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Abstract

Natural Language Understanding (NLU) resides at the intersection of artificial intelligence, lin-
guistics, and computer science, with the goal of empoweringmachines to comprehend and inter-
pret human languages in a way that is both significant and contextually pertinent. The intrinsic
complexity of human language, marked by its subtleties, cultural variances, and dependence on
context, poses a significant challenge to NLU. The real world is a vast repository of knowledge
that encompasses not only facts but also complex relationships, dynamic concepts, and cultural
subtleties. This external knowledge represents the context that is often implicitly assumed in
human communication. For machines to fully capture the nuances of language, access to this
wide array of external knowledge is essential. By incorporating this knowledge, NLU systems
can transcend the basic syntax and semantics of text, facilitating a deeper understanding that
resonates with human cognition and perception. In this dissertation, to bridge the gap between
external knowledge and NLU systems, I investigate knowledge-grounded techniques aimed at
enhancing the capabilities of NLU systems, with a specific focus on their application in extreme
multi-label text classification (XMTC) within the biomedical and clinical literature domains.

This thesis makes three contributions to the integration of external knowledge into NLU
systems. Firstly, it delves into the incorporation of knowledge within the attention component
of a multi-label deep learning framework. This novel approach employs a dynamic knowledge-
enhanced mask attention mechanism that merges external knowledge with label features to
dynamically construct an attention mask for each biomedical article. This method effectively
narrows down the candidate label set, thereby enhancing classification performance. Secondly,
I introduce a retrieve and re-rank framework specifically designed for XMTC tasks, where
external knowledge is integrated at the retrieval stage through the exploration of the correlation
between labels and knowledge. This strategy refines the selection process of candidate labels,
thus improving the indexing accuracy and efficiency. Lastly, external knowledge is integrated
at the re-ranking stage by infusing label-centric knowledge into the ranker through zero-shot
contrastive learning. This innovative approach enables the model to successfully predict unseen
labels, optimizing the efficiency of the XMTC task.

Keywords: Natural Language Processing, Knowledge-grounded Natural Language Under-
standing, Multi-label Text Classification, MeSH Indexing, ICD Classification
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Summary for Lay Audience

Natural Language Understanding (NLU) stands at the crossroads of artificial intelligence, lin-
guistics, and computer science, aiming to enable machines to grasp and interpret human lan-
guage in a meaningful and context-aware manner. Human language, with its intricate nuances,
cultural diversity, and context-dependency, presents a formidable challenge to NLU. The real
world is a treasure trove of knowledge, filled not just with facts, but with complex relationships,
evolving ideas, and subtle cultural nuances. This external knowledge provides the contextual
backdrop often taken for granted in human conversations. For machines to truly understand the
subtleties of language, they must tap into this vast expanse of external knowledge. Integrating
this knowledge allows NLU systems to move beyond mere the structure and meaning of words
and sentences, enabling a richer understanding akin to human cognition and perception.

In this thesis, I aim to enhance NLU tasks by weaving external knowledge into the fab-
ric of the systems, particularly focusing on extreme multi-label text classification (XMTC) in
biomedical and clinical texts. I explore two key questions: “What external knowledge should
be considered?” and “How can external knowledge be integrated?” For XMTC tasks in par-
ticular, the choice of external knowledge is crucial for providing the necessary context that
aids in accurately categorizing texts with multiple labels. To tackle the first question, I ex-
plore a diverse array of external knowledge sources, such as metadata, medical ontologies, and
hierarchical label information. The second question focuses on the strategies for effectively
incorporating the selected external knowledge into NLU models. This involves exploring var-
ious approaches such as attention mechanisms that allow models to focus on relevant parts
of the external knowledge in relation to the text being processed, graph and statistical meth-
ods for mapping relationships between concepts, and embedding techniques for the encoding
and incorporation of knowledge into the learning process of models. By thoroughly exploring
these questions, the thesis aims to provide a comprehensive framework for leveraging external
knowledge in NLU tasks.
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Chapter 1

Introduction

The wealth of knowledge data available in the real world is extensive and pervasive, offering
valuable external resources for augmenting natural language understanding (NLU) tasks [116,
163]. Recent developments in the field of NLU have generated significant interest in the in-
corporation of external knowledge to enable seamless interaction between the internal input
texts and external resources. Knowledge-grounded natural language understanding with the
objective of enhancing the informativeness and specificity of understanding the semantics of
natural language through the utilization of external knowledge resources has gained significant
attention as a promising solution to mitigate the common-sense, general-domain and domain-
specific knowledge limitations encountered in natural language understanding tasks [124]. In
this dissertation, our research is focused on pinpointing suitable knowledge sources and for-
mulating effective strategies to incorporate external knowledge into various components of
models.

1.1 Motivation

Why is external knowledge important? Natural Language Understanding (NLU) stands at
the confluence of artificial intelligence, linguistics, and computer science, aiming to enable
machines to understand and interpret human languages in a manner that is both meaningful
and contextually relevant. The inherent complexity of human language, characterized by its
nuances, cultural variations, and contextual dependencies, presents a formidable challenge for
NLU [68]. The real world is a vast reservoir of knowledge encompassing not just facts, but also
intricate relationships, evolving concepts, and cultural nuances. This external knowledge em-
bodies the context that human language often implicitly assumes. For algorithms to fully grasp
the subtleties of language, it must have access to this broad spectrum of external knowledge.
Integrating such knowledge allows the NLU systems to go beyond mere syntax and seman-

1



Chapter 1. Introduction 2

tics of text, fostering a deeper comprehension that aligns with how humans think and perceive
the world. This enriched understanding includes but not limited to recognizing emotions, in-
tentions, and context within conversations, as well as grasping abstract concepts and subtle
differences in culture, making interactions with machines more intuitive and human-like.

The current landscape of NLU systems, especially within the realm of extreme multi-label
text classification (XMTC), reveals a significant gap in the integration of external knowledge.
Current models predominantly concentrate on analyzing the text itself, often neglecting the
rich reservoir of external knowledge that can profoundly enhance their comprehension and
interpretative capabilities [21]. This oversight is particularly critical inXMTC,where the ability
to accurately assign multiple relevant labels from a vast set depends not only on the textual
content but also on a deep understanding of context, semantics, and the relationships between
labels and the real world. The reliance solely on textual data limits the models’ ability to grasp
the full spectrum of human language, missing out on the contextual cues and broader knowledge
that humans implicitly use for understanding and classification. Furthermore, in XMTC, the
text often contains references to concepts, entities, and relationships that are deeply embedded
in a specific knowledge domain. Without access to external knowledge, an NLU system may
struggle to accurately interpret the text and assign appropriate labels, especially when faced
with rare, nuanced, or emerging topics. By connecting NLU systems with external knowledge
bases, we can significantly enhance their ability to comprehend and categorize text according to
a vast array of specialized labels. This integration not only improves the accuracy and relevance
of classification but also empowers the systems to adapt to new developments and trends within
a domain, mirroring the dynamic nature of human knowledge and understanding.

1.2 Research Questions

In the context of XMTC, where the objective is to assign multiple relevant labels from an
extensive set to a given text, external knowledge is particularly crucial. The challenge in XMTC
tasks stems from the vastness and specificity of the label space, which often includes labels that
are rarely seen or are highly specialized within a particular domain [128], such as biomedical
literature. External knowledge can bridge the gap between the text and its potential labels by
providing additional context, helping to disambiguate meanings, and revealing relationships
between concepts that are not explicitly stated in the text. For example, medical ontologies,
such as International Classification of Diseases (ICD) and Medical Subject Headings (MeSH),
can offer insights into the hierarchical and associative relationships between various medical
terms and concepts, thereby aiding in the accurate classification of clinical texts into relevant
categories. This integration of external knowledge enables models to make more informed and
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nuanced decisions, significantly enhancing their performance on XMTC tasks by leveraging a
deeper understanding of the subject matter.

In this dissertation, our objective is to narrow the gap between external knowledge and NLU
systems by addressing two pivotal research questions:

• What external knowledge should be considered?

• How can external knowledge be integrated?

What external knowledge should be considered? When determining what external knowl-
edge should be considered for enhancing NLU systems, the specificity of the task at hand guides
the selection process. In this dissertation, we manually curated useful and relevant knowledge
from the expansive real-world knowledge base to augment the NLU system. For instance, in
classification of MeSH terms, valuable external knowledge includes metadata such as journal
information, which provides insights into the article’s scope and audience, as well as similar
articles that offer context and benchmarking for understanding and categorizing the content.
Additionally, label hierarchical information is crucial as it helps in understanding the struc-
tured relationships between various MeSH terms and concepts, thereby enabling more accurate
classification. In the context of ICD coding, different types of external knowledge are perti-
nent; Diagnosis-Related Group (DRG) and Current Procedural Terminology (CPT) codes offer
a standardized classification system for medical procedures that can enhance the model’s abil-
ity to correlate clinical narratives with the appropriate codes. Furthermore, drug prescriptions
provide vital clues about the patient’s condition, assisting in the precise coding of diagnoses.
These examples illustrate the importance of tailoring the selection of external knowledge to
the specific requirements of the task, ensuring that NLU systems are provided with the most
relevant and contextually rich information to improve their performance.

How can external knowledge be integrated? In this dissertation, we present three innova-
tive methods for integrating external knowledge into various components of the NLU system,
as shown in Figure 1.1. The first method (Chapter 3) explores the integration of knowledge
within the attention mechanism of a multi-label deep learning framework. This approach uti-
lizes a dynamic knowledge-enhanced mask attention mechanism, combining external knowl-
edge with label features to dynamically generate an attention mask for each biomedical article.
This technique effectively reduces the size of the candidate label set, significantly improving
classification performance. Secondly, we introduce a “retrieve and re-rank” framework tai-
lored for XMTC tasks (Chapter 4). In this framework, external knowledge is integrated at the
retrieval stage by examining the correlation between labels and knowledge, refining the selec-
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tion of candidate labels and thereby enhancing indexing accuracy and efficiency. Lastly, at the
re-ranking stage, external knowledge is incorporated by embedding label-centric knowledge
into the ranking process through zero-shot contrastive learning (Chapter 5). This cutting-edge
strategy allows the model to accurately predict unseen labels, thereby enhancing the efficiency
of the XMTC task.

Knowledge
Multi-label Ranking

(retrieve and re-rank) 

Multi-label Classification
(Deep Learning)

Grounding knowledge in attention mechanism
(Chapter 3)

Grounding knowledge in re-ranking stage
(Chapter 5)

Grounding knowledge in retrieval stage
(Chapter 4)

Figure 1.1: The main contributions of this thesis. Chapter 3 introduces a method on grounding
knowledge in attention mechanism; Chapter 4 explores a method on grounding knowledge in
retrieval stage; Chapter 5 studies a method on grounding knowledge in re-ranking stage.

1.3 Structure of This Dissertation

The aim of this dissertation is to effectively integrate external knowledge in natural language
understanding. The rest of this dissertation is structured as follows:

• Chapter 2: In this chapter, a detailed survey of recent advancements in natural language
understanding is presented, with a special interest on the areas of multi-label text classi-
fication (MLTC) and extreme multi-label text classification (XMTC). This dissertation
focuses particularly on two pivotal XMTC tasks: Medical Subject Headings (MeSH)
indexing and International Classification of Diseases (ICD) coding. We start with pre-
senting the foundational introduction to these two tasks and review current solutions.
Then the discussion extends to potential future directions for research and application in
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both tasks. We then provide an in-depth examination of evaluation metrics used in both
tasks.

• Chapter 3: In this chapter, the focus is on integrating external knowledge into the
attention mechanism of a multi-label biomedical document classification model. By
grounding external knowledge within the attention layer, this approach aims to enhance
the model’s ability to discern relevant features from biomedical texts, thereby improving
classification performance across a wide array of labels. This methodology involves con-
structing an attention mask derived from external knowledge sources, which guides the
model’s focus towards the most informative parts of the text for each label and reduces
the number of candidate labels.

• Chapter 4: In this chapter, the focus is on formulating the multi-label classification
challenge, particularly within the context of medical coding, into a ranking problem.
This innovative approach addresses the inherent complexity of medical coding, which
involves assigning multiple relevant ICD codes to medical documents. The methodology
grounds external knowledge at the retrieval stage to efficiently narrow down the extensive
set of potential ICD codes to a more manageable subset of candidate labels, thereby
enhancing the model’s performance.

• Chapter 5: In this chapter, the exploration centers on an innovative approach within
contrastive learning, especially under a zero-shot setting, where the task involves learn-
ing representations that can generalize to unseen labels or categories. The key to this
method lies in the strategic incorporation of external knowledge during the positive ex-
ample generation step, which serves to enhance the association between labels and text.
Specifically, label-centric knowledge is leveraged to reinforce the relationship between
the textual content and its corresponding labels while also efficiently narrowing down
the vast pool of potential candidate labels to those most relevant.

• Chapter 6: In this chapter, we conclude this dissertation by summarizing our main
contributions and outlining the potential areas for future research.

1.4 Published and Under Review Work

Several chapters of this dissertation have previously appeared in peer-reviewed publications or
currently under review:

• Chapter 3: XindiWang, RobertMercer, and FrankRudzicz. 2022. KenMeSH:Knowledge-
enhanced End-to-end Biomedical Text Labelling. In Proceedings of the 60th Annual
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Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2941–2951, Dublin, Ireland. Association for Computational Linguistics. (ACL
2022) [117]

• Chapter 4: Xindi Wang, Robert E. Mercer, Frank Rudzicz. 2024. Multi-stage Retrieve
and Re-rank Model for Automatic Medical Coding Recommendation. In Proceedings of
the 2024Conference of the North AmericanChapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Mexico
City, Mexico. Association for Computational Linguistics. (NAACL 2024) [118]

• Chapter 5: Xindi Wang, Robert E. Mercer, Frank Rudzicz. Label-Centric Curriculum
Contrastive Learning for Zero-shot Extreme Multi-label Biomedical Document Classifi-
cation. (under review)

Additionally, the following peer-reviewed publications are not included in this thesis but
were published during my doctorate:

• XindiWang, Robert E.Mercer, and Frank Rudzicz. 2022. MeSHup: Corpus for Full Text
Biomedical Document Indexing. In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 5473–5483, Marseille, France. European Language
Resources Association. (LREC 2022) [120]

• Xindi Wang, Yufei Wang, Can Xu, Xiubo Geng, Chongyang Tao, Bowen Zhang, Frank
Rudzicz, Robert E. Mercer, Daxin Jiang. 2023. Investigating the Learning Behaviour
of In-context Learning: A Comparison with Supervised Learning. In Proceedings of the
26th European Conference on Artificial Intelligence. doi:10.3233/FAIA230559. (ECAI
2023) [123]

• Xindi Wang, Robert E. Mercer, Frank Rudzicz. 2024. Auxiliary Knowledge-Induced
Learning for Automatic Multi-Label Medical Document Classification. In Proceedings
of the 2024 Joint International Conference on Computational Linguistics, Language Re-
sources and Evaluation. pages 2006–2016, Torino, Italia, May 2024. ELRA and ICCL.
(LREC-COLING 2024) [121]

• Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu Ren, Mehdi Rezagholizadeh, and
Armaghan Eshaghi. Beyond the Limits: A Survey of Techniques to Extend the Context
Length in Large Language Models. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence Survey Track. (IJCAI 2024) [122]

Lastly, the following paper is currently under review:
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• Sudipta Roy, Xindi Wang, Robert E. Mercer, Frank Rudzicz. Graph-tree Fusion Model
with Bidirectional Information Propagation for Long Document Classification.



Chapter 2

Natural Language Understanding

In this chapter, we conduct a comprehensive survey of the recent literature on natural language
understanding, specifically targeting the domain of multi-label text classification (MLTC) and
extreme multi-label text classification (XMTC). This dissertation focuses particularly on two
XMTC tasks that are central to this thesis: MeSH indexing and ICD coding. We present a
foundational introduction to these tasks, review current solutions, and discuss potential future
directions for research and application in both areas. Finally, we introduce and elaborate on
the evaluation metrics that have been employed to assess the performance of models in both
MeSH indexing and ICD coding tasks, providing insight into the standards and benchmarks for
success in these fields.

2.1 Introduction

Natural LanguageUnderstanding (NLU) focuses on classifying text and deeper interpretation of
semantics. It involves understanding semantics, resolving ambiguities, and considering prag-
matics, which encompasses the context and intentions behind language use. This process is
not only pivotal for organizing information but also enhances the efficiency of information
retrieval, sentiment analysis, and recommendation systems. It includes various applications,
such as spam detection, sentiment analysis, topic labeling, and more. Text classification in-
volves assigning one or more labels or categories to a text, based on its content. It is mostly a
supervised learning approach where a model is trained on a dataset containing texts with pre-
assigned labels. The model learns to predict the category of unseen texts based on this training.
Three distinct categories of classification tasks are identified within the domain of NLP: binary
classification, multi-class classification, and multi-label classification. Binary classification
delineates elements into one of two possible categories. In contrast, multi-class classification
assigns elements to one of three or more distinct classes. Lastly, multi-label classification in-

8
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Figure 2.1: An overview of different types of classification tasks in machine learning. [59].
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volves categorizing elements into a collection comprising more than one target labels. Figure
2.1 provides an overview of the aforementioned three types of classification tasks.

2.1.1 Multi-label Text Classification

In this thesis, we are interested in multi-label text classification (MLTC) which allows multiple
labels to be assigned to a single piece of text. This approach is more aligned with the complex-
ities of real-world data, such as information retrieval [43, 139] and tag recommendation [58],
where a text may simultaneously belong to multiple categories. Over the past few decades,
a significant number of multi-label learning algorithms have been developed, which can be
sorted into three main categories, namely, problem transformation, algorithm adaptation, and
deep learning methods. [15, 109, 128].

• Problem transformation methods address MLTC by converting the multi-label prob-
lem into One-Vs-One-like and One-Vs-All-like methods that are suitable for single-
target machine learning approaches. This transformation facilitates the construction of
one or more models targeting individual labels. The three most well-known problem
transformation methods in the context of multi-label classification are Binary Relevance
(BR) [112], Label Power-Set (LP) [16], and Classifier Chains (CC) [97]. During the pre-
diction phase, all of these models are employed simultaneously to make predictions for
a given test sample.

• Algorithm adaptation methods, on the other hand, modify both the training and predic-
tion stages of traditional single-target methods to manage multiple labels concurrently.
This includes altering decision-making heuristics in decision trees, using lazy learning
that adapts k-nearest neighbour techniques to deal with multi-label data, implementing
specialized thresholding techniques in Support Vector Machines (SVMs) and involving
information theory to solve the multi-label problem [157]. These adaptations are de-
signed to navigate the inter-dependencies among labels, with categorization based on the
adapted machine learning paradigm.

• Deep learning (DL)methods have significantly enriched the landscape ofMLTC.DL ar-
chitectures are crucial for generating embedding representations that capture the essence
of both input features and the output space, leveraging the robust learning capabilities of
models across a wide range of domains, including images and text. The most commonly
used deep learning methods in MLTC include deep neural networks (DNNs), convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs), autoencoders, trans-
formers, and various hybrid models that combine elements of these architectures [109].
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These deep learning approaches play a vital role in effectively managing the complex-
ities associated with MLTC tasks, such as addressing label dependencies and capturing
the intricate relationships between labels and text features.

The Binary Relevance (BR) method addresses the multi-label problem by decomposing it
into multiple independent binary classification problems [154]. For each label, a separate bi-
nary classifier is trained and the outputs of these classifiers are then aggregated to form the final
set of labels for each test instance. While BR is straightforward to implement and understand,
its major drawback is the oversight of potential relationships among labels, such as dependen-
cies, co-occurrences, and correlations [42, 85, 108]. To overcome this limitation, the Classifier
Chains (CC) method was developed [23, 97, 103]. CC constructs a sequence of binary clas-
sifiers linked in a chain, where the output of each classifier is included as a feature for the
subsequent classifiers in the sequence. This sequential approach allows CC to capture label de-
pendencies by using the predictions of previous classifiers as additional input, thus potentially
improving prediction accuracy by considering label correlations. The Label Power-Set (LP)
method takes a different approach by treating each unique combination of labels encountered
in the training set as a single class in a multi-class classification problem [51, 63]. This ap-
proach directly accounts for label dependencies by considering the entire label set as a whole.
After training, the predicted multi-class outputs are converted back into label sets. Both CC
and LP aim to exploit the interdependencies among labels to enhance multi-label learning per-
formance. However, both CC and LP face challenges when scaling to problems with a large
number of labels. CC can become computationally intensive due to the sequential nature of its
classifiers, while LP may suffer from a combinatorial explosion in the number of classes, lead-
ing to sparse classes and high computational costs. Additionally, both methods may struggle to
capture high-order label correlations effectively, highlighting the need for more sophisticated
approaches in complex multi-label classification scenarios [109].

TheMulti-Label Decision Tree (ML-DT)method adapts traditional decision tree techniques
to accommodate multi-label data [24]. This approach involves using an information gain cri-
terion that is specifically designed around the concept of multi-label entropy. The criterion is
employed to recursively construct the decision tree, selecting the features that most effectively
reduce uncertainty regarding the label assignments at each node. By extending the decision tree
framework to handle multiple labels simultaneously, ML-DT is able to leverage the inherent
hierarchical structure and decision-making process of decision trees to manage the complexi-
ties and dependencies inherent in multi-label datasets. The Multi-Label k-Nearest Neighbor
(ML-kNN) method is an adaptation of the traditional k-nearest neighbor (kNN) technique,
specifically designed to handle multi-label data [156]. It employs the maximum a posteriori
(MAP) rule for making predictions. This approach involves considering the labeling informa-



Chapter 2. Natural Language Understanding 12

tion present within the nearest neighbors of a given test instance. By analyzing the labels of the𝑘 closest training instances, ML-kNN leverages the collective label distribution to predict the
set of labels for the test instance, thereby integrating the inherent label correlations observed in
the neighbor labels into its prediction process. The Ranking Support Vector Machine (Rank-
SVM) method adapts the maximum margin strategy, which is foundational to support vector
machines (SVMs), to tackle multi-label data [36]. In this approach, a set of linear classifiers is
developed, each optimized to minimize the empirical ranking loss associated with the ordering
of labels. Rank-SVM aims to accurately rank the relevance of labels for each instance, ensuring
that more relevant labels are given higher priority over less relevant ones. To handle nonlin-
ear relationships within the data, Rank-SVM employs kernel tricks, a technique that allows the
linear classifiers to operate in a transformed feature space where nonlinear patterns can be lin-
early separated. The Collective Multi-Label Classifier (CML) employs the maximum entropy
principle to address multi-label data challenges [40]. In this method, correlations among labels
are incorporated as constraints within the model, ensuring that the resulting probability distri-
bution over the label sets adheres to these predefined relationships. By doing so, CML aims to
produce the most uniform distribution possible under the given constraints, thus reflecting the
principle of maximum entropy.

DNNs have been utilized to tackle MLTC challenges. One straightforward strategy in-
volves decomposing the MLTC problem into multiple binary classification problems, one for
each label, known as the BR method, which applies individual DNNs to predict the presence or
absence of each label independently. While this method benefits from the simplicity of binary
classification and the powerful feature extraction capabilities of DNNs, it does not inherently
capture the correlations and dependencies between labels, a key aspect of many MLTC prob-
lems. Backpropagation for Multi-label Learning (BP-MLL) addresses the intricacies of label
dependencies within MLTC problems by formulating them through a neural network frame-
work with multiple output nodes, each corresponding to a distinct label [155]. This method
employs sigmoidal neurons within a network architecture featuring one hidden layer, along
with additional biases from both the input and hidden layers. It is the first method that uses
DNNs to solve MLTC, which considers label correlations within its framework, in contrast
to traditional neural network models that typically treat each label independently. Involving
CNNs and RNNs in MLTC is mostly from an architectural perspective, with a significant focus
on the loss layer. To formulate effective multi-label losses, research efforts have primarily con-
centrated on refining the binary cross-entropy (BCE) loss function [20, 78, 131]. Transformers
and autoencoders have emerged as some of the most successful deep learning approaches for
MLTC in recent years [1, 76]. MLTC models that utilize transformer architectures often ex-
hibit superior performance compared to the RNN- and CNN-based methods. This advantage is
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primarily due to transformers’ ability to process entire sequences simultaneously and capture
long-range dependencies more effectively, thanks to their self-attention mechanism. Despite
their effectiveness, transformer models come with their own set of challenges. They typically
require a substantial number of parameters and a more complex network structure. This com-
plexity can lead to increased computational resource demands and longer training times, which
might limit their applicability in resource-constrained environments or for tasks requiring rapid
model deployment.

