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Abstract

Given a measure space and a totally ordered collection of measurable sets, called an ordered
core, the notion of a core decreasing function is introduced and used to generalize monotone
functions to general measure spaces. The least core decreasing majorant construction, the level
function construction, and the greatest core decreasing minorant, already known for functions
on the real line, are extended to this general setting. A functional description of these con-
structions is provided and is shown to be closely related to the pre-order relation of functions
induced by integrals over the ordered core.

For an ordered core, the down space construction of a Banach function space is defined
as a variant of the Kothe dual restricted to core decreasing functions. Concrete descriptions
of the duals of the down spaces are provided. The down spaces of L' and L™ are shown to
form an exact Calderon couple with divisibility constant 1; a complete description of the exact
interpolation spaces for the couple is given in terms of level functions; and the down spaces of
universally rearrangement invariant spaces (u.r.i.) are shown to be precisely those interpolation
spaces that have the Fatou property. The dual couple is also an exact Calderén couple with
divisibility constant 1; a complete description of the exact interpolation spaces for the couple
is given in terms of least core decreasing majorants; and the duals of down spaces of u.r.i.
spaces are shown to be precisely those interpolation spaces that have the Fatou property.

Integral operators whose kernel operators satisfy a monotonicity condition on their level
sets are shown to induce an ordered core. Certain weighted norm inequalities are shown to
remain valid when the weights are replaced with core decreasing functions. Boundedness of
an abstract formulation of Hardy operators between Lebesgue spaces over general measure
spaces is studied and, when the domain is L', shown to be equivalent to the existence of a
Hardy inequality on the half line with general Borel measures.

Keywords: Ordered core, core decreasing function, Calderon couple, interpolation space,
level function, down space, Hardy inequalities.
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Summary for Lay Audience

A fundamental feature of real numbers is that they form a total order, for any pair of distinct
real numbers, one is bigger than the other. Consequentially, it is natural to define monotone
functions as an assignation of numbers that preserve (or reverse) this order. In this thesis, we
extend monotone functions to collections of elements that admit a notion of volume but do not
have a predetermined order among the elements. Instead, we rely on a collection of subsets
that take the role of the intervals {[0, x]},o in the real line, called an ordered core. We use
ordered cores to define monotone functions in this more abstract setting and extend some tools
related to decreasing functions, previously only available on the real line, to this more abstract
setting.

We work with function spaces. For a fixed function, assign it a size by measuring its
interaction with all the decreasing functions. The space we produce through this process is the
down space. We describe them completely and study some of their properties. We focus on
duality and interpolation.

The dual space is a collection of functions over our original space that satisfy certain prop-
erties. In the case of finite dimensional spaces (collections of column vectors of n-entries),
we may identify the dual space with the collection of row vectors of n-entries. For our Down
spaces, we also give a concrete description of their duals.

For interpolation, we consider a concrete pair of function spaces corresponding to the down
spaces of L' (L']) and L™ (L*]). We consider intermediate collections of functions that can
be written as the sum of a function that is not 'too wide’ and a function that is not ’too tall’.
If we know the behavior of an operation on L' and L™, we also understand the operation on
any intermediate collection. In this thesis, we give a complete characterization of the function
spaces that are intermediate between L'| and L™|.

We finish with an application of our theory of monotone functions in the study of Hardy
inequalities.
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Introduction

Monotone functions on R are very well-understood objects compared to general measurable
functions. A systematic study of these functions has shed light on many problems and, through-
out the years, a wide variety of techniques and applications have been developed to work with
monotone functions. For instance, the level function construction that first appeared in the
works of Lorentz [14] and Halperin [8] has the following properties:

Letl <p<ocoand1/p+1/p’ =1.1f fis aLebesgue measurable function on [0, ), there
exists a nonnegative, nonincreasing function f*, called the level function of f, such that

fow 1flg < j;mf"g

holds for all nonnegative, nonincreasing g, and

el = Sup{f Iflg : llgll,r <1,8>0,¢g nonincreasing}.
0

Here || - ||,» denotes the usual L? norm.

This improves Holder’s inequality (to a so-called D-type Holder inequality) in the presence
of monotonicity since we have fow Ifle < IIf°lrllgll,» whenever g is nonnegative and non-
increasing. This construction has been used to give formulas for the dual spaces of abstract
Lorentz spaces [12], to prove weighted Hardy inequalities [26, 32], to characterize bounded-
ness of the Fourier transform in Lorentz spaces [18, 28], to transfer monotonicity (from kernel
to weight) in weighted norm inequalities for general positive integral operators [29] and to pro-
vide equivalent norms for traditional and abstract Cesaro spaces that facilitate interpolation of
these spaces and of their duals [13].

The down spaces, a variant of the Kothe dual when restricted to the set of decreasing
functions, for the L” spaces, are given by the norm

I f1lzry = sup {f Ifl1g : llgllr <1andgis nonincreasing}.
0

A careful study of the down spaces is provided in [26, 16, 17], including a complete character-
ization of their interpolation spaces and their relationship with u.r.i. Banach function spaces.
These powerful tools are currently available only for functions defined on (R, 1), where
the natural order on R determines the collection of nonnegative, nonincreasing functions. The
object of our research is to make these tools available for functions on general measure spaces
in which a highly customizable notion of order is used to determine monotonicity. This is done
by a careful examination of the concept of a measure space with an ordered core, which was



introduced in [31] to study abstract Hardy operators. We use this ordered core to define core
decreasing functions, which will take the role of monotone functions in our general measure
spaces. We use these tools to extend level functions, D-type Holder inequalities, down spaces
with their interpolation theory, and the transferring monotonicity technique to our more general
setting.

This thesis is based on published work in [24] and submitted work in [23].

Organization of the thesis

Chapter 1 contains no original results, instead, we review most of the mathematical prereq-
uisites needed for the later chapters. We begin with a brief review of results in measure theory
and vector lattices not usually covered in a first graduate course. We discuss the definition of
Banach function spaces with special care about the nonincreasing rearrangement and univer-
sally rearrangement invariant (u.r.i.) spaces. We give a brief summary of the real method of
interpolation as well as a fundamental theorem of Calderén. The rest of the chapter is devoted
to giving more detail into the theory of monotone functions over the real line.

Our research begins in Chapter 2, where we provide the technical tools required for the later
results. We study the properties of ordered cores, define and study core decreasing functions,
and finish with a careful analysis of mappings between measure spaces with ordered cores. We
reserve a more categorical point of view of these mappings for the appendix.

In Chapter 3 we study a preorder relation on nonnegative measurable functions induced by
the ordered core. We extend the level function construction, the least core decreasing majo-
rant and the greatest core decreasing minorant to the setting of ordered cores. We provide a
pointwise and functional description of these constructions and relate them with the preorder
induced by the core.

Chapter 4 contains the theory of down spaces over a measure space with an ordered core.
We describe their associate spaces and give a full description of all their interpolation spaces
using the K-method of interpolation. We show that the fundamental compatible couple of
down spaces corresponding to L' and L™ form a Calder6n couple and relate their interpolation
spaces with down spaces for u.r.i. spaces. We also describe all interpolation spaces for the dual
couple.

In Chapter 5 we exhibit an application of the high customization provided by the theory
of monotonicity in general measure spaces developed before. We study integral kernel opera-
tors satisfying a monotonicity condition to induce an ordered core and extend the transferring
monotonicity technique to these integral operators. As an application, we provide a characteri-
zation of the boundedness of the abstract Hardy operator from LL — L. We exhibit new proofs
and extensions of weight characterizations of Hardy inequalities in metric measure spaces.



Chapter 1

Preliminaries

1.1 Basic results in measure theory

We consider X to be any set and record some basic constructions. The first is a minimal
collection of subsets of U for which a premeasure can be extended to a measure.

Definition 1.1.1 A non-empty collection S of subsets of X is called a semiring if it is closed
under finite intersections and if for all A, B € S there exists a finite disjoint collection {C j}lj‘.zl
of sets in S such that

k
B\A=|]c;
=1
A premeasure is amap p : S — [0, ) satisfying:
o IfQ e S, then p(0) = 0.
o (Finitely additive) If {Cj}"]“:1 is a disjoint collection of sets in S and Ul;zl C; €S then
p(S) = Eey (C).

e (Countably monotone) If E € § and {C} 5 is a sequence in S such that E C | J; C}, then
p(E) < 352 p(C)).

A premeasure p is said to be o-finite if US = U;‘;l C; for some collection {C}s1 such that
p(Cj) < oo

We are interested in the extension of premeasures to measures, we consider their natural
domain.

Definition 1.1.2 A non-empty collection R of subsets of X is a o-ring if it is closed under set
differences and countable unions. For any non-empty collection S of subsets of X, we denote
by o (S) the smallest o-ring containing S. If X belongs to a o-ring R, we call R a o-algebra.

The following result establishes a property of the generated o-rings.

Theorem 1.1.3 If S is any non-empty collection of subsets of X and E € o(S), then there
exists a countable subcollection S such that E € (S ).
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Proof: See [7][Page 24].
i

Theorem 1.1.4 (Caratheodory-Hahn) Let p : S — [0, 00) be a o-finite premeasure defined
on a semiring S. Denote by p* the induced outer measure and by p the measure defined on
p*-measurable sets. Then, p is the unique measure extending p to o(S).

Proof: See [19, p.356].
i

A consequence of the previous theorem is that to prove the equality of o-finite measures, it
is enough to prove that they coincide on a generating semiring.
We will make use of the following version of the change of variables formula.

Theorem 1.1.5 Given a o-finite measure space (Y,7,7), a measurable space (U,X) and a
measurable function ¢ : (Y, T ,7) — (U, X), the set function ¢.(1) : £ — [0, 00) defined by

¢.(NE) = (¢ (E)),

defines a measure. A - measurable function g : U — [—oco, 0] is integrable with respect to
@.(7) precisely when g o ¢ is integrable with respect to 1. In addition, the formula

fgd(go*(T)):fgogodT (1.1

@(Y) Y
holds. We call the measure ¢.(T) the pushforward measure.

Proof: See [4, Theorem 3.6.1].
i

From now on, we suppose that all the measure spaces involved are o-finite. Given a mea-
sure space (U, X, u), the collection of equivalence classes of 2-measurable functions equal up
to a set of u-measure zero will be denoted L(X) or Lg.

For a real number p € (0, o] and a measurable real valued function f we denote

1l = (f 17 d/l)p if p<oco, and |[|flly = esssup{lf(s)|:seU}
U

The collections of functions for which these quantities are finite are called the Lebesgue
spaces and are denoted L/, it is well known that these are Banach spaces for p € [1, o] and
quasi-Banach spaces for p € (0, 1).

We will make use of Holder’s inequality and Minkowski’s integral inequality.

Proposition 1.1.6 Let p € (1, ), f, g measurable functions and % + [% = 1. Then

satars( (e aa) { (1 aa) (12)
Josans (Lo ] { [
([(fw dr)pda)”ps [([frrar)”an 13)

Proof: See [10, Theorems 188 and 202].
i

and



1.2. POSITIVE OPERATORS 5

1.2 Positive operators

The following results from the theory of vector lattices will be needed, we follow the exposition
from [1].

Definition 1.2.1 A R-vector space V is a vector lattice if it is equipped with a partial order
relation denoted ‘<’ that is compatible with the algebraic operations. That is

If x,yeVand x<ythenx+z<y+z, VzeV.

Ifx,yeVandx <ythenax <ay, VYaeR".

And if for any x,y € V, there exists a supremum denoted xVy € V.
The collection of vectors x € V such that x > 0 is denoted by V*.
Any vector x € V can be uniquely decomposed in its positive and negative parts. That is,

x=x"-x,
where x* = xV 0and x~ = (—x) vV 0.

For our purposes, a fundamental example of vector lattice is given by V = Lg for a o-
finite measure space (U, Z, i). The order relation is up to inequality u-almost everywhere. The
supremum of two functions is given by f V g = max{f, g}.

We consider the class of linear maps that preserve the order relations.

Definition 1.2.2 Given two vector lattices V,W. A linear map T : V — W is positive if
T(x) € W* for every x € V™.

We will focus on vector lattices with some extra properties.

Definition 1.2.3 A vector lattice V is archimedean if for any x € V™ the sequence {ix}wo
satisfies the following:

1
Ifze Viz<-x, Vn, thenz<0.
n

Examples of archimedean vector lattices include the L? spaces for p € [1, oo]. The follow-
ing theorem will be useful in extending linear operators defined on positive elements.

Theorem 1.2.4 (Kantorovich) Let V, W be vector lattices, with W being archimedean. Suppose
that T : V¥ — W7 is an additive mapping, that is, T(x +y) = T(x) + T(y) holds for all
x,y € V*. Then T has a unique extension to a positive operator from V to W. Moreover, the
unique extension is given by

T(x)=Tx") -T(x).

Proof: See [1, Theorem 1.10].

The definition of supremum need not be constrained to a finite collection of vectors.
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Definition 1.2.5 Given a set A C V, we say that A is bounded above if there exists 7 € V such
thaty < zforall y € A. We say that x = supA if y < xforally € V and foranyz € Vify <z
forally € A, then x < z. A vector lattice V is Dedekind complete if every set A bounded above
in 'V has a supremum in V.

Examples of Dedekind complete vector lattices include the L? spaces for p € [1, o). It also
follows from the definition, that any Dedekind complete vector lattice is also archimedean.
We are interested in the following operator version of the Hahn-Banach theorem.

Theorem 1.2.6 (Hahn-Banach-Kantorovich) Let V be a R-vector space, W be a Dedekind
complete vector lattice and p : V — W satisfying

px+y) <p(x)+p»), and plax)=ap(x),

forall x,y € Vand a € V. If H is a linear subspace of V and f : H — W is a linear map
satisfying f(x) < p(x) for all x € H, then there exists an operator h : V. — W such that

e h(x) = f(x)forall x € H.
o h(x) < p(x)forallxeV.

Proof: See [1, Theorem 1.25].
i

1.3 Banach function spaces

We focus on a particular instance of vector lattices called Banach function spaces, we follow
the exposition from [33].

Over a o-finite measure space (U, Z, u), we denote by L*(X) the set of all nonnegative
measurable functions on U. For a sequence { f,,} € L*(X) we write f, T f whenever the sequence
{f.} 1s increasing and converges to f u-almost everywhere.

Definition 1.3.1 A mapping p : L*(X) — [0, oo] is a function seminorm if for any f, g,{fn}nen €
L*(Z), ¢ € (0, 00) and any measurable E C R, the following holds:

e p(f)=0iff =0, plcf) =co(f), p(f + g < p(f) +p(g).

e 0 < g < fimplies p(g) < p(f).

If in addition p(f) = 0 implies f = 0 u-almost everywhere, then p is called a function norm.
A function seminorm has the Riesz-Fischer property if

S othy <o, implies p( Y £)= Y pth.
n=1 n=1 n=1

A function seminorm has the Fatou property if

I S, implies  p(fa) T p(f)-

A function seminorm is saturated if for any set E of positive measure there exists a subset
F C E such that u(F) > 0 and p(yr) < oo.
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For a given function norm p we define the function space L, as the collection of all mea-
surable functions f such that p(|f]) is finite. The following result relates the completeness of
L, with the Riesz-Fischer and Fatou properties.

Theorem 1.3.2 The normed linear space L, is complete (i.e., L, is a Banach space) if and only
if p has the Riesz-Fischer property. If p has the Fatou property, then it has the Riesz-Fischer
property, and so, L, is complete.

Proof: See [33, Theorem 1, page 444] and [33, Theorem 2, page 445].
i

We now consider our natural notion of dual space, it will be given by another seminorm.

Definition 1.3.3 Given a function seminorm p, the associate seminorm is defined by
p'(f) = sup ffg du:geL"(X)andp(g) <1
U

The associate space (or Kéthe dual) is the function space L,y .

Example 1.3.4 Let p € [1, 0] and p(f) = ||f||L£. Then L, = Lﬁ and p'(f) = ||fl,»- Notice that
this holds even for the case p = oo, where it does not hold for the topological dual space.

Some results regarding these associate spaces are recorded next.

Proposition 1.3.5 Given a function seminorm p and f, g € L*(X), the following hold:
1. The function seminorm p’ has the Fatou property.

2. (Holder’s inequality) We have

f fgdu < p(p'(9). (1.4)
U

3. We have p"(f) < p(f) and p" (f) = p'(f),

4. We have the embedding L, C L, and the equality L, = L, with identical norms.
5. The function seminorm p is saturated if and only if p’ is a norm.

6. A function seminorm has the Fatou property if and only if p”’ = p.

Proof: Item (1) is [33, Theorem 1, page 457]. Items (2) and (3) are proved in [33, Theorem 2,
page 457]. Item (4) is an immediate consequence of (3). Item (5) is [33, Theorem 4, page 458].

Regarding item (6), if p” = p then p has the Fatou property as a consequence of item (1).
The converse is proven in [3, Theorem 2.7, page 10], notice that in [3], the Fatou property is
part of the definition of a Banach function space.
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1.3.1 Rearrangement invariant spaces

We follow the notation in the previous section.

Definition 1.3.6 Let f be a measurable function. The distribution function uy : [0,00) —
[0, oo] is given by
pur) =p(fxe U |f(0l>4}).

We can use the distribution functions to make comparisons between functions defined on
different measure spaces.

Definition 1.3.7 Let (U, X, u) and (Y, T, 1) be o-finite measure spaces. We say that f € L(X)
and g € L(T) are equimeasurable if they have the same distribution function, that is, if (1) =
To(A) forall 2 > 0.

The generalized inverse of the previous function is given next.

Definition 1.3.8 The nonincreasing rearrangement of f is the function f* : [0,00) — [0, 0]
defined by
F7(0) = inf(d 2 py(D) < 1),

Some properties of the rearrangement are recorded in the following proposition.
Proposition 1.3.9 Let f, g, {f,}hen € L(X), then:

1. The function f™ is nonincreasing and right continuous.

2. Iff| < |gl p-almost everywhere, then f* < g*.

3 Iffu T f A-a.e then f; T f~.
4. Ift;,t, > 0, then

(f+8' (i +1) < f1(1) + & (n).
5. If u(A) and f*(¢) are finite, then

Frup)) <A and  pp(f(0) <t.

Lm%miﬂvwmw
And |fllis = £(0).

Proof: Items (1) to (5) are proved in [3, Proposition 1.7, page 41]. Item (6) is proved in [3,
Proposition 1.8, page 43].
|
The following are function spaces that are well behaved with respect to the nonincreasing
rearrangement.

6. For p € (0, ) we have
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Definition 1.3.10 A universally rearrangement invariant (u.r.i.) space over U is a Banach
function space over U such that for f, g € L(X) and p(g) < oo:

Ifff*sfg*,forallt>0, then p(f) < p(g).
0 0

It follows directly from the definition that if f and g are equimeasurable, then p(f) = p(g),
whenever p is a u.r.i. space. More properties are recorded below.

Proposition 1.3.11 Let p be a u.r.i. function norm, then:

e [f there exists a function f not u-a.e. zero such that p(f) < oo, then p is saturated.

e The associate norm p’ is u.r.i.
Proof: To prove the first statement, suppose that E is a set of positive finite measure. We
will show that p(yg) < oo, which shows that p is saturated. Since U is o-finite, there exists a
sequence of sets {U,} of finite measure, such that U, T U. Since |f| > 0 on a set of positive
measure, there exists some r, € such that the set

F={ueU,:|fw> ¢

has positive finite measure. If u(E) < u(F), then

! ! ! 1 ! 1 !
f (xg)" = min (£, u(E)) < min (¢, u(F)) = f (xr)* < f ~(exr)" < f ~(f) = f (fler,
0 0 o € 0o € 0

above we used the fact that ey < |f]. Since p(f/€) < oo and p is u.r.i., it follows that p(yg) <
(SoN

In the case that u(F) < u(E), we have

) t, t < u(F) £t 1< u(F) 5
fo (xe)” =11, t€ k), WE)] < JuE), te uF),u(E)] = /% ; (er)”
M(E), 1> u(E) M(E), t> u(E)

HE) f f ﬂ(E)
<H2 ey = ).
u(F) f eu(r )f
Once more, we get p(yg) < p(fu(E)/(eu(F))) < co. This shows that p is saturated.
The statement that p’ is u.r.i. is [15, Theorem 11.11(1)].

Example 1.3.12 Irem (6) in Proposition 1.3.9, shows that the Lj, spaces are u.ri. for all p €
[1, c0].
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1.4 Interpolation spaces and the K-functional

The objects to be studied are couples of Banach spaces, roughly speaking, a couple is compat-
ible when there is a way to compare elements that could belong to different spaces.

Definition 1.4.1 A pair of Banach spaces (X, X,) is a compatible couple if the two spaces are
continuously embedded in a Hausdorff topological vector space.

Any subspace Y of a Banach space X induces a compatible couple by making X, = Y,
X, = X, and the inclusion maps as the continuous embeddings.

A very important example is given by couples of L;; spaces over a sigma-finite measure
space (U,X,u). They are all embedded in a space of measurable functions equipped with
convergence in measure.

For any compatible couple (Xj, X;) their intersection and sum (defined in the bigger space
X) are Banach spaces.

Definition 1.4.2 The spaces X, + X; and Xy N X, have the norms
|l xo+x, = iTlf{||xo||xo + |lxllx, 1 x=xo + Xl};
[l xonx, = max{[[x[[x,, [[x[lx, }-

Clearly, we have the inclusions Xy N X; — X; — X, + X; for i = 1,2, however, there can
be more spaces satisfying these conditions.

Definition 1.4.3 An intermediate space is a space continuously embedded between Xy, N X,
and Xy + X;.

1.4.1 Interpolation pairs

Here we study operators between compatible couples

Definition 1.4.4 Given two compatible couples (Xy, X,) and (Yo, Y,) an admissible operator
is a linear map T : Xo + X1 — Yo + Y| such that Ty, € B(X;,Y;) fori = 0,1. The norm of
the admissible map ||T|| is the maximum of the operator norms of the restricted maps Tlx,. If
IT|| < 1 we say that T is a contraction.

Given a compatible couple, we distinguish the intermediate spaces that remain stable with
respect to admissible operators.

Definition 1.4.5 Given two compatible couples (Xy, X,) and (Yy, Y)), an interpolation pair is
a pair of intermediate spaces (X, Y) such that T(X) C Y for every admissible operator T.

If Xo =Yy, X, =Y, and X =Y then X is an interpolation space. It is an exact interpolation
space if |T||x=x < IT||, for every admissible map.

The next result begins to show the relationship between u.r.i. spaces and interpolation
spaces for the couple (L, LY).
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Theorem 1.4.6 If p is a u.ri. function norm, then L, is an exact interpolation space between
Llll and L.

Proof: See [6, Theorem 3].
i

As a consequence of the theorem above, we note that the L], spaces are interpolation spaces
for the couple (L!, L), more generally any u.r.i. space is an exact interpolation space.

A main goal in Interpolation of Operators: Given a pair of compatible Banach spaces,
describe all possible interpolation spaces.

1.5 The K-method of interpolation

We study a method of generating interpolation spaces for a given compatible couple. For our
purposes, we assume that the elements of the Banach spaces are functions defined on a o--finite
measure space (U, Z, ).

Definition 1.5.1 For a compatible couple (X, X,) the K-functional is defined by the formula
K(f,t, Xo, X1) = inf {|| follx, + tllfillx, : £ = fo + fi}.
Remark Notice that K(f, 1, Xo, X1) = [|fllxy+x, -
We will need some basic properties of the K-functional.

Proposition 1.5.2 For any compatible couple (Xy, X,) and f € Xy + X,. The K-functional is a
nonnegative concave function.
If W : (Xo, X1) = (Yo, Y1) is an admissible contraction, then

KWf,t,Y,Y)) < K(f, 1, X0, X)). (1.5)
If (Xo, X1) is a compatible couple of Banach function spaces over the same measure space, then

K(f.1, X0, X1) = inf {|| follx, + fllfillx, = 1f1 = fo+ f1,0 < fo,0 < fi}. (1.6)

Proof: The concavity of the K-functional is proved in [3, Proposition 1.2, page 294]. The
inequality (1.5) follows from [3, Theorem 1.1, page 301].

To prove formula (1.6), suppose that f = fy + f; and |f| = go + g1 with fy, g0 € Xo and
fi1,81 € Xi. Define u; = sgn(f)f; and w; = sgn(f)g; for i € {0, 1}. Observe that |f| = ug + uy,
f =wo+wy, |u| <|fi| and |w;| < |g;l, therefore

K(f1,t X0, X1) < lluollx, + tlurllx, < llfollx, + tllfillx,
and
K(f,t; X0, X1) < |lwollx, + tIwillx, < llgollx, + #llg1llx, -

Taking infimum over all decompositions f = f, + f; and |f| = go + g1 shows the equality
K(lfl , L X()’ Xl) = K(f’ L, XO’ Xl)
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To complete the proof, for a decomposition |f| = gy + g1, define the functions

go(0), if go(#) 2 0 and g(2) > 0,
ho(x) = 4 go(1) + g1(2), if go(?) = 0 and g,(¢) < 0,
0, if go(t) < 0.
and
g1(0), if go(1) = 0 and g,(2) > 0,
hi(x) = {go(®) + g1(1), if go(r) <O and g,(r) 2 0,
0, if g1(t) < 0.

Notice that go(¢) < 0 and g;(#) < 0 do not occur at the same time, since gy(7) + g(t) > 0. We
have ho(2) + hi (1) = go() + g1(2) = | f] with |ho| < |gol, 11| < |g1], 0 < ho, and O < hy. Thus,

inf {llfollx, + #llfillx, = 1f1=Sfo+ f1.0 < fo. 0 < fi} < Mlhollx, + tllAillx, < lgollx, + g1l

taking infimum over all decompositions |f| = go + g; yields the inequality

inf {llfollx, + #llfillx, = 1f1=Jfo+ f1,0 < fo,0 < fi} < K(If1, 15 Xo, X1).

The reverse inequality follows immediately from the definition of the K-functional, there-
fore

inf {|| follx, + tll fillx, = 1fl = fo+ £1,0 < f6,0 < fi} = K(If], t; X0, X1) = K(f, t; X0, X1),

completing the proof.

In practice, it will be useful to have a description of the K-functional that does not involve
all possible decompositions of the form x = xy + x;. Finding this representation is in general a
very difficult problem, but it is possible to compute in some cases.

Theorem 1.5.3 Let Xy = L, and X| = L}, then

K(f» t’XO’Xl) = f f*
0

Proof: See [5], page 338 and 341.
|

A Banach function space ® of functions over (0, co) with the measure dt/t is a parameter
of the K-method if it contains the function ¢ — min(1, 7). With a parameter of the K-method
we can generate interpolation spaces in the following way.

Proposition 1.5.4 For a compatible couple (X, X,) and a parameter of the K-method ©, define
a map from Xy, + X; — [0, co] by

1A llxoxne = IKCS, -5 Xo, XDllo-

The space of all f € Xy + X, for which ||fllx,x,), IS finite, is an exact interpolation space of
(Xo, X1).
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Proof: See [Proposition 3.3.1][5].
i

As a consequence of Theorem 1.5.3, we can rewrite Definition 1.3.10 in terms of the K-
functional for (L}l, L>). We can say that a function norm p is u.r.i. if the condition

K(f,t,L), L) < K(f,t, L}, L)

2 II, # 2 ﬂ’ #

implies p(f) < p(g). The monotonicity condition for a Banach function space (and thus for a
parameter of the K-method @) shows that (L}l, L?)e is a u.r.i. space. It is natural to ask if the
converse is true, i.e. if a u.r.i. space is an exact interpolation space, or if an exact interpolation
space is a u.r.i. space. The following theorem answers this question.

Theorem 1.5.5 (Calderén) The following are equivalent:
e Zisau.ri. space over (U, X, W).

o 7= (L;lu L) with identical norms.

. : . 1 oo
e Zis an exact interpolation space of (L, LY).

Proof: See [3, Theorem 2.1, page 116] and [6].

It is not true in general, that every exact interpolation space is generated by the K-method.
However, for some compatible couples like (L}l, Ly), it will be the case that every exact inter-
polation space is generated by the K-method. To state this result we need two definitions, in
the first one we distinguish the compatible couples for which we can decompose a function in

terms of their K-functional.

