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Abstract

The principal objective of this study is to investigate how the Kähler geometry of a classical
phase space influences the quantum information aspects of the quantum Hilbert space obtained
from geometric quantization and vice versa. We associated states with subsets of a product
of two integral Kähler manifolds using a quantum line bundle in a particular manner. We
proved that the states associated this way are separable when the subset is a finite union of
products. We presented an asymptotic result for the average entropy over all the pure states on
the Hilbert space H0(M1, L⊗N

1 ) ⊗ H0(M2, L⊗N
2 ), where H0(M j, L⊗N

j ) is the space of holomorphic
sections of the N-th tensor powers of hermitian ample line bundle L j on compact complex
manifolds M j. The coefficients of this asymptotic expression capture certain topological and
geometric properties of the manifold.

In another project related to quantum computing, we constructed an exact synthesis algo-
rithm for quantum gates in the groups U3n(Z[ 1

3 , e
2πi/3]) and U3n(Z[ 1

3 , e
2πi/9]) over the multi-

qutrit Clifford+T gate set with the help of ancilla.

Keywords: Geometric quantization, Kähler manifolds, pre-quantum line bundles, entropy
of entanglement, entanglement of formation, separable quantum states, distillation of quantum
states, qutrits, quantum circuit synthesis
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Summary for Lay Audience

We live in a three-dimensional world where our everyday experiences and physical phenomena
occur in geometric space. To understand these phenomena, physicists and mathematicians cre-
ate mathematical frameworks. For example, Newtonian Mechanics describes how a particle’s
motion relates to the forces acting on it. A key focus in many scientific theories is understand-
ing how changes in one quantity affect others. In this thesis, we explore how changes in a
geometric space relate to concepts from quantum information theory.

The quantum world behaves in strange ways that classical physics can’t explain. For in-
stance, quantum particles can exist in multiple places at once, and particles can become entan-
gled so that a change in one instantly affects the other, even across vast distances.

The location and properties of a quantum particle, or quantum state, are described by ma-
trices, which are arrays of numbers. These matrices help us understand phenomena like en-
tanglement. In our study, we take geometric objects known as Kähler manifolds and associate
quantum states with them. We study properties related to the entanglement of these states
versus the properties of the geometric objects.

In another project of a slightly different flavour, we construct circuits that can be used
for computers that make use of quantum mechanics. The classical computers (the common
computers that we see every day) use gates that manipulate the bits (0s and 1s) to execute an
algorithm. However, the set of gates is very big. So, we select a small number of convenient
gates that can be used (in a circuit) to generate any desirable gate. The quantum version of
this process is even more complicated owing to the set of gates being infinite. To this end, we
contributed by adding one more algorithm to tackle this process.
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Chapter 1

Introduction

The work presented in this thesis is in the broad area of Differential Geometry and Quantum
Information Theory. Broadly, the work here can be split into two sets of projects. The first
set of projects deals with the interplay between manifolds and quantum information theory.
The study of the interplay between geometric structures and analytic objects arising from these
structures emerges in many different ways in mathematics. Geometric quantization, due to the
work of Kostant, Souriau and Kirillov [Sou67; Kos70], is a general mathematical framework
for defining a quantum theory (modelled using a Hilbert space) corresponding to a given clas-
sical theory (modelled using a symplectic manifold). This provides a framework to investigate
various quantum information-theoretic aspects of this Hilbert space and possible relationships
with the corresponding manifolds.

The second set of projects is purely in the area of quantum information theory and quantum
computing. In one of our ongoing projects, we study the problem of distillability of NPT (non-
positive partial transposition) states. This problem concerns where NPT states can be distilled
into maximally entangled states [HRŽ20]. Loosely, the concept of distillation of a quantum
state relates to the capacity to extract useful entanglement present in the state from a large
number of copies of the state.

The other project in the area of quantum information theory concerns the synthesis of quan-
tum circuits. Similar to the circuit model of computation in the classical realm, we have a
circuit model of computation in the quantum realm as well. The gates in quantum computa-
tions are unitary operators on a suitable quantum Hilbert space and so the set of quantum gates
is of infinite cardinality. For a practical quantum computer, we should be able to at least ap-
proximately decompose all gates in terms of some finite amount of special gates. To this end,
the idea is to first choose an appropriate dense group inside the group of all unitaries (called
approximate synthesis) and then try to decompose elements of the dense group exactly into a
word in a finite set of unitaries (called exact synthesis).

This thesis contains 5 chapters in total. Chapter 1 is an introductory chapter briefly outlin-
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2 Chapter 1. Introduction

ing the different projects carried out towards this thesis and outlining the organization of the
thesis.

Chapter 2 is mostly an introductory chapter to quantum information theory and serves the
purposes of fixing notations and developing various basic concepts in the area. This chapter
is included in this thesis to make it more self-contained. One may refer to the books [NC10]
and [BZ06] for a more comprehensive and detailed treatment of the subject. In Section 2.1, we
introduce the basic briefly introduce the basics of quantum information theory. In Section 2.2,
we briefly summarize the famous Dirac Bra-ket notations that are commonly used in quantum
mechanics. Section 2.3 provides the necessary basic definitions related to pure and mixed
quantum states and the geometry of quantum states.

In Section 2.4, we provide the mathematical formalism related to entanglement, when there
are only two particles involved. Entanglement is a fascinating phenomenon in quantum physics
where the interactions between two or more particles become intertwined in such a manner
that the state of one particle is intricately connected to the states of the other particles involved.
The state space of a closed quantum system is modelled using a Hilbert space H , known as
the quantum Hilbert space. The quantum Hilbert space for a system involving two particles is
the tensor product HA ⊗ HB of two quantum Hilbert spaces HA and HB, one for each of the
particles. The amount of correlation between the particles involved in entanglement can vary
depending on the shared state of particles. This leads to quantifying the amount of entangle-
ment. Various measures quantify the extent of entanglement and they are used for the needed
purposes. One of the most famous quantities to measure this, for pure states, is the entropy of
entanglement.

The concept of entropy of entanglement serves as a valuable tool not only for quantifying
the degree of entanglement within a system but also for distinguishing between two key cate-
gories of states: separable states (those lacking entanglement) and maximally entangled states.
The value of entropy of entanglement is in the range from 0 to ln d, where d represents the
smaller dimension of the two Hilbert spaces involved. At the lower end, an entropy of 0 indi-
cates a separable state, while at the upper limit, an entropy of ln d signifies a state of maximal
entanglement, where the particles’ quantum states are fully intertwined.

The entanglement of formation extends the concept of entropy of entanglement to mixed
states. Mixed states are represented as convex combinations of pure states, inspiring the defini-
tion of entanglement of formation. However, because the convex decomposition isn’t unique,
the definition incorporates an infimum to make it well-defined. In Section 2.4.2, inspired by
the convex roof construction in [Uhl10], we provide proof that this infimum is indeed a mini-
mum. Similar to the entropy of entanglement, entanglement of formation ranges from 0 to ln d,
distinguishing between separable states and maximally entangled states. However, due to the
inclusion of the minimum in its definition, this quantity is harder to compute.
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In fact, for mixed states, even the task of determining whether a state is entangled or not
is also not easy. There are various criteria to test the separability of mixed states, one of the
simplest being the Peres-Horodecki criterion (detailed in Section 2.5.1). The Peres-Horodecki
criterion provides a sufficient condition for a state to be entangled using the “non-positivity”
of the partial transpose of a state. It also serves as a necessary condition for entanglement in
quantum systems of dimensions 2 ⊗ 2 and 2 ⊗ 3 (or 3 ⊗ 2), but fails to become a necessary
condition in higher dimensions.

In Section 2.5, an ongoing project related to the distillability of quantum states is intro-
duced. The main result in this section is Theorem 2.5.18. In this result, we constructed a
family of non-distillable states based on the operator Schmidt rank. In a broad sense, the dis-
tillability of a quantum state means the capacity to extract a maximally entangled state from
a substantial number of copies of that state using local operations and classical communica-
tions (LOCC), as detailed in Section 2.5.2. Over the years, physicists and mathematicians have
made several advances and come up with some partial results based on different criteria such
as rank, operator Schmidt rank, matrix rank of the states etc. Yet, a complete solution to this
problem seems hard. There is also an equivalent formulation of this problem in the language
of C∗-algebras [DiV+00; Cla05].

Chapter 3 serves as an introductory chapter providing background in Complex Differential
Geometry and doesn’t present any new results. It covers definitions and establishes notations
related to symplectic manifolds, Kähler manifolds, and hermitian line bundles.

Chapter 4 contains many new results in this thesis, which deals with the first set of projects
that we mentioned earlier. We briefly introduce the concept of quantization in Section 4.1.
Briefly, a symplectic manifold (M, ω) is said to be pre-quantizable if there exists a hermitian
line bundle L→ M satisfying certain conditions. Once we have a pre-quantizable line bundle,
there are various different versions of geometric quantization based on the choice of polariza-
tion. For Kähler manifold, there is a standard method of geometric quantization that yields
H0(M, L), the space of holomorphic sections of the line bundle L → M, as the corresponding
Hilbert space.

For j ∈ {1, 2}, let M j be a compact Kähler manifold and L j → M j be a pre-quantum line
bundle. Then for each N ∈ N, the line bundle LN

1 ⊠ LN
2 → M1 × M2 becomes a pre-quantum

line bundle, leading to the quantum Hilbert space H0(M1 × M2, LN
1 ⊠ LN

2 ). For large N, this
space is isomorphic to the tensor product H0(M1, LN

1 ) ⊗ H0(M2, LN
2 ) of two quantum Hilbert

spaces and so we have a framework to talk about entanglement. For notational convenience,
we denote HA = H0(M1, LN

1 ) and HB = H0(M2, LN
2 ). Within this framework, various quantum

information theoretic aspects arising from entanglement can be explored. The work presented
in Sections 4.2, 4.3 and 4.4 deal with these quantum Hilbert spaces.

The study of asymptotics plays an important role in many areas of mathematics. Asymp-
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totics coming from tensor powers of line bundles provide many interesting results and invari-
ants. For instance, the coefficients of the asymptotic expansion of the Bergman kernel encode
certain geometric information about the manifold and the line bundle [MM00]. In [BPU95],
the authors associated a sequence of quantum states ρN with Lagrangian submanifold Λ and
showed that certain local geometric properties of the Λ are captured by the asymptotic proper-
ties of ρN .

A natural question is to compute the average entropy of entanglement over the set of all
pure states in the quantum Hilbert space H0(M1, LN

1 ) ⊗ H0(M2, LN
2 ) and see the parameters

on which the asymptotic expression depends. This motivated us for the contents of Section
4.2. It contains the work of the paper [BSaikia24]. The proof of this result is based on an
expression for the expected value of the entropy of entanglement for a tensor product of two
finite-dimensional Hilbert spaces and an asymptotic Hirzebruch–Riemann–Roch Theorem for
ample line bundles. The contributions of Section 4.2 are summarized in Theorems 4.2.1, 4.2.4
and 4.2.6.

Section 4.3 contains the work of the paper [BSaikia23]. The theme of the section centers
on the exploration of the interplay between geometry and analysis. We aim to associate an
analytic construct, derived from the Hilbert space H0(M1, LN

1 ) ⊗ H0(M2, LN
2 ) using concepts

from quantum information theory, such as entanglement entropy, negativity, or entanglement
of formation, with a subset of M (denoted Λ). As a guiding example, we focus on M = CP1

equipped with the Fubini-Study metric, where L represents the hyperplane bundle, and Λ = S 1

embedded antidiagonally as specified in Theorem 4.3.1. The theorem serves as an initial step,
laying the groundwork for generalizing this statement to other M and Λ.

Section 4.4 contains the work of the paper [Saikia24]. In this section, we associate quantum
states with subsets of a product of two compact connected Kähler manifolds M1 and M2 having
pre-quantum line bundles. To associate the quantum state with the subset Λ of M1 × M2, we
use the map RΛ that restricts holomorphic sections of the quantum line bundle over the product
of the two Kähler manifolds to the subset (see Equation 4.33). At first, in Proposition 4.4.3,
we present a description of the kernel of RΛ when Λ = Λ1 × Λ2 and one of Λ1 or Λ2 is a
singleton set. This is, then, extended to any product subset Λ (see Proposition 4.4.6). With the
help of these propositions, we present a description of the kernel of this restriction map when
the subset is a finite union of products. This in turn shows that the quantum states associated
with the finite union of products are separable. Finally, for every pure state and certain mixed
state, we construct subsets of M1 ×M2 such that the states associated with these subsets are the
original states, to begin with. The contributions of this section are summarized in Theorems
4.4.7, 4.4.10 and 4.4.11 and Corollary 4.4.9.

Chapter 5 contains the work of the paper [KSaikia+]. Similar to classical computers using
circuits to manipulate the basic units of classical computations known as bits, quantum com-
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puters use quantum circuits to manipulate the basic units of quantum computation known as
qudits. The counterpart of classical Boolean gates in quantum computing is quantum gates.
Quantum gates are unitary operators on the quantum Hilbert space (Cd)⊗n of a system of n-
qudits. The group Udn(C) of quantum gates is infinite, but for a practical quantum computer,
we can make an architecture that can implement only implement finitely many quantum gates.
The next best thing would be to find a finite set that can generate a group which is dense in
Udn(C). The process of choosing such a finite set (known as a universal gate set) and de-
composing a unitary as a word in this finite set is roughly what we mean by quantum circuit
synthesis. In this chapter, we present two algorithms to make circuits corresponding to uni-
taries with elements in two different important number rings over the multi-qutrit Clifford+T
gate set.

Section 5.1 is an introductory section to motivate the problem. Generally, the universal
gate set is chosen on the basis of various factors, for instance, the ability to implement them
physically in a fault-tolerant way and cost-effectively. A popular choice of universal gate set is
the Clifford+T gate set. A few other proposed gate sets for the single-qutrit (3-level quantum
system) case are Clifford+R and Clifford+D. Cyclotomic number rings naturally appear for
these gate sets and thus the problem of circuit synthesis involving these gates has an arithmetic
flavour to it.

The exact synthesis algorithm for single-qubit (2-level quantum system) gates inU2(Z[ 1
√

2
, i])

over Clifford+T gate set was first shown in [KMM13] and later extended to the multi-qutrit
case U2n(Z[ 1

√
2
, i]) in [GS13]. For qutrits, there are already a few single-qutrit exact synthesis

algorithms over Clifford+R, Clifford+D and Clifford+T [Boc+16; KVM23; EP24; Gla+22].
In this work, we extend to the multi-qutrit case and present an algorithm to exactly synthesize
unitaries in U3n(Z[ 1

3 , e
2πi/3]) over the multi-qutrit Clifford+T (see Theorem 5.3.1). We fur-

ther use the concept of Catalytic embedding to apply this algorithm to find an exact synthesis
algorithm for unitaries inU3n(Z[1

3 , e
2πi/9]).

We introduce the necessary concepts and fix notations in Section 5.2. We recall the def-
initions of a few important gate sets, some basic facts about the localized ring of cyclotomic
integers Z[ 1

p , ζpl], definition of denominator exponents which plays a crucial role in the chapter.
We also recall briefly the recently introduced concept of Catalytic embedding which plays a
crucial role in the second main result of this chapter.

In Section 5.3, we prove the necessary lemmas and present the exact synthesis algorithm
for unitaries in U3n+1(Z[1

3 , e
2πi/3]) (see Theorem 5.3.1). We follow the basic structure of the

algorithm of [GS13]. The central idea behind the first step of decomposing a unitary in
U3n+1(Z[ 1

3 , e
2πi/3]) hangs on dropping the smallest denominator exponent of a unit vector it-

eratively using appropriate 3-level unitaries (defined in Subsection 5.3.1) and converting the
initial unit vector to one of the standard column vectors | j⟩. In Subsection 5.3.2, we decom-
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pose these 3-level unitaries to controlled gates. We introduce the concept of extending the
Gray code construction ([NC10, Section 4.5.2]) to the qutrit case. The final step is to im-
plement these controlled gates over multi-qutrit Clifford+T using a borrowed ancilla [YW22;
Gla+22].

In Section 5.4, we embed unitaries in U3n(Z[1
3 , e

2πi/9]) inside U3n+1(Z[ 1
3 , e

2πi/3]) using Cat-
alytic embedding and apply Theorem 5.3.1 to prove Theorem 5.4.1. This result is a complete
analogue of the main result of [GS13]. The contributions of this chapter are summarized in
Theorems 5.3.1, 5.4.1 and Lemma 5.3.13.



Chapter 2

Quantum Information Theory

2.1 Introduction

Quantum mechanics is a mathematical framework to describe the behaviour of particles on a
small scale and is built upon a few foundational postulates. A partial list of books to learn more
about quantum mechanics and quantum information theory is [NC10; Wil13; BZ06]. Here,
we shall briefly discuss the main three basic postulates of quantum mechanics: state-space,
evolution and measurement postulates.

In quantum mechanics, the state space of a closed quantum system is modelled using a
Hilbert space, called the Quantum Hilbert space H of the system. To describe the state of
a system at any given moment, unit vectors in this Hilbert space are used. This postulate is
also known as State-space postulate. The state space of a composite system is given by the
tensor product of the state space of the individual systems. The evolution of a closed quantum
system is described using a unitary operator acting on the quantum Hilbert space H of the
system. This is known as the evolution postulate. The measurement postulate deals with when
the closed system interacts with the environment. It roughly says that measurable quantities
or observables are described using hermitian operators on H . The state |ψ⟩ being measured
collapses to one of the eigenvectors of the hermitian operator with a probability that depends
on |ψ⟩ and the particular eigenvector.

Quantum Information Theory is a branch of quantum mechanics that deals with how in-
formation can be processed and communicated using quantum systems. Among various other
things, the theory of entanglement is a major topic that it covers. In this thesis, especially in the
contents of Chapter 4, we focus our interests on the analytic tools coming from entanglement.
Section 2.4 introduces two of the most famous measures of entanglement, namely the entropy
of entanglement and the entanglement of formation. Section 2.5 introduces another concept
in quantum information known as distillation. Distillation roughly means the ability to extract
entanglement from a quantum state. The main result of this chapter is Theorem 2.5.18.

7
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2.2 Dirac Bra-ket Notations

Dirac bra-ket notation is a powerful, concise and flexible notation used in quantum mechanics
to represent quantum states, operators etc. It elegantly combines vectors and dual vectors into
a framework, simplifying many complex computations. Throughout this thesis, we shall use
Dirac bra-ket notations wherever it seems appropriate and easy.

LetH be a Hilbert space. Then a vector inH is denoted by |v⟩, and is called a ket. The inner
product inH is denoted by ⟨·|·⟩ : H×H → Cwhich is linear in the second coordinate and anti-
linear in the first coordinate (the opposite of the convention in the area of Pure mathematics).
For |v⟩ ∈ H , define the bounded linear functional f : H → C given by

f (|u⟩) = ⟨v|u⟩ .

Then the bounded linear functional f is denoted by ⟨v|, and called a bra. This way ⟨v| is dual
to |v⟩.

For |v⟩ , |u⟩ ∈ H , we have T : H → H given by

T (|w⟩) = (⟨u|w⟩) |v⟩ = |v⟩ ⟨u|w⟩ .

Then the linear operator T is denoted by |v⟩ ⟨u|. In particular, when |v⟩ is a unit vector, the
operator |v⟩ ⟨v| is nothing but the orthogonal projection onto the one-dimensional subspace
spanned by |v⟩. For A ∈ End(H), the action of A on a ket |v⟩ is denoted by A |v⟩. The notation
⟨u| A |v⟩ denotes the number in C that we get after applying the functional ⟨u| on the vector
A |v⟩.

When we have a tensor product H1 ⊗ ... ⊗ Hn of a finite number of Hilbert spaces, then
|v1, ..., vn⟩ or |v1...vn⟩ or |v1⟩ ... |vn⟩ are sometimes used to denote |v1⟩ ⊗ ... ⊗ |vn⟩. Similarly
⟨v1, ..., vn| or ⟨v1...vn| or ⟨v1| ... ⟨vn| are sometimes used to denote ⟨v1| ⊗ ... ⊗ ⟨vn|.

2.3 Quantum States

Suppose H denote a finite-dimensional complex Hilbert space that models a closed quantum
system.

Definition 2.3.1 (Pure state). A unit vector |v⟩ ∈ H is called a pure state.

However, for practical purposes due to various reasons, for instance, quantum decoherence
with the environment, we don’t always get a closed quantum system. When an external system
E is also involved, to describe the state of a quantum particle we need vectors in the closed
system H ⊗ E. But when the information about an external system E is missing from the
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picture, we need a way to describe these states only using H . The unit vectors in H are not
enough to describe these states and we need operators onH . These states are known as mixed
states. By a quantum state (or simply a state), we always mean mixed states, not just pure states
unless explicitly stated. Below, we formally define a quantum state.

Definition 2.3.2 (Quantum state or mixed state). Let H be a complex Hilbert space of finite
dimensions. A quantum state or a mixed state (or simply a state) ρ is a hermitian positive
semidefinite operator in End(H) having trace 1.

Remark 2.3.3 (Pure state). The pure state |v⟩ can be identified to the quantum state |v⟩ ⟨v| (the
orthogonal projection onto the subspace spanned by |v⟩). This way, we can view all pure states
as mixed state as well.

By spectral theorem, we can eigen-decompose a state ρ =
∑

j p j

∣∣∣v j

〉 〈
v j

∣∣∣ where p j ≥ 0

are eigenvalues of ρ and
∣∣∣v j

〉
are eigenvectors of ρ. The unit trace condition on ρ implies that∑

j p j = 1. From the eigen-decomposition, we see that every state can be written as a convex
combination of pure states. Writing a state as a convex combination of pure states is called
an ensemble. Therefore, a mixed state is an ensemble of pure states. Another interpretation
of an ensemble is that a mixed state ρ is a statistical mixture of the pure states

∣∣∣v j

〉 〈
v j

∣∣∣ and

the probability ρ being in the state
∣∣∣v j

〉 〈
v j

∣∣∣ is p j. We need to be careful that, this ensemble
decomposition of a mixed state into the constituent pure states is not unique.

Notation 2.3.4. We denote the set of all pure states on the Hilbert spaceH by Ωp(H) and the
set of all mixed states is by Ω(H).

Remark 2.3.5. Note that if |v⟩ = eiθ |u⟩ for some θ ∈ R, then |v⟩ ⟨v| = |u⟩ ⟨u| and therefore the
pure states |v⟩ and |u⟩ are said to be equivalent states. In other words, quantum mechanics
does not distinguish between the global phase. Therefore, the set of pure states is the set of
equivalence classes of the action of S1 on the set of unit vectors in H . This is topologically
equivalent to the projective space P(H). When H = C2, the set of pure states is the complex
projective line P1, which is topologically equivalent to the 2-dimensional sphere. Using an
appropriate identification, this sphere is called the Bloch sphere and has many applications in
quantum information theory and quantum computing. As seen above, any mixed state of the
quantum system modelled by H can be seen as a convex combination of pure states. Hence
the set of quantum states Ω(H) can be seen as a convex set in the real vector space Herm(H)
of all the hermitian operators onH . Note that with the identification of a pure state |v⟩ with the
orthogonal projection |v⟩ ⟨v|, we can view the set of pure states inside Herm(H). In this way,
the pure states form the set of extreme points of Ω(H) [GKM05, Section 4].
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2.4 Entanglement Measures

One of the most important features of quantum mechanics is entanglement. Entanglement is a
very interesting phenomenon in quantum physics where two or more particles become corre-
lated in such a way that the state of one particle is dependent on the state of the others. When
two or more particles are entangled, they share a unified quantum state. It is impossible to de-
scribe the state of one of the particles without the help of the description of the other particles
involved. In this thesis, we only concentrate on the theory of entanglement when two particles
are involved. For that, we need two quantum systems A and B, corresponding to the two parti-
cles, represented by the Hilbert spacesHA andHB respectively. When there is no entanglement
between two particles and we know that the state of the particles can be described using pure
states, then the pure state of the composite system is equal to the tensor product of the pure
states for each individual subsystem. A non-entangled pure state can be represented as a prod-
uct state, where the overall state of the system can be completely described by considering the
states of its individual components independently. Throughout these sections m = dim(HA)
and n = dim(HB) and without loss of generality we assume 1 ≤ m ≤ n.

Definition 2.4.1 (Separable and entangled pure states). A pure state in HA ⊗ HB is said to be
separable or non-entangled if it can be written as |u⟩ ⊗ |v⟩ for some |u⟩ ∈ HA and |v⟩ ∈ HB.
Otherwise, it is said to be entangled.

Example 2.4.2. Let {|0⟩ , |1⟩} be the standard orthonormal basis of C2, i.e. |0⟩ = (1, 0)t and
|1⟩ = (0, 1)t. Then |00⟩ = |0⟩ ⊗ |0⟩ is a separable state. The following states, known as Bell
states,

1
√

2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

1
√

2
(|0⟩ ⊗ |0⟩ − |1⟩ ⊗ |1⟩)

1
√

2
(|0⟩ ⊗ |1⟩ + |1⟩ ⊗ |0⟩)

1
√

2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

are examples of entangled states.

Notice that in the above definition of entangled states, we only covered the pure states.
However, entanglement can be present in mixed states as well. As we described in Section
2.3, a mixed state can be described as a statistical mixture of pure states, we can extend the
definition for pure states to mixed states as follows:
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Definition 2.4.3 (Separable and entangled mixed states). A mixed state ρ on HA ⊗ HB is said
to be separable or non-entangled if there exists a convex decomposition ρ =

∑
j p j

∣∣∣v j

〉 〈
v j

∣∣∣
(where 0 ≤ p j ≤ 1 with

∑
j p j = 1) of ρ such that each of the pure states

∣∣∣v j

〉
∈ HA ⊗ HB are

separable. Otherwise, it is said to be entangled.

Example 2.4.4. Let ρ be a mixed state onC2⊗C2 defined by the following matrix in the standard
orthonormal basis of C2 ⊗ C2:

ρ =


1/3 1/3 0 0
1/3 1/3 0 0
0 0 1/3 0
0 0 0 0


Then ρ = 2

3

(
1
√

2
(|00⟩ + |01⟩)

) (
1
√

2
(⟨00| + ⟨01|)

)
+ 1

3 |10⟩ ⟨10|, i.e. it is a convex combination of
the pure separable state 1

√
2
(|00⟩ + |01⟩) and |10⟩. Therefore ρ is separable.

One of the central questions in Quantum information theory is to know the extent of en-
tanglement of a state and the related question of the amount of quantum information stored in
a state. There are various quantities that measure this. One of the most widely used measures
for pure states is the entropy of entanglement and that for mixed states is the entanglement of
formation.

2.4.1 Entropy of Entanglement

The von Neumann entropy of a quantum state σ on a quantum Hilbert space H is defined to
be the quantity −

∑
j λ j ln λ j, where λ j’s are the positive eigenvalues of σ. For a quantum state

on HA ⊗ HB, we look at the “part” of the state belonging to the individual sub-systems A and
B known as the reduced states and compute von Neumann entropy of these reduced states to
define the entropy of entanglement. These reduced states are defined using partial traces which
are defined below.

Definition 2.4.5 (Partial traces). Partial trace of an operator in End(HA ⊗ HB) over system B
is defined to be a linear operator TrB : End(HA ⊗HB)→ End(HA) given by

TrB(X ⊗ Y) = Tr(Y)X

and then extending by linearity where X ∈ End(HA) and Y ∈ End(HB). Similarly, we define
partial trace over the system A, denoted by TrA.

Application of partial trace on a state again gives a hermitian positive semi-definite operator
on the respective sub-system with trace 1, therefore they are quantum states on the respective
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sub-systems. The reduced state corresponding to a given sub-system is obtained by tracing out
the other system using the partial trace operator.

Definition 2.4.6 (Reduced states). For a state ρ, we call ρA = TrB(ρ) the reduced state of ρ cor-
responding to system A. Similarly, ρB = TrA(ρ) is called the reduced state of ρ corresponding
to the system B.

Definition 2.4.7 (Entropy of entanglement). For a pure state |v⟩ ∈ HA ⊗ HB, the entropy of
entanglement, denoted by E(|v⟩), is defined to be

E(|v⟩) = −
m∑

j=1

λ j ln
(
λ j

)
(2.1)

where λ1, ..., λm are eigenvalues of the reduced state TrB(|v⟩ ⟨v|) with the convention that 0 log 0 =
0. That is the entropy of entanglement of a pure state is the von Neumann entropy of the re-
duced state corresponding to A.

Example 2.4.8. Take |v⟩ = |u⟩⊗|w⟩ ∈ HA⊗HB. Then TrB(|v⟩ ⟨v|) = TrB(|u⟩ ⟨u|⊗|w⟩ ⟨w|) = |u⟩ ⟨u|,
i.e. eigenvalues of TrB(|v⟩ ⟨v|) are 1, 0, ..., 0, i.e. E(|v⟩) = 0.

Example 2.4.9. TakeHA ⊗HB = C
2 ⊗ C2 and |v⟩ = α1 |0⟩ ⊗ |0⟩ + α2 |1⟩ ⊗ |1⟩ where {|0⟩ , |1⟩} is

the standard basis of C2 and α1, α2 ∈ C with |α1|
2 + |α2|

2 = 1. Then we have

|v⟩ ⟨v| =
1∑

j=0

|α j|
2 | j⟩ ⟨ j| ⊗ | j⟩ ⟨ j| =⇒ TrB(|v⟩ ⟨v|) =

2∑
j=1

|α j|
2 | j⟩ ⟨ j| .