Despite the prevalence and success of classical multi-label learning, various methods often
presuppose a small label set, an assumption that proves overly restrictive in real-world applica-
tions, where scenarios frequently involve complex systems with an extremely large number of
labels. For instance, in the context of web page categorization, Wikipedia amasses millions of
labels (categories) necessitating the annotation of new web pages with relevant labels from this
extensive candidate set [90]. Similarly, in the domain of recommender systems, with millions
of items available, the objective is to provide personalized recommendations from this large
array of candidate items [82]. In scenarios like these, traditional multi-label learning methods
become impractical due to the significant computational demands they impose. To address this
challenge, extreme multi-label learning has emerged as a significant area of focus in recent
years.

2.1.2 Extreme Multi-label Text Classification

Extreme Multi-label Text Classification (XMTC) is a specialized task aimed at assigning rel-
evant labels to objects from an exceptionally large set of potential labels. This task addresses
the challenge of navigating vast label spaces, ensuring that each object is accurately associ-
ated with all applicable labels from a potentially extensive pool. This complexity requires
advanced strategies and models to efficiently and accurately manage the high dimensionality
and intricacy of the label space involved. Recently, XMTC has found widespread application
in real-world scenarios, including recommender systems and search engines [12, 38, 84]. This
problem is particularly challenging due to the vast number of possible labels, which can be
in the tens of thousands or more [29], making traditional multi-label classification approaches
computationally expensive or infeasible. The task of XMTC is defined as follows. Given a set
of documents 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} and their associated label set 𝒴 = {𝑦1, 𝑦2, … , 𝑦𝐿}, where𝑁 is the number of documents, and 𝐿 is the total number of labels. Multi-label classification
studies the learning function 𝑓 ∶ 𝒳 → 2𝒴 using the training set 𝒟 = (𝑥𝑖, 𝑌𝑖), where 𝑌𝑖 ∈ 𝒴
and 𝑌𝑖 is the set of golden truth labels for document 𝑥𝑖.

XMTC presents numerous challenges primarily due to the vast scale of the label space and
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the sparsity of label assignments. Firstly, the extensive dimensionality of the label space, poten-
tially comprising thousands or more distinct labels, significantly increases the computational
complexity involved in the training and inference processes. This expansive set of labels not
only requires considerable memory resources but also significantly increases the training time,
making the application of conventional classification algorithms impractical. Secondly, the dis-
tribution of labels is often highly imbalanced, with a long tail of infrequently occurring labels.
This sparsity in label assignments results in a scarcity of positive examples for numerous labels,
thereby complicating the development of a generalized model that performs effectively across
the entire spectrum of labels. Additionally, the issue of label co-occurrence, where certain labels
frequently appear together while others are mutually exclusive, introduces complexity in cap-
turing and leveraging these relationships effectively within a predictive model. Furthermore,
the high-dimensional feature space typical of text data, combined with the extreme number of
labels, poses significant challenges in terms of feature selection and dimensionality reduction,
necessitating the development of specialized techniques that can handle such scale without
losing predictive performance. Lastly, evaluating the performance of XMTC models is not
straightforward due to the multi-label nature of the problem; traditional evaluation metrics may
not adequately capture the nuances of the task, requiring the adaptation or development of new
metrics, such as propensity-scored metrics that focus more on the imbalanced label space and
can more accurately reflect the quality of the model’s predictions. Therefore, studying XMTC
is vital.

In addressing the XMTC problem, most methodologies can be categorized into four main
branches based on their approach:

• Binary Relevance (BR) treats each label independently, converting the XMTC problem
into multiple binary classification tasks [5]. For each label, a separate classifier is trained
to decide whether the label should be assigned to an instance or not. While straightfor-
ward and easy to implement, BR methods often overlook the potential correlations and
dependencies between labels, which can be critical in XMTC settings.

• Embedding-Based Method approaches aim to transform the high-dimensional label
space into a lower-dimensional space, where the relationships between labels can bemore
easily modeled. These methods often use techniques such as dimensionality reduction or
learn dense representations of the labels and instances.

• Tree-Based Method approaches leverage hierarchical data structures to organize the la-
bel space, enabling efficient retrieval of relevant labels for an instance. These methods
can take advantage of the inherent structure in the label space, such as grouping similar
labels together, to improve classification performance.
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• DeepLearning has become an increasingly popular approach to harness the full potential
of label correlations in XMTC [74, 150]. Deep learning models, characterized by their
ability to learn hierarchical representations of data, are particularly well-suited for XMTC
tasks where understanding complex patterns and relationships within the data is crucial
for accurate label prediction.

Figure 2.2: Domain relevance of different types of XMTC methods [128].

Given that the methodologies for XMTC classification often intersect and evolve from one
another, Figure 2.2 shows the domain relevance of different types of methods.

DiSMEC [6] utilizes a doubly parallelized architecture alongside explicit model sparsity in-
duction to enhance performance and efficiency in XMTC tasks. This architecture is designed to
leverage parallel computing both across multiple machines (distributed computing) and within
a single machine (multi-threading), thereby significantly speeding up the training and predic-
tion processes. ProXML [7] poses a robust optimization for tail labels by using distribution
shift.

LEML [147] is one of the earliest works that propose leveraging low-dimensional projection
to tackle the complexities of multi-label learning. By assuming a low-rank structure, LEML
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aims to diminish the effective number of labels by projecting the high-dimensional label vectors
onto a lower-dimensional linear subspace. REML [137] further improves LEML by suppress-
ing the influence of tail labels. It proposes a decomposition of the label matrix into two distinct
components: a low-rank matrix that captures the correlations among the more frequently oc-
curring labels, and a sparse matrix specifically designed to encapsulate the influence of tail
labels. While linear embedding methods offer a way to reduce dimensionality in multi-label
classification, they typically suffer from a limited expressive capability due to their reliance
on linear transformations. To overcome this limitation, SLEEC [13] introduces a novel ap-
proach by learning local distance-preserving embeddings, specifically designed to improve the
prediction of tail labels. SLEEC deviates from the traditional low-rank assumption underlying
many embedding methods. Instead, it focuses on preserving pairwise distances between only
the nearest label vectors. This approach allows SLEEC to maintain the crucial local structure of
the label space, enabling more accurate representation and prediction of labels, especially those
that appear less frequently but are critical for the overall performance of the classification sys-
tem. AnnexML [107] then introduces a novel graph embedding method specifically designed
for XMTC. It constructs a kNN graph of label vectors, creating a network where each label is
connected to its 𝑘 closest neighbors based on some similarity measure.

FastXML [96] adopts a rank-based loss function as a key part of its strategy to improve
performance in XMTC tasks. The rank-based loss specifically penalizes instances where this
ordering is incorrect, encouraging the model to learn a ranking that reflects the true relevance of
each label to the input data. PFastReXML [51] further optimizes a propensity-scored 𝑛𝐷𝐶𝐺@𝑘
with the goal of enhancing the model’s performance, particularly for tail labels in XMTC tasks.
By prioritizing the correct prediction of tail labels over head labels, PFastReXML aims to ad-
dress one of the key challenges in XMTC: the imbalance between frequently and infrequently
occurring labels. Parabel [95] is designed with the goal of annotating each data point with
the most relevant subset of labels from an extremely large set of possible labels. It employs a
tree-based approach to organize the label space into a hierarchical structure, allowing for rapid
navigation and prediction. This hierarchical partitioning of the label space enables Parabel to
approximate the complex problem of XMTCwith a series of simpler, binary classification tasks
at each node of the tree. CRAFTML [105] introduces a novel algorithm that is based on the
random forest paradigm, notable for its exceptionally rapid partitioning approach. Unlike PFas-
tReXML, CRAFTML utilizes random projections in place of random selections, which aims
to preserve more information during the process of reducing dimensionality in both features
and labels. Furthermore, CRAFTML introduces a low-complexity splitting strategy that sig-
nificantly streamlines the model training process, which avoids the computationally intensive
task of solving multi-objective optimization problems at every decision node.
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The XML-CNNmodel, as introduced by Liu et al. [74], employs a one-dimensional convo-
lutional network that processes text data linearly, mirroring the sequential nature of text. Atten-
tionXML [146] integrates GloVe embeddings [93] and the attention mechanism into the realm
of XMTC tasks to harness semantic information directly from raw text data using LSTM. It em-
ploys a strategy to accelerate the training process by constructing multiple probabilistic label
trees, which effectively enhances the model’s ability to deal with the complexities of XMTC by
ensuring that themost informative features are utilized for label assignment. Bonsai [60] further
introduces a generalized approach to label representation in XMTC tasks which focuses on the
strategic partitioning of labels within the representation space to facilitate the learning of shal-
low trees. GLaS [46] poses a new regularizer for embedding-based neural network approaches
which uses a natural generalization from the graph Laplacian and spread-out regularizers to ad-
dress the drawback using a separate regularizer in the XMTC tasks. APLC-XLNet [142] incor-
porates XLNet [141] to effectively capture the context and semantic meaning of documents for
XMTC tasks. Besides, the Adaptive Probabilistic Label Clusters (APLC) method is proposed
as an innovative approach to approximate the cross-entropy loss in XMTC. This technique cap-
italizes on the inherent unbalanced distribution of labels to form clusters that aim to explicitly
reduce computational time. DeepXML [160] introduces a sophisticated approach to XMTC by
constructing and utilizing an explicit label graph to explore the label space thoroughly. This
method goes beyond traditional embedding techniques by creating a graphical representation
where labels are interconnected based on their relationships and similarities, thereby forming a
network that captures the complex structure of the label space. SiameseXML [27] capitalizes
on the unique strengths of siamese networks to address the challenges inherent in XMTC. In
SiameseXML, the inner product of instance and label features serves as a probability estimate
indicating the likelihood of an instance being associated with a particular label. Furthermore,
the use of label features within the siamese network structure inherently reduces the number
of parameters and, consequently, the training costs of the model. XR-Transformer [153] in-
troduces a novel approach to enhance the efficiency of XMTC by leveraging the power of
transformer models, which are known for their exceptional ability to capture complex depen-
dencies and contextual information in data. The key innovation of XR-Transformer lies in its
strategy to recursively fine-tune transformer models on a series of multi-resolution objectives
that are intricately related to the original XMTC objective function.

In this thesis, our focus is specifically on two XMTC tasks: Medical Subject Heading
(MeSH) Indexing and the classification of the International Classification of Diseases (ICDs).
We propose three knowledge integration methods that use external knowledge to assist with
XMTC tasks. Thesemethods intersect with tree-based approaches, embedding-based approaches,
and deep learning approaches.
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This chapter provides a comprehensive literature review for these tasks, detailing the state-
of-the-art methods, challenges, and advancements in each area. Following the literature review,
we discuss the various evaluation metrics employed in these two tasks, highlighting their signif-
icance and application in assessing the performance of XMTC models in the medical domain.

2.2 Automatic Medical Subject Heading Indexing

Medical Subject Heading (MeSH) Indexing, a process that annotates documents with concepts
from established semantic taxonomies and ontologies, is important for biomedical text classi-
fication and information retrieval. In this section, we present a comprehensive review of the
current studies on MeSH indexing and prospects for further research.

2.2.1 Introduction

Figure 2.3: Root MeSH terms in the MeSH hierarchy.
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MEDLINE1, as of February 2024, includes 31 million references to journal articles in the
life sciences with a focus on biomedicine. It is the premier bibliographic database of the Na-
tional Library of Medicine (NLM)2, featuring textual (title and abstract) and bibliographic in-
formation from academic journals across a wide range of life sciences and biomedicine disci-
plines. PubMed3 is a free search engine offering access to the MEDLINE database. In addition
to MEDLINE, PubMed also provides access to the PubMed Central (PMC)4 repository, which
archives open-access, full-text scholarly articles in the fields of biomedical and life sciences.
All records in the MEDLINE database are indexed with Medical Subject Headings (MeSH)5

– a controlled and hierarchically-organized vocabulary produced and maintained by the NLM.
As of 2021, there are 29,369 main MeSH headings, and each citation is indexed with 13 MeSH
terms on average. MeSH headings can be further qualified by 83 subheadings (also known as
qualifiers) and Supplementary Concept Records (SCRs) denote specific chemical substances in
the MEDLINE records. Figure 2.3 shows the 16 root MeSH terms in the hierarchy, and Figure
2.4 shows an example of the MeSH hierarchy under “Anatomy”.

MeSH indexing is a critical process in the organization and retrieval of biomedical informa-
tion. This task involves assigning standardized terms from the MeSH controlled vocabulary to
biomedical literature, such as journal articles, to improve search efficiency and accuracy within
biomedical databases like PubMed. The MeSH thesaurus is a meticulously structured and hi-
erarchically organized vocabulary developed by NLM. It plays a crucial role in the indexing,
cataloging, and searching of biomedical and health-related information. MeSH encompasses
the subject headings used across various NLM databases, including MEDLINE/PubMed and
the NLM Catalog, ensuring a standardized approach to the classification and retrieval of vast
amounts of biomedical literature. This system facilitates efficient and precise searching by
providing a consistent set of terms for describing the content of articles, thereby enhancing the
accessibility and usability of biomedical information.

As of 2023, MEDLINE citations are indexed by human annotators [151] who review the full
text of each article to assign the most relevant MeSH labels. This manual annotation process
guarantees a high level of indexing quality. However, this procedure is inherently expensive.
The MEDLINE database has experienced a consistent and significant growth in the number
of citations added annually. For instance, in 2020 alone, 952,919 articles were incorporated,
averaging about 2,600 articles each day. The growing number of articles highlights the pressing
need for more efficient and scalable indexing solutions to accommodate the expanding body of

1https://www.nlm.nih.gov/medline/medline_overview.html
2https://www.nlm.nih.gov
3https://pubmed.ncbi.nlm.nih.gov/about/
4https://en.wikipedia.org/wiki/PubMed\_Central
5https://www.nlm.nih.gov/mesh/meshhome.html
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Figure 2.4: An example of the MeSH hierarchy.

literature. Figure 2.5 shows an example of an article on PubMed.

The MeSH indexing task poses challenges arising from two main fronts: the complexity of
the articles themselves and the intricacies of the MeSH labels.

From the perspective of the articles, the first major challenge is the complexity and di-
versity of biomedical language. Biomedical articles consist of a vast array of terminologies,
acronyms, and jargon that vary significantly across different subfields. This linguistic diversity
necessitates the use of sophisticated NLP techniques to accurately interpret nuanced differences
in meaning. Additionally, the rapid growth and large amount of biomedical literature present
another substantial challenge. With thousands of new articles published daily, indexing sys-
tems must be scalable and robust to process and categorize this burgeoning corpus efficiently.
Furthermore, biomedical articles can vary greatly in their structure and content, ranging from
research articles and reviews to case reports. This variability complicates the task of consis-
tently extracting relevant information for indexing purposes.
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Figure 2.5: An example of a PubMed article.

On the side of MeSH labels, several distinct challenges arise. The MeSH vocabulary is
hierarchical and structured, comprising a wide array of terms organized across different cate-
gories. Identifying the most relevant terms for an article requires not just an understanding of
this complex structure but also the ability to discern the semantic relationships between various
terms. The granularity and specificity of MeSH terms add another layer of difficulty. With
terms ranging from broad concepts to very specific phenomena, determining the appropriate
level of specificity for indexing an article is a nuanced task that can significantly influence the
indexing’s effectiveness. Moreover, the MeSH vocabulary undergoes annual updates to reflect
new knowledge and changes in the medical sciences. This dynamic nature mandates that index-
ing systems continuously adapt to accommodate new terms and exclude outdated ones, ensuring
the indexing remains both relevant and accurate. Additionally, the distribution of MeSH terms
exhibits a long-tailed pattern, with the frequency of different MeSH terms appearing in docu-
ments being notably imbalanced. Furthermore, the number of MeSH terms assigned to each
article varies significantly, ranging from more than 30 to fewer than 5.

The challenges from the articles and the MeSH labels are deeply interconnected, contribut-
ing to a complex ecosystem that indexing systems must navigate. The precision required to
understand the technical language of biomedical articles must align with the capability to ac-
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curately map this language to the structured and hierarchical MeSH labels. As the body of
biomedical literature and the MeSH vocabulary itself evolve, so too must the methodologies
employed for indexing. This necessitates the use of advanced machine learning and NLP tech-
niques capable of learning from and adapting to the intricacies of both the articles and theMeSH
labels, aiming to achieve accurate, efficient, and scalable MeSH indexing.

2.2.2 Current Solutions

To address theMeSH indexing taskmentioned above, the National Library ofMedicine (NLM),
part of the National Institutes of Health (NIH) in the United States, developed Medical Text
Indexer (MTI) [2] – software that automatically assists in the indexing process of biomedical
literature, including articles and documents in the MEDLINE database. MTI first generates
the candidate MeSH terms for given articles, and then ranks the candidates to provide the final
predictions. There are two modules in MTI, namely, MetaMap Indexing (MMI) and PubMed-
Related Citations (PRC) [70, 3].

• MetaMap is NLM-developed softwarewhich provides away ofmapping biomedical text
to concepts in the Unified Medical Language System (UMLS). MetaMap is widely used
in biomedical information extraction and retrieval applications, including its integration
into processes related to PubMed, a free search engine accessing primarily the MED-
LINE database of references and abstracts on life sciences and biomedical topics. The
key functionality of MetaMap is to identify and disambiguate biomedical terms found
in text, mapping them to UMLS concepts. This process enables a deeper understanding
of the text by highlighting the underlying biomedical concepts, which can include dis-
eases, symptoms, drugs, and procedures, among others. By recognizing these concepts,
MetaMap facilitates the indexing, retrieval, and analysis of biomedical literature. The
MMI process then recommends MeSH terms using the biomedical concepts discovered
by MetaMap.

• PubMed-Related Citations is a feature designed to enhance the discovery and relevance
of biomedical literature. This module leverages the indexing and conceptual mapping
capabilities ofMTI to identify and suggest articles that are related to a given text or article
within the PubMed database. When an article is processed throughMTI, the PRCmodule
uses a kNN algorithm to find and recommend other articles in the PubMed database that
share similar MeSH terms or concepts. This process is based on the principle that articles
tagged with similar or related MeSH terms are likely to cover related subject matter.

The two mentioned sets of MeSH terms extracted from the aforementioned modules combine
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the final MeSH recommendations from MTI.
Since 2013, BioASQ6, an EU-funded project, has been organizing challenges on automatic

MeSH indexing, offering opportunities for increased participation in the ongoing development
ofMeSH indexing systems [111]. Many effectiveMeSH indexing systems have been developed
since then, based on the machine learning techniques employed, these automatic methods can
be categorized into three main types:

• Binary Relevance methods handle multi-label tasks by breaking them down into multi-
ple independent binary classification problems. For each label in the dataset, a separate
binary classifier is trained to decide whether the label should be assigned to an instance
or not. This approach simplifies multi-label classification but does not account for la-
bel correlations, potentially limiting its effectiveness in capturing the full complexity of
multi-label data.

• Learning-to-Rank (LTR) methods focus on directly optimizing the ranking of labels
for each instance. Instead of treating labels independently or merely predicting label
presence, these methods aim to order labels in a way that reflects their relevance to the
instance. This approach is particularly useful when there’s a hierarchy or an order of
importance among labels for a given instance, optimizing the model to prioritize the
prediction of the most relevant labels first.

• Deep Learning methods leverage complex neural network architectures to learn from
data where each instance may have multiple labels. These methods automatically extract
features and capture the intricate relationships between labels and features through layers
of neurons, offering sophisticated approaches to handle the complexity of multi-label
data. Common deep learning models used in this context, such as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs) and Transformers, efficiently
address both the prediction and ranking of multiple labels simultaneously.

Tsoumakas et al. [113] propose a binary relevance method, which involves training a lin-
ear SVM classifier for each MeSH term independently. When evaluating a test citation, the
candidate MHs are ranked based on the prediction score from each individual MH classifier.

LTR has demonstrated its success in the field of information retrieval, notably in applica-
tions like web searching. In the context of MeSH indexing, LTR effectively integrates multiple
pieces of evidence derived from various text representations andmachine learningmodels. This
integration enhances overall performance, making LTR a powerful tool for improving the accu-
racy and relevance ofMeSH term assignments. MeSHLabeler [75], DeepMeSH [92] andMeSH

6http://bioasq.org
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Now [81] stand as three exemplar methods using LTR, each showcasing innovative approaches
to automatic MeSH indexing using advanced machine learning techniques. MeSHLabeler [75]
employs an LTR framework through a two-step strategy: initially predicting candidate MeSH
terms, followed by ranking these candidates to generate the final suggestions. It begins by
training an independent binary classifier for each MeSH term. Subsequently, it utilizes vari-
ous pieces of evidence, such as similar publications and term frequencies, to rank the candi-
date MeSH terms effectively. DeepMeSH [92] harnesses deep semantic information to tackle
large-scale MeSH indexing, addressing challenges on both the citation and MeSH sides. The
challenge associated with the citation side is addressed through a novel deep semantic repre-
sentation, D2V-TFIDF, which combines both sparse and dense semantic representations. This
innovative approach enhances the richness and accuracy of semantic understanding for each
citation. On the MeSH side, the challenge is addressed by adopting the LTR framework from
MeSHLabeler [75], which integrates various types of evidence generated from the new seman-
tic representation, effectively improving the precision and relevance of MeSH term selection.
By leveraging deep learning and sophisticated ranking mechanisms, DeepMeSH [92] signif-
icantly advances the capabilities in MeSH indexing. MeSH Now [81] utilizes an integrated
approach that initially employs multiple strategies to generate a consolidated list of candidate
MeSH terms for a target article. It then applies a novel LTR framework to order the candi-
date terms according to their relevance to the target article. In the final step, MeSH Now [81]
employs a post-processing module to select the highest-ranked MeSH terms, ensuring that the
terms chosen are the most pertinent to the article in question. This methodological framework
allows for a nuanced and effective selection of MeSH terms, improving the precision of article
indexing.

Deep learning constitutes a subset of machine learning techniques that utilize several lay-
ers of processing to learn hierarchical representations of data, capturing information at various
levels of abstraction [66]. Inspired by the rapid development of deep learning techniques, Rios
et al. [98] use CNNs to classify MeSH terms and Gargiulo et al. [39] further incorporate CNNs
between a word embeddings (WEs) stage and the dense layers to form the classification. Atten-
tionMeSH [54] introduces an innovative end-to-endmodel that combines deep learning with the
attention mechanism to indexMeSH terms in the biomedical texts efficiently. The utilization of
the attention mechanism allows the model to link specific textual evidence with corresponding
annotations, thereby offering word-level interpretability. Additionally, the model incorporates
a novel masking mechanism designed to improve both the accuracy and speed of the indexing
process, marking a significant advancement in the automated annotation of biomedical liter-
ature with MeSH terms. Similarly, MeSHProbeNet [138] introduces a streamlined approach
by training a unified classifier, as opposed to the conventional method of employing numer-



Chapter 2. Natural Language Understanding 25

ous independent classifiers. This enhancement not only boosts efficiency but also facilitates
simultaneous learning of the correlations between different MeSH terms. At its core, MeSH-
ProbNet is built upon a self-attentive deep neural network classifier framework, incorporating
three key components: a Bi-directional Recurrent Neural (bi-RNN) module, a Self-attentive
MeSH Probes module, and a Multi-view Neural Classifier module. The bi-RNN module is op-
timal for handling sequential text data; the RNN component, by transforming input text into an
embedding space, leverages word embeddings to capture semantic nuances inherent in the text.
This setup allows for the processing of biomedical articles by understanding and utilizing the
sequential flow of words and their semantic relationships. In the Self-attentive MeSH Probes
module, these probes process the hidden states generated by the RNN to transform each article
into a fixed-dimension feature matrix. This mechanism enables the model to focus on specific
parts of the text relevant to particularMeSH terms, enhancing the interpretability and specificity
of the model. Finally, a multi-view classifier serves as a unified multi-label classifier, which
integrates features extracted from the biomedical text, information about the publishing journal,
and the interrelations among different MeSH terms. This comprehensive approach ensures a
holistic consideration of all relevant factors in the classification process.