Definition 1.5.6 A compatible couple (X, X,) is said to be divisible if there exists a constant

v € (0,00) such that for any sequence of nonnegative, concave functions {w,} jen+ such that
Y w(l) < oo and

K(f,t, X0, X)) £ ) wi(), forallt>0,

J=1

there exists a sequence { f;} jen+ such that
K(fj, t, Xo, X1)(1) £ yw;(t), foralltand j, (L.7)

and the series 37, fj converges to f in Xo + X;.
The smallest constant y satisfying (1.7) is called the K-divisibility constant of (X, X,). Note
that the divisibility constant is always at least 1.

The second key definition is the following.

Definition 1.5.7 A couple compatible couple (Xy, X,) is called an exact Calderén couple if
given the condition K(f,t, Xy, X1) < K(g,t, Xo, X1), then there exists admissible operator T
such that Tg = f.
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We see that the couple (L/i,Ll‘f) is an exact Calderén couple and some properties of the
operator 7' from the definition above.

Theorem 1.5.8 Let f, g € Llll + L such that

t t
f < f g", forallt>O0.
0 0

Then, there exists an admissible contraction T from L,11 + Ly to itself, such that Tg = f. More-
over, if h is a nonnegative nonincreasing function, then T h is nonnegative and nonincreasing.

Proof: See [2, Theorem 5].
i

The following result relates the Calderén property with K-divisibility.

Theorem 1.5.9 Let (X, X,) be an exact Calderon couple with divisibility constant 1, then if Z
is an exact interpolation space for (Xy, X1), there exists a parameter of the K-method ® such
that (Xy, X1)o = Z with identical norms.

Proof: See [Propositions 3.3.1 and 4.4.5][5].

One of the main results of this dissertation is Theorem 4.2.9, which exhibits a compatible
couple of Banach spaces that is a Calderén couple with divisibility constant 1.

1.6 Monotonicity on the half line

We consider the notion of nondecreasing functions almost everywhere (See [26, Definition 2.1
and Theorem 2.4]).

Definition 1.6.1 Given a Borel measure A on [0, o) we say that a function f is nonincreasing
almost everywhere if there exists a nonincreasing function g such that f = g up to a set of
A-measure is zero.

The usual order relation for measurable functions is pointwise, that is, f < g if the set
{x € [0,00) : g(x) > f(x)} has zero A-measure. Over the set of locally integrable nonnegative
functions, we can define a second partial order, we denote f <| g if

ffd/lsfgd/l, for all x > 0.

[0,x] [0,x]

Notice that requiring local integrability ensures that the quantities involved are finite. Transitiv-
ity and reflexivity of <, is immediate. Antisymmetry follows from an application of Theorem
1.1.4, showing that if f <| g and g < f, then the measures

E|—>ffd/l, and E|—>fgd/l,
E E



1.6. MONOTONICITY ON THE HALF LINE 15

coincide. We will explore this type of order in more detail in Chapter 3.

The set of nonnegative locally integrable functions has two important constructions in the
partial orders ‘<;” and ‘<.

The least decreasing majorant of f is defined by

f(x) = ess sup{f(¢) : t > x}.

This function is a nonincreasing majorant of f (see [26, Lemma 2.3]). It is optimal for the
order ‘<’ in the sense that if g is another nonincreasing majorant of f, then f(x) < g(x). We
can also describe this least decreasing majorant as a linear functional in the following way

ffjgd/l:sup ffhd/l:heLj{andhslg .

[0,00) 0,00)

Notice that the second partial order ‘<;’ appears in this functional description. A proof of
the above functional description is provided in [29, Theorem 2.1], however, we will give an
alternative proof in a more general setting in Theorem 3.2.5.

There is another construction for a minimal decreasing majorant of f in the partial order
‘<,’, which needs the following definition.

Definition 1.6.2 (Level function) For any Borel measurable function f, we say that a nonin-
creasing function f° is a level function of f if for any nonincreasing function g we have

ff”gd/l:sup flflhd/l:heLﬁandhslg .

[0,00) 0,00)

The next result shows the existence of f’ and it being a least decreasing majorant with
respect to the partial order ‘<;’.

Proposition 1.6.3 Let A be a o-finite Borel measure over [0, 00) and f be a nonnegative mea-
surable function. Then there exists a nonincreasing function f° satisfying:

1. If0< f < g, then f° < g°.
2. IfO< f, T f, then f7 T f°.

3. If g is nonincreasing, then

f°gdA = sup ffhcm:heLﬁandhslg .

[0,00) 0,00)

4. If f is locally integrable, then |f| <, f° and if h is a nonincreasing locally integrable
function satisfying |f| <, h, then f° <, h. That is, f° is the least decreasing majorant

(for *<y’) of If1.
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Proof: For bounded functions, the internal structure of f° is shown in [26, Theorem 4.4].
Item (1) is proved in [26, Theorem 4.4]. Item (2) is proved in [26, Lemma 5.3]. The construc-
tion is extended by monotonicity to unbounded functions (see [27, Definition 2.3]) and items
(1) and (2) are still valid.

Item (3) is [29, Theorem 2.3]. Item (4) is proved in [29, Lemma 2.2].

There is also another description of the level function, to state it we consider a class of av-
eraging operators, for a countable collection 7 of disjoint intervals of positive measure, defined
by
o J fda, ifxelel
A J1 ’

f(x), otherwise.

Jf(X)={

Proposition 1.6.4 If f is bounded and vanishes outside of an interval [0, M] for some M > 0,
then there exists an averaging operator Jy such that f° = (Jy)f A-a.e. The operator Jy is a
contraction on any u.r.i. space.

Proof: The equality J;f = f° follows from [29, Proposition 1.5]. To prove the second state-
ment. The estimates

1 1 1
‘Mj[‘fdﬂ'ﬁmfl‘m d/lSMJI‘”f”LTd/l_”f”Lﬁ"’

[Oi |Jf|d/l:ff|‘]f|d/l+£¢]|f|dﬂséfl(ﬁf1|f|dﬂ)dﬂ+£¢]|f|dﬂ
=Zf1|f| dﬁ+fxﬂ|f| da = f|f| da = |l

[0,00)

Show that J; is an admissible map with norm 1. Theorem 1.5.5 proves that J is a contraction
on any u.r.i. space.

1.6.1 Down spaces

The inequality (1.4) cannot be improved without restricting the function g in the sense that for
a fixed f there is a function g such that the ratio of the two sides is as close to 1 as desired.
However, if we know that g is nonincreasing, then some improvement of the inequality can be
expected. Consider the following norm

Definition 1.6.5 (Down norm) For a A-measurable function f, let

p1(f) = sup f |flgdA: p'(g) <1 and g is nonincreasing ; . (1.8)
0,00)
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Had we not restricted g to be nonincreasing, this is just the function norm p”, which coincides
with p in the presence of the Fatou property. In general, we have the inequality

P (f) <p"(f) < p(h).

We get the improvement of the inequality (1.4):

f flgd < p.(F)'(9)

[0,00)

for all nonincreasing nonnegative functions g.

Definition 1.6.6 (Down space) Given a function norm p, the down space L,| is the collection
of functions for which p (f) is finite.

Since p|(f) < p”(f), it follows that L, C L,» C L,]. Some examples of down spaces are
given next.

Proposition 1.6.7 We have the equality L}l = L}I,L with identical norms. The space LY | has the
norm

1
1l = su f||cm.
P, = sup w0 ) /

Proof: We will provide a proof of a generalized case in Theorem 4.1.3.

If p is a u.r.i. function norm we have the following relationship of the norm and the level
function.

Theorem 1.6.8 Let p be a u.ri. function norm and f € L*(X). Then,

pi(f) = p(f°).

Proof: See [27, Theorem 2.2].
i

We will consider another space, using the least decreasing minorant.

Definition 1.6.9 Given a function norm p the space L~p is the collection of functions for which
the norm

Az = £l

is finite.

Since f < ]7 it follows that l:, C L,. The relationship between the spaces l:) and L, ] 1s
given in the next result.

Theorem 1.6.10 Let p be a u.ri. function norm, then (L,])" = I:; with identical norms.
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Proof: See [30].
i

It follows from the last theorem that Ef’ = (L;l)’ = (L})’ = LY. The interpolation properties

of the compatible couples (L!, LY!) and (L, L?) are summarized in the following result.

Theorem 1.6.11 Let A be a Borel measure on [0, oo) then the following results hold:

1. Forany f € L} + LY\,

K(f.t,L}, L) = f (f) = K(f°.t,L), L), forallt>O0. (1.9)
0

2. Foranyge L) + LY,
_ f
K(g,t, L}I,L;") = f@* = K(g, 1, L}I,L;"), forallt> 0. (1.10)
0

3. The couple (L}, LY\) is an exact Calderdn couple with divisibility constant 1.
4. The couple (El, LY) is an exact Calderon couple.

Proof: Item (1) is proved in [16, Theorem 5.4]. Item (2) follows from [25, Theorem 1]. For
item (3), the Calderon property follows from [16, Theorem 4.6] and the divisibility constant is
proved in [16, Corollaries 3.9 and 4.7]. Item (4) follows follows from [17, Theorem 4.3].

1.7 Hardy inequalities

An important inequality due to Hardy ([9]) is

© 1 x » 1/p p 00 l/p
(fo (;ﬁf(t)dt) dx) Sp—l(fo f”dx) , forall felL"

This inequality shows the boundedness of the Hardy operator f — i fox f between L7 to itself.

We will concern ourselves with different generalizations of this inequality. The first result
gives necessary and sufficient conditions for the boundedness of the Hardy operator with two
general measures.

Theorem 1.7.1 Let A, v be o-finite Borel measures on [0, ). Then, the best constant C in the

inequality » Uy
(f(f fd/l)qdv) sC(ffpd/l) . forall feL*, (1.11)
[0.4]

[0,00) [0,00)

satisfies:
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1. If 1 < p<qg< oo, then
1/q 1/p
Czsup(fdv) (fd/l) .
x>0
[x,00) [0,x]

2. If1 < g < p<oo,then

1/r

C

X

ol oo

[0,00)  [x,00) [0,x]
3. If0<g<1<p<oo, then

({4 ([ o] o

[0,00)  [0,x] [x,00)

1/r

Herel/p+1/p'=1,1/qg+1/¢ =1and 1/r+1/p=1/q.

Proof: See [26, Theorem 7.1] with all the measures vanishing on (—co, 0). Be mindful of a
typo in the exponents for part (3).

In the theorem above, the domain is the space L’ for p > 1. The case p = 1 must be treated
separately. The next result explores this case.

Theorem 1.7.2 Let u,v,n be Borel measures on [0,0) and 0 < g < 1 = p, then the best
constant for which the inequality

(f(ffd/l)qdv(x))l/qscffdn, (1.12)

[0,00) [0,x] [0,00)

holds for all nonnegative measurable functions satisfies

4 l/q
Cz(f(fldv)l_qdv(x)) . (1.13)
w

[0,00) [0x]
Where w(x) = ess inf {w(¢) : t € [0, x]}, dp = dA* + wdd and 2+ L A

Proof: See [11, Theorem 3.1].
i

We consider a very general class of Hardy operators introduced in [31], generalizing the
domain from the half line to general measure spaces.

Definition 1.7.3 Let (U, X, u) and (Y, T, 1) be o-finite measure spaces. We call B : Y — X a
core map if:

1. The range of B is a totally ordered subset of .
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2. Forall E € &, the map y — u(E N B(y)) is T -measurable and takes finite values.
3. There exists a countable set Yy C Y such that U,y B(y) = Uyey, B(y).

Given a core map, we say that the operator

r70)= [ fau

B(y)

is an abstract Hardy operator.

Given a core map, an inequality of the form

([(rofo] "t [ra”

Y B0

for all positive measurable functions f is called an Abstract Hardy inequality. Notice that
setting Y = U = [0, 00) and B(y) = [0, y] recovers the half line case. Abstract Hardy inequalities
are not the most general Hardy inequalities we will consider. The next result shows that,
provided p > 1, it is possible to reduce a three-measure Hardy inequality to an abstract Hardy
inequality.

Theorem 1.7.4 Let p € (1,0), g € (0,00), (U,Z,u), (Y,7,7) be o-finite measure spaces,
B : Y — X a core map. Decompose u in the form du = d(n-) + udn with respect to n such
that n* L n and u € L*(X). Define the measure v by dv = u” dn. Suppose v(B(y)) < oo and
n*-(B(y)) = 0 t-almost everywhere on Y. Then, B is also a core map with respect to the measure
v and the best constant in the inequality

! e Up
(f(ffdu) dT(y)) sc(Ufden) : (1.14)

Y B0

is also the best constant in the abstract Hardy inequality

! e 1/p .
(f(ffdv) dT(y)) SC(prdV) , forall f € L*().

Y  BO)

Proof: See [31, Theorem 5.1].
i

Given an abstract Hardy inequality, the next theorem shows an equivalence with an inequal-
ity over the half line.

Theorem 1.7.5 Let p € [1,00], g € (0,00], (U, X, ), (Y,7,7) be o-finite measure spaces,
B :Y — X acore map. The best constant in the inequality

! e 1/p .
(f(ffd”) dT(Y)) SC(JdeM) . forall f € L*(%)

Y B0



1.7. HARDY INEQUALITIES 21

with appropriate adjustments to the formulas for the norms when p = oo or g = oo, is the same
as the best constant in the inequality

00 b(x) q 1/q 1p
( f ( f(t)dt) dx) < f foodx)", forall fe L,
0 0 Y

Where b = (u o B)" and the rearrangement is taken with respect to t. The function b is called
the normal form parameter.

Proof: See [31, Theorem 2.4].
i

Notice that the reduction from three measures to two measures done in Theorem 1.7.4 does
not apply to the case p = 1. We will reserve the study for that case in Section 5.2.



Chapter 2
Ordered Cores

2.1 Basic properties

Let (U, X, 1) be a o-finite measure space. We will not assume an order relation among the
elements of the space. Instead, we will rely on a distinguished collection of measurable sets to
establish the monotonicity properties.

Definition 2.1.1 Let (U, X, u) be a o-finite measure space. We say that A C X is an ordered
core provided

1. The collection ‘A contains the empty set.
2. (Total order) For any E,, E, € A either E; C E, or E; C E;.
3. (Finite measure) u(E) < oo for any E € A.

If, in addition, UA = UA for some countable sub-collection Aqg C A we say that A is
o-bounded. If UA = U we say that A is full.

Any ordered core induces a relation <4 defined by u <4 v if forall E € A, v € E implies
u € E. The collection of non-negative measurable functions over o (A) will be denoted by

L*(A).

Observe that the order relation is transitive and reflexive, but in general, it need not be
anti-symmetric. And it is total in the sense that for any pair u,v € U we have u <g vorv <4 u.
Based on this order we establish the following definitions.

Definition 2.1.2 Let (U, X, u) be a o-finite measure space and ‘A be an ordered core.
1. The expression u <z v means that u <g v holds but v <z u fails.

2. For any u € U the symbol (<, ul4 denotes the set {s € U : s <q u} and the symbol
(., u)7 denotes the set {s € U : s <gz u}.

3. For any u € U the symbol [u)# denotes the set {s € U : u <q s and s <q u}.

We establish some basic properties of the relation.

22
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Proposition 2.1.3 Let (U, X, i) be a o-finite measure space, ‘A be an ordered core and u,v €
U. The following statements are equivalent.

1. ve(—,u)a
2. There exists E € A such thatv € Eandu ¢ E.

Proof: To show item (1) — item (2): Let v € («, u)#. By definition u <z v fails and item (2)
is the negation of u <4 v. Conversely, if item (2) holds, then u <4 v fails. Since the relation
<4 istotal, v <z u holds. Thus (1) holds.
i
As a consequence, we have a description of the sets («—, u)# and (<, u] # in terms of unions
and intersections.

Corollary 2.1.4 Let (U, Z, u) be a o-finite measure space, A an ordered core and u € U. Then,

(—wa= ) E (—ula= ) E

EcAu¢E EcAucE

Proof: The implication (1) — (2) in Proposition 2.1.3 shows («,u)4 € |J E. The state-
EcAu¢E

ment |J E C («,u)z follows from the implication (2) — (1) of Proposition 2.1.3. This
EcAugE

completes the proof of the first statement.
For the second statement, let v € («, u]#, then by definition of the order relation <g, if

u € E € A, it follows that v € E. This shows that («—,u]4 € () E. To prove equality, let
EcAucE

v € (<, ulq, then v <4 u, hence u € («,v)4. By Proposition 2.1.3 there exists £ € A such

thatu € Eand v ¢ E. Thereforev¢ () E, which completes the proof.
EcAucE
|

It is worth noting that the sets introduced in the previous definition need not be measurable.
An example of this phenomenon is exhibited in Section 2.1.1. We can force these sets to be
measurable by considering a subclass of ordered cores. Some of the constructions developed
in later sections take simpler forms when restricted to this subclass.

Definition 2.1.5 Let (U, X, u) be a o-finite measure space, A is called a separable ordered
core if for any C C A the sets UC and NC are o (A)-measurable.

2.1.1 Examples

In this subsection, we establish some examples of ordered cores and their induced order rela-
tions. We begin with the simplest example:

Example 2.1.6 Let U = [0, 00), X the Borel o-algebra, u any Borel measure finite on compact
sets and A = {0} U {[0, x] : x > 0}. If x > O the sets introduced in Definition 2.1.2 are

((_a X]j[ = [O, .X'], ((_7 .X')j[ = [Oa x) and [X]y[ = {X}

The next example exhibits the effect of changing the ordered core.
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Example 2.1.7 Let U = [0, 00), X the Borel o-algebra, u any Borel measure finite on compact
sets and A = {0} U {[0,n] : n € N}. If n is a positive integer and n — 1 < x < n, then the sets
introduced in Definition 2.1.2 are

(e, xla =[0,n], («,x)a =1[0,n—1]and [x]a = (n - 1,n].
Also [0] = {0}.

Any set can induce an ordered core on the half-line, as exhibited in the next example, this
generalizes the previous two examples.

Example 2.1.8 Let U C [0, o), X the Borel o-algebra, u any Borel measure finite on compact
sets, S C U, Borel measurable and A = {0} U{[0,x]NU : xe S}.

Perhaps the simplest example outside of the half-line comes from the Euclidean spaces.

Example 2.1.9 Let U = R, X the Borel o-algebra, u any Borel measure finite on compact sets
and A = {0} U{B[O0;r] : r > 0}, where B[0;r] = {s eR?: s < r}. If x € RY, the sets introduced
in Definition 2.1.2 are

(e, x]la = {s eR:|s| < |x|}, (—,x)7 = {s eRY: sl < |x|} and [x]q = {s eRY:|s| = |x|}.

Example 2.1.10 Consider a metric measure space, that is a set X together with a metric d and
a measure u defined on the Borel sets induced by the metric such that u(Bla; r]) < oo for every
r> 0and a € X. The collection A = {Bla;r]},~o U {0} is an ordered core. If x € X, the sets
introduced in Definition 2.1.2 are

(<, x]a = Bla;|xl,], (<, X)a = B(a; |x|,) and [x]a = Bla; |x|,] \ B(a; |x],),
where |x|, denotes the distance form a to x.
In the next examples, an ordered core is induced by a measurable function

Example 2.1.11 Let (U, Z, i) be a o-finite measure space, ¢ : U — C be a measurable func-
tion with distribution function taking finite values, then the set

A={0U{{se U :|p(s)|>r}:r>0}
is an ordered core, and for any u € U, the sets introduced in Definition 2.1.2 are

(—ula=1{s e U:lp| <lp)l}, (e u)a=1{seU: o] <lpls)|}

and
[ula ={s € U : lp(s)| = lp(u)|}.

This construction recovers the metric measure space example, by considering ¢,(s) =

dist;u,s) and ()Oa(a) =0.
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The ordered cores in the previous examples are separable. The next example shows that
this needs not be the case.

Example 2.1.12 Let V and W be disjoint copies of w,, the first uncountable ordinal ordered
by inclusion. Their smallest elements are denoted Oy and Oy respectively. Let U = VUW be
their disjoint union and express any subset as EUF, where E C U and F C W. Let

Yo=0.(U) and %\ ={EUF :E € 0. (V),F € 0.(W)}.

Here o..(S) denotes the o-algebra generated by the countable subsets of S .
Define the measure u; on Xy by

E, F countable;

V \ E, F countable;

E, W\ F countable;

, V\E,W\F countable;

-

-

H1(EUF) = 6o, (E) + o, (F) +

W o = O

and let uy be the restriction of u, to Xy. Note that o and p, are finite, complete measures. We
introduce the core

A ={aVU0 : a is a countable ordinal} U {VU(W \ @) : a is a countable ordinal} .

This collection is an ordered core on the measure spaces (U, Xy, uo) and (U, Xy, uy). Notice that
Xy = 0(A). The induced orderis @ <z Bifa € Vand B € W or

. aCB, acVandBeV,
a<aB if
BCa acWandpBeW.

For a € V we have
(—alg=a+1, and (—,a)a=a,

where a + 1 denotes the successor ordinal. For 8 € W we have

(—.Bla=VUW\B), and (—,fla=VUW\ @B+ D).

Notice that the core is not separable, with respect to X, since the set

U ald = VU0

acV

is not Xo-measurable, which is exactly the same as not being o(A)-measurable.

2.2 Core decreasing functions

We define a collection of functions that behaves similarly to the cone of decreasing functions
on the half-line. The main definition is the following.



26 CHAPTER 2. ORDERED CORES

Definition 2.2.1 Let (U, X, i) be a o-finite measure space and A be an ordered core. A func-
tion f : U — [—o00, 0] is called decreasing (relative to A) if for all u,v € U, u <z v implies
f(v) < f(u). A nonnegative, decreasing, o(A)-measurable function is called core decreasing.
A function f is core decreasing u-almost everywhere if there exists a core decreasing function g
such that f = g u-almost everywhere. The collection of equivalence classes of core decreasing
functions is denoted L*(A).

The collection of nonnegative constant functions is always contained in L'(A), therefore
there always exist core decreasing functions.

It is immediate from the definition that the collection {yx : E € A} belongs to L'(A). In
fact, the characteristic function of any o (A)-measurable set M is core decreasing whenever M
satisfies the condition: forall u,v € U,ifve M and u <z v, thenu € M.

A fundamental collection of sets with the property above is characterized in the following
lemma.

Lemma 2.2.2 Suppose M € o(A) and u(M) < oo. The following are equivalent
(a) There is a countable nonempty subset C of A such that M = UC or M = NC.
(b) There is a nonempty subset C of ‘A such that M = UC or M = NC.

(c) Forallu,ve U, ifve Mandu <f v, thenu € M.

Proof: It is clear that (a) implies (b). We now show that (b) implies (c). Let v € UC for some C
and u <z v, then there exists A € C such that v € A. It follows from the relation ’<4’ thatu € A
as well, thus u € UC. For the remaining case, suppose that v € NC for some C and u <# v, then
for all E € C we have v € E so u € V. This shows that u € NC and proves the implication.

It remains to show that (c) implies (a). Suppose that M € o(A) and satisfies (c), by
Theorem 1.1.3 there exists a countable subset Ay € A such that M € o(A;). Define the
collections

L={Ec€Ay:ECM}, N={Ec€Ay: MCE}.

Clearly £ and N are countable subsets of (A, thus the sets Ly = UL and Ny = NN belong to
o(Ayp).

We show that L U N = A,. Suppose that there exists E € Ay such that both E C M and
M C E both fail. Choose u € M\ Eandv € E\ M. Since v € E and u ¢ E, then by Proposition
2.1.3 we have v € («, u)4, hence v <4 u. Since u € M, then the statement v ¢ M contradicts
the fact that M satisfies (c).

Let Uy = UAy, C = Ny \ Ly and define the collection

K={E€o(Ay):CCUy\EorCCE}.

IfEe L,thenC C Uy \ E.If E € N, then C C E. Therefore Ay C K. We now show that K is
a o-algebra over U,

It is clear that @ € K and by construction K is closed under complements. Suppose {E,} is
a sequence in K. If C C E, for some n € N, then C C U, E,. If C C E, fails for every n € N,
then by construction, we have that C C U, \ E, for all n € N. It follows that

CcC mrz(UvO \ En) =Uy \ (UnEn) .
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It follows that M € 0(Ap) € K. But Ly € M C Ny, soif C € M,then Ny C LyUC C M C N,,
andif C C Uy\ M, then Ly C M C Ny\ C = Ly. So (a) holds with either C = L or C = N. This
completes the proof.
|
With the previous lemma, we can enrich the core (A, by adding all the o(A)-measurable
sets with finite y-measure that do not change the relation < 4.

Theorem 2.2.3 Let (U, Z, u) be a o-finite measure space, ‘A be an ordered core and M be the
collection of all M € o (A) of finite measure satisfying the conditions in Lemma 2.2.2. Then M
is an ordered core of U, A C M and the relations <q and <, coincide. If A is o-bounded, so
is M. If Ais full, so is M. In addition, M is closed under countable intersections and under
countable unions provided the result has finite measure.

Proof: It is clear from the construction of M that A C M and each set has finite measure.
Also, @ € M is clear. To show that M is totally ordered by inclusion: let N,M € M with
NZM.Letxe N\ M. If y e M then if x <4 y we would have x € M by item (c) in Lemma
2.2.2. Therefore y <# x and by item (c) in Lemma 2.2.2 we get that y € N. Therefore M C N
and shows total order, thus M is an ordered core.

Since A C M, then u <p; v implies u <z v. Conversely, if u <z v and v € M, then by
item (c) in Lemma 2.2.2 we get that u € V, that is u <, v. Therefore the relations <, and <4
coincide.

Since A C M then it is clear that A being full implies M is full. By construction each
M € M is contained in UA, it follows that UM C UA. Therefore, if A is o-bounded, there
exists A, € A such that UA,, = M. It follows that M is also o-bounded.

Let {M,} be a sequence in M. If M = N,M, = 0 then there is nothing to prove. Since the
sequence is countable, then M € o(A) and it has finite measure since u(M) < u(M,) < oo. If
u<gvandve Mthenv e M, for eachn € N. By item (c) in Lemma 2.2.2 we conclude that
u € M, sou € M and we conclude that M € M. This shows that M is closed under countable
intersections.

Similarly, if M = Uy, and u(M) < oo, thenif u <4 v and v € M, then v € M, for some
n € M. Again, it follows that u € M,, so u € M, which completes the proof.

We define the enriched core as follows.

Definition 2.2.4 Let (U, X, i) be a o-finite measure space, ‘A be an ordered core. The collec-
tion of sets M C o (A) described in Lemma 2.2.2 is called the enriched core of A.

We can characterize the set of core decreasing functions as increasing limits of simple
functions for sets in the enriched core M constructed above.

Lemma 2.2.5 Suppose A is o-bounded and f : U — [0, ). Then f € L*(A) if and only if it
is the pointwise limit of an increasing sequence of simple functions of the form

n
2wt
k=1

for ay > 0 and M, € M for each k.
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Proof: Suppose that f is core decreasing. Since A is o-bounded, there exists a sequence
{A }en € Asuchthat A, T UA.
For each n, k € N*, the set

M, ={uecA,: fu)=>k2™},

is o(A)-measurable. Let u € M, ; and v <z u. Since f is core decreasing, we get k27" <
fw) < f(v), thus v € M, ;. We also have u(M, ) < u(A,) < oco. It follows that M, € M by
Lemma 2.2.2.

Define the sequence of functions f, by

n2"

Fulw) = > 27w, () = 272" min( £ (), m) [xa, (),
k=1

where | s| denotes the greatest integer less than or equal to s. To see that both representations
of f, are equivalent, first notice that both expressions vanish if u ¢ A,. If u € M, for all
k € {1,...,n2"}, then both expressions evaluate to n. If u ¢ M, for all k € {1,...,n2"}, then
f(u) <27, so both expressions evaluate to zero. For the final case, let

ko =max{k e {1,...,(n— 1)2"} 1 u € M},

then k27" < f(u) < (ko + 1)27", then the right-hand side evaluates to k,27". Based on the
observation that u € M, for all k = 1,..., k) we get that the left-hand side also evaluates to
ko27".

The first representation shows that f,, is a linear combination of the desired form. The
second one shows that f, T f. To see this, we show that {f,} is an increasing sequence:

S ) = 270012  min(f (u), n 4+ 1) DeAper () 2 272" min(f(u), n + 1) Ay (),

using the inequality |2s] > 2| s]. It follows that f,,;(u) > f,(u). Using the inequality |s] < s <
Ls] + 1 we get

ﬂwsmMﬂwm3ﬁ+%,

letting n — oo yields f,, T f and completes the proof of the first implication.

