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Abstract
Given a measure space and a totally ordered collection of measurable sets, called an ordered
core, the notion of a core decreasing function is introduced and used to generalize monotone
functions to general measure spaces. The least core decreasing majorant construction, the level
function construction, and the greatest core decreasing minorant, already known for functions
on the real line, are extended to this general setting. A functional description of these con-
structions is provided and is shown to be closely related to the pre-order relation of functions
induced by integrals over the ordered core.

For an ordered core, the down space construction of a Banach function space is defined
as a variant of the Köthe dual restricted to core decreasing functions. Concrete descriptions
of the duals of the down spaces are provided. The down spaces of L1 and L∞ are shown to
form an exact Calderón couple with divisibility constant 1; a complete description of the exact
interpolation spaces for the couple is given in terms of level functions; and the down spaces of
universally rearrangement invariant spaces (u.r.i.) are shown to be precisely those interpolation
spaces that have the Fatou property. The dual couple is also an exact Calderón couple with
divisibility constant 1; a complete description of the exact interpolation spaces for the couple
is given in terms of least core decreasing majorants; and the duals of down spaces of u.r.i.
spaces are shown to be precisely those interpolation spaces that have the Fatou property.

Integral operators whose kernel operators satisfy a monotonicity condition on their level
sets are shown to induce an ordered core. Certain weighted norm inequalities are shown to
remain valid when the weights are replaced with core decreasing functions. Boundedness of
an abstract formulation of Hardy operators between Lebesgue spaces over general measure
spaces is studied and, when the domain is L1, shown to be equivalent to the existence of a
Hardy inequality on the half line with general Borel measures.

Keywords: Ordered core, core decreasing function, Calderón couple, interpolation space,
level function, down space, Hardy inequalities.
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Summary for Lay Audience
A fundamental feature of real numbers is that they form a total order, for any pair of distinct
real numbers, one is bigger than the other. Consequentially, it is natural to define monotone
functions as an assignation of numbers that preserve (or reverse) this order. In this thesis, we
extend monotone functions to collections of elements that admit a notion of volume but do not
have a predetermined order among the elements. Instead, we rely on a collection of subsets
that take the role of the intervals {[0, x]}x>0 in the real line, called an ordered core. We use
ordered cores to define monotone functions in this more abstract setting and extend some tools
related to decreasing functions, previously only available on the real line, to this more abstract
setting.

We work with function spaces. For a fixed function, assign it a size by measuring its
interaction with all the decreasing functions. The space we produce through this process is the
down space. We describe them completely and study some of their properties. We focus on
duality and interpolation.

The dual space is a collection of functions over our original space that satisfy certain prop-
erties. In the case of finite dimensional spaces (collections of column vectors of n-entries),
we may identify the dual space with the collection of row vectors of n-entries. For our Down
spaces, we also give a concrete description of their duals.

For interpolation, we consider a concrete pair of function spaces corresponding to the down
spaces of L1 (L1↓) and L∞ (L∞↓). We consider intermediate collections of functions that can
be written as the sum of a function that is not ’too wide’ and a function that is not ’too tall’.
If we know the behavior of an operation on L1 and L∞, we also understand the operation on
any intermediate collection. In this thesis, we give a complete characterization of the function
spaces that are intermediate between L1↓ and L∞↓.

We finish with an application of our theory of monotone functions in the study of Hardy
inequalities.
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Introduction

Monotone functions on R are very well-understood objects compared to general measurable
functions. A systematic study of these functions has shed light on many problems and, through-
out the years, a wide variety of techniques and applications have been developed to work with
monotone functions. For instance, the level function construction that first appeared in the
works of Lorentz [14] and Halperin [8] has the following properties:

Let 1 ≤ p ≤ ∞ and 1/p+ 1/p′ = 1. If f is a Lebesgue measurable function on [0,∞), there
exists a nonnegative, nonincreasing function f o, called the level function of f , such that∫ ∞

0
| f |g ≤

∫ ∞

0
f og

holds for all nonnegative, nonincreasing g, and

∥ f o∥Lp = sup
{ ∫ ∞

0
| f |g : ∥g∥Lp′ ≤ 1, g ≥ 0, g nonincreasing

}
.

Here ∥ · ∥Lp denotes the usual Lp norm.
This improves Hölder’s inequality (to a so-called D-type Hölder inequality) in the presence

of monotonicity since we have
∫ ∞

0
| f |g ≤ ∥ f o∥Lp∥g∥Lp′ whenever g is nonnegative and non-

increasing. This construction has been used to give formulas for the dual spaces of abstract
Lorentz spaces [12], to prove weighted Hardy inequalities [26, 32], to characterize bounded-
ness of the Fourier transform in Lorentz spaces [18, 28], to transfer monotonicity (from kernel
to weight) in weighted norm inequalities for general positive integral operators [29] and to pro-
vide equivalent norms for traditional and abstract Cesáro spaces that facilitate interpolation of
these spaces and of their duals [13].

The down spaces, a variant of the Köthe dual when restricted to the set of decreasing
functions, for the Lp spaces, are given by the norm

∥ f ∥Lp↓ = sup
{∫ ∞

0
| f | g : ∥g∥Lp′ ≤ 1 and g is nonincreasing

}
.

A careful study of the down spaces is provided in [26, 16, 17], including a complete character-
ization of their interpolation spaces and their relationship with u.r.i. Banach function spaces.

These powerful tools are currently available only for functions defined on (R, λ), where
the natural order on R determines the collection of nonnegative, nonincreasing functions. The
object of our research is to make these tools available for functions on general measure spaces
in which a highly customizable notion of order is used to determine monotonicity. This is done
by a careful examination of the concept of a measure space with an ordered core, which was
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introduced in [31] to study abstract Hardy operators. We use this ordered core to define core
decreasing functions, which will take the role of monotone functions in our general measure
spaces. We use these tools to extend level functions, D-type Hölder inequalities, down spaces
with their interpolation theory, and the transferring monotonicity technique to our more general
setting.

This thesis is based on published work in [24] and submitted work in [23].

Organization of the thesis

Chapter 1 contains no original results, instead, we review most of the mathematical prereq-
uisites needed for the later chapters. We begin with a brief review of results in measure theory
and vector lattices not usually covered in a first graduate course. We discuss the definition of
Banach function spaces with special care about the nonincreasing rearrangement and univer-
sally rearrangement invariant (u.r.i.) spaces. We give a brief summary of the real method of
interpolation as well as a fundamental theorem of Calderón. The rest of the chapter is devoted
to giving more detail into the theory of monotone functions over the real line.

Our research begins in Chapter 2, where we provide the technical tools required for the later
results. We study the properties of ordered cores, define and study core decreasing functions,
and finish with a careful analysis of mappings between measure spaces with ordered cores. We
reserve a more categorical point of view of these mappings for the appendix.

In Chapter 3 we study a preorder relation on nonnegative measurable functions induced by
the ordered core. We extend the level function construction, the least core decreasing majo-
rant and the greatest core decreasing minorant to the setting of ordered cores. We provide a
pointwise and functional description of these constructions and relate them with the preorder
induced by the core.

Chapter 4 contains the theory of down spaces over a measure space with an ordered core.
We describe their associate spaces and give a full description of all their interpolation spaces
using the K-method of interpolation. We show that the fundamental compatible couple of
down spaces corresponding to L1 and L∞ form a Calderón couple and relate their interpolation
spaces with down spaces for u.r.i. spaces. We also describe all interpolation spaces for the dual
couple.

In Chapter 5 we exhibit an application of the high customization provided by the theory
of monotonicity in general measure spaces developed before. We study integral kernel opera-
tors satisfying a monotonicity condition to induce an ordered core and extend the transferring
monotonicity technique to these integral operators. As an application, we provide a characteri-
zation of the boundedness of the abstract Hardy operator from L1

µ → Lq
τ. We exhibit new proofs

and extensions of weight characterizations of Hardy inequalities in metric measure spaces.



Chapter 1

Preliminaries

1.1 Basic results in measure theory
We consider X to be any set and record some basic constructions. The first is a minimal
collection of subsets of U for which a premeasure can be extended to a measure.

Definition 1.1.1 A non-empty collection S of subsets of X is called a semiring if it is closed
under finite intersections and if for all A, B ∈ S there exists a finite disjoint collection {C j}

k
j=1

of sets in S such that

B \ A =
k⋃

j=1

C j.

A premeasure is a map ρ : S → [0,∞) satisfying:

• If ∅ ∈ S , then ρ(∅) = 0.

• (Finitely additive) If {C j}
k
j=1 is a disjoint collection of sets in S and

⋃k
j=1 C j ∈ S then

ρ(S ) =
∑k

j=1 ρ(C j).

• (Countably monotone) If E ∈ S and {C j} j≥1 is a sequence in S such that E ⊆
⋃

j C j, then
ρ(E) ≤

∑∞
j=1 ρ(C j).

A premeasure ρ is said to be σ-finite if ∪S =
⋃∞

j=1 C j for some collection {C j} j≥1 such that
ρ(C j) < ∞.

We are interested in the extension of premeasures to measures, we consider their natural
domain.

Definition 1.1.2 A non-empty collection R of subsets of X is a σ-ring if it is closed under set
differences and countable unions. For any non-empty collection S of subsets of X, we denote
by σ(S ) the smallest σ-ring containing S . If X belongs to a σ-ring R, we call R a σ-algebra.

The following result establishes a property of the generated σ-rings.

Theorem 1.1.3 If S is any non-empty collection of subsets of X and E ∈ σ(S ), then there
exists a countable subcollection S 0 such that E ∈ σ(S 0).

3



4 Chapter 1. Preliminaries

Proof: See [7][Page 24].

Theorem 1.1.4 (Caratheodory-Hahn) Let ρ : S → [0,∞) be a σ-finite premeasure defined
on a semiring S . Denote by ρ∗ the induced outer measure and by ρ the measure defined on
ρ∗-measurable sets. Then, ρ is the unique measure extending ρ to σ(S ).

Proof: See [19, p.356].

A consequence of the previous theorem is that to prove the equality of σ-finite measures, it
is enough to prove that they coincide on a generating semiring.

We will make use of the following version of the change of variables formula.

Theorem 1.1.5 Given a σ-finite measure space (Y,T , τ), a measurable space (U,Σ) and a
measurable function φ : (Y,T , τ)→ (U,Σ), the set function φ∗(τ) : Σ→ [0,∞) defined by

φ∗(τ)(E) = τ
(
φ−1(E)

)
,

defines a measure. A Σ- measurable function g : U → [−∞,∞] is integrable with respect to
φ∗(τ) precisely when g ◦ φ is integrable with respect to τ. In addition, the formula∫

φ(Y)

g d(φ∗(τ)) =
∫
Y

g ◦ φ dτ (1.1)

holds. We call the measure φ∗(τ) the pushforward measure.

Proof: See [4, Theorem 3.6.1].

From now on, we suppose that all the measure spaces involved are σ-finite. Given a mea-
sure space (U,Σ, µ), the collection of equivalence classes of Σ-measurable functions equal up
to a set of µ-measure zero will be denoted L(Σ) or L0

µ.
For a real number p ∈ (0,∞] and a measurable real valued function f we denote

∥ f ∥Lp
µ
=

(∫
U
| f |p dλ

) 1
p

if p < ∞, and ∥ f ∥L∞µ = ess sup{| f (s)| : s ∈ U}.

The collections of functions for which these quantities are finite are called the Lebesgue
spaces and are denoted Lp

µ, it is well known that these are Banach spaces for p ∈ [1,∞] and
quasi-Banach spaces for p ∈ (0, 1).

We will make use of Hölder’s inequality and Minkowski’s integral inequality.

Proposition 1.1.6 Let p ∈ (1,∞), f , g measurable functions and 1
p +

1
p′ = 1. Then∫

U
| f g| dλ ≤

(∫
U
| f |p dλ

) 1
p
(∫

U
|g|p

′

dλ
) 1

p′

(1.2)

and ( ∫
U

( ∫
Y
| f | dτ

)p

dλ
)1/p

≤

∫
Y

( ∫
U
| f |p dλ

)1/p

dτ (1.3)

Proof: See [10, Theorems 188 and 202].



1.2. Positive operators 5

1.2 Positive operators
The following results from the theory of vector lattices will be needed, we follow the exposition
from [1].

Definition 1.2.1 A R-vector space V is a vector lattice if it is equipped with a partial order
relation denoted ‘≤’ that is compatible with the algebraic operations. That is

If x, y ∈ V and x ≤ y then x + z ≤ y + z, ∀z ∈ V.

If x, y ∈ V and x ≤ y then αx ≤ αy, ∀α ∈ R+.

And if for any x, y ∈ V, there exists a supremum denoted x ∨ y ∈ V.
The collection of vectors x ∈ V such that x ≥ 0 is denoted by V+.
Any vector x ∈ V can be uniquely decomposed in its positive and negative parts. That is,

x = x+ − x−,

where x+ = x ∨ 0 and x− = (−x) ∨ 0.

For our purposes, a fundamental example of vector lattice is given by V = L0
µ for a σ-

finite measure space (U,Σ, µ). The order relation is up to inequality µ-almost everywhere. The
supremum of two functions is given by f ∨ g = max{ f , g}.

We consider the class of linear maps that preserve the order relations.

Definition 1.2.2 Given two vector lattices V,W. A linear map T : V → W is positive if
T (x) ∈ W+ for every x ∈ V+.

We will focus on vector lattices with some extra properties.

Definition 1.2.3 A vector lattice V is archimedean if for any x ∈ V+ the sequence
{

1
n x

}
n>0

satisfies the following:

If z ∈ V : z ≤
1
n

x, ∀n, then z ≤ 0.

Examples of archimedean vector lattices include the Lp spaces for p ∈ [1,∞]. The follow-
ing theorem will be useful in extending linear operators defined on positive elements.

Theorem 1.2.4 (Kantorovich) Let V,W be vector lattices, with W being archimedean. Suppose
that T : V+ → W+ is an additive mapping, that is, T (x + y) = T (x) + T (y) holds for all
x, y ∈ V+. Then T has a unique extension to a positive operator from V to W. Moreover, the
unique extension is given by

T (x) = T (x+) − T (x−).

Proof: See [1, Theorem 1.10].

The definition of supremum need not be constrained to a finite collection of vectors.



6 Chapter 1. Preliminaries

Definition 1.2.5 Given a set A ⊆ V, we say that A is bounded above if there exists z ∈ V such
that y ≤ z for all y ∈ A. We say that x = sup A if y ≤ x for all y ∈ V and for any z ∈ V if y ≤ z
for all y ∈ A, then x ≤ z. A vector lattice V is Dedekind complete if every set A bounded above
in V has a supremum in V.

Examples of Dedekind complete vector lattices include the Lp spaces for p ∈ [1,∞). It also
follows from the definition, that any Dedekind complete vector lattice is also archimedean.

We are interested in the following operator version of the Hahn-Banach theorem.

Theorem 1.2.6 (Hahn-Banach-Kantorovich) Let V be a R-vector space, W be a Dedekind
complete vector lattice and ρ : V → W satisfying

ρ(x + y) ≤ ρ(x) + ρ(y), and ρ(αx) = αρ(x),

for all x, y ∈ V and α ∈ V. If H is a linear subspace of V and f : H → W is a linear map
satisfying f (x) ≤ ρ(x) for all x ∈ H, then there exists an operator h : V → W such that

• h(x) = f (x) for all x ∈ H.

• h(x) ≤ ρ(x) for all x ∈ V.

Proof: See [1, Theorem 1.25].

1.3 Banach function spaces
We focus on a particular instance of vector lattices called Banach function spaces, we follow
the exposition from [33].

Over a σ-finite measure space (U,Σ, µ), we denote by L+(Σ) the set of all nonnegative
measurable functions on U. For a sequence { fn} ∈ L+(Σ) we write fn ↑ f whenever the sequence
{ fn} is increasing and converges to f µ-almost everywhere.

Definition 1.3.1 A mapping ρ : L+(Σ)→ [0,∞] is a function seminorm if for any f , g, { fn}n∈N ∈

L+(Σ), c ∈ (0,∞) and any measurable E ⊆ R, the following holds:

• ρ( f ) = 0 if f = 0, ρ(c f ) = cρ( f ), ρ( f + g) ≤ ρ( f ) + ρ(g).

• 0 ≤ g ≤ f implies ρ(g) ≤ ρ( f ).

If in addition ρ( f ) = 0 implies f = 0 µ-almost everywhere, then ρ is called a function norm.
A function seminorm has the Riesz-Fischer property if

∞∑
n=1

ρ( fn) < ∞, implies ρ
( ∞∑

n=1

fn

)
≤

∞∑
n=1

ρ( fn).

A function seminorm has the Fatou property if

fn ↑ f , implies ρ( fn) ↑ ρ( f ).

A function seminorm is saturated if for any set E of positive measure there exists a subset
F ⊆ E such that µ(F) > 0 and ρ(χF) < ∞.
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For a given function norm ρ we define the function space Lρ as the collection of all mea-
surable functions f such that ρ(| f |) is finite. The following result relates the completeness of
Lρ with the Riesz-Fischer and Fatou properties.

Theorem 1.3.2 The normed linear space Lρ is complete (i.e., Lρ is a Banach space) if and only
if ρ has the Riesz-Fischer property. If ρ has the Fatou property, then it has the Riesz-Fischer
property, and so, Lρ is complete.

Proof: See [33, Theorem 1, page 444] and [33, Theorem 2, page 445].

We now consider our natural notion of dual space, it will be given by another seminorm.

Definition 1.3.3 Given a function seminorm ρ, the associate seminorm is defined by

ρ′( f ) = sup


∫
U

f g dµ : g ∈ L+(Σ) and ρ(g) ≤ 1


The associate space (or Köthe dual) is the function space Lρ′ .

Example 1.3.4 Let p ∈ [1,∞] and ρ( f ) = ∥ f ∥Lp
µ
. Then Lρ = Lp

µ and ρ′( f ) = ∥ f ∥Lp′
µ

. Notice that
this holds even for the case p = ∞, where it does not hold for the topological dual space.

Some results regarding these associate spaces are recorded next.

Proposition 1.3.5 Given a function seminorm ρ and f , g ∈ L+(Σ), the following hold:

1. The function seminorm ρ′ has the Fatou property.

2. (Hölder’s inequality) We have ∫
U

f g dµ ≤ ρ( f )ρ′(g). (1.4)

3. We have ρ′′( f ) ≤ ρ( f ) and ρ
′′′

( f ) = ρ′( f ).

4. We have the embedding Lρ ⊆ Lρ′′ and the equality Lρ′ = Lρ′′′ with identical norms.

5. The function seminorm ρ is saturated if and only if ρ′ is a norm.

6. A function seminorm has the Fatou property if and only if ρ′′ = ρ.

Proof: Item (1) is [33, Theorem 1, page 457]. Items (2) and (3) are proved in [33, Theorem 2,
page 457]. Item (4) is an immediate consequence of (3). Item (5) is [33, Theorem 4, page 458].

Regarding item (6), if ρ′′ = ρ then ρ has the Fatou property as a consequence of item (1).
The converse is proven in [3, Theorem 2.7, page 10], notice that in [3], the Fatou property is
part of the definition of a Banach function space.
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1.3.1 Rearrangement invariant spaces
We follow the notation in the previous section.

Definition 1.3.6 Let f be a measurable function. The distribution function µ f : [0,∞) →
[0,∞] is given by

µ f (λ) = µ ({x ∈ U : | f (x)| > λ}) .

We can use the distribution functions to make comparisons between functions defined on
different measure spaces.

Definition 1.3.7 Let (U,Σ, µ) and (Y,T , τ) be σ-finite measure spaces. We say that f ∈ L(Σ)
and g ∈ L(T ) are equimeasurable if they have the same distribution function, that is, if µ f (λ) =
τg(λ) for all λ ≥ 0.

The generalized inverse of the previous function is given next.

Definition 1.3.8 The nonincreasing rearrangement of f is the function f ∗ : [0,∞) → [0,∞]
defined by

f ∗(t) = inf{λ : µ f (λ) ≤ t}.

Some properties of the rearrangement are recorded in the following proposition.

Proposition 1.3.9 Let f , g, { fn}n∈N ∈ L(Σ), then:

1. The function f ∗ is nonincreasing and right continuous.

2. If | f | ≤ |g| µ-almost everywhere, then f ∗ ≤ g∗.

3. If fn ↑ f λ-a.e, then f ∗n ↑ f ∗.

4. If t1, t2 > 0, then
( f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2).

5. If µ(λ) and f ∗(t) are finite, then

f ∗(µ f (λ)) ≤ λ and µ f ( f ∗(t)) ≤ t.

6. For p ∈ (0,∞) we have ∫
U
| f |p dµ =

∫ ∞

0
( f ∗)p(t) dt.

And ∥ f ∥L∞µ = f ∗(0).

Proof: Items (1) to (5) are proved in [3, Proposition 1.7, page 41]. Item (6) is proved in [3,
Proposition 1.8, page 43].

The following are function spaces that are well behaved with respect to the nonincreasing
rearrangement.
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Definition 1.3.10 A universally rearrangement invariant (u.r.i.) space over U is a Banach
function space over U such that for f , g ∈ L(Σ) and ρ(g) < ∞:

If
∫ t

0
f ∗ ≤

∫ t

0
g∗, for all t > 0, then ρ( f ) ≤ ρ(g).

It follows directly from the definition that if f and g are equimeasurable, then ρ( f ) = ρ(g),
whenever ρ is a u.r.i. space. More properties are recorded below.

Proposition 1.3.11 Let ρ be a u.r.i. function norm, then:

• If there exists a function f not µ-a.e. zero such that ρ( f ) < ∞, then ρ is saturated.

• The associate norm ρ′ is u.r.i.

Proof: To prove the first statement, suppose that E is a set of positive finite measure. We
will show that ρ(χE) < ∞, which shows that ρ is saturated. Since U is σ-finite, there exists a
sequence of sets {Un} of finite measure, such that Un ↑ U. Since | f | > 0 on a set of positive
measure, there exists some n, ϵ such that the set

F = {u ∈ Un : | f (u)| > ϵ}

has positive finite measure. If µ(E) ≤ µ(F), then∫ t

0
(χE)∗ = min

(
t, µ(E)

)
≤ min

(
t, µ(F)

)
=

∫ t

0
(χF)∗ ≤

∫ t

0

1
ϵ

(ϵχF)∗ ≤
∫ t

0

1
ϵ

( f )∗ =
∫ t

0
( f /ϵ)∗,

above we used the fact that ϵχF ≤ | f |. Since ρ( f /ϵ) < ∞ and ρ is u.r.i., it follows that ρ(χE) <
∞.

In the case that µ(F) < µ(E), we have

∫ t

0
(χE)∗ =


t, t ≤ µ(F)
t, t ∈ (µ(F), µ(E)]
µ(E), t > µ(E)

≤


µ(E)
µ(F) t, t ≤ µ(F)
µ(E), t ∈ (µ(F), µ(E)]
µ(E), t > µ(E)

=
µ(E)
µ(F)

∫ t

0
(χF)∗

≤
µ(E)
µ(F)

∫ t

0
( f /ϵ)∗ =

∫ t

0

(
µ(E)
ϵµ(F)

f
)∗
.

Once more, we get ρ(χE) ≤ ρ
(
fµ(E)/(ϵµ(F))

)
< ∞. This shows that ρ is saturated.

The statement that ρ′ is u.r.i. is [15, Theorem 11.11(i)].

Example 1.3.12 Item (6) in Proposition 1.3.9, shows that the Lp
µ spaces are u.r.i. for all p ∈

[1,∞].
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1.4 Interpolation spaces and the K-functional
The objects to be studied are couples of Banach spaces, roughly speaking, a couple is compat-
ible when there is a way to compare elements that could belong to different spaces.

Definition 1.4.1 A pair of Banach spaces (X0, X1) is a compatible couple if the two spaces are
continuously embedded in a Hausdorff topological vector space.

Any subspace Y of a Banach space X induces a compatible couple by making X0 = Y ,
X1 = X, and the inclusion maps as the continuous embeddings.

A very important example is given by couples of Lp
µ spaces over a sigma-finite measure

space (U,Σ, µ). They are all embedded in a space of measurable functions equipped with
convergence in measure.

For any compatible couple (X0, X1) their intersection and sum (defined in the bigger space
X) are Banach spaces.

Definition 1.4.2 The spaces X0 + X1 and X0 ∩ X1 have the norms

∥x∥X0+X1 = inf
{
∥x0∥X0 + ∥x1∥X1 : x = x0 + x1

}
;

∥x∥X0∩X1 = max{∥x∥X0 , ∥x∥X1}.

Clearly, we have the inclusions X0 ∩ X1 ↪→ Xi ↪→ X0 + X1 for i = 1, 2, however, there can
be more spaces satisfying these conditions.

Definition 1.4.3 An intermediate space is a space continuously embedded between X0 ∩ X1

and X0 + X1.

1.4.1 Interpolation pairs
Here we study operators between compatible couples

Definition 1.4.4 Given two compatible couples (X0, X1) and (Y0,Y1) an admissible operator
is a linear map T : X0 + X1 → Y0 + Y1 such that T |Xi ∈ B(Xi,Yi) for i = 0, 1. The norm of
the admissible map ∥T∥ is the maximum of the operator norms of the restricted maps T |Xi . If
∥T∥ ≤ 1 we say that T is a contraction.

Given a compatible couple, we distinguish the intermediate spaces that remain stable with
respect to admissible operators.

Definition 1.4.5 Given two compatible couples (X0, X1) and (Y0,Y1), an interpolation pair is
a pair of intermediate spaces (X,Y) such that T (X) ⊆ Y for every admissible operator T .

If X0 = Y0, X1 = Y1 and X = Y then X is an interpolation space. It is an exact interpolation
space if ∥T∥X→X ≤ ∥T∥, for every admissible map.

The next result begins to show the relationship between u.r.i. spaces and interpolation
spaces for the couple (L1

µ, L
∞
µ ).



1.5. The K-method of interpolation 11

Theorem 1.4.6 If ρ is a u.r.i. function norm, then Lρ is an exact interpolation space between
L1
µ and L∞µ .

Proof: See [6, Theorem 3].

As a consequence of the theorem above, we note that the Lp
µ spaces are interpolation spaces

for the couple (L1
µ, L

∞
µ ), more generally any u.r.i. space is an exact interpolation space.

A main goal in Interpolation of Operators: Given a pair of compatible Banach spaces,
describe all possible interpolation spaces.

1.5 The K-method of interpolation
We study a method of generating interpolation spaces for a given compatible couple. For our
purposes, we assume that the elements of the Banach spaces are functions defined on a σ-finite
measure space (U,Σ, µ).

Definition 1.5.1 For a compatible couple (X0, X1) the K-functional is defined by the formula

K( f , t, X0, X1) = inf
{
∥ f0∥X0 + t∥ f1∥X1 : f = f0 + f1

}
.

Remark Notice that K( f , 1, X0, X1) = ∥ f ∥X0+X1 .

We will need some basic properties of the K-functional.

Proposition 1.5.2 For any compatible couple (X0, X1) and f ∈ X0 + X1. The K-functional is a
nonnegative concave function.

If W : (X0, X1)→ (Y0,Y1) is an admissible contraction, then

K(W f , t,Y0,Y1) ≤ K( f , t, X0, X1). (1.5)

If (X0, X1) is a compatible couple of Banach function spaces over the same measure space, then

K( f , t, X0, X1) = inf
{
∥ f0∥X0 + t∥ f1∥X1 : | f | = f0 + f1, 0 ≤ f0, 0 ≤ f1

}
. (1.6)

Proof: The concavity of the K-functional is proved in [3, Proposition 1.2, page 294]. The
inequality (1.5) follows from [3, Theorem 1.1, page 301].

To prove formula (1.6), suppose that f = f0 + f1 and | f | = g0 + g1 with f0, g0 ∈ X0 and
f1, g1 ∈ X1. Define ui = sgn( f ) fi and wi = sgn( f )gi for i ∈ {0, 1}. Observe that | f | = u0 + u1,
f = w0 + w1, |ui| ≤ | fi| and |wi| ≤ |gi|, therefore

K(| f | , t; X0, X1) ≤ ∥u0∥X0 + t∥u1∥X1 ≤ ∥ f0∥X0 + t∥ f1∥X1 ,

and
K( f , t; X0, X1) ≤ ∥w0∥X0 + t∥w1∥X1 ≤ ∥g0∥X0 + t∥g1∥X1 .

Taking infimum over all decompositions f = f0 + f1 and | f | = g0 + g1 shows the equality
K(| f | , t; X0, X1) = K( f , t; X0, X1).
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To complete the proof, for a decomposition | f | = g0 + g1, define the functions

h0(x) =


g0(t), if g0(t) ≥ 0 and g1(t) ≥ 0,
g0(t) + g1(t), if g0(t) ≥ 0 and g1(t) < 0,
0, if g0(t) < 0.

and

h1(x) =


g1(t), if g0(t) ≥ 0 and g1(t) ≥ 0,
g0(t) + g1(t), if g0(t) < 0 and g1(t) ≥ 0,
0, if g1(t) < 0.

Notice that g0(t) < 0 and g1(t) < 0 do not occur at the same time, since g0(t) + g1(t) ≥ 0. We
have h0(t) + h1(t) = g0(t) + g1(t) = | f | with |h0| ≤ |g0|, |h1| ≤ |g1|, 0 ≤ h0, and 0 ≤ h1. Thus,

inf
{
∥ f0∥X0 + t∥ f1∥X1 : | f | = f0 + f1, 0 ≤ f0, 0 ≤ f1

}
≤ ∥h0∥X0 + t∥h1∥X0 ≤ ∥g0∥X0 + t∥g1∥X0 ,

taking infimum over all decompositions | f | = g0 + g1 yields the inequality

inf
{
∥ f0∥X0 + t∥ f1∥X1 : | f | = f0 + f1, 0 ≤ f0, 0 ≤ f1

}
≤ K(| f | , t; X0, X1).

The reverse inequality follows immediately from the definition of the K-functional, there-
fore

inf
{
∥ f0∥X0 + t∥ f1∥X1 : | f | = f0 + f1, 0 ≤ f0, 0 ≤ f1

}
= K(| f | , t; X0, X1) = K( f , t; X0, X1),

completing the proof.

In practice, it will be useful to have a description of the K-functional that does not involve
all possible decompositions of the form x = x0 + x1. Finding this representation is in general a
very difficult problem, but it is possible to compute in some cases.

Theorem 1.5.3 Let X0 = L1
µ and X1 = L∞µ , then

K( f , t, X0, X1) =
∫ t

0
f ∗.

Proof: See [5], page 338 and 341.

A Banach function space Φ of functions over (0,∞) with the measure dt/t is a parameter
of the K-method if it contains the function t 7→ min(1, t). With a parameter of the K-method
we can generate interpolation spaces in the following way.

Proposition 1.5.4 For a compatible couple (X0, X1) and a parameter of the K-methodΦ, define
a map from X0 + X1 → [0,∞] by

∥ f ∥(X0,X1)Φ = ∥K( f , ·, X0, X1)∥Φ.

The space of all f ∈ X0 + X1 for which ∥ f ∥(X0,X1)Φ is finite, is an exact interpolation space of
(X0, X1).
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Proof: See [Proposition 3.3.1][5].

As a consequence of Theorem 1.5.3, we can rewrite Definition 1.3.10 in terms of the K-
functional for (L1

µ, L
∞
µ ). We can say that a function norm ρ is u.r.i. if the condition

K( f , t, L1
µ, L

∞
µ ) ≤ K( f , t, L1

µ, L
∞
µ )

implies ρ( f ) ≤ ρ(g). The monotonicity condition for a Banach function space (and thus for a
parameter of the K-method Φ) shows that (L1

µ, L
∞
µ )Φ is a u.r.i. space. It is natural to ask if the

converse is true, i.e. if a u.r.i. space is an exact interpolation space, or if an exact interpolation
space is a u.r.i. space. The following theorem answers this question.

Theorem 1.5.5 (Calderón) The following are equivalent:

• Z is a u.r.i. space over (U,Σ, µ).

• Z = (L1
µ, L

∞
µ )Φ with identical norms.

• Z is an exact interpolation space of (L1
µ, L

∞
µ ).

Proof: See [3, Theorem 2.1, page 116] and [6].

It is not true in general, that every exact interpolation space is generated by the K-method.
However, for some compatible couples like (L1

µ, L
∞
µ ), it will be the case that every exact inter-

polation space is generated by the K-method. To state this result we need two definitions, in
the first one we distinguish the compatible couples for which we can decompose a function in
terms of their K-functional.

Definition 1.5.6 A compatible couple (X0, X1) is said to be divisible if there exists a constant
γ ∈ (0,∞) such that for any sequence of nonnegative, concave functions {ω j} j∈N+ such that∑∞

j=1 ω(1) < ∞ and

K( f , t, X0, X1) ≤
∞∑
j=1

ω j(t), for all t > 0,

there exists a sequence { f j} j∈N+ such that

K( f j, t, X0, X1)(t) ≤ γω j(t), for all t and j, (1.7)

and the series
∑∞

j=1 f j converges to f in X0 + X1.
The smallest constant γ satisfying (1.7) is called the K-divisibility constant of (X0, X1). Note

that the divisibility constant is always at least 1.

The second key definition is the following.

Definition 1.5.7 A couple compatible couple (X0, X1) is called an exact Calderón couple if
given the condition K( f , t, X0, X1) ≤ K(g, t, X0, X1), then there exists admissible operator T
such that Tg = f .
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We see that the couple (L1
µ, L

∞
µ ) is an exact Calderón couple and some properties of the

operator T from the definition above.

Theorem 1.5.8 Let f , g ∈ L1
µ + L∞µ such that∫ t

0
f ∗ ≤

∫ t

0
g∗, for all t > 0.

Then, there exists an admissible contraction T from L1
µ + L∞µ to itself, such that Tg = f . More-

over, if h is a nonnegative nonincreasing function, then Th is nonnegative and nonincreasing.

Proof: See [2, Theorem 5].

The following result relates the Calderón property with K-divisibility.

Theorem 1.5.9 Let (X0, X1) be an exact Calderón couple with divisibility constant 1, then if Z
is an exact interpolation space for (X0, X1), there exists a parameter of the K-method Φ such
that (X0, X1)Φ = Z with identical norms.

Proof: See [Propositions 3.3.1 and 4.4.5][5].

One of the main results of this dissertation is Theorem 4.2.9, which exhibits a compatible
couple of Banach spaces that is a Calderón couple with divisibility constant 1.

1.6 Monotonicity on the half line
We consider the notion of nondecreasing functions almost everywhere (See [26, Definition 2.1
and Theorem 2.4]).

Definition 1.6.1 Given a Borel measure λ on [0,∞) we say that a function f is nonincreasing
almost everywhere if there exists a nonincreasing function g such that f = g up to a set of
λ-measure is zero.

The usual order relation for measurable functions is pointwise, that is, f ≤ g if the set
{x ∈ [0,∞) : g(x) > f (x)} has zero λ-measure. Over the set of locally integrable nonnegative
functions, we can define a second partial order, we denote f ≤↓ g if∫

[0,x]

f dλ ≤
∫

[0,x]

g dλ, for all x > 0.

Notice that requiring local integrability ensures that the quantities involved are finite. Transitiv-
ity and reflexivity of ≤↓ is immediate. Antisymmetry follows from an application of Theorem
1.1.4, showing that if f ≤↓ g and g ≤↓ f , then the measures

E 7→
∫

E
f dλ, and E 7→

∫
E

gdλ,
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coincide. We will explore this type of order in more detail in Chapter 3.
The set of nonnegative locally integrable functions has two important constructions in the

partial orders ‘≤↓’ and ‘≤’.
The least decreasing majorant of f is defined by

f̃ (x) = ess sup{ f (t) : t ≥ x}.