Research onMeSH indexing using full texts is notably limited due to restrictions on access-
ing complete text documents. Yepes et al. [143] conduct a study by randomly selecting 1,413
articles from the PMC Open Access Subset and utilizing summaries generated automatically
from these full texts as input for the Medical Text Indexer (MTI) to perform MeSH indexing.
Demner-Fushman et al. [31] collect 14,828 full-text articles from PMC Open Access Subset
and develop a rule-based string-matching algorithm to extract ‘check tags’, a special category
of MeSH terms that are used to describe the characteristics of the subjects in the articles. Wang
et al. [119] randomly select 257,590 full text articles from PMCOpen Access Subset. They pro-
pose a novel, deep learning-based multichannel TextCNN approach, which leverages the CNNs
for feature selection to identify and extract critical information from articles for indexing pur-
poses. This method goes beyond analyzing just the title and abstract; it incorporates figure
and table captions, as well as relevant paragraphs, into the indexing process to ensure a more
comprehensive understanding and representation of the content of each article. HGCN4MeSH
[148] uses the PMC dataset generated by Wang et al. [119]. They introduce a novel approach
by employing a Graph Convolution Network (GCN) to understand the relationships between
MeSH terms. This method utilizes two bidirectional Gated Recurrent Units (GRUs) to sepa-
rately learn the embedding representations of the abstract and title of the MeSH index text. An
adjacency matrix for MeSH terms is constructed, based on their co-occurrence relationships
within the corpus, and this matrix is then employed to learn representations using the GCN.
By integrating these learned representations, HGCN4MeSH addresses the prediction of MeSH
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index keywords as an extreme multi-label classification challenge, refined through the applica-
tion of an attention layer operation for enhanced focus and specificity in the indexing process.
FullMeSH [28] uses 1.4 million full-text articles from the PubMed Central Open Access sub-
set to enhance the performance of MeSH indexing. FullMeSH first generates a representation
of a document by utilizing four distinct types of text representations for each section, namely
TF-IDF (a classic bag-of-words representation), Doc2Vec [65] (a widely-used deep represen-
tation that extends the word2vec model to entire documents), D2V-TFIDF (a concatenation of
Doc2Vec and TF-IDF vectors) and Word2Vec [83]. Then it generates candidate MeSH terms
by using pattern matching, the binary classifier SVM, KNN, and label-wise attention CNN.
MeSHRanker further employs an LTR framework to produce a ranked list of candidate MeSH
terms, utilizing multiple types of evidence to inform its prioritization process. MeSHNumber
is then used to predict the number of MeSH terms for each article by analyzing multiple fea-
tures of the full text, expanding its scope beyond merely the title and abstract, which is the last
step of the workflow of FullMeSH. BERTMeSH [145] adopts the Bidirectional Encoder Rep-
resentations from Transformers (BERT) model [32], which significantly enhances the capacity
for deep semantic understanding of the biomedical text. The BERT model, being inherently
bidirectional, allows for a more nuanced and contextually aware representation of text, which
is crucial in accurately capturing the complexities of biomedical literature. Furthermore, the in-
corporation of an attention mechanism in BERTMeSH enhances its ability to focus on the most
relevant parts of the text for each label. This is particularly important given the vast amount
of information present in full-text biomedical articles and the specificity required to correctly
assign MeSH terms. The attention mechanism allows the model to dynamically weigh the im-
portance of different sections of the text when determining the relevance to each possibleMeSH
term.

2.2.3 Future Directions

The evolution of MeSH indexing is pivotal for enhancing the retrieval and analysis of biomed-
ical literature. As we look towards the future of MeSH indexing, several promising directions
emerge, particularly in the realms of machine learning advancements and the integration of
external comprehensive biomedical knowledge bases. A notable area of interest is involving
weakly supervised learning techniques. These methods can effectively utilize large volumes
of unlabeled or partially labeled data, which is particularly beneficial given the vast and ever-
expanding corpus of biomedical literature. By leveraging weakly supervised learning, we can
significantly reduce the dependency on extensively annotated datasets, thus speeding up the
indexing process without compromising accuracy. Another critical aspect to address is the
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trade-off between head and tail labels in the MeSH vocabulary. Head labels, which are more
general and frequently occurring, often receive disproportionate attention compared to tail la-
bels, which are specific but less common. Developing algorithms that can balance this trade-off
is essential for ensuring comprehensive and nuanced indexing of biomedical literature.

Furthermore, the incorporation of external knowledge sources, such as the Unified Medical
Language System (UMLS), can enrich the indexing process. UMLS offers a vast repository of
biomedical concepts and their relationships, which can enhance the understanding and catego-
rization of complex medical texts. By integrating UMLS and other similar knowledge bases,
MeSH indexing systems can leverage structured semantic relationships between concepts, fa-
cilitating more accurate and context-aware indexing. This approach not only improves the
depth of indexing but also helps in identifying relevant connections between different pieces of
literature, thereby enhancing the overall utility of biomedical databases.

In summary, the future directions ofMeSH indexing involve harnessing the power ofweakly
supervised learning to efficiently process the growing biomedical literature, addressing the bal-
ance between head and tail labels to ensure thorough coverage of the MeSH vocabulary, and
incorporating external knowledge sources likeUMLS to deepen the contextual understanding of
biomedical concepts. These strategies collectively promise to advance the field ofMeSH index-
ing, making it more efficient, accurate, and comprehensive in facilitating access to biomedical
knowledge.

2.3 Automatic Medical Coding

The International Classification of Diseases (ICD) serves as a comprehensive medical classi-
fication system used to categorize diseases and health conditions for clinical and management
purposes. ICD indexing involves the assignment of a subset of ICD codes to a medical record,
facilitating standardized reporting and analysis of health information across global healthcare
systems. In this section, we present a comprehensive review of the current studies on ICD
coding and prospects for further research.

2.3.1 Introduction

Electronic health records (EHRs)7 contain all of the key administrative clinical data relevant to
a person’s care under a particular provider, including demographics, past history notes, progress
notes, laboratory reports, diagnoses, and medications. EHRs have been increasingly used in a
variety of settings, which provides opportunities to enhance patient care and facilitate clini-

7https://www.cms.gov/Medicare/E-Health/EHealthRecords
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cal research. The International Classification of Diseases (ICD)8 is often used as a surrogate
for clinical outcomes of interest, as it is designed to provide diagnostic assistance and classify
health disorders. ICD is a medical classification taxonomy maintained by the World Health
Organization (WHO)9, which serves a broad range of uses in diagnostic processes, epidemiol-
ogy, health management, and other clinical activities. The first published version of ICD was
in 1893, and it has become one of the most important indexing systems in medical management
and healthcare related research. There are two types of codes in the ICD coding system, namely
procedure codes10 (that are used to identify specific surgical, medical, or diagnostic interven-
tions) and diagnosis codes11 (that are used to identify diseases, disorders and symptoms). In
the 10𝑡ℎ edition, there are over 70,000 procedure codes and over 69,000 diagnosis codes12, and
ICD codes are revised periodically.

The objective of ICD indexing is to assign ICD codes to EHR documents. At present, the
process of ICD indexing is predominantly performed manually by human annotators. The as-
signment of codes to each patient currently requires an average duration of 34 minutes [110].
Nevertheless, the precision and velocity of manual ICD coding fail to meet expectations in real-
world settings, primarily due to its susceptibility to inaccuracies. Such errors stem from various
uncontrollable elements, including inaccuracies in patient discharge summaries and variability
among coders or across hospitals. These inaccuracies can lead to incorrect billing, denial of
health insurance claims, and financial underpayment [89]. For instance, a misclassification by
a human coder selecting the ICD code for “collapsed lung” (J98.100) instead of “atelectasis”
(J98.101) could result in a billing discrepancy amounting to thousands of dollars [110]. In
the United States, it is estimated that enhancing both the efficiency and accuracy of coding pro-
cesses could potentially lead to a reduction in healthcare expenditures by up to 25 billion dollars
annually. Therefore, automatic annotation has gained interest in the research community.

Automatic ICD indexing can be regarded as an XMTC problem, where each EHR document
can be labeled with multiple ICD codes. Compared with standard multi-label classification
tasks, XMTC finds relevant labels from an extremely large set of labels. We introduce some
basic background knowledge of ICD coding, namely the ICD taxonomy and some specific
characteristics of medical health records, as follows.

The International Classification of Diseases (ICD) is the most widely recognized medi-
cal coding ontology globally. It translates diagnoses of diseases and various health-related
issues into alphanumeric codes, facilitating the storage, retrieval, and analysis of data. ICD

8https://www.who.int/standards/classifications/classification-of-diseases
9https://www.who.int
10https://en.wikipedia.org/wiki/Procedure_code
11https://en.wikipedia.org/wiki/Diagnosis_code
12https://www.cdc.gov/nchs/icd/icd10cm_pcs.htm
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Figure 2.6: An overview of ICD-10 taxonomy [110].
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codes are employed by a diverse group of professionals including physicians, nurses, medical
coders, other healthcare administration experts, and insurers in their respective duties [132].
The ICD taxonomy is designed with a tree-like hierarchical structure to maintain the functional
and structural integrity of the classification. This structure is evident in the organization of
the ICD chapters, which correspond to major disease categories and facets. Taking ICD-10
as an illustrative example, as shown in Figure 2.6, it comprises a total of 22 chapters, with
the coding framework adopting a six-character convention. The hierarchical structure depicted
in Figure 2.6 shows the parent-child and sibling relationships among codes at the same level.
Upper-level nodes categorize general diseases, whereas lower-level nodes specify more partic-
ular conditions. This hierarchy not only delineates the parent-child and sibling relationships
but also encapsulates the mutual exclusivity of certain codes [17], making it harder to assign
both parent and child codes or sibling codes with the same parent to a condition simultane-
ously. Additionally, the ICD employs a variable-axis classification system, wherein the axes
vary depending on the nature of the diseases being classified. For instance, in the classification
of eye illnesses, the taxonomy axis focuses on body parts, thereby prioritizing codes based on
physical examination findings. Conversely, the classification of dermatosis pivots on the axis
of pathogeny, necessitating a thorough review of the patient’s medical history for accurate code
assignment [110].

The ICD codes primarily serve the purpose of categorizing diseases, symptoms, and in-
juries. It is tailored to accommodate a wide array of applications, including mortality, mor-
bidity, and epidemiology studies. Consequently, electronic health records exhibit a significant
degree of heterogeneity in both format and content to reflect the diverse requirements of these
use cases. Comprehensive details on the specific applications and their implications for medical
usage can be found across various sections dedicated to each use case. Figure 2.7 shows an ex-
ample of a discharge summary from the MIMIC-III [55] dataset (the largest publicly available
medical dataset).

Although human annotators are capable of attaining high levels of accuracy in clinical cod-
ing, the conventional process, which encompasses text analysis, text summarization, and classi-
fication into codes, presents considerable challenges for computer-based systems. Furthermore,
it involves the integration of natural language with structured knowledge representations, such
as the ICD-10 classification system. The task of clinical coding also introduces more specific
challenges when compared to standard NLU tasks. We summarize several characteristics and
difficulties for ICD coding as follows.

First, clinical documents are characterized by their diverse structures, notation conventions,
length, and occasional incompleteness. ICD coding necessitates a comprehensive understand-
ing of texts within these documents, which markedly differs from the content found in other
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Figure 2.7: An example of a discharge summary from the MIMIC-III dataset.
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Figure 2.8: Distribution of Top-50 ICD-9 codes in the MIMIC-III dataset [110].

forms of documentation such as scholarly publications or social media posts [34]. These clin-
ical texts often feature variable document structures and can be notably lengthy. For instance,
with discharge summaries in MIMIC-III, the average words in a discharge summary is around
1,500 [87]. Furthermore, these documents frequently employ concise abbreviations and sym-
bols, such as a [xx], y/o, w/, Hep C, HTN, CKD, and a/w, in a discharge summary [34]. The
ICD coding process also demands an understanding of a patient’s entire record, encompass-
ing multiple document types such as discharge summaries, radiology reports, and pathology
reports. These documents may not always adhere to a structured format and are sometimes
incomplete or missing, adding another layer of complexity to the clinical coding task.

Second, the distribution of ICD codes is extremely long-tailed; while some ICD codes oc-
cur frequently, many others seldom appear, if at all, because of the rarity of the diseases. For
instance, among the 942 unique 3-digit ICD codes in the MIMIC-III dataset, the ten most com-
mon codes account for 26% of all code occurrences and the least common 437 codes account
for only 1% [9]. Figure 2.8 shows the distribution of the top 50 ICD codes in the MIMIC-III
dataset.

Third, the number of ICD codes assigned to each discharge summary can vary significantly,
with the potential to assign up to 39 codes from the complete label set for a single record. Fur-
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thermore, the codes attributed to the same record often exhibit discernible patterns. For in-
stance, the co-occurrence of codes reflects the correlations among them, underpinned by the
causal relationships that exist between certain diseases. Additionally, the hierarchical structure
of the ICD coding system indicates the mutual exclusion of some codes, where specific diseases
should not be concurrently coded under the same record. Miscoding occurs when a particular
diagnosis is erroneously categorized under a broader, generic disease category, highlighting the
need for precision in the assignment of ICD codes to accurately reflect the diagnosed condi-
tions [110]. Figure 2.8 shows the frequency of ICD codes that appear per discharge summary
in the MIMIC-III dataset.

Figure 2.9: Frequency for ICD codes per record in the MIMIC-III dataset [110].

2.3.2 Current Solutions

The automatic ICD indexing task is well established in the healthcare domain as mentioned
in the previous subsection. Early research in the field of automated ICD coding commenced
with the work of Larkey et al. [64], who introduce a method that integrates three distinct clas-
sifiers: K-nearest neighbor, relevance feedback, and a Bayesian independence classifier. This
innovative approach was developed to automate the assignment of ICD codes to dictated inpa-
tient discharge summaries. Building on this foundational effort, de Lima et al. [30] present a
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hierarchical model that leverages the structural topology of the ICD code system. This model
employs cosine similarity calculations between TF-IDF representations of clinical texts and
the corresponding ICD codes to facilitate code assignment. Over the years, a variety of strate-
gies have been explored in the pursuit of effective ICD coding. These include rule-based ap-
proaches [26, 37] and statistical machine learning techniques [72], such as support vector ma-
chines, reflecting the evolving nature of research in this domain.

Substantial research efforts have been dedicated to ICD coding through the application of
deep learning techniques, including recurrent neural networks (RNNs), convolutional neural
networks (CNNs), and their variations. These advanced deep learning architectures possess the
capability to autonomously extract and categorize semantic features from textual data. This rep-
resents a significant departure from the traditional approach of feature selection in conventional
algorithms, which typically requires extensive medical domain expertise. By leveraging such
models, the process of ICD coding benefits from an enhanced ability to understand and inter-
pret complex medical texts, thereby streamlining the coding process and potentially increasing
the accuracy and efficiency of code assignment [110].

The sequential feature of textual data highlights the importance of temporal events influ-
encing one another, where the order of words plays a critical role in shaping the meaning of
textual expressions. The context provided by preceding words significantly impacts the inter-
pretation of subsequent expressions. Recurrent Neural Networks (RNNs) are good at capturing
the essence of word order, sentence structure, and the relative importance of words within a
sequence. RNNs achieve this by recursively passing input data through neurons via an internal
hidden state, allowing each word in the sequence to encompass information from the entire text.
Variants of RNNs, such as Long Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRU), are specifically designed to extract these sequential features more effectively.
These models are adept at handling long-term dependencies and mitigating issues like vanish-
ing or exploding gradients, thereby enhancing the ability to model complex sequential infor-
mation in textual data. RNN-based models, renowned for their capacity to capture contextual
information across input texts, have also been widely used for ICD indexing. Atutxa et al. [4]
form the ICD coding into a sequence to sequence task which constructs an encoder-decoder
architecture using LSTM. This approach effectively translates clinical texts into sequences of
ICD codes, leveraging the LSTM’s capabilities to both comprehend the intricate structure of
clinical narratives and generate corresponding code sequences. Shi et al. [104] introduce a
novel approach to processing clinical texts by proposing a character-aware LSTM. This model
is designed to capture the intricate representations of clinical texts at a granular level, learning
from character sequences to understand the broader context and semantics embedded within
clinical documentation. Xie and Xing [133] further expand the landscape of ICD coding tech-
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niques by developing a tree-of-sequences LSTM architecture. This architecture, combined with
adversarial learning, is adept at recognizing the hierarchical relationships among ICD codes,
offering a sophisticated method for capturing the structured nature of medical coding systems.
Baumel et al. [10] contribute to the field by presenting a Hierarchical Attention-Bidirectional
Gated Recurrent Unit (HA-GRU) model. This model enhances document labeling accuracy
by pinpointing sentences within the clinical texts that are most relevant to each specific ICD
code, employing a hierarchical attention mechanism to improve focus on pertinent details. The
Label-wise Attention LSTM (LAAT)model [115] employs a bidirectional LSTM encoder along
with a customized label-wise attention mechanism. This approach generates label-specific vec-
tors for different segments of clinical texts, optimizing the process of associating accurate ICD
codes with diverse clinical documentation. Lastly, Ji et al. [53] innovate upon traditional neu-
ral network architectures by developing a gating mechanism that combines the long sequence
memory capabilities of LSTMwith the architectural efficiency of CNN. This mechanism is de-
signed to oversee the flow of information across the network, capturing the extensive historical
context inherent in sequential data. Distinct from the recurrent gating mechanisms found in
LSTMs, which regulate information temporally, this novel approach controls the information
flow through the depth of stacked layers in the network.

The spatial feature of text in EHR, with respect to ICD codes, indicates that relevant text
fragments are dispersed throughout the document. An unstructured health record, typically
comprising thousands of words, is often laden with copious amounts of noisy and irregular
expressions. This vast length significantly increases the dimensionality of text representation,
presenting a substantial challenge for any model tasked with learning coding evidence directly
related to code labels from the entirety of the text. Convolutional Neural Networks (CNNs)
are particularly adept at addressing this challenge, thanks to their ability to learn global fea-
tures from long texts automatically. CNNs excel in extracting patterns and features distributed
across the entirety of a document, making them well-suited for the demands of ICD coding.
Mullenbach et al. [87] pioneer the integration of CNN with attention mechanisms, a method
that significantly improves the model’s ability to identify relevant information within clinical
texts for each ICD code. This model underscores the importance of focusing on key textual
elements that are most indicative of specific codes. Building on this innovation, an enhanced
CNN attention model is introduced by Vu et al. [135], which incorporates a multi-scale feature
attention technique. This advancement allows for a more nuanced analysis of clinical texts by
attending to features at various scales, thereby improving the model’s sensitivity to relevant
information. Subsequent developments in this area introduced several CNN variants designed
to tackle the specific challenges presented by the length and complexity of clinical texts. These
include MultiResCNN [67], DCAN [52], and EffectiveCAN [77]. MultiResCNN employs
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a multi-filter residual CNN architecture to adeptly capture text patterns of varying lengths,
enhanced by residual convolutional layers that extend the model’s receptive field. DCAN op-
timizes the receptive field through the use of a single filter and dilation operations, allowing
for a more flexible and efficient processing of textual information. EffectiveCAN combines a
CNN-based encoder with squeeze-and-excitation networks and residual networks to thoroughly
extract and process information across clinical texts.

ICD coding is characterized by a high degree of data sparsity, stemming from an unbalanced
label distribution. Diseases that occur less frequently are often grouped together, although rare
diseases may be classified individually when required. This variability in frequency and clas-
sification complicates the coding process, especially when attempting to accurately represent
both common and rare conditions. The hierarchical structure of the ICD system plays a cru-
cial role in addressing these challenges. It facilitates the reconstruction of keywords and the
generation of semantic features for codes that may not have been directly observed in the train-
ing data. By leveraging the inherent organization of diseases within this hierarchy, models
can infer relationships between codes, allowing for a more nuanced understanding of disease
categories and their semantic connections. One solution to incorporate the hierarchical infor-
mation is using tree-based methods. The distributed representation of a tree structure aims to
concurrently capture the hierarchical association between codes and the semantic meanings of
each individual code. This approach involves representing the tree structure in a manner that
both the position of a code within the hierarchy and its unique semantic content are encoded
within the same representation. Chen et al. [22] utilize the Tree-Structured Long Short-Term
Memory Network (Tree-LSTM) to model the hierarchical structure inherent in ICD coding.
The Tree-LSTM architecture they employed is bidirectional, comprising both bottom-up and
top-down modules, which enables it to capture the semantic relationships within the ICD code
hierarchy effectively. Graph Convolutional Neural Networks (GCNNs), as proposed by Kipf
and Welling [62], is another way to effectively harness the hierarchical relationships inherent
to ICD codes. Ríos and Kavuluru [99] along with Vu et al. [135] have implemented GCNNs to
navigate both the hierarchical dynamics among ICD codes and the semantic intricacies partic-
ular to each code. This dual approach allows for a nuanced understanding of the structural and
contextual relationships between codes, enhancing the accuracy of code assignment. Hyper-
Core [18] adopts an all-encompassing strategy that accounts for both the hierarchy of codes and
their co-occurrence patterns. By deploying GCNNs within a co-occurrence graph (co-graph),
HyperCore innovatively learns representations of codes, effectively capturing the complex in-
terrelations and semantic connections among them. This method not only acknowledges the
structured organization of ICD codes but also leverages the natural associations that occur be-
tween codes in clinical practice, providing a rich, interconnected framework for ICD coding.
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Integrating external knowledge into ICD coding tasks can provide invaluable insights and
enhance the model’s ability to accurately assign codes. External sources of information, such
as medical literature, Wikipedia articles related to diseases, and databases containing synonyms
and abbreviations for medical conditions, can significantly enrich the contextual understanding
necessary for precise ICD coding. Bai et al. [9] pioneer this approach with the Knowledge
Source Integration (KSI) model, which leverages external information from Wikipedia. By
calculating matching scores between clinical notes and disease-related Wikipedia documents,
the KSI model enriches the contextual information available for making more accurate ICD
predictions. This method demonstrates the value of incorporating broader knowledge sources
to augment the understanding of disease contexts beyond what is contained in the clinical notes
alone. Building on the idea of enhancing code representation through external knowledge, Yuan
et al. [149] introduce the Multiple Synonym Matching Network (MSMN). This model utilizes
synonyms of ICD codes to improve the representation learning of codes, acknowledging that
the same medical condition can be described in various ways within clinical documentation.
Further expanding the scope of knowledge integration, Yang et al. [140] combine a pre-trained
language model with three domain-specific knowledge sources: the hierarchy of ICD codes,
synonyms of the codes, andmedical abbreviations. This comprehensive approach to knowledge
integration allows for a more nuanced understanding of clinical texts, facilitating the accurate
classification of ICD codes by leveraging the structured knowledge of code relationships, alter-
native code descriptions, and common abbreviations used in clinical settings. Dong et al. [35]
introduce an innovative approach that harnesses the power of ontologies (i.e., Unified Medi-
cal Language System, (UMLS)) and weak supervision in conjunction with the latest advance-
ments in pre-trained contextual representations from Bidirectional Transformers (e.g. BERT).
This method aims to leverage the structured knowledge inherent in ontologies—comprehensive
frameworks that organize information about concepts and the relationships between them—
alongside the nuanced understanding of language provided by Bidirectional Transformers. By
integrating ontologies, the model benefits from a rich, structured understanding of the domain,
enabling it to interpret the complex relationships and hierarchies between different medical con-
cepts and terminologies. The use of weak supervision allows the model to learn from limited
or imprecise data labels, a common challenge in medical datasets where detailed annotation is
resource-intensive. Meanwhile, the adoption of recent pre-trained contextual representations
provides a deep understanding of the context and semantics of clinical texts.
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2.3.3 Future Directions

In the rapidly evolving field of ICD (International Classification of Diseases) coding, several
promising research directions have emerged, particularly in the integration of external knowl-
edge bases, and the application of few-shot and zero-shot learning techniques, alongside ad-
vancements in knowledge representation and reasoning, and a man-machine interactive ICD
coding system. The integration of external knowledge such as clinical guidelines, patient de-
mographics, and prior case histories, offers a significant opportunity to enhance the accuracy
and contextual relevance of automated ICD coding systems. This involves developing more
sophisticated models that can effectively incorporate and reason with this vast, diverse exter-
nal knowledge. Furthermore, few-shot and zero-shot learning approaches present an exciting
avenue for improving the model’s ability to accurately code rare or newly introduced diseases
with minimal training examples, addressing a key challenge in maintaining the currency of ICD
coding systems with the rapid pace of medical discovery. Additionally, advances in knowl-
edge representation and reasoning are crucial for interpreting complex clinical narratives and
mapping them accurately to the structured ICD framework. By developing models that can
understand and reason about the nuances of clinical language and the relationships between
different medical concepts, researchers can significantly improve the efficiency and reliabil-
ity of ICD coding, ultimately supporting better patient care and health data analytics. Finally,
a man-machine interactive ICD coding system represents a cutting-edge approach in medical
informatics, aimed at bridging the gap between human expertise and artificial intelligence to
enhance the accuracy and efficiency of coding medical diagnoses and procedures. This system
is designed to combine the strengths of both human coders and AI-powered coding tools, pro-
viding a collaborative platform where coders can interact with and guide the AI, ensuring that
the nuances and complexities of medical records are accurately captured. The key benefits of a
man-machine interactive ICD coding system include improved coding accuracy by combining
human judgment with AI’s ability to process large volumes of text quickly, increased produc-
tivity by reducing the time required for manual coding, and enhanced learning opportunities for
both the AI system and human coders.