Conversely, it is clear from 2.2.2 that y, is core decreasing for any M; € M. Positive
scaling and addition of core decreasing functions is core decreasing. Taking increasing limits
of core decreasing functions keeps the measurability requirement and respects inequalities,
therefore it remains core decreasing and completes the proof.

Example 2.2.6 Consider the ordered core over [0, ) defined in Example 2.1.6. The core
decreasing functions are nonnegative decreasing (in the usual sense) functions. Considering
the ordered core from Example 2.1.7 changes the set of core decreasing functions, to decreasing
functions that are constant on every set (n — 1,n] for each n € N*.

More generally, consider the core from Example 2.1.8 whenever S is closed. In this case,
the core decreasing functions are nonnegative decreasing functions that are constant on each
connected component of U \ S. Notice, that since S is closed, there are countably many such
connected components.
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Example 2.2.7 Consider the ordered core over R? defined in Example 2.1.9. The core de-
creasing functions are nonnegative radially decreasing functions.

Similarly, over a metric measure space with the ordered core defined in 2.1.10, the core
decreasing functions are radially decreasing functions with respect to the fixed point a € X. In
other words, functions satisfying f(u) < f(v) whenever dist(a,v) < dist(a, u).

Example 2.2.8 Consider the ordered core defined in Example 2.1.11. The core decreasing
functions are the nonnegative functions f that are similarly ordered to ||, that is,

le)| < lp()| &= f(u) < f(v), Yu,veU.

We finish the examples by noting that a function being decreasing with respect to the or-
dered core is not the same as the function being core decreasing.

Example 2.2.9 Consider the measure space and ordered core from Example 2.1.12. Let f =
xvoo- Then, f(a) =1ifa € Vand f(a) =0 if a € W, therefore f is decreasing with respect to
the core A, but it is not Xy-measurable.

Therefore, over (U, %y, ), f is a decreasing function with respect to A that is not mea-
surable. Over the measure space (U, X1, ), the function f is measurable and decreasing with
respect to ‘A, but not core decreasing, since it is not o(A)-measurable.

We can define core increasing functions similarly.

Definition 2.2.10 Let Let (U,Z, 1) be a o-finite measure space, A be an ordered core. A
function f : U — [—o00, ] is called increasing (relative to A) if for all u,v € U, u < vimplies
f(u) < f(v). A nonnegative increasing o (A)-measurable function is called core increasing.
The collection of core increasing functions is denoted LT(A).

Suppose that A is an ordered core over a finite measure space (U, Z, u), then the collection
of sets

A={0}U{U\A:AcA,

is also an ordered core. Notice that o(A) = O'(ﬁ), so it has the same measurable functions and
we get that the preorder gets reversed, that is,

USa Ve V=g, Yu,v € U.
Thus, we get the correspondence
f 1s core increasing with respect to A <= f is core decreasing with respect to A,
for any o (A)-measurable function f.

We need to do an approximation argument to get the analogous result to Lemma 2.2.5 for
core increasing functions.
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Lemma 2.2.11 Suppose A is a o-bounded full ordered core and f : U — [0,00). Then
f € L'(A) if and only if it is the pointwise limit of an increasing sequence of simple functions

of the form
Z akX(U\Mk)’
k=1

for ay > 0 and My € M for each k.

Proof: Let {A,} € A be a sequence satisfying A, T U. Let f € LT(A) and set f, = fxa,-
The function f,, is core increasing with respect to the core {A, N A : A € A}, since u(A,) < oo,
the collection {A, \ (A, N A) : A € A} is an ordered core and f, is core increasing with respect
to it. Therefore, Lemma 2.2.5 yields a sequence g, T fn Where

'm
gn,m = Z an,kX(An\Mm,k)’
k=1

for some a,,x > 0, M,,, € M and r,, € N.
Define the function #,,, = Z;”; | XnjX(U\M,,) and note that h,, and g,, coincide on A,.
Define

w, = max{h;; : j < nj,

then it follows that w, T f.

2.3 Morphisms of ordered cores

In this section we study maps between ordered cores called core morphisms, the main result
of this section is that any core morphism induces a linear map between a large vector space
of functions, that is well-behaved when restricted to the cone of nonnegative measurable func-
tions.

Definition 2.3.1 Let (U,Z,u),(T,7,7) be o-finite measure spaces, the collection A C T be
an ordered core. Then amap r : A — T is called a core morphism provided:

1. There exists a constant ¢ > 0 such that T(r(B) \ r(A)) < cu(B\ A) for every A, B € A.
2. The map r is order-preserving with respect to inclusion.

3. The set r(0) satisfies T(r(0)) = 0.

Notice that {r(A) \ r(@) : A € A} U {0} is an ordered core.
We will need the following measure-theoretic results about the o-ring generated by the
core.
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Lemma 2.3.2 Let (U, Z, i) be a o-finite measure space, A an ordered core. Then the collection
A" ={B\A:B,AcA

is a semiring.
Moreover, for any A, B,{B;},{Ai} € A

m

CAVAN Y CAVEE i - AVHY @.1)
k=1

k=1

for some disjoint collection {(B; \ A}, in A"

Proof: Let A, Ay, By, B, € A. To avoid that B; \ A, and B, \ A, are empty, we may assume that
A, C By, A; C B,. After a relabelling, we may assume that B; C B,. If By C A, or B} = Ay,
then

(Bo\A)N(B1\A)) =0, and (By\A2)\(Bi1\A) =B\ As.

In other cases, since B; C A, fails, by the total order of A, we may assume that A, C B;. Then
(B \A)N(Bi\A) =B\ (A, UA)), and (By\A)\(Bi1\A) =(B2\B)U(A;\Ap),

where A; = A UA; and A, = A N A,. Notice that in every case (B, \ Ay) N (B \ A;) € A and
(B, \ A2) \ (B; \ A)) is a disjoint union of finite elements in A*. Therefore A" is a semiring.

We prove the formula (2.1) by induction on n. The base case n = 1 was already proved,
so we focus on the inductive hypothesis. If there exists some k € {1,...,n} such that A; = By,
then after a relabelling we may assume A, = B, and thus

n n—1 m
CAVIN G CAVREICAVIN i [CAVREL | C:AVH)
k=1 k=1 k=1

by the induction hypothesis, so we may assume that A, C B, forall k € {1,...,n}.

If the collection {(By \ A)};_, is not disjoint, then after a relabelling we may assume that
the sequence {By} is increasing by inclusion. If (B, \ A,) and (B,_; \ A,_) are disjoint, then if
BC B, ,wegetthat(B\ A)N (B, \ A,) =0, thus

m

n n—1
B\ B\ A = B\ B\ 4o = B\ 4D,
k=1 k=1

k=1

by the induction hypothesis. Therefore we may assume that B,_; C B.
If (B, \ A,) and (B,_; \ A,_1) are disjoint, we use the induction hypothesis twice to get

n n—1
AV AV IE ((Bn_l \ A\ By \Ak>) U ((B \ B,) \ (B, \An))
k=1 k=1

- e, o s \an)
k=1 k=1
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The resulting union is disjoint, completing the proof in this case.
The remaining case is when (B, \A,) and (B,-; \ A,-1) are not disjoint. Define the sequences

C,=Ay,, Dy=B, if kef{l,...,.n-2}, and C,_1=A,.1NA, D, =B,
Then

n n—1 m
B\ B\ A = B\ D\ co =i\ 4p,
k=1 k=1 k=1

by the induction hypothesis. Therefore, we may assume that the collection {(B; \ Ap};_, is
disjoint.

If (B \ Ax) N (B\ A) is empty for some k € {1,...,n} then after relabelling we may assume
that (B, \ A,) N (B\ A) = 0 and we get

n n—1 m
CAVIN G CAVREICAVIN  [CAVAE | C:AVH)
k=1 k=1 k=1

by the induction hypothesis. So we may assume that (B;\A)N(B\A) # O forall k € {1,...,n}.
If B, C B we have

n n—1 m
B\M\|JBe\ Ay = (B\B)U ((A,, WONGE \Ak>) =B\ B)U | JB\A),
k=1 k=1 k=1

by the induction hypothesis.
Similarly if B C B, we have

n n—1 m
B\ B\ A = @\ O\ B\ A =B\ 4D,
k=1 k=1 k=1

by the induction hypothesis. This completes the proof of equation (2.1).

We now introduce a large vector space of functions which will serve as the natural domain
for our induced linear maps.

Definition 2.3.3 Ler (U, X, u) be a o-finite measure space, A an ordered core we define
L;‘oc,ﬂ:{fELg:flf d,u<°°,f0rallE6ﬂ .
E

We show some vector lattice properties of this vector space.

Proposition 2.3.4 Let (U, X, u) be a o-finite measure space and ‘A be a o-bounded full ordered
core. Then the space Lincﬂ is a Dedekind complete vector lattice with respect to the order
relation of pointwise inequality u-almost everywhere.
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Proof: If U € A, then Lioc,?l
may assume that U ¢ A.

It is clear that LILOC, 4 18 a vector lattice. To show that it is Dedekind complete, let {f, }oer @
set in Lioc’ 4 bounded above, that is there exists i € Lioc’ g such that f, < hforalla € 1.

Let {A,},en be a sequence in A such that A, T U. Define the sequence of sets {X,} by

= L}l which is a Dedekind complete vector lattice. So, we

Xl = A1 and Xn = An \An—l-

Denote by f, . the restriction of f, to X,,. Since the collection {f, ,}.c; belongs to LL(Xn) and is
bounded above by the restriction of 4 to X,,, then there exists a function g, € L}4 (X,)) such that
gn 1s the supremum (in vector lattice sense) of {f,.q }eer-

Define the function N
g = Z anXn’
n=1
To see that this function belongs to L/

Loc. > let E € Aandlet N € N satistfy E C Ay. The set Ay
exists, otherwise U = U, A, C E, which we assume is not possible. Then,

N N
[tstdus [ tgidn= [ o die= ) gy, <
E AN n=1 Ap n=1
Thus g € L!

Loc. A" To see that g is an upper bound of {f,}.c;, suppose there exists some f, such
that f, < g fails. Then, there exists some j € N and € > 0 such that the set

{seX;: fuls) - g(s) 2 ¢,

has positive measure. It follows that f;, < g; fails, which is a contradiction. This shows that g
is an upper bound of {f, }.c;-

To show that g is the supremum of {f,}.c;. Let h € LILOC, 4 be an upper bound of {f, }ee; and
suppose that g < h fails, then there exists some j € N and € > 0 such that the set

{s € X;:go(s)—h(s) > e},

has positive measure. Let 4; be the restriction of 4 to X;. It follows that g; < h; fails, contra-
dicting the fact that g; is the supremum of {fj, }e in L}I(X ;7). This shows that g is the supremum
of {f,}eer and completes the proof.

The next lemma will be useful to show equality on functions in this vector space, whenever
the ordered core is full and o-bounded.

Lemma 2.3.5 Let (U, X, u) be a o-finite measure space and ‘A a o-bounded ordered core.
Then:

1. If n,v are two measures over (UA, o(A)) and n(A) = v(A) < oo for all A € A, then
V=

2. If Ais full, f.g € L'A)N L, 4 and [, fdu = [ gduforall E € A, then f = g -
almost everywhere.
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3. IfAis full; f,g € Lioc,y(; f < g almost everywhere and fEfd,u = ngd,ufor all E € A,
then f = g u-almost everywhere.

Proof:

1. By Lemma 1.1.1 the set A" is a semiring. Since 17(A) = v(A) < oo for any A € A and
A is o-bounded, it follows that n(B \ A) = v(B\ A) for all (B\ A) € A" and v and
u are o-finite. Therefore the restriction to A* is a o-finite premeasure, it follows from
Theorem 1.1.4 thatn = v.

2. For each E € o(A), set n(E) = fE fdu and v(E) = fE g du. Since these two measures
take the same finite value on each E € A, then by item (1), they are the same measure
over o (A).

Let {A,,} € Asuchthat A,, T U and for each n,m € N* set

Enm:{ueAmf(u)_g(u)Z%}

Since f, g are o (A)-measurable, then E, ,, € o (A), thus

1 1
fgdu: ffdus f(g(u)+z) du(u) = fgdu+;lu(En,m)-

En,m En,m En,m En,m

Since f g du is finite, it follows that u(E,,,) = 0. Let n — oo and then m — oo to get
En,m
that g > f p-a.e. A symmetric argument shows that f > g u-a.e. and completes the proof

of item (2).

3. Leth=g— f. Byassumptionh > Oand [ hdu = [ gdu— [ fdu=0.Let{A,} €A
satisfy A, T U, then by the monotone convergence theorem

flhld,u:supfhd,uzo,
U n Ay

thus & = O u-a.e. so f = g almost everywhere.
|

The main result is that any core morphism induces a linear map that maintains integrals
over core sets while maintaining a pointwise bound.

Theorem 2.3.6 Let (U, X, n), (T, T ,7) be o-finite measure spaces, the collection A C X be an
ordered core and r : A — T be a core morphism with constant c, then there exists a map

.7l + 1 + 1 +.
R:Lp, aVYL = Ly, 4V L; suchthat forany f € L, 4 UL::

1. The restricted map R : LY — L7, is linear and satisfies ||Rfl|rs < cllflls.

2. If f = 0 t-almost everywhere , then Rf > 0 u-almost everywhere.
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3. For any sequence {f,} € L*(T") such that f, T f t-almost everywhere, then Rf, T Rf u-
almost everywhere.

R is additive and positive homogeneous on L* (7).
R is linear on L}

Loc,r(A)

Rf € L(A) and Rf = 0 outside UA.

mapping to L, .

IRf| < R|f| u-almost everywhere.

fRfd,u: ffdr.

B\A r(B)\r(A)

Lo N & K

Forall A,B € A,

9. The restricted linear map R : L' — L}l satisfies ||Rfll., < IIfll., with equality if f >0
T-a.e.

10. Ifc =1, A € Aand u(A) = 1(r(A)), then R(xra)) = xa n-almost everywhere.
11. Ifc=1, fe L (1) and g € L*(r(A)), then R(fg) = RfRg u-almost everywhere.

To prove this result we will make use of the following lemma, the proof is adapted from
[31, Lemmas 4.3 and 4.4].

Lemma 2.3.7 Let (U, X, 1), (T,T ,7) be o-finite measure spaces, the collection A C X be an
ordered core and a core morphismr : A — T . Let A* = {B\ A : A, B € A} be the semiring
of sets generated by A.

For each f € Lt N LY set

ps\0= [ ra 22)
r(B)\r(A)
Then, py is a premeasure on the semi-ring A*.

Proof: First notice that if B = A then r(B) = r(A), hence p/(B\ A) = 0.

We now show that ps is a well-defined function. For that, suppose that A, By, A, B, € A
satisfy B] \A] = Bz \A2 If either B] = A] or Bz = A2 then pf(Bl \A]) =0= pf(32 \Az)
by the previous argument. Without loss of generality, by the total order of A, we may assume
that B; C B,. Let x € B, \ A,, then x € B; \ A;, from the total order it follows that A, C B;.
This shows that B, C B; and yields equality. To show that A; = A,, let x € A; \ A,, then
x € (B, \ Ay) \ (B \ Ay) and yields a contradiction. Therefore A; € A, and a symmetric
argument show equality. Thus, if A} € B; and A, C B,, then B; \ A; = B, \ A, implies B; = B,
and A| = A, so the function p is well defined.

We now show that p; is a premeasure. It was already shown that p¢(0) = 0. To show that
py 1s finitely additive. Let B, A, { B}, {Cy} € A satisty

B\ A= JB:\ 40, (2.3)
k=1
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where the sets {(B; \ Ay)};_, are disjoint.

We show that ps(B \ A) = X ;_, ps(Bi \ Ay) by induction on n. If n = 1, then ps(B\ A) =
pr(B1\ Ay), since p; is well defined.

To prove the inductive step: If there exist some ky € {1, ..., n} such that B;, = A;,, then we
can reorder the sequence such that B, = A,, to get

n—1 n—1 n
prB\A) = JpB\A) = o B\ A +0 = | ps(Bi\ AD.
k=1 k=1 k=1

Therefore, we may assume that B, # A, for all k € {1,...,n}. After a relabelling, we may also
assume that the sequence {B;} is increasing by inclusion. If B C B,, then there exists some
x € B, \ (A, U B) and equation (2.3) fails. If B, C B, then there exists x € B\ By for all
k € {1,...,n} and equation (2.3) fails again. This shows that B, = B. Also, if Ay C A for
some k € {1,...,n} then there exists some x € B, \ Ay and x ¢ B\ A, arriving at the same
contradiction.

If B, = B,_; then the sets B, \ A, and B,_; \ A,_; are not disjoint, therefore we may assume
that B,_; ¢ B,. If A, C B,_;, then we contradict the fact that B, \ A, and B,_; \ A4,_; are
disjoint, therefore we may assume that B,_; € A,. To show that we have equality, let x € A,
if xe Athenx € A,_; C B,_1. If x ¢ A then x € B\ A, by equation (2.3), there exists some
ke{l,...,n— 1} such that x € (B; \ Ax), thus x € B,_;. So we get the equality B,_; = A, and
we can define a new sequence

Ci=B\Ay, if kel{l,...,n-2}, and C,.; =B,\A,.

The induction hypothesis yields

n—1 n—2
prB\A)Y= > pi(CO) = ) pr(B\ A +py(By\ Ayy)
k=1 k=1

n-2 n-2

= 2 Pr(Bi\ A + f fdr=" pr(Bi\A)+ f fdr+ f fdr
=1 k=1

r(Bp)\r(An-1) r(Bu-1)\r(Ap-1) r(Bp)\r(An)

>~

=

p(Bi \ Ag).
=1

~

To show that p is countably monotone, we prove that it is monotone for finite sequences.
Suppose that B\ A € U;_,(Bx \ Ax), we show by induction on n that

pr(B\A) < " py(Bi\ A, (2.4)
k=1

Ifn=1,then BC By and A| C A, hence r(B) C r(B;) and r(A;) C r(A), thus

pi(B\A) = ffdrs f Fdr = py(Bi\ Ay).

r(B)\r(A) r(B\r(Ay)
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To prove the induction step: If there exists some k € {1,...,n} such that (B\ A) N (B \ A) = 0,
then we may reorder the sequence to get (B\ A) N (B, \ A,) = 0. The inductive hypothesis
yields

n—1 n
pr(B\A) < Y pB\A) < Y pr(Bi\ Ay).
k=1 k=1
Hence, we may assume that (B\ A) N (B \ Ay) # 0, forall k € {1,...,n}.
If the sequence {(By \ Ax)};_, 18 not disjoint, we may reorder the sequence to get (B, \ A,) N
(B,—1 \ A1) # 0. Define the sequences
Ck :Ak, Dk = Bk, if ke {1,...,1’1—2}, and Cn—l :An—l ﬂAn, Dn—] = Bn-

By the inductive hypothesis

n—1 n—2
PrBAA) < Y pAD\C) = > pr(Bi\ A +py(By \ (A N A))
k=1 k=1

n-2
SN IRV T
k=1

r(Bn)\r(Anfl mAn)

(3]

n—

IA

pf(Bk \Ak) + f de + f de
1

r(Bn—l )\F(An—l) r(Bn)\r(An)

>~
Il

=

= ) pr(Bi\ Ap).

>~
—_

Thus we may assume assume that the sequence {(B;\Ax)};_, is disjoint and (B\A)N(B;\A;) # 0.
Then we may reorder the sequence {B;} increasingly. Then, we must have that A, € B C B,
and A; € A C By, otherwise either (B \ A) € U;_,(Bx \ Ay) or there exists k € {1,...,n} for
which (B\ A) N (B \ Ay) = 0.

Therefore
n—1
B\A= (B \A)U(B,\BU U(Bk\Ak)-
k=2
Finite additivity yields
n—1 n
pr(B\A) = p(Bi\ A)+p(B,\ B)+ Y p/B\A) < Y pr(Bi\ Ay).
=2 k=1

This proves that p; is finitely monotone.
Finally, to prove that p, is countably monotone, fix € > 0 and suppose that B\A C ;2 (B \
Ay). Notice that for each n € N:

B\AC (Q(Bk \Ak>) U ((B \A)\ (Q(Bk \Ak))).
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Since (B\A) \( Uiz (B \Ak)) is a decreasing sequence of sets with finite y-measure and empty

intersection, we may pick 7, such that

,u((B \A)\ ( ka \Ak))) < C”]f”w .

By Lemma 2.3.2, there exists a disjoint collection {(B; \ A))}7L, € A" such that

((B \A)\ (@Bk \Ak))) - B an.
k=1 k=1

Notice that since the sequence is disjoint, then };* | u(B; \ A;) < . Since

c'IIfTILgo
no m
B\AC (U(Bk \Ak>) ul s\ ap,
k=1 k=1
and the right-hand side is a finite union in A", finite monotonicity shows that

no m 0 m
PAB\NAY< Y pr(B\AD)+ D pr(B\NAD = > pr(Bi\ A+ ) f fdr
k=1 k=1 k=1 kzlr(B’)\r(A’)
k k

m

< > prBNAY +Iflles Y. (B \ HA))
k=1

k=1

no m
< kZ_;pABk \ AQ) + [Ifllsc ;u(B,; \ A7)

ny
< D prB\A) +e.
k=1

We have used the fact that r is a core morphism in the second to last line. Therefore

pr(B\A) < > pr(Bi\ A +e.

k=1

Let € — 0 to complete the proof.
i
Proof of Theorem 2.3.6: We define the operator R on positive and bounded functions first.
If f =0setRf =0, otherwise fix f € L" N LY. Lemma 2.2 defines a premeasure p; over
the semi-ring A*. By the Caratheodory-Hahn Theorem, there is a measure p; on (U A, 0(A))
that extends p; and coincides with the outer measure induced by ps on o(A)-measurable sets.
For any A, B € ‘A we have

ps(B\ A) = f fdr <Ifllieet(r(B) \ r(A)) < cllfllizpu(B\ A). (2.5)

r(B)\r(A)
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Letting A = @ shows that ps(B) < oco. Since A is o-bounded, then p; is a o-finite pre-
measure, thus the extension py is unique and o-finite. We proceed to show that it is absolutely
continuous with respect to .

If £ € o(A) and u(E) = 0, then for any € > 0, there exists a set G = Ujen(B; \ A;) with

B;,Aj € Aforall j € N, suchthat E C G and u(G) < W By equation (2.5) we get

PrE) < > pBi\NA) < Y cllfllizu(Bi\ A)) = clifllizp(G) < e.

JjeN JjeN

Letting € — 0 shows that p(E) = 0 and proves that py is a o-finite measure, absolutely
continuous with respect to u. Therefore, the Radon-Nikodym Theorem provides a unique (u-
a.e) nonnegative o (A)-measurable function / such that

pr(E) = fhd,u, VE € o(A).

E

Define Rf = hyua. We have the operator R defined on LY N LY taking values on the real
vector space V = {g € L{ _ 4 : & = gk} and satisfying Rf > 0.

To show that R is positive homogeneous, let @, > 0 and fi, f, € LT N L, notice that for
each A € A:

f R(afy + B di = Prpgr(A\ 0) = f (@fi +Bf)dr = a f fidr+B f fdr

A rANr(0) rANr(0) rANr(0)

~ ap(4\0)+ BEA\ 0 =a [ Rfidu+ B [ R
A

A

- f (aRf; + BRA) dyt.
A

An application of Lemma 2.3.5 shows that R(af; + 8f>) and aR(f1) + BR(f,) coincide on UA
u-a.e. It follows that R(a f; + af>) = aR(f1) + BR(f>) over U up to a set of zero u-measure.

An application of Theorem 1.2.4, with V = W = L provides an R-linear extension of R to
LY.
Notice that, in this case

IRfI = [R(FH = RG] < [RUD| + RG] = R(F) + R(F) = RIS

Monotonicity of the norm L;° implies that to prove (1) we need to consider nonnegative func-
tions only. Suppose that f > 0, let {A,;},en € A satisfy U, A, = UA and for each n,m € N
define

1
En,m = {X €A, : Rf(X) > C”f”L?0 + _} .
n

Since Rf is o(A)-measurable, for every 6 > 0, there exists a pairwise disjoint sequence {B;\A }
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such that £, ,, C G5 = U(B; \ A) and u(G) < 6 + u(E, ). Integration yields

.U(En,m)(cllf”L‘;""'%)<fRfd,USfRfd,u:Zjl fRfdu:Z f fdr

E, Gs Bj\A; T rBH\HA))

<Wflles D 7(r(BY\ 1(AD) < cllfllcs ) u(Bj\ A = cllfllzzp(Go)
J

J
< cllflle (6 + u(Enm))-

Let 6 — 0 to get f(Eyu) (cllflle + 1) < p(Enm) (clifllzz). This is impossible unless
((Epm) = 0.

Let m — oo and then n — oo to get ||[Rfl|ze < cl|f]lz> and complete the proof of (1).

We proceed to extend the operator R to L.

We will need the following observation: If {f,}, f € L and f, T f, then Rf, T Rf. Since R
is linear and positive on L7, then Rf, is an increasing sequence in L; and the limit function is
o (A)-measurable and nonnegative.

Let A € A, then the Monotone Convergence Theorem yields,

fRfd,u: ffdr:lim fodr = lim Rf,dr = f lim Rf, dr.

n—o00 n—-o0

A r(A\r(0) r(A\r(0) r(A\r(0) r(A\r(0)
The equality above and Lemma 2.3.5 shows that lim Rf,, = Rf.
n—-oo

We now extend R to L. Let f, T f with f, € L>’ N L{. By the same argument as before
lim Rf, is o(A)-measurable and vanishes outside UA. Define Rf = sup, Rf,. By the previous

observation, this definition of Rf coincides with the previous one whenever f € L.

It remains to show that Rf is independent of the choice of sequence. Let {f,},{g,} € Ly’ NL}
satisfy f, T f and g, T f. For each fixed m, h, = min(f,, g,,) defines an increasing sequence in
L N L7 that satisfies i, T g,,. It follows, by the previous observation, that Rh, T, Rg,,. Since
h, < f,, then,

Rg,, = lim Rh, < lim Rf,,.

Letting m — oo yields 11_>r£1<> Rg, < 11_)I£10 Rf,. Reversing the roles of f, and g, yields the opposite
inequality and shows tﬁat Rfis wgll defined. This completes the proof of item (2).

To prove item (3), let {f,,} € L*(7") satisfy f, T f. Then the sequence g, = min(n, f,) also
satisfies g, T f and g, € L. By the previous observation Rg, T Rf. However, Rg, < Rf,,
since g, < f,. Therefore Rf,, T Rf and proves (3).

To prove item (4), let ,8 > 0 and f,g € L™(7) and sequences {f,},{g,} € LY N L*(T)
increasing to f, g. Then, using the linearity of R in L and the independence of approximating
sequence:

R(af +pg) = lim R(af, + Bga) = lim aR(f,) + fR(g,) = aR(f) + BR(g).

The above proves item (4).
LetA,B e Aand f € L™ (1), then

[rrdu=sip [Ridu=sw [ par= [ sz

B\A B\A r(B)\r(A) r(B)\r(A)
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Letting A = 0 above, shows that if f € L __, 4, then Rf € L*(r) N L{__ 4. An application of
Theorem 1.2.4 with W = Lll_,oc,ﬂ and V = Lioc’r(ﬂ) extends R to a positive linear operator on
Lioc’r( 7 and proves item (5).

Item (6) follows from the construction of R based on increasing sequences and linear com-
binations of functions vanishing outside UA. Item (7) follows from the same observation done
for the case in L. Item (8) has already been established for positive functions, thus it follows
from the linearity of the integral. Letting A,, T UA and item (8) show that ||Rf]| L= /1l for
nonnegative functions f, thus item (7) and monotonicity of the norm in L}l prove (9).

To prove item (10). Notice that

fR(Xr(A)) dp = er(A) dr = 1(r(A)) = p(A).

