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Abstract 

 

 Lung cancer has both a high incidence and death rate.  A contributing factor to 

these high rates comes from the difficulty of treating lung cancers due to the inherent 

mobility of the lung tissue and the tumour.  4D-CT imaging has been developed to image 

lung tumours as they move during respiration.  Most 4D-CT imaging methods rely on 

data from an external respiratory surrogate to sort the images according to respiratory 

phase.  However, it has been shown that respiratory surrogate 4D-CT methods can suffer 

from imaging artifacts that degrade the image quality of the 4D-CT volumes that are used 

to plan a patient's radiation therapy. 

 In Chapter 2 of this thesis a method to investigate the correlation between an 

external respiratory surrogate and the internal anatomy was developed.  The studies were 

performed on ventilated pigs with an induced inconsistent amplitude of breathing.  The 

effect of inconsistent breathing on the correlation between the external marker and the 

internal anatomy was tested using a linear regression.  It was found in 10 of the 12 studies 

performed that there were significant changes in the slope of the regression line as a 

result of inconsistent breathing.  From this study we conclude that the relationship 

between an external marker and the internal anatomy is not stable and can be perturbed 

by inconsistent breathing amplitudes. 

 Chapter 3 describes the development of a image based 4D-CT imaging algorithm 

based on the concept of normalized cross correlation (NCC) between images.  The 

volumes produced by the image based algorithm were compared to volumes produced 
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using a clinical external marker 4D-CT algorithm.  The image based method produced 

4D-CT volumes that had a reduced number of imaging artifacts when compared to the 

external marker produced volumes.  It was shown that an image based 4D-CT method 

could be developed and perform as well or better than external marker methods that are 

currently in clinical use. 

 In Chapter 4 a method was developed to assess the uncertainties of the locations 

of anatomical structures in the volumes produced by the image based 4D-CT algorithm 

developed in Chapter 3.  The uncertainties introduced by using NCC to match a pair of 

images according to respiratory phase were modeled and experimentally determined.  

Additionally, the assumption that two subvolumes could be matched in respiratory phase 

using a single pair of 2D overlapping images was experimentally validated.  It was shown 

that when the image based 4D-CT algorithm developed in Chapter 3 was applied to data 

acquired from a ventilated pig with induced inconsistent breathing the displacement 

uncertainties were on the order of 1.0 millimeter. 

 The results of this thesis show that there exists the possibility of a miscorrelation 

between the motion of a respiratory surrogate (marker) and the internal anatomy under 

inconsistent breathing amplitude.  Additionally, it was shown that an image based 4D-CT 

method that operates without the need of one or more external respiratory surrogate(s) 

could produce artifact free volumes synchronous with respiratory phase.  The spatial 

uncertainties of the volumes produced by the image based 4D-CT method were 

quantified and shown to be small (~ 1mm) which is an acceptable accuracy for radiation 

treatment planning.  The elimination of the external respiratory surrogates simplifies the 

implementation and increases the throughput of the image based 4D-CT method as well. 
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Chapter 1  
 

INTRODUCTION 

 

1.1 Lung Cancer 

 With an estimated 23,200 new cases diagnosed in 2010, lung cancer is the 3
rd

 

most diagnosed cancer in Canada, following prostate and breast cancer.  Lung cancer is 

the most potent killer amongst all types of cancers with an estimated 20,600 deaths due to 

the disease in 2010, which is greater than the total of the next three most prevalent cancer 

types combined.  The overall 5 year survival rate for lung cancer is low, at 15%.
1
  

Cancers of the lung are grouped into two main categories based on the cell type: small 

cell lung cancer (SCLC), which makes up 25% of the lung cancer cases, and non-small 

cell lung cancer (NSCLC), which accounts for the other 75% and constitutes a variety of 

cell types.  Once lung cancer has been diagnosed, the cancer is staged according to the 

size of the tumour and the degree of spread of the disease.  NSCLC is divided into 7 

stages that are described using the TNM system, denoting tumour, node and metastasis 

(table 1-1).  The size of tumour and spread of disease increases with stage and 5 year 

survival rate decreases with stage.  SCLCs are faster growing than NSCLCs and are 

divided into only two stages, limited (30% of patients) and extensive (70% of patients).  

Depending on the type and stage of tumour at time of diagnosis a physician will prescribe 

one or a combination of surgery, chemotherapy and radiation therapy.
2
  The treatment 

types are described in the next section. 



 

 

2 

Table 1-1: Lung cancer staging.  Table adapted from Falk et al.
2
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1.2 Treatments 

1.2.1 Surgery 

 Surgery is considered the best curative option for patients presenting with locally 

contained NSCLC (stages IA - IIIA).  Surgeons will remove a portion (wedge resection, 

lobectomy) or the entirety (pneumonectomy) of the lung to ensure removal of the whole 

tumour.  While the physical removal of the tumour is ideal there are a limited number of 

lung cancer patients suitable for this highly invasive procedure.  The decision to operate 

is made on the basis of tumour size, position of the tumour within the lung, extent of 

tumour progression and general health of the patient.  A large portion of patients 

presenting with lung cancer are often life-long smokers with a variety of health issues.  

As a consequence the number of patients that are eligible surgical candidates is only 10% 

of those diagnosed with NSCLC.  The outcome of these patients ranges from a 75% five-

year survival rate for stage IA tumours to a 10% five-year survival for stage IIIA 

tumours.  Patients with SCLC are rarely surgical candidates owning to the rate at which 

the disease grows and spreads.  Less than 1% of patients with limited disease will receive 

an operation followed by chemotherapy, with a 5 year survival of approximately 50%.
2
 

 

1.2.2 Chemotherapy 

 Chemotherapy is the administration of drugs, usually through injection into the 

blood stream, which act systemically throughout the body to kill cancerous cells.  The use 

of these drugs plays an important role in the overall treatment of lung cancer.  

Chemotherapy is used in conjunction with both surgery and radiotherapy to treat NSCLC.  
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Drugs may be given before (neo-adjuvant) or after (adjuvant) surgery or radiotherapy.  

Neo-adjuvant therapies can be used to downstage the NSCLC tumour by slowing or 

reversing its growth, allowing for the patient to then receive surgery with radiotherapy.  

In contrast, the primary treatment for SCLC is chemotherapy.  Approximately 80% of 

patients with limited disease and 60% of patients with extensive disease will respond to 

the treatment.  Due to the systemic nature of this therapy, severe side effects may occur 

during treatment.  Adjuvant radiotherapy may be given to the patient's chest or head to 

limit the chance of reoccurrence or metastasis (transference of disease to another site).  

The prognosis of SCLC is quite grim with an average survival with chemotherapy 

treatment of 18 and 9 months for limited and extensive diseases, respectively.  The 

overall 5-year survival rate for SCLC is only 10%.
2
 

 

1.2.3 Radiation Therapy 

 Radiation therapy attempts to kill tumour cells by targeting high energy x-ray 

radiation at the tumour within the patient's body.  As the radiation passes through tissue, 

it deposits energy, referred to as dose, along its path.  By using multiple radiation beams 

from several directions around the body a superposition of dose can be created at the 

target volume where the tumour resides, while keeping the dose to other parts of the body 

low (figure 1-1).  Keeping the dose to the healthy structures within the body low is 

important in order to prevent unwanted side effects from the radiation treatment.  The 

total dose prescribed to the patient is given in a series of fractions delivered 5 days a 

week for up to 6 weeks.  Modern radiotherapy uses 3 or 4 dimensional computed 

tomography (CT) images of the patient's body to locate and target the tumour.  The 
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tumour is outlined on the patient’s CT image by a physician (the GTV or gross tumour 

volume).  Margins are added to the GTV to account for microscopic spread of the disease 

that cannot be visualized on the CT scan (yielding the CTV or clinical target volume).  

An additional margin is added to account for the geometric uncertainty in depositing the 

prescribed dose (the PTV or planning target volume) due to setup errors and movement.  

A composite of all the different target volumes is shown in figure 1-2.
3, 4

 

 

Figure 1-1: Dose addition from multiple radiation beam in radiotherapy.  The individual 

radiation beams are shown as coloured lines.  Isodose lines are indicated at the centre of 

the beams' intersection.   
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Figure 1-2: Definitions of treatment volumes for radiation therapy 

  

Approximately one half of patients presenting with lung cancer will receive 

radiation therapy as part of their treatment.  Radiotherapy is provided as the primary 

method of treatment for inoperable stage IA to IIB tumours and bulky stage IIIA & IIIB 

NSCLCs tumours contained within the thorax that are treated with intent to cure.  The 

administration of radiation is known to relieve a number of respiratory symptoms 

associated with lung cancer and therefore it is also given as palliative care for terminally 

ill patients.  High radiation doses are delivered to the entire PTV to ensure that the entire 

tumour (GTV) receives the prescribed dose of radiation.  This method of treatment may 

result in undesired high doses of radiation deposited in adjacent healthy tissue to the 

tumour.  The radiation dose deposited to the adjacent tissue is known to cause adverse 

side effects that include esophagitis, pneumonitis or damage to the ribs and/or spinal 

cord.  As such, radiation dose levels prescribed to lung tumours during conventional 

radiation therapy are kept comparatively low (between 60-66 Gy) due to the concern of 

normal tissue complications.  The 4 year survival rate for patients receiving radiation 

treatments at this dose level is 21%, with a medial survival of 17 months.
5
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 Work by Martel et al.
6
 has predicted that an increase in dose to the tumour is 

required if an increase in local control of the tumour, and thus patient survival, is to be 

achieved.  Higher radiation doses for lung cancer treatment should be achievable as it has 

been shown that normal tissue complications, such as radiation pnuemonitis, do not 

correlate with the local dose prescribed to the tumour.  Instead, these adverse events are 

correlated with factors such as mean dose to the entire healthy lung (lung volume minus 

the PTV) and the volume of lung receiving dose over 20 Gy (V20).
7, 8

  Current dose 

escalation studies have confirmed that an increase in survival is correlated with an 

increase in dose delivered to the tumour.
9, 10

  Therefore, it is imperative that uncertainties 

in target delineation (GTV, CTV) and target localization (PTV) be reduced to as low a 

value as possible to allow for the highest doses possible to be prescribed and delivered to 

the PTV.  The next section reviews the complications that a moving target, such as a lung 

tumour, posses to the radiotherapy process. 

 

1.3 Respiratory Motion Effects 

1.3.1 The Mechanics of Breathing 

 The lungs reside within the thoracic cavity and are surrounded by a liquid filled 

intra-pleural space.  During quiet breathing, the volume of the lungs is increased through 

the action of two sets of muscles, the diaphragm and the inter-costal muscles.  The 

diaphragm is the most important muscle during respiration.  It contracts and pulls the 

inferior portion of the lungs down and forward and moves approximately 1 cm during 

quiet respiration.  The inter-costal muscles, which are attached to the rib cage, aid during 

the inhalation phase of breathing.  When these muscles contract they pull the ribs 
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superiorly and laterally, increasing the volume of the thoracic cavity.  As the thoracic 

cavity expands it pulls the pleural membrane outwards creating a negative pressure in the 

pleural cavity.  This negative pressure then pulls the lung outward.  This resultant 

increase in lung volume decreases the air pressure in the lungs and draws air, at 

atmospheric pressure, into the lungs.  Exhalation is a passive process caused by the 

elastic properties of the lungs returning them to their equilibrium position and in the 

process expelling the excess air accumulated during inhalation. (figure 1-3)  Alveolar 

pressure is decreased during inspiration and increased during expiration relative to 

atmospheric pressure.  The intra-pleural pressure is always negative with respect to 

atmospheric pressure.  During inhalation, the intra-pleural pressure becomes more 

negative, causing the lungs to expand, and then returns to its original value during 

exhalation.  The trans-pulmonary pressure is the difference between alveolar pressure in 

the lungs and intra-pleural pressure.  The elasticity of the lungs leads to a unique 

relationship between the volume of air in the lungs and the trans-pulmonary pressure.  

The volume of air within the lungs is greater during expiration than inspiration for a 

given trans-pulmonary pressure (figure 1-4).  This phenomena is known as hysteresis.
11

 

 

Figure 1-3: Diagram illustrating the anatomy and functionality of breathing. 

Adapted from Silverthorn.
12
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Figure 1-4: Pressure/Volume curve for the lungs. 

Adapted from Silverthorn.
12

 

 

1.3.2 The Motion of a Tumour within the Lung 

 A tumour that resides within the lung tissue will be set into motion as a result of 

respiration.  Fluoroscopic imaging is the most common imaging modality used to 

examine the respiratory induced motion of the tumour.  Tumour motion is observed 

directly or inferred from measurements of the motion of a lung tumour surrogate (e.g. 

diaphragm).
13-20

  The consensus of these studies that have observed the motion of lung 

tumours is that the dominate component of the tumour motion is in the cranial-caudal 

(superior-inferior) direction, which is also the dominant component of the diaphragmatic 

motion.  Despite general trends, a vast spectrum of 3-dimensional motions between 

individual patients and groups of patients have been found (table 1-2).  Seppenwoolde et 

al.
18

 has published the most extensive studies on lung tumour motion.  In their study, gold 

markers were implanted in or near the tumour and tracked with fluoroscopy over multiple 
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breathing cycles.  From a study of 21 patients it was found that the average amplitude of 

motion was greatest in the superior-inferior direction (12 ± 2 mm), with much smaller 

displacements in the medial and dorsal directions (2 ± 1 mm).  The most interesting 

finding of this study was a hysteresis effect between the inspiration path and expiration 

path of the tumour in 10 of the 21 patients.  The hysteresis resulted in up to a 5 mm 

displacement between the inhalation and exhalation motion trajectories of the gold 

markers.  Additionally, they reported that tumours situated near the heart may have a 

significant component of motion from the cardiac motion.  Overall, the motion of lung 

tumour is extremely complex and highly patient dependent with the most common 

feature being a large motion in the superior-inferior direction. 

Table 1-2: Summary of tumour motion studies.  Adapted from Keall et al.
21
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1.3.3 CT Imaging of a Moving Lung Tumour 

 Computed Tomography (CT) is a high contrast imaging modality that uses x-ray 

radiation to measure the distribution of linear attenuation coefficients of an object and 

display the them as 2D images.  Modern CT scanners have an x-ray detector array and x-

ray source mounted on a gantry that rotates around a patient in order to collect x-ray 

projections from a full 360° around the patient (figure 1-5).  A set of 2D axial slice 

images of the patient are generated by back-projecting the x-ray transmission projections 

collected through the specified anatomical slice.  Gantry rotation periods can range from 

1.0 second to 0.4 seconds; however scanners are often capable of rotating at slower 

speeds, if such a scan mode is desired.  The axial field of view (AFOV) dictates the axial 

length of the patient that can be imaged simultaneously with a single gantry rotation and 

ranges from 4.0 cm to 16.0 cm.  The x-ray detector consists of multiple detector rows in 

the axial direction allowing multiple slices to be reconstructed within the AFOV.  Two 

separate methods are available to scan large objects. Helical (spiral) CT scanning 

acquires projection data while the patient is moved through the AFOV.  Projections 

acquired from separate detector rows, but from the same physical location of the patient, 

are used to reconstruct the individual images (figure 1-6).  Serial or Sequential CT 

acquires projections from a stationary scan position and then translates the patient to the 

next adjacent position before another scan is taken.  This is repeated until the entire 

volume has been scanned.  Images from separate scan positions are concatenated to 

produced 3D volumes.
22
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Figure 1-5: Geometry of a CT scanner.  Shown are the in-plane and cross section of the 

scanner.  Adapted from Kalander.
22

 

 

Figure 1-6: Relative motion of x-ray tube to the patient during helical (spiral) scanning.  

Adapted from Kalander.
22

 

 

 Imaging for the diagnosis and treatment of lung cancer requires volume imaging 

of the entire thorax (25-30cm in length) which necessitates the use of helical or sequential 

CT.  However, imaging the thorax during respiration violates a central assumption of the 
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CT image reconstruction process that the object being scanned is stationary during the 

collection of the 360° set of projection data.  Movement due to respiration during volume 

acquisition will result in two types of imaging errors (artifacts).
23-27

  The first type of 

artifact occurs within an image slice (intra-slice) due to x-ray projections used to 

reconstruct the image being acquired at different respiratory phases.  Gagne et al.
25

 has 

extensively studied these image artifacts and found severe intra-slice object distortions 

that are dependent on the ratio of the gantry rotation time to the period of motion, 

amplitude of motion, direction of motion and object size.  The ratio of the gantry rotation 

time to the period of motion was the most important variable to control in order to 

suppress these motion artifacts.  Faster acquisition times (increased gantry speed) would 

decrease these artifacts and provide a snapshot of the object during its motion.  In 

contrast, an extremely slow scan (gantry speed) yields time-averaged images. 

 The second type of artifact results from the limited AFOV of a CT scanner and 

the requirement to concatenate images from subvolumes acquired using either separate 

scans with table incrementation after each scan or helical scans (inter-scan artifacts) to 

build up a complete volume of an extended organ, for example, the lung.  In the likely 

event that the separate images (subvolumes) are acquired during different respiratory 

phases the final volume will have inter-scan artifacts.  As such, the resulting volume can 

contain discontinuities marking the individual image (or subvolume) acquisitions (figure 

1-7).
23, 28

  Chen et al.
24

 imaged moving spherical objects using helical CT and found that 

the apparent length of the object could be shortened or lengthened up to two times the 

amplitude of motion, depending on the scan parameters chosen.  Shimizu et al.
27

 studied 
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the motion of lung tumours with sequential CT and found that the tumour could actually 

disappear from the axial image in up to 21% of the images. 

 

Figure 1-7: Example of inter-scan artifacts from scanning a sphere moving up and down 

in the vertical direction.  Bottom row: true geometry of the sphere as it moved.  Top row: 

Artifacts of the moving sphere when scanned with a helical scanning protocol.  Adapted 

from Rietzel et al.
29

 

 

1.3.4 Treatment Planning and Delivery Issues 

 From the discussion in section 1.3.3, contouring a lung tumour GTV on CT scans 

that contain motion related imaging artifacts will be problematic.  To overcome the 

inaccuracies of outlining the tumour on images affected by motion artifact, larger PTV 

margins are added to the GTV.  However, this is a suboptimal solution as the larger 

irradiated area will increase the dose to the healthy surrounding tissue during treatment 
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and likely result in more complications.  The alternative is to leave the treatment margins 

small, which will result in poor local control of the tumour due to target 'misses' and 

inadequate dose deposition to the tumour.  Appropriate treatment margins are difficult to 

determine in the presence of imaging artifacts that result from tumour motion.
30

  The first 

step to adequate dose delivery to the tumour is proper imaging of the whole tumour.  

Methods to overcome the respiratory motion artifacts that occur when CT scanning a 

lung tumour are presented in the next section. 

