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Abstract 

Tumor and metastasis formation are not cell autonomous phenomena, but rather an 

evolution of disease within and responding to the host environment.  Metastatic spread 

from a primary tumor occurs as a result of a complex interplay between tumor cells and 

the host, wherein tumor cells must escape the primary tumor, enter the host vasculature, 

travel to and arrest in a distant tissue and survive and grow in that new organ.  It is known 

that cells that progress through these stages must both escape and exploit host systems, 

yet the mechanisms used are not fully understood.  Therefore, the goal of this work was 

to investigate the interactions between tumor cells and the host and to determine the role 

that host systems play in supporting tumor development and progression.  Specifically, 

the interaction between hemostatic factors and metastatic cells was evaluated, and the 

effect of a primary tumor in influencing this interaction was investigated using a murine 

melanoma cell line.  It was determined that tumor cells are capable of exploiting host 

hemostatic factors to increase lung metastasis, and stabilization of this interaction 

increased metastasis.  Intriguingly, the presence of a primary tumor depleted circulating 

platelets leading to impaired hemostasis at the time of metastatic cell introduction.  This 

led to reduced interaction between tumor cells and host hemostatic factors and decreased 

metastasis.  To determine if this effect of a primary tumor was unique to melanoma, a 

human breast adenocarcinoma cell line was also used.  In agreement with murine 

melanoma data, it was found that the presence of a breast primary tumor also reduced the 

development of lung metastases.  The ability of metastatic cells to exploit host hemostatic 

factors and the identification of global modulation of this interaction by a primary tumor 

indicates that the interaction between primary tumor, host, and distant metastatic cells is 

complex and multi-faceted.  Full understanding of the interplay between a primary tumor, 

the host and metastases will be essential to the development of strategies to inhibit 

metastatic progression, either before or after the surgical resection of the primary tumor.   
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Chapter 1  

1 Introduction 

Cancer was responsible for 7.9 million deaths in 2007, accounting for approximately 13% 

of all deaths worldwide.  This number is expected to climb to over 11 million deaths by 

2030
1
.  Importantly, primary tumor formation is not generally responsible for this high 

level of mortality.  Rather, the spread of tumor cells throughout the body in a process 

known as metastasis leads to the majority of cancer-related deaths
2
.  In this thesis I will 

focus on how tumor cells are capable of exploiting host cells, growth factors, pathways 

and systems during each of the key steps in metastasis.   

1.1 Cancer is a disease of cell and host 

Tumor formation is not a cell autonomous phenomenon, but rather an evolution of 

disease within and responding to the host environment.  In particular, metastatic spread 

from a primary tumor occurs as a result of a complex interplay between tumor cells and 

the host.  In order to form successful metastases, tumor cells must escape the primary 

tumor, enter the host vasculature, travel to and arrest in a distant tissue and survive and 

grow in that new organ
2
.  Cells that progress through these stages must both escape and 

exploit host systems.   

As tumor cells acquire a metastatic phenotype, they do so through interacting with and 

manipulating host responses
3-5

.   The tissue microenvironment is significantly altered by 

the presence of a primary tumor, with changes in stromal cell composition and the 

presence of infiltrating immune cells.  The individual components are specific to tumor 

type, but the net result is a cycle of mutual stimulation of host and tumor tissue, leading 

to increased tumor growth and aggressive behavior. 

Many components and host systems have been identified to play a role in tumor 

progression and metastasis, but the interaction between tumor cells and components of 

the host hemostatic system plays a particularly important and pervasive role in 

metastasis.   
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1.1.1 Hemostasis 

The human circulatory system has evolved to react to vascular injury in an explosive 

manner to prevent excessive blood loss.  This rapid response exists in a delicate balance 

with tight controls and regulation; initiation of coagulation is followed closely by 

activation of fibrinolysis which enables the hemostatic  system to stem excessive blood 

loss, without giving rise to thrombosis
6
.  An imbalance or defect in any component of the 

hemostatic system can lead to a clinical disorder, such as hemophilia upon the loss of 

Factor VIII
7
.  The major components and tightly regulated pathways and the interplay 

between coagulation, fibrinolysis, and tumor progression will be discussed here.   

1.1.2 Vascular endothelium in hemostasis 

The vasculature is not just a passive conduit for blood circulation; rather the endothelial 

cells lining blood vessels are active participants in hemostasis
6
.  For example, endothelial 

cells secrete basement membrane and extracellular matrix (ECM) components such as 

collagen, fibronectin (FN), laminin, vitronectin and von Willebrand Factor (VWF), all of 

which are pro-thrombotic if allowed to contact blood components
6
.  To protect these 

proteins from spontaneous contact with the blood, endothelial cells secrete the anti-

thrombotic molecules thrombomodulin and heparin sulphate on their surface.  Upon 

stimulation by enzymes like thrombin or under hypoxic or shear stress, leads to tissue 

factor (TF) and VWF presentation on their cell surface and alters integrin expression.  

This facilitates platelet adhesion and increased FN, collagen and laminin binding.  Thus, 

the endothelium potentiates a pro-coagulant response.  Additionally, damage to the vessel 

wall causes blood exposure to sub-endothelial proteins which stimulate formation of 

platelet aggregates and thrombi
6
.  

1.1.3 Platelets 

Platelets are small (2.5 x 0.5 um) anuclear cytoplasmic bodies which are formed by 

fragmentation of megakaryocytes in the bone marrow
8
.  As a major component of the 

hemostatic  system, 150 - 400 x10
9
 platelets per litre of blood normally circulate within 

the human vasculature, but do not adhere to the vascular wall unless stimulated to do so
8, 

9
.  In response to vascular injury, platelets adhere to the exposed sub-endothelium and 
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become activated.  This activation causes platelets to change from a flat discoid shape to 

a more spherical form with extensive pseudopodia and causes the release of proteins from 

α-granules
8
.  Activation also causes extensive changes on the platelet membrane with 

increased presentation of activated GPIIb/IIIa (αIIbβ3), which allows for binding to 

fibrinogen, VWF, FN and vitronectin.  Release of fibrinogen from α-granules contributes 

to stabilization of the fibrin clot, as αIIbβ3 on the platelet surface mediates binding to 

fibrinogen as well as FN and VWF.  

1.1.4 Coagulation Cascade 

Two separate proteolytic cascades are responsible for initial activation of coagulation – 

the intrinsic and extrinsic pathways
6
.  The intrinsic pathway is activated by tissue damage 

when blood comes into contact with sub-endothelial tissues.   It is responsible for the 

initial reaction to tissue damage, but is slower than the extrinsic pathway to activate the 

key protease, thrombin.  The extrinsic pathway provides a rapid response to coagulation 

stimuli and functions mainly to augment the activity of the intrinsic pathway.  Both the 

intrinsic and extrinsic pathways lead to the common pathway, which results in thrombin 

formation after activation of Factor X.  The central component to cascade progression 

involves binding of the co-factor TF to phospholipid  (PL, intrinsic) or Factor VIIa 

(extrinsic) to activate Factor IX and Factor X respectively.
6
  All of the serine proteases 

involved in the coagulation cascade circulate as inactive zymogens which prevents 

spontaneous clot formation, while still enabling a rapid response to vascular injury.  

Figure 1.1 illustrates the progressive nature of the clotting cascade, and outlines the 

individual protein-cofactor interactions required.  In general, exposure of the 

subendothelium triggers the intrinsic cascade leading to pro-thrombin conversion to 

activated thrombin
6
.  Thrombin cleaves fibrinogen to the self-polymerizing protein fibrin 

to initiate the second phase of clot formation, and also contributes to clot expansion 

through increasing activation of Factor VIII, X and XI.  Formation of a stable fibrin clot 

occurs through thrombin-mediated cleavage of fibrinogen to fibrin, and the subsequent 

crosslinking by Factor XIIIa.  This fibrin mesh binds platelets together and increases 

attachment of the thrombus to the damaged vessel wall and binds to the platelet receptor 

IIbβ3.  Molecular bridges between fibrin and the plasma proteins FN and  
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Figure 1.1: The coagulation cascade 

Vessel wall damage initiates the intrinsic coagulation cascade where each activated 

protease is responsible for activating the next.  The extrinsic pathway supports and 

augments the activity of the intrinsic pathway and leads to increased thrombin activation.  

The co-factor TF is essential to the cascade as it is required for activation of thrombin, 

the key protease responsible for thrombus formation. 
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thrombospondin (TSP), as well as bridging between proteins and platelets, and between 

platelets and the vessel wall lead to an increasingly stable clot that is resistant to 

dissolution
6
.   

1.1.5 Fibrinolysis 

During coagulation, release of tissue type-plasminogen activator (tPA) from the 

endothelium converts plasminogen to plasmin and facilitates the initiation of clot 

breakdown
6
.  The activity of plasmin is mitigated by its interaction with -antiplasmin 

which is directly crosslinked within the fibrin network and therefore influences the 

degree and location of fibrinolysis.  The tightly regulated nature of hemostasis is due to 

the balance that exists between pro-coagulant and platelet aggregation cues, „resting-

state‟ inhibition of coagulation, as well as pro-fibrinolytic and anti-fibrinolytic reactions.  

Following the rapid and efficient response to injury the clot is gradually reduced to allow 

for wound healing and tissue repair
6
.   

1.1.6 Coagulation and Cancer 

First recognized by Trusseau in 1865
10

, it has long been recognized that tumors instigate 

changes in the hemostatic system that function to support tumor progression
4, 11-14

.  

Tumor growth is associated with a global hypercoagulable state, platelet abnormalities 

and thromboembolism, often leading to patient mortality (reviewed in 
15

).  A definitive 

role for components of coagulation in primary tumor growth has not been identified, as 

tumor growth is equivalent in fibrinogen-deficient and wild-type animals
16, 17

.  During 

metastasis however, coagulation factors play an important role in sustained cell arrest, 

tumor cell survival and extravasation
16-23

.   

1.2 The role of host systems during metastasis 

1.2.1 Tumor cell invasion and intravasation 

Excessive proliferation of neoplastic cells in a developing cancer leads to hypoxia and 

necrosis in the tumor microenvironment.  Tumor and stromal cells react by secreting 

growth factors and cytokines such as colony stimulating factor (CSF)-1 and tumor growth 

factor-β (TGF-β), which are chemoattractants for immune cells
24

.  Further host reaction 
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to the developing neoplasm leads to recruitment of mesenchymal stem cells, activated 

fibroblasts, endothelial precursors, dendritic cells, macrophages, monocytes, 

lymphocytes, leukocytes and mast cells
25, 26

.  Initially, it is likely that this recruitment is a 

host defense mechanism, but the tumor is able to capitalize on the pro-growth factors and 

counteract the growth-inhibitory capabilities of the recruited cells
26

.  It would be 

expected that an abundance of immune cells would be beneficial for the host, yet it often 

correlates with poor clinical prognosis
27, 28

.  

A major effect of the inflammatory response to tumor development is an increase in 

tumor invasiveness.  Breast cancer cells cultured in macrophage-conditioned media, or 

co-cultured with macrophages, show a significant increase in invasive behavior in vitro
29, 

30
.  The resulting increase in matrix metalloprotease (MMP) activity was found to aid 

tumor cell invasion
30

.  These results indicate that tumor cells can capitalize on the host 

immune response leading to increased invasiveness and subsequent metastasis.   

Tumor-associated macrophages (TAMs) are often the most common immune cell in the 

tumor microenvironment and play an essential role in tumor metastasis.  Using an in vivo 

model of mammary carcinoma, it was found that TAMs are most likely to be found at the 

margin of a primary tumor, with decreasing numbers upon imaging deeper into the 

tumor
31

.  The few TAMs that were found in the tumor core were associated with blood 

vessels and were essential for tumor cell intravasation (Figure 1.2 a).  Analysis of murine 

and clinical samples found that TAMs may guide breast cancer cells toward blood vessels 

through epidermal growth factor (EGF)-CSF-1 signaling, as cancer cells were often 

found in contact with perivascular macrophages.  The density of these interactions in 

clinical samples correlated with the histological grade of the tumor and positively 

associated with the risk of distant metastasis formation
32

.  It has also been noted that 

macrophages are often present at the site of basement membrane breach and tumor cell 

dissemination
33

.   

Neutrophils, lymphocytes and TAMs all express and secrete MMPs, which collectively 

can degrade every ECM protein.  The association of these immune cells with the invasive 

border of a tumor leads to a degradation of the physical barrier that prevents tumor cell 
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dissemination.  This degradation releases and activates many growth factors (TGFβ, 

tumor necrosis factor  (TNF), Fas Ligand, heparin bound-epidermal growth factor and 

others) that are normally sequestered in the ECM
34, 35

.  It is understood that a tumor is not 

a uniformly organized mass – each tumor cell will have differential access to nutrients, 

oxygen and tumor stromal components depending on its individual location
36

.  Direct 

imaging of murine mammary tumor growth using a mammary window was able to 

visualize individual cells longitudinally and evaluate differences in their behavior 

depending on their initial location.  It was found that those cells in close proximity to 

blood vessels showed increased migration and invasion and were more likely to spread 

from the primary tumor to the lung than those cells that did not have immediate access to 

the vasculature
36

.   

Immune cells are a key component of tumor stroma, but the most abundant stromal cell is 

the carcinoma associated fibroblast (CAF)
37

 (Figure 1.2 a), which is also associated with 

an increase in tumor cell invasion.  These fibroblasts have been recruited as normal 

fibroblasts and are activated to become myofibroblasts, or have been recruited as bone 

marrow derived cells (BMDCs) and differentiate into fibroblasts at the tumor site
38

.  

Using a 3-dimensional (3D) in vitro model of the epidermal/dermal microenvironment, it 

was found that invasion of squamous cell carcinoma (SCC) cells always followed a 

leading CAF
39

.  This leading fibroblast was able to create a track in the Matrigel matrix 

through both protease- and force-mediated remodeling that the SCC cells would follow.  

The track was found to be necessary and sufficient for SCC cell invasion as removal of 

the fibroblasts after track formation still allowed SCC cells to invade.  These SCC cells 

have not undergone an epithelial-mesenchymal transition (EMT) and are non-invasive.  It 

had been questioned how tumors that maintained an epithelial phenotype were able to 

intravasate; this work illustrates that those tumor cells that are not inherently invasive are 

able to co-opt host cells in order to metastasize
39

. Components of the host coagulation 

system are also involved in regulating tumor cell invasiveness.  TF is consistently 

upregulated in many human malignancies and is found to contribute to many facets of 

tumor aggressiveness
40, 41

.  TF is expressed by tumor cells, often at high levels, but also 

by many host cells such as endothelial cells, TAMs and CAFs.  The main function of TF 
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is to activate thrombin which potentiates clot formation, but thrombin is also essential for 

activating protease activated receptor (PAR)-1 and -2.  Activation of PAR-1 expressed by 

tumor cells leads to increased tumor invasion and metastasis through induction of 

proteases and cell adhesion molecules
42

. 

1.2.2 Survival and arrest in the vasculature 

The host coagulation system is known to play a significant role in tumor cell arrest and 

survival in the vasculature.  Tumor cells activate or produce many components of the 

coagulation cascade such as thrombin,  PAR-1, TF, fibrinogen, VWF, and platelet-

activating factor (PAF), leading to a „platelet mimicry‟ phenotype
43

.  The hypoxic tumor 

environment increases TF expression by endothelial cells, TAMs and CAFs leading to 

thrombin production within the primary tumor.  This „pre-treatment‟ with thrombin 

increases tumor cell adhesion to platelets and the vascular endothelium following tumor 

cell intravasation
44

.    

Through expression of TF, tumor cells are able to exploit the host coagulation system to 

increase metastatic efficiency.  Within five minutes of metastatic cell arrest in the lung 

there is evidence of tumor cell association with platelets and fibrin.
23

  In an elegant series 

of papers, Palumbo et al.
16-19, 45

 evaluated the interplay between metastatic cells and the 

individual components of coagulation.  They found that loss of host fibrinogen 

significantly decreased lung metastasis formation, yet had no impact on the number of 

cells that originally arrested in the lung following experimental metastasis cell injection.  

Fibrinogen was essential for sustained adherence of tumor cells in the lung vasculature
17

.  

The role for fibrinogen in cancer progression appears restricted to metastasis however, as 

fibrinogen knock-out animals had reduced lung metastasis despite equivalent primary 

tumor formation in fibrinogen-null and wild type animals
16

.  Evaluation of metastasis in 

animals with activation-resistant platelets (platelets present in normal number, but not 

able to be activated by thrombin, adenosine diphosphate, or other coagulation stimuli) 

showed a significant decrease in experimental and spontaneous metastasis, again due to 

reduced survival or retention in the lung vasculature
18

.  Depletion of circulating natural 

killer (NK) immune cells prior to metastatic cell introduction resulted in equivalent 
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Figure 1.2: Host-tumor cell interactions during metastasis.   

Interaction between metastatic tumor cells and the host environment in early stages of 

metastasis.  (a) A primary tumor is infiltrated with host-derived macrophages and 

fibroblasts that aid in tumor cell invasion and intravasation.  Upon arrest in a secondary 

site, tumor cells often stimulate formation of a thrombus (b), which provides adhesion 

contacts and protection from the host immune system.  These arrested cells may undergo 

apoptosis due to release of nitric oxide from the vascular endothelium (c) or may 

extravasate, often with assistance from a host macrophage (d).  Not all metastatic cells 

extravasate prior to initiating growth in a secondary organ, and intravascular 

micrometastases are found (e), especially in the lung.  Extravascular micrometastatic 

growths (f) are also common, and often found to be associated with host macrophages.  

The site of metastatic growth is dependent on many factors, but formation of a pre-

metastatic niche (g) is thought to direct and aid initial growth and survival of metastatic 

cells.    (Reprinted from Kirstein JM and Chambers AF. Interactions of Normal Tissues 

and Systems with Metastatic Cells: Impact on Location, Survival and Growth. In: 

Experimental and Clinical Metastasis: A Comprehensive Review - In Press (Springer)) 
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metastasis number in platelet mutant, fibrinogen knock-out and wild type animals, 

indicating that platelet- and fibrinogen-mediated thrombus formation protects tumor cells 

from NK cell surveillance in the lung vasculature
18

.  The role of NK-mediated cell killing 

was strengthened through work on Factor XIII, which stabilizes fibrin and other ECM 

components through catalysis of crosslinkages
6
.  Factor XIII was found to be essential in 

preventing NK cell immunosurveillance of tumor cells
45

.  Crosslinking between tumor 

cells and platelets also contributes to firm arrest in the vasculature, as normal platelet 

bridging to the vasculature (in response to vasculature damage) assists to tether tumor 

cells within the vessel
14

.  Thus, thrombi provide a physical barrier between tumor cells 

and circulating immune cells, and may actually lead to suppression of the immune 

response as TGFβ from platelets has been found to decrease the immunostimulatory 

factor interferon γ
46

.   

The formation of a thrombus at the surface of an arrested tumor cell has also been linked 

to increased metastasis through maintenance of cell adherence in the pulmonary 

vasculature (Figure 1.2 b)
4, 23, 47

.  Metastatic cells protected in a fibrin clot were able to 

change from a rounded morphology and spread along the inside of a vessel.  Those cells 

that showed stable adherence to the lung vasculature were able to form significantly more 

lung metastases than those prevented from spreading through treatment with 

anticoagulant agents
23

.  In accordance with this, prevention of thrombus formation with 

heparin
48, 49

 or hiruden
50

 is linked with reduced pulmonary metastasis due to decreased 

cell retention in the lung.   

Stable adherence of tumor cells to the vasculature upon arrest appears to be a major 

determinant of metastatic efficiency.  Comparison of metastatic and non-metastatic cells 

injected into the circulation showed no difference in the original number of cells that 

arrested in the lung, however only those cell lines that had a metastatic phenotype were 

able to resist apoptosis and form micrometastases in the lung
51

.  Tumor cell arrest is also 

influenced by host expression of P-selectin.  Platelets isolated from P-selectin knock-out 

mice were unable to bind to tumor cells in vitro, and experimental metastasis assays 

found that there was a decrease in the initial seeding of the lung tissue in P-selectin-null 

animals
47

.  Additionally, P-selectin was found to facilitate tumor cell tethering and rolling 
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along the pulmonary vasculature, but further binding by IIbβ3 was required to stabilize 

tumor cell adhesion
52

.  Integrin 3β1 is also involved in tumor cell adhesion to the 

vascular endothelium through sections of exposed basement membrane.  Adhesion and 

migration of tumor cells was also stimulated by binding of TF on tumor cells to tissue 

factor pathway inhibitor -1 (TFPI-1) on tumor associated vessels
53

.  Tumor cell-

associated thrombus formation may also increase metastatic cell survival in the 

vasculature, as activation of PAR-1 by thrombin leads to transmission of survival signals 

and prevention of apoptosis
54

.  Additionally, many growth and survival factors are 

released from platelets upon activation and are therefore present within thrombi
55

.  