A r(A)
above, we have used the fact that (0) must be a null set. Since ||[RO¢ra)lly = Il =
7(r(A)) = p(A), it follows that R(x ) is zero u-a.e. outside A. Since [|R(xa)llzy < [hrallze
1, then R(x4)) < xa. Therefore,

Iha = ROra)llzy = f(XA — R(xra))du = 0.
A

This shows that x4 = R(x4)) u-a.e and completes the proof of item (10).
Finally, to prove item (11), fix f € L>NL*(7"), B € A and define the maps v, n : o(r(A)) —
[0, c0) as follows

WE) = [ RRedn wE) = [ RGxedu,  foreach E € olria)
B B
Clearly v(0) = 0 = n(0) and if U, E}, is a disjoint union in o ((A)), then

(o)

W(E) = f RfR (sup D e | du=sup ) f RfR (i) dj = ) V(E).
k=1"p

n _ n —
B k=1 k=1

n(E) = f R[sup Txe | dp = supZ f R(fxe) dp = Zn(Ek).
% k=1 "ok=1g k=1

Therefore v, n are measures on o (r(A)), since Rf € Ly n L*(7) and u(B) < oo, these are finite

measures. For each A € A, since A is totally ordered and r is order preserving, we see that

r(A) N r(B) = r(A N B). Therefore,
[ fdr, ifAcCB.
v(r(A)) = f RfR((xa) du = f XaRf dp = f Rfdu = "7

f fdr, otherwise.
B B BnA B)

and
[ fdr, ifACB.

_ _ _ _ )
nr(A)) = fR(er(A))dﬂ— fer(A)dT— fRfd,u— [ fdr. otherwise.

B #(B) BNA B)
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By Lemma 2.3.5 v, j are the same measure, therefore for any E € o (r(A)) the equation

fRfR(XE)dN = fR(fXE)dM

B B

holds. Since B € A was arbitrary, another application of Lemma 2.3.5 with the functions
RfR(xg) and R(fxg) shows that they coincide u-almost everywhere.

Any nonnegative measurable function in o (r(A)) is the increasing limit of a sequence of
linear combinations of functions yg with E € o(r(A)). Thus, by items (3) and (4), we get that
R(fg) = R(f)R(g) forany g € L™ (0 (r(A))) and f € L. If f is not bounded above, approximate
it by an increasing sequence {f,} € L, and another application of item (3) finishes the proof
of item (11).

The following example shows that the hypothesis on items (2,10,11) is necessary

Example 2.3.8 Consider the core A defined in Example 2.1.9 over R? and (T, T, T) be the half
line with the Lebesgue measure. Define the core morphism r by

r([0,x]) = B(O, \/g), for all x > 0.

H = {(pcos(®),psin(@)) : 0 < p <6, 0€[0,n]},K ={(pcos(d),psin(@)) : 0 <p <6 €[0,nr]},

Consider the sets

L ={(x,-y) : (x,y € K)} and the functions f = xy,g = xx, and h = y. Note that all of the
functions belong to Lioc’ a J = fg and the core morphism preserves measure.
Since

_ N O \ W A B
f = m(H N B(O,p)) = mll’l(?, g + —) = v[(; (5 - W{)X(O’ﬂ3)(t) dt,

2
B(0,p)

therefore, by Lemma 2.3.5, Rf() = (% - T@)y(oﬁg)(r). Similarly Rg(t) = Ly (®) = Rh().
The function f shows that the image of a characteristic function need not be a simple function.
Also, R(fg) = Rf # (Rf)(Rg) shows that R need not be multiplicative. And since R(g—h) = 0, it
shows that for functions taking both positive and negative values, the map R can map non-zero
functions to zero.

2.4 An induced measure on the half-line

In Example 2.3.8 we had a core morphism between a measure space with an ordered core and
the half line, mapping each core set to the measure of each set. We can generalize this core-
morphism to any o-bounded ordered core, we will be mapping to the half line with an induced
Borel measure by the ordered core.

For this purpose, we will employ the enriched core described in Lemma 2.2.2.

We begin by exploring one of the properties that hold for enriched cores.
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Theorem 2.4.1 Let (U, X, u) be a o-finite measure space, ‘A be an ordered core and M be its
enriched core from Lemma 2.2.2. Then, the set

{uM) : M e M}
is the closure of the set

{u(A) : A € AJ.
in [0, o).
Proof:

First we show that the closure of {u(A) : A € A} is contained in {u(M) : A € M}.

Let x be in the closure of {u(A) : A € A}. If x € {u(A) : A € A}, then there is nothing to
show, since A C M.

If x ¢ {u(A) : A € A}, then there exists a sequence {A,} € A such that u(A,) T x or
u(A,) | x and the sequence is strictly increasing or decreasing by inclusion.

Ifu(A,) T x,set E = U,A,. Then E € M by Lemma 2.2.2 and by the monotone convergence
theorem u(E) = x.

If u(A,) | x, set E = N,A,. Then E € M by Lemma 2.2.2 and by the dominated con-
vergence theorem p(E) = x. This shows that the closure of {u(A) : A € A} is contained in
{u(M) : M € Mj}.

Conversely, suppose that x = u(M) for some M € M. Then, by Lemma 2.2.2 we may
choose a sequence {A,} € A such that M = N,A, or M = U,A,. In the first case, the mono-
tone convergence theorem shows that u(A,) T w(M) and in the second case, the dominated
convergence theorem shows that u(A,) | u(M) and completes the proof.

i

The following example shows that, when a core is not enriched, the set {u(A) : A € A}

need not be a closed subset of [0, c0).

Example 2.4.2 Let U = [0,3] and u be the Lebesgue measure. Consider the ordered core
A={0,U}U{[0,x] : x € (1,2)}. Then

{uA) : A e A} =1{0,3} U (1,2).
Here the enriched core is M = {0, U} U{[0,x] : x € [1,2]} U{[0,x) : x € (1,2]} and
{uM) : M e M} ={0,3}U[I1,2].

We now construct a Borel measure on [0, 00), that encodes the monotonicity properties of
the enriched ordered core.

Let 8 = {0} U {[0, x] : x > 0}. This collection generates the Borel o-algebra. We will con-
struct a measure A on [0, co) such that B is a full, o-bounded, ordered core on ([0, o), o(B), 1).

Theorem 2.4.3 Let T = u(M), and the functions
a(x) =sup ([0,x] NT), b(x) =inf ([x,00] NT),

where inf O = co.
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Then, there exists a o-finite Borel measure A, supported on I, such that
A([0, x]) = a(x), x> 0.

Moreover, A([0, x]) = x if and only if x € T.
Finally, for every nonnegative Borel measurable function ¢,

supI”
f @dAd = f ' ¢ o b(x)dx = f @(xX)dx + Z(d — O)p(d), (2.6)
0

[0,00) r

where the sum is taken over the connected components (c,d) of the complement of T

Proof: It is clear from the definition that for each x > 0 we have a(x) < x < b(x) and
a(x) = x = b(x) whenever x € I'. Conversely, by Theorem 2.4.1, I' is closed, so a(x) € I
and b(x) € I' U {oo}. Therefore a(x) = x implies x € I" and the same statement holds for b(x).
Therefore a(x) = x = b(x) when x € T, a(x) < b(x) when x ¢ T" and by construction (a(x), b(x))
is a connected component of the complement of I

Since b is non-decreasing, it is Borel measurable. Let A be the push-forward measure
induced by b. Thus

NE)=m (b‘l(E)), VE € o(B),

where m is the Lebesgue measure.

Therefore, for all x > 0, b~'([0, x]) is Borel measurable. For all x > 0, a(x) € T so
bla(x)) = a(x). If b(f) < oo, then b(r) € T', so a(b(t)) = b(t). We claim that for all x > 0,
b=1([0, x]) = [0,a(x)]. To see this, if x < a(x), then b(t) < b(a(x)) = a(x) < x. Conversely, if
b(t) < x, then t < b(t) = a(b(t)) < a(x).

Hence

a(x) = m(b™'([0, x])) = ([0, x]).

Since a(x) = x if and only if x € T, then we have x = A([0, x]) if and only if x € I". This also
shows that A is o-finite.

We now show that A is supported on I'. Since I is closed then its complement has countably
many connected components. If supI" < co then for the unbounded component we have

A(sup I, sup'+n] = A[0,sup '+ n] — [0, supI'] = a(supT'+n) —a(supl') = sup'—supI' = 0.

It follows that A(supI', o] = 0.
If (¢, d) is a bounded connected component of the complement of I', then

A(e,d)) < A([0,d]) — A([0,¢]) = a(d) —a(c) =c—c = 0.

It follows that A([0, 00) \ T') = 0.
Observe that if (¢, d) is a connected component of the complement of I', then b(x) = d for
all x € (c,d). It was already shown that b(x) = x when x € T
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Therefore, for all ¢ € L*(B), an application of Theorem 1.1 yields

supl’
f(pd/l:fgod/l: fgoob(x)dx:fgpob(x)dx
[0,00) r b~I(T) 0
:f¢0b(x)dx+2fg00b(x)dx:fgp(x)dx+2f(p(d)dx
r ¢ T ¢
= f p(x)dx + Y (d - )p(d).
r

This completes the proof.

Definition 2.4.4 Given a o-finite measure space (U, Z, u) with an ordered core A, then the
measure A given by Theorem 2.4.3 is the measure induced by A.

For future reference, we record a rearrangement formula for the collection L'(8) of core
decreasing functions.

Lemma 2.4.5 Let A be the induced measure by ‘A, the function b be the one defined on Theorem
2.4.3 and ¢ € LY(B). Then,

pob=y"

Where * denotes the nonincreasing rearrangement with respect to the measure A.

Proof: Let the symbol # denote the nonincreasing rearrangement with respect to the Lebesgue
measure and suppose that
K
Y= Z QX 10.x¢1>
k=1

for some x; > -+ > xg > xg41 > 0 and @y, ..., @x some real numbers. For each j € {1,..., K}
the function ¢ takes the value Z/]c: | @ on the set (x;,1, x;]. By Theorem 2.4.3 we have that

A(x 41, x;1) = A0, x;1) = A0, xj11]1) = alx;) — a(x;+1),

where the function a is the one defined on Theorem 2.4.3. In that Theorem we find that b(z) < x
if and only if z < a(x). Therefore, ¢ o b takes that same value on the set (a(x;+1), a(x;)], which
has Lebesgue measure a(x;) — a(xj.1). These are the only values that the functions ¢ and ¢ o b
take, so (¢ o b)* = ¢*.

For a general ¢ € LY(8B), by Lemma 2.2.5, ¢ is an increasing limit of simple functions ¢,
of the previous form. The result follows from (3) in Proposition 1.3.9.
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2.4.1 Transition maps

We explore the close relation between measurable functions on (U, X, 1) and the induced mea-
sure space ([0, o), 1). This is done by applying Theorem 2.3.6, the maps produced take the
role of transition maps between the original space and the induced measure space. In this sec-
tion, we explore the properties of the transition maps and study their behavior on monotone
functions.

Proposition 2.4.6 Let (U, X, u), be a o-finite measure space with ordered core A, enriched

core M, and induced measure A. Then, there exists a map R : L! U L; — L! U L/+1 such

) Loc, A Loc,A
+.
that forany f € L, o U L;:

1. The restricted linear map R : Ly — LY satisfies ||Rf||Lio < ||f||L;o.

2. If f > 0 u-almost everywhere, then Rf > 0 A-almost everywhere.

“

For any sequence {f,} € L*(A) such that f, T f u-almost everywhere, Rf, T Rf A-almost
everywhere.

R is additive and positive homogeneous on L*(A).
. . 1 . 1
R is linear on Ly, mapping to L . g

Rf € L(B) and Rf = 0 outside T.

IRf| < R|f| A-almost everywhere.

ffd,u: fRfd/l.

[O,u(M)]

Lo N S A

Forall M e M,

9. The restricted linear map R : L,11 — Lﬁ satisfies ||Rf||L; < ||f||L;) with equality if f > 0
u-a.e.

10. IfM S M, then RXM = X[0,u(M)] A-a.e.
11. If f € L*(X) and g € L*(A), then R(fg) = RfRg u-almost everywhere.

Proof: For each x € ', choose M, € M such that u(M,) = x. Consider the map r : B - M
defined by
r([0, x]) = My, VYx=0.

and (@) = (0. Here a(x) is the function defined in Theorem 2.4.3. If x > y then a(x) > a(y).
If a(x) > a(y) then M, C M, by the total ordering of M and the fact that u(M,) < u(M,).
Therefore y < x implies r(y) C r(x) and shows that r is order-preserving.

Let x,y > 0 and suppose that y < x. Then,

p(r([0, Y1) \ (10, x1)) = (M \ M) = u(My) = (M) = a(y) — a(x) = A(10, 1) - A([0, x])
= A([0.y]\ [0, x]).
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If y < x, the equation holds trivially.

Therefore the map r is a core morphism with constant ¢ = 1. Theorem 2.3.6 provides the
existence of the map R. Also notice that Lj 5 = L _ -
To prove (8), let M € M. Let M, € M be the set r([0, u(M)]). Then M, = M up to a set of

M-measure Zero. Hence

ffd,u:ffd,u: f fdu= f RfdA= fRfd/l.
i

M0 10,41\ 0) [0.4(M)NO [0.4(M)]

Similarly, to prove item (10), note that y, = xum, p-a.e. Thus Theorem 2.3.6 shows that

Rxm = Rxm, = Xio.umn1-
The remaining items (1) to (11) follow directly from the corresponding items in Theorem
2.3.6, the definition of r, and the observation that ¢ = 1.

Proposition 2.4.7 Let (U,Z, 1), be a o-finite measure space with ordered core A, enriched
core M, and the induced measure A. Then, there exists amap Q : L;, UL} — Li(}c’ﬂ UL,
such that for any ¢ € Ly, , U L}:

oc,A

1. The restricted linear map Q : LT — Ly satisfies ||Q(,0||Lﬁo < ||80||Lf;~
2. If ¢ 2 0 A-almost everywhere, then Qg > 0 u-almost everywhere.

3. For any sequence {¢,} € L*(B) such that ¢, T ¢ A-almost everywhere, Qp, T Q¢ u-
almost everywhere.

4. Q is additive and positive homogeneous on L*(B).

5. Qs linear on L!

: 1
Loy Mapping to L

Loc, A’
6. Qp € L(A) and Qy is zero outside UA.

7. 10¢| < Ql¢| u-almost everywhere.

f sodﬂ=fQ<pdu-
M

[0,u(M)]

8. Forall M e M,

9. The restricted linear map Q : L} — L}l satisfies ||Q<,o||LF1! = ”‘p”Li’ with equality if ¢ > 0 A-
almost everywhere.

10. IfM e M, then QX[O,#(M)] = XMmM-a.e.

11. If p, ¢ € L*(B), then Q(py) = QpQyr u-almost everywhere.
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Proof: Define the set function r : M — B by r(0) = 0 and
r(M) = [0,u(M)], VM € M\ {0}.

Since M is totally ordered, the monotonicity of u makes the map r order preserving. For
M, N € M such that N C M we have

Ar(M) \ r(N)) = A([0, u(MD] \ [0, w(N)]) = A0, u(M)]) = A([0, u(N)]) = (M) — p(N)
= u(M \ N).

Therefore, r is a core morphism with constant ¢ = 1. Theorem 2.3.6 provides the existence

of the map Q. Also notice that L} _ , = L! ..

Items (1) to (11) follow directly from the corresponding items in Theorem 2.3.6, the def-
inition of r, and the observation that ¢ = 1. Only (11) requires comment. The correspond-
ing statement in Theorem 2.3.6 requires that ¢ is measurable in the o-algebra generated by
{[0, x] : x € T'}. This forces i to be constant on every connected component of the complement
of I'. But A is supported on I', so we may assume that ¢ is constant 1-a.e. on every connected
component of the complement of .

The next theorem explores the close relations between the transition maps R and Q.

Theorem 2.4.8 Let R, Q be as in Propositions 2.4.6 and 2.4.7. Then:

1. Ifee L"(B)UL,, , then RQp = ¢ A-a.e;
2. Iffe L"(A)U Ly, 4 then QRf = f p-a.e;
3. If feL*(A), p € L"(B) and M € M then
[ r@odu= [ ®pear aa [ j0odu= [ ®ppar
M [0.u(M)] v [0,00)
4. If p € LM(B), Q¢ € LN (A) and ¢* = (Qp)*;
5. If f € LMA), Rf € LYB) and f* = (Rf)";

6. If g € LY(A), then

{heu(ﬂ);fhdysfgdu, VMeM}
M M

-~ QllfitIIELl(B),fwd/lszgd/l, Vx>0}.

[0,x] [0,x]

The symbol * denotes the nonincreasing rearrangement from Section 1.3.1.
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Proof: To prove (1): Letp € L*(B)U Lioc, 1~ Let x € [0, o) and consider the map a(x) from
Theorem 2.4.3 and M, € M satisfying u(M,(,)) = a(x). Then using item (3) in Propositions
2.4.6 and 2.4.7 and the fact that [0, x] = [0, a(x)] 1-a.e we get

fRandxlz fRngd/l:ngod,u: fcpd/l:fgod/l.

[0,x] [0.a(x)] Mo [0.a(x)] [0.x]

Therefore Lemma 2.3.5 yields equality A-a.e and proves item (1).
To prove (2): Let f € L*(A) U Lioc#. Let A € A. Then using item (3) in Propositions 2.4.6
and 2.4.7 we get

AfQRfd,u: f Rfd/l:Affd,u.

[0.u(A)]

Therefore Lemma 2.3.5 yields equality u-a.e and proves item (2).

To prove (3): Let f € L*(A), ¢ € L*(B) and M € M. Then Q¢ € o(A). Therefore, by (11)
in Proposition 2.4.6, we have R(fQ¢) = (Rf)(RQy) and by item (1) we get R(fQ¢p) = (Rf)¢,
thus

f F(O) du = f R(F(0)) dA = f RP)pdA.
M [0,u(M)] [0,u(M)]

Since Qg is zero outside UA, we can reduce the integration to this set. Similarly, we can
reduce the integrals involving Rf to I'. Since (A is o-bounded, take an increasing sequence
{A,}en € A such that A, T UA. The monotone convergence theorem yields

ff(Q@dy:ff(Qw)dy:supff(Qso)duﬂUP f (Rf)sad/1=f(Rf)90d/1
U UA Ay,

[0.1(An)] r

_ f (Rf)pda.

[0,00)

This completes the proof of item (3).

To prove (4): Let ¢ € LY®B), then it is an increasing limit of functions of the form
Yol QX (o). Without loss of generality, we may assume that {x;} is decreasing. By the con-
struction of A, we may consider functions of the form };_; @xX[0.4(x);- By item (3) in Proposi-
tion 2.4.7 we have that Qy is the increasing limit of Yi_; @xOX(0a0) = Xi=1 XX M,,- Thus,
Q¢ € L*(A) by Lemma 2.2.5.

To finish proving item (4), note that by item (3) in Proposition 1.3.9, it suffices to show that
¢" = (Qy)* holds for functions of the form ¢ = ko1 QX o With {x;} € T" and decreasing. The
only non-zero values they take are )};_ ay, for j € {1,...,n}, with ¢ taking that value on the
set (x;+1, x;] and Qg on the set M,, \ M, . Therefore,

(X1, x:1) = x; — x4 = (M, \ M,).

This shows that the distribution functions of ¢ and Q¢ coincide, therefore ¢* = (Q¢)* and
completes the proof of item (4).
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To prove item (5): Let f € LYA). By Lemma 2.2.5, the function f is an increasing
sequence of functions of the form

n n n
Z X M, = Z QWX o)) = Q( Z X [0,#(Mk)])'
k=1 k=1 k=1

for some {a;} € (0, 00), M) € M. An application of R yields

R( kz_; akXMk) = RQ( kZ:‘ a’kX[O,y(Mk)]) = kZ:‘ ARX10,u(M)]>

by item (1). By item (3) in Proposition 2.4.6 and Lemma 2.2.5, we get Rf € L*(8B). Moreover,
by item (3) we have

(Zn: CYkXMk) = (Q( Zn: ary [o,y(Mk)])) = ( Zn: Y [o,p(Mk)]) = (R( Zn: CVkXMK)) :
k=1 k=1 k=1 k=1

Then item (3) in Proposition 1.3.9 yields (Rf)* = f* and proves item (5).
Fix g € L*(A). To show item (6), we show each set contains the other. Let i1 € L'(A), then
item (2) shows that 4 = QRh. Let = Rh and x > 0, then

f;bd/l:thd/l: fhd,us fgdu: f Rgd/l:ngd/l.
[0,x] [0,x] Moy M [0,a(x)] [0,x]
This proves ”C”. Conversely, let v € LY(8) and set h = Q, then for any M € M:
fhd,u - f RhdA = f ROy dA = f yd < f RgdA = fgdﬂ.
M [0.u(M)] [0.u(M)] [0,u(M)] [0.u(M)] M

This proves equality of the sets and completes the proof.

We finish this chapter by describing a decomposition of the measure space (U, 0 (A), 1)
into two sets which correspond, via the map R, to the atomic and non-atomic parts of the
measure A.

Lemma 2.4.9 Let (U, Z,u), A, B, A, R, Q as in the previous theorem. Then, there exist sets
denoted Uc, Up € o(A) such that

UfﬂzUCUUD and UcﬂUD:(D,

such that for any f € L*(Z) U Ly, 4

fdy = f Rf()dx, and | fdu= ) Rf@)d~c),
Uc r Up
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where the sum is taken over the connected components (c,d) of the complement of I'. If, in

addition, f € L*(A)U L, 4, then

Jxua = fxve + Z XMWy, ped-e. 2.7)
jeJ

for some countable disjoint collection {(M; \ N,)}je; with M;,N; € M and some a; > 0.
If Ve, Vp € o(A) satisfies the properties above, then Uc = Ve and Up = Vp up to a set of
y-measure zero.

Proof: Since A is a o-finite measure, the collection I = {x € I" : A({x}) > 0} is countable. Also
note that this set is the same as {b(x) > 0 : a(x) < b(x)} by Theorem 2.4.3. Let

G = U {((a(x),b(x)] : x € I} = U (10, ()] \ [0, a(x)] : x € I}
The union is countable and disjoint, therefore

Oxg = Z Q(X [0.6(0] — X [o,a(x)]) = Z (X My — X M,,m) = XUp»

xel xel

where Up = e (Mpr) \ My(r)) € 0(A). Define the set Uc = UA \ Up.
Notice that y, is o(A)-measurable, therefore item (11) in Lemma 2.4.6 yields

U[fdﬂzbff)w[,d/l:fRfR(XUD)d/l:fRfd,lzz f RfdA

T G ¥l () b))

= > RFG)(b() - ax) = Y Rf(@)d ~ ).

xel

Since [, fdu = fUc fdu+ fUD f du, Theorem 2.4.3 shows that

fd,u:fRf(x)dx.
Uc

r

Notice that Q1 = yy 4, by linearity of Q we have that Qyr¢ = xua — xv, = Xve- If fis
o(A)-measurable, then fy s = QRS and using Theorem 2.4.8:

fxua = ORfxc + Rfxrc) = ORfxc) + OR)O(r) = ORfxc) + fxue
= Q( Z Rf)((c,d]) + fxue = Q( Z Rf(d))((c,d]) + fxuc = Z RA(D)QW ca) + fxue
= fxue + Z Rf(d) xmpm.)-

Here, we used the fact that for a connected component (c, d) in the complement of I' we have
that x4 = X A-a.e. Then we can make a; = Rf(d), M; = M, and N; = M, to prove equation
2.7).

To show uniqueness of the decomposition, note that fUc fdu= fVc fduforany feL]
Making f = y4 for A € A yields

f)(ycd#= fdll:ffdll:f)(vcdﬂ-
A Uc Ve A

OC, A"
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Therefore Lemma 2.3.5 yields yy,. = xv. p-a.e. Hence Uc = V¢ up to a set of u-measure zero,
since the decomposition of U was disjoint, then Up and V) also differ by a set of y-measure
zero. This completes the proof.

In the case that A is full and separable, the decomposition takes a more explicit form.

Corollary 2.4.10 Let (U, 2, u), A, B, A, R, Q as in the previous theorem with A full and sepa-
rable. Then there exists a countable collection of distinct equivalence classes {[u;] 4} such that
u([u;la) > 0and a set Uc € o(A) suchthat U = Uc U ;[u;la, a disjoint union. Also for each

feL' UL 4

fdu= fRf(x)dx
Uc

r

If in addition f € L*(o(A)) U Lioc’ﬂ:

f = f/\/Uc + Zaﬂ([uﬂﬂ’
J

where a; = f(u;) and does not depend on the choice of representative.

Proof: For each f € L*(A) U Lioc, 4 Lemma 2.4.9 provides a decomposition of the form

f=rfxve+ Z )X (M\N)-

jeJ
For each j define the sets
Li=| JtE € M:u(E) <M}, S;=( {E € M: u(E) > p(N)}

Since A is separable, then L;,S; € M, also N; C L; and S; C M;. Since (u(N;), u(M;)) is a
connected component of the complement of I, then u(E) < u(M;) implies that u(E) < u(N;),
thus pu(L;) = u(N;). Similarly u(S ;) = u(M;).

It follows that ya,\v,) = X5\, Up to a set of u-measure zero. Moreover, by construction,
ifu;€S;\Lj then [ujla=(S;\Lj).

Therefore

f = f/\/Uc + Zaj)([uj]fﬂ’
jeJ

Evaluation on each u; yields f(u;) = «; and completes the proof.



Chapter 3

Monotone envelopes

In this chapter, we introduce two very important constructions that generalize the least-decreasing
majorant and the level function to the space (U, X, ) with an ordered core A. We will study

a new preorder relation on locally integrable o-(A)-measurable functions, we use this preorder
to give a functional characterization of the least-decreasing majorant, greatest decreasing mi-
norant, and level function.

3.1 Two different preorder relations

We introduce two different preorder relations on a very large collection of nonnegative func-
tions

Definition 3.1.1 Let f,g€ L] ., N L;. We write f <a g whenever

oc, A

ffd,usfgd,u, VE € A.
E E

First, we note that we can use the core A or its enriched core M in the definition without
changing the preorder. To see this, suppose that f <4 g and let M € M then u(M) € I and
there exists a sequence x,, — u(M) such that x, = u(E,) for some E, € A. If we can extract an
increasing subsequence, the monotone convergence theorem shows that

ffduz fRfd/l:sup f Rfdﬂ:supffduﬁsupfgd,u
M n n Ey, n Ey

[0,u(M)] [0.u(Ep)]
= sup f Rgda = f Rgd/l:fgd,u.
n M
[0.u(En)] [0,u(M)]

In the case that a decreasing subsequence of x, can be extracted, the dominated convergence
theorem applies and a similar argument shows that fM fdu< fM gdu.

It is clear that f < g implies f <# g, however, the converse may fail, as it is shown in the
following example.

53
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Example 3.1.2 Let (U, X, u) be the ordered core given in Example 2.1.9 with d = 2. Consider
f= % and g = yu+ where H" = {(x,y) : y > 0}. Clearly Rf = Rg so f <a g and g <# f but
f < gandg < f both fail.

The previous example also shows that f <# g and g <# f need not imply f = g. However, we
do have a partial order relation when restricted to a large subset o(A)-measurable functions.

Proposition 3.1.3 Ler f,g € L*(A)NL; Loc.a SUch that f <a g and g <a f, then f = g u-almost
everywhere.

Proof: If both f <# g and g < f, then [, fdu = [ gdu for all A € A. The result follows
directly from Lemma 2.3.5.

The following proposition explores the preorder ‘<z’ and multiplication by core decreasing
functions.

Proposition 3.1.4 Let f,g € L*(X), then f <# g if and only ifofhdpt < ngh du for all
h € LY(A).

Proof: Suppose f <4 g and let 4 € L'(A). Lemma 2.2.5 shows that / is the increasing limit
of functions of the form }};_, axyu, for some @, > 0 and M; € M. Then,

Lf(;akXMk)dﬂ:;QkkadﬂS;akLkgdﬂZLg(;akXMk).

The monotone convergence theorem proves fU fhdu < fU ghdu.
Conversely, let M € M and h = y, then

Lfdﬂ:thd#SLghdﬂ:Lgdﬂ-

3.2 The least core decreasing majorant

We define a projection operator from L(X) onto the set of core decreasing functions. This
projection will be optimal in the sense of the partial order ‘<’ p-almost everywhere.

Definition 3.2.1 Let f € L(X), we say that f is a least core decreasing majorant of f if |f| <
f € LY(A), and for every g € L\(A) satisfying |f| < g u-a.e, we have f < g u-a.e.

Notice that, by Proposition 3.1.3, if a least core decreasing majorant exists, then it must
be unique p-almost everywhere. The next lemma shows that a least core decreasing majorant
always exists.
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Lemma 3.2.2 Every X-measurable function g has a least core decreasing majorant, denoted
g, which is unique up to u almost everywhere equality. If g, € L*(X) and g, T g u-a.e, then

& 18 u-ae.

