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Abstract 

Causal cognition, how beings perceive and reason about cause and effect, is crucial 

not only for survival and adaptation in biological entities but also for the development of 

causal artificial intelligence. Large language models (LLMs) have recently taken center stage 

due to their remarkable capabilities, demonstrating human-like reasoning in their generative 

responses. This thesis explores how LLMs perform on causal reasoning questions and how 

modifying information in the prompt affect their reasoning. Using 1392 causal inference 

questions from the CLADDER dataset, LLM responses were assessed for accuracy. With 

simple prompting, LLMs performed more accurately on intervention queries compared to 

association or counterfactual queries. Chain-of-Thought (CoT) prompting was also explored 

with formal reasoning steps included in the prompts. Contrary to expectations, LLMs 

achieved higher accuracy with simple prompts rather than CoT-enhanced prompts, 

suggesting that the framework for accurate causal cognition in LLMs differs from that of 

human cognition.  
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Summary for Lay Audience 

Have you ever wondered how the latest, highly popular generative artificial 

intelligence (AI) models like ChatGPT manage to understand and respond to your questions? 

At the heart of both human and artificial “thinking” is the ability to understand causes and 

their effects. This is becoming increasingly important as models such as ChatGPT continue 

to improve and evolve. This study explores how well these models, known as large language 

models, grasp questions that require them to think about causes and effects, and whether 

changing how we pose these questions can influence their response.   

We studied these models using 1392 questions designed to test their ability to think 

about various cause-and-effect scenarios. These questions covered scenarios that required 

thinking about connections between different events, taking action to change events, and 

imagining hypothetical events. We found that these models are better at answering questions 

about direct actions and their immediate results than questions about connections or 

hypothetical scenarios.  

Interestingly, when we tried to help the models by breaking down the questions into 

step-by-step instructions, a method we thought would improve their answers, it did not help 

as much as we expected. In fact, simpler, more direct questions without extra guidance led to 

better answers. This discovery suggests that the way these generative models “think” about 

causes and effects might be quite different from how humans do, offering insights into both 

the potential and limitations of artificial intelligence in understanding complex reasoning.  
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Chapter 1  

 

1 Introduction: Cognition, Causal Cognition, and Why We 
Should Care About This Regarding Large Language 
Models 

Cognition encompasses the high-level mental processes that are essential for 

understanding both natural and artificial intelligence systems, including memory, 

reasoning, problem-solving, and decision-making (Sternberg, 1999). These cognitive 

functions are foundational for adapting to and interacting with the environment 

(Bringsjord & Bringsjord, 2012). As artificial intelligence (AI) integrates more deeply 

into daily human life, it prompts a parallel and extended investigation into cognitive 

process in machines, exploring their capability to emulate complex human cognitive 

functions. This thesis builds upon these discussions, starting with historical perspectives 

from animal behavior studies and extend through studies that have demonstrated the 

capacity for AI to perform cognitive functions. It aims to bridge the gap between the 

disciplines of cognitive neuroscience, computer science, and statistics—specifically, 

causal inference. By focusing on causality within cognitive processes and how this 

intersects with AI, this work ventures into a relatively unexplored area, positing that at 

this intersection of cognition, causality, and AI lies a new frontier for discovery and 

understanding.  

1.1 Cognition in Humans, Animals, and Machines  

1.1.1 Foundations for Cognitive Neuroscience  

The exploration of cognitive processes traces its origins to animal behavior 

studies, notably those of Ivan Pavlov and B.F. Skinner, who demonstrated the 

foundational principles like conditioned responses and associative learning (Pavlov, 

1927; Skinner, 1938). This groundwork was extended by evolutionary psychologists who 

posited that many cognitive mechanisms evolved to address recurrent survival challenges 

faced by early humans (Tooby & Cosmides, 1992). Recent comparative studies have 
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broadened our understanding, illustrating how cognition has evolved under varying 

pressures across species, providing insight into the universality and diversity of cognitive 

strategies (Shettleworth, 2010). 

Cognitive neuroscience, merging neurobiology and cognitive science, has 

provided insights into the neural substrates underpinning thought processes. Landmark 

studies by researchers such as Elizabeth Spelke and Stanislas Dehaene have identified 

core cognitive systems involved in spatial reasoning, numerical cognition, and theory of 

mind, underscoring the foundational presence of these systems across human cultures and 

even other species (Dehaene et al., 1997; Spelke, 2000). These discoveries increasingly 

inform AI development, particularly in modeling cognitive processes within 

computational frameworks. For example, Spelke’s insights into spatial reasoning are 

being utilized to improve AI navigation systems in robots and autonomous vehicles, 

mimicking human-like spatial navigation abilities (Jefferies & Yeap, 2008). Dehaene’s 

insights into human numerical processing mechanisms have informed the development of 

AI to emulate these cognitive functions, potentially enhancing their application in 

numerically driven domains like finance and big data analytics (Dehaene & Cohen, 

2007). Lastly, understanding theory of mind – which involves understanding that others 

have beliefs, desires, intentions, and perspectives different from one’s own – informs AI 

development in socially assistive robotics, which aims to develop robots that assist 

people with special needs through social interactions (Scassellati et al., 2012). The 

convergence between cognitive neuroscience and AI development illustrates pathways 

for cognition studies to inspire future directions in AI and vice versa (Figure 1), 

deepening our understanding of human and artificial brain and mind (Hassabis et al., 

2017).  
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Figure 1. The bi-directional influence of neuroscience and artificial intelligence 

adapted from Li et al. (2022) 

 One example of this bi-directional influence is the relationship between the 

human visual system and neural network architectures. The human visual system has 

long inspired the development of convolutional neural networks (CNNs), which are now 

a cornerstone in the field of artificial intelligence. From the field of neuroscience, studies 

have shown that the visual cortex processes information through a hierarchical structure, 

with simple features like edges detected in early layers and more complex patterns 

recognized in subsequent layers. This understanding lead to the design of CNNs, where 

multiple layers mimic this hierarchical processing, enabling these networks to excel in 

image recognition tasks (Fukushima, 1980; Lecun et al., 1998). Conversely, 

advancements in CNNs have provided new insights into how biological vision systems 

might work. The discovery of how CNNs can perform object recognition tasks has 

influenced theories about the neural mechanisms underlying visual perception in the 

brain (Yamins & DiCarlo, 2016). Overall, this symbiotic relationship exemplifies how 

neuroscience and artificial intelligence continue to drive each other forward, leading to 

more sophisticated models and deeper understanding in both fields.  

1.1.2 Examples of Cognition in Artificial Intelligence, and the 
Conversation Around AI Consciousness  

Artificial Intelligence (AI) is a branch of computer science dedicated to creating 

machines capable of performing tasks that typically require human intelligence. For 
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example, these tasks might range from navigating to playing strategy games to financial 

forecasting. Other algorithms can be implemented to accomplish these tasks, but with AI 

the goal is to automate these processes, usually by implementing algorithms that are 

capable of learning from data, thereby minimizing human input and enhancing efficiency 

(Russell & Norvig, 2016). The capabilities of AI systems have grown exponentially, with 

models now performing, and often out-performing, complex tasks that require cognitive 

abilities traditionally thought to be unique to humans. Examples of this have arisen 

throughout recent years. DeepMind’s AlphaGo and AlphaZero not only demonstrated 

mastery of the games of Go and Chess but have also led to innovative strategies that have 

profoundly influenced the games’ strategic paradigms. AlphaGo’s victory over world 

champion Lee Sedol and AlphaZero’s adaptability across various games demonstrate 

AI’s capacity for complex strategy thinking, challenging the uniqueness of human 

cognitive flexibility (Silver et al., 2017). In the realm of visual recognition, AI models 

like those developed from the ImageNet Challenge have achieved and surpassed human-

level accuracy in identifying and classifying objects within complex visual scenes  

(Krizhevsky et al., 2012). Lastly, the development of OpenAI’s Generative Pre-trained 

Transformer (GPT) 3 demonstrates a significant leap in generative AI through 

showcasing an ability to produce contextually relevant and coherent text across a wide 

range of topics (Brown et al., 2020). This advancement pushes the boundaries of AI and 

machine learning and provides a platform to explore the computational modeling of 

human language, an area of keen interest in cognitive neuroscience.   

With the rapid advancements in artificial intelligence, particularly in large 

language models (LLMs), we must consider the broader implications of using AI. The 

human-like response from LLMs that we encounter in the use of everyday applications 

makes them a candidate for cognition research and also brings to the forefront the debate 

about AI consciousness. The challenge remains in defining the precise attributes that 

contribute to consciousness in intelligent systems.  

Thomas Nagel’s famous article “What is it like to be a bat?” posits that a being is 

conscious or has subjective experience if there’s something it’s like to be that being 

(Nagel, 1974). While we cannot fully grasp a bat’s subjective experience, there is a 
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general consensus that bats possess consciousness and subjective experience. In contrast, 

an inanimate object like a wooden table is not considered to have any subjective 

experience—there is nothing it is like to be a table. The debate over what qualifies as 

conscious also brings attention to the lack of a universally accepted definition of 

consciousness. Evidence of consciousness can still be gathered, for instance through 

human verbal reports or interpretations of animal behavior (Pennartz et al., 2019). A 

recent study by Butlin et al. (2023) offers a review of what consciousness could signify 

for AI, touching upon the prevailing theories of consciousness, the computations linked 

to conscious process, and the traits that might suggest consciousness in AI systems. 

While this thesis does not attempt to resolve the complex issue of AI consciousness, it 

provides a relevant backdrop for the investigation into a related yet distinct domain: the 

causal reasoning capabilities of AI systems, specifically of LLMs. Causal reasoning is 

closely linked to cognitive experiences and a potential step toward consciousness, along 

with other facets like sensory, affective, and agentive experiences. This work aims to 

explore causal reasoning as a distinct but related area within the broader context of 

consciousness. Contributing towards the larger question of “What it’s like to be an 

LLM?” this thesis aims to explore the sub-area of how LLMs reason about causality. An 

LLMs approach to understanding causal relationships may fundamentally differ from 

human processes. By examining how AI models like LLMs handle causality, this thesis 

aims to uncover unique insights into both the capabilities and limitations of AI in 

mimicking human-like cognitive functions. 

1.1.3 Introduction to Large Language Models and the Transformer 
Architecture 

Narrowing in on the intersection between cognitive neuroscience and artificial 

intelligence, this thesis seeks to explore one element of cognition in LLMs. LLMs are a 

type of AI system designed to understand, generate, and interact using human language. 

This type of system assigns probabilities to sequences of text, using these probabilities to 

generate new text based on given prompts. LLMs stand out due to their architecture and 

training on broad datasets, enabling them to produce text that closely mimics human 

writing. Currently, LLMs predominantly use the transformer architecture, noted for its 
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efficiency and effectiveness in handling sequence-based data without requiring the 

sequential data processing inherent in previous models such as recurrent neural networks 

(Vaswani et al., 2017).  

Since the introduction of the transformer architecture by Vaswani et al. (2017), 

many variations of transformer-based language models have emerged. This thesis will 

specifically examine autoregressive, decoder-only models such as GPT-3 by OpenAI. 

Unlike the original architecture, which featured an encoder-decoder structure designed 

for language translation, many modern models streamline this configuration by omitting 

the encoder component. These decoder-only models start with a token embedding, 

followed by a series of residual blocks, followed by a token unembedding. Each residual 

block consists of an attention layer, followed by a multi-layer perceptron (MLP) layer 

(Figure 2).  

 

Figure 2. High-level architecture of a decoder-only transformer model, adapted 

from Elhage et al. (2021).  
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(1) Token embedding: Each word or subword (token) of the input text is converted 

into a vector representation (an embedding, 𝑥0). This is a numerical form that 

encapsulates its semantic and syntactic attributes (Lin et al., 2017). Embeddings 

serve as the initial input for the subsequent layers of the transformer (Vaswani et 

al., 2017).  

(2) Residual blocks: Each block refines the embeddings by adding more context or 

adjusting the representation based on the input’s (𝑥𝑖) interactions within the text. 

Each residual block contains an attention head (ℎ) and a multi-layer perceptron 

(𝑚) layer, these both write to the residual stream (Elhage et al., 2021).  

a. Attention layer (ℎ): This layer determines the importance or ‘attention’ 

that should be given to other tokens when processing a specific token. The 

mechanism works by scoring how much each token in the sequence 

should influence another, allowing the model to focus more on relevant 

tokens and less on irrelevant ones. Within the attention layer, there are 

multiple attention heads (ℎ0, ℎ1, …), which work in parallel, and are trained 

(tuning the parameters or weights to best fit an objective function) to each 

produce their own attention scores independently. By doing so, the model 

can capture various aspects of context, as each head might focus on 

different types of relationships between tokens (Vaswani et al., 2017).  

b. Multi-layer perceptron, MLP (𝑚): This is a small feedforward neural 

network applied independently to each position. The MLP layer 

transforms the attention vectors to vectors that are used in subsequent 

layers. However, there has not been much success in understanding MLP 

layers in a transformer architecture, and research teams at companies such 

as Anthropic are still tackling this problem (Elhage et al., 2021).  

c. Residual stream: The residual stream functions as a pathway that carries 

information across different layers without transformation. Each layer first 

“reads” its input by performing a linear projection of the residual stream, 

processes it, and then “writes” its output back by adding another linear 
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projection to the stream. The residual stream is a sum of the output of all 

the previous layers and the original embedding and maintains an additive 

linear structure. The residual stream is a high-dimensional vector space, 

ranging from hundreds to tens of thousands of dimensions depending on 

the model size. Such dimensionality allows layers to encode and retrieve 

information from different vector subspaces, and information within these 

subspaces to be preserved across layers unless explicitly modified or 

overwritten, thereby serving as a form of “memory” or “bandwidth” 

within the network (Elhage et al., 2021). 

(3) Token unembedding: After passing through the series of residual blocks, the high-

dimensional token vectors are converted back to a more interpretable form, 

usually as scores or probabilities, 𝑇(𝑡), over a vocabulary for text generation 

(Vaswani et al., 2017).   

In the training phase of LLMs, the primary task involves adjusting the model’s 

parameters through a systematic process to enhance prediction accuracy and minimize 

errors (Goodfellow et al., 2016). Training begins by inputting a vast dataset, typically 

composed of texts from diverse sources such as books, articles, and websites, which is 

preprocessed into a format suitable for the model, like tokenization (Vaswani et al., 

2017). During the forward pass, the model generates predictions based on initial 

parameter values, which are compared against actual outputs to calculate loss using a 

predetermined loss function (LeCun et al., 2015). This loss quantifies the discrepancy 

between predictions and true data, guiding the backpropagation process where gradients 

for each parameter are computed, indicating how adjustments should be made to reduce 

the error. Then, parameters—including weights, biases, embedding matrices, and 

attention mechanism coefficients—are updated with optimization algorithms to minimize 

the loss function. This cycle repeats across multiple epochs, allowing the model to 

process the entire dataset repeatedly, refining its parameters to enhance performance 

(Goodfellow et al., 2016; LeCun et al., 2015). Specifically, weights and biases in neural 

layers, embedding matrices for token vectorization, and parameters governing attention 

mechanisms are finely tuned (Vaswani et al., 2017). Through these training steps, LLMs 
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learn to generate outputs that closely mimic human-like text. The size of these models is 

often indicated by the number of parameters they contain. To summarize, each parameter 

is a learnable weight in the neural network that contributes to the model’s ability to 

discern and generate appropriate textual responses based on the data it has learned during 

training. 

1.1.4 The Emergence and Impact of Large Language Models for 
Cognitive Research 

The rise in popularity of LLMs marks a significant milestone in ongoing research 

within the fields of computational linguistics and cognitive science. Despite their rapid 

integration into mainstream technology—exemplified by tools such as ChatGPT—it is 

crucial to recognize that these models are the culmination of extensive interdisciplinary 

research spanning several decades. This section will explore the evolution and cognitive 

capabilities of LLMs, emphasizing their growing influence and potential in understanding 

and replicating complex cognitive functions.  