Therefore, E(|v⟩) = −|α1|
2 ln

(
|α1|

2
)
− |α2|

2 ln
(
|α2|

2
)
.

Theorem 2.4.10 (Schmidt Decomposition Theorem). For any |v⟩ ∈ HA ⊗ HB, there exist
an orthonormal basis {|u1⟩ , ..., |um⟩} of HA and an orthonormal set {| f1⟩ , ..., | fm⟩} of HB and
0 ≤ α1 ≤ α2 ≤ ... ≤ αm such that |v⟩ =

∑m
j=1 α j

∣∣∣u j

〉
⊗

∣∣∣ f j

〉
.

Proof. We have a canonical isomorphism T : HA ⊗HB → Mm×n(C) given by |x⟩ ⊗ |y⟩ 7→ |x⟩ ⟨y|
and extending linearly. We apply Singular Value Decomposition on the matrix T (|v⟩) to get
that there exists unitary matrices U of size m × m, F of size n × n and a diagonal matrix
Σ = diag{α1, ..., αm} of size m × m such that

T (|v⟩) = U
(
Σ 0m,n−n

)
F∗.

We write F = [F1F2] where F1 is the matrix having first m columns of F and F2 is the matrix
having last n −m columns to get that T (|v⟩) = UΣF∗1. For j, k ∈ {1, ...,m}, we take

∣∣∣u j

〉
∈ HA to
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be the j-th column of E and | fk⟩ ∈ HB to be the k-th column of F1 to get that

T (|v⟩) =
m∑

j=1

α j

∣∣∣u j

〉
⟨ fk| =⇒ v =

m∑
j=1

α j

∣∣∣u j

〉
⊗

∣∣∣ f j

〉
where we note that α j’s being singular values are real non-negative and {| f1⟩ , ..., | fm⟩} being
first m columns of the unitary matrix F is an orthonormal set. Finally, we order the α’s in
increasing order and rename the indices of

∣∣∣u j

〉
’s and

∣∣∣ f j

〉
’s to get the required result. □

From the proof, it is evident that the Schmidt Decomposition Theorem is just a restate-
ment of Singular Value Decomposition. The numbers α j’s are sometimes called the Schmidt
coefficients of the vector |v⟩.

Proposition 2.4.11. Let ρ = |v⟩ ⟨v| be a pure state. Then the set of non-zero eigenvalues of
ρA = TrB(ρ) and ρB = TrA(ρ) are equal (with the same multiplicity).

Proof. Using Schmidt decomposition (Theorem 2.4.10), there exist an orthonormal basis {|u1⟩

, ..., |um⟩} of HA and an orthonormal set {| f1⟩ , ..., | fm⟩} of HB and 0 ≤ α1 ≤ α2 ≤ ... ≤ αm such
that

|v⟩ =
m∑

j=1

α j

∣∣∣u j

〉
⊗

∣∣∣ f j

〉
=⇒ ρ =

m∑
j=1

α2
j

∣∣∣u j

〉 〈
u j

∣∣∣ ⊗ ∣∣∣ f j

〉 〈
f j

∣∣∣ .
Therefore,

ρA =

m∑
j=1

α2
j

∣∣∣u j

〉 〈
u j

∣∣∣
ρB =

m∑
j=1

α2
j

∣∣∣ f j

〉 〈
f j

∣∣∣ .
We see that the non-zero eigenvalues of both ρA and ρB are the non-zero elements of the set
{α2

1, α
2
2, ..., α

2
m}. □

This shows that in the definition of entropy of entanglement, the appearance of TrB is not
special and in fact we could have taken TrA to get the same value. In other words, the entropy
of entanglement of a pure state is the von Neumann entropy corresponding to any one of the
reduced states. Now, we shall see how we can use the Schmidt decomposition theorem to
compute the entropy of entanglement easily.

Proposition 2.4.12. Suppose |v⟩ ∈ HA ⊗HB be a pure state. Then

E(|v⟩) = −
m∑

j=1

α2
j ln

(
α2

j

)
(2.2)
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where {α1, ..., αm} are the Schmidt coefficients of |v⟩.

Proof. A direct consequence of the proof of Proposition 2.4.11. □

Proposition 2.4.13. Suppose |v⟩ ∈ HA⊗HB be a pure state and θ ∈ R. Then E(|v⟩) = E(eiθ |v⟩).

Proof. Suppose |v⟩ =
∑m

j=1 α j

∣∣∣u j

〉
⊗
∣∣∣ f j

〉
be a Schmidt decomposition of |v⟩. Therefore, {

∣∣∣u j

〉
}mj=1

is an orthonormal basis for HA. Then {eiθ
∣∣∣u j

〉
}mj=1 is also an orthonormal basis for HA, i.e.∑m

j=1 α j(eiθ
∣∣∣u j

〉
) ⊗

∣∣∣ f j

〉
is a Schmidt decomposition of eiθ |v⟩, i.e. Schmidt coefficients of |v⟩ and

eiθ |v⟩ are the same. Hence E(|v⟩) = E(eiθ |v⟩). □

Remark 2.4.14. By Remark 2.3.5, we have seen that two states are equivalent if they are mul-
tiple of each other by a complex number of absolute value 1. Now, from the above Proposition
2.4.13, we get that the entropy of entanglement is truly well-defined on pure states, that is, the
entropy of entanglement is the same for two equivalent states.

Proposition 2.4.15. The entanglement entropy is a continuous function on the setΩp(HA⊗HB).

Proof. We write the entanglement entropy function E as the composition Ωp(HA ⊗ HB)
S
−→

Rm
≥0

f
−→ R, where S denotes the map of extracting Schmidt coefficients (in ascending order) and

f denotes the multivariate function σ = (σ j) 7→ −
∑

j σ
2
j lnσ2

j .

To obtain the Schmidt coefficients, we fix orthonormal bases {
∣∣∣e j

〉
} and {| fk⟩} ofHA andHB

respectively. We write |v⟩ =
∑

j,k α
(v)
jk

∣∣∣e j

〉
⊗ | fk⟩ and define T (|v⟩) = (α(v)

k j ). When |v⟩ and |u⟩
are close in Ωp(HA ⊗ HB), then the coefficients α(v)

jk and α(u)
jk are close and so T (|v⟩) and T (|u⟩)

are close, i.e. T : Ωp(HA ⊗ HB) → Mn,m(C) is continuous. The Schmidt coefficients of |v⟩
are nothing but eigenvalues of

√
T (|v⟩)∗T (|v⟩). The map Mn,m(C)→ HP(Cm), where HP(Cm) is

the set of hermitian positive semi-definite operators on Cm, given by X 7→
√

X∗X is continuous
and extracting eigenvalues from an element of HP(Cm) (in ascending order) is also continuous
(because of the continuity of the zeroes of a polynomial and the continuity of characteristic
polynomial), hence S : Ωp(HA ⊗HB)→ Rm is continuous.

For continuity of f , it is enough to show that for each j ∈ {1, 2, ...,m} the map f j(σ) =
−σ2

j lnσ2
j (with 0 ln 0 = 0) is continuous. As the map f j is independent of σk if k , j, it is

enough to show that the map g : R≥0 → R given by x 7→ x2 ln x2 when x , 0 and 0 7→ 0 is
continuous. Clearly, g is continuous when x , 0. Now,

lim
x→0+

g(x) = lim
x→0+

x2 ln x2 = 2 lim
x→0+

ln x
1
x2

= 2 lim
x→0+

1
x
−2
x3

= − lim
x→0+

x2 = 0 = g(0).

Therefore g is continuous. Hence the entanglement entropy is a continuous function. □
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Proposition 2.4.16. Let |v⟩ ∈ HA ⊗ HB be a pure state. Then |v⟩ is separable if and only if
E(|v⟩) = 0.

Proof. We see that |v⟩ is separable if and only if the Schmidt coefficients of |v⟩ are 1, 0, ...., 0 if
and only if E(|v⟩) = 0. □

The value of E(|v⟩) lies in the interval [0, ln m] with E(|v⟩) = 0 if and only if |v⟩ is separable
if and only if |v⟩ ⟨v| ∈ End(HA) ⊗ End(HB) is decomposable, in this case we call the pure state
v is non-entangled. The maximum value ln m is attained when the eigenvalues of TrB(|v⟩ ⟨v|)
are equal, i.e. λ1 = ... = λm =

1
m . In a way, entanglement entropy E(|v⟩) characterizes “how

much non-decomposable” the vector |v⟩ by measuring how close the eigenvalues of TrB(|v⟩ ⟨v|)
are to being equidistributed with the entropy being maximal if and only if the eigenvalues are
equidistributed.

2.4.2 Entanglement of Formation

In Section 2.4.1, we have seen a measure of entanglement for pure states. We need a similar
measure for the entanglement of mixed states. As mixed states are sums of pure states, so we
want to extend the entropy of entanglement to mixed states. But we can write a mixed state
ρ as an ensemble of pure states in a lot of different ways, so simply summing the entropy of
entanglement for the constitute pure states is not enough. For illustration, consider the state

ρ =
1
2

(|00⟩ ⟨00|) +
1
2

(|11⟩ ⟨11|),

which is also equal to the convex combination

ρ =
1
2

[(
|00⟩ + |11⟩
√

2

) (
⟨00| + ⟨11|
√

2

)]
+

1
2

[(
|00⟩ − |11⟩
√

2

) (
⟨00| − ⟨11|
√

2

)]
.

As |00⟩ and |11⟩ are separable, summing over the entropy of entanglement in the first ensemble
will produce 0. However, |00⟩+|11⟩

√
2

and |00⟩−|11⟩
√

2
being the Bell states (see Example 2.4.2) have

entropy of entanglement ln(2), so the second ensemble will produce ln(2). This is why we take
infimum over all such possible ensembles.

Definition 2.4.17 (Entanglement of formation). [Ben+96b] For a mixed state ρ, entanglement
of formation Ẽ(ρ) is given by

Ẽ(ρ) = inf
∑

j

p jE(
∣∣∣v j

〉
)

where ρ =
∑

j p j

∣∣∣v j

〉 〈
v j

∣∣∣ with the summation done over a finite index set and p j > 0 with∑
j p j = 1. The infimum is taken over all such possible finite sums.
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A minimum can replace the infimum in the definition. The rest of this section is proof of
this fact inspired by [Uhl10]. For this purpose, let us first define a few concepts related to
convex roof construction.

Let Ω be a compact convex set in Rn and Ωp be the set of extremal points of the convex set
Ω (points in Ωp are also called “pure” points).

Definition 2.4.18 (Roof points). For a real valued function G on a compact convex set Ω,
a point w ∈ Ω is called a roof point of G if there exist an extremal convex decomposition
w =

∑
j p jv j (i.e. p j ∈ R, p j ≥ 0,

∑
j p j = 1 and v j ∈ Ωp) such that G(w) =

∑
p jG(v j). Such a

decomposition is called optimal with respect to G or equivalently G-optimal.

Definition 2.4.19 (Roofs and Roof extensions). A real function G onΩ is called a roof if every
point on Ω is a roof point of G. If g is a real-valued function on Ωp, a roof G is called a roof
extension of g if G(w) = g(w) for all w ∈ Ωp.

Some examples of roofs and roof extensions can be found in [Uhl10].

Definition 2.4.20 (Convex roof extension). A real valued function G on Ω is called a convex
extension of g : Ωp → R, if G(w) = g(w) for all w ∈ Ωp and G is a convex function, i.e.
G(tw1+ (1− t)w2) ≤ tG(w1)+ (1− t)G(w2) for all t ∈ [0, 1] and w1,w2 ∈ Ω. A convex extension
that is also a roof is called a convex roof extension.

Proposition 2.4.21. For a real-valued function g on Ωp, the extension g∪ : Ω→ R defined by

g∪(w) = inf
∑

j

p jg(v j)

where infimum is taken over all convex combinations of w =
∑

j p jv j with v j ∈ Ωp, is the largest
convex extension of g. Further, if a convex roof extension of g exists, then it is unique and is
equal to g∪.

Proof. Let w1,w2 ∈ Ω. Let w1 =
∑

j p jv j and w2 =
∑

k qkuk be arbitrary convex combination of
w1 and w2 in terms of elements from Ωp, i.e. v j, uk ∈ Ωp and

∑
j p j = 1 =

∑
k qk. Now,

g∪(tw1 + (1 − t)w2)

=g∪(t
∑

j

p jv j + (1 − t)
∑

k

qkuk)

≤
∑

j

tp jg(v j) +
∑

k

(1 − t)qkg(uk) (by definition of g∪ as
∑

j
tp j +

∑
k
(1 − t)qk = 1)

As the convex combination we took were arbitrary, so taking infimum, we get

g∪(tw1 + (1 − t)w2) ≤ t inf

∑
j

p jg(v j)

 + (1 − t) inf

∑
k

qkg(uk)

 = tg∪(w1) + (1 − t)g∪(w2).



2.4. EntanglementMeasures 17

We see that g∪ is a convex extension of g. It is the largest convex extension possible because
if G is any other convex extension of g, then G(w) ≤

∑
j p jg(v j) for every convex combination,

yielding G(w) ≤ inf
∑

j p jg(v j) = g∪(w).
Now, suppose there exists a convex roof extension G of g. Then any point w ∈ Ω is a

roof point for the convex extension G of g. So, there exists an optimal convex combination
w =

∑
k qkuk such that G(w) =

∑
k qkg(uk) ≥ inf{∑ j p jv j |w=

∑
j p jv j}

∑
j p jg(v j) = g∪(w). Also by

convexity of G, we have G ≤ g∪ (from the previous paragraph). Therefore, G = g∪, i.e. if a
convex roof extension of g exists then it is unique and is equal to g∪. □

Corollary 2.4.22. The entanglement of formation is a convex function on Ω(HA ⊗ HB) ⊂
Herm(QH).

Proof. Observe that the entanglement of formation Ẽ is equal to E∪. Therefore, the statement
follows from the first part of Proposition 2.4.21 □

There is a sufficient condition that guarantees that g∪ is a roof. The proof of the following
proposition can be found in [Uhl10].

Proposition 2.4.23. Let Ω be a convex set and both Ω and Ωp be compact. Let g be a continu-
ous map on Ωp. Then the extension g∪ is a roof.

Proposition 2.4.24. The function entanglement of formation is the convex roof extension of the
entropy of entanglement. In other words, for a mixed state ρ, entanglement of formation Ẽ(ρ)
is given by

Ẽ(ρ) = min
∑

j

p jE(
∣∣∣v j

〉
)

where ρ =
∑

j p j

∣∣∣v j

〉 〈
v j

∣∣∣ with the summation done over a finite index set and p j > 0 with∑
j p j = 1. The minimum is taken over all such possible finite sums.

Proof. We have Ω(HA ⊗ HB) = Tr−1({1}), where tr : Herm(HA ⊗ HB) → C is the trace map
which is continuous, so Ω(HA ⊗ HB) is closed. The 2-norm of a linear operator ρ is equal
to the maximum singular value of ρ (in other words, the maximum eigenvalue of ρ∗ρ). For a
quantum state ρ, the eigenvalues are non-negative and sum to 1, so each one of the eigenvalues
is less than or equal to 1. Therefore eigenvalues of ρ2 are less than or equal to 1. But we
have ρ∗ρ = ρ2 (as ρ∗ = ρ), so the eigenvalues of ρ∗ρ are bounded above by 1, i.e. the 2-
norm of ρ is bounded above by 1. Therefore Ω(HA ⊗ HB) is bounded in the Euclidean space
Herm(HA ⊗ HB). Hence Ω(HA ⊗ HB) is compact. The set of pure states Ωp(HA ⊗ HB) as a
subset of Herm(H), being the homeomorphic image of the projective space P(HA⊗HB), is also
compact. By Proposition 2.4.15 is continuous on the set of pure states, so the entanglement of
formation is a roof extension of the entanglement entropy (by Proposition 2.4.23). Hence, the
infimum is in fact a minimum. □



18 Chapter 2. Quantum Information Theory

As we have seen in Section 2.4.1 entanglement entropy can distinguish between separable
pure states and entangled pure states. The analogous statement is true for the entanglement of
formation with mixed states.

Proposition 2.4.25. Let ρ be a mixed state inHA ⊗HB. The state ρ is separable if and only if
Ẽ(ρ) = 0.

Proof. Let ρ be separable. Then there exists a decomposition ρ =
∑

j p j

∣∣∣v j

〉 〈
v j

∣∣∣ of ρ such

that each of
∣∣∣v j

〉
are separable pure states, therefore we see that

∑
j p jE(

∣∣∣v j

〉
) = 0 and so we

have Ẽ(ρ) = 0. Conversely, let Ẽ(ρ) = 0. The minimum is attained at some decomposition by
Proposition 2.4.24. As the minimum is 0, the decomposition where the minimum is attained
must consist of all separable, i.e. ρ is separable. □

2.5 Distillation of Quantum States

In this section, we shall discuss a few concepts related to the distillability of quantum states, a
summary of the advances made towards partial solutions to the NPT distillabilty problem and
a result relating operator Schmidt rank and distillabilty. The principal result in this section is
Theorem 2.5.18.

In a broad sense, the distillability of a quantum state implies the capacity to extract a max-
imally entangled state from a substantial number of copies of that state using local operations
and classical communications (LOCC). LOCC are a class of maps characterized by [NC10,
Theorem 12.5]. An alternative definition of distillability can be made using a well-known fact
that all 2 × 2 entangled states can be distilled using the so-called recurrence and hashing pro-
tocols [Ben+96a]. Due to this, we can get a simplified definition to capture the distillability
of a quantum state ρ acting on HA ⊗ HB with dim(HA), dim(HB)≥ 2 by equivalently asking
the question of the ability to convert ρ⊗n to a 2 × 2 entangled state using projectors as local
operations.

2.5.1 Peres-Horodecki Criterion

In Section 2.4, we mentioned that given a quantum state, it is difficult to decide whether the
state is entangled. Using partial transpose of the quantum state, there is a one-sided criterion,
known as the Peres-Horodecki criterion, to decide if a state is entangled.

Definition 2.5.1 (Partial transpose). The Partial transpose (with respect to the system B) is a
linear map End(HA ⊗HB)→ End(HA ⊗HB) defined by setting

(X ⊗ Y)TB = X ⊗ YT
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and then extending by linearity, where X ∈ End(HA) and Y ∈ End(HB). We denote ρTB to
mean partial transpose of ρ with respect to the system B. Similarly, we can define the partial
transpose of ρ with respect to the system A by using the transpose on X instead of Y in the
above equation, denoted by ρTA . For ρ ∈ End(HA ⊗ HB), {ui} an orthonormal basis of HA and
{ f j} an orthonormal basis ofHB, we can write

ρ =

M∑
i, j=1

N∑
k,l=1

ρi, j,k,l|ui⟩⟨u j| ⊗ | fk⟩⟨ fl| for some constants ρi, j,k,l.

Then

ρTA =

M∑
i, j=1

N∑
k,l=1

ρi, j,k,l|u j⟩⟨ui| ⊗ | fk⟩⟨ fl|

and

ρTB =

M∑
i, j=1

N∑
k,l=1

ρi, j,k,l|ui⟩⟨u j| ⊗ | fl⟩⟨ fk|.

Proposition 2.5.2. For a state ρ ∈ End(HA ⊗ HB), we have equality ρTA = (ρTB)T so that ρTA

and (ρTB)T are simultaneously positive semi-definite or non-positive semi-definite.

Proof. It is enough to show for operators of the form ρ = X ⊗ Y . Then ρTA = XT ⊗ Y = (X ⊗
YT )T = (ρTB)T . Also for |v⟩ ∈ HA ⊗HB and σ ∈ End(HA ⊗HB), we have ⟨v|σ|v⟩ = ⟨v∗|σT |v∗⟩,
so the result follows. □

Definition 2.5.3 (PPT and NPT state). A quantum state ρ is called Positive Partial Transposi-
tion or in short, PPT if ρTB (or ρTA) is a positive semi-definite. It is called Non-positive Partial
Transposition or in short, NPT if it is not PPT.

Theorem 2.5.4 (Peres-Horodecki criterion [Per96; HHH96]). Let ρ be a mixed state in HA ⊗

HB. If ρ is NPT, then ρ is entangled. Further when mn ≤ 6 (where m = dim(HA) and n =
dim(HB)), then the converse is also true.

Example 2.5.5. Let ρ1, ρ2 ∈ be two mixed states on C2 ⊗ C2 defined by the following matrices
in the standard orthonormal basis of C2 ⊗ C2:

ρ1 =


1/3 1/3 0 0
1/3 1/3 0 0
0 0 1/3 0
0 0 0 0

 and ρ2 =


1/4 0 0 1/4
0 1/2 0 0
0 0 0 0

1/4 0 0 1/4


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Then,

ρTB
1 =


1/3 1/3 0 0
1/3 1/3 0 0
0 0 1/3 0
0 0 0 0

 and ρTB
2 =


1/4 0 0 0
0 1/2 1/4 0
0 1/4 0 0
0 0 0 1/4


We see that ρTB

1 is positive semi-definite and ρTB
2 is not (one of the eigenvalues is negative),

i.e. ρ1 is PPT and ρ2 is NPT. Since the size of ρ1 is 4 which is less than 6, so converse of the
Peres-Horodecki criterion is applicable. We see that ρ1 is separable. The state ρ2 being NPT is
entangled.

2.5.2 The NPT distillability problem

Definition 2.5.6 (1-distillable state). [Dür+00] A quantum state ρ is said to be 1-distillable if
there exists a pure state |ψ⟩ of Schmidt rank at most 2 inHA⊗HB (where Schmidt rank at most
2 means that at most two Schmidt coefficients can be non-zero, i.e. |ψ⟩ = a |e1, f1⟩ + b |e2, f2⟩

for some a, b ≥ 0, {|e1⟩ , |e2⟩} are orthonormal vectors in HA and {| f1⟩ , | f2⟩} are orthonormal
vectors inHB) such that ⟨ψ|ρTB |ψ⟩ < 0.

Definition 2.5.7 (Distillable state). A quantum state ρ is said to be n-distillable if the state ρ⊗n

on the quantum Hilbert space (H⊗n
A ) ⊗ (H⊗n

B ) is a 1-distillable state. A quantum state is called
distillable if it is n-distillable for some n ∈ N.

Proposition 2.5.8. A state is distillable if and only if for some n ∈ N there exists 2-dimensional
projectors P and Q acting on H⊗n

A andH⊗n
B such that the state (P ⊗ Q)ρ⊗n(P ⊗ Q)† is an NPT

state.

Proposition 2.5.9. A PPT state is not distillable.

Proof. A proof can be found here [HHH98]. □

The proposition above indicates that all distillable states must be NPT. However, an open
question remains regarding whether the converse is true [HRŽ20].

Definition 2.5.10. States that are entangled but not distillable are called bound entangled (BE)
states.

As in higher dimensions, there exist some PPT states that are entangled, so we know the
existence of PPT BE states, but it’s unclear whether NPT BE states exist. Over the years,
several advances were made and we have an abundance of partial results based on different
criteria such as rank, operator Schmidt rank, matrix rank of the states etc. We list a few known
results and works towards this problem below.
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1. All NPT states in HA ⊗ HB where dim(HA)= 2 and dim(HB) = n for some n ≥ 2 are
distillable, in fact they are 1-distillable [Dür+00]. The proof that uses LOCC operators
is a difficult one. However, using Definition 2.5.7, it is easy to see this. If ρ is NPT, then
there exists |ψ⟩ ∈ HA ⊗ HB such that ⟨ψ|ρ|ψ⟩ < 0. Since dim(HA) = 2, the Schmidt
decomposition of |ψ⟩ has at max 2 terms and we are done.

2. If rank(ρ) < max(rank(ρA), rank(ρB)), then ρ is distillable [Hor+03]. A useful corollary
of this is that a rank n undistillable state has support in at most n × n subspace. Using
this, it is shown that rank 2 NPT states are distillable [Hor+03].

3. Any rank 3 NPT states are distillable [CC08].

4. Any rank 4 NPT states are distillable [CD16]. In [CD16], the authors also constructed a
one-parameter family of 3× 3 NPT state that is not 1-distillable (which could potentially
be n-undistillable).

5. In [CD23], the authors proved various results related to distillability in terms of Schmidt
rank and matrix rank.

6. It is shown that any state can be converted to Werner state (a useful one-parameter family
of states) [Dür+00; Wer89], so search for undistillable NPT state can be equivalently
made in these states only. In [Dok16], the authors showed 2-undistillablity of certain
Werner states and mentioned known results based on the parameter.

There is also an equivalent formulation of this problem in the language of C∗-algebras
[DiV+00; Cla05]. The search for an NPT-bound entangled state will be over if one finds a map
with the property described in Proposition 2.5.14 below:

Definition 2.5.11. A linear map Λ : Md(C) → Md(C), where Md(C) denotes the set of all
matrices of size d×d, is called a positive map ifΛ(A) is positive semi-definite for all A ∈ Md(C)
that are positive semi-definite.

Definition 2.5.12 (k-positive maps). For k ∈ N, a linear map Λ : Md(C) → Md(C) is called
k-positive if and only if Ik ⊗ Λ : Mk(C) ⊗ Md(C) → Mk(C) ⊗ Md(C) is a positive map, where
Ik : Mk(C) → Mk(C) is the identity map. We call Λ completely positive if it is k-positive for
each k ∈ N.

Definition 2.5.13 (k-co-positive). A map Λ : Md(C) → Md(C) is called k-co-positive if and
only if the composition T ◦ Λ is k-positive, where T is the transposition map. We call Λ
completely co-positive if it is k-co-positive for all k ∈ N.

Proposition 2.5.14. If there exists a positive map Λ that is completely co-positive but not
completely positive such that Λ⊗n is 2-positive for each n ∈ N, then there exist NPT bound
entangled states that can be constructed explicitly with the help of the map.
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2.5.3 Some non-distillable states

In this section, we shall construct a family of non-distillable states. In addition to that, we shall
see that any quantum state ρ inHA⊗HB can be identified with a state ρ̃ inside a suitable Hilbert
spaceH ′A ⊗H

′
B ⊂ HA ⊗HB such that the reduced states ρ̃A and ρ̃B are invertible.

Lemma 2.5.15. Let ρ =

 A C†

C 0

 (where A is a square matrix) be positive semi-definite, then

C = 0.

Proof. There exists B =

 B1 B2

B3 B4

 such that ρ =

 B†1B1 + B†3B3 B†1B2 + B†3B4

B†2B1 + B†4B3 B†2B2 + B†4B4

, so B†2B2 +

B†4B4 = 0, i.e. tr
(
B†2B2 + B†4B4

)
= 0. But tr

(
B†2B2

)
, tr

(
B†4B4

)
≥ 0, so tr

(
B†2B2

)
= 0 = tr

(
B†4B4

)
.

As B†2B2 and B†4B4 are positive semi-definite with trace 0, so B2 = 0 and B4 = 0. Therefore,
C = 0. □

Proposition 2.5.16. Let ρ ∈ End(HA⊗HB) (where dimHA = M and dimHB = N) be a quantum
state such that rank(ρA) = m and rank(ρB) = n. Then there exist subspaces H ′A and H ′B of HA

and HB respectively of respective dimensions m and n such that if ρ̃ : H ′A ⊗ H
′
B → H

′
A ⊗ H

′
B

given by
ρ̃ = ρ|H ′A⊗H ′B ,

then ρ = ρ̃ ⊕ 0 (i.e. ρ can be thought of as a quantum state in End(H ′A ⊗H
′
B) � End(Cm ⊗ Cn).

In other words, every bipartite state ρ can be realized inside suitable Hilbert space such that
ρA and ρB are invertible).

Proof. We can write ρ = ρA ⊗ ρB +
∑k

j=1 A j ⊗ B j for a linearly independent set of hermitian
operators {A j : j = 1, ..., k} ⊂ End(HA) and a linearly independent set of hermitian operators
{B j : j = 1, ..., k} ⊂ End(HB). Using the definition of partial traces we get that

∑k
j=1 tr

(
B j

)
A j =

0 =
∑k

j=1 tr
(
A j

)
B j which implies that for each j ∈ {1, ..., k} we have tr

(
A j

)
= 0 = tr

(
B j

)
.

Let H ′A = ker(ρA)⊥ and H ′B = ker(ρB)⊥ and let β′ = {|u1⟩ , ..., |um⟩} and γ′ = {|v1⟩ , ..., |vn⟩}

be (ordered) orthonormal bases of H ′A and H ′B respectively and let α′ = β′ ⊗ γ′. We ex-
tend the orthonormal sets β′ and γ′ to (ordered) orthonormal bases β = {|u1⟩ , ..., |uM⟩} and
γ = {|v1⟩ , ..., |vN⟩} of HA and HB respectively. For each j ∈ {1, ..., k}, we write the ma-
trix of A j and B j with respect to the bases β and γ respectively to get the block matrices

A j =

 A(1)
j (A(2)

j )†

A(2)
j A(3)

j

 and B j =

 B(1)
j (B(2)

j )†

B(2)
j B(3)

j

 where A(1)
j is an m × m matrix and B(1)

j is an

n × n matrix .

We write the matrices of ρA ⊗ ρB and
∑k

j=1 A j ⊗ B j in the basis α = β ⊗ γ (with the ordering



2.5. Distillation of Quantum States 23

that makes it compatible with the tensor product of the block matrices A j ⊗ B j) to get that

[ρ]α =


[ρA ⊗ ρB]α′ +

∑k
j=1 A(1)

j ⊗ B(1)
j

∑k
j=1 A(1)

j ⊗ (B(2)
j )†∑k

j=1 A(1)
j ⊗ B(2)

j
∑k

j=1 A(1)
j ⊗ B(3)

j

C†

C D


where C =

∑k
j=1 A(2)

j ⊗ B j and D =
∑k

j=1 A(3)
j ⊗ B j. Note that tr(D) =

∑k
j=1 tr

(
A(3)

j

)
tr
(
B j

)
= 0.

