. The neutral densities outside of the auroral region

also continue to increase, with wave-like perturbations ’superimposed’ on the slowly

propagating enhancement. The large density enhancement near the polar boundary

should be ignored as this feature is due to the assumption of zonal symmetry in the

model (see the meridional wind section). The composition fractions in the auroral

zone continue to exhibit signs of upwelling during this period, with the atomic oxy-

gen and molecular nitrogen composition fractions becoming approximately equal at

400 km 60 minutes into the simulation. Wave-like perturbations can also be observed

in the composition fractions outside of the auroral zone, with the ‘lead’ wave packet

generating substantial mixing and overturning as it propagates. A composition frac-

tion ’tongue’ follows this lead wave packet, with the composition fractions in the

’tongue’ being approximately equal to the composition fractions in the auroral zone

at those altitudes. A second much broader and slower moving enhancement/depletion

can also be seen in the composition fractions around the auroral zone; this enhance-

ment/depletion in the composition fractions is being driven by the large meridional

winds that now exist on the equatorward side of the auroral region. It should also

be noted that the changing composition fractions do not affect the neutral densities

at the present time as the MacCormack scheme currently being used is not positive
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Figure 4.33: Atomic oxygen composition fractions for the first hour of the ’reference

run’ simulation.

definite for the entire simulation, i.e. negative composition fractions occur in localized

regions near the end of the simulation.

The development of the meridional wind jet on the equatorial side of the auroral

zone in the latter part of the ’reference run’ simulation accelerates the changes that

are already occurring in the density field and composition fractions. The composition

fraction ’tongue’ is affected most, with the ’tongue’ eventually being accelerated to

the front of the ’lead’ wave packet.

The number density ratios of N2 (blue), O2 (red), O (green) and O+2O2 (black)

have been plotted as a function of latitude at the 90 minute mark of the ’reference

run’ simulation in Figure 4.42. The number densities of N2 are 6.5 times greater in
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Figure 4.34: Atomic oxygen composition fractions for the final two hours of the

’reference run’ simulation.
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Figure 4.35: Molecular oxygen composition fractions for the first hour of the ’reference

run’ simulation.
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Figure 4.36: Molecular oxygen composition fractions for the final two hours of the

’reference run’ simulation.
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Figure 4.37: Molecular nitrogen composition fractions for the first hour of the ’refer-

ence run’ simulation.
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Figure 4.38: Molecular nitrogen composition fractions for the final two hours of the

’reference run’ simulation.
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Figure 4.39: N2/O and N2/(O + 2O2) ratios during the first ninety minutes of the

’reference run’ simulation. The ratios of N2/O (left panels) and N2/(O+ 2O2) (right

panels) with respect to their quiet-time values have been plotted at the 30 minute

(top panels), 60 minute (middle panels), and 90 minute (bottom panels) marks of the

simulation. There are no appreciable differences between these two ratios at the 30

minute mark of the simulation. By the 90 minute mark of the simulation, the N2/O

ratios are significantly larger than the N2/(O + 2O2) ratios in the auroral zone and

in the composition ’tongue’.
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Figure 4.40: N2/O and N2/(O + 2O2) ratios during the third hour of the ’reference

run’ simulation. The ratios of N2/O (left panels) and N2/(O + 2O2) (right panels)

with respect to their quiet-time values have been plotted at the 120 minute (top

panels), 150 minute (middle panels), and 180 minute (bottom panels) marks of the

simulation. The N2/O ratios are much larger than the N2/(O + 2O2) ratios in the

auroral zone and in the composition ’tongue’.
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Figure 4.41: N2/O and N2/(O + 2O2) ratios at 280 km in the ’reference run’ sim-

ulation. The ratios of N2/O (blue) and N2/(O + 2O2) (red) with respect to their

quiet-time values are plotted at the 30 minute (star), 60 minute (dash-dot), 90 minute