The origins of LLMs can be traced back to the early endeavors of AI in the 1950s, 

where the foundation was laid with rule-based systems aimed at translating text and 

simulating basic human linguistic abilities. This period set the stage for the intricate 

relationship between language processing technologies and cognitive theories (Newell & 

Simon, 1972). In the late 20th century, with the advent of the internet and explosion of 

digital data, statistical methods gained prominence. Such methods were employed to 

leverage large text corpora and develop probabilistic models, steering the field from rule-

based to data-driven paradigms (Darema, 2004). The 2000s, with the introduction of 

neural networks and renaissance of deep learning, brought a new dimension to AI 

research. Technologies like recurrent neural networks (RNNs) and long short-term 

memory networks (LSTMs) enhanced the ability of machines to handle the sequential 

and contextual nature of language (Hochreiter & Schmidhuber, 1997). Next, a significant 

breakthrough came with the introduction of the transformer model which was previously 

described (Vaswani et al., 2017).  
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Attention is not only an important aspect of human cognition, but also an important 

aspect of LLMs. The transformer model uses self-attention mechanisms, diverging from 

the traditional sequential text processing typical of RNNs by enabling parallel data 

processing (Vaswani et al., 2017). Compared with previous models, self-attention 

mechanisms in LLMs align well with certain cognitive processes observed in human 

thought, such as the simultaneous consideration of multiple contexts within memory and 

reasoning tasks. Additionally, transformer models can perform tasks that were previously 

deemed uniquely human. For instance, OpenAI’s GPT series can generate code, 

comprehend multiple languages, and analyze extensive passages of text simultaneously. 

Despite these similarities, it is not implied that transformer-based models think or process 

information exactly as humans do. Nor is the possibility that these models engage in a 

form of ‘thinking’ dismissed altogether. Rather, the depths and limits of artificial 

cognition and its parallels to human thought processes continues to be an active area of 

investigation within cognitive science and AI research. Geoffrey Hinton, a Turing award 

winner who has been dubbed the “Godfather of AI” said in a recent interview:  

I am very confident that they think. So suppose I’m talking to a chatbot, and I 

suddenly realize it’s telling me all sorts of things I don’t want to know. Like it’s telling 

me it’s writing out responses about someone called Beyonce, who I’m not interested 

in because I’m an old white male, and I suddenly realized it thinks I’m a teenage girl. 

Now when I use the word ‘thinks’ there, I think that’s exactly the same sense of 

‘thinks’ as when I say ‘you think something.’ (Hinton, 2023) 

Reasoning and thinking are foundational cognitive processes that have been the 

subject of extensive philosophical and scientific inquiry. Reasoning is typically defined 

as the process of drawing conclusions or inferences from premises or evidence. It 

involves logical steps to arrive at new information or decisions, often categorized into 

deductive, inductive, and abductive reasoning. Thinking, on the other hand, is a broader 

term that encompasses reasoning but also includes other cognitive activities such as 

imagining, remembering, and problem-solving. Various theories attempt to delineate 

these concepts. The dual-process theory, for instance, distinguishes between System 1—

fast, automatic, and often subconscious processes—and System 2—slow, deliberate, and 
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conscious processes (Kahneman, 2011). This theory suggests that humans have two 

distinct modes of thinking, which can sometimes lead to different outcomes or biases in 

reasoning. Another significant approach is the theory of mental models. According to this 

theory, thinking involves constructing and manipulating mental representations of real or 

hypothetical situations (Johnson-Laird, 1995). These mental models allow individuals to 

simulate different scenarios and reason through complex problems by envisioning the 

outcomes of various actions or events. The computational theory of mind, which we will 

adopt for this thesis, equates thinking to computational processes in the brain. This theory 

posits that cognitive functions, including reasoning and thinking, can be understood as 

information processing activities carried out by neural circuits. Just as a computer 

processes data through algorithms, the brain processes information through neural 

networks (Pinker, 1999). This perspective aligns with the development of artificial 

intelligence, and the bi-directional influence explored in Figure 1, where neural network 

models may simulate human cognitive processes, providing a bridge between biological 

and artificial systems. Just as there is a diversity of approaches to understanding cognitive 

processes, there is a diversity of approaches towards understanding thinking and 

reasoning. As emphasized in a discussion on AI consciousness, different frameworks can 

offer unique insights but often fail to converge on a singular definition. By adopting the 

computational theory of mind, this thesis will explore thinking and reasoning as 

processes that can be modeled and understood through the lens of information processing 

(Butlin et al., 2023). The aim of this approach is to allow for the integration of insights 

from both neuroscience and artificial intelligence, while acknowledging the ongoing 

debate and lack of consensus in defining these cognitive functions.  

From a research perspective, LLMs offer a unique platform to test hypotheses about 

language processing and cognitive functions as mentioned in the abstract. For instance, 

recent studies have shown that LLMs have approximate aspects of human syntactic 

processing and semantic prediction, shedding light on how neural networks can be 

leveraged to model complex cognitive tasks (Butlin et al., 2023). An important area in AI 

and cognition research is causal cognition. As AI models continue to evolve, 

methodologies and theoretical models to better understand and enhance the causal 

reasoning is gaining importance—and these ideas will be expanded upon in the following 
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section. To explore whether current LLMs can reason about causality, first we must 

define what it means to reason about causality and understand the foundational 

frameworks that have been developed to understand the science of causality.   

1.2 Causality, Causal Cognition, and Causal Inference 

A man steps on a rake. The handle swings up. A bird flutters. A window shatters. A 

curtain flaps.  

If you were to perceive these events, you would probably not recount them in such a 

simple, disjointed way. You might instead tell a story that enriches the bare facts with 

connections and contexts, like this:  

A man absentmindedly stepped on a rake, causing the handle to swing up abruptly. 

This sudden motion startled a nearby bird, which took flight and, in its panic, collided 

with a window. The impact shattered the glass, and the resulting vibration caused a 

curtain inside to flap wildly.  

This richer, connected narrative exemplifies how humans employ causal cognition to 

interpret sequences of events, implying a chain of cause-and-effect that helps make sense 

of what might otherwise appear as disjointed happenings (A. Bender & Beller, 2019). 

This narrative construction goes beyond merely listing events by integrating them with 

causal links – “caused,” “startled,” and “resulted in.” Language that describes causality is 

pervasive and we use it without a second thought, but this example highlights the 

assumptions we naturally make about the physical world—for instance, assuming the 

laws of physics governing how objects in motion cause others to move or break.  We 

naturally attribute agency and causality, here considering the man’s accident as the 

trigger for a series of reactions that culminate in the flapping curtain, thus framing a 

sequence of events as a comprehensible story.  

Causal cognition involves the processes engaged in understanding and reasoning 

about cause-effect relationships, which is crucial across various cognitive domains (A. 

Bender, 2020; Sloman, 2005). This capacity allows individuals, including humans and 

other animals (Kummer, 1996), to interpret causal sequences from daily experiences, 
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such as understanding that stepping on a rake might cause the handle to swing up 

unexpectantly in our story. The ability to understand causal mechanisms facilitates 

critical functions such as diagnosis, prediction, and intervention, and is so advantageous 

that it has been considered an evolutionary driving force (Lombard & Gärdenfors, 2017). 

Moreover, these mechanisms have been fundamental to the development of organized 

society (Pearl & Mackenzie, 2018). To structure what we know about causal cognition in 

the literature, we first need to define what is meant by “understanding causality.” The 

conceptualization of causality has historically been muddled by ambiguous terminology 

and a lack of a standardized framework, which has significantly impeded systematic 

study and clear communication in the field (Pearl & Mackenzie, 2018).  

Causality has been a subject of philosophical inquiry for centuries, with fundamental 

works by Hume (1779) exploring the nature of cause and effect through a philosophical 

lens, emphasizing empirical observation and the notion of constant conjunction—where 

causes are regularly followed by their effects. This line of inquiry was later expanded by 

Giere & Salmon (1988), who introduced the idea of causal fields as a way to frame 

conditions under which causes bring about effects, and G. H. von Wright (2004), who 

distinguished between different types of causation such as necessary, sufficient, and 

contributory causes in his analytical approach. However, it was not until the work of 

Judea Pearl and colleagues that a more formalized and robust mathematical framework 

for understanding causality began to take shape, laying the groundwork for the science of 

causality.  

The science of causality seeks to discern not just the relationships connecting one 

variable to another but the directional influences that these variables exert upon each 

other. The question of “Why” is foundational across scientific disciplines, profoundly 

affecting our understanding of phenomena from natural sciences to human behavior. 

While causal cognition involves thinking about and understanding cause-effect 

relationships, causal inference is the statistical approach bridging the observation of 

patterns, usually in data, to understanding cause and effect relationships. Causal inference 

provides important formal definitions and frameworks that can be applied to study causal 

cognition. Typically, causal inference tools allow researchers to clearly delineate and 
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manipulate causal relationships in observational data, thus addressing the limitations of 

previous methods that were heavily reliant on controlled experiments (Pearl, 2000). This 

is particularly important in fields such as epidemiology and economics, where 

experiments may be unethical or unfeasible, thus formal approaches to isolate variable 

effects while controlling for confounders leads to powerful insights about causality that 

would otherwise not be possible simply with observational studies. The following section 

will provide a review the foundational ideas that make this possible, starting with Judea 

Pearl’s conceptualization of the “Ladder of Causation.” Then, we will review the gaps in 

the literature about causal cognition in LLMs, and we can borrow tools from causal 

inference to explore, using a formal framework, causal reasoning abilities of LLMs in 

this interdisciplinary study.  

1.2.1 The Science of Causality and Pearl’s Ladder of Causation  

In “The Book of Why,” Pearl outlines a conceptual framework for understanding 

cause-and-effect relationships through what he calls the “Ladder of Causation.” This 

framework illuminates our understanding of causal reasoning across different species by 

delineating three distinct levels: association, intervention, and counterfactuals (Pearl & 

Mackenzie, 2018) (Figure 3). These levels represent a spectrum of cognitive abilities 

observed in both humans and non-human animals.  

At the foundational level, association pertains to observing correlations, a 

capability observed in many species. For instance, research indicates that rats can discern 

simple associations between stimuli and rewards, a basic form of causal understanding 

(Blaisdell et al., 2006).  

Ascending to the intervention level, we encounter capabilities typically associated 

with more complex cognitive processes. Intervention advances beyond observation to 

manipulating one variable and seeing effects on another. For example, primates, 

including chimpanzees and rhesus monkeys, have demonstrated the ability to manipulate 

their environments purposefully to assess outcomes, suggesting a grasp of basic causal 

mechanisms (Kaminski et al., 2008; Kummer & Goodall, 2003).  
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The top of the ladder, counterfactuals, involves understanding hypotheticals and 

reflecting on alternative outcomes, abilities that appear predominantly human. While 

studies such as those by Byrne (2005) illustrate that some primates can engage in tactical 

deception—a rudimentary form of counterfactual thinking—only humans have the 

capacity to fully contemplate complex hypothetical situations and their potential 

alternative histories, a critical skill in advanced problem-solving and moral reasoning 

(Weisberg & Gopnik, 2013).  
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Figure 3. Pearl’s Ladder of Causation. A conceptual framework delineating three 

distinct levels of causal reasoning: association, intervention, and counterfactuals. Each 

rung on the ladder represents a deeper understanding of causality. Adapted from Pearl & 

Mackenzie (2018).   
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Each of these levels requires increasingly complex analytical approaches, from 

basic statistical correlations to complex models that can simulate potential interventions 

and hypotheticals (Pearl, 2000). Expanding upon causal cognition in machines, 

understanding where algorithms fall on Pearl’s Ladder of Causation provides significant 

insights into their capabilities and limitations. Most contemporary AI algorithms, 

particularly those in machine learning and deep learning domains, operate primarily at 

the first rung—association. These algorithms excel at identifying patterns and 

correlations in vast datasets but do not inherently understand the causal mechanisms 

behind these correlations (Schölkopf et al., 2021). Some advanced models, especially in 

reinforcement learning, arguably venture into the second rung—intervention. Such 

models can simulate the effects of different actions in controlled environments. These 

learning strategies and decision-making processes mirror rung 2 causal reasoning (Sutton 

& Barto, 2018). However, reaching the third rung—counterfactual reasoning—remains a 

significant challenge. Current AI systems lack the nuanced cognitive abilities to consider 

hypothetical alternatives to observed events, which are crucial for full causal 

understanding (Pearl & Mackenzie, 2018). This gap highlights the ongoing need in AI 

research to develop algorithms that not only predict, but also understand and reason about 

causality at a deeper, more human-like level.   

To bridge the gap highlighted in AI’s ability to predict versus understand and 

reason about causality, it is imperative to touch upon two foundational pillars in the 

science of causality: causal discovery and causal estimation. These components provide 

additional granularity to delineate the capabilities of LLMs in performing human-like 

causal reasoning.  

1.2.2 Causal Discovery  

Causal discovery is a field within the science of causality that focuses on 

identifying causal relationships from observational data. This field uses algorithms to 

construct models that can predict causal networks, which detail the interconnections and 

directional influences among variables. These networks are often represented using 

directed acyclic graphs (DAGs), which are graphs composed of nodes representing 
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variables and directed edges that signify causal relationships, without any cycles—

meaning there is no path from any node back to itself.  

A directed acyclic graph (DAG) not only visually represents the causal structure, 

but also serves as a mathematical model that helps specify the relationships and 

dependencies among the variables it includes. The introduction of DAGs to represent 

causal relationships traces back to Sewall Wright’s path analysis in the 1920s (Figure 4), 

initially used to study genetic influences among guinea pigs, which effectively laid the 

groundwork for modern causal diagrams (S. Wright, 1920) 

 

Figure 4. Sewall Wright’s Path Analysis Diagram of Guinea Pig Coat Colour 

Genetics. Using DAGs causal relationships among genetic and phenotypic variables are 

depicted. Each node represents a variable (e.g. gene frequency, phenotype) while arrows 

denote direct causal influences between these variables. Adapted from S. Wright (1920). 

In the context of cognitive neuroscience and other fields, DAGs are used to 

delineate the plausible causal pathways that might explain observed correlations, thus 

enabling researchers to make informed inferences about the underlying causal 
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mechanisms. These diagrams can vary in complexity from simple to vast networks 

involving numerous variables and connections. To provide some examples, this section 

will explore the most basic forms of causal diagrams and explain the basic concepts with 

examples, then highlight how this will apply to the study of causal cognition with LLMs.  

1.2.2.1 Simple Causal Diagram  

The simplest causal diagram is a direct causal relationship between two variables, 

often represented as:  

𝐴 → 𝐵 

This can be read as “A” causes “B.” This diagram indicates that changes in “A” will lead 

to changes in “B” and assumes that no other variables interfere. For example, in a health 

study, “smoking” (A) leads to “lung cancer” (B).  

1.2.2.2 Mediator  

A mediator variable acts as an intermediary in a causal pathway, transmitting the 

effect of the initial variable to the outcome variable. The structure looks like:  

𝐴 → 𝑀 → 𝐵 

Here, “A” affects “B” “through “M”, where “M” is the mediator. For example, consider a 

study on stress (A) impacting cognitive function (B) through the mediator of cortisol 

levels (M) (Lupien et al., 2007). Here, cortisol levels mediate the relationship by 

translating the physiological impact of stress into cognitive changes. These effects would 

not be conferred without the mediator variable.   

1.2.2.3 Fork Junction (Common Cause) 

A fork junction, otherwise known as a common cause structure or a confounder, 

involves a single variable causing two other variables. This structure is depicted as:  

𝐴 ← 𝐶 → 𝐵 
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Here, “C” is a common cause of both “A” and “B”. For instance, socioeconomic status 

(C) might influence both education level (A) and health outcomes (B). Socioeconomic 

status is the common factor affecting both aspects. An example in cognitive neuroscience 

would showcase how “neuroinflammation” (C) might lead to “cognitive decline” (A) as 

well as “mood disorders” (B) in aging populations (Heneka et al., 2014).  

1.2.2.4 Collider  

A collider is a variable that is causally influenced by at least two other variables, 

forming a structure like:  

𝐴 → 𝐶 ← 𝐵 

In this diagram, both “A” and “B” independently cause “C”. A practical example is when 

genetic predisposition (A) and high-fat diet (B) both lead to obesity. Here, obesity is a 

collider, influenced by both genetic factors and diet. An example from cognitive 

neuroscience might involve genetic predisposition to anxiety (A) and environmental 

stressors (B) both contributing to development of Post-Traumatic Stress Disorder, or 

PTSD (C) (Yehuda & LeDoux, 2007). In this structure, PTSD is a collider that results 

from both genetic and environmental causal pathways.  