This function is a nonincreasing majorant of f (see [26, Lemma 2.3]). It is optimal for the
order ‘≤’ in the sense that if g is another nonincreasing majorant of f , then f̃ (x) ≤ g(x). We
can also describe this least decreasing majorant as a linear functional in the following way

∫
[0,∞)

f̃ g dλ = sup


∫

[0,∞)

f h dλ : h ∈ L+λ and h ≤↓ g

 .
Notice that the second partial order ‘≤↓’ appears in this functional description. A proof of
the above functional description is provided in [29, Theorem 2.1], however, we will give an
alternative proof in a more general setting in Theorem 3.2.5.

There is another construction for a minimal decreasing majorant of f in the partial order
‘≤↓’, which needs the following definition.

Definition 1.6.2 (Level function) For any Borel measurable function f , we say that a nonin-
creasing function f o is a level function of f if for any nonincreasing function g we have

∫
[0,∞)

f og dλ = sup


∫

[0,∞)

| f | h dλ : h ∈ L↓λ and h ≤↓ g

 .
The next result shows the existence of f o and it being a least decreasing majorant with

respect to the partial order ‘≤↓’.

Proposition 1.6.3 Let λ be a σ-finite Borel measure over [0,∞) and f be a nonnegative mea-
surable function. Then there exists a nonincreasing function f o satisfying:

1. If 0 ≤ f ≤ g, then f o ≤ go.

2. If 0 ≤ fn ↑ f , then f o
n ↑ f o.

3. If g is nonincreasing, then

∫
[0,∞)

f og dλ = sup


∫

[0,∞)

f h dλ : h ∈ L↓λ and h ≤↓ g

 .
4. If f is locally integrable, then | f | ≤↓ f o and if h is a nonincreasing locally integrable

function satisfying | f | ≤↓ h, then f o ≤↓ h. That is, f o is the least decreasing majorant
(for ‘≤↓’) of | f |.
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Proof: For bounded functions, the internal structure of f o is shown in [26, Theorem 4.4].
Item (1) is proved in [26, Theorem 4.4]. Item (2) is proved in [26, Lemma 5.3]. The construc-
tion is extended by monotonicity to unbounded functions (see [27, Definition 2.3]) and items
(1) and (2) are still valid.

Item (3) is [29, Theorem 2.3]. Item (4) is proved in [29, Lemma 2.2].

There is also another description of the level function, to state it we consider a class of av-
eraging operators, for a countable collection I of disjoint intervals of positive measure, defined
by

J f (x) =

 1
λ(I)

∫
I

f dλ, if x ∈ I ∈ I
f (x), otherwise.

Proposition 1.6.4 If f is bounded and vanishes outside of an interval [0,M] for some M > 0,
then there exists an averaging operator J f such that f o = (J f ) f λ-a.e. The operator J f is a
contraction on any u.r.i. space.

Proof: The equality J f f = f o follows from [29, Proposition 1.5]. To prove the second state-
ment. The estimates∣∣∣∣∣ 1

λ(I)

∫
I

f dλ
∣∣∣∣∣ ≤ 1

λ(I)

∫
I
| f | dλ ≤

1
λ(I)

∫
I
∥ f ∥L∞λ dλ = ∥ f ∥L∞λ ,

∫
[0,∞)

|J f | dλ =
∫
I

|J f | dλ +
∫

x<I
| f | dλ ≤

∑
I∈I

∫
I

(
1
λ(I)

∫
I
| f | dλ

)
dλ +

∫
x<I
| f | dλ

=
∑
I∈I

∫
I
| f | dλ +

∫
x<I
| f | dλ =

∫
[0,∞)

| f | dλ = ∥ f ∥L1
λ
.

Show that J f is an admissible map with norm 1. Theorem 1.5.5 proves that J f is a contraction
on any u.r.i. space.

1.6.1 Down spaces
The inequality (1.4) cannot be improved without restricting the function g in the sense that for
a fixed f there is a function g such that the ratio of the two sides is as close to 1 as desired.
However, if we know that g is nonincreasing, then some improvement of the inequality can be
expected. Consider the following norm

Definition 1.6.5 (Down norm) For a λ-measurable function f , let

ρ↓( f ) = sup


∫

[0,∞)

| f | g dλ : ρ′(g) ≤ 1 and g is nonincreasing

 . (1.8)
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Had we not restricted g to be nonincreasing, this is just the function norm ρ′′, which coincides
with ρ in the presence of the Fatou property. In general, we have the inequality

ρ↓( f ) ≤ ρ′′( f ) ≤ ρ( f ).

We get the improvement of the inequality (1.4):∫
[0,∞)

| f | g dλ ≤ ρ↓( f )ρ′(g)

for all nonincreasing nonnegative functions g.

Definition 1.6.6 (Down space) Given a function norm ρ, the down space Lρ↓ is the collection
of functions for which ρ↓( f ) is finite.

Since ρ↓( f ) ≤ ρ′′( f ), it follows that Lρ ⊆ Lρ′′ ⊆ Lρ↓. Some examples of down spaces are
given next.

Proposition 1.6.7 We have the equality L1
λ = L1

λ↓ with identical norms. The space L∞λ ↓ has the
norm

∥ f ∥L∞λ ↓ = sup
x≥0

1
λ([0, x])

∫
[0,x]

| f | dλ.

Proof: We will provide a proof of a generalized case in Theorem 4.1.3.

If ρ is a u.r.i. function norm we have the following relationship of the norm and the level
function.

Theorem 1.6.8 Let ρ be a u.r.i. function norm and f ∈ L+(Σ). Then,

ρ↓( f ) = ρ( f o).

Proof: See [27, Theorem 2.2].

We will consider another space, using the least decreasing minorant.

Definition 1.6.9 Given a function norm ρ the space L̃ρ is the collection of functions for which
the norm

∥ f ∥L̃ρ = ∥ f̃ ∥Lρ ,

is finite.

Since f ≤ f̃ , it follows that L̃ρ ⊆ Lρ. The relationship between the spaces L̃ρ and Lρ↓ is
given in the next result.

Theorem 1.6.10 Let ρ be a u.r.i. function norm, then (Lρ↓)′ = L̃ρ′ with identical norms.
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Proof: See [30].

It follows from the last theorem that L̃∞λ = (L1
λ↓)
′ = (L1

λ)
′ = L∞λ . The interpolation properties

of the compatible couples (L1
λ, L

∞
λ ↓) and (L̃1

λ, L
∞
λ ) are summarized in the following result.

Theorem 1.6.11 Let λ be a Borel measure on [0,∞) then the following results hold:

1. For any f ∈ L1
λ + L∞λ ↓,

K( f , t, L1
λ, L

∞
µ ↓) =

∫ t

0
( f o)∗ = K( f o, t, L1

λ, L
∞
µ ), for all t > 0. (1.9)

2. For any g ∈ L̃1
λ + L∞λ ,

K(g, t, L̃1
λ, L

∞
µ ) =

∫ t

0
(̃g)∗ = K (̃g, t, L1

λ, L
∞
µ ), for all t > 0. (1.10)

3. The couple (L1
λ, L

∞
λ ↓) is an exact Calderón couple with divisibility constant 1.

4. The couple (L̃1
λ, L

∞
λ ) is an exact Calderón couple.

Proof: Item (1) is proved in [16, Theorem 5.4]. Item (2) follows from [25, Theorem 1]. For
item (3), the Calderón property follows from [16, Theorem 4.6] and the divisibility constant is
proved in [16, Corollaries 3.9 and 4.7]. Item (4) follows follows from [17, Theorem 4.3].

1.7 Hardy inequalities
An important inequality due to Hardy ([9]) is( ∫ ∞

0

(1
x

∫ x

0
f (t) dt

)p

dx
)1/p

≤
p

p − 1

( ∫ ∞

0
f p dx

)1/p

, for all f ∈ L+.

This inequality shows the boundedness of the Hardy operator f 7→ 1
x

∫ x

0
f between Lp to itself.

We will concern ourselves with different generalizations of this inequality. The first result
gives necessary and sufficient conditions for the boundedness of the Hardy operator with two
general measures.

Theorem 1.7.1 Let λ, ν be σ-finite Borel measures on [0,∞). Then, the best constant C in the
inequality ( ∫

[0,∞)

( ∫
[0,x]

f dλ
)q

dν
)1/q

≤ C
( ∫
[0,∞)

f p dλ
)1/p

, for all f ∈ L+, (1.11)

satisfies:
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1. If 1 < p ≤ q < ∞, then

C ≈ sup
x≥0

( ∫
[x,∞)

dν
)1/q( ∫

[0,x]

dλ
)1/p′

.

2. If 1 < q < p < ∞, then

C ≈
( ∫
[0,∞)

( ∫
[x,∞)

dν
)r/q( ∫

[0,x]

dλ
)r/q′

dλ(x)
)1/r

.

3. If 0 < q < 1 < p < ∞, then

C ≈
( ∫
[0,∞)

( ∫
[0,x]

dλ
)r/p′( ∫

[x,∞)

dν
)r/p

dν(x)
)1/r

.

Here 1/p + 1/p′ = 1, 1/q + 1/q′ = 1 and 1/r + 1/p = 1/q.

Proof: See [26, Theorem 7.1] with all the measures vanishing on (−∞, 0). Be mindful of a
typo in the exponents for part (3).

In the theorem above, the domain is the space Lp
λ for p > 1. The case p = 1 must be treated

separately. The next result explores this case.

Theorem 1.7.2 Let µ, ν, η be Borel measures on [0,∞) and 0 < q < 1 = p, then the best
constant for which the inequality( ∫

[0,∞)

( ∫
[0,x]

f dλ
)q

dν(x)
)1/q

≤ C
∫

[0,∞)

f dη, (1.12)

holds for all nonnegative measurable functions satisfies

C ≈
( ∫
[0,∞)

( ∫
[0,x]

1
w

dν
) q

1−q

dν(x)
)1/q

. (1.13)

Where w(x) = ess infλ{w(t) : t ∈ [0, x]}, dη = dλ⊥ + wdλ and λ⊥ ⊥ λ.

Proof: See [11, Theorem 3.1].

We consider a very general class of Hardy operators introduced in [31], generalizing the
domain from the half line to general measure spaces.

Definition 1.7.3 Let (U,Σ, µ) and (Y,T , τ) be σ-finite measure spaces. We call B : Y → Σ a
core map if:

1. The range of B is a totally ordered subset of Σ.
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2. For all E ∈ Σ, the map y→ µ(E ∩ B(y)) is T -measurable and takes finite values.

3. There exists a countable set Y0 ⊆ Y such that ∪y∈Y B(y) = ∪y∈Y0 B(y).

Given a core map, we say that the operator

T f (y) =
∫

B(y)

f dµ,

is an abstract Hardy operator.

Given a core map, an inequality of the form( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
( ∫

U

f p dµ
)1/p

,

for all positive measurable functions f is called an Abstract Hardy inequality. Notice that
setting Y = U = [0,∞) and B(y) = [0, y] recovers the half line case. Abstract Hardy inequalities
are not the most general Hardy inequalities we will consider. The next result shows that,
provided p > 1, it is possible to reduce a three-measure Hardy inequality to an abstract Hardy
inequality.

Theorem 1.7.4 Let p ∈ (1,∞), q ∈ (0,∞), (U,Σ, µ), (Y,T , τ) be σ-finite measure spaces,
B : Y → Σ a core map. Decompose µ in the form dµ = d(η⊥) + u dη with respect to η such
that η⊥ ⊥ η and u ∈ L+(Σ). Define the measure ν by dν = up′dη. Suppose ν(B(y)) < ∞ and
η⊥(B(y)) = 0 τ-almost everywhere on Y. Then, B is also a core map with respect to the measure
ν and the best constant in the inequality( ∫

Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
( ∫

U

f p dη
)1/p

, (1.14)

is also the best constant in the abstract Hardy inequality( ∫
Y

( ∫
B(y)

f dν
)q

dτ(y)
)1/q

≤ C
( ∫

U

f p dν
)1/p

, for all f ∈ L+(Σ).

Proof: See [31, Theorem 5.1].

Given an abstract Hardy inequality, the next theorem shows an equivalence with an inequal-
ity over the half line.

Theorem 1.7.5 Let p ∈ [1,∞], q ∈ (0,∞], (U,Σ, µ), (Y,T , τ) be σ-finite measure spaces,
B : Y → Σ a core map. The best constant in the inequality( ∫

Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
( ∫

U

f p dµ
)1/p

, for all f ∈ L+(Σ)
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with appropriate adjustments to the formulas for the norms when p = ∞ or q = ∞, is the same
as the best constant in the inequality( ∫ ∞

0

( ∫ b(x)

0
f (t) dt

)q

dx
)1/q

≤ C
( ∫

U

f (x) dx
)1/p

, for all f ∈ L+.

Where b = (µ ◦ B)∗ and the rearrangement is taken with respect to τ. The function b is called
the normal form parameter.

Proof: See [31, Theorem 2.4].

Notice that the reduction from three measures to two measures done in Theorem 1.7.4 does
not apply to the case p = 1. We will reserve the study for that case in Section 5.2.



Chapter 2

Ordered Cores

2.1 Basic properties
Let (U,Σ, µ) be a σ-finite measure space. We will not assume an order relation among the
elements of the space. Instead, we will rely on a distinguished collection of measurable sets to
establish the monotonicity properties.

Definition 2.1.1 Let (U,Σ, µ) be a σ-finite measure space. We say that A ⊆ Σ is an ordered
core provided

1. The collectionA contains the empty set.

2. (Total order) For any E1, E2 ∈ A either E1 ⊆ E2 or E2 ⊆ E1.

3. (Finite measure) µ(E) < ∞ for any E ∈ A.

If, in addition, ∪A = ∪A0 for some countable sub-collection A0 ⊆ A we say that A is
σ-bounded. If ∪A = U we say thatA is full.

Any ordered core induces a relation ≤A defined by u ≤A v if for all E ∈ A, v ∈ E implies
u ∈ E. The collection of non-negative measurable functions over σ(A) will be denoted by
L+(A).

Observe that the order relation is transitive and reflexive, but in general, it need not be
anti-symmetric. And it is total in the sense that for any pair u, v ∈ U we have u ≤A v or v ≤A u.

Based on this order we establish the following definitions.

Definition 2.1.2 Let (U,Σ, µ) be a σ-finite measure space andA be an ordered core.

1. The expression u <A v means that u ≤A v holds but v ≤A u fails.

2. For any u ∈ U the symbol (←, u]A denotes the set {s ∈ U : s ≤A u} and the symbol
(←, u)A denotes the set {s ∈ U : s <A u}.

3. For any u ∈ U the symbol [u]A denotes the set {s ∈ U : u ≤A s and s ≤A u}.

We establish some basic properties of the relation.

22
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Proposition 2.1.3 Let (U,Σ, µ) be a σ-finite measure space, A be an ordered core and u, v ∈
U. The following statements are equivalent.

1. v ∈ (←, u)A.

2. There exists E ∈ A such that v ∈ E and u < E.

Proof: To show item (1)→ item (2): Let v ∈ (←, u)A. By definition u ≤A v fails and item (2)
is the negation of u ≤A v. Conversely, if item (2) holds, then u ≤A v fails. Since the relation
≤A is total, v ≤A u holds. Thus (1) holds.

As a consequence, we have a description of the sets (←, u)A and (←, u]A in terms of unions
and intersections.

Corollary 2.1.4 Let (U,Σ, µ) be a σ-finite measure space,A an ordered core and u ∈ U. Then,

(←, u)A =
⋃

E∈A,u<E

E, (←, u]A =
⋂

E∈A,u∈E

E.

Proof: The implication (1)→ (2) in Proposition 2.1.3 shows (←, u)A ⊆
⋃

E∈A,u<E
E. The state-

ment
⋃

E∈A,u<E
E ⊆ (←, u)A follows from the implication (2) → (1) of Proposition 2.1.3. This

completes the proof of the first statement.
For the second statement, let v ∈ (←, u]A, then by definition of the order relation ≤A, if

u ∈ E ∈ A, it follows that v ∈ E. This shows that (←, u]A ⊆
⋂

E∈A,u∈E
E. To prove equality, let

v < (←, u]A, then v ≤A u, hence u ∈ (←, v)A. By Proposition 2.1.3 there exists E ∈ A such
that u ∈ E and v < E. Therefore v <

⋂
E∈A,u∈E

E, which completes the proof.

It is worth noting that the sets introduced in the previous definition need not be measurable.
An example of this phenomenon is exhibited in Section 2.1.1. We can force these sets to be
measurable by considering a subclass of ordered cores. Some of the constructions developed
in later sections take simpler forms when restricted to this subclass.

Definition 2.1.5 Let (U,Σ, µ) be a σ-finite measure space, A is called a separable ordered
core if for any C ⊆ A the sets ∪C and ∩C are σ(A)-measurable.

2.1.1 Examples
In this subsection, we establish some examples of ordered cores and their induced order rela-
tions. We begin with the simplest example:

Example 2.1.6 Let U = [0,∞), Σ the Borel σ-algebra, µ any Borel measure finite on compact
sets andA = {∅} ∪ {[0, x] : x > 0}. If x > 0 the sets introduced in Definition 2.1.2 are

(←, x]A = [0, x], (←, x)A = [0, x) and [x]A = {x}.

The next example exhibits the effect of changing the ordered core.
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Example 2.1.7 Let U = [0,∞), Σ the Borel σ-algebra, µ any Borel measure finite on compact
sets and A = {∅} ∪ {[0, n] : n ∈ N}. If n is a positive integer and n − 1 < x ≤ n, then the sets
introduced in Definition 2.1.2 are

(←, x]A = [0, n], (←, x)A = [0, n − 1] and [x]A = (n − 1, n].

Also [0] = {0}.

Any set can induce an ordered core on the half-line, as exhibited in the next example, this
generalizes the previous two examples.

Example 2.1.8 Let U ⊆ [0,∞), Σ the Borel σ-algebra, µ any Borel measure finite on compact
sets, S ⊆ U, Borel measurable andA = {∅} ∪ {[0, x] ∩ U : x ∈ S }.

Perhaps the simplest example outside of the half-line comes from the Euclidean spaces.

Example 2.1.9 Let U = Rd, Σ the Borel σ-algebra, µ any Borel measure finite on compact sets
andA = {∅}∪ {B[0; r] : r > 0}, where B[0; r] =

{
s ∈ Rd : |s| ≤ r

}
. If x ∈ Rd, the sets introduced

in Definition 2.1.2 are

(←, x]A =
{
s ∈ Rd : |s| ≤ |x|

}
, (←, x)A =

{
s ∈ Rd : |s| < |x|

}
and [x]A =

{
s ∈ Rd : |s| = |x|

}
.

Example 2.1.10 Consider a metric measure space, that is a set X together with a metric d and
a measure µ defined on the Borel sets induced by the metric such that µ(B[a; r]) < ∞ for every
r > 0 and a ∈ X. The collection A = {B[a; r]}r>0 ∪ {∅} is an ordered core. If x ∈ X, the sets
introduced in Definition 2.1.2 are

(←, x]A = B[a; |x|a], (←, x)A = B(a; |x|a) and [x]A = B[a; |x|a] \ B(a; |x|a),

where |x|a denotes the distance form a to x.

In the next examples, an ordered core is induced by a measurable function

Example 2.1.11 Let (U,Σ, µ) be a σ-finite measure space, φ : U → C be a measurable func-
tion with distribution function taking finite values, then the set

A = {∅} ∪ {{s ∈ U : |φ(s)| > r} : r > 0}

is an ordered core, and for any u ∈ U, the sets introduced in Definition 2.1.2 are

(←, u]A = {s ∈ U : |φ(u)| ≤ |φ(s)| } , (←, u)A = {s ∈ U : |φ(u)| < |φ(s)| }

and
[u]A = {s ∈ U : |φ(s)| = |φ(u)| } .

This construction recovers the metric measure space example, by considering φa(s) =
1

dist(a,s) and φa(a) = 0.
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The ordered cores in the previous examples are separable. The next example shows that
this needs not be the case.

Example 2.1.12 Let V and W be disjoint copies of ω1, the first uncountable ordinal ordered
by inclusion. Their smallest elements are denoted 0V and 0W respectively. Let U = V∪̇W be
their disjoint union and express any subset as E∪̇F, where E ⊆ U and F ⊆ W. Let

Σ0 = σcc(U) and Σ1 =
{
E∪̇F : E ∈ σcc(V), F ∈ σcc(W)

}
.

Here σcc(S ) denotes the σ-algebra generated by the countable subsets of S .
Define the measure µ1 on Σ1 by

µ1(E∪̇F) = δ0V (E) + δ0W (F) +


0, E, F countable;
1, V \ E, F countable;
2, E,W \ F countable;
3, V \ E,W \ F countable;

and let µ0 be the restriction of µ1 to Σ0. Note that µ0 and µ1 are finite, complete measures. We
introduce the core

A =
{
α∪̇∅ : α is a countable ordinal

}
∪

{
V∪̇(W \ α) : α is a countable ordinal

}
.

This collection is an ordered core on the measure spaces (U,Σ0, µ0) and (U,Σ1, µ1). Notice that
Σ0 = σ(A). The induced order is α ≤A β if α ∈ V and β ∈ W or

α ≤A β if

α ⊆ β, α ∈ V and β ∈ V;
β ⊆ α, α ∈ W and β ∈ W.

For α ∈ V we have
(←, α]A = α + 1, and (←, α)A = α,

where α + 1 denotes the successor ordinal. For β ∈ W we have

(←, β]A = V∪̇(W \ β), and (←, β)A = V∪̇(W \ (β + 1)).

Notice that the core is not separable, with respect to Σ0, since the set⋃
α∈V

α∪̇∅ = V∪̇∅

is not Σ0-measurable, which is exactly the same as not being σ(A)-measurable.

2.2 Core decreasing functions
We define a collection of functions that behaves similarly to the cone of decreasing functions
on the half-line. The main definition is the following.



26 Chapter 2. Ordered Cores

Definition 2.2.1 Let (U,Σ, µ) be a σ-finite measure space and A be an ordered core. A func-
tion f : U → [−∞,∞] is called decreasing (relative to A) if for all u, v ∈ U, u ≤A v implies
f (v) ≤ f (u). A nonnegative, decreasing, σ(A)-measurable function is called core decreasing.
A function f is core decreasing µ-almost everywhere if there exists a core decreasing function g
such that f = g µ-almost everywhere. The collection of equivalence classes of core decreasing
functions is denoted L↓(A).

The collection of nonnegative constant functions is always contained in L↓(A), therefore
there always exist core decreasing functions.

It is immediate from the definition that the collection {χE : E ∈ A} belongs to L↓(A). In
fact, the characteristic function of any σ(A)-measurable set M is core decreasing whenever M
satisfies the condition: for all u, v ∈ U, if v ∈ M and u ≤A v, then u ∈ M.

A fundamental collection of sets with the property above is characterized in the following
lemma.

Lemma 2.2.2 Suppose M ∈ σ(A) and µ(M) < ∞. The following are equivalent

(a) There is a countable nonempty subset C ofA such that M = ∪C or M = ∩C.

(b) There is a nonempty subset C ofA such that M = ∪C or M = ∩C.

(c) For all u, v ∈ U, if v ∈ M and u ≤A v, then u ∈ M.

Proof: It is clear that (a) implies (b). We now show that (b) implies (c). Let v ∈ ∪C for some C
and u ≤A v, then there exists A ∈ C such that v ∈ A. It follows from the relation ’≤A’ that u ∈ A
as well, thus u ∈ ∪C. For the remaining case, suppose that v ∈ ∩C for some C and u ≤A v, then
for all E ∈ C we have v ∈ E so u ∈ V . This shows that u ∈ ∩C and proves the implication.

It remains to show that (c) implies (a). Suppose that M ∈ σ(A) and satisfies (c), by
Theorem 1.1.3 there exists a countable subset A0 ⊆ A such that M ∈ σ(A0). Define the
collections

L = {E ∈ A0 : E ⊆ M} , N = {E ∈ A0 : M ⊆ E} .

Clearly L and N are countable subsets of A, thus the sets L0 = ∪L and N0 = ∩N belong to
σ(A0).

We show that L ∪ N = A0. Suppose that there exists E ∈ A0 such that both E ⊆ M and
M ⊆ E both fail. Choose u ∈ M \ E and v ∈ E \M. Since v ∈ E and u < E, then by Proposition
2.1.3 we have v ∈ (←, u)A, hence v ≤A u. Since u ∈ M, then the statement v < M contradicts
the fact that M satisfies (c).

Let U0 = ∪A0, C = N0 \ L0 and define the collection

K = {E ∈ σ(A0) : C ⊆ U0 \ E or C ⊆ E} .

If E ∈ L, then C ⊆ U0 \ E. If E ∈ N , then C ⊆ E. Therefore A0 ⊆ K . We now show that K is
a σ-algebra over U0.

It is clear that ∅ ∈ K and by construction K is closed under complements. Suppose {En} is
a sequence in K . If C ⊆ En for some n ∈ N, then C ⊆ ∪nEn. If C ⊆ En fails for every n ∈ N,
then by construction, we have that C ⊆ U0 \ En for all n ∈ N. It follows that

C ⊆ ∩n(U0 \ En) = U0 \ (∪nEn) .
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It follows that M ∈ σ(A0) ⊆ K . But L0 ⊆ M ⊆ N0, so if C ⊆ M, then N0 ⊆ L0 ∪ C ⊆ M ⊆ N0,
and if C ⊆ U0 \M, then L0 ⊆ M ⊆ N0 \C = L0. So (a) holds with either C = L or C = N . This
completes the proof.

With the previous lemma, we can enrich the core A, by adding all the σ(A)-measurable
sets with finite µ-measure that do not change the relation ≤A.

Theorem 2.2.3 Let (U,Σ, µ) be a σ-finite measure space,A be an ordered core andM be the
collection of all M ∈ σ(A) of finite measure satisfying the conditions in Lemma 2.2.2. ThenM
is an ordered core of U,A ⊆ M and the relations ≤A and ≤M coincide. IfA is σ-bounded, so
isM. If A is full, so isM. In addition,M is closed under countable intersections and under
countable unions provided the result has finite measure.

Proof: It is clear from the construction of M that A ⊆ M and each set has finite measure.
Also, ∅ ∈ M is clear. To show that M is totally ordered by inclusion: let N,M ∈ M with
N ⊈ M. Let x ∈ N \ M. If y ∈ M then if x ≤A y we would have x ∈ M by item (c) in Lemma
2.2.2. Therefore y ≤A x and by item (c) in Lemma 2.2.2 we get that y ∈ N. Therefore M ⊆ N
and shows total order, thusM is an ordered core.

Since A ⊆ M, then u ≤M v implies u ≤A v. Conversely, if u ≤A v and v ∈ M, then by
item (c) in Lemma 2.2.2 we get that u ∈ V , that is u ≤M v. Therefore the relations ≤M and ≤A
coincide.

Since A ⊆ M then it is clear that A being full implies M is full. By construction each
M ∈ M is contained in ∪A, it follows that ∪M ⊆ ∪A. Therefore, if A is σ-bounded, there
exists An ∈ A such that ∪An =M. It follows thatM is also σ-bounded.

Let {Mn} be a sequence inM. If M = ∩nMn = ∅ then there is nothing to prove. Since the
sequence is countable, then M ∈ σ(A) and it has finite measure since µ(M) ≤ µ(M1) < ∞. If
u ≤A v and v ∈ M then v ∈ Mn for each n ∈ N. By item (c) in Lemma 2.2.2 we conclude that
u ∈ Mn so u ∈ M and we conclude that M ∈ M. This shows thatM is closed under countable
intersections.

Similarly, if M = ∪Mn and µ(M) < ∞, then if u ≤A v and v ∈ M, then v ∈ Mn for some
n ∈ M. Again, it follows that u ∈ Mn so u ∈ M, which completes the proof.

We define the enriched core as follows.

Definition 2.2.4 Let (U,Σ, µ) be a σ-finite measure space, A be an ordered core. The collec-
tion of setsM ⊆ σ(A) described in Lemma 2.2.2 is called the enriched core ofA.

We can characterize the set of core decreasing functions as increasing limits of simple
functions for sets in the enriched coreM constructed above.

Lemma 2.2.5 Suppose A is σ-bounded and f : U → [0,∞). Then f ∈ L↓(A) if and only if it
is the pointwise limit of an increasing sequence of simple functions of the form

n∑
k=1

αkχMk ,

for αk > 0 and Mk ∈ M for each k.
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Proof: Suppose that f is core decreasing. Since A is σ-bounded, there exists a sequence
{An}n∈N ∈ A such that An ↑ ∪A.

For each n, k ∈ N+, the set

Mn,k =
{
u ∈ An : f (u) ≥ k2−n} ,

is σ(A)-measurable. Let u ∈ Mn,k and v ≤A u. Since f is core decreasing, we get k2−n ≤

f (u) ≤ f (v), thus v ∈ Mn,k. We also have µ(Mn,k) ≤ µ(An) < ∞. It follows that Mn,k ∈ M by
Lemma 2.2.2.

Define the sequence of functions fn by

fn(u) =
n2n∑
k=1

2−nχMn,k(u) = 2−n⌊2n min( f (u), n)⌋χAn(u),

where ⌊s⌋ denotes the greatest integer less than or equal to s. To see that both representations
of fn are equivalent, first notice that both expressions vanish if u < An. If u ∈ Mn,k for all
k ∈ {1, . . . , n2n}, then both expressions evaluate to n. If u < Mn,k for all k ∈ {1, . . . , n2n}, then
f (u) < 2−n, so both expressions evaluate to zero. For the final case, let

k0 = max{k ∈ {1, . . . , (n − 1)2n} : u ∈ Mn,k},

then k02−n ≤ f (u) < (k0 + 1)2−n, then the right-hand side evaluates to k02−n. Based on the
observation that u ∈ Mn,k for all k = 1, . . . , k0 we get that the left-hand side also evaluates to
k02−n.

The first representation shows that fn is a linear combination of the desired form. The
second one shows that fn ↑ f . To see this, we show that { fn} is an increasing sequence:

fn+1(u) = 2−(n+1)⌊2n+1 min( f (u), n + 1)⌋χAn+1(u) ≥ 2−n⌊2n min( f (u), n + 1)⌋χAn+1(u),

using the inequality ⌊2s⌋ ≥ 2⌊s⌋. It follows that fn+1(u) ≥ fn(u). Using the inequality ⌊s⌋ ≤ s ≤
⌊s⌋ + 1 we get

fn(u) ≤ min( f (u), n) ≤ fn +
1
2n ,

letting n→ ∞ yields fn ↑ f and completes the proof of the first implication.
Conversely, it is clear from 2.2.2 that χMk is core decreasing for any Mk ∈ M. Positive

scaling and addition of core decreasing functions is core decreasing. Taking increasing limits
of core decreasing functions keeps the measurability requirement and respects inequalities,
therefore it remains core decreasing and completes the proof.

Example 2.2.6 Consider the ordered core over [0,∞) defined in Example 2.1.6. The core
decreasing functions are nonnegative decreasing (in the usual sense) functions. Considering
the ordered core from Example 2.1.7 changes the set of core decreasing functions, to decreasing
functions that are constant on every set (n − 1, n] for each n ∈ N+.

More generally, consider the core from Example 2.1.8 whenever S is closed. In this case,
the core decreasing functions are nonnegative decreasing functions that are constant on each
connected component of U \ S . Notice, that since S is closed, there are countably many such
connected components.
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Example 2.2.7 Consider the ordered core over Rd defined in Example 2.1.9. The core de-
creasing functions are nonnegative radially decreasing functions.

Similarly, over a metric measure space with the ordered core defined in 2.1.10, the core
decreasing functions are radially decreasing functions with respect to the fixed point a ∈ X. In
other words, functions satisfying f (u) ≤ f (v) whenever dist(a, v) ≤ dist(a, u).

Example 2.2.8 Consider the ordered core defined in Example 2.1.11. The core decreasing
functions are the nonnegative functions f that are similarly ordered to |φ|; that is,

|φ(u)| ≤ |φ(v)| ⇐⇒ f (u) ≤ f (v), ∀u, v ∈ U.

We finish the examples by noting that a function being decreasing with respect to the or-
dered core is not the same as the function being core decreasing.

Example 2.2.9 Consider the measure space and ordered core from Example 2.1.12. Let f =
χV∪̇∅. Then, f (α) = 1 if α ∈ V and f (α) = 0 if α ∈ W, therefore f is decreasing with respect to
the coreA, but it is not Σ0-measurable.

Therefore, over (U,Σ0, µ), f is a decreasing function with respect to A that is not mea-
surable. Over the measure space (U,Σ1, µ), the function f is measurable and decreasing with
respect toA, but not core decreasing, since it is not σ(A)-measurable.

We can define core increasing functions similarly.

Definition 2.2.10 Let Let (U,Σ, µ) be a σ-finite measure space, A be an ordered core. A
function f : U → [−∞,∞] is called increasing (relative toA) if for all u, v ∈ U, u ≤A v implies
f (u) ≤ f (v). A nonnegative increasing σ(A)-measurable function is called core increasing.
The collection of core increasing functions is denoted L↑(A).

Suppose thatA is an ordered core over a finite measure space (U,Σ, µ), then the collection
of sets

Â = {∅} ∪ {U \ A : A ∈ A} ,

is also an ordered core. Notice that σ(A) = σ(Â), so it has the same measurable functions and
we get that the preorder gets reversed, that is,

u ≤A v⇐⇒ v ≤
Â

u, ∀u, v ∈ U.

Thus, we get the correspondence

f is core increasing with respect toA ⇐⇒ f is core decreasing with respect to Â,

for any σ(A)-measurable function f .
We need to do an approximation argument to get the analogous result to Lemma 2.2.5 for

core increasing functions.
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Lemma 2.2.11 Suppose A is a σ-bounded full ordered core and f : U → [0,∞). Then
f ∈ L↑(A) if and only if it is the pointwise limit of an increasing sequence of simple functions
of the form

n∑
k=1

αkχ(U\Mk),

for αk > 0 and Mk ∈ M for each k.

Proof: Let {An} ∈ A be a sequence satisfying An ↑ U. Let f ∈ L↑(A) and set fn = fχAn .
The function fn is core increasing with respect to the core {An ∩ A : A ∈ A}, since µ(An) < ∞,
the collection {An \ (An ∩ A) : A ∈ A} is an ordered core and fn is core increasing with respect
to it. Therefore, Lemma 2.2.5 yields a sequence gn,m ↑m fn where

gn,m =

rm∑
k=1

αn,kχ(An\Mm,k),

for some αn,k > 0, Mm,k ∈ M and rm ∈ N.
Define the function hn,m =

∑rm
k=1 αn,kχ(U\Mm,k) and note that hn,m and gn,m coincide on An.

Define
wn = max{h j, j : j ≤ n},

then it follows that wn ↑ f .

2.3 Morphisms of ordered cores

In this section we study maps between ordered cores called core morphisms, the main result
of this section is that any core morphism induces a linear map between a large vector space
of functions, that is well-behaved when restricted to the cone of nonnegative measurable func-
tions.

Definition 2.3.1 Let (U,Σ, µ), (T,T , τ) be σ-finite measure spaces, the collection A ⊆ T be
an ordered core. Then a map r : A → T is called a core morphism provided:

1. There exists a constant c > 0 such that τ(r(B) \ r(A)) ≤ cµ(B \ A) for every A, B ∈ A.

2. The map r is order-preserving with respect to inclusion.

3. The set r(∅) satisfies τ
(
r(∅)

)
= 0.