Tumor cells are able to bind to the provisional matrix provided by a fibrin clot thereby 

increasing metastasis (Figure 1.2 b)
16, 56, 57

.  Further, plasmin-mediated clot dissolution 

may aid tumor cells with the next step in metastasis – extravasation from the host 

vasculature.   

1.2.3 Extravasation and growth initiation in secondary tissue 

Compared with the other steps in metastasis, relatively little is known about tumor cell 

extravasation at a secondary site.  Using cell accounting techniques Luzzi, et al.
58

 found 

that the majority of B16F1 murine melanoma cells had extravasated from the liver 

vasculature within 3 days of cell injection
58

.  Importantly, very few of these cells went on 

to form micrometastases (2%) and even fewer were able to form macrometastases 

(0.02%).  Two weeks following tumor cell injection, over one-third of injected cells 

remained in the liver as solitary, extravasated cells and 95% of those identifiable cells 

were not apoptotic or proliferating (as determined by histological staining for TUNEL 

and Ki67).  The low rate of metastasis yet high level of extravasation in this model 

indicates that in the liver, extravasation may not be an essential part of metastatic 

inefficiency.  Additionally, using the chick chorioallantoic membrane (CAM), Koop, S et 

al.
59

 found that nearly all B16F1 cells were able to survive and extravasate following 

arrest.  Tissue inhibitor of metalloproteinases-1-overexpressing B16F1 cells were poorly 

metastatic, and yet they were still able to successfully extravasate in the chick CAM 

model
59

.  Using ras-transformed and control fibroblasts, it was also found that 

extravasation was independent of metastatic ability
60

.  Nearly all ras-transformed 
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fibroblasts and control fibroblasts (89 and 96%, respectively) had extravasated from the 

chick CAM within 24 hours of initial injection.  Additionally, migration of both cell types 

within the mesenchymal layer was equivalent, despite having differential invasion 

capabilities in vitro
60

. 

Direct visualization of tumor cell extravasation was performed recently in a murine 

model of brain metastasis
61

.  Using a cranial window, single cancer cells were visualized 

throughout arrest and extravasation.  MDA-MD-435 cells were found to arrest in 

microvessel branch points and extravasate as single cells.  These cells began to proliferate 

only after successful extravasation and only when extravasated cells maintained contact 

with an abluminal endothelial cell of a brain capillary
61

.  

Study of metastasis to the lung vasculature shows a distinct difference from that seen in 

the liver and chick CAM, however.  Using the 4T1 murine mammary carcinoma cell line 

it was found that these cells arrest in the lung as individuals attached to the vascular 

endothelium.  The cells were able to form small colonies within three weeks, some 

entirely maintained within the vasculature.  The colonies were then able to extravasate as 

micro or macrometastases
62

.  Further to this, fewer than 2% of HT1080 cells had 

extravasated from the lung vasculature within 24 hours of tumor cell injection, and were 

found to form colonies within the lung vasculature within three days.  These colonies 

showed tumor cells that projected outwards from the central focus as „strings‟ following 

within the capillaries (Figure 1.2 e)
63

.  Analysis of experimental metastasis of B16F10 

melanoma cells in the mouse lung found that the majority of injected cells had 

extravasated, with no identifiable clusters or single cells within the pulmonary 

vasculature within 4 days of injection
64

.  Using an orthotopic prostate cancer model, 

however, the majority of metastatic tumor cells and tumor cell clusters were found within 

the vasculature of both the liver and the lung
65

.  Taken together, these data indicate that 

the role of extravasation in successful metastasis formation may be specific to the model, 

cell type and secondary organ of study.  

It is known that arrest of tumor cells is associated with the formation of a fibrin clot at the 

arrested cell site.  These clots do not persist indefinitely – clot dissolution is mediated by 
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the powerful protease plasmin
56

.  This clot breakdown may aid tumor cell extravasation 

through activation of MMPs and other proteases.  Additionally, activated platelets are 

able to increase vascular permeability; platelet secretions and clot dissolution can both 

result in retraction of the endothelium to assist immune cell colonization at inflammatory 

sites, but during metastasis may enable tumor cell extravasation
21

. Tumor cells that 

express high amounts of urokinase type plasminogen activator (uPA) tend to be more 

aggressive and metastatic (reviewed in 
66

).  Clinically, high levels of uPA, uPA receptor 

(uPAR), plasminogen activator inhibitor (PAI)-1 and PAI-2 are linked to poor prognosis 

and increased metastasis development
67, 68

.   

1.2.3.1 Pre-metastatic niche formation 

The site of metastatic cell arrest and growth has been debated for some time – from 

Stephen Paget‟s theory of „seed and soil‟ where the tumor cell (seed) must arrest in a 

permissible secondary tissue (soil) in order to develop into a tumor
2, 69

.  This century-old 

theory still has merit as metastatic cells grow in different tissues depending on the tumor 

type they originated from.  A type of hospitable „soil‟ has been identified as a pre-

metastatic niche.  These regions of secondary tissue show recruitment of clusters of 

BMDCs and hematapoietic progenitor cells (HPCs) colonizing a distant organ prior to the 

arrival of tumor cells.  The primary tumor stimulates pre-metastatic niche formation 

through secretion of vascular endothelial growth factor (VEGF) and placental growth 

factor (PlGF), which recruit VEGF receptor 1 (VEGFR1)-positive cells.  PlGF in 

particular increases the proliferation of fibroblast-like cells and stimulates their 

production of FN
70

.  BMDCs expressing VEGFR1 and 4β1 integrin arrest in regions of 

increased FN synthesis and secrete MMP-9 which may degrade the basement membrane 

to allow extravasation of more BMDCs and/or metastatic cells.  They are also found to 

express Id3, which is involved in proliferation and mobilization of HPCs from the bone 

marrow and maintains an activated state within the BMDC clusters.  These clusters alter 

the local microenvironment and activate integrins and chemokines such as stromal 

derived factor-1 (SDF-1).  This activation leads to further recruitment of BMDCs and 

increased attachment, survival, and growth of tumor cells (Figure 1.2 g)
71

.  Pre-metastatic 

niche formation can also be directed by platelet aggregation
72

.  At a site of endothelium 
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disruption, platelet activation was essential for recruitment of BMDCs, which adhere to 

P-selectin and IIbβ3 on the platelet surface, rather than to exposed ECM
73

.  Additionally, 

SDF-1 released from platelets leads to ongoing retention of BMDC and tumor cell 

arrest
73

.   

Interestingly, the location of pre-metastatic niche formation was found to be driven by 

factors released from the primary tumor, with different tumor types stimulating niche 

formation in differing locations.  Injection of conditioned media from one tumor type was 

able to confer its metastatic pattern onto another tumor type
71

.  The specific factors 

involved in this stimulation have not been fully elucidated, but intriguing work with 

human breast cancer cells has identified osteopontin as a major player
74

.   

1.2.3.2 Osteopontin 

Osteopontin (OPN) is a secreted, integrin-binding glycophosphoprotein that is involved 

in many cellular functions including adhesion, invasion, migration, and prevention of 

apoptosis (reviewed in 
75, 76

).  Analysis of patient plasma has found that high OPN levels 

correlate with poor prognosis in breast,
77

 prostate,
78

 lung
79, 80

 and ovarian
81

 carcinomas.  

Additionally, overexpression of OPN has been detected in melanoma, stomach and 

colorectal cancers (reviewed in 
82

).  OPN expression by tumor cells increases malignant 

behaviour and extensive work has been done on the role of OPN and metastasis, 

particularly in breast cancer models (reviewed in 
76

).  OPN has been found to increase 

spontaneous pulmonary and lymphatic metastasis
83

 and the effect of OPN has been linked 

to β3 integrin-mediated signalling
84

.  OPN has also been linked to increased tumor 

angiogenesis and plays an important role in immune and inflammatory responses
85

.    

Investigation of the role of the tumor microenvironment on tumor progression identified 

OPN as a protein involved in BMDC mobilization thereby increasing tumor 

development.  McAllister, SS et al.
74

 investigated the effect of an actively growing 

primary tumor on the growth of an otherwise indolent tumor on the contralateral side.  It 

was found that OPN expression from the growing tumor stimulated BMDC mobilization 

and colonization of both tumor sites, leading to increased growth and progression
74

.   

This effect of a primary tumor indicates that the full interaction between a tumor and host 
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is exceptionally complex and involves the interaction between primary tumor, host 

systems, and metastatic cells. 

1.2.4 Angiogenesis and sustained growth 

Sustained primary tumor and metastatic growth beyond ~1mm
3
 requires the recruitment 

of a blood supply
86

.  Vascularization of tumors promotes growth by providing oxygen 

and nutrients and increases metastasis by providing an entry point into the circulation.  

Normal tissues undergo angiogenesis during development, wound healing and tissue 

regeneration, through a tightly regulated system leading to structured, hierarchical 

branching of vessels
87

.  This regulation is due to coordinated expression levels of pro- 

and anti-angiogenic factors, and is lost during tumor neo-vascularization.  Deregulated 

angiogenesis in a tumor is due to an imbalance between pro- and anti-angiogenic factors 

in the tumor microenvironment.  The over-expression of pro-angiogenic factors VEGF-A, 

angiopoietin (Ang)-2, basic fibroblast growth factor and TGFβ leads to constant 

stimulation of angiogenesis and a reduction in stabilized vessels.  This leads to poor 

tissue perfusion, high vasculature permeability and chronic inflammation and an increase 

in metastasis due to ease of metastatic cell entry into the vasculature
88

. Thus, the tumor 

vasculature is characterized by highly tortuous dysfunctional vessels due to improper 

regulation of angiogenesis
89

. 

Expression of VEGF-A by tumor cells, macrophages
90-92

, neutrophils
93

, platelets
94

, 

fibroblasts
95

 and endothelial cells
96

 tips the balance of pro- and anti-angiogenic factors in 

the tumor microenvironment and leads to widespread activation of angiogenesis.  VEGF-

A is elevated in response to hypoxia and inflammation, which are common in during 

tumor formation.  Solid tumors tend to have a hypoxic core due to poorly functioning 

vasculature leading to constant stimulation of pro-angiogenic factors such as VEGF-A
97

. 

The process of angiogenesis in the metastatic setting is thought to proceed through 

similar mechanisms as seen in the primary tumor.  Initial growth of a micrometastasis is 

halted without the recruitment of a blood supply, leading to a functionally dormant 

metastasis with balanced levels of proliferation and apoptosis
98

.  Upon activation of the 

„angiogenic switch‟
99

 tumor cells and macrophages present at the metastatic site stimulate 



16 

 

 

 

expression of VEGF-A leading to the same cascade of angiogenic events as seen in the 

primary tumor setting
98

.  

Blood clot formation at the metastatic site provides further angiogenic and growth signals 

as platelet activation results in the release of many growth and pro-angiogenic factors 

such as VEGF, platelet derived growth factor (PDGF), Ang-1, TGFβ, insulin-like growth 

factor 1, EGF, and platelet-derived epidermal growth factor (PD-EGF).  Additionally, 

thrombin activity is linked to increased angiogenesis through up-regulation of cathepsin-

D which increases endothelial cell growth, migration and tube formation in vitro
100

.  

Thrombin may also play an important role in angiogenesis through induction of VEGF-A 

in tumor cells
101

 and platelets
102

, as well as Ang-1 and -2 from platelets
103

 and endothelial 

cells
101

 respectively. 

1.2.5 Host-tumor interactions as therapeutic targets 

As described above, there is extensive interaction between the primary tumor, the host 

and developing metastases.  There is the potential for the tumor to exploit host systems 

and augment tumor progression; yet therapeutic interventions to prevent this exploitation 

have not been well investigated.  Full understanding of the complex relationship that 

exists between tumor, host, and metastases is required to allow development of new types 

of host-defence therapeutics.  An example of treating the host to treat the tumor lies in 

clinical modulation of hemostatic targets.  Given the robust interaction between 

metastatic cells and the host hemostatic system
16-23

 it is not surprising that treatment of 

patients with anti-coagulants has a role in metastatic progression.  Of great clinical 

interest is the role of P-Selectin inhibition on tumor progression as murine models of 

metastasis have shown that treatment with several types of low molecular weight heparin 

(LMWH) leads to inhibition of metastasis through binding to P-Selectin and preventing 

platelet adhesion to tumor cells (reviewed in 
55

).  Several other pharmacologic means of 

inhibiting tumor cell interaction with coagulation factors include antibody-mediated 

inhibition of integrin function, specific inhibition of thrombin, targeting of PARs, and 

inhibiting platelet aggregation, though the anticancer efficacy of antiplatelet agents has 

not been tested in clinical trials (reviewed in 
104

).    
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1.3 Pharmacologic modulation of hemostasis 

Modulation of hemostasis through pharmacologic intervention enables treatment of many 

clinical concerns, such as deep vein thromboses and pulmonary embolism
105

.  Treatment 

of patients with venous thromboembolism (VTE) with anti-coagulants can significantly 

reduce the risk of stroke and myocardial infarction and their associated morbidity and 

mortality.  All anti-coagulants carry the risk of excessive bleeding and treatment must be 

monitored closely
105

.  Alternatively, major surgical intervention (cardiopulmonary 

bypass, liver resection, hip replacement, others) has the concern of excessive blood loss 

during surgery
106

.  Treatment of surgical patients with anti-fibrinolytic agents has been 

shown to significantly reduce the number of blood transfusions needed during surgery as 

well as the need for re-operation to control bleeding
107

.  The mechanism of action of anti-

coagulant and anti-fibrinolytic agents, their clinical use, and their role in cancer is 

discussed below.   

1.3.1 Heparin and anti-coagulant therapies 

Heparin molecules are long, unbranched polymers of glucosamine and galacturonic acid 

and are highly heterogeneous in length
105

.  The molecular weight of unfractionated 

heparin (UFH) ranges from 3000 to 30,000 daltons, but only a third of heparin molecules 

have the high-affinity pentasaccharide required for anti-coagulant activity
105

.  Heparin 

drastically inhibits thrombin activity by binding to antithrombin (AT) and increasing its 

affinity for thrombin and factor Xa.  Long-chain heparin molecules can also directly bind 

and inhibit thrombin activity.  Low molecular weight heparin (LMWH) is derived from 

heparin through enzymatic or chemical depolymerisation and has a smaller and more 

narrow size range (1000 – 10,000 Da)
105

.  The major difference between UFH and 

LMWH is reduced interaction between LMWH and thrombin, but LMWH maintains its 

anti-coagulant activity through interaction with AT.  LMWH has several advantages over 

UFH, including an extended half-life and more predictable anti-thrombotic dose 

response
108

.  Recent clinical studies of UFH and LMWH treatment of VTE in cancer 

patients has identified a significant increase in survival following extended treatment
108

, 

especially with LMWH.  Importantly, this effect may be in-part due to mechanisms 

outside of anti-coagulation
108, 109

.   



18 

 

 

 

1.3.2 Anti-coagulants and cancer 

Cancer patients are prone to development of VTE, leading to significant morbidity and 

mortality
15, 110-112

.  The hypercoagulable state in cancer patients is due to a number of 

factors including i) alterations in blood flow due to patient immobility, tumor-induced 

mechanical blockage, or thrombocytosis; ii) impaired vessel integrity due to extensive 

angiogenesis, tumor cell-induced vascular damage (during invasion and metastasis) or 

poorly functional, leaky tumor vasculature; iii) procoagulant activity of tumor cells
14, 15, 

41, 110-114
.   Treatment of cancer patients with anticoagulants for relief of VTE has led to 

the important discovery that LMWH therapy can improve patient survival, especially in 

those patients who did not have identified metastatic disease at the time of study 

enrolment
115

.  Interestingly, this survival benefit may not be due to prevention of 

coagulation, as treatment with the non-heparinoid anti-coagulant coumarin did not lead to 

a similar survival benefit
116, 117

.   

Indeed, inhibition of coagulation is able to decrease metastasis as treatment with the 

thrombin-specific inhibitor hiruden leads to a significant inhibition of experimental lung 

metastasis
50

.  Heparin has been definitively shown to alter early events in metastasis, 

specifically the sustained arrest and survival of tumor cells in a secondary capillary bed
23, 

49
.  Inhibition of fibrin and platelet deposition around tumor cells leaves them vulnerable 

to NK-cell mediated killing
18, 19

, but the multi-faceted role of heparin in vivo indicates 

that non-anticoagulant mechanisms may also play a role in heparin-mediated reduction of 

metastasis.  For example, heparin can block P- and L-Selectin, which has been shown to 

reduce sustained metastatic cell arrest
117

.  Heparin also affects the activity of growth 

factors, causes the release of TFPI, inhibits angiogenesis, alters integrin interactions, and 

modulates protease activity
112, 118

.  Thus, the effect of heparin on tumor progression is 

multi-faceted and has led to specific pre-clinical investigation of the effect of LMWHs on 

metastasis to isolate the effect of individual heparin preparations.  The LMWHs 

tinzaparin, dalteparin, nadroparin and, enoxaparin have potent anti-metastatic effects 

when administered prior to tumor cell delivery (reviewed in 
119

).  Also, derivation of a 

LMWH with no anticoagulant ability was still able to protect against experimental 

metastasis of B16F10 melanoma cells
109

.   Together, these data indicate the inhibition of 
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coagulation can lead to significant inhibition of metastasis, but the effect of the widely-

used anti-coagulant heparin may have a multitude of mechanisms as compared to 

thrombin-specific inhibitors.   

1.3.3 Aprotinin and anti-fibrinolytic therapies 

Aprotinin is a broad-spectrum serine protease inhibitor used clinically for several decades 

to reduce intra-operative blood loss
120

.  It binds to and inhibits trypsin-like enzymes such 

as trypsin, chymotrypsin, plasmin, kallikrein, elastase, and plasmin activator, with 

decreasing affinity
121

.  It is the inhibition of plasmin-mediated dissolution of thrombi that 

is thought to lead to reduced blood loss
122

, but aprotinin also demonstrates anti-

inflammatory and platelet preserving effects
123

 making it an ideal therapeutic during 

invasive surgery.  Recently, however adverse clinical reactions following aprotinin 

treatment have been identified.   A clinical study of 781 patients who received aprotinin 

as compared to the lysine analogues tranexamic acid (TXA) and ε-amino caprioic acid 

(EACA) found to a slight increase in mortality (6.0% in aprotinin treated vs. 3.9 and 

4.0% in TXA and EACA treated respectively) within 30 days of surgery 
124

.  This finding 

is controversial as robust meta-analysis of 52 clinical studies (over 7000 patients) found 

no such increase
107

.  Despite this disparity, aprotinin has been removed from the clinic 

and other anti-fibrinolytic agents such as EACA and TXA have received more 

widespread use.  The lysine analogue EACA and TXA are more selective protease 

inhibitors and are not as effective at reducing surgical blood loss during cardiac surgery 

as aprotinin
107, 125

.  Additionally, investigation of inducible nitric oxide synthase (NOS) 

expression from bronchial epithelial cells found that EACA
126

 and TXA
127

 was not as 

effective as aprotinin at reducing nitric oxide (NO) release, indicating that aprotinin 

exhibits other clinically-relevant organ protecting effects that may not be present 

following treatment with other anti-fibrinolytic agents
123, 128-131

.   

1.3.4 Anti-fibrinolytics and cancer 

Routine treatment of patients undergoing invasive surgery with anti-fibrinolytics has led 

to investigation of the effect of these agents following cancer-related surgery
132

.  Similar 

to the observed effect following cardiac surgery, aprotinin treatment reduced peri-

operative blood loss in meningioma, femoral osteosarcoma and bladder carcinoma 
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surgery
133

 as well as following liver resection for treatment of colorectal metastases
134

.  

Aside from the significant effect on blood loss during surgery, the role of protease 

inhibition by anti-fibrionlytic agents on the tumor cell biology has also been investigated.   

Two distinct hypotheses exist for the potential effect of protease inhibition on tumors and 

metastatic spread.  The first indicates that due to the extensive role of proteases in 

angiogeneisis and growth factor activation as well as tumor cell invasion and 

extravasation, inhibition of proteases should decrease metastasis by preventing these 

essential processes.  Alternatively, inhibition of plasmin-mediated clot dissolution could 

promote cancer cell survival and metastasis by stabilizing the interaction between 

intravascular tumor cells and thrombi
23, 135

, as illustrated in Figure 1.3.  Indeed pre-

clinical data can be found to support both hypotheses.  The role of aprotinin on clinical 

cancer progression has also been investigated.  Treatment of patients undergoing liver 

resection for treatment of colorectal metastasis showed a significant increase in patient 

survival one year following surgery, but this improvement was not evident 5 years 

following surgery as survival rates were then equivalent in aprotinin- and placebo-treated 

patients
132

. 