Understanding these different junctions in causal diagrams is critical for correctly 

interpreting the causal relationships in empirical data. Mediators help us understand the 

mechanism or process through which an effect occurs, while colliders can introduce bias 

if not correctly handled, particularly in statistical models. Common causes must be 

considered to avoid confounding effects, where an external factor influences both the 

independent and dependent variables, potentially misleading conclusions about their 

direct causal relationship. Causal inference methods have evolved significantly with the 

development of Judea Pearl’s do-calculus, which provides a theoretical framework for 

using DAGs to derive causal inferences from observational data by simulating 

interventions. This approach allows researchers to hypothesize and validate causal 

relationships, moving beyond mere correlation to rigorously test and confirm the 
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underlying causal mechanisms within the data by integrating causal discovery and causal 

estimation (Pearl & Mackenzie, 2018).  

1.2.3 Causal Estimation  

In the evolving study of causality, once the structures of causal relationships are 

discerned through causal discovery, the next crucial step involves causal estimation. This 

process aims to quantify the strength and direction of the effects that variables have on 

one another within a defined causal framework. Causal estimation addresses the question 

“What happens to one variable when another is manipulated?” It is at the heart of moving 

from observational correlations (rung 1) to conclusions about causation that can inform 

effective interventions (rung 2).   

An accepted and standard framework for causal estimation in contemporary 

research is Judea Pearl’s do-calculus, which permits the derivation of causal effects from 

data by simulating interventions and observing potential outcomes (Pearl, 2000). To 

outline how this works, this section will provide some simple example scenarios that 

benefit from do-calculus.  

1.2.3.1 Single Variable Intervention 

Suppose we have a model where smoking “S” causes an increase in the risk of 

lung cancer “C”. We are interested in finding out the causal effect of smoking on lung 

cancer. Using do-calculus notation, we want to calculate:  

𝑃(𝐶 |𝑑𝑜(𝑆 = 1)) 

This expression tells us the probability of cancer (C) given that we intervene to make 

someone a smoker, regardless of their natural inclination to smoke or not. The do-

operator, “do(S=1)”, indicates that we’re setting the smoking variable “S” to 1 (smoker) 

artificially, simulating an intervention.  

1.2.3.2 Adjusting for Confounders  

Consider a scenario where we’re studying the effect of a new drug on blood 

pressure, and we know that age (A) is a confounder because it affects both the likelihood 
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of receiving the drug (D) and the outcome, which is blood pressure (B). The causal effect 

of the drug on blood pressure while controlling for age would involve calculating the 

following:  

𝑃(𝐵 |𝑑𝑜(𝐷 = 1)) 

To calculate this using observational data while adjusting for age, do-calculus might 

involve using a rule that allows us to “open” or “close” paths in a causal diagram to 

isolate the effect of the drug from the influence of age.  

1.2.3.3 Mediator Analysis  

Imagine we are interested in not just whether a treatment (T) affects recovery (R) 

but also how it does so via mediator like improved medication adherence (M). To 

understand the direct effect of treatment on recovery, excluding the mediation effect, we 

could use do-calculus to compute:  

𝑃(𝑅 |𝑑𝑜(𝑇 = 1), 𝑑𝑜(𝑀 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙)) 

Here, “do(M=natural)” implies that we allow the mediator “M” to take its natural value 

as influenced by “T” rather than intervening on “M”.  

These examples are conceptual and illustrate the power of do-calculus in 

providing mathematical notational to enable causal inference from non-experimental data 

in a way that not available with traditional statistical methods. The use of causal diagrams 

in conjunction with do-calculus helps in making assumptions about the data generation 

process explicit. To summarize, do-calculus provides a way to mathematically simulate 

an intervention with the “do” operation (e.g. do(X=x)), which isolates the effect of setting 

a variable X to a specific value x, independent of its usual causal influences. Beyond the 

examples provided, do-calculus also allows researchers to address counterfactual 

queries—questions about what would happen under hypothetical scenarios (rung 3). 

Lastly, do-calculus aids in deriving estimators that are theoretically grounded in causal 

assumptions, allowing statisticians and researchers to move from associative to causal 
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inferences, which is particularly important when experimental data may be limited or 

unethical to obtain.  

1.2.4 Types of Causal Queries  

In the study of causality, researchers often aim to estimate the effects of 

interventions from observational data. Different types of causal queries can be used 

depending on the nature of the research question and the available data. Each type of 

query focuses on estimating different causal estimands. This section will present three of 

the key types of causal queries commonly addressed in the literature, one example for 

each rung on Pearl’s Ladder of Causation. 

1.2.4.1 Average Treatment Effect (ATE)  

The Average Treatment Effect (ATE) is a causal estimand that measures the 

expected difference in outcomes between units treated with an intervention and those that 

are not, across the entire population. This type of query would fall on rung 2 on Pearl’s 

Ladder of Causation. Mathematically, it is defined as:   

𝐴𝑇𝐸 = 𝐸[𝑌(1) − 𝑌(0)] 

Where Y(1) and Y(0) represent the potential outcomes under treatment and control, 

respectively. ATE provides a comprehensive view of the treatment’s impact, assuming 

that the treatment assignment is independent of potential outcomes—an assumption often 

referred to as ignorability (Rosenbaum & Rubin, 1983).  

1.2.4.2 Explaining Away Effect  

The explaining away effect occurs when the presence of one cause diminishes the 

impact or likelihood of another cause for a given effect. This effect is particularly 

relevant in the context of conditional probabilities where two competing causes influence 

a common effect (Cruz et al., 2020). A query involving this effect would fall on rung 1 on 

Pearl’s Ladder of Causation.  

To provide an example, imagine a scenario involving an alarm system in a house. 

Let’s denote A as the event “Alarm goes off,” B as the event “Burglary occurs,” and C as 
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the event “Earthquake occurs.” Both a burglary and an earthquake can trigger an alarm. If 

the alarm goes off and you then learn there was an earthquake, the likelihood of a 

burglary having occurred decreases because the earthquake provides a sufficient 

explanation for the alarm. We can express this scenario if an alarm going off (A=1), 

knowing an earthquake occurred (C=1), reducing the likelihood of a burglary (B=1) using 

conditional probabilities:  

𝑃(𝐵 = 1|𝐴 = 1, 𝐶 = 1) 

The probability of B given the event A and event C encapsulate the explaining away 

effect, considering how C influences the likelihood of B when A also occurs.  

1.2.4.3 Natural Direct Effect (NDE) 

The natural direct effect (NDE) is a causal estimand used to quantify the direct 

influence of a treatment or intervention on an outcome, independent of a specific 

mediating variable. This estimand is particularly useful when aiming to isolate the effect 

of a treatment that acts through various pathways, distinguishing the portion of the effect 

that does not pass through a given mediator. This effect is typically defined in 

counterfactual mediation analysis literature (VanderWeele, 2011) and falls on rung 3 of 

Pearl’s Ladder of Causation.  

NDE quantifies how much the outcome would change if we could change the treatment 

while blocking any mediation effects, thus holding the mediator at the level it would 

naturally assume without the treatment. For a treatment variable X, a mediator M, and 

outcome Y, the mathematical notation for NDE would be as follows:  

𝑁𝐷𝐸 = 𝐸[𝑌1,𝑀(0) − 𝑌0,𝑀(0)] 

Here, 𝑌1,𝑀(0) represents the potential outcome when the treatment is applied but the 

mediator is held at the level it would take under the control condition, and 𝑌0,𝑀(0) is the 

outcome under control with the mediator also at the control level. For instance, in a 

health intervention study, suppose a new drug is introduced to reduce stress levels (X) 

and one of the mediators through which the drug works is by improving sleep quality 

(M). The outcome (Y) is the reduction in symptoms of depression. NDE would quantify 



25 

 

the impact of the drug on depression symptoms assuming sleep quality remains as it 

would be without the drug, to help isolate the direct pharmacological effects of the drug 

from its effects on sleep quality.  

It is important to note that these examples of causal queries are not exhaustive, but 

merely introduce some foundational concepts essential for understanding causal 

estimation at each rung. This introduction of the science of causality, from Pearl’s Ladder 

of Causation to causal discovery to causal estimation, collectively form the bedrock of 

causal inference today, offering a structured framework to formalize how humans 

conceptualize and reason about causality. Highlighting these components is important as 

we aim to bridge the gap between theoretical causality and practical, algorithm reasoning 

demonstrated by AI systems, particularly LLMs. The application of this formal 

framework to understand the causal reasoning capabilities of LLMs remains largely 

unexplored. The causal inference methodologies explored in this introduction provide a 

promising framework to explore causal reasoning in LLMs, particularly as causal 

inference bridges observing patterns in data to discerning cause-and-effect relationships, 

and present criticisms against the ability of LLMs to reason about causality largely center 

around algorithms being complex pattern recognizers.  

1.3 The Current State of Understanding Causal 
Reasoning Capabilities of LLMs  

The ability of LLMs to engage in causal reasoning has been at the forefront of 

discussion regarding AI’s causal cognition abilities. These models have demonstrated 

significant capabilities in generating coherent and contextually appropriate text, 

suggesting a form of complex pattern recognition with the potential for causal reasoning. 

One could also argue that despite their sophistication, LLMs do not inherently understand 

causality in the way humans do, and instead replicate causal inference through pattern 

recognition learned from vast data sets rather than through intrinsic understanding of 

cause and effect (E. M. Bender & Koller, 2020; Marcus & Davis, 2019). Just within the 

past couple of years, there has been significant debate regarding this topic.  
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Earlier studies steered the conversation towards the argument that while LLMs can 

generate text that appears causally coherent, their “understanding” is fundamentally 

statistical, rooted in data co-occurrence rather than a conceptual grasp of cause and effect 

(Naveed et al., 2024). Empirical assessments using benchmarking tasks such as the 

Heuristic Analysis for Natural Language Inference Systems (HANS), suggest that LLM 

performance is heavily influenced by their training data’s structure, which may not 

necessarily reflect a true causal reasoning process (McCoy et al., 2019). This perspective 

is continued to be supported by the viewpoint that LLMs do not inherently understand 

causality but rather mimic causally-informed speech by regurgitating patterns, dubbing 

them “causal parrots” (Zečević et al., 2023). However, this viewpoint that LLMs are 

simply patterns recognizers rather than genuine reasoners is simply one side of the 

argument.  

Conversely, proponents of LLMs’ causal reasoning abilities highlight their potential 

in simulating some aspects of causal understanding. Studies have shown that with 

appropriate fine-tuning and additional structured causal data, LLMs like GPT-3 can 

exhibit improved performance on tasks requiring causal inference (Evans & Grefenstette, 

2018). LLMs have been used to generate hypotheses about causal relationships which are 

then validated through empirical data, suggesting that these models might be capable of 

supporting causal discovery processes in scientific research (Schwab et al., 2019). 

Additionally, some argue that the ability of LLMs to generalize from provided examples 

to novel contexts can be seen as a rudimentary form of causal reasoning, as it involves 

extrapolating the underlying causal mechanisms that govern observed phenomena (Zhang 

et al., 2023). Recently, researchers at Microsoft Research proposed that LLMs can indeed 

grasp some basic aspects of causal mechanisms. This revelation suggests a potential for 

these models to contribute novel insights into causal reasoning research (Kıcıman et al., 

2023). Further contributing to this discourse, a study supported the notion that while 

LLMs may not independently derive causal relationships, they can effectively use pre-

existing causal knowledge embedded within their training data to make seemingly causal 

inferences (Cai et al., 2023). This ability could be interpreted as a form of causal 

reasoning, albeit heavily reliant on prior human input, putting a spin on what critics 

previously labelled a lack of true causal reasoning. Overall, this ongoing debate sheds 
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some light on the complexity of AI’s engagement with causal reasoning—a foundational 

element of human cognitive processes—and highlights the importance of continued 

empirical research to disentangle the capabilities and limitations of LLMs in this domain. 

Amid the current academic discourse surrounding the causal reasoning capabilities of 

LLMs lies a significant gap in the application of formalized causal inference frameworks 

to evaluate AI systems. In a recent paper, Jin et al. (2024) begin to address this by 

generating structured causal queries grounded in symbolic logic and Pearl’s Ladder of 

Causation, however there remains much to be explored in this line of investigation. The 

foundational methodologies of causal inference, which move beyond mere pattern 

recognition to discern genuine cause-and-effect relationships, offer a robust template for 

investigating the depths of causal reasoning within LLMs. Critics argue that LLMs 

function primarily as complex pattern recognizers, lacking true causal understanding. 

Taking a causal inference approach, which requires recognizing patterns in the data, 

could critically transform our approach to evaluating AI cognition. Thus, leveraging this 

formal framework to probe the causal reasoning faculties of LLMs is not only novel and 

interdisciplinary, but also contributes to the ongoing debate through a perspective that 

was previously unexplored.  

1.4 Motivation  

In “Causal Cognition: A Multidisciplinary Debate,” the complex interplay between 

causal cognition and core cognitive processes is explored. Memory crucially underpins 

causal cognition by archiving past causal relationships to guide future behaviour, as 

inferred by Tolman’s cognitive maps (Tolman, 1948). Causal reasoning enables 

predictions based on established relationships (Gopnik & Schulz, 2007). This reasoning 

extends into problem-solving, where understanding causality helps identify effective 

solutions by pinpointing and manipulating contributing factors, especially by 

distinguishing them from confounders (Keil, 2006). In decision-making, insights from 

causal cognition for strategic planning and anticipation of outcomes, as causal beliefs 

shape decisions under uncertainty (Kahneman & Tversky, 1982). Together, these 

cognitive capabilities not only underscore human and animal adaptation but significantly 

inform the ongoing advancement of AI. There is an increasing recognition of need for AI 
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that can understand and process causality, reflecting a broader call within the field of the 

development of causal AI (Pearl & Mackenzie, 2018), and update our notions of causal 

cognition as we continue to understand them better in humans and machines (E. M. 

Bender & Koller, 2020). 

Applying the study of causal cognition to machine cognition, specifically to LLMs, 

the motivation is threefold:  

First, as AI systems become increasingly autonomous, the ability to understand and 

predict the consequences of action as based on causal reasoning becomes essential for 

ensuring these systems operate safely and ethically. Causal understanding helps AI 

predict the consequences of actions and adjust behavior based on structured inference, a 

crucial aspect towards developing dependable autonomous systems (Russell & Norvig, 

2016).  

Second, as LLMs are tasked with processing complex and nuanced human languages, 

their ability to model and understand causal relationships directly impacts their 

effectiveness and reliability in real-world applications. This is particularly important in 

the field of health AI, where discerning between a confounder and a true causal risk 

factor has significant implications for patients, public health, and vulnerable populations. 

Understanding causality improves AI’s performance across various applications such as 

epidemiology and economics, but also to improve transfer learning in models (Bengio et 

al., 2019).  

Third, there remains much to be gained from comparative studies assessing causal 

cognition in intelligent systems like LLMs versus human and non-human animals’ causal 

cognitive abilities. Such studies enrich our understanding of intelligence and cognitive 

processes across different entities, providing insights that can lead to improved AI 

systems, build upon and inspire improvement of what we have learned about human and 

animal intelligence.  

By studying causal cognition comprehensively, from its biological roots to its 

implementation in artificial systems, we can better understand a fundamental aspect of 
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intelligence that is crucial for survival and sophisticated interaction with the world. This 

understanding can lead to advancements in cognitive neuroscience, artificial intelligence, 

and various applied domains where predicting and understanding causality is key.   

1.5 Thesis Overview 

This introduction (Chapter 1) explored a history and background of cognition as it 

relates to artificial intelligence, causal cognition, a preliminary background of causal 

inference, and the background and motivation for this study. The remaining components 

of this thesis aim to address two fundamental questions about the causal reasoning 

capabilities of LLMs.  

In Chapter 2, we will explore the first research question: how well do LLMs perform 

on tasks that require causal reasoning? This question seeks to evaluate the capabilities of 

current LLMs in understanding and applying causal knowledge in structured scenarios.  