Notice that {r(A) \ r(∅) : A ∈ A} ∪ {∅} is an ordered core.
We will need the following measure-theoretic results about the σ-ring generated by the

core.
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Lemma 2.3.2 Let (U,Σ, µ) be aσ-finite measure space,A an ordered core. Then the collection

A+ = {B \ A : B, A ∈ A}

is a semiring.
Moreover, for any A, B, {Bk}, {Ak} ∈ A

(B \ A) \
n⋃

k=1

(Bk \ Ak) =
m⋃

k=1

(B′k \ A′k), (2.1)

for some disjoint collection {(B′k \ A′k)}
m
k=1 inA+.

Proof: Let A1, A2, B1, B2 ∈ A. To avoid that B1 \A1 and B2 \A2 are empty, we may assume that
A1 ⊆ B1, A2 ⊆ B2. After a relabelling, we may assume that B1 ⊆ B2. If B1 ⊆ A2 or B1 = A1,
then

(B2 \ A2) ∩ (B1 \ A1) = ∅, and (B2 \ A2) \ (B1 \ A1) = B2 \ A2.

In other cases, since B1 ⊆ A2 fails, by the total order ofA, we may assume that A2 ⊆ B1. Then

(B2 \ A2) ∩ (B1 \ A1) = B1 \ (A2 ∪ A1), and (B2 \ A2) \ (B1 \ A1) = (B2 \ B1) ∪ (A j \ Ak),

where A j = A1 ∪ A2 and Ak = A1 ∩ A2. Notice that in every case (B2 \ A2) ∩ (B1 \ A1) ∈ A and
(B2 \ A2) \ (B1 \ A1) is a disjoint union of finite elements inA+. ThereforeA+ is a semiring.

We prove the formula (2.1) by induction on n. The base case n = 1 was already proved,
so we focus on the inductive hypothesis. If there exists some k ∈ {1, . . . , n} such that Ak = Bk,
then after a relabelling we may assume An = Bn and thus

(B \ A) \
n⋃

k=1

(Bk \ Ak) = (B \ A) \
n−1⋃
k=1

(Bk \ Ak) =
m⋃

k=1

(B′k \ A′k),

by the induction hypothesis, so we may assume that Ak ⊂ Bk for all k ∈ {1, . . . , n}.
If the collection {(Bk \ Ak)}nk=1 is not disjoint, then after a relabelling we may assume that

the sequence {Bk} is increasing by inclusion. If (Bn \ An) and (Bn−1 \ An−1) are disjoint, then if
B ⊆ Bn−1, we get that (B \ A) ∩ (Bn \ An) = ∅, thus

(B \ A) \
n⋃

k=1

(Bk \ Ak) = (B \ A) \
n−1⋃
k=1

(Bk \ Ak) =
m⋃

k=1

(B′k \ A′k),

by the induction hypothesis. Therefore we may assume that Bn−1 ⊂ B.
If (Bn \ An) and (Bn−1 \ An−1) are disjoint, we use the induction hypothesis twice to get

(B \ A) \
n⋃

k=1

(Bk \ Ak) =
(
(Bn−1 \ A) \

n−1⋃
k=1

(Bk \ Ak)
)⋃(

(B \ Bn−1) \ (Bn \ An)
)

=

( m1⋃
k=1

(B′k \ A′k)
)⋃( m2⋃

k=1

(B′′k \ A′′k )
)
.
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The resulting union is disjoint, completing the proof in this case.
The remaining case is when (Bn\An) and (Bn−1\An−1) are not disjoint. Define the sequences

Ck = Ak, Dk = Bk, if k ∈ {1, . . . , n − 2}, and Cn−1 = An−1 ∩ An, Dn−1 = Bn.

Then

(B \ A) \
n⋃

k=1

(Bk \ Ak) = (B \ A) \
n−1⋃
k=1

(Dk \Ck) =
m⋃

k=1

(B′k \ A′k),

by the induction hypothesis. Therefore, we may assume that the collection {(Bk \ Ak)}nk=1 is
disjoint.

If (Bk \ Ak)∩ (B \ A) is empty for some k ∈ {1, . . . , n} then after relabelling we may assume
that (Bn \ An) ∩ (B \ A) = ∅ and we get

(B \ A) \
n⋃

k=1

(Bk \ Ak) = (B \ A) \
n−1⋃
k=1

(Bk \ Ak) =
m⋃

k=1

(B′k \ A′k),

by the induction hypothesis. So we may assume that (Bk \Ak)∩(B\A) , ∅ for all k ∈ {1, . . . , n}.
If Bn ⊆ B we have

(B \ A) \
n⋃

k=1

(Bk \ Ak) = (B \ Bn) ∪
(
(An \ A) \

n−1⋃
k=1

(Bk \ Ak)
)
= (B \ Bn) ∪

m⋃
k=1

(B′k \ A′k),

by the induction hypothesis.
Similarly if B ⊆ Bn we have

(B \ A) \
n⋃

k=1

(Bk \ Ak) = (An \ A) \
n−1⋃
k=1

(Bk \ Ak) =
m⋃

k=1

(B′k \ A′k),

by the induction hypothesis. This completes the proof of equation (2.1).

We now introduce a large vector space of functions which will serve as the natural domain
for our induced linear maps.

Definition 2.3.3 Let (U,Σ, µ) be a σ-finite measure space,A an ordered core we define

L1
Loc,A =

 f ∈ L0
µ :

∫
E

| f | dµ < ∞, for all E ∈ A

 .
We show some vector lattice properties of this vector space.

Proposition 2.3.4 Let (U,Σ, µ) be aσ-finite measure space andA be aσ-bounded full ordered
core. Then the space L1

Loc,A is a Dedekind complete vector lattice with respect to the order
relation of pointwise inequality µ-almost everywhere.



2.3. Morphisms of ordered cores 33

Proof: If U ∈ A, then L1
Loc,A = L1

µ which is a Dedekind complete vector lattice. So, we
may assume that U < A.

It is clear that L1
Loc,A is a vector lattice. To show that it is Dedekind complete, let { fα}α∈I a

set in L1
Loc,A bounded above, that is there exists h ∈ L1

Loc,A such that fα ≤ h for all α ∈ I.
Let {An}n∈N be a sequence inA such that An ↑ U. Define the sequence of sets {Xn} by

X1 = A1 and Xn = An \ An−1.

Denote by fn,α the restriction of fα to Xn. Since the collection { fn,α}α∈I belongs to L1
µ(Xn) and is

bounded above by the restriction of h to Xn, then there exists a function gn ∈ L1
µ(Xn) such that

gn is the supremum (in vector lattice sense) of { fn,α}α∈I .
Define the function

g =
∞∑

n=1

gnχXn .

To see that this function belongs to L1
Loc,A, let E ∈ A and let N ∈ N satisfy E ⊆ AN . The set AN

exists, otherwise U = ∪nAn ⊆ E, which we assume is not possible. Then,∫
E
|g| dµ ≤

∫
AN

|g| dµ =
N∑

n=1

∫
An

|gn| dµ =
N∑

n=1

∥gn∥L1
µ(Xn) < ∞.

Thus g ∈ L1
Loc,A. To see that g is an upper bound of { fα}α∈I , suppose there exists some fα such

that fα ≤ g fails. Then, there exists some j ∈ N and ϵ > 0 such that the set{
s ∈ X j : fα(s) − g(s) ≥ ϵ

}
,

has positive measure. It follows that f j,α ≤ g j fails, which is a contradiction. This shows that g
is an upper bound of { fα}α∈I .

To show that g is the supremum of { fα}α∈I . Let h ∈ L1
Loc,A be an upper bound of { fα}α∈I and

suppose that g ≤ h fails, then there exists some j ∈ N and ϵ > 0 such that the set{
s ∈ X j : gα(s) − h(s) ≥ ϵ

}
,

has positive measure. Let h j be the restriction of h to X j. It follows that g j ≤ h j fails, contra-
dicting the fact that g j is the supremum of { f j,α}α∈ in L1

µ(X j). This shows that g is the supremum
of { fα}α∈I and completes the proof.

The next lemma will be useful to show equality on functions in this vector space, whenever
the ordered core is full and σ-bounded.

Lemma 2.3.5 Let (U,Σ, µ) be a σ-finite measure space and A a σ-bounded ordered core.
Then:

1. If η, ν are two measures over (∪A, σ(A)) and η(A) = ν(A) < ∞ for all A ∈ A, then
ν = µ.

2. If A is full, f , g ∈ L+(A) ∩ L1
Loc,A and

∫
E

f dµ =
∫

E
g dµ for all E ∈ A, then f = g µ-

almost everywhere.
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3. IfA is full; f , g ∈ L1
Loc,A; f ≤ g almost everywhere and

∫
E

f dµ =
∫

E
g dµ for all E ∈ A,

then f = g µ-almost everywhere.

Proof:

1. By Lemma 1.1.1 the set A+ is a semiring. Since η(A) = ν(A) < ∞ for any A ∈ A and
A is σ-bounded, it follows that η(B \ A) = ν(B \ A) for all (B \ A) ∈ A+ and ν and
µ are σ-finite. Therefore the restriction to A+ is a σ-finite premeasure, it follows from
Theorem 1.1.4 that η = ν.

2. For each E ∈ σ(A), set η(E) =
∫

E
f dµ and ν(E) =

∫
E

g dµ. Since these two measures
take the same finite value on each E ∈ A, then by item (1), they are the same measure
over σ(A).

Let {Am} ∈ A such that Am ↑ U and for each n,m ∈ N+ set

En,m =

{
u ∈ Am : f (u) − g(u) ≥

1
n

}
.

Since f , g are σ(A)-measurable, then En,m ∈ σ(A), thus∫
En,m

g dµ =
∫

En,m

f dµ ≤
∫

En,m

(
g(u) +

1
n

)
dµ(u) =

∫
En,m

g dµ +
1
n
µ(En,m).

Since
∫

En,m

g dµ is finite, it follows that µ(En,m) = 0. Let n → ∞ and then m → ∞ to get

that g ≥ f µ-a.e. A symmetric argument shows that f ≥ g µ-a.e. and completes the proof
of item (2).

3. Let h = g − f . By assumption h ≥ 0 and
∫

E
h dµ =

∫
E

g dµ −
∫

E
f dµ = 0. Let {An} ∈ A

satisfy An ↑ U, then by the monotone convergence theorem∫
U
|h| dµ = sup

n

∫
An

h dµ = 0,

thus h = 0 µ-a.e. so f = g almost everywhere.

The main result is that any core morphism induces a linear map that maintains integrals
over core sets while maintaining a pointwise bound.

Theorem 2.3.6 Let (U,Σ, µ), (T,T , τ) be σ-finite measure spaces, the collectionA ⊆ Σ be an
ordered core and r : A → T be a core morphism with constant c, then there exists a map
R : L1

Loc,r(A) ∪ L+τ → L1
Loc,A ∪ L+µ such that for any f ∈ L1

Loc,r(A) ∪ L+τ :

1. The restricted map R : L∞τ → L∞µ , is linear and satisfies ∥R f ∥L∞µ ≤ c∥ f ∥L∞τ .

2. If f ≥ 0 τ-almost everywhere , then R f ≥ 0 µ-almost everywhere.
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3. For any sequence { fn} ∈ L+(T ) such that fn ↑ f τ-almost everywhere, then R fn ↑ R f µ-
almost everywhere.

4. R is additive and positive homogeneous on L+(T ).

5. R is linear on L1
Loc,r(A), mapping to L1

Loc,A.

6. R f ∈ L(A) and R f = 0 outside ∪A.

7. |R f | ≤ R | f | µ-almost everywhere.

8. For all A, B ∈ A, ∫
B\A

R f dµ =
∫

r(B)\r(A)

f dτ.

9. The restricted linear map R : L1
τ → L1

µ satisfies ∥R f ∥L1
µ
≤ ∥ f ∥L1

τ
, with equality if f ≥ 0

τ-a.e.

10. If c = 1, A ∈ A and µ(A) = τ(r(A)), then R(χr(A)) = χA µ-almost everywhere.

11. If c = 1, f ∈ L+(τ) and g ∈ L+(r(A)), then R( f g) = R f Rg µ-almost everywhere.

To prove this result we will make use of the following lemma, the proof is adapted from
[31, Lemmas 4.3 and 4.4].

Lemma 2.3.7 Let (U,Σ, µ), (T,T , τ) be σ-finite measure spaces, the collection A ⊆ Σ be an
ordered core and a core morphism r : A → T . Let A+ = {B \ A : A, B ∈ A} be the semiring
of sets generated byA.

For each f ∈ L+τ ∩ L∞τ set

ρ f (B \ A) =
∫

r(B)\r(A)

f dτ. (2.2)

Then, ρ f is a premeasure on the semi-ringA+.

Proof: First notice that if B = A then r(B) = r(A), hence ρ f (B \ A) = 0.
We now show that ρ f is a well-defined function. For that, suppose that A1, B1, A2, B2 ∈ A

satisfy B1 \ A1 = B2 \ A2. If either B1 = A1 or B2 = A2 then ρ f (B1 \ A1) = 0 = ρ f (B2 \ A2)
by the previous argument. Without loss of generality, by the total order of A, we may assume
that B1 ⊆ B2. Let x ∈ B2 \ A2, then x ∈ B1 \ A1, from the total order it follows that A2 ⊂ B1.
This shows that B2 ⊆ B1 and yields equality. To show that A1 = A2, let x ∈ A1 \ A2, then
x ∈ (B2 \ A2) \ (B1 \ A1) and yields a contradiction. Therefore A1 ⊆ A2 and a symmetric
argument show equality. Thus, if A1 ⊂ B1 and A2 ⊂ B2, then B1 \ A1 = B2 \ A2 implies B1 = B2

and A1 = A2, so the function ρ f is well defined.
We now show that ρ f is a premeasure. It was already shown that ρ f (∅) = 0. To show that

ρ f is finitely additive. Let B, A, {Bk}, {Ck} ∈ A satisfy

B \ A =
n⋃

k=1

(Bk \ Ak), (2.3)
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where the sets {(Bk \ Ak)}nk=1 are disjoint.
We show that ρ f (B \ A) =

∑n
k=1 ρ f (Bk \ Ak) by induction on n. If n = 1, then ρ f (B \ A) =

ρ f (B1 \ A1), since ρ f is well defined.
To prove the inductive step: If there exist some k0 ∈ {1, . . . , n} such that Bk0 = Ak0 , then we

can reorder the sequence such that Bn = An to get

ρ f (B \ A) =
n−1⋃
k=1

ρ f (Bk \ Ak) =
n−1⋃
k=1

ρ f (Bk \ Ak) + 0 =
n⋃

k=1

ρ f (Bk \ Ak).

Therefore, we may assume that Bk , Ak for all k ∈ {1, . . . , n}. After a relabelling, we may also
assume that the sequence {Bk} is increasing by inclusion. If B ⊂ Bn, then there exists some
x ∈ Bn \ (An ∪ B) and equation (2.3) fails. If Bn ⊂ B, then there exists x ∈ B \ Bk for all
k ∈ {1, . . . , n} and equation (2.3) fails again. This shows that Bn = B. Also, if Ak ⊂ A for
some k ∈ {1, . . . , n} then there exists some x ∈ Bk \ Ak and x < B \ A, arriving at the same
contradiction.

If Bn = Bn−1 then the sets Bn \ An and Bn−1 \ An−1 are not disjoint, therefore we may assume
that Bn−1 ⊂ Bn. If An ⊂ Bn−1, then we contradict the fact that Bn \ An and Bn−1 \ An−1 are
disjoint, therefore we may assume that Bn−1 ⊆ An. To show that we have equality, let x ∈ An,
if x ∈ A then x ∈ An−1 ⊂ Bn−1. If x < A then x ∈ B \ A, by equation (2.3), there exists some
k ∈ {1, . . . , n − 1} such that x ∈ (Bk \ Ak), thus x ∈ Bn−1. So we get the equality Bn−1 = An and
we can define a new sequence

Ck = Bk \ Ak, if k ∈ {1, . . . , n − 2}, and Cn−1 = Bn \ An−1.

The induction hypothesis yields

ρ f (B \ A) =
n−1∑
k=1

ρ f (Ck) =
n−2∑
k=1

ρ f (Bk \ Ak) + ρ f (Bn \ An−1)

=

n−2∑
k=1

ρ f (Bk \ Ak) +
∫

r(Bn)\r(An−1)

f dτ =
n−2∑
k=1

ρ f (Bk \ Ak) +
∫

r(Bn−1)\r(An−1)

f dτ +
∫

r(Bn)\r(An)

f dτ

=

n∑
k=1

ρ f (Bk \ Ak).

To show that ρ f is countably monotone, we prove that it is monotone for finite sequences.
Suppose that B \ A ⊆

⋃n
k=1(Bk \ Ak), we show by induction on n that

ρ f (B \ A) ≤
n∑

k=1

ρ f (Bk \ Ak). (2.4)

If n = 1, then B ⊆ B1 and A1 ⊆ A, hence r(B) ⊆ r(B1) and r(A1) ⊆ r(A), thus

ρ f (B \ A) =
∫

r(B)\r(A)

f dτ ≤
∫

r(B1)\r(A1)

f dτ = ρ f (B1 \ A1).
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To prove the induction step: If there exists some k ∈ {1, . . . , n} such that (B \A)∩ (Bk \Ak) = ∅,
then we may reorder the sequence to get (B \ A) ∩ (Bn \ An) = ∅. The inductive hypothesis
yields

ρ f (B \ A) ≤
n−1∑
k=1

ρ f (Bk \ Ak) ≤
n∑

k=1

ρ f (Bk \ Ak).

Hence, we may assume that (B \ A) ∩ (Bk \ Ak) , ∅, for all k ∈ {1, . . . , n}.
If the sequence {(Bk \ Ak)}nk=1 is not disjoint, we may reorder the sequence to get (Bn \ An)∩

(Bn−1 \ An−1) , ∅. Define the sequences

Ck = Ak, Dk = Bk, if k ∈ {1, . . . , n − 2}, and Cn−1 = An−1 ∩ An, Dn−1 = Bn.

By the inductive hypothesis

ρ f (B \ A) ≤
n−1∑
k=1

ρ f (Dk \Ck) =
n−2∑
k=1

ρ f (Bk \ Ak) + ρ f
(
Bn \ (An−1 ∩ An)

)
=

n−2∑
k=1

ρ f (Bk \ Ak) +
∫

r(Bn)\r(An−1∩An)

f dτ

≤

n−2∑
k=1

ρ f (Bk \ Ak) +
∫

r(Bn−1)\r(An−1)

f dτ +
∫

r(Bn)\r(An)

f dτ

=

n∑
k=1

ρ f (Bk \ Ak).

Thus we may assume assume that the sequence {(Bk\Ak)}nk=1 is disjoint and (B\A)∩(Bk\Ak) , ∅.
Then we may reorder the sequence {Bk} increasingly. Then, we must have that An ⊆ B ⊆ Bn

and A1 ⊆ A ⊆ B1, otherwise either (B \ A) ⊆
⋃n

k=1(Bk \ Ak) or there exists k ∈ {1, . . . , n} for
which (B \ A) ∩ (Bk \ Ak) = ∅.

Therefore

B \ A = (B1 \ A) ∪ (Bn \ B) ∪
n−1⋃
k=2

(Bk \ Ak).

Finite additivity yields

ρ f (B \ A) = ρ f (B1 \ A) + ρ f (Bn \ B) +
n−1∑
k=2

ρ f (Bk \ Ak) ≤
n∑

k=1

ρ f (Bk \ Ak).

This proves that ρ f is finitely monotone.
Finally, to prove that ρ f is countably monotone, fix ϵ > 0 and suppose that B\A ⊆

⋃∞
k=1(Bk\

Ak). Notice that for each n ∈ N:

B \ A ⊆
( n⋃

k=1

(Bk \ Ak)
)
∪

(
(B \ A) \

( n⋃
k=1

(Bk \ Ak)
))
.
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Since (B\A)\
(⋃n

k=1(Bk \Ak)
)

is a decreasing sequence of sets with finite µ-measure and empty

intersection, we may pick n0 such that

µ

(
(B \ A) \

( n0⋃
k=1

(Bk \ Ak)
))
<

ϵ

c∥ f ∥L∞τ
.

By Lemma 2.3.2, there exists a disjoint collection {(B′k \ A′k)}
m
k=1 ∈ A

+ such that(
(B \ A) \

( n0⋃
k=1

(Bk \ Ak)
))
=

m⋃
k=1

(B′k \ A′k).

Notice that since the sequence is disjoint, then
∑m

k=1 µ(B′k \ A′k) ≤
ϵ

c∥ f ∥L∞τ
. Since

B \ A ⊆
( n0⋃

k=1

(Bk \ Ak)
)
∪

m⋃
k=1

(B′k \ A′k),

and the right-hand side is a finite union inA+, finite monotonicity shows that

ρ f (B \ A) ≤
n0∑

k=1

ρ f (Bk \ Ak) +
m∑

k=1

ρ f (B′k \ A′k) =
n0∑

k=1

ρ f (Bk \ Ak) +
m∑

k=1

∫
r(B′k)\r(A′k)

f dτ

≤

n0∑
k=1

ρ f (Bk \ Ak) + ∥ f ∥L∞τ

m∑
k=1

τ
(
r(B′k) \ r(A′k)

)
≤

n0∑
k=1

ρ f (Bk \ Ak) + ∥ f ∥L∞τ c
m∑

k=1

µ
(
B′k \ A′k

)
≤

n0∑
k=1

ρ f (Bk \ Ak) + ϵ.

We have used the fact that r is a core morphism in the second to last line. Therefore

ρ f (B \ A) ≤
∞∑

k=1

ρ f (Bk \ Ak) + ϵ.

Let ϵ → 0 to complete the proof.

Proof of Theorem 2.3.6: We define the operator R on positive and bounded functions first.
If f = 0 set R f = 0, otherwise fix f ∈ L∞τ ∩ L+τ . Lemma 2.2 defines a premeasure ρ f over

the semi-ring A+. By the Caratheodory-Hahn Theorem, there is a measure ρ f on
(
∪A, σ(A)

)
that extends ρ f and coincides with the outer measure induced by ρ f on σ(A)-measurable sets.
For any A, B ∈ A we have

ρ f (B \ A) =
∫

r(B)\r(A)

f dτ ≤ ∥ f ∥L∞τ τ
(
r(B) \ r(A)

)
≤ c∥ f ∥L∞τ µ(B \ A). (2.5)
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Letting A = ∅ shows that ρ f (B) < ∞. Since A is σ-bounded, then ρ f is a σ-finite pre-
measure, thus the extension ρ f is unique and σ-finite. We proceed to show that it is absolutely
continuous with respect to µ.

If E ∈ σ(A) and µ(E) = 0, then for any ϵ > 0, there exists a set G = ∪ j∈N(B j \ A j) with
B j, A j ∈ A for all j ∈ N, such that E ⊆ G and µ(G) < ϵ

c∥ f ∥L∞τ
. By equation (2.5) we get

ρ f (E) ≤
∑
j∈N

ρ f (B j \ A j) ≤
∑
j∈N

c∥ f ∥L∞τ µ(B j \ A j) = c∥ f ∥L∞τ µ(G) < ϵ.

Letting ϵ → 0 shows that ρ f (E) = 0 and proves that ρ f is a σ-finite measure, absolutely
continuous with respect to µ. Therefore, the Radon-Nikodym Theorem provides a unique (µ-
a.e) nonnegative σ(A)-measurable function h such that

ρ f (E) =
∫
E

h dµ, ∀E ∈ σ(A).

Define R f = hχ(∪A). We have the operator R defined on L+τ ∩ L∞τ taking values on the real
vector space V = {g ∈ L1

Loc,A : g = gχ(∪A)} and satisfying R f ≥ 0.
To show that R is positive homogeneous, let α, β ≥ 0 and f1, f2 ∈ L+τ ∩ L∞τ , notice that for

each A ∈ A:∫
A

R(α f1 + β f2) dµ = ρα f1+β f2(A \ ∅) =
∫

r(A)\r(∅)

(α f1 + β f2) dτ = α
∫

r(A)\r(∅)

f1 dτ + β
∫

r(A)\r(∅)

f2 dτ

= αρ f1(A \ ∅) + βρ f2(A \ ∅) = α
∫
A

R f1 dµ + β
∫
A

R f2 dµ

=

∫
A

(αR f1 + βR f2) dµ.

An application of Lemma 2.3.5 shows that R(α f1 + β f2) and αR( f1) + βR( f2) coincide on ∪A
µ-a.e. It follows that R(α f1 + α f2) = αR( f1) + βR( f2) over U up to a set of zero µ-measure.

An application of Theorem 1.2.4, with V = W = L∞τ provides an R-linear extension of R to
L∞τ .

Notice that, in this case

|R f | =
∣∣∣R( f +) − R( f −)

∣∣∣ ≤ ∣∣∣R( f +)
∣∣∣ + ∣∣∣R( f −)

∣∣∣ = R( f +) + R( f −) = R | f | .

Monotonicity of the norm L∞τ implies that to prove (1) we need to consider nonnegative func-
tions only. Suppose that f ≥ 0, let {Am}m∈N ∈ A satisfy ∪mAm = ∪A and for each n,m ∈ N
define

En,m =

{
x ∈ Am : R f (x) > c∥ f ∥L∞τ +

1
n

}
.

Since R f isσ(A)-measurable, for every δ > 0, there exists a pairwise disjoint sequence {B j\A j}
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such that En,m ⊆ Gδ = ∪(B j \ A j) and µ(G) < δ + µ(En,m). Integration yields

µ(En,m)
(
c∥ f ∥L∞τ +

1
n

)
<

∫
En

R f dµ ≤
∫
Gδ

R f dµ =
∑

j

∫
B j\A j

R f dµ =
∑

j

∫
r(B j)\r(A j)

f dτ

≤ ∥ f ∥L∞τ
∑

j

τ
(
r(B j) \ r(A j)

)
≤ c∥ f ∥L∞τ

∑
j

µ(B j \ A j) = c∥ f ∥L∞τ µ(Gδ)

≤ c∥ f ∥L∞τ
(
δ + µ(En,m)

)
.

Let δ → 0 to get µ(En,m)
(
c∥ f ∥L∞τ +

1
n

)
≤ µ(En,m)

(
c∥ f ∥L∞τ

)
. This is impossible unless

µ(En,m) = 0.
Let m→ ∞ and then n→ ∞ to get ∥R f ∥L∞µ ≤ c∥ f ∥L∞τ and complete the proof of (1).
We proceed to extend the operator R to L+τ .
We will need the following observation: If { fn}, f ∈ L∞τ and fn ↑ f , then R fn ↑ R f . Since R

is linear and positive on L∞τ , then R fn is an increasing sequence in L+µ and the limit function is
σ(A)-measurable and nonnegative.

Let A ∈ A, then the Monotone Convergence Theorem yields,∫
A

R f dµ =
∫

r(A)\r(∅)

f dτ = lim
n→∞

∫
r(A)\r(∅)

fn dτ = lim
n→∞

∫
r(A)\r(∅)

R fn dτ =
∫

r(A)\r(∅)

lim
n→∞

R fn dτ.

The equality above and Lemma 2.3.5 shows that lim
n→∞

R fn = R f .
We now extend R to L+τ . Let fn ↑ f with fn ∈ L∞τ ∩ L+τ . By the same argument as before

lim
n→∞

R fn is σ(A)-measurable and vanishes outside ∪A. Define R f = supn R fn. By the previous
observation, this definition of R f coincides with the previous one whenever f ∈ L∞τ .

It remains to show that R f is independent of the choice of sequence. Let { fn}, {gn} ∈ L∞τ ∩L+τ
satisfy fn ↑ f and gn ↑ f . For each fixed m, hn = min( fn, gm) defines an increasing sequence in
L∞τ ∩ L+τ that satisfies hn ↑ gm. It follows, by the previous observation, that Rhn ↑n Rgm. Since
hn ≤ fn, then,

Rgm = lim
n→∞

Rhn ≤ lim
n→∞

R fn.

Letting m→ ∞ yields lim
n→∞

Rgn ≤ lim
n→∞

R fn. Reversing the roles of fn and gn yields the opposite
inequality and shows that R f is well defined. This completes the proof of item (2).

To prove item (3), let { fn} ∈ L+(T ) satisfy fn ↑ f . Then the sequence gn = min(n, fn) also
satisfies gn ↑ f and gn ∈ L∞τ . By the previous observation Rgn ↑ R f . However, Rgn ≤ R fn,
since gn ≤ fn. Therefore R fn ↑ R f and proves (3).

To prove item (4), let α, β ≥ 0 and f , g ∈ L+(T ) and sequences { fn}, {gn} ∈ L∞τ ∩ L+(T )
increasing to f , g. Then, using the linearity of R in L∞τ and the independence of approximating
sequence:

R(α f + βg) = lim
n→∞

R(α fn + βgn) = lim
n→∞

αR( fn) + βR(gn) = αR( f ) + βR(g).

The above proves item (4).
Let A, B ∈ A and f ∈ L+(τ), then∫

B\A

R f dµ = sup
n

∫
B\A

R fn dµ = sup
n

∫
r(B)\r(A)

fn dτ =
∫

r(B)\r(A)

f dτ.
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Letting A = ∅ above, shows that if f ∈ L1
Loc,r(A), then R f ∈ L+(τ) ∩ L1

Loc,A. An application of
Theorem 1.2.4 with W = L1

Loc,A and V = L1
Loc,r(A) extends R to a positive linear operator on

L1
Loc,r(A) and proves item (5).

Item (6) follows from the construction of R based on increasing sequences and linear com-
binations of functions vanishing outside ∪A. Item (7) follows from the same observation done
for the case in L∞τ . Item (8) has already been established for positive functions, thus it follows
from the linearity of the integral. Letting An ↑ ∪A and item (8) show that ∥R f ∥L1

µ
= ∥ f ∥L1

τ
for

nonnegative functions f , thus item (7) and monotonicity of the norm in L1
µ prove (9).

To prove item (10). Notice that∫
A

R(χr(A)) dµ =
∫

r(A)

χr(A) dτ = τ(r(A)) = µ(A).

above, we have used the fact that r(∅) must be a null set. Since ∥R(χr(A))∥L1
µ
= ∥χr(A)∥L1

τ
=

τ(r(A)) = µ(A), it follows that R(χr(A)) is zero µ-a.e. outside A. Since ∥R(χr(A))∥L∞µ ≤ ∥χr(A)∥L∞τ =

1, then R(χr(A)) ≤ χA. Therefore,

∥χA − R(χr(A))∥L1
µ
=

∫
A

(χA − R(χr(A))) dµ = 0.

This shows that χA = R(χr(A)) µ-a.e and completes the proof of item (10).
Finally, to prove item (11), fix f ∈ L∞τ ∩L+(T ), B ∈ A and define the maps ν, η : σ(r(A))→

[0,∞) as follows

ν(E) =
∫
B

R f RχE dµ, η(E) =
∫
B

R( fχE) dµ, for each E ∈ σ(r(A)).

Clearly ν(∅) = 0 = η(∅) and if ∪kEk is a disjoint union in σ(r(A)), then

ν(E) =
∫
B

R f R

sup
n

n∑
k=1

χEk

 dµ = sup
n

n∑
k=1

∫
B

R f R (χEk) dµ =
∞∑

k=1

ν(Ek).

η(E) =
∫
B

R

sup
n

n∑
k=1

fχEk

 dµ = sup
n

n∑
k=1

∫
B

R ( fχEk) dµ =
∞∑

k=1

η(Ek).

Therefore ν, η are measures on σ(r(A)), since R f ∈ L∞µ ∩ L+(T ) and µ(B) < ∞, these are finite
measures. For each A ∈ A, since A is totally ordered and r is order preserving, we see that
r(A) ∩ r(B) = r(A ∩ B). Therefore,

ν(r(A)) =
∫
B

R f R(χr(A)) dµ =
∫
B

χAR f dµ =
∫

B∩A

R f dµ =


∫

r(A)
f dτ, if A ⊆ B.∫

r(B)
f dτ, otherwise.

and

η(r(A)) =
∫
B

R( fχr(A)) dµ =
∫

r(B)

fχr(A) dτ =
∫

B∩A

R f dµ =


∫

r(A)
f dτ, if A ⊆ B.∫

r(B)
f dτ, otherwise.
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By Lemma 2.3.5 ν, η are the same measure, therefore for any E ∈ σ(r(A)) the equation∫
B

R f R(χE) dµ =
∫
B

R( fχE) dµ

holds. Since B ∈ A was arbitrary, another application of Lemma 2.3.5 with the functions
R f R(χE) and R( fχE) shows that they coincide µ-almost everywhere.

Any nonnegative measurable function in σ(r(A)) is the increasing limit of a sequence of
linear combinations of functions χE with E ∈ σ(r(A)). Thus, by items (3) and (4), we get that
R( f g) = R( f )R(g) for any g ∈ L+(σ(r(A))) and f ∈ L∞τ . If f is not bounded above, approximate
it by an increasing sequence { fn} ∈ L∞τ , and another application of item (3) finishes the proof
of item (11).

The following example shows that the hypothesis on items (2,10,11) is necessary

Example 2.3.8 Consider the coreA defined in Example 2.1.9 over R2 and (T,T , τ) be the half
line with the Lebesgue measure. Define the core morphism r by

r
(
[0, x]

)
= B

(
0,

√
x
π

)
, for all x > 0.

Consider the sets

H =
{
(ρ cos(θ), ρ sin(θ)) : 0 < ρ < θ, θ ∈ [0, π]

}
,K =

{
(ρ cos(θ), ρ sin(θ)) : 0 < ρ < π, θ ∈ [0, π]

}
,

L = {(x,−y) : (x, y ∈ K)} and the functions f = χH, g = χK , and h = χL. Note that all of the
functions belong to L1

Loc,A, f = f g and the core morphism preserves measure.
Since∫
B(0,ρ)

f = m(H ∩ B(0, ρ)) = min
(
π3

3
,
ρ3

6
+
ρ2(π − ρ)

2

)
=

∫ πρ2

0

(1
2
−

√
t

2π
√
π

)
χ(0,π3)(t) dt,

therefore, by Lemma 2.3.5, R f (t) =
(

1
2 −

√
t

2π
√
π

)
χ(0,π3)(t). Similarly Rg(t) = 1

2χ(0,π3)(t) = Rh(t).

The function f shows that the image of a characteristic function need not be a simple function.
Also, R( f g) = R f , (R f )(Rg) shows that R need not be multiplicative. And since R(g−h) = 0, it
shows that for functions taking both positive and negative values, the map R can map non-zero
functions to zero.

2.4 An induced measure on the half-line
In Example 2.3.8 we had a core morphism between a measure space with an ordered core and
the half line, mapping each core set to the measure of each set. We can generalize this core-
morphism to any σ-bounded ordered core, we will be mapping to the half line with an induced
Borel measure by the ordered core.

For this purpose, we will employ the enriched core described in Lemma 2.2.2.
We begin by exploring one of the properties that hold for enriched cores.
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Theorem 2.4.1 Let (U,Σ, µ) be a σ-finite measure space, A be an ordered core andM be its
enriched core from Lemma 2.2.2. Then, the set

{µ(M) : M ∈ M}

is the closure of the set
{µ(A) : A ∈ A}.

in [0,∞).