 

1.4 Motion Compensation Methods 

1.4.1 Slow Rotation CT Scanning 

 A simple method to minimize artifacts from object motion in CT scanning is to 

decrease the gantry speed - slow rotation CT scanning.
31-35

  The principle of the method 

is to increase the CT gantry rotation time well above the period of respiration.  The result 

is that each image will be reconstructed using projection data collected over a period 

longer than a breathing cycle.  In the reconstructed volume, the tumour motion is blurred 

over the entire breathing cycle resulting in a smeared volume image with no 

discontinuities.  The tumour volume (GTV) is contoured around the extent of the motion 

blur.  It is important to note that this contour only encompasses the motion of the tumour 

during the breathing cycles over which the tumour was scanned.  Tumour motion 

variability during subsequent breathing cycles must be anticipated and additional margins 

must be added to ensure the entire tumour received the prescribed dose.
32

  The slow CT 

scan approach provides time-averaged images, which represent the spatial probability 

distribution of the tumor and surrounding healthy tissue and can be used to perform dose 
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calculations.  A disadvantage of slow CT scanning is the loss of spatial resolution to the 

tumour boundaries from motion blurring.  This loss of resolution may lead to tumor 

contouring variations between radiation oncologists resulting in under-dosing to the 

tumour and overdosing to the surrounding healthy tissue.
34

 

 

1.4.2 Breath-Hold CT Scanning 

 The image artifacts that occur as a result of respiratory motion can be minimized 

by breath hold for the duration of a volume CT scan.  Two such scans must be performed, 

one at the maximum inhalation and one at the maximum exhalation, to obtain the full 

range of motion of the tumour.
36-38

    This procedure is contingent on the patient's ability 

to successfully hold their breath over the entirety of the image acquisition, which is less 

than 10 seconds for modern scanners.
22

  The two volume CT scans can then be fused and 

a maximum intensity projection (MIP) volume can be created.  Each pixel of a MIP 

volume is determined by taking the maximum pixel value from the two fused volumes for 

each pixel location and thus the image shows the tumour at both the inhalation and 

exhalation positions simultaneously.  The advantage of this procedure over the slow CT 

scan is the reduction of motion blur artifacts (as a result of scanning both lungs while 

they are stationary).  However, this procedure does have some limitations.  Patients with 

compromised lung function may find it difficult to hold their breathing for the duration of 

the scan.  Additionally, if the patient is to be treated while free breathing the range of 

motion of the tumour calculated from the MIP may not accurately represent the range of 

motion during treatment because different muscles are used during forced inhalation and 

exhalation than during free breathing.
11

  As a result, the tumour may be under or 
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overdosed, depending on the difference between the free breathing and breath-hold tumor 

locations. 

 

1.4.3 Four-Dimensional (4D) CT Scanning 

 A method that has been developed to provide artifact-free 3D volumes of a 

patient's entire thorax during respiration is four-dimensional CT (4D-CT) scanning.  4D-

CT is a generic name for a scanning protocol that produces a times series of 3D images of 

an object (in this case a patient's thorax) with an axial extent wider than the AFOV of the 

CT scanner.  The basic principle has been implemented using both helical
39-43

 and ciné 

CT.
29, 44, 45

  When implemented using helical CT a very low pitch (ratio of scan table 

translation to the AFOV of the scanner) is used in order to collect images over an entire 

breathing cycle at each slice location.  Ciné CT is a form of sequential CT that acquires a 

time series of images over an entire breathing cycle at one fixed scan position by 

continuously rotating the scanner gantry and acquiring images.  The implementation of 

both methods requires information provided by a respiratory surrogate marker.  The 

surrogate provides a respiratory trace during image acquisition which is used to tag each 

individually acquired image with a surrogate respiratory phase value.  After the scanning 

is complete the surrogate data collected is used to create respiratory phase bins (usually 

between 8 and 12 per breathing cycle).  Images are assigned to each bin according to 

their phase tags.  It is assumed that the images within each bin were acquired at the same 

respiratory phase and are combined to form a 3D volume at that phase.  This is done for 

each of the bins resulting in 8 to 12 3D volumes.  This method of 4D-CT, collecting the 

images first then sorting them after the scanning has been completed, has come into the 



 

 

18 

widest use and is called retrospective 4D-CT.  Pan et al.
46

 has published the most 

comprehensive comparison between helical and ciné retrospective 4D-CT.  They 

concluded that helical 4D-CT is generally faster than ciné 4D-CT, but it is a higher dose 

procedure and would be slower if rescans are required due to irregular breathing.  

Prospective 4D-CT
47, 48

 has been developed and consists of triggering (or gating) the CT 

scanner to acquire an image when the patient is in the desired respiratory phase.  This 

method has yielded similar results to retrospective 4D-CT, however, due to the long 

acquisition times it has been eclipsed by retrospective 4D-CT.
49

 

 Many different types of respiratory surrogates have been used to produce 4D-CT 

volumes.  The most common of these surrogates is an external marker that measures the 

1-dimensional relative position of a single point on the patient's chest.  A charged 

coupled device (CCD) camera tracks the movement from respiration of two infrared 

reflective dots on a small plastic box which is placed at a single location on the patient's 

chest, usually near the xiphoid process, to obtain a respiratory signal.
29, 39, 45

  The 

commercial version of this system is produced by Varian Medical Systems under the 

name Real-time Position Monitoring (RPM) device (Palo Alto, CA).  Additional methods 

to measure abdominal displacement from respiration employ either a strain gauge
41

 or a 

pneumatic bellows system.
43

  All three of these respiratory surrogates work under the 

assumption that the signal they acquire is highly correlated to the 3-dimensional (3D) 

motion of the diaphragm, which is the driving force of quiet respiration.  Finally, there 

are two other methods that use the air inhaled and exhaled by the patient during 

respiration to produce a respiratory surrogate.  Spirometry measures the rate of airflow 

into and out of the patient's mouth during respiration to obtain a breathing surrogate.  A 



 

 

19 

limitation of spirometry is that the device must be periodically adjusted for signal drift.
44

  

Alternatively, a thermocouple has been used to measure the temperature of the air in the 

patient's mouth to obtain a respiratory surrogate curve.  The principle behind the 

thermocouple method is that air exhaled will be increasingly warmer while the air inhaled 

with be increasingly cooler.
42

  These last two methods assume that the 3D motion of the 

lung is directly correlated to the flow of air in and out of the lung.  It has been shown that 

spirometry does correlate to the internal air content of the CT images, which can be used 

as a surrogate for internal motion, better than the amplitude of an external marker.
50

 

 All of the respiratory curves from surrogates are semi-sinusoidal and periodic 

with respiration, having an inspiration and expiration phase.  The amplitude of the curve 

can be used to generate a respiratory phase curve that cycles between 0 and 2π radians of 

phase.  The respiratory phase angle is akin to the angle of a sinusoidal curve and 

describes the position within the respiratory cycle.  Algorithms to generate these phase 

angle curves generally take into account the amplitude of the surrogate curve, the peak at 

maximum inspiration and the instantaneous period of the respiratory cycle.
47

  For each 

respiratory surrogate there are two possible methods that can be used to sort the 

asynchronously acquired images – the amplitude or phase of the surrogate curve.  While 

phase angle sorting was first to be developed, amplitude sorting has been shown to be 

superior through its ability to handle non-periodic breathing patterns.
41, 51

 

 As discussed, a popular method to obtain a respiratory surrogate curve for 4D-CT 

is to use a marker external to the subject being scanned.  In addition to an external marker 

4D-CT method, Pan et al.
45

 also obtained a respiratory surrogate curve for each acquired 

ciné scan by drawing regions of interest (ROI) over specific anatomical structures within 
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the images and recording the average values within the ROIs as a function of time.  They 

demonstrated this technique by collecting ciné scans that covered the lower thorax of a 

ventilated dog.  The ROIs were drawn to include a portion of the diaphragm, with the rest 

of the ROI filled with lung tissue.  The values within the ROIs vary during respiration as 

more or less of the diaphragm entered the ROI.  The ciné scans from adjacent scan 

positions were aligned in space and time by shifting one ciné scan until the peak and 

trough of its respiratory surrogate curve was aligned with the curve from the adjacent 

ciné scan.  When all the time series of images were so aligned, a 4D-CT dataset had been 

constructed.  The volumes produced by this method were of a quality consistent with 

volumes produced using an external surrogate marker.  However, the procedure was only 

implemented using the diaphragm.  It is uncertain if the respiratory curves derived from 

the motion of different anatomical locations (i.e. chest wall, diaphragm) would all follow 

the same shape and phase; if not this could lead to possible phase shifts between the 

peaks of the curve (e.g. the chest wall lags the motion of the diaphragm).  Additionally, 

the user's choice of the placement of the ROIs, and therefore the resultant curves, are 

highly subjective. 

 

1.4.4 Treatment Planning and Delivery with 4D-CT 

 4D-CT provides CT images of the entire volume of the chest and tumour over the 

course of a respiratory cycle.  The GTV of the tumour can be contoured at each 

respiratory phase and each GTV can be expanded by conventional margins to obtain the 

corresponding CTV at the same phase.  An internal target volume (or ITV) is defined by 
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overlapping all the CTV contours at different respiratory phases.  Finally the ITV is 

expanded to account for setup uncertainties to obtain the PTV (figure 1-8).
30, 52

 

 

Figure 1-8: Definition of 4D-CT derived treatment margins. 

Adapted from Wolthaus et al.
42

 

 

 The motion encompassing volume produced from 4D-CT treatment planning 

provides a more accurate representation of the tumour volume in the presence of 

respiratory motion.  The 4D-CT derived treatment margins require significant time and 

effort to produce and must be compared against treatment margins produced from other 

motion-encompassing methods to justify the additional resources required to produce 

them.  In a study comparing fluoroscopy derived treatment margins to 4D-CT derived 
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treatment margins, it was shown that fluoroscopy overestimated the margins by 52%.  As 

a consequence, treatments performed using fluoroscopic derived treatment margins 

would have resulted in over-irradiation of healthy tissue during treatment.
53

  The GTVs 

derived from 4D-CT have been shown to be significantly different from the GTVs 

derived from free-breathing helical CT scans; there were also significant differences 

between the size and shape of the PTVs.  In general, the free-breathing helical CT PTVs 

tended to underestimate the motion of the tumour, while the treatment plans derived from 

4D-CT provided a reduction of mean dose to the lung,
28, 42, 54-56

 which is an indicator of 

radiation pneumonitis.
8
  Additionally, MIP derived GTV contours have been compared to 

the GTVs composited from 4D-CT volumes at all phases.  The MIP GTVs were 

significantly small than the 4D-CT GTVs,
57

 suggesting that MIP GTVs underestimate the 

tumour volume.  4D-CT derived treatment margins have been shown to be significantly 

different than the respiratory motion encompassing treatment margins produced by both 

fluoroscopy and MIP imaging.  Additionally, the 4D-CT derived GTVs have been shown 

to be reproducible between repeat scans.
58

 

 Knowledge of the position of the tumour over the entire respiratory cycle allows 

treatment of the tumour at specific respiratory phases.  Gated radiotherapy involves the 

delivery of radiation to the tumour at a specific phase by considering the tumour as a 

stationary target at the moment of treatment.
59, 60

  The radiation beam is turned on only 

when the tumour is within the field of view of the beam.  The position of the tumour is 

determined by an external respiratory surrogate that is correlated to the motion of the 

tumour or by internal fidicual markers that are tracked fluoroscopically.  Gated 

radiotherapy allows for smaller treatment volumes that result in an increase to the 
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minimum dose delivered to the tumour and a decrease of the mean dose delivered to the 

lung, esophagus and heart.
61

  It is important to note that the correlation between the 

position of an external marker and the location of the tumour determined with a breath 

hold scan will not be the same during free-breathing.
62

  Therefore, when performing 

gated radiotherapy on a free breathing patient it is important to acquire and plan on a free 

breathing 4D-CT scan.  An additional concern of gated radiotherapy is the time required 

for a patient's treatment session.  If, through the action of gating, the radiation duty cycle 

(ratio of the time the radiation beam is on versus the total treatment time) is 

approximately 30%, versus 100% for conventional radiation treatment, there will be a 

three fold increase in treatment time,
63

 reducing patient throughput. 

 

1.5 Limitations of Current 4D-CT Imaging and Treatment 
Methods 

1.5.1 4D-CT Artifacts 

 While 4D-CT scanning produces volumes that are an improvement over 3D 

images acquired without any form of respiratory gating, artifacts are still present in most  

4D-CT volumes produced by existing methods.  It has been shown in the literature that 

anywhere from 30%
64

 to 90%
65

 of 4D-CT volumes generated by commercially available 

methods will contain some form of imaging artifact.  The most common artifacts within 

the 4D-CT volumes are similar to the inter-scan artifacts present when using conventional 

helical or sequential CT scanning to acquire free-breathing thoracic volumes.   These 

artifacts are a result of combining volumes from temporally misaligned respiratory 

phases into a single volume.  The cause of the artifacts is different in 4D-CT than it was 
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in convention CT, as will be explored in the following sections.  Yamamoto et al.
65

 has 

classified 3 types of inter-scan artifacts with the root cause of each artifact being the same 

from combining images with varying differences of respiratory phase difference (figure 

1-8 b-d).  Also found in this study is that the severity of artifact was shown to be 

significantly correlated with abdominal displacement, respiratory period and root mean 

squared deviation of the quadratic fit from respiratory curve (an indicator of irregular 

breathing). The consequence of these artifacts is variations in the size and shape of the 

contoured GTV volume. The GTVs contoured on the corresponding respiratory phases of 

the 4D-CTs (with artifacts) were found to be significantly larger than the GTVs contour 

on the end expiration CT volumes
66

 and on the breath hold 3D CT scan.
67

  As such, it is 

imperative to have artifact-free 4D-CT volumes so not to invalidate the entire 4D-CT 

motion correction process. 

 

Figure 1-9: Classification of 4D-CT artifacts.  (a) Intra-slice artifact.  (b-d) Inter-scan 

artifacts.  Adapted from Yamamoto et al.
65
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1.5.2 Respiratory Surrogate Correlation Issues 

 The correlation between the motion of the respiratory surrogate and the anatomy 

of the subject is integral to the production of artifact-free 4D-CT volumes.  Both the 

degree of correlation and the consistency of correlation will affect the ability to label the 

images with the correct respiratory phase. There have been conflicting reports over the 

correlation of the motion of a single external marker and the internal anatomical motion. 

The studies showing good, consistent correlations have had to phase shift the surrogate 

signal in order to match the internal motion.
68-70

  The presence of a phase shift seen in 

these studies led the authors to caution against trusting the external marker/internal 

anatomy correlation in the absence of individual patient validation. Studies that claimed 

good correlations often had Pearson correlation values between internal and external 

motion as low as 0.60.
71

  A study that compared an internal tracking algorithm (using 

fluoroscopy) to an external method found the internal method to be superior and 

recommended avoiding external surrogates whenever possible.
72

  The repeated findings 

of rather poor correlations between motion of an external marker and that of the internal 

anatomy as well as transient phase shifts between the motions have led researchers to 

conclude that the relationship between the motion of a surrogate and the corresponding 

internal anatomy is a highly complex one.
73-75

  Not surprisingly, this has led to the 

development of complex nonlinear predictive algorithms in order to track the motion of 

the tumour using a respiratory surrogate.
76, 77

  While these methods have exhibited some 

success, it is further proof that the relationship between the motion of a single external 

marker and that of the internal anatomy is not necessarily linear or stable.  In order to 
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more properly model the motion of the chest there has been research into tracking 

multiple external chest markers.  When the independent motions of these markers, placed 

at different locations of the chest, have been compared with each other a phase shift 

between the separate motions has been found.  The authors were able to combine the 

motions of the multiple markers to provide a surrogate that showed an improved 

correlation with the internal anatomy.
78, 79

  Thus far, this method of generation of a more 

reliable respiratory surrogate has not been used to generate 4D-CT volumes. 

 Only recently has the topic of irregular breathing with regards to respiratory 

surrogates been studied.  Breathing is a complex periodic process with inherent 

irregularities to it.
80, 81

  A recent paper has compared the ability of an external marker to 

predict the locations of lung vessels in groups of patients classified as regular and 

irregular breathers.
82

  The external marker was not a reliable predicator for all patients as 

only in regular breathers was the marker able to show a consistent and accurate prediction 

of the locations of lung vessels. 

 

1.5.3 Improvements to 4D-CT Methods 

 Artifacts within 4D-CT volumes have been shown to occur as a result of incorrect 

respiratory phase labeling of the acquired images.  The first efforts to improve 4D-CT 

sorting methods focused on adjusting the respiratory phase tagging procedure.  Phase 

angle determination from irregular breathing curves will likely be erroneous  because the 

algorithms used to determine the phase angle use the entire surrogate data curve and 

assume a constant respiratory period.  It can be improved by excluding irregular 
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breathing sections from the phase angle determination algorithm.
83

  Another method to 

improve the phase angle determination is manual selection of the maximum amplitudes 

of the breathing curve, thus manually deciding the breathing cycle length.
64

  With regards 

to amplitude based sorting, determining which peaks (troughs) to use as the inhalation 

(exhalation) maxima can be problematic.  Olsen et al.
43

 introduced the idea of percentile 

based binning that redefined the concept of maximum inhalation and exhalation.  Binning 

based on percentiles provides a margin of error for the bins at the extrema of the 

breathing cycle and was shown to improve the artifacts in the 4D-CT volumes.  While 

these methods all have shown efficacy in their respective studies they do not address the 

issue of potentially very poor correlation between the motion of the internal anatomy and 

that of the respiratory surrogate that ultimately results in artifacts. 

 Nonlinear image registration has been applied to generate 4D-CT volumes as a 

method to reduce artifacts.  When attempting to model the motion of the lung nonlinear 

registration is required due to the non-rigid nature of the motion.  Initial studies using 

these methods registered breath-hold volumes at maximum inhalation to exhalation.  The 

resulting vector field describing the displacement between the two volumes was 

interpolated to provide a volume at any phase between maximum inhalation and 

exhalation.
84-86

  Nonlinear registration methods were shown to decrease artifacts in the 

4D-CT volumes and were accurate to within 3mm.  However, it is likely that in the event 

of breathing cycle hysteresis the true motion of the tumour could not be determined.  A 

novel method uses nonlinear registration to determine the vector transformation between 

each volume of a ciné scan and a reference breath hold volume.
87

  The transformations 

between the ciné scan volumes and the reference volume were correlated with the 
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respiratory curve from an external marker (similar to the external marker 4D-CT 

methods) and used to transform the reference volume to a particular respiratory phase.  

The method improved upon image artifacts in the 4D-CT volumes but again it relies on 

the correlation between the motion of an external surrogate and that of the internal 

anatomy. 

 To avoid external respiratory surrogates entirely, image based 4D-CT methods 

have been developed.  The two recently published methods both derived a respiratory 

surrogate from the information contained within the image in order to label the acquired 

images with a respiratory phase value.
88, 89

  The images were then retrospectively sorted 

according to these phases.  Both methods showed a reduction in 4D-CT artifacts as 

compared to external marker produced 4D-CT volumes. 

 

1.6 Image Similarity Metrics for Matching Respiratory 
States 

 As discussed in section 1.3.1, during respiration the chest wall moves in and out 

while the diaphragm moves up and down.  Within a CT image, these structures are 

represented by image pixel intensity values measured in Hounsfield units (HU).  The 

interface between the chest wall and the air surrounding the patient is distinct due to the 

large difference in HU values of these two materials (air ~ -1000 HU, soft tissue ~ 0 HU).  

As the chest wall moves during respiration so does the distinct chest wall/air interface, 

resulting in a change of the intensity values of the pixels within the CT image.
22

  More 

importantly, the density of the lungs changes as air is cycled in and out of the lung space 
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during respiration.  Each pixel can be thought of as a linear combination of air and tissue 

with weighting factors that are dependent on the amount of each substance within the 

pixel.
90

  The values of the pixels can vary by a few hundred HUs over the course of the 

respiratory cycle as more or less air is contained within each pixel.  It is then evident that 

the respiratory phase of the anatomy captured during a CT image is directly relatable to 

the intensity values contained within the lung and at the chest wall/air interface of a CT 

image. 