2.4 Evaluation Techniques

In the context of this dissertation, evaluation measures are categorized into two distinct groups
to assess performance in different scenarios: multi-label classification and multi-label rank-
ing. Each group addresses specific characteristics and challenges associated with the prediction
tasks it evaluates, reflecting the complexity and diversity of the underlying problems. In multi-
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label ranking tasks, the goal is to sort all potential labels in a manner that positions the most
relevant labels as close to the top of the ranked list as possible, given an input instance. This
approach contrasts with traditional multi-label classification, where the focus is on accurately
predicting the set of applicable labels without necessarily considering their relative importance
or ranking.

In this section, we present two groups of measures to evaluate the performance of multi-
label classification and multi-label ranking, namely bipartition-based and ranking-based eval-
uation.

2.4.1 Bipartition-based Evaluation

Bipartition evaluation in the context of multi-label classification and ranking tasks is an essen-
tial process for assessing the performance of models. This evaluation can be further divided
into example-based and label-based measures, each focusing on different aspects of model per-
formance.

Example-based Measures evaluate the performance across all instances (e.g., documents)
in the test set, focusing on the overall effectiveness of the model from the perspective of each
individual instance. For evaluation purposes, metrics such as precision, recall, and F-score are
computed for the top-ranked labels, typically top5, top10, and top15, to gauge how well the
model performs across all test documents. These measures provide insight into the model’s
accuracy and reliability on an instance level, reflecting the average performance a user might
expect.

We denote TPi, FPi and FNi as the true positive labels, false positive labels, and false neg-
ative labels, respectively, for each instance 𝑖 in the set of instances (the number of instances is𝑁).

Example-based precision (EBP) is a metric used to evaluate the performance of multi-label
classification models on a per-instance basis. It measures the accuracy of the model in predict-
ing relevant labels for each test document, focusing on the proportion of correctly identified
labels among all labels predicted for that instance. EBP is crucial for understanding how well
the model performs in identifying relevant labels for each specific document, providing insights
into its precision at the individual document level. EBP is defined as follows:

EBP = 1𝑁
𝑁

∑𝑖=1
TP𝑖

TP𝑖 + FP𝑖 . (2.1)

Example-based recall (EBR) quantifies the model’s ability to identify and retrieve all rele-
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vant labels for each test document. It reflects the proportion of actual relevant labels that have
been correctly predicted by the model. EBR is critical for evaluating the completeness of the
model’s predictions, especially in scenarios where capturing all relevant labels is essential for
the task at hand. EBR is defined as follows:

EBR = 1𝑁
𝑁

∑𝑖=1
TP𝑖

TP𝑖 + FN𝑖 . (2.2)

The Example-based F-score (EBF) is a metric that combines the insights of both preci-
sion and recall into a single measure, providing a balanced view of a model’s performance in
multi-label classification tasks. It is particularly useful for assessing the overall effectiveness
of a model in accurately predicting relevant labels while minimizing false positives and false
negatives. The EBF is defined as the harmonic mean of Example-based Precision (EBP) and
Example-based Recall (EBR), calculated for each test document and then averaged across all
documents in the test set. EBF is defined as follows:

EBF = 2 × EBR × EBP
EBR + EBP

. (2.3)

Label-basedMeasures on the other hand, calculate performancemetrics for each label across
all instances, and then aggregate these results to understand the model’s performance from the
perspective of each label. This can be particularly informative in cases of imbalanced datasets
where some labels may be more frequent than others. Key metrics include macro-average and
micro-average precision, as well as macro-average and micro-average F-score.

We denote TPj, FPj and FNj as true positives, false positives, and false negatives, respec-
tively, for each label 𝑙𝑗 in the set of total labels.

Macro-average Precision (MaP) is an evaluation metric used to assess the average preci-
sion across all labels in a multi-label classification system, without giving preference to the
frequency of each label. This metric is particularly useful for understanding the overall perfor-
mance of a model across different classes, especially in datasets where label frequencies may
be imbalanced. MaP is defined as follows:

MaP = 1𝐿
𝐿

∑𝑗=1
TP𝑗

TP𝑗 + FP𝑗 . (2.4)

Micro-average Precision (MiP) is an evaluation metric used to assess the overall precision
across all labels in a multi-label classification system, with an emphasis on the performance
across all individual instances. This metric is particularly useful in datasets where the label
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distribution is imbalanced, as it aggregates the contributions of all labels, thereby giving more
weight to the performance on frequent labels. MiP is defined as follows:

MiP = ∑𝐿𝑗=1 TP𝑗∑𝐿𝑗=1 TP𝑗 + ∑𝐿𝑗=1 FP𝑗 . (2.5)

Macro-average Recall (MaR) is an evaluationmetric that calculates the average recall across
all labels in a multi-label classification system, treating each label equally regardless of its fre-
quency. Recall, also known as sensitivity, measures the ability of the model to correctly identify
all relevant instances for a given label. The MaR metric is particularly useful for understanding
how well the model performs in detecting relevant instances across different classes, which is
especially important in datasets where some labels may be underrepresented. MaR is defined
as follows:

MaR = 1𝐿
𝐿

∑𝑗=1
TP𝑗

TP𝑗 + FN𝑗 . (2.6)

Micro-average Recall (MiR) is a metric that aggregates the performance of a multi-label
classification system across all labels to calculate an overall recall, with a focus on the model’s
ability to identify relevant instances across the entire dataset. This metric is especially relevant
in contexts with imbalanced label distributions, as it gives more weight to the performance on
labels that have more instances. MiR is defined as follows:

MiR = ∑𝐿𝑗=1 TP𝑗∑𝐿𝑗=1 TP𝑗 + ∑𝐿𝑗=1 FN𝑗 . (2.7)

The Macro-average F-score (MaF) is an evaluation metric that provides a comprehensive
measure of a model’s performance across all labels in a multi-label classification system, by
equally weighting the performance on each label. Thismetric combines the insights of precision
and recall into a single measure for each label and then averages these scores across all labels.
TheMaF is particularly useful for datasets with imbalanced label distributions, as it ensures that
the model’s performance on less frequent labels is considered as important as its performance
on more frequent labels. MaF is defined as follows:

MaF = 2 × MaR × MaP
MaR + MaP

. (2.8)

TheMicro-average F-score (MiF), on the other hand, gives more weight to labels with more
instances, making it particularly useful for datasets with imbalanced label distributions. MiF is
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defined as follows:
MiF = 2 × MiR × MiP

MiR + MiP
. (2.9)

2.4.2 Ranking-based Evaluation

Ranking-based evaluation is pivotal in scenarios where the goal is to prioritize the relevance
of predicted labels, aiming to rank relevant labels higher than irrelevant ones. This approach is
particularly effective in handling datasets with a large number of potential labels and is robust
against outliers within the predicted label set. Three common metrics employed in ranking-
based evaluation are Precision at 𝑘 (P@k), Recall at 𝑘 (R@k) and Normalized Discounted
Cumulative Gain (nDCG), which offer valuable insights into the performance of classification
models from different perspectives. As our dataset is imbalanced, propensity-scored metrics
are also introduced in this dissertation.

Precision at 𝑘 (P@k) measures the proportion of relevant labels found in the top-𝑘 positions
of the ranking produced by the model for a given instance. It is defined as:

P@k = 1𝑘 ∑𝑙∈𝑟𝑘( ̂𝑦) 𝑦𝑙, (2.10)

where 𝑙 is the index within the set of top 𝑘 labels, 𝑦𝑙 is the relevance of the item at index 𝑙.
Typically, 𝑦𝑙 is 1 if the item is relevant and 0 if it is not. 𝑟𝑘 ( ̂𝑦) is the set of indices of the top 𝑘
labels returned by the system. Here, ̂𝑦 represents the predicted ranking or scores for the items.

Recall at 𝑘 (R@k) a performance metric used to evaluate the effectiveness of a model in
identifying relevant items within the top-𝑘 ranked predictions. It is particularly useful in sce-
narios where the model produces a ranked list of labels or items for each instance and the goal
is to capture as many relevant labels as possible within the top-𝑘 positions of this list. R@k
measures the proportion of relevant items that are successfully retrieved in the top-𝑘 predictions
out of all relevant items. It is defined as:

R@k = 1|𝑦𝑖| ∑𝑙∈𝑟𝑘( ̂𝑦) 𝑦𝑙, (2.11)

where 𝑦𝑖 is the set of golden labels for document 𝑖.
Normalized Discounted Cumulative Gain (nDCG) measures the ranking quality by con-
sidering the position of the relevant labels, penalizing relevant labels that appear lower in the



Chapter 2. Natural Language Understanding 43

ranking. The relevance scores are discounted logarithmically, reflecting the reduced usefulness
of items found at lower ranks. nDCG is normalized against the ideal ranking, providing a score
between 0 and 1, where 1 represents the perfect ranking order. It is calculated as:

DCG@k = 𝑘
∑𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2(𝑖 + 1) ,

IDCG@k = 𝑚𝑖𝑛(𝑘,𝑁)
∑𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2(𝑖 + 1) ,

nDCG@k = DCG@k
IDCG@k

,
(2.12)

where 𝑟𝑒𝑙𝑖 is the relevance of the item at position 𝑖, and 𝑁 is the total number of relevant items
in the prediction set.

Propensity-scoredMetrics introduce a sophisticated approach to evaluating the performance
of models in tasks with imbalanced datasets, particularly in extreme multi-label classification
scenarios. These metrics adjust the evaluation based on the rarity of each label, acknowledg-
ing that correctly predicting rare labels might be more valuable than predicting common ones.
This adjustment is accomplished using propensity scores, which estimate the likelihood of each
label being relevant to an instance, thereby allowing for a more nuanced assessment of model
performance.

Propensity-scored Precision at 𝑘 (PSP@k) adjusts for the bias in the user-item interaction
data. In many real-world scenarios, the observed data is biased because users have varying
propensities to interact with items. Propensity scoring attempts to correct for this by weighting
the relevance of each item by the inverse of its propensity to be observed. It is calculated as:

PSP@k = 1𝑘
𝑘

∑𝑖=1
𝑟𝑒𝑙𝑖

Propensity(𝑖) , (2.13)

where 𝑟𝑒𝑙𝑖 is 1 if the 𝑖-th item is relevant and 0 otherwise, and Propensity(𝑖) is the propensity
score of the 𝑖-th item.

Propensity-Scored nDCG@k (PSW@k) adjusts for the bias in the user-item interaction data
by incorporating the propensity scores. It weights the relevance of each item by the inverse of
its propensity to be observed, thereby correcting for potential biases in the data. It is calculated
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as:

PDCG@k = 𝑘
∑𝑖=1

2𝑟𝑒𝑙𝑖−1
log2(𝑖+1)

Propensity(𝑖) ,
PIDCG@k = 𝑚𝑖𝑛(𝑘,𝑁)

∑𝑖=1
2𝑟𝑒𝑙𝑖−1
log2(𝑖+1)

Propensity(𝑖) ,
PSW@k = PDCG@k

PIDCG@k
.

(2.14)



Chapter 3

Knowledge-grounded Attention

In this thesis, we introduce three knowledge integration methods and this chapter introduces the
first method, knowledge-grounded attention, which is based on our previous publication titled
“KenMeSH: Knowledge-enhanced End-to-end Biomedical Text Labelling” that appeared in
the 60𝑡ℎ Annual Meeting of the Association for Computational Linguistics (ACL) [117]. This
method leverages attention mechanisms to incorporate external knowledge into the model. By
injecting relevant knowledge into the attention layers, we can help the model focus on the most
relevant parts of the input data.

3.1 Abstract

Currently, Medical Subject Headings (MeSH) are manually assigned to every biomedical arti-
cle published and subsequently recorded in the PubMed database to facilitate retrieving relevant
information. With the rapid growth of the PubMed database, large-scale biomedical document
indexing becomes increasingly important. MeSH indexing is a challenging task for machine
learning, as it needs to assign multiple labels to each article from an extremely large hierar-
chically organized collection. To address this challenge, we propose KenMeSH, an end-to-end
model that combines new text features and a dynamic Knowledge-enhanced mask attention
that integrates document features with MeSH label hierarchy and journal correlation features
to indexMeSH terms. Experimental results show the proposedmethod achieves state-of-the-art
performance on a number of measures.

45
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3.2 Introduction

The PubMed1 database is a resource that provides access to theMEDLINE bibliographic database
of references and abstracts together with the full text articles of some of these citations which
are available in the PubMed Central2 (PMC) repository. MEDLINE3 contains more than 28
million references (as of Feb. 2021) to journal articles in the biomedical, health, and related
disciplines. Journal articles in MEDLINE are indexed according toMedical Subject Headings
(MeSH)4, an hierarchically organized vocabulary that has been developed and maintained by
the National Library of Medicine (NLM)5. Currently, there are 29,369 main MeSH headings,
and eachMEDLINE citation has 13MeSH indices, on average. MeSH terms are distinctive fea-
tures of MEDLINE and can be used in many applications in biomedical text mining and infor-
mation retrieval [80, 50, 44], being recognized as important tools for research (e.g., knowledge
discovery and hypothesis generation).

Currently, MeSH indexing is done by human annotators who examine full articles and as-
sign MeSH terms to each article according to rules set by NLM6. Human annotation is time
consuming and costly – the average cost of annotating one article in MEDLINE is about $9.40
[86]. Nearly 1 million citations were added to MEDLINE in 2020 (approximately 2,600 on
a daily basis)7. The rate of articles being added to the MEDLINE database is constantly in-
creasing, so there is a huge financial and time-consuming cost for the status quo. Therefore,
it is imperative to develop an automatic annotation system that can assist MeSH indexing of
large-scale biomedical articles efficiently and accurately.

Automatic MeSH indexing can be regarded as an extreme multi-label text classification
(XMC) problem, where each article can be labeled with multiple MeSH terms. Compared with
standard multi-label problems, XMC finds relevant labels from an enormous set of candidate
labels. The challenge of large-scaleMeSH indexing comes from both the label and article sides.
Currently, there are more than 29,000 distinct MeSH terms, and new MeSH terms are updated
to the vocabulary every year. The frequency of different MeSH terms appearing in documents
are quite imbalanced. For instance, the most frequent MeSH term, ‘humans’, appears in more
than 8 million citations; ‘Pandanaceae’, on the other hand, appears in only 31 documents [151].
In addition, the MeSH terms that have been assigned to each article varies greatly, ranging from
more than 30 to fewer than 5. Furthermore, semantic features of the biomedical literature are

1https://pubmed.ncbi.nlm.nih.gov/about/
2https://en.wikipedia.org/wiki/PubMed\_Central
3https://www.nlm.nih.gov/medline/medline_overview.html
4https://www.nlm.nih.gov/mesh/meshhome.html
5https://www.nlm.nih.gov
6https://www.nlm.nih.gov/bsd/indexing/training/TIP_010.html
7https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
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complicated to capture, as they contain many domain-specific concepts, phrases, and abbrevia-
tions. The aforementioned difficulties make the task more complicated to generate an effective
and efficient prediction model for MeSH indexing.

In this work, inspired by the rapid development of deep learning, we propose a novel neu-
ral architecture called KenMeSH (Knowledge-enhanced MeSH labelling) which is suitable for
handling XMC problems where the labels are arrayed hierarchically and could capture useful
information as a directed graph. Our method uses a dynamic knowledge-enhanced mask at-
tention mechanism and incorporates document features together with label features to index
biomedical articles. Our major contributions are:

1. We design a multi-channel document representation module to extract document features
from the title and the abstract using a bidirectional LSTM. We use multi-level dilated
convolution to capture semantic units in the abstract channel. This module combines a
hybrid of information, at the levels of words and the latent representations of the semantic
units, to capture local correlations and long-term dependencies from text.

2. Our proposed method appears to be the first to employ graph convolutional neural net-
works that integrate information from the complete MeSH hierarchy to map label repre-
sentations.

3. We propose a novel dynamic knowledge-enhanced mask attention mechanism which in-
corporates external journal-MeSH co-occurrence information and document similarity
in the PubMed database to constrain the large universe of possible labels in the MeSH
indexing task.

4. We evaluate our model on a corpus of PMC articles. Our proposed method consistently
achieves superior performance over previous approaches on a number of measures.

3.3 Proposed Model

MeSH indexing can be regarded as amulti-label text classification problem inwhich, given a set
of biomedical documents 𝒳 = {𝑥1, 𝑥2, ..., 𝑥𝑛} and a set of MeSH labels 𝒴 = {𝑦1, 𝑦2, ..., 𝑦𝐿},
multi-label classification learns the function 𝑓 ∶ 𝒳 → {0, 1}𝒴 using the training set 𝒟 =(𝑥𝑖, 𝑌𝑖), 𝑖 = 1, ..., 𝑛, where 𝑛 is the number of documents in the set; 𝑌𝑖 is the subset of the full
label set that is associated with document 𝑥𝑖.

Figure 3.1 illustrates our overall architecture. Our model is composed of a multi-channel
document representation module, a label features learning module, a dynamic semantic mask
attention module, and a classifier.
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Figure 3.1: Model Architecture - There are three main components in our method. First, a
multi-channel document representation module operates on the title and abstract of an input
article. Second, a 2-layer GCN creates label vectors. Lastly, a masked attention component
calculates the label-specific attention vectors used for predictions.

3.3.1 Multi-channel Document Representation Module

The multi-channel document representation module has two input channels – the title channel
and the abstract channel, for each type of text. These two texts are represented by two embed-
ding matrices, namely 𝐸title ∈ ℝ𝑑 , the word embedding matrix for the title, and 𝐸abstract ∈ ℝ𝑑 ,
the word embedding matrix for the abstract. We first apply a bidirectional Long Short-Term
Memory (biLSTM) network [47] in both channels to encode the two types of text and to gen-
erate the hidden representations ℎ𝑡 for each word at time step 𝑡. The computations of ⃖⃖⃗ℎ𝑡 and ⃖⃖ ⃖ℎ𝑡
are illustrated below: ⃖⃖⃗ℎ𝑡 = 𝐿𝑆𝑇 𝑀(𝑥𝑡, ⃖⃖⃖⃖⃖⃗ℎ𝑡−1, 𝑐𝑡−1)⃖⃖ ⃖ℎ𝑡 = 𝐿𝑆𝑇 𝑀(𝑥𝑡, ⃖⃖ ⃖⃖⃖⃖ℎ𝑡−1, 𝑐𝑡−1) (3.1)

We then obtain the final representation for each word by concatenating the hidden states from
both directions, namely ℎ𝑡 = [⃖⃖⃗ℎ𝑡 ∶ ⃖⃖ ⃖ℎ𝑡] and ℎ𝑡 ∈ ℝ𝑙×2𝑑ℎ , where 𝑙 is the number of words in the
text and 𝑑ℎ is the hidden dimensions. The biLSTM returns context-aware representations 𝐻title
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and 𝐻abstract for the title and abstract channels, respectively:

𝐻title = 𝑏𝑖𝐿𝑆𝑇 𝑀(𝐸title)𝐻abstract = 𝑏𝑖𝐿𝑆𝑇 𝑀(𝐸abstract) (3.2)

In order to generate high-level semantic representations of abstracts, we introduce a dilated con-
volutional neural network (DCNN) to the abstract channel. The concept of dilated convolution
was originally developed for wavelet decomposition [49], and has been applied to NLP tasks
such as neural machine translation [57] and text classification [71]. The main idea of DCNN
is to insert ‘holes’ in convolutional kernels, which extract the longer-term dependencies and
generate higher-level representations, such as phases and sentences. Following Lin et al. [71],
we apply a multi-level DCNN with different dilation rates on top of the hidden representations
generated by the biLSTM on the abstract channel. Small dilation rates capture phrase-level in-
formation, and large ones capture sentence-level information. The DCNN returns the semantic
features of the abstract channel 𝐷abstract ∈ ℝ(𝑙−𝑠+1)×2𝑑ℎ , where 𝑠 is the width of the convolution
kernels.

3.3.2 Label Features Learning Module

MeSH taxonomies are organized in 16 categories, and each is further divided into subcategories.
Within each subcategory, MeSH terms are ordered hierarchically from most general to most
specific, up to 13 hierarchical levels. As the MeSH hierarchy is important to our task, we use a
two-layer GCN to incorporate the hierarchical parent and child information among labels. We
first use the MeSH descriptors to generate a label feature vector for each MeSH term. Each
label vector is calculated by averaging the word embedding of each word in its descriptors:

𝑣𝑖 = 1𝑁 ∑𝑗∈𝑁 𝑤𝑗, 𝑖 = 1, 2, ..., 𝐿, (3.3)

where 𝑣𝑖 ∈ ℝ𝑑 , 𝑁 is the number of words in its descriptor, and 𝐿 is the number of labels. In the
graph structure, we formulate each node as a MeSH label, and edges represent relationships in
the MeSH hierarchy. The edge types of a node include edges from its parent, from its children,
and from itself. At each GCN layer, the node feature is aggregated by its parent and children
to form the new label feature for the next layer:

ℎ𝑙+1 = 𝜎(𝐴 ⋅ ℎ𝑙 ⋅ 𝑊 𝑙), (3.4)
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where ℎ𝑙 and ℎ𝑙+1 ∈ ℝ𝐿×𝑑 indicate the node presentation of the 𝑙𝑡ℎ and (𝑙 + 1)𝑡ℎ layers, 𝜎(⋅)
denotes an activation function, 𝐴 is the adjacency matrix of the MeSH hierarchical graph, and𝑊 𝑙 is a layer-specific trainable weight matrix. We then concatenate the label feature vectors
from descriptors in Equation 3.3 with GCN label vectors to form:

𝐻label = [𝑣 ∶ ℎ𝑙+1], (3.5)

where 𝐻label ∈ ℝ𝐿×2𝑑 is the final label vector.

3.3.3 Dynamic Knowledge-enhanced Mask Attention Module

In the dynamic knowledge-enhanced mask attention module, we integrate external knowledge
from outside sources to generate a unique mask for each article dynamically. We consider only
a subset of the full MeSH list by employing a masked label-wise attention that computes the
element-wise multiplication of a mask matrix and an attention matrix for two reasons. First,
the MeSH terms are numerous and have widely varying occurrence frequencies. Therefore, for
each MeSH label, there are far more negative examples than positive ones. For each article,
selecting a subset ofMeSH labels, namely aMeSHmask, down-samples the negative examples,
which forces the classifier to concentrate on the candidate labels. Second, the issue with the
original attention mechanism [8] is that the classifier focuses on spotting relevant information
for all predicted labels, which is a lack of pertinence. Using a masked label-wise attention
allows the classifier to find relevant information for each label inside the MeSH mask.

The dynamic ensures that the module generates a unique MeSH mask for each article,
specifically. To generate the MeSH masks, we consider two external knowledge sources: jour-
nal information and document similarity. The journal information refers to the name of the
journal in which an article was published, which usually defines a specific research domain.
We expect that articles published in the same journal tend to be indexed with MeSH terms that
are relevant to the journal’s research focus. We build a journal–MeSH label co-occurrence ma-
trix using conditional probabilities, i.e., 𝑃 (𝐿𝑖 | 𝐽𝑗), which denote the probabilities of occurrence
of label 𝐿𝑖 when journal 𝐽𝑗 appears.