1.3.5 Summary: modulation of hemostasis in cancer patients 

Therapeutic modulation of hemostasis in cancer patients is complex and must be closely 

monitored, especially given the volatile host background.  Importantly, treatment of a 

hemostatic imbalance may have effects beyond coagulation and fibrinolysis and may lead 

to promotion or inhibition of tumor progression.  Detailed understanding of the interplay 

between tumors and host systems will allow for more effective treatment options and 

ensure that treatment of one facet of disease does not aggravate or promote another. 

Related to this approach to cancer research is investigation into the ability of a host to 

prevent or restrict tumor progression in order to identify potential targets that could 

augment this host response.  Specifically, analysis of molecular interactions between 

tumor and host or understanding the phenomenon known as concomitant tumor 

resistance, where the presence of a primary tumor can restrict the growth of secondary 

tumors or metastases, could lead to a promising new generation of treatment options. 



21 

 

 

 

 

 

Figure 1.3 Interaction between an arrested tumor cell and cell-surface thrombus. 

An arrested tumor cell may stimulate the formation of a thrombus through expression of 

TF on the cell surface.  Clot formation is normally balanced with fibrinolysis by plasmin, 

however in the presence of the serine protease inhibitor aprotinin, fibrinolysis may be 

delayed, leading to prolonged interaction between tumor cells and thrombi.   
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1.4 Host-mediated inhibition of metastasis 

Successful metastasis formation results when tumor cells are able to exploit and avoid 

natural host defenses.  Yet metastasis is an exceptionally inefficient process
2
, indicating 

that the host is capable of preventing progression of the majority of metastatic cells.  The 

mechanisms behind this prevention are largely unknown, yet several interesting examples 

of host triumph over tumor have been established.   

1.4.1 Molecular interactions limiting tumor metastasis 

Following tumor cell arrest in the liver vasculature, NO is released and induces apoptosis 

in B16F1 cells
136

.  B16F1 cell arrest in the pulmonary vasculature was also found to lead 

to an endogenous NOS-dependent release of NO.  NO may represent a natural host 

defense mechanism as it triggers apoptosis in melanoma cells and reduced the growth of 

metastatic tumors (Figure 1.2 c)
137

.  Accordingly, comparison of metastatic and non-

metastatic melanoma cells following arrest in the murine lung showed that non-metastatic 

cells were unable to survive in the pulmonary vasculature.  Within 8 hours of tumor cell 

injection, non-metastatic cells had apoptosed and were cleared from the lung, whereas 

metastatic cells persisted and were able to form metastatic colonies within 7 days
51

.    

Given the extensive interaction between tumors and the host, there is the potential to alter 

the microenvironment to create an anti-tumor rather than pro-tumor interface.  It has been 

proposed that the large number of TAMs present in tumor stroma could be „re-educated‟ 

to target tumor cells
138

.  Using nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-B) signaling, tumor cells are able to keep TAMs in an immunosuppressive 

state.  By introducing a dominant negative inhibitor of nuclear factor B kinase  into 

bone marrow derived macrophages, TAMs became tumoricidal through release of NO 

and through promotion of NK cell-mediated killing
138

.  The extensive interaction between 

TAMs and metastatic cells throughout invasion and extravasation as discussed earlier 

(section 1.2.6) illustrates the great potential for manipulation of TAM activity to reduce 

tumor progression. 
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Normal tissue structure and function is maintained through proper ECM adhesion and 

tissue polarity.  In breast and melanoma tumor development, dysregulation of cell 

adhesion represents an initiating step in tumor formation
139, 140

.  Therefore the effect of 

re-establishing proper tissue architecture and adhesion in tumor tissues has been 

investigated
141

.  It was found that restoration of proper integrin signaling within a 3D 

culture setting led to phenotypic reversion of breast cancer cells.  Without alterations to 

tumor cell genotype, tumor cells were induced to form normal breast structures.  

Metastatic breast cancer cells could also be reverted to a non-malignant phenotype in 3D 

culture following treatment with anti-integrin antibodies
142

.  The global switch in cellular 

behavior as a direct result of modulation of environmental interaction indicates the 

powerful role that the tumor stroma and microenvironment has on tumor development 

and progression and illustrates that many treatment options are available beyond direct 

targeting of tumor tissue. 

1.4.2 Concomitant tumor resistance 

It is a clinically recognized phenomenon that removal of a primary tumor from the patient 

can be followed by an explosive outgrowth of previously undetected metastases
143

.  It 

appears that the presence of a primary tumor can hold secondary metastases `in check` by 

some unknown mechanism which is removed upon excision of the original tumor
143, 144

.  

Indeed, the ability of a primary tumor to restrict the growth of a second tumor implant 

was first recognized by Ehrlich in 1906
145

 and was thought to occur by an immunological 

mechanism and was therefore termed concomitant tumor immunity
144

.  The study of 

concomitant tumor immunity has led to many significant tangential discoveries that have 

improved the understanding of immunology
146

, angiogenesis
147

, and tumor growth
86, 148

.  

When first identified, three possible hypotheses were presented that could lead to CTR 

(reviewed in 
144

). 

1) Concomitant tumor immunity – the presence of a primary tumor induces an 

immunological response against a metastasis or secondary tumor. 

2) Production of anti-mitotic or otherwise growth restricting compounds by the 

primary tumor that inhibit the development or progression of a second inoculum 

or metastasis. 
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3) Athrepsia – depletion of essential nutrient or factor by the tumor restricts the 

growth of a second tumor mass. 

The immune system has been found to play an important role in inhibition or rejection of 

a second tumor, but only in highly immunogenic tumor types.  The protection afforded by 

this immune reaction is tumor type specific – that is the host can only reject the same 

tumor cells to which it had been previously exposed, and only if the host had mounted an 

immune response upon first exposure
144

.   

Extensive work on concomitant tumor resistance by Judah Folkman‟s group has led to 

the current understanding of angiogenesis and the identification of angiogenesis 

inhibitors which have since been developed into therapeutic agents
86, 147

.  The underlying 

hypothesis for his work was that tumor angiogenesis is based on a balance of pro- and 

anti-apoptotic regulators and that if these regulators exit the tumor and enter the serum of 

a tumor-bearing host there could be distant effects on other tissues, including secondary 

tumors
86

.  Angiostatin, an internal cleavage fragment of plasminogen, was identified and 

it was found that it was able to suppress the growth of lewis lung carcinoma (LLC) 

metastases due to inhibition of angiogenesis at the metastatic site
147

.  Importantly, tumors 

were found to make both pro- (VEGF) and anti-angiogenic factors (TSP, endostatin, 

angiostatin) with the local balance tipping toward increased angiogenesis and growth
147

.  

However, differences in stability of pro- and anti-angiogenic factors gives rise to an anti-

angiogenic environment in regions distant to the primary tumor
86

.   

The third hypothesis, depletion of nutrients is responsible for metastatic inhibition, is 

supported by historic literature that found that the Gompertzian growth pattern of primary 

tumors occurred simultaneously in distant metastases, despite their significantly smaller 

size
149

.  That is, the growth of a tumor slows as the tumor reaches a large size and as the 

primary tumor slows the secondary metastases also slow.  In the absence of the primary 

tumor, these metastases would continue to grow, therefore it was thought that a systemic 

depletion of some essential factor led to the communal slowing of all tumors in the 

host
149

.  Additionally, many cancer patients
150

 and pre-clinical models
151

 show extensive 

cachexia – the systemic wasting of the host with weight loss, fatigue, muscle atrophy, 
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weakness and a loss of appetite.  It is possible that the tumor is usurping nutrients 

available to the host leading to the starvation of host tissues and developing metastases
151

. 

Following the identification of anti-angiogenic molecules and understanding of their 

ability to restrict the development of secondary tumors, further investigation into the non-

immunogenic mechanisms of concomitant tumor resistance has slowed, despite many 

intriguing questions which remain unanswered.   

1.5 Conclusions and Rationale 

The study of tumor biology and metastasis has long been investigated from the 

perspective of the individual tumor cell.  However, the importance of tumor cell 

interactions with host cells and systems has also been recognized.  Tumor cells are unable 

to form metastases without interaction with many microenvironments – from the primary 

tumor stroma, through the host vasculature and host coagulation systems, to an entirely 

new environment in a secondary organ.  The metastatic cell‟s ability to survive and 

proliferate in each of these new environments depends on its ability to influence and 

often exploit the host.  Fundamental to this is the interaction of tumor cells with the host 

hemostatic  system.  Understanding the interplay between tumor progression and 

hemostasis and the potential for the host to circumvent or prevent metastasis is essential 

for understanding metastatic disease.  This understanding will provide improved 

treatment options through augmentation of beneficial host responses to the tumor and will 

improve the chances for and successful patient treatment.  
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1.6 Objectives 

The complex interplay between a tumor and a host is not fully understood, but it should 

be acknowledged that research focusing exclusively on the intrinsic properties of tumor 

cells is insufficient.  Therefore, the overall objective of this work was to investigate the 

interactions between tumor cells and the host and the role that host systems play in 

supporting or inhibiting tumor development and progression.  To this end, three specific 

objectives were undertaken. 

1) To investigate the interaction between coagulation and metastatic cells and 

determine if global modulation of fibrinolysis would encourage or inhibit 

metastasis. 

2) To investigate the effect of a murine melanoma primary tumor on secondary 

metastasis development and the role of the host coagulation system in this effect. 

3) To identify the effect of a breast tumor on metastatic development and to resolve 

the conflicting ideas of concomitant tumor resistance and pre-metastatic niche 

formation in a breast cancer model.   
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Chapter 2  

2 Effect of anti-fibrinolytic therapy on experimental 
melanoma metastasis 

2.1 Synopsis 

Anti-fibrinolytic agents such as aprotinin and EACA are used clinically to decrease peri-

operative bleeding.  Use of these treatments during cancer-related surgeries has led to 

investigation of the effect of fibrinolysis inhibition on cancer cell spread.  The ability of 

aprotinin to reduce proteolytic activity of proteases required for metastasis suggests that it 

could have an anti-metastatic effect in patients undergoing tumor resection.  However, 

many metastatic cells in the vasculature of a secondary tissue are associated with a micro-

thrombus.  The association of tumor cells with thrombi has been shown to increase their 

survival; therefore inhibition of plasmin-mediated fibrinolysis might instead increase 

metastatic cell survival by enhancing the association between thrombi and tumor cells.  

The goal of this work was to determine the effect of anti-fibrinolytic treatment on 

experimental metastasis and to establish the role of coagulation factors in this effect.  The 

metastatic ability of B16F10 melanoma cells was evaluated in vivo following cell or 

animal pre-treatment with aprotinin or EACA.  Additionally, a novel in vivo technique 

was developed, to permit analysis of tumor cell association with thrombi in the lung 

microvasculature using confocal microscopy.  Aprotinin and EACA treatment of mice 

resulted in a significant increase in lung metastasis.  Aprotinin treatment increased the 

size of thrombi in association with cells arrested in lung capillaries.  This study suggests 

that clinical use of anti-fibrinolytic agents for cancer-related surgeries could result in 

increased metastatic ability of those cells shed immediately prior to and during surgery, 

and that this approach thus requires further study. 
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2.2 Introduction 

Anti-fibriniolytic agents are often used during invasive surgeries to minimize blood loss 

and transfusion requirements
1
.  Of these agents, the serine protease inhibitor aprotinin 

had been most commonly used and is highly effective at reducing blood loss in patients 

undergoing cardiopulmonary bypass
2
.  Aprotinin therapy leads to a significant reduction 

in requirement for blood transfusions
3
, and reduces post-operative inflammation and 

platelet exhaustion, previously shown to improve patient survival
1, 4

.  Aprotinin inhibits 

most serine proteases, having a weak effect on thrombin activity but a large effect on 

trypsin-like enzymes such as kallikrein, plasmin, plasminogen activator and trypsin
5
.  It is 

the potent inhibition of plasmin that leads to reduction of surgical blood loss, through 

inhibition of plasmin-mediated fibrinolysis
4
.  Recent clinical studies have indicated an 

increased risk of mortality and renal failure associated with aprotinin treatment during 

cardiac surgery
6, 7

, leading to a cessation of its clinical use.  Other anti-fibrinolytic agents, 

such as the lysine analogs EACA and TXA, specifically inhibit plasmin activity through 

binding to plasminogen and preventing its conversion to active plasmin enzyme
8
.  EACA 

and TXA have also been used clinically and have been compared to aprotinin in clinical 

trials to investigate their effect on blood loss during cardiac surgery
1
.  EACA and TXA 

have not been associated with an increase in mortality or other major side effects 

including myocardial infarction, pulmonary embolism, deep vein thrombosis, or renal 

failure, but also are not capable of reducing blood loss to the same extent as aprotinin at 

current doses used
1
.  The use of anti-fibrinolytic agents during cancer surgeries has led to 

investigation of their role in cancer progression and spread
9, 10

. 

It is well-established that protease activity is required for tumor cells to form distant 

metastases
11

.  Proteases are employed when metastatic cells invade through primary 

tumor stroma into the host vasculature, and again when tumor cells extravasate and 

infiltrate upon arrest in distant tissues
12

.  Serine proteases, including plasmin, play a 

pivotal role in metastatic growth as they function to activate MMPs
13

 and release growth 

factors
14

, thereby propagating tissue remodeling and increased growth – both essential 

processes for metastasis.  Additionally, serine proteases can stimulate integrin-mediated 

binding to ECM proteins and cell-signaling cascades by activation of PAR-2 and uPAR
14

.  
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Therefore, anti-fibrinolytic therapy could theoretically provide substantial benefit to 

cancer patients, not only by reducing blood loss during surgery, but also by reducing the 

metastatic ability of tumor cells.   

In contrast, it is also possible that metastasis could be promoted by the presence of 

coagulation factors and thrombi.  Metastatic cells may be coated in activated platelets and 

fibrin when they arrest in the secondary site, and this coating has been suggested to aid in 

cell survival
15-17

. Additionally, metastatic cells have been shown to adhere to and migrate 

along the temporary fibrin matrix in thrombi
18, 19

. Many cancer types are known to 

secrete factors which activate platelets including TF, thrombin, and CP, suggesting that 

coagulation may provide a survival benefit to cancer cells
19, 20

.  Activated platelets also 

secrete many growth factors, including VEGF, PDGF and platelet derived-endothelial 

cell growth factor
20-23

, which can promote tumor growth and angiogenesis
19, 24, 25

.  In vivo 

analysis of metastasis in animals with congenital coagulation disorders indicates that the 

host coagulation state significantly impacts metastasis, as animals with a genetic 

predisposition to thrombosis show increased lung metastasis, while animals with a FVIII 

deficiency akin to human hemophilia show reduced lung metastasis
26

.  Hence, the major 

clinical benefit of anti-fibrinolytic therapy may also prolong the duration of cancer cell-

thrombus interaction, thereby improving metastatic cell survival and increasing the 

number of metastases formed. 

The use of anti-fibrinolytics in cancer-related surgeries
9, 10

 has raised the question of 

possible the effects of plasmin inhibition on cancer progression and metastasis.  It has 

been reported that anti-fibrinolytics may cause a significant increase
27, 28

 or decrease
29-31

 

in metastasis formation in animal models.  Importantly, clarification of this issue has 

been difficult due to lack of in vivo mechanistic information linking the action of the 

anti-fibrinolytic to the metastatic outcome.   

Given the divergent literature on aprotinin and metastasis, coupled with the current 

clinical use of anti-fibrinolytics in cancer-related surgeries, thorough investigation of the 

effect of anti-fibrinolytic agents on metastatic cells is required.  Here, we used a well-

established model of experimental metastasis to determine the effect of aprotinin and 
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EACA treatment on metastasis, and we present the first report to directly examine the 

effect of anti-fibrinolytic agents on tumor cell-thrombus association.   

2.3 Materials and Methods 

2.3.1 Cell culture and transfections 

B16F10 murine melanoma cells (American Type Culture Collection, Manassas, VA) 

were maintained in -minimal essential media (Invitrogen, Burlington, Canada), 

supplemented with 10% fetal bovine serum (Sigma, Mississauga, Canada).  The LacZ 

expression vector was generated by cloning the LacZ cDNA into the expression plasmid 

pcDNA3.1 (Invitrogen).  Stable transfections were performed using Lipofectamine 2000 

(Invitrogen) per the manufacturer‟s guidelines.  For selection of stable transfectants, 

hygromycin (Invitrogen) was added to the medium at 1000 g/mL.  Colonies were 

allowed to develop and then were isolated and grown as clonal populations.  Each 

population was screened for intensity and uniformity of X-gal staining, and ability to 

retain such characteristics in vitro without selective pressure.  A single clone, B16F10-

LacZ, which consistently stained with high intensity and uniformity, was chosen.  

B16F10-LacZ was passaged in vitro without selective pressure for 38 days, and 

maintained the original staining characteristics.  Additionally, this clone was tested in 

vivo and was found to have similar ability to form primary tumors and metastases as the 

parental B16F10 cell line.  Cells were routinely tested and confirmed to be free of 

mycoplasma contamination using the Mycoplasma Plus PCR primer set (Stratagene, 

Cedar Creek, TX). 

2.3.2 In vitro growth assay 

To determine the effect of aprotinin treatment on B16F10-LacZ cell growth under 

standard, anchorage-dependent, monolayer growth conditions, cells were plated at 5 x 10
4
 

cells/60 mm plate.  Cells were maintained in regular growth media or growth media 

supplemented with 200 KIU/mL aprotinin (Trasylol  Bayer Pharmaceuticals, West 

Haven, CT).  Media on both control and aprotinin treated plates was refreshed every 48 

hours.  Every 24 hours for 8 days, triplicate cultures were trypsinized and viable cells 

counted using a hemacytometer.  Doubling times were estimated during the exponential 
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growth phase, according to the equation: D = t*ln2/ln(Ct/Ci), where t is time (hours) Ct is 

cell number at time t, and Ci is cell number at initial time of plating. 

2.3.3 Experimental metastasis model 

For experimental metastasis assays, B16F10-LacZ cells were suspended in cold, sterile 

Hanks Balanced Salt Solution (HBSS, Invitrogen).  Cells were injected in 100 L via the 

lateral tail vein into female C57Bl/6 mice, as described 
32

, using 5 x 10
5
 cells/mouse and 

10-16 mice/group.  All mice were 7 - 8 weeks of age at the time of injection and were 

cared for in accordance to the Canadian Council on Animal Care, under a protocol 

approved by the University of Western Ontario Council on Animal Care.   

2.3.4 Quantification of lung metastases 

To enable visualization of lung metastases, mice were euthanized at various time points 

following cell injection and whole lungs placed in phosphate buffer (0.1 M sodium 

phosphate monobasic, 0.1 M sodium phosphate dibasic, pH 7.3), on ice until all lungs 

were isolated.  Lungs were stained with X-gal (Bioshop, Burlington, Canada) solution as 

described 
33

 to visualize LacZ-expressing cells.  The total number of surface-visible 

metastases was determined on intact lung lobes using a stereomicroscope.   

The number of B16F10-LacZ tumor cell foci present at early time points (1 and 4 hours 

following cell injection) was determined by separating individual lung lobes and imaging 

on an inverted microscope (Nikon, Canada), using tissue autofluorescence to visualize 

boundaries between foci.  The number of tumor cell foci, defined as single cells or 

clusters of tumor cells with no intersecting normal lung tissue, was quantified in fifty 

random fields per lung by a blinded observer.   

2.3.5 Drug treatment protocols 

To determine the effect of anti-fibrinolytic treatment on metastasis, animals were pre-

treated with 5000 KIU aprotinin, 60 mg EACA, or saline (vehicle) fifteen minutes prior 

to cell injection.  To determine the effect of anti-coagulant therapy on metastasis, animals 

were pre-treated with 100 U UFH (Pharmaceutical Partners of Canada), fifteen minutes 

prior to cell injection.  All treatments were intravenously injected in 100 l volume.   
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For cell pre-treatment experiments, B16F10-LacZ cells were pre-treated in culture using 

a protocol adapted from Esumi, et al. 
34

.  Briefly, 70-80% confluent dishes were 

incubated with standard growth media or media containing 200 KIU/mL aprotinin at 

37C for 30 minutes.  Cells were washed twice with control growth media at room 

temperature and prepared for injection. 