 Image similarity metrics are used to measure the degree of shared information 

between two images.  This process is simple to implement if two images are acquired 

using the same image modality, due to the linear relationship between intensity values of 

the two images.  The matching of image pairs according to respiratory phase is an 

obvious problem to approach using image similarity metrics due to the correlation of the 

respiratory phase with the intensity values within the image.  Mutual information (MI) is 

a method that compares the information content of one image to another image.    This 

technique is especially useful when there exists a nonlinear relationship between the 

intensity values of the two images (e.g acquired by different imaging techniques) being 

matched and has been used to match the respiratory phase of images acquired using CT 

angiography and fluoroscopy.
91

  For images acquired using the same image modality, the 

high computational cost of MI is not required and simpler image similarity metrics are 

used.  Normalized cross correlation (NCC) is one such metric that is easy to implement, 

quick to compute and has been shown to produce excellent results when matching the 

respiratory phase of images acquired using only CT imaging techniques.
92

  In summary, 

image similarity metrics are highly useful to match the images to a common respiratory 
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phase. However, high-cost techniques, such as image matching based on mutual 

information, need only be used for multi-modality imaging as they add little benefit while 

consuming more computing resources. 

  

1.7 Research Objectives 

The work presented in this thesis is focused on three main objectives. 

1. Examine the effect of an inconsistent respiratory amplitude on the correlation 

 between the 3D internal anatomy and a 1D external respiratory marker. 

2. Develop an image based 4D-CT algorithm that does not require the use of an 

 external respiratory surrogate. 

3. Develop and test a method to quantify the uncertainties associated with the image 

 based 4D-CT algorithm. 

 

1.8 Thesis Outline 

1.8.1 The relationship between an external marker and the internal 
lung displacement in a porcine model (Chapter 2). 

 The correlation between the motion of the internal anatomy of the lung and a 

commercially available radiation therapy external respiratory marker was tested under 

induced inconsistent breathing amplitudes.  The work was performed in a porcine model 

using nonlinear registration to quantify the internal displacements.  This chapter is based 

upon research paper entitled, "The effect of an inconsistent breathing amplitude on the 
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relationship between an external marker and the internal lung deformation in a porcine 

model," published in Medical Physics vol. 37 (11): pp. 5951-5960 (2010) by Pierce G, 

Wang K, Gaede S, Battista J, Lee TY. 

 

1.8.2 The development of an automated image based 4D-CT sorting 
algorithm (Chapter 3) 

 This chapter develops the methodology of an automated image based 4D-CT 

sorting algorithm.  The details of the scanning procedure and volume sorting are covered 

and tested on 5 patients with lung cancer.  An external marker 4D-CT algorithm is used 

on the same patient data and the results are compared to the automated 4D-CT method.  

This chapter is adapted from on the research paper, "A fully automated non-external 

marker 4D-CT sorting algorithm using a serial ciné scanning protocol," published in 

Physics in Medicine and Biology vol. 54 (7): pp. 2049-2066 (2009) by Carnes G, Gaede 

S, Yu E, Van Dyk J, Battista J, Lee TY. 

 

1.8.3 Applying an animal model to quantify the uncertainties of an 
image based 4D-CT algorithm (Chapter 4) 

 In this chapter an animal model and scanning protocol are developed in order to 

quantify the uncertainties resulting from the automated 4D-CT sorting algorithm 

presented in Chapter 3.  Error models are presented and used to test the two central 

assumptions of the 4D-CT sorting algorithm.  The displacement uncertainties are 

measured using a nonlinear registration algorithm.  This chapter is based on the research 

paper, "Apply an animal model to quantify the uncertainties of an image based 4D-CT 
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algorithm," submitted to Physics in Medicine and Biology by Pierce G, Wang K, Battista 

J, Lee TY. 

 

1.8.4 Conclusions (Chapter 5) 

 In this final chapter the main findings of the thesis are summarized and 

experimental and clinical relevance of the results are discussed.  Topics of interest that 

that have resulted from of this work which merit further study are discussed in a section 

on future work.  The final conclusions of the thesis work are presented. 
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Chapter 2  
 

The relationship between an external marker and the 
internal anatomic lung displacement in a porcine model 

 

2.1 Introduction 

 Respiration-induced lung tumour motion requires the use of large margins around 

the tumour to ensure adequate target coverage in conventional radiation treatment of lung 

cancer.
1-5

  Gating the radiation beam to one respiratory phase (gated radiotherapy) 

enables a potential reduction in the size of these margins and allows for dose escalation.
6-

11
  However, any gating errors could result in geographical target misses, resulting in 

reduced tumour control and over-irradiation of the healthy lung tissue, potentially 

resulting in pneumonitis.
12-14

 

 Gated radiotherapy usually relies on an external respiratory marker to predict the 

internal location of the tumour.  An external surrogate marker commonly used in clinical 

practice is the Varian Real-time Position Management (RPM) device, which records the 

motion of a small plastic block placed on the chest using a camera and presents the data 

as one dimensional curve of varying amplitude versus time.
10, 15-18

  Besides being used as 

a predictor of the location of the tumour during therapy, the RPM amplitude curve can 

also be used to sort CT images according to respiratory phase into 4 dimensional CT 

volumes (amplitude based 4D-CT).  Prior to treatment, a 4D-CT scan is used to develop 

the gated radiotherapy treatment plan, including the choice of optimal respiratory phase 

for delivering radiation.  Both 4D-CT sorting and gated radiotherapy rely on the 
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assumption that the motion of the marker is strictly correlated to the motion of anatomy 

(target and healthy tissue) and that this correlation is maintained during individual 

treatment sessions over the period of several weeks of fractionated therapy.  Violation of 

this assumption would invalidate the use of the 4D-CT plan and associated RPM gated 

radiotherapy delivery. 

 Several studies have investigated the correlation between an external respiratory 

marker and internal anatomy in patients.
19-26

  These studies compared the 

fluoroscopically tracked motion of gold fiducial markers or internal anatomical 

landmarks (e.g. diaphragm) to the unidirectional motion of the external surrogate marker.  

In general, the motion of the marker correlated reasonably well with that of the fiducials 

and internal anatomy.  However, none of these studies investigated the potentially 

negative effect of inconsistent breathing amplitudes.
22-24, 26

  Other studies have 

investigated the correlation between the programmable motion of a lung phantom and an 

external marker using patient respiratory data with inconsistent breathing amplitudes.
27, 28

 

The conclusions of these studies may be limited since the phantoms do not exhibit visco-

elastic deformations, which are present within the lungs.  In attempts to simulate visco-

elastic lung properties similar to human lungs, there have been developments of both an 

ex-vivo lung preparation
29

 and an inorganic deformable phantom.
30

  These systems show 

promise in their respective applications but lack the chest wall/pleura and lung interaction 

properties required for the proper testing of an external marker system. 

 In this work, we investigated the effect of inducing an inconsistent amplitude of 

breathing on the relationship between the one-dimensional motion of an external marker 

and average three-dimensional motion within regions of interest in both the right (RL) 



 

 

43 

and left lungs (LL) and the chest wall (CW) of a pig.  Motions, calculated from the vector 

displacement fields resulting from a nonlinear registration algorithm within specific 

regions of interest are used as a surrogate for the motion of a tumour imbedded within 

lung tissue.  Two separate experiments are performed to examine the relationship 

between the internal anatomy and the external marker.  The first experiment tested the 

correlation between the anatomy and the external marker at a single time point by looking 

for anatomical differences between volumes collected during consistent and inconsistent 

breathing, sorted into the same respiratory phase bins according to the RPM amplitude 

values (i.e. amplitude based 4D-CT sorting).  The second experiment investigated the 

correlation between the anatomy and the external marker over entire breathing cycles by 

performing a linear regression between the motion of the anatomy (calculated using 

nonlinear registration), within three regions of interest, and the motion of the external 

marker.  Comparisons were made between breathing cycles categorized as consistent or 

inconsistent to determine if the consistency of the amplitude had an effect on the 

correlation.  If this relationship is affected by variations in the breathing amplitude, then 

measures to prevent or account for inconsistencies in amplitude during acquisition of 

amplitude based 4D-CT scans, as well as during external marker gated radiotherapy, are 

warranted. 

 

2.2 Methods 

2.2.1 Image Acquisition 

 Four separate anesthetized and ventilated (Harvard Apparatus, Holliston, MA) 

female Landrace cross pigs were studied 3 times each.  Scanning was performed on a GE 
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Healthcare HD750 CT scanner (Waukesha, WI).  The breathing rate of the pigs was set at 

20 breaths/min.  In each study, a 4.0 cm section of the animal was scanned 20 times.  

Each (ciné) scan was performed with x-rays continuously on for 3.6 s, 0.6 s longer than 

the average length of a breathing cycle and used the following scan parameters: 200 mA, 

120 kVp, 64 × 0.625 mm slices, and a gantry rotation time of 0.4 s.  The pig's breathing 

amplitude was varied by periodically crimping the ventilator gas return tube at a rate of 

once per 3 seconds.  Each ciné scan was retrospectively reconstructed into a time series 

of volumes with a time spacing of 0.1 s, resulting in 33 volumes in each series.  A Varian 

RPM system (Varian Medical Systems, Palo Alto, CA), which was synchronized to the 

CT scanner to provide an x-ray on time-stamp on the recorded RPM amplitude versus 

time curve.  The (RPM) amplitude curve depicted the relative height of a location on the 

animal's chest (marked by a reflective block) continuously for the duration of the 20 ciné 

scans in a study.  The reflective block was placed within the field of view of the CT 

scanner to allow for the best possible correlation between the internal motion and 

external amplitude curve. 

 

2.2.2 Categorization of Breathing Patterns 

 The time points of end exhalation and end inhalation in the entire RPM amplitude 

versus time curve collected during each study (20 ciné scans) were found using a 

normalized cumulative amplitude histogram created from the curve.  An example of an 

amplitude histogram and the resulting normalized cumulative histogram from a study is 

shown in figure 2-1.  Following the lead of Lu et al.,
31

 the end of expiration amplitude 

was assigned as the 1
st
 percentile of the normalized cumulative histogram while the end 
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of inspiration amplitude was assigned as the 95
th

 percentile.  A scan was categorized as a 

consistent amplitude scan (CAS) if both the minimum expiration and the maximum 

inhalation amplitudes during the scan were less than the 1
st
 and 95

th
 percentile 

amplitudes, respectively (figure 2-2).  All other breathing cycles were classified as 

inconsistent amplitude scans (IAS).  The inconsistent amplitude definitions used included 

two types of breathing cycles: one in which exhalation was arrested before it reach 

"normal" end exhalation, or underbreathing (1
st
 percentile), and one in which inhalation 

was exceeded "normal" end inhalation, or overbreathing (95
th

 percentile). 

 

Figure 2-1: Histogram of pig RPM plotted with the cumulative histogram curve.  The 

percentile bins used to determine the maximum inspiration and maximum expiration are 

marked. 
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Figure 2-2: Pig RPM breath cycle with consistent and inconsistent breathing cycles 

categorized according to the percentile definitions 

 

2.2.3 Choosing a Reference Scan (RS) 

 For each study of 20 ciné scans, a reference scan (RS) was chosen from the set of 

CASs.  The first step in choosing a RS was to truncate the each CAS RPM amplitude 

curve to exactly one period since, as described in section 2.2.1, each ciné scan duration 

was 0.6 s longer than a respiratory period.  The truncated curve was then translated to 

begin at maximum expiration.  Then the truncated and translated RPM amplitude curve 

from each CAS was crosscorrelated with all the other CASs and the maxima, for each 

translated CAS, of the Pearson crosscorrelation values were averaged.  After this was 

performed for each CAS within a study, the highest average maximum Pearson cross-

correlation value was accepted as the RS. 
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2.2.4 4D-CT Sorting Algorithm 

 In this section, the 4D-CT sorting algorithm used in our investigations is briefly 

described.  CT volumes from a ciné scan were sorted into phase bins created by first  

dividing the interval between the maximum expiration and maximum inspiration of the 

RS amplitude curve into five equally spaced bins.  These five bins, on the positive slope 

of the RPM curve, were used to sample the inspiration phase of the breathing cycle.  

Three additional bins on the negative slope of the RPM curve were used to sample the 

expiration phase.  As shown in figure 2-3, the phase bins were chosen such that the 

centers of the first and last (fifth) bin on the positive slope of the RPM amplitude curve 

corresponded with the minimum (exhalation) and maximum (inhalation) amplitude of the 

reference scan. 

 

Figure 2-3: Example of reference scan curve divided into the respiratory sorting bins 
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 The volumes from each ciné scan (CAS, IAS, or RS) were sorted using their 

associated RPM amplitude values.  If multiple RPM amplitude values occurred within a 

phase bin, the RPM value (and associated volume) closest to the center of the phase bin 

was selected.  Conversely, if there were no RPM amplitude values within a phase bin, 

then no volume was selected.  These will be referred to as the sorted CAS, sorted IAS, 

and sorted RS data. 

 

2.2.5 Subsampling of Ciné Scans 

 The number of volumes in each scan (CAS, IAS, or RS) was reduced from 33 at 

0.1 s intervals to 12 at 0.3 s intervals by selecting every fourth volume from the time 

series, beginning with the first volume.  The subsampled scans were designated CAS12, 

IAS12, and RS12 for consistent amplitude scan, inconsistent amplitude scan, and reference 

scan, respectively. 

 

2.2.6 Nonlinear Registration Algorithm 

 The anatomical displacements between two volumes was quantified as a vector 

field using nonlinear registration.
32

  The algorithm has been optimized for lung images 

and utilized a multiresolution strategy to determine the minimum vector field required to 

register the two volumes.  The algorithm began with both volumes at 1/4 the native 



 

 

49 

resolution and the vector field at 1/8 native image resolution.  The cost function of the 

optimization process consisted of two terms: 
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 The first term is the difference between 1.0 and the normalized cross-correlation 

(NCC) between the two volumes; the second term penalizes large deformations and limits 

the vector length (d) to below a set maximum (dmax).  The constant c determines the 

relative weighting between the two terms and was determined by registering test volumes 

with known deformations.  A value of 1.2 was found to produce the smallest residual 

displacement errors for lung volumes.  For each volume resolution, the cost function was 

optimized using the Nelder–Mead simplex algorithm
33

 until it ceased to decrease.   The 

resulting displacement vector field was smoothed using a 3D mean smoothing algorithm 

to limit discontinuities that may have arisen from optimizing each vector independently.   

The algorithm then deformed the source volume using the smoothed vector field, 

increased the resolution of the volumes and the vector field by twofold, and began 

another round of optimization.  The process continued until the volumes had reached 

their native resolution.  The result of the registration algorithm was a three-dimensional 

displacement vector field at 1/2 the native resolution of the volumes.  For the analysis of 

the effect of inconsistent breathing amplitudes, the magnitude of the displacement vector 

field was calculated using: 
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 , y
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, and z
v

 are the orthogonal vector components of the vector field and 

r  is the magnitude of displacement.  The magnitude of the displacement vector field can 

then be displayed as an image (figure 2-4). 

 The accuracy of the nonlinear registration algorithm was determined using 

volumes provided by the DIR-laboratory group.
34

  Registrations were performed between 

the inspiration and expiration volumes of five full lung data sets.  The error of the 

nonlinear registration algorithm was quantified by averaging the differences of over 300 

landmarks previously selected by the DIR-laboratory group using a software assisted 

selection process on the registered inspiration and expiration volumes. 



 

 

51 

 

Figure 2-4: Nonlinear registration example (a) Axial images from two volumes collected 

at different time points of the breathing cycle.  (b) The optimum deformation vector field 

determined with nonlinear registration to warp image 1 to image 2 is displayed 

superimposed on image 2.  (c) Image of the magnitude of deformation vector field shown 

in (b). 

 

2.2.7 Experiments and Analysis 

2.2.7.1 Effect of inconsistent breathing amplitude on RPM 
 prediction accuracy 

 To determine the effect of the inconsistent breathing amplitude on the accuracy of 

the RPM amplitude curve to predict the internal anatomy at specific time points, the data 

sorted using the 4D-CT protocol were used (section 2.2.4).  The volumes from the sorted 
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CAS and IAS were registered with those of the sorted RS at the same respiratory phase 

using the nonlinear registration algorithm (section 2.2.6).  The magnitude of deformation 

vector fields was calculated using equation 2.2 (figure 2-4). 

 Three cylindrical ROIs, one each in the left lung (LL), right lung (RL), and the 

lateral chest wall (CW), were drawn in the maximum inspiration volume of the sorted RS 

with radius of approximately 2.5 cm and length 2.8 cm (slices 10–54).  Figure 2-5 shows 

the locations of the ROIs and the RPM box on an axial image of one of the pigs.  The 

ROIs were overlaid on the displacement vector fields and the average magnitude of 

displacement in each ROI was recorded for every phase of sorted CAS and IAS. The 

intraphase displacement results were tested for significant differences between the sorted 

CAS and IAS using independent sample two-tailed student’s t-test or Mann–Whitney U 

test for normally and non-normally distributed data, respectively. Significance was 

declared at p < 0.05 level.  All statistical calculations were performed using SPSS (SPSS 

Inc., Chicago, IL). 

 

Figure 2-5: Location of ROIs on axial image of a pig 
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  In addition, we sought to determine if there was any significant difference 

in the difference of a sorted RPM amplitude value from the center point of the bin into 

which it was sorted, between volumes from sorted CAS and IAS.  A two-tailed unpaired 

Student’s t-test was performed on the data. 

 

2.2.7.2 Effect of inconsistent breathing on RPM correlation with 
 anatomy 

 For this investigation, magnitude of the anatomical displacements of each volume 

in the subsampled ciné scans CAS12 and IAS12 with respect to the maximum expiration 

volume in RS12 were determined using nonlinear registration and the magnitude of 

displacements calculated using equation 2.2 (figure 2-4c). 

 The same cylindrical ROIs as in section 2.2.7.1 above were drawn in the 

maximum inspiration CT volume from the RS12 series and overlaid on the magnitude 

displacement maps.  The average displacement magnitude within the ROIs was recorded, 

resulting in three magnitude displacement curves, one for each ROI, for every CAS12 and 

IAS12.  Since the displacements of CAS12 and IAS12 were calculated with respect to the 

maximum expiration volume in the subsampled RS12, the RPM amplitude value of the 

maximum expiration volume in RS12 was subtracted from the entire RPM amplitude 

curve to give RPMref to be used for the regressions.  A linear regression was preformed 

between each ROI displacement curve from CAS12 or IAS12, and the corresponding RPM 

values from the RPMref curve. The results of the regression analyses (Pearson coefficient, 

slope, and intercept) from CAS12 and IAS12 were compared for significant differences 

using independent sample two-tailed student’s t-test or Mann–Whitney U test for 
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normally and non-normally distributed data, respectively.  Significance was declared at P 

< 0.05 level.  All statistical calculations were performed using SPSS (SPSS Inc., 

Chicago, IL). 

 

2.3 Results 

 The results from the nonlinear registration error analysis using the DIR-

laboratory
34

 data sets are shown in table 2-1.  The table displays the average distance 

between the user selected landmarks before and after the registration of the inspiration 

and expiration volumes.  In all cases, the distances between landmark points decreased.  

The superior-inferior direction had greater errors (residual magnitudes of displacement) 

than the other two directions.  The lowest total error was 1.18 mm (decreased from 3.89 

mm before registration), while the largest error was 2.34 mm (decreased from 9.83 mm).  