𝑃 (𝐿𝑖 | 𝐽𝑗) = 𝐶𝐿𝑖∩𝐽𝑗𝐶𝐽𝑗
, (3.6)

where 𝐶𝐿𝑖∩𝐽𝑗 denotes the number of co-occurrences of 𝐿𝑖 and 𝐽𝑗 , and 𝐶𝐽𝑗 is the number of
occurrences of 𝐽𝑗 in the training set. To avoid the noise of rare co-occurrences, a threshold 𝜏
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filters noisy correlations. 𝑀𝑗 denotes the MeSH label set for journal 𝑗.
𝑀𝑗 = {𝐿𝑘|𝑃 (𝐿𝑘|𝐽𝑗) > 𝜏, 𝑘 = 1, ..., 𝐿} (3.7)

We then use 𝑘-nearest neighbors (KNN) to choose a subset of specific MeSH terms for each
article by referring to document similarity. We represent each article by the IDF-weighted sum
of word embeddings in the abstract:

𝐷idf = ∑𝑛𝑖=1 IDF𝑖 × 𝑒𝑖∑𝑛𝑖=1 IDF𝑖 , (3.8)

where 𝑒𝑖 is the word embedding, and IDF𝑖 is the inverse document frequency of the word. Next,
we use KNN based on cosine similarity between abstracts to find the 𝐾 nearest neighbours for
each article in the training set. To form the unique MeSH mask for article 𝑎, we collect MeSH
terms 𝑀𝑎 from the neighbours of 𝑎:

𝑀𝑎 = 𝑇1 ∪ 𝑇2 ∪ ... ∪ 𝑇𝐾, (3.9)

where 𝑇𝑖 is theMeSH label set from the 𝑖𝑡ℎ neighbour of article 𝑎. We then join theMeSH labels
generated from journal–MeSH co-occurrence for the journal that article 𝑎 has been published
in together with the MeSH terms obtained from the neighbours of article 𝑎 to form the final
MeSH mask label set 𝑀 : 𝑀 = 𝑀𝑗 ∪ 𝑀𝑎 (3.10)

Then we assign a value to each label in 𝒴 to form 𝑀vec ∈ [0, 1]𝒴 . If the label appears in 𝑀 ,
we assign 1, 0 otherwise. The label order of 𝑀vec is the same as 𝐻label.

We calculate the similarity between MeSH terms and the texts in two channels by applying
masked label-wise attention.

𝐻masked = 𝐻label ⊙ 𝑀vec𝛼title = Softmax(𝐻title ⋅ 𝐻masked)𝛼abstract = Softmax(𝐷abstract ⋅ 𝐻masked),
(3.11)

where ⊙ denotes element-wise multiplication, 𝐻masked denotes the masked label features, and𝛼title and 𝛼abstract measure how informative each text fragment is for each label in the title and
abstract channels, respectively. We then generate the label-specific title and abstract represen-
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tations, respectively: 𝑐title = 𝛼𝑇
title ⋅ 𝐻title𝑐abstract = 𝛼𝑇

abstract ⋅ 𝐷abstract, (3.12)

such that 𝑐title ∈ ℝ𝐿×2𝑑 , and 𝑐abstract ∈ ℝ𝐿×2𝑑 . We sum up the representations in the title and
abstract channels to form the document vector for each article:

𝐷 = 𝑐title + 𝑐abstract (3.13)

3.3.4 Classifier

We gain scores for each MeSH term 𝑖:
̂𝑦𝑖 = 𝜎(𝐷 ⊙ 𝐻label), 𝑖 = 1, 2, ..., 𝐿, (3.14)

where 𝜎(⋅) represents the sigmoid function. We train our model using the multi-label binary
cross-entropy loss [88]:

𝐿 = 𝐿
∑𝑖=1[−𝑦𝑖 ⋅ 𝑙𝑜𝑔( ̂𝑦𝑖) − (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 − ̂𝑦𝑖)], (3.15)

where 𝑦𝑖 ∈ [0, 1] is the ground truth of label 𝑖, and ̂𝑦𝑖 ∈ [0, 1] denotes the prediction of label 𝑖
obtained from the proposed model.

3.4 Experiment

3.4.1 Datasets

We follow Dai et al. [28] and You et al. [145] by using the PMC FTP service8 [25] and down-
loading PMC Open Access Subset (as of Sep. 2021), totalling 3,601,092 citations. We also
download the entire MEDLINE collection based on the PubMed Annual Baseline Repository
(as of Dec. 2020) and obtain 31,850,051 citations with titles and abstracts. In order to reduce
bias, we only focus on articles that are annotated by human curators (not annotated by a ‘cu-
rated’ or ‘auto’modes inMEDLINE).We thenmatch PMC articles with the citations in PubMed
to PMID and obtain a set of 1,284,308 citations. Out of these PMC articles, we use the latest
20,000 articles as the test set, the next latest 200,000 articles as the validation data set, and the

8https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC
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remaining 1.24M articles as the training set. In total, 28,415 distinct MeSH terms are covered
in the training dataset.

Hyper-parameters Values
embedding size 200
hidden size 200

prediction threshold 0.0005
dropout 0.2, 0.5

dilation rate [1, 2, 3], [2, 5, 9]
learning rate 0.001, 0.0001, 0.0003, 0.0005
decay rate 0.8, 0.9
batch size 8, 16, 32

Table 3.1: Hyper-parameter settings. Bold: the optimal values.

3.4.2 Implementation Details

We implement our model in PyTorch [91]. For pre-processing, we removed non-alphanumeric
characters, stop words, punctuation, and single character words, and we converted all words
to lowercase. Titles longer than 100 characters and abstracts longer than 400 characters are
truncated. We use pre-trained biomedical word embeddings (BioWordVec) [161], and the em-
bedding dimension is 200. To avoid overfitting, we use dropout directly after the embedding
layer with a rate of 0.2. The number of units in hidden layers are 200 in all three modules. We
use a three-level dilated convolution with dilation rate [1, 2, 3] and select 1000 nearest docu-
ments to generate MeSH masks for each article. We use FAISS [56] to find similar documents
for each citation among the training set, and the whole process takes 10 hours. We use Adam
optimizer [61] and early stopping strategies. The learning rate is initialized to 0.0003, and the
decay rate is 0.9 in every epoch. The gradient clip is applied to the maximum norm of 5. The
batch size is 32. The model trained for 50 hours on a single NVIDIA V100 GPU. The de-
tailed hyper-parameter settings are shown in Table 3.1. The code for our method is available at
https://github.com/xdwang0726/KenMeSH.

3.4.3 Evaluation Metrics

We use three main evaluation metrics to test the performance of MeSH indexing systems:
Micro-average measure (MiM), example-based measure (EBM), and ranking-based measure
(RBM), where MiM and EBM are commonly used in MeSH indexing tasks and RBM is com-
monly used in evaluating multi-label classification. Micro-average F-measure (MiF) aggregate
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the global contributions of all MeSH labels and then calculate the harmonic mean of micro-
average precision (MiP) and micro-average recall (MiR), which are heavily influenced by fre-
quent MeSH terms. Example-based measures are computed per data point, which computes
the harmonic mean of standard precision (EBP) and recall (EBR) for each data point. In the
ranking-based measure, precision at 𝑘 (𝑃 @𝑘) shows the number of relevant MeSH terms that
are suggested in the top-𝑘 recommendations of the MeSH indexing system, and recall at 𝑘
(𝑅@𝑘) indicates the proportion of relevant items that are suggested in the top-𝑘 recommenda-
tions.

We select final MeSH labels whose predicted probability is larger than a tuned threshold 𝑡𝑖:

MeSH𝑖 = ⎧⎪⎨⎪⎩
̂𝑦𝑖 ≥ 𝑡𝑖, 1
̂𝑦𝑖 < 𝑡𝑖, 0 (3.16)

where 𝑡𝑖 is the threshold for MeSH term 𝑖. We compute optimal threshold for each MeSH term
on the validation set following Pillai et al. [94] that tunes 𝑡𝑖 by maximizing MiF:

𝑡𝑖 = argmax
T

MiF(T), (3.17)

where T denotes all possible threshold values for label 𝑖.
3.5 Results and Ablation Studies

Weevaluate our proposedmodel with five state-of-the-art models: MTI, DeepMeSH, FullMeSH,
BERTMeSH andHGCN4MeSH.Among these,MTI, DeepMeSH, BERTMeSH, andHGCN4MeSH
are trained with abstracts and titles only; FullMeSH (Full) and BERTMeSH (Full) are trained
with full PMC articles. Our proposed model is trained on titles and abstracts, and is tested using
20,000 of the latest articles. We mainly focus on MiF, which is the main evaluation metric in
MeSH indexing task.

We compare our model against previous related systems on micro-average measure and
example-bases measure in Table 3.2. Each row in the table shows all evaluation metrics on
a specific method, where the best score for each metric is indicated. As reported, our model
achieves the best performance on most evaluation metrics, expect MiR and EBR, on which
BERTMeSH (Full) achieves the best performance. This is because that BERTMeSH (Full) is
trained on full text articles, which uses much more content information in the articles than ours.
Our model outperforms the subset of systems that were trained only on the abstract and the title
– MTI, HGCN4MeSH, DeepMeSH and BERTMeSH in all metrics. Most importantly, there is



Chapter 3. Knowledge-grounded Attention 55

Method Micro-average Measure Example Based Measure
MiF MiP MiR EBF EBP EBR

MTI 0.390 0.379 0.402 0.393 0.378 0.408
HGCN4MeSH 0.524 0.763 0.399 0.529 0.762 0.405
DeepMeSH 0.639 0.669 0.612 0.631 0.667 0.627
BERTMeSH 0.667 0.696 0.640 0.657 0.700 0.650

FullMeSH (Full) 0.651 0.683 0.623 0.643 0.680 0.639
BERTMeSH (Full) 0.685 0.713 0.659 0.675 0.717 0.667

KenMeSH 0.745 0.864 0.655 0.738 0.863 0.644±0.021 ±0.011 ±0.027 ±0.018 ±0.011 ±0.022
Table 3.2: Comparison to previous methods across two main evaluation metrics. Methods
marked as Full are trained on entire PMC articles, others on abstracts and titles only. Bold:
best scores in each column.

improvement in precision without a decrease in recall. Specifically, our model achieves the best
MiF with , being followed by BERTMeSH (0.667), DeepMeSH (0.639) and HGCN4MeSH
(0.524). Comparing with systems trained on full articles indicates that our model achieves
the best MiF, and is only slightly below BERTMeSH (Full) on MiR (0.4 percentage points).
Although our model is trained only on the abstract and title (which may suggest that it captures
less complex semantics), it performs very well against more complex systems. Furthermore,
we compare the performance of our model with HGCN4MeSH on ranking-based measures that
do not require a specific threshold. The results, summarized in Table 3.3, show that our model
always performs better than HGCN4MeSH with up to almost 18% improvement.

Ranking Based MethodsMeasure
HGCN4MeSH KenMeSH

P@k

𝑃 @1 0.961 0.993±0.001𝑃 @3 0.870 0.972±0.005𝑃 @5 0.788 0.937±0.010𝑃 @10 0.620 0.801±0.015𝑃 @15 0.501 0.659±0.013
R@k

𝑅@1 0.077 0.081±0.000𝑅@3 0.204 0.234±0.001𝑅@5 0.302 0.370±0.005𝑅@10 0.460 0.603±0.012𝑅@15 0.549 0.722±0.014
Table 3.3: Comparison to HGCN4MeSH across ranking based measures. Bold: best scores in
each row.

As the frequency of different MeSH terms are imbalanced, we are interested in examining



Chapter 3. Knowledge-grounded Attention 56

(a) MeSH Terms Distribution (b) MeSH Performance on MiF (c) MeSH Performance on EBF

Figure 3.2: Performance comparison of our model and MTI on MeSH terms at different fre-
quency

the efficiency of our model on infrequent MeSH terms. We divideMeSH terms into four groups
based on the number of occurrences in the training set: (0, 100), [100, 1000), [1000, 5000),
and [5000, ). Figure 3.2a shows the distribution of MeSH terms and percent of occurrence
among the four divided groups in the training set, which indicates that the distribution of MeSH
frequency is highly biased and it falls into a long-tail distribution. Figure 3.2b and 3.2c show
the performance of our model comparing to MTI baseline in the four MeSH groups on MiF and
EBF respectively. Our model obtains substantial improvements among frequent and infrequent
labels on both MiF and EBF.

We are interested in studying how the effectiveness and robustness of our model are due to
the various modules, such as the multi-channel mechanism, the dilated CNN, the label graph,
and masked attention. To further understand the impacts of these factors, we conduct controlled
experiments with four different settings: (a) examining a single channel architecture by con-
catenating the title and abstract as input into the abstract channel; (b) removing the dilated CNN;
(c) replacing the label feature learning module with a fully connected layer; and (d) removing
the masked attention module. The influence of each of these modules can then be evaluated
individually. The results are summarized in Table 3.4.

Impacts on Multi-channel Settings As shown in Table 3.4, the multi-channel setting out-
performs the single channel one. The reason for this could be that the single channel model
misses some important features in titles and abstracts in the LSTM layer. LSTM has the ca-
pability to learn and remember over long sequences of inputs, but it can be challenging to use
when facing very long input sequences. Concatenating the title and abstract into one longer
sequence may hurt the performance of LSTM. To be more explicit, the single channel model
may be remembering insignificant features in the LSTM layer when dealing with longer se-
quences. Therefore, extracting information from the title and the abstract separately is better
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Methods precision @ k Micro-average Measure Example Based Measure𝑝@1 𝑝@3 𝑝@5 MiF MiP MiR EBF EBP EBR
Full Model 0.993 0.972 0.936 0.745 0.864 0.655 0.738 0.863 0.644
Ablation-(a) 0.983 0.938 0.882 0.672 0.752 0.609 0.680 0.751 0.621
Ablation-(b) 0.988 0.952 0.900 0.687 0.788 0.551 0.695 0.788 0.622
Ablation-(c) 0.968 0.893 0.816 0.554 0.789 0.427 0.548 0.791 0.419
Ablation-(d) 0.987 0.949 0.896 0.674 0.806 0.579 0.681 0.805 0.591

Table 3.4: Ablation experiment results. (a) Without multi-channel settings, texts and abstracts
are in the same channel. (b) Without DCNN on the abstract channel. (c) Without label feature
module. (d) Without semantic mask attention module. Bold: best scores.

than directly concatenating the information.

Impacts on Dilated Semantic Feature Extractions As reported in Table 3.4, the perfor-
mance drops when removing the dilated CNN layer. The reason for this seems to be that multi-
level dilated CNNs can extract high-level semantic information from the semantic units that are
often wrapped in phrases or sentences, and then capture local correlation together with longer-
term dependencies from the text. Compared with word-level information extracted from the
biLSTM layer, high-level information extracted from the semantic units seems to provide bet-
ter understanding of the text, at least for the purposes of labelling.

Impacts on Learning Label Features As shown in Table 3.4, not learning the label fea-
tures has the largest negative impacts on performance especially for recall (and subsequently F-
measure). By removing the label features, the model pays more attention to the frequent MeSH
terms and misclassifies infrequent labels as negative. This indicates that label features learned
through GCN can capture the hierarchical information between MeSH terms, and MeSH in-
dexing for infrequent terms can benefit from this hierarchical information.

Impacts on Dynamic Knowledge-enhanced Mask Attention Table 3.4 shows a perfor-
mance dropwhen removing themasked attention layer, suggesting that the attentionmechanism
has positive impacts on performance. This result further suggest that the masked attention takes
advantage of incorporating external knowledge to alleviate the extremely large pool of possible
labels. To select the proper mask for each article, two hyperparameters are used: threshold 𝜏 for
journal-MeSH occurrence and the number of nearest articles 𝐾 . With 𝜏 = 0.5 and 𝐾 = 1000,
all of the gold-standard MeSH labels are guaranteed to be in the mask.

Thresholds 𝑡𝑖 also have a huge impact on multi-label evaluation measures. We test the
model’s performance on the example-based measure and the micro-average measure under dif-
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Threshold Values Micro-average Measure Example Based Measure
MiF MiP MiR EBF EBP EBR

0.5 0.707 0.908 0.579 0.716 0.907 0.592
0.05 0.739 0.864 0.645 0.747 0.865 0.658
0.005 0.741 0.858 0.652 0.749 0.859 0.664
0.0005 0.745 0.864 0.655 0.738 0.863 0.644

Table 3.5: Comparison to different threshold values across two main evaluation metrics.

ferent thresholds, and the results are summarized in Table 3.5. Our goal is to obtain amaximized
MiF.

3.6 Conclusion

We propose a novel end-to-end model integrating document features and label hierarchical fea-
tures for MeSH indexing. We use a novel dynamic knowledge-enhanced mask attention mech-
anism to handle the large universe of candidate MeSH terms and employ GCN in extracting
label correlations. Experimental results demonstrate that our proposed model significantly out-
performs the baseline models and provides especially large improvements on infrequent MeSH
labels.

In the future, we believe two important research directions will lead to further improve-
ments. First, we plan to explore full text articles, which contain more information, to see
whether our model takes advantage of the full text to improve the performance of large-scale
MeSH indexing. Second, we are interested in integrating knowledge from the Unified Medi-
cal Language System (UMLS) [14], a comprehensive ontology of biomedical concepts, in our
model.



Chapter 4

Knowledge-grounded Retrieval

This chapter introduces the second knowledge integration method, knowledge-grounded re-
trieval, which is based on our previous publication titled “Multi-stage Retrieve and Re-rank
Model for Automatic Medical Coding Recommendation” that appeared in the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL) [118]. This method involves enhancing the retrieval process
by incorporating auxiliary knowledge, which helps in dealing with long-tailed distributions of
labels by shortening the candidate label set using auxiliary knowledge during the retrieval stage.

4.1 Abstract

The International Classification of Diseases (ICD) serves as a definitive medical classification
system encompassing a wide range of diseases and conditions. The primary objective of ICD
indexing is to allocate a subset of ICD codes to a medical record, which facilitates standard-
ized documentation and management of various health conditions. Most existing approaches
have suffered from selecting the proper label subsets from an extremely large ICD collection
with a heavy long-tailed label distribution. In this paper, we leverage a multi-stage “retrieve
and re-rank” framework as a novel solution to ICD indexing, via a hybrid discrete retrieval
method, and re-rank retrieved candidates with contrastive learning that allows the model to
make more accurate predictions from a simplified label space. The retrieval model is a hybrid
of auxiliary knowledge of the electronic health records (EHR) and a discrete retrieval method
(BM25), which efficiently collects high-quality candidates. In the last stage, we propose a la-
bel co-occurrence guided contrastive re-ranking model, which re-ranks the candidate labels by
pulling together the clinical notes with positive ICD codes. Experimental results show the pro-
posedmethod achieves state-of-the-art performance on a number of measures on theMIMIC-III
benchmark.

59
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4.2 Introduction

Electronic health records1 (EHRs) contain a comprehensive repository of essential administra-
tive and clinical data pertinent to a person’s care within a specific healthcare provider setting. In
order to conduct meaningful statistical analysis, these EHR data are annotated with structured
codes in a classification system known as medical codes. The International Classification of
Diseases2 (ICD) is one of the most widely-used coding systems, and it provides a taxonomy of
classes, each uniquely identified by a code assigned to an episode of patient care.

The task of medical coding associates ICD codes with EHR documents. The status quo
of assigning medical codes is a manual process, which is labour-intensive, time-consuming,
and error-prone [133]. To reduce coding errors and cost, the demand for automated medical
coding has become imperative. Previous deep learning approaches regarded medical coding as
an extreme multi-label text classification problem [104, 87, 10, 135, 149], where an encoder is
typically employed to learn the representations of the clinical notes and a label-specific binary
classifier is subsequently constructed on top of the encoder for label predictions. However,
some remaining difficulties have still posed immense challenges. First, clinical documents are
lengthy (containing on average 1596 words in the MIMIC-III dataset) and noisy (including
terse abbreviations, symbols, and misspellings). Second, the label set is extremely large and
complex; for instance, in the 10𝑡ℎ ICD edition, there are over 130,000 codes3. Third, the dis-
tribution of ICD codes is extremely long-tailed; while some ICD codes occur frequently, many
others seldom appear, if at all, because of the rarity of the diseases. For instance, among the
942 unique 3-digit ICD codes in the MIMIC-III dataset [55], the ten most common codes ac-
count for 26% of all code occurrences and the 437 least common codes account for only 1% of
occurrences [9].

To address the aforementioned challenges, we propose a novel multi-stage retrieve and
re-rank framework, where the goal is to first generate a curated ICD list and then provide sug-
gested ICD codes for a given medical record. In contrast to prior approaches, for instance,
CAML[87], MultiResCNN [67] and KEPTLongformer [140], that primarily consider ICD in-
dexing as a multi-label text classification task, we introduce a new perspective that concep-
tualizes the task as a recommendation problem. More precisely, we first conduct a two-stage
retrieval process leveraging auxiliary knowledge and BM25 to obtain a small subset of can-
didate ICD codes from the large number of labels to alleviate issues caused by the label set
and imbalanced label distribution. EHR auxiliary knowledge holds significant potential, but it
has often been underutilized in prior studies. In addition to clinical texts, our focus centers on

1https://www.cms.gov/Medicare/E-Health/EHealthRecords
2https://www.who.int/standards/classifications/classification-of-diseases
3https://www.cdc.gov/nchs/icd/icd10cm_pcs.htm
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Figure 4.1: An example of a medical record from the MIMIC-III dataset which includes the
discharge summary, assigned ICD codes and auxiliary knowledge. We colour each code and
its corresponding mentions in the discharge summary and auxiliary knowledge. We use the
auxiliary knowledge of the notes to retrieve the candidate subset of the label space.

two code terminologies: Diagnosis-Related Group codes4 (DRG) and Current Procedural Ter-
minology codes5 (CPT), as well as patient prescribed medications. These external sources can

4https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/MS-DRG-
Classifications-and-Software

5https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
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serve as robust indicators for predicting ICD codes. For instance, within a drug prescription, the
presence of a medication like “Namenda” can strongly imply a likelihood of Alzheimer’s dis-
ease, as depicted in Figure 4.1. Subsequently, we design a re-ranking model via co-occurrence
guided contrastive learning to refine the candidate set, which can deal with lengthy clinical
notes and generate semantically meaningful representations via the pre-trained language model
and leverage code co-occurrence to generate co-occurrence-aware label representations. The
co-occurrence of codes in clinical texts yields valuable insights into the interconnections among
different diseases or conditions. As illustrated in Figure 4.1, the code for “Dementia in con-
ditions classified elsewhere without behavioral disturbance” (294.10) can be easily found in
the text; however, inferring the code “Alzheimer’s disease” (331.0) presents a more intricate
challenge with less explicit clues. Fortunately, a robust association exists between these two
diseases, with “Alzheimer’s disease” serving as a prevalent cause of “dementia”. This linkage
can be effectively captured as these two diseases frequently co-occur within the clinical notes.
This empowers us to gain a deeper understanding of the contexts, which could mitigate the
limitation of long-tailed label distributions as rare labels might be suggested based on these
relationships. We train the re-ranking model via contrastive learning as it has strong discrim-
inative power that can extract features uniquely associated with each class, which empowers
the model to make more accurate recommendations.

To summarize, the major contributions of this paper are:

1. We formalize the medical coding task as a recommendation problem and present a novel
multi-stage retrieve and re-rank framework to make more accurate predictions by ruling
out the irrelevant codes before ranking, rather thanmaking direct predictions on the entire
large label set.

2. To address the large label set and long-tailed distribution issues, in the two-stage retrieval
process, we use external knowledge and BM25 to retrieve a subset of candidate labels
from the large label space. We further leverage the code co-occurrence in the re-ranking
stage to capture the internal connections among the codes.

3. We apply contrastive learning in the re-ranking stage. It effectively pulls together the
representations of a clinical note and its corresponding golden truth labels, which allows
the model to make more accurate predictions.
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Figure 4.2: Overview of the proposed multi-stage retrieve and re-rank framework. The model
first leverages auxiliary knowledge and BM25 to retrieve a candidate list from the full label
space, then use a re-rank model that leverages the code co-occurrence guided contrastive learn-
ing to generate the final relevant labels.

4.3 Method

4.3.1 A Multi-stage Framework

We formulate the medical coding task as a recommendation task, given medical records 𝒟 ={𝑑1, 𝑑2, ..., 𝑑𝑁} and a set of ICD codes 𝒴 = {𝑦1, 𝑦2, ..., 𝑦𝐿} with associated external auxil-
iary knowledge 𝒦 . We construct the label information as a graph structure 𝒢 , using code
co-occurrence relations, and we train a multi-stage recommender system ℛ, based on the text
information 𝒟 , constructed label information 𝒢 , and the external auxiliary knowledge 𝒦 . The
system ℛ needs to predict the relevant labels given a document 𝑑 ∉ 𝒟 .

In this section, we present a multi-stage retrieve and re–rank framework for ICD indexing,
which is shown in Figure 4.2. Our model is composed of a two-stage retrieval process that uses
auxiliary knowledge of the EHR and BM25 to obtain a shortened candidate list, and a re-ranking
process that conducts code co-occurrence guided contrastive learning to further improve the
recommended ICD list.