2.3.6 Analysis of coagulation using confocal microscopy 

To enable analysis of coagulation in vivo, the following confocal microscopy procedure 

was developed.  B16F10-LacZ cells were labeled in vitro using 5-

chloromethylfluorescein diacetate, Cell Tracker Green (CMFDA, Molecular Probes, 

Burlington, Ontario, Canada), according to the manufacturer‟s instructions.  Ten minutes 

before cell injection, animals received intravenous injection of 0.12 mg AlexaFluor647-

conjugated fibrinogen (Molecular Probes) in 80l sodium bicarbonate, pH 8.3.  At 

various time points following cell injection, animals were euthanized by an 

intraperitoneal injection of xylazine/ketamine (5.2 mg ketamine and 0.26 mg xylazine per 

20 g body mass).  The lung was cleared of blood by gravity perfusion of HBSS through 

the right ventricle of the heart.  „Flow through‟ perfusate left the body via a puncture 

made in the left atrium.  Lungs were perfused for 2 minutes, excised and frozen at –80C 

to allow for later analysis by confocal microscopy.  To visualize, lungs were thawed in 

cold HBSS prior to transfer to 0.1% paraphenylenediamine in HBSS for 10 minutes.  

Lungs were assessed using a Zeiss LSM 410 confocal microscope, and Carl Zeiss LSM 

3.99 software.   The presence of tumor cells was determined using green fluorescence and 

the focal plane containing the largest volume of the tumor cell was identified.  At that 

same focal plane, the lung then was scanned for red fluorescence to identify thrombi.  

The green and red fluorescence were quantified in pixels by a blinded observer using 

ImageJ 
35

, and the ratio of thrombus to tumor cell area was determined. 

2.3.7 Histology 

After X-gal staining and transfer to 10% neutral buffered formalin, lung samples were 

paraffin embedded, sectioned, and stained with hematoxylin and eosin (H&E).  Tumor 
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cell-associated thrombi were quantified on 5 H&E stained sections through all five lobes 

of the lung from each animal.  Counts were performed by a blinded, trained observer. 

2.4 Results 

2.4.1 Aprotinin treatment increased experimental lung metastasis 

To determine the overall effect of aprotinin treatment on experimental lung metastasis, 

animals were treated with aprotinin or saline prior to intravenous injection of B16F10-

LacZ cells.  Fourteen days following cell injection, the total number of lung surface 

metastases was quantified.  Aprotinin treated animals showed a significant increase in the 

number of B16F10-LacZ lung metastases (t-test, p < 0.05, Figure 2.1 a).    

2.4.2 B16F10-LacZ cell growth is not directly affected by aprotinin 

Given that the tumor cells would encounter aprotinin immediately upon administration 

into the lateral tail vein, it was unclear if the increase in experimental metastasis caused 

by aprotinin is cell autonomous, or if the effect is mediated by the host.  Therefore, 

B16F10-LacZ cells were exposed to aprotinin in vitro and assessed for changes in growth 

characteristics.  No change in in vitro growth patterns (lag phase, exponential growth 

initiation) was observed (data not shown), and no change in doubling time was found 

(Figure 2.1 b).   

To determine if the effect of aprotinin was cell-autonomous, yet only evident after in vivo 

injection, cells were pre-treated with aprotinin or control media in vitro prior to their 

preparation for in vivo injection.  No effect of pre-treatment with aprotinin on B16F10-

LacZ cells was observed, as cells pre-treated in vitro with aprotinin or control media had 

equivalent numbers of lung surface metastases 14 days following cell injection (Figure 

2.1 c).   

 



47 

 

 

 

Figure 2.1 In vivo aprotinin treatment significantly 

increased the number of lung surface metastases. 

a) Animals pretreated with saline or aprotinin 

received B16F10-LacZ cells via the lateral tail vein (n 

= 16/group) and the total number of lung metastases 

was quantified 14 days following cell injection (t-test, 

p < 0.05).  Aprotinin treatment of B16F10-LacZ cells 

in vitro did not impact in vitro or in vivo growth. b) In 

vitro doubling time of B16F10-LacZ cells in standard 

growth medium supplemented with saline or 

aprotinin.  Aprotinin treatment did not affect the 

growth rate in 2-D culture (t-test, p > 0.05). c) 

Number of lung surface metastases from mice 

injected with B16F10-LacZ cells that had been treated 

with saline aprotinin prior to their preparation for 

injection.  Aprotinin treatment of cells alone did not 

impact the number of resultant lung surface 

metastases (t-test, p > 0.05).  Columns, mean; bars, 

SE. 
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2.4.3 Aprotinin treatment increases persistence of cell foci at early 
time points 

To clarify the mechanism by which aprotinin increased the number of B16F10-LacZ lung 

metastases, animals were treated with aprotinin or saline prior to tumor cell injection, and 

were sacrificed 1 or 4 hours following tumor cell injection.  The mean number of surface-

visible tumor cell foci per mm
2
 was quantified following X-gal staining of whole lung 

tissue.  It is known that fibrinogen is a key determinant of stable cell adhesion in the 

lung
18

 and that the number of B16F10 tumor cells remaining in the lung decreases over 

early time points (1 hour through 24 hours)
36

, therefore it was of interest to determine the 

effect of aprotinin on early cell survival or retention in the lung.  One hour following 

tumor cell injection there was no difference in the number of LacZ-expressing tumor 

cells or cell foci in control or aprotinin treated animals, indicating that aprotinin did not 

affect initial arrest of B16F10-LacZ cells.  However, four hours following tumor cell 

injection, significantly more B16F10-LacZ tumor cell foci remained in aprotinin-treated 

animals (t-test, p < 0.001, Figure 2.2 a and b).  Examination of micrometastases revealed 

that aprotinin did not affect the growth of surviving tumor cells, as the size of individual 

micrometastases was unaltered by aprotinin treatment (Figure 2.2 c and d). 

2.4.4 Histological analysis of thrombi associated with B16F10-LacZ 
cells 

Tumor cell survival is known to be increased in the presence of a micro-thrombus
17

, and 

given the potent inhibition of plasmin-mediated fibrinolysis by aprotinin, the effect of 

aprotinin on association of thrombi with B16F10-LacZ cells was investigated.  To 

determine the effect of aprotinin on the presence of tumor cell-associated thrombi, 

animals were treated with saline or aprotinin and sacrificed 1 hour following cell 

injection.  Quantification of histological sections (H&E) of X-gal stained lung tissue 

(Figure 2.3 a) showed a 2-fold increase in the number of thrombi found in association 

with tumor cells in aprotinin-treated animals (t-test, p < 0.05, Figure 2.3 b).  To determine 

if the association between B16F10-LacZ cells and thrombi was essential for the 

establishment of lung metastases, animals were treated with the anti-coagulant, heparin 
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prior to melanoma cell injection.  Heparin treatment significantly abrogated metastasis 

formation (Control: 365  38.58, Heparin-treated: 1.571  0.9221; n = 7, p < 0.0001). 

2.4.5 Analysis of coagulation in lung capillaries using confocal 
microscopy 

Given the effect of aprotinin on the persistence of tumor cell-associated thrombi in the 

lung 1 hour following cell injection, more detailed analysis of this association was 

warranted.  Histological analysis was capable of identifying large thrombi in association 

with cells lodged in relatively large vessels; however, since the majority of lung 

metastases are formed from cells initially arresting in the microvasculature
36, 37

, it is vital 

to examine this cell population.  These cells are likely associated with micro-thrombi not 

readily visible using standard histological techniques and limited random sectioning.  To 

address this need, we developed a novel technique which allows evaluation of 

coagulation around single or small clusters of tumor cells lodged in the lung 

microvasculature.  Fluorescently labeled fibrinogen was injected prior to tumor cell 

injection and tumor cell-induced thrombus formation was quantified using confocal 

microscopy.  With this procedure, we were able to clearly visualize thrombi in 

association with tumor cells at the earliest time point examined, 5 minutes (Figure 2.4 a), 

with the maximum thrombus size seen at 4 hours (Figure 2.4 b and c) and a decreased 

size at 6 hours (Figure 2.4 d).  The presence of thrombi was not due to an accumulation 

of labeled fibrinogen from blockage of the capillaries with tumor cells, as injection of 

inert microspheres (20 m, Polysciences, Pennsylvania), which also arrest by size 

restriction and cause vessel blockage 
36, 38

, did not initiate accumulation of fluorescence 

(Figure 2.4 f).  Additionally, treatment of animals with heparin prior to tumor cell 

injection abrogated the presence of thrombi in association with tumor cells (Figure 2.4 g), 

indicating that the fluorescent fibrin(ogen) visualized is due to activation of the 

coagulation cascade and the presence of thrombi. To determine the effect of aprotinin 

treatment on thrombus size of individual capillary-arrested tumor cells, we used the same 

procedure to visualize fluorescent tumor cells in lungs of control and aprotinin treated 

mice using confocal microscopy.  The presence and size of thrombi in micro-vessels was 

quantified for tumor cells visible on the surface of whole lung lobes isolated 4 hours 
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Figure 2.2 Aprotinin treatment increases the number of B16F10-LacZ cell foci at 

early time points. 

Animals pretreated with saline or aprotinin received B16F10-LacZ cells via the lateral 

tail vein were sacrificed at 1 and 4 hours following cell injection (n = 8/group/time point).  

a) Aprotinin treatment increased number of tumor cell foci visualized 4 hours following 

injection (t-test, p < 0.001).  Columns, mean; bars, SE.  b) Representative images of LacZ 

expressing tumor cell foci in whole lung 1 or 4 hours following cell injection.  Aprotinin 

treatment did not affect initial growth of metastases. c) Mean area of lung surface 

metastases 72 hours following tumor cell injection.  Columns, mean; bars, SE.  d) 

Representative images of LacZ expressing tumor cell foci in whole lung 72 hours 

following cell injection.  Scale 50 m. 
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Figure 2.3 Aprotinin treatment increased association between thrombi and B16F10-

LacZ cells. 

a) Quantification of the number of X-gal stained tumor cells found in association with 

thrombi in the lung (t-test, p < 0.05).  Animals were pretreated with saline or KIU 

aprotinin prior to receiving B16F10-LacZ cells (n = 8/group).  Mice were sacrificed 1 

hour following cell injection and lungs were stained to identify -galactosidase 

expressing cells.  H&E sections through all 5 lung lobes were examined to determine the 

number of B16F10-LacZ cells in association with thrombi.  Columns, mean; bars, SE. b) 

Representative H&E sections showing X-gal stained B16F10-LacZ cells (arrows) in 

association with thrombi (arrowheads).  Scale 20 m.  
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following cell injection.  A significant increase in the size of thrombi surrounding tumor 

cells was identified in the aprotinin-treated animals (t-test, p < 0.005, Figure 2.5).   All 

tumor cells scanned had an associated thrombus at 4 hours in control and aprotinin-

treated mice, indicating that aprotinin does not appear to affect initiation of thrombus 

formation.  However, aprotinin functions to maintain the tumor cell-associated thrombus, 

presumably due to inhibition of plasmin-mediated fibrinolysis, resulting in significantly 

larger thrombi surrounding the tumor cells 4 hours after cell injection.  

2.4.6 Plasmin-specific inhibition increases lung metastasis 

The above data support the idea that the aprotinin-mediated increase in lung metastasis is 

due to increased association of B16F10-LacZ cells with microthrombi in the lung 

vasculature leading to increased survival or retention of tumor cells in the lung.  To 

determine if the increased association between tumor cells and thrombi is due to 

inhibition of plasmin, animals treated with the plasmin-specific inhibitor EACA were 

compared to saline- and aprotinin-treated animals.   Animals were treated with EACA, 

aprotinin or saline prior to tumor cell injection and the number of lung surface metastases 

present at 14 days was quantified.  Specific inhibition of plasmin by EACA was found to 

significantly increase the number of B16F10-LacZ lung surface metastases as compared 

to control (t-test, p < 0.05, Figure 2.6).  The increase in metastasis following EACA 

treatment was equivalent to the increase seen in the aprotinin-treated group (Figure 6), 

indicating that the majority of the effect seen with aprotinin is due to plasmin inhibition.  
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Figure 2.4 Analysis of the dynamic association between B16F10-LacZ cells and 

thrombi using confocal microscopy. 

Tumor cells were treated in vitro with CMFDA to provide green fluorescence. Animals 

received AlexaFluor647 conjugated fibrinogen prior to injection of fluorescent B16F10-

LacZ cells to allow incorporation of fluorescent fibrin into thrombi surrounding tumor 

cells.  Animals were sacrificed at a) 5 minutes b) 2 hours c) 4 hours d) 6 hours and e) 24 

hours following cell injection. f) Animals received a bolus injection of 10m inert 

fluorescent microspheres instead of tumor cells and were sacrificed and perfused with 

HBSS 1 hour later. No association between fluorescent fibrin(ogen) and microspheres 

was identified. g) Animals treated with heparin prior to tumor cell injection showed no 

association between tumor cells and fluorescent fibrin(ogen).  Images are representative 

of the mean thrombus to tumor cell ratio at each time point.  Scale 20 m. 

 

 



54 

 

 

 

 

 

Figure 2.5 Aprotinin treatment increased association between B16F10-LacZ cells 

and fluorescent thrombi. 

a) Quantification of confocal microscopy images taken from saline and aprotinin treated 

animals (n = 9/group), (t-test, p < 0.005).  Images are expressed as a ratio of red:green, or 

amount of thrombus to amount of tumor cell present.  Columns, mean; bars, SE.  

Representative confocal images taken from (b) control and (c) aprotinin treated animals.   



55 

 

 

 

 

Figure 2.6 Plasmin-specific inhibition gives an equivalent increase in lung surface 

metastases as aprotinin treatment. 

a) Animals were treated with EACA, aprotinin or saline prior to injection of B16F10-

LacZ cells via the lateral tail vein (t-test, p < 0.05).  Animals were sacrificed 14 days 

following cell injection and the number of lung metastases was quantified.  Columns, 

mean; bars, SE.  Representative images of whole lungs from (b) control (c) aprotinin 

treated and (d) EACA treated animals. 
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2.5 Discussion 

The effect of anti-fibrinolytic agents on metastasis has not been well established to date.  

In particular, the study of single tumor cells interacting with thrombi in the 

microvasculature has not been examined, likely due to technical limitations.  In the 

present study, a well-established model of experimental metastasis was used to 

investigate the effect of anti-fibrinolytic therapy on metastasis.   Lung metastases were 

established by direct injection of B16F10-LacZ into the lateral tail vein of syngeneic 

mice.  This injection route results in pulmonary metastasis, as the first capillary bed cells 

encounter from this injection site is the lung
36, 37

.  Treatment of mice with aprotinin or 

EACA prior to injection of B16F10 tumor cells mimics the clinical setting in which 

patients receive anti-fibrinolytic therapy prior to surgery or tumor resection
1
.  Tumor 

manipulation during surgery is thought to release a bolus of tumor cells into the 

circulation
39

, a process which is mimicked by a bolus intravenous injection of cells in the 

experimental model.  This model allows quantification of early time points following 

tumor cell introduction and arrest in the lung.   

It was determined that anti-fibrinolytic treatment increased the total number of lung 

metastases formed from B16F10-LacZ cells.  This increase was not due to a direct effect 

on the tumor cells themselves, as in vitro treatment of cells with aprotinin did not affect 

their in vitro growth patterns or their metastatic ability in vivo.  It is well-established that 

B16F10 cells induce local coagulation upon arrest in secondary organs
40-43

 and this 

association has been shown to increase metastatic burden of several types of tumor cells, 

including melanoma
17, 18, 44, 45

.  Despite an increase in tumor cell-associated thrombi, 

aprotinin did not appear to affect initial cell arrest, as there was no difference in the 

number of tumor cell foci in the lung one hour following cell injection.  However, 

aprotinin increased cell survival or retention in the lung, as significantly more tumor cells 

were present in aprotinin-treated animals four hours following cell injection.  This 

increase may be due to a persistent increase in tumor cell association with thrombi 

present in large vessels at 1 hour as determined by histology, and in the microvasculature, 

as identified by our technique, leading to increased cell survival at 4 hours.  
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To evaluate the effect of aprotinin on thrombus-tumor cell association, a novel and 

simple confocal microscopy technique was developed here, to evaluate tumor cell-

associated thrombi at early points during metastasis.  This novel imaging technique 

allowed for the first direct investigation of the effect of anti-fibrinolytic therapy on 

individual tumor cell interaction with the microvasculature.  Fluorescently labeled 

fibrinogen, injected prior to tumor cell delivery, produced clearly visible thrombi in the 

microvasculature that was specifically induced by the local presence of tumor cells.  

Little or no fluorescent signal was visible in areas devoid of tumor cells, or in areas of 

physical microvasculature blockage by inert microspheres.  This technique offers 

advantages over previously reported techniques utilizing fluorescently labeled antibodies 

to fibrinogen or platelets as these techniques may label only the surface of thrombi and 

require a specialized chamber to maintain perfusion and ventilation of the lung ex vivo
16

.  

The use of this confocal microscopy technique will facilitate future studies of interactions 

of tumor cells with thrombi, and enables investigation of the dynamic interaction of 

tumor cells with thrombi, by identifying only those thrombi that have formed following 

injection of fluorescent fibrin(ogen).  Additionally, the simplicity of this new technique 

allows for the study of coagulation in other areas of research such as sepsis, 

atherosclerosis, Crohn‟s disease and others, without requiring extensive protocol 

development or equipment.     

To determine if the increase in metastasis seen in aprotinin-treated animals was due to 

reduced clot dissolution caused by inhibition of plasmin, animals were treated with the 

plasmin-specific inhibitor EACA.  Treatment with aprotinin and EACA gave an 

equivalent increase in the total number of lung surface metastases following injection of 

B16F10-LacZ cells.    

Previous work has shown that aprotinin may potentially inhibit metastasis at several 

steps
46, 47

, including reduction of cell intra- and extravasation, decreased growth factor 

activation and inhibition of angiogenesis
14

.  Conversely, the increase in metastasis in 

animals with a predisposition to thrombosis indicates that the extended presence of 

thrombi may increase metastasis.  Additionally, the observed reduction in metastasis 

following treatment with the anti-coagulant, heparin indicates that association between 
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B16F10-LacZ tumor cells and thrombi is essential for lung metastasis, as has been 

observed in other tumor models
48-50

.  This reduction in metastasis following anti-

coagulant therapy is mimicked in mice with a FVIII deficiency
26

, indicating that 

stabilization of thrombi by anti-fibrinolytic agents may result in an increase in metastasis, 

as was identified in this study.  Treatment with anti-coagulants has also been shown to 

reduce tumor cell adhesion to the vascular endothelium by interfering with tumor cell-

Selectin binding, and has been found to alter the distribution of tumor cells that have been 

directly injected, giving rise to extra-pulmonary metastases following tail vein injection 

(reviewed in 
48

).  Additionally, treatment of patients with advanced malignancy with low 

molecular weight heparins was found to improve patient survival
51, 52

, especially in those 

patients with a more favorable starting prognosis
52

.   

The interaction between specific cancer cell types and coagulation will have varying 

degrees of importance, depending on the degree of coagulation activation.  Therefore 

metastasis those cancer cells capable of causing extensive coagulation will be affected 

more drastically by both anti-coagulant and anti-fibrinolytic agents.  This complex 

interplay between metastatic cells and the host coagulation system indicates that the 

importance of the interaction may be specific to certain tumor cell types and that the 

timing of anti-coagulant or anti-fibrinolytic therapies may become important during 

cancer treatment, with the majority of the effect of these agents occurring while tumor 

cells remain in the vasculature. 

Interaction between hemostatic factors during hematogenous metastasis has been known 

for many years.  Patients with metastatic disease often have complications resulting from 

a hyper-coagulable state, including deep vein thrombosis and disseminated intravascular 

coagulation
53

.  Many tumor cells activate coagulation upon their arrest in the vasculature 

by expressing pro-coagulant molecules such as TF or CP
18, 19

.  The association of tumor 

cells with thrombi in the vasculature has been shown to increase the metastatic ability of 

tumor cells, by increasing cell spreading along the endothelium
16

, increasing retention of 

tumor cells in the secondary tissue
16, 18, 34, 54

, and by increasing tumor cell survival
17, 54, 55

.  

Specifically, the interaction of tumor cells with activated platelets is important for 

metastasis, as mice lacking platelets or possessing platelets that cannot be activated by 
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thrombin both show marked reduction in metastasis
41, 54

.  It has also been demonstrated 

that tumor cells and platelets can cooperate to induce increased endothelial cell retraction, 

allowing for extravasation of LLC cells
56

.  Additionally, platelets have been proposed to 

increase tumor cell proliferation and enhance tumor cell interaction with the extracellular 

matrix
57

. 