Proof:
First we show that the closure of {µ(A) : A ∈ A} is contained in {µ(M) : A ∈ M}.
Let x be in the closure of {µ(A) : A ∈ A}. If x ∈ {µ(A) : A ∈ A}, then there is nothing to

show, sinceA ⊆ M.
If x < {µ(A) : A ∈ A}, then there exists a sequence {An} ∈ A such that µ(An) ↑ x or

µ(An) ↓ x and the sequence is strictly increasing or decreasing by inclusion.
If µ(An) ↑ x, set E = ∪nAn. Then E ∈ M by Lemma 2.2.2 and by the monotone convergence

theorem µ(E) = x.
If µ(An) ↓ x, set E = ∩nAn. Then E ∈ M by Lemma 2.2.2 and by the dominated con-

vergence theorem µ(E) = x. This shows that the closure of {µ(A) : A ∈ A} is contained in
{µ(M) : M ∈ M}.

Conversely, suppose that x = µ(M) for some M ∈ M. Then, by Lemma 2.2.2 we may
choose a sequence {An} ∈ A such that M = ∩nAn or M = ∪nAn. In the first case, the mono-
tone convergence theorem shows that µ(An) ↑ µ(M) and in the second case, the dominated
convergence theorem shows that µ(An) ↓ µ(M) and completes the proof.

The following example shows that, when a core is not enriched, the set {µ(A) : A ∈ A}
need not be a closed subset of [0,∞).

Example 2.4.2 Let U = [0, 3] and µ be the Lebesgue measure. Consider the ordered core
A = {∅,U} ∪ {[0, x] : x ∈ (1, 2)}. Then

{µ(A) : A ∈ A} = {0, 3} ∪ (1, 2).

Here the enriched core isM = {∅,U} ∪ {[0, x] : x ∈ [1, 2]} ∪ {[0, x) : x ∈ (1, 2]} and

{µ(M) : M ∈ M} = {0, 3} ∪ [1, 2].

We now construct a Borel measure on [0,∞), that encodes the monotonicity properties of
the enriched ordered core.

Let B = {∅} ∪ {[0, x] : x ≥ 0}. This collection generates the Borel σ-algebra. We will con-
struct a measure λ on [0,∞) such that B is a full, σ-bounded, ordered core on

(
[0,∞), σ(B), λ

)
.

Theorem 2.4.3 Let Γ = µ(M), and the functions

a(x) = sup
(
[0, x] ∩ Γ

)
, b(x) = inf

(
[x,∞] ∩ Γ

)
,

where inf ∅ = ∞.
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Then, there exists a σ-finite Borel measure λ, supported on Γ, such that

λ
(
[0, x]

)
= a(x), x > 0.

Moreover, λ
(
[0, x]

)
= x if and only if x ∈ Γ.

Finally, for every nonnegative Borel measurable function φ,∫
[0,∞)

φ dλ =
∫ supΓ

0
φ ◦ b(x) dx =

∫
Γ

φ(x) dx +
∑

(d − c)φ(d), (2.6)

where the sum is taken over the connected components (c, d) of the complement of Γ.

Proof: It is clear from the definition that for each x ≥ 0 we have a(x) ≤ x ≤ b(x) and
a(x) = x = b(x) whenever x ∈ Γ. Conversely, by Theorem 2.4.1, Γ is closed, so a(x) ∈ Γ
and b(x) ∈ Γ ∪ {∞}. Therefore a(x) = x implies x ∈ Γ and the same statement holds for b(x).
Therefore a(x) = x = b(x) when x ∈ Γ, a(x) < b(x) when x < Γ and by construction

(
a(x), b(x)

)
is a connected component of the complement of Γ.

Since b is non-decreasing, it is Borel measurable. Let λ be the push-forward measure
induced by b. Thus

λ(E) = m
(
b−1(E)

)
, ∀E ∈ σ(B),

where m is the Lebesgue measure.
Therefore, for all x ≥ 0, b−1([0, x]) is Borel measurable. For all x ≥ 0, a(x) ∈ Γ so

b(a(x)) = a(x). If b(t) < ∞, then b(t) ∈ Γ, so a(b(t)) = b(t). We claim that for all x ≥ 0,
b−1([0, x]) = [0, a(x)]. To see this, if x ≤ a(x), then b(t) ≤ b(a(x)) = a(x) ≤ x. Conversely, if
b(t) ≤ x, then t ≤ b(t) = a(b(t)) ≤ a(x).

Hence
a(x) = m

(
b−1([0, x])

)
= λ

(
[0, x]

)
.

Since a(x) = x if and only if x ∈ Γ, then we have x = λ
(
[0, x]

)
if and only if x ∈ Γ. This also

shows that λ is σ-finite.
We now show that λ is supported on Γ. Since Γ is closed then its complement has countably

many connected components. If supΓ < ∞ then for the unbounded component we have

λ(supΓ, supΓ+n] = λ[0, supΓ+n]−λ[0, supΓ] = a(supΓ+n)−a(supΓ) = supΓ− supΓ = 0.

It follows that λ(supΓ,∞] = 0.
If (c, d) is a bounded connected component of the complement of Γ, then

λ
(
(c, d)

)
≤ λ

(
[0, d]

)
− λ

(
[0, c]

)
= a(d) − a(c) = c − c = 0.

It follows that λ
(
[0,∞) \ Γ

)
= 0.

Observe that if (c, d) is a connected component of the complement of Γ, then b(x) = d for
all x ∈ (c, d). It was already shown that b(x) = x when x ∈ Γ.
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Therefore, for all φ ∈ L+(B), an application of Theorem 1.1 yields

∫
[0,∞)

φ dλ =
∫
Γ

φ dλ =
∫

b−1(Γ)

φ ◦ b(x) dx =

supΓ∫
0

φ ◦ b(x) dx

=

∫
Γ

φ ◦ b(x) dx +
∑∫ d

c
φ ◦ b(x) dx =

∫
Γ

φ(x) dx +
∑∫ d

c
φ(d) dx

=

∫
Γ

φ(x) dx +
∑

(d − c)φ(d).

This completes the proof.

Definition 2.4.4 Given a σ-finite measure space (U,Σ, µ) with an ordered core A, then the
measure λ given by Theorem 2.4.3 is the measure induced byA.

For future reference, we record a rearrangement formula for the collection L↓(B) of core
decreasing functions.

Lemma 2.4.5 Let λ be the induced measure byA, the function b be the one defined on Theorem
2.4.3 and φ ∈ L↓(B). Then,

φ ◦ b = φ∗.

Where ∗ denotes the nonincreasing rearrangement with respect to the measure λ.

Proof: Let the symbol # denote the nonincreasing rearrangement with respect to the Lebesgue
measure and suppose that

φ =

K∑
k=1

αkχ[0,xK ],

for some x1 ≥ · · · ≥ xK ≥ xK+1 > 0 and α1, . . . , αK some real numbers. For each j ∈ {1, . . . ,K}
the function φ takes the value

∑ j
k=1 αk on the set (x j+1, x j]. By Theorem 2.4.3 we have that

λ
(
(x j+1, x j]

)
= λ

(
[0, x j]

)
− λ

(
[0, x j+1]

)
= a(x j) − a(x j+1),

where the function a is the one defined on Theorem 2.4.3. In that Theorem we find that b(z) ≤ x
if and only if z ≤ a(x). Therefore, φ ◦ b takes that same value on the set (a(x j+1), a(x j)], which
has Lebesgue measure a(x j) − a(x j+1). These are the only values that the functions φ and φ ◦ b
take, so (φ ◦ b)# = φ∗.

For a general φ ∈ L↓(B), by Lemma 2.2.5, φ is an increasing limit of simple functions φn

of the previous form. The result follows from (3) in Proposition 1.3.9.
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2.4.1 Transition maps
We explore the close relation between measurable functions on (U,Σ, µ) and the induced mea-
sure space ([0,∞), λ). This is done by applying Theorem 2.3.6, the maps produced take the
role of transition maps between the original space and the induced measure space. In this sec-
tion, we explore the properties of the transition maps and study their behavior on monotone
functions.

Proposition 2.4.6 Let (U,Σ, µ), be a σ-finite measure space with ordered core A, enriched
coreM, and induced measure λ. Then, there exists a map R : L1

Loc,A ∪ L+µ → L1
Loc,λ ∪ L+λ such

that for any f ∈ L1
Loc,A ∪ L+µ :

1. The restricted linear map R : L∞µ → L∞λ satisfies ∥R f ∥L∞λ ≤ ∥ f ∥L∞µ .

2. If f ≥ 0 µ-almost everywhere, then R f ≥ 0 λ-almost everywhere.

3. For any sequence { fn} ∈ L+(A) such that fn ↑ f µ-almost everywhere, R fn ↑ R f λ-almost
everywhere.

4. R is additive and positive homogeneous on L+(A).

5. R is linear on L1
Loc,A, mapping to L1

Loc,B.

6. R f ∈ L(B) and R f = 0 outside Γ.

7. |R f | ≤ R | f | λ-almost everywhere.

8. For all M ∈ M, ∫
M

f dµ =
∫

[0,µ(M)]

R f dλ.

9. The restricted linear map R : L1
µ → L1

λ satisfies ∥R f ∥L1
λ
≤ ∥ f ∥L1

µ
, with equality if f ≥ 0

µ-a.e.

10. If M ∈ M, then RχM = χ[0,µ(M)] λ-a.e.

11. If f ∈ L+(Σ) and g ∈ L+(A), then R( f g) = R f Rg µ-almost everywhere.

Proof: For each x ∈ Γ, choose Mx ∈ M such that µ(Mx) = x. Consider the map r : B →M
defined by

r
(
[0, x]

)
= Ma(x), ∀x ≥ 0.

and r(∅) = ∅. Here a(x) is the function defined in Theorem 2.4.3. If x > y then a(x) ≥ a(y).
If a(x) > a(y) then My ⊂ Mx by the total ordering of M and the fact that µ(My) < µ(Mx).
Therefore y < x implies r(y) ⊆ r(x) and shows that r is order-preserving.

Let x, y ≥ 0 and suppose that y ≤ x. Then,

µ
(
r
(
[0, y]

)
\ r

(
[0, x]

))
= µ

(
My \ Mx

)
= µ(My) − µ(Mx) = a(y) − a(x) = λ

(
[0, y]

)
− λ

(
[0, x]

)
= λ

(
[0, y] \ [0, x]

)
.
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If y < x, the equation holds trivially.
Therefore the map r is a core morphism with constant c = 1. Theorem 2.3.6 provides the

existence of the map R. Also notice that L1
Loc,A = L1

Loc,M.
To prove (8), let M ∈ M. Let Mx ∈ M be the set r

(
[0, µ(M)]

)
. Then Mx = M up to a set of

µ-measure zero. Hence∫
M

f dµ =
∫

Mx\∅

f dµ =
∫

r
(

[0,µ(M)]
)
\r(∅)

f dµ =
∫

[0,µ(M)]\∅

R f dλ =
∫

[0,µ(M)]

R f dλ.

Similarly, to prove item (10), note that χM = χMx µ-a.e. Thus Theorem 2.3.6 shows that
RχM = RχMx = χ[0,µ(M)].

The remaining items (1) to (11) follow directly from the corresponding items in Theorem
2.3.6, the definition of r, and the observation that c = 1.

Proposition 2.4.7 Let (U,Σ, µ), be a σ-finite measure space with ordered core A, enriched
coreM, and the induced measure λ. Then, there exists a map Q : L1

Loc,λ ∪ L+λ → L1
Loc,A ∪ L+µ

such that for any φ ∈ L1
Loc,λ ∪ L+λ :

1. The restricted linear map Q : L∞λ → L∞µ satisfies ∥Qφ∥L∞µ ≤ ∥φ∥L∞λ .

2. If φ ≥ 0 λ-almost everywhere, then Qφ ≥ 0 µ-almost everywhere.

3. For any sequence {φn} ∈ L+(B) such that φn ↑ φ λ-almost everywhere, Qφn ↑ Qφ µ-
almost everywhere.

4. Q is additive and positive homogeneous on L+(B).

5. Q is linear on L1
Loc,λ, mapping to L1

Loc,A.

6. Qφ ∈ L(A) and Qφ is zero outside ∪A.

7. |Qφ| ≤ Q |φ| µ-almost everywhere.

8. For all M ∈ M, ∫
[0,µ(M)]

φ dλ =
∫
M

Qφ dµ.

9. The restricted linear map Q : L1
λ → L1

µ satisfies ∥Qφ∥L1
µ
= ∥φ∥L1

λ
, with equality if φ ≥ 0 λ-

almost everywhere.

10. If M ∈ M, then Qχ[0,µ(M)] = χM µ-a.e.

11. If φ, ψ ∈ L+(B), then Q(φψ) = QφQψ µ-almost everywhere.
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Proof: Define the set function r :M→ B by r(∅) = ∅ and

r(M) = [0, µ(M)], ∀M ∈ M \ {∅}.

Since M is totally ordered, the monotonicity of µ makes the map r order preserving. For
M,N ∈ M such that N ⊆ M we have

λ
(
r(M) \ r(N)

)
= λ

(
[0, µ(M)] \ [0, µ(N)]

)
= λ([0, µ(M)]) − λ([0, µ(N)]) = µ(M) − µ(N)

= µ(M \ N).

Therefore, r is a core morphism with constant c = 1. Theorem 2.3.6 provides the existence
of the map Q. Also notice that L1

Loc,A = L1
Loc,M.

Items (1) to (11) follow directly from the corresponding items in Theorem 2.3.6, the def-
inition of r, and the observation that c = 1. Only (11) requires comment. The correspond-
ing statement in Theorem 2.3.6 requires that ψ is measurable in the σ-algebra generated by
{[0, x] : x ∈ Γ}. This forces ψ to be constant on every connected component of the complement
of Γ. But λ is supported on Γ, so we may assume that ψ is constant λ-a.e. on every connected
component of the complement of Γ.

The next theorem explores the close relations between the transition maps R and Q.

Theorem 2.4.8 Let R,Q be as in Propositions 2.4.6 and 2.4.7. Then:

1. If φ ∈ L+(B) ∪ L1
Loc,λ, then RQφ = φ λ-a.e;

2. If f ∈ L+(A) ∪ L1
Loc,A, then QR f = f µ-a.e;

3. If f ∈ L+(A), φ ∈ L+(B) and M ∈ M then∫
M

f (Qφ) dµ =
∫

[0,µ(M)]

(R f )φ dλ and
∫

U
f (Qφ) dµ =

∫
[0,∞)

(R f )φ dλ;

4. If φ ∈ L↓(B), Qφ ∈ L↓(A) and φ∗ = (Qφ)∗;

5. If f ∈ L↓(A), R f ∈ L↓(B) and f ∗ = (R f )∗;

6. If g ∈ L↓(A), then{
h ∈ L↓(A) :

∫
M

h dµ ≤
∫

M
g dµ, ∀M ∈ M

}

=

Qψ : ψ ∈ L↓(B),
∫

[0,x]

ψ dλ ≤
∫

[0,x]

Rg dλ, ∀x ≥ 0

 .
The symbol ∗ denotes the nonincreasing rearrangement from Section 1.3.1.
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Proof: To prove (1): Let φ ∈ L+(B)∪ L1
Loc,λ. Let x ∈ [0,∞) and consider the map a(x) from

Theorem 2.4.3 and Ma(x) ∈ M satisfying µ(Ma(x)) = a(x). Then using item (3) in Propositions
2.4.6 and 2.4.7 and the fact that [0, x] = [0, a(x)] λ-a.e we get∫

[0,x]

RQφ dλ =
∫

[0,a(x)]

RQφ dλ =
∫

Ma(x)

Qφ dµ =
∫

[0,a(x)]

φ dλ =
∫

[0,x]

φ dλ.

Therefore Lemma 2.3.5 yields equality λ-a.e and proves item (1).
To prove (2): Let f ∈ L+(A)∪ L1

Loc,µ. Let A ∈ A. Then using item (3) in Propositions 2.4.6
and 2.4.7 we get ∫

A

QR f dµ =
∫

[0,µ(A)]

R f dλ =
∫
A

f dµ.

Therefore Lemma 2.3.5 yields equality µ-a.e and proves item (2).
To prove (3): Let f ∈ L+(A), φ ∈ L+(B) and M ∈ M. Then Qφ ∈ σ(A). Therefore, by (11)

in Proposition 2.4.6, we have R
(
f Qφ

)
= (R f )(RQφ) and by item (1) we get R

(
f Qφ

)
= (R f )φ,

thus ∫
M

f (Qφ) dµ =
∫

[0,µ(M)]

R
(
f (Qφ)

)
dλ =

∫
[0,µ(M)]

(R f )φ dλ.

Since Qφ is zero outside ∪A, we can reduce the integration to this set. Similarly, we can
reduce the integrals involving R f to Γ. Since A is σ-bounded, take an increasing sequence
{An}n∈N ∈ A such that An ↑ ∪A. The monotone convergence theorem yields∫

U

f (Qφ) dµ =
∫
∪A

f (Qφ) dµ = sup
n

∫
An

f (Qφ) dµ = sup
n

∫
[0,µ(An)]

(R f )φ dλ =
∫
Γ

(R f )φ dλ

=

∫
[0,∞)

(R f )φ dλ.

This completes the proof of item (3).
To prove (4): Let φ ∈ L↓(B), then it is an increasing limit of functions of the form∑n

k=1 αkχ[0,xk]. Without loss of generality, we may assume that {xk} is decreasing. By the con-
struction of λ, we may consider functions of the form

∑n
k=1 αkχ[0,a(xk)]. By item (3) in Proposi-

tion 2.4.7 we have that Qφ is the increasing limit of
∑n

k=1 αkQχ[0,a(xk)] =
∑n

k=1 αkχMa(xk ) . Thus,
Qφ ∈ L↓(A) by Lemma 2.2.5.

To finish proving item (4), note that by item (3) in Proposition 1.3.9, it suffices to show that
φ∗ = (Qφ)∗ holds for functions of the form φ =

∑n
k=1 αkχ[0,xi with {xi} ∈ Γ and decreasing. The

only non-zero values they take are
∑ j

k=1 αk, for j ∈ {1, . . . , n}, with φ taking that value on the
set (xi+1, xi] and Qφ on the set Mxi \ Mxi+1 . Therefore,

λ
(
(xi+1, xi]

)
= xi − xi+1 = µ

(
Mxi \ Mx

)
.

This shows that the distribution functions of φ and Qφ coincide, therefore φ∗ = (Qφ)∗ and
completes the proof of item (4).
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To prove item (5): Let f ∈ L↓(A). By Lemma 2.2.5, the function f is an increasing
sequence of functions of the form

n∑
k=1

αkχMk =

n∑
k=1

αkQ
(
χ[0,µ(Mk)]

)
= Q

( n∑
k=1

αkχ[0,µ(Mk)]

)
.

for some {αk} ∈ (0,∞),Mk ∈ M. An application of R yields

R
( n∑

k=1

αkχMk

)
= RQ

( n∑
k=1

αkχ[0,µ(Mk)]

)
=

n∑
k=1

αkχ[0,µ(Mk)],

by item (1). By item (3) in Proposition 2.4.6 and Lemma 2.2.5, we get R f ∈ L↓(B). Moreover,
by item (3) we have( n∑

k=1

αkχMk

)∗
=

(
Q
( n∑

k=1

αkχ[0,µ(Mk)]

))∗
=

( n∑
k=1

αkχ[0,µ(Mk)]

)∗
=

(
R
( n∑

k=1

αkχMK

))∗
.

Then item (3) in Proposition 1.3.9 yields (R f )∗ = f ∗ and proves item (5).
Fix g ∈ L↓(A). To show item (6), we show each set contains the other. Let h ∈ L↓(A), then

item (2) shows that h = QRh. Let ψ = Rh and x ≥ 0, then∫
[0,x]

ψ dλ =
∫

[0,x]

Rh dλ =
∫

Ma(x)

h dµ ≤
∫

Ma(x)

g dµ =
∫

[0,a(x)]

Rg dλ =
∫

[0,x]

Rg dλ.

This proves ”⊆”. Conversely, let ψ ∈ L↓(B) and set h = Qψ, then for any M ∈ M:∫
M

h dµ =
∫

[0,µ(M)]

Rh dλ =
∫

[0,µ(M)]

RQψ dλ =
∫

[0,µ(M)]

ψ dλ ≤
∫

[0,µ(M)]

Rg dλ =
∫
M

g dµ.

This proves equality of the sets and completes the proof.

We finish this chapter by describing a decomposition of the measure space (∪A, σ(A), µ)
into two sets which correspond, via the map R, to the atomic and non-atomic parts of the
measure λ.

Lemma 2.4.9 Let (U,Σ, µ),A,B, λ,R,Q as in the previous theorem. Then, there exist sets
denoted UC,UD ∈ σ(A) such that

∪A = UC ∪ UD and UC ∩ UD = ∅,

such that for any f ∈ L+(Σ) ∪ L1
Loc,A:∫

UC

f dµ =
∫
Γ

R f (x) dx, and
∫

UD

f dµ =
∑

R f (d)(d − c),
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where the sum is taken over the connected components (c, d) of the complement of Γ. If, in
addition, f ∈ L+(A) ∪ L1

Loc,A, then

fχ∪A = fχUC +
∑
j∈J

α j χ(M j\N j), µ-a.e. (2.7)

for some countable disjoint collection {(M j \ N j)} j∈J with M j,N j ∈ M and some α j > 0.
If VC,VD ∈ σ(A) satisfies the properties above, then UC = VC and UD = VD up to a set of

µ-measure zero.

Proof: Since λ is a σ-finite measure, the collection I = {x ∈ Γ : λ({x}) > 0} is countable. Also
note that this set is the same as {b(x) > 0 : a(x) < b(x)} by Theorem 2.4.3. Let

G =
⋃
{(a(x), b(x)] : x ∈ I} =

⋃
{[0, b(x)] \ [0, a(x)] : x ∈ I} .

The union is countable and disjoint, therefore

QχG =
∑
x∈I

Q
(
χ[0,b(x)] − χ[0,a(x)]

)
=

∑
x∈I

(
χMb(x) − χMa(x)

)
= χUD ,

where UD =
⋃

x∈I
(
Mb(x) \ Ma(x)

)
∈ σ(A). Define the set UC = ∪A \ UD.

Notice that χUD is σ(A)-measurable, therefore item (11) in Lemma 2.4.6 yields∫
UD

f dµ =
∫
U

fχUD dµ =
∫
Γ

R f R(χUD) dλ =
∫
G

R f dλ =
∑
x∈I

∫
(a(x),b(x)]

R f dλ

=
∑
x∈I

R f
(
b(x)

)(
b(x) − a(x)

)
=

∑
R f (d)(d − c).

Since
∫

U
f dµ =

∫
UC

f dµ +
∫

UD
f dµ, Theorem 2.4.3 shows that∫

UC

f dµ =
∫
Γ

R f (x) dx.

Notice that Q1 = χ∪A, by linearity of Q we have that QχΓ\G = χ∪A − χUD = χUC . If f is
σ(A)-measurable, then fχ∪A = QR f and using Theorem 2.4.8:

fχ∪A = Q
(
R fχG + R fχΓ\G

)
= Q

(
R fχG

)
+ Q(R f )Q(χΓ\G) = Q

(
R fχG

)
+ fχUC

= Q
(∑

R fχ(c,d]

)
+ fχUC = Q

(∑
R f (d)χ(c,d]

)
+ fχUC =

∑
R f (d)Q(χ(c,d]) + fχUC

= fχUC +
∑

R f (d) χ(Md\Mc).

Here, we used the fact that for a connected component (c, d) in the complement of Γ we have
that χ(c,d] = χ{d} λ-a.e. Then we can make α j = R f (d), M j = Md and N j = Mc to prove equation
(2.7).

To show uniqueness of the decomposition, note that
∫

UC
f dµ =

∫
VC

f dµ for any f ∈ L1
Loc,A.

Making f = χA for A ∈ A yields∫
A
χUC dµ =

∫
UC

f dµ =
∫

VC

f dµ =
∫

A
χVC dµ.
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Therefore Lemma 2.3.5 yields χUC = χVC µ-a.e. Hence UC = VC up to a set of µ-measure zero,
since the decomposition of U was disjoint, then UD and VD also differ by a set of µ-measure
zero. This completes the proof.

In the case thatA is full and separable, the decomposition takes a more explicit form.

Corollary 2.4.10 Let (U,Σ, µ),A,B, λ,R,Q as in the previous theorem with A full and sepa-
rable. Then there exists a countable collection of distinct equivalence classes {[u j]A} such that
µ([u j]A) > 0 and a set UC ∈ σ(A) such that U = UC ∪

⋃
j[u j]A, a disjoint union. Also for each

f ∈ L+(Σ) ∪ L1
Loc,A: ∫

UC

f dµ =
∫
Γ

R f (x) dx

If in addition f ∈ L+(σ(A)) ∪ L1
Loc,A:

f = fχUC +
∑

j

α jχ[u j]A ,

where α j = f (u j) and does not depend on the choice of representative.

Proof: For each f ∈ L+(A) ∪ L1
Loc,A, Lemma 2.4.9 provides a decomposition of the form

f = fχUC +
∑
j∈J

α j χ(M j\N j).

For each j define the sets

L j =
⋃
{E ∈ M : µ(E) < µ(M j)}, S j =

⋂
{E ∈ M : µ(E) > µ(N j)}.

Since A is separable, then L j, S j ∈ M, also N j ⊆ L j and S j ⊆ M j. Since
(
µ(N j), µ(M j)

)
is a

connected component of the complement of Γ, then µ(E) < µ(M j) implies that µ(E) ≤ µ(N j),
thus µ(L j) = µ(N j). Similarly µ(S j) = µ(M j).

It follows that χ(M j\N j) = χ(S j\L j) up to a set of µ-measure zero. Moreover, by construction,
if u j ∈ S j \ L j, then [u j]A = (S j \ L j).

Therefore
f = fχUC +

∑
j∈J

α j χ[u j]A .

Evaluation on each u j yields f (u j) = α j and completes the proof.
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Monotone envelopes

In this chapter, we introduce two very important constructions that generalize the least-decreasing
majorant and the level function to the space (U,Σ, µ) with an ordered core A. We will study
a new preorder relation on locally integrable σ(A)-measurable functions, we use this preorder
to give a functional characterization of the least-decreasing majorant, greatest decreasing mi-
norant, and level function.

3.1 Two different preorder relations
We introduce two different preorder relations on a very large collection of nonnegative func-
tions

Definition 3.1.1 Let f , g ∈ L1
Loc,A ∩ L+µ . We write f ≼A g whenever∫

E
f dµ ≤

∫
E

g dµ, ∀E ∈ A.

First, we note that we can use the core A or its enriched coreM in the definition without
changing the preorder. To see this, suppose that f ≼A g and let M ∈ M then µ(M) ∈ Γ and
there exists a sequence xn → µ(M) such that xn = µ(En) for some En ∈ A. If we can extract an
increasing subsequence, the monotone convergence theorem shows that∫

M
f dµ =

∫
[0,µ(M)]

R f dλ = sup
n

∫
[0,µ(En)]

R f dλ = sup
n

∫
En

f dµ ≤ sup
n

∫
En

g dµ

= sup
n

∫
[0,µ(En)]

Rg dλ =
∫

[0,µ(M)]

Rg dλ =
∫

M
g dµ.

In the case that a decreasing subsequence of xn can be extracted, the dominated convergence
theorem applies and a similar argument shows that

∫
M

f dµ ≤
∫

M
g dµ.

It is clear that f ≤ g implies f ≼A g, however, the converse may fail, as it is shown in the
following example.

53
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Example 3.1.2 Let (U,Σ, µ) be the ordered core given in Example 2.1.9 with d = 2. Consider
f = 1

2 and g = χH+ where H+ = {(x, y) : y ≥ 0}. Clearly R f = Rg so f ≼A g and g ≼A f but
f ≤ g and g ≤ f both fail.

The previous example also shows that f ≼A g and g ≼A f need not imply f = g. However, we
do have a partial order relation when restricted to a large subset σ(A)-measurable functions.

Proposition 3.1.3 Let f , g ∈ L+(A)∩L1
Loc,A such that f ≼A g and g ≼A f , then f = g µ-almost

everywhere.

Proof: If both f ≼A g and g ≼A f , then
∫

A
f dµ =

∫
A

g dµ for all A ∈ A. The result follows
directly from Lemma 2.3.5.

The following proposition explores the preorder ‘≼A’ and multiplication by core decreasing
functions.

Proposition 3.1.4 Let f , g ∈ L+(Σ), then f ≼A g if and only if
∫

U
f h dµ ≤

∫
U

gh dµ for all
h ∈ L↓(A).

Proof: Suppose f ≼A g and let h ∈ L↓(A). Lemma 2.2.5 shows that h is the increasing limit
of functions of the form

∑n
k=1 αkχMk for some αk > 0 and Mk ∈ M. Then,∫

U
f
( n∑

k=1

αkχMk

)
dµ =

n∑
k=1

αk

∫
Mk

f dµ ≤
n∑

k=1

αk

∫
Mk

g dµ =
∫

U
g
( n∑

k=1

αkχMk

)
.

The monotone convergence theorem proves
∫

U
f h dµ ≤

∫
U

gh dµ.
Conversely, let M ∈ M and h = χM then∫

M
f dµ =

∫
U

f h dµ ≤
∫

U
gh dµ =

∫
M

g dµ.

3.2 The least core decreasing majorant
We define a projection operator from L(Σ) onto the set of core decreasing functions. This
projection will be optimal in the sense of the partial order ‘≤’ µ-almost everywhere.

Definition 3.2.1 Let f ∈ L(Σ), we say that f̃ is a least core decreasing majorant of f if | f | ≤
f̃ ∈ L↓(A), and for every g ∈ L↓(A) satisfying | f | ≤ g µ-a.e, we have f̃ ≤ g µ-a.e.

Notice that, by Proposition 3.1.3, if a least core decreasing majorant exists, then it must
be unique µ-almost everywhere. The next lemma shows that a least core decreasing majorant
always exists.
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Lemma 3.2.2 Every Σ-measurable function g has a least core decreasing majorant, denoted
g̃, which is unique up to µ almost everywhere equality. If gn ∈ L+(Σ) and gn ↑ g µ-a.e, then
g̃n ↑ g̃ µ-a.e.

Proof: Suppose that |g| ≤ C < ∞ and let {An}n∈N ⊆ A such that An ↑ U. Set

αn = inf
{∫

An

h dµ : h ∈ L↓(A) and h ≥ |g|
}
.

Note that the constant function C belongs to L↓(A), is an upper bound for |g| and
∫

An
C dµ =

cµ(An) < ∞. Hence the numbers αn are finite.
For each n ∈ N+, there exists hn ∈ L↓(A) such that hn ≥ |g| and αn + 1/n >

∫
An

hn dµ. Since

the pointwise minimum of finitely many core decreasing functions is core decreasing, we may
assume that {hn} is a decreasing sequence. Let h = infn hn, which is clearly a core decreasing
majorant of g.

To show that h is the least core decreasing majorant of g, let w be another core decreasing
majorant, then so is min{h,w}, thus∫

An

h dµ ≤
∫
An

hn dµ < αn + 1/n ≤
∫
An

min{w, h} dµ + 1/n.

Then 1/n ≥
∫
An

(h −min{w, h}) dµ ≥ 0. Let n → ∞ to get min{w, h} = h almost everywhere.

This completes the proof in the case that g is bounded.
For the unbounded case, define gm = min{m, |g|} and let g̃m be its least core decreasing

majorant which exists since gm is bounded. Since g̃m ≥ min{m, |g|} ≥ min{m − 1, |g|} = gm−1,
we have g̃m ≥ g̃m−1. Therefore, {g̃m}m∈N is an increasing sequence.

Let h = supm∈N g̃m. Since each g̃m is bounded below by min |g| ,m, h ≥ |g|, thus h is a core
decreasing majorant of |g|. If w is another core decreasing majorant of |g|, then min(m,w) is a
core decreasing majorant of |gm|, thus min(m,w) ≥ g̃m. Let m→ ∞ to get that w ≥ h and prove
that h is the least core decreasing majorant of g.

For the final property, let fn ↑ g with fn ∈ L+(Σ). Then, for each n ≥ 1, fn ≤ g ≤ g̃. Since g̃
is a core decreasing majorant of fn, we get f̃n ≤ g̃. By the same argument, we get that { f̃n} is an
increasing sequence. Denote w = supn f̃n. It is core decreasing and satisfies w ≤ g̃. However,
since fn ≤ f̃n, letting n → ∞ yields g ≤ w. Thus, w is a core decreasing majorant of g and we
get g̃ ≤ w, completing the proof.

The proof of Lemma 3.2.2 does not describe the least core decreasing majorant. We address
this in the remainder of this chapter. First, we give a pointwise description for the case that the
core is separable. Then we provide a functional description, which is valid for every ordered
core.

Theorem 3.2.3 Let (U,Σ, µ) be a σ-finite measure space with a separable full ordered coreA
and let f ∈ L(Σ). Then

f̃ (u) = ess supt≥Au | f (t)| = ess supt<(←,u)A | f (t)| .
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Proof: Define g(u) = ess supt<(←,u)A | f (t)|. Then g is nonnegative and if t ≤A x then g(x) ≤ g(t).
We show first that g ∈ L+(A).

Fix α > 0 and define the set O = g−1(α,∞). Since x ∈ (←, x]A for all x ≥ 0, it follows that
O ⊆

⋃
x∈O(←, x]A. We wish to show the converse.

Let x ∈ O and t ≤A x, then (←, t)A ⊆ (←, x)A. Thus, g(t) ≥ g(x) > α and it shows that
t ∈ O. It follows that O =

⋃
x∈O(←, x]A.

Since the core is separable and the sets (←, x]A ∈ M, then O ∈ M. This shows that g is
σ(A)-measurable and we see that g is core decreasing. It remains to show that | f | ≤ g and
g ≤ f̃ both hold µ-a.e.

By virtue of Corollary 2.4.10, it suffices to show that | f | ≤ g ≤ f̃ µ-almost everywhere on
UC and on each of the countably many equivalence classes {[u j]A} where µ([u j]A) > 0.

Fix one of those equivalence classes [u j]A and let z ∈ [u j]A. Since g and f̃ belong to L+(A),
they are constant on [u j]A by Corollary 2.4.10. By definition of essential supremum, we have

0 = µ
(
{t < (←, z)A : | f (t)| > g(z)}

)
≥ µ

( {
t ∈ [u j]A : | f (t)| > g(z)

} )
= µ

( {
t ∈ [u j]A : | f (t)| > g(t)

} )
.

It follows that | f | ≤ g µ-a.e. on [u j]A. To prove this on UC: Fix ϵ > 0, n,m ∈ N+, choose
{Am} ∈ A satisfying Am ↑ U and set

S m,n = {z ∈ UC ∩ Am : | f (z)| − g(z) > ϵ and nϵ ≤ | f (z)| < (n + 1)ϵ} .

Define the continuous function ϕ : [0,∞)→ [0,∞) by

ϕ(t) =
∫ ∞

t
R(χS m,n)(x)χΓ(x) dx.

Since S m,n ⊆ Am, if t > µ(Am), then we have ϕ(t) = 0. Since S m,n ⊆ UC, an application of
Corollary 2.4.10 yields

µ(S m,n) =
∫
UC

χS m,n dµ =
∫
Γ

R(χS m,n)(x) dx = ϕ(0).

Suppose that µ(S m,n) > 0. By continuity of ϕ, there exist t1, t2 ∈ (0, µ(Am)), such that ϕ(t1) =
µ(S m,n)

2 and ϕ(t2) = µ(S m,n)
3 . Thus, there exists E ∈ M such that t1 ≤ µ(E) ≤ t2 and it follows that

µ(S m,n ∩ E) =
∫
UC

χS m,n χE dµ =
∫

Γ∩[0,µ(E)]

R(χS m,n)(x) dx ≥
∫

Γ∩[0,t1]

R(χS m,n)(x) dx

=

∫ ∞

0
R(χS m,n)(x)χΓ(x) dx −

∫ ∞

t1
R(χS m,n)(x)χΓ(x) dx = ϕ(0) − ϕ(t1)

=
µ(S m,n)

2
.