Also, D being a principal sub-matrix of a positive semi-definite matrix ρ is itself positive semi-
definite. Therefore, D = 0. As ρ is positive semi-definite and D = 0, using Lemma 2.5.15 we
must have C = 0. Therefore,

[ρ]α =

 [ρA ⊗ ρB]α′ +
∑k

j=1 A(1)
j ⊗ B(1)

j (
∑k

j=1 A(1)
j ⊗ (B(2)

j )†) ⊕ 0
(
∑k

j=1 A(1)
j ⊗ B(2)

j ) ⊕ 0 (
∑k

j=1 A(1)
j ⊗ B(3)

j ) ⊕ 0


Further D = 0 implies that

∑k
j=1 A(3)

j ⊗B(1)
j = 0, so tr

(∑k
j=1 A(1)

j ⊗ B(3)
j

)
= − tr

(∑k
j=1 A(3)

j ⊗ B(3)
j

)
=

tr
(∑k

j=1 A(3)
j ⊗ B(1)

j

)
= 0. Again

∑k
j=1 A(1)

j ⊗ B(3)
j ⊕ 0 being a principal sub-matrix of a positive

semi-definite matrix is positive semi-definite having trace 0, so it must be zero. Finally, as ρ is
positive semi-definite, so using Lemma 2.5.15 we must have

∑k
j=1 A(1)

j ⊗ B(2)
j = 0. Therefore,

we see that ρ = ρ|H ′A⊗H ′B ⊕ 0. □

Definition 2.5.17. For an operator ρ ∈ End(HA ⊗ HB), the Operator Schmidt rank of ρ is
defined to be the minimum integer k such that we can decompose ρ =

∑k
j=1 A j ⊗ B j for some

A j ∈ End(HA) and B j ∈ End(HB), denoted by osr(ρ). A decomposition ρ =
∑k

j=1 A j ⊗ B j

is called a operator Schmidt decomposition if k = osr(ρ). For any two operator Schmidt
decompositions

∑osr(ρ)
j=1 A j ⊗ B j = ρ =

∑osr(ρ)
j=1 A′j ⊗ B′j, we have span{A j : j = 1, ..., osr(ρ)} =

span{A′j : j = 1, ..., osr(ρ)} (similar statement for the Bs) and we call this linear space as the
spaceA of ρ (similarly space B).

Theorem 2.5.18. Let ρ be a state with rank(ρA) = M and rank(ρB) = N and operator Schmidt
rank k such that the spaceA (or alternately space B) of ρ has exactly k− 1 rank one hermitian
operators that are mutually orthogonal with respect to the Frobenius inner product, then k ≤ M
(alternately k ≤ N) and ρ is PPT and so is not distillable.

Proof. The case k = 1 is trivially true as in that case ρ = ρA⊗ρB. We shall now prove for k ≥ 2.
By Proposition 2.5.16, without loss of generality, we can assume that ρ ∈ End(HA ⊗HB) with
dim(HA) = M and dim(HB) = N, i.e. we can assume that the reduced state ρA and ρB are
invertible. Further, without loss of generality, let us assume that the space A of ρ contains
k − 1 rank one hermitian operators that are mutually orthogonal with respect to the Frobenius
operator norm. We use induction on k to prove that ρ is locally equivalent by an unitary
operator to the state I ⊗ B1 +

∑k
j=2 EM

j−1 ⊗ B j for some B j ∈ End(HB) where EM
j denotes matrix
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with size M × M and entry 1 at j j-th position and zeroes everywhere. For k = 2, we write
ρ = ρA⊗B1+A2⊗B2 with A2 rank 1 hermitian. As ρA is invertible, we can unitarily diagonalize
ρA by U1 to get U1ρAU†1 = I. We note that U1A2U†1 is again a hermitian operator of rank 1, so
we can unitarily diagonalize U1A2U†1 by unitary U2 such that U2(U1A2U†1)U†2 = µEM

11 where µ
is the only non-zero eigenvalue of A2. Let U = U2U1, then (U⊗ I)ρ(U†⊗ I) = I⊗B1+EM

11⊗µB2,
i.e. ρ is locally equivalent by an unitary operator to I ⊗ B1 + EM

11 ⊗ µB2.

Let ρ = ρA ⊗ B1 +
∑k

j=2 A j ⊗ B j with {A j : j = 2, ..., k} a set of mutually orthogonal rank
1 hermitian operators. Let σ = ρA ⊗ B1 +

∑k−1
j=2 A j ⊗ B j, so σ is an M × N state with operator

Schmidt rank k − 1 such that the spaceA of σ has k − 2 rank one hermitian operators that are
mutually orthogonal with respect to the Frobenius inner product. By the induction hypothesis,
there exists unitary U3 such that (U3 ⊗ I)σ(U†3 ⊗ I) = I ⊗ B′1 +

∑k−1
j=2 EM

j−1 ⊗ B′j, i.e.

(U3 ⊗ I)ρ(U†3 ⊗ I) = I ⊗ B′1 +
k−1∑
j=2

EM
j−1 ⊗ B′j + U3AkU

†

3 ⊗ Bk.

We write U3AkU
†

3 as a block matrix

 F C†

C A′k

, where F is a hermitian (k − 2)× (k − 2) matrix.

Then A′k is a hermitian matrix (with rank 0 or 1), so we can unitarily diagonalize A′k by U′4 to

get that if U4 =

 Ik−2 0
0 U′4

, then U4(U3AkU
†

3)U†4 =

 F C†U′†4
U′4C Dk

 where Dk is a diagonal

matrix with the possible non-zero eigenvalue at the 11-th position and zeroes everywhere. Note
that U4EM

j−1U†4 = E j−1 for each j ∈ {2, ..., k − 1}. Let U = U4U3, then

(U ⊗ I)ρ(U† ⊗ I) = I ⊗ B′1 +
k−1∑
j=2

EM
j−1 ⊗ B′j + UAkU† ⊗ Bk.

As for unitary U, we have Tr
(
UAiU†UA jU†

)
= Tr

(
AiA j

)
, so the set {UA jU† : j = 2, ..., k} is

also orthogonal. But {EM
j−1 : j = 2, ..., k − 1} is in the span of {UA jU† : j = 2, ..., k − 1}, so

UAkU† is orthogonal to EM
j−1 for each j = 2, ..., k − 1, i.e. for each j ∈ {1, ..., k − 2} the j j-th

entry of UAkU† is 0, i.e. the diagonal entries of F are zero. Also UAkU† has rank 1 (so all
the rows are multiple of a non-zero single row), so F = 0. As only the 11-th entry of Dk is
non-zero and rank of Ak is 1, so U′2C = 0, i.e. UAkU† = µEM

k−1 where µ is the only non-zero
eigenvalue of Ak. Therefore,

(U ⊗ I)ρ(U† ⊗ I) = I ⊗ B′1 +
k−1∑
j=2

EM
j−1 ⊗ B′j + EM

k−1 ⊗ µBk = I ⊗ B′1 +
k∑

j=2

EM
j−1 ⊗ B′j.

This finishes our proof by induction. This also shows that k ≤ M. Finally [(U⊗I)ρ(U†⊗I)]TA =
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IT ⊗ B′1 +
∑k

j=2(EM
j−1)T ⊗ B′j = I ⊗ B′1 +

∑k
j=2 EM

j−1 ⊗ B′j = (U ⊗ I)ρ(U† ⊗ I), so ρ is PPT and
therefore not distillable. □



Chapter 3

Complex Differential Geometry

In this chapter, we shall briefly recall a few basic concepts from the theory of complex differ-
ential geometry and algebraic geometry that frequently appear in this thesis. A partial list of
references where more comprehensive treatments of the concepts can be found in the books
[Zhe00; GH78; Mir95].

3.1 Kähler Manifolds

Definition 3.1.1 (Complex manifold). Let M be a topological space which is connected, Haus-
dorff and second countable. We call M a complex manifold of (complex) dimension n ∈ N, if
there exits an open covering {Ua : a ∈ I} and for each a ∈ I there exists a homeomorphism fa

from Ua onto an open set Va ⊂ C
n, such that for any pair a, b ∈ I with Uab := Ua ∩ Ub , ∅,

the mapping fa ◦ f −1
b : fb(Uab)→ fa(Uab) (called the transition function) is a biholomorphism.

Let z = (z1, z2, ..., zn) be the standard coordinate of Cn, then we call Ua or (Ua, fa) a coordinate
neighbourhood and call za = z ◦ fa a local holomorphic coordinate.

Example 3.1.2. Let Pn denote the complex projective space of dimension n. Let U j = {[z0, z1, ..., zn] ∈
Cn+1 : z j , 0} and f j : U j → C

n be defined by

f j([z0, z1, ..., zn]) =
(
z0/z j, ..., z j−1/z j, z j+1/z j, ..., zn/z j

)
.

Then {U j} j∈{0,1,...,n} is an open cover of Pn and f j is a homeomorphism for each j. Further, the
transition function f j ◦ f −1

k : fk(U jk)→ f j(U jk) given by

(z0/zk, ..., zk−1/zk, zk+1/zk, ..., zn/zk) 7→
zk

z j
(z0/zk, ..., zk−1/zk, zk+1/zk, ..., zn/zk)

is a biholomorphism between open subsets of Cn. Therefore Pn is a complex manifold of
dimension n.

26
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Definition 3.1.3 (Holomorphic maps). A map ϕ : M1 → M2 between two complex manifolds
M1 and M2 of dimension n and m respectively is called holomorphic at p ∈ M1 if there exists a
coordinate neighbourhood (Ua, fa) of p and (Vb, gb) of ϕ(p) ∈ M2, such that the map gb◦ϕ◦ f −1

a

from an open set in Cn to an open set in Cm is holomorphic at fa(p). We say ϕ is holomorphic
if it is holomorphic at all points of M1.

Definition 3.1.4 (Almost Complex Structure). An endomorphism J of the tangent bundle T M
of a differentiable manifold M satisfying J2 = −I is called an almost complex structure on M.

Example 3.1.5. Let M be a complex manifold of dimension n and MR be the underlying differ-
entiable manifold of M. In a local holomorphic coordinate (z1 = x1 + iy1, ..., zn = xn + iyn), we
define the map J : T MR → T MR given by

J
(
∂

∂x j

)
=

∂

∂y j
, J

(
∂

∂y j

)
= −

∂

∂x j
for 1 ≤ j ≤ n

and extend linearly over R. Then J is an almost complex structure on MR. Here the almost
complex structure on MR comes from the complex (manifold) structure of M, such almost com-
plex structures are called integrable and in that case we sometimes call J a complex structure
on MR. We take the complexified tangent bundle of MR, denoted by T MCR(= T MR ⊗ C). We
extend the map J to the complexified tangent bundle using linearity over C and still denote
the map by J. Then we get the decomposition T MCR = T M(1,0) ⊕ T M(0,1) of eigen-spaces of
J corresponding to the eigenvalues i and −i into sum of complex sub-bundles of equal rank,
with one equal to the complex conjugation of the other. Then the set { ∂

∂z1
, ..., ∂

∂zn
} gives a local

frame for T M(1,0) and { ∂
∂z1
, ..., ∂

∂zn
} gives a local frame for T M(0,1). The map T M → T M(1,0)

given by V 7→ V − iJV gives the canonical isomorphism between the tangent bundle and the
holomorphic tangent bundle.

Definition 3.1.6 (Holomorphic Vector Bundle). Suppose M and E are complex manifolds. We
call E an holomorphic vector bundle over M, if there exists a continuous mapping π : E → M
called the projection such that

1. for all x ∈ M, Ex = π
−1(x) is complex vector space of rank r, i.e. Ex � C

r.

2. There exists an open covering {Uα}α∈I of M and holomorphic maps ϕα : π−1(Uα) →
Uα × C

r such that
ϕα : Ex → {x} × Cr � Cr for all x ∈ Uα

is a C linear isomorphism of complex vector spaces Ex and Cr.
We call (Uα, ϕα) a local trivialization of E and we call {(Uα, ϕα)}α∈I a trivializing open
cover of E. For any pair of α, β ∈ I with Uα ∩ Uβ , ∅, let ϕαβ : Uα ∩ Uβ → GLr(C) be
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defined by
ϕαβ(x) = (ϕα ◦ ϕ−1

β )
∣∣∣∣
{x}×Cr

for allx ∈ Uα ∩ Uβ.

Then ϕαβ is called a transition function and is holomorphic.

3. The transition functions satisfy the following compatibility conditions:

ϕαβ = ϕ
−1
βα on Uα ∩ Uβ

ϕαβ ◦ ϕβγ = ϕαγ on Uα ∩ Uβ ∩ Uγ.

Alternatively, a holomorphic vector bundle over a complex manifold M is a complex vector
bundle over M such that the total space E is a complex manifold and the projection map π :
E → M is holomorphic.

Definition 3.1.7 (Holomorphic section). Let E → M be a holomorphic vector bundle and U
be an open set of M. A map s : U → E is said to be local section E over U if π ◦ s(x) = x for
all x ∈ U. It is said to be a local holomorphic section if the map s : U → E is holomorphic. A
map s : M → E is said to be a global holomorphic section if π ◦ s(x) = x for all x ∈ M and
s : M → E is holomorphic. The space of all global holomorphic sections of E is denoted by
H0(M, E).

Example 3.1.8. A common set of examples of holomorphic vector bundles are the holomorphic
line bundles O(m) → Pn for m, n ∈ N. Let us first describe π : O(1) → Pn, also known as
the hyperplane line bundle over the projective space Pn. This line bundle is the dual of the
tautological line bundle over Pn. The line bundle O(m) → Pn is m-times tensor power of the
line bundle O(1)→ Pn.

Let x = [z0 : z1 : ... : zn] ∈ Pn, then (z0, z1, ..., zn) ∈ Cn+1. Let Vx be the subspace of Cn+1

spanned by x. Then fiber of O(1) at x is V∗x . Let U j = {[z0, z1, ..., zn] ∈ Cn+1 : z j , 0}. If
x ∈ U j, then x = [z0/z j : ... : 1 : ... : zn/z j]. Define the linear functional f : Vx → C given
by f (v) = ⟨v, (z0/z j, ..., 1, ..., zn/z j)⟩, then { f } is a basis for V∗x . Then we have holomorphic map
ϕ j : π−1(U j) → U j × C such that restriction of ϕ j to the fiber ϕ j : O(1)x → {x} × C is given
by ϕ j(λ f ) = λ. With these maps (U j, ϕ j) becomes a trivializing open cover of the line bundle
O(1) → Pn with the transition maps ϕ jk : U j ∩ Uk → GL1(C) given by ϕ jk(x) : C → C that
maps ϕ jk(x)(z)→ z z j

zk
.

The line bundleO(1)→ Pn has non-zero global holomorphic sections. The space H0(Pn,O(1))
is a (n+ 1)-dimensional Hilbert space with a basis {w0,w1, ...,wn} where the section w j is given
by the following:

ϕk ◦ w j([w0 : w1 : ... : wn]) = ([w0 : w1 : ... : wn],
w j

wk
).
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Definition 3.1.9 (Holomorphic Tangent and Cotangent Bundle). On a complex manifold M of
dimension n, the bundle T M(1,0) (see Example 3.1.5) is a holomorphic vector bundle as it has
the local frame { ∂

∂z1
, ..., ∂

∂zn
} that vary holomorphically. This bundle is called the holomorphic

tangent bundle and denoted by T M(1,0). The complex dual bundle to this bundle is called the
holomorphic cotangent bundle and denoted by Ω1,0

M or simply ΩM.

A section of Ωp,q
M =

∧pΩM⊗
∧qΩM is called a (p, q)-form on M and the space of all (p, q)-

forms is denoted by Ap,q(M). An r-form is an element of Ar(M) := ⊕p+q=rA
p,q(M). Let us

extend the exterior differentiation operator of the underlying differentiable manifolds structure
linearly over C and still denote it by d. Then d maps Ωp,q

M into Ωp+1,q
M ⊕ Ω

p,q+1
M , so we write

d = ∂ + ∂ in this decomposition. It is easy to see that we have ∂2 = 0, ∂
2
= 0, and ∂∂ + ∂∂ = 0.

These two operators are known as Dolbeault operators on M. For a holomorphic vector bundle
E over a complex manifold M, the space of all the sections of Ωp,q

M ⊗ E is denoted byAp,q(E).
An E-valued r-form is an element of Ar(E) := ⊕p+q=rA

p,q(E). We can define these operators
∂ and ∂ on Ap,q(E) by applying the operators only on the Ap,q(M) part of pure tensors and
extending linearly.

Definition 3.1.10 (Holomorphic p-form). A (p, 0)-form ϕ is called a holomorphic p-form if
∂ϕ = 0. The space of all holomorphic p-forms is denoted by Hp,0(M).

Definition 3.1.11 (Symplectic manifold). A symplectic form on a smooth manifold M is a
closed non-degenerate differential 2-form ω. A symplectic manifold is a pair (M, ω) where ω
is a symplectic form on M.

Definition 3.1.12 (Hermitian metric). A hermitian metric h on a complex vector bundle E
assigns a hermitian inner product hp to the fibers Ep for each p ∈ M, such that hp varies
smoothly with respect to p.

Definition 3.1.13 (Hermitian vector bundle). A holomorphic vector bundle endowed with a
hermitian metric is called a hermitian vector bundle.

Definition 3.1.14 (Hermitian manifold). [Bal06] Let M be a complex manifold with a complex
structure J. A Riemannian metric g is said to be compatible with the complex structure J if

g(JX, JX) = g(X,Y)

for any vector fields X,Y on M. A complex manifold together with a compatible Riemannian
metric is called a hermitian manifold. Then we have an associated (1, 1)-form given by

ω(X,Y) := g(JX,Y)
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for vector fields X,Y on M. This associated form ω is also non-degenerate and preserves the
almost complex structure J (i.e. ω(JX, JY) = ω(X,Y)). Then we get a hermitian metric h on
the holomorphic tangent bundle given by h = g − iω.

Definition 3.1.15 (Kähler manifold). Let M be a hermitian manifold with a complex structure
J and a compatible Riemannian metric g. We call M a Kähler manifold if ω is closed (hence
ω is a symplectic form). In this case, ω is also called a Kähler form and the hermitian metric h
on the holomorphic tangent bundle is called a Kähler metric.

Example 3.1.16. The complex projective space Pn can be realized as a quotient S2n+1/S1 (this is
the Hopf fibration S2n+1 → Pn). The Euclidean metric on R2n+2 can be restricted to S2n+1 to give
the so called “round metric” g on S2n+1. This metric is invariant under the action of S1, so the
Riemannian metric g descends to the Riemannian metric gFS on the quotient Pn. The complex
projective space Pn already has the complex structure J. Then the 2-form ωFS = gFS (J(·), ·)
give us the Kähler form on Pn known as the Fubini-Study form. Then the hermitian metric
hFS = gFS − iωFS is known as the Fubini-Study metric on Pn. This way the projective space Pn

is a Kähler manifold.

Definition 3.1.17 (Complex Connection). Let E be a complex vector bundle over a smooth
manifold N. A complex connection on E is a complex linear map ∇ : A0(E) → A1(E) that
satisfies the Leibniz rule :

∇( fϕ) = d f ⊗ ϕ + f∇ϕ, ∀ f ∈ C∞(N,C),∀ ϕ ∈ A0(E).

Definition 3.1.18 (Chern Connection). Let E be a holomorphic vector bundle over a complex
manifold M equipped with a hermitian metric h. A complex connection ∇ can be decomposed
into ∇ = ∇1,0+∇0,1 corresponding to the direct sum decompositionA1(E) = A1,0(E)⊕A0,1(E).
Then there exists a unique connection on E such that the connection is compatible with h (i.e.
Xh(s1, s2) = h(∇X s1, s2) + h(s1,∇X s2) for any vector field X on M and section s1, s2 of E) and
∇0,1 = ∂, the Dolbeault operator. This connection is called the Chern connection on E.

Definition 3.1.19 (Curvature of a connection). The connection ∇ : A0(E) → A1(E) can be
extended to a complex linear map ∇p : Ap(E)→ Ap+1(E) for any p ≥ 1 by the property

∇p(ϕ ⊗ f ) = dϕ ⊗ f + (−1)pϕ ∧ ∇ f∀ϕ ∈ Ap(M),∀ f ∈ A0(E).

The composition ∇2 = ∇1 ◦ ∇ : A0(E)→ A2(E) is called the curvature of the connection ∇.

Definition 3.1.20 (Embedded Submanifold). An immersed submanifold is the image ι(N) of a
map ι : N → M between differentiable manifolds such that the differential map dι : T N → T M
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is injective. An embedded submanifold is an immersed submanifold such that ι is a homeomor-
phism onto its image where the image is endowed with subspace topology. In this thesis, we
shall write submanifold to mean embedded submanifold and write N ⊂ M to mean ι(N) ⊂ M.

Definition 3.1.21 (Symplectic Submanifold). A submanifold X of a symplectic manifold (M, ω)
is called symplectic submanifold if the restriction ω|X (= ι∗ω) is a symplectic form.

3.2 Ample Line bundles

Definition 3.2.1 (Very Ample and Ample Line Bundle). A holomorphic line bundle L over
a complex compact manifold M base-point free if the intersection of the zero sets of all the
global holomorphic sections is empty. Then the associated map ΦL : M → Pn given by

ΦL(p) = [s0(p) : s1(p) : ... : sn(p)]

where {s0, s1, ..., sn} is a basis for H0(M, L) is a well-defined morphism. A holomorphic line
bundle L is said to be very ample if it is base-point free and the map ΦL gives a holomorphic
projective embedding of M. We say L is ample if L⊗k is very ample for some k ∈ N.

Example 3.2.2. As described in Example 3.1.8, the space H0(Pn,O(1)) has a basis {z0, z1, ..., zn}

and we see that the zero set of z j is Pn \ U j. Therefore, the intersection of the zero set of all
the global holomorphic sections is empty. Further, the map ΦO(1) : Pn → Pn, being the identity
map is a holomorphic embedding of Pn. Hence, the hyperplane line bundle O(1) over Pn is very
ample.

A form ω on a complex manifold M is said to be a positive form if for any non-zero
V ∈ T M, we have ω(V, JV) > 0. For a Kähler form ω, we have ω(V, JV) = g(V,V) > 0
as g is a Riemannian metric, i.e. a Kähler form is a positive form.

Definition 3.2.3. For j ∈ {1, 2}, let M j be a smooth manifold and L j → M j be a line bundle.
Let π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 are projection onto the first and second
coordinates respectively. Then the line bundle π∗1(L1) ⊗ π∗2(L2) → M1 × M2 is denoted by
L1 ⊠ L2 → M1 × M2. This line bundle is sometimes also called the box product or external
tensor product of the line bundles L1 and L2.



Chapter 4

Manifolds and Corresponding Quantum
Hilbert Spaces

In the theory of geometric quantization, corresponding to a symplectic manifold having a line
bundle with certain structures, we get a subspace of the space of global sections of the line
bundle as the quantum Hilbert space. In this chapter, we consider compact complex manifold
M having a positive holomorphic hermitian line bundle L. Then the corresponding quantum
Hilbert space is defined to be the finite-dimensional Hilbert space H0(M, L) of the global holo-
morphic sections of L. We study different quantum information theoretic properties associated
with this Hilbert space. The main results in this chapter are Theorems 4.2.1, 4.2.4, 4.2.6,
4.3.1,4.4.7, 4.4.10,4.4.11 and Corollary 4.4.9.

4.1 Introduction

Quantization is an approach to defining a system in quantum mechanics corresponding to a
system in classical mechanics. In this section, without going into detail, we shall briefly sum-
marize what is meant by quantization. A partial list of references to learn more about quan-
tization is [Car18; Kir07; CLL21]. The theory of classical mechanics is modelled using the
cotangent bundle M = T ∗Q for some configuration space Q consisting of local position coor-
dinates. The classical observables are functions on this manifold. The cotangent bundle T ∗Q is
called the classical phase space. The theory of quantum mechanics, on the other hand, is mod-
elled using a quantum Hilbert space and the observables are operators on this Hilbert space.
Quantization is a process, for which there is no general recipe, that attempts to produce a cor-
rect quantum theory corresponding to a classical theory, in some limiting cases. The cotangent
bundle M = T ∗Q naturally has a symplectic manifold structure. Geometric quantization does
not only attempt to quantize symplectic manifolds that are cotangent bundles but also attempts

32
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to produce a theory of quantization for a general symplectic manifold (M, ω).

The aim is to produce a map from the algebra of functions of M to a suitable Hilbert
space having some specific properties (sometimes also called the Dirac conditions). It turns
out that to satisfy these conditions is equivalent to having a hermitian line bundle L over M
with a connection ∇ such that the curvature form is proportional to the symplectic form ω

(such a line bundle is called a pre-quantum line bundle). A symplectic manifold (M, ω) is said
to be pre-quantizable if there exists a pre-quantum line bundle over M. The map that carries
functions on M to operators on the Hilbert spaceHp (known as a pre-quantum Hilbert space) of
square-integrable sections of the line bundle, is known as the pre-quantization map. However,
this Hilbert space does not provide the right quantum observables corresponding to classical
observables and we need to cut down the pre-quantum Hilbert space. This process is known as
choosing a polarization and we finally get a subspace of the pre-quantum Hilbert space known
as the quantum Hilbert space. The process of choosing a polarization is not unique in general.
For Kähler manifolds (M, ω) with a pre-quantum line bundle, there is a standard method of
choosing the polarization to get the standard quantum Hilbert space H0(M, L) [Kir07]. This
is also known as Kähler Quantization. For pre-quantizable non-Kähler manifolds, there are
multiple methods of choosing the polarizations, notably almost Kähler quantization [BU96]
and Spinc quantization [Mei98].

This chapter’s central object of study is compact complex manifolds with a positive holo-
morphic hermitian line bundle. We study how properties of the manifold or subsets of this man-
ifold manifest in the quantum information-theoretic properties of the Hilbert space H0(M, L).

The setup for the works involved in the contents of this chapter is the following: for
j ∈ {1, 2} let (L j, h j) be a positive holomorphic hermitian line bundle on a compact com-
plex manifold M j. (Equivalently, consider L j to be a holomorphic hermitian line bundle on a
compact Kähler manifold (M j, ω j) of complex dimension d j ≥ 1 such that the curvature of the
Chern connection on L j is −iω j.) The line bundle defined above is an ample line bundle. Let

µ j be the measure on M j associated to the volume form
ω

d j
j

d j!
and µ be the measure on M1 × M2

associated to the volume form ω
d1
1 ω

d2
2

d1!d2! . Let π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 be
the projections onto the first and the second manifold respectively. Recall that the holomorphic
hermitian line bundle LN

1 ⊠LN
2 → M1×M2 (the external tensor product of line bundles LN

1 → M1

and LN
2 → M2) is defined by LN

1 ⊠ LN
2 = π

∗
1(LN

1 ) ⊗ π∗2(LN
2 ) and we have

H0(M1 × M2, LN
1 ⊠ LN

2 ) � H0(M1, LN
1 ) ⊗ H0(M2, LN

2 ). (4.1)

Further, since the Kähler manifolds involved are compact, these spaces are finite-dimensional.
The space of global holomorphic sections H0(M j, LN

j ) forms a Hilbert space with the following
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inner product:

⟨s1, s2⟩ j =

∫
M j

h j(s1(z), s2(z))dµ j(z) for s1, s2 ∈ H0(M j, LN
j ).

Similarly, the space H0(M1 ×M2, LN
1 ⊠ LN

2 ) is a Hilbert space with the inner product ⟨., .⟩ given
using ⟨., .⟩1 and ⟨., .⟩2 and the relation 4.1.

4.2 Average entropy and asymptotics

In this section, we determine the N → ∞ asymptotics of the expected value of entanglement
entropy for pure states in H0(M1 × M2, LN

1 ⊠ LN
2 ). The work presented in this section is the

contents of the paper [BSaikia24], modified slightly to fit the context.

4.2.1 Motivation

Calculations of entropy on the Hilbert spaces of geometric quantization or Toeplitz quantization
lead to interesting insights [BP17; CE19]. In [FZ22], the main result is the k → ∞ asymptotics
of the Shannon entropies of µk

z , where k ∈ N, z ∈ M, M is a toric Kähler manifold with an
ample toric hermitian line bundle, and µk

z are the Bergman measures that were introduced by
Zelditch in [Zel09] to define generalized Bernstein polynomials and were subsequently used in
[SZ12; ZZ21]. In a series of papers on random sections of line bundles, starting with [SZ99],
Shiffmann and Zelditch worked with the probability space

∞∏
k=1

S H0(M, Lk)

where L→ M is an ample holomorphic hermitian line bundle on a compact complex manifold
M and S H0(M, Lk) is the unit sphere in the finite-dimensional Hilbert space H0(M, Lk). In this
section, we consider instead the probability space

Ω =

∞∏
k=1

S (H0(M, Lk) ⊗ H0(M, Lk)). (4.2)

and a sequence of random variables (R-valued functions on Ω) Ek ◦ pk, where pk is the pro-
jection to the k-th component in the product

∏∞
k=1 above in (4.2), and Ek is the entanglement

entropy. We find the k → ∞ asymptotics of the sequence of expected values of these random
variables. In fact, we prove a more general result.
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Theorem 4.2.1 ([BSaikia24]). Let L1 → M1 and L2 → M2 be positive holomorphic hermitian
line bundles on compact complex manifolds M1 and M2 of complex dimensions d1 and d2

respectively. Assume w.l.o.g. d1 ≤ d2. Let dµN , for each N ∈ N, be the measure on the unit
sphere S N = S (H0(M1, LN

1 ) ⊗ H0(M2, LN
2 )) induced by the hermitian metrics. There are the

following N → ∞ asymptotics for the average entanglement entropy

⟨EN⟩ =

∫
S N

EN(v)dµN(v)∫
S N

dµN(v)
.