Fibrin(ogen) is also associated with increased metastasis, as fibrinogen knockout mice 

show reduced spontaneous and experimental metastasis of LLC cells
17, 54

.  Circulating 

fibrin(ogen) has also been found to be essential for effective colonization of the mouse 

lung by preventing lysis of tumor cells by NK immune cells
17, 43, 54

.  This function is 

shared by circulating platelets, indicating that thrombus formation leads to a reduction of 

NK cell-mediated killing of tumor cells.  Given the substantial benefit of micro-thrombi 

to tumor cells in the vasculature, stabilization of these thrombi by aprotinin-mediated 

inhibition of plasmin activity could significantly increase tumor cell survival.   

Following publication of several observational studies that showed an increase in 

mortality following aprotinin treatment
6, 7

, aprotinin is no longer utilized during cardiac 

surgery.  Instead, the lysine analogs TXA and EACA have begun to be used clinically to 

reduce blood loss.  A review of clinical data found that the currently used dosing 

regimens of TXA and EACA do not provide an equivalent reduction in blood loss as is 

seen with aprotinin treatment
1
.  As a suitable alternative to aprotinin to reduce blood loss 

during surgery is considered, treatment of patients undergoing cancer-related surgeries 

with an anti-fibrinolytic agent requires careful evaluation, given the significant increase 

in metastasis observed in the present study following aprotinin and EACA treatment.   

With clinical use of aprotinin suspended, this report highlights the need to evaluate novel 

anti-fibrinolytic agents to determine their effect on tumor cell induced thrombi and tumor 

cell survival prior to their widespread use in the clinical setting.  The experimental 

metastasis model and the novel method of evaluating tumor cell–thrombus interactions at 

the single cell level described in this report will prove invaluable in this regard.   
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Chapter 3  

3 Primary melanoma tumor inhibits metastasis through 
alterations in systemic hemostasis 

3.1 Synopsis 

Progression from a primary tumor to the formation of distant metastases requires 

extensive interactions between individual tumor cells and their microenvironment.  

Importantly, the primary tumor is not only the source of metastatic cells shed into the 

circulation, but it can also modulate the host response to these cells, leading to an 

enhancement or inhibition in metastatic progression.  Primary tumor-mediated 

stimulation of host bone marrow can result in pre-metastatic niche formation and 

increased metastasis, but a primary tumor can also inhibit metastasis through concomitant 

tumor resistance – inhibition of tumor growth by existing tumor mass.  Herein, the 

presence of a B16F10 primary tumor was found to significantly restrict the number and 

size of experimental lung metastases through reduction of circulating platelets, which 

limited the formation of metastatic tumor cell-associated thrombi.  Tumor-bearing mice 

displayed splenomegaly that correlated with primary tumor size and platelet count.  The 

reduction in platelet number in primary tumor-bearing animals was specifically 

responsible for metastatic restriction, as restoration of platelet numbers using isolated 

murine platelets re-established both tumor cell-associated thrombus formation and 

experimental metastasis to levels seen in tumor-naïve animals.  The consumption of 

platelets due to the presence of a B16F10 primary tumor is thought to be a form of 

concomitant tumor resistance and demonstrates the extensive impact a growing tumor 

can have on a host beyond the local environment.  Understanding the interplay between a 

primary tumor and secondary metastases is essential, as further identification of 

mechanisms behind concomitant tumor resistance may allow inhibition of metastatic 

growth following clinical tumor resection.   
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3.2 Introduction 

The evolution of metastatic disease from a primary tumor occurs though a series of 

essential steps – tumor cell invasion and intravasation, arrest in a distant capillary bed, 

extravasation and growth initiation in the secondary organ, and sustained growth with 

recruitment of a new vasculature
1
.  Survival of metastatic cells during each of these steps 

depends on interaction with and evasion of host responses to both the primary tumor and 

metastatic cells
2
.  The interaction between a primary tumor and the development of 

distant metastases has long been acknowledged, with clinical evidence of massive 

metastatic outgrowth following removal of primary breast and colon carcinomas
3-5

.  The 

mechanism behind concomitant tumor resistance, the ability of a primary tumor to restrict 

the development of a second tumor
6, 7

, has not been resolved.  Better understanding of 

concomitant tumor resistance would allow metastatic inhibition through supplementation 

or depletion of factors to mimic the presence of a primary tumor, and thereby continue 

secondary tumor growth restriction after primary tumor resection.   

Three hypotheses have been proposed to explain the protection from metastatic growth 

by a primary tumor: concomitant immunity, whereby a primary tumor may prime the host 

immune system and enhance clearance of metastatic cells
8
; production of inhibitory 

factors (anti-mitogenic or anti-angiogenic) from the primary tumor which prevent growth 

of the secondary tumors
5, 9

; and athrepsia, the depletion of required systemic factors by 

the primary tumor thereby preventing metastatic establishment (reviewed in 
7
).  

Investigation of concomitant tumor resistance led to the ground-breaking discovery of 

angiostatin, an anti-angiogenic factor produced by a primary tumor that is capable of 

preventing angiogenesis in secondary tumors
10

.  Concomitant immunity has been found 

to occur only in highly immunogenic tumor types, such as those arising following 

chemical insult, and only while those tumors remained small (<500 mm
3
)
11

, unless 

animals were depleted of specific regulatory T cells
12

.  The concept of athrepsia as it 

applies to metastatic growth has not been well investigated to date
7
.   

It is well established that coagulation factors are essential to successful metastasis 

formation
13

, especially for B16 murine melanoma cell lines
14-16

.  Our group and others 

have shown that elimination of individual coagulation factors restricts pulmonary 
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metastasis formation
14, 17-20

, in part by allowing increased NK immune cell killing of 

tumor cells
16, 21, 22

.  Stabilization of cell surface thrombi using the serine protease 

inhibitor aprotinin increased metastasis formation due to sustained interaction between 

thrombi and metastatic B16F10 cells
14

.  B16F10 cells express TF and are individually 

capable of activating the coagulation cascade
23

.  Thus it was hypothesized that cells 

within a B16F10 primary tumor may stimulate thrombus formation and may deplete 

systemic coagulation factors such as platelets.  Platelets have long been hypothesized to 

support cancer progression
24

 and have been definitively linked to increasing formation of 

metastases through stabilization of tumor cell arrest and increasing survival in the 

vasculature, as well as increasing extravasation and proliferation in secondary tissues.
16, 25

  

Given that tumor cell-associated thrombi are essential for successful metastatic 

progression, we hypothesized that the presence of a B16F10 primary tumor would 

therefore restrict lung metastasis.   

Here we analyzed the effect of a B16F10 primary tumor on metastasis formation.  We 

found a significant inhibition of lung metastasis formation following a secondary 

intravenous injection of B16F10-LacZ cells in primary tumor-bearing mice.  This 

decrease was due to reduced thrombus formation at the metastatic site (lung) caused by a 

significant reduction in circulating platelet numbers.  Re-constitution of platelet counts in 

tumor bearing mice using isolated murine platelets restored cell surface thrombi and led 

to equivalent metastasis formation in tumor-bearing and tumor-naïve mice. 

3.3 Materials and Methods 

3.3.1 Cell Culture 

B16F10 and B16F10-LacZ
14

 murine melanoma cells (American Type Culture Collection, 

Manassas, VA) were maintained in -minimal essential media (Invitrogen, Burlington, 

Canada), supplemented with 10% fetal bovine serum (Sigma, Mississauga, Canada) and 1 

mg/ml hygromycin (Invitrogen, B16F10-LacZ only).  For injection into mice, cells were 

trypsinized from 70-80% confluent plates and suspended in cold, sterile Hanks Balanced 

Salt Solution (HBSS, Invitrogen) to a final concentration of 5 x 10
6
/mL.   
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3.3.2 Experimental Metastasis Model 

Female C57Bl/6 mice (6-7 weeks old, Charles River) were lightly anesthetized with 

isofluorane and 100 l of the B16F10 cell preparation (primary tumor group) or cell 

vehicle (HBSS, tumor-naïve group) was injected orthotopically into the dermis (i.d.) on 

the right hind flank.  Tumor growth was evaluated by measurement with calipers in two 

perpendicular dimensions and the tumor volume was estimated using the following 

formula volume = 0.52 (width)
2
(length), for approximating the volume (mm

3
) of a 

ellipsoid.  Primary tumors were allowed to grow for 16 days, at which time B16F10-LacZ 

cells were trypsinized from 70-80% confluent plates and suspended in cold, sterile HBSS.  

Unanesthetized tumor-bearing and tumor-naïve mice then received an intravenous (i.v.) 

injection of 5x10
5
 cells in 100 l HBSS via the lateral tail vein.  Animals were sacrificed 

6 days following i.v. injection and lung tissue was isolated, stained for β-galactosidase 

activity and the number of lung surface metastases quantified.   

For platelet restoration studies, 100 µl of the platelet suspension (see 3.3.5 Platelet 

isolation and preparation) or vehicle was injected via the lateral tail vein 5 minutes prior 

to i.v. B16F10-LacZ cell injection.  Animals were sacrificed 6 days following i.v. 

injection and lung tissue was isolated, stained for β-galactosidase activity and the number 

of lung surface metastases quantified. 

All mice were 7 - 8 weeks of age at the time of injection and were cared for in 

accordance to the Canadian Council on Animal Care, under a protocol approved by the 

University of Western Ontario Council on Animal Care.   

3.3.3 Quantification of lung metastases  

To enable visualization of lung metastases, mice were euthanized 6-days following i.v. 

cell injection and whole lungs placed in phosphate buffer (0.1 M sodium phosphate 

monobasic, 0.1 M sodium phosphate dibasic, pH 7.3), on ice.  Lungs were stained with 

X-gal (Bioshop, Burlington, Canada) solution as described 
26

 to visualize LacZ-

expressing cells.  The total number of surface-visible metastases was determined on 

intact lung lobes using a stereomicroscope.  Area of individual lung metastases was 

determined using the Axiovert 200M microscope and Axiocam HRC camera utilizing 



69 

 

 

 

Axiovision 4.6 software.  Linear length and width of each metastasis was determined, and 

area of each was estimated by assuming an approximately elliptical shape and using the 

formula π x length x width/4. 

3.3.4 Assessment of circulating platelet numbers 

Sixteen days after hind flank injection of cell vehicle or B16F10 cells, tumor-naïve and 

B16F10 primary tumor-bearing mice were anesthetized with isoflurane and blood was 

drawn by cardiac puncture using a heparinized syringe and collected into purple top 

(ethylenediaminetetraacetic acid, EDTA) 2 mL tubes (BD Biosciences, Mississauga, 

Canada).  The number of platelets was determined on a Coulter LH 780 Hematology 

analyzer.  The normal platelet count seen in mice is 900 – 1600 x 10
3
 / µl but the number 

quantified on clinical hematology analyzers is frequently underestimated due to the 

smaller size of murine platelets.
27

  To ensure this did not skew our data, all 

quantifications were performed on the same machine.  For platelet re-constitution studies, 

mice received an i.v. injection of platelets 5 minutes prior to cardiac puncture and blood 

collection as above to determine the number of platelets present when B16F10-LacZ cells 

would be delivered.   

3.3.5 Platelet isolation and preparation 

For platelet re-constitution experiments, blood was obtained from female C57Bl/6 retired 

breeders (30 - 35 g) under isofluorane anaesthetic via cardiac puncture using citrated 3 

mL syringes.  Blood was collected into 2 mL Eppendorf tubes with citrate-dextrose 

solution (0.1 M trisodium citrate, 0.11 M dextrose, 71 mM citric acid monohydrate) at 

1:9 citrate-dextrose:blood ratio.  Platelets were isolated using a differential centrifugation 

protocol based on Musaji et al.
28

.  Briefly, whole blood was centrifuged at 220 g for 6 

minutes at 4C and platelet rich (PR) upper layer was collected.  Cold, buffered saline 

glucose citrate (BSGC: 8.6 mM Na2HPO4, 1.6 mM KH2PO4, 0.12 M NaCl, 0.9 mM 

EDTA, 13.6 mM NaCitrate, 11.1 mM D-Glucose, pH 7.3) was added to each tube to 1.75 

mL and inverted to mix.  PR upper layer was collected following another 220 g spin for 6 

minutes at 4C.  This step was repeated once more.  PR suspensions were pooled and 

centrifuged at 1613 g for 15 minutes at 4C to pellet platelets.  Supernatant was discarded 
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and platelets were resuspended in 1 mL cold BSGC.  To isolate platelets from other 

cellular components, the platelet suspension was centrifuged at 220 g for 6 minutes at 

4C and PR suspension was transferred to a clean Eppendorf tube.  Platelets were 

pelleted at 1613 g for 10 minutes at 4C and supernatant discarded.  Platelets were then 

resuspended to appropriate volume in BSGC for immediate injection.  To confirm that 

platelets had not become activated during the isolation procedure, a small aliquot was 

removed from the final suspension to be tested.  Only after the addition of thrombin did 

the platelets clump and the previously cloudy suspension become clear.  Animals 

received a 100 µl i.v. injection that contained platelets concentrated from 3 or 6 mL of 

whole murine blood.  Only those vials that showed no evidence of coagulation were used 

for platelet isolation.   

3.3.6 Analysis of coagulation using confocal microscopy 

To enable analysis of coagulation in vivo, confocal microscopy was performed using a 

previously developed technique
14

.  B16F10-LacZ cells were labeled in vitro using 5-

chloromethylfluorescein diacetate, Cell Tracker Green (CMFDA, Molecular Probes, 

Burlington, Ontario, Canada), according to the manufacturer‟s instructions.  Ten minutes 

before cell injection, animals received intravenous injection of 0.12 mg AlexaFluor647-

conjugated fibrinogen (Molecular Probes) in 80 µl sodium bicarbonate, pH 8.3.  Four-

hours following cell injection, animals were euthanized by an intraperitoneal injection of 

xylazine/ketamine (5.2 mg ketamine and 0.26 mg xylazine per 20 g body mass).  The 

lung was cleared of blood by gravity perfusion of HBSS through the right ventricle of the 

heart.  „Flow through‟ perfusate left the body via a puncture made in the left atrium.  

Lungs were perfused for 2 minutes, excised and frozen at –80C to allow for later 

analysis by confocal microscopy.  To visualize, lungs were thawed in cold HBSS prior to 

transfer to 0.1% paraphenylenediamine in HBSS for 10 minutes.  Lungs were assessed 

using a Zeiss LSM 410 confocal microscope, and Carl Zeiss LSM 3.99 software.  The 

presence of tumor cells was determined using green fluorescence and the focal plane 

containing the largest volume of tumor cells was identified.  At that same focal plane, the 

lung then was scanned for red fluorescence to identify thrombi.  The green and red 

fluorescence were quantified in pixels by a blinded observer using ImageJ
29

, and the ratio 
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of thrombus to tumor cell area was determined.  To ensure that visualized red 

fluorescence was due to thrombus formation and not accumulation of fluorescent 

fibrinogen that was not cleared, potentially due to vessel blockage by tumor cells, inert 

plastic microspheres (20 m, Polysciences, Pennsylvania) were injected.  Use of these 

microspheres in platelet-restoration experiments allowed examination of lung tissue for 

non-specific thrombus formation following platelet injection.   

3.3.7 Histology 

Spleens were collected and weighed; long bones were stripped of muscle tissue prior to 

fixation of tissues in 10% buffered formalin.  Bones were decalcified in Cal-Ex II 

(Fischer Scientific, New Jersey) solution prior to H&E staining of 3 µm sections.  

Megakaryocyte quantification was carried out by a trained observer under pathologist 

guidance.   

3.3.8 Statistical analysis 

The Student's unpaired t test and one-way ANOVA with a Tukey‟s Multiple Comparison 

post-test were used to compare between animal groups. The Pearson‟s rank correlation 

was used to determine relationships between various variables.  All statistics were 

calculated using GraphPad Prism 4.  A two-sided p < 0.05 was considered statistically 

significant. 

3.4 Results 

3.4.1 Primary tumor presence decreases metastasis 

To evaluate the effect of a primary tumor on early steps in the development of 

metastases, we quantified metastases using a modified model of experimental metastasis.  

Animals first received an intradermal (i.d.) injection of B16F10 cells (primary tumor 

group) or cell vehicle (tumor-naïve group).  After sixteen days, all animals received a 

secondary injection of B16F10-LacZ cells via the lateral tail vein to target cells directly 

to the lung.  This experiment was repeated multiple times with similar results; 

representative data is presented here.  Primary tumors were 533.5  33.2 mm
3
 at the time 

of secondary injection.  We found that the presence of a primary tumor significantly 
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inhibited experimental lung metastasis, as six days following secondary injection there 

were fewer X-gal positive lung surface metastases in primary tumor-bearing mice as 

compared to tumor-naïve animals (Figure 3.1 A).  Very few lung metastases were not 

positive for X-gal (3 metastases in all mice examined), and these tumors were 

significantly larger than the other metastases visualized.  It was assumed that these rare 

metastases arose from seeding by the primary tumor and were not included in subsequent 

quantification.  X-gal positive metastases that did form in the primary tumor group were 

significantly smaller than those in the tumor-naïve group (Figure 3.1 B), indicating that 

the primary tumor is not only impeding survival of arrested cells, but also the growth of 

cells that do persist.   

3.4.2 Primary tumor decreases thrombus formation following 
metastatic cell arrest 

Previous work in our and other laboratories
14, 17, 18

 has shown that efficient metastasis of 

B16F10 cells is dependent on thrombus formation at the cell surface following arrest in 

the lung microvasculature.  Therefore, we evaluated the ability of B16F10-LacZ cells to 

stimulate thrombus formation following arrest in the lung of tumor-bearing and tumor-

naïve animals.  Using a previously developed confocal microscopy technique
14

, we found 

that the presence of a primary tumor significantly reduced the size of thrombi that formed 

4-hours after secondary cell injection as compared to tumor-naïve animals (pictured in 

Figure 3.2 A and B, quantified in Figure 3.2 C). 

3.4.3 Primary tumor causes systemic changes including decreased 
platelet number and splenomegaly 

To determine the mechanism by which the presence of a primary tumor inhibited 

thrombus formation around i.v. injected cells, the number of circulating platelets was 

quantified in tumor-naïve and tumor-bearing animals.  Sixteen days following primary 

injection, blood was pulled via cardiac puncture for analysis.  It was found that primary 

tumor-bearing mice had significantly fewer circulating platelets than tumor-naïve animals 

(Figure 3.3 A).  Primary tumor-bearing mice were also found to have significantly 

enlarged spleens upon sacrifice at day 16 (Figure 3.3 B), and spleen size significantly  
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Figure 3.1 The presence of an intradermal B16F10 primary tumor significantly 

reduced lung metastasis from a secondary i.v. injection of B16F10-LacZ cells. 

 (A) Animals that received an i.d. injection of B16F10 cells had fewer lung metastases 

than animals that received a sham i.d. injection (n = 10-12/group; t-test p < 0.05).  (B) 

Lung metastases that developed in tumor-bearing mice were significantly smaller than 

those in tumor-naïve animals (n = 4/group, randomly chosen from animals in (A); t-test p 

<0.005).  Columns, mean; bars, SE. 
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 B16F10-LacZ tumor cells were labeled in vitro with 

CMFDA to provide green fluorescence. Animals 

received AlexaFluor647 conjugated fibrinogen prior to 

injection of fluorescent B16F10-LacZ cells to allow 

incorporation of fluorescent fibrin into thrombi.  

Representative confocal images taken from (A) tumor-

naïve and (B) tumor-bearing animals.  Scale 20 m.  

(C) Quantification of confocal microscopy images 

taken from tumor-naïve and tumor-bearing animals (n 

= 4/group), (t-test, p< 0.05).  Images are expressed as a 

ratio of red:green, or amount of thrombus to amount of 

tumor cell present.  Columns, mean; bars, SE. 

Figure 3.2 The presence of an intradermal 

B16F10 primary tumor reduced the association 

between thrombi and B16F10-LacZ cells in 

mouse lung microvasculature.   



75 

 

 

 

correlated positively with primary tumor weight (Figure 3.3 C) and negatively with 

platelet number (Figure 3.3 D).  Tumor weight showed a trend towards a negative 

correlation with the number of circulating platelets (Figure 3.3 E), but this did not reach 

statistical significance.  Histological analysis of spleens from tumor-bearing and tumor-

naïve animals was performed to further assess the interplay between the primary tumor 

and the spleen.  Normal spleen histology was observed in tumor-naïve animals (Figure 

3.4 A and B), but it was found that the spleens isolated from tumor-bearing animals 

showed extensive extramedullary hematopoiesis, with tri-lineage precursors throughout 

the red pulp, distorting the splenic architecture and decreasing white pulp presence 

(Figure 3.4 C & D).  In particular, there was an abundance of megakaryocytes and their 

precursors (Figure 3.4 D vs. 3.4 B).  The observed splenomegaly (Figure 3.3 B) was thus 

at least in part due to marked extramedullary hematopoiesis, and may have been 

secondary to platelet consumption in tumor bearing animals.   