Proof: Suppose that |g| < C < oo and let {A,},en € A such that A, T U. Set
@, = inf{f hdu :he LY(A)and h > Igl}.
Ay

Note that the constant function C belongs to L'(A), is an upper bound for |g| and fA Cdu =
cu(A,) < co. Hence the numbers «,, are finite.
For each n € N*, there exists &, € L(A) such that &, > |g| and o, + 1/n > f h, du. Since
A,

the pointwise minimum of finitely many core decreasing functions is core decreasing, we may
assume that {A,} is a decreasing sequence. Let h = inf, h,, which is clearly a core decreasing
majorant of g.

To show that 4 is the least core decreasing majorant of g, let w be another core decreasing
majorant, then so is min{A, w}, thus

fhd,usfhnd,u<an+l/nsfmin{w,h}d,u+1/n.
An An AVI

Then 1/n > f(h — min{w, h}) du > 0. Let n — oo to get min{w, h} = h almost everywhere.
Ay
This completes the proof in the case that g is bounded.

For the unbounded case, define g, = min{m, |g|} and let g, be its least core decreasing
majorant which exists since g, is bounded. Since g,, > min{m, |g|} > min{m — 1,|g|} = gn_1,
we have g, > g,,_1. Therefore, {g,,}.cvv 1S an increasing sequence.

Let i = sup,,.y gn- Since each g, is bounded below by min |g|,m, h > |g|, thus & is a core
decreasing majorant of |g|. If w is another core decreasing majorant of |g|, then min(m, w) is a
core decreasing majorant of |g,,|, thus min(m, w) > g,,. Let m — oo to get that w > h and prove
that 4 is the least core decreasing majorant of g.

For the final property, let f, T g with f, € L*(X). Then, foreachn > 1, f, < g <'g. Since g
is a core decreasing majorant of f,, we get f, <'g. By the same argument, we get that {f,} is an
increasing sequence. Denote w = sup, f,. It is core decreasing and satisfies w < g. However,
since f, < ﬁ, letting n — oo yields g < w. Thus, w is a core decreasing majorant of g and we
get'g < w, completing the proof.

|

The proof of Lemma 3.2.2 does not describe the least core decreasing majorant. We address
this in the remainder of this chapter. First, we give a pointwise description for the case that the
core is separable. Then we provide a functional description, which is valid for every ordered
core.

Theorem 3.2.3 Let (U, Z, i) be a o-finite measure space with a separable full ordered core A
and let f € L(X). Then

fQu) = ess sup,,_, |F(D)] = ess supg ., IF (O]
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Proof: Define g(u) = ess sup,,._ . /(D). Then g is nonnegative and if <4 x then g(x) < g(?).
We show first that g € L*(A).

Fix & > 0 and define the set O = g~!'(a, ). Since x € («, x] 4 for all x > 0, it follows that
O C U eo(<, x]#. We wish to show the converse.

Let x € O and t <4 x, then («,1)g C (<, x)#. Thus, g(r) > g(x) > @ and it shows that
t € O. It follows that O = | ,co(¢, x]a.

Since the core is separable and the sets (<, x]4 € M, then O € M. This shows that g is
o(A)-measurable and we see that g is core decreasing. It remains to show that |f] < g and
g < f both hold u-a.e. _

By virtue of Corollary 2.4.10, it suffices to show that |f] < g < f u-almost everywhere on
U¢ and on each of the countably many equivalence classes {[u;].4} where u([u;]#) > 0.

Fix one of those equivalence classes [u;]4 and let z € [u;]4. Since g and f belong to L™ (A),
they are constant on [u;]# by Corollary 2.4.10. By definition of essential supremum, we have

0=p({t¢(—a:lfO1> g@}) 2 u({t € lujla: 1F0] > g)})
= u({r € [w;la < 1f 0] > g0)}).

It follows that |f| < g u-a.e. on [u;]#. To prove this on Uc: Fix € > 0, n,m € N*, choose
{A,} € A satisfying A,, T U and set

Smn =12 € Uc NAy 1 |f(2)| = g(z) > e and ne < |f(2)] < (n + De}.

Define the continuous function ¢ : [0, co) — [0, o) by

¢0):bf R(xs,,, )(xX)xr(x) dx.

Since S,,, € An, if t > p(A,,), then we have ¢(fr) = 0. Since S,,, € Uc, an application of
Corollary 2.4.10 yields

H(S mn) = f)(s,,m du = fR(XSm,,,)(X) dx = ¢(0).
Uc T

Suppose that u(S,,,) > 0. By continuity of ¢, there exist #;,#, € (0, u(A,,)), such that ¢(t,) =
‘% and ¢(;) = ’% Thus, there exists E € M such that t; < u(E) < t, and it follows that

M(Sm,n N E) = fXSm,n XE d/J = f R(XS,M)(X) dx > f R(XS,,M)(x) dX

Uc TALOU(E)] 0.4
= fo R(xs,,,)(xxr(x) dx — f R(xs,,,)(Oxr(x) dx = ¢(0) — ¢(11)
(S )
= =

Also,

(S mn \ E) = f X, (1= xE)dpt = f R(xs,,,)(x) dx = f R(xs,,,)(x) dx
Uc TN[(E),e0) TN[12,00)

Smn
:¢<rz>=“(3’).
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LetzeS,,NE. Ift€S,.,\E wehave z <4 ¢, and it follows that

g(z) = esssup,_ . |f(0)] = ess supg \p|f(D)] = ne.

Butz € S,,, N E implies
g <|f@|—€e<(m+ 1)e— € =ne.

Thus ne < g(z) < ne, this is a contradiction. Therefore u(S,,,) = 0 for each m,n. Let m — oo
to get that

{zeUc:|f(@|-g2) > €}

is a null set. Let € — 0 to get |f| < g up to a set of u-measure zero.
Since g is a core decreasing majorant of |f], then f < g almost everywhere.
Since f is core decreasing, then if z <z ¢, |f| (#) < f(¢) < f(z) Hence

f(@) > ess sup,, |f()] = g(2).

Thus f: g and the proof is complete.
|
The next example shows that the formula provided in Theorem 3.2.3 need not hold for
non-separable ordered cores.

Example 3.2.4 Consider the ordered core introduced in Example 2.1.12 and let f = 1 — xq,,.
Notice that | = xg for the core set E = VU(W \ 0). Therefore it is a core decreasing function,
hence f = f. We will show that if g() = ess sup,._5 f(B) does not coincide with f.
Ifa €V, then f(B) = 1 for B € (V\a)U(W\Ow) which has positive measure, thus g(a) = 1.
If @« € W, then notice that the set {Ow} has the same u-measure as U \ («—,ala. Hence
gl@) = f(Oy) = 0. Therefore g = yxy which differs from f in the set of positive measure
WA {Ow}.

We finish this section with a functional description of the least core decreasing majorant,
notice that the second partial order ‘<4’ is involved in this description.

Theorem 3.2.5 Let (U, X, i) be a o-finite measure space with an ordered core ‘A and f,g €

L*(X), then
ffgdﬂ = sup{ffhd,u h < g}.
U U

We need some preparation to prove Theorem 3.2.5; the first lemma shows that the least core
decreasing majorant of a simple X-measurable function is a simple o-(A)-measurable function.
The second lemma is the main tool, where we ’push the mass’ of f to form an appropriate
function g to achieve the desired supremum.

Lemma 3.2.6 Let u be a nonnegative, simple, X-measurable function that vanishes outside a
set S € A and let {yy,...,y,} be the values that u takes on sets of positive measure. Then u
takes its values on a subset of {yo,...,y.}. Moreover, u is a o(A)-measurable function that
vanishes outside S .
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Proof:

We may assume that {yy, ..., y,} is ordered increasingly. For j € {1,...,n}, define the sets
Vi={seU:y;; <u(s) <y;}and V,.; = {s € U : y, <u(s)}. Notice that these sets belong to
o (A) since u is core decreasing. Let V = U;ﬂ V; and define

n+1

h =uyy\v + Z)’j—l/\/v,--

J=1

By construction # is o"(A)-measurable and clearly & < u. Moreover, since up to measure zero,
u does not take any values where u and 4 differ, then 4 is also a majorant of u. Hence, equality
will follow once we show that /4 is core decreasing.

Let s,t € U, with s <4 t, we wish to show that /(¢) < h(s) and we do so by checking four
distinct cases.

Case 1: s ¢ Vand r ¢ V. Since u is core decreasing, h(r) = u(t) < u(s) = h(s).

Case 2: s € Vandt € V. If s and ¢ belong to the same V;, then A(s) = h(z). Otherwise,
suppose that s € V; and ¢ € Vj. Since u is core decreasing, we must have that u(t) < u(s), so
k < j, hence h(t) = yr_1 <yj-1 = h(s).

Case 3: s ¢ V and r € V. Suppose that ¢ € V;. Since u is core decreasing, and s ¢ V;, we
get h(t) = y;—1 <y; <u(s) = h(s).

Case4: s € Vand ¢ ¢ V. Suppose that s € V;. Since u is core decreasing and ¢ ¢ V;, we
get h(t) = u(t) < y;-1 <uls), we get h(t) < h(s) = yj_1.

Therefore h is core decreasing, and by minimality & = u, therefore u(V;) = 0 for all V;,
hence u takes its values in a subset of {yy, ..., y,}.

Finally, notice that uyy is also core decreasing. Since u is zero outside S, it is also a core
decreasing majorant of u, hence uys = u and completes the proof.

|

And now, for this particular case of u, we construct an approximating function g by "pushing

mass’ on core sets.

Lemma 3.2.7 Let u be as in the previous lemma, f € L*(X). If fU fudu = co and n > 0, there
exists a function g € L*(X) such that fE gdu < fE fdu forany E € A and

fgud,u > n.
U

If fU fudu < oo and € > 0, then there exists a function g € L*(X) such that fE gdu < fE fdu

forany E € A and
fﬁd,u—e<fgud,u.
U U

Proof: By the previous lemma, we may assume thatu = 3., z;yr, for a decreasing sequence z;
and disjoint sets E; € o(A). Define the sets B; = Uizl Ey, notice that B; = {s € U : u(s) > z;}.
Also notice that if s <4 t and ¢ € B}, then s € B;, thus B; € M. Note that By = 0 € M.

Define H = {s € U : u(s) = u(s)} and let A € A satisfy u(B; \ A) > 0. We claim
that u(H N (B; \ A)) > 0. To see this, suppose this is not true for some B; and some A. For
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s € Bj\Bj_1,u(s) = z; so for y-a.e. s € HN(B;\Bj_1), u(s) < u(s) = z; and we have u(s) < 7,
if j <mand u(s) =0if j =m.

If A € Bj_; define the function h = zji, XBj\B;, t ’LYXU\(BJ.\BJ._]), otherwise define h =
Zjr1XB\A + Uxv\;\4)- Clearly, i <u and by assumption u < h, by the exact same argument as
the one used in the proof of the previous lemma we get that 4 is a core decreasing majorant of
u strictly smaller than u arriving at a contradiction.

For each j € {l,...,m}leta; = sup{u(A) : A € A, u(A) < u(B;)}. Notice that z,, < u < zy,

hence
mefdysfﬁfduSZlffdu.
B, By,

U

Therefore, [uf dy is finite if and only if [ fdpu is finite.
U Bm

Suppose that f f du is infinite and that «,, < u(B,,). Choose D € M such that u(D) = a,,
B,

and define the function
n X HN(B,,\D)

" Zwp(H O (B, \ D)
If E € Athen u(E) < u(D) or u(E) > u(B,,). In the first case we have fE gdu = 0 and in the

second case we have
i:fgd,u<ffd,u:oo.
Zm E E

Thus ngd,u < fEfd,u for each E € A and

fugdy: f ug du = f"ﬁgdy: f Zmg dp = n.
U

HN(B,\D) HN(By\D) HN(B\D)

8

Above we used the fact that u(B,,_;) < u(D) < u(B,,) so u(s) = z,, for s € B,, \ D up to a set of
j{-measure zero.
If f fdu is infinite and @,, = u(B,,). Choose a set W € M such that B,,_; C W, (W) <
B

u(B,,) and fW fdu> Zi Define the function

X HN(B,\W)
= d .
¢ (fwf “)u(Hm (B \ W)
Let E € A If u(E) < u(W) then [ gdu = 0. If u(W) < u(E), then

ngd#=fod#SfEfdﬂ-

Thus ngd,u < fEfd,u for each E € A and

fugdy: f ug du = f’ﬁgdy: f zmgdﬂ=szfdﬂ2n-
U w

HO(By\W) HO(By\W) HNO(Bn\W)
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For the case that f S du is finite, we choose the set C; and define the function g; in two

By,
cases.

If @; < u(B;), choose a set C; € M such that u(C;) = «; and set g; XHNENC)
j ﬂ( J) j :u( J) J 8j = [ff ),u(Hﬂ(E AC; ))
The previous argument shows that the denominator is not zero.
If @; = u(Bj), choose a set C; € A such that
mz;

ffw— Fau<-<,
B; C;

XHNE\C; . . .
and set g; = [ f fd ]L’\C’) Once more, notice that every set involved has finite

B u(HAENC))
measure.
Note than in both cases g; is supported on E}, also ffdu fgj du < = and f gjdu <
E!
[ fadp.
Bj\Bj-i

Finally, define the function g = 37, g;. We check that this function satisfies the require-
ments. Notice that since g is zero outside of H, then gu = gu and

fﬁdu—fgud/l:ffﬁdu—fgﬁdu

U
=ffﬁdﬂ—2fg,udﬂ
U =1y
=fﬁdﬂ—2fngZkXEkdﬂ
v =y k=l
=fﬁdu—Zszfg,dﬂ
v Lkl
:fﬁ?d,u—Zz] g;jdu, since g; is supported on E;
U =g,
ol [rau- [ g

E; E;

Jj=1
m
€ .
< Z Zj| — |, by construction
I’I’LZj

This proves the statement f fudu—e< f gudu.
U U



3.2. THE LEAST CORE DECREASING MAJORANT 61

To complete the proof, let £ € A. If u(E) > u(B,,) then
[ - f stfdu ffdu<ffdu
E : \B] 1

If u(E) < u(B,,), then there exists k € {1,...,m} such that u(By_;) < u(E) < u(By;) and we have
two cases.
If W(E) < u(Cy) , we compute

Efgdu=2[]f,d kz;ffdy:deysEffdﬂ.

Bj\Bj-1

If uW(E) > u(Cy) , then Cy # a; so Cy and g; were chosen as in the case @, = u(By) above.

Thus,
fgdﬂ ngjdﬂ+fgkdﬂ<ffdﬂ+fgkdﬂ<ffdﬂ+ fgkdﬂ

E E\Cy E\Cy Bi\Cy
=ffdﬂ+ [ rau- ffdﬂ<ffd/t
Ci\By-1

Therefore fE gdu < fE f du and completes the proof.

We now prove the main result
Proof of Theorem 3.2.5: If g satisfies fE gdu < fE fdufor all E € A then

fgud,usfgﬁd,u sinceu <u
U U

< f fudu since u is core decreasing.
U

Supremum over all g yields the inequality

fﬁ?dstup{fgud,u:g<ﬂf}.
U U

We now prove the converse. Since there exist a sequence A, € A increasing to U and a
sequence of simple X-measurable functions u, T u, then the sequence v, = u, x4, also increases
to u. Therefore we can assume that u, is simple and vanishes outside A,. If for some n € N
the integral fU fu, du = co, then by Lemma 3.2.7 there exists a function g such that fE gndu <

[, f du for all E € A and
n:fungd,usfugd,u.
U U

Sup{Lgudu:g<ﬂf}=w=Lﬁdﬂ-

Letn — oo to get
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If fU u, f du is finite for all n € N, fix € > 0. By Lemma 3.2.7, for each n there exists g,
such that fE gndu < fE fduforall E € Aand

ffﬁ,}d,u<e+fgnu,,d,u§e+fgnud,u§6+sup{fgud,u:g<ﬂf}.
U U U u

Let n — oo and then € — 0 to conclude.

fﬂ?d,ugsup{fgud,u:g<ﬂf},
U U

and complete the proof.

3.3 The greatest core decreasing minorant

We define an analogous projection reversing the order relation ‘<’.

Definition 3.3.1 Let f € L(X). We say that f is a greatest core decreasing minorant of f if
f e LYA), f < f, and for every g € L\(A) satisfying g < |f| u-a.e, we have g < f u-a.e.

Just as in the previous chapter, if a greatest core decreasing minorant exists, then it must be
unique p-almost everywhere. The next lemma shows that a greatest core decreasing minorant
always exists.

Lemma 3.3.2 Every X-measurable function f has a greatest core decreasing minorant, de-
noted f, which is unique up to u almost everywhere equality.

Proof: Suppose that |g| < C for some C < co and let A, T U with A, € A. Let

a, = sup fhd,u cheLY(A)and h < |g]

An

The constant function O is core decreasing, so @, > 0. Since |g| is bounded above, all the
integrals are bounded by Cu(A,), hence @, < Cu(A,) < co.

If @, = 0, define h, = 0. Otherwise, choose h, € L"(A) such that i, < |g| and @, — + <
[ hydu.
Ap

Set fi = hy and f, = max{f,-1, h,}. Since the maximum of two core decreasing functions

is core decreasing, each f, is a core decreasing minorant of |g|. Also by construction f,_; < f,
and @, — 1 < fAn £ du.

Let h = sup, fz, Which is clearly a core decreasing minorant of |g| and f, T h. To show
that it is a greatest core decreasing minorant, let w be another core decreasing minorant of |g|,
then so is max{w, h}, thus

1 1
oo>fhdy2fhnd,u>an——meax{w,h}d,u——,
n n

An An Aﬂ
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therefore |
LS f (max{w, h} — ) du > 0,
n
An

let n — oo to get h = max{w, h} almost everywhere, so 4 > w almost everywhere. This shows
that £ is a greatest core decreasing minorant.

If |g| is not bounded above, define ¢, = min(n, |g])ya,. Let ¢, be a greatest core decreasing
minorant of ¢,.

Notice that since ,,_; is a core decreasing minorant of ¢, then we must have that y,,_; < i,
thus ¥, is an increasing sequence of core decreasing minorants of |g|. Define ¥ = sup, ¢,
which is a core decreasing minorant of |g|.

In order to show that ¢ is a greatest core decreasing minorant, let w be a core decreas-
ing minorant, then min{n, w}y,, is a core decreasing minorant of min{n, [g|}xs, = ¢,, thus
min{n, w} < ¢,, hence taking limits we get w < h. This shows existence of the greatest core
decreasing minorant of g and completes the proof.

|

Notice that, unlike the corresponding result for the least core decreasing majorant, the

condition f,, T f does not imply f,, T f. This is exhibited in the following example.

Example 3.3.3 Consider the core from Example 2.1.9, let f = 1 and f, = xra\p 100 Then

f=1but f, =0 forall n € N. To see the last equality, notice that f,(x) = 0 for all x in B1[0]
and since Z" is core decreasing, then f, is identically zero. o

The next theorem is an analog of Theorem 3.2.3. The proof is analogous so we omit the
details.

Theorem 3.3.4 Let (U, Z, u) be a o-finite measure space with a separable ordered core ‘A and
f € L(X), then
S(u) = essinf,c, |f(D] = ess infreu, [FO)]

Example 3.3.5 Let U = X be a metric measure space with distance function d, a € X be any
element, u be any Borel measure and the core

A={0}U{(B,, : r> 0}

where B,, = {x € X : d(a,x) < r}. Then

g(x) = ess inf,, {Ig(t)l ‘te Ba,p%},
where |x|, = d(a, x).

The same function shown in Example 3.2.4 shows that the formula provided in Theorem
3.3.4 need not hold for non-separable ordered cores.

We finish this section with a functional description of the least core decreasing majorant.
The fact that the greatest core decreasing minorant is not well behaved with increasing se-
quences forces us to adjust the argument and not use simple functions.

We need a technical lemma first, which will be the key to the ‘pushing mass’ argument
done to the original function.
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Lemma 3.3.6 Let u be a nonnegative measurable function,a >b >0, A = {s € U : u(s) > a}
and B = {s € U : u(s) > b} such that u(B \ A) > 0. Then for C € M such that C C B and
u(C \ A) > 0, the set

{seC\A:b<u(s)<a}

has positive u-measure.

Proof: Notice that since u is core decreasing, A and B belong to M. Suppose that the
statement does not hold, then there exists some C € M such that u(C \ A) > 0, C C B and
u(s) > a or u(s) < b for y-almost all s € C \ A.

Notice that on C \ A we have b < u(s) < u(s), therefore we may assume that u(s) > a.
Define the function

h = uxw\c\w) + axc\a)-

By construction A(s) > u(s) for all s € C \ A, which is a set of positive measure. To arrive at a
contradiction it suffices to show that /4 is a core decreasing minorant of u.

It was already shown that 4 < u y-a.e. on C \ A, thus 4 is a minorant of u. To show that it is
core decreasing, notice that we have to check the two cases s€ A,t€e C\Aand s € C \ A and
t ¢ C. In the first case:

h(s) = u(s) > a = h(1),

and in the second case:
h(s) = a > u(t) = h(t).

Therefore 4 is a core decreasing minorant of u, contradicting the fact that u is the greatest core
decreasing minorant of u and finishing the proof.

We now ‘push the mass to the left’ of f to an appropriate function g to achieve the desired
infimum.

Lemma 3.3.7 Let u and f be nonnegative measurable functions such that fU fudu < oo. Then,
for any € > 0, there exists a measurable nonnegative function g such that fE gdu > fE f du for

any E € A and
fgud,u—e<ffgdu.
U U

Proof: Fix € > 0. Since we assume that fU fudu < oo, then there exists @ > 1 such that

o [ udu< [ pudus
U U 2

A, = {s eU:u(s) > a"“}, for each n € Z.

Define the sequence {A, },cz as

Since u is core decreasing, the sets A, € M. Define the sets {J,},ezuizco) DY

Joo:ﬂA,,, J,=A,\A,,, foreachneZ, and J_,=U)\ U .

nez nezZU{oo}
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Notice that the sets {J,,},ezu(+0) are disjoint and cover the whole space U. Also, Lemma 2.2.2
shows that J,, € M and J_, is empty or its complement also belongs in M. To see that the
complement of J_., is empty or has finite measure, suppose that J_,, # 0, then there exists

A € Aand x € U such that
x ¢ U J, _UA"’

nezZ\U{oo nez

by the total ordering or M it follows that A,, C A for all n € Z. Therefore

u( | ) =) <o

nezZU{oo}

It will be useful to consider the presentation
Jw:{seU:g(s):OO}, J_w:{seU:g(s):()}, and

J, = {s eU:a" <u(s)< a/"“}, for each n € Z.

Define the functions f, = fyx;, for each n € Z U {+oo}. Our goal is to build nonnegative
functions g, satisfying

fgn du > fﬁd,u, forall E€ A andeachn € Z U {+o0}, (3.1
E E
fgnu du < a/f faudu, foreachn € Z U {co}, and 3.2)

f —ooltdu < = 3.3)
U 2

Since f = },czu(xe0) fn then the function g = ’,c7200) & Clearly satisfies fE gdu > fE f du for

all E € A and
ffnud,u+——affud,u+—<ffud,u+e

fgudﬂ = Z fgnudu <a
nezZU{xoo} nEZU
For any n € Z U {oo} such that f, = 0 we define g, = 0 and it clearly satisfies inequalities (3.1)
and (3.2). For the other cases, since fU Sfudu < oo, then we must have that f,, = 0.
Fix n € Z such that that f, # 0 p-almost everywhere. This means that 0 < u(J,) =

H(A,) — u(Ay1). Since
°<>>ffzdﬂ2ffzd/~t2&”ffdu,
U Jn J)l

By = inf {W(E) : w(Aps1) < (E),E € M, and E C A,} .

There are two cases, either 8, > u(A,;1) or 8, = u(A,;1). In the first case, pick C, € M such
that u(C,) = B,. An application of Lemma 3.3.6 witha = "', b= a" B = A,, A = A,;; and
C = C, shows that the set

thus [, fdu < co.
Let

H, = {s €C,\ A @ <u(s) <u(s) < a’”‘}
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has positive y-measure. Define

ff (H)

0, if W(E) < ﬂ(An+1)
g n d/J f” d,u ’
fJn fdu, otherwise E

therefore g, satisfies the inequality (3.1). Also

[, fau 1
fg,,ud,u: - udu < o"* ffdu:afa"fduﬁafﬁquu,
U u(Hy,) Ju, I T In

proving that g, satisfies the inequality (3.2).

The remaining case is when B8, = u(A,.1). We prove by induction that there exists a
sequence of sets {H,,,,}men+ Of positive y-measure and a sequence {C,,}men in M such that
Cum C Ay, (Cyy ) 1s strictly decreasing to p(A,+1), and

For each E € A,

H,,C {s € Crumt1 \ Com : @ < u(s) < u(s) < a"“}

We show the induction step first. Suppose that the sequences are constructed up to an integer
M, > 0. Apply Lemma 3.3.6 witha = "', b = a" B=A,, A = A,;; and C = C,y,, to get
that the set

Ky, = {s € Cumy \ Ans1 1 @" < u(s) <u(s) < a/””}

has positive ,u measure. Since 8, = p(A,41), there exists a set C,, p,+1 € M such that u(C a1 \
K Mo

A < . Another application of Lemma 3.3.6 witha = "', b=a"B=A,, A = A,
and C = Cn,M0+1 provides a set

Kitgse1 = {5 € (Coatyer \ Aun) 1 @" < () < u(s) < '

of positive u-measure. Notice that Ky € Ky, but u(Kp+1) < p(Ky,), therefore the differ-
ence has positive measure. Set H), y,+1 = Kpuy+1 \ K, to prove the induction step. The base
case follows the same argument, letting M, = 0 and C,,y = A,.

Define the function

(o)

a= ([ s

=2
m Cn,rrifz\cn,mfl

Let E € A, if u(E) < B,, then both [ g, du and [, f, du vanish. If u(E) > u(A,), then

ngndu=m2(C f fa’u)=fjnfdu:fEﬁ,du.

nm-2 \Cmm— 1
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In the case that u(E) € (B,, u(A,)), there exists some Mg € N such that u(E) € (u(Cppp+1)s #(Crnrp)],
hence

[e9)

ngnduz fgndu: Z ( f fdu) = f fduszd,u

=C,
CrMp+1 M=ERME €y o \Conet Comp \Ans1 I AV

= fEf,,d,u.

Therefore g, satisfies the inequality (3.1). Also

© anmud,u i .
Lgnud”:;( f fdﬂ)mﬁz< f fdu)a™!

=2
Cn,m—Z\Cn,m—l m Cn.m—Z\Cn,m—l

:a/nﬂffd/l:afa”fduSa/ffng.
Jn In In

proving that g, satisfies the inequality (3.2).

All that remains is defining the function g_.,, whenever the function fy, _ is not u-almost
everywhere zero. Let Uy = U,zJ,. Since u(J_o) > 0, there exists some E € ‘A such that
U, C E, therefore u(Uj) < oo, thus Uy € M. If there exists a set of positive measure W such
that u(s) = O for all s € W and w(W N E) > 0O for every E € A satisfying u(E) > u(Uy) then we
define

8-c0o = Cxw.

In this case fU g-udu = 0, clearly satisfying the inequality (3.3). For any E € A, if u(E) <

u(Uyp) then
0= f S £ f 8-
E E
0°=fg-oodu2ff—oodu,
E E

thus g_., satisfies the inequality (3.1).
If such set W does not exist, we will find a disjoint sequence of sets of positive measure
{Wi}lren+, such that

and if u(E) > u(Uy), then

W, C {s eU: u(s) < ez-<’<+‘>}, (3.4)

also satisfying that for any E € A such that u(E) > u(U,), then infinitely many sets in the
sequence are subsets of E. The desired function will be

Qe = C X W
)

Since
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8- satisfies the inequality (3.3). For any E € A, if u(E) < u(Uy) then

0=fEf—ooSng_oo
00 = Z lszg_wduszf_wdu,

Wi CE

and if u(E) > u(Uy), then

thus g_, satisfies inequality (3.1). We now show that either the set W exists or we build the
sequence {W;}.

Since A_, increases to U, whenever n T oo, we have that u(A_,) T u(Up). There are two
possibilities, either u(A_,) < u(Uy) for all n € N or there exists some N, such that u(A_y,) =
u(Uy).