In Chapter 3, we address the second research question: what type of information is 

important in the prompt, and how will manipulating this information affect LLMs’ causal 

reasoning abilities? This explores the efficacy of different prompting strategies, which is 

crucial for optimizing the performance of LLMs on tasks requiring a nuanced 

understanding of causality.  
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Chapter 2  

2 Can Large Language Models Do Causal Inference?  

In this section, we turn our attention to exploring the first research question: how 

well do large language models (LLMs) perform on causal reasoning tasks? This inquiry 

challenges LLMs—specifically frontier models such as OpenAI’s GPT-4 and 

Anthropic’s Claude 3 Opus—not only to generate linguistically coherent outputs but also 

demonstrate a deeper cognitive capability by assessing their accuracy in responding to 

questions that require causal inference to correctly answer. In doing so, the aim is to 

assess an LLMs’ ability to process and potentially reason about causal relationships in a 

formalized framework.  

Previous research in understanding causal reasoning in LLMs has often focused 

on commonsense causality (Ho et al., 2022; Zečević et al., 2023; Zhang et al., 2023), 

treating these models as knowledge bases (Jiang et al., 2020; Petroni et al., 2019; Shin et 

al., 2020). This approach, however, does not adequately test a model’s ability to perform 

causal inference based on formal rules based on the framework outlined by Pearl’s 

Ladder of Causation. Our study aims to fill this gap by applying the structured framework 

of causal inference to assess LLMs’ causal reasoning capabilities. There is a concern that 

LLMs might merely replicate causal information from their training data without genuine 

inference, essentially acting as “causal parrots.” To investigate this, we use the Causal 

Ladder (CLADDER) dataset, which consists of questions designed to evaluate and 

benchmark formal causal reasoning abilities of LLMs (Jin et al., 2024).  

2.1 The CLADDER Dataset  

The CLADDER dataset is described in detail in a paper presented at the Neural 

Information Processing Systems (NeurIPS) conference (Jin et al., 2024). In this section, 

the key aspects of the CLADDER dataset as it relates to this study will be described, 

alongside the motivation for choosing this dataset for this study. 
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The CLADDER dataset was composed to address the gap in reasoning 

benchmarking tasks in evaluating causal inference in natural language. The dataset 

consists of causal questions posed in natural language that are grounded in symbolic 

query and ground truth answers derived through the causal inference engine (Figure 7), 

which abides by the rules of causal inference. Overall, the CLADDER dataset comprises 

of 10,112 questions that are distributed to probe and assess the ability to answer various 

causal queries relating to each rung of Pearl’s Ladder of Causation (Figure 5).  

 

Figure 5. Distribution of CLADDER Dataset on the rungs of Pearl’s Ladder of 

Causation and types of causal queries, adapted from Jin et al. (2024).  

The questions are also structured around several types of causal graphs (Appendix 

1), which give rise to scenarios that require different causal inference abilities. For each 

question, a query, information about the model, and other context data about the scenario 
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is included. Additionally, ground-truth explanation with step-by-step reasoning is also 

included in the dataset (Figure 6).  

 

Figure 6. Example of a question in the CLADDER dataset and Formal Correct 

Answering Steps. The initial question posed in natural language, followed by a symbolic 

representation of the causal graph and query, and steps detailing the step-by-step process 

including formulating the causal estimand and applying appropriate do-calculus and 

probabilistic calculations. Adapted from Jin et al. (2024).  

2.1.1 CLADDER Dataset Generation  

The question generation process for the CLADDER dataset was guided by the 

causal inference engine (Figure 7). Initially, a series of inputs—comprising triples of 

causal queries, graphs, and corresponding data—was created. These triples are designed 

to ensure that each query has a clear, definitive ground truth answer that can be derived 

based on available data. LLMs are known to struggle with calculation-heavy tasks 

(Hendrycks et al., 2021; Stolfo et al., 2023), and since the aim of this dataset is the test 

the causal reasoning capabilities of LLMs rather than their ability to perform complex 
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calculations, graphs with three to four variables arranged in common configurations were 

used. These configurations were selected from a variety of sources within the literature 

such as statistics textbooks, where graph structures are typically used to demonstrate 

foundational problems in causal inference.  

 

Figure 7. Causal Inference Engine Schematic. Inputs are fed into a causal inference 

engine, which processes them to compute an estimable expression of the query, provided 

a viable solution exists. This process is designed to compute if a causal query can be 

answered given the data and model, and if so, solve the query and provide an answer for 

the causal estimand. Adapted from Pearl & Mackenzie (2018).  

To collect common query types in each rung, Jin et al. (2024) continued to draw 

from causal inference literature. Several different types of queries can be categorized 

under each rung of Pearl’s Ladder of Causation. On rung 1, queries primarily involve 

probability distributions such as marginal and conditional probabilities, testing an LLM’s 

capacity to accurately respond to these foundational questions that have to do with 

association. Rung 2 queries can include the concept of Average Treatment Effect (ATE), 

probing questions like “how will the outcome change if treatment (A) changes from x’ to 

x?” Finally, for rung 3, the focus shifts to counterfactual reasoning, which explore 

hypothetical alterations in causal scenarios (Appendix 2).  
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Next, Causal inference rules on specified graphs and queries were applied to 

derive a causal estimand. For queries on Rung 2 of Pearl’s Ladder, simplification using 

the rules of do-calculus to reduce terms to Rung 1 (conditional and marginal 

probabilities) was used to solve the estimand. Rung 3 queries require the application of 

counterfactual causal inference methods to evaluate the estimand and establish a ground 

truth answer. The estimand specifies the necessary terms to include as “available data” in 

the prompt, ensuring that sufficient information is provided to correctly determine the 

answer to the question.  

Lastly, symbolic questions and answers are then transformed into narratives 

understandable in natural language. For each causal graph, two to five stories were 

constructed, each story incorporating variable names as node identifiers within the graph. 

These stories were selected from examples in commonly cited causal inference literature. 

The verbalization process involves converting symbolic variables into semantic concepts 

to create a plausible narrative of the underlying causal mechanisms. This narrative is then 

translated into natural language through templates developed by Jin et al., (2024). The 

code base for the data generation process can be found at the following GitHub 

repository: https://github.com/causalNLP/cladder  

In summary, the dataset was generated through an algorithmic procedure, which 

benefits from zero human annotation cost, controllability, and a decreased likelihood that 

the data was previously seen before by the model during the training phase of LLMs.  

2.2 Why CLADDER?  

2.2.1 Unexplored Areas that Benefit from Using this Dataset  

Jin et al. (2024) evaluated multiple LLMs using the CLADDER dataset, reporting 

an overall accuracy of 62.03% by GPT-4, indicating the challenging nature of the task for 

LLMs. However, their analysis lacked granularity beyond the categorization of 

questions into different rungs of Pearl’s Ladder of Causation. Specifically, they did 

not explore variations in LLM performance based on the type of causal query or structure 

of causal graph involved in the questions. Instead, their focus was on comparing LLM 

responses across narratives that aligned with commonsense reasoning versus those that 
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involved anti-commonsense and formal causal inference reasoning. Furthermore, the 

rapid evolution in the field of generative AI, marked by continual advancements and new 

releases from OpenAI, Anthropic, and various open-source models, has quickly outdated 

the findings of Jin et al., (2024). This creates a need for ongoing research to keep pace 

with technological developments in this area.  

2.2.2 Uniqueness from other reasoning benchmarking tasks for LLMs 

Currently, benchmarking tasks that relate to causal reasoning typically fall into one of 

three categories (Zhang et al., 2023):  

Type 1: Identifying causal relationships using domain knowledge. Tasks in this 

category primarily test LLMs’ ability to use stored world knowledge to infer causal 

relationships. These are generally the simplest type of casual reasoning tasks, 

requiring LLMs to retrieve and apply information from their training data rather than 

generate new causal insights.  

Type 2: Discovering new knowledge from data. These tasks are designed to assess 

whether LLMs can generate new knowledge by analyzing given data sets. Challenges 

include interpreting business strategies or predicting medical treatment outcomes 

based on historical data. This category requires a higher level of causal reasoning, 

engaging with intervention-level reasoning.  

Type 3: Quantitatively Estimating the Consequences of Actions. The most complex 

category, these tasks involve quantifying the effects of specific actions, such as 

adjusting medication dosages based on prior outcomes. These tasks demand that 

LLMs apply principles of counterfactual reasoning to propose actionable solutions or 

predictions.  

The majority of existing benchmarks can be categorized as Type 1 tasks, which 

primarily assess an LLM’s ability to recognize causal relationships through domain 

knowledge, often resulting in evaluations of simple associative reasoning (Ho et al., 

2022; Zečević et al., 2023; Zhang et al., 2023). This approach does not robustly challenge 

the LLM’s deeper causal reasoning capacities. In contrast, the CLADDER dataset is 
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designed to cover the full spectrum of benchmarking tasks—Type 1 through Type 3—

thereby allowing for a nuanced assessment of LLMs’ abilities to differentiate between 

mere correlation and true causation, as well as compare LLMs’ performance between the 

different types of questions. As such, the CLADDER dataset is an essential tool for this 

thesis. Additionally, it includes metadata for each question and outlines formal causal 

inference steps. The enables granular analysis into the types of questions on which LLMs 

excel or underperform, highlighting specific limitations in their causal reasoning 

capabilities. Formal causal inference steps enable the investigation of specific type of 

information necessary for LLMs to arrive at accurate conclusions, which contributes 

towards answering the second research question. Overall, these features are vital for 

addressing the research questions posed in this thesis, allowing for a deeper exploration 

of LLMs’ capabilities in causal inference.  

2.3 Methods 

2.3.1 Filtering the data  

For the experiments conducted in this thesis, only questions from the CLADDER 

dataset that included full reasoning steps were included. This selection criterion was 

necessary to maintain consistency across the experiments in both this and the subsequent 

chapter, facilitating a direct comparison of different prompting strategies. After filtering 

the CLADDER dataset to only include questions with the full reasoning steps, 1392 

questions were used for the experiments, with the following distribution across rungs, 

queries (Table 1), and graphs (Table 2).  

 

Table 1: Number of Questions for Each Rung and Query Type in the Filtered 

CLADDER dataset 

Query Type Rung Number of 

Questions Using 

this Query Type 

Percentage of 

Total Dataset 

(1392 Questions) 

Correlation 1 296 21.3% 

Explaining Away Effect 1 32 2.3% 

Marginal Distribution 1 296 21.3% 

Average Treatment Effect 2 264 19.0% 
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Collider Bias 2 32 2.3% 

Effect of the Treatment on the Treated 3 224 16.1% 

Natural Direct Effect 3 96 6.9% 

Natural Indirect Effect  3 152 10.9% 

Table 2: Number of Questions for Each Graph Type in the Filtered CLADDER 

dataset 

Graph Type Graph Structure* Number of 

Questions Using 

this Graph 

Percentage of 

Total Dataset 

(1392 Questions) 

Arrowhead 

 

288 20.7% 

Chain 

 
 

120 8.6% 

Collision 

  

128 9.2% 

Confounding  

 

128 9.2% 

Diamond 

  

120 8.6% 

Diamond Cut 

  

32 2.3% 

Fork 

  

128 9.2% 

Front Door 

 

40 2.9% 

Instrumental 

Variable  

 

120 8.6% 

Mediation 

 
 

288 20.7% 

*X represents the treatment variable, Y represents the outcome variable, and Z represents the 

mediator variable  
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2.3.2 Simple Prompting 

To explore how current LLMs respond to questions that require varying levels of 

causal inference to answer correctly, a simple prompting approach was used to establish a 

baseline. This prompting approach simply fed each question from the filtered dataset in 

the simplest, most direct way. Each prompt contained three main components—

background, given information about the question, and the question itself—to provide the 

model with the same amount of information that would be considered sufficient for a 

human to go through the causal inference steps and get to the ground truth answer. An 

example of a prompt is presented below, broken down by the three components:   

1. Background: “Imagine a self-contained, hypothetical world with only the 

following conditions, and without any unmentioned factors or causal 

relationships. Encouragement level has a direct effect on studying habit and exam 

score. Studying habit has a direct effect on exam score.”  

2. Given information about the question: “For students who are not encouraged, 

the probability of high exam score is 12%. For students who are encouraged, the 

probability of high exam score is 64%.”  

3. Question: “Will encouragement decrease the chance of a high exam score?” 

For the simple prompting approach, these three components were read from the 

filtered dataset (stored in a JSON file) and concatenated to form a prompt (Appendix 4). 

Each question was passed through the OpenAI API Server with temperature 0 to prompt 

GPT-3.5 Turbo (20 billion parameters), GPT-4 (an estimated 8 language models, each 

with 220 billion parameters), and GPT-4 Turbo (number of parameters not released to the 

public) using the filtered dataset of 1392 questions. Similarly, the Anthropic API Server, 

also with temperature 0, was used to prompt Claude 3 Opus (an estimated 2 trillion 

parameters) with the same dataset and prompting strategy. These frontier models were 

selected due to their prevalence in current reasoning research (López Espejel et al., 2023) 

as well as their demonstrated ability to reason about mathematics (Zhou et al., 2023) and 

conceptual structure (Singh et al., 2023). On the server side, there is no memory cache 

that each API call is pulling from (Zheng et al., 2023), as OpenAI and Anthropic do not 

maintain chat history for the API. In the context of these experiments, this means that for 



39 

 

each causal inference question passed to the model in the form of API calls, the model 

does not ‘learn’ from past questions and answers each questions separately from the 

others.  

Before touching upon the assessment of responses from LLMs, it is important to note 

that for each question, the instruction from the ‘system’ role (a parameter that can be 

manipulated in the API call) guided the LLM to respond with the first word being “Yes” 

or “No” using the following system message: “You are an expert in causal inference. The 

following question is not a typical commonsense query, but rather a meticulously 

designed question created by a professor specializing in causal inference, intended to 

assess mastery of the course content. Start your answer with “yes” or “no,” followed by 

additional reasoning or evidence to support your explanation.” As such, for the scoring, 

the first word of the LLM response was taken and compared to the ground truth (not case 

sensitive). A simple true or false scorer was used that accepted any of “No,” “False,” 

“Incorrect,” or “Not necessarily” as a member of the false family, and any of “Yes,” 

“True,” or “Correct” as a member of the true family. If the first word of the LLM 

response belongs in the false family, and the ground truth answer for that question was 

“No,” then the scorer assessed the response as correct (i.e. the prediction matches the 

ground truth). Similarly, if the first word of the LLM response to the true family, and the 

ground truth answer for that question was “Yes,” then the scorer assessed the response as 

correct. If family of words that the LLM responds with does not match the ground truth, 

then the response was assessed as incorrect. The accuracy was determined for LLM 

responses using the following formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Metadata about the response types were saved alongside the responses in a JSON file, 

and accuracies were calculated for overall, query type, and graph type. Excel version 

16.78 was used to generate bar graphs, and the Seaborn package in python version 3.11 

was used to generate the heatmaps.   
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2.4 Results  

For the response accuracy on the 1392 causal inference questions, GPT-3.5 Turbo had 

an overall accuracy of 59.41%, GPT-4 had an overall accuracy of 73.71%, GPT-4 Turbo 

had an overall accuracy of 72.20%, and Claude 3 Opus had an overall accuracy of 

69.97% (Figure 8 and Appendix 3). For GPT-3.5 Turbo and GPT-4, these overall 

accuracies can be compared with the performance on the entire CLADDER dataset 

(10,112 questions) reported by (Jin et al., 2024). For GPT-3.5, they reported an accuracy 

of 52.18% and for GPT-4, an accuracy of 62.03%.  

 

Figure 8. Accuracy of responses to causal inference questions by LLMs broken 

down by the rung on Pearl’s Ladder of Causation that the question assesses.  