To further investigate the effect of the primary tumor on platelet manufacture, long bones 

of primary tumor-bearing and tumor-naïve animals were removed and the number of 

megakaryocytes was quantified in histologic slides.  Contrary to the spleen histology, 

there was no effect of the primary tumor on the number of megakaryocytes in the long 

bones (data not shown), indicating that the tumor-stimulated platelet manufacture is in 

the spleen alone, as is common during murine stress
27

. 

3.4.4 Re-establishment of platelet number in primary tumor-bearing 
mice restores thrombus formation  

To determine if reduction in platelet number was functionally responsible for the 

decrease in lung metastasis, we strove to re-establish a normal platelet count in tumor-

bearing mice.  To this end, we isolated platelets from donor mice and injected them into 

tumor bearing animals sixteen days following primary tumor introduction.  We 

concentrated platelets from 3 mL or 6 mL of blood prior to injection and found that 

platelets isolated from 6 mL of mouse blood was required to fully restore the number of 

circulating platelets in tumor-bearing animals (Figure 3.5 A).  We next wanted to 

determine if this platelet injection allowed functional thrombus formation in response to  



76 

 

 

 

 

 

Figure 3.3 Interaction between a B16F10 primary tumor and platelet turnover. 

(A) Quantification of circulating platelets in tumor-naïve and tumor-bearing animals.  

Animals with a B16F10 primary tumor had significantly fewer platelets sixteen days 

following i.d. injection (n = 12/group, t-test p <0.05).  (B) Tumor bearing mice were 

found to have significantly enlarged spleens as compared to tumor naïve animals (n= 17-

56/group, t-test p < 0.005).  Additionally, spleen weight correlated with both (C) tumor 

size (n = 56, Pearson‟s p < 0.05, r = 0.31) and (D) platelet count (n = 12, Pearson‟s p < 

0.05, r = -0.68).  (E) Correlation between tumor size and platelet count did not reach 

significance (n = 12, Pearson‟s p = 0.29, r = -0.33).   
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Figure 3.4 Histological analysis of splenic tissue isolated from tumor-naïve (A, B) 

and tumor-bearing (C, D) animals. 

Normal splenic structure is seen in tumor-naïve animals, with distinct red (R) and white 

pulp (W).  Hypercellularity is seen in the red pulp of spleens isolated from tumor-bearing 

animals, with reduction of white pulp.  Higher power magnification shows normal red 

pulp in tumor-naïve spleen (B), marked tri-lineage extramedullary hematopoeisis, with a 

particular abundance of megakaryocytic precursors (arrows) in tumor-bearing animals 

(D). 
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secondary cell injection.  Intravenous injection of AlexaFluor647-conjugated fibrinogen 

prior to injection of unlabeled platelets or vehicle and CMFDA-labeled tumor cells 

allowed visualization of all thrombi formed in response to B16F10-LacZ tumor cells.  

Using confocal microscopy, we evaluated thrombus formation in tumor-naïve and tumor-

bearing mice following platelet vehicle injection, and tumor-bearing mice after platelet 

injection.  Injection of platelets isolated from 6 mL of blood was capable of restoring 

thrombus formation in primary tumor-bearing mice to levels equivalent to tumor-naïve 

animals (Figure 3.5 B-E).  To confirm that visualized thrombi were specific to tumor cell 

interaction and did not arise from injection of isolated platelets, a subset of tumor naïve 

animals received i.v. injection of fluorescent fibrinogen prior to injection of isolated 

platelets.  These animals did not receive B16F10-LacZ cells; rather they received an i.v. 

injection of 20 m inert fluorescent microspheres.  Arrest of these spheres did not result 

in thrombus formation or spontaneous fluorescent fibrinogen accumulation (Figure 3.5 

F).  This indicates that the thrombi observed following tumor cell injection are due to 

interaction between B16F10-LacZ cells and circulating coagulation factors.   

3.4.5 Normal platelet count required for B16F10 metastasis 

Given that injection of platelets restored functional coagulation at the metastatic cell 

surface, we quantified lung metastasis formation in mice following platelet injection.  

Sixteen days after mice received a primary tumor or sham injection, animals received an 

i.v. injection of platelets or vehicle five minutes prior to i.v.  injection of B16F10-LacZ 

cells.  Six days following secondary cell injection, the number of lung surface metastases 

was quantified. 

Tumor-naïve mice that received the platelet vehicle were found to have fewer metastases 

as compared to un-injected, tumor-naïve mice (Figure 3.6).  This was not surprising given 

the anti-coagulant component of the platelet vehicle (EDTA).  Importantly, tumor-

bearing mice that received platelets showed more lung metastases than tumor-naïve 

animals that received platelet vehicle, and showed equivalent metastasis to un-injected 

tumor-naïve mice, indicating that the re-establishment of platelet number was capable of  
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Figure.3.5 Injection of isolated murine platelets re-established circulating platelet 

number and restores thrombotic tumor emboli. 

(A) Platelets isolated from donor mice were injected into tumor-bearing mice and the 

number of circulating platelets was determined.  Injection of platelets concentrated from 6 

mL of whole blood was required to acquire platelet numbers that were not significantly 

different from tumor-naïve animals.  Functional thrombus formation was determined 

using confocal microscopy.  B16F10-LacZ tumor cells were labeled in vitro with 

CMFDA to provide green fluorescence. Animals received AlexaFluor647-conjugated 

fibrinogen prior to injection of fluorescent B16F10-LacZ cells, to allow incorporation of 

fluorescent fibrin into thrombi. (B) Quantification of confocal microscopy images taken 

from tumor-naïve and tumor-bearing animals following platelet vehicle injection, and 

tumor bearing animals following platelet injection (n = 4/group).  Injection of platelets 

concentrated from 6 mL of whole blood restored functional thrombus formation in 

response to B16F10-LacZ cell injection (ANOVA, Tukey’s post test, n.s. from tumor-

naïve group, p < 0.05 from tumor vehicle group).  Columns, mean; bars, SE.  

Representative confocal images taken from (C) tumor-naïve, (D) tumor-bearing and (E) 

tumor-bearing animals following platelet injection.  (F) Control animals that received 

platelets and fluorescent fibrinogen were given an injection of inert fluorescent 

microspheres to test for non-specific thrombus formation.  No accumulation of fibrinogen 

was seen.  Scale bar 20 m. 
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Figure 3.5 Reconstitution of platelet number in tumor-bearing animals re-

established lung metastasis formation. 

Tumor-naïve animals received an i.v. injection of platelet vehicle and tumor-bearing 

animals received an i.v. injection of platelet vehicle or isolated platelets prior to i.v. 

B16F10-LacZ cell injection (n = 12/group).  Platelet vehicle injection into tumor-naïve 

animals reduced metastasis number as compared to control (un-injected naïve and 

primary data are historical controls from Fig 1A) (ANOVA, Tukey‟s post test, p < 0.05).  

Vehicle injection into tumor-bearing mice did not further reduce metastasis from that 

seen previously in tumor-bearing animals (p > 0.05).  Platelet injection into tumor-

bearing mice showed an increase in lung metastasis as compared to vehicle injected 

tumor-bearing animals (p < 0.05) and restored lung metastasis number to that seen in 

tumor-naïve animals (p > 0.05).  Columns, mean; bars, SE. 
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restoring lung metastasis of B16F10-LacZ cells and was able to counteract the effect of 

the presence of a B16F10 primary tumor (Figure 3.6). 

3.5 Discussion 

In this study, we established that the presence of a B16F10 primary tumor was capable of 

significantly inhibiting the number and size of lung metastases arising from secondarily 

injected B16F10-LacZ cells.  This inhibition of metastasis was found to be due to a 

primary-tumor mediated reduction in circulating platelet number, resulting in insufficient 

thrombus formation in the lung following metastatic cell injection.  Restoration of 

circulating platelet number, through injection of platelets isolated from donor mice, re-

established thrombus formation in primary tumor bearing mice and allowed equivalent 

metastasis formation in both primary tumor-bearing and tumor-naïve animals.   

The negative impact of a B16F10 primary tumor on secondary metastasis was somewhat 

surprising given that the B16 cell line has been reported to stimulate pre-metastatic niche 

formation in the lung, liver, testis, spleen and kidney
30

.  Recruitment of BMDC to 

facilitate formation of a pre-metastatic niche is thought to aid metastasis formation, as 

VEGFR1
+
 cell present in the niche increase adhesion and arrest of metastatic tumor cells.  

Additionally, in vitro analysis found that B16 cells were increasingly mobile in response 

to VEGFR1
+
 cells

30
.  It is possible that B16F10 cells do not stimulate formation of the 

pre-metastatic niche as seen with the B16 cells used by Kaplan et al.
30

, or that the 

reduction in platelet number in primary tumor-bearing animals is able to inhibit 

metastasis formation in spite of pre-metastatic niche presence.  Development of 

concomitant tumor resistance has been found to occur via immunogenic (small tumors, 

immunogenic types) and non-immunogenic mechanisms (large tumors, anti-angiogenic 

or anti-mitotic mechanisms)
10, 31, 32

, but the potential for a primary tumor to both inhibit 

and promote metastasis through concomitant tumor resistance and pre-metastatic niche 

formation requires further investigation.  Importantly, in this study animals received the 

second injection of tumor cells when the primary tumor was relatively small (~530 mm
3
) 

such that the previously identified anti-angiogenic and anti-mitotic mechanisms of 

concomitant tumor resistance found to occur after primary tumors reached 2000 mm
3
 
11
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should not yet be involved.  Additionally, immunogenic control is not thought to be 

responsible for the suppression of B16F10 metastases seen here, as B16 cells were 

derived from a spontaneously formed tumor and are poorly immunogenic
12

.  Direct 

analysis of tumor immunity in a B16 model found that it was induction of CD4
+
 CD25

+
 

regulatory T cells that was responsible for the lack of prevented the development of 

concomitant tumor immunity in C57Bl/6 mice
12

. 

It is well established that platelets play an integral role in metastatic establishment
33-35

.  

Following arrest in the vasculature, tumor cells stimulate thrombus formation at their cell 

surface
14, 16, 18

.  The interaction between tumor cells and thrombi provides valuable 

adhesion contacts
36

, growth and survival factors and protection from host immune 

surveillance
16, 34

.  In pre-clinical studies, treatment of animals with an anti-coagulant such 

as heparin
14, 37

 or hiruden
17

 prior to metastatic cell injection results in significant 

reduction in pulmonary metastasis
38

.  Previous work in our laboratory also found that 

inhibition of serine-protease activity in vivo stabilized tumor cell-associated thrombi and 

increased B16F10 metastasis formation
14

.  Activated platelets were found to increase 

invasiveness of human ovarian cancer cells
39

 and tumor cells that are able to stimulate 

clot formation are more likely to be retained in the pulmonary vasculature as they are 

more likely to form stable adhesive contacts and spread along the inside of the pulmonary 

vasculature
15

.   Induction of thrombocytopenia through injection of bacterial 

lipopolysaccharide or neuraminidase significantly decreases lung metastasis of both 

strongly and weakly immunogenic tumor types
40

.  Interestingly, injection of platelets into 

thrombocytopenic animals prior to i.v cell injection did not restore metastasis number, 

potentially due to insufficient platelet injection, as evidence for platelet number rescue 

was not presented
40

.   The direct role of platelets in establishment of metastases has been 

investigated in B16 and fibrosarcoma models with conflicting results.  The positive 

correlation between platelet aggregation and metastatic ability found in the B16F10 cell 

line did not hold when individual B16F10 clones were generated and tested.
41

  Similar 

clonal investigation with the PAK 17 fibrosarcoma cell line showed that highly metastatic 

clones require platelet interaction for successful metastasis.  This disparity could be due 

to differences in analysis of platelet aggregating ability
42

, but could indicate that the most 

aggressive B16F10 clones are capable of metastasis regardless of platelet interaction, due 
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to other malignant characteristics.  For example, those clones that exhibit high metastatic 

ability without extensive platelet aggregation activity may form more extensive tumor 

cell-tumor cell associations allowing for similar protection from immune surveillance for 

the central cells as is provided by thrombus formation
21

.  Alternatively, these cells may 

indirectly stimulate platelet aggregation in vivo, which would not be readily detectable in 

vitro.  In general these two studies identified that high platelet aggregating ability is not 

sufficient for metastasis of non-metastatic cells
41

, and indicate that tumor cell-thrombus 

association is an important determinant in metastatic potential
42

. 

Interestingly, the splenomegaly identified in tumor-bearing animals was associated with 

tri-lineage extramedullary hematopoiesis, with a preponderance of megakaryocytic 

precursors.  A similar increase in hematopoiesis was not found in the bone marrow of 

tumor-bearing mice, which is in accordance with normal murine physiologic response.  

During stress, the majority of (reactive) hematopoiesis is performed in the murine 

spleen
27

.  Despite the increase in platelet manufacture in the spleen, the number of 

circulating platelets was significantly decreased in tumor-bearing mice, indicating that 

the spleen was unable to replenish the platelets being lost.   

Several possibilities exist for the cause of the platelet consumption and resulting 

thrombocytopenia in this case.  B16F10 murine melanoma cells express TF on their cell 

surface
23, 43

, therefore the cells within the tumor may activate circulating platelets 

resulting in thrombus formation at the primary tumor site.  B16F10 primary tumors tend 

be hemorrhagic with a necrotic core void of much secondary structure, and can lead to 

extensive bleeding with even minor trauma (unpublished observation).  In addition, and 

perhaps most importantly, the presence of a B16F10 primary tumor may stimulate 

disseminated intravascular coagulation.  Disseminated intravascular coagulation in cancer 

is characterized by activation of the coagulation cascade in the defective tumor 

vasculature or by pro-coagulant activity on tumor cells, or their membrane components, 

and is the most common cause of thrombocytopenia in cancer patients
34, 44

.  Local 

fibrinogen and platelet consumption then lead to systemic deficiencies and increased 

clotting time.  Although human patients may be somewhat less susceptible to tumor-

associated thrombocytopenia (thrombocytosis is the most common blood abnormality in 
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cancer patients
34, 35

), mice are known to compensate poorly for blood or platelet loss and 

easily develop anemia or thrombocytopenia following a minor insult
27

.  Interestingly, 

B16F10 cells have been found to generate large numbers of microvesicles (MV) in vitro; 

isolation and injection of these MV prior to i.v. injection of B16F10 cells has been linked 

to increased metastasis
45

.  Given the cell surface expression of TF on B16F10 cells,
23

 it 

would be anticipated that these MV would also contain TF.  Therefore, it is possible that 

injection of MV two-hours prior to injection of B16F10 cells
45

 could result in an increase 

in tumor-cell associated thrombus formation, leading to an increase in metastasis.  In the 

presence of an ongoing release of TF-containing MV from a B16F10 primary tumor, it 

would be anticipated that rather than a pro-metastatic effect of the MV, there would be 

sustained activation of the coagulation cascade leading to platelet exhaustion and/or 

depletion, as was seen here.  Therefore the release of MV from the B16F10 primary 

tumor may be partially responsible for the significant reduction in platelet numbers.   

The integral role of coagulation in metastasis formation is further indicated by the effect 

of anti-coagulant therapy in cancer patients.  Preliminary clinical trials have shown a 

significant increase in overall survival of patients randomized to receive LMWH versus 

placebo
46

. Interestingly, long-term exposure to LMWH in patients with cancer-related 

thrombosis only increased survival of those patients who did not have metastatic disease 

at the time of study enrollment
46

.  Additionally, large cohort analysis of overall 

probability of death in those patients diagnosed with cancer as compared to those 

diagnosed with cancer and thromboembolism, found that approximately 20% of patients 

with cancer alone and 90% of patients with a combined diagnosis succumbed to their 

disease within 6 months.  It has been indicated that these deaths could be attributed to 

three possible scenarios: 1) fatal recurrent pulmonary thromboembolism; 2) identification 

of a coagulation disorder may simply be a surrogate marker for more aggressive 

malignancy; 3) systemic aberrations in the coagulation pathway may result in a more 

permissive tumor cell-host interaction giving rise to extensive tumor growth resulting in 

the early death of the patient
46

.  Given these data, further analysis of modulation of the 

systemic coagulation pathway in cancer patients as a means to prevent metastasis 

establishment and premature death is warranted.   
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The development of metastases occurs in the midst of a complex interaction between a 

primary tumor and the host - the full extent of which remains unknown.  There is the 

potential for a primary tumor to both promote metastatic progression through stimulation 

of pre-metastatic niche formation, as well as to restrict metastasis through concomitant 

tumor resistance.  In this study, we identified a form of concomitant tumor resistance 

known as athrepsia, which was in this case due to primary tumor-induced 

thrombocytopenia and the resulting reduction in tumor-thrombus formation, with 

inhibition of metastasis.  Full understanding of the interplay between a primary tumor, 

the host and forming metastases will be essential to the development of strategies to 

inhibit metastatic progression, either before or after the surgical resection of the primary 

tumor.   
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Chapter 4  

4 Primary tumor presence restricts metastatic 
establishment in a murine model of human breast 
cancer 

4.1 Synopsis 

Breast cancer is the most common cancer and the second most common cause of cancer-

related mortality in Canadian women.  These deaths are not due to the presence of a 

primary tumor however, but are caused by the spread of cancer cells to sites throughout 

the body.  These cells give rise to metastases that are present at the time of diagnosis, or 

lead to tumor recurrence and patient relapse.  Analysis of breast cancer patient data 

acquired prior to the routine use of adjuvant therapies identified a pattern of breast cancer 

recurrence that was independent of disease stage at the time of surgery and appears 

synchronized with the time of tumor resection.  It appears that removal of the primary 

tumor causes a simultaneous initiation of metastatic growth through the release of growth 

factors during the wound healing process, or that the primary tumor was somehow 

restricting the growth of metastases and upon tumor resection, metastatic growth is no 

longer suppressed.  Alternatively, formation of a pre-metastatic niche, a cluster of bone 

marrow host cells that forms a supportive metastatic environment, is initiated by proteins 

released from a primary tumor.  The pre-metastatic niche forms prior to the arrival of 

metastatic cells and leads to increased tumor cell adhesion and growth.  The phenomena 

of pre-metastatic niche formation and primary tumor suppression of metastasis are 

contradictory and together they indicate that the interaction between a primary tumor, 

host systems, and metastatic cells is complex, and remains poorly understood.  Previous 

work in our laboratory has shown that a murine melanoma primary tumor is able to 

restrict the development of secondary metastasis through alterations in systemic 

hemostatic factors (Chapter 3).  Therefore, we sought to evaluate the effect of an 

established breast primary tumor on the early development of lung metastases to 

determine if the metastatic inhibition seen previously also exists in a model of human 

breast cancer 
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In this study, we investigated the effect of a breast primary tumor on the early 

development of lung metastases and found that tumor bearing animals developed 

significantly fewer lung metastases than tumor-naïve control animals.  Tumor-bearing 

animals showed an increased number of VEGFR1
+
 cells in the lung, potentially 

indicating BMDC recruitment due to expression of OPN.  Preliminary data to determine 

the mechanism of primary tumor-mediated inhibition of metastasis indicates that 

successful metastasis may depend on activation of the host hemostatic system which may 

be impaired in the presence of a primary tumor.  
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4.2 Introduction 

Breast cancer is estimated to account for 5400 deaths in Canada in 2010
1
.  These deaths 

are not due to the primary tumor, but rather because of the spread of tumor cells from the 

primary tumor to distant sites
2
.  Those tumors that have reached a relatively large size 

and/or have metastasized to several lymph nodes at the time of diagnosis carry a 

significantly higher risk of recurrence compared early-stage tumors
3
.   

Interestingly, analysis of patient data accumulated prior to the routine use of adjuvant 

chemotherapy, has identified a two-peak pattern for recurrence
3, 4

.  When all patients are 

considered, regardless of tumor stage at diagnosis, there is a sharp peak of recurrences at 

18 months post-surgery and another broad peak at 60 months
3
.  This recurrence pattern 

was identified in over 12 clinical studies, with varying peak amplitudes, but with an 

identical timeline
5, 6

.  More recent clinical data shows that this first peak no longer exists 

at 18 months, but rather, the addition of adjuvant chemo- and radiation therapy has 

shifted the major peak of recurrence to approximately 4 years
7
.  The similar patterns of 

recurrence in all patient groups regardless of disease stage at the time of surgery may 

indicate a synchronization of metastatic development upon removal of the primary 

tumor
5
.  This synchronization could be due to the release of growth factors during wound 

healing or a sudden removal of growth suppressive factors, such as angiostatin, with 

resection of the primary tumor
3, 5

.   