Also,

µ(S m,n \ E) =
∫
UC

χS m,n (1 − χE) dµ =
∫

Γ∩[µ(E),∞)

R(χS m,n)(x) dx ≥
∫

Γ∩[t2,∞)

R(χS m,n)(x) dx

= ϕ(t2) =
µ(S m,n)

3
.
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Let z ∈ S m,n ∩ E. If t ∈ S m,n \ E we have z ≤A t, and it follows that

g(z) = ess supz≤At | f (t)| ≥ ess supS m,n\E | f (t)| ≥ nϵ.

But z ∈ S m,n ∩ E implies

g(z) < | f (z)| − ϵ ≤ (n + 1)ϵ − ϵ = nϵ.

Thus nϵ < g(z) ≤ nϵ, this is a contradiction. Therefore µ(S m,n) = 0 for each m, n. Let m → ∞
to get that

{z ∈ UC : | f (z)| − g(z) > ϵ}

is a null set. Let ϵ → 0 to get | f | ≤ g up to a set of µ-measure zero.
Since g is a core decreasing majorant of | f |, then f̃ ≤ g almost everywhere.
Since f̃ is core decreasing, then if z ≤A t, | f | (t) ≤ f̃ (t) ≤ f̃ (z). Hence

f̃ (z) ≥ ess supz≤At | f (t)| = g(z).

Thus f̃ = g and the proof is complete.

The next example shows that the formula provided in Theorem 3.2.3 need not hold for
non-separable ordered cores.

Example 3.2.4 Consider the ordered core introduced in Example 2.1.12 and let f = 1 − χ0W .
Notice that f = χE for the core set E = V∪̇(W \ 0). Therefore it is a core decreasing function,
hence f = f̃ . We will show that if g(α) = ess supα≤Aβ f (β) does not coincide with f .

If α ∈ V, then f (β) = 1 for β ∈ (V \α)∪̇(W \0W) which has positive measure, thus g(α) = 1.
If α ∈ W, then notice that the set {0W} has the same µ-measure as U \ (←, α]A. Hence

g(α) = f (0W) = 0. Therefore g = χV which differs from f in the set of positive measure
W \ {0W}.

We finish this section with a functional description of the least core decreasing majorant,
notice that the second partial order ‘≼A’ is involved in this description.

Theorem 3.2.5 Let (U,Σ, µ) be a σ-finite measure space with an ordered core A and f , g ∈
L+(Σ), then ∫

U
f̃ g dµ = sup

{∫
U

f h dµ : h ≼A g
}
.

We need some preparation to prove Theorem 3.2.5; the first lemma shows that the least core
decreasing majorant of a simple Σ-measurable function is a simple σ(A)-measurable function.
The second lemma is the main tool, where we ’push the mass’ of f to form an appropriate
function g to achieve the desired supremum.

Lemma 3.2.6 Let u be a nonnegative, simple, Σ-measurable function that vanishes outside a
set S ∈ A and let {y0, . . . , yn} be the values that u takes on sets of positive measure. Then ũ
takes its values on a subset of {y0, . . . , yn}. Moreover, ũ is a σ(A)-measurable function that
vanishes outside S .
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Proof:
We may assume that {y0, . . . , yn} is ordered increasingly. For j ∈ {1, . . . , n}, define the sets

V j = {s ∈ U : y j−1 < ũ(s) < y j} and Vn+1 = {s ∈ U : yn < ũ(s)}. Notice that these sets belong to
σ(A) since ũ is core decreasing. Let V = ∪n+1

j=1V j and define

h = ũχU\V +

n+1∑
j=1

y j−1χV j .

By construction h is σ(A)-measurable and clearly h ≤ ũ. Moreover, since up to measure zero,
u does not take any values where ũ and h differ, then h is also a majorant of u. Hence, equality
will follow once we show that h is core decreasing.

Let s, t ∈ U, with s ≤A t, we wish to show that h(t) ≤ h(s) and we do so by checking four
distinct cases.

Case 1: s < V and t < V . Since ũ is core decreasing, h(t) = ũ(t) ≤ ũ(s) = h(s).
Case 2: s ∈ V and t ∈ V . If s and t belong to the same V j, then h(s) = h(t). Otherwise,

suppose that s ∈ V j and t ∈ Vk. Since ũ is core decreasing, we must have that ũ(t) ≤ ũ(s), so
k < j, hence h(t) = yk−1 < y j−1 = h(s).

Case 3: s < V and t ∈ V . Suppose that t ∈ V j. Since ũ is core decreasing, and s < V j, we
get h(t) = y j−1 < y j ≤ ũ(s) = h(s).

Case 4: s ∈ V and t < V . Suppose that s ∈ V j. Since ũ is core decreasing and t < V j, we
get h(t) = ũ(t) ≤ y j−1 ≤ ũ(s), we get h(t) ≤ h(s) = y j−1.

Therefore h is core decreasing, and by minimality h = ũ, therefore µ(V j) = 0 for all V j,
hence ũ takes its values in a subset of {y0, . . . , yn}.

Finally, notice that ũχS is also core decreasing. Since u is zero outside S , it is also a core
decreasing majorant of u, hence ũχS = ũ and completes the proof.

And now, for this particular case of u, we construct an approximating function g by ’pushing
mass’ on core sets.

Lemma 3.2.7 Let u be as in the previous lemma, f ∈ L+(Σ). If
∫

U
f ũ dµ = ∞ and n > 0, there

exists a function g ∈ L+(Σ) such that
∫

E
g dµ ≤

∫
E

f dµ for any E ∈ A and∫
U

gu dµ ≥ n.

If
∫

U
f ũ dµ < ∞ and ϵ > 0, then there exists a function g ∈ L+(Σ) such that

∫
E

g dµ ≤
∫

E
f dµ

for any E ∈ A and ∫
U

f ũ dµ − ϵ <
∫

U
gu dµ.

Proof: By the previous lemma, we may assume that ũ =
∑m

j=1 z jχE j for a decreasing sequence z j

and disjoint sets E j ∈ σ(A). Define the sets B j =
⋃ j

k=1 Ek, notice that B j = {s ∈ U : ũ(s) ≥ z j}.
Also notice that if s ≤A t and t ∈ B j, then s ∈ B j, thus B j ∈ M. Note that B0 = ∅ ∈ M.

Define H = {s ∈ U : ũ(s) = u(s)} and let A ∈ A satisfy µ(B j \ A) > 0. We claim
that µ

(
H ∩ (B j \ A)

)
> 0. To see this, suppose this is not true for some B j and some A. For
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s ∈ B j \B j−1, ũ(s) = z j so for µ-a.e. s ∈ H∩(B j \B j−1), u(s) < ũ(s) = z j and we have u(s) ≤ z j+1

if j < m and u(s) = 0 if j = m.
If A ⊆ B j−1 define the function h = z j+1χB j\B j−1 + ũχU\(B j\B j−1), otherwise define h =

z j+1χB j\A + ũχU\(B j\A). Clearly, h ≤ ũ and by assumption u ≤ h, by the exact same argument as
the one used in the proof of the previous lemma we get that h is a core decreasing majorant of
u strictly smaller than ũ arriving at a contradiction.

For each j ∈ {1, . . . ,m} let α j = sup{µ(A) : A ∈ A, µ(A) < µ(B j)}. Notice that zm ≤ u ≤ z1,
hence

zm

∫
Bm

f dµ ≤
∫
U

ũ f dµ ≤ z1

∫
Bm

f dµ.

Therefore,
∫
U

ũ f dµ is finite if and only if
∫

Bm

f dµ is finite.

Suppose that
∫

Bm

f dµ is infinite and that αm < µ(Bm). Choose D ∈ M such that µ(D) = αm

and define the function
g =

n
zm

χH∩(Bm\D)

µ(H ∩ (Bm \ D))
.

If E ∈ A then µ(E) ≤ µ(D) or µ(E) ≥ µ(Bm). In the first case we have
∫

E
g dµ = 0 and in the

second case we have
n
zm
=

∫
E

g dµ <
∫

E
f dµ = ∞.

Thus
∫

E
g dµ ≤

∫
E

f dµ for each E ∈ A and∫
U

ug dµ =
∫

H∩(Bm\D)

ug dµ =
∫

H∩(Bm\D)

ũg dµ =
∫

H∩(Bm\D)

zmg dµ = n.

Above we used the fact that µ(Bm−1) ≤ µ(D) < µ(Bm) so ũ(s) = zm for s ∈ Bm \ D up to a set of
µ-measure zero.

If
∫

Bm

f dµ is infinite and αm = µ(Bm). Choose a set W ∈ M such that Bm−1 ⊆ W, µ(W) <

µ(Bm) and
∫

W
f dµ ≥ n

zm
. Define the function

g =
( ∫

W
f dµ

)
χH∩(Bm\W)

µ(H ∩ (Bm \W))
.

Let E ∈ A. If µ(E) ≤ µ(W) then
∫

E
g dµ = 0. If µ(W) ≤ µ(E), then∫

E
g dµ =

∫
W

f dµ ≤
∫

E
f dµ.

Thus
∫

E
g dµ ≤

∫
E

f dµ for each E ∈ A and∫
U

ug dµ =
∫

H∩(Bm\W)

ug dµ =
∫

H∩(Bm\W)

ũg dµ =
∫

H∩(Bm\W)

zmg dµ = zm

∫
W

f dµ ≥ n.
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For the case that
∫

Bm

f dµ is finite, we choose the set C j and define the function g j in two

cases.

If α j < µ(B j), choose a set C j ∈ M such that µ(C j) = α j and set g j =

∫
E j

f dµ

 χH∩(E j\C j)

µ
(

H∩(E j\C j)
) .

The previous argument shows that the denominator is not zero.
If α j = µ(B j), choose a set C j ∈ A such that∫

B j

f dµ −
∫
C j

f dµ <
ϵ

mz j
,

and set g j =

 ∫
C j\B j−1

f dµ

 χH∩(E j\C j)

µ
(

H∩(E j\C j)
) . Once more, notice that every set involved has finite

measure.
Note than in both cases g j is supported on E j, also

∫
E j

f dµ −
∫
E j

g j dµ < ϵ
mz j

and
∫

E j
g j dµ ≤∫

B j\B j−1

f dµ.

Finally, define the function g =
∑m

j=1 g j. We check that this function satisfies the require-
ments. Notice that since g is zero outside of H, then gu = gũ and

∫
U

f ũ dµ −
∫
U

gu dµ =
∫
U

f ũ dµ −
∫
U

gũ dµ

=

∫
U

f ũ dµ −
m∑

j=1

∫
U

g j̃u dµ

=

∫
U

f ũ dµ −
m∑

j=1

∫
U

g j

m∑
k=1

zkχEk dµ

=

∫
U

f ũ dµ −
m∑

j=1

m∑
k=1

zk

∫
Ek

g j dµ

=

∫
U

f ũ dµ −
m∑

j=1

z j

∫
E j

g j dµ, since g j is supported on E j

=

m∑
j=1

z j


∫
E j

f dµ −
∫
E j

g j dµ


<

m∑
j=1

z j

(
ϵ

mz j

)
, by construction

= ϵ.

This proves the statement
∫
U

f ũ dµ − ϵ <
∫
U

gu dµ.
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To complete the proof, let E ∈ A. If µ(E) ≥ µ(Bm) then∫
E

g dµ =
m∑

j=1

∫
U

g j dµ ≤
m∑

j=1

∫
B j\B j−1

f dµ =
∫
Bm

f dµ ≤
∫
E

f dµ.

If µ(E) < µ(Bm), then there exists k ∈ {1, . . . ,m} such that µ(Bk−1) ≤ µ(E) ≤ µ(Bk) and we have
two cases.

If µ(E) < µ(Ck) , we compute∫
E

g dµ =
k−1∑
j=1

∫
U

g j dµ ≤
k−1∑
j=1

∫
B j\B j−1

f dµ =
∫

Bk−1

f dµ ≤
∫
E

f dµ.

If µ(E) ≥ µ(Ck) , then Ck , αk so Ck and gk were chosen as in the case αk = µ(Bk) above.
Thus, ∫

E

g dµ =
k−1∑
j=1

∫
U

g j dµ +
∫

E\Ck

gk dµ ≤
∫

Bk−1

f dµ +
∫

E\Ck

gk dµ ≤
∫

Bk−1

f dµ +
∫

Bk\Ck

gk dµ

=

∫
Bk−1

f dµ +
∫

Ck\Bk−1

f dµ =
∫
Ck

f dµ ≤
∫
E

f dµ.

Therefore
∫

E
g dµ ≤

∫
E

f dµ and completes the proof.

We now prove the main result
Proof of Theorem 3.2.5: If g satisfies

∫
E

g dµ ≤
∫

E
f dµ for all E ∈ A then∫

U
gu dµ ≤

∫
U

gũ dµ since u ≤ ũ

≤

∫
U

f ũ dµ since ũ is core decreasing.

Supremum over all g yields the inequality∫
U

f ũ dµ ≥ sup
{∫

U
gu dµ : g ≼A f

}
.

We now prove the converse. Since there exist a sequence An ∈ A increasing to U and a
sequence of simple Σ-measurable functions un ↑ u, then the sequence vn = unχAn also increases
to u. Therefore we can assume that un is simple and vanishes outside An. If for some n ∈ N
the integral

∫
U

f ũn dµ = ∞, then by Lemma 3.2.7 there exists a function g such that
∫

E
gn dµ ≤∫

E
f dµ for all E ∈ A and

n =
∫

U
ung dµ ≤

∫
U

ug dµ.

Let n→ ∞ to get

sup
{∫

U
gu dµ : g ≼A f

}
= ∞ =

∫
U

f ũ dµ.
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If
∫

U
ũn f dµ is finite for all n ∈ N, fix ϵ > 0. By Lemma 3.2.7, for each n there exists gn

such that
∫

E
gn dµ ≤

∫
E

f dµ for all E ∈ A and∫
U

f ũn dµ < ϵ +
∫

U
gnun dµ ≤ ϵ +

∫
U

gnu dµ ≤ ϵ + sup
{∫

U
gu dµ : g ≼A f

}
.

Let n→ ∞ and then ϵ → 0 to conclude.∫
U

f ũ dµ ≤ sup
{∫

U
gu dµ : g ≼A f

}
,

and complete the proof.

3.3 The greatest core decreasing minorant
We define an analogous projection reversing the order relation ‘≤’.

Definition 3.3.1 Let f ∈ L(Σ). We say that f is a greatest core decreasing minorant of f if
f ∈ L↓(A), f ≤ f , and for every g ∈ L↓(A) satisfying g ≤ | f | µ-a.e, we have g ≤ f µ-a.e.

Just as in the previous chapter, if a greatest core decreasing minorant exists, then it must be
unique µ-almost everywhere. The next lemma shows that a greatest core decreasing minorant
always exists.

Lemma 3.3.2 Every Σ-measurable function f has a greatest core decreasing minorant, de-
noted f , which is unique up to µ almost everywhere equality.

Proof: Suppose that |g| ≤ C for some C < ∞ and let An ↑ U with An ∈ A. Let

αn = sup


∫
An

h dµ : h ∈ L↓(A) and h ≤ |g|

 .
The constant function 0 is core decreasing, so αn ≥ 0. Since |g| is bounded above, all the
integrals are bounded by Cµ(An), hence αn ≤ Cµ(An) < ∞.

If αn = 0, define hn = 0. Otherwise, choose hn ∈ L↓(A) such that hn ≤ |g| and αn −
1
n <∫

An

hn dµ.

Set f1 = h1 and fn = max{ fn−1, hn}. Since the maximum of two core decreasing functions
is core decreasing, each fn is a core decreasing minorant of |g|. Also by construction fn−1 ≤ fn

and αn −
1
n <

∫
An

fn dµ.
Let h = supn∈N fn, which is clearly a core decreasing minorant of |g| and fn ↑ h. To show

that it is a greatest core decreasing minorant, let w be another core decreasing minorant of |g|,
then so is max{w, h}, thus

∞ >

∫
An

h dµ ≥
∫
An

hn dµ > αn −
1
n
≥

∫
An

max{w, h} dµ −
1
n
,
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therefore
1
n
≥

∫
An

(max{w, h} − h) dµ ≥ 0,

let n → ∞ to get h = max{w, h} almost everywhere, so h ≥ w almost everywhere. This shows
that h is a greatest core decreasing minorant.

If |g| is not bounded above, define φn = min(n, |g|)χAn . Let ψn be a greatest core decreasing
minorant of φn.

Notice that since ψn−1 is a core decreasing minorant of φn then we must have that ψn−1 ≤ ψn,
thus ψn is an increasing sequence of core decreasing minorants of |g|. Define ψ = supn ψn,
which is a core decreasing minorant of |g|.

In order to show that ψ is a greatest core decreasing minorant, let w be a core decreas-
ing minorant, then min{n,w}χAn is a core decreasing minorant of min{n, |g|}χAn = φn, thus
min{n,w} ≤ ψn, hence taking limits we get w ≤ h. This shows existence of the greatest core
decreasing minorant of g and completes the proof.

Notice that, unlike the corresponding result for the least core decreasing majorant, the
condition fn ↑ f does not imply fn ↑ f . This is exhibited in the following example.

Example 3.3.3 Consider the core from Example 2.1.9, let f = 1 and fn = χRd\B 1
n

[0]. Then
f = 1 but fn = 0 for all n ∈ N. To see the last equality, notice that fn(x) = 0 for all x in B 1

n
[0]

and since fn is core decreasing, then fn is identically zero.

The next theorem is an analog of Theorem 3.2.3. The proof is analogous so we omit the
details.

Theorem 3.3.4 Let (U,Σ, µ) be a σ-finite measure space with a separable ordered coreA and
f ∈ L(Σ), then

f (u) = ess inft≤Au | f (t)| = ess inft∈(←,u]A | f (t)| .

Example 3.3.5 Let U = X be a metric measure space with distance function d, a ∈ X be any
element, µ be any Borel measure and the core

A = {∅} ∪
{
Ba,r : r > 0

}
where Ba,r = {x ∈ X : d(a, x) ≤ r}. Then

g(x) = ess infµ
{
|g(t)| : t ∈ Ba,|x|a

}
,

where |x|a = d(a, x).

The same function shown in Example 3.2.4 shows that the formula provided in Theorem
3.3.4 need not hold for non-separable ordered cores.

We finish this section with a functional description of the least core decreasing majorant.
The fact that the greatest core decreasing minorant is not well behaved with increasing se-
quences forces us to adjust the argument and not use simple functions.

We need a technical lemma first, which will be the key to the ‘pushing mass’ argument
done to the original function.
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Lemma 3.3.6 Let u be a nonnegative measurable function, a > b ≥ 0, A = {s ∈ U : u(s) ≥ a}
and B = {s ∈ U : u(s) ≥ b} such that µ(B \ A) > 0. Then for C ∈ M such that C ⊆ B and
µ(C \ A) > 0, the set

{s ∈ C \ A : b ≤ u(s) < a}

has positive µ-measure.

Proof: Notice that since u is core decreasing, A and B belong to M. Suppose that the
statement does not hold, then there exists some C ∈ M such that µ(C \ A) > 0, C ⊆ B and
u(s) ≥ a or u(s) < b for µ-almost all s ∈ C \ A.

Notice that on C \ A we have b ≤ u(s) ≤ u(s), therefore we may assume that u(s) ≥ a.
Define the function

h = uχ(U\(C\A)) + aχ(C\A).

By construction h(s) > u(s) for all s ∈ C \ A, which is a set of positive measure. To arrive at a
contradiction it suffices to show that h is a core decreasing minorant of u.

It was already shown that h ≤ u µ-a.e. on C \ A, thus h is a minorant of u. To show that it is
core decreasing, notice that we have to check the two cases s ∈ A, t ∈ C \ A and s ∈ C \ A and
t < C. In the first case:

h(s) = u(s) ≥ a = h(t),

and in the second case:
h(s) = a > u(t) = h(t).

Therefore h is a core decreasing minorant of u, contradicting the fact that u is the greatest core
decreasing minorant of u and finishing the proof.

We now ‘push the mass to the left’ of f to an appropriate function g to achieve the desired
infimum.

Lemma 3.3.7 Let u and f be nonnegative measurable functions such that
∫

U
f u dµ < ∞. Then,

for any ϵ > 0, there exists a measurable nonnegative function g such that
∫

E
g dµ ≥

∫
E

f dµ for
any E ∈ A and ∫

U
gu dµ − ϵ <

∫
U

f u dµ.

Proof: Fix ϵ > 0. Since we assume that
∫

U
f u dµ < ∞, then there exists α > 1 such that

α

∫
U

f u dµ <
∫

U
f u dµ +

ϵ

2

Define the sequence {An}n∈Z as

An =
{
s ∈ U : u(s) ≥ αn+1

}
, for each n ∈ Z.

Since u is core decreasing, the sets An ∈ M. Define the sets {Jn}n∈Z∪{±∞} by

J∞ =
⋂
n∈Z

An, Jn = An \ An+1, for each n ∈ Z, and J−∞ = U \
⋃

n∈Z∪{∞}

Jn.
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Notice that the sets {Jn}n∈Z∪{±∞} are disjoint and cover the whole space U. Also, Lemma 2.2.2
shows that J∞ ∈ M and J−∞ is empty or its complement also belongs in M. To see that the
complement of J−∞ is empty or has finite measure, suppose that J−∞ , ∅, then there exists
A ∈ A and x ∈ U such that

x <
⋃

n∈Z∪{∞}

Jn =
⋃
n∈Z

An,

by the total ordering orM it follows that An ⊆ A for all n ∈ Z. Therefore

µ
( ⋃

n∈Z∪{∞}

Jn

)
≤ µ(A) < ∞.

It will be useful to consider the presentation

J∞ =
{
s ∈ U : u(s) = ∞

}
, J−∞ =

{
s ∈ U : u(s) = 0

}
, and

Jn =
{
s ∈ U : αn ≤ u(s) < αn+1

}
, for each n ∈ Z.

Define the functions fn = fχJn for each n ∈ Z ∪ {±∞}. Our goal is to build nonnegative
functions gn satisfying∫

E
gn dµ ≥

∫
E

fn dµ, for all E ∈ A and each n ∈ Z ∪ {±∞}, (3.1)∫
U

gnu dµ ≤ α
∫

U
fnu dµ, for each n ∈ Z ∪ {∞}, and (3.2)∫

U
g−∞u dµ ≤

ϵ

2
. (3.3)

Since f =
∑

n∈Z∪{±∞} fn then the function g =
∑

n∈Z∪{±∞} gn clearly satisfies
∫

E
g dµ ≥

∫
E

f dµ for
all E ∈ A and∫

U
gu dµ =

∑
n∈Z∪{±∞}

∫
U

gnu dµ ≤ α
∑

n∈Z∪{∞}

∫
U

fnu dµ +
ϵ

2
= α

∫
U

f u dµ +
ϵ

2
<

∫
U

f u dµ + ϵ.

For any n ∈ Z ∪ {∞} such that fn = 0 we define gn = 0 and it clearly satisfies inequalities (3.1)
and (3.2). For the other cases, since

∫
U

f u dµ < ∞, then we must have that f∞ = 0.
Fix n ∈ Z such that that fn , 0 µ-almost everywhere. This means that 0 < µ(Jn) =

µ(An) − µ(An+1). Since

∞ >

∫
U

f u dµ ≥
∫

Jn

f u dµ ≥ αn
∫

Jn

f dµ,

thus
∫

Jn
f dµ < ∞.

Let
βn = inf {µ(E) : µ(An+1) < µ(E), E ∈ M, and E ⊆ An} .

There are two cases, either βn > µ(An+1) or βn = µ(An+1). In the first case, pick Cn ∈ M such
that µ(Cn) = βn. An application of Lemma 3.3.6 with a = αn+1, b = αn B = An, A = An+1 and
C = Cn shows that the set

Hn =
{
s ∈ Cn \ An+1 : αn ≤ u(s) ≤ u(s) < αn+1

}
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has positive µ-measure. Define

gn =

( ∫
Jn

f dµ
) χHn

µ(Hn)
.

For each E ∈ A, ∫
E

gn dµ =

0, if µ(E) ≤ µ(An+1)∫
Jn

f dµ, otherwise
=

∫
E

fn dµ,

therefore gn satisfies the inequality (3.1). Also

∫
U

gnu dµ =

∫
Jn

f dµ

µ(Hn)

∫
Hn

u dµ < αn+1
∫

Jn

f dµ = α
∫

Jn

αn f dµ ≤ α
∫

Jn

fnu dµ,

proving that gn satisfies the inequality (3.2).
The remaining case is when βn = µ(An+1). We prove by induction that there exists a

sequence of sets {Hn,m}m∈N+ of positive µ-measure and a sequence {Cn,m}m∈N in M such that
Cn,m ⊆ An, µ(Cn,m) is strictly decreasing to µ(An+1), and

Hn,m ⊆
{
s ∈ Cn,m−1 \Cn,m : αn ≤ u(s) ≤ u(s) < αn+1

}
.

We show the induction step first. Suppose that the sequences are constructed up to an integer
M0 > 0. Apply Lemma 3.3.6 with a = αn+1, b = αn B = An, A = An+1 and C = Cn,M0 , to get
that the set

KM0 =
{
s ∈ Cn,M0 \ An+1 : αn ≤ u(s) ≤ u(s) < αn+1

}
has positive µ-measure. Since βn = µ(An+1), there exists a set Cn,M0+1 ∈ M such that µ(Cn,M0+1 \

An+1) <
µ(KM0 )

2 . Another application of Lemma 3.3.6 with a = αn+1, b = αn B = An, A = An+1

and C = Cn,M0+1 provides a set

KM0+1 =
{
s ∈ (Cn,M0+1 \ An+1) : αn ≤ u(s) ≤ u(s) < αn+1

}
of positive µ-measure. Notice that KM0+1 ⊆ KM0 but µ(KM0+1) < µ(KM0), therefore the differ-
ence has positive measure. Set Hn,M0+1 = KM0+1 \ KM0 to prove the induction step. The base
case follows the same argument, letting M0 = 0 and Cn,0 = An.

Define the function

gn =

∞∑
m=2

( ∫
Cn,m−2\Cn,m−1

f dµ
) χHn,m

µ(Hn,m)
.

Let E ∈ A, if µ(E) ≤ βn, then both
∫

E
gn dµ and

∫
E

fn dµ vanish. If µ(E) ≥ µ(An), then

∫
E

gn dµ =
∞∑

m=2

( ∫
Cn,m−2\Cn,m−1

f dµ
)
=

∫
Jn

f dµ =
∫

E
fn dµ.
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In the case that µ(E) ∈
(
βn, µ(An)

)
, there exists some ME ∈ N such that µ(E) ∈

(
µ(Cn,ME+1), µ(Cn,ME )

]
,

hence ∫
E

gn dµ ≥
∫

Cn,ME+1

gn dµ =
∞∑

m=Cn,ME+1

( ∫
Cn,m−2\Cn,m−1

f dµ
)
=

∫
Cn,ME \An+1

f dµ ≥
∫

E\An+1

f dµ

=

∫
E

fn dµ.

Therefore gn satisfies the inequality (3.1). Also

∫
U

gnu dµ =
∞∑

m=2

( ∫
Cn,m−2\Cn,m−1

f dµ
)∫Hn,m

u dµ

µ(Hn,m)
≤

∞∑
m=2

( ∫
Cn,m−2\Cn,m−1

f dµ
)
αn+1

= αn+1

∫
Jn

f dµ = α
∫

Jn

αn f dµ ≤ α
∫

Jn

fnu.

proving that gn satisfies the inequality (3.2).
All that remains is defining the function g−∞ whenever the function fχJ−∞ is not µ-almost

everywhere zero. Let U0 = ∪n∈ZJn. Since µ(J−∞) > 0, there exists some E ∈ A such that
U0 ⊆ E, therefore µ(U0) < ∞, thus U0 ∈ M. If there exists a set of positive measure W such
that u(s) = 0 for all s ∈ W and µ(W ∩ E) > 0 for every E ∈ A satisfying µ(E) > µ(U0) then we
define

g−∞ = ∞χW .

In this case
∫

U
g−∞u dµ = 0, clearly satisfying the inequality (3.3). For any E ∈ A, if µ(E) ≤

µ(U0) then

0 =
∫

E
f−∞ ≤

∫
E

g−∞

and if µ(E) > µ(U0), then

∞ =

∫
E

g−∞ dµ ≥
∫

E
f−∞ dµ,

thus g−∞ satisfies the inequality (3.1).
If such set W does not exist, we will find a disjoint sequence of sets of positive measure

{Wk}k∈N+ , such that
Wk ⊆

{
s ∈ U : u(s) < ϵ2−(k+1)

}
, (3.4)

also satisfying that for any E ∈ A such that µ(E) > µ(U0), then infinitely many sets in the
sequence are subsets of E. The desired function will be

g−∞ =
∞∑

k=1

χWk

µ(Wk)
.

Since ∫
U

g−∞u dµ =
∞∑

k=1

∫
Wk

u dµ

µ(Wk)
<
ϵ

2

∞∑
k=1

2−k =
ϵ

2
,
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g−∞ satisfies the inequality (3.3). For any E ∈ A, if µ(E) ≤ µ(U0) then

0 =
∫

E
f−∞ ≤

∫
E

g−∞

and if µ(E) > µ(U0), then

∞ =
∑

Wk⊆E

1 =
∫

E
g−∞ dµ ≥

∫
E

f−∞ dµ,

thus g−∞ satisfies inequality (3.1). We now show that either the set W exists or we build the
sequence {Wk}.

Since A−n increases to U0 whenever n ↑ ∞, we have that µ(A−n) ↑ µ(U0). There are two
possibilities, either µ(A−n) < µ(U0) for all n ∈ N or there exists some N0 such that µ(A−N0) =
µ(U0).

In the first case, for any j ∈ N+ the set

G j =
{
s ∈ U0 : u(s) < ϵ2−( j+1)

}
,

has positive µ-measure. Otherwise, the function h = ϵ2−( j+1)χU0 is a core decreasing minorant
of u, thus h ≤ u. Hence, for any n large enough such that α−n < ϵ2−( j+1) we would have
µ(A−n) = µ(U0) arriving at a contradiction. Notice that {G j} is a decreasing sequence, let
W = ∩G j. If µ(W) > 0, then there is nothing left to prove. If µ(W) = 0, then we may choose
a subsequence {G jk}k such that the sequence of measures {µ(G jk)} is strictly decreasing. Then
the sequence Wk = G jk \G jk+1 is disjoint and satisfies formula (3.4).

It remains to show that the set W or the sequence {Wk} exist whenever there is a positive
integer k0 such that µ(A−k0) = µ(U0), which implies that α−k0 ≤ u(s) ≤ u(s) for almost every
s ∈ U0. Let

β−∞ = inf {µ(E) : E ∈ M and µ(E) > µ(U0)} .

Once more, we consider the two possibilities; µ(U0) < β−∞ or if µ(U0) = β−∞.
In the first case, let A−∞ ∈ M satisfy µ(A−∞) = β−∞. Pick r0 large enough, such that

ϵ2−r0 < α−k0 . For any j > r0, apply Lemma 3.3.6 with a = ϵ2− j, b = 0, A = U0, B = U and
C = A−∞ to get that the set

G j =
{
s ∈ (A−∞ \ U0) : u(s) < ϵ2− j

}
have positive µ-measure. Let W = ∩k>r0G j. If µ(W) > 0 there is nothing to prove, so we drop to
a subsequence with strictly decreasing measures and build the sequence {Wk} like it was done
before. Note that for any E ∈ A satisfying µ(E) > µ(U0), then µ(A−∞) ≤ µ(E), so every set in
the sequence Wk is contained in E.

We are left with the final case, when µ(U0) = β−∞. Choose a sequence {E j} ⊆ M such
that µ(E j) ↓ βn, and r0 large enough so ϵ2−r0 < α−k0 . For any j > r0, apply Lemma 3.3.6 with
a = ϵ2− j, b = 0, A = U0, B = U and C = E j to get that the set

G j =
{
s ∈ (E j \ U0) : u(s) < ϵ2− j

}
has positive µ-measure. Since µ(G j) ≤ µ(E j \ U0), we get µ(G j) ↓ 0. Once more we can drop
to a subsequence and repeat the previous process to obtain disjoint sets of positive measure W j
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satisfying formula (3.4) such that W j ⊆ E j. Therefore, for any E such µ(E) > µ(U0), there are
infinitely many of such sets W j contained in E. This finishes the proof.

We now prove the main result.

Theorem 3.3.8 For Σ-measurable nonnegative functions f and u, then∫
U

f u dµ = inf
{∫

U
gu dµ :

∫
E

g dµ ≥
∫

E
f dµ for all E ∈ A

}
Proof: If g satisfies

∫
E

g dµ ≥
∫

E
f dµ for all E ∈ A then∫

U
gu dµ ≥

∫
U

gu dµ since u ≥ u

≥

∫
U

f u dµ since u is core decreasing.

If g satisfies
∫

E
g dµ ≥

∫
E

f dµ for all E ∈ A then∫
U

gu dµ ≥
∫

U
gu dµ since u ≥ u

≥

∫
U

f u dµ since u is core decreasing.

Taking the infimum over all g yields the inequality∫
U

f u dµ ≤ inf
{∫

U
gu dµ :

∫
E

g dµ ≥
∫

E
f dµ for all E ∈ A

}
.

If ∞ =
∫

U
f u dµ, then equality clearly follows. So we may suppose that

∫
U

f u dµ < ∞, and in
this case, equality follows from Lemma 3.3.7.

3.4 The level function
The least core decreasing majorant explored in Section 3.2 is optimal in the sense of the partial
order ‘≤’ of pointwise almost everywhere inequality. We explore in this section another least
core decreasing majorant but in the sense of the preorder relation ‘≼A’.

We introduce this construction via a functional description acting on the collection of core
decreasing functions.

Definition 3.4.1 Let f ∈ L(Σ). We say f o ∈ L↓(A) is a level function of f if for all g ∈ L↓(A),∫
U

f og dµ = sup
{∫

U
| f | h dµ : h ∈ L↓(A) and h ≼A g

}
.

We explore the relationship between a level function and the preorder relation ‘≼A’
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Proposition 3.4.2 Let f ∈ L(Σ) and f o be a level function of f , then

(a) | f | ≼A f o.

(b) If f ∈ L↓(A), then f is a level function of f .

(c) If v ∈ L↓(A) satisfies | f | ≼A v, then f o ≼A v.

(d) If f ∈ L∞µ then f o is unique.

Proof: Letting g = χA for a core set A ∈ A yields the inequality
∫

A
f o dµ ≥

∫
A
| f | dµ, therefore

| f | ≼A f o and proves (a).
To prove (b) notice that if h ≼A g, then Proposition 3.1.4 yields

∫
U

f h dµ ≤
∫

U
f g dµ.

Taking supremum yields (b).
To prove (c) notice that if | f | ≼A v, then if h ∈ L↓(A), Proposition 3.1.4 yields

∫
U
| f | h dµ ≤∫

U
vh dµ. Taking supremum among h yields∫

U
f og dµ = sup

{∫
U
| f | h dµ : h ∈ L↓(A) and h ≼A g

}
≤ sup

{∫
U

vh dµ : h ∈ L↓(A) and h ≼A g
}
=

∫
U

vg dµ.