Table 2-1: Results of nonlinear registration analysis 
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2.3.1 RPM Prediction Accuracy Experiment 

 The average magnitude of displacements (and standard deviations) of the sorted 

CASs from the sorted RS over all eight phases from the 12 studies were 1.29 (0.36), 1.23 

(0.43), and 1.00 mm (0.33) in the LL, RL, and CW ROIs, respectively.  The values from 

the IASs for the same ROIs trended higher 1.40 (0.42), 1.35 (0.51), and 1.05 mm (0.31) 

but only the LL ROI averaged over all phases showed significantly higher values than 

those of sorted CASs.  Within each study, individual phases and ROIs showed significant 

differences between the average displacements of the CAS and IAS, with the IAS values 

being larger.  Additionally, within some phase bins, the average distance (magnitude of 

the difference) of the RPM amplitude values from the center of the phase bin into which 

they were sorted was greater for sorted IAS volumes than sorted CAS volumes.  Table 2-

2 summarizes the abovementioned significant differences according to study, ROI, and 

respiratory phases.  
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Table 2-2: Summary of magnitude of displacement respiratory phase binning results 

 

 

2.3.2 Linear Correlation Experiment 

 The slopes and intercepts obtained from the linear regressions between the 

magnitude of the displacement vector fields of the CAS12 and IAS12 volumes with respect 

to the RS12 maximum expiration volume and the RPM amplitudes showed significant 

differences between the CAS and the IAS volumes. The slopes of the regression were 

found to be significantly different between CAS and IAS volumes in 6/12, 10/12, and 

4/12 studies in the RL, LL, and CW ROI, respectively.  The intercept showed significant 

differences in 3/12, 6/12 and 4/12 studies for the same ROIs.   Table 2-3 shows a 

summary of the results of the linear regression analyses. Of note, the standard deviations 

of the slopes and intercepts of the CAS regression analyses were always smaller than 

those of the IAS regression analyses, indicating a more stable linear relationship.  Table 

2-4 shows the Pearson correlation values of the linear regressions for all three regions of 
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interest. There were a total of six instances (combination of study and ROI) that showed 

significant differences between the CAS and IAS (p < 0.01).  Of note, however, in all of 

these cases the Pearson correlation value was greater than 0.891.  The Pearson values for 

all 12 studies did not fall below a value of 0.763, which denotes a significant correlation 

at the p < 0.01 level.  The average Pearson value over all the studies was extremely high 

(0.947 ± 0.074 for CAS and 0.939 ± 0.060 for IAS) for all regions of interest.  Figure 2-6 

shows plots of the regression lines from all CAS (figure 2-6a) and IAS (figure 2-6b) in 

study B2, along with the mean and 95% confidence interval lines.
35

  The regression lines 

from the CAS (figure 2-6a) display a tighter confidence interval and few deviations from 

the mean line than the regression lines from the IAS (figure 2-6b). 

 

Table 2-3: Linear correlation results.  Summary of the results from the linear correlation 

analysis of the motions of an external marker and internal anatomy. Asterisks indicate a 

significant difference (p < 0.05) in the slope or the intercept between the consistent and 

inconsistent amplitude regressions. 
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Table 2-4: Summary of Pearson correlation coefficients 
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Figure 2-6: Regression results from inconsistent breathing cycles plot of the regression 

analysis results from Study B2.  Shown are the individual regression lines (gray) between 

motions of an external marker and internal anatomy.  The mean of the lines (black) and 

the 95% confidence interval for data collected during (a) consistent amplitudes & (b) 

inconsistent amplitudes are shown. 
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2.4 Discussion 

 A respiratory surrogate (e.g., the RPM system) must accurately predict the 3D 

motion of internal anatomy for it to be used confidently to gate radiotherapy and to limit 

artifacts in 4D-CT scans sorted with the help of the surrogate.  In the current study, we 

tested how the magnitude of the anatomical displacement relative to a reference volume 

was affected by the inconsistent amplitude of breathing for volumes with the same RPM 

amplitude value.  It was found that over the course of 12 studies, images collected during 

scans with inconsistent breathing amplitudes had a significantly greater displacements 

within the left lung of the animal.  The left lung was most affected due to the right lateral 

recumbent position during scans.  It was found that within each study, IAS volumes had 

significantly more anatomical displacements with respect to the reference volume than 

CAS volumes at a number of respiratory phases.  The increase in magnitude of 

displacement occurred in phases at which the RPM amplitude is both significantly 

different (table 2-2 nonbold phases) or not different (table 2-2 bold phases) between the 

CASs and IASs.  As such, the increase in deformation cannot be entirely attributed to 

difference in RPM amplitude between the sorted CASs and IASs.  This result calls into 

question the ability of the one-dimensional motion of a single marker (e.g., the RPM 

amplitude curve) to accurately predict the full motion of a viscoelastic system such as the 

lungs, specifically when the amplitude of breathing is inconsistent.   

 We correlated the motion of the external RPM marker and the motion of ROIs 

defined within the thorax and chest wall by linear regression.  The slope of the regression 

line indicate the ratio of motion of the external marker to that of the anatomy.  We found 

in our studies that the linear correlations between the RPM amplitude curve and motion 
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of the internal anatomy were significantly correlated on a cycle by cycle basis (Pearson 

correlation coefficients for all studies > 0.763).  However, there were significant 

differences in the slopes and intercepts of the regression lines between the consistent 

amplitude scans and the inconsistent amplitude scans.  These results indicate that the 

same linear relationship between the motions of the external RPM marker and the 

internal anatomy was not preserved in the presence of inconsistent breathing amplitudes, 

but was restored when consistent breathing amplitudes returned.  

 Our study is one among several that compared the motion of an external marker to 

that of either internal anatomy or implanted fiducials.  Vedam et al.
26

 compared the 

motions of an optically tracked external marker to fluoroscopically acquired 

diaphragmatic motion.  Similarly, Korreman et al.
23

 compared motions of an external 

marker and fluoroscopically tracked implanted fiducials over a number of breath cycles.  

Koch et al.
22

 performed correlation analysis of motions measured using MRI images of a 

lung vessel and a skin marker over more than one breathing cycle.  All of these studies 

used patients that exhibited some signs of irregular breathing during the studies.  The 

correlation between the external marker and the internal anatomy showed varied results: 

Vedam found a high degree of correlation, Korreman found correlations to be good with 

some patients and poor with others, while Koch found that the correlation could depend 

on which structure in the lung was compared to the external marker.  We showed, as did 

these studies, that there is a linear correlation between the motion of an external marker 

and the internal anatomy; our study extends the results of these prior works by sorting 

breath cycles according to the consistency of the breathing cycle amplitude and compared 

groups with highly variable amplitudes to ones having steady amplitudes.  Our results 
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further support the need for breath coaching to train the patient to have a consistent 

breathing cycle over the course of the treatment.  It has been well documented that there 

may be a variable relationship between the external marker and the internal anatomy in 

free breathing patients.  As a result, a number of groups have developed adaptive external 

marker internal anatomy prediction algorithms to account for the changed relationship 

due to irregularities in patient breathing (Ionascu et al.
36

 and Kanoulas et al.
37

).  The 

external marker curves shown in these two papers exhibit amplitude inconsistencies 

similar to the ones we have induced in our studies.  In our work, we observed that the 

relationship between the external marker and internal anatomy changed only during the 

inconsistent amplitude scans.  If this observation is repeated in patients, a method of 

continually changing the tumor-external marker correlation model throughout the 

treatment would be unnecessary.  Instead, an alternative method may be to develop a 

procedure to recognize deviations from a consistent maximum amplitude of breathing in 

real time, by looking for high slope values or changes to the Fourier transform frequency 

spectrum of the RPM trace.  This method could be used to pause or stall the radiation 

treatment at the onset of inconsistent breathing amplitudes and resume treatment when 

the breathing cycle has returned to the consistent pattern. 

 In this study, we changed the ventilator back pressure as a method to induce 

inconsistent breathing amplitudes.  While inconsistent breathing amplitudes are not the 

only component of irregular breathing, it is one of the most important components if 

amplitude based 4D-CT is used for treatment planning or amplitude based respiratory 

gating is to be used to treat patients.  The pig model presented in this study provides an 

in-vivo viscoelastic model to investigate how lung tissue, along with the chest wall, is 
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affected by highly variable breathing amplitudes. A further expansion on this study 

would be to use a programmable ventilator along with actual patient breathing curves to 

simulate both inconsistent breathing amplitudes and inconsistent breathing period 

lengths. 

 The method we have developed in the porcine model for the analysis of motions 

of internal anatomy during consistent and inconsistent breathing amplitudes as well as 

their comparison with motion of the RPM marker can be applied to human studies with 

minimal modifications.  The radiation dose of the study would have to be significantly 

reduced below the current level of 20 mSv possibly by using iterative reconstruction 

algorithms (e.g., ASIR
38

) and collecting fewer breathing cycles.  Such human studies will 

verify whether the results obtained in our porcine model apply to human lungs. 

 The noise in the images used in this study approximately equivalent to the noise 

of images acquired during clinical 4D-CT studies.  The tube current values used in this 

study are 2.5 times higher than a clinical study (200 mA vs. 80 mA), while the slice 

thickness used in this study is 4 times smaller (0.625 mm vs. 2.5 mm) then in a clinical 

study.  The difference of these two values leads to a decrease in noise by 1.58 times and 

an increase in noise of 2 times, respectively, resulting in a total increase in noise of 26%.  

This slightly larger noise value is also decreased because the diameter of the pigs used in 

this study are smaller than the diameter of a human patient.  Therefore, the noise between 

these two studies is approximately equivalent.
*
  

                                                 

*
 This paragraph did not appear in the original published paper.  It was requested as an additional by one of 

the PhD examiners. 
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Chapter 3  
 

The development of an automated image based 4D-CT 
sorting algorithm 

 

3.1 Introduction 

 Tumour movement due to respiration can adversely affect the planning and 

delivery of radiation treatment to lung cancers.
1-6

  In an attempt to better treat these 

tumours some clinical centres have adjusted their treatment plans in response to 

respiratory motion.
7-14

  While some centres attempt to respiratory gate the tumour 

motion,
15, 16

 others attempt to adjust the treatment planning margins in response to the 

maximum excursion of the tumour at inspiration and expiration.
17

  4–Dimensional 

Computed Tomography (4D-CT) imaging has been developed to visualize the tumor 

motion throughout the respiratory cycle.
18-24

  Visualization of the tumour is required to 

provide a patient specific treatment plan for both respiratory gated and non-respiratory 

gated treatment.   

 Current methods to produce 4D-CT images require a surrogate respiratory signal 

from either a chest height marker (e.g., the Varian Real-time Position Management 

(RPM) System (Varian Oncology System, Palo, Alto, CA))
18, 19, 21-23

, a strain gauge
24

 or 

spirometer.
20

  Volumes are produced by sorting images using the phase
19, 22, 23

 or the 

amplitude
18, 20, 21, 24

 of the surrogate signal.  However, 4D-CT imaging sorting methods 

that are dependent upon an external respiratory signal are prone to artifacts due to non-

reproducible breathing.
25, 26

  Published methods that adjust the sorting for non-
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reproducible breathing include breath coaching using audio/visual feedback,
27, 28

 the use 

of non-rigid registration,
25, 29, 30

 and retrospective selection of the peak and valley 

positions of the respiratory waveform.
26, 31, 32

  In addition, recent independent studies by 

Lu et al.
33

 and Abdelmour et al.
34

 demonstrate a decrease in these breathing artifacts 

when using amplitude sorting. 

 In the wake of using surrogate respiratory signals to sort 4D-CT datasets, the 

relationship between the surrogate respiratory signal (obtained at one location of the 

abdomen) and the motion at other positions of the chest has been the subject of 

investigations.  Ozhasoglu and Murphy
4
 found spatial and temporal misalignments 

between the motion of the chest and the motion of the abdomen.  More importantly, no 

definitive relationship between the 3D motion of a tumour and the linear motion of an 

external marker was found.  A more recent study
35

 demonstrated phase shifts between the 

chest wall motion and motion of an external marker placed on the abdomen.  In addition, 

hybrid gating has been recently developed to overcome the non-linear relationship 

between the tumour and the external marker.
36

  These studies indicate that respiratory 

motion recorded with a single abdominal marker cannot accurately represent the motion 

of the chest or the highly complex 3D tumour motion. 

 Recent studies have attempted to align respiratory states without the use of an 

external respiratory surrogate.  Hope et al.
37

 presented an algorithm that automatically 

sorted ciné time series images according to respiratory phase to produce 4D-CT images.  

However, it is unknown how well the algorithm handles non-reproducible breathing 

patterns.  A recently published lung model registration method
29

 based upon an internal 

respiratory surrogate and non-rigid registration produced good results for 3 out of a total 
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of 5 patients.  In addition, Eck et al.
38

 showed normalized cross correlation (NCC) to be a 

useful metric to match the respiratory phase of the CT images based on image similarity. 

 In this work, a new fully automated sorting algorithm that uses NCC to determine 

CT volumes and produce 4D-CT images is presented.  The method does not require an 

external respiratory signal and performs well in the presence of non-reproducible 

breathing.  The new automated method is compared to published amplitude and phase 

angle sorting methods that are currently in clinical use.  The comparison shows our 

method to perform well in comparison to the methods that use the external respiratory 

surrogate.  In addition, our method produces 4D-CT images free of inter-slice “banding” 

artifacts that can result in erroneous estimates of tumour volume. 

 

3.2 Methods 

 Patients were scanned using a 4-slice CT scanner (Discovery LS, General Electric 

Healthcare Technologies, Waukesha, WI) operating in axial ciné mode.  The amplitude 

of the respiratory motion was monitored using the Varian RPM system with the tracking 

block placed on the abdomen.  The phase angle respiratory curve was calculated from the 

measured amplitude respiratory curve using the Varian RPM software (ver. 1.6).  The 

respiratory trace was synchronized to the CT image acquisition via a TTL (transistor-

transistor logic) signal provided by the CT scanner when the x-rays were on.  The 

patients were allowed to breath freely with no prior breath coaching.  The Health 

Sciences Research Ethics Board of the University of Western Ontario, Canada approved 

the study procedures.  All participating patients gave informed consent for the study. 
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3.2.1 Image Data Acquisition  

3.2.1.1 Scan Parameters 

 The patients' breathing cycle was monitored prior to scanning, using the RPM 

system, to determine their average breathing periods.  The scanning protocol consisted of 

a series of asynchronously acquired serial ciné scans, acquired at different scan positions, 

to cover the entire thorax of a patient.  At each ciné scan position, time series of images 

were acquired for a interval corresponding to the average breathing period plus an 

addition second to account for possible breathing period variations.  The addition of one 

second was chosen because it has been shown that the standard deviation of the breathing 

cycle length is rarely greater than 1.0 seconds.
9
  Between two successive ciné scans the 

couch was translated 3/4 of the axial field of view to the next scan position.  This 

modified translation resulted in a common (overlapping) slice between adjacent ciné 

scans.  Typically, between 20 and 30 translations were needed to cover the entire thorax.  

The CT scanning parameters were: 0.5 second gantry rotation, four × 2.5 mm thick slices, 

120 kVp and 80 mA.  The reduced tube current provided dose savings to the patient.  

Total scan times were between 2 and 3 minutes for the entire thorax. 

 

3.2.1.2 Definition of Image Data 

 From each ciné scan, four time series of images, one for each of the four slices, 

were retrospectively reconstructed at a time spacing of 0.1 seconds.  In total, each study 

resulted in a maximum of 6000 images.  Here we develop nomenclature to index each 

axial image, ),( yxI .  Each image is indexed by n: the scan position of the ciné scan; s: 
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the image location within the scan position, and t: the time index within a time series 

(figure 3-1).  The resulting indexed images are represented by: 

],1[ ];,1[ ];,1[ ];512,1[,    ),(),( TtSsNnyxyxI
t

snI ∈∈∈∈∀=    (3.1) 

where, N is the total number of positions scanned; S, the number of image locations, is 

equal to 4 for a 4 slice scanner; T is the total number of images in a time series.  For fixed 

n and s the entire time series of image is defined as: 

],1[    ),(),(
~

TtsnIsnI t ∈∀=      (3.1a) 

The physical location of any image along the axial direction of the scanner (z axis) is a 

function of scan position and image location, n and s: 

),( snfz z=        (3.2) 

where, zf  (1,1) corresponds to the most inferior slice position. 
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Figure 3-1: A diagram illustrating the definition of scan position (n) and image position 

(s) within the image data I(n,s).  The top diagram outlines the orientation of a patient.  

The middle diagram shows the scan position blocks.   The lower diagram shows the slices 

within the scan positions, labeled according to n and s. 

 

 The overlapping scanning protocol, described in 3.1.1 Scanning Parameters, 

results in overlapping images between adjacent scan positions.  Specifically, the location 

of the most superior image of scan position (n) has the same physical location as the most 

inferior image of scan position n+1: 

)1,1()4,( =+== snfsnf zz      (3.3) 

such that, 

)4,1(
~

 and )1,(
~

−nInI        (3.3a) 

)1,1(
~

 and )4,(
~

+nInI        (3.3b) 
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are time series of images from overlapping image positions.  Each scan position, with 

exception of the most inferior and most superior, has two overlapping time series of 

images.  The most superior and inferior scan positions each have only one overlapping 

time series of images. 

 The image time, in seconds, is related to the image time index, t, by: 

tt ×∆=Time Image        (3.4) 

where ∆t is the reconstruction time increment in seconds.  In this study the time 

increment (∆t) is 0.1 seconds. 

 

3.2.2 4D-CT Methods 

 To compare RPM sorting algorithms with image based NCC sorting algorithms, 

both algorithms were used in the study and they are described in the following sections. 

3.2.2.1 RPM Sorting Algorithms 

 Sorting algorithms using the RPM respiratory curve have been previously 

published.
18, 19, 21-23

  Briefly, a respiratory curve that is synchronized to the image 

acquisition is collected by the RPM system.  The system employs a CCD camera that 

captures the motion of an external marker placed on the skin surface of the 

thorax/abdomen.   Each image is assigned either an amplitude or phase value derived 

from the RPM curve.  Using the synchronized values the images are sorted into 

respiratory (phase) ‘bins’ (usually between 8 and 12).  Combining images contained 

within each bin produces a time series of spatially coherent volumes. 
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Amplitude-Based Algorithm 

 Each acquired image is indexed by a respiratory amplitude value from the RPM 

curve and the sign of the first derivative of the RPM curve.  The sign of derivative index 

determines whether the images were collected during inspiration or expiration.  

Respiratory bins are constructed by dividing the interval between the global maximum 

and the global minimum of the RPM amplitude curve into two sets of 8 equally spaced 

subintervals: one set for inspiration and one set for expiration.  Images are sorted into 

appropriate respiratory bins according to the two indices and then all the images in a bin 

are grouped together to form a 3D volume.  The final 4D-CT dataset is comprised of a 3D 

volume from each respiratory bin.  However, variations of the patient’s respiratory 

amplitude during image acquisition may result in some bins containing incomplete 

volumes.  These incomplete volumes are excluded from the final 4D-CT datasets; as a 

result, not all of the 4D dataset necessarily had 16 3D volumes. 

 

Phase-Based Algorithm 

 Images were indexed by a phase value between 0 and 2π radians from the phase 

angle curve calculated by the RPM software.  Respiratory phase bins were constructed by 

dividing the interval of [0, 2π] into 16 equal spaced subintervals.  All the images were 

sorted into bins according to their phase index.  As in the amplitude-based algorithm the 

4D-CT dataset consisted of complete 3D volumes from each phase bin. 
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3.2.2.2 Image Matching Based on Normalized Cross Correlation 

 The Normalized Cross Correlation (NCC) coefficients between two 2D images is 

defined as:  

( )( )
( ) ( )∑∑

∑
−−

−−
=

yx BByx AA

BByx AA

BA

IyxIIyxI

IyxIIyxI
IINCC

,

22

,

,

),(),(

),(),(
),(     (3.5) 

where IA(x,y) and IB(x,y) are the pixel values at pixels x and y of images IA and IB 

respectively.  AI  and BI  are the mean pixel values of images IA and IB.  The NCC 

coefficient varies between a value of -1.0 and 1.0 ; a value of 1.0 corresponds to perfect 

image similarity. 