Overall, the group of LLMs that we studied answer questions that require rung 2 

level thinking on Pearl’s Ladder of Causation with higher accuracy than rung 3 and rung 

1 level questions.  To assess whether this is due to higher or lower accuracy in responses 

for a particular query or graph type skewing the overall accuracy, accuracies were broken 

down by query type and graph type (Figure 9). 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3

A
cc

u
ra

cy
 (

N
u
m

b
er

 o
f 

co
rr

ec
t 

/ 
T

o
ta

l 
Q

u
es

ti
o

n
s 

fo
r 

R
u
n
g
)

Rung of Question

GPT3.5 Turbo

GPT4

GPT4 Turbo

Claude 3 Opus



41 

 

 

Figure 9. Accuracy of responses to causal inference questions by LLMs organized 

by the query type.  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Marginal

Distribution

Correlation Explaining

Away Effect

A
cc

u
ra

cy
 (

N
u
m

b
er

 o
f 

co
rr

ec
t 

/ 

T
o

ta
l 

Q
u
es

ti
o

n
s 

fo
r 

Q
u
er

y
)

Query Types for Rung 1

GPT 3.5 Turbo

GPT 4

GPT 4 Turbo

Claude 3 Opus

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Average Treatment

Effect

Collider BiasA
cc

u
ra

cy
 (

N
u
m

b
er

 o
f 

co
rr

ec
t 

/ 
T

o
ta

l 

Q
u
es

ti
o

n
s 

fo
r 

Q
u
er

y
)

Query Types for Rung 2

GPT 3.5 Turbo

GPT 4

GPT 4 Turbo

Claude 3 Opus

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Effect of the

Treatment on the

Treated

Natural Indirect

Effect

Natural Direct

Effect

A
cc

u
ra

cy
 (

N
u
m

b
er

 o
f 

co
rr

ec
t 

/ 
T

o
ta

l 

Q
u
es

ti
o

n
s 

fo
r 

Q
u
er

y
)

Query Types for Rung 3

GPT 3.5 Turbo

GPT 4

GPT 4 Turbo

Claude 3 Opus



42 

 

Lastly, to examine whether LLMs performed with a higher accuracy on a specific 

type of graph within a specific rung on the Ladder of Causation (since each type of graph 

can be used for questions across many different rungs), heatmaps were generated to 

organize this information (Figures 10, 11, 12, and 13). 

 

Figure 10. Accuracy heatmap of GPT-3.5 Turbo responses to causal inference 

questions organized by rung and graph type. A value of -1.00 denotes that there were 

no questions to evaluate the intersection of a particular rung type and graph.   
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Figure 11. Accuracy heatmap of GPT-4 responses to causal inference questions 

organized by rung and graph type. A value of -1.00 denotes that there were no 

questions to evaluate the intersection of a particular rung type and graph.   
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Figure 12. Accuracy heatmap of GPT-4 Turbo responses to causal inference 

questions organized by rung and graph type. A value of -1.00 denotes that there were 

no questions to evaluate the intersection of a particular rung type and graph.   
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Figure 13. Accuracy heatmap of Claude-3 Opus responses to causal inference 

questions organized by rung and graph type. A value of -1.00 denotes that there were 

no questions to evaluate the intersection of a particular rung type and graph.   

 

2.5 Discussion  

2.5.1 Differences in Accuracy Between Different Rungs on Pearl’s 
Ladder of Causation 

Our study using the filtered CLADDER dataset to evaluate causal reasoning in 

LLMs reveals important insights into their capabilities and limitations. Notably, our 

results indicate that LLMs perform more accurately on questions that involve 

interventions (rung 2 on Pearl’s Ladder of Causation) compared to those dealing with 

association (rung 1) or counterfactual reasoning (rung 3), as depicted in Figure 8. This 

difference in performance suggests that LLMs are better at handling scenarios that 

require direct manipulation of variables rather than those necessitating the understanding 
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of hypothetical situations when it comes to formal causal reasoning. Interestingly, their 

weaker performance on associative and counterfactual questions may challenge the 

prevalent assertion that LLMs can answer Type 1 causal questions thanks to their large 

collection of knowledge (Zhang, 2024). The CLADDER dataset, despite being built to 

assess formal causal reasoning, draws from highly cited sources such as textbooks to 

generate the stories used in the questions. Further investigation into the prompting 

strategies, training data, and model architecture that influence the accuracy of Type 1 

question responses is required to determine the limitations of LLMs’ performance on 

these types of tasks. The results from this experiment show that in a formal causal 

reasoning task, LLMs have greater difficulty answering questions of association and 

counterfactuals compared to questions of intervention.  

2.5.2 Differences in Accuracy of Response Between Different Models  

The disparity in performance on interventional versus counterfactual questions 

highlights a fundamental challenge in LLMs’ ability to engage in complex causal 

reasoning. Counterfactual reasoning, which involves imagining alternative realities and 

outcomes, is a cognitively challenging task that differentiated the abilities of the models 

tested in this experiment. Models with a greater number of parameters such as GPT-4, 

GPT-4 turbo, and Claude 3 Opus performed with high accuracy than GPT-3.5 Turbo on 

rung 3 questions as seen in Figure 8, and this was the largest difference in accuracy 

between different models for questions across the same rung type. GPT-3.5 Turbo 

performed just above random chance (52.75%) contrasted with the higher performance 

accuracies of GPT-4 (73.94%), GPT-4 Turbo (75.21%), and Claude 3 Opus (69.49%). As 

shown in Figure 9, this difference in accurately is seen consistently for rung 3 query 

types, and for rung 3 graphs (Figures 10, 11, 12, and 13). Such findings challenge the 

assertions regarding causal reasoning in LLMs in studies using models like GPT-3.5 

turbo, which may have prematurely concluded LLMs' incapacity of abstract causal 

reasoning. This raises the potential for further improvements in LLMs, particularly in 

their ability to handle complex causal questions. Supporting this notion, recent 

advancements in causal AI emphasize the importance of designing AI systems that can 

integrate and reason with causal models (Bengio et al., 2019). This could lead to LLMs 
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that not only better understand causality but also more effectively apply it in practical, 

real-world scenarios. The ongoing development and scaling of LLMs paralleled with the 

ongoing research in causal AI is moving in a promising direction, towards overcoming 

some of the limitations observed in earlier models and potentially leading to more robust 

and capable systems in terms of causal reasoning.  

Conversely, there are specific intersections of graph and rung types where GPT-

3.5 Turbo outperformed the newer models. Specifically, for the diamond cut graph type 

questions, while GPT-4, GPT-4 Turbo, and Claude 3 Opus performed well on rung 1 and 

rung 2, these newer models answered rung 3 diamond cut graph type questions with 

0.00% accuracy, while GPT-3.5 Turbo responses had a 37.50% accuracy on these 

questions. This is likely due to small sample size error, as there were only 32 diamond cut 

graph type questions in the filtered dataset (16 were rung 1 questions, 8 were rung 2 

questions, and 8 were rung 3 questions). Small sample size error in question types like 

diamond cut, which are also less common in the literature, is a limitation to this study. 

However, this highlights a gap not only in LLM and AI literature regarding the reasoning 

capabilities with respect to data organized in these structures, but also in causal inference. 

Due to the number of possibilities of different graph structures that could be formed 

simply with 3 or 4 variables, not all of them are equally explored and documented. The 

diamond cut graph structure is one such possibility that has not been widely investigated 

but can be applied in future studies.  

Another notable difference in accuracy was observed between Anthropic’s Claude 

3 Opus and OpenAI’s GPT models for collider bias questions (Figure 9). Collider bias 

occurs when an exposure and outcome each influence a third common variable and that 

variable is controlled for by design or analysis (Holmberg & Andersen, 2022). In other 

words, this specific type of bias arises when conditioning on a common effect of two or 

more causes. An example of collider bias could be if researchers are studying the effects 

of a new drug on heart disease risk. If they control for a variable like cholesterol level—

which the drug itself affects—then they might observe misleading relationships between 

the drug and other risk factors due to collider bias introduced by conditioning on 

cholesterol. Claude 3 Opus performed perfectly on these types of questions, with an 
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accuracy of 100.00% on collider bias queries, whereas the OpenAI models performed 

with much lower accuracy. GPT-3.5 Turbo was correct in answering 50.00% of the 

questions, while GPT-4 Turbo was correct with 56.25% of questions, both answering 

around as accurately as random chance, whereas GPT-4 was correct in 68.75% of collider 

bias queries (Figure 9). This highlights a difference that can arise due to different data 

used by different organizations and individuals when training LLMs.  

However, this discrepancy could also be prone to small sample bias, as there was 

only a total of 32 questions about collider bias in the dataset. Importantly, the DAG that 

was required to correctly reason through all collider bias questions were collision type 

graphs. There was a total of 128 questions corresponding to collision type graphs in the 

dataset (96 for rung 1, 32 for rung 2). In Figures 10, 11, 12 and 13, we can see questions 

involving collision type graphs consistently brought down the accuracy of rung 2 type 

questions for OpenAI GPT models—these are the 32 collider bias questions. What is of 

interest is the models’ accuracy on collision type questions for rung 1. We can see that 

for Claude 3 Opus, even though it answers with perfect accuracy on collider bias 

questions, the accuracy of rung 1 questions that use a collision type graph was 44.79% 

(i.e. about random chance). Rung 1 type questions using a collision graph was also 

challenging for OpenAI GPT models (64.58% accuracy with GPT-3.5 Turbo, 63.54% 

accuracy with GPT-4, and 66.67% accuracy with GPT-4 Turbo). Overall, this finding 

supports the previous notion that LLMs are better at reasoning with rung 2 type 

questions, given that Claude 3 Opus seemingly performs well with collider bias questions 

but poorly with collision type rung 1 questions, but further investigation on collision type 

problems with a larger dataset should be conducted to eliminate the possibility of small 

sample bias.  
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Chapter 3  

3 What Information Do Large Language Models Need for 
Causal Reasoning?  

In this chapter, we address our second research question: What type of 

information is important in a prompt to help LLMs answer causal inference questions? 

We explore how variations in the information presented have an impact on the accuracy 

of LLM response to the same filtered CLADDER dataset used in the previous chapter. 

The motivation for line of inquiry includes 1) to understand the components of effective 

prompts when it comes to causal inference questions, 2) to explore whether LLMs benefit 

from structuring information in the form of a causal inference engine, and 3) to further 

delineate the boundaries of LLMs’ causal reasoning proficiency under different 

information conditions.  

Prompt engineering is an emerging field in the domain of artificial intelligence 

that focuses on optimizing the prompt inputs to improve the performance of language 

models, particularly LLMs (Sahoo et al., 2024). Understanding how to write a prompt to 

optimize responses from LLMs is becoming increasing important with the explosion in 

the popularity of models like OpenAI’s GPT series. The aim of this practice is to enhance 

how LLMs understand and respond to user queries effectively (Liu et al., 2021). By 

designing prompts that incorporate elements and information typically helpful for 

humans to structure causal inference queries, we can assess how the inclusion of such 

information influences LLM performance.  

At its core, prompt engineering involves crafting queries that guide the LLM in 

generating responses that are not only relevant but also contextually rich and nuanced. 

This is particularly critical in complex problem-solving scenarios where the precision of 

the input significantly influences the output quality (Shin et al., 2020). An important 

approach within this field is chain-of-thought (CoT) prompting, which encourages the 

model to “think aloud” by sequentially reasoning through a problem before arriving at an 

answer. This method has shown promise in mimicking human-like reasoning patterns, 
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thereby enhancing the model’s ability to tackle intricate causal and logical questions (Wei 

et al., 2023). By systematically structuring prompts to simulate a step-by-step unpacking 

of complex issues, researchers can potentially unlock different cognitive capabilities in 

AI, and explore causal cognition in a novel way.  

3.1 Chain-of-Thought Prompting 

3.1.1 Why Chain-of-Thought (CoT)?  

Research has shown that CoT prompting can dramatically improve the 

performance of LLMs across various domains, including mathematics, common-sense 

reasoning, and causal inference. Wei et al., (2023) demonstrated that this method enabled 

LLMs to perform better on arithmetic and common-sense reasoning tasks by breaking 

down problems into intermediate steps, thus making the models “thought process” visible 

and logically coherent. Dodge et al., (2019) highlighted how structured prompts can lead 

to more precise and contextually appropriate outputs in natural language understanding 

tasks, showing that structured prompting helps mitigate some of the typical failures of 

LLMs. These failures can include generating plausible but incorrect answers or glossing 

over complex reasoning steps. By forcing the model to articulate its reasoning, CoT 

prompting not only improves interpretability but also helps researchers and users to fine-

tune the models more effectively. As such, CoT prompting is a tool that can enhance 

LLM performance, and also sheds light on how AI thinks through complex cognitive 

tasks.  

3.1.2 Standard Chain-of-Thought (CoT) Prompting 

Standard CoT prompting opened a frontier in prompt engineering to enhance 

LLM performance on complex tasks. This method involves crafting prompts that guide 

the model to articulate its reasoning process step-by-step before arriving at a conclusion. 

It mirrors human-like problem-solving by having the model “think aloud” as it processes 

information, providing not just answers to the prompt but also the logical path leading to 

those answers (Wei et al., 2023). An example is provided in Figure 14. This method is 

worth investigating because it has shown potential to significantly improve the accuracy 

of AI responses on reasoning tasks. For instance, when applied to GPT-3, standard CoT 
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prompting uncovered the emergent ability in sufficiently large models to handle nuanced 

and complex questions more effectively (Wei et al., 2023). CoT prompting can be 

especially useful in educational settings, where explaining the process of arriving at an 

answer is as important as the answer itself, and in situations requiring detailed decision-

making support, such as complex data analysis tasks. However, there are limitations to 

consider. For one, this strategy relies heavily on the initial prompt design—poorly 

designed prompts can lead to misleading or incorrect chains of thought, exacerbating 

errors rather than clarifying reasoning. While this can be a powerful approach to 

improving performance on complex tasks in sufficiently large models, the effectiveness 

of CoT prompting largely depends on the underlying model’s training and capacity; it 

may not yield similar benefits across different models or smaller models (Wei et al., 

2023). 

 

Figure 14. Chain-of-thought prompting compared to standard prompting, adapted 

from (Wei et al., 2023). 
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3.1.3 Zero-shot CoT Prompting  

Zero-shot CoT prompting is a method where the directive “Let’s think step by 

step” is added to the prompt, encouraging the model to break down its reasoning into 

sequential, comprehensible steps (Kojima et al., 2023). This approach is advantageous 

when there are no specific examples available to provide in the prompt. However, zero-

shot prompting may not always lead to correct or a meaningful sequence of thought, 

particularly if the model has not been trained on related tasks or lacks the necessary 

knowledge base.  

3.1.4 Causal Chain-of-Thought Prompting  

The Causal Chain-of-Thought (Causal CoT) prompting strategy is an approach to 

enhancing causal reasoning capabilities in LLMs. This methodology draws directly from 

the operational logic of a causal inference engine, which systematically decomposes 

complex causal reasoning tasks into manageable, symbolically grounded steps (Jin et al., 

2024). Causal CoT prompting is designed to simulate the sequence of analytical tasks 

performed by human experts in causal inference by following the multi-step reasoning 

process shown in Figure 15. These tasks include identifying the relevant causal graph, 

specifying the causal query, gathering necessary information, then deriving and 

evaluating the estimand to come to a formal solution. 
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Figure 15. Causal CoT Prompting Strategy, adapted from (Jin et al., 2024).   

Using this approach, Jin et al. (2024) observed an improvement to the performance of 

GPT-4 on the CLADDER dataset, increasing overall accuracy from 62.03% to 70.40% in 

answering causal reasoning questions. This demonstrates the potential of structured, 

stepwise prompting strategies to improve reasoning responses of LLMs, particularly in 

contexts requiring causal analysis. However, the original study did not explore the 

adaptability of Causal CoT across different LLMs, nor did it evaluate the impact of 

modifying the information introduced in the prompt. Therefore, this study aims to extend 

Jin et al.’s methodology by applying Causal CoT across various LLMs and systematically 

assess the effects of altering the reasoning step information on performance outcomes. 

This exploration aims to uncover the benefits that LLMs derive from specific steps in the 
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Causal CoT prompting strategy using an ablation study. As state-of-the-art language 

models still struggle with multi-step mathematical reasoning (Cobbe et al., 2021), we 

hypothesize that largest difference in accuracy will be observed with providing arithmetic 

information (i.e. providing the estimand calculations in steps 4 and 6 in Figure 15).   