4.3.2 The Retrieval Stage

Using Auxiliary Knowledge To retrieve the candidate list using auxiliary knowledge, we
incorporate insights from three external sources of knowledge: diagnosis-related group (DRG)
codes, current procedural terminology (CPT) codes, and medications prescribed to patients.
DRG codes are used by hospitals and healthcare providers to classify patients into groups based
on their diagnosis, treatment, and length of stay. These codes are used for reimbursement pur-
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poses, and they help determine the amount that healthcare providers are remunerated for their
services. DRG codes are further classified into medical DRGs (which exclude operating room
procedures) and surgical DRGs. CPT codes are used to describe medical procedures and ser-
vices provided by healthcare providers. They provide a standardized way of documenting and
billing for medical services. CPT codes are used by insurance companies to determine reim-
bursement rates for healthcare providers. Such code terminologies significantly contribute to
the refinement of ICD indexing. Moreover, themedications prescribed to patients offer a wealth
of predictive information for ICD codes. These prescriptions often mark the conclusion of a
patient’s care episode. As patients approach the conclusion of their treatment, the prescribed
medications serve a critical role in managing their conditions. Consequently, these medications
emerge as potent indicators of underlying health conditions or diagnoses. Their inclusion in the
retrieval process greatly enhances the accuracy and relevance of the corresponding ICD code
recommendations. The aforementioned auxiliary knowledge, such as DRG codes, CPT codes,
and drug prescriptions, typically appears in the EHR data and is readily accessible.

Given a clinical note 𝑑, we retrieve the candidate ICD list by calculating the auxiliary knowl-
edge and label co-occurrence matrix using conditional probabilities, i.e., 𝑃 (𝑦𝑖 | 𝑘𝑗), which de-
note the probabilities of occurrence of ICD 𝑦𝑖 when auxiliary knowledge 𝑘𝑗 appears.

𝑃 (𝑦𝑖 | 𝑘𝑗) = 𝐶𝑦𝑖∩𝑘𝑗𝐶𝑘𝑗
, (4.1)

where 𝐶𝑦𝑖∩𝑘𝑗 denotes the number of co-occurrences of 𝑦𝑖 and 𝑘𝑗 , and 𝐶𝑘𝑗 is the number of
occurrences of 𝑘𝑗 in the training set. To avoid the noise of rare co-occurrences, a threshold 𝜂
filters noisy correlations. ̃𝐾𝑗 denotes the selected ICD set for auxiliary knowledge 𝑗.

̃𝐾𝑗 = {𝑦𝑖|𝑃 (𝑦𝑖|𝑘𝑗) > 𝜂, 𝑖 = 1, ..., 𝐿}, (4.2)

where 𝐿 is the total number of ICD codes in the label set, and 𝜂 = 0.005. We then join the ICD
codes retrieved from the auxiliary knowledge co-occurrences for the DRG codes, CPT codes
and prescribed drugs to form the candidate ICD subset 𝒞auxiliary:

𝒞auxiliary(𝑑) = ̃𝐾DRG(𝑑) ∪ ̃𝐾CPT(𝑑) ∪ ̃𝐾drug(𝑑), (4.3)

where 𝒞auxiliary ⊆ 𝒴 .

Using BM25 The retrieval stage using auxiliary knowledge incorporates the co-relations be-
tween ICD codes and external knowledge, but ignores the relationship between clinical texts
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and labels. To increase the recall of the retrieval stage, we adopt BM25 [100] to allow lexical
matching between the medical documents and labels on the retrieved candidate list 𝒞auxiliary.
Given a medical record 𝑑 and an ICD code 𝑦, the score between 𝑑 and 𝑦 is calculated as:

BM25(𝑑, 𝑦) = ∑𝑤∈𝑑∩𝑡𝑦
IDF(𝑤) TF(𝑤,𝑡𝑦)⋅(𝑘1+1)

TF(𝑤,𝑡𝑦)⋅𝑘1(1−𝑏+𝑏 |𝒴|
avgdl ) , (4.4)

and
avgdl = 1|𝒴| ∑𝑦∈𝒴 |𝑡𝑦|, (4.5)

where 𝑡𝑦 represents the words in the label descriptors, |𝒴| is the length of the label descriptors
in words, avgdl is the average length of text information in the label.

When the BM25 score between 𝑑 and 𝑦𝑖 exceeds a certain threshold 𝜃, we add 𝑦𝑖 as a
candidate of 𝑑: 𝒞BM25(𝑑) = {𝑦𝑖|BM25(𝑑, 𝑦𝑖) > 𝜃, 𝑦𝑖 ∈ 𝒞auxiliary}, (4.6)

where 𝜃 = 200. Given a clinical note 𝑑, its candidate ICD set is first generated by using the
auxiliary knowledge in the retrieval stage and then reduced by using BM25, where 𝒞BM25 ⊆𝒞auxiliary and 𝒞auxiliary ⊆ 𝒴 .

4.3.3 The Re-ranking Stage

Clinical Text Encoder Encouraged by the success of the pre-trained language model Long-
former [11] in dealing with longer texts, we use Clinical-Longformer [69], specifically pre-
trained in the medical domain, as a text encoder. Given a medical document 𝑑 as input that
consists of a sequence of tokens:

𝑑 = {[CLS], 𝑥1, 𝑥2, ..., 𝑥𝑛−2, [SEP]}, (4.7)

where [CLS] and [SEP] are two special tokens that indicate the beginning and end of the se-
quence, and 𝑛 is the sequence length, the Clinical-Longformer encodes the tokens and outputs
the hidden representations for each token:

𝐻hidden = ClinicalLongformer(𝑑), (4.8)

where 𝐻hidden ∈ ℝ𝑛×ℎ𝑒 , and ℎ𝑒 is the hidden size. Following previous work [125, 140], we
use the hidden state of the [CLS] token to represent the document, which is the first token of𝐻hidden, denoted as 𝐻T.
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Label Encoder The occurrence of two ICD codes together in clinical texts frequently indi-
cates a simultaneous presence or a causal connection between specific diseases. This implies
that the codes representing these interconnected diseases often manifest together within clinical
notes. We employ a Graphormer [144] to incorporate the co-occurrence relationships among
ICD codes. Unlike the original GNN, Graphormer models graphs using Transformer layers
[114] with spatial encoding and edge encoding, which could effectively encode the structural
information (i.e., code co-occurrence) of a graph into the model. We create a directed code
co-occurrence graph 𝒢 = (𝒴, ℰ), where node set 𝒴 is the labels and edge set ℰ denotes the
co-occurrence relations. This graph is constructed using the code co-occurrence matrix, which
has been used as the edge matrix for the graph. We create the code co-occurrence matrix by us-
ing the correlated relationship between labels based on conditional probabilities. This approach
encapsulates the interdependence between various ICD codes in a quantifiable manner, offer-
ing valuable insights into the underlying connections among disease codes within the clinical
texts. To be more specific, we calculate the probability of occurrence of label 𝑦𝑗 when label 𝑦𝑖
appears as follows:

𝑃 (𝑦𝑗 | 𝑦𝑖) = 𝐶𝑦𝑖∩𝑦𝑗𝐶𝑦𝑖
(4.9)

where 𝐶𝑦𝑗∩𝑦𝑖 denotes the number of co-occurrences of 𝑦𝑖 and 𝑦𝑗 , and 𝐶𝑦𝑖 is the number of
occurrences of 𝑦𝑖 in the training set. To facilitate graph construction, we binarize the correlation
probability 𝑃 (𝑦𝑗 | 𝑦𝑖). This entails converting the probability values into binary values which
indicates whether a correlation exists (or not) between two labels. The operation can be written
as:

ℰ𝑖𝑗 = ⎧⎪⎨⎪⎩
0, if 𝑃 (𝑦𝑗 | 𝑦𝑖) < 𝜆
1, if 𝑃 (𝑦𝑗 | 𝑦𝑖) ≥ 𝜆, (4.10)

where ℰ is the binary correlation matrix that is used to form the edge set, and 𝜆 is the hyper-
parameter threshold to filter the noise edges. In our experiment, 𝜆 = 1, which means that a
edge is formed when the two labels in each pair always appear together.

To encode the graph 𝒢 , we first generate the initial node features using the ICD full de-
scriptors for each code 𝑦 via Clinical-Longformer:

y = {[CLS], 𝑥1, 𝑥2, ..., 𝑥𝑛−2, [SEP]},𝐻𝑣 = ClinicalLongformer(y), (4.11)

where y represents a sequence of words in the label descriptors of label 𝑦, 𝐻𝑣 ∈ ℝ𝑛×ℎ𝑒 , andℎ𝑒 is the hidden size. We use the hidden state of the first token ([CLS]) to represent the initial
node feature denoted as 𝐻𝑖

node for the 𝑖𝑡ℎ label.
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With all initial node features stacked as a matrix 𝑉 = {𝐻1
node, 𝐻2

node, ..., 𝐻𝐿
node}, where𝑉 ∈ ℝℎ𝑒×𝐿, a standard self-attention layer is then used for feature migration. To leverage

the structural information, a novel spatial encoding method is used to modify the Query-Key
product matrix 𝐴𝒢 in the self-attention layer:

𝐴𝒢
ij = (𝐻𝑖

node𝑊 𝒢𝑄 )(𝐻𝑗
node𝑊 𝒢𝐾 )⊺

√ℎ𝑒 + 𝑏𝜙(𝑦𝑖,𝑦𝑗), (4.12)

where 𝑊 𝒢𝑄 and 𝑊 𝒢𝐾 are layer-specific weight matrices, and 𝜙(𝑦𝑖, 𝑦𝑗) is the spatial relation
between 𝑦𝑖 and 𝑦𝑗 in graph 𝒢 , and the function 𝜙(⋅) is defined as the connectivity between the
nodes in 𝒢 , which is the co-occurrence relation among labels. 𝑏𝜙(𝑦𝑖,𝑦𝑗 ) is a learnable scalar
indexed by 𝜙(𝑦𝑖, 𝑦𝑗), and shared across all layers. The attention score 𝐴𝒢

ij , then, has been used
to aggregate the multi-head attention for the final output:

ℎ𝑙+1 = MHA(LN(ℎ𝑙)) + ℎ𝑙, (4.13)

where LN denotes the layer normalization, MHA denotes the multi-head self-attention, ℎ𝑙 andℎ𝑙+1 ∈ ℝ𝐿×ℎ𝑒 indicate the node representation of the 𝑙𝑡ℎ and (𝑙 + 1)𝑡ℎ layers. We use the last
layer to represent the label feature denoted as 𝐻𝐿. For more details on the full structure of
Graphormer, please refer to the original paper [144].

Contrastive Learning for Re-ranking Now, we construct a code co-occurrence guided con-
trastive learning framework. Unlike supervised learning that aims to understand “what is what”,
contrastive learning adopts a different perspective by learning “what is similar or dissimilar to
what”. In general, contrastive learning aims to pull together the positive samples in the em-
bedding space and push apart the negative ones, which could effectively construct meaningful
representations. By adopting contrastive learning, the re-ranking model has been enforced to
generate closely aligned representations of the clinical notes and their corresponding ground
truth labels within the embedding space.

In our problem setting, we focus on the distances between a clinical document and its asso-
ciated ICD codes, rather than solely between samples themselves. We consider the ground truth
labels as positive samples, while the negative samples comprise all the other labels within the
label space. Given 𝐻T, the representation for a clinical note 𝑑, and the set of representations of
its corresponding ICD codes denoted as 𝐻+

L , we denote the representations of 𝑁 negative ICD
codes randomly chosen from the ICD codes of the documents in the batch (batch size is 𝑁),
which are not ICD codes of document 𝑑, as 𝐻−

L . Contrastive learning aims to learn the effective
representations by pulling 𝑑 and 𝐻+

L together while pushing apart 𝑑 and 𝐻−
L , represented as 𝑆
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and 𝐷, respectively, in the equation below. The contrastive loss can be defined as:

ℒ = −log 𝑆/𝜏𝑆/𝜏 + 𝐷/𝜏 , (4.14)

where 𝑆 = exp(∑𝑐∈𝐿+
L
cos(𝐻T, 𝑐)/|𝐻+

L |), 𝐷 = exp(∑𝑐′∈𝐿−
L
cos(𝐻T, 𝑐′)/𝑁), and 𝜏 is the tem-

perature hyper-parameter. During inference, a comparison is conducted by measuring the dis-
tance between the query clinical note and ICD codes in the embedding space, which ranks the
ICD codes and then provides recommendations of the potential ICD candidates.

4.4 Experiments

4.4.1 Dataset and Pre-processing

We conduct our experiments on the publicly available benchmark MIMIC-III [55] dataset that
contains a variety of patient data types, including discharge summaries, demographic details,
interventions, laboratory results, physiologic measures, and medication information. Follow-
ing previous work, we are interested in the de-identified discharge summaries with annotated
ICD-9 codes. There are 52,722 discharge summaries and 8,922 unique ICD-9 codes in the
dataset. We mainly use three major data resources from the dataset: (1) de-identified discharge
summaries (from the NOTEEVENTS table); (2) ICD-9 codes (from DIAGNOSES_ICD and
PROCEDURES_ICD tables); and (3) auxiliary knowledge including DRG codes, CPT codes
and drug prescriptions (from DRGCODES, CPTEVENTS, and PRESCRIPTIONS tables).

To preprocess the clinical notes, we first remove all de-identified information, then replace
punctuation and atypical alphanumerical character combinations (e.g., ‘3a’, ‘4kg’) with white
space, and lowercase every token. We truncate the discharge summaries at a maximum length
of 4000 tokens. We follow Mullenbach et al. [87] to form two settings: full codes (MIMIC-
III-full) and top-50 frequent codes (MIMIC-III-top 50). In MIMIC-III-full, there are 47,719
discharge summaries for training, with 1,632 for validation, and with 3,372 for testing.

4.4.2 Implementation and Evaluation

We implement our model in PyTorch [91] on a single NVIDIA A100 40G GPU. We use the
Adam optimizer and early stopping strategies using Micro-F1 score over the validation set as
stopping criterion to avoid over-fitting. We set the initial learning rate as 5e-5 with batch size
16. We choose a learning rate scheduler which is warmed up with cosine decay, and the warm
up ratio is set to 0.1.
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Models
MIMIC-III-full MIMIC-III-top 50

AUC F1 P@K AUC F1 P@5Macro Micro Macro Micro P@8 P@15 Macro Micro Macro Micro
CAML [87] 0.895 0.986 0.088 0.539 0.709 0.561 0.875 0.909 0.532 0.614 0.609

DR-CAML [87] 0.897 0.985 0.086 0.529 0.690 0.548 0.884 0.916 0.576 0.633 0.618
MultiResCNN [67] 0.910 0.986 0.085 0.552 0.734 0.584 0.899 0.928 0.606 0.670 0.641

LAAT [115] 0.919 0.988 0.099 0.575 0.738 0.591 0.925 0.946 0.666 0.715 0.675
Joint-LAAT [115] 0.921 0.988 0.107 0.575 0.735 0.590 0.925 0.946 0.661 0.716 0.671
EffectiveCAN [77] 0.915 0.988 0.106 0.589 0.758 0.606 0.915 0.938 0.644 0.702 0.656

MSMN [149] 0.950 0.992 0.103 0.584 0.752 0.599 0.928 0.947 0.683 0.725 0.680
KEPTLongformer [140] - - 0.118 0.599 0.771 0.615 0.926 0.947 0.689 0.728 0.672

Ours 0.949 0.995 0.114 0.603 0.775 0.623 0.927 0.947 0.687 0.732 0.685

Table 4.1: Comparison to previous methods across three main evaluation metrics MIMIC-III
dataset. Bold: the optimal values.

For evaluating the performance of our proposed model, we employ three commonly used
metrics: F1-score (Micro and Macro), AUC (Micro and Macro), and precision at 𝐾 (P@K).

4.5 Results and Discussion

In order to asses the efficacy of our proposed framework, we compare with the existing state-of-
the-art (SotA) models, as outlined in Table 4.1. The top score for each metric is denoted in bold.
As shown, our model outperforms in the majority of evaluation metrics, with the exception of
Macro-AUC and Macro-F1 on the MIMIC-III-full and MIMIC-III-top 50. Notably, our model
achieves comparable performance on Micro-F1 and Micro-AUC, and improves precision at 𝐾
on bothMIMIC-III-full andMIMIC-III-top 50. These results provide solid evidence to validate
the efficacy of integrating auxiliary knowledge in the retrieval stage and leveraging code co-
occurrence guided contrastive learning in the re-ranking stage.

As the occurrence frequencies of each ICD codes are imbalanced, our focus lies in assessing
the efficacy of our model specifically on infrequently appearing ICD codes. We categorize the
ICD codes into four groups based on their occurrences in the training set: [0, 10), [10, 50), [50,
500), and [500, ). Figure 4.3 illustrates the distribution of ICD codes and their occurrence per-
centages across the four categorized groups in the training set, which show that the distribution
of ICD frequency is highly biased, conforming to a long-tail distribution. Figures 4.3b and 4.3c
present the performance of our model on MIMIC-III-full in comparison to the CAML base-
line [87] across the four ICD groups on Macro-AUC and Micro-F1, respectively. Our model
demonstrates significant improvements for both frequent and infrequent labels on both metrics.

To confirm the specific contributions of these modules in terms of enhancing both the effec-
tiveness and robustness of the model, we conduct ablation studies with three different settings:
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ICD Code Distribution

(a)

Performance on Macro-AUC

(b)

Performance on Micro-F1

(c)

Figure 4.3: (a) ICD code distribution. (b) Macro-AUC performance comparison of our model
and CAML on ICD codes at different frequency. (c) Micro-F1 performance comparison of our
model and CAML on ICD codes at different frequency.

Methods F1 P@K
Macro Micro P@8 P@15

Full Model 0.114 0.603 0.775 0.623
w/o auxiliary knowledge 0.097 0.579 0.748 0.587

embedded w/ Clinical-BERT 0.083 0.548 0.711 0.546
w/o Graphormer 0.102 0.583 0.753 0.591

Table 4.2: Ablation experiment results on the MIMIC-III-full. Bold: the optimal values.

(a) we examine the effectiveness of using auxiliary knowledge in the retrieval stage by re-
moving the retrieval stage and rank the ICD codes on the whole label set; (b) we examine the
influence of different embedding methods by replacing the Clinical-Longformer with Clinical-
BERT; and (c) we test the effectiveness of label embedding by replacing the encoding of the
label with the average of words embeddings in the label descriptors. The experimental results
are shown in Table 4.2.

Effectiveness of Using Auxiliary Knowledge for Retrieval We employ three distinct types
of auxiliary knowledge in the retrieval stage: DRG codes, CPT codes, and drug prescriptions.
As shown in Table 4.2, removing auxiliary knowledge leads to a decline in performance, in-
dicating the pivotal role of the retrieval stage. This outcome further provides evidence that
external knowledge effectively addresses the challenge presented by a large pool of potential
ICD codes. Through integrating external knowledge, the retrieval stage attains the capability
to refine the candidate list using the co-occurrence relationships between ICD codes and the
auxiliary knowledge, thereby amplifying both the efficiency and accuracy of the re-ranking
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stage. The selection of an appropriate candidate list for a given medical record hinges upon
a hyper-parameter, specifically the threshold 𝜂 governing the co-occurrence between auxiliary
knowledge and ICD codes. The choice of 𝜂 determines the candidate numbers that implicitly
affect the overall performance of the model. Setting 𝜂 = 0.005, the candidate list guarantees
inclusion of 99.22% of the gold-standard ICD codes, resulting in an average of 1,460 codes
in the subset. Notably, this accounts for approximately one-sixth of the complete code set. A
further reduction using BM25 limits the candidate list to 1,299 on average.

Comparison of Clinical-Longformer and Clinical-BERT Increasing the maximum token
limit is important in the context of clinical notes analysis as clinical texts are lengthy. Specially,
in the MIMIC-III dataset, the average length of the discharge summaries is 1,596. Given this
substantial token volume in the clinical notes, encoding a maximum number of tokens prior
to downstream analysis becomes a pivotal requirement, which facilitates robust and meaning-
ful subsequent analysis. To test the effectiveness of using longer sequences, we compare the
model performance of Clinical-Longformer and a BERT-based pre-trained languagemodel (i.e.,
Clinical-BERT) which can encode a maximum of 512 tokens. As shown in Table 4.2, Clinical-
Longformer substantially outperforms Clinical-BERT, indicating the importance of the maxi-
mum token limit on language models in the automatic medical coding task.

Effectiveness of Learning Label Features Using Code Co-occurrence The graph struc-
ture has been shown to be effective in modeling code correlations and Graphormer efficiently
learns code representations. The findings presented in Table 4.2 highlight the affirmative im-
pact of integrating code co-occurrence into label representations. By using Graphormer, the
model effectively captures and exploits the intricate connections and interdependencies among
the labels, thereby improving the overall performance. This indicates that incorporating code
co-occurrence information with Graphormer empowers the model to gain insights from the
collaborative behaviours of the labels, consequently facilitating a more holistic comprehension
of the underlying label co-relations. We conducted case studies to qualitatively explore the
impacts of integrating label co-occurrence (illustrated in Figure 4.4) and auxiliary knowledge
(depicted in Figure 4.5). We compared the full model with models that did not integrate the
label co-occurence and the external knowledge on the predictions of two patient records. For
each patient, we present the discharge summary, ground truth ICD codes, label co-occurrence
information, or auxiliary knowledge information, along with the predicted ICD codes from the
full model and ablated models.
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Case Studies We conducted case studies to qualitatively explore the impacts of integrating
label co-occurrence (illustrated in Figure 4.4) and auxiliary knowledge (depicted in Figure 4.5).
We compared the full model with models that did not integrate the label co-occurence and the
external knowledge on the predictions of two patient records. For each patient, we present the
discharge summary, ground truth ICD codes, label co-occurrence information, and auxiliary
knowledge information, along with the predicted ICD codes from the full model and ablated
models.

In Case 1, the ground truth ICD codes ‘785.51 Cardiogenic shock’ and ‘V49.86 Do not
resuscitate status’ are not explicitly mentioned in the discharge summary. The observed la-
bel co-occurrence between ‘427.5 Cardiac arrest’ and ‘785.51 Cardiogenic shock’, as well as
co-relation between ‘96.71 Continuous invasive mechanical ventilation for less than 96 con-
secutive hours’ and ‘V49.86 Do not resuscitate status’ provide strong indicators suggesting
the presence of the codes ‘785.51’ and ‘V49.86’. Without the label co-occurrence signals, the
ablated model missed the predictions of codes ‘785.51’ and ‘V49.86’, indicating a failure to
leverage latent label information.

In Case 2, the patient has been diagnosedwith ‘244.9Unspecified acquired hypothyroidism’
with less explicit information in the discharge summary. Notably, the presence of the medica-
tion ‘Levothyroxine’ in the drug prescription, an element of auxiliary knowledge, suggests that
the patient is likely to have acquired hypothyroidism. The ablated model, lacking the auxiliary
knowledge, misses the prediction of code ‘244.9’. The aforementioned Cases 1 and 2 highlight
the benefits of incorporating label co-occurrence and auxiliary knowledge, respectively.

4.6 Conclusion

In this paper, we regard the medical coding task as a recommendation problem and present
a novel multi-stage retrieve and re-rank framework. The primary objective of the proposed
framework is twofold: to construct a curated list of ICD codes and, subsequently, to further
refine the candidate list for a given medical record. Specifically, we first conduct a two-step
retrieval process, incorporating auxiliary knowledge and the BM25 algorithm. This approach
retrieves a concise subset of the candidate list, mitigating the challenges of a very large and
imbalanced label distribution. We then use a re-ranking model to refine the previously obtained
candidate list, employing code co-occurrence guided contrastive learning. Experimental results
demonstrate that our proposed framework outperforms the previous SOTA, which suggests
that it provides more precise and contextually grounded ICD recommendations for the given
medical records. In the future, our proposed framework may be extended with more external
knowledge such as the Unified Medical Language System (UMLS) and code synonymy.
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Limitations

Our usage of auxiliary knowledge is limited to external knowledge that includes DRG codes,
CPT codes, and drug prescriptions, only. Other knowledge including disease-symptom, disease-
lab relations, Unified Medical Language System (UMLS), and others, could also be potentially
useful for the auto ICD coding task. We also acknowledge that the auxiliary knowledge we
used is labeled by human annotators, which may require some extra effort. We are not quite
sure about the workload for annotating different code terminologies, but we believe linking
different code terminologies is important.