In the first case, for any j € N the set

G, = {s € Uy :u(s) < 62_(j+1)} ,

has positive u-measure. Otherwise, the function & = €2~U*Vy, " is a core decreasing minorant
of u, thus & < u. Hence, for any n large enough such that ™ < €27Y*! we would have
H(A_,) = p(Uy) arriving at a contradiction. Notice that {G;} is a decreasing sequence, let
W = NG;. If u(W) > 0, then there is nothing left to prove. If u(W) = 0, then we may choose
a subsequence {G},}; such that the sequence of measures {(G;,)} is strictly decreasing. Then
the sequence Wy, = G, \ G;,,, is disjoint and satisfies formula (3.4).

It remains to show that the set W or the sequence {W,} exist whenever there is a positive
integer ko such that u(A_,) = u(Up), which implies that @™ < u(s) < u(s) for almost every
s € Uy. Let

Bow = Inf{u(E) : E € Mand u(E) > u(Uy)} .

Once more, we consider the two possibilities; u(Uy) < B-c or if u(Up) = f-w.

In the first case, let A_, € M satisfy u(A_-~) = B-». Pick ry large enough, such that
€27 < q % For any j > ry, apply Lemma 3.3.6 witha = €27/, b = 0, A = Uy, B = U and
C = A_,, to get that the set

G, = {s € (A \ Up) : u(s) < fz_j}

have positive y-measure. Let W = N, G ;. If u(W) > 0 there is nothing to prove, so we drop to
a subsequence with strictly decreasing measures and build the sequence {W;} like it was done
before. Note that for any E € A satisfying u(E) > u(Uy), then u(A_) < u(E), so every set in
the sequence W; is contained in E.

We are left with the final case, when u(Uy) = B-.. Choose a sequence {E;} € M such
that u(E;) | B, and ry large enough so €27 < a~%. For any j > ry, apply Lemma 3.3.6 with
a=€27,b=0,A=Uy B=U and C = E; to get that the set

G ={se(E;\Up) : u(s) <27/}

has positive u-measure. Since u(G;) < u(E; \ Uyp), we get u(G;) | 0. Once more we can drop
to a subsequence and repeat the previous process to obtain disjoint sets of positive measure W;
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satisfying formula (3.4) such that W; C E;. Therefore, for any E such u(E) > u(U,), there are
infinitely many of such sets W; contained in E. This finishes the proof.

We now prove the main result.

Theorem 3.3.8 For X-measurable nonnegative functions f and u, then

ffgd,u:inf{fgud,u:fgd,qufd,uforallEeﬂ}
U U E E

Proof: If g satisfies fE gdu > fE fdu for all E € A then

fgud,quggd,usinceng
U U

> f Sfudu since u is core decreasing.
U

If g satisfies ngd,u > fEfd,u for all E € A then

fgud,quggd,usinceng
U U

> f Sfudu since u is core decreasing.
U

Taking the infimum over all g yields the inequality

ffgd,usinf{fgud,u:fgd,qufd,uforallEe&’(}.
U U E E

If o = fU Sfudu, then equality clearly follows. So we may suppose that fU fudy < o0, and in
this case, equality follows from Lemma 3.3.7.

3.4 The level function

The least core decreasing majorant explored in Section 3.2 is optimal in the sense of the partial
order ‘<’ of pointwise almost everywhere inequality. We explore in this section another least
core decreasing majorant but in the sense of the preorder relation ‘<#’.

We introduce this construction via a functional description acting on the collection of core
decreasing functions.

Definition 3.4.1 Let f € L(X). We say f° € L*(A) is a level function of f if for all g € L*(A),

ffogdu:sup{fvmdﬂ:heLi(ﬂ)andHﬂg}.
U U

We explore the relationship between a level function and the preorder relation ‘<4’



70 CHAPTER 3. MONOTONE ENVELOPES

Proposition 3.4.2 Let f € L(X) and f° be a level function of f, then

(a) 1fl <a f°
(b) If f € L*(A), then f is a level function of f.
(c) Ifv € LY(A) satisfies |f| <a v, then f° <z V.

(d) If f € L} then f° is unique.

Proof: Letting g = y4 for a core set A € A yields the inequality fA fodu> fA |f] du, therefore
|f] <a f° and proves (a).

To prove (b) notice that if 7 <z g, then Proposition 3.1.4 yields fU fhdu < fU fgdu.
Taking supremum yields (b).

To prove (c) notice that if |f| <4 v, then if & € LY(A), Proposition 3.1.4 yields fU |flhdu <
fU vh du. Taking supremum among 4 yields

ff"gdu:sup{f|f|hd,u:h€Ll(ﬂ)andh<y;g}
U U
3sup{fvhdﬂ:heﬁ(ﬂ)andh <5qg}=fvgd,u.
U U

Thus f° <4 v.
To prove statement (d), notice that for any A € A

ffod,u:sup{f|f|hd,u:heLl(ﬂ)andh<5qXA}
A U

< sup {”f”L;j" f hdp : h € LNA) and h <z )(A} < A llzpu(A) < eo.
U

Therefore any level function of f belongs to Lioc, 4~ Statement (d) follows from the fact that a

level function is o(A)-measurable, so if f° and v are level functions of f we have f° <4 v and
v <4 f° which, by Proposition 3.1.3, forces equality u-almost everywhere.
|

The previous proposition shows that the level function is an optimal core decreasing ma-
jorant in the sense of the preorder ‘<z’. It is worth noting, that for unbounded functions
uniqueness need not hold, however, the canonical choice of level function explored below is
the unique choice well behaved with increasing sequences of functions. This is done using the
level function from Definition 1.6.2 and the transition maps from Section 2.4.1.

Lemma 3.4.3 There exists a unique map f — f° from L(X) to L\(A) such that f° is a level
function of f and if 0 < f, T f then f; T f°.

Proof: Let f € L*(X), then Rf € L*(B). Its level function (see Definition 1.6.2) is a non-
increasing function (Rf)’. Define f° := Q((Rf)’). Since (Rf) € LB). f* € LYA), by
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item (4) in Theorem 2.4.8. Fix g € L'(A), item (5) in Theorem 2.4.8 shows that Rg € L' (B).
Proposition 1.6.3 and items (3) and (6) in Theorem 2.4.8 yields

ff”gd,u = f(Rf)oRgd/l = sup f(Rf)wd/l € LY(B) and ¢ <g Rg
U

[0,00) 0,00)

=w4j}@wwuweﬁwmmwﬁﬁ%
U

= sup{ffhdu chelY(A)and h <4 g}.

U

This shows that f° is indeed a level function of f. If f € L(X), then set f° = |f|°. Clearly,
f¢ 1s a level function of f.

If0 < f, T f, then item (3) in Proposition 2.4.6 shows that Rf,, T Rf. By Proposition
1.6.3 we get (Rf,,)° T (Rf)°. An application of item 3 in Proposition 2.4.7 yields Q((R fn)”) )

Q((R f )o), this shows that f” T f“ and proves the existence of the map f + f° with the required
properties.

To show uniqueness, suppose f > f* is another map from L(X) — L!(8B) mapping to a
level function of f such that for any 0 < f, T f it follows that f; T f*. For any f € L*(Z) we
consider the sequence f, = min(n, f). Since f, € L, f; = f; by item (d) in Proposition 3.4.2.
It follows that f* = f° u-almost everywhere. This shows uniqueness for f € L*(X).

To complete the proof fix f € L(X). It is clear from Definition 3.4.1 that f* is a level
function of |f|. Define g, = min(n, |f]). Since 0 < g, T |f], it follows that g; T f*, g7 T f° and
gn = f? p-a.e. for each n € N. Thus f* = f? and completes the proof.

|

The previous lemma is summarized in the following picture, we have the formula ¢ =
QO((Rf)?), where the level function on Rf is with respect to the measure A induced by the
ordered core A and the maps R,Q are the transition maps from Section 2.4.1.

R o
LE) —L'E) —=L"(B8) ——=LY(B) —Q——> LY(A)

f /1 RIfl ———= RIf)’ —— QORIf1)°

With the consistent choice for level function provided by Lemma 3.4.3, for each f € L(X),
we will denote

£ = O(RIf1°),

as the level function of f.



Chapter 4

Spaces defined by core decreasing
functions

In this chapter, we introduce function spaces defined by the collection of core decreasing func-
tions and study their interpolation properties. Throughout this chapter, we assume that (U, Z, )
is a o-finite measure space with a full ordered core A and its enriched core M. Let X be a
Banach function space over U such that both X and X’ contain all characteristic functions of
sets of finite measure.

4.1 Down spaces and their duals

Our first function space is the down space of X, it is introduced as a restricted associate space
over X.

Definition 4.1.1 For f € L(X), let

I fllxy = sup {f Iflgdu : g € X' N L*A) and ||gllx < 1}.
U

The space X|={f € L(X) : ||fllx; < oo} is called the down space of X.

Since we are defining the down space by restricting the supremum, it is immediate from
the definition that ||f]lx; < ||fllx~ < |Ifllx. Therefore the down space X is a superspace of X.
However, the functions have to be integrable over core sets, as the next result shows.

Proposition 4.1.2 Ler f € X|, then f € L}, 5.

Proof: Fix f € X | and suppose that f ¢ Liocﬁ seeking a contradiction. Then, there exists

A € A such that fA |f] du = oo. Since u(A) < oo, then ||yallxr < 0. Set g = m)m and note
that it is core decreasing satisfying ||g||x» = 1. Then

1l > fU flgdu = fA f] du = co.

This contradicts the hypothesis and completes the proof.

72
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The next theorem provides two fundamental examples of down spaces, which will be the
key spaces in the interpolation theory at the end of this chapter. It also shows that the transition
maps from Section 2.4.1 are well-behaved in those spaces.

Theorem 4.1.3 Let f € L(X) and ¢ € L(B). Then

(a) Llil: L,11 with identical norms.

(6) Ifllegy = SUPrea gy Jy A1 it = SUPyen i Sy 1F1 it
(c) If f € Ly then Rf € L] and |Rf|lisy < || fllzs.
(d) Ifyr € L] then Qu € L] and || Qllzgy < 1415

Proof: Since constant functions are core decreasing, the constant function g = 1 satisfies
lligllze = 1. By Definition 4.1.1, we get ”f”LL = fU |flgdu < ”f”L},L proving (a).
To prove (b), fix M € M and let g = mXM' Then g € LY(A), llgll, = 1 and

1
—_— du = du < oo,
#(M)fum y fUmg 100 < 1l

Taking the supremum over M € M shows that sup,, m fM |l du < 1|fllzg,- To prove the
reverse inequality, suppose that g = >,_, axxm, for some a; > 0 and M; € M such that
IIgIILA < 1. Thatis, };_, axu(My) < 1. Then,

j;|f|gdﬂ:iakfm|f| d,u: ” a/k,U(Mk)( (;meklfl dll)

k=1

E‘ZEA ﬂ(M) f fld Zakﬂ(Mk))

< sup e [ 1
MeM ,Ll(M )
If g € LY(A) and ||g| L < 1, then by Lemma 2.2.5 there exists a sequence g, T g of the form
discussed above, therefore the monotone convergence theorem preserves this bound. Thus
11l < SUPyenq m fM || du, which proves equality.
Clearly sup,. 4 l%A) fA |1 fl,u < SUP e m m fM |f] du. Therefore, to prove (b) it suffices to
show that the reverse inequality holds.

Fix M € M, by item (b) in Lemma 2.2.2, there exists a sequence {A;} € A suchthat A, T M
orA; | M. If A, T M, then

1 1
du.
e ARLCE (M)flﬂ »

The monotone convergence theorem yields

1
_ d d du = du.
i‘iﬁu(A)f'f' # = sup <Ak)f'f' # = sup (M)f'f' "= u(M)fM'f' H
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If A, | M, there are two cases. If fM |f] du = oo, then @ fAk |f] du = oo, so both suprema are
infinite. In the other case fM |fl du < oo. Fix € > 0. If fAk |1 du = oo for some Ay, then by both
suprema are infinite, therefore we may assume that the sequence of functions {@ |f1xa) 1s
is bounded above by the integrable function m | f1 x4,. Therefore the dominated convergence
theorem applies and since @ Iflxa, — @ |1 xm n-a.e we get that

1 1
_ du — du,
u(M)fM'f' Hoes Ty J, e

for large enough k. Therefore (}W) f |fl du — € < supycq #(IA) f |f] du. Letting € — 0 and

taking supremum over M € M yields sup,,. o0 M) f SUP4c 7 ﬂ( D f and completes the proof
of (b).

To prove (c), fix x > 0 and Theorem 2.4.3 allows us to pick M € M such that u(M) =
A([0, x]). Then by Proposition 2.4.6 we get

d 0
ﬂ([O f Rfl d A([O — 7 f f1 dit < Dl

[0 x] [0,x]

Taking supremum over all x > 0 completes the proof of (c).
Finally, let M € M. By Proposition 2.4.7 we get

1 1 1
du < ——— dy= ——— d .
w12 s s [ owan= sy [ W<

[0,u(M)]

Taking supremum over all M € M proves (d).

Statement (b) in the previous theorem shows that L;’| does not change when considering
the ordered core A or its enriched core M. The next example shows that a change in ordered
cores can change the produced down space. It also exhibits a function that is not in L;’ but
belongs to its down space.

Example 4.1.4 Let U = [0, 00) with the Lebesgue measure and consider the ordered cores
A = {0} U{[0,x] : x>0} and A, = {0} U {[0,n] : n € N}. Let D be the down space of L™
with respect to the core A, and D, be the one with respect to ‘A,. In virtue of Theorem 4.1.3
(b) it is clear that Dy C D,. We will show that equality does not hold.

Consider the function

f()C) = Z k_22k+1)((2—(k+1)’2—k)(x>
k=1

The unbounded function f belongs to D, since

1 M o -
- dx < dx= )Y k?=n%/6.
nfof(x)x fof(x)x ; o
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However, the averages are no longer uniformly bounded over intervals [0, x|, to see this note
that if x = 27/ for some j € N, then

2= ) j

. - , 2
2/ f(t)dtzszk‘zzsz t‘2dt:.—1.

0 k:[ ]+1 .] +
Letting j — oo shows that ||f||p, = oo.
We define two more function spaces based on the constructions introduced in Chapter 3.

Definition 4.1.5 Let

X' ={feLZ):f €X} and X={fecLZ):feX|.

Also set are ||fllxo = ||£Ilx and || fllz = I|fllx.

It will be shown that the functions f +— ||f]lx- and f + || f|lz are norms. Note that the lattice
property of X ensures that IIﬁI x = |lfllx, therefore Xisa subspace of X.

The relationship with the down spaces is given in the next theorem. It shows that X | and
X are related via the associate space construction. For the space X?, it shows that (X”)? C X|.
We will show that with additional conditions on the Banach function space, we have equality.

Theorem 4.1.6 The set X|, with its corresponding norm, is a Banach function space with the
Fatou property. If f € X", then ||fllx, < || fllx- and, if f € X", then || fllx; < [Ifllx.

The map g — ¢ is sublinear. The set X with its corresponding norm is a Banach function
space. It has the Fatou property if X does. Moreover, X |= (X' and (X1) = X’ with identical
norms.

The spaces I::{" and L7 are equal with identical norms.

If X is a u.ri space then X|= (X"")° with identical norms. If X also has the Fatou property,
then X|= X°.

Proof: Let f,{f,} € L(E), g € L*(A) satistying ||glly < 1. Then [, |flgdu > 0. If f =0,
then [ |flgdu = 0. If @ > O then [, laflgdu = a [,|flgdu. By the triangle inequality of

the absolute value; fU Ifi + olgdu < fU |fil g du + fU |f2l gdp. If [ fi] < |f2l, then fU Ifilgdu <

fU |fol g du. If |f,] T |f], then by the monotone convergence theorem fU |fnlgdu T fU |flgdu.
Taking supremum over all such functions g shows that the map f +— [|fllx, is a function
semi-norm with the Fatou property. Therefore, to show that X | is a Banach function space
with the Fatou property, it suffices to show that ||f|[x; = O implies f = 0 u-a.e. To see this,
let {A,} € A satisfy A, T X. Since u(A,) < oo, then ||y4,|lx» < oo, making the core decreasing

function g = ;lX’XA" satisfy ||g|ly' = 1. Thus

[ A,
: f fld
1.
ol Jo

It follows that fy4, = 0 p-a.e. Letting n — oo shows that f is zero u-a.e.

0 =1fllxs =
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Since the supremum on Definition 4.1.1 is taken over a smaller collection of functions than
X’ it is immediate that ||f]lx; < [|fllx~. If f* € X", thenif g € L'(A), it follows from Definition
3.4.1 that fU flgdu > fu |fl g du. It follows that || f|lx; < Il fllxy < I1fllx-

We now show that the map g +— g is sublinear. Let g, {g,} € L(X) and @ > 0. Clearly ag is
a core decreasing majorant of |ag|, therefore ag < ag. To show equality, let A € A, then using
Theorem 3.2.5 we get

| @ f@XAd#:SUP{faghdﬂih<ﬂXA}:asup{fghdllih<ﬂ)(,4}
A U U U
af§XAdu=fa§dﬂ-

U A

Since the above equality holds for all core sets and ag < ag, then Lemma 2.3.5 shows that the
equality ag = ag holds.

To show that it is subadditive, if f = g + h, then |f] < [g] + |A| < g + h which is core
decreasing, so f <g+ h. Thus the map is sublinear. If |f] < g, then f < g. Hence, 1t is
immediate that g — ||g|l5 is a function semi-norm. Since |g| < g then ||g|lz = O implies |g| =
so it is a function norm.

To show completeness, it will be shown that X satisfies the Riesz-Fischer property. Suppose
that 0 < g, € X satisfy 3= [lg,llz < co. Let G = Y%, g, and observe that Y'°°, g, is a core
decreasing majorant of G and hence it is a majorant of G . By Proposition 1.3.2, X has the
Riesz-Fischer property, so

16l = 1G1 < | 3 & < D@l = 3 leally < o
n=1 X n=1 n=1

Hence, X is a Banach function space. Finally, if X has the Fatou property, and 0 < g, T g, then
8 18,50

gnllz = llgnllx T Ilgllx = ligllz-

This shows that X also has the Fatou property.
We now show that ||f]|x; = ||f||@),. Let g € LY(A) such that ||g|ly» < 1. Since g is core
decreasing, then'g = g, thus ||gllz = lIgllxy = ligllxy < 1, therefore

f flgdu < sup{ f f1h il < 1} = Il
U U

Taking the supremum over all such g, yields ||f|lx; < ||f ||(3;,),. Conversely, if ||gllz < 1, then

f flgdu < f IfIEdﬂésup{ f |f|h3||h||X'SlandhELl(ﬂ)}:”f”Xl-
U U U

Taking the supremum over all g yields || fll %
of norms. . _ _

If follows that (X|)" = (X”)”, but X” has the Fatou property. Hence (X|)" = X’ with identical
norms.

y < < |Ifllx, and proves that X|= (X )" with equality
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Since g| < g, llglly < Igllzy = ||g||L~50. But the constant function ||g||. is a core decreasing
majorant of |g|, hence g < ||gllzy and application of the L7 norm yields ||gl| & < llgllz and
proves equality.

To prove that we have equality if X is a u.r.i space, first suppose that f,g € L*(X) are
bounded and supported on some A € A. Then by Proposition 2.4.6 we have that Rf, Rg are
nonnegative, bounded, and supported on [0, u(A)]. By Proposition 1.6.4 there exist averaging
operators Jy, J, such that J,Rf = (Rf)° and J,Rg = (Rg)° with (Rf)’, (Rg)’ also supported on
[0, u(A)]. Then using Theorem 2.4.8 we get

fU fogdu < fU o5 duu = f (RFY'(Rg)’ dA = f (J;RF)(JRg)dA = f (RF)(JJ,Rg) dA
[0,00)

[0,00) [0,00)

- f QI T Rg) dy = f F(QJ(Rg)’) du.
U

U

Notice that X’ is also a u.r.i space and since J; and J, are admissible contractions on L} +LS,
then using Propositions 2.4.6 and 2.4.7 the map Q o Jy o J, o R is an admissible contraction
on L}l + L. Then, using Lemma 1.5.5 we get that [|QJ¢J,Rgllx < ligllx". Since J; preserves
decreasing functions, then QJ(Rg)’ is core decreasing. Thus QJ;J,Rg € LY(A). Hence, if
lIgllx < 1 we get

ffogd,u < sup {f \flgdu: g € X' 0 LY(A) and ||g|ly < 1} = || fllx;-
U U

Fix an arbitrary nonnegative g € X’ such that||g||x < 1. Let g, = min{n, g}xa,. Theng, T g,
and the lattice property of X’ shows that ||g,||x» < 1. The monotone convergence theorem yields

ff”gd,u = Squfogn du < || fllxy-
U n Ju

Taking the supremum over all such g gives ||f’llx» < |[fllx;-

For a general function f € L(X), we may choose a sequence {f,} where f, is supported on
A, and bounded such that f, T |f|. The Fatou property of X"’ and X| together with Lemma
3.4.3 show that

If°llxr = sup lIf7llx < supllfallxy = I1f1lxy-
n n

This shows the equality [|f“|lx» = ||f]lx; when X is a u.r.i space. If in addition, X has the
Fatou property, then

110 = 11/ %lx = 1Fer = 11f1lxy-

This completes the proof.

The relationship among the spaces is summarized in this diagram.
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(X:{/VX[ l /_\ X’
[ |

> z

— Embedding ~—x\ Associate space

~-» Embedding when X has Fatou

—» Embedding when X is u.r.i. 73\ Associate space if X has Fatou.

This example shows that (X"')? may be strictly smaller than X| whenever X is not u.r.i.

Example 4.1.7 Consider the usual ordered core on [0, c0) with the Lebesgue measure, the
function f(f) = ty.«(t) and the weighted Lebesgue space X = L'(w) for the weight t(x) = 173,

so the norm is . . .
|mu=f|ﬂm;m:j‘3m:L
0 r 1t

Therefore ||fllx; < |Ifllx = 1 < oo, thus f € X|. We claim that f°(t) = co. To see this, notice
that f,(t) =ty increases to f. Integration yields

x x Cx(=1 -1
f f(@) dt = f Xanmdt = mm( 5 T)X(l,n)(x)
0 1

2 2
n—=1 n-—=1
TR

Its least concave majorant is the function x — min( ) its derivative almost every-

where is )

-1
£20) = ——x10.n)(1).
n

Since f;) T oo, then f° = oo, therefore f° ¢ X" = X. Therefore f & (X"')°. This example also
shows that for this space the embeddings X C X° and X" C (X"")° both fail.

n

4.2 Interpolation

Since the L spaces are u.r.i, by virtue of Theorem 4.1.6 we will not distinguish between the
spaces L] and (L;)°.
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In this section we study the compatible couple (Llll, (Ly)?). We will show that this couple
of Banach function spaces plays a fundamental role in the theory of down spaces. We will
show that this couple is an exact Calderén-Mityagin couple, therefore we have a complete
description of their interpolation spaces in terms of the K-functional. We will also show that
every down space corresponds to a down space for some u.r.i space.

The first key result in this section is the computation of the K-functional for the couple
(L, (L7)?). We need two lemmas to prove that result. The first lemma deals with the mapping
properties of the transition maps R, Q from Subsection 2.4.1 in terms of compatible couples.

Lemma 4.2.1 The maps R and Q satisfy:

(a) Qis an admissible contraction from (L}, LY|) to (L}, L]).

(b) Q is an admissible contraction from (E ,LY) to (L}l, LY).

(¢) R is an admissible contraction from (L, L) to (L}, LY)).

(d) R is an admissible contraction from (L;lu L) to (L}, LY).

Proof: Statement (a) is exactly item (9) in Proposition 2.4.7 and (d) in Theorem 4.1.3.
For (b), for a fixed ¢ € L1 by virtue of items (2) and (7) in Prop051t10n 2.4.7, we get that
QY| < Oyl < Qw Since Q;b is core decreasing, it follows that Qz,// < Ql/l hence

1Qu117; = 10%11y < I1QW Ly < Wl = I

This inequality, together with item (1) in 2.4.7 prove statement (b).
Statement (c) is exactly item (9) in Proposition 2.4.6 and (c) in Theorem 4.1.3.

For (d), for a fixed f € L}l by virtue of items (2) and (7) in Proposition 2.4.6, we get that
IRfI <R|f] < Rf. Since Rj?is decreasing, it follows that E‘ < Rf, hence

IRAzr = IRFlly < IRFlly < 1A, = 1Al

This inequality, together with item (1) in 2.4.6 prove statement (d).

The next lemma builds a family of optimal decompositions of f € LL + (L)’

Lemma 4.2.2 For 0 < f € L, + (L})’, there is a map Dy = [0,00) — LYA) such that:
0 < De(t) < 1forallt > 0. IffAfd,u = ngd,u, forall A € A, then Dy = D,; and if
f=fi+fowith0< fi € LL and 0 < fo € (L})’, then

ID @) flly < Ifilly  and  1I(1 = Dy(@o)) fllagy < lfellagy,

forty = ||f1||Lg,'
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Proof: For each map ® : M — [0, ) and each x € ®(M) choose an N, € M such that
O(N,) = x. This a priori choice of N, will avoid issues with possible incompatible choices
later.

Fix a nonnegative f € L}l + L7 ] and suppose 0 < f € L}l and 0 < fi € L7 ] such that
f=h+fs

By Proposition 4.1.2 each value fM f du is finite, thus we can set O(M) = fM fdu and let
N,, for x € ®(M), be those determined above. By Theorem 2.2.2, M is closed under countable
unions and intersections, showing that @(M) = { fM |fldu : M € M} is a closed subset of
[0, o) containing 0. For each y > 0, set

a, = sup[0,y] NO(M) and b, = inf[y, c0) N O(M),

where inf @ = co. Then a,, b, € ®(M) and eithera, =y = b, ora, <y <b, < co.
Ifa, <y <b, <oo,set
by -y Y T4y

D¢(y) = + .
f(7) b,y _ ayXNay by _ ayXNI77

Otherwise, set D(y) = xw,, . Evidently, D((y) € L"(A)and 0 < Dy(y) < 1. f0 < g € L+ L]
and fMgdy = fod,u for all M € M, then f and g give rise to the same ©, the same N, and
the same a, and b,. Therefore Dy = D,.

To prove the last statement of the lemma, we let y = ||fi| Ll and, for convenience, write
a = a, and b = b,. First we show that ||Df(7)f||L,', < ||f1||L,51 If D¢(y) = xw,, then

1D ()l = f fdu=a<y=Ifilly,
Nll
Otherwise,

b-vy v—a
DAy = 5= | Faus I | Fdu=y =l

On the way to proving that [|(1 = D(y)) fllezy < Ilfellzzy we show that, for all M € M,

[ siaus [ ponsan (.1
M M

Fix M € M. The definition of ®@(M) ensures that fod,u <aor fod,u > b.
Case l.a<y<b<oo:If [ fdu<a,then

fodquNafduS [ rduso fodu:fWafdmeﬁNbfdu,

because M is totally ordered. Thus,

b— —-a
fﬁ@sffW:—lf fdu+2 f f@=fDMVW
M M b-a MNN, b-a MNN, M

IffodyZb,then
ffdysffdusffdp.
Na Nb M




4.2. INTERPOLATION 81

Since M is totally ordered,

a:ffd,u:f fdu and b:ffd,u:f fdu.
N, MNN, Np MNN,,

Therefore,

b - —-a
[ sawsy=72 | raus? rau= [ Diofdu
M —a Junn, M

b-a MNON,,

Case 2. a <y < b < oo fails: Iffod,u < a, then

fodquNafdﬂ 5o fodM:meNafd#,

because M is totally ordered. Thus,

LfldﬂSLfdﬂ:LmNafdﬂ:LDf(Y)fdﬂ'

If fM fdu > b, then a =y = b so, because M is totally ordered,

[ sawsy= [ rau= | rau= [ Dinsan
M Ny MNN, M

This completes the proof of (4.1).
Using (4.1), we get

[ a-ponrau= [ rau- [ Dnfaus | rau- | fidus [ fodn

for each M € M and it follows that
(T = DN fllegy < Nfeolligy-

With the aid of the previous two lemmas, we proceed to give a formula for the K-functional
of (L, (L7)°). Note that since Ly is u.r.i. and has the Fatou property, (Ly) =Ly {.