3.2 Methods  

3.2.1 Modified Causal Chain-of-Thought Prompting Strategy  

Given its alignment with our research goals, we used the Causal CoT prompting 

strategy as a foundation, while also incorporating elements from other prompting 

strategies to give LLMs the best chance to answer accurately based on previous studies 

on reasoning tasks. In addition to providing step-by-step instructions inspired by the 

causal inference engine, we also provided the correct answer for each step up to the final 

solution for each question. The aim of this modification was to mirror the effects of 

standard CoT by providing a correct example of the reasoning pathway (Wei et al., 

2023). Additionally, “Let’s think step by step” was appended to the question to bring in 

the effects of zero-shot CoT prompting (Kojima et al., 2023). To show the components of 

the prompt, an example prompt (Appendix 5) used in these experiments is as follows:  

1. Background: “Imagine a self-contained, hypothetical world with only the 

following conditions, and without any unmentioned factors or causal 

relationships. Encouragement level has a direct effect on studying habit and exam 

score. Studying habit has a direct effect on exam score.”  

2. Given information about the question: “For students who are not encouraged, 

the probability of high exam score is 12%. For students who are encouraged, the 

probability of high exam score is 64%.”  

3. Question: “Will encouragement decrease the chance of a high exam score? Let’s 

think step by step. First, let’s define the variables: Let X = encouragement level; 

V2 = studying habit; Y = exam score.” 

4. Causal Reasoning Steps:  
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“Step 1) Extract the causal graph: Identify the causal graph that depicts the 

relationships in the scenario. The diagram should simply consist of edges denoted 

in ‘var1 → var2’ format, separated by commas.  

Answer: X → Y2, X → Y, V2 → Y 

Step 2) Determine the query type: Identify the type of query implied by the main 

question. Please answer only with one of the choice options: correlation, marginal 

distribution, explaining away effect (exp_away), average treatment effect (ate), 

backdoor adjustment set (backadj), collider_bias, effect of the treatment on the 

treated (ett), natural direct effect (nde), natural indirect effect (nie), and 

counterfactual deterministic.  

Answer: ate 

Step 3) Formalize the query: Translate the query into its formal mathematical 

expression based on its type, utilizing the 'do(.)' notation or counterfactual 

notations as needed.  

Answer: E[Y | do(X = 1)] - E[Y | do(X = 0)] 

Step 4) Gather all relevant data: Extract all the available data. Your answer 

should contain nothing but marginal probabilities and conditional probabilities in 

the form 'P(...)=...' or 'P(...|...)=...', each probability being separated by a 

semicolon.  Answer: P(Y=1|X=1) - P(Y=1|X=0) 

Step 5) Deduce the estimand: Given all the information above, deduce the 

estimand using skills such as do-calculus, counterfactual prediction, and the 

basics of probabilities. Answer step by step.  

Answer: P(Y=1 | X=0) = 0.12 P(Y=1 | X=1) = 0.64  

Step 6) Calculate the estimand: Insert the relevant data in Step 4 into the 

estimand, perform basic arithmetic calculations, and derive the final answer. 

Answer step by step.  

Answer: 0.64 - 0.12 = 0.52  

Step 7) Finally, based on all the reasoning above, output your answer the initial 

question starting with 'Yes' or 'No'.” 



56 

 

3.2.2 Step Ablations  

For each of the models tested (GPT-3.5 Turbo, GPT-4, and GPT-4 Turbo), the 

filtered CLADDER dataset of 1392 questions was used to prompt the LLMs with 4 

different configurations: full steps (as mentioned above), without steps 1 and 2 

(information about question type), without steps 3 and 5 (organizing information), and 

without steps 4 and 6 (arithmetic information). Claude 3 Opus and other Anthropic 

models were excluded from this study due to constraints on computing resources. The 

limitations on Anthropic API usage and higher cost of inference prevented the repetition 

of these experiments for Claude 3 Opus.   

3.2.3 Overall Study Design  

Similar to the simple prompting approach, these components (including the 

appropriate steps) were read from the filtered dataset (stored in a JSON file) and 

concatenated, then passed through the OpenAI API Server with temperature 0 to prompt 

GPT-3.5 Turbo, GPT-4, and GPT-4 Turbo using the filtered dataset of 1392 questions. 

Again, to keep things consistent with the simple prompting approach, the instruction from 

the ‘system’ role guided the LLM to respond with the first word being “Yes” or “No” 

using the following system message: “You are an expert in causal inference. The 

following question is not a typical commonsense query, but rather a meticulously 

designed question created by a professor specializing in causal inference, intended to 

assess mastery of the course content. Start your answer with “yes” or “no,” followed by 

additional reasoning or evidence to support your explanation.” For the scoring, again the 

first word of the LLM response was taken and compared to the ground truth (not case 

sensitive), and the same true or false scorer was used to compare the prediction with the 

ground truth.  

3.3 Results  

The response accuracy on the 1392 causal inference questions for each of the 

configurations is shown in Figure 16. Overall, providing the full set of causal inference 

steps in the prompt resulted in a decrease in accuracy compared to the baseline simple 

prompting approach that was used in the previous chapter. All configurations of the step 
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ablations also resulted in varying levels of decreased accuracy compared to baseline 

across all models, with the exception of ablating steps 4 and 6 with GPT-4 Turbo.  

 

Figure 16. Overall Accuracies for GPT 3.5 turbo, GPT 4, and GPT 4 turbo on the 

Chain-of-Thought prompting task. 

To look with higher granularity at whether the causal inference steps resulted in 

this decrease in accuracy across different rungs and query types, the change in accuracy 

was calculated between the baseline (simple prompting) and each of the configurations 

for every model. Table 3 shows this data broken down by rung and query type, and Table 

4 shows this broken down by graph type. 
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Table 3: Change in accuracy relative to baseline with the configurations of the 

Chain-of-Thought ablation study, broken down by rung and query type.  

Query Type (Rung 

Type) Model 

Simple 

prompting 

Full 

steps 

Step 1 

and 2 

ablated 

Step 3 

and 5 

ablated 

Step 4 

and 6 

ablated 

Correlation (Rung 

1) 

  

  

GPT 3.5 Turbo 0.00% -4.39% -6.42% 10.48% -5.74% 

GPT 4 0.00% 5.41% 13.51% 14.19% -11.82% 

GPT 4 Turbo 0.00% 7.09% 4.05% 12.16% 2.70% 

Explaining Away 

Effect (Rung 1) 

  

GPT 3.5 Turbo 0.00% 0.00% 0.00% 0.00% -3.12% 

GPT 4 0.00% 25.00% 28.13% 12.50% 6.25% 

GPT 4 Turbo 0.00% -31.25% -31.25% -34.38% -34.38% 

Marginal 

Distribution (Rung 

1) 

  

GPT 3.5 Turbo 0.00% 1.02% 5.41% -5.74% 1.69% 

GPT 4 0.00% -3.72% -3.38% -6.08% 3.72% 

GPT 4 Turbo 0.00% -4.05% -6.42% -17.23% 19.93% 

Average Treatment 

Effect (Rung 2) 

  

GPT 3.5 Turbo 0.00% -21.21% -7.57% -12.12% -23.86% 

GPT 4 0.00% 0.00% 0.38% -0.76% -1.52% 

GPT 4 Turbo 0.00% -5.68% -7.20% -4.92% -0.76% 

Collider Bias (Rung 

2) 

GPT 3.5 Turbo 0.00% 12.50% 3.13% 3.13% -6.25% 

GPT 4 0.00% 18.75% 21.88% 0.00% -6.25% 

GPT 4 Turbo 0.00% 6.25% -18.75% 0.00% -21.88% 

Effect of the 

Treatment on the 

Treated (Rung 3) 

  

GPT 3.5 Turbo 0.00% -2.23% -2.23% -4.02% 2.68% 

GPT 4 0.00% -20.54% -25.00% -14.73% -11.16% 

GPT 4 Turbo 0.00% -22.77% -20.98% -19.64% -19.64% 

Natural Direct 

Effect (Rung 3) 

  

GPT 3.5 Turbo 0.00% -3.13% -2.08% 4.17% -3.13% 

GPT 4 0.00% -6.25% -3.13% -4.17% -9.38% 

GPT 4 Turbo 0.00% -5.21% -9.38% -3.13% 7.29% 

Natural Indirect 

Effect (Rung 3) 

  

GPT 3.5 Turbo 0.00% 1.98% -0.65% 0.00% -0.65% 

GPT 4 0.00% -3.95% 0.66% -2.63% -3.29% 

GPT 4 Turbo 0.00% -5.26% -2.63% -2.63% 3.95% 
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Table 4: Change in accuracy relative to baseline with the configurations of the 

Chain-of-Thought ablation study, broken down by graph type. 

Graph Type Model 

Simple 

prompting 

Full 

steps 

Step 1 

and 2 

ablated 

Step 3 

and 5 

ablated 

Step 4 

and 6 

ablated 

Arrowhead 

  

  

GPT 3.5 Turbo 0.00% -3.13% -3.47% -1.04% -7.64% 

GPT 4 0.00% -10.42% -7.64% -4.51% -9.03% 

GPT 4 Turbo 0.00% -9.03% -8.33% -9.38% 1.04% 

Chain 

  

  

GPT 3.5 Turbo 0.00% -11.66% -8.33% -7.50% -13.33% 

GPT 4 0.00% 1.67% 5.00% 5.83% -1.67% 

GPT 4 Turbo 0.00% -1.67% 0.00% 0.00% 5.00% 

Collision 

  

  

GPT 3.5 Turbo 0.00% 3.90% 2.34% -5.47% -0.78% 

GPT 4 0.00% 11.72% 16.41% 7.03% -5.47% 

GPT 4 Turbo 0.00% 3.91% -6.25% -3.91% -16.41% 

Confounding 

  

  

GPT 3.5 Turbo 0.00% -7.81% -3.13% -1.56% -1.56% 

GPT 4 0.00% 0.78% 1.56% -1.56% 2.34% 

GPT 4 Turbo 0.00% -15.63% -14.84% -10.16% -1.56% 

Diamond 

  

  

GPT 3.5 Turbo 0.00% 3.33% 5.83% 0.83% 3.33% 

GPT 4 0.00% -7.50% -5.83% -5.00% -8.33% 

GPT 4 Turbo 0.00% -1.67% 0.00% -1.67% 5.00% 

Diamond Cut 

  

  

GPT 3.5 Turbo 0.00% -12.50% 0.00% 9.38% -6.25% 

GPT 4 0.00% -9.38% -6.25% -9.38% -6.25% 

GPT 4 Turbo 0.00% 6.25% 15.63% 12.50% 9.38% 

Fork 

  

  

GPT 3.5 Turbo 0.00% -8.60% -3.91% -1.56% -5.47% 

GPT 4 0.00% -8.59% -6.25% -3.91% -3.13% 

GPT 4 Turbo 0.00% -0.78% -4.69% -3.13% 3.13% 

Front Door 

  

  

GPT 3.5 Turbo 0.00% 0.00% -2.50% -10.00% -5.00% 

GPT 4 0.00% -2.50% -2.50% -5.00% -7.50% 

GPT 4 Turbo 0.00% -12.50% -27.50% -10.00% -7.50% 

Instrumental 

Variable 

  

  

GPT 3.5 Turbo 0.00% -5.84% 1.66% 4.16% -5.00% 

GPT 4 0.00% 17.50% 15.83% 13.33% 4.17% 

GPT 4 Turbo 
0.00% -8.33% -13.33% -16.67% 2.50% 

Mediation 

  

  

GPT 3.5 Turbo 0.00% -7.29% -4.16% -1.39% -7.64% 

GPT 4 0.00% -8.33% -6.60% -5.56% -7.29% 

GPT 4 Turbo 0.00% -6.60% -7.99% -6.60% 5.90% 
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3.4 Discussion  

3.4.1 Findings Contradict with Previous Work on Causal CoT 
Prompting 

Our study found that simple prompting, which provides straightforward 

background information and questions, resulted in higher accuracy compared to the 

modified Causal CoT prompting approach (Figure 16). This finding was contrary to the 

findings by Jin et al. (2024) in their study on Causal CoT and the CLADDER dataset. Jin 

et al. reported an increase in accuracy from 62.03% with GPT-4 (without Causal CoT) to 

70.40% accuracy with the GPT-4 with Causal CoT, and they observed this increase in 

accuracy across all three rungs of causal questions. In our study, this was not observed—

providing the full steps configuration only increased accuracy with specific rung 1 

(correlation, explaining away effect) and rung 2 (collider bias) questions, and even then, 

inconsistently in some but not all models (Table 3). Rather, performance accuracy on 

most questions—particularly rung 3 questions—decreased compared to the simple 

prompting approach. Similarly, when we look at questions broken down by graph type, 

there was an inconsistent change in accuracy performance across graph types compared 

to simple prompting (Table 4). In terms of overall accuracy, by including the full causal 

reasoning steps in the prompt, the models performed with a decrease rather than the 

expected increase in accuracy.  

These findings from this study suggest that future work on validating chain-of-

thought prompting strategies is warranted. Our results indicate that LLMs do not 

benefit from CoT techniques when assessed with formal causal reasoning tasks, even 

though the models tested were sufficiently large (Wei et al., 2023), suggesting that 

formal causal reasoning may require other approaches to optimize performance. 

There remains much to be uncovered for future studies investigating context-specific 

optimization of causal reasoning in AI.  
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3.4.2 Large Language Models Approach Formal Causal Reasoning 
Differently Compared to Humans 

Our findings reveal that structural frameworks suitable for human causal 

reasoning might not be a suitable framework for LLMs to reason about causality. The 

development of causal inference as a discipline has evolved over many decades through 

contributions from multiple fields, culminating in frameworks like the causal inference 

engine, which logically structures reasoning in a manner intuitive to human thinkers 

(Pearl & Mackenzie, 2018). However, our study indicates that providing LLMs with 

structured logical prompts that mirror human approaches to formal causal reasoning 

using the causal inference engine does not enhance LLM performance. We observed that 

simple prompting consistently yielded higher accuracy compared to the configurations 

that provided additional information to solve the formal causal reasoning task (Figure 

15), which was unexpected. This discrepancy raises questions about the alignment of 

LLM capabilities with human-like reasoning structures and suggests that the architecture 

of these models or their training data may lack crucial elements necessary for 

understanding, learning, or applying causal reasoning step-by-step (Brown et al., 2020). 

Potentially, the additional cognitive load imposed by CoT prompting, intended to emulate 

human reasoning processes in a causal inference task, may not align with the intrinsic 

information processing capabilities of LLMs. In a broader sense, these results contribute 

to the present discourse on LLM consciousness by providing evidence that LLMs do not 

‘think’ in a human-like manner.  

While it was hypothesized that providing arithmetic information would be 

particularly beneficial, this was not supported by our results, thus opening new avenues 

for exploring how AI can effectively engage in causal reasoning. This investigation into 

the ‘artificial mind’ reveals that unlike human minds, the steps required for solving 

complex cognitive tasks such as causal reasoning in LLMs may require a re-evaluation of 

what effectively aids these models, inviting further research into optimizing AI for 

complex, causal problem-solving.  
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3.4.3 Future Work and Limitations 

One potentially promising approach is adapting a new technique used to improve 

mathematical reasoning performance for LLMs (Chen et al., 2024). This novel approach 

named ‘AlphaMath’ leverages Monte Carlo Tree Search (MCTS) to enhance 

mathematical reasoning without the need for human-annotated training data. MCTS is a 

search algorithm used for making optimal decisions, notably in game play and other areas 

where predicting the outcome is important (Chaslot et al., 2021). Chen et al. (2024) show 

that by using a well-pre-trained LLM and leveraging MCTS, LLMs can identify the 

correct mathematical reasoning process without human annotation. The integration of 

LLMs with MCTS is a technique previously used in strategic games like AlphaGo (Silver 

et al., 2017) to optimize the model’s problem-solving abilities in mathematics. The 

arithmetic reasoning steps involved in formal causal reasoning could be enhanced by this 

approach, and it would also eliminate the costly need for human-annotated step-by-step 

solutions for causal inference.  