Let

β j =

∫
M j

c1(L j)d j

d j!
and γ j =

1
2

∫
M j

c1(T M j)c1(L j)d j−1

(d j − 1)!

for j ∈ {1, 2}. As N → ∞,

⟨EN⟩ ∼


ln β1 + d1 ln N − β1

2β2
+

(
γ1
β1
−

β1
2β2

(γ1
β1
−

γ2
β2

)
)

1
N + O( 1

N2 ), if d1 = d2;

ln β1 + d1 ln N +
(
γ1
β1
−

β1
2β2

)
1
N + O( 1

N2 ), if d1 = d2 − 1;

ln β1 + d1 ln N + γ1
β1

1
N + O( 1

N2 ), if d1 − d2 ≤ −2.

Remark 4.2.2. We observe that a statement analogous to Theorem 4.2.1 holds for semi-positive
line bundles L j on Moishezon manifolds M j, j ∈ {1, 2}. A compact connected complex mani-
fold M of complex dimension d is called a Moishezon manifold if it possesses d algebraically
independent meromorphic functions [MM00]. Equivalently, M is Moishezon if and only if it
is bi-meromorphic to a d-dimensional projective algebraic variety. The following is true. Let
L1 → M1 and L2 → M2 be holomorphic hermitian line bundles on compact connected complex
manifolds M1 and M2 of complex dimensions d1 and d2 respectively. Assume w.l.o.g. d1 ≤ d2.
Assume M1 and M2 are Moishezon and L1, L2 are semi-positive. Let dµN , for each N ∈ N, be
the measure on the unit sphere S N = S (H0(M1, LN

1 ) ⊗ H0(M2, LN
2 )) induced by the hermitian

metrics. There are the following N → ∞ asymptotics for the average entanglement entropy on
the Hilbert spaces H0(M1, LN

1 ) ⊗ H0(M2, LN
2 ): as N → ∞

⟨EN⟩ ∼

 ln β1 + d1 ln N − β1
2β2
+ o(1), if d1 = d2;

ln β1 + d1 ln N + o(1), if d1 < d2.

where, as before, β j =
∫

M j

c1(L j)
d j

d j!
for j = 1, 2. The proof is similar to the proof of Theorem

4.2.1 in section 4.2.3 below, with (4.22, 4.23) replaced by (from Theorem 1.7.1 [MM00])

m = m(N) = dim H0(M1, LN
1 ) = Nd1

∫
M1

c1(L1)d1

d1!
+ o(Nd1)
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n = n(N) = dim H0(M2, LN
2 ) = Nd2

∫
M2

c1(L2)d2

d2!
+ o(Nd2).

4.2.2 Preliminaries and setup

In this section, we establish the background and write the proofs needed for Theorem 4.2.1.
An expression for the average entanglement entropy for the tensor product of two finite-
dimensional Hilbert spaces is the statement of Page conjecture [Pag93]. There were several
derivations of this formula in the physics literature, including [Sen96]. They seem to assume
the equality (4.4) (see below) as a starting point. Our Theorem 4.2.4 below is a proof of (4.4).
Then, our proof of Theorem 4.2.6 follows the idea of Sen [Sen96]. Finally, we rely on the
semiclassical methods, together with the statement of Theorem 4.2.6, to prove our main result,
Theorem 4.2.1 above.

LetHA andHB be two complex Hilbert spaces of complex-dimension m and n respectively
with m ≤ n. We note that HA ⊗ HB � C

m ⊗ Cn � R2mn. The average value of entanglement
over all the pure states would mathematically mean that we integrate the function entropy of
entanglement over the set of all pure states (which is geometrically the complex projective
space P(HA ⊗ HB)) with respect to the normalized volume measure. In this section, we also
provide a clarification of why considering the integral over S(HA⊗HB) instead of P(HA⊗HB) is
sufficient. It is due to the property that the entropy of entanglement is invariant under the action
of the circle S1, we can instead use the Hopf fibration to compute the integral over S(HA ⊗HB)
with the spherical measure on S(HA ⊗HB) (see Proposition 4.2.5).

The spherical measure, in turn, can be written in terms of the ambient Euclidean measure
on the unit ball inHA ⊗HB � R

2mn with some adjustment in the integrand function. Motivated
by the fact that the Singular Value Decomposition (SVD) of a matrix and the Schmidt decom-
position of a vector are essentially the same (see Theorem 2.4.10), we use a change of variable
using the SVD to reduce the number of variables in the integral from 2mn to only min{m, n}
real variable.

Let S2mn−1 = {v ∈ HA ⊗ HB : ∥v∥ = 1} ⊂ HA ⊗ HB be the unit sphere in HA ⊗ HB and
dµ be the standard spherical measure on S2mn−1, normalized so that

∫
S2mn−1 dµ = 1. We fix an

orthonormal basis {e1, e2, ..., em} for HA and { f1, f2, ..., fn} for HB. Then we have a canonical
isomorphism A : HA ⊗HB → Mn×m(C) given by

v =
n∑

j=1

m∑
k=1

a jk(v)ek ⊗ f j 7→ A(v) = (a jk(v))n×m. (4.3)

This map is also a diffeomorphism. Using Mn×m(C) � R2mn, we identify an n × m matrix with

a point in R2mn. For v ∈ HA ⊗ HB, we have the SVD of A(v) = U(v)

Σ(v)
0

 V(v)∗, where
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U(v) ∈ U(n) and V(v) ∈ U(m) and Σ(v) = diag{σ1(v), σ2(v), ..., σm(v)} is a diagonal matrix
with 0 ≤ σ1 ≤ σ2 ≤ ... ≤ σm, called the singular values of the matrix A(v). Note that in the
SVD of a matrix, the diagonal matrix Σ(v) is unique (up to permutation), however, the choice
of U(v) and V(v) is not unique.

The Schmidt coefficients of v are the same as the singular values of A(v). If σ1(v), σ2(v), ...,
σm(v) are Schmidt coefficients of v ∈ B2mn (where B2mn is the closed unit ball in R2mn), then∑m

j=1 σ j(v)2 = ∥v∥2 ≤ 1, i.e. for every v ∈ B2mn, there exists a triple (U(v),Σ(v),V(v)) such

that A(v) = U(v)

Σ(v)
0

 V(v)∗, where U(v) ∈ U(n) and V(v) ∈ U(m) are unitary matrices and

Σ(v) = diag{σ1(v), σ2(v), ..., σm(v)} a diagonal matrix with 0 ≤ σ1(v) ≤ σ2(v) ≤ ... ≤ σm(v)

and
∑m

j=1 σ j(v)2 ≤ 1. Conversely, if A(v) ∈ Mn×m has a SVD A(v) = U(v)

Σ(v)
0

 V(v)∗ such that∑m
j=1 σ

2
j ≤ 1, then v ∈ B2mn.

Lemma 4.2.3. The singular value decomposition A = U

Σ0
 V∗ of a matrix A ∈ Mn×m(C)

is not unique. However, for a matrix A with distinct non-zero singular values, we can find
a unique triple ([Ũ],Σ, [Ṽ]), where [Ũ] ∈ Vn

m(C) (= U(n)/U(n − m), the complex Stiefel
manifold),Σ ∈ {diag{x1, x2, ..., xm} : 0 < x1 < x2 < ... < xm}, and [Ṽ] ∈ U(m)/U(1)m such that

the first non-vanishing entry in each column of V is positive and A = Ũ

Σ0
 Ṽ. Let us call this

decomposition the “modified SVD” for the matrix A.

Proof. Let A be a n × m matrix with distinct singular values and A = U

Σ0
 V∗ be an SVD of

A, so the entries of Σ are distinct. Let U =
(
U1 U2

)
where U1 is the matrix whose columns

are the first m columns of U and U2 is the matrix whose columns are the last n −m columns of
U. Then we see that A = U1ΣV∗. To see that SVD is not unique, let τ = diag{eiθ1 , eiθ2 , ..., eiθm}

for −π < θ1, θ2, ..., θm ≤ π. Let V ′ = Vτ and U′ = U

τ 0
0 I

 are unitary matrices respective size.

Then U′ΣV ′∗ =
(
U1 U2

) τ 0
0 I

 Σ0
 (Vτ)∗ = U1ΣV∗ = A is also an SVD of A.

Let V = [v jk] ∈ U(m). For each j ∈ {1, 2, ...,m}, suppose vk j j be the first entry in the j-th
column such that vk j j , 0. Let vk j j = |vk j j|eiθ j , θ j ∈ (−π, π], we define

Ṽ j = (v1 je−iθ j , ..., |vk j j|, ..., vn je−iθ j)T

(τV) j = (0, ..., eiθ j , ..., 0)T
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Let Ṽ and τV be the unitaries with j-th column equal to Ṽ j and (τV) j respectively. Then we
see that V = ṼτV . The mapU(m) → (U(m)/(U(1))m) × (U(1))m given by V 7→ ([Ṽ], τV) is a
bijection, where [Ṽ] represents the equivalent class of (U(m)/(U(1))m) containing Ṽ .

Now, suppose A = U

Σ0
 V∗ is an SVD of A where diagonal entries of Σ are in ascend-

ing order. Let V = ṼτV be the factorization of V as above and Ũ =
(
U1 U2

) τ∗V 0
0 I

 =(
U1τ

∗
V U2

)
=

(
Ũ1 Ũ2

)
(say). Thus, we have a triple ([Ũ],Σ, [Ṽ]) such that the first non-zero

entry of each column of V is positive and Ũ

Σ0
 Ṽ∗ = A.

Suppose we have another triple ([Ẽ],Σ, [F̃]) such that the first non-zero entry of each col-

umn F is positive and A = Ẽ

Σ0
 F̃∗. Since Σ is the same as before and all entries of Σ are

non-zero and distinct, the j-th column of F̃ must be eiϕ jṼ j for some ϕ j ∈ (−π, π]. Further,
since k j-th entries of both these columns must be positive, therefore we must have ϕ j = 0, i.e.
F̃ = Ṽ . Since Ṽ = F̃ and all entries of the diagonal matrix Σ are non-zero and distinct, using
the following

Ẽ

Σ0
 F̃∗ = A = Ũ

Σ0
 Ṽ∗,

we get that the j-th column of Ẽ is equal to the j-th column of Ũ for all j ∈ {1, 2, ...,m}, i.e.
Ẽ1 = Ũ1, i.e. [Ẽ] = [Ũ] as an element ofU(n)/U(n − m). This completes the uniqueness part
of the proof. □

Note that for matrix A with singular values that are not distinct, even the “modified SVD”
is not unique. This is because we can permute the equal singular values in Σ to get a different
SVD decomposition of A where the columns of Ũ and Ṽ are also permuted accordingly.

Theorem 4.2.4 ([BSaikia24]). Let f be a continuous function on S2mn−1 that depends only on
the squares of the Schmidt coefficients. For v ∈ B2mn, let σ1(v), ..., σm(v) be the Schmidt coef-
ficients of v and p1(v), ..., pm(v) be the eigenvalues of TrB(vv∗) (i.e. by the proof of Proposition
2.4.11, we have p j(v) = σ2

τ( j)(v) for some τ ∈ S m), then

∫
S2mn−1

f (u)dµ(u) =

∫
Tm

f
(

p1(v)∑m
k=1 pk(v) , ...,

pm(v)∑m
k=1 pk(v)

) m∏
1≤ j<k≤m

(pk(v) − p j(v))2 ∏m
j=1 p j(v)n−mdp j(v)∫

Tm

∏m
1≤ j<k≤m(pk(v) − p j(v))2 ∏m

j=1 p j(v)n−mdp j(v)

(4.4)
where Tm = {(x1, ..., xm) ∈ Rm : 0 < x1 < ... < xm and x1 + ... + xm ≤ 1} and µ is the standard
spherical measure on S2mn−1 normalized so that

∫
S2mn−1 dµ = 1.



4.2. Average entropy and asymptotics 39

Proof. We will use the Lebesgue measure ν of the ambient Euclidean space R2mn and then for
X ⊂ S2mn−1, µ(X) = 1

Vol(B2mn)ν({tx|x ∈ X and t ∈ [0, 1]}). Then for an integrable function defined
on S2mn−1, we have ∫

S2mn−1
f (u)dµ(u) =

1
Vol(B2mn)

∫
B2mn

f
(

v
∥v∥

)
dν(v).

Suppose S = {v ∈ B2mn : the singular values of A(v) are non-zero and distinct} where A(v)
is the matrix given by the map A defined in Equation (4.3). Let B be the set {(x1, ..., xm) ∈ Rm :
0 < x1 < x2 < ... < xm and x2

1 + ... + x2 ≤ 1}. Then the “modified SVD” composed with the
map A gives an one-to-one correspondence between S and Vn

m(C)×B× (U(m)/(U(1))m). Note
that B2mn \ S is a set of measure zero, therefore∫

B2mn
f
(

v
∥v∥

)
dν(v) =

∫
S

f
(

v
∥v∥

)
dν(v).

For v ∈ S, we will make a change of variables using singular value decomposition of

A(v) = Ũ(v)

Σ(v)
0

 Ṽ(v)∗, where Ũ =
(
Ũ1 Ũ2

)
with Ũ1 and Ũ2 the matrices with columns the

first m columns of Ũ and last n −m columns of Ũ respectively. Let ũ j(v) be the j-th column of
Ũ(v) and ṽk(v) be the k-th column of Ṽ(v). Now,

A(v) = Ũ(v)

Σ(v)
0

 Ṽ∗(v)

hence

dA(v) = dŨ(v)

Σ(v)
0

 Ṽ∗(v) + Ũ(v)

dΣ(v)
0

 Ṽ∗(v) + Ũ(v)

Σ(v)
0

 dṼ∗(v).

The volume measure at v0 ∈ S can be written as Ũ∗(v0)dA(v)Ṽ(v0)|v=v0 (as Ũ∗(v0) and Ṽ(v0)
being unitary matrices do not affect the volume). Let

dB(v0) = Ũ∗(v0)dA(v)Ṽ(v0)|v=v0 .

Then,

dB(v0) = Ũ∗(v0)dŨ(v0)

Σ(v0)
0

 + dΣ(v0)
0

 + Σ(v0)
0

 dṼ∗(v0)Ṽ(v0)

=

Ũ∗1(v0)dŨ1(v0)Σ(v0) + dΣ(v0) + Σ(v0)dṼ∗(v0)Ṽ(v0)
Ũ∗2(v0)dŨ1(v0)Σ(v0)


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As v0 was an arbitrary point in S, so we have

dB(v) =

Ũ∗1(v)dŨ1(v)Σ(v) + dΣ(v) + Σ(v)dṼ∗(v)Ṽ(v)
Ũ∗2(v)dŨ1(v)Σ(v)


For notational convenience, we drop the “(v)” to write

dB =

Ũ∗1dŨ1Σ + dΣ + ΣdṼ∗Ṽ
Ũ∗2dŨ1Σ

 .
Since Ũ∗1Ũ1 = I, it follows that dŨ∗1Ũ1 + Ũ∗1dŨ1 = 0, then

Ũ∗1dŨ1 = −dŨ∗1Ũ1 = −(Ũ∗1dŨ1)∗,

so Ũ∗1dŨ1 is an anti-hermitian matrix. Similarly, Ṽ∗dṼ is also anti-hermitian. Denote E =
Ũ∗1dŨ1 and F = Ṽ∗dṼ , then for j, k ∈ {1, 2, ...,m} we have E jk = ũ∗jdũk and F jk = ṽ∗jdṽk. Now,

dB =

EΣ + dΣ − ΣF
Ũ∗2dŨ1Σ

 .
As E and F are anti-hermitian, the diagonal elements of E and F are imaginary. It follows that
the real parts of diagonal elements of dB are exactly the diagonal elements of dΣ and imaginary
parts of the diagonal elements of dB come from the matrix EΣ − ΣF, i.e,

Re(dB j j) = dΣ j j = dσ j

Im(dB j j) = σ j(Im(ũ∗jdũ j) − Im(ṽ∗jdṽ j))

for j ∈ {1, 2, ...,m}. Let j ∈ {1, 2, ...,m} with j > k, then

dB jk = σkE jk − σ jF jk

dBk j = σ jEk j − σkFk j = −σ jE jk + σkF jk.

We get,

Re(dB jk) = σk Re(E jk) − σ j Re(F jk)

Im(dB jk) = σk Im(E jk) − σ j Im(F jk)

Re(dBk j) = −σ j Re(E jk) + σk Re(F jk)

Im(dBk j) = σ j Im(E jk) − σk Im(F jk)
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Computing the wedge of real parts and the imaginary parts,

Re(dB jk) Re(dBk j) = (σ2
k − σ

2
j) Re(E jk) Re(F jk)

Im(dB jk) Im(dBk j) = (σ2
k − σ

2
j) Im(F jk) Im(E jk)

we get that

Re(dB jk) Im(dB jk) Re(dBk j) Im(dBk j) = −(σ2
k − σ

2
j)

2 Re(ũ∗jdũk) Im(ũ∗jdũk) Re(ṽ∗jdṽk) Im(ṽ∗jdṽk).

Combining all these and ignoring the sign, we get the form

m∧
j=1

Re(dB j j)
m∧

j,k=1, j,k

Re(dB jk) Im(dB jk)

=

m∧
j=1

dσ j

m∏
1≤ j<k≤m

(σ2
k − σ

2
j)

2η
∧

1≤ j<k≤m

Re(ũ∗jdũk) Im(ũ∗jdũk)

where η =
∧

1≤ j<k≤m

Re(ṽ∗jdṽk) Im(ṽ∗jdṽk).

We note that η is a volume form of U(m)/(U(1)m). For the imaginary part of the diagonal
entries, for j, k ∈ {1, ...,m} with j , k, let’s look at the following

Im(dB j j) ∧ Im(dBkk)

=σ j(Im(ũ∗jdũ j) − Im(ṽ∗jdṽ j)) ∧ σk(Im(ũ∗kdũk) − Im(ṽ∗kdṽk))

=σ jσk Im(ũ∗jdũ j) Im(ũ∗kdũk) + κ

where κ = σ jσk[Im(ṽ∗jdṽ j) Im(ṽ∗kdṽk) − Im(ũ∗jdũ j) Im(ṽ∗kdṽk) − Im(ũ∗kdũk) Im(ṽ∗jdṽ j)]. We note
that η is the volume form of the compact group U(m)/U(1)m, so κ ∧ η = 0 (as η already
contains all the independent variables coming from V). So,

m∧
j=1

Im(dB j j) =
m∏

j=1

σ j

m∧
j=1

Im(ũ∗jdũ j).

Therefore,

m∧
j,k=1

(Re(dB jk) Im(dB jk)

=

m∏
j=1

σ j

∏
1≤ j<k≤m

(σ2
k − σ

2
j)

2η
∧

1≤ j<k≤m

Re(ũ∗jdũk) Im(ũ∗jdũk)
m∧

j=1

Im(ũ∗jdũ j)
m∧

j=1

dσ j
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Now, for k ∈ {1, 2, ...,m} and j ∈ {m+1,m+2, ..., n}, we have dB jk = (Ũ2dŨ1Σ) j−m,k = σkũ∗jdũk.

Therefore,

n∧
j=m+1

m∧
k=1

Re(dB jk) Im(dB jk) =
n∧

j=m+1

m∧
k=1

σ2
k Re(ũ∗jdũk) Im(ũ∗jdũk)

=

m∏
j=1

σ2(n−m)
k

n∧
j=m+1

m∧
k=1

Re(ũ∗jdũk) Im(ũ∗jdũk)

Gathering all these and ignoring sign, we get that

ρ =

n∧
j=1

m∧
k=1

Re(dB jk) Im(dB jk)

=

m∏
j=1

σ j

m∏
1≤ j<k≤m

(σ2
k − σ

2
j)

2
m∏

j=1

σ2(n−m)
k ηω

m∧
j=1

dσ j

where

ω =

m∧
1≤ j<k≤m

Re(ũ∗jdũk) Im(ũ∗jdũk)
m∧

j=1

Im(ũ∗jdũ j)
n∧

j=m+1

m∧
k=1

Re(ũ∗jdũk) Im(ũ∗jdũk)

is a form independent of σ j’s. We have∫
S2mn−1

dµ =
1

Vol(B2mn)

∫
S

dν

=
c(m, n)

Vol(B2mn)

∫
(U(m)/(U(1))m)×B×Vn

m(C)
ρ

=
c(m, n)

Vol(B2mn)

∫
U(m)/(U(1))m

η

∫
Vn

m(C)
ω

∫
B

m∏
j=1

σ j

m∏
1≤ j<k≤m

(σ2
k − σ

2
j)

2
m∏

j=1

σ2(n−m)
j dσ j

where c(m, n) is a constant due to the requirement that
∫
S2mn−1 dµ = 1. For the integral∫

B

∏m
j=1 σ j

∏m
1≤ j<k≤m(σ2

k − σ
2
j)

2 ∏m
j=1 σ

2(n−m)
j dσ j, we change variables to p j = σ

2
j to get

∫
B

m∏
j=1

σ j

m∏
1≤ j<k≤m

(σ2
k − σ

2
j)

2
m∏

j=1

σ2(n−m)
j dσ j =

1
2m

∫
Tm

m∏
1≤ j<k≤m

(pk − p j)2
m∏

j=1

pn−m
j dp j.

We note that for v ∈ B2mn, if p1, ..., pm are the eigenvalues of TrB(vv∗), then p1∑m
j=1 p j

, ..., pm∑m
j=1 p j

are the eigenvalues of TrB( vv∗
∥v∥2 ). Therefore, for a function f on S2mn−1 that depends only on

the squares of the Schmidt coefficients σ j(u) of u ∈ S2mn−1 (in other words, depends only on
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p j(u)’s), we get∫
S2mn−1

f (u)dµ(u)

=
1

Vol(B2mn)

∫
S

f
(

v
∥v∥

)
dν(v)

=
c(m, n)

Vol(B2mn)

∫
(U(m)/(U(1))m)×B×Vn

m(C)
f
(

v
∥v∥

)
ρ

=

c(m,n)
Vol(B2mn)

∫
(U(m)/(U(1))m)×B×Vn

m(C)
f
(

v
∥v∥

)
ρ

c(m,n)
Vol(B2mn)

∫
(U(m)/(U(1))m)×B×Vn

m(C)
ρ

(as the denominator is
∫

S
dµ = 1)

=

∫
Tm

f
(

p1(v)∑m
k=1 pk(v) , ...,

pm(v)∑m
k=1 pk(v)

)∏m
1≤ j<k≤m(pk(v) − p j(v))2 ∏m

j=1 p j(v)n−mdp j(v)∫
Tm

∏m
1≤ j<k≤m(pk(v) − p j(v))2 ∏m

j=1 p j(v)n−mdp j(v)
.

□

Proposition 4.2.5. Let S2n+1 → Pn be the Hopf fibration and f : S2n+1 → R be a continuous
function such that f is constant on the fibers, i.e. f : Pn → R is also a well-defined continuous
function. Then ∫

S2n+1 f (x)dµ(x)∫
S2n+1 dµ(x)

=

∫
Pn f (x)dν(x)∫
Pn dν(x)

(4.5)

where µ is the standard spherical measure on S2n+1 and ν is the measure coming from Fubini-
Study metric on Pn.

Proof. Let ηk be the standard Riemannian volume form on Sk and ωFS be the Fubini-Study
form on Pn. The standard spherical measure on S2n+1 comes from the standard Riemannian
metric g on the sphere. This metric is invariant under the action of S1 and descends the quotient
S2n+1/S1 to produce the Fubini-Study metric gFS on Pn.

Let {U j} be a trivializing open cover for the Hopf fibration S2n+1 → Pn. Let g( j) be the
metric restricted to U j × S

1 and g( j)
FS be the metric restricted to U j. Then g( j) is simply the

product metric of g( j)
FS and the standard Riemannian metric on S1. Therefore the restricted

Riemannian volume form on U j × S
1 is given by η2n+1|U j×S1 = c jω

n
FS |U j ∧ η1 for some non-zero

constant c. Let us denote ω j = ω
n
FS |U j .

Let {ρ j} be a partition of unity subordinate to the open cover {U j} of Pn, then {ρ′j} is a
partition of unity subordinate to the open cover {U j × S

1} where ρ′j(x, y) = ρ j(x) for all (x, y) ∈
U j × S

1 and ρ′j(x, y) = 0 for all (x, y) < U j × S
1. Then we have

ωn
FS =

∑
j

ρ jω
n
j
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and
η2n+1 =

∑
j

c jρ
′
jω

n
j ∧ η1.

Now for any continuous function h : S 2n+1 → R that is constant on the fibers, we have∫
S2n+1

hη2n+1 =
∑

j

c j

∫
U j×S1

hρ′jω
n
j ∧ η1

=
∑

j

c j

∫
U j

hρ jω
n
j

∫
S1
η1 (using Fubini’s Theorem)

=2π
∑

j

c j

∫
U j

hρ jω
n
j

=2π
∫
Pn

hωn
FS

Hence, we have ∫
S2n+1 f (x)dµ(x)∫
S2n+1 dµ(x)

=
2π

∫
Pn f (x)dν(x)

2π
∫
Pn dν(x)

=

∫
Pn f (x)dν(x)∫
Pn dν(x)

.

□

From the Propositions 2.4.13 and 2.4.15, we have seen that the entropy of entanglement is
a continuous function on S(HA ⊗ HB) that is also well defined on P(HA ⊗ HB), therefore the
expected value of the entropy of entanglement over all the pure states is∫

P(HA⊗HB)
E(m,n)(u)dν(u)∫

P(HA⊗HB)
dν(x)

,

which by the above Proposition 4.2.5 is equivalent to the Equation 4.6 below.

Theorem 4.2.6. [BSaikia24] The expected value of the entropy of entanglement of all the pure
states inHA ⊗HB is

⟨E(m,n)⟩ =

mn∑
k=n+1

1
k
+

m − 1
2n

.

Proof. We base our proof on the general idea of the proof in [Sen96]. Let µ be the spherical
measure on S2mn−1 normalized such that

∫
S2mn−1 dµ = 1. The expected value of the entropy of

entanglement over all the pure states is given by∫
S2mn−1

E(m,n)(u)dµ(u). (4.6)
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Now, using Theorem 4.2.4, we get∫
S2mn−1

E(m,n)(u)dµ(u)

=

∫
Tm

(
−

∑m
j=1

p j∑m
k=1 pk

ln p j∑m
k=1 pk

)∏m
1≤ j<k≤m(pk − p j)2 ∏m

j=1 pn−m
j dp j∫

Tm

∏m
1≤ j<k≤m(pk − p j)2 ∏m

j=1 pn−m
j dp j

. (4.7)

Note that both the functions P(p1, ..., pm) =
∏m

1≤ j<k≤m(pk − p j)2 ∏m
j=1 pn−m

j and E(m,n) =(
−

∑m
j=1

p j∑m
k=1 pk

ln p j∑m
k=1 pk

)
P(p1, ..., pm) are symmetric in the arguments p1, ..., pm, therefore the

condition in the region of integration 0 < x1 < .... < xm of Tm can be removed to rewrite

⟨E(m,n)⟩ =

2m
∫

Tm

(
−

∑m
j=1

p j∑m
k=1 pk

ln p j∑m
k=1 pk

)∏m
1≤ j<k≤m(pk − p j)2 ∏m

j=1 pn−m
j dp j

2m
∫

Tm

∏m
1≤ j<k≤m(pk − p j)2 ∏m

j=1 pn−m
j dp j

=

∫
Rm

(
−

∑m
j=1

p j∑m
k=1 pk

ln p j∑m
k=1 pk

)∏m
1≤ j<k≤m(pk − p j)2 ∏m

j=1 pn−m
j dp j∫

Rm

∏m
1≤ j<k≤m(pk − p j)2 ∏m

j=1 pn−m
j dp j

, (4.8)

where Rm = {(x1, ..., xm) ∈ Rm : 0 ≤ x1, ..., xm and x1 + ... + xm ≤ 1}.