 The NCC 4D-CT sorting algorithm consists of 3 steps.  First, the Truncation and 

Shift step reduces the number of images in each time series of images to a single 

breathing period of images and shifts the time series to begin at maximum expiration.  

Next, the Volume Determination step assigned all the image data to produce 3D volumes 

at each 4D-CT time point.  Lastly, the Optimization step selects the optimum reference 

image scan position to reduce possible artifacts due to breathing cycle variations.  The 

implementation of each step is described in detail below. 
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Step 1 –Truncation and Shift 

 The raw data consists of multiple time series of images acquired serially for a 

time period equal to the patient’s average breathing period plus an additional second.  

The first step of the NCC algorithm is to select a single breathing cycle of images from 

each time series of images.  The breathing cycle length of a periodic time series of 

images (figure 3-2) can be determined by locating the image within the breathing cycle 

that is most similar to the first image.  Using equation 3.5, the NCC coefficient is used as 

an image similarity metric: 

],1[    )),(
~

,),((][ 1 TtsnIsnINCCtNCC tBC ∈= =     (3.6) 

 where ),(
~

snI  is the time series of images at scan position n, and image position 

s; 1),(
~

=tsnI  is the first image of the same series. 

 

Figure 3-2: The curve shows a breath cycle curve of images from a cine time series 

generated by tracking the chest at a single point.  The curve displays the breathing cycle’s 

periodicity. 
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 The NCC coefficients, NCCBC[t], begin at a value of 1.0, decrease to a minimum 

and then return to a local maximum (figure 3-3).  Assuming that each time series returns 

to its initial respiratory state the breath cycle duration is defined as the time index value 

associated with the local maximum of NCCBC[t] past the T/2 point: 

( )
2

     where][max
T

ttNCCT
t

BCBC ≥=     (3.7) 

 

Figure 3-3: The curve displays the results of a NCC algorithm between the first image of 

a ciné time series and each subsequent image.  The maximum past the half way mark is 

labeled TBC and indicates the length of one breath cycle. 
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 The time series of images is truncated to this point (figure 3-4) and the limits of t 

in equation 3.1 are changed to ],1[ BCTt ∈ .  All slices within a scan position were scanned 

synchronously and have the same breathing cycle length.  Therefore, TBC is only a 

function of scan position ( TBC = TBC(n) ) and the value at scan of TBC position n is set to 

the average value of the 4 time series of images within the scan position. 

 

Figure 3-4: A plot of the breath cycle curve from figure 3-3 truncated to exactly one 

breath cycle. 

 

 In addition to truncating each time series of images to one breathing cycle each 

series must be shifted to begin at a specific respiratory phase.  We chose to shift each 

time series to begin at maximum expiration and performed this step using an image 

derived chest height (CH).  The CH is determined from a vertical profile of an axial 



 

 

80 

image (figure 3-5).  The patient is assumed to be centered resulting in the first profile 

being taken from the midline of the image.  The CH is defined as the first instance that 

the y-coordinate of the profile, in pixels, exceeds -400 HU.  The final CH is the average 

of 40 CHs profiles (20 on either side of the first midline profile).  After performing this 

operation for an entire time series of images, the time series is shifted until the image 

with the lowest CH (corresponding to maximum expiration) is the first image of the 

series.  This was performed for every time series of images independently. 

 

 

Figure 3-5: An axial CT image of the thorax; highlighted is the profile line and chest 

position. 

 

 

 



 

 

81 

Step 2 – Volume Determination 

 The second step in the algorithm assigns the data from the asynchronously 

acquired time series of images, which have been truncated and shifted, into coherent 3D 

volumes.  The images are assigned to volumes that are indexed by a volume phase index 

value (m).  Each volume has a set of reference images, from a single scan position, that 

are used as the basis for producing each volume.  Images at scan positions adjacent to the 

reference images are assigned to a volume based upon the image similarity to the 

reference images.  This process is continued using the assigned images as the reference 

images and assigning the images at next adjacent scan position.  The process is continued 

in this "daisy chaining" fashion to determine an entire volume.  

 To begin, the reference images corresponding to a phase are selected by a image 

phase index value (p).  The image phase index value is a time index value (t) that locates 

the reference images within a time series of images.  Two variables determine the image 

phase index value:  the volume phase index value of the desired volume (m) and the scan 

position of the reference images (nR): 

( ) ( ) ( )RBC
RBC

Rm nTMMm
M

nT
mnp ≤∈×=  and ],1[        (3.8) 

where M is the total number of 3D volumes in the final 4D-CT dataset; in this study M = 

16. 

 Each final 3D volume is influenced by the scan position of the reference images.  

The problem of determining nR is dealt with in Step 3.  For simplicity in the rest of this 
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section, nR  is assumed to be a general scan position between n = 1 and n = N, and the 

image phase index value, pm(nR) is  abbreviated to pm. 

 Using equations 3.1 and 3.8 the reference images are determined from the 

appropriate time series of images: 

( )
( ) ],1[ ];,1[

 ];,1[ ];,1[ ];512,1[,
 ),(, ,,

MmnTp

SsNnyx
yxIsnI

RBCm

R

psnptRR mRm ∈∈

∈∈∈∀
==   (3.9) 

Images for non-integer values of pm are produced by linear interpolation of the 

neighbouring images: 

( ) ( ) ( )mRmRm
pfloorsnpceilsnptRR yxIwyxIwsnI ,,2,,1 ),(),(, •+•==    (3.9a) 

 where floor(pm) is a function that rounds pm to the first integer less than pm, 

ceil(pm) is a function that rounds pm to the first integer greater than pm.  The weighting 

factors are: 

mm

mm

ppceilw

pfloorpw

−=

−=

)(

)(

2

1
    (3.9b) 

 Once the reference images for a volume have been chosen we begin to assign 

images to that volume.  The reference images possess two sets of overlapping slice 

positions, one at the inferior image position (s = 1), one at the superior image position (s 

= 4).  At each of these overlapping image positions the NCC is calculated between the 

reference images and the overlapping time series of images at the adjacent scan positions 

(nR-1, nR+1): 
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 1, −RnInfNCC  and 1, +RnSupNCC  are matching functions that contain the NCC 

coefficients as defined in equation 3.6.  The maxima of these functions determine the 

time index values of the images at adjacent scan positions, nR-1 and nR+1, that are most 

similar to the reference images.  These matched images are assigned to the volume that is 

described by the reference images determined by the image phase index value, pm. 

 To record the time index values of the volumes, a lookup table, ),( nmτ , is 

generated.  The first value added to the lookup table is the image phase index value, pm, 

recorded at the reference scan position: 

( ) mR pnm =,τ        (3.11) 

After the first matching, as described by equation 3.10, the time index values of the first 

assigned images are also recorded: 

( ) ( ) ( )

( ) ( ) ( )]1T[1,    t][max1,

                                        

]1T[1,    t][max1,

BC1,

BC1,
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R
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ntNCCnm

R

R

τ

τ

  (3.12) 

 As in equation 3.7, the ( )
t

max  function determines the time index value 

corresponding to the maximum of function argument.  The next step in the algorithm uses 

the first assigned images, described by equation 3.12, to assign images from the next scan 

positions (i.e. nR+2 and nR-2) to the volume: 
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 Again, the time index values of sorted images are recorded into the same bin of 

the lookup table ),( nmτ : 

 

( ) ( ) ( )
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 The process continues in this "daisy chain" fashion to fill the entire lookup table 

at this volume phase index value.  The physical direction in which the algorithm proceeds 

depends on the initial location of reference scan position.  Three options exist: 1) the 

reference scan position is 1 < nR < N and the cascade proceeds in both the inferior ( for n 

= nR to 1 ) and in the superior directions (for n = nR to N ); 2) the reference scan position 

is nR = 1 and the cascade proceeds in the superior direction ( n = 1 to N ); and 3) the 

reference scan position is nR=N and the cascade proceeds in the inferior direction ( n = N 

to 1 ).  The matching algorithm for a single reference scan position is illustrated in figure 

3-6. 

 The algorithm is repeated for all phases m = [1,M].  The final result of volume 

determination is described by the formula: 

( ) { }
( )],1[),( ];,1[

 ];1,1[ ];,1[ ];512,1[,
 ),(,

~
),(,,

nTnmMm

SsNnyx
yxIsnI

BC

nmsnm ∈∈

−∈∀∈∀∈∀
=

ττ     (3.15) 

where s = [1,S-1] has been truncated by 1 to remove the overlapping image. 
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Step 3 - Volume Optimization 

 Step 2 defined an algorithm to assign asynchronously acquired serial ciné time 

series of images to a coherent 3D volume.  Images are assigned according to a set of 

reference images, which are taken from one scan position (nR) time series of images.  

Therefore, the entire 3D volume is based upon images collected at one particular scan 

position (nR).  However, breathing cycle variations during image acquisition may 

introduce artifacts due to a dependence of the algorithm on the location of the reference 

images.  Therefore, an additional algorithm is required to select the location of nR to 

optimize the spatially coherence of each volume.  
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Figure 3-6: A diagram of the algorithm for a single reference scan position.  The full 

algorithm makes use of multiple reference scan positions. 

 

 To begin, for a given volume phase index Step 2 Volume Determination is 

repeated 12 times using each of the 12 most inferior scan positions as the reference scan 

position, ( i.e. nR = 1 to 12 ).  The result is 12 unique lookup table, ),( nmτ .  Each lookup 
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table provides a survey of possible 4D-CT volume sets.  Each of the survey volume sets 

is based on different reference images collected during different breathing cycle periods.   

 The next step, for each set of 4D-CT volumes, is to determine which of the nR 

values produces the most spatial coherent volume set.  The NCC coefficient value, as a 

measure of image similarity, was chosen as the measure of the spatial coherence of a 

sorted volume.  All volumes had N-1 (the total number of scan positions minus one) 

image matchings performed.  Each matching resulted in an assigned image, with an 

associated NCC coefficient (equation 3.10).  The measure of the spatial coherence of 

each volume is taken as the sum of the NCC coefficients from the all image matchings.  

The volume set with the highest sum was selected as the optimal 4D-CT volume set and 

the scan position, nR, that produced this volume set, is selected as the optimal reference 

scan position.  A comprehensive explanation for this procedure is available in the 

discussion. 

 

3.2.3 Comparison and Analysis 

 The first analysis uses the root mean square deviation (RMSD) to measure the 

similarity between any image pair as follows: 
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where K is the number of pixels in the images IA(x,y) and IB(x,y).  RMSD equals 0 if 

IA(x,y) and IB(x,y) are the identical. 
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 For each registered 4D-CT dataset, we define a figure of merit (FOM) as: 

( )∑∑
−

+
−

=
M N

mm nInIRMSD
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1

)1,1(,)4,(
)1(

1
   (3.17) 

where I(n,p)m refers to an image from one of the sorted 4D-CT volumes; I(n,4)m is the 

image from scan position n, and from the previously removed image position 4; 

I(n+1,1)m  is the image from scan position n and from image position 1.  The previously 

removed image position 4 is required to provide a comparison of the overlapping images.  

N is the number of scan positions in the volume and M is the number of phases.   

 One-way analysis of variance (ANOVA) with Tukey’s post-hoc test is used to 

find significant differences between FOMs from the RPM amplitude sorting method, the 

RPM phase angle sorting method and NCC sorting method.  

 In the second analysis we determined the RPM amplitude (and phase) curve value 

for each image of each volume determined using the NCC algorithm.  For each full 3D 

volume a frequency distribution of these values was determined.  The results are 

histograms of RPM respiratory amplitude (or phase) values from each image used to 

construct a volume, at each time point.  The histograms evaluate the ability of the RPM 

system, which monitors the motion of an external marker at a single location on the 

surface of the thorax, to consistently predict the motion of the entire chest.  A very 

narrow RPM respiratory amplitude (or phase) histogram from NCC sorted images 

indicates a high degree of correlation between the motion of the RPM external marker 

and the entire chest.  Conversely, a wide histogram indicates a low degree of correlation 

between the motion of the RPM external marker and the entire chest.  For comparison, 
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histograms were produced for volumes determined using both the RPM amplitude sorting 

method and the RPM phase angle sorting method. 

 

3.3 Results 

 The RPM amplitude respiratory curve collected from one patient is plotted in 

figure 3-7.  The maximum inspiration amplitude value varies over the course of the 

curve.  Figure 3-8 shows an expanded view of the final four breathing periods and 

displays both the amplitude curve and corresponding phase angle curve that was 

calculated by the RPM software.  While the maximum of the amplitude curve varies 

during these breathing cycles, the phase angle curve shows no such variations; cycling 

between 0 and 2π radians. 

..  

Figure 3-7: Patient RPM curve plot of the RPM amplitude curve for patient 3 collected 

during CT image acquisition.  The highlighted portion is expanded in figure 3-8. 
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Figure 3-8: Highlighted end section from figure 3-7 is enhanced.  The chest height data is 

plotted with the phase angle data calculated by the RPM software. 

 

 Reformatted coronal images of the registered 4D-CT datasets were examined for 

obvious inter-scan banding artifacts.  In general, it was found that images from both RPM 

sorting methods yielded more artifacts than the NCC method.  As well, in some cases the 

RPM phase angle method yielded more banding artifacts than the RPM amplitude 

method.  Reformatted coronal images from one patient produced by the three different 

methods, for four phases of the breathing cycle, are shown in figure 3-9.  The banding 

artifacts are prominently displayed at the diaphragm. 
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Figure 3-9: Reformatted coronal reconstruction at 4 phases of the breathing cycles using 

3 different sorting methods.  Images are from patient 2.  Inter-slice artifacts are noticeable 

in both external marker methods. 

 

 The Figure of Merit (FOM) results are presented in figure 3-10.  For all patients, 

the FOM of the NCC method was significantly lower (improved volumes, fewer artifacts) 

than those of both RPM sorting methods.  These results were consistent with the artifacts 

seen in the reformatted coronal images.  The RPM amplitude sorting method had 

significantly lower FOM values than the RPM phase angle sorting method for two of the 

five patient cases; these differences were also consistent with the artifacts seen in the 

reformatted coronals. 
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Figure 3-10: FOM values of the overlapping slice pairs for each patient.  Significant 

between methods is indicated.  In general, the NCC method was significantly better than 

both external marker methods. 

 

 Figures 3-11 and 3-12 shows the results of the histogram analysis for a single 

patient.  Figure 3-11 contains histograms of the amplitude values associated with the 

NCC volumes; for comparison the RPM amplitude method histograms are plotted on the 

same graph.  The x-axis is labeled with the amplitude bin values, between the global 

minimum and global maximum of the RPM curve for this patient.  The y-axis is the bin 

value frequency.  The histograms from the RPM method display a single bin distribution.  

This is expected as the images are binned according to the amplitude value.  In 

comparison, the NCC image histograms, while centered on the RPM images’ histograms, 
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show a wide distribution of amplitude values.  Figure 3-12 shows the phase angle 

histogram for the NCC and phase angle sorted volumes.  The x-axis is labeled with the 

sorting bins, between 0 and 2π.   The same results as figure 3-11 are evident: the RPM 

phase angle histograms are confined to a single bin while the NCC image histograms 

show a wide range of bins with values. 

 

Figure 3-11: Frequency histogram plots of the RPM amplitude (AMP) values associated 

with the 3D volumes sorted by both the RPM amplitude sorting and the NCC methods. 
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Figure 3-12: Frequency histogram plots of the RPM phase angle (PhA) values associated 

with the 3D volumes sorted by both the RPM phase angle sorting and the NCC methods. 

 

3.4 Discussion 

 Phase angle 4D-CT sorting relies upon the calculation of a phase angle value from 

a respiratory amplitude curve.  Phase angle calculation software, like the software used in 

this study, constrains each breathing period to a phase angle between the values of 0 and 

2π radians, regardless of variations in the amplitude of the curve.  Sudden amplitude 

variations lead to aperiodic shifts in the phase angle curve, as seen in figure 3-8.  

Amplitude variations violate the assumption that the patient’s breathing is regular and 
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cause inconsistencies in the phase angle curve and in the final 4D-CT dataset.  In the 

presence of these amplitude variations the automated NCC method is able to produce 

artifact reduced 4D-CT images.  A comparison between the two methods readily 

demonstrates the limitation of phase angle sorting.  Thus, phase angle sorting should be 

performed only for patients without major variations in their breathing cycle amplitudes. 

 Amplitude variations, which cause artifacts in 4D-CT volumes, can be dealt with 

using of the amplitude curve to sort 4D datasets.  The amplitude sorting method 

presented here removes amplitude variations from the final 4D-CT dataset by exclusion 

of incomplete volumes.  This allows for breathing cycle variations, in the form of 

amplitude variations, to be filtered from the sorted volumes.  However, this technique 

imposes the assumption that a single marker’s motion reflects the motion of the entire 

deformable chest cavity and internal lesions.  Work quoted by Chi et al.
35

, Ozhasoglu et 

al.
4
 and Wu et al.

36
 suggests that correlation between a single external marker and entire 

chest cavity is not assured.   

 The findings in this work suggest a similar trend, that the motion of a single 

external marker is not 100% correlated to the rest of the chest.   A volume determination 

method based upon image similarity (NCC method) demonstrated a lower degree of 

image artifacts both qualitatively and quantitatively than two external marker methods.  

The histogram analysis showed that the NCC determined volumes were made up of 

images having a wide range of external marker values.  This simple analysis was able to 

show a lack of correlation between the external marker and the entire chest.  Further 

investigation would have to be preformed to look at the full tumour motion-external 

marker correlation. 
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 For the NCC method each time series of images was shifted to begin at maximum 

expiration. To determine the maximum expiration an image derived chest height (CH) 

index was used.  The CH index was used instead of the RPM device to allow the 

algorithm to function completely independent of the RPM device.  We chose to shift the 

images to maximum expiration because within the cycle it is the most stable portion of 

the breathing cycle.  To use the CH index for anything other than determining maximum 

expiration would require testing the relationship between the CH index and the rest of the 

chest.  

 The NCC method required approximately 30 minutes of computing time to 

complete.  Computational time this high is impractical for clinical applications.  The 

algorithm was running using a high level language (IDL) without fully optimizing the 

code.  Implementation and optimization in a low level language could dramatically 

improve computing time.  As well, parallelization and implementation using GPU 

processing of the algorithm to sort each breathing phase independently of each other 

would reduce the total processing time by a factor of 16.  These improvements would 

make the algorithm practical for centres without 4D-CT sorting capability. 

 Past studies that have reported on external marker tumour correlation have chosen 

the location of the external marker to provide the largest range of motion; usually on the 

abdomen.  However, mounting evidence suggests that there is not a universal location 

that provides the best marker-tumour correlation.  The location of the external marker 

should be optimized to provide maximum correlation with the tumour motion if the 

respiratory signal is to be used in gated radiotherapy.  The automated image based 4D-CT 
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protocol developed here could provide a useful unbiased tool to determine the location of 

maximum tumour-marker correlation.   