Additionally, the method presented by Chen et al. (2024) allows the model to 

learn from both correct and incorrect solution paths. AlphaMath operates by iteratively 

generating and refining solution paths, using a policy model to predict potential steps and 

a value model to evaluate these steps’ correctness. This aligns closely with the approach 

that was taken in Chapter 3 of this thesis with the modified Causal Chain-of-Thought 

prompting strategy. Future studies comparing this approach with the integration of MCTS 

for causal inference steps can provide valuable insight into optimizing these models for 

causal reasoning, as well as further contribute to cognitive research by exploring this as a 

different ‘thinking strategy’. Overall, this future direction highlights the potential of 

MCTS integrated with LLMs to autonomously refine and enhance AI’s reasoning 

capabilities, particularly in domains requiring complex, multi-step reasoning like in 

causal reasoning.  

Despite their impressive capabilities, the extent to which LLMs truly ‘understand’ 

language remains debatable. As with other neural networks, their operation primarily 

involves pattern recognition—LLMs are fundamentally designed to predict the next word 

in a sequence based on patterns observed in their training data. This approach can yield 
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responses that are superficially plausible yet lack deep semantic coherence, questioning 

the depth of their linguistic comprehension (E. M. Bender & Koller, 2020). This 

limitation is relevant to our study, which used prompts drawn from sources like statistics 

textbooks and websites—content likely included in the training data of LLMs’ responses 

might simply reflect correct answers already present in their training datasets. Therefore, 

it is possible that LLM responses might merely reflect correct answers already present in 

their training data. The CLADDER paper by Jin et al. (2024) addresses this limitation by 

comparing LLM responses to standard questions with responses to modifies questions 

containing nonsensical variables. The study observed no consistent improvement or 

decline in LLM performance with these altered prompts, suggesting that modifying 

prompts to exclude training data does not impact LLM performance on causal reasoning 

tasks. Nonetheless, it is continually important in AI and LLM research to consider the 

influence of training data of responses. Moreover, our study adds to the ongoing debate 

on whether mere data sufficiency drives LLM reasoning. While adaptations to the causal 

Chain-of-Thought prompting did not uniformly improve LLM causal reasoning 

performance, exploring alternative strategies to improve reasoning such as incorporating 

MCTS (Chen et al., 2024) could potentially expand LLM cognitive capabilities.  

A notable limitation of using LLMs for causal reasoning tasks is the lack of direct 

comparability to human cognitive processes. Particularly in this study, LLMs operated 

within a binary or limited output framework, producing “Yes” or “No” responses. This 

stands in contrast to human reasoning, which is nuanced and can integrate a broad 

spectrum of responses based on context, emotion, and cultural norms (Hagendorff et al., 

2023). To address these discrepancies, future studies might expand upon this exploration 

through the integration of more flexible response mechanisms in LLMs that mirror the 

complexity of human thought processes. Furthermore, the causal reasoning 

methodologies used in these studies were reliant on directed acyclic graphs, which 

present another misalignment with human cognition. Human reasoning is thought to be 

recurrent, where previous knowledge and experiences continually inform and reshape our 

understanding of cognitive processes. This cyclic nature of human thought allows for the 

adaptation and evolution of ideas, a feature that is structurally unsupported in the acyclic 
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computational frameworks used in this study. This structural limitation not only affects 

LLMs’ ability to simulate human-like reasoning but also its effectiveness in tasks 

requiring iterative and evolving thought processes, such as complex problem-solving and 

learning. Lastly, the exploration of these themes inevitably raises deeper questions about 

the nature of reasoning and cognition beyond the confines of language. The current focus 

on verbal or textual outputs from models like LLMs may overlook the vast spectrum of 

human cognitive activities that are non-verbal, such as spatial awareness, emotional 

intelligence, and unconscious processing (Taylor, 2001). Rethinking the frameworks and 

outputs of these models to accommodate these forms of cognition could provide valuable 

insight to enhance their utility and performance. Incorporating multimodal learning 

systems that integrate visual, textual, and sensory data might provide a more holistic 

approach to AI development (Bewersdorff et al., 2024). These limitations underscore the 

importance of interdisciplinary AI research, particularly in towards how we frame and 

interpret the capabilities of LLMs within the context of cognitive neuroscience.  

The opaque nature of complex models like LLMs presents significant challenges, 

often referred to as the “black box” problem. This problem describes how the internal 

workings of these models are not easily discernible, making it difficult to understand how 

they process information and arrive at conclusions (Linardatos et al., 2020). This opacity 

complicates their use in cognitive science, where understanding the mechanisms of 

processing is an important area of investigation. Furthermore, the potential biases 

embedded within the training data of these models raise ethical and methodological 

concerns, especially when these systems are applied in contexts that simulate human 

decision-making processes. These challenges and concerns should continue to be 

addressed while we progress in cognitive neuroscience research towards understanding 

AI cognition and human cognitive processes. Continued research at the intersection of AI 

and cognitive science is essential to not only improve model transparency, but also 

delineate the similarities and differences between AI and human cognition. 

 



65 

 

References 

Bender, A. (2020). What Is Causal Cognition? Frontiers in Psychology, 11, 3. 

https://doi.org/10.3389/fpsyg.2020.00003 

Bender, A., & Beller, S. (2019). The Cultural Fabric of Human Causal Cognition. 

Perspectives on Psychological Science, 14(6), 922–940. 

https://doi.org/10.1177/1745691619863055 

Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On Meaning, Form, and 

Understanding in the Age of Data. Proceedings of the 58th Annual Meeting of the 

Association for Computational Linguistics, 5185–5198. 

https://doi.org/10.18653/v1/2020.acl-main.463 

Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., & 

Pal, C. (2019). A Meta-Transfer Objective for Learning to Disentangle Causal 

Mechanisms (arXiv:1901.10912). arXiv. http://arxiv.org/abs/1901.10912 

Bewersdorff, A., Hartmann, C., Hornberger, M., Seßler, K., Bannert, M., Kasneci, E., 

Kasneci, G., Zhai, X., & Nerdel, C. (2024). Taking the Next Step with Generative 

Artificial Intelligence: The Transformative Role of Multimodal Large Language 

Models in Science Education (arXiv:2401.00832). arXiv. 

http://arxiv.org/abs/2401.00832 

Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmann, M. R. (2006). Causal Reasoning 

in Rats. Science, 311(5763), 1020–1022. https://doi.org/10.1126/science.1121872 



66 

 

Bringsjord, S., & Bringsjord, A. (2012). Kluge: The Haphazard Construction of the 

Human Mind. Philosophical Psychology, 25(2), 301–305. 

https://doi.org/10.1080/09515089.2011.583015 

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, 

A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., 

Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … 

Amodei, D. (2020). Language Models are Few-Shot Learners 

(arXiv:2005.14165). arXiv. http://arxiv.org/abs/2005.14165 

Butlin, P., Long, R., Elmoznino, E., Bengio, Y., Birch, J., Constant, A., Deane, G., 

Fleming, S. M., Frith, C., Ji, X., Kanai, R., Klein, C., Lindsay, G., Michel, M., 

Mudrik, L., Peters, M. A. K., Schwitzgebel, E., Simon, J., & VanRullen, R. 

(2023). Consciousness in Artificial Intelligence: Insights from the Science of 

Consciousness (arXiv:2308.08708). arXiv. http://arxiv.org/abs/2308.08708 

Byrne, R. M. J. (2005). The rational imagination: How people create alternatives to 

reality. (pp. xiv, 254). MIT Press. 

Cai, H., Liu, S., & Song, R. (2023). Is Knowledge All Large Language Models Needed 

for Causal Reasoning? (arXiv:2401.00139). arXiv. 

http://arxiv.org/abs/2401.00139 

Chaslot, G., Bakkes, S., Szita, I., & Spronck, P. (2021). Monte-Carlo Tree Search: A 

New Framework for Game AI. Proceedings of the AAAI Conference on Artificial 



67 

 

Intelligence and Interactive Digital Entertainment, 4(1), 216–217. 

https://doi.org/10.1609/aiide.v4i1.18700 

Chen, G., Liao, M., Li, C., & Fan, K. (2024). AlphaMath Almost Zero: Process 

Supervision without process (arXiv:2405.03553). arXiv. 

http://arxiv.org/abs/2405.03553 

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., 

Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training 

Verifiers to Solve Math Word Problems (arXiv:2110.14168). arXiv. 

http://arxiv.org/abs/2110.14168 

Cruz, N., Hahn, U., Fenton, N., & Lagnado, D. (2020). Explaining Away, Augmentation, 

and the Assumption of Independence. Frontiers in Psychology, 11, 502751. 

https://doi.org/10.3389/fpsyg.2020.502751 

Darema, F. (2004). Dynamic Data Driven Applications Systems: A New Paradigm for 

Application Simulations and Measurements. In M. Bubak, G. D. Van Albada, P. 

M. A. Sloot, & J. Dongarra (Eds.), Computational Science—ICCS 2004 (Vol. 

3038, pp. 662–669). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-

540-24688-6_86 

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 

384–398. https://doi.org/10.1016/j.neuron.2007.10.004 

Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., van de Moortele, 

P. F., Lehéricy, S., & Le Bihan, D. (1997). Anatomical variability in the cortical 



68 

 

representation of first and second language. Neuroreport, 8(17), 3809–3815. 

https://doi.org/10.1097/00001756-199712010-00030 

Dodge, J., Gururangan, S., Card, D., Schwartz, R., & Smith, N. A. (2019). Show Your 

Work: Improved Reporting of Experimental Results. Proceedings of the 2019 

Conference on Empirical Methods in Natural Language Processing and the 9th 

International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), 2185–2194. https://doi.org/10.18653/v1/D19-1224 

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, 

Y., Chen, A., Conerly, T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds, 

Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., … Olah, C. 

(2021). A Mathematical Framework for Transformer Circuits. Transformer 

Circuits Thread. 

Evans, R., & Grefenstette, E. (2018). Learning Explanatory Rules from Noisy Data 

(arXiv:1711.04574). arXiv. http://arxiv.org/abs/1711.04574 

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a 

mechanism of pattern recognition unaffected by shift in position. Biological 

Cybernetics, 36(4), 193–202. https://doi.org/10.1007/BF00344251 

Giere, R. N., & Salmon, W. C. (1988). Scientific Explanation and the Causal Structure of 

the World. The Philosophical Review, 97(3), 444. 

https://doi.org/10.2307/2185459 



69 

 

Goldberg, Y. (2019). Assessing BERT’s Syntactic Abilities (arXiv:1901.05287). arXiv. 

http://arxiv.org/abs/1901.05287 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT press. 

Gopnik, A., & Schulz, L. (Eds.). (2007). Causal Learning: Psychology, Philosophy, and 

Computation (1st ed.). Oxford University PressNew York. 

https://doi.org/10.1093/acprof:oso/9780195176803.001.0001 

Hagendorff, T., Fabi, S., & Kosinski, M. (2023). Human-like intuitive behavior and 

reasoning biases emerged in large language models but disappeared in ChatGPT. 

Nature Computational Science, 3(10), 833–838. https://doi.org/10.1038/s43588-

023-00527-x 

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-

Inspired Artificial Intelligence. Neuron, 95(2), 245–258. 

https://doi.org/10.1016/j.neuron.2017.06.011 

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & 

Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH 

Dataset. In J. Vanschoren & S. Yeung (Eds.), Proceedings of the Neural 

Information Processing Systems Track on Datasets and Benchmarks (Vol. 1). 

https://datasets-benchmarks-

proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a

17836a1-Paper-round2.pdf 



70 

 

Heneka, M. T., Kummer, M. P., & Latz, E. (2014). Innate immune activation in 

neurodegenerative disease. Nature Reviews Immunology, 14(7), 463–477. 

https://doi.org/10.1038/nri3705 

Hinton (Director). (2023, May 9). “Godfather of AI” Geoffrey Hinton Warns of the 

“Existential Threat” of AI | Amanpour and Company [Video recording]. 

https://www.youtube.com/watch?v=Y6Sgp7y178k 

Ho, M., Sharma, A., Chang, J., Saxon, M., Levy, S., Lu, Y., & Wang, W. Y. (2022). 

WikiWhy: Answering and Explaining Cause-and-Effect Questions 

(arXiv:2210.12152). arXiv. http://arxiv.org/abs/2210.12152 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural 

Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 

Holmberg, M. J., & Andersen, L. W. (2022). Collider Bias. JAMA, 327(13), 1282. 

https://doi.org/10.1001/jama.2022.1820 

Hume, D. (1779). An enquiry concerning human understanding. In D. Hume, Essays and 

treatises on several subjects, Vol 2: Containing An enquiry concerning human 

understanding, A dissertation on the passions, An enquiry concerning the 

principles of morals, and The natural history of religion. (pp. 3–212). Unknown 

Publisher. https://doi.org/10.1037/11713-001 

Jefferies, M. E., & Yeap, W.-K. (2008). Robotics and cognitive approaches to spatial 

mapping. Springer. 



71 

 

Jiang, Z., Xu, F. F., Araki, J., & Neubig, G. (2020). How Can We Know What Language 

Models Know? (arXiv:1911.12543). arXiv. http://arxiv.org/abs/1911.12543 

Jin, Z., Chen, Y., Leeb, F., Gresele, L., Kamal, O., Lyu, Z., Blin, K., Adauto, F. G., 

Kleiman-Weiner, M., Sachan, M., & Schölkopf, B. (2024). CLadder: Assessing 

Causal Reasoning in Language Models (arXiv:2312.04350). arXiv. 

http://arxiv.org/abs/2312.04350 

Johnson-Laird, P. N. (1995). Mental models: Towards a cognitive science of language, 

inference, and consciousness (6. print). Harvard Univ. Press. 

Kahneman, D. (2011). Thinking, fast and slow (1st ed). Farrar, Straus and Giroux. 

Kahneman, D., & Tversky, A. (1982). The Psychology of Preferences. Scientific 

American, 246(1), 160–173. https://doi.org/10.1038/scientificamerican0182-160 

Kaminski, J., Call, J., & Tomasello, M. (2008). Chimpanzees know what others know, 

but not what they believe. Cognition, 109(2), 224–234. 

https://doi.org/10.1016/j.cognition.2008.08.010 

Keil, F. C. (2006). Explanation and understanding. Annual Review of Psychology, 57, 

227–254. https://doi.org/10.1146/annurev.psych.57.102904.190100 

Kıcıman, E., Ness, R., Sharma, A., & Tan, C. (2023). Causal Reasoning and Large 

Language Models: Opening a New Frontier for Causality (arXiv:2305.00050). 

arXiv. http://arxiv.org/abs/2305.00050 



72 

 

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2023). Large Language 

Models are Zero-Shot Reasoners (arXiv:2205.11916). arXiv. 

http://arxiv.org/abs/2205.11916 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep 

Convolutional Neural Networks. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. 

Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 

25). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c84

36e924a68c45b-Paper.pdf 

Kummer, H. (1996). Causal knowledge in animals. In D. Sperber, D. Premack, & A. J. 

Premack (Eds.), Causal Cognition (pp. 26–36). Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780198524021.003.0002 

Kummer, H., & Goodall, J. (2003). Conditions of Innovative Behaviour in Primates. In S. 

M. Reader & K. N. Laland (Eds.), Animal Innovation (pp. 223–236). Oxford 

University Press. https://doi.org/10.1093/acprof:oso/9780198526223.003.0010 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444. https://doi.org/10.1038/nature14539 

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied 

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. 

https://doi.org/10.1109/5.726791 



73 

 

Li, J., Zaikin, A., Zhang, X., & Chen, S. (2022). Editorial: Closed-loop iterations between 

neuroscience and artificial intelligence. Frontiers in Systems Neuroscience, 16, 

1002095. https://doi.org/10.3389/fnsys.2022.1002095 

Lin, Z., Feng, M., Santos, C. N. dos, Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A 

Structured Self-attentive Sentence Embedding (arXiv:1703.03130). arXiv. 

http://arxiv.org/abs/1703.03130 

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A Review 

of Machine Learning Interpretability Methods. Entropy (Basel, Switzerland), 

23(1), 18. https://doi.org/10.3390/e23010018 

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, Prompt, 

and Predict: A Systematic Survey of Prompting Methods in Natural Language 

Processing (arXiv:2107.13586). arXiv. http://arxiv.org/abs/2107.13586 

Lombard, M., & Gärdenfors, P. (2017). Tracking the evolution of causal cognition in 

humans. Journal of Anthropological Sciences, 95, 219–234. 

https://doi.org/10.4436/JASS.95006 

López Espejel, J., Ettifouri, E. H., Yahaya Alassan, M. S., Chouham, E. M., & Dahhane, 

W. (2023). GPT-3.5, GPT-4, or BARD? Evaluating LLMs reasoning ability in 

zero-shot setting and performance boosting through prompts. Natural Language 

Processing Journal, 5, 100032. https://doi.org/10.1016/j.nlp.2023.100032 

Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of 

stress and stress hormones on human cognition: Implications for the field of brain 



74 

 

and cognition. Brain and Cognition, 65(3), 209–237. 

https://doi.org/10.1016/j.bandc.2007.02.007 

Marcus, G., & Davis, E. (2019). Rebooting AI: Building artificial intelligence we can 

trust (First edition). Pantheon Books. 