(dashed), and 120 minute (solid) marks of the simulation. The N2/O ratios are much

larger than the N2/(O + 2O2) ratios in the second hour of the simulation.
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Figure 4.42: Composition ratios at 280 km for the ’reference run’ simulation. The

ratios of N2 (blue), O2 (red), O (green) and O + 2O2 (black) have been plotted as

a function of latitude at the 90 minute mark of the simulation. The O + 2O2 ratios

are much larger than the atomic oxygen ratios in the region of heating as significant

amounts of molecular oxygen have been transported upwards.
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the region of heating and exhibit a steep latitudinal gradient, in good agreement with

ESRO-4 observations of the geomagnetic storm on October 29, 1973 (Figure 1.18).

The simulated O + 2O2 ratios are also consistent with the observed ESRO-4 atomic

oxygen ratios for October 29, 1973, which is not surprising if one remembers that

ESRO-4 was a closed source mass spectrometer. The ability of these simulations

to separate the O + 2O2 ratio into atomic and molecular oxygen shows that the

concentrations of molecular oxygen are not negligible at high latitudes during strongly

disturbed conditions; the molecular oxygen number densities are 25 times greater in

the region of heating while the atomic oxygen concentrations are actually one-seventh

of their quiet-time values. GUVI measurements have also shown that significant

atomic oxygen depletions/molecular nitrogen enhancements can propagate to lower

latitudes (Figure 1.22), providing additional support that the composition change

mechanism being presented can occur.

This apparent overestimation of atomic oxygen number densities by ESRO-4

means that the N2/O ratios inferred from ESRO-4 could also be in error. Plots

of the N2/(O + 2O2) ratio at 280 km at the 30, 60, 90, and 120 minute marks of the

simulation are presented in Figure 4.43 and approach a value of 15, in good agreement

with ESRO-4 observations on October 29, 1973 [Prölss, 1980]. The actual N2/O ra-

tios may be much higher, with values of 45-55 being more realistic if the majority of

the molecular oxygen being detected by ESRO-4 at these altitudes is due to vertical

transport.

While the amounts of molecular nitrogen and oxygen transported upwards are

sensitive to the heating rates, the fact that significant amounts of molecular oxygen

can be transported upwards with molecular nitrogen suggests that high latitude mass

spectrometer measurements may need to be reexamined in light of these new results.

Localized enhancements of molecular nitrogen are routinely observed in the polar cap

region at all levels of geomagnetic activity [Hedin and Reber, 1972; Reber and Hedin,

1974; Taeusch and Hinton, 1975; Laux and von Zahn, 1979] and, if they are accom-

panied by enhancements in molecular oxygen, then mass spectrometer observations

of atomic oxygen in this region may be in significant error. The retrieval of atomic
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hydrogen densities from mass spectrometer measurements at high latitudes may also

be in error as the number densities of atomic hydrogen are normally derived from

atomic oxygen measurements (see Sanatani et al. [1995] and references therein for

more details).
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Chapter 5

Summary, Conclusions and Future Work

5.1 Summary and Conclusions

Several upgrades were incorporated into the model of Chang and St.-Maurice [1991].

The ’stretched grid’ and improved upper boundary conditions enhanced the numer-

ical stability of the model. The new ’UV/EUV heating’ profile and CO2 cooling

parameterization allowed the initial conditions to be much more representative of

a geomagnetically quiet thermosphere. The improved ion composition and altitude

dependent B also improved the ’reality’ of the simulations at higher altitudes.