 In a number of studies, 4D-CT scans have been validated through the use of 

moving phantom data.
19, 22, 24, 26, 34

  All of these phantoms are rigid in nature and do not 

provide the important visco-elastic characteristics of the lungs that lead to breathing 

hysteresis and a non-linear relationship between the motion of an external marker and the 

motion of other chest positions.  To assess 4D-CT datasets properly either a non-rigid 

phantom or an animal model must be developed.  Lu et al.
33

 has mentioned the use of a 

non-ionizing implanted AC electromagnetic transponder (4D Localization System, 

Calypso Medical, Seattle, WA) that would provide comprehensive 4D information of an 

implanted marker that could properly validate the 4D-CT sorting process.  However, such 

a system is limited by cost and availability.   In future work, we plan to develop a pig 

animal model to validate the NCC image selection algorithm we use for our volume 

determination.  An animal model allows testing of the algorithm on a visco-elastic lung 

tissue system. 

 The Volume Determination step determines the reference scan position that 

produces the most coherent 4D-CT dataset.   This step is required to accommodate for 

non-reproducibility in the breathing cycle.  Depending on the degree of variation that is 

seen in the breathing cycle, a specific breathing state may only occur once.  Determining 

which reference scan position (and breathing cycle) represents data that occurred during 

every scanned breathing cycle is important to eliminate artifacts.  However, a limitation 

in our method is the use of only the 12 most inferior scan positions as a survey of 

reference images.  The purpose of the survey is to eliminate artifacts caused by irregular 
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breathing, however, by only searching 1/2 to 1/3 of the breathing cycles collected 

irregular breathing artifacts may still hinder the final volumes. 

 The choice to use only the 12 most inferior scan positions was dictated by the 

NCC algorithm’s specific sensitivity to anterior-posterior motion when aligning axial 

images according to respiratory phase.  The respiratory motion observed in the more 

superior images is predominately contained within the lung tissue and is in the superior-

inferior direction.  While this motion is enough to register images at the end of the image 

matching “daisy chain”, the lack of motion hinders sorting when it is used as a reference 

image and propagated through an entire volume.  In future work, we plan to increase the 

sensitivity of the NCC algorithm to detect superior-inferior motion in the lung tissue in 

order to use all the images as reference images. 

 The effective dose to a patient from a 4D-CT study using our scanning protocol 

was approximately 18 mSv, but will vary slightly depending on the volume being 

scanned and the breath rate of the patient.  Scanning with an overlapping image adds 

approximately 33% to the effective dose (12 mSv vs. 18 mSv).  We were able to use a 

low current (80 mA) due to the high contrast in the lung.  As well, decreased scan times, 

computational times, and dose would be afforded by the use of scanners with larger axial 

field of view coverage (e.g. 16 or greater slices). 

 This algorithm requires serial ciné scanned CT images.  It has limited 

applicability to helical scanning.  The algorithm requires overlapping images from 

adjacent scan positions to perform the volume determination.  If this was to be performed 

using helical acquisition the data would have to be collected as a series of volumes scans 
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during which the table would shuttle backward after each sections scanned, in order to 

provide the overlapping segments. 

 It is important to note that the efficacy of gated radiotherapy depends upon 

reproducibility of the 4D-CT scans and the ability to track the anatomy during therapy.  

Regardless of the quality of the 4D-CT images, non-reproducibility of 4D-CT scans can 

arise from the methods or the inherent non-reproducibility of breathing motion.  

Currently, the reproducibility of various 4D-CT algorithms has not been assessed and it 

will be a future priority if 4D-CT is to be used to confidently guide respiratory-gated 

radiotherapy.  The automatic NCC algorithm does not require user intervention and is 

therefore algorithmically more reproducible by design.  As a result, our NCC 4D-CT 

scans would highlight non-repeatable breathing patterns in patients and facilitate the 

development of methods to minimize variability. 
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Chapter 4  
 

 Applying an animal model to quantify the uncertainties of 
an image based 4D-CT algorithm 

 

4.1 Introduction 

A tumor in a patient’s thoracic cavity exhibits periodic motion as a result of 

respiration.  The motion of the tumour adds uncertainty to the radiotherapy treatment 

planning of the patient.
1-3

  Enlargement of the radiation treatment margins or gating of 

the radiation beam are used to ensure that the entire prescribed dose is delivered primarily 

to the moving tumour.  Both optimization of the treatment margins and planning of the 

respiratory gated radiotherapy require accurate dynamic volume imaging of the thorax 

and tumour as they move during respiration.
4, 5

 

Four dimensional computed tomography (4D-CT) has been developed to provide 

volume images of the entire chest at multiple time points throughout respiration.
6-8

  The 

most common of the many 4D-CT techniques that have been developed relies on data 

from an external respiratory surrogate (external marker,
7-9

 spirometry and bellows,
6, 10

 

strain gauge,
11

 etc.) to sort asynchronously acquired CT images into respiratory phase 

bins.  Potential errors arising from uncorrelated motion between the respiratory surrogate 

and the entire internal anatomy
12-14

 have led to the development of 4D-CT methods that 

do not require the use of external respiratory surrogate data: image based 4D-CT sorting 

methods (NCC
15

, multi-internal surrogates
16

 and manifold learning
17

). 
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Currently, 4D-CT image sorting methods have been qualitatively assessed in a 

number of phantom studies.  The phantoms most commonly used are rigid lung phantoms 

that have a programmable motor driving a solid insert in the cranial-caudal direction.
9, 18, 

19
  The primary limitations of these phantoms are the lack of deformable lung-like 

material and chest wall, thus rendering them unusable to investigate the correlation 

between an external marker and both the nonrigid motion and density variations of the 

'lung'.  However, there have also been developments in lung-like deformable phantoms.
20, 

21
  These phantoms have sacs filled with  a deformable foam with density similar to lung 

tissue.  A programmable piston that is capable of following the motion of a recorded 

patient breathing curve drives the deformation of the sacs.  While this is an improvement 

over the rigid phantoms, these phantoms are still limited by the use of simulated lung 

tissue, a geometry that is not representative of a patient and the lack of a chest-lung 

interface to provide resistance during respiration.  Biederer et al.
22

 have developed an ex-

vivo pig lung phantom that is contained within a chest phantom to provide a more 

realistic pleural space.  This design more accurately represents the mechanical properties 

of a living lung.  However, there are doubts that dead lung tissue, which has been excised 

for 8 hours prior to scanning, would have the same viscoelastic properties and density 

variations as living lung tissue 

 In this chapter we develop a method to quantitatively assess the uncertainties of 

an image based 4D-CT sorting method using live ventilated pigs.  Irregularities in the 

breathing amplitude of the pigs were induced to provide amplitude variations commonly 

seen in radiotherapy patients.  The image based 4D-CT method that this study was 

designed to test was previously published by our group.
15

  Using a nonlinear registration 
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algorithm we measured the displacement uncertainties, relative to a reference volume, 

caused by the inherent assumptions of the 4D-CT algorithm.  The methods are presented 

specifically for the image based 4D-CT algorithm, but the ideas could be extended to 4D-

CT algorithms reliant on external markers. 

 

4.2 Methods 

4.2.1 4D-CT Algorithm and Associated Errors 

 The goal of a 4D-CT algorithm is to produce a time series of 3D volumes that   

covers an area (e.g. the thorax) that is larger than the axial field of the view of the CT 

scanner.  The 4D-CT algorithm we have previously published
15

 produces these volumes 

automatically from multiple ciné scans of subvolumes acquired sequentially to cover the 

entire volume as shown in figure 4-1 for three adjacent ciné scans.  A spatial link 

between adjacent ciné scan subvolumes is created by using an overlapping image 

between the two abutted ciné scans.  To generate a 3D volume at a specific respiratory 

phase of the 4D-CT dataset a subvolume at that particular phase from a ciné scan is first 

selected.  The density of the lungs changes during respiration, leading to a periodic 

variation of lung CT values, that can be exploited by a pixel-based algorithm.  An 

intensity based image similarity metric, the normalized cross correlation (NCC), can be 

used to match an image from the starting subvolume to an image from the adjacent ciné 

scan at the overlapping image position; this matching selects an entire subvolume from 

the adjacent ciné scan, assuming that the selected image and the associated subvolume 

are at the same respiratory phase.  This selected subvolume is concatenated with the 
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starting subvolume and used to match a subvolume from the next adjacent ciné scan in a 

'daisy chain' fashion.  This procedure continues in both inferior and superior directions 

'stitching' subvolumes together, resulting in a full 3D volume at the same respiratory 

phase of the starting subvolume.  3D volumes at other respiratory phases can be similarly 

generated by repeating this process. 

 

Figure 4-1: A diagram describing the 4D-CT scanning protocol which uses multiple cine 

scans of subvolumes that overlap in one image location to cover the whole extent of the 

object. The 4D-CT sorting algorithm applied to the acquired 4D-CT data to assemble the 

whole volume at different respiratory phases consists of the following steps: (1) A 

subvolume at a particular respiratory phase is selected from the starting ciné scan and 

transferred to the to be assembled 3D Volume at that respiratory phase as the first 
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subvolume. (2) A subvolume at the same respiratory phase is selected from the next 

adjacent cine scan by maximizing the NCC between an image from the starting 

subvolume and images from the adjacent ciné scan of the overlapping image (3) The 

matched volume is added to the 3D volume. (4) Step 2 is repeated for the next adjacent 

cine scan  using the selected subvolume in step 2 as the reference subvolume.  (5) The 

matched volume is added to the 3D volume. (6) steps 2-5 are repeated until all ciné scans 

inferior and superior to the starting cine scan are matched with the reference subvolume 

selected in step 1.   The process is repeated for each subvolume at different respiratory 

phases from the starting cine scan. 

 

 The 4D-CT algorithm shown in figure 4-1 relies on two main assumptions to 

produce accurate synchronized 3D volumes.  These two assumptions and the possible 

uncertainties are: 

 i) It is assumed that the NCC coefficient between two images from an overlapping 

image location is highly sensitive to the respiratory induced spatial and temporal 

displacements and lung density changes between the two images.  This assumption is 

used to match the respiratory phase of a reference image to an image from a separate time 

series of images, located at an overlapping image location.  The image from the second 

time series that maximizes the NCC coefficient with the reference image is selected as 

the match.  In practice, two matched images will not be exactly the same and anatomical 

features within them will be displaced with respect to each other; this displacement 

(σtotal) is the summation in quadrature of a random uncertainty (σ0) and a NCC 

uncertainty (σNCC)
23

 given by: 

   22

0

2

NCCtotal σσσ +=      (4.1) 
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The random uncertainty is a result of the limitations of CT image acquisition 

(pixel noise, finite image acquisition interval, misalignment of the respiratory phase bins  

and image acquisition intervals, motion artifacts, etc) and of the method used to measure 

the displacement (in this paper a nonlinear registration algorithm is used).  The random 

uncertainty gives rise to the minimum measurable displacement between the reference 

and matched image as determined by the nonlinear registration algorithm.  The NCC 

uncertainty is the additional displacement above the random uncertainty resulting from 

inaccuracies of the NCC algorithm's ability to choose the image that is the best 

anatomical match to the reference image. 

In order to model the NCC uncertainties we must perform consecutive matches at 

the same image location using multiple ciné scans acquired at the same anatomical 

location (see 'scanning protocol' below).  Two consecutively image matches require 3 

time series of images at the same overlapping image location: an image from the first 

time series (reference) is matched to an image from the second time series; then the 

image from the second time series is subsequently matched to an image from the third 

time series.  The displacement between the final matched image and the original 

reference image is measured.  The total displacement results from the NCC uncertainties 

adding in quadrature: 

22

0

2 2 NCCtotal σσσ +=      (4.2) 

If the NCC matching is performed n times at the same overlapping image 

location, the NCC error from each matching adds in quadrature and a general equation 

can be developed: 
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22

0)( NCCtotal nn σσσ +=     (4.3) 

 where σtotal(n) is the total spatial displacement uncertainty between the reference 

image and the image obtained after performing n NCC matches. 

 ii) It is assumed that all images within each ciné scan subvolume move 

synchronously in phase with each other.  Therefore, any two subvolumes from separate 

ciné scans can be matched in respiratory phase using any pair of overlapping images 

between them.  One subvolume will act as a reference and any image pair between the 

reference subvolume and the subvolume being matched that occurs at an overlapping 

image position can be used to perform the match, therefore this assumption is referred to 

as the reference image invariance assumption.  The image based 4D-CT algorithm uses 

the extreme case where there is only a single pair of overlapping images between two 

separate ciné scans.
15

  In order to test this assumption for an arbitrary location of the 

overlapping image pair between two subvolumes (reference and comparison), we used an 

experimental design where we ciné scanned the same section of the thorax multiple times 

(see 'scanning protocol' below).  The difference in displacement between subvolumes 

matched using different pairs of overlapping slices is calculated for individual images: 

)()(),( BABA BBB σσσ −=∆     (4.4) 

 where σB(A) is the spatial displacement of image B of the matched comparison 

subvolume with respect to the reference subvolume image B when the overlapping image 

A in the reference subvolume was used to match the comparison subvolume; 
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 σB(B) is similarly defined as the spatial displacement of image B of the matched 

comparison subvolume with respect to the reference subvolume image B when the 

overlapping image B in the reference subvolume was used to match the comparison 

subvolume;  

 ∆σΒ(A,B) is the difference in spatial displacement of image B of the matched 

comparison volumes with respect to the reference subvolume image B as a result of using 

either overlapping image A or image B to match the comparison subvolume. 

 In practice, the NCC 4D-CT algorithm will use either the most inferior or the 

most superior overlapping images of the reference and comparison subvolumes to match 

the entire comparison subvolume.  Therefore, within this study we will limit the choices 

of image A from the reference volume used for matching to be the most inferior and 

superior image.  The displacements will be measured at all other image locations (image 

B). 

 

4.2.2 Scanning Protocol 

Six female Landrace cross pigs (30-50 kg) were scanned using a GE Healthcare 

Discovery CT750 HD Scanner (Waukesha, WI).  The pigs were mechanically ventilated 

using a Harvard Apparatus ventilator (Holliston, MA) with a respiratory period of 3 

seconds.  A single 4.0 cm section of the pig’s chest, chosen to include the diaphragm, was 

ciné (continuously) scanned 6 times, each ciné scan lasting for 3.6 seconds, with the 

couch stationary.  The ventilated breathing cycle was disrupted by crimping the ventilator 
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gas return tube approximately once every 3 seconds to produce inconsistent breathing 

amplitudes.  The CT scanner was set to scan at 120 kVp and 200 mA with a gantry 

rotation time of 0.4 seconds.  Each ciné scan was retrospectively reconstructed into 33 

volumes with a time spacing of 0.1 seconds.  Each volume consisted of 64 contiguous 

images covering an axial distance of 4.0 cm with an isotropic voxel size of 0.625 mm
3
.  

The data from these 6 ciné scans were labeled the lower section data. 

Three of the pigs had two additional series of ciné scans performed on them to 

acquire data from different locations of the animal's chest.  After the lower section scan 

data were acquired the scan table was translated 3.75 cm superiorly twice and at each 

location another 6 ciné scans were acquired.  These two additional sections were labeled 

the middle and the upper section and were all retrospectively reconstructed in the same 

manner as the data from the lower section scans. 

 

4.2.3 Nonlinear Registration Algorithm 

 The nonlinear registration algorithm that we used in this paper had previously 

been used to measure displacements due to respiratory motion.
24

  In this manuscript the 

warping algorithm registers volumes that were 512 x 512 x 64 pixels in dimensions and 

returned a vector displacement field that was one half the dimensions of the input images 

(256 x 256 x 32).  The magnitude of each displacement vector was calculated to produce 

a 3D array of magnitude of displacements (
222

zyxr
rrr

++= ).  For the analysis the 

images located at the boundary of the (sub)volume are excluded because nonlinear 

registration algorithms are subject to greater errors when matching pixels at the limits of 
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volumes of interest.  Therefore, the most superior and most inferior images of each 

subvolume are taken to be the 10
th

 and 54
th

 image, respectively. 

 

4.2.4 Uncertainty Analysis Experiments 

4.2.4.1 Uncertainties Due to NCC Matching  

 The uncertainties that result from using the NCC method to spatially match 

images were determined using equation 4.3.  The total spatial displacements were 

determined as a function of number of NCC matches, using volumes from the 6 ciné 

scans acquired at each of the three scan sections (six animals for the lower section and 

three animals for the middle and upper sections).  For each scan section, the first of the 6 

ciné scans was set as the reference scan.  The reference scan was subsampled at a 0.3 s 

time interval to reduce the number of reference volumes from 33 to 12.  The other 5 ciné 

scans were set as the comparison scans (numbered and ordered from 1 to 5) through 

which volumes were matched successively (using NCC); first the volumes from the 

reference scan and then to the matched comparison scan, at the overlapping image 

positions (figure 4-2).  Image matching was repeated by varying: either the reference 

image from the 10
th

 to 54
th

 image (every other image) of reference volumes, the reference 

volume used for matching from one of the 12 possible reference volumes or the ordering 

of ciné comparison scans used for the matching from one of the 120 possible 

permutations (5P5). 
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Figure 4-2: Illustration of method to asses the uncertainty due to NCC matching.  The 

method is shown for one reference image location and one comparison scan matching 

order.  After selecting a single reference volume the NCC is calculated between the 

image from the reference volume and the ciné time series of images at the overlapping 

image from Comparison Scan 1.  The image (and volume) that maximizes the NCC is 

selected as the match.  The selected image from Comparison Scan 1 is then used to match 

an image (volume) from Comparison Scan 2, using the same NCC matching procedure.  

This is repeated for all 5 Comparison Scans.  The matched volumes are nonlinearly 

registered to the Reference volume to obtain the spatial displacement between the 

matched and reference volumes.  Only displacement values for the image location used to 

perform the matching were used for the uncertainty analysis. 

  

 The displacements of the matched images with respect to the reference images 

were calculated using nonlinear registration.  In order to minimize nonlinear registration 

artifacts the entire final matched volume was nonlinearly registered to the entire reference 

volume.  The magnitude of each nonlinear displacement vector field was calculated to 
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produce a displacement map.  However, only the registration results for the images used 

during each NCC matching were used for the NCC uncertainty analysis.  Three circular 

regions of interest were drawn on each reference image (regions in the left lung, chest 

wall and over the entire thorax as shown in figure 4-3).  These regions were overlaid on 

each deformation map and the average values within each of them were calculated.  The 

results were then grouped according to the number of NCC matches performed to obtain 

the final match (n equal 1 to 5). The total NCC uncertainty, σtotal(n), corresponding to 

each n matches for each animal was obtained by averaging over all 22 images in a 

reference volume, 12 reference volumes and 120 permutation orders of matching for each 

animal.  The results were averaged over all animals.  Equation 4-3 was fit to the 

measured data, σtotal(n), using SigmaPlot (San Jose, CA).  The parameters for σ0 and 

σNCC were obtained from the nonlinear curve fits and reported with their standard errors. 

 

Figure 4-3: Location and approximate size of the regions of interest drawn.  Region 3 

includes the areas within regions 1 and 2. 
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4.2.4.2 Reference Image Invariance Assumption 

 The assumption that two subvolumes of the same anatomy from separate ciné 

scans can be matched in respiratory phase using any pair of overlapping images was 

tested by calculating ∆σB(A,B) (defined by equation 4.4) and testing for its significant 

difference from zero.  The data from the 6 ciné scans acquired at each of the three scan 

sections (six animals for the lower section and three animals for the middle and upper 

sections) were matched using NCC.  A single reference scan (the first scan) was used and 

each of the 5 comparison scans was matched to the reference scan independently for 

every overlapping image position (10
th

 through 54
th

, incremented by 2).  As in the 

evaluation of NCC error, the displacements of the matched volumes with respect to the 

reference volumes were determined from the nonlinear registration between the reference 

and matched volumes and maps of the magnitude of the displacement vectors were 

calculated (figure 4-4).  Three regions of interest were drawn on the reference images (as 

shown in figure 4-3) and transferred to the magnitude maps where the average values 

from within the ROIs were recorded. 
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Figure 4-4: Illustration of the method to test the reference image invariance assumption.  