Theorem 4.2.3 Let 0 < f € L, + (L")’ and t > 0, then
!
K(f1, L}p (L;)") = K(ORf, 1, L,lp(LZo)o) = K(Rf,1,L),(LY)°) = f(fo)*-
0

Proof: By Proposition 1.5.2 we may restrict ourselves to positive functions. Fix f € L}l +
(L7)° nonnegative and let 0 < f; € Lli and 0 < f, € (L))" such that f = f; + fo. By Lemma
4.2.2, we get

IAill, + Al feollizgy = Dol + AL = D y(0)) fllgyes
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for 1y = || f1ll L Therefore, taking infimum over all decompositions, we get

K(f.t, L, (L)) = inf {If D)l + (A = Dpy)fllagy = ¥ €10,00)) . (42)

For any M € M, using Propositions 2.4.7 and 2.4.6 we have

fQRfd,u:f Rfd/l:ffd,u.
M [0,u(M)] M

Since this holds for all M € M, then by Lemma 4.2.2, we have that Dy = Dggs. Since
Ds(y) € L*(A) for each y > 0, by Propositions 2.4.6 and 2.4.7, it follows that

1Dar (RS, = | DasORfdi= [ RDowRF dt = | Dansrfdi
U U

[0,00)

_ f D) f dp = 1DVl
U

Since the function (1 — Dgr(¥))xm 1s nonnegative and o (A)-measurable, then item (2) in
Theorem 2.4.8 shows that

[ - pawrrorsdu= [ orfdu~ [ Dasstrorsdu= [ au- [ Drnsau
M
M

M M M
- [(a-Dionsde
M
Division by u(M) and taking supremum yields

(1 = Dorr(YDOR fllirgy = 11 = DY) fllzgye-

Therefore, the formula (4.2) shows that K(f, ¢, L #, (L“)”) = K(QRf,t,L ﬂ, (L°°)")
By Lemma 4.2.1 items (a) and (c) together with Proposmon 1.5.2 we get

K(QRf,1,L,,(L7)’) < KRS, 1, L, (LY)’) < K(f, 1, L, (L)),
therefore we have equality throughout. By formula (1.9) we have
K(Rf,1, Ly, (L)) = f ((Rf)’)".

By construction of the level function f = Q((Rf)’) and by item (4) in Theorem 2.4.8 we
have that (Rf)°)" = (Q(Rf)°)" = (f°)" so we get

K(Rf ta T,(L )0)_f(f0 K(f t’ lp(L )())_K(QRf ta #’(L )0)
|

We now compute the K-functional for the couple of associate spaces (E‘ , L), which fol-
lows from the properties of the nonincreasing rearrangement.
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Theorem 4.2.4 Let0 < g € i;ll + L;" and t > 0, then

— — . t
K(QRg, 1, L, L) < K(Rg,t,L}, LY) < K(g,t, L}, L) = f @)
0
And equality throughout holds whenever g € L*(A).

Proof: Fix a nonnegative g € Z;ll +L7. Using items (b) and (d) in Lemma 4.2.1 together
with Proposition 1.5.2 we get

K(QRg,t,[\, L) < K(Rg, 1, L}, LY) < K(g,t, L1, L

> S Hu s = [/ TE R TRV
Whenever g € L*(A) then ORg = g and we have equality throughout. Next we show is that
=5 .
K(g.t,LLLY) = [ (3)". B
Let g = g1 + g With 0 < gy € L} and 0 < go € L. By Theorem 4.1.6 the map
g — g is sublinear, thus g < g; + g.. By Proposition 1.3.9, for each € € (0,1) we have
(g1 + 8)°(s) < (g)*((1 = €)s) + (g=)"(€5). Integration yields

ﬁ@*(s)dssﬁ(ﬁ +g~m)*(s)dssL(ﬁ)*((l—e)s)ds+£(g§)*(es)ds. 4.3)
But

¢ 1 a-or 1 o
f(gl)*((l —€)s)ds = l—f (g1) (8)ds < —f (g1) (s)ds
0 —€ Jo l1—€Joy

1 — 1
= dp = —llgill,
I_Engl H 1_E||81||LH

and . ,
f(éll)*(ES) ds < f geollzy ds = tllgeollLs-
0 0
We may let € — 0in (4.3) to get

!
f@*(s) ds < lgili77 + tligeollzs-
0

Taking the infimum over all such decompositions of g yields the inequality

l —_—~
fo@*(s) ds < K(g.t, L}, LY).

To get the reverse inequality, fix # > 0 and set y = g(¢). Let g, = max(0,g — y). Since
g <g € LY(A), then g, < max(0,g — y). Since the maximum of core decreasing functions is
core decreasing, then max(0, g —y) is a core decreasing majorant of g;, thus g; < max(0,g—y).
If h € L'(A) such that g, < h, then g < h+y € LY (A), sog < h+y. It follows that
max(0, g —y) < h, this shows that max(0, g —y) = g1. Since (g)* is decreasing, (g)* > y on [0, 7]
and (g)* < y on [, 00), we can apply Proposition 1.3.9, to get

00 ! !
lely = [ max0.3-ndu= [ mr0F-y@ds= [ @ = [@ds-o
H U 0 0 0
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Evidently, g = g — g1 = min(g,y) <y, s0 [lg — gilly <y and it follows that

t
g1l + Aligeolly < llgill7 + 2y < f@* ds.
H H 0
We get
[@ s> ker o1
and prove equality.
To finish the proof, notice that g € L*A and using the fact that the K-functional is mono-
tone, together with the bound |g| < g, Lemma 2.4.6, and g = g, we get
!
K(g,t L L) < K(g,t L L) = K(Rg,t L LY) = f (@) = K(g,t L1 L)
0

9 #’ # 9 #9 # b /l’ b #, ﬂ

This completes the proof.

The next theorems show that both (L, (L;’)°) and (L1 , L) are exact Calderén couples.
Theorem 4.2.5 The couple (L!, (Ly)°) is an exact Calderon couple.

Proof: Suppose f,g € L, + (L7)° satisfy K(f,t, L}, (L)) < K(g,t,L,,(L?)°) for all 1 > 0.
To show that (Ll, (L)) 1 1s an exact Calderdén couple we need to find an admlssible contraction
from (L!, (L;")") to itself that sends g to f.

Consider the map & — sgn(g)h, clearly it maps g — sgn(g)g = |g| and it satisfies the
pointwise bound |sgn(g)h| < |h|. It follows that it is an admissible contraction from (L!, (L;")”)
to itself. Similarly the map & +— sgn(f)h is also an admissible contraction and it satisfies
Il = sen(HIfl = f.

Therefore we may assume that the functions f and g are nonnegative. We will build the
desired operator as a composition of three admissible contractions, as shown in the following

diagram.

o) Sene(m) e @) Seue)
R H w
g > Rg > Rf > f

The operator R is given by Lemma 2.4.6 and is shown to be an admissible contraction in
Proposition 4.2.1.
By virtue of Theorem 4.2.3, the inequality

KRS, 1, L}, (L)) < K(Rg, 1, LY, (L))

holds for all > 0, then (3) in Theorem 1.6.11 provides the operator H.

Since f is nonnegative, so is Rf. Let E = {x € [0,00) : Rf(x) > 0} and w(x) =
1/Rf(x)xg(x). For nonnegative functions ¢ € LIIOC’B define W(¥) = fQO(yw), which is clearly
an additive mapping. For each M € M,

f Wy du = f FOWUwW) du = f RfywdA < f wda. 4.4)
M M

[0,u(M)] [0.u(M)]
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Therefore W(y) € LLOC 4> and by Theorem 1.2.4 the map W extends uniquely to a positive linear
mapping defined on LLOC 5 The monotone convergence theorem, together with equation (4.4)
yields ||Wy| L < [l Ll Once more, division by u(M) on equation (4.4) and taking supremum
over M € Myields Wl < ||¢/||(L30)n. Thus, W is an admissible contraction from Li +(LY)
to L, + (L)’

Therefore, the operator W o H o R is the desired from L} + (LY)° to itself taking g — f and
completes the proof.

Theorem 4.2.6 The couple (L~/}l, L) is an exact Calderon couple.

Proof: Suppose f,g € l::ll + L;" satisty K(f, t,ljl,L;") < K(g, t,l:ll,L;(’) forall r > 0. To
show that (L}, L) is an exact Calde6n couple we need to find an admissible contraction from

(L}l, L7) to itself that sends g to f.
Just as the proof of Theorem 4.2.5 we may assume that f and g are nonnegative and we
will build the operator as a composition of admissible contractions, as shown in the following

diagram.

Do My Bonos Aom e Smre My m g
u L —>» L+ Ly —» L +LYy —» L'+ Ly —» L, + L, wt Ly
W 5 R H N _ W,

g L »3 > RZ > Rf Q > f > f

Notice I:Et +Ly is a subspace of Liocﬂ: Since if h = hy + ho, with h; € I:El and h, € Ly,
then for any M € M,

flhl dﬂﬁf|h1|dﬂ+f|hoo| dﬂsflhlld# + p(M)||A| e
M M M M

sfﬂmwmmwm=wmﬁmmwm<m
U "

The maps W, and W, are constructed in the same way as in the proof of [17, Theorem 2.3],
for completeness we repeat the argument. Define the map W, on the one dimensional space

Rg of Lioc 4 by the formula W;(eg) = ag. The map is trivially linear and satisfies W,(h) < h

for each h € Rg. Theorem 4.1.6 shows that & +— 1 is sublinear and it maps L| .z Which is
a Dedekind complete vector lattice, by Proposition 2.3.4. So we may apply Theorem 1.2.6 to
extend W, to a linear map preserving the bound W;(h) < h. At —hit gives —Wh < —h=hso
|Wih| < . Tt follows that _

Wil < 1Bl = Ihllzs

and -
||W1hlliz < IIhIIiE = [lAlly = llAlly = IIhIIZE

Therefore W is an admissible contraction from (l:‘l L/‘j’) to itself that maps g — g.
The operators R and Q are provided by Propositions 2.4.6 and 2.4.7 and are shown to be
admissible contractions in Lemma 4.2.1.
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Since ]76 0(A), Theorem 4.2.4 shows that

K(Rf t,L}l,Lﬂ ) = K(f,t, wL ) < K(g,t,LI}l,Lﬂ) = K(Rg. t,L}l,Ly)

By (4) in Theorem 1.6.11 we have an admissible contraction H mapping Rg to R f

It remains to prove the existence of the operator W,. To define it, con51der 0(s) = f(s)/ f (s)
when f(s) # 0 and 6(s) = 0 otherwise. Then let W,h = 6h and note that W,f = f. Since
|0] < 1, W, is an admissible contraction from (L/‘l LZ") to itself.

Therefore, the operator; W, o Q o H o R o W is an admissible contraction from (L)l L) to
itself mapping g to f and completes the proof.

i

To exploit the previous results we compute the divisibility constants for both compatible

couples.

Lemma 4.2.7 The couple (L}, (Ly)°) has divisibility constant 1.

Proof: Fix f € L1 + (L;)° and let {w;} be nonnegative concave functions satisfying
Z 2 w;(1) < oo and K(f t; #,(L"")O) Z‘;’;l w;(?), for each t > 0. Suppose that f is non-
negative, then Rf > 0 by Lemma 2.4.6. And by Theorem 4.2.3 we get

KRS, t; Ly, (L)) = K(f, 1 L, (L)) < Z w(1),

for each ¢ > 0. By (3) in Theorem 1.6.11, the couple (L}, (L)) has divisibility constant 1.
So, there exist functions ¢; € L} + (L) such that K(¢;, ; L}, (LY)°) < w,(1), for all j and 1,
and 3772, ¢; converges to Rf in L} + (LY)°. Because Rf is nonnegative, we may assume that
@; > 0 for all j, since otherwise we can replace them with i, defined by ¢; = min(|g:|, Rf)

and ¥,,,1 = min(l¢, 1|, Rf — W1 +---+¢,) forn=1,2,....
Since QRf is o(A)-measurable, the set E = {u € U : QRf(u) = 0} is o(A)-measurable,
hence yg is o(A)-measurable, hence by item (11) in Proposition 2.4.6,

- f (ORf)i dp = f (RfRyp du = f fxe,
U U U

therefore {u € U : QRf(u) = 0} is u-almost contained in {u € U : f(u) = 0}.
Set fj = (fQp;)/ORf when QRf is nonzero and f; = 0 otherwise. Then by item (3) in
Proposition 2.4.7 we get

SR
> fi= ZQRfQ(%))(E QRf Z«p, —QRf O(Rf)xe = f (4.5)

J=1

p-a.e. In particular, 0 < f; < f p-a.e for all j. Now fix j. The definition of f; implies that
fOp; = (ORf)f; p-a.e. and we get ORf, Qp; € L*(A) from item (6) in Proposition 2.4.7, so
we may use item (11) of Proposition 2.4.6 and Theorem 2.4.8 to get

(RRQ¢; = R(fQ¢)) = R(QRNf;) = RORfIRf; = (RfIR];.
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Since f — fj 2 0, Rf = Rf; > 0 so Rf; = 0 whenever Rf = 0. Therefore, we may cancel R f
above to get RQy; > Rf;. This inequality, Lemma 4.2.1 and Proposition 1.5.2, give

KRfj,1; Ly, (L)) < K(RQg;, 15 (Ly, (LY)) < K(js 15 Ly, (Ly, (LF)?) < w;(0).

By Theorem 4.2.3, this gives K(fj,1; L! (L;")") < wj(1). This estimate, along with (4.5) and the

b l’l’
completeness of L}l + (LY)?, shows that for each n,

n—1 ) 0
-0 =|| 2.7 <), °°0<Zw I
s Z;ff'ww (D7 D Y7 AR (D),
J= J=n j=n

where we have used the identity ||f;l| LIy = K(f;, l,L}l, (LY)°). The right-hand side above is
the tail of a convergent series, so it goes to zero as n — co. We conclude that 377, f; converges
to fin L, + (LY)".

To drop the nonnegativity assumption on f, construct the f; for |f|, the functions sgn(f)f;
give the required decomposition of f.

Lemma 4.2.8 The couple (L1 L) has divisibility constant 1.

w

Proof: Let0 < g € L1 + L, and w; be nonnegative, concave functions on [0, co) such that
2 wj(l) < co and K(g,1, L1 LY) < 27 wj(?) for all #. Our object is to find g; € L1 + L7
such that K(g;, t, L}l L?) < wj(r) for all r and }72; g; converges to g in L1 + Ly

Define v;(#) = min(w;(?), fo(g) )- Since v; is defined as the minimum of nonnegative
concave functions, it is nonnegative and concave. Also v;(0%) = 0, thus there exists h; € L
such that v;(r) = fot h;. Then, for each ¢ > 0:

| (-g)*:mm( | (‘g“)*,Zw,m)sZmin( | <’g”>*,w,~<r>)=2 [ =Y w0
0 0 =1 =1 0 j=1 V0 =1

Set h = 3772, hj. Since the partial sums >, h; are decreasing and nonnegative, 4 is decreasing
and nonnegative. By the monotone convergence theorem, we have

K(@). 5L, L“)—f<g> <f2h —fh=K<h,r;Ll,L°°>,

for each ¢+ > 0. By Theorem 1.5.8, there exists an admissible contraction T from L! + L* to
itself such that Th = (g)* with Th; € L. Notice that

[ 5= 5 s S

Li+L>® Jj=n+1 Jj=n+1 j=n+1

[ee)

2. M

j=n+1

n

h=>h

=1

L'+L®

The right-hand side is the tail of a convergent series, therefore }_; h; — h in L'+ L*. By
continuity, T( ¥_; ;) — Th = (g)". Let k; = Th;, then by linearity, .72, k; = (g)" with
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convergence in L' + L. Notice that the sequence of partial sums 2i=1 hj is increasing, thus
Z;le Th; 1 (g)" A-ae.
Since g € L*(A), Propositions 2.4.6 and Lemma 2.4.5 yield

(R§)ob=(Rg) =(g),

hence Th = (Rg) o b, where b is the function from Theorem 2.4.3. Recall that b o b(x) = b(x)
and x < b(x) for all x > 0. Since «; is nonincreasing, we have k;(x) > «; o b(x), then

(e8] (o)

0= (RR) o b(x) = (R) o bo b(x) = > k;(x) = > K;0b(x) = > (K;(x) = k; 0 b(x)).
j=1

=1 j=1

Since k;(x) —kjob(x) > 0, we obtain k;(x) —«;ob(x) = 0 and so k; = k;o b for all j. This shows
that x; € L(B), hence ; € L*(8B) and its rearrangement with respect to A is ;. By Proposition
2.4.7, we have Qk; € L*(A) and (Qk;)* = «;.

Set g; = (g/8)Q0k;. Since g < g, we get g; < Ok, and

(&) <(Qk))" = «;.
Thus, for all j and ¢, Theorem 4.2.4 and Proposition 1.5.2 show
!

~ t ¢
K(gjt; L, L) = 0(5)*3foK,-:K(Thj,r;Ll,L“’)sK(h,-,z;Ll,LW):fohjs(nj(t).

Since x = b(x) A — a.e., we get (Rg) o b = Rg. Then, item (3) in Proposition 2.4.7, item (3)
in Theorem 2.4.8 yield

[

D 8= (g@Q( > Kj) = (2/2)0((2)") = ¢/DQ((RZ) o b) = (3/2)ORT = Z.

j=1 j=1

()

u-a.e. This, and the completeness of i;ll + Ll‘f, shows that for each n,

1Xe] < Dlel - ZK(g,’LL,L,L )<Y w0
j=n

ZZ+L"° j=n j=n
The right-hand side is the tail of a convergent series so it goes to zero as n — oo. We conclude
that 37%, g; converges to g in L}, + L.
To drop the nonnegativity assumption on g, repeat the same construction of {g;} for |g|.
Then the functions sgn(g)g; provide the required decomposition of g.

The following theorem summarizes the results

n—1

-8

J=1

Tl g
L,, +Lﬂ

Theorem 4.2.9 Let X, Y, and Z be Banach function spaces of u-measurable functions. Then
1. X € Inty(L, LY) if and only if X is w.r.i.

2. Ye Intl(Llll, (L)) if and only if Y = X? for some u.r.i space X.
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3. Z € Int, (l:‘l, LY) if and only if Z = ifor some u.r.i space X.

Proof: Consider the collection of all triples
(L L) (L L D)y (L L))
as @ runs through all parameters of the K-method. By Proposition 1.5.4; the first entry of each
triple is in Int; (L}, Lff), the second entry is in Int; (L}, L;"l) and the third entry is in Int, (L;l, L>).
Item (1), above, is Theorem 1.5.5 and was proved in [6]. It shows that the collection of first
entries in these triples is exactly the set of u.r.i. spaces over U.
Suppose Y € Int, (L;lu (L7)?); by Theorem 4.2.5 and Lemma 4.2.7, there exists a parameter

of the K-method @ such that Y = (L}t, (L))o with identical norms. For any f € L}l + (L),
Theorem 4.2.3 shows that K(f, t; L}l, (L)) = K(f*. 13 L', L*), therefore

‘W S
— 4 —
g arm = 15 et = 100Gy 1oy

Hence, Y = X° where X is the u.r.i space (L!, L;O)q), this proves item (2).

Similarly, if Y € Int; (L], L;"), by Theorem 4.2.6 and Lemma 4.2.8, there exists a parameter
of the K-method @ such that Y = (L)l, L) with identical norms. For any g € L}l +L;°, Theorem
4.2.4 shows that K(f,t; L, L®) = K(g,t; L}, L*), therefore

s Lo By > Lo By
||g||(L),,(L§°)v)¢ = ||§“(L}UL§°)® = ||g||(L2:Z§)¢-

Hence, Y = X where X is the u.ri space (L!, L™)q, this proves item (3).

W
|
The following diagram may help to clarify the interpolation results summarized from the
last theorem.

Loo) u.r.i spaces
b ll (D




Chapter 5

Kernel operators

In this section, we turn our attention to linear operators of the form

Tﬂwifmwvmwm,
U

where k : Y X U — [0, 00) is a 7 ® u-measurable function. We call the function k a kernel and
T its related kernel operator.

We will focus on the kernel operators that have the following compatibility condition on
their level sets.

Definition 5.0.1 We say that the kernel is consonant if
K={0u{{uecU:k(y,u)=t}:yeY,t>0}

is a totally ordered collection of sets of finite u-measure, that is, if K is an ordered core of
(U, Z, ).

5.1 Transferring monotonicity

We will focus on the kernels satisfying Definition 5.0.1. We begin by noting that, the functions
u — k(y, u) are core decreasing with respect to the ordered core K, for all y € Y.

Proposition 5.1.1 Let K be the ordered core defined above and let y € Y, then the function
u — k(y,u) is core decreasing. Moreover, if f,g € L*(X) and f < g, then Tf < Tg t-almost
everywhere.

Proof: Suppose u <4 v but k(y,u) < k(y,v) seeking a contradiction. Then there exists
t € (k(y,u),k(y,v)). Hence v e {s € U : k(y,s) > t}butu ¢ {s € U : k(y,s) > t}. Thus u <g v
fails. This contradicts our original assumption and proves that u — k(y, u) is core decreasing.

To complete the proof, suppose that f,g € L*(X) and f <« g. Then by Proposition 3.1.4
and the fact that u — k(y, u) is core decreasing for each y € Y, we get

H@=fmwvwwwsfuwmwwwzmm
U U

90
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For all the following results we suppose that X is a quasi Banach function space of 7-
measurable functions.

Theorem 5.1.2 If k is a kernel that satisfies Definition 5.0.1 and T is its associated kernel
operator. Then, the least constant C, infinite or finite, for which the inequality

Tl <C [ fwdu ferL;
U

holds is unchanged when w is replaced with w. That is,

ITfllx T fllx
sup ——— = sup ———.
£20 [, fwdu 20 [, fwdu

Proof: Since w < w u-almost everywhere, the inequality ‘<’ is clear. Conversely, we use
Theorem 3.3.8 to get

ITfllx 17 fllx ~ aup { ITf s, g} - Sup{w  f < g}
fomd,u inf{ngwd,u:f<q( g} ngWd.U - ngwd,u

< sup { sup ITgllx L f <k g =sup 1T gllx '
220 ngwd/J 20 ngwd,u

Above, we have used Proposition 5.1.1 and the fact that T f < T'g implies ||T f||x < ||Tgllx. To
complete the proof, we take the supremum over all f > 0.

We now look at the reversed inequality.

Theorem 5.1.3 If k is a kernel that satisfies Definition 5.0.1 and T its associated kernel inte-
gral operator. Then, the least constant C, infinite or finite, for which the inequality

[ rwanscirsi. set
U
holds is unchanged when w is replaced with w. That is,

o oy v
o I TFlx b ITflx

Proof: Since w > w u-almost everywhere. Then, the inequality ‘<’ is clear. Conversely,
we use Theorem 3.2.5 to get

w du: g <
foWd“ _ sup{ngW M8 = f} = SUP{fqudlu 18 <x f} < Sup{ngWd,u

ITfllx T fllx - T fllx ITgllx

|, gwadu Jy, gwdn
<supqsup ———— 1 g g f o =sup =———.
20 [ITgllx g0 ITgllx

5g<7<f}
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Above, we have used Proposition 5.1.1 and the fact that Tg < T f implies [|Tg|[x < ||T flx. To
complete the proof, we take the supremum over all f > 0.

And a corresponding result for core decreasing functions.

Theorem 5.1.4 If k is a kernel that satisfies Definition 5.0.1 and T its associated kernel inte-
gral operator. Then, the least constant C, infinite or finite, for which the inequality

ffwd.u <CITfllx. f € LYK).
U
holds is unchanged when w is replaced with w°. That is,

pfufwdu [, v du
Ssup—m@=8Sup ——.
o ITflx 1o ITflx

Proof: Let f € LY(%X). Item (a) in Proposition 3.4.2, together with Proposition 3.1.4 shows
that fU fwdu < fU fw?du. Therefore, the inequality ‘<’ holds. Conversely, we get

wodu  supi| gwdu: g <x f.g € LYK) wd
J;Jf :u: {fU K }:sup M:g<«f,g€l)(’]()
T fllx IT fllx T fllx
wd
< sup M g <x frg € LYK
ITgllx
I, gwadu

gwdu
< sup{ sup fU— gk f.g€ Ll(‘K)} = sup

vy ITllx cerro 1T8llx .

Again, we have used Proposition 5.1.1 and the fact that Tg < T f implies ||T¢|lx < ||IT fllx. To
complete the proof, we take the supremum over all f € L (K).

5.2 The case p = 1 for abstract Hardy inequalities

Recall the abstract Hardy inequality (1.14). The conditions on the core map guarantee that
A = {B(y)},eyU{0} is a o-bounded ordered core. That same ordered core can also be induced by
considering the kernel k : Y X U — [0, o) by k(y, u) = x5 («) and following the construction
in Section 5.1.

From this point forward we will assume that K = A, that the kernel is y ) (1).

170) = [ fau= | k0w duw,
B(y) v
Our approach to finding necessary and sufficient conditions on the measures for inequality
(1.14) is to find an equivalent inequality involving only two measures and a weight function,

then to use Theorem 5.1.2 to replace the weight function with a core decreasing function.
Finally, we find an equivalent Hardy inequality on the half line.
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Proposition 5.2.1 Fix g > 0, let n and u be o-finite measures over (U, X), let T be a o-finite
measure over (Y,T)and let B : Y — X be a core map. Then there exists a positive X-measurable
function u such that the best constant in the inequality

(f(ff@fmwﬁmscff@, 5.1)
U

Y B()

is the same as the best constant in the inequality

q l/q
(f(ffdu) dr(y)) scuffgd,u, VfelL:. (5.2)

Y By

Proof: First, we reduce the problem to the case U = U,yB(y). Fix f € L*(Z), set Uy =
UyeyB(y) and g = fxy,. Then

s (lgreo)” grefon

Y ‘B B(y) B(y)

= >
[ gdn [ gdn [ fdn

Uy U U

Taking the supremum over all f € L*(X) shows that

([ rau) dr(y))l/q (J( [ rauf dr<y>)”q

sup Y “B®) < sup B(y)
feL* () ffdn A ffdn
U Uo
Conversely,
q /g q 1/q
( [ ( [ fdy) dT(y)) ( ) ( [r du) dT(y))
sup Y ‘B®y) - sup Y C"B(y)
feL* () f fdn fxuyeL*(2) f fdn
Uy U
q 1/q
( [( S £an) dr(y))
< sup Y “B(y)
felr ) [ fdn
U

Therefore, we may replace U with U in (5.1). The same argument shows that we may replace
U with U, in (5.2). Hence, we may suppose that U = U,,.

An application of the Lesbesgue decomposition theorem shows that u = wu; + u,, with
Uy <<nandyu; L n. AlsoU = U,UU, withU;NU, =0 and u,(U,) = 0 = n(U,). The Radon-
Nikodym theorem provides a X-measurable nonnegative function 4 such that du, = hdn. If
E = {s € U : h(s) = 0} we can define the function g = hy g and the sets V; = U, \ E and
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V, = U, U E to get a decomposition du = gdn + du, supported on V; and V, respectively,
moreover g is never zero on Vj. Thus the inequality (5.1) becomes

(f(ffgd“ffdﬂl)qdf(y));SCfodn, Vel

Y By B(y)

Fix z € Y and set f = x(g)nv,), then if C is finite, we have

q 0 . .
(Yf(,ul(B(V)ﬂB(z))) dT(y)) —(f( f d,ul) dT(y)) < Cp(B(z) N Vy) = 0.

Y BO)NB(K)

Therefore w; (B(y) N B(z)) = 0 for t-almost every y. Since this holds for all z € Y, letting
B(z) T U yields u, (U) = 0.
Hence, the inequality becomes

(f(ffgdn)qdr(y)); Schde, VfelL:

Y By

Since g is non-zero n-almost everywhere, we can define u = é, so dn = udu. Notice that
the sets L; and L, are only dependant on Z, thus the the substitution [ +— fu is a bijection
from L, — L; and yields the inequality

q 1/q
(f(ffdu) dT(y)) SCUffud,u, VfelL. (5.3)

Y B

This shows that if the best constant in the inequality (5.1) is finite, then it is also the best
constant in the inequality (5.3). For the remaining case, notice that we can decompose dn =
udu + dn, for some measure 7, satisfying n L n,. Therefore

g g g :
( [( J £au) dr(y)) ( [( J £au) dr(y))
Y “B) < sup Y “B)
sup <
feL}; fodn feL}; fou du
thus if the best constant in inequality (5.1) is infinite, then it is also the best constant in the
inequality (5.3).
To finish the proof, apply Theorem 5.1.2 with the kernel k(y,u) = xp()(u) and the core
K = Ato replace u with u.