Thus f o ≼A v.
To prove statement (d), notice that for any A ∈ A∫

A
f o dµ = sup

{∫
U
| f | h dµ : h ∈ L↓(A) and h ≼A χA

}
≤ sup

{
∥ f ∥L∞µ

∫
U

h dµ : h ∈ L↓(A) and h ≼A χA

}
≤ ∥ f ∥L∞µ µ(A) < ∞.

Therefore any level function of f belongs to L1
Loc,A. Statement (d) follows from the fact that a

level function is σ(A)-measurable, so if f o and v are level functions of f we have f o ≼A v and
v ≼A f o which, by Proposition 3.1.3, forces equality µ-almost everywhere.

The previous proposition shows that the level function is an optimal core decreasing ma-
jorant in the sense of the preorder ‘≼A’. It is worth noting, that for unbounded functions
uniqueness need not hold, however, the canonical choice of level function explored below is
the unique choice well behaved with increasing sequences of functions. This is done using the
level function from Definition 1.6.2 and the transition maps from Section 2.4.1.

Lemma 3.4.3 There exists a unique map f 7→ f o from L(Σ) to L↓(A) such that f o is a level
function of f and if 0 ≤ fn ↑ f then f o

n ↑ f o.

Proof: Let f ∈ L+(Σ), then R f ∈ L+(B). Its level function (see Definition 1.6.2) is a non-
increasing function (R f )o. Define f o := Q

(
(R f )o

)
. Since (R f )o ∈ L↓(B), f o ∈ L↓(A), by
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item (4) in Theorem 2.4.8. Fix g ∈ L↓(A), item (5) in Theorem 2.4.8 shows that Rg ∈ L↓(B).
Proposition 1.6.3 and items (3) and (6) in Theorem 2.4.8 yields

∫
U

f og dµ =
∫

[0,∞)

(R f )oRg dλ = sup


∫

[0,∞)

(R f )ψ dλ : ψ ∈ L↓(B) and ψ ≼B Rg


= sup


∫
U

f Q(ψ) dµ : ψ ∈ L↓(B) and ψ ≼B Rg


= sup


∫
U

f h dµ : h ∈ L↓(A) and h ≼A g

 .
This shows that f o is indeed a level function of f . If f ∈ L(Σ), then set f o = | f |o. Clearly,

f o is a level function of f .
If 0 ≤ fn ↑ f , then item (3) in Proposition 2.4.6 shows that R fn ↑ R f . By Proposition

1.6.3 we get (R fn)o ↑ (R f )o. An application of item 3 in Proposition 2.4.7 yields Q
(
(R fn)o

)
↑

Q
(
(R f )o

)
, this shows that f o

n ↑ f o and proves the existence of the map f 7→ f o with the required
properties.

To show uniqueness, suppose f 7→ f • is another map from L(Σ) → L↓(B) mapping to a
level function of f such that for any 0 ≤ fn ↑ f it follows that f •n ↑ f •. For any f ∈ L+(Σ) we
consider the sequence fn = min(n, f ). Since fn ∈ L∞µ , f •n = f o

n by item (d) in Proposition 3.4.2.
It follows that f • = f o µ-almost everywhere. This shows uniqueness for f ∈ L+(Σ).

To complete the proof fix f ∈ L(Σ). It is clear from Definition 3.4.1 that f • is a level
function of | f |. Define gn = min(n, | f |). Since 0 ≤ gn ↑ | f |, it follows that g•n ↑ f •, go

n ↑ f o and
g•n = f o

n µ-a.e. for each n ∈ N. Thus f • = f o and completes the proof.

The previous lemma is summarized in the following picture, we have the formula f o =

Q((R f )o), where the level function on R f is with respect to the measure λ induced by the
ordered coreA and the maps R,Q are the transition maps from Section 2.4.1.

L(Σ) L+(Σ) L+(B) L↓(B) L↓(A)
R| | o Q

f | f | R| f | (R| f |)o Q(R| f |)o

With the consistent choice for level function provided by Lemma 3.4.3, for each f ∈ L(Σ),
we will denote

f o = Q
(
(R | f |)o

)
,

as the level function of f .



Chapter 4

Spaces defined by core decreasing
functions

In this chapter, we introduce function spaces defined by the collection of core decreasing func-
tions and study their interpolation properties. Throughout this chapter, we assume that (U,Σ, µ)
is a σ-finite measure space with a full ordered core A and its enriched core M. Let X be a
Banach function space over U such that both X and X′ contain all characteristic functions of
sets of finite measure.

4.1 Down spaces and their duals
Our first function space is the down space of X, it is introduced as a restricted associate space
over X.

Definition 4.1.1 For f ∈ L(Σ), let

∥ f ∥X↓ = sup
{∫

U
| f | g dµ : g ∈ X′ ∩ L↓(A) and ∥g∥X′ ≤ 1

}
.

The space X↓= { f ∈ L(Σ) : ∥ f ∥X↓ < ∞} is called the down space of X.

Since we are defining the down space by restricting the supremum, it is immediate from
the definition that ∥ f ∥X↓ ≤ ∥ f ∥X′′ ≤ ∥ f ∥X. Therefore the down space X↓ is a superspace of X.
However, the functions have to be integrable over core sets, as the next result shows.

Proposition 4.1.2 Let f ∈ X↓, then f ∈ L1
Loc,A.

Proof: Fix f ∈ X↓ and suppose that f < L1
Loc,A seeking a contradiction. Then, there exists

A ∈ A such that
∫

A
| f | dµ = ∞. Since µ(A) < ∞, then ∥χA∥X′ < ∞. Set g = 1

∥χA∥X′
χA and note

that it is core decreasing satisfying ∥g∥X′ = 1. Then

∥ f ∥X↓ ≥
∫

U
| f | g dµ =

∫
A
| f | dµ = ∞.

This contradicts the hypothesis and completes the proof.

72
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The next theorem provides two fundamental examples of down spaces, which will be the
key spaces in the interpolation theory at the end of this chapter. It also shows that the transition
maps from Section 2.4.1 are well-behaved in those spaces.

Theorem 4.1.3 Let f ∈ L(Σ) and φ ∈ L(B). Then

(a) L1
µ↓= L1

µ with identical norms.

(b) ∥ f ∥L∞µ↓ = supA∈A
1

µ(A)

∫
A
| f | dµ = supM∈M

1
µ(M)

∫
M
| f | dµ.

(c) If f ∈ L∞µ ↓ then R f ∈ L∞λ ↓ and ∥R f ∥L∞λ↓ ≤ ∥ f ∥L∞µ↓.

(d) If ψ ∈ L∞λ ↓ then Qψ ∈ L∞µ ↓ and ∥Qψ∥L∞µ↓ ≤ ∥ψ∥L∞λ↓.

Proof: Since constant functions are core decreasing, the constant function g = 1 satisfies
∥g∥L∞µ = 1. By Definition 4.1.1, we get ∥ f ∥L1

µ
=

∫
U
| f | g dµ ≤ ∥ f ∥L1

µ↓
proving (a).

To prove (b), fix M ∈ M and let g = 1
µ(M)χM. Then g ∈ L↓(A), ∥g∥L1

µ
= 1 and

1
µ(M)

∫
U
| f | dµ =

∫
U
| f | g dµ ≤ ∥ f ∥L∞µ↓.

Taking the supremum over M ∈ M shows that supM∈M
1

µ(M)

∫
M
| f | dµ ≤ ∥ f ∥L∞µ↓. To prove the

reverse inequality, suppose that g =
∑n

k=1 αkχMk for some αk ≥ 0 and Mk ∈ M such that
∥g∥L1

µ
≤ 1. That is,

∑n
k=1 αkµ(Mk) ≤ 1. Then,∫

U
| f | g dµ =

n∑
k=1

αk

∫
Mk

| f | dµ =
n∑

k=1

αkµ(Mk)
( 1
µ(Mk)

∫
Mk

| f | dµ
)

≤

(
sup
M∈M

1
µ(M)

∫
M
| f | dµ

)( n∑
k=1

αkµ(Mk)
)

≤ sup
M∈M

1
µ(M)

∫
M
| f | dµ.

If g ∈ L↓(A) and ∥g∥L1
µ
≤ 1, then by Lemma 2.2.5 there exists a sequence gn ↑ g of the form

discussed above, therefore the monotone convergence theorem preserves this bound. Thus
∥ f ∥L∞µ↓ ≤ supM∈M

1
µ(M)

∫
M
| f | dµ, which proves equality.

Clearly supA∈A
1

µ(A)

∫
A
| f | dµ ≤ supM∈M

1
µ(M)

∫
M
| f | dµ. Therefore, to prove (b) it suffices to

show that the reverse inequality holds.
Fix M ∈ M, by item (b) in Lemma 2.2.2, there exists a sequence {Ak} ∈ A such that Ak ↑ M

or Ak ↓ M. If Ak ↑ M, then

1
µ(Ak)

∫
Ak

| f | dµ ≥
1

µ(M)

∫
Ak

| f | dµ.

The monotone convergence theorem yields

sup
A∈A

1
µ(A)

∫
A
| f | dµ ≥ sup

k

1
µ(Ak)

∫
Ak

| f | dµ ≥ sup
k

1
µ(M)

∫
Ak

| f | dµ =
1

µ(M)

∫
M
| f | dµ.
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If Ak ↓ M, there are two cases. If
∫

M
| f | dµ = ∞, then 1

µ(Ak)

∫
Ak
| f | dµ = ∞, so both suprema are

infinite. In the other case
∫

M
| f | dµ < ∞. Fix ϵ > 0. If

∫
Ak
| f | dµ = ∞ for some Ak, then by both

suprema are infinite, therefore we may assume that the sequence of functions { 1
µ(Ak) | f | χAk} is

is bounded above by the integrable function 1
µ(M) | f | χA1 . Therefore the dominated convergence

theorem applies and since 1
µ(Ak) | f | χAk →

1
µ(M) | f | χM µ-a.e we get that

1
µ(M)

∫
M
| f | dµ − ϵ <

1
µ(Ak)

∫
Ak

| f | dµ,

for large enough k. Therefore 1
µ(M)

∫
M
| f | dµ − ϵ ≤ supA∈A

1
µ(A)

∫
A
| f | dµ. Letting ϵ → 0 and

taking supremum over M ∈ M yields supM∈M
1

µ(M)

∫
M
≤ supA∈A

1
µ(A)

∫
A

and completes the proof
of (b).

To prove (c), fix x > 0 and Theorem 2.4.3 allows us to pick M ∈ M such that µ(M) =
λ([0, x]). Then by Proposition 2.4.6 we get

1
λ([0, x])

∫
[0,x]

|R f | dλ ≤
1

λ([0, x])

∫
[0,x]

R | f | dλ =
1

µ(M)

∫
M
| f | dµ ≤ ∥ f ∥L∞µ↓.

Taking supremum over all x > 0 completes the proof of (c).
Finally, let M ∈ M. By Proposition 2.4.7 we get

1
µ(M)

∫
M
|Qψ| dµ ≤

1
µ(M)

∫
M

Q |ψ| dµ =
1

λ([0, µ(M)])

∫
[0,µ(M)]

|ψ| dµ ≤ ∥ψ∥L∞λ↓.

Taking supremum over all M ∈ M proves (d).

Statement (b) in the previous theorem shows that L∞µ ↓ does not change when considering
the ordered core A or its enriched coreM. The next example shows that a change in ordered
cores can change the produced down space. It also exhibits a function that is not in L∞µ but
belongs to its down space.

Example 4.1.4 Let U = [0,∞) with the Lebesgue measure and consider the ordered cores
A1 = {∅} ∪ {[0, x] : x > 0} and A2 = {∅} ∪ {[0, n] : n ∈ N}. Let D1 be the down space of L∞

with respect to the core A1 and D2 be the one with respect to A2. In virtue of Theorem 4.1.3
(b) it is clear that D1 ⊆ D2. We will show that equality does not hold.

Consider the function

f (x) =
∞∑

k=1

k−22k+1χ(2−(k+1),2−k)(x)

The unbounded function f belongs to D2 since

1
n

∫ n

0
f (x) dx ≤

∫ ∞

0
f (x) dx =

∞∑
k=1

k−2 = π2/6.
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However, the averages are no longer uniformly bounded over intervals [0, x], to see this note
that if x = 2− j for some j ∈ N, then

2 j
∫ 2− j

0
f (t) dt = 2 j

∞∑
k= j

k−2 ≥ 2 j
∫ ∞

j+1
t−2 dt =

2 j

j + 1
.

Letting j→ ∞ shows that ∥ f ∥D1 = ∞.

We define two more function spaces based on the constructions introduced in Chapter 3.

Definition 4.1.5 Let

Xo = { f ∈ L(Σ) : f o ∈ X} and X̃ =
{
f ∈ L(Σ) : f̃ ∈ X

}
.

Also set are ∥ f ∥Xo = ∥ f o∥X and ∥ f ∥X̃ = ∥ f̃ ∥X.

It will be shown that the functions f 7→ ∥ f ∥Xo and f 7→ ∥ f ∥X̃ are norms. Note that the lattice
property of X ensures that ∥ f̃ ∥X ≥ ∥ f ∥X, therefore X̃ is a subspace of X.

The relationship with the down spaces is given in the next theorem. It shows that X↓ and
X̃ are related via the associate space construction. For the space Xo, it shows that (X′′)o ⊆ X↓.
We will show that with additional conditions on the Banach function space, we have equality.

Theorem 4.1.6 The set X↓, with its corresponding norm, is a Banach function space with the
Fatou property. If f ∈ X′′, then ∥ f ∥X↓ ≤ ∥ f ∥X′′ and, if f o ∈ X′′, then ∥ f ∥X↓ ≤ ∥ f o∥X′′ .

The map g → g̃ is sublinear. The set X̃ with its corresponding norm is a Banach function
space. It has the Fatou property if X does. Moreover, X↓= (X̃′)′ and (X↓)′ = X̃′ with identical
norms.

The spaces L̃∞µ and L∞µ are equal with identical norms.
If X is a u.r.i space then X↓= (X′′)o with identical norms. If X also has the Fatou property,

then X↓= Xo.

Proof: Let f , { fn} ∈ L(Σ), g ∈ L↓(A) satisfying ∥g∥X′ ≤ 1. Then
∫

U
| f | g dµ ≥ 0. If f = 0,

then
∫

U
| f | g dµ = 0. If α > 0 then

∫
U
|α f | g dµ = α

∫
U
| f | g dµ. By the triangle inequality of

the absolute value;
∫

U
| f1 + f2| g dµ ≤

∫
U
| f1| g dµ +

∫
U
| f2| g dµ. If | f1| ≤ | f2|, then

∫
U
| f1| g dµ ≤∫

U
| f2| g dµ. If | fn| ↑ | f |, then by the monotone convergence theorem

∫
U
| fn| g dµ ↑

∫
U
| f | g dµ.

Taking supremum over all such functions g shows that the map f 7→ ∥ f ∥X↓ is a function
semi-norm with the Fatou property. Therefore, to show that X↓ is a Banach function space
with the Fatou property, it suffices to show that ∥ f ∥X↓ = 0 implies f = 0 µ-a.e. To see this,
let {An} ∈ A satisfy An ↑ X. Since µ(An) < ∞, then ∥χAn∥X′ < ∞, making the core decreasing
function g = 1

∥χAn ∥X′
χAn satisfy ∥g∥X′ = 1. Thus

0 = ∥ f ∥X↓ ≥
1

∥χAn∥X′

∫
An

| f | dµ.

It follows that fχAn = 0 µ-a.e. Letting n→ ∞ shows that f is zero µ-a.e.



76 Chapter 4. Spaces defined by core decreasing functions

Since the supremum on Definition 4.1.1 is taken over a smaller collection of functions than
X′ it is immediate that ∥ f ∥X↓ ≤ ∥ f ∥X′′ . If f o ∈ X′′, then if g ∈ L↓(A), it follows from Definition
3.4.1 that

∫
U

f og dµ ≥
∫

U
| f | g dµ. It follows that ∥ f ∥X↓ ≤ ∥ f o∥X↓ ≤ ∥ f o∥X′′ .

We now show that the map g 7→ g̃ is sublinear. Let g, {gn} ∈ L(Σ) and α ≥ 0. Clearly αg̃ is
a core decreasing majorant of |αg|, therefore α̃g ≤ αg̃. To show equality, let A ∈ A, then using
Theorem 3.2.5 we get∫

A
α̃g dµ =

∫
U
α̃gχA dµ = sup

{∫
U
αgh dµ : h ≼A χA

}
= α sup

{∫
U

gh dµ : h ≼A χA

}
= α

∫
U

g̃χA dµ =
∫

A
αg̃ dµ.

Since the above equality holds for all core sets and α̃g ≤ αg̃, then Lemma 2.3.5 shows that the
equality α̃g = αg̃ holds.

To show that it is subadditive, if f = g + h, then | f | ≤ |g| + |h| ≤ g̃ + h̃, which is core
decreasing, so f̃ ≤ g̃ + h̃. Thus the map is sublinear. If | f | ≤ g, then f̃ ≤ g̃. Hence, it is
immediate that g 7→ ∥g∥X̃ is a function semi-norm. Since |g| ≤ g̃ then ∥g∥X̃ = 0 implies |g| = 0,
so it is a function norm.

To show completeness, it will be shown that X̃ satisfies the Riesz-Fischer property. Suppose
that 0 ≤ gn ∈ X̃ satisfy

∑∞
n=1 ∥gn∥X̃ < ∞. Let G =

∑∞
n=1 gn and observe that

∑∞
n=1 g̃n is a core

decreasing majorant of G and hence it is a majorant of G̃ . By Proposition 1.3.2, X has the
Riesz-Fischer property, so

∥G∥X̃ = ∥G̃∥X ≤
∥∥∥∥∥ ∞∑

n=1

g̃n

∥∥∥∥∥
X
≤

∞∑
n=1

∥g̃n∥X =

∞∑
n=1

∥gn∥X̃ < ∞.

Hence, X̃ is a Banach function space. Finally, if X has the Fatou property, and 0 ≤ gn ↑ g, then
g̃n ↑ g̃, so

∥gn∥X̃ = ∥g̃n∥X ↑ ∥̃g∥X = ∥g∥X̃.

This shows that X̃ also has the Fatou property.
We now show that ∥ f ∥X↓ = ∥ f ∥(X̃′)′ . Let g ∈ L↓(A) such that ∥g∥X′ ≤ 1. Since g is core

decreasing, then g̃ = g, thus ∥g∥X̃′ = ∥̃g∥X′ = ∥g∥X′ ≤ 1, therefore∫
U
| f | g dµ ≤ sup

{∫
U
| f | h : ∥h∥X̃′ ≤ 1

}
= ∥ f ∥(X̃′)′ .

Taking the supremum over all such g, yields ∥ f ∥X↓ ≤ ∥ f ∥(X̃′)′ . Conversely, if ∥g∥X̃′ ≤ 1, then∫
U
| f | g dµ ≤

∫
U
| f | g̃ dµ ≤ sup

{∫
U
| f | h : ∥h∥X′ ≤ 1 and h ∈ L↓(A)

}
= ∥ f ∥X↓.

Taking the supremum over all g yields ∥ f ∥(X̃′)′ ≤ ∥ f ∥X↓ and proves that X↓= (X̃′)′ with equality
of norms.

If follows that (X↓)′ = (X̃′)′′, but X̃′ has the Fatou property. Hence (X↓)′ = X̃′ with identical
norms.
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Since |g| ≤ g̃, ∥g∥L∞µ ≤ ∥̃g∥L∞µ = ∥g∥L̃∞µ . But the constant function ∥g∥L∞µ is a core decreasing
majorant of |g|, hence g̃ ≤ ∥g∥L∞µ and application of the L∞µ norm yields ∥g∥L̃∞µ ≤ ∥g∥L∞µ and
proves equality.

To prove that we have equality if X is a u.r.i space, first suppose that f , g ∈ L+(Σ) are
bounded and supported on some A ∈ A. Then by Proposition 2.4.6 we have that R f ,Rg are
nonnegative, bounded, and supported on [0, µ(A)]. By Proposition 1.6.4 there exist averaging
operators J f , Jg such that J f R f = (R f )o and JgRg = (Rg)o with (R f )o, (Rg)o also supported on
[0, µ(A)]. Then using Theorem 2.4.8 we get∫

U
f og dµ ≤

∫
U

f ogo dµ =
∫

[0,∞)

(R f )o(Rg)o dλ =
∫

[0,∞)

(J f R f )(JgRg) dλ =
∫

[0,∞)

(R f )(J f JgRg) dλ

=

∫
U

f (QJ f JgRg) dµ =
∫
U

f
(
QJ f (Rg)o) dµ.

Notice that X′ is also a u.r.i space and since J f and Jg are admissible contractions on L1
λ+L∞λ ,

then using Propositions 2.4.6 and 2.4.7 the map Q ◦ J f ◦ Jg ◦ R is an admissible contraction
on L1

µ + L∞µ . Then, using Lemma 1.5.5 we get that ∥QJ f JgRg∥X′ ≤ ∥g∥X′ . Since J f preserves
decreasing functions, then QJ f (Rg)o is core decreasing. Thus QJ f JgRg ∈ L↓(A). Hence, if
∥g∥X′ ≤ 1 we get∫

U
f og dµ ≤ sup

{∫
U
| f | g dµ : g ∈ X′ ∩ L↓(A) and ∥g∥X′ ≤ 1

}
= ∥ f ∥X↓.

Fix an arbitrary nonnegative g ∈ X′ such that ∥g∥X′ ≤ 1. Let gn = min{n, g}χAn . Then gn ↑ g,
and the lattice property of X′ shows that ∥gn∥X′ ≤ 1. The monotone convergence theorem yields∫

U
f og dµ = sup

n

∫
U

f ogn dµ ≤ ∥ f ∥X↓.

Taking the supremum over all such g gives ∥ f o∥X′′ ≤ ∥ f ∥X↓.
For a general function f ∈ L(Σ), we may choose a sequence { fn} where fn is supported on

An and bounded such that fn ↑ | f |. The Fatou property of X′′ and X↓ together with Lemma
3.4.3 show that

∥ f o∥X′′ = sup
n
∥ f o

n ∥X′ ≤ sup
n
∥ fn∥X↓ = ∥ f ∥X↓.

This shows the equality ∥ f o∥X′′ = ∥ f ∥X↓ when X is a u.r.i space. If in addition, X has the
Fatou property, then

∥ f ∥Xo = ∥ f o∥X = ∥ f o∥X′′ = ∥ f ∥X↓.

This completes the proof.

The relationship among the spaces is summarized in this diagram.
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X′′

X

Xo

(X′′)o

X ↓

X̃ X′ ↓

X′

X̃′

Embedding
Embedding when X has Fatou
Embedding when X is u.r.i. Associate space if X has Fatou.

Associate space

This example shows that (X′′)o may be strictly smaller than X↓ whenever X is not u.r.i.

Example 4.1.7 Consider the usual ordered core on [0,∞) with the Lebesgue measure, the
function f (t) = tχ(1,∞)(t) and the weighted Lebesgue space X = L1(w) for the weight t(x) = t−3,
so the norm is

∥ f ∥X =
∫ ∞

0
| f (t)|

1
t3 dt =

∫ ∞

1

1
t2 dt = 1.

Therefore ∥ f ∥X↓ ≤ ∥ f ∥X = 1 < ∞, thus f ∈ X↓. We claim that f o(t) = ∞. To see this, notice
that fn(t) = tχ(1,n) increases to f . Integration yields∫ x

0
fn(t) dt =

∫ x

1
tχ(1,n) dt = min

( x2 − 1
2

,
n2 − 1

2

)
χ(1,n)(x)

Its least concave majorant is the function x 7→ min
(

n2−1
2n x, n2−1

2

)
, its derivative almost every-

where is

f o
n (t) =

n2 − 1
2n

χ[0, n)(t).

Since f o
n ↑ ∞, then f o = ∞, therefore f o < X′′ = X. Therefore f < (X′′)o. This example also

shows that for this space the embeddings X ⊆ Xo and X′′ ⊆ (X′′)o both fail.

4.2 Interpolation
Since the Lp

µ spaces are u.r.i, by virtue of Theorem 4.1.6 we will not distinguish between the
spaces Lp

µ↓ and (Lp
µ)o.
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In this section we study the compatible couple (L1
µ, (L

∞
µ )o). We will show that this couple

of Banach function spaces plays a fundamental role in the theory of down spaces. We will
show that this couple is an exact Calderón-Mityagin couple, therefore we have a complete
description of their interpolation spaces in terms of the K-functional. We will also show that
every down space corresponds to a down space for some u.r.i space.

The first key result in this section is the computation of the K-functional for the couple
(L1

µ, (L
∞
µ )o). We need two lemmas to prove that result. The first lemma deals with the mapping

properties of the transition maps R, Q from Subsection 2.4.1 in terms of compatible couples.

Lemma 4.2.1 The maps R and Q satisfy:

(a) Q is an admissible contraction from (L1
λ, L

∞
λ ↓) to (L1

µ, L
∞
µ ↓).

(b) Q is an admissible contraction from
(
L̃1
λ, L

∞
λ

)
to

(
L̃1
µ, L

∞
µ

)
.

(c) R is an admissible contraction from (L1
µ, L

∞
µ ↓) to (L1

λ, L
∞
λ ↓).

(d) R is an admissible contraction from
(
L̃1
µ, L

∞
µ

)
to

(
L̃1
λ, L

∞
λ

)
.

Proof: Statement (a) is exactly item (9) in Proposition 2.4.7 and (d) in Theorem 4.1.3.
For (b), for a fixed ψ ∈ L̃1

λ by virtue of items (2) and (7) in Proposition 2.4.7, we get that
|Qψ| ≤ Q |ψ| ≤ Qψ̃. Since Qψ̃ is core decreasing, it follows that Q̃ψ ≤ Qψ̃, hence

∥Qψ∥
L̃1
µ
= ∥Q̃ψ∥L1

µ
≤ ∥Qψ̃∥L1

µ
≤ ∥ψ̃∥L1

λ
= ∥ψ∥

L̃1
λ

.

This inequality, together with item (1) in 2.4.7 prove statement (b).
Statement (c) is exactly item (9) in Proposition 2.4.6 and (c) in Theorem 4.1.3.
For (d), for a fixed f ∈ L̃1

µ by virtue of items (2) and (7) in Proposition 2.4.6, we get that
|R f | ≤ R | f | ≤ R f̃ . Since R f̃ is decreasing, it follows that R̃ f ≤ R f̃ , hence

∥R f ∥
L̃1
λ

= ∥R̃ f ∥L1
λ
≤ ∥R f̃ ∥L1

λ
≤ ∥ f̃ ∥L1

µ
= ∥ f ∥

L̃1
µ
.

This inequality, together with item (1) in 2.4.6 prove statement (d).

The next lemma builds a family of optimal decompositions of f ∈ L1
µ + (L∞µ )o.

Lemma 4.2.2 For 0 ≤ f ∈ L1
µ + (L∞µ )o, there is a map D f = [0,∞) → L↓(A) such that:

0 ≤ D f (t) ≤ 1 for all t ≥ 0. If
∫

A
f d µ =

∫
A

g dµ, for all A ∈ A, then D f = Dg; and if
f = f1 + f∞ with 0 ≤ f1 ∈ L1

µ and 0 ≤ f∞ ∈ (L∞µ )o, then

∥D f (t0) f ∥L1
µ
≤ ∥ f1∥L1

µ
and ∥

(
1 − D f (t0)

)
f ∥(L∞µ )o ≤ ∥ f∞∥(L∞µ )o ,

for t0 = ∥ f1∥L1
µ
.
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Proof: For each map Θ : M → [0,∞) and each x ∈ Θ(M) choose an Nx ∈ M such that
Θ(Nx) = x. This a priori choice of Nx will avoid issues with possible incompatible choices
later.

Fix a nonnegative f ∈ L1
µ + L∞µ ↓ and suppose 0 ≤ f1 ∈ L1

µ and 0 ≤ f∞ ∈ L∞µ ↓ such that
f = f1 + f∞.

By Proposition 4.1.2 each value
∫

M
f dµ is finite, thus we can set Θ(M) =

∫
M

f dµ and let
Nx, for x ∈ Θ(M), be those determined above. By Theorem 2.2.2,M is closed under countable
unions and intersections, showing that Θ(M) = {

∫
M
| f | dµ : M ∈ M} is a closed subset of

[0,∞) containing 0. For each γ ≥ 0, set

aγ = sup[0, γ] ∩ Θ(M) and bγ = inf[γ,∞) ∩ Θ(M),

where inf ∅ = ∞. Then aγ, bγ ∈ Θ(M) and either aγ = γ = bγ or aγ < γ < bγ ≤ ∞.
If aγ < γ < bγ < ∞, set

D f (γ) =
bγ − γ
bγ − aγ

χNaγ
+
γ − aγ
bγ − aγ

χNbγ
.

Otherwise, set D f (γ) = χNaγ
. Evidently, D f (γ) ∈ L↓(A) and 0 ≤ D f (γ) ≤ 1. If 0 ≤ g ∈ L1

µ+L∞µ ↓
and

∫
M

g dµ =
∫

M
f dµ for all M ∈ M, then f and g give rise to the same Θ, the same Nx and

the same aγ and bγ. Therefore D f = Dg.
To prove the last statement of the lemma, we let γ = ∥ f1∥L1

µ
and, for convenience, write

a = aγ and b = bγ. First we show that ∥D f (γ) f ∥L1
µ
≤ ∥ f1∥L1

µ
: If D f (γ) = χNa , then

∥D f (γ) f ∥L1
µ
=

∫
Na

f dµ = a ≤ γ = ∥ f1∥L1
µ
.

Otherwise,

∥D f (γ) f ∥L1
µ
=

b − γ
b − a

∫
Na

f dµ +
γ − a
b − a

∫
Nb

f dµ = γ = ∥ f1∥L1
µ
.

On the way to proving that ∥(1 − D f (γ)) f ∥L∞µ↓ ≤ ∥ f∞∥L∞µ↓ we show that, for all M ∈ M,∫
M

f1 dµ ≤
∫

M
D f (γ) f dµ. (4.1)

Fix M ∈ M. The definition of Θ(M) ensures that
∫

M
f dµ ≤ a or

∫
M

f dµ ≥ b.
Case 1. a < γ < b < ∞: If

∫
M

f dµ ≤ a, then∫
M

f dµ ≤
∫

Na

f dµ ≤
∫

Nb

f dµ so
∫

M
f dµ =

∫
M∩Na

f dµ =
∫

M∩Nb

f dµ,

becauseM is totally ordered. Thus,∫
M

f1 dµ ≤
∫

M
f dµ =

b − γ
b − a

∫
M∩Na

f dµ +
γ − a
b − a

∫
M∩Nb

f dµ =
∫

M
D f (γ) f dµ.

If
∫

M
f dµ ≥ b, then ∫

Na

f dµ ≤
∫

Nb

f dµ ≤
∫

M
f dµ.
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SinceM is totally ordered,

a =
∫

Na

f dµ =
∫

M∩Na

f dµ and b =
∫

Nb

f dµ =
∫

M∩Nb

f dµ.

Therefore, ∫
M

f1 dµ ≤ γ =
b − γ
b − a

∫
M∩Na

f dµ +
γ − a
b − a

∫
M∩Nb

f dµ =
∫

M
D f (γ) f dµ.

Case 2. a < γ < b < ∞ fails: If
∫

M
f dµ ≤ a, then∫

M
f dµ ≤

∫
Na

f dµ so
∫

M
f dµ =

∫
M∩Na

f dµ,

becauseM is totally ordered. Thus,∫
M

f1 dµ ≤
∫

M
f dµ =

∫
M∩Na

f dµ =
∫

M
D f (γ) f dµ.

If
∫

M
f dµ ≥ b, then a = γ = b so, becauseM is totally ordered,∫

M
f1 dµ ≤ γ =

∫
Na

f dµ =
∫

M∩Na

f dµ =
∫

M
D f (γ) f dµ.

This completes the proof of (4.1).
Using (4.1), we get∫

M
(1 − D f (γ)) f dµ =

∫
M

f dµ −
∫

M
D f (γ) f dµ ≤

∫
M

f dµ −
∫

M
f1 dµ ≤

∫
M

f∞ dµ

for each M ∈ M and it follows that

∥(1 − D f (γ)) f ∥L∞µ↓ ≤ ∥ f∞∥L∞µ↓.

With the aid of the previous two lemmas, we proceed to give a formula for the K-functional
of (L1

µ, (L
∞
µ )o). Note that since L∞µ is u.r.i. and has the Fatou property, (L∞µ )o = L∞µ ↓.

Theorem 4.2.3 Let 0 ≤ f ∈ L1
µ + (L∞µ )o and t > 0, then

K( f , t, L1
µ, (L

∞
µ )o) = K(QR f , t, L1

µ, (L
∞
µ )o) = K(R f , t, L1

λ, (L
∞
λ )o) =

∫ t

0
( f o)∗.

Proof: By Proposition 1.5.2 we may restrict ourselves to positive functions. Fix f ∈ L1
µ +

(L∞µ )o nonnegative and let 0 ≤ f1 ∈ L1
µ and 0 ≤ f∞ ∈ (L∞µ )o such that f = f1 + f∞. By Lemma

4.2.2, we get
∥ f1∥L1

µ
+ t∥ f∞∥(L∞µ )o ≥ ∥ f D f (t0)∥L1

µ
+ t∥(1 − D f (t0)) f ∥(L∞µ )o ,



82 Chapter 4. Spaces defined by core decreasing functions

for t0 = ∥ f1∥L1
µ
. Therefore, taking infimum over all decompositions, we get

K( f , t, L1
µ, (L

∞
µ )o) = inf

{
∥ f D f (γ)∥L1

µ
+ t∥(1 − D f (γ)) f ∥(L∞µ )o : γ ∈ [0,∞)

}
. (4.2)

For any M ∈ M, using Propositions 2.4.7 and 2.4.6 we have∫
M

QR f dµ =
∫

[0,µ(M)]
R f dλ =

∫
M

f dµ.

Since this holds for all M ∈ M, then by Lemma 4.2.2, we have that D f = DQR f . Since
D f (γ) ∈ L↓(A) for each γ ≥ 0, by Propositions 2.4.6 and 2.4.7, it follows that

∥DQR f (γ)QR f ∥L1
µ
=

∫
U

DQR f (γ)QR f dµ =
∫

[0,∞)

RDQR f (γ)R f dλ =
∫

U
DQR f (γ) f dµ

=

∫
U

D f (γ) f dµ = ∥D f (γ) f ∥L1
µ
.

Since the function (1 − DQR f (γ))χM is nonnegative and σ(A)-measurable, then item (2) in
Theorem 2.4.8 shows that∫

M
(1 − DQR f (γ))QR f dµ =

∫
M

QR f dµ −
∫
M

DQR f (γ)QR f dµ =
∫
M

f dµ −
∫
M

D f (γ) f dµ

=

∫
M

(1 − D f (γ)) f dµ.

Division by µ(M) and taking supremum yields

∥(1 − DQR f (γ))QR f ∥(L∞µ )o = ∥(1 − D f (γ)) f ∥(L∞µ )o .

Therefore, the formula (4.2) shows that K( f , t, L1
µ, (L

∞
µ )o) = K(QR f , t, L1

µ, (L
∞
µ )o).

By Lemma 4.2.1 items (a) and (c) together with Proposition 1.5.2 we get

K(QR f , t, L1
µ, (L

∞
µ )o) ≤ K(R f , t, L1

τ, (L
∞
τ )o) ≤ K( f , t, L1

µ, (L
∞
µ )o),

therefore we have equality throughout. By formula (1.9) we have

K(R f , t, L1
τ, (L

∞
τ )o) =

∫ t

0

(
(R f )o)∗.