We change variables to (q1, ..., qm−1, r) such that q1 + ... + qm−1 + qm = 1, and qk = rpk for
k = 1, 2, ...,m (i.e. r = 1∑m

j=1 p j
), so r ∈ [1,∞). Then for j ∈ {1, ...,m} we have,

∂qk

∂p j
= δ jkr for k ∈ {1, ...,m − 1}

∂r
∂p j
=

∂

∂p j

(
1∑
k pk

)
=

−1
(
∑

k pk)2 = −r2

We denote Fm = {(x1, x2, ..., xm) ∈ Rm : x1, x2, ..., xm ≥ 0 and x1 + x2 + ... + xm = 1}. So, the
integral becomes∫ ∞

1

∫
Fm

(
−

∑m
j=1 q j ln q j

)∏m
1≤ j<k≤m( qk

r −
q j

r )2 ∏m
j=1

(q j

r

)n−m 1
rm+1 dr

∏m−1
j=1 dq j∫ ∞

1

∫
Fm

∏m
1≤ j<k≤m( qk

r −
q j

r )2 ∏m
j=1

(q j

r

)n−m 1
rm+1 dr

∏m−1
j=1 dq j

=

∫ ∞
1

dr
rmn+1

∫
Fm

(
−

∑m
j=1 q j ln q j

)∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j∫ ∞

1
dr

rmn+1

∫
Fm

∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j

=

∫
Fm

(
−

∑m
j=1 q j ln q j

)∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j∫

Fm

∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j

(4.9)

Let xk = tqk for k = 1, 2, ...,m with t ∈ [0,∞), so that x1 + x2 + ... + xm = t and xk ∈ [0,∞).
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Then, for j ∈ {1, 2, ...,m}, we have

∂qk

∂x j
= δ jkt for k ∈ {1, 2, ...,m − 1} and

∂t
∂x j
= 1

Using the determinant of the Jacobian, we get

dq1 ∧ ... ∧ dqm−1 ∧ dt =
1

tm−1 dx1 ∧ ... ∧ dxm−1 ∧ dxm

=
1

tm−1 dx1 ∧ ... ∧ dxm−1 ∧ d(x1 + ... + xm−1 + xm)

=
1

tm−1 dx1 ∧ ... ∧ dxm−1 ∧ dt (4.10)

Now, we use the gamma function Γ(z) =
∫ ∞

0
yz−1e−ydy and the derivative of the gamma function

Γ′(z) =
∫ ∞

0
yz−1e−y ln ydy. In particular,∫ ∞

0
tmne−tdt = Γ(mn + 1) = (mn)!,∫ ∞

0
tmne−t ln tdt = Γ′(mn + 1) = (mn)!ψ(mn + 1),

where ψ(N + 1) = −γ +
∑N

k=1
1
k and γ is the Euler constant. We have,∫

Fm

(
−

∑m
j=1 q j ln q j

)∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j∫

Fm

∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j

=
(mn − 1)!

(mn)!

∫ ∞
0

tmne−tdt
∫

Fm

(
−

∑m
j=1 q j ln q j

)∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j∫ ∞

0
tmn−1e−tdt

∫
Fm

∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j

=
1

mn

∫
[0,∞)m

(
−

∑m
j=1

( x j

t

)
ln

( x j

t

))∏m
1≤ j<k≤m

(
xk
t −

x j

t

)2 ∏m
j=1

( x j

t

)n−m
e−ttmn dt

tm−1

∏m−1
j=1 dx j∫

[0,∞)m

∏m
1≤ j<k≤m

(
xk
t −

x j

t

)2 ∏m
j=1

( x j

t

)n−m
e−ttmn−1 dt

tm−1

∏m−1
j=1 dx j

=
1

mn

∫
[0,∞)m

(
−

∑m
j=1 x j ln

( x j

t

))∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j∫

[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

=

∫
[0,∞)m t ln t

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

mn
∫

[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

−

∫
[0,∞)m

(∑m
j=1 x j ln x j

)∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

mn
∫

[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

(4.11)

Let the first and the second integral in Equation (4.11) be denoted by I1 and I2 respectively. We



4.2. Average entropy and asymptotics 47

have

I1 =

∫
[0,∞)m t ln t

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

mn
∫

[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

=

∫ ∞
0

∫
Fm

t ln t
∏m

1≤ j<k≤m(tqk − tq j)2 ∏m
j=1(tq j)n−me−ttm−1dt

∏m−1
j=1 dq j

mn
∫ ∞

0

∫
Fm

∏m
1≤ j<k≤m(tqk − tq j)2 ∏m

j=1(tq j)n−me−ttm−1dt
∏m−1

j=1 dq j

=

∫ ∞
0

tmn ln te−tdt
∫

Fm

∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j

mn
∫ ∞

0
tmn−1e−tdt

∫
Fm

∏m
1≤ j<k≤m(qk − q j)2 ∏m

j=1 qn−m
j

∏m−1
j=1 dq j

=
Γ′(mn + 1)
mnΓ(mn)

= ψ(mn + 1) (4.12)

Using Equation (4.10), the second integral in Equation (4.11) becomes

I2 =

∫
[0,∞)m

(∑m
j=1 x j ln x j

)∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

mn
∫

[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−tdt

∏m−1
j=1 dx j

=

∑m
l=1

∫
[0,∞)m xl ln xl

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−(x1+...+xm) ∏m

j=1 dx j

mn
∫

[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−(x1+...+xm) ∏m

j=1 dx j
(4.13)

We observe that the Vandermonde determinant

∆(x1, ..., xm) =
m∏

1≤ j<k≤m

(xk − x j) = det


1 . . . 1
x1 . . . xm
...

. . .
...

xm−1
1 . . . xm−1

m

 .

As the determinant remains unchanged after applying elementary row operations, we see that

m∏
1≤ j<k≤m

(xk − x j) = det


f0(x1) . . . f0(xm)
f1(x1) . . . f1(xm)
...

. . .
...

fm−1(x1) . . . fm−1(xm)

 = det
m×m

( f j−1(xk)),

for any set of polynomials { f0, f1, ..., fm−1} with f0 = 1 and fk’s are monic with deg( fk) = k for
k = 1, ...,m − 1. We choose these polynomials cleverly for the ∆(x1, ..., xm)2 appearing in the
numerator and the denominator in Equation (4.13). We use a class of orthogonal polynomials,
generalized Laguerre polynomials, given by

L(α)
k (x) =

x−αex

k!
dk

dxk (e−xxk+α),
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where α ∈ R and k ∈ N ∪ {0}. These polynomials satisfy the orthogonality relation,∫ ∞

0
xαe−xL(α)

k (x)L(α)
j (x)dx =

Γ(k + α + 1)
k!

δ jk. (4.14)

Using these polynomials, we have∆(x1, ..., xm) = detm×m

(
L(α)

j−1(xk)
)
=

∑
σ∈S m

sgn(σ)
∏m

k=1 L(n−m)
σ(k−1)(xk).

The integral in Equation (4.13) becomes

I2 =

∑m
l=1

(∫
[0,∞)m xl ln xl

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−(x1+...+xm) ∏m

j=1 dx j

)
mn

∫
[0,∞)m

∏m
1≤ j<k≤m(xk − x j)2 ∏m

j=1 xn−m
j e−(x1+...+xm) ∏m

j=1 dx j

=

∑m
l=1

(∫
[0,∞)m xl ln xl∆(x1, ..., xm)∆(x1, ..., xm)

∏m
j=1 xn−m

j e−x jdx j

)
mn

∫
[0,∞)m ∆(x1, ..., xm)∆(x1, ..., xm)

∏m
j=1 xn−m

j e−x jdx j

=

∑m
l=1

(∫
[0,∞)m xl ln xl

∑
σ,τ∈S m

(
sgn(σ)sgn(τ)

∏m
k=1 L(n−m)

σ(k−1)(xk)L
(n−m)
τ(k−1)(xk)

∏m
j=1 xn−m

j e−x jdx j

))
mn

∫
[0,∞)m

∑
σ,τ∈S m

sgn(σ)sgn(τ)
∏m

k=1 L(n−m)
σ(k−1)(xk)L

(n−m)
τ(k−1)(xk)

∏m
j=1 xn−m

j e−x jdx j

=

∑m
l=1

∑
σ,τ∈S m

(
sgn(σ)sgn(τ)

∫
[0,∞)m xl ln xl

∏m
k=1 L(n−m)

σ(k−1)(xk)L
(n−m)
τ(k−1)(xk)xn−m

k e−xkdxk

)
mn

∑
σ,τ∈S m

(
sgn(σ)sgn(τ)

∫
[0,∞)m

∏m
k=1 L(n−m)

σ(k−1)(xk)L
(n−m)
τ(k−1)(xk)xn−m

k e−xkdxk

)
=

∑m
l=1

∑
σ,τ∈S m

(
sgn(σ)sgn(τ)

∏m
k=1

∫ ∞
0

(xk ln xk)δlk L(n−m)
σ(k−1)(xk)L

(n−m)
τ(k−1)(xk)xn−m

k e−xkdxk

)
mn

∑
σ,τ∈S m

(
sgn(σ)sgn(τ)

∏m
k=1

∫ ∞
0

L(n−m)
σ(k−1)(xk)L

(n−m)
τ(k−1)(xk)xn−m

k e−xkdxk

)
=

∑m
l=1

∑
σ∈S m

(∏m
k=1

∫ ∞
0

(xk ln xk)δlk[L(n−m)
σ(k−1)(xk)]2xn−m

k e−xkdxk

)
mn

∑
σ∈S m

(∏m
k=1

∫ ∞
0

[L(n−m)
σ(k−1)(xk)]2xn−m

k e−xkdxk

) (using the orthogonal property)

=

∑m
l=1

∑
σ∈S m

(∫ ∞
0

xn−m+1
l ln xl[L

(n−m)
σ(l−1)(xl)]2e−xldxl

∏m
k=1,k,l

(∫ ∞
0

[L(n−m)
σ(k−1)(xk)]2xn−m

k e−xkdxk

))
mn

∑
σ∈S m

(∏m
k=1

∫ ∞
0

[L(n−m)
σ(k−1)(xk)]2xn−m

k e−xkdxk

)
=

∑m
l=1

∑
σ∈S m

(∫ ∞
0

xn−m+1 ln x[L(n−m)
σ(l−1)(x)]2e−xdx

∏m
k=1,k,l

(∫ ∞
0

[L(n−m)
σ(k−1)(x)]2xn−me−xdx

))
mn

∑
σ∈S m

(∏m
k=1

∫ ∞
0

[L(n−m)
σ(k−1)(x)]2xn−me−xdx

)
=

∑m
l=1

(
(m − 1)!

∑m
s=1

(∫ ∞
0

xn−m+1 ln x[L(n−m)
s−1 (x)]2e−xdx

∏m
k=1,k,s

(∫ ∞
0

[L(n−m)
k−1 (x)]2xn−me−xdx

)))
mn(m)!

∏m
j=1

∫ ∞
0

[L(n−m)
j−1 (x)]2xn−me−xdx

=

m∑
l=1

m∑
s=1

∫ ∞
0

xn−m+1 ln x[L(n−m)
s−1 (x)]2e−xdx

m2n
∫ ∞

0
[L(n−m)

s−1 (x)]2xn−me−xdx

=m
m∑

s=1

∫ ∞
0

xn−m+1 ln x[L(n−m)
s−1 (x)]2e−xdx

m2n
∫ ∞

0
[L(n−m)

s−1 (x)]2xn−me−xdx

=
1

mn

m−1∑
k=0

∫ ∞
0

xn−m+1 ln x[L(n−m)
k (x)]2e−xdx∫ ∞

0
[L(n−m)

k (x)]2xn−me−xdx
(4.15)
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Let I(α)
k =

∫ ∞
0

xα+1 ln x[L(α)
k (x)]2e−xdx and Jk(α) =

∫ ∞
0

xα+1[L(α)
k (x)]2e−xdx. By properties of

Laguerre polynomials, we have

Jk(α) =
(2k + α + 1)Γ(k + α + 1)

k!
. (4.16)

Now,

d
dα

Jk(α) =
∫ ∞

0
xα+1 ln x[L(α)

k (x)]2e−xdx + 2
∫ ∞

0
xα+1L(α)

k (x)
dL(α)

k (x)
dα

e−xdx

=⇒ I(n−m)
k =

 d
dα

Jk(α) − 2
∫ ∞

0
xα+1L(α)

k (x)
dL(α)

k (x)
dα

e−xdx


α=n−m

(4.17)

Using Equation (4.16), we get

d
dα

Jk(α) =
d

dα

(
(2k + α + 1)Γ(k + α + 1)

k!

)
=
Γ(k + α + 1)

k!
+

2k + α + 1
k!

dΓ(k + α + 1)
dα

=
Γ(k + α + 1)

k!
+

2k + α + 1
k!

Γ(k + α + 1)ψ(k + α + 1)

=
Γ(k + α + 1)

k!
[1 + (2k + α + 1)ψ(k + α + 1)] (4.18)

We use the property L(α)
k (x) = L(α+1)

k (x) − L(α+1)
k−1 (x) and dL(α)

k (x)
dα =

∑k−1
j=0

Lαj (x)

k− j to compute

∫ ∞

0
xα+1L(α)

k (x)
dL(α)

k (x)
dα

e−xdx

=

∫ ∞

0
xα+1L(α)

k (x)
k−1∑
j=0

Lαj (x)

k − j
e−xdx

=

k−1∑
j=0

1
k − j

∫ ∞

0
xα+1

(
L(α+1)

k (x) − L(α+1)
k−1 (x)

) (
L(α+1)

j (x) − L(α+1)
j−1 (x)

)
e−xdx

= −

∫ ∞

0
xα+1[L(α+1)

k−1 (x)]2e−xdx

= −
Γ(k + α + 1)

(k − 1)!
(4.19)

Using Equations (4.18) and (4.19) in Equation (4.17), we get

I(n−m)
k =

[
Γ(k + α + 1)

k!
[1 + (2k + α + 1)ψ(k + α + 1)] + 2

Γ(k + α + 1)
(k − 1)!

]
α=n−m
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=

[
Γ(k + α + 1)

k!
(1 + 2k + (2k + α + 1)ψ(k + α + 1))

]
α=n−m

=
Γ(k + n − m + 1)

k!
[1 + 2k + (2k + n − m + 1)ψ(k + n − m + 1)] (4.20)

Using Equations (4.14) and (4.20) in Equation (4.15), we get

I2 =
1

mn

m−1∑
k=0

[1 + 2k + (2k + n − m + 1)ψ(k + n − m + 1)]

=
1

mn

m−1∑
0

(1 + 2k) +
1

mn

m−1∑
k=0

(2k + n − m + 1)

−γ + n−m+k∑
r=1

1
r


=

m + m(m − 1)
mn

− γ
1

mn

m−1∑
k=0

(2k + n − m + 1) +
1

mn

m−1∑
k=0

n−m+k∑
r=1

2k + n − m + 1
r

=
m
n
− γ +

[
mn +

mn
2
+ ... +

mn
n − m

+
mn − (n − m + 1)

n − m + 1
+ ...

+
mn − (n − m + 1) − (n − m + 1 + 2)... − ((n − m − 1) + 2(m − 1)))

n − m + m − 1

]
×

1
mn

=
m
n
− γ +

n−1∑
k=1

1
k
−

1
mn

[
n − m + 1
n − m + 1

+ .... +
(m − 1)(n − m) + (m − 1)2

n − m + m − 1

]

=
m
n
− γ +

n−1∑
k=1

1
k
−

1
mn

[1 + .... + (m − 1)]

= − γ +

mn∑
k=1

1
k
−

mn∑
k=n+1

1
k
+

m − 1
2n

=ψ(mn + 1) −
mn∑

k=n+1

1
k
+

m − 1
2n

(4.21)

Using Equations (4.12), (4.21), (4.11) and (4.9), we get the expected value of Entropy of En-
tanglement over the pure states is

mn∑
k=n+1

1
k
−

m − 1
2n

.

□

4.2.3 Asymptotics of average entropy

Proof of Theorem 4.2.1. For j ∈ {1, 2}, let (L j, h j) be a holomorphic hermitian line bundle on a
compact Kähler manifold (M j, ω j) of complex dimension d j ≥ 1 such that the curvature of the
Chern connection on L j is −iω j, and d1 ≤ d2. For N ∈ N, the Hilbert spacesHA (of dimension
m = m(N)) andHB (of dimension n = n(N)) will be H0(M1, LN

1 ) and H0(M2, LN
2 ). Let N → ∞.
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We have [MM00, sec. 4.1.1.]:

m = m(N) = β1Nd1 + γ1Nd1−1 + O(Nd1−2) (4.22)

n = n(N) = β2Nd2 + γ2Nd2−1 + O(Nd2−2) (4.23)

where

β j =

∫
M j

c1(L j)d j

d j!

γ j =
1
2

∫
M j

c1(T M j)c1(L j)d j−1

(d j − 1)!

for j ∈ {1, 2}.

We notice that m ≤ n for large N. By Theorem 4.2.6, the average entanglement entropy
⟨EN⟩ over all the pure states in H0(M1, LN

1 ) ⊗ H0(M2, LN
2 ) equals

( mn∑
k=n+1

1
k

)
−

m − 1
2n

. (4.24)

To figure out the asymptotics of Equation (4.24), we apply the Euler-Maclaurin formula to
f (x) = 1

x , to conclude that

mn∑
k=n+1

1
k
=

∫ mn

n

1
x

dx +
f (mn) − f (n)

2
+

[ p
2 ]∑

k=1

B2k

(2k)!
( f (2k−1)(mn) − f (2k−1)(n)) + Rp

where B2k are the Bernoulli numbers, in particular B2 =
1
6 , and for the remainder we have the

estimate
|Rp| ≤

2ζ(p)
(2π)p

∫ mn

n
| f (p)(x)|dx.

Therefore, ⟨EN⟩ becomes

ln m +
1

2mn
−

m
2n
+

[ p
2 ]∑

k=1

B2k

(2k)!
( f (2k−1)(mn) − f (2k−1)(n)) + Rp. (4.25)

In Equation (4.25), let us set p = 2 in the part

1
2mn

+

[ p
2 ]∑

k=1

B2k

(2k)!
( f (2k−1)(mn) − f (2k−1)(n)) + Rp
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and by (4.22 and 4.23) we can now conclude that this part is O(N−2d2), because

|R2| ≤
ζ(2)
2π2

∫ mn

n
| f ′′(x)|dx =

1
12

(
1
n2 −

1
m2n2 ),

f ′(mn) − f ′(n) = −
1

m2n2 +
1
n2 .

It remains to consider the term ln m − m
2n in (4.25). By (4.22)

ln m = ln
(
β1Nd1

(
1 +

γ1

β1N
+ O(

1
N2 )

))
∼ ln β1 + d1 ln N +

γ1

β1N
+ O(

1
N2 ).

If d1 = d2, then by (4.22,4.23), we get

m
2n
=

β1(1 + γ1
β1

1
N + O( 1

N2 ))

2β2(1 + γ2
β2

1
N + O( 1

N2 ))
∼

β1

2β2

(
1 + (

γ1

β1
−
γ2

β2
)

1
N

)
+ O(

1
N2 ).

Similarly, if d1 = d2 − 1, then

m
2n
=

β1(1 + γ1
β1

1
N + O( 1

N2 ))

2β2N(1 + γ2
β2

1
N + O( 1

N2 ))
∼

β1

2β2

1
N
+ O(

1
N2 ),

and if d1 − d2 ≤ −2, then
m
2n
∼ O(

1
N2 ).

The statement of the theorem follows. □

4.3 Semiclassical asymptotics and entropy

In this section, we study the entanglement of quantum states associated with submanifolds
of Kähler manifolds. As a motivating example, we discuss the semiclassical asymptotics of
entanglement entropy of pure states on the two-dimensional sphere with the standard metric.
The work presented in this section is the contents of the paper [BSaikia23], modified slightly
to fit the context.

Our general philosophy is tied to the geometry versus analysis perspective. It emerges
in different ways in mathematics, and those often align with physics-driven ideas. For in-
stance, Lagrangian states or Bohr-Sommerfeld states have been a part of the philosophy of
geometric quantization for a long time (see e.g. [BPU95]). Gelfand-Naimark theorem as
well as other reconstruction theorems had a substantial impact on the development of non-
commutative geometry and interesting applications to physics (see e.g. [GMT14]). Shannon
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entropy (information-theoretic entropy) has been brought into Kähler geometry. Semiclassical
asymptotics, with various geometric aspects, have been addressed in [BP17; CE19; FZ22]. In
[SHK11] the emphasis is on automorphisms and orbits.

Informally speaking, while discussing the geometry vs. analysis paradigm, by “geometry”
we will mean a smooth manifold M, possibly with an additional structure (such as a symplectic
form, a complex structure, or a Riemannian metric), and by “analysis” we will broadly under-
stand function spaces on M, sections of line bundles, operators, norms, estimates, and so on.
We will be looking for invariants, or asking to what extent “analysis” determines “geometry”
(or whether one can see how the geometric properties of M manifest in “analysis” on M). A
completely naive example would be to assign to a subset S of M its characteristic function χS

and to observe that if χS 1 , χS 2 , then S 1 , S 2.

4.3.1 Preliminaries

Let L → M be a positive holomorphic hermitian line bundle on a compact complex m-
dimensional manifold M(m ∈ N). It is ample. Assume L is very ample. Denote by ∇ the
Chern connection on L. The 2-form ω = iCurv(∇) is a Kähler form on M, where Curv(∇)
denotes the curvature of the connection ∇. (Or, alternatively, we could have stated that for an
integral Kähler manifold (M, ω) such line bundle exists.) Let k be a positive integer. For a unit
vector v in the finite-dimensional Hilbert space

H0(M, Lk) ⊗ H0(M, Lk) (4.26)

we can calculate its entanglement entropy Ek(v). The expression for it is the formula for E(v),
either Equation 2.1 or 2.2. Here H0(M, Lk) is the space of holomorphic sections of the k-th
tensor power of L, regarded as a (complex) Hilbert space, with the inner product induced by
the pointwise hermitian metric on L. Let us also denote by S k the unit sphere in the Hilbert
space (4.26):

S k = {v ∈ H0(M, Lk) ⊗ H0(M, Lk) | ||v|| = 1}.

We also note an isomorphism of Hilbert spaces:

H0(M, Lk) ⊗ H0(M, Lk) ≃ H0(M × M, Lk ⊠ Lk). (4.27)

Here Lk ⊠ Lk → M × M is the holomorphic line bundle

π∗1(L⊗k) ⊗ π∗2(L⊗k),
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where πm : M × M → M, m ∈ {1, 2}, are the projections onto the first and second factor
respectively. The hermitian metric on L induces a hermitian metric on Lk ⊠ Lk. For a subset
Λ ⊂ M, we will denote by Rk the restriction operator defined by

s 7→ s
∣∣∣∣
Λ

for s ∈ H0(M × M, Lk ⊠ Lk). Due to (4.27), we will also write Rk(v) for vectors v in (4.26), not
to complicate notation.

We will aspire to assign to a subset of M (say, Λ), some analytic construct built from
the Hilbert space (4.26) via the quantum information concepts, such as entanglement entropy,
negativity or entanglement of formation. As a start, on this note, we will consider M = CP1

with the Fubini-Study metric, L the hyperplane bundle, Λ = S 1 embedded antidiagonally
as specified below, and we will prove the theorem below, with the intent to generalize this
statement later to other M and Λ and to use Theorem 4.3.1 and its proof as a guiding example
for the general case.

Theorem 4.3.1 ([BSaikia23]). Let M = CP1 equipped with the Fubini-Study metric and let
L → M be the hyperplane bundle, with the standard hermitian metric. Let Λ ⊂ (M − {[1 :
0]}) × (M − {[1 : 0]}) be defined by

Λ = {(z,w) ∈ C × C | z = eit; w = e−it; 0 ≤ t ≤ 2π},

where
M − {[1 : 0]} ≃ C

is the affine chart
{[z0 : z1] ∈ CP1

| z1 , 0}

with the affine coordinate z = z0
z1

. Let {e j} be the standard orthonormal basis in H0(M, Lk):

e j =

√
(k + 1)!
j!(k − j)!

z j

j ∈ {0, 1, 2, ..., k}. Let for each k ∈ N,

Wk = ker(Rk) ∩ span{e j ⊗ e j| j = 0, 1, ..., k}.

Then

(a) ker(R1) is the span of 1
√

2
(e0 ⊗ e0 − e1 ⊗ e1)
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(b) The sequence of vectors

bk =
1

√
1 + k2

(e1 ⊗ e1 − ke0 ⊗ e0)

is in ker Rk for each k = 1, 2, 3, ..., and their entanglement entropy is

Ek(bk) = −
1

1 + k2 ln
1

1 + k2 −
k2

1 + k2 ln
k2

1 + k2 . (4.28)

(c) The sequence of vectors

ck =
1
√

2
(e0 ⊗ e0 − ek ⊗ ek)

is in ker Rk for each k = 1, 2, 3, ..., and their entanglement entropy is Ek(ck) = ln 2 for every k.
(d) The linear subspace Wk is k-dimensional. For all odd k, there is a vector of maximum
Schmidt rank in Wk such that its entanglement entropy is ln(k + 1). For each even natural
number k, Wk contains a vector whose entanglement entropy is ln k.
(e) The endomorphism of the Hilbert space H0(M×M, L⊠L) defined by the orthogonal projec-
tion onto ker(R1) is the Berezin-Toeplitz operator T (1)

f with the symbol f ∈ C∞(M × M) given
by

f (z0, z1; w0,w1) =
9
2

(z0w0 − z1w1)(z̄0w̄0 − z̄1w̄1)
(|z0|

2 + |z1|
2)(|w0|

2 + |w1|
2)
− 2.

Remark 4.3.2. For k ∈ N and a smooth function F : M×M → C, the Berezin-Toeplitz operator
T (k)

F with the symbol F, is an endomorphism of the Hilbert space H0(M × M, Lk ⊠ Lk) defined
by

T (k)
F : s 7→ Πk(Fs)

where Πk : L2(M × M, Lk ⊠ Lk) → H0(M × M, Lk ⊠ Lk) is the orthogonal projection from
the space of L2 sections of the line bundle Lk ⊠ Lk onto the closed subspace of holomorphic
sections.

Comments.

In Theorem 4.3.1(b), the sequence of vectors bk is asymptotic to −e0 ⊗ e0. Accordingly,
Ek(bk)→ 0 as k → ∞.

In Theorem 4.3.1(c), the vector ck represents a Bell state for each k.

Theorem 4.3.1(d) shows that the value of Ek on Wk reaches the maximum possible value.
Generally, it does not have to be the case (for example, the value of entanglement entropy
on a 1-dimensional subspace spanned by a decomposable vector is zero, or, as another
example, if we consider the 2-dimensional subspace spanned by e0⊗e0 and e0⊗e1, every
vector in this subspace is decomposable and its entanglement entropy is zero).
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Figure 4.1: The values of (4.28) for 1 ≤ k ≤ 10.

If we realize the linear operators that are relevant to the quantum information theory, as
Toeplitz operators, then we would be able to use the asymptotic (k → ∞) results about
the spectrum of Toeplitz operators to make conclusions about the semiclassical asymp-
totics of entanglement. Part (e) is a demonstration of the first part of this statement in the
setting of Theorem 4.3.1.

4.3.2 Proof of Theorem 4.3.1

Proof of (a). We observe:

ae0 ⊗ e0 + be0 ⊗ e1 + ce1 ⊗ e0 + de1 ⊗ e1

is in ker(R1) if and only if a = d and b = c = 0. The statement follows.

Proof of (b) and (c). We observe that, restricted to Λ,

e j ⊗ e j =

(
k
j

)
e0 ⊗ e0 (4.29)

for all 0 ≤ j ≤ k. Suppose a vector v in (4.26) is of the form

v =
∑

j

a je j ⊗ e j.
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Then, the condition for v to be in ker(Rk) is

∑
j

(
k
j

)
a j = 0.

We see that the vectors bk and ck satisfy this condition and therefore are in ker(Rk) for all k.
The values of their entanglement entropy are obtained from their Schmidt coefficients via 2.2.

Proof of (d). The first claim follows from (4.29) and the fact that ei ⊗ e j < Wk for i , j. Now,
suppose v =

∑k
j=0 a je j ⊗ e j is of norm 1, i.e.

k∑
j=0

|a j|
2 = 1. (4.30)

Suppose v is in Wk and it is of maximal Schmidt rank. It is equivalent to

k∑
j=0

(
k
j

)
a j = 0 (4.31)

(because it is in ker(Rk)), and a j , 0 for all j. By a direct calculation, we conclude that the
entanglement entropy

Ek(v) = −
k∑

j=0

|a j|
2 ln

(
|a j|

2
)
. (4.32)

Write a j = x j + iy j for 1 ≤ j ≤ k. The right hand side of Equation (4.32) is a function of 2k
real variables (using Equation (4.30) ) :

f (x, y) = −

1 − k∑
j=1

(x2
j + y2

j)

 ln

1 − k∑
j=1

(x2
j + y2

j)

 − k∑
j=1

(x2
j + y2

j) ln
(
x2

j + y2
j

)
.

It is S 1-invariant with respect to the circle action on the Hilbert space in Equation 4.26 (see
Proposition 2.4.13). To look for the critical points, we consider the equation

∇ f = 0

that leads to

|a1|
2 = ... = |ak|

2 = 1 −
k∑

j=1

|a j|
2.

When k is odd, there is a solution to these equations that also satisfies Equation (4.31), with
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|a j|
2 = 1

k+1 for all 1 ≤ j ≤ k and such that

a j = −ak− j

for all 0 ≤ j ≤ k. When k is even, we can set ak/2 = 0 and choose a j for all j , k
2 so that

|a j|
2 = 1

k and a j = −ak− j. The value of Ek is now obtained from (4.32).

Proof of (e). The conclusion is obtained by a direct calculation: we apply the matrix of the
orthogonal projection onto ker(R1) and the linear operator T (1)

f to the four basis vectors.

4.4 Restrictions of holomorphic sections to products

In this section, we associate quantum states with subsets of a product of two compact connected
Kähler manifolds M1 and M2, using the map that restricts holomorphic sections of the quantum
line bundle over the product of the two Kähler manifolds to the subset. We present a description
of the kernel of this restriction map when the subset is a finite union of products, which shows
that the quantum state associated with such a subset is separable. Finally, for every pure state
and certain mixed state, we construct subsets of M1 × M2 such that the states associated with
these subsets are the original states, to begin with. The work presented in this section is the
contents of the paper [Saikia24], modified slightly to fit the context.