While all of these upgrades improved the reality and robustness of the simula-

tions, they did little to advance our state of knowledge about the disturbed thermo-

sphere. The relaxation of the mean molecular mass gas assumption in the model,

in conjunction with its nonhydrostatic formulation, showed that significant amounts

of molecular nitrogen and oxygen could be transported upwards during geomagnetic

disturbances. This transport of molecular oxygen to higher altitudes during geomag-

netic disturbances had already been noted by several authors, but this thesis showed

that the amounts of molecular oxygen being transported upwards could have a signif-

icant impact on the interpretation of mass spectrometer measurements during these

conditions, i.e. a simulated total oxygen depletion of 50% at 280 km could mean that

the atomic oxygen number densities at 280 km are actually one-seventh of their nor-

mal values while the simulated molecular oxygen concentrations are 25 times larger

than normal. It was also shown that the neutral atmosphere can respond very quickly

to large energy inputs; the simulated vertical and meridional wind speeds were very

sensitive to how quickly the energy was deposited into the thermosphere.
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5.2 Future Work

The composition changes generated in the model runs presented are very dependent

upon the vertical winds in the auroral region. More model runs with variations in

the strength, location, width and duration of E will provide some insight into the

generation of the vertical winds, but a more realistic coupling of the thermosphere-

ionosphere system will be necessary to capture the physics of this process correctly,

i.e. heating due to particle precipitation and a self-consistent odd nitrogen chemistry

scheme. The generation of localized negative composition fractions in the model

should also be eliminated; this will most likely require the implementation of a more

sophisticated transport scheme and/or stretched latitudinal grid.

The presence of wave-like perturbations in most of the dynamical fields of the

model has been noted but not explored in any detail in this thesis. A closer examina-

tion of these perturbations should be undertaken and the results compared to available

linear/nonlinear theories of acoustic wave / gravity wave generation and propagation.

The decomposition of the dynamical fields into a rotational and a divergent should

also provide some insight into the response of the thermosphere-ionosphere system.
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from OGO-6 1304 Å airglow measurements, Planet. Space Sci., 24, 313-326, 1976.

[127] Strickland, D. J., R. J. Cox, R. R. Meier, and D. P. Drob, Global O/N2 derived



183

from DE-1 FUV imaging dayglow data: Technique and examples from two storm

periods, J. Geophys. Res., 104, 4251-4266, 1999.

[128] Strobel, D. F., Parameterization of the atmospheric heating rate from 15 to 120

km due to O2 and O3 absorption of solar radiation, J. Geophys. Res., 83, 6225-6230,

1978.

[129] Sun, Z.-P., R. P. Turco, R. L. Walterscheid, S. V. Venkateswaran and P.

W. Jones, Thermospheric response to morningside diffuse aurora: high-resolution

three-dimensional simulations, J. Geophys. Res., 100, 23,779-23,794, 1995.

[130] Taeusch, D. R., G. R. Carignan and C. A. Reber, Neutral composition variations

above 400 kilometers during a magnetic storm, J. Geophys. Res., 76, 8318-8325,

1971.

[131] Tannehill, J. C., D. A. Anderson, and R. H. Pletcher, Computational Fluid

Mechanics and Heat Transfer, 2nd edition, Taylor and Francis, Washington, D. C.,

1997.

[132] Theon, J. S., W. Nordberg, L. B. Katchen, and J. J. Horvath, Some Obser-

vations on the Thermal Behavior of the Mesosphere, J. Atmos. Sci., 24, 428-438,

1967.

[133] Thomas, R. J., Atomic hydrogen and atomic oxygen density in the mesopause

region: Global and seasonal variations deduced from Solar Mesosphere Explorer

near-infrared observations, J. Geophys. Res., 95, 16,457-16,476, 1990.

[134] Thompson, J. F., and C. W. Mastin, Order of difference expressions in curvi-

linear coordinate systems, ASME J. of Fluids Engineering, 107, 241-250, 1985.

[135] Thompson, J. F., Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation

- Foundations and Applications, Elsevier, New York, 1985.

[136] Toffoletto, F. R., and T. W. Hill, Field line mapping and Birkeland Currents, in

Magnetospheric Current Systems, Geophysical Monograph Series, Vol. 118, Shin-



184

ichi Ohtani, Ryoichi Fujii, Michael Hesse and Robert L. Lysak, eds., pp. 71-79,

AGU, Washington, D. C., 2000.

[137] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A

Practical Introduction, Springer, Berlin, 1999.