By construction of the level function f o = Q((R f )o) and by item (4) in Theorem 2.4.8 we
have that

(
(R f )o)∗ = (

Q(R f )o)∗ = (
f o)∗ so we get

K(R f , t, L1
τ, (L

∞
τ )o) =

∫ t

0

(
f o)∗ = K( f , t, L1

µ, (L
∞
µ )o) = K(QR f , t, L1

µ, (L
∞
µ )o).

We now compute the K-functional for the couple of associate spaces
(
L̃1
µ, L

∞
µ

)
, which fol-

lows from the properties of the nonincreasing rearrangement.
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Theorem 4.2.4 Let 0 ≤ g ∈ L̃1
µ + L∞µ and t > 0, then

K
(
QRg, t, L̃1

µ, L
∞
µ

)
≤ K

(
Rg, t, L̃1

λ, L
∞
λ

)
≤ K

(
g, t, L̃1

µ, L
∞
µ

)
=

∫ t

0
(̃g )∗ .

And equality throughout holds whenever g ∈ L+(A).

Proof: Fix a nonnegative g ∈ L̃1
µ + L∞µ . Using items (b) and (d) in Lemma 4.2.1 together

with Proposition 1.5.2 we get

K
(
QRg, t, L̃1

µ, L
∞
µ

)
≤ K

(
Rg, t, L̃1

λ, L
∞
λ

)
≤ K

(
g, t, L̃1

µ, L
∞
µ

)
.

Whenever g ∈ L+(A) then QRg = g and we have equality throughout. Next we show is that
K
(
g, t, L̃1

µ, L
∞
µ

)
=

∫ t

0

(̃
g
)∗.

Let g = g1 + g∞ with 0 ≤ g1 ∈ L̃1
µ and 0 ≤ g∞ ∈ L∞µ . By Theorem 4.1.6 the map

g → g̃ is sublinear, thus g̃ ≤ g̃1 + g̃∞. By Proposition 1.3.9, for each ϵ ∈ (0, 1) we have
(g̃1 + g̃∞)∗(s) ≤ (g̃1)∗

(
(1 − ϵ)s

)
+ (g̃∞)∗(ϵs). Integration yields∫ t

0
(̃g)∗(s) ds ≤

∫ t

0
(g̃1 + g̃∞)∗(s) ds ≤

∫ t

0
(g̃1)∗

(
(1 − ϵ)s

)
ds +

∫ t

0
(g̃∞)∗(ϵs) ds. (4.3)

But ∫ t

0
(g̃1)∗

(
(1 − ϵ)s

)
ds =

1
1 − ϵ

∫ (1−ϵ)t

0

(
g̃1

)∗(s) ds ≤
1

1 − ϵ

∫ ∞

0

(
g̃1

)∗(s) ds

=
1

1 − ϵ

∫
U

g̃1 dµ =
1

1 − ϵ
∥g1∥L̃1

µ
,

and ∫ t

0
(g̃∞)∗(ϵs) ds ≤

∫ t

0
∥g∞∥L∞µ ds = t∥g∞∥L∞µ .

We may let ϵ → 0 in (4.3) to get∫ t

0
(̃g)∗(s) ds ≤ ∥g1∥L̃1

µ
+ t∥g∞∥L∞µ .

Taking the infimum over all such decompositions of g yields the inequality∫ t

0
(̃g)∗(s) ds ≤ K

(
g, t, L̃1

µ, L
∞
µ

)
.

To get the reverse inequality, fix t > 0 and set y = g̃(t). Let g1 = max(0, g − y). Since
g ≤ g̃ ∈ L↓(A), then g1 ≤ max(0, g̃ − y). Since the maximum of core decreasing functions is
core decreasing, then max(0, g̃− y) is a core decreasing majorant of g1, thus g̃1 ≤ max(0, g̃− y).
If h ∈ L↓(A) such that g1 ≤ h, then g ≤ h + y ∈ L↓(A), so g̃ ≤ h + y. It follows that
max(0, g̃− y) ≤ h, this shows that max(0, g̃− y) = g̃1. Since (̃g)∗ is decreasing, (̃g)∗ ≥ y on [0, t]
and (̃g)∗ ≤ y on [t,∞), we can apply Proposition 1.3.9, to get

∥g1∥L̃1
µ
=

∫
U

max(0, g̃ − y) dµ =
∫ ∞

0
max(0, g̃ − y)∗(s) ds =

∫ t

0
(̃g − y)∗ =

∫ t

0
(̃g)∗ ds − ty.
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Evidently, g∞ = g − g1 = min(g, y) ≤ y, so ∥g − g1∥L∞µ ≤ y and it follows that

∥g1∥L̃1
µ
+ t∥g∞∥L∞µ ≤ ∥g1∥L̃1

µ
+ ty ≤

∫ t

0
(̃g)∗ ds.

We get ∫ t

0
(̃g)∗(s) ds ≥ K

(
g, t, L̃1

µ, L
∞
µ

)
and prove equality.

To finish the proof, notice that g̃ ∈ L+A and using the fact that the K-functional is mono-
tone, together with the bound |g| ≤ g̃, Lemma 2.4.6, and ˜̃g = g̃, we get

K
(
g, t, L̃1

µ, L
∞
µ

)
≤ K

(̃
g, t, L̃1

µ, L
∞
µ

)
= K

(
Rg̃, t, L̃1

λ, L
∞
λ

)
=

∫ t

0

(̃
g
)∗
= K

(
g, t, L̃1

µ, L
∞
µ

)
.

This completes the proof.

The next theorems show that both (L1
µ, (L

∞
µ )o) and

(
L̃1
µ, L

∞
µ

)
are exact Calderón couples.

Theorem 4.2.5 The couple (L1
µ, (L

∞
µ )o) is an exact Calderón couple.

Proof: Suppose f , g ∈ L1
µ + (L∞µ )o satisfy K( f , t, L1

µ, (L
∞
µ )o) ≤ K(g, t, L1

µ, (L
∞
µ )o) for all t > 0.

To show that (L1
µ, (L

∞
µ )o) is an exact Calderón couple we need to find an admissible contraction

from (L1
µ, (L

∞
µ )o) to itself that sends g to f .

Consider the map h 7→ sgn(g)h, clearly it maps g → sgn(g)g = |g| and it satisfies the
pointwise bound

∣∣∣sgn(g)h
∣∣∣ ≤ |h|. It follows that it is an admissible contraction from (L1

µ, (L
∞
µ )o)

to itself. Similarly the map h 7→ sgn( f )h is also an admissible contraction and it satisfies
| f | 7→ sgn( f ) | f | = f .

Therefore we may assume that the functions f and g are nonnegative. We will build the
desired operator as a composition of three admissible contractions, as shown in the following
diagram.

L1
µ +

(
L∞µ

)o
L1
λ +

(
L∞λ

)o
L1
λ +

(
L∞λ

)o
L1
µ +

(
L∞µ

)oR WH

g Rg R f f
R WH

The operator R is given by Lemma 2.4.6 and is shown to be an admissible contraction in
Proposition 4.2.1.

By virtue of Theorem 4.2.3, the inequality

K(R f , t, L1
λ, (L

∞
λ )o) ≤ K(Rg, t, L1

λ, (L
∞
λ )o)

holds for all t > 0, then (3) in Theorem 1.6.11 provides the operator H.
Since f is nonnegative, so is R f . Let E = {x ∈ [0,∞) : R f (x) > 0} and w(x) =

1/R f (x)χE(x). For nonnegative functions ψ ∈ L1
loc,B define W(ψ) = f Q(ψw), which is clearly

an additive mapping. For each M ∈ M,∫
M

Wψ dµ =
∫

M
f Q(ψw) dµ =

∫
[0,µ(M)]

R fψw dλ ≤
∫

[0,µ(M)]

ψ dλ. (4.4)
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Therefore W(ψ) ∈ L1
Loc,A, and by Theorem 1.2.4 the map W extends uniquely to a positive linear

mapping defined on L1
Loc,B. The monotone convergence theorem, together with equation (4.4)

yields ∥Wψ∥L1
µ
≤ ∥ψ∥L1

λ
. Once more, division by µ(M) on equation (4.4) and taking supremum

over M ∈ M yields ∥Wψ∥(L∞µ )o ≤ ∥ψ∥(L∞λ )o . Thus, W is an admissible contraction from L1
λ+(L∞λ )o

to L1
µ + (L∞µ )o.
Therefore, the operator W ◦H ◦ R is the desired from L1

λ + (L∞λ )o to itself taking g→ f and
completes the proof.

Theorem 4.2.6 The couple
(
L̃1
µ, L

∞
µ

)
is an exact Calderón couple.

Proof: Suppose f , g ∈ L̃1
µ + L∞µ satisfy K( f , t, L̃1

µ, L
∞
µ ) ≤ K(g, t, L̃1

µ, L
∞
µ ) for all t > 0. To

show that
(
L̃1
µ, L

∞
µ

)
is an exact Caldeón couple we need to find an admissible contraction from(

L̃1
µ, L

∞
µ

)
to itself that sends g to f .

Just as the proof of Theorem 4.2.5 we may assume that f and g are nonnegative and we
will build the operator as a composition of admissible contractions, as shown in the following
diagram.

L̃1
µ + L∞µ L̃1

µ + L∞µ L̃1
λ + L∞λ L̃1

λ + L∞λ
W1 HR

g g̃ Rg̃ R f̃
W1 HR

L̃1
µ + L∞µ

Q

f̃
Q

L̃1
µ + L∞µ

W2

f
W2

Notice L̃1
µ + L∞µ is a subspace of L1

Loc,A: Since if h = h1 + h∞ with h1 ∈ L̃1
µ and h∞ ∈ L∞µ ,

then for any M ∈ M,∫
M
|h| dµ ≤

∫
M
|h1| dµ +

∫
M
|h∞| dµ ≤

∫
M
|h1| dµ + µ(M)∥h∥L∞µ

≤

∫
U

h̃1 dµ + µ(M)∥h∥L∞µ = ∥h1∥L̃1
µ
+ µ(M)∥h∥L∞µ < ∞.

The maps W1 and W2 are constructed in the same way as in the proof of [17, Theorem 2.3],
for completeness we repeat the argument. Define the map W1 on the one dimensional space
Rg of L1

Loc,A by the formula W1(αg) = αg̃. The map is trivially linear and satisfies W1(h) ≤ h̃
for each h ∈ Rg. Theorem 4.1.6 shows that h 7→ h̃ is sublinear and it maps L1

Loc,A which is
a Dedekind complete vector lattice, by Proposition 2.3.4. So we may apply Theorem 1.2.6 to
extend W1 to a linear map preserving the bound W1(h) ≤ h̃. At −h it gives −W1h ≤ −̃h = h̃ so
|W1h| ≤ h̃. It follows that

∥W1h∥L∞µ ≤ ∥̃h∥L∞µ = ∥h∥L∞µ
and

∥W1h∥
L̃1
µ
≤ ∥̃h∥

L̃1
µ
= ∥̃̃h∥L1

µ
= ∥̃h∥L1

µ
= ∥h∥

L̃1
µ
.

Therefore W1 is an admissible contraction from
(
L̃1
µ, L

∞
µ

)
to itself that maps g→ g̃.

The operators R and Q are provided by Propositions 2.4.6 and 2.4.7 and are shown to be
admissible contractions in Lemma 4.2.1.
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Since f̃ ∈ σ(A), Theorem 4.2.4 shows that

K(R f̃ , t, L̃1
µ, L

∞
µ ) = K( f , t, L̃1

µ, L
∞
µ ) ≤ K(g, t, L̃1

µ, L
∞
µ ) = K(Rg̃, t, L̃1

µ, L
∞
µ ).

By (4) in Theorem 1.6.11 we have an admissible contraction H mapping Rg̃ to R f̃ .
It remains to prove the existence of the operator W2. To define it, consider θ(s) = f (s)/ f̃ (s)

when f̃ (s) , 0 and θ(s) = 0 otherwise. Then let W2h = θh and note that W2 f̃ = f . Since
|θ| ≤ 1, W2 is an admissible contraction from

(
L̃1
µ, L

∞
µ

)
to itself.

Therefore, the operator; W2 ◦ Q ◦ H ◦ R ◦W1 is an admissible contraction from
(
L̃1
µ, L

∞
µ

)
to

itself mapping g to f and completes the proof.

To exploit the previous results we compute the divisibility constants for both compatible
couples.

Lemma 4.2.7 The couple (L1
µ, (L

∞
µ )o) has divisibility constant 1.

Proof: Fix f ∈ L1
µ + (L∞µ )o and let {ω j} be nonnegative concave functions satisfying∑∞

j=1 ω j(1) < ∞ and K( f , t; L1
µ, (L

∞
µ )o) ≤

∑∞
j=1 ω j(t), for each t > 0. Suppose that f is non-

negative, then R f ≥ 0 by Lemma 2.4.6. And by Theorem 4.2.3 we get

K(R f , t; L1
λ, (L

∞
λ )o) = K( f , t; L1

µ, (L
∞
µ )o) ≤

∞∑
j=1

ω j(t),

for each t > 0. By (3) in Theorem 1.6.11, the couple (L1
λ, (L

∞
λ )o) has divisibility constant 1.

So, there exist functions φ j ∈ L1
λ + (L∞λ )o such that K(φ j, t; L1

λ, (L
∞
λ )o) ≤ ω j(t), for all j and t,

and
∑∞

j=1 φ j converges to R f in L1
λ + (L∞λ )o. Because R f is nonnegative, we may assume that

φ j ≥ 0 for all j, since otherwise we can replace them with ψ j, defined by ψ1 = min(|φ1|,R f )
and ψn+1 = min(|φn+1|,R f − (ψ1 + · · · + ψn)) for n = 1, 2, . . . .

Since QR f is σ(A)-measurable, the set E = {u ∈ U : QR f (u) = 0} is σ(A)-measurable,
hence χE is σ(A)-measurable, hence by item (11) in Proposition 2.4.6,

0 =
∫

U
(QR f )χE dµ =

∫
U

(R f )RχE dµ =
∫

U
f χE,

therefore {u ∈ U : QR f (u) = 0} is µ-almost contained in {u ∈ U : f (u) = 0}.
Set f j = ( f Qφ j)/QR f when QR f is nonzero and f j = 0 otherwise. Then by item (3) in

Proposition 2.4.7 we get

∞∑
j=1

f j =

∞∑
j=1

f
QR f

Q(φ j)χE =
f

QR f
Q
( ∞∑

j=1

φ j

)
χE =

f
QR f

Q
(
R f

)
χE = f (4.5)

µ-a.e. In particular, 0 ≤ f j ≤ f µ-a.e for all j. Now fix j. The definition of f j implies that
f Qφ j = (QR f ) f j µ-a.e. and we get QR f , Qφ j ∈ L+(A) from item (6) in Proposition 2.4.7, so
we may use item (11) of Proposition 2.4.6 and Theorem 2.4.8 to get

(R f )RQφ j = R( f Qφ j) = R((QR f ) f j) = (RQR f )R f j = (R f )R f j.
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Since f − f j ≥ 0, R f − R f j ≥ 0 so R f j = 0 whenever R f = 0. Therefore, we may cancel R f
above to get RQφ j ≥ R f j. This inequality, Lemma 4.2.1 and Proposition 1.5.2, give

K(R f j, t; L1
λ, (L

∞
λ )o) ≤ K(RQφ j, t; (L1

λ, (L
∞
λ )o) ≤ K(φ j, t; L1

λ, (L
1
λ, (L

∞
λ )o) ≤ ω j(t).

By Theorem 4.2.3, this gives K( f j, t; L1
µ, (L

∞
µ )o) ≤ ω j(t). This estimate, along with (4.5) and the

completeness of L1
µ + (L∞λ )o, shows that for each n,

∥∥∥∥ f −
n−1∑
j=1

f j

∥∥∥∥
L1
µ+(L∞λ )o

=
∥∥∥∥ ∞∑

j=n

f j

∥∥∥∥
L1
µ+(L∞λ )o

≤

∞∑
j=n

∥ f j∥L1
µ+(L∞λ )o ≤

∞∑
j=n

ω j(1),

where we have used the identity ∥ f j∥L1
µ+(L∞λ )o = K( f j, 1; L1

µ, (L
∞
λ )o). The right-hand side above is

the tail of a convergent series, so it goes to zero as n→ ∞. We conclude that
∑∞

j=1 f j converges
to f in L1

µ + (L∞λ )o.
To drop the nonnegativity assumption on f , construct the f j for | f |, the functions sgn( f ) f j

give the required decomposition of f .

Lemma 4.2.8 The couple
(
L̃1
µ, L

∞
µ

)
has divisibility constant 1.

Proof: Let 0 ≤ g ∈ L̃1
µ + L∞µ and ω j be nonnegative, concave functions on [0,∞) such that∑∞

j=1 ω j(1) < ∞ and K(g, t, L̃1
µ, L

∞
µ

)
≤

∑∞
j=1 ω j(t) for all t. Our object is to find g j ∈ L̃1

µ + L∞µ
such that K(g j, t, L̃1

µ, L
∞
µ

)
≤ ω j(t) for all t and

∑∞
j=1 g j converges to g in L̃1

µ + L∞µ .
Define ν j(t) = min

(
ω j(t),

∫ t

0
( g̃ )∗

)
. Since ν j is defined as the minimum of nonnegative

concave functions, it is nonnegative and concave. Also ν j(0+) = 0, thus there exists h j ∈ L↓

such that ν j(t) =
∫ t

0
h j. Then, for each t > 0:∫ t

0
( g̃ )∗ = min

( ∫ t

0
( g̃ )∗,

∞∑
j=1

ω j(t)
)
≤

∞∑
j=1

min
( ∫ t

0
( g̃ )∗, ω j(t)

)
=

∞∑
j=1

∫ t

0
h j ≤

∞∑
j=1

ω j(t).

Set h =
∑∞

j=1 h j. Since the partial sums
∑n

j=1 h j are decreasing and nonnegative, h is decreasing
and nonnegative. By the monotone convergence theorem, we have

K(( g̃ )∗, t; L1, L∞) =
∫ t

0
( g̃ )∗ ≤

∫ t

0

∞∑
j=1

h j =

∫ t

0
h = K(h, t; L1, L∞),

for each t > 0. By Theorem 1.5.8, there exists an admissible contraction T from L1 + L∞ to
itself such that Th = ( g̃ )∗ with Th j ∈ L↓. Notice that∥∥∥∥∥∥∥h −

n∑
j=1

h j

∥∥∥∥∥∥∥
L1+L∞

=

∥∥∥∥∥∥∥
∞∑

j=n+1

h j

∥∥∥∥∥∥∥
L1+L∞

=

∫ 1

0

∞∑
j=n+1

h j =

∞∑
j=n+1

∫ 1

0
h j ≤

∞∑
j=n+1

ω j(1).

The right-hand side is the tail of a convergent series, therefore
∑n

j=1 h j → h in L1 + L∞. By
continuity, T

(∑n
j=1 h j

)
→ Th = ( g̃ )∗. Let κ j = Th j, then by linearity,

∑∞
j=1 κ j = ( g̃ )∗ with
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convergence in L1 + L∞. Notice that the sequence of partial sums
∑n

j=1 h j is increasing, thus∑n
j=1 Th j ↑ ( g̃ )∗ λ-a.e.

Since g̃ ∈ L↓(A), Propositions 2.4.6 and Lemma 2.4.5 yield

(Rg̃) ◦ b = ( Rg̃ )∗ = ( g̃ )∗,

hence Th = (Rg̃) ◦ b, where b is the function from Theorem 2.4.3. Recall that b ◦ b(x) = b(x)
and x ≤ b(x) for all x > 0. Since κ j is nonincreasing, we have κ j(x) ≥ κ j ◦ b(x), then

0 = (Rg̃) ◦ b(x) − (Rg̃) ◦ b ◦ b(x) =
∞∑
j=1

κ j(x) −
∞∑
j=1

κ j ◦ b(x) =
∞∑
j=1

(
κ j(x) − κ j ◦ b(x)

)
.

Since κ j(x)−κ j ◦b(x) ≥ 0, we obtain κ j(x)−κ j ◦b(x) = 0 and so κ j = κ j ◦b for all j. This shows
that κ j ∈ L(B), hence κ j ∈ L↓(B) and its rearrangement with respect to λ is κ j. By Proposition
2.4.7, we have Qκ j ∈ L↓(A) and (Qκ j)∗ = κ j.

Set g j = (g/̃g)Qκ j. Since g ≤ g̃, we get g j ≤ Qκ j and

( g̃ j )∗ ≤ (Qκ j)∗ = κ j.

Thus, for all j and t, Theorem 4.2.4 and Proposition 1.5.2 show

K(g j, t; L̃1
µ, L

∞
µ ) =

∫ t

0
( g̃ j )∗ ≤

∫ t

0
κ j = K(Th j, t; L1, L∞) ≤ K(h j, t; L1, L∞) =

∫ t

0
h j ≤ ω j(t).

Since x = b(x) λ − a.e., we get (Rg̃) ◦ b = Rg̃. Then, item (3) in Proposition 2.4.7, item (3)
in Theorem 2.4.8 yield

∞∑
j=1

g j = (g/̃g)Q
( ∞∑

j=1

κ j

)
= (g/̃g)Q

(
( g̃ )∗

)
= (g/̃g)Q

(
(Rg̃) ◦ b

)
= (g/̃g)QRg̃ = g̃,

µ-a.e. This, and the completeness of L̃1
µ + L∞µ , shows that for each n,∥∥∥∥∥∥∥g −

n−1∑
j=1

g j

∥∥∥∥∥∥∥
L̃1
µ+L∞µ

=

∥∥∥∥∥∥∥
∞∑
j=n

g j

∥∥∥∥∥∥∥
L̃1
µ+L∞µ

≤

∞∑
j=n

∥∥∥g j

∥∥∥
L̃1
µ+L∞µ
=

∞∑
j=n

K(g j, 1; L̃1
µ, L

∞
µ ) ≤

∞∑
j=n

ω j(1).

The right-hand side is the tail of a convergent series so it goes to zero as n→ ∞. We conclude
that

∑∞
j=1 g j converges to g in L̃1

µ + L∞µ .
To drop the nonnegativity assumption on g, repeat the same construction of {g j} for |g|.

Then the functions sgn(g)g j provide the required decomposition of g.

The following theorem summarizes the results

Theorem 4.2.9 Let X,Y, and Z be Banach function spaces of µ-measurable functions. Then

1. X ∈ Int1(L1
µ, L

∞
µ ) if and only if X is u.r.i.

2. Y ∈ Int1(L1
µ, (L

∞
µ )o) if and only if Y = Xo for some u.r.i space X.
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3. Z ∈ Int1(L̃1
µ, L

∞
µ ) if and only if Z = X̃ for some u.r.i space X.

Proof: Consider the collection of all triples(
(L1

µ, L
∞
µ )Φ, (L1

µ, L
∞
µ ↓)Φ, (L̃1

µ, L
∞
µ )Φ

)
as Φ runs through all parameters of the K-method. By Proposition 1.5.4; the first entry of each
triple is in Int1(L1

µ, L
∞
µ ), the second entry is in Int1(L1

µ, L
∞
µ ↓) and the third entry is in Int1(L̃1

µ, L
∞
µ ).

Item (1), above, is Theorem 1.5.5 and was proved in [6]. It shows that the collection of first
entries in these triples is exactly the set of u.r.i. spaces over U.

Suppose Y ∈ Int1(L1
µ, (L

∞
µ )o); by Theorem 4.2.5 and Lemma 4.2.7, there exists a parameter

of the K-method Φ such that Y = (L1
µ, (L

∞
µ )o)Φ with identical norms. For any f ∈ L1

µ + (L∞µ )o,
Theorem 4.2.3 shows that K( f , t; L1

µ, (L
∞
µ )o) = K( f o, t; L1

µ, L
∞
µ ), therefore

∥ f ∥(L1
µ,(L∞µ )o)Φ = ∥ f

o∥(L1
µ,L∞µ )Φ = ∥ f ∥((L1

µ,L∞µ )Φ
)o .

Hence, Y = Xo where X is the u.r.i space (L1
µ, L

∞
µ )Φ, this proves item (2).

Similarly, if Y ∈ Int1(L̃1
µ, L

∞
µ ), by Theorem 4.2.6 and Lemma 4.2.8, there exists a parameter

of the K-methodΦ such that Y = (L̃1
µ, L

∞
µ )Φ with identical norms. For any g ∈ L̃1

µ+L∞µ , Theorem
4.2.4 shows that K( f , t; L̃1

µ, L
∞
µ ) = K (̃g, t; L1

µ, L
∞
µ ), therefore

∥g∥(L1
µ,(L∞µ )o)Φ = ∥̃g∥(L1

µ,L∞µ )Φ = ∥g∥ ˜(L1
µ,L∞µ )Φ

.

Hence, Y = X̃ where X is the u.r.i space (L1
µ, L

∞
µ )Φ, this proves item (3).

The following diagram may help to clarify the interpolation results summarized from the
last theorem.

L1
µ

L∞µu.r.i spacesInt1
(
L1
µ, L

∞
µ

)
X =

(
L1
µ, L

∞
µ

)
Φ

(
L∞µ

)o

L̃1
µ

Int1
(
L1
µ,

(
L∞µ

)o)
Xo =

(
L1
µ,

(
L∞µ

)o)
Φ

Int1
(
L̃1
µ, L∞µ

) X̃ =
(
L̃1
µ, L∞µ

)
Φ



Chapter 5

Kernel operators

In this section, we turn our attention to linear operators of the form

T f (y) =
∫

U
k(y, t) f (t) dµ(t),

where k : Y × U → [0,∞) is a τ ⊗ µ-measurable function. We call the function k a kernel and
T its related kernel operator.

We will focus on the kernel operators that have the following compatibility condition on
their level sets.

Definition 5.0.1 We say that the kernel is consonant if

K = {∅} ∪ {{u ∈ U : k(y, u) ≥ t} : y ∈ Y, t > 0}

is a totally ordered collection of sets of finite µ-measure, that is, if K is an ordered core of
(U,Σ, µ).

5.1 Transferring monotonicity
We will focus on the kernels satisfying Definition 5.0.1. We begin by noting that, the functions
u 7→ k(y, u) are core decreasing with respect to the ordered core K , for all y ∈ Y .

Proposition 5.1.1 Let K be the ordered core defined above and let y ∈ Y, then the function
u 7→ k(y, u) is core decreasing. Moreover, if f , g ∈ L+(Σ) and f ≼K g, then T f ≤ Tg τ-almost
everywhere.

Proof: Suppose u ≤K v but k(y, u) < k(y, v) seeking a contradiction. Then there exists
t ∈

(
k(y, u), k(y, v)

)
. Hence v ∈ {s ∈ U : k(y, s) ≥ t} but u < {s ∈ U : k(y, s) ≥ t}. Thus u ≤K v

fails. This contradicts our original assumption and proves that u 7→ k(y, u) is core decreasing.
To complete the proof, suppose that f , g ∈ L+(Σ) and f ≼K g. Then by Proposition 3.1.4

and the fact that u 7→ k(y, u) is core decreasing for each y ∈ Y , we get

T f (y) =
∫

U
k(y, u) f (u) dµ(u) ≤

∫
U

k(y, u) g(u) dµ(u) = Tg(y).

90
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For all the following results we suppose that X is a quasi Banach function space of τ-
measurable functions.

Theorem 5.1.2 If k is a kernel that satisfies Definition 5.0.1 and T is its associated kernel
operator. Then, the least constant C, infinite or finite, for which the inequality

∥T f ∥X ≤ C
∫

U
f w dµ, f ∈ L+µ

holds is unchanged when w is replaced with w. That is,

sup
f≥0

∥T f ∥X∫
U

f w dµ
= sup

f≥0

∥T f ∥X∫
U

f w dµ
.

Proof: Since w ≤ w µ-almost everywhere, the inequality ‘≤’ is clear. Conversely, we use
Theorem 3.3.8 to get

∥T f ∥X∫
U

f w dµ
=

∥T f ∥X
inf

{∫
U

gw dµ : f ≼K g
} = sup

 ∥T f ∥X∫
U

gw dµ
: f ≼K g

 ≤ sup

 ∥Tg∥X∫
U

gw dµ
: f ≼K g


≤ sup

sup
g≥0

∥Tg∥X∫
U

gw dµ
: f ≼K g

 = sup
g≥0

∥Tg∥X∫
U

gw dµ
.

Above, we have used Proposition 5.1.1 and the fact that T f ≤ Tg implies ∥T f ∥X ≤ ∥Tg∥X. To
complete the proof, we take the supremum over all f ≥ 0.

We now look at the reversed inequality.

Theorem 5.1.3 If k is a kernel that satisfies Definition 5.0.1 and T its associated kernel inte-
gral operator. Then, the least constant C, infinite or finite, for which the inequality∫

U
f w dµ ≤ C∥T f ∥X, f ∈ L+µ ,

holds is unchanged when w is replaced with w̃. That is,

sup
f≥0

∫
U

f w dµ

∥T f ∥X
= sup

f≥0

∫
U

f w̃ dµ

∥T f ∥X
.

Proof: Since w̃ ≥ w µ-almost everywhere. Then, the inequality ‘≤’ is clear. Conversely,
we use Theorem 3.2.5 to get∫

U
f w̃ dµ

∥T f ∥X
=

sup
{∫

U
gw dµ : g ≼K f

}
∥T f ∥X

= sup


∫

U
gw dµ

∥T f ∥X
: g ≼K f

 ≤ sup


∫

U
gw dµ

∥Tg∥X
: g ≼K f


≤ sup

sup
g≥0

∫
U

gw dµ

∥Tg∥X
: g ≼K f

 = sup
g≥0

∫
U

gw dµ

∥Tg∥X
.
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Above, we have used Proposition 5.1.1 and the fact that Tg ≤ T f implies ∥Tg∥X ≤ ∥T f ∥X. To
complete the proof, we take the supremum over all f ≥ 0.

And a corresponding result for core decreasing functions.

Theorem 5.1.4 If k is a kernel that satisfies Definition 5.0.1 and T its associated kernel inte-
gral operator. Then, the least constant C, infinite or finite, for which the inequality∫

U
f w dµ ≤ C∥T f ∥X, f ∈ L↓(K).

holds is unchanged when w is replaced with wo. That is,

sup
f≥0

∫
U

f w dµ

∥T f ∥X
= sup

f≥0

∫
U

f wo dµ

∥T f ∥X
.

Proof: Let f ∈ L↓(K). Item (a) in Proposition 3.4.2, together with Proposition 3.1.4 shows
that

∫
U

f w dµ ≤
∫

U
f wo dµ. Therefore, the inequality ‘≤’ holds. Conversely, we get∫

U
f wo dµ

∥T f ∥X
=

sup
{∫

U
gw dµ : g ≼K f , g ∈ L↓(K)

}
∥T f ∥X

= sup


∫

U
gw dµ

∥T f ∥X
: g ≼K f , g ∈ L↓(K)


≤ sup


∫

U
gw dµ

∥Tg∥X
: g ≼K f , g ∈ L↓(K)


≤ sup

 sup
g∈L↓(K)

∫
U

gw dµ

∥Tg∥X
: g ≼K f , g ∈ L↓(K)

 = sup
g∈L↓(K)

∫
U

gw dµ

∥Tg∥X
.

Again, we have used Proposition 5.1.1 and the fact that Tg ≤ T f implies ∥Tg∥X ≤ ∥T f ∥X. To
complete the proof, we take the supremum over all f ∈ L↓(K).

5.2 The case p = 1 for abstract Hardy inequalities
Recall the abstract Hardy inequality (1.14). The conditions on the core map guarantee that
A = {B(y)}y∈Y∪{∅} is aσ-bounded ordered core. That same ordered core can also be induced by
considering the kernel k : Y × U → [0,∞) by k(y, u) = χB(y)(u) and following the construction
in Section 5.1.

From this point forward we will assume that K = A, that the kernel is χB(y)(u).

T f (y) =
∫

B(y)

f dµ =
∫

U
k(y, u) f (u) dµ(u),

Our approach to finding necessary and sufficient conditions on the measures for inequality
(1.14) is to find an equivalent inequality involving only two measures and a weight function,
then to use Theorem 5.1.2 to replace the weight function with a core decreasing function.
Finally, we find an equivalent Hardy inequality on the half line.



5.2. The case p = 1 for abstract Hardy inequalities 93

Proposition 5.2.1 Fix q > 0, let η and µ be σ-finite measures over (U,Σ), let τ be a σ-finite
measure over (Y, τ) and let B : Y → Σ be a core map. Then there exists a positive Σ-measurable
function u such that the best constant in the inequality( ∫

Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
∫
U

f dη, (5.1)

is the same as the best constant in the inequality( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
∫
U

f u dµ, ∀ f ∈ L+µ . (5.2)

Proof: First, we reduce the problem to the case U = ∪y∈Y B(y). Fix f ∈ L+(Σ), set U0 =

∪y∈Y B(y) and g = fχU0 . Then( ∫
Y

( ∫
B(y)

g dµ
)q

dτ(y)
)1/q

∫
U0

g dη
=

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U

g dη
≥

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U

f dη
.

Taking the supremum over all f ∈ L+(Σ) shows that

sup
f∈L+(Σ)

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U

f dη
≤ sup

f∈L+(Σ)

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U0

f dη
.

Conversely,

sup
f∈L+(Σ)

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U0

f dη
= sup

fχU0∈L+(Σ)

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U

f dη

≤ sup
f∈L+(Σ)

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

∫
U

f dη
.

Therefore, we may replace U with U0 in (5.1). The same argument shows that we may replace
U with U0 in (5.2). Hence, we may suppose that U = U0.

An application of the Lesbesgue decomposition theorem shows that µ = µ1 + µ2, with
µ2 << η and µ1 ⊥ η. Also U = U1∪U2 with U1∩U2 = ∅ and µ2(U1) = 0 = η(U2). The Radon-
Nikodym theorem provides a Σ-measurable nonnegative function h such that dµ2 = h dη. If
E = {s ∈ U : h(s) = 0} we can define the function g = hχ(U\E) and the sets V1 = U1 \ E and
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V2 = U2 ∪ E to get a decomposition dµ = g dη + dµ1 supported on V1 and V2 respectively,
moreover g is never zero on V1. Thus the inequality (5.1) becomes( ∫

Y

( ∫
B(y)

f g dη +
∫

B(y)

f dµ1

)q

dτ(y)
) 1

q

≤ C
∫

U
f dη, ∀ f ∈ L+µ .

Fix z ∈ Y and set f = χ(B(z)∩V2), then if C is finite, we have( ∫
Y

(
µ1 (B(y) ∩ B(z))

)q

dτ(y)
) 1

q

=

( ∫
Y

( ∫
B(y)∩B(z)

dµ1

)q

dτ(y)
) 1

q

≤ Cη (B(z) ∩ V2) = 0.

Therefore µ1 (B(y) ∩ B(z)) = 0 for τ-almost every y. Since this holds for all z ∈ Y , letting
B(z) ↑ U yields µ1 (U) = 0.

Hence, the inequality becomes( ∫
Y

( ∫
B(y)

f g dη
)q

dτ(y)
) 1

q

≤ C
∫

U
f dη, ∀ f ∈ L+µ .