4.4.1 Motivation

The study of the interplay between geometric structures and analytic objects arising from these
structures emerges in many different ways in mathematics. For instance, in [BPU95], the
authors constructed, for each k, a holomorphic section of H0(M, Lk) associated to a Lagrangian
submanifold Λ of a compact Kähler manifold M and studied various aspects of these states,
for example, the authors computed large k asymptotics of ⟨Tuk, uk⟩ for a Toeplitz operator
T and showed these states concentrate on Λ. Various similar studies have been made with
the “geometry vs analysis” theme for Lagrangian submanifolds [BW00; DP06; Pao08] and
isotropic submanifolds [GUW16] of a compact Kähler manifold.

Exploring the correspondence between submanifolds (or, more generally, subsets with nice
properties) of Kähler manifolds and the corresponding states associated in different ways has
appeared in many different contexts. In [BP17], the authors considered a compact connected
complex manifold M and associated a sequence of quantum states with the Lagrangian sub-
manifold M embedded anti-diagonally inside M × M. The authors showed that this sequence
of pure states is a sequence of maximally entangled states. In [BW23], the authors considered
a submanifold Λ of the product of two integral compact Kähler manifolds M1 and M2 having



4.4. Restrictions of holomorphic sections to products 59

pre-quantum line bundle L1 and L2. For every N ∈ N, using the map that restricts global holo-
morphic sections of LN

1 ⊠ LN
2 → M1 × M2, the authors associated a sequence of mixed states

ρN with Λ and showed that when Λ is a product submanifold the states in this sequence are
not entangled. Motivated by [BW23], in this section, we come up with a different recipe to
associate quantum states with subsets of M1 × M2 and study the entanglement properties of
these newly associated states when we have a product subset. More generally, we showed that
when Λ is the union of finitely many product subsets, the states are not entangled.

4.4.2 Associating quantum states

In this section, our quantum Hilbert space is H0(M1×M2, LN
1 ⊠LN

2 ). For notational convenience,
from now onwards we denote HA = H0(M1, LN

1 ) and HB = H0(M2, LN
2 ) so that our quantum

Hilbert space H0(M1 × M2, LN
1 ⊠ LN

2 ) is isomorphic toHA ⊗HB.
For j ∈ {1, 2}, let Λ j be a non-empty subset of M j. Let E j be the total space of the line

bundles LN
j with the projection map p j : E j → M j and W j denote the vector space {s : Λ j →

E j | p j ◦ s(z) = z for all z ∈ Λ j} (that means W j is the space of sections restricted to Λ j but these
sections do not have any additional structure like smoothness etc, since we have not assumed
any structure on Λ j to keep our results in more general setup). Let RΛ j : H0(M j, LN

j ) → W j be
the linear map

s 7→ s
∣∣∣∣
Λ j

that restricts a holomorphic section of LN
j → M j to the subset Λ j ⊂ M j. Similarly, let E be the

total space of line bundle LN
1 ⊠ LN

2 and p : E → M1 × M2 be the projection map. For a subset
Λ of M1 × M2, let us denote RΛ : H0(M1 × M2, LN

1 ⊠ LN
2 )→ W be the map

RΛ(s) = s
∣∣∣∣
Λ j

(4.33)

that restricts a holomorphic section of LN
1 ⊠ LN

2 → M1 × M2 to the subset Λ ⊂ M1 × M2 where
W = {s : Λ → E | p ◦ s(z) = z for all z ∈ Λ}. We use the same notation RΛ to mean all
these three restriction maps, but we pick the appropriate one based on whether Λ is a subset of
M1,M2 or M1 × M2. We hope that it does not create any confusion.

Notation 4.4.1. For a subset Λ ⊂ M1 × M2, let Πker
Λ

and Πker⊥
Λ

be the orthogonal projections
onto ker(RΛ) and ker(RΛ)⊥ respectively. We denote ρker

Λ
= 1

tr(Πker
Λ )Π

ker
Λ

and ρker⊥
Λ
= 1

tr
(
Πker⊥
Λ

)Πker⊥
Λ

(whenever the trace is not zero). Whenever the trace is zero, we define the corresponding ρker
Λ

or ρker⊥
Λ

as the zero operator.

We associate the states ρker
Λ

and ρker⊥
Λ

with the subset Λ of M1 × M2. Note that ker(RΛ) or
ker(RΛ)⊥ can be zero sometimes and in that case the corresponding operator ρker

Λ
or ρker⊥

Λ
is
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technically not a state, because of it being the zero operator, the trace condition on states is
not satisfied. However, at least one of ρker

Λ
or ρker⊥

Λ
is a state. In this section, we ignore this

technicality and say that both of them are states, even when one of the operators is zero.

Observation 4.4.2. Note that the state ρker
Λ

is separable if and only if ker(RΛ) has an orthonor-
mal basis of decomposable vectors. The subspace ker(RΛ)⊥ has an orthonormal basis of de-
composable vectors if and only if ker(RΛ) has an orthonormal basis of decomposable vectors.
Finally, the state ρker⊥

Λ
is separable if and only if ker(RΛ)⊥ has an orthonormal basis of decom-

posable vectors. Therefore, the state ρker
Λ

is separable if and only if the state ρker⊥
Λ

is separable.

In [BW23], the authors considered a submanifold Λ of M1 ×M2 and considered the restric-
tion map RΛ : H0(M1 ×M2, LN

1 ⊠ LN
2 )→ L2(Λ, LN

1 ⊠ LN
2 |Λ). In their setup, due to the additional

smooth structure on Λ, the integrals over Λ with respect to the measure µ are defined and
in fact, the codomain becomes the space of L2 sections. Using RΛ and the inner product on
the codomain of this map, the authors associated certain states with Λ and proved that when
Λ = Λ1 × Λ2 is a product submanifold then these states are separable. This motivated us to
associate states a little differently and check if similar properties can be observed. Due to the
use of the inner product on the codomain, the authors considered nice subsets over which we
can integrate, such as submanifolds. Since the states ρker

Λ
and ρker⊥

Λ
we associated in our setup

are directly linked to subspaces of H0(M1 × M2, LN
1 ⊠ LN

2 ) and we are not using any additional
structure of the co-domain other than it being a vector space, we don’t restrict ourselves to
submanifolds and take arbitrary subsets.

In an attempt to investigate similar properties of these newly associated states ρker
Λ

and ρker⊥
Λ

with respect to product submanifolds, we proof a result (Proposition 4.4.6) that provides a
nice description of the kernel of the restriction map. Our main result Theorem 4.4.7 extends
Proposition 4.4.6 to provide a description of the kernel of the restriction map to even more
generality, to any finite union of products. As a corollary of 4.4.7, we get that our states are
also separable for product submanifolds. This is analogous to a similar result in [BW23]. In
fact, we get a more general result that says the states are separable if Λ is a finite union of
products.

In Section 4.4.4, we ask the question whether, for every state σ onHA ⊗HB, there exists a
subset Λ of M1 × M2 such that ρker

Λ
= σ. As our constructed state is an orthogonal projection,

clearly if σ is not an orthogonal projection, then the answer is no. We partially answer the
question for quantum states that are orthogonal projections. The solution is straightforward
for pure states by the projective embedding of M1 × M2 using the quantum line bundle. This
also affirmatively says that the states ρker

Λ
and ρker⊥

Λ
associated this way with subsets are not

always separable. For mixed states having a particular property, we use coherent states and the
covariant symbol of σ to construct the subset.
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4.4.3 Separability and products

The purpose of this section is to prove that ρker
Λ

and ρker⊥
Λ

are separable when Λ ⊂ M1 × M2 is a
finite union of product. For that purpose, we show that the range space of the states contains an
orthonormal basis consisting of only decomposable vectors. If Λ is a union of products, then
we present a description of ker(RΛ) as a direct sum of Hilbert spaces each of which is a tensor
product of Hilbert spaces that are orthogonal to one another. We get this in a few steps. First,
we consider Λ = Λ1 ×Λ2 where one of Λ1 or Λ2 is a singleton set and prove Proposition 4.4.3.
We use Proposition 4.4.3 to generalize it for products without the restriction of Λ1 or Λ2 being
singleton to get Proposition 4.4.6.

Proposition 4.4.3 ([Saikia24]). For j ∈ {1, 2}, let Λ j be a non-empty subset of M j. If either Λ1

or Λ2 is a singleton set, then
ker(RΛ1×Λ2) = A1 ⊕ A2,

where

A1 =HA ⊗ ker(RΛ2)

A2 = ker(RΛ1) ⊗ ker(RΛ2)
⊥.

We deduce that ker(RΛ1×Λ2)
⊥ = ker(RΛ1)

⊥ ⊗ ker(RΛ2)
⊥.

Proof. Suppose Λ2 = {y} be singleton.
Let (x, y) ∈ Λ1 × Λ2 and s ∈ [HA ⊗ ker(RΛ2)] ⊕ [ker(RΛ1) ⊗ (ker(RΛ2))

⊥]. Then for some
n1, n2 ≥ 1, we can write

s =
n1∑
j=1

u j ⊗ v j +

n2∑
j=1

u′j ⊗ v′j

where v j ∈ ker(RΛ2) for all j ∈ {1, ..., n1} and u′j ∈ ker(RΛ1) for all j ∈ {1, ..., n2}. Take a
trivializing open cover of the line bundle LN

1 ⊠LN
2 → M1×M2. Then in an open neighbourhood

of (x, y) in the trivializing cover, we get that v j(y) = 0 for all j ∈ {1, ..., n1} and u′j(x) = 0 for all
j ∈ {1, ..., n2}. Therefore,

s(x, y) =
n1∑
j=1

u j(x) ⊗ v j(y) +
n2∑
j=1

u′j(x) ⊗ v′j(y) = 0.

We get that s ∈ ker(RΛ1×Λ2). Therefore, A1 ⊕ A2 ⊂ ker(RΛ1×Λ2).

For the inclusion from the other side, let s ∈ ker(RΛ1×Λ2). Then there exists d ∈ N such that
we can write s =

∑d
j=1 u j⊗v j where u j ∈ HA and v j ∈ HB are non-zero. If for some j ∈ {1, ..., d},

we have v j ∈ ker(RΛ2), then u j ⊗ v j ∈ HA ⊗ ker(RΛ2). So we assume that v j ∈ (ker(RΛ2))
⊥ for
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all j ∈ {1, ..., d}, therefore v j(y) , 0 for all j ∈ {1, ..., d}.
Take a trivializing open cover of the line bundle LN

2 → M2. In an open neighbourhood
of y in the trivializing open cover, each of the sections v j is given by a map with co-domain
C. Therefore {v j(y) : j ∈ {1, 2, ..., d}} is a set of non-zero complex numbers. There exists
non-zero λ2, ..., λd ∈ C such that v j(y) = λ jv1(y) for j ∈ {2, ..., d}, i.e. for each j, we have
v j − λ jv1 ∈ ker(RΛ2). Now, let x ∈ Λ1. Take a trivializing open cover of the line bundle
LN

1 → M1. In an open neighbourhood of x in the trivializing open cover, each of the sections u j

is given by a map with co-domain C. By assumption, the section s vanishes at (x, y), therefore
we have

d∑
j=1

u j(x)v j(y) = 0

⇒ u1(x) +
d∑

j=2

λ ju j(x) = 0

⇒ u1 +

d∑
j=2

λ ju j ∈ ker(RΛ1)

We can rearrange the terms to write s in the following way:

s =
d∑

j=1

u j ⊗ v j = (u1 +

d∑
j=2

λ ju j) ⊗ v1 +

s∑
j=2

u j ⊗ (v j − λ jv1).

Note that the first term in the above expression is an element of ker(RΛ1) ⊗ (ker(RΛ2))
⊥ and the

second term is an element ofHA ⊗ ker(RΛ2). This finishes the proof of ker(RΛ1×Λ2) ⊂ A1 ⊕ A2.
Hence ker(RΛ1×Λ2) = [ker(RΛ1) ⊗ (ker(RΛ2))

⊥] ⊕ [HA ⊗ ker(RΛ2)].
WhenΛ1 is a singleton set, we can use a similar argument (with roles ofΛ1 andΛ2 reversed)

to show that ker(RΛ1×Λ2) = [ker(RΛ1) ⊗ HB] ⊕ [(ker(RΛ1))
⊥ ⊗ ker(RΛ2)] which is equal to the

space [HA ⊗ ker(RΛ2)] ⊕ [ker(RΛ1) ⊗ (ker(RΛ2))
⊥].

Finally, we note that A1 ⊕ A2 ⊕
[
ker(RΛ1)

⊥ ⊗ ker(RΛ2)
⊥
]
= HA ⊗ HB and ⟨u, v⟩ = 0 for any

u ∈ ker(RΛ1)
⊥⊗ker(RΛ2)

⊥ and v ∈ A1⊕A2, therefore ker(RΛ1×Λ2)
⊥ = ker(RΛ1)

⊥⊗ker(RΛ2)
⊥. □

Now that we have our description when one of the subsets involved is a point, our idea is
to write Λ1 ×Λ2 as the union

⋃
x∈Λ1
{x} ×Λ2, so that we can use the above to get ker(RΛ1×Λ2) as

intersections of subspaces. This allows us to extend the result to arbitrary Λ1 and Λ2. We keep
in mind that the index set over which we have the intersection is an arbitrary index set and we
need the direct sum to distribute over the intersection. This is not always true, not even for a
finite index set (as an example take V = C2, H1 = span{(1, 0)}, H2 = span{(0, 1)} and H3 =

span{(1, 1)}, then (H1 ⊕ H2) ∩ (H1 ⊕ H3) = C2 but H1 ⊕ (H2 ∩ H3) = H1 , C
2). However, if we
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put further conditions, which are satisfied in our case, then the direct sum distributes over the
intersection. We provide a short proof of this fact here. The condition to make this distributive
property hold is a crucial part that allows us to extend Proposition 4.4.3. Further, we also need
the distributive property of tensor products over intersections, which is true for vector spaces.
We state these two lemmas here.

Lemma 4.4.4. Let I be an arbitrary index set. Let {V j} j∈I and {W j} j∈I be two sets of subspaces
of a vector space X. Let there exist two subspaces V and W of X such that

∑
j∈I V j ⊂ V,∑

j∈IW j ⊂ W and W ∩ V = {0}, then

⋂
j∈I

(W j ⊕ V j) =

⋂
j∈I

W j

 ⊕
⋂

j∈I

V j

 .
Proof. It is straightforward to verify that

(⋂
j∈IW j

)
⊕

(⋂
j∈I V j

)
⊂

⋂
j∈I(W j ⊕ V j). For the

converse, let u ∈
⋂

j∈I(W j ⊕ V j). Then for each j ∈ I, there exists unique w j ∈ W j and v j ∈ V j

such that u = w j ⊕ v j. Due to the hypothesis V ∩ W = {0}, we have a well-defined subspace
V ⊕W of X and we have

⋂
j∈I(W j ⊕ V j) ⊂ W ⊕ V . So, there exists unique w ∈ W and v ∈ V

such that u = w ⊕ v. For each j, since w j ∈ W j ⊂ W, v j ∈ V j ⊂ V and u = w j ⊕ v j, so by the
uniqueness of the decomposition, we must have w = w j and v = v j, i.e. w ∈ W j and v ∈ V j for
all j ∈ I, i.e. w ∈

⋂
j∈IW j and v ∈

⋂
j∈I V j. Therefore, u = w ⊕ v ∈

(⋂
j∈IW j

)
⊕

(⋂
j∈I V j

)
. □

Lemma 4.4.5. Let I be an arbitrary index set and {V j} j∈I be a set of subspaces of a vector
space V. For an arbitrary vector space W, we have

⋂
j∈I

(V j ⊗W) =

⋂
j∈I

V j

 ⊗W.

Proof. It is straightforward to verify that
(⋂

j∈I V j

)
⊗ W ⊂

⋂
j∈I(V j ⊗ W). For the converse,

let u ∈
⋂

i∈I(Vi ⊗ W). Let j0 ∈ I be fixed. As u ∈ V j0 ⊗ W, so there exists {v1, ..., vn0} ⊂ V j0

and a linearly independent set {w1, ...,wn0} in W such that u =
∑n0

l=1 vl ⊗ wl. Now for any j ∈ I,
with j , j0, again since u ∈ V j ⊗ W, there exists {v j1, ..., v jm j} ⊂ V j and a set of vectors
{z j1, ..., z jm j} ⊂ W such that u =

∑m j

l=1 v jl ⊗ z jl. Let W j = span{w1, ...,wn0 , z j1, ..., z jm j}, then
clearly u ∈ V j ⊗ W j. We extend {w1, ...,wn0} to a basis {w1, ...,wn j} of W j. Then there exists
{x j1, ..., x jn j} ⊂ V j such that u =

∑n j

l=1 x jl ⊗ wl.
Now we observe that

∑n0
l=1 vl⊗wl = u =

∑n j

l=1 x jl⊗wl, i.e.
∑n0

l=1(vl− x jl)⊗wl+
∑n j

l=n0+1(−x jl)⊗
wl = 0. Using the fact that {w1, ...,wn j} is a linearly independent set, we get that for each
l ∈ {1, ..., n0} we have vl = x jl ∈ V j. But j is an arbitrary element of the index set I, therefore
for each l ∈ {1, ..., n0}, vl ∈

⋂
j∈I V j, i.e. u =

∑n
l=1 vl ⊗ wl ∈

(⋂
j∈I V j

)
⊗W and we are done. □

We shall use Proposition 4.4.3 and the two lemmas to prove the following proposition.
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Proposition 4.4.6 ([Saikia24]). For j ∈ {1, 2}, let Λ j be a non-empty subset of M j. Then,

ker(RΛ1×Λ2) = A1 ⊕ A2,

where

A1 =HA ⊗ ker(RΛ2)

A2 = ker(RΛ1) ⊗ (ker(RΛ2))
⊥.

We deduce that ker(RΛ1×Λ2)
⊥ = ker(RΛ1)

⊥ ⊗ ker(RΛ2)
⊥.

Proof. Let x ∈ Λ1. Using Proposition 4.4.3, we have

ker(R{x}×Λ2) =
[
HA ⊗ ker(RΛ2)

]
⊕

[
ker(R{x}) ⊗ (ker(RΛ2))

⊥] .
For any s ∈ HA ⊗HB,

s ∈ ker(RΛ1×Λ2) ⇐⇒ s(x, y) = 0 for all x ∈ Λ1, y ∈ Λ2 ⇐⇒ s ∈
⋂
x∈Λ1

ker(R{x}×Λ2)

Therefore, ker(RΛ1×Λ2) =
⋂

x∈Λ1

ker(R{x}×Λ2). Similarly, it is easy to verify that ker(RΛ1) =⋂
x∈Λ1

ker(R{x}). We notice that

∑
x∈Λ1

(
ker(R{x}) ⊗ (ker(RΛ2))

⊥) ⊂ HA ⊗ (ker(RΛ2))
⊥

and
(
HA ⊗ ker(RΛ2)

)
∩

(
HA ⊗ (ker(RΛ2))

⊥
)
= {0}, so Lemma 4.4.4 can be applied to get:

ker(RΛ1×Λ2) =
⋂
x∈Λ1

ker(R{x}×Λ2)

=
⋂
x∈Λ1

[(
HA ⊗ ker(RΛ2)

)
⊕

(
ker(R{x}) ⊗ (ker(RΛ2))

⊥)]
=

[
HA ⊗ ker(RΛ2)

]
⊕

⋂
x∈Λ1

(
ker(R{x}) ⊗ (ker(RΛ2))

⊥) (using Lemma 4.4.4)

=
[
HA ⊗ ker(RΛ2)

]
⊕


⋂

x∈Λ1

ker(R{x})

 ⊗ (ker(RΛ2))
⊥

 (using Lemma 4.4.5)

=
[
HA ⊗ ker(RΛ2)

]
⊕

[
ker(RΛ1) ⊗ (ker(RΛ2))

⊥]
□
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We try to recognize the pattern in the product case to extend it to a finite union of products.
For this purpose, if we have Λ =

⋃
j∈[n](U j × V j), we apply Proposition 4.4.6 to decompose

the kernels of each of the products U j × V j in the union cleverly to arrive at a direct sum
decomposition indexed by the subsets of {1, 2, ..., n}.

Theorem 4.4.7 ([Saikia24]). Let U1,U2, ...,Un be non-empty subsets of M1 and V1,V2, ...,Vn

be non-empty subsets of M2. Denote [n] = {1, 2, , ..., n}. Let Λ =
⋃

j∈[n](U j × V j). Then

ker(RΛ) =
⊕
S⊂[n]

(
H(n)

S ⊗ K(n)
S

)
where

H(n)
S =


HA if S = ∅⋂
j∈S

ker(RU j) otherwise

and K(n)
S =

⋂n
j=1 WS , j where

WS , j =

ker(RV j)
⊥ if j ∈ S

ker(RV j) if j < S .

Proof. We shall use induction on n. The base case n = 1 is true by Proposition 4.4.6.
Suppose the statement is true for some n ∈ N. Denote Λ′ =

⋃
j∈[n](U j × V j) and Λ =⋃

j∈[n+1](U j × V j). Then by the induction hypothesis, we have

ker(RΛ′) =
⊕
S⊂[n]

(
H(n)

S ⊗ K(n)
S

)
. (4.34)

Using Proposition 4.4.6, we have

ker(RUn+1×Vn+1) =
[
HA ⊗ ker(RVn+1)

]
⊕

[
ker(RUn+1) ⊗ (ker(RVn+1))

⊥] . (4.35)

Since Λ = Λ′ ∪ (Un+1 × Vn+1), we get that

ker(RΛ) = ker(RΛ′) ∩ ker(RUn+1×Vn+1). (4.36)

Note that if W and W1, ...,Wk are subspaces of a Hilbert space H such that W1, ...,Wk ⊂ W, then

W = (W1 + ... +Wk) ⊕W ′
1,...,k for some W ′

1,...,k ⊂ W.

Note that there are infinitely many W ′
1,...,k that satisfy the above properties. We choose and

fix one of them to define the following subspaces XS ,YS ,ZS , P and Q of HA ⊗ HB having the
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property:

H(n+1)
S = H(n+1)

S∪{n+1} ⊕ XS ,

K(n)
S = K(n+1)

S ⊕ K(n+1)
S∪{n+1} ⊕ YS ,

H(n+1)
{n+1} = H(n+1)

S∪{n+1} ⊕ ZS for each subset S ⊂ [n];

ker(RVn+1) =

⊕
S⊂[n]

K(n+1)
S

 ⊕ P,

ker(RVn+1)
⊥ =

⊕
S⊂[n]

K(n+1)
S∪{n+1}

 ⊕ Q.

If S 1, S 2 ⊂ [n + 1] with S 1 , S 2, then (S 1 \ S 2) or (S 2 \ S 1) is non-empty. Say (S 1 \ S 2)
is non-empty, then there exists j ∈ [n + 1] such that j ∈ S 1 \ S 2, so K(n+1)

S 1
⊂ ker(RV j)

⊥

and K(n+1)
S 2

⊂ ker(RV j), i.e. K(n+1)
S 1

and K(n+1)
S 2

are orthogonal to each other and we get that
K(n+1)

S 1
∩ K(n+1)

S 2
= {0}. That is why we can write direct sum instead of sum in the equations

involving P and Q.

Also note that for any S ⊂ [n], if v ∈ XS ∩ H(n+1)
{n+1} , then v ∈ H(n+1)

S ∩ H(n+1)
{n+1} = H(n+1)

S∪{n+1}, i.e.
v ∈ XS ∩ H(n+1)

S∪{n+1} = {0}, i.e. v = 0. Therefore we get that XS ∩ H(n+1)
{n+1} = {0} and XS ∩ ZS = {0}.

Note that if S ⊂ [n], then H(n)
S = H(n+1)

S , therefore for each S ⊂ [n], we can have the
decomposition

H(n)
S ⊗ K(n)

S

=H(n+1)
S ⊗

[
K(n+1)

S ⊕ K(n+1)
S∪{n+1} ⊕ YS

]
=

[
H(n+1)

S ⊗ K(n+1)
S

]
⊕

[
(H(n+1)

S∪{n+1} ⊕ XS ) ⊗ K(n+1)
S∪{n+1}

]
⊕

[
H(n+1)

S ⊗ YS

]
=

[
H(n+1)

S ⊗ K(n+1)
S

]
⊕

[
H(n+1)

S∪{n+1} ⊗ K(n+1)
S∪{n+1}

]
⊕

[
XS ⊗ K(n+1)

S∪{n+1}

]
⊕

[
H(n+1)

S ⊗ YS

]
(4.37)

Now, we can decompose the two subspaces appearing in ker(RUn+1×Vn+1) as follows

HA ⊗ ker(RVn+1)

=HA ⊗
[(
⊕S⊂[n]K

(n+1)
S

)
⊕ P

]
=

[
H(n+1)
∅
⊗ K(n+1)

∅

]
⊕


⊕
S⊂[n]
S,∅

(
H(n+1)

S ⊗ K(n+1)
S

)
⊕


⊕
S⊂[n]
S,∅

(
H(n+1)

S
⊥
⊗ K(n+1)

S

) ⊕ [HA ⊗ P] (4.38)
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and

ker(RUn+1) ⊗ (ker(RVn+1))
⊥

=H(n+1)
{n+1} ⊗

[(
⊕S⊂[n]K

(n+1)
S∪{n+1}

)
⊕ Q

]
=

[
H(n+1)
{n+1} ⊗ K(n+1)

{n+1}

]
⊕


⊕
S⊂[n]
S,∅

(
H(n+1)

S∪{n+1} ⊗ K(n+1)
S∪{n+1}

)
⊕


⊕
S⊂[n]
S,∅

(
ZS ⊗ K(n+1)

S∪{n+1}

) ⊕
[
H(n+1)
{n+1} ⊗ Q

]
(4.39)

Let S 0, S ⊂ [n].

• Since S , S 0 ∪ {n + 1} and so K(n+1)
S 0∪{n+1} and K(n+1)

S are orthogonal, we have[
XS 0 ⊗ K(n+1)

S 0∪{n+1}

]
∩

[
H(n+1)

S
⊥
⊗ K(n+1)

S

]
= {0}.

• Since K(n+1)
S 0∪{n+1} ⊂ ker(RVn+1)

⊥ and P ⊂ ker(RVn+1), we have[
XS 0 ⊗ K(n+1)

S 0∪{n+1}

]
∩ [HA ⊗ P] = {0}.

• When S , S 0 then K(n+1)
S∪{n+1} and K(n+1)

S 0∪{n+1} are orthogonal and when S = S 0 then XS 0 ∩

ZS 0 = {0}, therefore we have[
XS 0 ⊗ K(n+1)

S 0∪{n+1}

]
∩

[
ZS ⊗ K(n+1)

S∪{n+1}

]
= {0}.

• Since XS 0 ∩ H(n+1)
{n+1} = {0}, we have[

XS 0 ⊗ K(n+1)
S 0∪{n+1}

]
∩

[
H(n+1)
{n+1} ⊗ Q

]
= {0}.

• When S = S 0, then YS 0 ∩ K(n+1)
S 0

= {0} by definition of YS 0 . When S , S 0 then either
S \ S 0 or S 0 \ S is non-empty. Say S \ S 0 is non-empty, then there exists j ∈ S \ S 0

with j ∈ [n] so that K(n+1)
S ⊂ ker(RV j)

⊥ and YS 0 ⊂ ker(RV j) and so YS 0 ∩ K(n+1)
S = {0}.

Therefore, we have [
H(n+1)

S 0
⊗ YS 0

]
∩

[
H(n+1)

S
⊥
⊗ K(n+1)

S

]
= {0}.

• If v ∈ YS 0 ∩ P, then v ∈ KS 0 ∩ ker(RVn+1) = K(n+1)
S 0

, i.e. v ∈ YS 0 ∩ K(n+1)
S 0
= {0}. Therefore,
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we have [
H(n+1)

S 0
⊗ YS 0

]
∩ [HA ⊗ P] = {0}.

• When S = S 0, then YS 0 ∩ K(n+1)
S 0∪{n+1} = {0} by definition of YS 0 . When S , S 0 then either

S \ S 0 or S 0 \ S is non-empty. Say S \ S 0 is non-empty, then there exists j ∈ S \ S 0

with j ∈ [n] so that K(n+1)
S∪{n+1} ⊂ ker(RV j)

⊥ and YS 0 ⊂ ker(RV j) and so YS 0 ∩ K(n+1)
S {n+1} = {0}.

Therefore, we have [
H(n+1)

S 0
⊗ YS 0

]
∩

[
ZS ⊗ K(n+1)

S∪{n+1}

]
= {0}.

• If v ∈ YS 0 ∩ Q, then v ∈ KS 0 ∩ ker(RVn+1)
⊥ = K(n+1)

S 0∪{n+1}, i.e. v ∈ YS 0 ∩ K(n+1)
S 0∪{n+1} = {0}.

Therefore, we have [
H(n+1)

S 0
⊗ YS 0

]
∩

[
H(n+1)
{n+1} ⊗ Q

]
= {0}.

Therefore, using these information and Equations 4.34, 4.35, 4.36, 4.37, 4.38 and 4.39, we see
that we can write

ker(RΛ) =


 ⊕

S⊂[n+1]

(
H(n+1)

S ⊗ K(n+1)
S

) ⊕ F

 ∩

 ⊕

S⊂[n+1]

(
H(n+1)

S ⊗ K(n+1)
S

) ⊕ F′


where

F =
⊕
S⊂[n]

([
XS ⊗ K(n+1)

S∪{n+1}

]
⊕

[
H(n+1)

S ⊗ YS

])
,

F′ =


⊕
S⊂[n]
S,∅

(
H(n+1)

S
⊥
⊗ K(n+1)

S

) ⊕ [HA ⊗ P]

⊕


⊕
S⊂[n]
S,∅

(
ZS ⊗ K(n+1)

S∪{n+1}

) ⊕
[
H(n+1)
{n+1} ⊗ Q

]

with the property that F ∩ F′ = {0}, which implies

ker(RΛ) =
⊕

S⊂[n+1]

(
H(n+1)

S ⊗ K(n+1)
S

)
.