Diagrams are for obtaining the quantities on the right hand side of equation 4.4, shown 

for a single image A and multiple image Bs.  (a) A single reference volume is selected 

from the reference scan.  A single image, image location A, is used to match an image 

(and volume) from Comparison Scan 1 by maximizing the NCC at the overlapping image 

location.  The nonlinear registration is calculated between the matched comparison 

volume and the reference volume.  The displacement between the two volumes is 

determined for overlapping image locations 10 to 54 (image B) to obtain values of σB(A). 

(b) A single reference volumes is selected from the reference scan.  For each image 

locations 10 to 54 within the reference scan, image locations B, separate matches are 

obtained from Comparison Scan 1 by maximizing the NCC at the corresponding 

overlapping image location.  The displacement between each matched comparison 

volume and the reference volume is calculated using nonlinear registration.  The 

displacement at the image used to performed the matching (image B) is recorded for each 

nonlinear registration to obtain values of σB(B). 
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For each scanned section of each animal, σB(A) and σB(B) were determined for 

each of the 12 reference volumes and each of the comparison ciné scans and the results 

averaged together.  This resulted in three groups of data, σB(A=10), σB(A=54), σB(B) that 

were averaged over all animals for each ROI.  ∆σB(A,B) for both image A positions (the 

inferior and superior, A=10 or 54 respectively) was calculated and the results were 

plotted as a function of image B.  Two different Student's t-tests were performed on the 

quantity ∆σB(A,B) to determine if the value was significantly different from zero.  The 

first t-test was performed after averaging the quantity ∆σB(A,B) over all image Bs and 

animals to obtain values for each of the 3 sections and 3 ROIs.  Additionally, ∆σB(A,B) 

was tested for two special cases: (A=10, B=54) and (A=54, B=10).  These special cases 

simulate the situation used for the image based NCC 4D-CT sorting method we 

previously described.
15

 

 

4.3 Results 

4.3.1 Uncertainty due to NCC Matching 

 A graph of the results from the lower section displaying the magnitude of 

displacement of the matched comparison images relative to the reference images 

(σtotal(n)), for the three regions of interest (ROIs), as a function of number of NCC 

matches is shown in figure 4-5.  The average displacement within the left lung ROI was 

above those of the chest wall and the entire thorax ROIs and increased from 0.9 mm, after 

1 NCC match, to 1.5 mm, after 5 NCC matches.  Table 4-1 shows the averaged fitting 

parameters obtained from fitting equation 4.3 to the measured displacements from the 
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lower, middle and upper sections respectively.  The lower section left lung ROI had the 

highest value of σNCC with a value of 0.54 ± 0.10 mm/match.  While the left lung σNCC 

value trended to decrease in the caudal to cranial direction (middle and upper sections 

0.32 ± 0.06 mm/match and 0.32 ± 0.16 mm/match), the chest wall σNCC values trended to 

increase from 0.29 ± 0.10 mm/match in the lower section to 0.45 ± 0.15 mm/match in the 

upper section.  The σ0 value ranged from 0.77 ± 0.06 mm to 0.93 ± 0.06 mm and was 

consistently larger than σNCC in all scan sections and ROIs. 

 

Figure 4-5: The average displacements relative to the reference volume as a function of 

the number of NCC matches performed.  The data shown are for the lower sections of the 

pigs for all three regions of interest shown in figure 4-3.  The errors bars are standard 

error. 
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Table 4-1: Summary of the fitting results of the NCC uncertainty equation (equation 4.3) 

for all ROIs in the lower, middle and upper sections.  Values are mean ± standard error. 

 

 

4.3.2 Reference Image Invariance Assumption  

 Figure 4-6 shows the graphs of σB(A) and σB(B) as defined in subsection 4.2.1 (ii)  

for the left lung ROI of the lower scanned section as the position of image B, 

corresponding to the overlapping slice location at which the displacements between the 

reference and comparison scan were measured, varied between the 10 and 54 in 

increments of 2.  The graph for σB(A) is shown for the case where the 10
th

 image (A=10) 

in the reference volume was used for matching.  The two curves overlap when B=10 and 

then diverge and maintain a small difference at other B values.  Figure 4-7 plots ∆σB(A,B) 

versus B for A = 10 and 54 from the same section and ROI.  The curves did not 

significantly differ from zero or from each other.  The same trends were observed for the 

data from other ROIs and other scanned sections.  Table 4-2 shows the values of 
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∆σB(10,B) and ∆σB(54,B) averaged over all image B for each scan section and ROI.  No 

value was significantly different from zero according to Student's t-test.  Table 4-2 also 

shows the values of ∆σB(A,B) for (A=10, B=54) and (A=54, B=10) averaged over all 

reference volumes and animals for each section and ROI.  Three of these values were 

significantly difference from zero (lower section entire thorax ROI (A=10, B=54) and 

(A=54, B=10); upper section chest wall ROI (A=10, B=54)). 

 

Figure 4-6: σB(A=10) and σB(B) for the left lung ROI in the lower scanned section of the 

pigs for image B equals 10 to 54. The graphs overlap at B=10, i.e. B=A, diverge slightly 

and maintain a small offset from each other as B increases from 10. 
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Figure 4-7: Plotted are the differences of σB(A=10) and σB(B) (i.e. ∆σB(10,B)) and with 

image A=54 (∆σB(54,B)).  Error bars are standard error. 
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Table 4-2: Summary of the results from the match image invariance experiment.  Data 

are shown for ∆σB(A,B) averaged over all image B locations and for the case of B=10 and 

54.   Values are mean ± standard error. 

 

 

4.4 Discussion 

 The treatment planning and delivery of radiation therapy relies on accurate CT 

volume images of the tumour and the anatomy surrounding the tumour.  Lung tumours 

are challenging to image because the volume of interest is often larger than the axial field 

of the view of the CT scanner.  Therefore, full volume images must be stitched together 

from asynchronous data acquired over multiple breathing cycles.  The process of 

combining images from separate breathing cycles inevitably causes uncertainties within 

the final images due to misalignment of independently acquired images.  In this work we 
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developed a method to assess the spatial displacement uncertainties of an automated 

image based 4D-CT algorithm.  The experiments were performed on live animals in order 

to provide in-vivo lung mechanics similar to a patient. 

 In addition to the two assumptions outlined and tested in this work, there is 

another implicit assumption made by all 4D-CT algorithms.  This assumption is that the 

only movement during image acquisition is a direct result of respiration.  In other words, 

there is no movement of the gross patient anatomy during the scan.  This is considered a 

good assumption for the 4D-CT data acquisition due to the relatively short time required 

for image acquisition (~ 1 minute). 

 The assumption that the NCC coefficient calculated between two images is 

correlated with the respiratory induced spatial displacement between the images was 

modeled and tested.  It was determined that the displacement between the reference and 

the matched image consists of two separate components, a random component as a result 

of limitations of the image acquisition and the nonlinear registration algorithm ( 0σ ) and a 

non-random component that resulted from mismatching the images (in this study the 

NCC uncertainty, NCCσ ).  The NCC matching uncertainty was found to vary depending 

on the region of interest and section where the images were acquired.  In general, from 

the inferior scan section to the superior scan section the NCC matching uncertainty 

trended to decrease the left lung ROI, but trended to increase in the chest wall ROI.  The 

changes in these values are most likely due to the variations in amount of movement 

within these ROIs at different scan sections.  The lung tends to have larger displacements 

in the inferior sections (lower), while the chest wall tends to have larger displacements in 
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the superior sections (upper).  The values of the NCC matching uncertainty were 

relatively consistent across all scan sections within the entire anatomy ROI. 

 The 4D-CT algorithm relies on the use of successive NCC matches to produce 

continuous 3D volumes.  We found in this paper that the NCC matching uncertainty will 

propagate through successive NCC matches and add in quadrature.  This finding raises 

concern that the uncertainty due to NCC matching could become large if many 

subvolumes are required to cover the chest of a patient; a typical patient could require 

four to six 4.0 cm subvolumes.  The number of successive NCC matchings required could 

be reduced by beginning the 4D data matching procedure in the middle of the volume and 

performing the matching in both the inferior and superior direction.  This has the 

potential to reduce the number of successive NCC matches required by one half, thus 

reducing the total NCC uncertainty. 

 It was found that there was a random uncertainty governing the minimum 

measurable displacement between two images (σ0).  This uncertainty arises from the two 

most anatomically similar images not having exactly the same image intensity values for 

all image pixels.  The nonlinear registration algorithm interprets a variation in pixel 

values as an anatomical misalignment between the two images and will produce the best 

estimate of the displacement require to realign the images.  In reality, there are multiple 

reasons for variation in pixel intensities between the two images.  The pixels will have a 

variation due to the intrinsic noise of the image, which may be on the order of 10 HU.  

Additionally, the finite pixel size and finite acquisition window (0.4 seconds and 

0.625mm
3
) will cause a blurring of stationary and moving structures respectively, which 

leads to variation in pixel intensity values.  Finally, there may be an actual anatomical 
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misalignment between the anatomy imaged.  This misalignment may be due images 

acquired at the same respiratory phase having small local variations in the location of 

anatomical structures due to breathing irregularities.  The misalignment may also be due 

to an offset between the image acquisition window and the respiratory phase window of 

two images.  All of these factors combine into the minimum measurable displacement by 

the nonlinear registration algorithm between the two most anatomically similar images 

and is represented by the random uncertainty parameter in the NCC uncertainty formula. 

 The assumption that all the images of an entire ciné scan subvolume move 

synchronously in phase was validated through the reference image invariance 

experiments.  This assumption was validated for the three sections covering the entire 

thorax of the pig.  In the special case where the overlapping reference image position was 

set at the most inferior or superior of the subvolume there were three instances where 

∆σB(A,B) was significantly different from zero.  However, when these displacements are 

compared to the values of minimum measurable uncertainty (σ0) obtained from NCC 

matching experiments they were extremely small (0.77 - 0.93 mm for σ0 compared to 

0.02 mm for ∆σB(A,B)).  One limitation of the test is the available axial field of view 

(AFOV) to measure the displacements; the tests were limited to 3.0 cm of the 4.0 cm scan 

due to the inability of the nonlinear registration algorithm to perform at the extreme 

boundaries of a volume.  While there were very few values significantly different from 

zero from the 3.0 cm AFOV experiments, it would be advantageous to be able to perform 

this test using a scanner with a larger AFOV to provide assurance that larger sections 

could be used with our 4D-CT algorithm. 
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 The uncertainty analysis of our image based 4D-CT sorting algorithm was based 

upon the reference image invariance assumption that allows two subvolumes with as few 

as a single overlapping image location, to be matched in respiratory phase.  If two 

images, one from each of two subvolumes to be matched, located at an overlapping 

image position are matched using NCC the displacement uncertainty between the two 

images (i.e. NCC displacement uncertainty; see section 4.2.1(i)) will also be equal to 

displacement uncertainty between the two matched subvolumes because the matched 

images and their associated subvolumes must maintain the same respiratory phase as 

required by the reference image invariance assumption.  This argument could be 

extended to propagate the NCC displacement uncertainty over any number of subvolume 

matchings to generate a whole volume as long as the NCC matching uncertainty (σNCC) 

and the minimum displacement uncertainty (σ0) are known for each subvolume and the 

reference image invariance assumption is satisfied over the area covered by the 

subvolumes.  For matching multiple subvolumes to build up a volume that is several 

times larger than the AFOV of the CT scanner, the NCC displacement uncertainties of 

each matching, which can be different for each subvolume, add in quadrature according 

to equation 4.3.  Using the σNCC and σ0 data shown in table 4-1 the displacement 

uncertainties of the 4D-CT volumes constructed from the lower, middle and upper 

sections can be calculated.  For a volume that begins with the most inferior lower section, 

the most superior upper section will require the most NCC matching to select (2 matches: 

lower to middle, middle to upper) and the largest uncertainty in the whole assembled 

volume will occur in the upper section.  The uncertainty values calculated for each ROI 
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in the upper section of the constructed whole volume of the pig’s thorax were: 0.82 mm 

for the entire thorax, 1.03 mm for the left lung and 1.00 mm for the chest wall. 

  Pigs were used for these experiments because the velocity of respiratory motion 

and size of the structures within a pig are similar to those of a human patient.  The 

average breathing rate and total lung tumour displacement of a human are approximately 

12 bpm and 1.2 - 1.8 cm.
25

  In our experiments, the pig’s breathing rate was set to 20 

breaths per minute, with a 1.0 - 1.2 cm displacement of the lower lung tissue.  Therefore 

over the course of a breathing cycle, the velocity of the lung tumour/lung tissue in our pig 

experiments were equivalent to that in human patients (4.0 mm/sec).  As well, the size of 

the pig's lung and range of displacements during breathing are similar to humans, 

allowing the use of a clinical CT scanner. 

 The uncertainty quantification technique presented in this study could be used to 

assess the uncertainties of other 4D-CT algorithms.  Currently, methods using external 

markers as surrogates for respiratory motion are used in the most common 4D-CT 

methods.  The uncertainties of these 4D-CT scans have yet to be quantified using an in-

vivo model.  In order to test an external marker method using the techniques developed in 

this chapter the anatomy of the animal would have to be scanned multiple times (at the 

same location) and then sorted using the data from the external marker.  One volume 

would be selected as the reference volume and all nonlinear registration are calculated 

with respect to this volume.  For each respiratory phase bin the average displacement 

with respect to the reference volumes can be calculated to assess the average 

uncertainties resulting from the assumption that a single external marker can be used to 

consistently predict the motion of the anatomy. 
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Chapter 5  
 

Conclusion 

5.1 Summary 

 The introduction of this thesis provided an overview of lung cancer and the 

different modalities available to treat this deadly disease.  The issues regarding the effects 

of lung tumour motion on the imaging and radiation treatment of lung cancer were 

elucidated and the objectives of this thesis were outlined.  The objectives of the thesis, to 

quantify the correlation between an external marker and the internal anatomy during 

respiration and then develop and validate a new 4D-CT method based purely on 

information contained within images of the internal anatomy were addressed in three 

chapters that followed the introduction. 

 In this final chapter, the major findings from the research will be summarized, 

followed by a discussion regarding the experimental techniques and clinical relevance of 

the results.  The largest section of this chapter will encompass a discussion of areas for 

future investigation.  The work presented in this thesis addresses fundamental scientific 

questions and assumptions that are sometimes overlooked when a method is so quickly 

implemented into a clinical setting, as was the case for 4D-CT.  4D-CT imaging and 

treatment is still relatively new and for it to reach its full potential there are key research 

and clinical topics to be addressed.  This final thesis chapter will end with an overall 

summary of the major conclusions obtained from this work. 
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5.2 The relationship between external marker and internal 
anatomic lung displacement in a porcine model 

 The first experiment, presented in Chapter 2, investigated the relationship 

between the motion of a 1-dimensional external marker and the 3-dimensional internal 

anatomical motion of a pig's thorax under the influence of a variable breathing amplitude.  

Animal models are important when studying the effects of respiratory variations because 

they allow the effects to be studied over multiple breathing cycles, something that could 

not be done in human subjects due to the concern of delivering high radiation doses to 

patients from the CT imaging required.  It was found that that the average anatomical 

displacement (with respect to a reference volume) within a cylindrical region of interest 

drawn to include the lung tissue was significantly higher for images sorted using 

inconsistent breathing cycles than for images sorted using consistent breathing cycles 

(1.40 mm +/- 0.4 mm versus 1.29 mm +/- 0.3 mm, p < 0.05).  Additionally, an 

inconsistent breathing amplitude was shown to change the slope of the regression line fit 

to the motion of the internal lung anatomy and the external marker motion in 10 of the 12 

studies performed.   From this work we concluded that an inconsistent breathing 

amplitude can invalidate the relationship between an external monitoring system and the 

internal anatomy. 

 

5.3 The development of an automated image based 4D-CT 
sorting algorithm  

 In Chapter 2, it was shown that the correlation between an external respiratory 

surrogate marker and the internal anatomy was weakened by the inconsistency of the 
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amplitude of the respiratory cycle.  In light of this finding and the occurrence of 4D-CT 

artifacts when using external marker sorting methods the choice was made to develop a 

new entirely image based 4D-CT algorithm.  The method that was developed removed 

the use of any external respiratory surrogate to assign respiratory phase values to each 

acquired image.  The image based algorithm produced contiguous time-matched 3D 

volumes using a normalized cross correlation (NCC) image matching procedure.  The 

algorithm produced 3D volumes from asynchronously acquired time series of 

subvolumes that spanned the entire thorax.  A subvolume was chosen from one time 

series and other subvolumes from the adjacent time series were matched to the first 

subvolume using the NCC image matching procedure.  This process was continued in a 

'daisy chain' like fashion to match subvolumes from every time series. Other ancillary 

algorithms were also developed to ensure that the final volumes spanned an entire 

breathing cycle and to minimize the number of imaging artifacts.  To test the algorithm, 

4D-CT scanning was performed on 5 patients with lung cancer.  The 4D-CT volumes 

were constructed using three separate 4D-CT sorting methods based on: external marker 

phase, external marker amplitude and the new NCC method.  In all 5 patients there were 

noticeably fewer imaging artifacts in the NCC 4D-CT volumes compared to the two 

commonly used external marker methods.  Additionally, figure of merit values calculated 

at the interface between adjoining scan positions were significantly improved for the 

NCC 4D-CT volumes compared to the external marker methods. 

 In addition to the image based 4D-CT algorithm presented in this chapter there 

have been two other image based 4D-CT algorithms published.  Both of these methods 

derive a relative breathing phase value for each image using only the information 
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contained within the image.  Li et al.
1
 published a method that uses four separate 

breathing metrics to derive a respiratory phase value for each image.  The optimum 

combination of the four breathing metrics (and thus the respiratory phase value) is 

obtained by minimizing the difference in phase value between images acquired at the 

same time and within the same scan position.  Images from separate scan positions that 

had the same respiratory phase were combined to form 3D volumes.  While the 

combination of multiple metrics has the potential to be robust, the algorithm relies on the 

linear relationship between the respiratory phase values derived from independent scan 

positions; an assumption that requires validation, specifically in subjects that exhibit 

irregular breathing. 

 Additionally, Hope et al.
2
 also developed an algorithm that assigns breathing 

phase values to individually acquired image using only the information contained within 

the image.  In contrast to Li et al., this algorithm produces a phase value relative to the 

images acquired at the independently acquired adjacent scan positions.  The phase values 

from distant scan positions are included in the calculation of the relative phase values for 

each image by 'daisy chaining' the values through all the scan positions from the entire 

scanned volume.  This method seems to do an excellent job of including the information 

from the entire final volume of interest for which 3D volumes will be reconstructed, 

however, there is not direct link between adjacent scan positions which may lead to phase 

shifts when the relative phase information is 'daisy chained'.   

 The image based algorithm that was developed in this thesis does not produce a 

respiratory state value but instead matches the anatomical features of volumes using a 

single simple image matching procedure.  The algorithms is able to ensure continuity 
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between image matching by performing the image matching at an overlapping image 

position. 