We now reduce the problem to a Hardy inequality with measures over the half line.

]

Lemma 5.2.2 Given B, ,u as in the previous propositions, then there exist Borel measures
v, A on [0, 00) and a nonincreasing function w finite A-almost everywhere, such that the best
constant in inequality (5.2) is the best constant in

( f (ffdﬂ)q dy(x))l/q =¢ f fwda, VfeL; (5.4)

[0,00)  [0,x] [0,00)
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Proof: Since B is a core map, the function ¢ : ¥ — [0, c0) defined by ¢(y) = u(B(y)) is
measurable. Let v be the push-forward Borel measure associated to ¢ from Theorem 1.1.5.
Let A be the Borel measure induced by ordered core A with enriched core M, and R, Q the
transition maps from Theorems 2.4.6 and 2.4.7.

Fix a positive X-measurable function f € Lioc, 4 and define

Hf(x) = f R(f)dA, and Tf(y)= f fda.
[0,x] B(y)

We will show that Hf and T f are equimeasurable with respect to the measures v and 7,
respectively, by computing their distribution functions. First notice that for all y € ¥ we have

(Hf) o ¢(y) = Hf(u(B())) = f R(f)dy = f fdA=Tf(Q).
[0.u(B(y)] B(y)
Fix a > 0 and define the sets
E,={x€e[0,00): Hf(x)>a} and F, = {y € Y : T(y) > a}.
Let
y = sup{x € [0,00) : fRfd/lSQ/ .

[0,x]

Notice that by the monotone convergence theorem H f(y) < . We claim that E, = (y, c0) and
that F, = o™ (E,).

Let x € E,, then since Hf is increasing, we must have that x > vy, thus E, C (y, ).
Conversely, let x > vy, then Hf(x) > a, thus x € E,, this shows the first equation.

For the second equation, notice that

Fo={yeY:T(y)>al={yeY:(Hf)owply) >a}.
So if y € F,, then ¢(y) € E,, this shows F, C ¢ '(E,). Conversely, if y € ¢~'(E,), then

T(y) > a,hencey € F,.
Computation of the distribution functions yields

WE,) = (g7 (Eo)) = T(Fa).
Therefore H f and T f are equimeasurable, hence

(] moad dv); - [ () "V); - (f (rr) dr);

[0,00)  [0,x] [0,00)

(J [ ra o

Y  BO)
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Since u is core decreasing, Theorem 2.4.6, items (8) and (10) show that

Uffgd,u: fRngd/l.

[0,00)

Therefore, if inequality (5.2) holds, so does

(f(fRfd/l)qdv(x))‘l’ngRngd/L Vel

[0,00) [0,x] [0,00)

Notice that Ru must be finite almost everywhere, otherwise, the original measures are not o--
finite. The result follows by letting w = Ru and noting that R maps L; onto L), which follows
from part 8 of Theorem 2.4.1 and the monotone convergence theorem.

We are ready to prove the main result.

Theorem 5.2.3 Let (Y,7,7), (U, %, ), (U, X, v) be o-finite measure spaces and B : Y — X a
core map. Setn = n, + ns, where dn, = udu and n; L u. Then the best constant C in the

inequality )
q q
( f ( f fd,u) dT(y)) <C Uf fdn, (5.5)

Y B@)

satisfies
1-q

C~ [f( f R(i) ouo B(y) dT(y))]_q dT(Z)] ' , for g € (0, 1),

Y u(B(@)=u(B(y))

and
C = sup (l(s))T({y €Y :se BN, forqe[l,).

seU \U

Where the greatest core decreasing minorant is taken with respect to the core A = {0} U{B(y) :
y € Y} and R is the map from Proposition 2.4.6.

Proof: Suppose that g € (0, 1), then by Lemma 5.2.2 and Theorem 1.7.2 (Theorem 3.1 of
[11]) the best constant is equivalent to

( f ( f %dv)qu dv(x))l/q,

[0,00) [0.x]

where w = R(u) and v is the push-forward measure for the map ¢(y) = u o B(y). Notice that
w = w, and it follows from item (11) of Proposition 2.4.6, that

(5] reon)
1=R(1)=R(=]=RwR|-
u u
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Hence,
1 1 1
f—dv:f R(—)){[O,x]dV:fR(—)O‘P()’)X[O,x]OSO(Y)dT()’)
al w [0,00) \U y \4
1
= f R(;)oso(y)dr(y»
P()<x -
Thus , ,
1 = 1 =
f ( f —dv) dv(x) = f ( f R(—)O(p(y)d‘r(y)) d1(2)
w Y u
[0,00)  [0,x] P(N=<p(2)

and completes the proof for the case g € (0, 1).

The case g € [1, oo) follows directly from duality and is included for completeness.

By Proposition 5.2.1 the best constant in inequality (5.5) is the norm of the integral operator
Kf(y) = fU k(y, s)f(s)d6(s) acting from Lé — L where df = udu and k(y, s) = ﬁ)(g(y)(s). By
duality, it is the best constant in the inequality

< C(fh‘fdf)q Nhel.
Y

Ly

f Ky, Jh0) dr()

Y

Define ¢,(y) = 1 if s € B(y) and ¥(y) = 0 otherwise. Divide both sides of the equation by
||h||LZ/ to get

1 h(y) )
sup{@ wa(Y)W dT(y) NS U} <C.
Y T

Taking supremum over non-zero positive functions / yields

1
sup —

Wl < C,
Py Wl

which is the same as .
C > sup (—(s))r({y eY:seByH.

seU \U

For the reverse inequality, an application of Minkowski’s integral inequality yields

q 1 1/q f(S)
| ( | k(s,y)f(s)de(s)) a| | [ ( | ws(y)df(y)) ) gosy
J U v Y u(s)

< Sup(é(S))T({y €Y :seByH f f(s)do(s)
= U

seU

hence C < sup,, (i(s))T({y eY:se B(y)})l/q and proves the statement for g € (1, 00).
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5.3 Hardy inequalities in metric measure spaces

In this section, we show that the framework of abstract Hardy inequalities can be used to give
different proofs to [21, Theorem 2.1 Condition D], [22, Theorem 2.1] and [20, Theorem 3.1].
These theorems give necessary and sufficient conditions for Hardy inequalities to hold in met-
ric measure spaces; they cover three cases depending on the indices p and ¢, provided the
existence of a locally integrable function A € L _such that for all f € L'(X) the following
polar decomposition at a € X holds:

ffd,u:fmff(r,w)/l(r,a))da)rdr,
X 0 Jz.

for a family of measures dw,, where X, = {x € X : d(x,a) = r}.

Our new proofs show that the polar decomposition hypothesis is not required so the results
hold in all metric measure spaces.

We also give the corresponding results regarding the conjugate Hardy inequality discussed
in [21, Theorem 2.2 Condition D7] and [20, Theorem 3.2].

We begin with the case p > 1, extending [21, Theorem 2.1 Condition D], [22, Theo-
rem 2.1] to all metric measure spaces.

Theorem 5.3.1 Let u be a o-finite measure on a metric measure space X. Fix a € X and let
p€(l,0),q>0,qg# 1 and w,v be measurable functions, positive u-almost everywhere such
that w is integrable over X \ Bla;|x|,] and v'™?" is integrable over Bla;|x|,] for all x € X. Then
the Hardy inequality

q i 3
( f ( f £ du) w(x)du(x)) <¢( f fv@du)’ Vf Ly (56)
X

X Blaslx,]

holds if and only if p < q and:

1 1

sup( f wdy)q( f vl_"’/al,u)]7 < 0,
X#a

X\Bla;|xl,] Bla;|xl,]
O<g<l<pand
f( f wd,u)p( f Nl d,u)p/ u(s) du(s) < oo,
X X\Blal~l,] Bla;|xl,]
orl <q<pand
f ( f wdﬂ)q( f v du)q’vl""(s) du(s) < co.
X X\Blaslxla] Blas|xl,]

Here } =

Q=
Sk
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Proof: By hypothesis v > 0 and v < co u-almost everywhere, then the mapping f + v' 7 f
is a bijection on L. Then, the inequality (5.6) is equivalent to

, g g , ;
( f ( f O ) duv) w(X)du(X)) <¢( f F T W du) Vf e L (5.7)
X

X Blasl,]

Above we have used the identity v"'"?)v = y!=”_ Let dr = v'"”'du and define the map
B:X — Xby

B(x) = Bla; |yl,].

The image of B is a totally ordered set. By hypothesis 7(B(x)) < oo for each x € X. Therefore,
it is an ordered core with respect to the measure 7. We get the equivalent abstract Hardy

inequality |
q a 5 .
(f( f fdr) a)(y)d/,t(y)) sC(XfdeT) Vel

X Blaslyl,]

Let A be the measure on [0, o) induced by the core, so that for every M in the core

fRfd/l:ffvl_p’d,u, Wherex:fvl_”'d,u.
M

[0.x] M

We claim that inequality (5.7) is equivalent to the Hardy inequality

( f ( f gda)qR(vf‘_’p,)dA(y));sc( f gpcm)’l’, Vge Lt (5.8)

[0,00)  [0,y] [0,00)

By Theorem 1.7.5, to complete the proof, it suffices to show that the maps

bi(s) = f VitV du  and  by(x) = A([0, x])

Bla;|sl,]

have the same distribution functions with respect to the measures w du and R ( vl%) dA respec-
tively.

Fix t > 0 and consider the sets E; = bl‘l(t, oo)and E; = b3 I(t, 00), we give a characterization
for these sets.

Define the set W as follows

W:U Bla;|sl,] : f VP du<ty.

Bla;|sl,]

If z € Ey, then by(z) > 1, thus z ¢ W, conversely if z € W then b(z) < t, therefore z ¢ E|.
Hence W¢ = E,. Since W is a union of closed balls centered at a, then there exists a sequence
s, such that Bla;|s,|,] T W. Lett, = f v du.

Bla;|snla]
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Let 7 be defined as

t~:sup z<t:z= fvl_”'d/,tforsomesex ,

Bla;|sl,]

hence 7 = 1[0, 7].
Therefore,

f wdu = sup f w du by the monotone convergence theorem

neN

Ef Blas|sul,]

= sup f R (li) dA by the action of R
neN vip
[0.1]

= f R (%) dA by monotone convergence theorem
v

[0.1]

E;

By hypothesis f wdu < oo, we have that

ES
w
fwd,u: fR(vl_p,)d/l.

by (t,00) by (t,00)

It follows that the distribution functions coincide which proves that the Hardy inequalities (5.7)
and (5.8) have the same normal form parameter, therefore, they are equivalent by Theorem
1.7.5.

For all the index cases, we can apply Theorem 1.7.1. In the case 1 < p < g < oo, the
inequality (5.8) holds if and only if

L

sgp(fR(vl‘fp,)dA(z))‘l’(fdz)”' < oo

[x,00) [0,x]

which is equivalent to

1

1 1
sup( f wdy)q( f vl_p/d,u)p < o0,
s#a

X\Bla|sl,] Bla;|sl,]

In the case 0 < ¢ < 1 < p < oo, the inequality (5.8) holds if and only if

J(f Rle) ) / a1) R(-2) da) < o

[0,00)  [x,00) [0,x]
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which is equivalent to

f( f wd,u);( f 1pd,u) w(s) du(s) < co.

X X\Bla|sl,] Bla;|sl,]

In the case 1 < g < p we have that inequality (5.8) holds if and only if

f(fR(vl )dﬂ)(f )"rda(x)@o

[0,00) [x,00) [0,x]

which is equivalent to

r

f( f a)d,u)q( f vl_”/du)qr,vl_p’ du(s) < oo

X X\Bla;lsl,] Bla;|sl,]

completing the proof.

We also have a corresponding result to the conjugate Hardy inequality, extending [21, The-
orem 2.1 Condition D].

Theorem 5.3.2 Let u be a o-finite measure on a metric measure space X. Fix a € X and
let p € (1,0), g >0, g # 1 and w,v be measurable functions, positive u-almost everywhere
satisfying that v\~ is integrable over X \ Bla;|x|,] for each x € X and w € L;,.(X). Then, the
Hardy inequality

( f ( f ) du(y))qwu)du(x))q <¢( f v du) , Vf € L
X

X X\Bla|xl,]

holds if and only if p < q and:

1

1 1
sup ( f wd,u)q( f =7 d,u) < 00,
X#a

Blas|xl,] X\Bla;|xl,]
O<g<l<pand
f( f a)d,u)p( f Nl d,u) u(s) du(s) < oo,
X Blalx,] X\Bla;|x],]
orl <q<pand
f f wdu ( f v d,u) /vl P (8) du(s) < oo.
X Blalxl,] X\Bla;|xl,]

Here } =

Q=
Sk
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Proof: We only sketch the proof as most details follow the same argument as Theorem 5.3.1.
Let dr = v'™?" du. Observe that the hypothesis on v guarantees that, for each y € X, the sets
X\ Bla;|yl,] have finite T measure. Thus the map B(y) = X\ Bla; |y|,] is a core map.
Then the Lebesgue decomposition theorem and the substitution f +— v!?" provides the
equivalent abstract Hardy inequality

(f ( f de)qw(Y)dﬂ(y)); < f o dT);, irern

X X\Blailyl,] X

By definition of 7 this is equivalent to

( f ( f Fand du)qw(y)du(y)); sc( f Vi dﬂ)é, VfelL. (5.9)
X

X X\Blalyl,]

Let A be the measure on [0, co) induced by the core, so that for every y € X:

fRfd/l = f v du, where x = f V=P du.

[0.x] X\Bla:yl,] X\Bla:|yl,]

The maps
bi(s) = f VI duand - by(x) = A0, x])
X\Bla|sl,]

have the same distribution functions with respect to the measures w du and R ( vl%) dA respec-
tively. Then, by Theorem 1.7.5, we get that the inequality (5.9) is equivalent to the Hardy

inequality |
(f(fgdﬂ)qR(vf—Up')dﬂ(y))q <¢( fg"dﬂ)'l’, Vg e L. (5.10)

[0,00)  [0,y] [0,00)

For all the index cases, we can apply Theorem 1.7.1. In the case 1 < p < g < oo, the
inequality (5.10) holds if and only if

1 L
/

sgp(fR(Vlcfp,)d/l(t))q(fd/l)p <o

[x,00) [0,x]

which is equivalent to

1 1
sup( f a)d,u)q( f vl_"’d,u)p < oo,
S#a

Bla;|sl,] X\Bla]sl4]

Inthe case 0 < g < 1 < p < oo, the inequality (5.10) holds if and only if

J(f Rle) ) / a1) R(-2) da) < o

[0,00)  [x,00) [0,x]
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which is equivalent to

f( f wdﬂ)’r’( f ol dﬁ‘)pr/w(s)du(s) .

X Blaslsl,] X\Bla;sl,]

In the case 1 < g < p we have that inequality (5.10) holds if and only if

[ [ *lses) ([ af o <

[0,00)  [x,00) [0.x]

which is equivalent to

r

f( f a)a’,u)q( f vl_”'dy);’vl_p' du(s) < co

X Blalsl,] X\Bla;|sl,]

completing the proof.

For the case p = 1, Theorem 5.2.3 implies the following characterization.

Corollary 5.3.3 Let u be a o-finite measure on a metric measure space X. Fix a € X, let
q € (0, 0) and w, v be measurable functions, positive u-almost everywhere satisfying that w is
integrable over X \ Bla; |x|,] for each x € X and v'™7 € Li()c(X). Then the best constant in the
Hardy inequality

( f ( f f(\/)d#(y))qw(X)du(X))q <C f FOOV() dux), Vf € L
X Blalxl,] X
satisfies
1 = 0
Cz( f ( f ~(@0(0) du()) w(z)dﬂ(z))  for g € (0, 1),
X z=Zax -
and
1 1/q
C =sup (;(x))( f w(t) d,u(t)) , for g € [1,00).

xeX
x<at

Where v(x) = ess inf, {v(¢) : t € Bla;|x|,]}, x <a t means Bla; |x|,] C B(a,lt|) and Bla; |x|,] =
{z € X : dist(a, z) < dist(a, x)}.

Proof: Let A = {0} U {Bla;|x|,]}ex, it is the full ordered core induced by the core map
x — Bla;|x|,]. Let dt = wdu, dn = vdu and A be the measure on [0, co) induced by the ordered
core.

Consider the function ¢ : X — [0, o) defined by ¢(x) = u(B[a;|x|,]) and let v be the
pushforward measure. Then, if y = ¢(x) we have

v([0,y]) = u(e™"'([0,¥])) = fdu(t)= f dp = A([0, p(x)]) = A([0, y]).

@(<y Bla;|x|,]



104 CHAPTER 5. KERNEL OPERATORS

It follows that the Borel measures v and A coincide and are finite over [0, y] for all y > 0,
therefore A is the pushforward measure of .

We now show that R(%) = % o ¢ up to a set of u-measure zero.

Indeed
f L. f Loy dua = f R(l)(t)d/l(t)z f R(l)(t) (1) dA(D)
v M v H v v X 10,0(x)]
Blajlxl,] e(O<p(x) Op] [0,00)
1 1
= [ #(;)e conuparcewdun = [ &(S)o o0 duty
X P(H)<p(x)
1
= fR(—)ogp(t)d,u(t).
v
Blas|xl,]

Since the equality holds for all core sets, then R(%) = = o ¢ almost everywhere.

Then for g € (0, 1), Theorem 5.2.3 yields

1
v
1—

1 = 0
C~ (f( f R(;) o (x)w(x) d,u) w(z) du(z))

X p(2)<ep(x)
z( f f 2 (Ow(x) du 1w(z)d,u(z)) "

The statement for g € [1, co) follows directly from Theorem 5.2.3. The description of v was
given in Example 3.3.5. This completes the proof.
|
Our result regarding the conjugate Hardy inequality to Corollary 5.3.1 needs an adjustment.
Since for a metric measure space X, the sets (X \ Bla;|x|,]) may have infinite measure, the
collection {X\ B[a; |x|,]}ex may fail to be an ordered core. This obstruction is addressed in the
following lemma.

Lemma 5.3.4 Let u be a o-finite measure on a metric measure space X. Fix a € X. Let {X,,} be
a sequence of sets of finite u-measure such that a € X,, T X, q € (0, ) and w, v be measurable
functions, positive u-almost everywhere satisfying that v'=?" is integrable over X \ Bla; |x|,] for

each x € X and w € L;, (X).

For each n € N. Let C, be the best constant in the inequality

( f f f (V)dﬂ(y)) w(x) d,U(X)) <Gy f fv(x)du(x), Yf e L, (5.11)

Xy Xu\Blaslx,]

and C be the best constant in the inequality

( f f f (Y)d,u(y)) w(X)d,u(X)) <C f Jv(x) du(x), Yf € Ly, (5.12)

X X\Bla;|xl,]



5.3. HARDY INEQUALITIES IN METRIC MEASURE SPACES 105

where Bla; |x|,] = {z € X : dist(a, 7) < dist(a, x)}.
Then,

C =supC,.
neN

Proof:
Fix f € L], then an application of inequality (5.12) yields

(f | f ) duy) ) (X)); S(f ( f f(Y))(x,l(y)dﬂ(y))qw(x)d/ut(x));

Xy X \Blaslxl,] X X\Blaslxl,]

<c f FONr ) VO)UG) = C f FOIVO)U0).
X X,

Thus sup,,; C, < C.
Conversely, the monotone convergence theorem together with equation (5.11) yields

n
X X\Blasxl,] X, X\Blaslxl,]

= sup (f( f f(y) dﬂ(y))qw(x) du(x))q

Xy Xu\Blas|xl,]

<supC, f J)v(x) dp(x) < (supC,) f Jv(x) du(x).
X, X

( f ( f f(y)du(y))qw(x)dﬂ(x)); :sup( f ( f f(y)xXn(wdu(y))qw(x)dum);

Division by f S(x)v(x) du(x) and taking supremum over f yields C < sup,; C, and com-

X
pletes the proof.

We are ready to state our result for the conjugate Hardy inequality with p = 1.

Corollary 5.3.5 Let u be a o-finite measure on a metric measure space X. Fix a € X, let
g € (0,00) and w,v be measurable functions, positive u-almost everywhere satisfying v'™" is
integrable over X \ Bla;|x|,] for each x € X and w € LiOC(X). Then the best constant in the
Hardy inequality

q s
([ roaofowaw) <c [ o, vrer;
X

X X\Bla;|xl,]

satisfies
=

1 = T
Cz( f ( f (900 du) w(z)du(z)) forq e O, 1),

X xLaz
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and

1 l/q
C:sup(—(x))( f a)(l‘)d,u(t)) forqell, o).
xeX Z

Where v(x) = ess inf {v(?) : t € Bla; |x|,]}, x <a t means Bla; |x|,] C B,y and Bla;|x|,] = {z €
X : dist(a,z) < dist(a, x)}.

Proof: For each n € N* define X,, = {x € X : dist(a, x) < n}. Let C, be the best constant in the
inequality (5.11). Let A, = {0} U {X,,Bla; |x|,]}xex, it is the full ordered core over X, induced
by the core map x — (X,,\ Bla; |x|,]). Let dt = wdu, dn = vdu and 4, be the measure on [0, co)
induced by the ordered core. Notice that 4, is supported on the compact interval [0, u(X,,)].
Consider the function ¢, : X — [0, c0) defined by ¢,(x) = u(X, \ Bla;|x|,]) and let v, be
the pushforward measure.
Then, if y = ¢,(x) we have

va([0,¥]) = u(e;, ([0, ¥]) = f du(t) = f du = A([0, ¢(x)]) = A([0, y]).

en(D<y Xu\Blas|xl,]

It follows that the Borel measures v, and A, coincide and are finite over [0, y] for all y > 0,
therefore 4, is the pushforward measure of ¢,,.

We now show that R,,(Vi) = Vi o ¢ up to a set of y-measure zero, here R, is the transition

map between u and 4, andiﬁ is the greatest core decreasing minorant of v relative to the core

A,.
Indeed
1 1 1
~dy = (O dult) = R&ﬁmmm
Vy Vi Vi
Xo\Blasxl, ] — ea(D<pu(x) — [0,4(x)] -
1
- [ &5 )omoaeiodio
[0,00) —
1 1
- mk}wmnwmo%mwm: R&ﬁo%mwm
X —= ‘Pn([)ﬁﬁﬁn(x) —-
1
- R o gt duto.
X, \Bla|xl,] .

[~

Since the equality holds for all core sets, then R,,(
Then for g € (0, 1), Theorem 5.2.3 yields

1 = g
Lﬂ ij{j%%mmmw)w@ww)

KXo en(@<pn(x)

(f(f%mmww)

X}l XSAZ —

. ) = i o ¢, almost everywhere.

B

Cy

X

1—

b

4
-

%@W@)

<|

&
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Notice that
1( ! ess s ! t e X, \ Bla; |x|,]
“(x) = = up { — : " a;|xl,] ¢,
v, essinf, (v(1) : £ € X, \ Bla; 14,1} Pulvo)
therefore . . .
sup —(x) = ess sup, {— .t e X\ Bla; |x|a]} = —(x).
n Vn (1) v

An application of Lemma 5.3.4 and the monotone convergence theorem yields

1-q

1 =7 g
C = sup( f ( f —(x)a)(x)d,u) w(z)d,u(z))
neN K

X, x<az

:( [(f i(x)w(x)du)

X  x<az

a e
I-¢q q

w(z) d,U(Z))

For g > 1 we get

1 1/q 1 1/q
cn:sup[—(x)]( f (0 du1)) :sup(—<x>)( f WO du®)) x5, 9.

xeX, ﬁ xeX ﬁ

t<ax 1<ax

By Lemma 5.3.4 we get

C

1 1/q
Suan=SuPSUP(V—(X))( f WO du(®) ez, ()

n xeX n
- 1<ax

1 1/q
sup (—(x))( fa)(t) du(t)) .
xex \V

t<ax

This completes the proof.
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Appendix A

The category of ordered cores

We define a category of ordered cores and show the functoriality properties derived from
Theorem 2.3.6.

Objects: An object in this category consists of a 4-tuple (U, X, u, A) where U is a set, X a
o—algebra on U, u a o—finite measure defined on £ and A a c—bounded full ordered core.
Morphisms: There is a morphism r : (U, 2, u, A) —» (T, 7,7, A")ifr : A — A’ isa
surjective order-preserving function and there exists a constant ¢ such that

7(r(B) \ r(A)) < cu(B\ A), forall B,A € A.

The identity morphism is the identity map of ordered cores r. Surjectivity and monotonicity
of functions are preserved by compositions, moreover, if ry : (U, 2, u, A) = (T, 7,7, A’) and
r: (T, 7,7, A") = (T, 7>, 12, A”) are morphisms with constants cy, ¢, respectively, then

T2(r 0 ri(B)\ r2 0 ri(4)) < e27i(r(B) \ ri(A)) < cocy(B\ A), YA, Be A.

The following proposition shows the existence of a semifunctor mapping to the category of
R—vector spaces.

Proposition A.0.1 There is a contravariant semifunctor Fy mapping to the category of
R—vector spaces, mapping Fy(U, 2, u, A) = LII‘OC’ qandr: A — A gets mapped to
Fv(r) = R, where R is the linear operator described in Theorem 2.3.6.

Proof: Existence and linearity were shown in Theorem 2.3.6. The only property remaining is
the preservation of composition, that is, if ry : (U, 2, u, A) — (T, 7,7, A’) and

ry (T, 7,7, A'") = (T, T2, T2, A”") are morphisms then Fy(r; o r1) = Fy(r) o Fy(r,).
Indeed; Let f € Lioc,ﬂ”' By item (6) in 2.3.6, both Fy(ry) o Fy(r2)f and Fy(r, o rp)f are
o(A)—measurable functions. By Lemma 2.3.5, to show equality, it suffices to show that their
integrals match on each core set.

For each A € A:

f Fo(ry) o Fy(ra) f dit = f Fo(ra)f dr = f fdr, = f Folrs o ) f di.
A r1(A) raori(A) A

Hence, Fy(r; o r))f = Fv(ry) o Fy(ry)f u—a.e. and completes the proof.

The following diagram expresses the semifunctoriality of Fy.
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Fv
(U, %, 1, A) L'
r R
Fv 1
(T’ Ta T’ ﬂ/) LLOC,[}{/

Similarly, we can define a functor ¥, mapping to the category of compatible couples. We map
FUZ, u, A) = L}l + L;" and r : A — A’ gets mapped to F1(r) = R, where R is the linear
operator described in Theorem 2.3.6. Notice that items (1) and (9) show that the linear map
F1(r) is admissible. The diagram becomes

T
(U, 2, 11, A) 1 L+ L
r R
Tl 1 00
1, 7,7, A) L+ L;

Also, we have a corresponding semifunctor #, when considering down spaces.

U, 2, 1, A) & L+ (Ly)

E L+ (LYY

(T,7,7,A)

And also a semifunctor 3 when considering the dual couple.

VE ~
(U’ Za ,u9 ﬂ) L/l + LM

(T, 7,7, A) L+ LY



Curriculum Vitae

Name:

Post-Secondary
Education and
Degrees:

Publications

Talks

University Teaching Experience
Experience:

Alejandro Santacruz Hidalgo

National University of Colombia. Bogota, Colombia
2011 - 2015 B.Sc. in Mathematics
2016 - 2017 M.Sc. in Mathematics.

University of Western Ontario. London, ON, Canada
2019 - 2020 M.Sc. in Mathematics
2020 - 2024 Ph.D. in Mathematics

1. Core decreasing functions (With Gord Sinnamon)
2024, Journal of Functional Analysis 287(4).

2. Abstract Hardy inequalities: The case p = 1 (Preprint)
2024, arXiv:2402.13335, submitted.

1. Hardy operators and monotonicity in general spaces (2023)
Spring school on analysis, Paseky nad Jizerou, Czech Republic

2. Monotonicity in measure spaces and Hardy inequalities (2023)
Twelfth Ohio river analysis meeting, Cincinnati, USA

3. Down spaces over a measure space with an ordered core (2022)
CMS Winter meeting, Toronto, Canada

4. Monotonicity in ordered measure spaces (2022)

Nafsa 12, Prague, Czech Republic

Instructor: Calculus 1000A
University of Western Ontario (Fall 2023)

Teaching assistant, various courses
University of Western Ontario (2019-2024)

Course instructor, various courses
National University of Colombia (2016-2017)

113



	Monotone Functions On General Measure Spaces
	Recommended Citation

	tmp.1724698788.pdf.fGL9f