Hence we are done with the induction proof. □

Example 4.4.8. To see the decomposition better, we provide the subspaces involved for the
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case n = 2 here:

H(2)
∅
⊗ K(2)

∅
= HA ⊗ (ker(RV1) ∩ ker(RV2))

H(2)
{1} ⊗ K(2)

{1} = ker(RU1) ⊗
[
ker(RV1)

⊥ ∩ ker(RV2)
]

H(2)
{2} ⊗ K(2)

{2} = ker(RU2) ⊗
[
ker(RV1) ∩ ker(RV2)

⊥]
H(2)
{1,2} ⊗ K(2)

{1,2} =
[
ker(RU1) ∩ ker(RU2)

]
⊗

[
ker(RV1)

⊥ ∩ ker(RV2)
⊥] .

Corollary 4.4.9 ([Saikia24]). Let Λ ⊂ M1 × M2 be such that Λ is the union of finitely many
subsets of M1×M2 all of which are products, i.e. Λ =

⋃n
j=1(U j×V j) for U j ⊂ M1 and V j ⊂ M2,

then ρker
Λ

and ρker⊥
Λ

are separable.

Proof. Using Theorem 4.4.7, we see that when Λ =
⋃n

j=1(U j × V j) then ker(RΛ) is direct
sum of tensor product of Hilbert spaces. Further notice that for S 1, S 2 ⊂ [n] with S 1 , S 2,
the subspaces H(n)

S 1
⊗ K(n)

S 1
and H(n)

S 2
⊗ K(n)

S 2
are orthogonal to each other. This can be seen as

K(n)
S 1

and K(n)
S 2

are orthogonal to each other when S 1 , S 2 as mentioned in the proof of Theorem
4.4.7. Therefore ker(RΛ) contains an orthonormal basis consisting of separable vectors. Hence,
ρker
Λ

, being the orthogonal projection onto the subspace ker(RΛ), can be written as a convex
sum of the pure states in this orthonormal basis. But all these pure states in this orthonormal
basis are separable, hence ρker

Λ
is separable. From Observation 4.4.2, we get that ρker⊥

Λ
is also

separable. □

4.4.4 Subsets coming from states

Corollary 4.4.9 is not very useful if for every subset the states associated this way become
separable. So, one can ask whether we can find subsets such that the associated states are not
separable. The answer is yes. In this section, we see that the states associated with subsets this
way are not always separable. As a consequence of the following theorem, if we start with a
holomorphic section s0 that is itself not separable, to begin with, then the corresponding state
ρker
V(s0) is not separable.

Theorem 4.4.10 ([Saikia24]). Let N be large enough so that LN
1 ⊠LN

2 → M1×M2 is very ample.
Let s0 ∈ H0(M1 × M2, LN

1 ⊠ LN
2 ) be a pure state andV(s0) = {x ∈ M1 × M2 : s0(x) = 0} be the

zero set of s0, then ρker
V(s0) = |s0⟩ ⟨s0|. We deduce that the states ρker

V(s0) and ρker⊥
V(s0) are separable if

and only if s0 is separable.

Proof. Since LN
1 ⊠ LN

2 → M1 × M2 is very ample, we know that using this line bundle we can
embed ι : M1 × M2 → P

N for some N ∈ N and that LN
1 ⊠ LN

2 � ι
∗(O(1)) (as holomorphic line

bundle), the pullback of the hyperplane line bundle on PN [BS00, page 7]. Let s ∈ ker(RVs0
).

There exist holomorphic sections τ0 and τ of O(1) → PN such that s0 = ι
∗(τ0) and s = ι∗(τ).
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Let {(Uα, ∅Uα
)} be a trivializing open cover of the line bundle LN

1 ⊠ LN
2 → M1 ×M2. Let f0α and

fα be the local representing functions on Uα that determines the sections s0 and s. Since s0 and
s are pullbacks of sections τ0 and τ of O(1), therefore the order of vanishing of all the zeroes
of f0α and fα is 1.

For each α, we define hα : Uα → C given by hα(x) = fα(x)
f0α(x) . Since the order of vanishing of

both f0α and fα is 1 and the vanishing set of f0α is a subset of the vanishing set of fα, therefore
hα is a holomorphic function on Uα. Also for α and β with Uα ∩ Uβ , ∅ we have

hα(x) =
fα(x)
f0α(x)

=
gαβ(x) fβ(x)
gαβ(x) fβ(x)

=
fβ(x)
f0β(x)

= hβ(x) for all x ∈ Uα ∩ Uβ

where gαβ is the transition function (so gαβ(x) ∈ GL1(C) is non-zero). Therefore h given by hα
on Uα is a holomorphic function on M1 × M2. But since M1 × M2 is compact and connected,
we see that h is constant. Therefore, we get that s is a constant multiple of s0. Hence

ker(RVs0
) = {λs0 : λ ∈ C} and ρker

V(s0) = |s0⟩ ⟨s0| .

□

In the previous theorem, we considered some particular subsets that are related to pure state
s0 and showed that the state ρker

V(s0) is the same as the original pure state to begin with. We want
to find some special subsets that have this property with respect to some mixed state. We define
these subsets using coherent states [see Kir07; BS00] and covariant symbols associated with
the mixed state.

Let us briefly recollect the notion of coherent states. Consider a compact connected mani-
fold M with quantum line bundle L. Let {θ j}

d
j=1 be an orthonormal basis for H0(M, L). The re-

producing kernel known as the generalized Bergman kernel is the section K of L⊠L→ M×M,
where L � L∗ using the hermitian structure of the line bundle L, given by

K(x, y) :=
d∑

j=1

θ j(x) ⊗ θ j(y) for x, y ∈ M.

For each x ∈ M, we define Φx ∈ Lx ⊗ H0(M, L) by

Φx =

d∑
j=1

θ j(x) ⊗ θ j.

Using appropriate trivialization and identifying 1 ⊗ θ j with θ j, we can think of Φx as a holo-
morphic section of L → M. Using the reproducing property of the Bergman kernel, we have
⟨Φx|s⟩ = s(x) for all x ∈ M and s ∈ H0(M, L). Then the coherent state localized at x ∈ M,
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denoted by |x⟩, is given by

|x⟩ =

0 when ∥Φx∥ = 0
Φx
∥Φx∥

otherwise.

The covariant symbol σ̂ associated to the operator σ of H0(M, L) is given by

σ̂(x) := ⟨x|σ|x⟩ for all x ∈ M.

Theorem 4.4.11 ([Saikia24]). Let σ be a mixed state which is an orthogonal projection such
that Ran(σ)⊥ has a basis consisting of coherent states and σ̂ be the covariant symbol associated
with σ. LetV(σ) = {x ∈ M1 × M2 : σ̂(x) = 0}, then ρker

V(σ) = σ.

Proof. There exists an orthonormal set {v1, ..., vk} of HA ⊗ HB consisting of pure states such
that σ = 1

k

∑k
j=1

∣∣∣v j

〉 〈
v j

∣∣∣. Denote the range span{v1, ..., vk} of σ by Ran(σ). Then

V(σ) = {x ∈ M1 × M2 : ⟨x|
k∑

j=1

∣∣∣v j

〉 〈
v j

∣∣∣|x⟩ = 0}

= {x ∈ M1 × M2 :
k∑

j=1

|
〈
x
∣∣∣v j

〉
|2 = 0}

= {x ∈ M1 × M2 :
〈
x
∣∣∣v j

〉
= 0 for all j}

= {x ∈ M1 × M2 : the coherent state |x⟩ is in Ran(σ)⊥}

Due to the hypothesis that Ran(σ)⊥ has a basis consisting of coherent states, the above set
V(σ) is non-empty. Now we find the kernel of the restriction map toV(σ). We have

ker(RV(σ)) = {s ∈ HA ⊗HB : s(x) = 0 for all x ∈ V(σ)}

= {s ∈ HA ⊗HB : ⟨x|s⟩ = 0 for all coherent states |x⟩ in Ran(σ)⊥}

Let s ∈ Ran(σ), then ⟨s′|s⟩ = 0 for all s′ ∈ Ran(σ)⊥. In particular, ⟨x|s⟩ = 0 for all coherent
states |x⟩ ∈ Ran(σ)⊥, i.e. s ∈ ker(RV(σ)), i.e. Ran(σ) ⊂ ker(RV(σ)).

Conversely, suppose s ∈ ker(RV(σ)), i.e. ⟨x|s⟩ = 0 for all coherent states |x⟩ ∈ Ran(σ)⊥.
Because there is a basis for Ran(σ)⊥ consisting of coherent states, we see that ⟨s′|s⟩ for all s′ ∈
Ran(σ)⊥, i.e. s ∈ Ran(σ).

Therefore, we see that ker(RV(σ)) = Ran(σ). Hence ρker
V(σ) and σ both being the orthogonal

projection onto the same subspace are equal. □



Chapter 5

Quantum Circuit Synthesis

In this chapter, we present an exact synthesis algorithm for qutrit unitaries inU3n(Z[1/3, e2πi/3])
over the Clifford+T gate set with at most one ancilla. Further, using catalytic embeddings, we
present an algorithm to exactly synthesize unitaries U3n(Z[1/3, e2πi/9]) over the Clifford+T
gate set with at most 2 ancillae. The work presented in this chapter is the contents of the
paper [KSaikia+]. We acknowledge that the figures were made using the software TikZit and
open-source style files available on ArXiv [Gla+22].

5.1 Introduction

The circuit model of computation uses networks consisting of wires and electrical switches
(gates) that carry operations on bit values. The gates in the classical model of circuit compu-
tation are Boolean functions f : {0, 1}n → {0, 1}m. A computer architecture should be able to
perform any vector-valued Boolean transformation. However, to have a feasible architecture,
we should be able to generate all such gates using a small amount of gates. A functionally
complete or universal gate set is a set of gates that can generate all Boolean functions. The set
{AND, NOT} is a famous example of a universal gate set in classical computation.

In quantum computing, the elementary units of computation are qudits (pure state in a d-
level quantum system). As mentioned in Chapter 2, we can manipulate pure states in a quantum
system using unitary operators on the quantum Hilbert space. In other words, quantum gates
are unitary operators U ∈ Udn(C), when there are n qudits involved. Here Uk(R) denotes
the group of k × k unitary with entries from the ring R. Note that Udn(C) is an uncountable
set and therefore any physical quantum computing architecture with finite resources can not
implement all quantum gates. The next best thing could be to find a way to approximate gates
using a dense subset of Udn(C). However, no finite set is dense in Udn(C). Therefore, what
is desirable is that we need to have a finite set of physically implementable gates that can

72
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generate (as a word) a subgroup of Udn(C) which is dense inside Udn(C). The choice of such
a finite set and decomposing any unitary inUdn(C) approximately into a word in this finite set
is informally known as the problem of quantum circuit synthesis. Roughly, quantum circuit
synthesis involves the following steps:

• Choice of a generating set: We choose a finite set S such that S generates a subgroup
G that is topologically dense inUdn(C).

• Approximate synthesis: Given ϵ > 0 and a unitary U ∈ Udn(C), we choose an unitary
U′ ∈ G such that ∥U − U′∥ < ϵ.

• Exact synthesis: Write U′ as a word with letters in S, i.e. write U′ = U1U2...Uk such
that U j ∈ S for all j.

Definition 5.1.1 (Universal gate set in quantum computing). The finite set S that we choose
according to the above properties is called a universal gate set in quantum computing.

The problem of exact synthesis in quantum computing asks for an algorithm to solve the word
problem in the group G in terms of the universal gate set S. Many of the famous universal
gate sets are chosen due to practical reasons, such as fault tolerance architecture. Several well-
known universal gate sets such as Clifford+T , Clifford+R, Clifford+V etc. are defined over
number fields, often a field of cyclotomic numbers.

There are various synthesis algorithms for single-qubit unitaries in different localized num-
ber rings over single-qubit gate sets, such as the Clifford+T , Clifford+V etc. These algorithms
use methods from number theory such as quaternion factorization [KMM13; GS13; Kli+15;
KY15] and more recently catalytic embedding [Amy+23]. The first instance of a synthesis al-
gorithm for a single-qubit unitary over the Clifford+T case was shown in [KMM13]. The main
result of [KMM13] states that the set of single-qubit unitaries exactly implementable over the
Clifford+T gate set is precisely U2(Z[ 1

√
2
, i]). Moreover, the proof of this yields an efficient

algorithm to solve the word problem for Clifford+T .
The next thing is to decompose n-qubit unitary from a dense group G into a desirable

universal set. For example, an extension of the main result in [KMM13] will be to decompose
unitaries from the groupU2n(Z[ 1

√
2
, i]) into multi-qubit Clifford+T . This was extended to multi-

qubits by Giles and Selinger [GS13], however, for the algorithm to work for each unitaries in
U2n(Z[ 1

√
2
, i]), we need an ancillary qubit. The use of ancilla is also a common technique, even

in classical computation and reversible computation, to convert irreversible gates into a circuit
that has all reversible gates. Informally, an ancilla means an auxiliary system that is added to
the original system to facilitate the purpose we are interested in. Figure 5.1 shows a schematic
diagram of the usage of an ancilla. The Figure shows more wires for the desired output than
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the input, but it does not mean that this is always the case. In general, the distribution of the
number of wires for the desired output and the garbage output varies depending on the problem
at hand.

...

...

...

...

...

A circuit

Input

Ancilla input
Garbage output

Desired output

Figure 5.1: The use of an ancilla

Similar to classical computers relying on bits, most quantum computers are based on the
quantum counterpart of bits, which are qubits. However, many of the different kinds of physical
qubits used are higher-level qudits restricted to two-level quantum systems. The idea behind
the growing popularity of research in higher-level qudits is that if we already have higher
dimensional qudits, why not use the extra space and freedom? The use of higher-level qudits
also has potential advantages in runtime efficiency, resource requirements etc [Wan+20]. To
this end, we discuss circuit synthesis of unitaries of the next higher-level quantum system,
which are qutrits (3-level quantum system).

For qutrits, a synthesis algorithm is already known for single qutrit Clifford+R gates as
studied in [Boc+16] and later in [KVM23]. More precisely, the group U3(Z[ 1

3 , e
2πi/3]) is gen-

erated by the Clifford gates and R = diag(1, 1,−1) gate. The proof of this yields an efficient
algorithm to solve the word problem over Clifford+R gate set, that is given an arbitrary unitary
U inU3(Z[1

3 , e
2πi/3]) there is a sequence of unitaries from the finite set of Clifford unitaries and

the R gate whose product is U. It was recently conjectured in [KVM23] and proved in [EP24]
that U3(Z[ 1

3 , e
2πi/9]) is generated by Clifford+D gates. Due to various practical reasons, the

gate set Clifford+T is considered more desirable for most purposes.
The single-qutrit Clifford+T group forms a proper subgroup of U3(Z[ 1

3 , e
2πi/9]), meaning

that we can not have an exact synthesis algorithm for the groupU3(Z[1
3 , e

2πi/9]) over the single-
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qutrit Clifford+T . It is also known that the R gate which is an element of U3(Z[1
3 , e

2πi/3]) is
not an element of the single-qutrit Clifford+T gate set [Gla+22], meaning that we can not have
an exact synthesis algorithm for the group U3(Z[ 1

3 , e
2πi/3]) over the single-qutrit Clifford+T

either. However, it is shown in [Gla+22] that with the help of a borrowed ancilla, any unitary
in the ring U3(Z[1

3 , e
2πi/3]) can be implemented over 2-qutrit Clifford+T . This naturally asks

for an extension of synthesis to the multi-qutrit gates in U3n(Z[1
3 , e

2πi/3]) and U3n(Z[ 1
3 , e

2πi/9])
over the multi-qutrit Clifford+T gate set. In this chapter, we answer these questions. Theorem
5.3.1 provides an algorithm to exactly synthesis a circuit for any unitary in U3n(Z[ 1

3 , e
2πi/3])

over the multi-qutrit Clifford+T with the help of a borrowed ancilla. Theorem 5.4.1 provides
an algorithm to exactly synthesize any unitary in U3n(Z[1

3 , e
2πi/9]) over multi-qutrit synthesis

with two ancillae by means of a catalytic embedding of U3n(Z[ 1
3 , e

2πi/9]) in U3n+1(Z[ 1
3 , e

2πi/3]),
and subsequent application of the algorithm of Theorem 5.3.1. To the best of our knowledge,
these algorithms are among the first for multi-qutrit synthesis, along with another multi-qutrit
synthesis algorithm developed, simultaneously and independently, by a different group of re-
searchers using the Toffoli+Hadamard gate set in [Gla+24].

5.2 Preliminaries

In this section, we introduce basic definitions and fix some notations. We recall some prop-
erties of cyclotomic ring extensions, the concept of denominator exponents and the catalytic
embeddings recently introduced in [Amy+23].

5.2.1 Some basic definitions and notations

Definition 5.2.1 (Qudit). Pure states in a quantum Hilbert space H are called qudit if the di-
mension ofH is d. We write the standard orthonormal basis ofH � Cd as {|0⟩ , |1⟩ , ..., |d − 1⟩}.
In particular, when the dimensions are 2 and 3, we call the pure states qubits and qutrits re-
spectively.

As the main focus of this chapter is qutrits, from now on we shall base most of our discus-
sions on qutrits, rather than general qudits.

Notation 5.2.2. Let U ∈ Udn(C), then corresponding to a decomposition of U = U1...Uk, we
can make a circuit diagram representation of that particular decomposition. The input of the
circuit diagram starts at the left-hand side and the output is at the right-hand side and this is
why the circuit diagram has the reverse order to matrix multiplication.

For illustration, we provide a circuit of a unitary in U33(C) as a decomposition of various
sizes unitaries in Figure 5.2. The figure covers the most common types of notations used in this
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chapter. Note that A1, A2, A3, A,U1,U2 ∈ U3(C), D ∈ U32(C), the controlled gate U1 ∈ U33(C)
and the controlled gate U2 ∈ U32(C).

A1 0 2

A2 A U1U2

A3 0

= (I ⊗ D)(C1)(C2 ⊗ I)(I ⊗ A ⊗ I)(A1 ⊗ A2 ⊗ A3)
D

Figure 5.2: An illustration of a circuit corresponding to a matrix decomposition

Definition 5.2.3 (Controlled gates). Let U ∈ U3(C) be a single-qutrit gate and x1, ...., xn ∈

{0, 1, 2}. Then the n-qutrit gate
∣∣∣x1....x j−1

〉
⊗

∣∣∣x j+1...xn

〉
-controlled-U is defined to be the unitary

having the following action:

|y1...yn⟩ 7→


∣∣∣x1....x j−1

〉
⊗ (U

∣∣∣y j

〉
) ⊗

∣∣∣x j+1...xn

〉
when (y1, ..., y j−1, y j+1, ..., yn)

= (x1, ..., x j−1, x j+1, ..., xn)

|y1...yn⟩ otherwise.

Alternatively, we also call this gate as the (n − 1)-controlled-U gate with j-th target wire and
with controls x1, ..., x j−1, x j+1, ..., xn.

x j−1

U

x j+1

xn

...
...

...
...

x1

...

...

Figure 5.3: Controlled-U gate with controls x1, ..., x j−1, x j+1, ..., xn and target at j-th wire

Notation 5.2.4 (Single-qutrit permutation gates). The permutation matrix corresponding to
σ ∈ S 3 is called a permutation gate and is denoted by Xσ. When σ = (1 2 3), then we get the
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standard X gate for qutrit, that is

X = X(1 2 3) =


0 0 1
1 0 0
0 1 0

 .
Remark 5.2.5. Note that H2 = X(2 3) (where H is the Hadamard gate defined in Notation 5.2.10)
and as we know a 2-cycle and a 3-cycle generate the whole group S 3, so X and H2 generate all
the permutation gates.

Remark 5.2.6. Note that if the control qutrit is |0⟩, then conjugating the control wire with X2

and if the control qutrit is |1⟩, then conjugating the control wire with X, we can convert any
controlled gate to a |2⟩-controlled gate (as illustrated in Figure 5.4).

0

U

2X2

U

=

X

Figure 5.4: Change of control from |0⟩ to |2⟩

Definition 5.2.7 (Borrowed ancilla). A borrowed ancilla is an ancilla input that can be in any
state and the garbage output is the same as the ancilla input after all the operations are done.
Mathematically, instead of decomposing U over a desired gate set, we decompose U⊗I. Figure
5.5 shows the use of a borrowed ancilla.

...
... U(|v⟩)|v⟩

|w⟩ |w⟩

Circuit of U ⊗ I

over a desired get

set

Figure 5.5: A borrowed ancilla

Throughout this chapter, we have kept using the concept of single-qudit and multi-qudit
gates. The single-qudit gates mean a unitary in Ud(C) and a multi-qudit gate means a unitary
in Udn(C) for some n ≥ 2 (we also specify them as n-qudit gate whenever a specification is
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needed). We also keep using some specific gate set S and the group G generated by the gate
set. The definition of a single-qudit group G generated by a set is straightforward: it is the
set of all possible words in the elements of S. However, for multi-qudit cases, the elements
of the set S can be matrices of different sizes. We define the group explicitly below to avoid
confusion.

Definition 5.2.8 (n-qudit group generated by a set S). Let S be a set of unitaries of size dl × dl

for some 1 ≤ l ≤ n. Note that the set may contain unitaries of varying sizes. Then by the
n-qudit group generated by S, we actually mean the group generated by the unitaries of the
form Idl1 ⊗ U ⊗ Idl2 where U ∈ S ∩Udl(C) and 0 ≤ l1, l2 with l1 + l + l2 = n.

Notation 5.2.9. The roots of unity frequently appear in this chapter. We denote the primitive
k-th root of unity e2πi/k by the symbol ζk. From now on when the subscript is not specified, then
by ζ we mean e2πi/9, a primitive 9th root of unity. Also we denote ω = e2πi/3, a primitive 3rd
root of unity.

Notation 5.2.10. Here are some important single-qutrit gates and their notations:

Hadamard gate, H = 1
√
−3


1 1 1
1 ω ω2

1 ω2 ω

 Phase gate, S =


1 0 0
0 1 0
0 0 ω


Metaplectic gate, R =


1 0 0
0 1 0
0 0 −1

 T =


1 0 0
0 ζ 0
0 0 ζ−1


Definition 5.2.11 (Pauli Group). The qutrit Pauli groupPn (a subgroup ofU3n(C)) is generated
by the following:

Pauli X =


0 0 1
1 0 0
0 1 0

 Pauli Z =


1 0 0
0 ω 0
0 0 ω2


Definition 5.2.12 (Clifford group). The Clifford group Cn is defined to be the normalizer of the
Pauli group Pn quotiented byU1(C), that is

Cn = {V ∈ U3n(C) : V−1PnV = Pn}/U1(C).

This is a finite group and any element of this group is said to be a Clifford gate.

Notation 5.2.13. One of the most important 2-qutrit gate is the gate known as CSUM (or CX)
given by

CSUM(|x⟩ |y⟩) = |x⟩ |x + y (mod 3)⟩ .
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This gate is an element of the multi-qutrit Clifford group. Note that CSUM is the composition
of |1⟩-controlled-X gate and |2⟩-controlled-X2 gate.

2

X2

=CS UM

1

X

Figure 5.6: The CS UM (or CX) gate

Proposition 5.2.14. The single-qutrit Clifford group is generated by the set {X,H, S }.

Proposition 5.2.15. The multi-qutrit Clifford group is generated by the set {X,H, S ,CS UM}.

5.2.2 Important Gate Sets

In this section, we introduce a few important gate sets and the group generated by the gate set
that appears commonly in this chapter.

Definition 5.2.16. The single-qutrit Clifford+D group is defined as the group generated by the
set {H, X,R,D} where

D =


1 0 0
0 1 0
0 0 ζ

 .
Definition 5.2.17. The single-qutrit Clifford+T group is defined as the group generated by the
set {H, S , X,T }.

Definition 5.2.18. The single-qutrit Clifford+R group is defined as the group generated by the
set {H, S , X,R}.

Similar to extending the multi-qutrit Clifford group from the single-qutrit Clifford group,
we can extend these to multi-qutrit cases [NC10] by adjoining the gate CS UM.

Definition 5.2.19. The multi-qutrit Clifford+D group is defined as the group generated by the
set {H, X,R,D,CS UM}.

Definition 5.2.20. The multi-qutrit Clifford+T group is defined as the group generated by the
set {H, S , X,T,CS UM}. In this chapter, we use (Cli f + T )(n) to denote the n-qutrit Clifford+T
group (i.e. the group where all the unitaries are of size 3n × 3n).

Definition 5.2.21. The multi-qutrit Clifford+R group is defined as the group generated by the
set {H, S , X,R,CS UM}.
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Note that both Clifford+T and Clifford+R groups are subgroups of Clifford+D.

Remark 5.2.22. Note that by the terms Clifford+D gate set, Clifford+T gate set and Clifford+R
gate set, we mean the finite set Cn ∪ {D}, Cn ∪ {T } and Cn ∪ {R} respectively. However, by
the terms Clifford+D group, Clifford+T group and Clifford+R group, we mean the group
generated by the corresponding gate set as defined above. This is the same difference as the
set S and G mentioned in the introduction of this chapter. As the main focus of this chapter is
exact synthesis, the final circuit will consist of words with letters from the gate set Clifford+T .

5.2.3 Catalytic Embedding

In this section, we recall the concept of catalytic embedding, in the sense of [Amy+23], which
will be used in the proof of Theorem 5.4.1.

Definition 5.2.23 (Catalytic embedding). Let G1 be a subgroup ofUn(C) and G2 be a subgroup
ofUnd(C). We call a group homomorphismΦ : G1 → G2 a d-dimensional catalytic embedding
with respect to a quantum state |λ⟩ ∈ Cd (known as the catalyst) if

Φ(U)(|u⟩ ⊗ |λ⟩) = (U |u⟩) ⊗ |λ⟩ for all |u⟩ ∈ Cn

Let R = Z[ 1
d ]. We explicitly describe a catalytic embedding ofUn(R[ζdk]) intoUnd(R[ζdk−1]).

For U ∈ Un(R[ζdk]), there exist unique A1, A2, ..., Ad ∈ Mn(R[ζdk−1]) such that:

U =
d−1∑
j=0

ζ
j
dk A j.

We define Φ(k)
n : Un(R[ζdk])→Und(R[ζdk−1]) by:

Φk(U) =
d−1∑
j=0

A j ⊗ Λ
j
k,

where Λk =

 0 ζdk−1

Id−1 0

. It is easy to verify that Φ(k)
n satisfies the requirements of a catalytic

embedding with respect to the catalyst |λk⟩ = (ζd−1
dk , ζd−2

dk , ..., 1)t.

In particular, for each n ∈ N, we have a catalytic embedding Φn : U3n(Z[1
3 , ζ]) ↪→

U3n+1(Z[ 1
3 , ω]) with Λ =


0 0 ω

1 0 0
0 1 0

 and the catalyst |λ⟩ = (ζ2, ζ, 1)t.
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5.2.4 Smallest denominator exponent

Proposition 5.2.24. Let p be a prime number. For l ∈ N, let ζpl be a primitive pl-th root of

unity and χpl = 1 − ζpl . Then Z
[

1
p , ζpl

]
= Z

[
1
χpl
, ζpl

]
.

Proof. It is well known that the value of the pl-th cyclotomic polynomial at 1 is p, so

p =
∏

1≤k≤pl

gcd(k,p)=1

(1 − ζk
pl) = (1 − ζpl)ϕ(pl)

∏
1≤k≤pl

gcd(k,p)=1

1 − ζk
pl

1 − ζpl
.

We know that for all k with gcd(k, p) = 1, the term
1−ζk

pl

1−ζpl
is a unit in Z[ζpl]. Therefore p = χϕ(pl)

pl u
for some unit u ∈ Z[ζpl]. Hence we can write

1
p
=

u−1

χ
ϕ(pl)
pl

∈ Z

[
1
χpl

, ζpl

]
and

1
χpl
=

(1 − ζpl)(ϕ(pl)−1)u
p

∈ Z

[
1
p
, ζpl

]

□

Notation 5.2.25. From now on, when the subscript is not specified, we denote χ = 1 − ω.

As a consequence of Proposition 5.2.24, we get that localizing the element 3 and localizing
the element χ produces the same ring Z[ 1

3 , ω]. Further note that 1
√
−3
= ω2

χ
and ω2 is a unit,

therefore localizing at 1
√
−3

also produces the same ring i.e:

Z

[
1
3
, ω

]
= Z

[
1
√
−3

, ω

]
= Z

[
1
χ
, ω

]
.

Therefore, the ring Z
[

1
3 , ω

]
has an infinite Z[ω]-basis {1, 1

χ
, 1
χ2 , ...} and so we can talk about

denominator exponent and smallest denominator exponents of an element x ∈ Z[1
3 , ω] with

respect to χ. We formally define them below:

Definition 5.2.26 (sde of an element w.r.t. χ). Let x ∈ Z[1
3 , ω], then f ∈ N ∪ {0} is said to

be a denominator exponent of x with respect to χ if χ f x ∈ Z[ω]. Further if χ f x ∈ Z[ω] but
χ f−1x < Z[ω], then f is said to be the smallest denominator exponent or sde of x (with respect
to χ).