 

5.4 Applying an animal model to quantify the uncertainties 
of an image based 4D-CT algorithm 

 A fully automatic image based 4D-CT algorithm was developed in Chapter 3.  In 

this chapter we developed a method to quantify the spatial displacement uncertainty of 

4D-CT volumes generated with an image based 4D-CT sorting algorithm using an in-vivo 

animal model.  We showed that NCC can be used for matching the respiratory phase of 

images and the uncertainty of the generated 4D-CT volumes consists of a random 

component independent of the sorting algorithm and a component from the NCC 

matching method employed in the sorting algorithm.  In addition, the reference image 

invariance assumption that allows two subvolumes with as few as a single overlapping 

image location, to be matched in respiratory phase was validated.  For matching multiple 

subvolumes to build up a volume that is several times larger than the  AFOV of the CT 

scanner, the NCC displacement uncertainties of each matching, which can be different for 

each subvolume, add in quadrature, according to equation 4.3 of Chapter 4.  The 

displacement uncertainties in the pig’s lung were calculated to be approximately 1.0 mm 

in all regions of interest for the 4D-CT volumes constructed from three separate 

subvolumes.  The assessment of the accuracy of spatio-temporal information of acquired 

4D-CT volumes is essential for the delivery of radiation to the targeted volume with 

confidence. 
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5.5 Clinical Relevance  

5.5.1 Relevance of a Porcine Model for Testing Lung Motions 

 The animal studies performed in this thesis were used to assess the accuracy of 

both an external marker tracking device and a 4D-CT imaging protocol.  The pig lung 

was chosen for these experiments instead of inanimate mechanical phantoms because of 

its similarity to the human lung in both functionality and size.
3, 4

  An in-vivo animal lung 

model is advantageous over a non-living phantom because the in-vivo model includes the 

visco-elastic properties of the lung that are likely to produce irregularities in the 

correlation between the external and internal motion.  Pig models have been used to test 

lung motion and functionality in studies where using human subjects is not feasible 

because of radiation risk.
5
  The use of an animal model in our studies provided the 

freedom to perform our experiment over multiple consecutive breathing cycles, a luxury 

not available when using human subjects due to radiation dose concerns.  With the 

growing use of respiratory gated radiotherapy to deliver higher "focused" radiation doses 

to patients, in an effort to control or cure cancer, it is important to understand the basic 

science behind the correlation of respiratory surrogate markers and internal anatomy.  

Animal models provide the best models for examining the highly complex lung motion 

and translating this knowledge to patients. 

 

5.5.2 Clinical Relevance of Image Based 4D-CT method 
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 Patients with lung cancer receive at least one 4D-CT scan as part of their normal 

treatment programs.  These scans are performed using an external marker as respiratory 

surrogate to measure the respiratory phase at which the images were collected.  As such, 

these methods are prone to imaging errors as a result of miscorrelation between the 

external marker respiratory surrogate and the patient's anatomy and are dependent on the 

positioning of the external marker.  The image based 4D-CT algorithm presented in 

chapter 3 could be used in the treatment process of patients with lung cancer to replace 

the external marker 4D-CT algorithm to avoid artifacts in geometry and density.  The 

artifact reduction provides a more accurate visualization of the tumour volume.  

Additionally, the new image based 4D-CT method is not dependent on the placement of 

an external marker and would provide day to day reproducibility of the 4D images, which 

is important if repeated 4D-CT scans are to be acquired for treatment planning and 

monitoring during a course of gated radiotherapy.  Another important factor to consider is 

the cost of external marker respiratory surrogate systems.  In cancer treatment centres that 

do not treat with respiratory gating, the investment of an external respiratory surrogate 

system is a large expense in order to obtain information about the tumour motion.  The 

image based 4D-CT algorithm has been published in the public domain and thus could be 

available at a significantly reduced cost compared to an external marker system.  

 

5.5.3 Limitations of the Image Based 4D-CT Algorithm 

 An image sorting algorithm has been developed to produced spatially coherent 

volume images from asynchronously acquired CT data.  The 4D-CT algorithm produces 

these volumes by concatenating images from multiple scan locations that are acquired at 



 

 

137 

the same respiratory phase.  Irregular breathing leads to variations of the maximum 

inspiration amplitude, maximum expiration amplitude and breathing cycle period 

resulting in a discrepancies in the extent of respiration induced motion among separate 

breathing cycles.  To produce a spatially coherent 4D-CT dataset (i.e. combining images 

that all contain the same extent of respiratory motion) the images acquired during the 

irregular breathing portions of each cycle will be discarded.  In our developed 4D-CT 

algorithm an upper and lower bound of respiratory amplitude are set by the breathing 

cycle that has the least amount of respiratory motion, images acquired outside of these 

bounds ere not used in the generation of the final 4D-CT dataset. This trade-off, the 

image quality of the 4D-CT images even with irregular breathing amplitude versus loss 

of information about the true extent of the respiratory induced motion, is a limitation of 

our developed 4D-CT algorithm.  It would be advantageous to use the images that are 

discarded during the 4D-CT sorting process to obtain valuable information about the 

variation of the extent of the breathing motion during irregular breathing.  The knowledge 

of the tendency of a patient to breath irregularly during 4D-CT image acquisition could 

be incorporated into the treatment planning procedure through additional PTV margins to 

ensure that the tumour is consistently within the field of view of the radiation beam. 

 

5.6 Future Considerations 

 Most current clinical CT scanners have a limited axial field of view in the range 

of 4.0 cm to 8.0 cm necessitating the use of 4D-CT algorithms to produced full volume 

images over the entire breathing cycle.  However, recent technological developments 

have produced cone-beam CT scanners capable of imaging up to 16.0 cm (320 slices) 
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simultaneously in a single gantry rotation.
6
  Eventually these cone beam scanners will 

completely supplant the requirement for 4D-CT algorithms to produce volume images 

over the entire breathing cycle.  However, there are some key limitations to cone-beam 

CT imaging because of which, 4D-CT algorithms will still be used for the foreseeable 

future. 

 Some cone beam CT scanners are mounted onto the gantries of radiation therapy 

linear accelerators and are used to geometrically align the treatment beam to the correct 

target.  The volume images from these radiotherapy cone beam CT scanners have been 

shown to reduce patient set-up uncertainties during radiation treatment,
7
 but are currently 

not used to perform dose calculations.  Due to the high flux of scattered photons reaching 

the CT detector
8
 and the long imaging acquisition times (~ 1 minute)

9
 the image quality 

of radiotherapy cone beam CT scanners is significantly lacking compared to conventional 

fan-beam CT scanners.  The poor quality of these images has been shown to introduced 

an error of up to 3% when calculating doses in the lung, a clinical significant error.
10

  

Until the image quality of radiotherapy cone beam CT is improved, conventional CT (and 

thus 4D-CT) will be required for acquiring accurate electron density data for dose 

calculations used in treatment planning. 

 Diagnostic cone beam CT scanners with much faster gantry rotation times (0.35 

sec) have been developed.  While these scanners have the ability to reduce the motion 

artifacts present in images of the thorax, the linear attenuation coefficients measured by 

these scanners have been shown to vary over the axial length of an object.
6
  The effect of 

these variations on treatment planning dose calculations has yet to be determined, but it is 



 

 

139 

clear that scatter will highly influence the image quality of cone beam CT images that use 

wider than a 8.0 cm axial field of view. 

  CT scanner technology is ever improving and eventually full volume images of 

an entire patient's chest during respiration will be acquired accurately without any post 

processing.  However, this technology is not readily available and will be highly 

expensive when it does become available.  With the current push towards higher doses 

and more conformity in radiation treatment planning of lung cancer, to improve local 

control and hence patient survival, 4D-CT algorithms used in conjunction with 

conventional fan-beam CT scanners will have a place in radiotherapy applications for the 

upcoming years. 

 

5.7 Future Work 

5.7.1 4D-CT Algorithm for Treatment Planning 

 The image based 4D-CT method was shown to minimize artifacts in the produced 

volume images better than the external marker method.  A natural continuation of this 

work is to assess the clinical significance of the reduction of artifacts in the volume 

images generated by the image based 4D-CT method.  This can be achieved by 

comparing radiation treatment plans calculated using volume images produced by the 

external marker (Varian Real-time Position Management device a.k.a. RPM) and the 

image based 4D-CT method.  The comparison will include the effects of erroneous 

geometry and density artifacts and whether the patient's treatment would have been 

changed if volume images from the image based 4D-CT method are used instead of the 
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external marker 4D-CT method.  One possible comparison will be to compare treatment 

plans based on volumes that are created by averaging volumes from both methods over 

the whole respiratory cycle. The use of average volumes is common practice when 

delivering non-gated radiotherapy.  An example is shown in figure 5-1.  Figure 5-1a 

shows a sagittal image from the average external marker (RPM) 4D-CT volume.  The 

tumour has been outlined in green (GTV), margins in red have been added (PTV) and a 

six field intensity modulated radiation therapy (IMRT) plan to delivery 60 Gy to the PTV 

has been generated.  The IMRT plan is acceptable as it delivers at least 95% of the dose 

to 95% of the PTV (57 Gy, yellow isodose line).  Figure 5-1b show the dose-volume 

histograms (DVHs) for the GTV (green), PTV (red) and the lung minus the GTV (black).  

The GTV is then outlined on the average image based 4D-CT volume and a PTV is 

created by applying margins to the GTV.  The planned beams generated on the average 

RPM 4D-CT volume are transposed to the average image based 4D-CT volume and the 

dose to the volume was recomputed.  Figure 5-1c compares the results of the two plans; 

the external marker (RPM) PTV (red) and the image based (NCC) PTV (blue) do not 

overlap at some points.  The constraint that 95% of the image based (NCC) PTV received 

at least 95% of the dose (57 Gy, yellow isodose line) is obviously not met by observing 

the overlap of this isodose line (yellow) and the NCC PTV (blue).  The DVHs of both 

plans are shown in figure 5-1d where it is clear that the NCC PTV (blue) and the RPM 

PTV (red) do not completely overlap.  Therefore, the tumour could have been under-

dosed if the treatment plan generated using the external marker 4D-CT that contained 

artifacts were delivered. 
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Figure 5-1: Comparison of treatment plans based on an averaged RPM 4D-CT volume 

and NCC 4D-CT volume.  (a) Sagittal image of the averaged RPM 4D-CT volume with 

the tumour contoured in green (RPM GTV), margins in red added to the tumour GTV 

(RPM PTV) and the isodose lines from a 6-field IMRT plan.  (b) the dose volume 

histograms (DVHs) of different volumes within the patient's lung.  The red and green 

lines are the DVHs for the GTV and PTV respectively while the black line is the DVH 

for the entire lung minus the GTV.  (c) Sagittal image of the averaged NCC 4D-CT 

volume. The 6-field IMRT treatment plan was recalculated with the averaged NCC 4D-

CT volume and the isodose lines are plotted.  The red (RPM PTV) and green (RPC GTV) 

lines are copied from (a) while the tumour in this image is outlined in purple (NCC GTV) 

and the margins added to the tumour are shown in blue (NCC PTV). (d) the DVHs of 

different volumes: NCC PTV (blue), RPM PTV (red), RPM GTV (green) and entire lung 

minus NCC GTV (black) computed from the recalculated 6-field IMRT treatment plan 

based on the averaged NCC 4D-CT volume.   
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 This one example illustrates how the removal of artifacts from 4D-CT volumes 

can affect treatment plans.  It is possible using the suggested study to show that it is 

important to reduce the artifacts in 4D-CT volumes that are used to calculate the dose 

distribution (and DVH) in a patient, even when delivering non-gated treatment in order to 

prevent underdosing of the tumor.  In addition to using the average 4D-CT volume over 

the entire respiratory cycle, single individual phases of each 4D-CT could be tested in 

order to perform the experiment for gated radiotherapy. 

 

5.7.2 Dose Reduction in 4D-CT 

 4D-CT is currently a high radiation dose imaging procedure, with doses (20 - 25 

mSv)
11

  approximately 2 to 5 times the dose of a regular chest CT examination.
12

  

Iterative image reconstruction shows promise to reduce the dose required while 

maintaining image quality.
13

  However, if adaptive gated radiotherapy is to be performed 

then multiple 4D-CT scans will have to be acquired over the course of the patient's 

treatment, which will still deliver a significant cumulated dose to non-targeted tissues.  

We see the potential for a further reduction of dose by combining our image based 4D-

CT technique with two previously published dose-reduction methods for the heart
14

 and 

lungs.
15

  Our proposed method requires the acquisition of a full dose breath hold CT 

volume at middle inspiration and a low dose 4D-CT volumes dataset spanning an entire 

breath cycle.  The regular dose breath hold volume is warped to each of the low dose 4D-

CT volumes to create a regular dose 4D-CT volumes dataset from the breath-holding 

volume, with a potential dose saving of up to 80%.  Figure 5-2 shows the promising 

results of implementing this dose reduction strategy on a single pig.  In this study, a set of 
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regular dose 4D-CT images (RD 4D-CT) and a regular dose breath hold scan were 

acquired.  Low dose images, at 1% of the regular dose (LD1 4D-CT) were obtained by 

adding noise to the regular dose 4D-CT images.  The breath hold scan was warped to 

each of the LD1 4D-CT phases to produce a set of warped LD1 4D-CT (warp(BH)LD1 

4D-CT).  This experiment allows the comparison between the RD 4D-CT volumes and 

the warp(BH)LD1.  In this example, the results show good agreement between the original 

RD 4D-CT and the warp(BH)LD1, with a potential dose saving of 80%. 

 

Figure 5-2: Shown are the coronal image of the a) RD 4D-CT, b) LD1 4D-CT and c) 

warp(BH)LD1 4D-CT.  The area outlined in the first column is expanded in the 2nd 

through 5th column to show the area over phases 2, 4, 6 and 8 of the breathing cycle.  

The warp(BH)LD1 4D-CT is able to accurately reproduce the RD 4D-CT over the 

different breathing phases in spite of the extremely poor image quality of the LD1 4D-

CT.  Additionally, blurring artifacts present in the RD 4D-CT images are noticeably 

reduced. 

 

5.7.3 Vendor-Supplied 4D-CT Comparison  

 There are various 4D-CT sorting algorithms provided by CT scanner vendors.  

There are currently no quantitative standards by which to judge the quality of the 
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resulting 4D-CT volumes  produced from the different algorithms.   The automated 4D-

CT method described in this paper has the potential to become a reference method to 

which other 4D-CT methods can be compared.  Through a series of comparisons a set of 

standards for image quality and 4D scanning parameters could be developed.  This 

comparison would have to be done using a phantom (preferably a dynamic phantom with 

non-linear lung motion), to allow for control of the study parameters.  From this study a 

consistent methodology could be developed to ensure that 4D-CT scans result in the best 

volume images at the lowest possible radiation dose. 

 

5.7.4 Programmable Ventilator for Pig Model  

 The method of producing inconsistent breathing amplitudes in the pig model 

requires manually crimping the ventilator return gas tube at regular intervals.  While this 

method was successful in creating an inconsistent breathing amplitude, the results 

obtained could vary from animal to animal depending on the operator. For future studies 

it would be useful to have a consistent method to induce inconsistent breathing 

amplitudes as it happens in patients’ breathing patterns.  This can be achieved using a 

ventilator with a programmable flow rate that is controlled by a patient's breathing pattern 

recorded with a spirometer. 

 

5.7.5 Improved Image Matching Algorithm 

 The 4D-CT matching algorithm developed in this thesis performed well on a 

patient by patient basis.   However, there are still aspects of the algorithm that could be 
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improved.  The matching procedure currently uses all the pixels contained within an axial 

image to calculate the cross correlation value.  However, as shown in Chapter 4, images 

that are not the most anatomically similar in the lung may be chosen because extraneous 

pixels, for example, those in the heart are included in the NCC calculation. Masking the 

image to exclude heart pixels or applying different weightings to different sections of the 

image could lead to improved image matching.  Additionally, to further improve the 

speed of the image matching procedure it would be advantageous to implement the NCC 

calculation on a graphical processing unit (GPU).  GPUs are specifically designed for a 

larger number of parallelized floating point calculations and would greatly improve the 

execution speed of the image matching algorithm. 
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5.8 Conclusions 

The most significant findings of this thesis are summarized below. 

1) The relationship between the motion of an external respiratory marker and the 

 lung tissue of a pig is dependent on the consistency of the amplitude of breathing 

 of the animal. 

2) A 4D-CT sorting algorithm was developed that does not require an external 

surrogate marker.  This algorithm improves image quality of the sorted volumes 

through the reduction of imaging artifacts in comparison to  external marker based 

amplitude and phase sorting methods. 

3) A method to quantify the displacement uncertainties of the image based 4D-CT 

sorting algorithm using an in-vivo pig model was developed. The  uncertainties as 

a result of using normalized cross correlation to anatomically match images were 

shown to add in quadrature.  It was shown that two sections (subvolumes) of the 

lung can be matched in respiratory phase by matching two images, one from each 

of the two subvolumes to be matched, at an overlapping image location. 

  

  The work in this thesis improves the image quality of 4D-CT volumes used for 

lung cancer diagnosis and radiotherapy planning.  The direct benefit of this work will be 

to lung cancer patients who will be treated aggressively with radiation therapy to control 

their tumor.  In addition to improving the image quality of 4D-CT volumes we have also 

quantified the spatial uncertainty associated with these images.  This allows us to 
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establish the limitations of using 4D-CT volumes for radiation treatment planning and 

possibly this knowledge will result in the most optimal radiation treatment to the patient 

by minimizing the risk of missing the target (tumor) volume and/or over irradiation of the 

surrounding healthy tissues.  It is the hope of this author that investigations of this nature 

will continue into the fundamental science and limitations of not just new 4D-CT sorting 

algorithms but the associated scanning protocols on new generation of CT scanners 

which have larger axial AFOV up to 16 cm and faster gantry rotation time down to 0.2 s 

such that continual improvements will positively influence the standard of care for lung 

cancer patients.  
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Appendix A 
Uncertainty Analysis of NCC Formula for CT images 

 

 The normalized cross correlation (NCC) formula determines a correlation 

coefficient between two CT images.  The image pixel values are assumed to be errorless 

and therefore the NCC coefficient also errorless.  This is not the case, as there is 

statistical noise associated with each CT pixel.  The uncertainty of the NCC formula is 

modeled using normal error propagation techniques and error values from a time series of 

images are calculated using the standard deviation of a region of interest, taken over a 

section of air in the CT image, and used as the uncertainty of the CT images.  

Define the normalized cross correlation coefficient to be: 
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where M and N are the two images to be matched indexed by the variable i. 

 

Consider the top and bottom separately 
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22222
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sub (A.2) into (A.3) to obtain the error term for the Top 
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The uncertainty of the product in (A.5) 
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Use the exponent uncertainty rule for (A.5) 
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sub (A.9) into (A.10) to obtain the uncertainty for the Bottom 
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Now that we have the error terms for the Top and Bottom, consider the NCC function 

B

T
NCC =       (A.12) 

Uncertainty of NCC using quotient rule 
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And values can be calculated using (A.1), (A.4), (A.5) and (A.11) and substituted into 

(A.14). 

 To examine this formula, a NCC matching between a single image and an entire 

time series of images is performed.  The NCC coefficient between the single image and 

each image from the time series and the terms for the Top and Bottom are calculated.  For 

each image, the error term is calculated from the standard deviation of a region of interest 

placed within the open air section of the image.  A graph of the NCC curve with the Cσ  

values plotted as the error is shown below. 
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 The error bars are approximately 1/3rd the distance between consecutive points.  

The uncertainty in the NCC calculation may lead to the mis-choice of an image that is 

most similar to the image being matched by 1 image position.  The displacement 

uncertainty resulting from this mis-choice was explored in chapter 4 of this thesis and 

was found to be small.  The salient feature of the graph are summarized in the table 

below.  Cons Diff is the difference between consecutive NCC values. 
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Appendix B 
Transfer of Copywrite from Physics in Medicine and Biology 
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Appendix C 
Transfer of Copywrite from Medical Physics 
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Appendix D 
Animal Ethics Approval 
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Appendix E 
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