[138] Trinks, H., and U. von Zahn, The ESRO 4 gas analyzer, Rev. Sci. Instru., 46,

213-217, 1975.

[139] Trinks, H., U. von Zahn, C. A. Barth, and K. K. Kelly, A joint nitric oxide

measurement by rocket-borne ultraviolet photometer and mass spectrometer in

the lower thermosphere, J. Geophys. Res., 83, 203-206, 1978.

[140] Turunen, E., H. Matveinen, J. Tolvanen, and H. Ranta, D-region ion chemistry

model, in Solar-Terrestrial Energy Program : Handbook of Ionospheric Models, R.

W. Schunk, ed., pp. 1-25, SCOSTEP Secretariat, Boulder, Colorado, 1996.

[141] Vinokur, M., Conservation equations of gas dynamics in curvilinear coordinate

systems, J. Comput. Phys., 14, 105-125, 1974.

[142] von Neumann, J., and R. D. Richtmyer, A model for the numerical calculation

of hydrodynamic shocks, J. Appl. Phys., 21, 232-237, 1950.

[143] von Zahn, U., Composition studies in the thermosphere by means of mass spec-

trometers, in Structure and Dynamics of the Upper Atmosphere, Developments in

Atmospheric Science, Vol. 1, F. Verniani, ed., pp. 389-434, Elsevier Scientific, New

York, 1974.

[144] Walterscheid, R. L., and D. G. Brinkman, Spin-up circulation of high-latitude

ion drag-driven gyres, J. Geophys. Res., 108, 1304, doi: 10.1029/2002JA009642,

2003.

[145] Walterscheid, R. L., L. R. Lyons, and K. E. Taylor, The perturbed neutral

circulation in the vicinity of a symmetric stable auroral arc, J. Geophys. Res., 90,

12,235-12,248, 1985.



185

[146] Wolf, R. A., The quasi-static (slow-flow) region of the magnetosphere, in Solar-

terrestrial physics: Principles and theoretical foundations, R. L. Carovillano and J.

M. Forbes, eds., pp. 303-368, D. Reidel, Dordrecht, 1983.

[147] Wolf, R. A., Magnetospheric configuration, in Introduction to Space Physics,

M. G. Kivelson and C. T. Russell, eds., pp. 288-329, Cambridge University Press,

New York, 1995.

[148] World Meteorological Organization, Atmospheric Ozone 1985 : Assessment

of our Understanding of the Processes Controlling its Present Distribution and

Change, Global Ozone Research and Monitoring Project - Report No. 16, Geneva,

Switzerland, 1985.

[149] Yeh, K. C., K. H. Lin, and R. O. Conkright, The global behavior of the March

1989 ionospheric storm, Can. J. Phys., 70, 532-543, 1992.

[150] Zhu, X., An accurate and efficient radiation algorithm for middle atmosphere

models, J. Atmos. Sci., 51, 3593-3614, 1994.

[151] Zuzic, M., L. Scherliess, and G. W. Prölss, Latitudinal structure of thermo-

spheric composition perturbations, J. Atmos. Solar-Terr. Phys., 59, 711-724, 1997.



186

VITA

NAME: Albert T. Russell

PLACE OF BIRTH: Mississauga, Ontario

YEAR OF BIRTH: 1967

POST-SECONDARY

EDUCATION AND

DEGREES:

The University of Western Ontario

London, Ontario

1998 - 2011 (Ph. D. Candidate)

The University of Western Ontario

London, Ontario

1998 M.Sc. (Physics)

University of Waterloo

Waterloo, Ontario

1992 B.Sc. (Honours Physics)

HONOURS AND

AWARDS:

Special University Scholarship

The University of Western Ontario

1995-2002

Award of Excellence in Teaching

Department of Physics and Astronomy

The University of Western Ontario

1996

PUBLICATIONS: Russell, A. T., J.-P. St.-Maurice, R. J. Sica, and J.-M.
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