Definition 5.2.27 (sde of a column). Let u ∈ Z[ 1
3 , ω]m be a m×1 column, then f ∈ N∪{0} is said

to be a denominator exponent of u with respect to χ if χ f u ∈ Z[ω]m. Further if χ f u ∈ Z[ω]m

but χ f−1u < Z[ω]m, then f is said to be the smallest denominator exponent or sde of u (with
respect to χ).



82 Chapter 5. Quantum Circuit Synthesis

5.3 Unitaries with entries from Z[1
3, e

2πi/3]

In this section, we prove one of the main two theorems in this chapter. The proof of the theorem
yields an algorithm to make an exact circuit for any unitary with entries from Z[1

3 , ω] over the
multi-qutrit Clifford+T gate set. This result is an extension of [Gla+22, Corollary 23], which
basically says that any unitary from U3(Z[ 1

3 , ω]) can be exactly synthesized over the 2-qutrit
Clifford+T gate set.

The proof of the theorem goes through a series of steps. The first step is to express
U ∈ U3n(Z[ 1

3 , ω]) as a product of 3-level unitaries, which are then further decomposed into
(multiply)-controlled single qutrit Clifford+R gates. Finally, these controlled gates are imple-
mented over the (n+1)-Clifford gate set using a borrowed ancilla. Figure 5.7 shows a schematic
diagram of the steps involved in the algorithm given by Theorem 5.3.1.

Theorem 5.3.1. [KSaikia+] Let U ∈ U3n(Z[ 1
3 , ω]). Then U can be exactly represented by a

quantum circuit over Clifford+T, using at most one borrowed ancilla. To be precise, we have
the following embedding of groupsU3n(Z[ 1

3 , ω]) ↪→ (Cli f + T )(n+1) given by

U 7→ U ⊗ I

ofU3n(Z[1
3 , ω]) inside (n + 1)-qutrit Clifford+T group.

In the following subsections, we define the necessary tools and prove a few important
lemmas that are required for the proof of Theorem 5.3.1.

5.3.1 Reduction to 3-level unitaries

Definition 5.3.2 (3-level matrices). Let R be a ring. Let U ∈ M3(R) be given by the matrix:

U =


a1 a2 a3

b1 b2 b3

c1 c2 c3


A matrix M ∈ Mm(R) (with m ≥ 3) is said to be a 3-level matrix of type U if there is a
coordinate subspace of dimension 3, say with indices j1, j2, and j3, on which M acts by U, and
such that M acts trivially on its orthogonal complement. In other words: say the indices have
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Take U ∈ U3n(Z[1
3 , ω])

Decompose U = U1...Uk where each of U j is

Take one of the 3-level unitaries V from Step 1 at a time

Step 1

Step 2

Step 3

a 3-level unitaries of type X, S ,H and R

and replace V = V1...Vl such that each of V j is a
controlled gate with target unitary X, S ,H,T or CS UM

Take one of the controlled gate W from Step 2 and decompose
W ⊗ I ∈ U3n+1(Z[ 1

3 , ω]) over the multi-qutrit Clifford+T gate set, i.e.
construct a circuit for the controlled gate W over the multi-qutrit

Clifford+T using a borrowed ancilla

Figure 5.7: Roadmap for the algorithm in Theorem 5.3.1

the relationship j2 ≤ j1 ≤ j3, then

M =

j2 j1 j3



I
j2 b2 b1 b3

I
j1 a2 a1 a3

I
j3 c2 c1 c3

I

We denote the above matrix as U[ j1, j2, j3].

Definition 5.3.3 (1 and 2-level matrices). We define 1-level and 2-level matrices similarly to

the above definition. For U =

a b
c d

 ∈ M2, a 1-level matrix of type a and 2-level matrices U
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has the form:

[a][ j] =

j


I
j a

I

, U[ j,l] =

j l



I
j a b

I
l c d

I

respectively.

Remark 5.3.4. Note that by definition, if the size of the matrix is greater than or equal to 3,
then all 1-level and 2-level are also 3-level matrices. In particular, if the size of the matrix is
greater than or equal to 3, then a 3-level unitary of type S or R is equivalent to a 1-level unitary
of type ω or −1 respectively.

We use the map P : Z[ω]→ Z/3Z defined by g(ω) 7→ g(1) (mod 3). Recall that g ∈ χZ[ω]
iff P(g) = 0, and additionally, g ∈ χ2Z[ω] iff P(g) = g(1) = 0 and P(g′) = g′(1) = 0 where
g′(ω) is the formal derivative of g with respect to the formal variable ω [KVM23].

Lemma 5.3.5. Let u ∈ Z[ 1
3 , ω]m be an m-dimensional column vector of norm 1 and sde 0. Then

u is some permutation of (±ωa, 0, ...., 0)t for some a ∈ Z.

Proof. As sde(u) = 0, so u = (u1, ..., um) ∈ Z[ω]m. Let u j = a jω+b j for some a j, b j ∈ Z. Using
the fact that the norm of u is 1, we get the equation

m∑
j=1

a2
j + b2

j − a jb j = 1.

Clearly, up to permutation the only solutions for the above equation are i) a1 = ±1 and all the
other variables are 0, ii) b1 = ±1 and all the other variables are 0, and iii) (a1, b1) = (1, 1) or
(−1,−1) and all other variables are 0. In all these cases, we see that u1 = ±ω

a for some a ∈ Z.
This proves our statement. □

Lemma 5.3.6. Let m = 1 or 2. If u ∈ Z[ 1
3 , ω]m is a unit vector then sde(u) = 0.

Proof. To the contrary, suppose sde(u) = f > 0 and u is a unit vector. Then we have χ f u = v
for some v = (v1, ..., vm)t ∈ Z[ω]m but χ f−1u < Z[ω]m. Applying P to both sides of

∑m
j=1 |v j|

2 =

|χ|2 f , we obtain:

m∑
j=1

P(v j)2 = 0.
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Since P(v j)2 can be either 0 or 1 and m < 3, so we get that P(v j) must be 0 for all j, i.e.
v j ∈ χZ[ω], i.e. v ∈ χZ[ω]m. Then χ f−1u = v ∈ χZ[ω]m, a contradiction. □

Corollary 5.3.7. Let m ∈ {1, 2} and u ∈ Z[ 1
3 , ω]m be a column vector of norm 1. Then there

exists a sequence U1, ...,Uk of 2-level unitaries of type

0 1
1 0

; and 1-level unitaries of type ω

and −1 such that U1...Uku = (1) for m = 1 and U1...Uku = (1, 0)t for m = 2.

Proof. By Lemma 5.3.6 we get that sde(u) = 0. Using Lemma 5.3.5, we get that u = (±ωa)
or u = (±ωa, 0) or (0,±ωa) respectively for m = 1 and 2. Therefore, we can use a sequence of

unitaries of the form

0 1
1 0

 or 1-level unitaries of type ω and −1 to convert u into (1, 0) or (1)

respectively for m = 1 and 2. □

Lemma 5.3.8. Let m ≥ 3 and u ∈ Z[ 1
3 , ω]m be a unit vector with sde f > 0. Then there exists

a sequence U1, ...,Uk of 3-level unitaries of type X,H and S ; and 1-level unitaries of type −1
such that the sde of all the entries of the resulting column U1, ...,Uku is at most f − 1.

Proof. We have χ f u = v for some v = (v1, ..., vm)t ∈ Z[ω]m but χ f−1u < Z[ω]m, i.e. there exists
at least one j such that v j < χZ[ω]. Since ∥u∥ = 1, we have

m∑
j=1

|v j|
2 = |χ|2 f .

We apply the map P to get that
m∑

j=1

P(v j)2 = 0.

SinceP(v j)2 can be 0 or 1, therefore we see that the number of j ∈ {1, ...,m} such thatP(v j)2 = 1
is a multiple of 3, i.e. the number of j such that v j < χZ[ω] is 3l for some l ≥ 1. In other words,
the number of entries of u which has sde strictly greater than f − 1 is of the form 3l for some
l ≥ 1.

We use induction on l to prove this lemma.

• Base case l = 1: There exists j1, j2, j3 ∈ {1, ...,m} (denote I = { j1, j2, j3}) such that
P(v j)2 = 1 for all j ∈ I and P(v j)2 = 0 for all j < I (i.e. v j ∈ χZ[ω] for all j < I). First
notice that P(v j) = 1 or −1 for all j ∈ I. If P(v ji) = −1 for some ji ∈ I, we can use a
one level unitary [−1][ ji] so that P(v ji) = 1. Therefore after the application of the above
3-level matrices, we have P(v j) = 1 for all j ∈ I. Let ṽ be the column of the column of
size 3 having the entries v j1 , v j2 and v j3 in its 1st, 2nd and 3rd entries respectively. Let
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ũ = 1
χ f ṽ, then

HS aũ =
ω2

χ f+1


v j1 + v j2 + ω

av j3

v j1 + ωv j2 + ω
a+2v j3

v j1 + ω
2v j2 + ω

a+1v j3


Let g1 = v j1 +v j2 +ω

av j3 , g2 = v j1 +ωv j2 +ω
a+2v j3 and v j1 +ω

2v j2 +ω
a+1v j3 in Z[ω]. Then

we see that P(g1) = P(g2) = P(g3) = 0. We will choose a ∈ Z/3Z such that g j ∈ χ
2Z[ω]

for each j ∈ {1, 2, 3}. We have

g′1(ω) = v′j1 + v′j2 + aωa−1v j3 + ω
av′j3

P(g′1) = a +
∑
j∈I

P(v′j)

g′2(ω) = v′j1 + v j2 + ωv′j2 + (a + 2)ωa+1v j3 + ω
a+2v′j3

P(g′2) = a + 3 +
∑
j∈I

P(v′j) = P(g′1)

g′3(ω) = v′j1 + 2ωv j2 + ω
2v′j2 + (a + 1)ωav j3 + ω

a+1v′j3
P(g′3) = a + 3 +

∑
j∈I

P(v′j) = P(g′1)

We choose a ∈ Z/3Z such that a +
∑

j∈IP(v′j) = 0, then P(g′j) = 0 for j ∈ {1, 2, 3}.
Combining with P(g j) = 0, we see that g j ∈ χ

2Z[ω]. Therefore we have

HS aũ =
ω2

χ f−1


g1
χ2

g2
χ2

g3
χ2

 with g j ∈ χ
2Z[ω], i.e χ f−1HS aũ ∈ Z[ω]m.

Therefore all entries of HS aũ have sde at most f − 1. Hence l decreased from 1 to 0 and
our base case of the inner induction is done.

• Induction step: For the induction step we pick any 3 of the indices j1, j2, j3 ∈ {1, ...,m}
such that P(v j1),P(v j2) and P(v j3) are non-zero and use the base case algorithm to lower
l by 1. Then from the induction hypothesis, the statement of the lemma follows.

□

Lemma 5.3.9. Let m ≥ 3 and u ∈ Z[ 1
3 , ω]m be an m-dimensional column vector of norm 1.

Then there exists a sequence U1, ...,Uk of 3-level unitaries of type X, S and H; and 1-level
unitaries of type ω and −1 such that U1...Uku = (1, 0, ..., 0)t.

Proof. Suppose the sde of u = (u1, ..., um)t ∈ Z[ 1
3 , ω]m is f . If f is non-zero, by Lemma 5.3.8,

there exists a sequence U1, ...,Uk′ of 3-level and 1-level unitaries such that sde of U1...Uk′u is
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at least 1 less than that of u . We can inductively proceed this way to find 3-level and 1-level
unitaries U1, . . . ,Uk such that sde of U1 . . .Uku is 0. By Lemma 5.3.5, this column of sde 0
is equal to (±ωa, 0, 0, ..., 0) up to permutation. We use a 3-level unitary of type H2 and 1-level
unitaries of type ω and −1 to get (1, 0, ...., 0)t. □

Lemma 5.3.10. Let U ∈ Um(Z[ 1
3 , ω]). Then there exists a sequence U1, ...,Uk of 3-level uni-

taries of type X, S and H; 2-level unitaries of type

0 1
1 0

; and 1-level unitaries of type ω and

-1 such that U1....UkU = I.

Proof. We prove this using induction on m. By Lemma 5.3.7, the base case is done. Now, let u
be the first column of U. Then using Corollary 5.3.7 and Lemma 5.3.9, there exists a sequence

U1, ...,Uk1 of 3-level unitaries of type X, S and H; 2-level unitaries of type

0 1
1 0

; and 1-level

unitaries of type ω and −1 such that

U1...Uk1u = (1, 0, ..., 0)t.

Therefore we have

U1...Uk1U =

 1 0
0 U′

 .
Using the induction hypothesis on the unitary U′ of size m − 1, the statement of the lemma
follows. □

Lemma 5.3.11. Let U ∈ Um(Z[ 1
3 , ω]). Then there exists a sequence U1, ...,Uk of 3-level uni-

taries of type X, S and H; 2-level unitaries of type

0 1
1 0

; and 1-level unitaries of type ω and

-1 such that U = U1....Uk.

Proof. A consequence of Lemma 5.3.10 after observing that X−1 = X2, S −1 = S 2,H−1 =

H3,

0 1
1 0

−1

=

0 1
1 0

 , ω−1 = ω2 and (−1)−1 = −1. □

5.3.2 Conversion to controlled gates

Our next task is to convert these level-unitaries to controlled gates. Let us first define what they
are and observe that when the level-unitaries are of a particular form, they already are useful
controlled gates.

Observation 5.3.12. Let M ∈ U3n(Z[ 1
3 , ω]) be a 3-level unitary of type U ∈ U3(Z[ 1

3 , ω]). We
rename the row and column indices of the matrix M as a n-tuple P⃗ = (p1, ..., pn) ∈ {0, 1, 2}n

with lexicographic ordering.
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Define ∆n to be the graph in Rn with the set of vertices {(x1, ..., xn) : x1, ..., xn ∈ {0, 1, 2}}
and there is an edge between two vertices if and only if the two vertices differ exactly at one
coordinate and where they differ, the difference between the coordinates is exactly 1. This
graph is nothing but the higher-dimensional grid with 3-points in each coordinate direction
(∆2, for example, is the grid shown in Figures 5.8 5.9, 5.10 and 5.11). We associate the data
‘(∆n,

−→
P0,
−→
P1,
−→
P2)’ with the 3-level unitary M = U[

−→
P0,
−→
P1,
−→
P2]. For example, the picture of Figure 5.8

b) is associated with the 3-level unitary U[(0,2),(1,2),(2,2)] shown in Figure 5.8 a).

We observe that if the three points
−→
P0,
−→
P1, and

−→
P2 are in a straight line along an edge of ∆n

(i.e. n − 1 of the corresponding coordinates are the same for all the three points), then M is an
(n − 1)-multiply-controlled-(Xσ−1UXσ) gate for some σ ∈ S 3. If the three points are already in
the correct order corresponding to the rows of U, then M is already a controlled-U gate (as
illustrated in Figure 5.8 for n = 2). However, if the three points are in a straight line, but the
order of the rows and columns is incorrect, we just need to conjugate it with a controlled-Xσ

gate to get a controlled-U gate (as illustrated in Figure 5.9 for n = 2).

U[(0,2),(1,2),(2,2)] =





1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 a1 0 0 a2 0 0 a3

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 b1 0 0 b2 0 0 b3

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 c1 0 0 c2 0 0 c3

−→
P0 = (0, 2)

−→
P1 = (1, 2) −→

P2 = (2, 2)

U

2

a) The initial 3-level unitary

b) The points are already in a straight line
and the rows and the columns are

already in the correct order

c) The 3-level unitary is equal
to the above controlled-U gate

Figure 5.8: The 3-level unitary U[(0,2),(1,2),(2,2)] is already a controlled-U gate
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U[(1,2),(2,2),(0,2)] =





1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 c3 0 0 c1 0 0 c2

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 a3 0 0 a1 0 0 a2

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 b3 0 0 b1 0 0 b2

XUX2

2

=

U X

22

−−→
Q2

−−→
Q0

−−→
Q1

a) The initial 3-level unitary

−→
P2 = (0, 2)

−→
P0 = (1, 2)

−→
P1 = (2, 2)

b) Permute the rows and columns to the correct order

conjugate by

X

2

c) The final circuit for U[(1,2),(2,2),(0,2)]

U[(1,2),(2,2),(0,2)] → ← U[(0,2),(1,2),(2,2)]

X2

2

Figure 5.9: The equivalent circuit for U[(1,2),(2,2),(0,2)] using controlled gates

Lemma 5.3.13. [KSaikia+] Let M ∈ Um(Z[ 1
3 , ω]) be a 3-level unitary of type U ∈ U3(Z[1

3 , ω])
such that 3n−1 < m ≤ 3n for some n ≥ 2. Let m′ = 3n−m, then the unitary Im′⊕M ∈ U3n(Z[1

3 , ω])
can be decomposed into n-qutrits gates consisting of |2⟩⊗(n−1)-controlled-X, |2⟩⊗(n−1)-controlled-
H and a controlled-U gate.

Proof. Let M′ = Im′ ⊕ M. Then M′ is also a 3-level unitary of type U. We rename the row
and column indices of the matrix M′ as a n-tuple P⃗ = (p1, ..., pn) ∈ {0, 1, 2}n with lexicographic
ordering. Suppose M′ = U[

−→
P0,
−→
P1,
−→
P2].

Suppose {
−→
P0,
−→
P1,
−→
P2} and {

−→
Q0,
−→
Q1,
−→
Q2} are two set vertices of ∆n such that there are two

common points in these sets, without loss of generality say
−→
P1 =

−→
Q1 and

−→
P2 =

−→
Q2. Further

assume that (n − 1) corresponding coordinates of
−→
P0 and

−→
Q0 are the same, wlog assume that

only the n-th coordinate of
−→
P0 and

−→
Q0 differ. Then observe that VU[

−→
P0,
−→
P1,
−→
P2]V

−1 = U[
−→
Q0,
−→
Q1,
−→
Q2]

where V is the multi-controlled-X j gate with target at n-th wire and j ∈ {1, 2} is chosen such
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that X j takes the n-th coordinate of
−→
P0 to the n-th coordinate of

−→
Q0.

Therefore, movements of a point along the paths of ∆n from one vertex to another vertex
that changes only one of the coordinates of the point corresponds to conjugating M′ by an
(n − 1)-multiply-controlled-permutation gate with the target on the wire where the coordinate
changes and controls on all other n − 1 wires (as illustrated in Figure 5.10).

The idea is to travel along the edges of the graph ∆n to start from
−→
P j and end up in

−→
P′j such

that the points
−→
P′0,
−→
P′1 and

−→
P′2 are in a straight line along an edge of ∆n so that we get the cases

of the Observation 5.3.12 (as illustrated in Figures 5.10 and 5.11 for n = 2).
Finally, by Remark 5.2.5 and 5.2.6, the statement of the lemma follows. □

Remark 5.3.14. The procedure in the above lemma is an analogue of the Gray code construction
[NC10, Section 4.5.2] for qutrits. Further, note that we can extend the same procedure to
convert any d-level unitaries (similar to 3-level unitaries) into controlled-qudit gates. In that
case, we replace ∆n by the graph ∆n

d where ∆n
d is the graph in Rn with the set of vertices

{(x1, ..., xn) : x1, ..., xn ∈ {0, 1, ..., d− 1}} and there is an edge between two vertices if and only if
the two vertices differ exactly at one coordinate and where they differ, the difference between
the coordinates is exactly 1. All other arguments used in the proof of Lemma 5.3.13 can also
be mimicked for qudits.

5.3.3 Exact synthesis over Clifford+T

Lemma 5.3.15. Let U ∈ U3n(Z[1
3 , ω]) and n ≥ 2. Then U can be decomposed into a sequence

of |2⟩⊗(n−1)-controlled gates with target unitaries X, S ,H and R.

Proof. Using Lemma 5.3.11 we see that U ∈ U3n(Z[ 1
3 , ω]) can be decomposed into 3-level

unitaries of type X, S and H; 2-level unitaries of type

0 1
1 0

; and 1-level unitaries of type ω

and -1. Since 3n ≥ 32 > 3, so a 1-level unitary of type -1 or ω is equivalent to a 3-level unitary
of type X jRX3− j or X jS X3− j respectively for some j ∈ {1, 2}. Further, a two-level unitary of

type

0 1
1 0

 is equivalent to a 3-level unitary of type H2. Therefore, U can be decomposed into

a sequence of 3-level unitaries of type X, S ,H and R.
Using Lemma 5.3.13, we see that any such 3-level unitaries can be decomposed into

|2⟩⊗(n−1)-controlled gates with target unitaries X, S ,H and R. □

At this point, we are in the final stage of the algorithm of Theorem 5.3.1. The final stage
is to decompose the controlled gates we have in the above lemma (Lemma 5.3.15) over the
multi-qutrit Clifford+T gate set.
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U[(0,1),(1,2),(2,2)] =





1 0 0 0 0 0 0 0 0
0 a1 0 0 0 a2 0 0 a3

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 b1 0 0 0 b2 0 0 b3

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 c1 0 0 0 c2 0 0 c3

0

X 2

U 0

X2

−→
P1

−→
P0

−→
P2

−→
P ′0

−→
P ′1

−→
P ′2

0

X

Conjugate by

c) The final circuit for U[(0,1),(1,2),(2,2)]

b) Put the three points onto a line of the grid

a) The initial 3-level unitary

U[(0,1),(1,2),(2,2)] → ← U[(0,2),(1,2),(2,2)]

Figure 5.10: The equivalent circuit for U[(0,1),(1,2),(2,2)] using controlled gates
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U[(0,1),(1,2),(2,0)] =





1 0 0 0 0 0 0 0 0
0 a1 0 0 0 a2 a3 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 b1 0 0 0 b2 b3 0 0
0 c1 0 0 0 c2 c3 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

−→
P1

−→
P0

−→
P2

−→
P ′1

X2 X X2 X0 0

2 0 X2 U 0 2

−→
P ′2

conjugate by

X2

2

X

0
and

X2

0

conjugate by

−→
P ′0

b) First put the three points onto a line of the grid

c) Permute the rows to the correct order

d) Final circuit for U[(0,1),(1,2),(2,0)]

a) The initial 3-level unitary

−→
P ′1

−→
P ′2

−→
P ′0

← U[(0,1),(0,2),(0,0)]U[(0,1),(1,2),(2,0)] →

← U[(0,0),(0,1),(0,2)]

−→
Q2

−→
Q0

−→
Q1

0

X

Figure 5.11: The equivalent circuit for U[(0,1),(1,2),(2,0)] using controlled gates
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Observation 5.3.16. Note that the |2⟩⊗(n−1)-controlled-X with target unitary X at n-th wire can
be made using multi-qutrit Clifford+T (as shown in [YW22, Lemma 6]). Here we provide the
explicit circuit with our notations for n = 3 in Figure 5.12. The position of the target unitary
X does not change the decomposition over Clifford+T by much (as illustrated in Figures 5.13
and 5.14).

2

X

2

=

X2 X(1 2)

2 2

X 1

X(1 2)

X2

2

1

X(1 2) X X(1 2)

2 2

X 1

X(1 2)

X2

2

1

X(1 2)

Figure 5.12: Decomposition of controlled-X gate with target at 3rd wire over Clifford+T

X

2

X2 X(1 2)

2 2

X(1 2)

2

X(1 2) X X(1 2)

2 2

X(1 2)

2

X(1 2)

2 X 1 X2 1 X 1 X2 1

=

Figure 5.13: Decomposition of controlled-X gate with target at 2nd wire over Clifford+T

X X2 X(1 2) X(1 2) X(1 2) X X(1 2) X(1 2) X(1 2)

2 X 1 X2 1 X 1 X2 1=

2 2 2 2 2 2 2

Figure 5.14: Decomposition of controlled-X gate with target at 1st wire over Clifford+T

As seen in the above observation, note that if we know a decomposition of a controlled-X
gate over the multi-qutrit Clifford+T gate set, we can easily decompose all the other controlled-
X gates over the multi-qutrit Clifford+T gate set. Therefore, finding the decomposition of the
controlled-X gate with the target at n-th wire is sufficient for our purpose. We shall use this
knowledge to see that the analogous statement for controlled-U gates for an arbitrary U also
holds. This can be seen easily as the target unitary can be pushed to any wire by conjugating
with appropriate controlled-X gates (as illustrated in Figure 5.15 for n = 2). Note that this can
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be achieved using the same procedure described in Lemma 5.3.13 by choosing the appropriate
straight line for the target unitary.

U

2

=
X2 X 2 X2 X

0 1 U 1 0

X X2 X X2

CX CX−1

Figure 5.15: Relationship between different target positions for arbitrary U

Proof of Theorem 5.3.1. When n = 1, we have U3n(Z[ 1
3 , ω]) = Clifford+R [KVM23] and so

the statement of the theorem for n = 1 is essentially the same as [Gla+22, Corollary 23].
When n ≥ 2, using Lemma 5.3.15, U can be decomposed into a sequence of |2⟩⊗(n−1)-

controlled gates with target unitaries X, S ,H and R. Using Observation 5.3.16, it is enough to
show that we can decompose |2⟩⊗(n−1)-controlled gates with target unitaries S ,H and R at the
n-th wire over the multi-qutrit Clifford+T gate set.

• Using [YW22, Lemma 12], we can exactly decompose |2⟩⊗(n−1)-controlled gates of type
H into a multi-qutrit Clifford+T .

• If U′ is a |2⟩⊗(n−1)-controlled-S gate, then using [YW22, Lemma 11] we can exactly
decompose U′ ⊗ I into a multi-qutrit Clifford+T . Note that in [YW22], the authors use
the language of borrowed ancilla, which is mathematically the same as decomposing
U′ ⊗ I into multi-qutrit Clifford+T using the ancillary system rather than decomposing
U′ itself.

• Using [Gla+22, Theorem 22], we can decompose R⊗ I into a word in the set {H, X, S ,T,
CS UM}. Therefore, a |2⟩⊗(n−1)-controlled-R gate is equal to composition of a few |2⟩⊗n-
controlled gates of type H, X, S ,T and |2⟩⊗(n−1)-controlled CS UM. Each of these con-
trolled gates can be decomposed over the (n + 1)-qutrit Clifford+T gate set [YW22,
Lemma 12, Lemma 6, Lemma 11, Lemma 8, Lemma 7].

Hence we see that U ∈ U3n(Z[1
3 , ω]) can be decomposed into a circuit consisting of qutrit

multi-qutrit Clifford+T gates with at most one borrowed ancilla. Mathematically equivalent
to saying we have the embedding of groups Φn : U3n(Z[ 1

3 , ω]) ↪→ (Cli f + T )(n+1) given by
U 7→ U ⊗ I. □

5.4 Unitaries with entries from Z[1
3, e

2πi/9]

In this section, we prove the second main theorem of this chapter. The proof of the theorem
yields an algorithm to make an exact circuit for any unitary with entries from the ring Z[ 1

3 , ζ]
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over the multi-qutrit Clifford+T gate set. The theorem is a complete analogue for qutrits of
the main result in [GS13] with the ring Z[ 1

√
2
, i] replaced by the ring Z[ 1

3 , ζ] for single-qutrit
Clifford+T .

Given a n-qutrit gate U with entries in the ring Z[ 1
3 , ζ], we will create a circuit equivalent

to U using multi-qutrit Clifford+T gate set. We already know that single-qutrit Clifford+T
is not enough to decompose single-qutrit gates with entries from Z[ 1

3 , ζ] (this is the same as
single-qutrit Clifford+D). Theorem 5.4.1, in particular n = 1, gives an algorithm to implement
unitaries in single-qutrit Clifford+D over the multi-qutrit Clifford+T gate set, given we have
two more ancillae.

Take U ∈ U3n(Z[1
3 , ζ])

Apply catalytic embedding to get Φn(U) ∈ U3n+1(Z[ 1
3 , ω]

Apply Theorem 5.3.1 to decompose Φn(U) ⊗ I

Step 0

Apply Theorem 5.3.1

over (n + 2)-qutrit Clifford+T

Figure 5.16: Roadmap for the algorithm of Theorem 5.4.1

Theorem 5.4.1. [KSaikia+] Let U be a unitary 3n × 3n matrix. Then U can be exactly rep-
resented by a quantum circuit over Clifford+T gate set, possibly using at most two ancillae if
and only if the entries of U belong to the ring Z[1

3 , ζ]. To be precise, there exists an embedding
Ψn : U3n(R) ↪→ (Cli f + T )n+2 and |w⟩ ∈ (C3)⊗2 with the property

Ψn(U)(|v⟩ ⊗ |w⟩) = (U |v⟩) ⊗ |w⟩ for all |v⟩ ∈ (C3)⊗n (5.1)

if and only if R = Z[1
3 , ζ].

Proof. For the forward implication: note that (Cli f + T )n+2 ⊂ U3n+2(Z[1
3 , ζ]). For 1 ≤ j ≤ 3n,

we take |v⟩ =
∣∣∣e j

〉
, the j-th standard basis element of (C3)⊗n in Equation 5.1. Then we see that

the j-th column of U is the first 3n entries of the j-th column of Ψn(U). Therefore the entries
of the j-th column of U are from the ring Z[ 1

3 , ζ] and the the statement follows.
For the converse implication, we first use the catalytic embedding described in Section 5.2.3

to embed U3n(Z[ 1
3 , ζ]) inside U3n+1(Z[ 1

3 , ω]). This step adds one ancilla (the catalyst involved
in the embedding becomes the ancilla). Then we use Theorem 5.3.1 to construct a circuit over
Clifford+T with at most one more ancilla. This concludes the theorem. □
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