Our study is constrained by its evaluation limited to MIMIC-III-full and MIMIC-III-top 50
datasets, primarily concentrated on common disease. To comprehensively assess the model’s
performance on rare diseases, future work could benefit from a curated list of rare diseases
validated by domain experts.
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Case 1: Effectiveness of Incorporating Label Co-occurrence
Chief Complaint: heroin overdose
Major Surgical or Invasive Procedure: s/p intubation, s/p cvc
placement SINGLE SUPINE AP PORTABLE CHEST RADIOGRAPH:
An endotracheal tube is in optimal position terminating 3.5 cm
above the carina. A nasogastric tube coils within the stomach,
with the tip terminating in the distal stomach. No
pneumothorax or large pleural effusions are seen. There is
diffuse opacity overlying the entire right lung and major
portion of the left upper lung, which likely represent diffuse
pulmonary edema, ARDS or hemorrhage. No acute osseous
abnormality seen.
IMPRESSION: Diffuse opacities in the right lung and left upper
lung, likely represents pulmonary edema, ARDS or
hemorrhage. ET tube in optimal position.

Brief Hospital Course:
History of Present Illness and MICU Course: Mr. [**Known
lastname 12303**] is a 19 year old male with a history of
polysubstance abuse most significant for intravenous heroin,
who presented to the [**Hospital1 18**] ED for post-cardiac
arrest care in the setting of an apparent heroin overdose.
Briefly, he was discharged from a rehab center in [**State
108**] one day prior to admission. Last night, at 3AM on
[**2145-4-10**], his mother found him down with needles
around. She immediately called 911 and initiated CPR. He was
intubated in the field per the [**Location (un) 5700**] service
ambulance record and dopamine and levofed were
initiated; his pupils were reportedly fixed and dilated at that
point. Patient cooling was also performed via ice packs. ……
In the [**Hospital1 18**] ED he was on three pressors
(epinephrine, levophed, and vasopressin). His blood cases
were checked twice and showed 6.79/86/61 -->6.87/67/82. He
was transferred to the MICU. In the MICU, he did not have
a femoral pulse. A cardiac monitor was placed and he was
noted to have pulseless electrical activity. ACLS was initiated.
He received sodium bicarbonate, calcium chloride, d50, NS,
and boluses of epinephrine. His rhythm converted to
ventricular fibrillation and he was shocked.
He then converted to PEA and regained a pulse after another
bolus of epinephrine. The family was present. The code lasted
just under ten minutes. After discussion with the family, the
decision was made not to escalate care (see Dr. [**Last Name
(STitle) **]??????s note).
He remained on three pressors with ventilatory
support. Within one hour he became bradycardic and expired.
See written death note in the chart. The organ bank declined
the case for donation. The Medical examiner accepted the
case. The family declined discretionary autopsy. Death report
and other necessary documentation was filed.

Discharge Summary

427.5 Cardiac arrest; 96.71 Continuous invasive mechanical
ventilation for less than 96 consecutive hours; V49.86 Do not
resuscitate status; 518.81 Acute respiratory failure; 785.51
Cardiogenic shock;
99.60 Cardiopulmonary resuscitation, not otherwise specified;
304.71 Combinations of opioid type drug with any other
drug dependence, continuous

Ground Truth ICD 
Codes

1. 427.5 Cardiac arrest relates to 785.51 Cardiogenic shock
2. 96.71 Continuous invasive mechanical ventilation for less

than 96 consecutive hours relates to V49.86 Do not
resuscitate status

Examples of Label
Co-occurrence
Information

427.5 Cardiac arrest; 96.04 Insertion of endotracheal tube;
96.71 Continuous invasive mechanical ventilation for less than
96 consecutive hours;
965.01 Poisoning by heroin; 99.6 Cardiopulmonary
resuscitation, not otherwise specified; 785.51 Cardiogenic
shock; V49.86 Do not resuscitate status

Predictions of Full 
Model

427.5 Cardiac arrest; 96.04 Insertion of endotracheal tube;
96.71 Continuous invasive mechanical ventilation for less than
96 consecutive hours;
965.01 Poisoning by heroin; 99.6 Cardiopulmonary
resuscitation, not otherwise specified;
969.6 Poisoning by psychodysleptics (hallucinogens)

Predictions of No 
Label Co-occurrence

Figure 4.4: Case study on the effectiveness of incorporating label co-occurrence. Correctly
predicted labels are marked in green and the incorrect ones are marked in red.
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Case 2: Effectiveness of Incorporating Auxiliary Knowledge
Chief Complaint: Subdural hematoma
History of Present Illness: 78 year-old male with hypertension, ITP on
Rituximab transferred from OSH for further management of SDH. Felt
poorly yesterday. Woke up this morning with severe HA. Unresponsive
in EMS. Went to [**Hospital1 **], found to have decerebrate posturing,
fixed and dilated pupils. CT head with large left-sided SDH with 2mm
shift, and transtorial herniation. Intubated (succ/etomidate),
mannitol. Also received atropine for unknown reason. … Discussed with
neurosurgery, radiology; determined to benefit in intervention at this
point. Per report from ED resident, patient converted to CMO, and
awaiting arrival of family prior to extubation. Propofol restarted for
comfort. On transfer to ICU, 67, 151/65, 10, 100% AC 10/500 PEEP 5,
FiO2 100%. On the floor, patient is intubated and not responsive.
Brief Hospital Course: 78M with hypertension, ITP with subdural
hematoma complicated by mass effect. Expired shortly after admission.
#. Subdural hematoma: In context of thrombocytopenia and known
hypertension. Complicated by mass effect. Patient noted
intially to be decorticate. Unresponsive with fixed/dilated
pupils off of sedation. With down titrating ventilatory support,
patient with rare breaths and with low tidal volumes. Discussed
with family; plan for comfort.
#. ITP: Thrombocytopenic. Held off on platelet transfusion as
would not change outcome.
#. Hypertension: Held anti-hypertensives.

Discharge
Summary

V58.65 Long-term (current) use of steroids; 401.9 Unspecified essential
hypertension; 432.1 Subdural hemorrhage; 96.71 Continuous invasive
mechanical ventilation for less than 96 consecutive hours; 244.9
Unspecified acquired hypothyroidism; 348.4 Compression of brain;
287.31 Immune thrombocytopenic purpura

Ground 
Truth ICD 
Codes

1. Levothyroxine relates to 244.9 Unspecified acquired hypothyroidismExamples of
Using
Auxiliary
Knowledge

287.31 Immune thrombocytopenic purpura; 348.4 Compression of
brain; 348.5 Cerebral edema; 401.9 Unspecified essential hypertension;
432.1 Subdural hemorrhage; 96.71 Continuous invasive mechanical
ventilation for less than 96 consecutive hours; 244.9 Unspecified
acquired hypothyroidism; E888.9 Unspecified fall; V66.7 Encounter for
palliative care

Predictions 
of Full 
Model

287.31 Immune thrombocytopenic purpura; 348.4 Compression of
brain; 348.5 Cerebral edema; 401.9 Unspecified essential hypertension;
432.1 Subdural hemorrhage; 96.71 Continuous invasive mechanical
ventilation for less than 96 consecutive hours; E888.9 Unspecified fall;
V66.7 Encounter for palliative care; 852.20 Subdural hemorrhage
following injury without mention of open intracranial wound,
unspecified state of consciousness

Predictions 
of No 
Auxiliary 
Knowledge

Figure 4.5: Case study on the effectiveness of incorporating auxiliary knowledge. Correctly
predicted labels are marked in green and the incorrect ones are marked in red.



Chapter 5

Knowledge-grounded Re-ranking

This chapter covers the third knowledge integration method, knowledge-grounded re-ranking,
which is based on our preprint titled “Label-Centric Curriculum Contrastive Learning for Zero-
shot Extreme Multi-label Biomedical Document Classification” that is currently under review
for NeurIPS 2024. This method focuses on improving the re-ranking stage by using external
knowledge to generate positive examples in contrastive learning.

5.1 Abstract

Extrememulti-label text classification (XMC) aims to assign relevant labels to a document from
a large set of candidate labels. Prior XMC research has typically concentrated on supervised
learning methods. However, real-world scenarios frequently present situations where complete
supervision signals, in the form of labeled and balanced datasets, are not available, highlighting
the importance and relevance of zero-shot learning settings in XMC. In this paper, we study
the XMC task on biomedical documents under the zero-shot setting which does not require
any annotated documents in the training phase. We propose a novel label-centric curriculum
contrastive learning framework for the training phase, which effectively utilizes hierarchical
label information and label-metadata co-occurrence. For the inference phase, we employ a
multi-stage retrieve and re-rank framework to make more accurate predictions by ruling out
the irrelevant labels before ranking, rather than making direct predictions on the entire large
label set. Experimental results demonstrate the effectiveness of our approach in improving the
performance of XMC.

76
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5.2 Introduction

The eXtreme Multi-label text Classification (XMC) problem focuses on the challenge of tag-
ging a text input with a relevant subset of labels from an extremely large set. Many real world
applications can be formulated as XMC tasks, yielding promising outcomes. A notable exam-
ple is the classification of biomedical documents on PubMed1, the U.S. National Library of
Medicine’s (NLM)2 primary bibliographic database. It contains more than 36 million citations
sourced from over 5600 biomedical journals (as of Dec. 2023). This database continues to ex-
pand rapidly, with more than a million new records being added annually (approximately 2600
daily)3. In response to the challenge of efficiently searching this vast and ever-growing reposi-
tory of literature, a controlled vocabulary calledMedical Subject Headings (MeSH)4 has been
introduced and updated annually by NLM since the 1960s. Currently, there are over 29,000
main MeSH terms representing a broad range of fundamental biomedical concepts structured
hierarchically.

The current XMC setup on MeSH indexing is built on full supervision, where the pro-
posed classifiers are trained on a large set of annotated documents together with their cor-
responding labels. While the current supervised XMC setting has demonstrated impressive
performance, it also comes with several limitations. First, the MeSH ontology is vast and
regularly updated (e.g., D000086382: COVID-19). Traditional supervised learning methods
would require frequent re-training to accommodate new terms or changes. Second, annotating
biomedical literature with MeSH terms is labour-intensive, especially when the label space is
large and requires domain expertise. Third, the distribution of MeSH terms is extremely long-
tailed (e.g., “Humans” in 8 million citations vs. “Pandanaceae” in 31 citations) [151]. Related
research [127, 129] indicates that supervised learning approaches tend to be biased towards
frequent labels while neglecting those in the long tail.

To address the aforementioned constraints, we formulate the MeSH indexing in a zero-shot
XMC setting: given a collection of documents without any pre-assigned labels and a com-
plete description of each class, our objective is to accurately classify unseen documents into a
set of their appropriate classes. To be more specific, we conceptualize the zero-shot XMC as
a retrieval problem, where the test document is considered as the query and candidate labels
are retrieved in response to the given input. Most existing approaches adopt lexical match-
ing [102, 101] and semantic matching [48, 159, 136] for this task; however, a significant limita-
tion of these approaches lies in the minimal lexical or semantic overlap between the documents

1https://pubmed.ncbi.nlm.nih.gov/about/
2https://www.nlm.nih.gov
3https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
4https://www.nlm.nih.gov/mesh/meshhome.html
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and the label space. This lack of overlap necessitates more advanced techniques capable of
understanding and bridging the conceptual and contextual gaps between the documents and the
label space, thereby ensuring effective and accurate classification in zero-shot XMC scenarios.

In this work, we propose a novel label-centric curriculum contrastive learning framework
that leverages the hierarchical label information and label-metadata co-occurrence (as shown
in Figure 5.1) for zero-shot MeSH indexing. The framework’s main component involves a
similarity ranker which calculates the similarity score between two text units, namely a doc-
ument and a label description, in order to generate a ranked list of relevant labels for each
document. In the training phase, given the absence of annotated document-label pairs, we use
the label hierarchical representation and label-metadata co-occurrence information to generate
analogous document-document pairs. We adopt curriculum contrastive learning to train the
similarity ranker by gradually pulling similar documents together and pushing away dissimilar
ones. In the inference phase, we first incorporate metadata and BM25 to retrieve a subset of
candidate MeSH terms from the large label set. We then utilize the trained ranker to re-rank
the candidate labels and obtain the final predictions. Figure 5.2 illustrates our overall architec-
ture. Our approach minimizes the gap between the documents and the label space by injecting
label-centric information (i.e., the label hierarchy and label-metadata co-occurrences) into the
similarity ranker, thereby augmenting the performance of the MeSH indexing task. It is also
worth noting that, with the proper selection and incorporation of domain-specific metadata
knowledge, adapting our method to a variety of XMC tasks is feasible and recommended for
future research.

Our main contributions are:

1. We introduce a zero-shot XMC framework that utilizes the label-centric information,
which does not require any labeled training data and relies solely on the names and de-
scriptions of labels during the inference phase.

2. We propose a novel curriculum contrastive learning approach to generate similar doc-
uments by leveraging label-centric information, where the model progressively learns
from simpler to more complex examples, guided by the structured relationships inherent
in the label hierarchy and the patterns observed in label-metadata co-occurrences.

3. We use a multi-stage ‘retrieve and re-rank’ framework in the inference phase, which
filters out potential irrelevant labels before the ranking process begins, rather than at-
tempting to make direct predictions across the entire expansive set of labels.

4. Experiments demonstrate that our proposedmodel achieves improvements for the biomed-
ical document XMC task under zero-shot setting.
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MeSH Name

MeSH Synonyms

MeSH Descriptions

MeSH Hierarchy

Journal Name (Metadata)

Similar Articles (Metadata)

Figure 5.1: An example of MeSH label information and metadata information.

5.3 Zero-shot Multi-label Text Classification

ZMTC represents a fundamental task in NLP, having substantial practical significance. Some
studies have focused on leveraging label hierarchies, which develop models that learn to match
texts with labels. For instance, Chalkidis et al. [19] proposed Probabilistic Label Trees (PLT)
to encourage interactions between labels and texts. Lu et al. [79] introduced a multi-graph
aggregation framework, where each graph encodes distinct semantic relationships between la-
bels. Liu et al. [73] introduced reasoning in label hierarchy modeling to foster interdependence
among labels within their respective hierarchies during the training phase. Xiong et al. [136]
developed a multi-scale label clustering method to help the learning of semantic embeddings
of instances and labels with raw text. Few existing works apply contrastive learning on ZMTC
tasks and focus on generating effective positive examples. For instance, Zhang et al. [159]
proposed a randomized text segmentation (RTS) technique to generate high-quality contrastive
pairs. Zhang et al. [162] used meta-data information to generate positive examples in con-
trastive learning for better ZMTC. Our research focuses on modeling the correlations between
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PubMedBERT PubMedBERT
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Label

Results
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Ranked label list

Figure 5.2: Overview of our proposed framework. We use the label hierarchy and metadata to
enhance contrastive learning in training and propose a multi-stage retrieve and re-rank frame-
work in inference.

labels and the contents of the documents. As a result, we embed the label hierarchy and meta-
data information into the text encoder for contrastive positive sample construction, which ef-
fectively enhances classification performance.

5.4 Methods

5.4.1 Problem Formulation

In this paper, we study the MeSH indexing problem under the zero-shot setting, which enables
the model to assign relevant MeSH terms to biomedical documents, even if those terms were
not explicitly included in the training phase.

Given a set of biomedical documents 𝒟 = {𝑑1, 𝑑2, … , 𝑑𝑁} with their associated metadata
information ℐmetadata, the objective is to assign a set of MeSH terms ℳ = {𝑦1, 𝑦2, … , 𝑦𝑚}
to 𝑑𝑖, where ℳ is a subset of the entire MeSH ontology 𝒴 = {𝑦1, 𝑦2, … , 𝑦𝐿}, 𝑁 is the total
number of documents, 𝑚 is the number of relevant MeSH terms for 𝑑𝑖, and 𝐿 is the number of
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labels. In the ZMTC setup, we have access to 𝒟train, ℐmetadata and 𝒴 , but not the ground truth
labels ℳ of the documents in the training phase.

5.4.2 Label-metadata Co-occurrence

Biomedical documents on PubMed are commonly associated with comprehensive metadata,
including publication venues, author details, and a list of similar articles. These metadata can
serve as a robust indicator of the document’s research topics [117]. To retrieve the candidate
MeSH terms, we consider two types of metadata knowledge: journal information and document
similarity. Journal information pertains to the name of the journal in which the article has been
published, which typically indicates a specific research domain. Wang et al. [117] hypothesize
that articles from the same journal are likely indexed withMeSH terms relevant to that journal’s
research focus. To leverage this, we construct a journal-MeSH co-occurrence matrix based on
conditional probabilities, denoted by 𝑃 (𝑦𝑖 | 𝐽 ). These probabilities represent the likelihood of
a label 𝑦𝑖 occurring given the presence of journal 𝐽 , and are denoted by:

𝑃 (𝑦𝑖 | 𝐽 ) = 𝐶𝑦𝑖∩𝐽𝐶𝐽 , (5.1)

where 𝐶𝑦𝑖∩𝐽 denotes the count of co-occurrences of 𝑦𝑖 and 𝐽 , while 𝐶𝐽 represents the total
number of occurrences of 𝐽 within the training set. In order to mitigate the impact of infre-
quent co-occurrences, a threshold denoted as 𝛼 is used to filter out such weak co-occurrences.
Formally: ℛjournal(𝐽 ) = {𝑦𝑖|𝑃 (𝑦𝑖|𝐽 ) > 𝛼, 𝑖 = 1, ..., 𝐿}, (5.2)

where ℛjournal(𝐽 ) denotes the retrieved MeSH terms for journal 𝐽 , and 𝛼 = 0.01. Given a
document 𝑑 published in journal 𝐽 , we have ℛjournal(𝑑) = ℛjournal(𝐽 ).

We then use the 𝑘-nearest neighbours (KNN) algorithm to retrieve a subset of MeSH terms
for each article, based on document similarity. In order to give more weight to important words,
the representation of each article is achieved through the Inverse Document Frequency (IDF)
weighted sum of word embeddings derived from the abstract, which is denoted as follows:

IDF(𝑑) = ∑𝑤∈𝑑 IDF(𝑤) × e𝑤∑𝑤∈𝑑 IDF(𝑤) , (5.3)

where 𝑒𝑤 is the word embedding of word 𝑤, and IDF(𝑤) is the inverse document frequency
of the word 𝑤. Subsequently, we use the KNN, which is based on cosine similarity between
abstracts, to identify the 𝐾 nearest neighbours for each article within the training set. For a
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given document 𝑑, we aggregate all MeSH terms from its neighbours

ℛneighbours(𝑑) = MH1 ∪ MH2 ∪ … ∪ MH𝐾, (5.4)

where MH𝑖 denotes the MeSH labels for the 𝑖𝑡ℎ neighbour of document 𝑑. We then combine the
MeSH labels retrieved from the journal information and document similarity together to form
the candidate set ℛmetadata:

ℛmetadata(𝑑) = ℛjournal(𝑑) ∪ ℛneighbours(𝑑), (5.5)

where ℛmetadata(𝑑) ⊆ 𝒴 .

5.4.3 Curriculum and Contrastive Training Phase

Biomedical Text Encoder Motivated by the success of pre-trained language models, we use
PubMedBERT [45] as the text encoder. We have a biomedical document 𝑑, which consists of
a sequence of input tokens:

𝑑 = {[CLS], 𝑥1, 𝑥2, ..., 𝑥𝑛−2, [SEP]}, (5.6)

where [CLS] and [SEP] are two special tokens that signify the beginning and end of a sequence
respectively, and 𝑛 is the number of words in document 𝑑. We use PubMedBERT to encode the
tokens in document 𝑑 and output the corresponding vector to [CLS] from the last hidden layer
as the representation of the document 𝑑, denoted as e(𝑑):

e(𝑑) = PubMedBERT(𝑑), (5.7)

where e(𝑑) ∈ ℝℎ𝑒 , ℎ𝑒 is the embedding dimension.

Label Encoder MeSH terms are systematically organized into 16 primary categories, each
further subdivided into subcategories. MeSH terms in these subcategories are arranged hi-
erarchically, from the most general to the most specific, encompassing up to 13 hierarchical
levels [33]. The hierarchical structure inherent in MeSH taxonomies serves as a potent fea-
ture, enriching contextual comprehension and adding semantic depth to the representation of
MeSH terms. This, in turn, contributes to heightened accuracy and efficiency in the indexing
processes. To incorporate this information, we employ a two-layer Graph Convolutional Net-
work (GCN) designed to incorporate hierarchical relationships, specifically the parent-child
information, among the labels.
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We first concatenate each MeSH term name and description to form a composite text repre-
sentation 𝑡𝑦 for each label 𝑦. Following this, we use PubMedBERT to encode these concatenated
texts as e(𝑦) to obtain the original feature for label 𝑦:

e(𝑦) = PubMedBERT(𝑡𝑦), (5.8)

where e(𝑦) ∈ ℝℎ𝑒 . In the constructed graph structure, each node is formulated as a MeSH label,
with edges delineating the relationships inherent in the MeSH hierarchy. The types of edges
connected to a node encompass links from its parent labels, its child labels, and self-referential
edges. At each GCN layer, the feature of a node is aggregated with those of its parent and child
nodes. This aggregation process results in the formation of an updated label feature for the
subsequent layer: 𝐻𝑙+1 = 𝜎(𝐴 ⋅ 𝐻𝑙 ⋅ 𝑊 𝑙), (5.9)

where 𝐻𝑙 and 𝐻𝑙+1 ∈ ℝ𝐿×ℎ𝑒 indicate the node representation of the 𝑙𝑡ℎ and (𝑙 + 1)𝑡ℎ layers,𝐻0 = {e𝑦1, e𝑦2, … , e𝑦𝐿}, 𝐴 is the adjacency matrix of the MeSH hierarchy graph, 𝑊 is the
layer-specific weight matrix, and 𝜎(⋅) denotes an activation function. We denote the last layer as𝐻label ∈ ℝ𝐿×ℎ𝑒 , which integrates the hierarchical information and represents the label features.

Positive Example Generation In the conventional paradigm of contrastive learning in NLP,
positive pairs are generated through methods focused on learning language representations.
This involves refining techniques into specific actions for instance word insertion, deletion,
substitution, reordering, and back translation [41, 130, 134, 126]. Moving beyond these purely
text-based methodologies, we use a straightforward approach that integrates label hierarchi-
cal information and label-metadata co-occurrence, motivated by Wang et al. [125]. This shift
represents a significant advancement, leveraging the structural aspects of labels and patterns
inherent in label-metadata co-occurrence to enhance the learning process. Given the original
text sequence in Equation 5.6, the embedding for each token is defined as:

etoken(𝑑) = {e1, e2, … , e𝑛} = PubMedBERT(𝑑), (5.10)

where etoken(𝑑) ∈ ℝ𝑛×ℎ𝑒 . We then calculate the similarity score between each token in 𝑑 and
MeSH terms, and normalize the scores using Gumbel-Softmax to make the sampling differen-
tiable, which is denoted as follows:

S(𝑑, 𝒴) = Gumbel-Softmax(etoken(𝑑) ⋅ 𝐻label), (5.11)
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where S(𝑑, 𝒴) ∈ ℝ𝑛×𝐿 is a probability matrix that contains the scores associated with a token𝑥 ∈ 𝑑 to a specific label 𝑦. In instances where a single token can be influenced by multiple rel-
evant labels, we compute the cumulative probability across all labels in the metadata retrieved
label set ℛmetadata(𝑑) associated with the token 𝑥. This aggregated probability serves as the
comprehensive label score for 𝑥, which is:

𝑆(𝑑) = {𝑆𝑥1, 𝑆𝑥2, … , 𝑆𝑥𝑛} = ∑𝑦∈ℛmetadata

S(𝑑, 𝒴), (5.12)

where𝑆(𝑑) ∈ ℝ𝑛. Subsequently, tokens are retained as positive examples only if their sampling
probabilities surpass a specified threshold, denoted 𝛽. This threshold not only facilitates the
selection of tokens but also regulates the proportion of tokens that undergo retention for further
processing. 𝑑+ = { ̂𝑥𝑖, if𝑆(𝑑) > 𝛽, else 0} (5.13)

0 is a special token with an embedding of all zeros.