Concomitant tumor resistance, the ability of a primary tumor to restrict the growth of 

secondary metastases, has been identified in several pre-clinical models of metastasis and 

is thought to occur through three potential mechanisms
8
.  First, the primary tumor may 

prime the immune system to assist clearance of metastatic cells.  Second, the primary 

tumor may restrict the growth of distant metastases through production of anti-angiogenic 

molecules such as angiostatin or TSP
9
.  Third the primary tumor may systemically 

deplete essential host factors, thereby preventing the growth of any other tumors
8
.  The 

first hypothesis would not explain the clinical breast cancer data, as cells shed prior to 

tumor resection are not cleared by the immune system if they are able to cause recurrence 

at later time points.  The second or third hypothesis could explain the clinical recurrence 
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pattern however.  Removal of the primary tumor would eliminate the growth-suppressive 

molecule responsible for holding metastases in check
3
 or could free up host factors 

essential for metastatic growth.  In both scenarios, removal of the primary tumor would 

lead to a simultaneous growth initiation of distant metastases due to sudden removal or 

availability of the key factor(s). 

Alternatively, intriguing work published by McAllister, et al.
10

 showed that a human 

breast cancer xenograft did not restrict the growth of other tumors or metastases, but 

rather was capable of stimulating the growth of an otherwise-indolent transformed 

mammary epithelial cell line (HMLER-HR).  This growth stimulation was due to the 

activation and mobilization of BMDC by OPN secreted from the stimulating primary 

tumor.  The activated BMDC colonized both the stimulating and indolent tumor sites 

which allowed for supportive tumor stroma development and increased tumor growth
10

.  

As further indication that a primary tumor can have a systemic effect, BMDC stimulation 

by the presence of a primary tumor has also been described during pre-metastatic niche 

formation.  In this case, BMDC mobilization and colonization of distant normal tissues 

occurs prior to the arrival of metastatic cells, and these BMDC develop into a supportive 

environment which aids the arrest and development of metastases
11-14

.   

The pre-clinical identification of pre-metastatic niche formation conflicts with the 

observation that a primary tumor may hold metastatic growth „in check‟
6, 7

.  Together, 

these phenomena indicate that there is a complex interaction between a primary tumor, 

secondary metastases and the host environment which remains poorly understood.  

Previous work in our laboratory has shown that a murine melanoma primary tumor is 

able to restrict the development of secondary metastasis through alterations in systemic 

hemostatic factors (Chapter 3).  Therefore, we sought to evaluate the effect of an 

established breast primary tumor on the early development of lung metastases to 

determine if the metastatic inhibition seen previously also exists in a model of human 

breast cancer.   

Using a variant of the human breast carcinoma MDA-MB-231 cell line with increased 

metastatic ability (231LN), we found that the presence of a mammary fat pad (mfp) 



95 

 

 

 

tumor reduced the number of lung metastases arising from a second intravenous 

injection.  The size of lung metastases that did develop was not affected, indicating that 

the primary tumor may be affecting initial cell arrest or survival in the lung.  

Immunohistochemistry analysis of lung tissue found that tumor bearing animals showed 

increased presence of VEGFR1
+
 cells, indicating that 231LN cells may be capable of 

stimulating pre-metastatic niche formation.  Despite the presence of the metastasis-

supporting VEGFR1
+
 cells, the number of lung metastases present in tumor-bearing 

animals was suppressed, therefore the inhibition of metastasis by the primary tumor 

overwhelms the supportive role of VEGFR1
+
 cells.  Preliminary data to identify the 

mechanism behind the inhibition of metastasis by a primary tumor indicates that in 

accordance with previous work from our laboratory, successful metastasis may depend on 

activation of the host hemostatic system which may be impaired in the presence of a 

primary tumor.     

4.3 Materials and Methods 

4.3.1 Cell culture and transfections 

MDA-MB-231-luc-D3H2LN (231LN) cells were purchased from Caliper Life Sciences 

(Hopkinton, MA).  They are a variant of the MDA-MB-231 cell line which contain a 

luciferase-expressing gene and have a propensity to metastasize the lymph nodes, and 

have a high endogenous OPN production.  They were maintained in MEM (Gibco) 

supplemented with 10% fetal bovine serum (FBS, Sigma, Mississauga, Canada), 1 mM 

sodium pyruvate (Gibco) and 0.1 mM non-essential amino acids (Gibco) at 37C with 

5% CO2.  Two cell lines were generated from the 231LN cells, one carried no 

fluorescence marker, the 231LN-scr cells and the other carried a stable red fluorescent 

tdTomato marker.  231LN-tdTomato cells were generated by nucleofection of the MDA-

MB-231-luc-D3H2LN (231LN) with the tdTomato-containing pcDNA3.1 vector with a 

hygromycin resistance gene, using Amaxa nucleofection technology (Amaxa, Koeln, 

Germany) according to manufacturer‟s instructions. Briefly, 1 x 10
6
 231LN cells were 

resuspended in Cell Line Nucleofector Kit V (Amaxa), mixed with 2 μg cDNA and 

pulsed with the program X-13, as suggested by the manufacturer. Immediately after 

nucleofection, cells were transferred into wells containing pre-warmed (37C) culture 
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medium (as above).  Forty-eight hours post-nucleofection, cells were selected using 750 

μg/ml hygromycin (Gibco), to create a stably tdTomato-transfected cell line.  All cells 

were routinely tested and confirmed to be free of mycoplasma contamination using the 

Mycoplasma Plus PCR primer set (Stratagene, Cedar Creek, TX). 

4.3.2 Primary tumor and metastasis assay 

Each animal used in this assay received a mfp injection of either 231LN-scr cells or cell 

vehicle, and all animals received an i.v. injection of 231LN-tdTomato to allow for 

separation of metastases arising from the primary tumor or i.v. injection.  231LN-scr cells 

were grown to 70-80% confluence, trypsinized and washed in cold Hanks Balanced Salt 

Solution (HBSS, Invitrogen).  For mfp injection, cells were resuspended in a 50% 

Matrigel Matrix (BD Biosciences) solution with HBSS at a concentration of 4 x 10
7
 

cells/mL and 50 µL (2 x 10
6
 cells) were injected.  NIH III (nude-beige, Charles River, 

Massachusetts) mice were lightly sedated with an intraperitoneal injection of 

xylazine/ketamine (1.3 mg ketamine and .065 mg xylazine per 20 g body mass) and cells 

were into the right thoracic mammary fat pad without an incision.  As illustrated in 

Figure 4.1, control animals received a mammary fat pad injection of 50% Matrigel matrix 

(BD Biosciences) solution with HBSS following the same procedure.  Primary tumors 

were allowed to grow for 28 days, at which point all animals received a second cell 

injection.  Unanesthetized tumor-bearing and tumor-naïve mice received an intravenous 

(i.v.) injection of 5 x 10
5
 231LN-tdTomato cells in 100 l HBSS via the lateral tail vein.  

Animals were sacrificed 6 days following i.v. injection and lung tissue was isolated and 

snap-frozen to enable quantification of the number of lung surface metastases using 

fluorescence.     

4.3.3 Quantification of lung metastasis 

The total number of red-fluorescent metastases was manually determined by a blinded 

observer on intact lung lobes using an Olympus Inverted IX81 microscope.  Area of 

individual lung metastases was determined using the Olympus FluoView FV1000 

coupled to the IX81 motorized inverted system microscope at the Victoria Research 

Laboratory confocal microscope core facility.  Images were acquired with maintained 
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imaging parameters by a blinded observer and area of each metastasis was determined on 

fluorescent images using ImageJ
15

. 

4.3.4 Histology and Immunohistochemistry 

Lung tissues were fixed in 10 % neutral buffered formalin and embedded in paraffin. 

Sections were cut to 4 µm thickness and stained with H&E or with monoclonal rat anti-

mouse VEGFR1 (R&D Systems, Minneapolis Mn; #MAB471,) diluted to 10 µg/mL for 

one hour at room temperature, after heat-induced epitope retrieval. Secondary detection 

was achieved by linking to biotinylated polyclonal rabbit anti-rat antibody (Dako, 

Burlington Ontario; #E0468) diluted to 1:500 for thirty five minutes, followed by 

labeling with StreptABComplex/HRP (Dako, Burlington Ontario; #K0377) and 

diaminobenzidine (DAB). Positively-stained cells were counted by a blinded, trained 

observer on an upright microscope on a 40x objective (Olympus BX45).  

4.3.5 Western blot analysis of conditioned media 

To confirm that OPN secretion from 231LN-scr cells did not differ from the parental 

231LN cells, conditioned media was collected, concentrated and used in Western blots as 

previously described
16

.  Briefly, 231LN and 23LN-scr cells were grown to 70-80% 

confluency, trypsinized and 5 x 10
5
 cells were plated on 100 mm dishes.  Plates were 

incubated at 37C with 5% CO2 for 24 hours, then media was removed and plates washed 

twice with PBS.  Five millilitres of OPTIMEM was added to each and plates were 

returned to incubator for a further 24 hours.  OPTIMEM was drawn off and concentrated 

using Amicon Ultra centrifugal filters with a 30 000 dalton molecular weight cut off 

(Millipore; Billerica, MA).  Cells were harvested from plates and counted using a 

hemocytometer.  Using the number of cells, volumes of conditioned media were 

calculated to represent a specified number of cells (1 x 10
5
), allowing conditioned 

medium from equal numbers of cells to be loaded for Western blotting.   

Western blots were carried out using the BioRad Mini Protean II Cell system.  

Polyacrylamide gels (8%) were loaded with concentrated conditioned media with 5X 

reducing loading buffer.  After electrophoresis, separated proteins were transferred to 

polyvinylidene fluoride (PVDF) membranes (Amersham, GE Healthcare; Baie d‟Urfe, 
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QC).  Membranes were blocked with 5% milk in TBS-T (tris-buffered saline with 0.1% 

Tween) for one hour and after rinsing with TBS-T, were incubated with anti-OPN mAb 

53 mouse monoclonal antibody (Assay Designs, Enzo Life Sciences; Plymouth, PA) at 

1:1000 in TBS-T at 4C overnight.  After rinsing three times with TBS-T, anti-mouse 

(Amersham) secondary antibody was incubated at room temperature for one hour.  After 

rinsing three times with TBS-T, membranes were incubated with ECL Plus Western 

Blotting Detection System (Amersham) and exposed to film in a dark room.   

4.3.6 Flow cytometry 

To compare TF expression between the parental MDA-MB-231 (ATCC), and 231LN-scr 

and 231LN-tdTomato cell lines, all cells were grown to 70-80% confluency, trypsinized 

and washed twice with cold flow buffer (PBS + 2% FBS).  Cells were resuspended in 

cold flow buffer (1 x 10
6
 cells/mL) and separated into 100 µl aliquots.  Cells were 

incubated with 3 µl anti-tissue factor antibody (FITC-conjugated anti-human tissue 

factor, 4508CJ American Diagnostica, Stamford, CT) or 4 µl control antibody to account 

for non-specific binding  (FITC-conjugated Mouse IgG1, 349041 BD Biosciences, San 

Jose, CA) for 30 minutes with occasional vortexing.  Cells were then washed twice with 

excess volume PBS, resuspended in cold flow buffer prior to analysis on an EPICS XL-

MCL flow cytometer (Beckman Coulter, Mississauga, ON).  A minimum of 1 x 10
5
 

FITC
+
 events were counted per sample.   

4.4 Results 

4.4.1 Primary tumor presence decreases lung metastasis 

To evaluate the effect of a human breast adenocarcinoma primary tumor on the early 

development of metastases, we utilized a modified model of experimental metastasis 

where animals received both a primary and secondary tumor cell injection (Figure 4.1 a).  

Animals first received a mammary fat pad injection of 231LN-scr cells (primary tumor 

group) or cell vehicle (tumor-naïve group).  After twenty-eight days, when primary 

tumors had reached ~750 mm
3 

(Figure 4.1 b), all animals received a secondary injection 

of 231LN-tdTomato cells via the lateral tail vein to target cells directly to the lung.  The 

fluorescent label in 231LN-tdTomato cells enabled delineation of metastases arising from  
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Figure 4.1 Timeline of primary tumor and metastasis injection model. 

(a) Experimental model used to analyze the effect of a primary tumor on the early 

development of metastases.  Animals first received a mammary fat pad injection of 

Matrigel (cell vehicle) or 231LN-scr cells suspended in Matrigel.  Following primary 

tumor establishment all animals received an i.v. injection of 231LN-tdTomato cells.  Six-

days following i.v. injections all animals were sacrificed and lung and primary tumor 

tissues were collected.  (b) Primary tumor growth of 231LN-scr cells.  Animals received 

an i.v. injection of 231LN-tdTomato cells on day 28 of tumor growth when primary 

tumors were approximately 750 mm
3
. 

a 

b 
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the i.v. injection.  We found that the presence of a primary tumor significantly inhibited 

experimental lung metastasis, as six days following secondary injection there were fewer 

red-fluorescent lung surface metastases in primary tumor-bearing mice as compared to 

tumor-naïve animals (Figure 4.2 a).   There was no difference in the size of those lung 

metastases that did form in the primary tumor-bearing and tumor-naïve group (Figure 4.2 

b).  Histological analysis of lung tissue identified single tumor cells and small clusters of 

tumor cells in both tumor-naïve and tumor-bearing animals (Figure 4.2 c and d), in 

agreement with the small size of metastases determined using fluorescence microscopy. 

4.4.2 BMDC recruitment to the lung 

Previous reports have shown that expression of OPN from a primary tumor can stimulate 

mobilization of BMDC to colonize primary tumor stroma
10

.  It has also been shown that 

proteins secreted from a primary tumor can stimulate VEGFR1
+
 BMDC recruitment to 

form the pre-metastatic niche, which may lead to increased metastatic cell arrest and 

growth
12, 17

.  Therefore, we performed immunohistochemistry to determine if VEGFR1
+
 

cells were present in the lung of primary tumor-bearing or tumor-naïve animals and if 

these cells were found in association with 231LN-tdTomato cells.  Quantification of 

immunohistochemistry slides found significantly more VEGFR1
+
 cells in lung tissue of 

primary tumor-bearing animals as compared to tumor-naïve controls (Figure 4.3 a).  

Additionally, large clusters of more than fifteen VEGFR1
+
 cells were found in primary 

tumor-bearing animals, potentially indicating the presence of a pre-metastatic niche 

(Figure 4.3 b).  These large clusters were not visualized in control lung tissue.  Tumor 

cells were found associated within the clusters of VEGFR1
+
 cells, either in small groups 

of breast cancer cells or as single tumor cells in both primary tumor-bearing (Figure 4.3 

c) and tumor-naïve animals (Figure 4.3 d).   

4.4.3 OPN expression by 231LNscr cells 

To determine if the increased presence of VEFGR1
+
 cells in the lung was due to secretion 

of the BMDC-stimulating protein, OPN, Western blot analysis of conditioned media 

samples was performed.  It was found that 231LN-scr cells maintained a similarly-high 

level of OPN secretion as the 231LN cells after extended in vitro culture (Figure 4.4),  
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Figure 4.2 Primary tumor presence significantly reduced pulmonary metastasis 

(a) The presence of a 231LN-scr primary tumor significantly reduced the number of 

231LN-tdTomato lung metastases as compared to tumor-naïve controls (n = 13-15/group; 

t-test, p < 0.05).  (b) Lung metastases in primary tumor-bearing animals were equivalent 

in size to their tumor-naïve controls (n = 13-15/group; t-test, p > 0.05).  (c) Histological 

analysis showed isolated tumor cells (arrowhead) or (d) small clusters of tumor cells 

(outline) in both primary tumor-bearing and tumor-naïve animals. Scale 50 µm. 

a b 

c d 
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Figure 4.3 Primary tumor presence increases the number of VEGFR1
+
 cells in the 

lung.   

(a)  Quantification of immunohistochemistry staining for VEGFR1 identified a 

significant increase in the number of VEGFR1
+
 cells in the lung of primary tumor-

bearing animals (n = 8/group, t-test p < 0.005).  Large clusters of more than 15 VEGFR1
+
 

cells were only visualized in primary tumor-bearing mice (b) and tumor cells (arrow 

heads) were found associated within the clusters of VEGFR1
+
 cells in both primary 

tumor-bearing (c) and tumor-naïve animals (d). 

a b 

c d 
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therefore the increased presence of VEGFR1
+
 cells may be due to BMDC recruitment 

stimulated by OPN secretion.  Interestingly, despite the increased presence of potentially 

metastasis-promoting VEGFR1
+
 cells

17
, primary tumor-bearing animals showed reduced 

metastasis (Figure 4.1 a).    

4.4.4 Tissue Factor expression 

Previous work in our laboratory has shown that a B16F10 murine melanoma primary 

tumor inhibits metastatic establishment through depletion of circulating platelet numbers 

(Chapter 3).  High levels of TF on the surface of B16F10 cells
18

 results in thrombus 

formation following arrest of these cells in the lung, which is essential for metastatic 

spread (Chapter 3).  Therefore, expression of TF on 231LN-scr and 231LN- 

tdTomato cells was evaluated by flow cytometry.  It was found that in accordance with 

previously published MDA-MB-231 parental cell data
19

, MDA-MB-231 cells (Figure 4.5 

a) as well as both the 231LN-scr (Figure 4.5 b) and 231LN-tdTomato (Figure 4.5 c) cell 

lines indeed express TF, indicating that these cells should be capable of stimulating 

thrombus formation, and successful thrombus formation may play a key role in the 

establishment of lung metastases, as has been found previously for MDA-MB-231
19

.  

4.5 Discussion 

The ability of a primary tumor to impact the development of metastases can take two 

forms.  Through stimulation of a pre-metastatic niche a tumor can increase metastatic 

establishment, or through concomitant tumor resistance a tumor can prevent successful 

metastasis.  In this study, we determined that the presence of a 231LN-scr mammary fat 

pad primary tumor significantly inhibited the early establishment of 231LN-tdTomato 

lung metastases.  This inhibition is likely due to a decrease in sustained cell arrest or 

survival in the lung vasculature rather than an inhibition of growth, as the size of those 

metastases that did develop was unaltered by the presence of a primary tumor.  As has 

been demonstrated with B16 cells
17

, the 231LN-scr primary tumor led to a significant 

increase in the number of VEGFR1
+
 cells in the lung, potentially due to OPN secretion 

and stimulation of BMDC recruitment.  The presence of VEGFR1
+
 cells has previously 
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been reported to increase lung metastasis through initiation of pre-metastatic niche 

formation, yet in this study, the presence of a primary tumor inhibited metastasis.  The 

mechanism behind the significant decrease in metastasis remains unclear, but appears to 

override the metastasis-stimulating effect of VEGFR1
+
 cells.     

As outlined in Chapter 3, the presence of a B16F10 melanoma primary tumor was found 

to inhibit lung metastasis formation due to a significant reduction in the circulating 

platelet numbers in tumor-bearing animals.  This led to an impairment of tumor cell 

surface-thrombus formation following i.v. injection of B16F10-LacZ cells.  Restoration 

of the platelet number re-established thrombus formation as well as lung metastasis.  

Given that the B16F10
18

, 231LN-scr, and 231LN-tdTomato cells all express TF on the 

cell surface and the importance of thrombus formation in successful B16F10 metastasis, 

it is possible that thrombus formation may play a key role in metastasis of 231LN cells.  

The presence of a 231LN-scr primary tumor may result in a similar depletion of 

circulating platelets as seen in the B16F10 model.  Analysis of circulating platelet 

numbers in 231LN-scr tumor bearing animals is ongoing in our laboratory.   

The inability to form a thrombus during metastasis in the B16F10 model system may lead 

to an increase in NK-mediated cell killing
20

 as C57Bl/6 mice are fully immunocompetent.  

In the 231LN model however, the NIH III animals do not have functional T-cells, B-cells 

or NK cells
21

, making it improbable that increased immune surveillance in the absence of 

thrombus formation leads to the reduction in metastasis seen here.  Thrombus formation 

is also known to result in increased stable cell adhesion in the lung
22, 23

, therefore the lack 

of thrombus formation may result in an increased number of cells passing through the 

lung capillary bed or increased cell death due to anoikis from lack of stable adhesion
24

.  