McCoy, R. T., Pavlick, E., & Linzen, T. (2019). Right for the Wrong Reasons: 

Diagnosing Syntactic Heuristics in Natural Language Inference 

(arXiv:1902.01007). arXiv. http://arxiv.org/abs/1902.01007 

Nagel, T. (1974). What Is It Like to Be a Bat? The Philosophical Review, 83(4), 435. 

https://doi.org/10.2307/2183914 

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, 

N., & Mian, A. (2024). A Comprehensive Overview of Large Language Models 

(arXiv:2307.06435). arXiv. http://arxiv.org/abs/2307.06435 

Newell, A., & Simon, H. A. (1972). Human problem solving. (pp. xiv, 920). Prentice-

Hall. 

Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity 

of the cerebral cortex. (pp. xv, 430). Oxford Univ. Press. 

Pearl, J. (2000). Causality: Models, reasoning, and inference. (pp. xvi, 384). Cambridge 

University Press. 

Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. 

Basic Books. 



75 

 

Pennartz, C. M. A., Farisco, M., & Evers, K. (2019). Indicators and Criteria of 

Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. 

Frontiers in Systems Neuroscience, 13, 25. 

https://doi.org/10.3389/fnsys.2019.00025 

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., & Miller, A. 

(2019). Language Models as Knowledge Bases? Proceedings of the 2019 

Conference on Empirical Methods in Natural Language Processing and the 9th 

International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), 2463–2473. https://doi.org/10.18653/v1/D19-1250 

Pinker, S. (1999). How the mind works (1. publ). Norton. 

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in 

observational studies for causal effects. Biometrika, 70(1), 41–55. 

https://doi.org/10.1093/biomet/70.1.41 

Russell, S. J., & Norvig, P. (with Davis, E., & Edwards, D.). (2016). Artificial 

intelligence: A modern approach (Third edition, Global edition). Pearson. 

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & Chadha, A. (2024). A 

Systematic Survey of Prompt Engineering in Large Language Models: Techniques 

and Applications (arXiv:2402.07927). arXiv. http://arxiv.org/abs/2402.07927 

Scassellati, B., Admoni, H., & Matarić, M. (2012). Robots for use in autism research. 

Annual Review of Biomedical Engineering, 14, 275–294. 

https://doi.org/10.1146/annurev-bioeng-071811-150036 



76 

 

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & 

Bengio, Y. (2021). Towards Causal Representation Learning 

(arXiv:2102.11107). arXiv. http://arxiv.org/abs/2102.11107 

Schwab, P., Linhardt, L., & Karlen, W. (2019). Perfect Match: A Simple Method for 

Learning Representations For Counterfactual Inference With Neural Networks 

(arXiv:1810.00656). arXiv. http://arxiv.org/abs/1810.00656 

Shettleworth, S. J. (2010). Cognition, evolution, and behavior, 2nd ed. (pp. xiii, 700). 

Oxford University Press. 

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). AutoPrompt: 

Eliciting Knowledge from Language Models with Automatically Generated 

Prompts (arXiv:2010.15980). arXiv. http://arxiv.org/abs/2010.15980 

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, 

T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., Van 

Den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go 

without human knowledge. Nature, 550(7676), 354–359. 

https://doi.org/10.1038/nature24270 

Singh, M., Cambronero, J., Gulwani, S., Le, V., & Verbruggen, G. (2023). Assessing 

GPT4-V on Structured Reasoning Tasks (arXiv:2312.11524). arXiv. 

http://arxiv.org/abs/2312.11524 

Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. (p. 457). 

Appleton-Century. 



77 

 

Sloman, S. (2005). Causal Models: How People Think about the World and Its 

Alternatives (1st ed.). Oxford University PressNew York. 

https://doi.org/10.1093/acprof:oso/9780195183115.001.0001 

Spelke, E. S. (2000). Core knowledge. American Psychologist, 55(11), 1233–1243. 

https://doi.org/10.1037/0003-066X.55.11.1233 

Sternberg, R. J. (Ed.). (1999). The Nature of Cognition. The MIT Press. 

https://doi.org/10.7551/mitpress/4877.001.0001 

Stolfo, A., Jin, Z., Shridhar, K., Schölkopf, B., & Sachan, M. (2023). A Causal 

Framework to Quantify the Robustness of Mathematical Reasoning with 

Language Models (arXiv:2210.12023). arXiv. http://arxiv.org/abs/2210.12023 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd ed. 

(pp. xxii, 526). The MIT Press. 

Taylor, E. W. (2001). Transformative learning theory: A neurobiological perspective of 

the role of emotions and unconscious ways of knowing. International Journal of 

Lifelong Education, 20(3), 218–236. https://doi.org/10.1080/02601370110036064 

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 

189–208. https://doi.org/10.1037/h0061626 

Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In The 

adapted mind: Evolutionary psychology and the generation of culture. (pp. 19–

136). Oxford University Press. 



78 

 

VanderWeele, T. J. (2011). Controlled direct and mediated effects: Definition, 

identification and bounds. Scandinavian Journal of Statistics, Theory and 

Applications, 38(3), 551–563. https://doi.org/10.1111/j.1467-9469.2010.00722.x 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., 

& Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). arXiv. 

http://arxiv.org/abs/1706.03762 

Warstadt, A., Singh, A., & Bowman, S. R. (2019). Neural Network Acceptability 

Judgments (arXiv:1805.12471). arXiv. http://arxiv.org/abs/1805.12471 

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & 

Zhou, D. (2023). Chain-of-Thought Prompting Elicits Reasoning in Large 

Language Models (arXiv:2201.11903). arXiv. http://arxiv.org/abs/2201.11903 

Weisberg, D. S., & Gopnik, A. (2013). Pretense, Counterfactuals, and Bayesian Causal 

Models: Why What Is Not Real Really Matters. Cognitive Science, 37(7), 1368–

1381. https://doi.org/10.1111/cogs.12069 

Wright, S. (1920). The Relative Importance of Heredity and Environment in Determining 

the Piebald Pattern of Guinea-Pigs. Proceedings of the National Academy of 

Sciences, 6(6), 320–332. https://doi.org/10.1073/pnas.6.6.320 

Wright, G. H. von. (2004). Explanation and understanding. Cornell University Press. 



79 

 

Yamins, D. L. K., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to 

understand sensory cortex. Nature Neuroscience, 19(3), 356–365. 

https://doi.org/10.1038/nn.4244 

Yehuda, R., & LeDoux, J. (2007). Response Variation following Trauma: A 

Translational Neuroscience Approach to Understanding PTSD. Neuron, 56(1), 

19–32. https://doi.org/10.1016/j.neuron.2007.09.006 

Zečević, M., Willig, M., Dhami, D. S., & Kersting, K. (2023). Causal Parrots: Large 

Language Models May Talk Causality But Are Not Causal (arXiv:2308.13067). 

arXiv. http://arxiv.org/abs/2308.13067 

Zhang, C., Bauer, S., Bennett, P., Gao, J., Gong, W., Hilmkil, A., Jennings, J., Ma, C., 

Minka, T., Pawlowski, N., & Vaughan, J. (2023). Understanding Causality with 

Large Language Models: Feasibility and Opportunities (arXiv:2304.05524). 

arXiv. http://arxiv.org/abs/2304.05524 

Zheng, H., Shen, L., Tang, A., Luo, Y., Hu, H., Du, B., & Tao, D. (2023). Learn From 

Model Beyond Fine-Tuning: A Survey (arXiv:2310.08184). arXiv. 

http://arxiv.org/abs/2310.08184 

Zhou, A., Wang, K., Lu, Z., Shi, W., Luo, S., Qin, Z., Lu, S., Jia, A., Song, L., Zhan, M., 

& Li, H. (2023). Solving Challenging Math Word Problems Using GPT-4 Code 

Interpreter with Code-based Self-Verification (arXiv:2308.07921). arXiv. 

http://arxiv.org/abs/2308.07921 

 



80 

 

Appendices 

Appendix 1: Number of Questions for Each Graph Type in the CLADDER dataset 

Graph Type Graph Structure* Number of 

Questions Using 

this Graph 

Percentage of 

Total Dataset 

(10,112 Questions) 

Arrowhead 

 

1264 12.5% 

Chain 

 
 

1106 10.9% 

Collision 

  

632 6.2% 

Confounding  

 

948 9.4% 

Diamond 

  

1106 10.9% 

Diamond Cut 

  

948 9.4% 

Fork 

  

948 9.4% 

Front Door 

 

1106 10.9% 

Instrumental 

Variable  

 

790 7.8% 

Mediation 

 
 

1264 12.5% 

*X represents the treatment variable, Y represents the outcome variable, and Z represents the 

mediator variable  
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Appendix 1: Number of Questions for Each Query Type in the CLADDER dataset 

Query Type Rung Number of 

Questions Using 

this Query Type 

Percentage of 

Total Dataset 

(10,112 

Questions) 

Correlation 1 1422 14.1% 

Explaining Away Effect 1 158 1.6% 

Marginal Distribution 1 1580 15.6% 

Average Treatment Effect 2 1422 14.1% 

Backdoor Adjustment Set 2 1580 15.6% 

Collider Bias 2 158 1.6% 

Effect of the Treatment on the Treated 3 1264 12.5% 

Natural Direct Effect 3 316 3.1% 

Natural Indirect Effect  3 790 7.8% 

Counterfactual   3 1422 14.1% 

 

Appendix 2: Number of Causal Inference Questions LLMs Answered Correctly in 

Simple Prompting Task  

 Number of Questions that were answered Correctly 

by Model 

Rung of 

Question 

Total number 

of Questions 

GPT 3.5 

Turbo 

GPT 4 GPT 4 

Turbo 

Claude 3 

Opus 
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1 624 342 398 377 360 

2 296 236 279 273 286 

3 472 249 349 355 328 

 

Appendix 3: Prompt and Response Example of Causal Inference with Simple 

Prompting  

{ 

        "Prompt": "You are an expert in causal inference. 

The following question is not a typical commonsense query, 

but rather a meticulously designed question created by a 

professor specializing in causal inference, intended to 

assess mastery of the course content. Be sure to start your 

response with either the answer \"Yes\" or \"No\".Imagine a 

self-contained, hypothetical world with only the following 

conditions, and without any unmentioned factors or causal 

relationships: Vaccination status has a direct effect on 

vaccination reaction and getting smallpox. Getting smallpox 

has a direct effect on smallpox survival. Vaccination 

reaction has a direct effect on smallpox survival.For 

unvaccinated individuals, the probability of smallpox 

survival is 51%. For vaccinated individuals, the 

probability of smallpox survival is 52%.Will vaccination 

increase the chance of smallpox survival?", 

        "response": "No. In the given hypothetical world, 

vaccination does not increase the chance of smallpox 

survival. Although the probability of smallpox survival is 

slightly higher for vaccinated individuals (52%) compared 

to unvaccinated individuals (51%), this difference cannot 

be attributed to a causal effect of vaccination on smallpox 

survival.\n\nThe key to understanding this is the presence 

of a collider bias. In the described causal structure, 

vaccination status affects both vaccination reaction and 

getting smallpox, while both vaccination reaction and 

getting smallpox affect smallpox survival. This means that 

smallpox survival is a collider variable, and conditioning 

on it (by comparing survival probabilities) opens up a non-

causal path between vaccination status and smallpox 

survival through the collider.\n\nAs a result, the observed 
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difference in smallpox survival probabilities between 

vaccinated and unvaccinated individuals is not due to a 

causal effect of vaccination on survival, but rather due to 

the collider bias introduced by conditioning on the 

collider variable. In other words, the difference in 

survival probabilities is a statistical artifact arising 

from the specific causal structure and the act of 

conditioning on the collider, rather than a genuine causal 

effect of vaccination on survival.\n\nTherefore, based on 

the given information and causal relationships in this 

hypothetical world, vaccination does not increase the 

chance of smallpox survival.", 

        "first_word": "No.", 

        "ground_truth": "yes", 

        "prediction_correct": 0, 

        "type of graph for question": "diamond", 

        "type of query": "ate", 

        "rung of question": 2 

    } 

 

Appendix 4: Prompt and Response Example of Causal Inference with Modified 

Causal Chain-of-Thought Prompting 

{ 

        "Prompt": "Imagine a self-contained, hypothetical 

world with only the following conditions, and without any 

unmentioned factors or causal relationships: Encouragement 

level has a direct effect on studying habit and exam score. 

Studying habit has a direct effect on exam score. For 

students who are not encouraged and do not study hard, the 

probability of high exam score is 14%. For students who are 

not encouraged and study hard, the probability of high exam 

score is 50%. For students who are encouraged and do not 

study hard, the probability of high exam score is 44%. For 

students who are encouraged and study hard, the probability 

of high exam score is 80%. For students who are not 

encouraged, the probability of studying hard is 30%. For 

students who are encouraged, the probability of studying 

hard is 68%. If we disregard the mediation effect through 

studying habit, would encouragement level negatively affect 

exam score?   Let's think step by step  First, let's define 

the variables: Let X = encouragement level; V2 = studying 

habit; Y = exam score. Step 1) Extract the causal graph: 

Identify the causal graph that depicts the relationships in 

the scenario. The diagram should simply consist of edges 

denoted in 'var1 -> var2' format, separated by commas. \n 
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Answer: X->V2,X->Y,V2->Y Step 2) Determine the query type: 

Identify the type of query implied by the main question. 

Please answer only with one of the choice options: 

correlation, marginal distribution, explaining away effect 

(exp_away),average treatment effect (ate), backdoor 

adjustment set (backadj), collider_bias, effect of the 

treatment on the treated (ett), natural direct effect 

(nde), natural indirect effect (nie), and counterfactual 

deterministic. \n Answer: nde Step 3) Formalize the query: 

Translate the query into its formal mathematical expression 

based on its type, utilizing the 'do(.)' notation or 

counterfactual notations as needed. \n Answer: E[Y_{X=1, 

V2=0} - Y_{X=0, V2=0}] Step 4) Gather all relevant data: 

Extract all the available data. Your answer should contain 

nothing but marginal probabilities and conditional 

probabilities in the form 'P(...)=...' or 'P(...|...)=...', 

each probability being separated by a semicolon. \n Answer: 

\\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, 

V2=v)] Step 5) Deduce the estimand: Given all the 

information above, deduce the estimand using skills such as 

do-calculus, counterfactual prediction, and the basics of 

probabilities. Answer step by step. \n Answer: P(Y=1 | X=0, 

V2=0) = 0.14\nP(Y=1 | X=0, V2=1) = 0.50\nP(Y=1 | X=1, V2=0) 

= 0.44\nP(Y=1 | X=1, V2=1) = 0.80\nP(V2=1 | X=0) = 

0.30\nP(V2=1 | X=1) = 0.68 Step 6) Calculate the estimand: 

Insert the relevant data in Step 4 into the estimand, 

perform basic arithmetic calculations, and derive the final 

answer. Answer step by step. \n Answer: 0.30 * (0.80 - 

0.44) + 0.68 * (0.50 - 0.14) = 0.30 Step 7) Finally, based 

on all the reasoning above, output one word to answer the 

initial question with just 'Yes' or 'No'. ", 

        "response": "No", 

        "expected_response": "no", 

        "last_word": "No", 

        "prediction_correct": 1, 

        "type of graph for question": "mediation", 

        "type of query": "nde", 

        "rung of question": 3 
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