Curriculum Learning for Positive Sample Selection In the positive sample generation pro-
cess, we implement curriculum learning by progressively escalating the noise level at each dif-
ficulty stage. Specifically, this escalation is quantified by the cosine similarity between the
original document 𝑑 and the generated positive sample 𝑑+, which is controlled by the threshold𝛽. As the noise level increases, 𝑑+ becomes increasingly dissimilar to 𝑑, thereby creating more
challenging examples for contrastive learning. We use discrete curriculum learning where we
divide the pre-training step into three steps and increase the noise level at each step.

Fine-tune with Contrastive Learning Our objective is to enhance the re-ranking efficacy
of a pre-trained language model, i.e., PubMedBERT, by fine-tuning it with label hierarchy
information and label-metadata co-occurrence. Unlike the objectives of supervised learning,
which predominantly focus on discerning ‘what is what’, contrastive learning adopts a distinct
approach. It aims to comprehend ‘what is similar or dissimilar to what’, thereby diverging from
traditional supervised learning paradigms. In our setting, we have a collection of document
pairs (𝑑, 𝑑+), while negative examples 𝑑− are the remaining documents in the same batch; the
contrastive loss is defined as:

ℒ = −log exp(cos(e𝑑 ,e𝑑+)/𝜏)
exp(cos(e𝑑 ,e𝑑+)/𝜏)+ 𝐵

∑𝑖=1exp(cos(e𝑑+ ,e𝑑−)/𝜏)
, (5.14)
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where 𝜏 = 0.05 is the temperature hyper-parameter, 𝐵 is the number of documents in a batch.
The PubMedBERT model is thus fine-tuned by minimizing the contrastive loss.

5.4.4 Multi-stage Retrieve and Re-rank Inference Phase

Multi-stage Retrieval We first use the metadata information to obtain a shortened candi-
date list ℛmetadata(𝑑) (see Section 5.4.2). The metadata retrieval stage, while emphasizing the
relationship between MeSH terms and metadata information, tends to overlook the lexical cor-
respondence between documents and MeSH terms. To further reduce the candidate label list in
the retrieval stage, we use BM25 [101] facilitating partial lexical matching between documents
and labels. Given a document 𝑑 and MeSH term 𝑦, the score between 𝑑 and 𝑦 is calculated as
follows:

BM25(𝑑, 𝑦) = ∑𝑤∈𝑑∩𝑤𝑦
IDF(𝑤) TF(𝑤,𝑤𝑦)⋅(𝑘+1)

TF(𝑤,𝑤𝑦)⋅𝑘1(1−𝑏+𝑏 |𝒴|
avgdl ) , (5.15)

avgdl = 1|𝒴| ∑𝑦∈𝒴 |𝑤𝑦|, (5.16)

where𝑤𝑦 represents the words in the name of aMeSH term, |𝒴| is the length of theMeSH name
in words, avgdl is the average length of text information in the label. 𝑘1 = 1.5 and 𝑏 = 0.75 are
parameters in BM25 to control the impact of term frequency saturation and document length
normalization, respectively. When the BM25 score between the document 𝑑 and the MeSH
term 𝑦𝑖 is larger than a pre-defined threshold 𝛾 , 𝑦𝑖 is then added as a candidate label for 𝑑.
Formally: ℛBM25(𝑑)={𝑦𝑖|BM25(𝑑, 𝑦𝑖) > 𝛾, 𝑦𝑖 ∈ℛmetadata}, (5.17)

where 𝛾 = 0. For a given biomedical document 𝑑, the initial set of candidate MeSH terms
is generated through the use of metadata during the retrieval stage. This set is subsequently
refined by applying the BM25 algorithm, where ℛBM25 ⊆ ℛmetadata and ℛmetadata ⊆ 𝒴 .

Re-ranking For a given document in the test set, 𝑑test, and a candidate label 𝑦 ∈ ℛBM25,
we employ PubMedBERTfine-tuned, which is fine-tuned in the training phase, to encode each
independently.

e𝑑test = PubMedBERTfine-tuned(𝑑test),
e𝑦 = PubMedBERTfine-tuned(𝑡𝑦) (5.18)
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Algorithm Evaluation Metrics
P@1 P@3 P@5 nDCG@3 nDCG@5 PSP@1 PSP@3 PSP@5 PSW@3 PSW@5 PSP@1/P@1

Zero-shot

MPNet 44.66 35.63 30.21 36.75 33.12 29.47 31.87 32.07 29.91 30.69 65.99
PubMedBERT 46.72 36.52 30.81 38.92 35.71 32.19 32.81 32.92 32.17 31.93 68.90

MICoL 54.12 40.36 32.57 43.91 39.06 41.05 38.07 35.58 38.41 36.25 75.84
Ours - curriculum 57.35 42.76 33.86 44.85 40.03 43.96 38.23 36.37 39.68 36.82 76.65

Ours - no curriculum 56.65 42.13 33.02 43.79 39.76 43.02 38.04 35.78 38.39 36.31 75.94
Supervised KenMeSH 99.30 97.20 93.70 97.80 94.20 49.86 53.56 54.97 51.08 52.78 50.21

Table 5.1: Comparison to baseline methods across different evaluation metrics. Bold: the
optimal values.

The score assessing the relationship between the document 𝑑test and the label 𝑦 is determined
based on the cosine similarity of their respective vectors:

score(𝑑test, 𝑦) = cos(e𝑑test , e𝑦) (5.19)

5.5 Experiment

5.5.1 Setup

Dataset For a fair comparison, we follow You et al. [145] and Wang et al. [117] by using
the PMC FTP service5 [25] to download 1.44M human-annotated documents as of September
2021. The dataset encompasses 28,415 distinct MeSH terms. In supervised learning settings,
You et al. [145] and Wang et al. [117] further split the dataset into training, validation, and
testing subsets. However, as our study focuses on the zero-shot setting, we merge the training
and validation sets from their work to form our unlabeled input corpus 𝒟train. This implies that
the labels of these documents are unknown to us, and we rely solely on their text and label
hierarchy information, disregarding any predefined gold-truth labels. We use the same testing
documents (𝑑test ∉ 𝒟train) as their testing set that contains 20,000 articles.

ImplementationDetails We implement ourmodel in PyTorch [91] on a singleNVIDIAA100
40G GPU. We set the initial learning rate as 5e-5 with batch size 64. We choose a learning rate
scheduler which is warmed up with cosine decay, and the warm up ratio is set to 0.1. We use
the Adam optimizer and early stopping strategies to avoid over-fitting.

Evaluation Metrics We use two ranking-based evaluation metrics, i.e., Precision at 𝑘 (P@k)
and Normalized Discounted Cumulative Gain for 𝑘 (nDCG@k), where 𝑘 = 1, 3, 5. P@k quan-
tifies the number of relevant MeSH terms suggested within the top-𝑘 recommendations of the

5https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PMC
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MeSH indexing system. This measures the accuracy of the system in prioritizing the most rel-
evant terms at the top of its recommendations. nDCG@k focuses on the quality of the rankings
and their order.

5.5.2 Baselines

We evaluate our proposed model against a variety of baseline models which are used as the
re-ranker after the retrieval stage proposed in Section 5.4.4.

MPNet [106] inherits the advantages of BERT and XLNet and has been pre-trained on a
160GB text corpora.

PubMedBERT [45] is a BERT-based language model, pre-trained on the PubMed biomed-
ical abstracts.

MICoL [162] is an unsupervised contrastive learning approach that generates positive pairs
by using the meta-path and meta-graph.

KenMeSH [117] is the state-of-the-art supervised approach that uses metadata information
to build an attention mask in order to reduce the candidate labels to improve the performance
of the predictions.

5.5.3 Overall Performance

We compare our proposed framework against previous baseline models on various evaluation
metrics in Table 4.1. Each row in the table shows all evaluation metrics for a specific method.
The best score for each metric is indicated. As reported, our model consistently outperforms all
of the zero-shot baselines across every metric. These results provide solid evidence to validate
the efficacy of integrating the label hierarchy and label-metadata co-occurrence. The integra-
tion of the label hierarchy enables themodel to understand and utilize the structural relationships
between different labels, enhancing its ability to navigate and classify within a complex label
space. Meanwhile, leveraging label-metadata co-occurrence allows the model to capture ad-
ditional contextual and relational insights, which does not solely rely on the texts. The results
provide robust evidence supporting the efficacy of our approach.

5.5.4 Performance on the Tail Labels

Tail labels, which are applicable to only a limited number of documents, tend to be more fine-
grained and informative compared to head labels, the latter being those that frequently occur
in the dataset. Given the imbalanced distribution of various MeSH terms, we are interested
in evaluating the efficiency of our model in handling infrequent MeSH terms (i.e., tail labels).
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PubMedBERT Fine-tuned PubMedBERT

Figure 5.3: t-SNE visualization of one document’s representation (red) and its label represen-
tations (blue).

We use propensity-scored metrics, such as propensity-scored P@k (PSP@k) and propensity-
scored nDCG@k (PSW@k), to perform a more balanced and realistic evaluation of the model,
especially in terms of its ability to handle and effectively predict tail labels.

As shown in Table 5.1, our proposed framework outperforms all zero-shot baselines on
PSP@k and PSW@k. The ratio of PSP@1

P@1 provides insight into the effectiveness of the model
in not just accurately predicting labels, but in predicting labels that are of higher relevance.
The higher a ratio is, the more infrequent the correctly predicted labels are. Our proposed
framework performs the best on the ratio, which indicates that the labels predicted by our model
(and other zero-shot methods) tend to be more infrequent compared to those predicted by the
supervised model. This suggests that zero-shot models can potentially uncover insights and
make predictions on less frequent labels that supervised models might overlook due to their
training on more commonly occurred labels.

5.5.5 Effectiveness of Integrating Label-centric Information

Our approach incorporates label hierarchy and label-metadata co-occurrence into the training
phase in order to minimize the gap between the documents and label space. As shown in Ta-
ble 5.1, compared to PubMedBERT, our model shows significant improvement on all metrics,
which emphasizes the effectiveness of integrating label-centric information. Figure 5.3 shows a
t-SNE plot that visually assesses and compares the performance of our proposed model against
PubMedBERT. We extract embeddings of the documents and their associated MeSH terms
from both the original PubMedBERT and our contrastively fine-tuned model, and apply t-SNE
to these embeddings. We can see a notably closer proximity between the embeddings of a
document and its corresponding MeSH terms in our proposed model. This distance reduction
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indicates a more precise semantic alignment achieved by our model, reflecting its superior ca-
pability in understanding and categorizing the biomedical literature.

5.5.6 Effectiveness of Adding Curriculum Learning

We establish two distinct experimental settings to evaluate the impact of curriculum learning
on performance. The first setting is no curriculum learning, where 𝛼 = 0.02. The second
is discrete curriculum learning, where we divide the training into three steps and update the𝛼 = [0.02, 0.2, 0.8], respectively. Curriculum learning has demonstrated effectiveness in gen-
erating appropriate positive examples, as shown in Table 5.1. This structured learning approach
guides the model through progressively challenging examples, enhancing its ability to distin-
guish and learn from relevant (positive) instances. A notable outcome of implementing curricu-
lum learning is observed in the form of faster convergence towards the pre-training objective, as
evidenced in Figure 5.4. This accelerated convergence indicates that the model is able to grasp
and adapt to the learning tasks more efficiently when exposed to a progressively structured
curriculum.

5.6 Conclusion

In this paper, we address the challenges of Extreme Multi-Label Classification (XMC) in real-
world scenarios with limited supervision signals. We explore the task of XMC specifically
within the realm of biomedical documents, adopting a zero-shot learning approach that does
not rely on any annotated documents during the training phase, which is a significant departure
from traditional methods. For the training phase, we develop a novel label-centric curriculum
contrastive learning framework. This innovative framework is tailored to leverage hierarchical
label information and the co-occurrence of labels with metadata, which effectively captures the
complex relationships and nuances inherent in biomedical documents and their labels. During
the inference phase, we use a multi-stage ‘retrieve and re-rank’ framework, which filters out
irrelevant labels first and then refines the focus to amore relevant subset of labels. Experimental
results demonstrate the effectiveness of our approach in improving the performance of XMC.
In the future, our proposed framework may be extended with more metadata information, such
as authorship, and more real-world applications, such as keyword recommendation. Another
interesting direction would be to involve large languagemodels (LLMs) to help generate similar
documents.
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Figure 5.4: Average batch training loss of first 600 steps with and without curriculum learning

Limitations

Our use of metadata is limited to using the journal information and similar articles only. Other
metadata including authorship and others could also be potentially useful for improving the
performance of XMC on biomedical documents.

Our study is constrained by its focus on biomedical documents. This limitation primar-
ily arises from our specific interest in leveraging the metadata unique to the biomedical do-
main, such as journal of publication, author affiliations, and subject-specific terminologies.
This domain-specific nature of metadata plays a pivotal role in our methodology and analysis.
As a result, the specialized approach we have developed, may require adaptation to translate to
other domains within XMC tasks.
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Conclusion

In this dissertation, our primary objective is to enhance natural language understanding (NLU)
tasks by integrating external knowledge, focusing particularly on the application of extreme
multi-label text classification (XMTC) in the domain of biomedical and clinical texts. This
effort addresses the significant challenges arising from the expansive and complex label spaces
encountered in biomedical literature and clinical documentation, where each single document
may correspond to multiple relevant labels from an extremely large set.

We first survey the recent literature on natural language understanding with a special focus
on extreme multi-label text classification in Chapter 2. We introduce two common tasks in
XMTC, i.e., MeSH indexing and ICD coding, by stating the problem formulation, reviewing
the existing works and discussing potential research directions. We then present a collection of
novel methodologies and frameworks aimed at grounding external knowledge sources, includ-
ing metadata, medical ontologies, and auxiliary knowledge, to augment the model’s compre-
hension and classification performance.

In Chapter 3, we explore grounding knowledge in the attention component of the proposed
deep learning framework KenMeSH. This approach utilizes a dynamic knowledge-enhanced
mask attention mechanism, integrating both external knowledge and label features to effec-
tively index biomedical articles. Through this innovative methodology, KenMeSH leverages
the inherent structure and relationships within the label space, enhancing the model’s ability to
accurately and comprehensively classify biomedical texts.

Chapter 4 introduces a novel “retrieve and re-rank” framework to innovate ICD coding
featuring a knowledge-grounded retrieval stage. This framework incorporates a hybrid re-
trieval approach and a re-ranking stage via contrastive learning to yieldmore precise predictions
within a streamlined label space. The retrieval model uses auxiliary knowledge extracted from
electronic health records (EHR) and the BM25 discrete retrieval method to effectively collect
high-quality candidate labels. Subsequently, a novel label co-occurrence guided contrastive

91



Chapter 6. Conclusion 92

re-ranking model is used to provide the final predictions. This innovative approach refines the
selection of candidate labels by closely aligning clinical notes with ICD codes, thereby improv-
ing the indexing accuracy and effectiveness.

Chapter 5 introduces a novel label-centric curriculum contrastive learning framework for
the training phase, adeptly harnessing hierarchical label information alongside label-metadata
co-occurrence. This strategy ensures that the model learns in a structuredmanner, progressively
increasing in complexity and specificity, thereby enhancing its understanding and representa-
tion of the data. For the inference phase, a multi-stage “retrieve and re-rank” framework is
employed. This approach significantly improves prediction accuracy by initially filtering out
irrelevant labels before proceeding to rank the remaining candidates. This methodology cir-
cumvents the challenge of making direct predictions across an extensive label set, streamlining
the process to focus only on the most pertinent labels, thereby optimizing the effectiveness and
accuracy of the XMTC task.

The subsequent sections of this chapter discuss the summary of our contributions in detail,
state the limitations of the study, and suggest promising directions for future investigation.

6.1 Summary of Contributions

Our research primarily concentrates on identifying appropriate knowledge sources and devel-
oping effective strategies for embedding external knowledge into different aspects of models.
This endeavor aims to bridge the gap between the rich external knowledge and the advanced
techniques of deep learning. This emphasis on external knowledge integration is pivotal for
overcoming the intrinsic challenges associated with XMTC, including handling extensive la-
bel spaces and boosting the models’ ability to generalize to previously unseen labels. This
dissertation has yielded several important contributions, which are outlined as follows:

• Proposing Dynamic Knowledge-EnhancedMask AttentionMechanism: A novel ap-
proach to addressing the challenges of XMTC tasks is introduced through the develop-
ment of a dynamic knowledge-enhanced mask attention mechanism. This novel mech-
anism is specifically designed to incorporate external knowledge effectively, acting as a
constraint on the vast universe of potential labels in XMTC tasks. By leveraging external
knowledge, i.e., metadata information, the proposed attention mechanism effectively re-
duces the computational complexity associated with the large label space in XMTC tasks.
It prioritizes a subset of labels that are most likely to be relevant, thereby streamlining the
classification process. In addition, the dynamic adjustment of attention based on exter-
nal knowledge leads to a more focused and informed prediction process. This results in
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improved accuracy and effectiveness of the model in handling XMTC tasks, particularly
in cases where relevant labels are deeply embedded in large and complex datasets.

• Formulating Multi-Label Classification into a Multi-stage “Retrieve and Re-rank”
Structure: We introduce an approach that transforms the multi-label classification chal-
lenge into a multi-stage “retrieve and re-rank” formulation, particularly for medical cod-
ing tasks. By prioritizing relevant labels and leveraging external knowledge in the re-
trieval stage, the method effectively narrows down the candidate label pool, improving
classification performance. This proposed ranking approach aligns with the practical
process of medical coding, namely differential diagnosis, where identifying the most rel-
evant codes is often more critical than classifying all possible codes.

• Grounding External Knowledge in Retrieval: External knowledge is leveraged to re-
trieve a subset of candidate labels from the extensive label space, showcasing its crit-
ical importance in refining the retrieval process. The incorporation of external medi-
cal knowledge sources, such as different medical code ontologies, offers a comprehen-
sive context for discerning the relationships between medical concepts and ICD codes,
thereby enhancing the precision and effectiveness of the label selection process.

• IntegratingLabel-CentricKnowledge toContrastive Learning: Label-centric knowl-
edge emphasizes both the intra-relationshipswithin the label space and the inter-relationships
between labels and external knowledge sources. Integrating this knowledge into the pos-
itive example generation process in contrastive learning is pivotal for minimizing the
semantic gap between labels and text, thereby facilitating a closer alignment between tex-
tual content and its corresponding labels. This approach ensures that the textual content
is more accurately matched with appropriate labels, enhancing the overall effectiveness
of the classification process.

• Conducting Contrastive Learning Under Zero-Shot Setting: Contrastive learning
thrives on distinguishing between similar and dissimilar examples. This process becomes
particularly challenging in a zero-shot setting, aimed at generalizing to labels that were
not encountered during the training phase. To address this challenge, the generation of
positive examples that closely align with the unseen labels is crucial. Utilizing exter-
nal knowledge simulates the context in which these labels would be applicable, thereby
improving the model’s grasp of domain-specific semantics. This enhancement in under-
standing enables the model to more accurately associate unseen labels with relevant text,
significantly boosting its classification performance in scenarios where it must navigate
previously unencountered labels.
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6.2 Limitations of the Work

The generalization capability of our proposed techniques, while impactful, encounters certain
limitations. Our research, as demonstrated through two widely recognized XMTC tasks i.e.,
MeSH indexing and ICD coding, illustrates that the methods tailored for these tasks do not
easily extend to other XMTC tasks. This reflection not only underscores the importance of ex-
ternal knowledge in enhancing model performance but also highlights the need for adaptability
and specificity in applying these methods to diverse XMTC scenarios. The efficacy of our
proposed approaches is intrinsically linked to the quality, comprehensiveness, and timeliness
of the external knowledge sources that have been utilized. Therefore, when adapting our tech-
niques to other XMTC tasks, it is important to carefully identify and integrate relevant external
knowledge. This preparatory step is crucial to tailor and enhance the classification performance
effectively, ensuring that the methodologies developed are as applicable and potent as possible
within different XMTC contexts.

Another limitation inherent in our research is the focus on domain-specific knowledge,
while overlooking the potential contributions of knowledge from outside the domain. For ex-
ample, common-sense knowledge sources, such as Wikipedia, represent a valuable asset that
could significantly augment our methodologies. The inclusion of such broadly applicable re-
sources could offer additional context, enrich the models’ understanding, and thereby enhance
performance [152, 158]. Integrating this more diverse array of knowledge could provide a
more holistic approach, potentially addressing gaps or biases present in domain-specific data
and offering a more rounded perspective beneficial for the task at hand.

6.3 Further Directions

Our research has successfully integrated external knowledge into models addressing XMTC
tasks, highlighting the pivotal role of knowledge grounding in boosting model performance.
This achievement not only validates the benefits of incorporating external knowledge but also
opens up multiple promising directions for future investigations. Beyond the scope of our cur-
rent research, there are several suggestions that remain unexplored, offering fertile ground for
future studies.

Automated Knowledge Selection and Integration. When considering external knowledge,
a decision must be made about what kind of knowledge should be included. Future research
could focus on developing methodologies for assessing the domain-specificity and relevance
of external knowledge sources to the task. This involves analyzing the alignment between
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the content of the knowledge base and the domain of the classification task. In our work,
the selection of external knowledge is carried out manually, which introduces the potential for
bias. To mitigate this issue and enhance the objectivity of the selection process, there is a
significant opportunity for the development of automated tools and metrics. These tools could
be designed to quantify the relevance of various knowledge sources, thereby facilitating the
identification and selection of the most pertinent external knowledge for integration into the
models. This approach could be further refined through the incorporation of active learning
strategies, wherein the model iteratively proposes and assesses the value of incorporating new
knowledge sources. Such a dynamic system would not only optimize the relevance and impact
of the external knowledge integrated into models but also reduce the manual effort and potential
biases associated with manual selection.

Granularity of Knowledge. The variability in granularity of the knowledge present in exter-
nal sources, ranging from overarching concepts to precise details, presents a unique challenge
in optimally harnessing this information for model enhancement. Investigating methodologies
to make sure the granularity level that most effectively complements a model’s learning process
for specific tasks could yield substantial insights into refining the selection and integration of
external knowledge. This exploration might entail striking a balance between broad domain
knowledge and detailed, specific information. Such an approach aims to ensure that the model
benefits from a comprehensive understanding of foundational concepts while also capturing
the nuanced details critical to the domain. By optimizing the granularity of the incorporated
external knowledge, models can achieve a more robust and nuanced understanding, leading to
improvements in accuracy and performance across a variety of tasks.

Dynamic Knowledge Integration. Given the dynamic nature of knowledge, particularly in
fast-evolving domains, future research should emphasize strategies for integrating real-time
updates from external sources into models. This challenge involves not only the careful selec-
tion of up-to-date and relevant sources but also devising methods for the seamless integration of
new information. Such integrationmust be effective and should not adversely affect themodel’s
established performance or learning trajectory. Addressing this challenge would require devel-
oping mechanisms that allow models to adapt to new data incrementally, ensuring they remain
current and accurate without necessitating complete retraining. To navigate this, considering
unsupervised learning methods and transfer learning approaches may offer substantial benefits.
Unsupervised learning can aid in the automatic detection and integration of patterns from new
data without explicit guidance, while transfer learning can facilitate the adaptation of models
to new, yet related, data, leveraging pre-learned knowledge.
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Cross-domain Knowledge Applicability. Assessing the transferability of methods for inte-
grating external knowledge across various domains is a crucial step towards developing univer-
sal strategies that are adaptable to multiple fields. A possible solution might be exploring meta-
learning methods which can learn from the integration strategies applied in various domains to
suggest optimal approaches for new, unseen domains. This approach involves leveraging the
knowledge and data from multiple domains to train models that can automatically suggest the
best knowledge integration strategy for a given problem.

KnowledgeExplainability and Interpretability. Investigating the impact of external knowl-
edge on model explainability and interpretability is crucial, especially as models become more
complex and are deployed in sensitive areas like healthcare. A possible future direction could
explore how various types of external knowledge influence the decision-making process of
models and ways to make these processes transparent to users. Understanding the relationship
between the choice of external knowledge and model outputs can help in developing more in-
terpretable models. For instance, incorporating domain-specific knowledge might enhance a
model’s ability to make decisions that align with expert human judgment, but it also necessi-
tates mechanisms to show how this knowledge informs model predictions. Transparency in
how models integrate and leverage external knowledge is vital, enabling stakeholders to trust
and effectively interpret model decisions, a particularly acute need in critical domains where
decisions have significant consequences.

By systematically exploring these aspects, it is possible to advance towards universal strate-
gies for selecting and integrating external knowledge, making sophisticatedmodels more adapt-
able, effective, and accessible across a wide range of applications.
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