Since g is non-zero η-almost everywhere, we can define u = 1
g , so dη = u dµ. Notice that

the sets L+µ and L+η are only dependant on Σ, thus the the substitution f 7→ f u is a bijection
from L+η → L+µ and yields the inequality( ∫

Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
∫
U

f u dµ, ∀ f ∈ L+µ . (5.3)

This shows that if the best constant in the inequality (5.1) is finite, then it is also the best
constant in the inequality (5.3). For the remaining case, notice that we can decompose dη =
udµ + dη2 for some measure η2 satisfying η ⊥ η2. Therefore

sup
f∈L+µ

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
) 1

q

∫
U

f dη
≤ sup

f∈L+µ

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ(y)
) 1

q

∫
U

f u dµ
,

thus if the best constant in inequality (5.1) is infinite, then it is also the best constant in the
inequality (5.3).

To finish the proof, apply Theorem 5.1.2 with the kernel k(y, u) = χB(y)(u) and the core
K = A to replace u with u.

We now reduce the problem to a Hardy inequality with measures over the half line.

Lemma 5.2.2 Given B, τ, µ as in the previous propositions, then there exist Borel measures
ν, λ on [0,∞) and a nonincreasing function w finite λ-almost everywhere, such that the best
constant in inequality (5.2) is the best constant in( ∫

[0,∞)

( ∫
[0,x]

f dλ
)q

dν(x)
)1/q

≤ C
∫

[0,∞)

f w dλ, ∀ f ∈ L+λ (5.4)
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Proof: Since B is a core map, the function φ : Y → [0,∞) defined by φ(y) = µ(B(y)) is
measurable. Let ν be the push-forward Borel measure associated to φ from Theorem 1.1.5.
Let λ be the Borel measure induced by ordered core A with enriched core M, and R,Q the
transition maps from Theorems 2.4.6 and 2.4.7.

Fix a positive Σ-measurable function f ∈ L1
Loc,A and define

H f (x) =
∫

[0,x]

R( f ) dλ, and T f (y) =
∫

B(y)

f dλ.

We will show that H f and T f are equimeasurable with respect to the measures ν and τ,
respectively, by computing their distribution functions. First notice that for all y ∈ Y we have

(H f ) ◦ φ(y) = H f
(
µ
(
B(y)

))
=

∫
[0,µ(B(y))]

R( f ) dµ =
∫

B(y)

f dλ = T f (y).

Fix α > 0 and define the sets

Eα = {x ∈ [0,∞) : H f (x) > α} and Fα = {y ∈ Y : T (y) > α} .

Let

γ = sup

x ∈ [0,∞) :
∫

[0,x]

R f dλ ≤ α

 .
Notice that by the monotone convergence theorem H f (γ) ≤ α. We claim that Eα = (γ,∞) and
that Fα = φ

−1(Eα).
Let x ∈ Eα, then since H f is increasing, we must have that x > γ, thus Eα ⊆ (γ,∞).

Conversely, let x > γ, then H f (x) > α, thus x ∈ Eα, this shows the first equation.
For the second equation, notice that

Fα = {y ∈ Y : T (y) > α} = {y ∈ Y : (H f ) ◦ φ(y) > α} .

So if y ∈ Fα, then φ(y) ∈ Eα, this shows Fα ⊆ φ−1(Eα). Conversely, if y ∈ φ−1(Eα), then
T (y) > α, hence y ∈ Fα.

Computation of the distribution functions yields

ν(Eα) = τ
(
φ−1(Eα)

)
= τ(Fα).

Therefore H f and T f are equimeasurable, hence( ∫
[0,∞)

( ∫
[0,x]

R( f ) dλ
)q

dν
) 1

q

=

( ∫
[0,∞)

(
H f

)q

dν
) 1

q

=

( ∫
Y

(
T f

)q

dτ
) 1

q

=

( ∫
Y

( ∫
B(y)

f dµ
)q

dτ
) 1

q

.
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Since u is core decreasing, Theorem 2.4.6, items (8) and (10) show that∫
U

f u dµ =
∫

[0,∞)

R f Ru dλ.

Therefore, if inequality (5.2) holds, so does( ∫
[0,∞)

( ∫
[0,x]

R f dλ
)q

dν(x)
) 1

q

≤ C
∫

[0,∞)

R f Ru dλ, ∀ f ∈ L+µ .

Notice that Ru must be finite almost everywhere, otherwise, the original measures are not σ-
finite. The result follows by letting w = Ru and noting that R maps L+µ onto L+λ , which follows
from part 8 of Theorem 2.4.1 and the monotone convergence theorem.

We are ready to prove the main result.

Theorem 5.2.3 Let (Y,T , τ), (U,Σ, µ), (U,Σ, ν) be σ-finite measure spaces and B : Y → Σ a
core map. Set η = ηa + ηs, where dηa = udµ and ηs ⊥ µ. Then the best constant C in the
inequality ( ∫

Y

( ∫
B(y)

f dµ
)q

dτ(y)
)1/q

≤ C
∫
U

f dη, (5.5)

satisfies

C ≈
[ ∫

Y

( ∫
µ(B(z))≤µ(B(y))

R
(
1
u

)
◦ µ ◦ B(y) dτ(y)

) q
1−q

dτ(z)
] 1−q

q

, for q ∈ (0, 1),

and

C = sup
s∈U

(
1
u

(s)
)
τ ({y ∈ Y : s ∈ B(y)})1/q , for q ∈ [1,∞).

Where the greatest core decreasing minorant is taken with respect to the coreA = {∅}∪ {B(y) :
y ∈ Y} and R is the map from Proposition 2.4.6.

Proof: Suppose that q ∈ (0, 1), then by Lemma 5.2.2 and Theorem 1.7.2 (Theorem 3.1 of
[11]) the best constant is equivalent to( ∫

[0,∞)

( ∫
[0,x]

1
w

dν
) q

1−q

dν(x)
)1/q

,

where w = R(u) and ν is the push-forward measure for the map φ(y) = µ ◦ B(y). Notice that
w = w, and it follows from item (11) of Proposition 2.4.6, that

1 = R(1) = R
(
u
u

)
= R(u)R

(
1
u

)
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Hence, ∫
[0,x]

1
w

dν =
∫

[0,∞)
R

(
1
u

)
χ[0,x] dν =

∫
Y

R
(
1
u

)
◦ φ(y)χ[0,x] ◦ φ(y) dτ(y)

=

∫
φ(y)≤x

R
(
1
u

)
◦ φ(y) dτ(y).

Thus ∫
[0,∞)

( ∫
[0,x]

1
w

dν
) q

1−q

dν(x) =
∫

Y

( ∫
φ(y)≤φ(z)

R
(
1
u

)
◦ φ(y) dτ(y)

) q
1−q

dτ(z)

and completes the proof for the case q ∈ (0, 1).
The case q ∈ [1,∞) follows directly from duality and is included for completeness.
By Proposition 5.2.1 the best constant in inequality (5.5) is the norm of the integral operator

K f (y) =
∫

U
k(y, s) f (s) dθ(s) acting from L1

θ → Lq
τ where dθ = udµ and k(y, s) = 1

u(s)χB(y)(s). By
duality, it is the best constant in the inequality∥∥∥∥∥∥∥∥

∫
Y

k(y, ·)h(y) dτ(y)

∥∥∥∥∥∥∥∥
L∞θ

≤ C
(∫

Y
hq′ dτ

) 1
q′

,∀h ∈ L+τ .

Define ψs(y) = 1 if s ∈ B(y) and ψs(y) = 0 otherwise. Divide both sides of the equation by
∥h∥Lq′

τ
to get

sup

 1
u(s)

∫
Y

ψs(y)
h(y)
∥h∥Lq′

τ

dτ(y) : s ∈ U

 ≤ C.

Taking supremum over non-zero positive functions h yields

sup
s∈U

1
u(s)
∥ψs∥Lq

τ
≤ C,

which is the same as

C ≥ sup
s∈U

(
1
u

(s)
)
τ ({y ∈ Y : s ∈ B(y)})1/q .

For the reverse inequality, an application of Minkowski’s integral inequality yields
∫
Y

(∫
U

k(s, y) f (s) dθ(s)
)q

dτ(y)


1/q

≤


∫
U

(∫
Y
ψs(y) dτ(y)

)1/q f (s)
u(s)

dθ(s)


≤ sup

s∈U

(
1
u

(s)
)
τ ({y ∈ Y : s ∈ B(y)})1/q

∫
U

f (s) dθ(s)

hence C ≤ sups∈U

(
1
u (s)

)
τ ({y ∈ Y : s ∈ B(y)})1/q and proves the statement for q ∈ (1,∞).
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5.3 Hardy inequalities in metric measure spaces
In this section, we show that the framework of abstract Hardy inequalities can be used to give
different proofs to [21, Theorem 2.1 ConditionD1], [22, Theorem 2.1] and [20, Theorem 3.1].
These theorems give necessary and sufficient conditions for Hardy inequalities to hold in met-
ric measure spaces; they cover three cases depending on the indices p and q, provided the
existence of a locally integrable function λ ∈ L1

loc such that for all f ∈ L1(X) the following
polar decomposition at a ∈ X holds:∫

X

f dµ =
∫ ∞

0

∫
Σr

f (r, ω)λ(r, ω) dωrdr,

for a family of measures dωr, where Σr = {x ∈ X : d(x, a) = r}.
Our new proofs show that the polar decomposition hypothesis is not required so the results

hold in all metric measure spaces.
We also give the corresponding results regarding the conjugate Hardy inequality discussed

in [21, Theorem 2.2 ConditionD∗1] and [20, Theorem 3.2].

We begin with the case p > 1, extending [21, Theorem 2.1 Condition D1], [22, Theo-
rem 2.1] to all metric measure spaces.

Theorem 5.3.1 Let µ be a σ-finite measure on a metric measure space X. Fix a ∈ X and let
p ∈ (1,∞), q > 0, q , 1 and ω, v be measurable functions, positive µ-almost everywhere such
that ω is integrable over X \ B[a; |x|a] and v1−p′ is integrable over B[a; |x|a] for all x ∈ X. Then
the Hardy inequality( ∫

X

( ∫
B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
( ∫
X

f (x)pv(x) dµ(x)
) 1

p

, ∀ f ∈ L+µ (5.6)

holds if and only if p ≤ q and:

sup
x,a


( ∫
X\B[a;|x|a]

ω dµ
) 1

q
( ∫

B[a;|x|a]

v1−p′ dµ
) 1

p′

 < ∞,
0 < q < 1 < p and ∫

X

( ∫
X\B[a;|x|a]

ω dµ
) r

p
( ∫

B[a;|x|a]

v1−p′ dµ
) r

p′

u(s) dµ(s) < ∞,

or 1 < q < p and ∫
X

( ∫
X\B[a;|x|a]

ω dµ
) r

q
( ∫

B[a;|x|a]

v1−p′ dµ
) r

q′

v1−p′(s) dµ(s) < ∞.

Here 1
r =

1
q −

1
p .
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Proof: By hypothesis v > 0 and v < ∞ µ-almost everywhere, then the mapping f 7→ v1−p′ f
is a bijection on L+µ . Then, the inequality (5.6) is equivalent to

( ∫
X

( ∫
B[a;|x|a]

f (y)v1−p′(y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
( ∫
X

f (x)pv1−p′(x) dµ(x)
) 1

p

, ∀ f ∈ L+µ (5.7)

Above we have used the identity vp(1−p′)v = v1−p′ . Let dτ = v1−p′dµ and define the map
B : X→ Σ by

B(x) = B[a; |y|a].

The image of B is a totally ordered set. By hypothesis τ(B(x)) < ∞ for each x ∈ X. Therefore,
it is an ordered core with respect to the measure τ. We get the equivalent abstract Hardy
inequality ( ∫

X

( ∫
B[a;|y|a]

f dτ
)q

ω(y) dµ(y)
) 1

q

≤ C
( ∫
X

f p dτ
) 1

p

, ∀ f ∈ L+µ .

Let λ be the measure on [0,∞) induced by the core, so that for every M in the core∫
[0,x]

R f dλ =
∫
M

f v1−p′ dµ, where x =
∫
M

v1−p′ dµ.

We claim that inequality (5.7) is equivalent to the Hardy inequality( ∫
[0,∞)

( ∫
[0,y]

g dλ
)q

R
(
ω

v1−p′

)
dλ(y)

) 1
q

≤ C
( ∫
[0,∞)

gpdλ
) 1

p

, ∀g ∈ L+λ . (5.8)

By Theorem 1.7.5, to complete the proof, it suffices to show that the maps

b1(s) =
∫

B[a;|s|a]

v1−p′ dµ and b2(x) = λ([0, x])

have the same distribution functions with respect to the measures ω dµ and R
(

ω
v1−p′

)
dλ respec-

tively.
Fix t > 0 and consider the sets E1 = b−1

1 (t,∞) and E2 = b−1
2 (t,∞), we give a characterization

for these sets.
Define the set W as follows

W =
⋃B[a; |s|a] :

∫
B[a;|s|a]

v1−p′ dµ ≤ t

 .
If z ∈ E1, then b1(z) > t, thus z < W, conversely if z ∈ W then b1(z) ≤ t, therefore z < E1.
Hence Wc = E1. Since W is a union of closed balls centered at a, then there exists a sequence
sn such that B[a; |sn|a] ↑ W. Let tn =

∫
B[a;|sn |a]

v1−p′ dµ.
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Let t̃ be defined as

t̃ = sup

z ≤ t : z =
∫

B[a;|s|a]

v1−p′ dµ for some s ∈ X

 ,
hence t̃ = λ[0, t].

Therefore,∫
Ec

1

ω dµ = sup
n∈N

∫
B[a;|sn |a]

ω dµ by the monotone convergence theorem

= sup
n∈N

∫
[0,tn]

R
(
ω

v1−p′

)
dλ by the action of R

=

∫
[0,t]

R
(
ω

v1−p′

)
dλ by monotone convergence theorem

=

∫
Ec

2

R
(
ω

v1−p′

)
dλ.

By hypothesis
∫
Ec

1

ω dµ < ∞, we have that

∫
b−1

1 (t,∞)

ω dµ =
∫

b−1
2 (t,∞)

R
(
ω

v1−p′

)
dλ.

It follows that the distribution functions coincide which proves that the Hardy inequalities (5.7)
and (5.8) have the same normal form parameter, therefore, they are equivalent by Theorem
1.7.5.

For all the index cases, we can apply Theorem 1.7.1. In the case 1 < p ≤ q < ∞, the
inequality (5.8) holds if and only if

sup
x

( ∫
[x,∞)

R
(
ω

v1−p′

)
dλ(t)

) 1
q
( ∫
[0,x]

dλ
) 1

p′

< ∞

which is equivalent to

sup
s,a

( ∫
X\B[a;|s|a]

ω dµ
) 1

q
( ∫

B[a;|s|a]

v1−p′ dµ
) 1

p′

< ∞.

In the case 0 < q < 1 < p < ∞, the inequality (5.8) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
(
ω

v1−p′

)
dλ

) r
p
( ∫
[0,x]

dλ
) r

p′

R
(
ω

v1−p′

)
dλ(x) < ∞
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which is equivalent to∫
X

( ∫
X\B[a;|s|a]

ω dµ
) r

p
( ∫

B[a;|s|a]

v1−p′ dµ
) r

p′

ω(s) dµ(s) < ∞.

In the case 1 < q < p we have that inequality (5.8) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
(
ω

v1−p′

)
dλ

) r
q
( ∫
[0,x]

dλ
) r

q′

dλ(x) < ∞

which is equivalent to∫
X

( ∫
X\B[a;|s|a]

ω dµ
) r

q
( ∫

B[a;|s|a]

v1−p′ dµ
) r

q′

v1−p′ dµ(s) < ∞

completing the proof.

We also have a corresponding result to the conjugate Hardy inequality, extending [21, The-
orem 2.1 ConditionD1].

Theorem 5.3.2 Let µ be a σ-finite measure on a metric measure space X. Fix a ∈ X and
let p ∈ (1,∞), q > 0, q , 1 and ω, v be measurable functions, positive µ-almost everywhere
satisfying that v1−p′ is integrable over X \ B[a; |x|a] for each x ∈ X and ω ∈ L1

Loc(X). Then, the
Hardy inequality( ∫

X

( ∫
X\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
( ∫
X

f (x)pv(x) dµ(x)
) 1

p

, ∀ f ∈ L+µ

holds if and only if p ≤ q and:

sup
x,a


( ∫

B[a;|x|a]

ω dµ
) 1

q
( ∫
X\B[a;|x|a]

v1−p′ dµ
) 1

p′

 < ∞,
0 < q < 1 < p and ∫

X

( ∫
B[a;|x|a]

ω dµ
) r

p
( ∫
X\B[a;|x|a]

v1−p′ dµ
) r

p′

u(s) dµ(s) < ∞,

or 1 < q < p and ∫
X

( ∫
B[a;|x|a]

ω dµ
) r

q
( ∫
X\B[a;|x|a]

v1−p′ dµ
) r

q′

v1−p′(s) dµ(s) < ∞.

Here 1
r =

1
q −

1
p .
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Proof: We only sketch the proof as most details follow the same argument as Theorem 5.3.1.
Let dτ = v1−p′ dµ. Observe that the hypothesis on v guarantees that, for each y ∈ X, the sets

X \ B[a; |y|a] have finite τ measure. Thus the map B(y) = X \ B[a; |y|a] is a core map.
Then the Lebesgue decomposition theorem and the substitution f 7→ v1−p′ provides the

equivalent abstract Hardy inequality( ∫
X

( ∫
X\B[a;|y|a]

f dτ
)q

ω(y) dµ(y)
) 1

q

≤ C
( ∫
X

f p dτ
) 1

p

, ∀ f ∈ L+µ .

By definition of τ this is equivalent to( ∫
X

( ∫
X\B[a;|y|a]

f v1−p′ dµ
)q

ω(y) dµ(y)
) 1

q

≤ C
( ∫
X

f pv1−p′ dµ
) 1

p

, ∀ f ∈ L+µ . (5.9)

Let λ be the measure on [0,∞) induced by the core, so that for every y ∈ X:∫
[0,x]

R f dλ =
∫

X\B[a;|y|a]

f v1−p′ dµ, where x =
∫

X\B[a;|y|a]

v1−p′ dµ.

The maps

b1(s) =
∫

X\B[a;|s|a]

v1−p′ dµ and b2(x) = λ([0, x])

have the same distribution functions with respect to the measures ω dµ and R
(

ω
v1−p′

)
dλ respec-

tively. Then, by Theorem 1.7.5, we get that the inequality (5.9) is equivalent to the Hardy
inequality ( ∫

[0,∞)

( ∫
[0,y]

g dλ
)q

R
(
ω

v1−p′

)
dλ(y)

) 1
q

≤ C
( ∫
[0,∞)

gpdλ
) 1

p

, ∀g ∈ L+λ . (5.10)

For all the index cases, we can apply Theorem 1.7.1. In the case 1 < p ≤ q < ∞, the
inequality (5.10) holds if and only if

sup
x

( ∫
[x,∞)

R
(
ω

v1−p′

)
dλ(t)

) 1
q
( ∫
[0,x]

dλ
) 1

p′

< ∞

which is equivalent to

sup
s,a

( ∫
B[a;|s|a]

ω dµ
) 1

q
( ∫
X\B[a;|s|a]

v1−p′ dµ
) 1

p′

< ∞.

In the case 0 < q < 1 < p < ∞, the inequality (5.10) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
(
ω

v1−p′

)
dλ

) r
p
( ∫
[0,x]

dλ
) r

p′

R
(
ω

v1−p′

)
dλ(x) < ∞
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which is equivalent to∫
X

( ∫
B[a;|s|a]

ω dµ
) r

p
( ∫
X\B[a;|s|a]

v1−p′ dµ
) r

p′

ω(s) dµ(s) < ∞.

In the case 1 < q < p we have that inequality (5.10) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
(
ω

v1−p′

)
dλ

) r
q
( ∫
[0,x]

dλ
) r

q′

dλ(x) < ∞

which is equivalent to∫
X

( ∫
B[a;|s|a]

ω dµ
) r

q
( ∫
X\B[a;|s|a]

v1−p′ dµ
) r

q′

v1−p′ dµ(s) < ∞

completing the proof.

For the case p = 1, Theorem 5.2.3 implies the following characterization.

Corollary 5.3.3 Let µ be a σ-finite measure on a metric measure space X. Fix a ∈ X, let
q ∈ (0,∞) and ω, v be measurable functions, positive µ-almost everywhere satisfying that ω is
integrable over X \ B[a; |x|a] for each x ∈ X and v1−p′ ∈ L1

Loc(X). Then the best constant in the
Hardy inequality( ∫

X

( ∫
B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
∫
X

f (x)v(x) dµ(x), ∀ f ∈ L+µ

satisfies

C ≈
( ∫
X

( ∫
z≤Ax

1
v

(x)ω(x) dµ(x)
) q

1−q

ω(z) dµ(z)
) 1−q

q

, for q ∈ (0, 1),

and

C = sup
x∈X

(
1
v

(x)
) ( ∫

x≤At

ω(t) dµ(t)
)1/q

, for q ∈ [1,∞).

Where v(x) = ess infµ{v(t) : t ∈ B[a; |x|a]}, x ≤A t means B[a; |x|a] ⊆ B(a, |t|) and B[a; |x|a] =
{z ∈ X : dist(a, z) ≤ dist(a, x)}.

Proof: Let A = {∅} ∪ {B[a; |x|a]}x∈X, it is the full ordered core induced by the core map
x→ B[a; |x|a]. Let dτ = ωdµ, dη = vdµ and λ be the measure on [0,∞) induced by the ordered
core.

Consider the function φ : X → [0,∞) defined by φ(x) = µ
(
B[a; |x|a]

)
and let ν be the

pushforward measure. Then, if y = φ(x) we have

ν
(
[0, y]

)
= µ

(
φ−1([0, y])

)
=

∫
φ(t)≤y

dµ(t) =
∫

B[a;|x|a]

dµ = λ
(
[0, φ(x)]

)
= λ

(
[0, y]

)
.
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It follows that the Borel measures ν and λ coincide and are finite over [0, y] for all y > 0,
therefore λ is the pushforward measure of φ.

We now show that R
(

1
v

)
= 1

v ◦ φ up to a set of µ-measure zero.
Indeed∫

B[a;|x|a]

1
v

dµ =
∫

φ(t)≤φ(x)

1
v

(t) dµ(t) =
∫

[0,φ(x)]

R
(1
v

)
(t) dλ(t) =

∫
[0,∞)

R
(1
v

)
(t)χ[0,φ(x)](t) dλ(t)

=

∫
X

R
(1
v

)
◦ φ(t)χ[0,φ(x)] ◦ φ(t) dµ(t) =

∫
φ(t)≤φ(x)

R
(1
v

)
◦ φ(t) dµ(t)

=

∫
B[a;|x|a]

R
(1
v

)
◦ φ(t) dµ(t).

Since the equality holds for all core sets, then R
(

1
v

)
= 1

v ◦ φ almost everywhere.
Then for q ∈ (0, 1), Theorem 5.2.3 yields

C ≈
( ∫
X

( ∫
φ(z)≤φ(x)

R
(
1
v

)
◦ φ(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)
) 1−q

q

≈

( ∫
X

( ∫
z≤Ax

1
v

(x)ω(x) dµ
) q

1−q

ω(z) dµ(z)
) 1−q

q

.

The statement for q ∈ [1,∞) follows directly from Theorem 5.2.3. The description of v was
given in Example 3.3.5. This completes the proof.

Our result regarding the conjugate Hardy inequality to Corollary 5.3.1 needs an adjustment.
Since for a metric measure space X, the sets (X \ B[a; |x|a]) may have infinite measure, the
collection {X \B[a; |x|a]}x∈X may fail to be an ordered core. This obstruction is addressed in the
following lemma.

Lemma 5.3.4 Let µ be a σ-finite measure on a metric measure spaceX. Fix a ∈ X. Let {Xn} be
a sequence of sets of finite µ-measure such that a ∈ Xn ↑ X, q ∈ (0,∞) and ω, v be measurable
functions, positive µ-almost everywhere satisfying that v1−p′ is integrable over X \ B[a; |x|a] for
each x ∈ X and ω ∈ L1

Loc(X).
For each n ∈ N. Let Cn be the best constant in the inequality( ∫

Xn

( ∫
Xn\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ Cn

∫
Xn

f (x)v(x) dµ(x), ∀ f ∈ L+µ (5.11)

and C be the best constant in the inequality( ∫
X

( ∫
X\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
∫
X

f (x)v(x) dµ(x), ∀ f ∈ L+µ , (5.12)
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where B[a; |x|a] = {z ∈ X : dist(a, z) ≤ dist(a, x)}.
Then,

C = sup
n∈N

Cn.

Proof:
Fix f ∈ L+µ , then an application of inequality (5.12) yields

( ∫
Xn

( ∫
Xn\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤

( ∫
X

( ∫
X\B[a;|x|a]

f (y)χXn(y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
∫
X

f (y)χXn(y) v(y)dµ(y) = C
∫
Xn

f (y) v(y)dµ(y).

Thus supn∈NCn ≤ C.
Conversely, the monotone convergence theorem together with equation (5.11) yields( ∫

X

( ∫
X\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

= sup
n

( ∫
Xn

( ∫
X\B[a;|x|a]

f (y)χXn(y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

= sup
n

( ∫
Xn

( ∫
Xn\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ sup
n

Cn

∫
Xn

f (x)v(x) dµ(x) ≤
(

sup
n

Cn
) ∫
X

f (x)v(x) dµ(x).

Division by
∫
X

f (x)v(x) dµ(x) and taking supremum over f yields C ≤ supn∈NCn and com-

pletes the proof.

We are ready to state our result for the conjugate Hardy inequality with p = 1.

Corollary 5.3.5 Let µ be a σ-finite measure on a metric measure space X. Fix a ∈ X, let
q ∈ (0,∞) and ω, v be measurable functions, positive µ-almost everywhere satisfying v1−p′ is
integrable over X \ B[a; |x|a] for each x ∈ X and ω ∈ L1

Loc(X). Then the best constant in the
Hardy inequality( ∫

X

( ∫
X\B[a;|x|a]

f (y) dµ(y)
)q

ω(x) dµ(x)
) 1

q

≤ C
∫
X

f (x)v(x) dµ(x), ∀ f ∈ L+µ

satisfies

C ≈
( ∫
X

( ∫
x≤Az

1
v

(x)ω(x) dµ(x)
) q

1−q

ω(z) dµ(z)
) 1−q

q

, for q ∈ (0, 1),
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and

C = sup
x∈X

(
1
v

(x)
) ( ∫

t≤Ax

ω(t) dµ(t)
)1/q

, for q ∈ [1,∞).

Where v(x) = ess infµ{v(t) : t < B[a; |x|a]}, x ≤A t means B[a; |x|a] ⊆ Ba,|t| and B[a; |x|a] = {z ∈
X : dist(a, z) ≤ dist(a, x)}.

Proof: For each n ∈ N+ define Xn = {x ∈ X : dist(a, x) ≤ n}. Let Cn be the best constant in the
inequality (5.11). Let An = {∅} ∪ {XnB[a; |x|a]}x∈X, it is the full ordered core over Xn induced
by the core map x→ (Xn \B[a; |x|a]). Let dτ = ωdµ, dη = vdµ and λn be the measure on [0,∞)
induced by the ordered core. Notice that λn is supported on the compact interval [0, µ(Xn)].

Consider the function φn : X → [0,∞) defined by φn(x) = µ
(
Xn \ B[a; |x|a]

)
and let νn be

the pushforward measure.
Then, if y = φn(x) we have

νn
(
[0, y]

)
= µ

(
φ−1

n ([0, y])
)
=

∫
φn(t)≤y

dµ(t) =
∫

Xn\B[a;|x|a]

dµ = λ
(
[0, φ(x)]

)
= λ

(
[0, y]

)
.

It follows that the Borel measures νn and λn coincide and are finite over [0, y] for all y > 0,
therefore λn is the pushforward measure of φn.

We now show that Rn

(
1
vn

)
= 1

vn
◦ φ up to a set of µ-measure zero, here Rn is the transition

map between µ and λn and vn is the greatest core decreasing minorant of v relative to the core
An.

Indeed∫
Xn\B[a;|x|a]

1
vn

dµ =
∫

φn(t)≤φn(x)

1
vn

(t) dµ(t) =
∫

[0,φn(x)]

Rn

( 1
vn

)
(t) dλ(t)

=

∫
[0,∞)

Rn

( 1
vn

)
(t)χ[0,φn(x)](t) dλ(t)

=

∫
X

Rn

( 1
vn

)
◦ φn(t)χ[0,φ(x)] ◦ φn(t) dµ(t) =

∫
φn(t)≤φn(x)

Rn

( 1
vn

)
◦ φn(t) dµ(t)

=

∫
Xn\B[a;|x|a]

Rn

( 1
vn

)
◦ φn(t) dµ(t).

Since the equality holds for all core sets, then Rn

(
1
vn

)
= 1

vn
◦ φn almost everywhere.

Then for q ∈ (0, 1), Theorem 5.2.3 yields

Cn ≈

( ∫
Xn

( ∫
φn(z)≤φn(x)

Rn

 1
vn

 ◦ φn(x)ω(x) dµ
) q

1−q

ω(z) dµ(z)
) 1−q

q

≈

( ∫
Xn

( ∫
x≤Az

1
vn

(x)ω(x) dµ
) q

1−q

ω(z) dµ(z)
) 1−q

q

.
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Notice that

1
vn

(x) =
1

ess infµ {v(t) : t ∈ Xn \ B[a; |x|a]}
= ess supµ

{
1

v(t)
: t ∈ Xn \ B[a; |x|a]

}
,

therefore

sup
n

1
vn

(x) = ess supµ

{
1

v(t)
: t ∈ X \ B[a; |x|a]

}
=

1
v

(x).

An application of Lemma 5.3.4 and the monotone convergence theorem yields

C ≈ sup
n∈N

( ∫
Xn

( ∫
x≤Az

1
v

(x)ω(x) dµ
) q

1−q

ω(z) dµ(z)
) 1−q

q

=

( ∫
X

( ∫
x≤Az

1
v

(x)ω(x) dµ
) q

1−q

ω(z) dµ(z)
) 1−q

q

.

For q ≥ 1 we get

Cn = sup
x∈Xn

 1
vn

(x)
 ( ∫

t≤Ax

ω(t) dµ(t)
)1/q

= sup
x∈X

 1
vn

(x)
 ( ∫

t≤Ax

ω(t) dµ(t)
)1/q

χXn(x).

By Lemma 5.3.4 we get

C = sup
n

Cn = sup
n

sup
x∈X

 1
vn

(x)
 ( ∫

t≤Ax

ω(t) dµ(t)
)1/q

χXn(x)

= sup
x∈X

(
1
v

(x)
) ( ∫

t≤Ax

ω(t) dµ(t)
)1/q

.

This completes the proof.
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[13] Leśnik, K., and Maligranda, L. Interpolation of abstract Cesàro, Copson and Tandori
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Appendix A

The category of ordered cores

We define a category of ordered cores and show the functoriality properties derived from
Theorem 2.3.6.
Objects: An object in this category consists of a 4-tuple (U,Σ, µ,A) where U is a set, Σ a
σ−algebra on U, µ a σ−finite measure defined on Σ andA a σ−bounded full ordered core.
Morphisms: There is a morphism r : (U,Σ, µ,A)→ (T,T , τ,A′) if r : A → A′ is a
surjective order-preserving function and there exists a constant c such that

τ
(
r(B) \ r(A)

)
≤ cµ

(
B \ A

)
, for all B, A ∈ A.

The identity morphism is the identity map of ordered cores r. Surjectivity and monotonicity
of functions are preserved by compositions, moreover, if r1 : (U,Σ, µ,A)→ (T,T , τ,A′) and
r2 : (T,T , τ,A′)→ (T2,T2, τ2,A

′′) are morphisms with constants c1, c2 respectively, then

τ2
(
r2 ◦ r1(B) \ r2 ◦ r1(A)

)
≤ c2τ1

(
r1(B) \ r1(A)

)
≤ c2c1µ(B \ A), ∀A, B ∈ A.

The following proposition shows the existence of a semifunctor mapping to the category of
R−vector spaces.

Proposition A.0.1 There is a contravariant semifunctor FV mapping to the category of
R−vector spaces, mapping FV(U,Σ, µ,A) = L1

Loc,A and r : A → A′ gets mapped to
FV(r) = R, where R is the linear operator described in Theorem 2.3.6.

Proof: Existence and linearity were shown in Theorem 2.3.6. The only property remaining is
the preservation of composition, that is, if r1 : (U,Σ, µ,A)→ (T,T , τ,A′) and
r2 : (T,T , τ,A′)→ (T2,T2, τ2,A

′′) are morphisms then FV(r2 ◦ r1) = FV(r1) ◦ FV(r2).
Indeed; Let f ∈ L1

Loc,A′′ . By item (6) in 2.3.6, both FV(r1) ◦ FV(r2) f and FV(r2 ◦ r1) f are
σ(A)−measurable functions. By Lemma 2.3.5, to show equality, it suffices to show that their
integrals match on each core set.
For each A ∈ A:∫

A

FV(r1) ◦ FV(r2) f dµ =
∫

r1(A)

FV(r2) f dτ =
∫

r2◦r1(A)

f dτ2 =

∫
A

FV(r2 ◦ r1) f dµ.

Hence, FV(r2 ◦ r1) f = FV(r1) ◦ FV(r2) f µ−a.e. and completes the proof.

The following diagram expresses the semifunctoriality of FV .
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112 Chapter A. The category of ordered cores

L1
Loc,A

L1
Loc,A′

(U,Σ, µ,A)

(T,T , τ,A′)

r

FV

FV

R

Similarly, we can define a functor F1 mapping to the category of compatible couples. We map
F1(U,Σ, µ,A) = L1

µ + L∞µ and r : A → A′ gets mapped to F1(r) = R, where R is the linear
operator described in Theorem 2.3.6. Notice that items (1) and (9) show that the linear map
F1(r) is admissible. The diagram becomes

L1
µ + L∞µ

L1
τ + L∞τ

(U,Σ, µ,A)

(T,T , τ,A′)

r

F1

F1

R

Also, we have a corresponding semifunctor F2 when considering down spaces.

L1
µ +

(
L∞µ

)o

L1
τ +

(
L∞τ

)o

(U,Σ, µ,A)

(T,T , τ,A′)

r

F2

F2

R

And also a semifunctor F3 when considering the dual couple.

L̃1
µ + L∞µ

L̃1
τ + L∞τ

(U,Σ, µ,A)

(T,T , τ,A′)

r

F3

F3

R
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Education and 2011 - 2015 B.Sc. in Mathematics
Degrees: 2016 - 2017 M.Sc. in Mathematics.

University of Western Ontario. London, ON, Canada
2019 - 2020 M.Sc. in Mathematics
2020 - 2024 Ph.D. in Mathematics

Publications 1. Core decreasing functions (With Gord Sinnamon)
2024, Journal of Functional Analysis 287(4).

2. Abstract Hardy inequalities: The case p = 1 (Preprint)
2024, arXiv:2402.13335, submitted.

Talks 1. Hardy operators and monotonicity in general spaces (2023)
Spring school on analysis, Paseky nad Jizerou, Czech Republic
2. Monotonicity in measure spaces and Hardy inequalities (2023)
Twelfth Ohio river analysis meeting, Cincinnati, USA
3. Down spaces over a measure space with an ordered core (2022)
CMS Winter meeting, Toronto, Canada
4. Monotonicity in ordered measure spaces (2022)
Nafsa 12, Prague, Czech Republic

University Teaching Experience Instructor: Calculus 1000A
Experience: University of Western Ontario (Fall 2023)

Teaching assistant, various courses
University of Western Ontario (2019-2024)

Course instructor, various courses
National University of Colombia (2016-2017)

113


	Monotone Functions On General Measure Spaces
	Recommended Citation

	tmp.1724698788.pdf.fGL9f