Unlike other examples of concomitant tumor resistance where the release of anti-

angiogenic molecules restricts metastatic growth
9
, it is not anticipated that inhibition of 

angiogenesis is responsible for the decrease in metastasis seen here.  First, there was no 

size difference between metastases quantified in the tumor-bearing and tumor-naïve 

animals.  Second, metastases found in both primary tumor-bearing and tumor-naïve 

animals were very early in development and were less than 1 mm in diameter and 

therefore have not reached a size where they need to recruit their own blood supply
25, 26

.  
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Additionally, previous work in a fibroscarcoma model has found a biphasic pattern of 

concomitant tumor resistance
27

. It was found that an immunogenic tumor (MC-C 

fibrosarcoma) is capable of stimulating increased immune surveillance of metastatic cells 

when the primary tumor is less than 500 mm
3
 and is capable of restricting metastatic 

growth through inhibition of angiogenesis when the same tumor was greater than 2000 

mm
3 27

.  Primary tumors between 500 and 1500 mm
3
 had no effect on metastatic 

progression
27

.  In the 231LN model used here, primary tumors were approximately 750 

mm
3
 at the time of the second injection and therefore were within the range when no 

significant effect on metastasis was identified previously.  It is unknown if the MC-C 

fibrosarcoma cell line expresses TF or if it is highly thrombogenic, though a difference in 

TF expression may account for the differential pattern of inhibition seen between the 

MC-C and the B16F10 (Chapter 3) and the 231LN-scr cell lines.  

The MDA-MB-231 cell line has previously been shown to stimulate BMDC migration to 

tumor sites
10

, and to the pre-metastatic niche
12

.  Expression of OPN from the MDA-MB-

231 cell line was found to mobilize BMDCs and stimulated their colonization of primary 

tumor sites, which led to growth instigation in an otherwise-indolent cell line
10

.  

Additionally, expression of lysyl oxidase by a MDA-MB-231 primary tumor led to 

increased collagen IV crosslinking and increased CD11b
+
 myeloid cell recruitment to the 

lung
12

.  These essential components of the pre-metastatic niche increased metastatic cell 

recruitment and tumor cell invasion
12

.  Here, we found a significant increase in 

VEGFR1
+
 cells in the lung of primary tumor-bearing animals, but this increase was 

unable to promote metastasis, or was unable to overcome the inhibitory influence of the 

primary tumor.  

Histological analysis identified the presence of VEGFR1
+
 cells in both tumor-naïve and 

primary tumor-bearing animals, and association of these cells with tumor cells in both 

animal groups.  Larger numbers of VEGFR1
+
 cells and the presence of clusters of more 

than fifteen VEGFR1
+
 cells were only identified in primary tumor-bearing animals, 

potentially indicating the presence of a pre-metastatic niche.  This niche formation could 

be due to expression of OPN from the 231LN-scr primary tumor.  Further analysis of 
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Figure 4.4 Western blot analysis of conditioned media from 231LN and 231LN-scr 

cells. 

23lLN and 231LN-scr cells were cultured in vitro for 4-weeks prior to isolation of 

conditioned media to determine secreted OPN levels.  Control transfection with a 

scrambled shRNA sequence does not appear to have affected OPN expression, as similar 

levels of OPN secretion were found in the 231LN and 231-scr cell conditioned media.  

Multiple bands of OPN protein are present between 70 and 95 kDa. 

 

231LN 231LN-scr 

95 kDa  

70 kDa 



107 

 

 

 

 

Figure 4.5 Flow cytometry analysis of TF expression. 

Analysis of cell surface expression of TF by flow cytometry showed that all MDA-MB-

231 (a), 231LN-scr (b) and 231LN-tdTomato (c) cells express high levels of TF.  Grey 

curves represent control IgG1 antibody; black curves represent TF-specific antibody. 

  

b 

a 

c 

TF - FITC Log fluorescence 
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lung tissue is required to determine if other hallmarks of the pre-metastatic niche are 

present, such as increased FN deposition from fibroblasts, presence of VEGFR2
+
 or the 

presence of CD11b
+
 myeloid cells.  Additionally, we are analyzing the 231LN-scr cell 

line to determine the expression level of several molecules thought to be important in 

stimulating pre-metastatic niche formation.  Along with OPN, TNF, TGFβ, VEGF and 

PlGF have all been implicated in BMDC activation and mobilization resulting in pre-

metastatic niche establishment
14

.   

Along with the metastasis-promoting protein, OPN, 231LN cells were shown to express 

TF on their cell surface, indicating that they may depend on thrombus formation for 

successful metastasis.  Establishing if the presence of a 231LN-scr primary tumor reduces 

circulating platelet numbers, as seen in the B16F10 model (Chapter 3), will be essential 

to determine if a common mechanism of metastatic inhibition exists in those tumor types 

that express high levels of TF.  If so, this would indicate that initiation of anti-coagulant 

therapy may prevent metastatic establishment prior to primary tumor resection, and 

extended treatment with low dose anti-coagulant therapies may provide long-term clinical 

benefit.  

The mechanism behind the decrease in metastasis identified here remains unclear and is 

being investigated in ongoing work in our laboratory.  Other ongoing work to elucidate 

the mechanism behind metastatic inhibition includes time course analysis following 

metastatic cell injection to determine if the presence of a primary tumor inhibits initial 

cell arrest, sustained cell arrest, or tumor cell survival in the lung.  Extra-pulmonary 

organs will also be evaluated to determine if iv-injected 231LN-tdTomato cells do indeed 

pass right through the lung capillary bed and reach distant viscera more frequently in 

primary tumor-bearing animals.  Previous work with anticoagulants has shown that 

inhibition of coagulation can lead to impaired cell arrest and reduced pulmonary 

metastasis
28

. 

Understanding the mechanism behind primary tumor inhibition of metastasis will prove 

invaluable in elucidating the interactions between primary tumor, the host, and 

metastases.  Significant breakthroughs in treatment options could result, as it may be 
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possible to restrict metastatic growth by providing or removing the essential factor(s) 

following primary tumor resection, leading to continued metastatic inhibition.   

  



110 

 

 

 

4.6 References 

 1. Marrett L, Dryer D, Logan H, Mery L, Morison H, Schacter B, Villeneuve G, 

Canadian Cancer Society/National Cancer Institute of Canada: Canadian Cancer 

Statistics, 2007. 

 2. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of 

cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-72. 

 3. Retsky M, Demicheli R, Hrushesky WJ. Does surgery induce angiogenesis in 

breast cancer? Indirect evidence from relapse pattern and mammography paradox. Int J 

Surg 2005;3:179-87. 

 4. Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast 

cancer after primary therapy. J Clin Oncol 1996;14:2738-46. 

 5. Demicheli R, Retsky MW, Hrushesky WJ, Baum M. Tumor dormancy and 

surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin 

Pract Oncol 2007;4:699-710. 

 6. Demicheli R, Retsky MW, Hrushesky WJ, Baum M, Gukas ID. The effects of 

surgery on tumor growth: a century of investigations. Ann Oncol 2008;19:1821-8. 

 7. Brackstone M, Townson JL, Chambers AF. Tumour dormancy in breast cancer: 

an update. Breast Cancer Res 2007;9:208. 

 8. Gorelik E. Concomitant tumor immunity and the resistance to a second tumor 

challenge. Advances in cancer research 1983;39:71-120. 

 9. Folkman J. Angiogenesis inhibitors generated by tumors. Molecular medicine 

(Cambridge, Mass 1995;1:120-2. 

 10. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, 

Reinhardt F, Harris LN, Hylander BL, Repasky EA, Weinberg RA. Systemic endocrine 

instigation of indolent tumor growth requires osteopontin. Cell 2008;133:994-1005. 

 11. Kaplan RN, Rafii S, Lyden D. Preparing the "soil": the premetastatic niche. 

Cancer Res 2006;66:11089-93. 

 12. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia 

AJ. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment 

to form the premetastatic niche. Cancer Cell 2009;15:35-44. 

 13. Psaila B, Kaplan RN, Port ER, Lyden D. Priming the 'soil' for breast cancer 

metastasis: the pre-metastatic niche. Breast Dis 2006;26:65-74. 

 14. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-

metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol;21:139-46. 



111 

 

 

 

 15. Rasband WS. ImageJ Bethesda, Maryland, USA: National Institutes of 

Health, 1997-2006:http://rsb.info.nih.gov/ij/. 

 16. Schulze EB, Hedley BD, Goodale D, Postenka CO, Al-Katib W, Tuck AB, 

Chambers AF, Allan AL. The thrombin inhibitor Argatroban reduces breast cancer 

malignancy and metastasis via osteopontin-dependent and osteopontin-independent 

mechanisms. Breast Cancer Res Treat 2008;112:243-54. 

 17. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, 

MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, et al. VEGFR1-positive 

haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 

2005;438:820-7. 

 18. Kirszberg C, Lima LG, Da Silva de Oliveira A, Pickering W, Gray E, 

Barrowcliffe TW, Rumjanek VM, Monteiro RQ. Simultaneous tissue factor expression 

and phosphatidylserine exposure account for the highly procoagulant pattern of 

melanoma cell lines. Melanoma research 2009;19:301-8. 

 19. Berny-Lang MA, Aslan JE, Tormoen GW, Patel IA, Bock PE, Gruber A, 

McCarty OJ. Promotion of experimental thrombus formation by the procoagulant activity 

of breast cancer cells. Phys Biol;8:015014. 

 20. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, 

Kombrinck KW, Hu Z, Barney KA, Degen JL. Tumor cell-associated tissue factor and 

circulating hemostatic factors cooperate to increase metastatic potential through natural 

killer cell-dependent and-independent mechanisms. Blood 2007;110:133-41. 

 21. Oncology Animal Models. In: Laboratories CR, ed., vol. 2011 Wilmington, 

Massachusetts, 2011. 

 22. Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, Muschel RJ. 

Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early 

metastatic colony formation. Cancer Res 2004;64:8613-9. 

 23. Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL, 

Bugge TH. Fibrinogen is an important determinant of the metastatic potential of 

circulating tumor cells. Blood 2000;96:3302-9. 

 24. Reijerkerk A, Voest EE, Gebbink MF. No grip, no growth: the conceptual 

basis of excessive proteolysis in the treatment of cancer. Eur J Cancer 2000;36:1695-705. 

 25. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: 

balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat 

Med 1995;1:149-53. 

 26. Folkman J. Incipient angiogenesis. Journal of the National Cancer Institute 

2000;92:94-5. 

http://rsb.info.nih.gov/ij/


112 

 

 

 

 27. Franco M, Bustuoabad OD, di Gianni PD, Goldman A, Pasqualini CD, 

Ruggiero RA. A serum-mediated mechanism for concomitant resistance shared by 

immunogenic and non-immunogenic murine tumours. British journal of cancer 

1996;74:178-86. 

 28. Esumi N, Fan D, Fidler IJ. Inhibition of murine melanoma experimental 

metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer 

Res 1991;51:4549-56. 

 

 

 

 

 



113 

 

 

 

Chapter 5  

5 General Discussion 

5.1 Thesis summary 

The interaction between tumor cells and the host is essential at all stages of cancer 

progression, but is exceptionally important during metastasis.  As cells move into the host 

vasculature and are carried to distant organs, they encounter all new environments.  To 

withstand the challenges that these environments present, tumor cells must possess a 

means of exploiting or avoiding the host response.  This body of work demonstrates that 

metastatic progression depends not only on the innate characteristics of the tumor cells, 

but also on their ability to manipulate host systems.  Intriguingly, the relationship 

between host and tumor is not a simple tumor (promotion) versus host (inhibition), as this 

work also demonstrates that in some cases it is the host which can promote metastasis, 

while the primary tumor may inhibit metastatic progression.  A major component of the 

tumor-host interaction is the host hemostatic system, which plays a key role in metastatic 

progression. 

It has been well established that many cell lines (LLC and B16 in particular) depend on 

thrombus formation for successful metastasis
1-5

.  Direct activation of circulating 

hemostatic factors through expression of TF by tumor cells is a key determinant of 

metastatic potential by inhibiting NK cell-mediated clearance of micrometastases
4, 5

.   

Indeed, inhibition of thrombus formation through treatment with anti-coagulants can lead 

to a significant inhibition of pulmonary metastasis
6, 7

.  In accordance with the important 

role of hemostatic factors on metastasis, in Chapter 2 we demonstrated that treatment 

with the anti-fibrionolytic agents aprotinin and EACA stabilized the interaction between 

thrombi and tumor cells in the lung vasculature and increased pulmonary metastasis of 

TF-expressing B16F10 cells.  Importantly, previous pre-clinical analysis of aprotinin has 

shown varying impacts on metastasis, depending on the model and cell line used, without 

giving insight into its mechanism of action
8-12

.  Several studies found that aprotinin could 

decrease metastasis potentially through inhibition of tumor cell extravasation
8, 12

 but the 
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work presented in Chapter 2 definitively shows that the survival benefit afforded by 

increased interaction with thrombi while in the host vasculature outweighs any anti-

metastatic effects. 

Chapter 2 also describes the development of a novel and highly-useful fluorescence 

imaging technique where the interaction between tumor cells and thrombi are visualized 

in the intact mouse lung.  Through maintenance of experimental and imaging parameters, 

the confocal images acquired can be used for quantification of this interaction.  This 

straightforward imaging protocol was also utilized in Chapter 3 to investigate the impact 

of a primary tumor on the association between thrombi and metastatic cells and is easily 

modified to apply to other model systems.     

The data presented in Chapter 2 firmly establishes the importance of hemostasis in tumor 

cell-host interactions during metastasis.  In the clinical setting however, the interaction 

between host and tumor cells may also be modulated by the presence of a primary tumor.  

Pre-clinical investigation into the effect of a primary tumor on metastasis has shown that 

the fate of metastatic cells can be largely dependent on the presence of a primary tumor
13, 

14
.  Through stimulation of BMDC to form a pre-metastatic niche a primary tumor may 

promote metastasis
15

, or it can cause a significant reduction in metastatic progression 

through a phenomenon known as concomitant tumor resistance
13

.  Differential expression 

of metastasis-promoting (OPN
16

, lysyl oxidase
17

) or -inhibiting factors (angiostatin, 

TSP
18

) from the primary tumor have been suggested to be responsible for these disparate 

effects.  In Chapter 3, we present a previously under-studied mechanism behind 

concomitant tumor resistance, athrepsia – where the primary tumor usurps an essential 

host resource thereby preventing metastatic growth
19

.  In this study, we found a B16F10 

primary tumor-induced thrombocytopenia in the host, which led to insufficient metastatic 

tumor cell-thrombus association.  Given the substantial benefit of this interaction to 

metastasis, as identified in Chapter 2, it was not surprising that inhibition of this 

thrombus association with metastatic cells by the primary tumor resulted in a reduction of 

lung metastasis.  Importantly, re-establishment of a normal circulating platelet number 

was able to restore lung metastasis levels to that seen in tumor-naïve animals.   
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Given that athrepsia has not been well established as a mechanism for concomitant tumor 

resistance, there was concern that the phenomenon observed in Chapter 3 was specific to 

the B16F10 cell line.  Therefore, in Chapter 4 we sought to determine if a similar 

phenomenon existed in a murine model of human breast cancer.  

Utilizing a variant of the MDA-MB-231 human breast cancer cell line (231LN) we 

evaluated the effect of a primary tumor on the development of metastases. Intriguingly, 

the same pattern of metastatic inhibition by a primary tumor was identified in the 231LN 

model.  Additionally, the 231LN cells were found to express high levels of TF, indicating 

that thrombus association may play a key role in their ability to form successful 

metastases.  An important difference between the B16F10 and 231LN models is the 

immunocompetency of the host.  B16F10 cells are syngeneic to and grow well in the 

fully immunocompetent C57Bl/6 mouse strain.  The 231LN cells, however are grown in 

the NIH III strain, which have impaired T-, B- and NK cell function
20

.  Although the 

essential role for tumor cell-associated thrombi in metastasis in the B16F10 (syngeneic) 

model may be related to increased NK cell surveillance of those cells not protected by 

thrombi
5
, in the 231LN (NIH III) model this same tumor cell surveillance would not be 

expected, given the lack of NK cell function.  It is possible that in the 231LN model, a 

decrease in thrombus formation leads to a reduction in metastatic cell retention in the 

pulmonary vasculature
7
; ongoing investigation of early time points following i.v. tumor 

cell injection will evaluate this possibility.   

Interestingly, the presence of either a B16F10 or 231LN primary tumor led to the 

development of fewer lung metastases, yet only in the B16F10 model were those lung 

metastases of a smaller size.  In both models, animals were sacrificed six days following 

i.v. injection, yet the mean B16F10-LacZ metastasis size was approximately 18000 µm
3
, 

whereas the 231LN-tdTomato metastases were only 300 µm
3
.  The B16F10 cell line is 

exceptionally aggressive, and most metastases had begun to form small colonies at the 

time of sacrifice.  The 231LN-tdTomato cells however, existed mainly as groups of 3-4 

cells without showing signs of colony formation or extensive growth.  Therefore, it is 

possible that the 231LN primary tumor would also inhibit the growth of lung metastases, 
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but this effect was not yet visualized because of the delayed growth initiation as 

compared to the B16F10 cells.   

Identification of concomitant tumor resistance in the both the B16F10 and 231LN models 

was somewhat surprising, given the work showing that primary tumors arising from both 

the B16
15

 and MDA-MB-231
16, 17

 cell lines are capable of stimulating metastasis through 

BMDC mobilization.  Intriguingly, we identified an increase in VEGFR1
+
 cells in the 

lung of 231LN primary tumor bearing animals. It is not immediately clear why in our 

study a 231LN primary tumor leads to an inhibition of metastasis, given the similar effect 

on VEGFR1
+
 cells as in the work of Kaplan et al.

15
 and Erler et al. 

17
, but it may be due to 

differences that arose following the in vivo passage and transfection of the 231LN cells 

or due to inherent differences between mouse strains used.  Our work was carried out in 

NIH III animals with impaired T-, B- and  NK-cell function
20

 whereas work published by 

Erler, JT et al.
17, 21

 was carried out in nude (nu/nu) animals lacking T-cells
20

.  

Importantly, it has been shown that the MDA-MB-231 cells
22

, 231LN and 231LN-scr 

cells all express OPN, a key secreted protein required for BMDC mobilization and 

colonization of distant tissues.  It is possible that the pre-metastatic niche formed in 

response to 231LN-scr cells does not contain other essential components such as FN or 

CD11b+ myeloid cells
15, 17

, therefore as part of ongoing work within our laboratory we 

are analyzing the lung tissues of primary tumor-bearing and tumor-naïve animals to 

potentially identify other facets of the pre-metastatic niche.   

The work presented in this thesis illustrates the importance of tumor cell-host interactions 

in the establishment of metastases.  The roles of each player are not clearly defined as 

tumor versus host with the tumor stimulating metastatic progression and the host striving 

to inhibit it – as shown in Chapters 3 and 4, the primary tumor may actually inhibit 

metastasis formation through alterations in host hemostasis.  Metastatic progression 

appears to exist in a delicate balance between promotion and inhibition of metastasis by 

the primary tumor through interaction with host systems.  Further understanding of this 

ability of a primary tumor to manipulate hemostasis will be invaluable in gaining insight 

into tumor progression and the global nature of metastasis.   
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5.2 Experimental Implications 

5.2.1 Hemostasis in cancer progression 

Most cancer patients with metastatic disease also show some degree of coagulopathy
23, 24

.  

Perturbations in hemostatsis may occur as a result of surgery, reduced patient mobility, 

chemotherapeutics or anti-angiogenic drugs, or because of blood flow disruptions 

through the tumor(s) due to aberrant vascular structures
25

.  Additionally, as tumors 

become increasingly aggressive, there can be a pro-coagulant conversion of cancer cells 

characterized by increased expression of TF or CP.  Several oncogenes are responsible 

for driving transcription of TF, and for increasing microvesicle release, which can also 

drive systemic coagulopathy (reviewed in 
25

).  Investigation of the role of TF in cancer 

progression has shown that TF expression can be a marker of tumor stage and severity, as 

high TF expression correlates with poor patient outcome in colorectal and prostate 

cancer.  Additionally, it can be used as a predictor of pro-thrombotic risk
26

.  Pre-clinical 

investigation has shown that TF expression is not a key determinant of primary tumor-

forming ability, but can be essential for pulmonary metastasis
4, 25

.  In Chapter 3 we 

identify an additional effect of TF-expressing cancer cells – that pro-coagulant activity of 

a primary tumor can perturb host hemostasis leading to thrombocytopenia, prior to the 

involvement of metastatic cells.  Given the striking effect of thrombocytopenia on the 

association between tumor cells and thrombi, and the subsequent inhibition of metastasis 

seen in Chapter 3, clinical treatment to mimic this effect with anti-coagulants or through 

platelet depletion could lead to a similar inhibition of metastasis.  Identification of those 

patients with high TF expression in primary tumor tissue or on circulating microvesicles 

might identify those patients who would benefit from anti-coagulant therapy, even in the 

absence of symptoms of altered hemostasis.  Early treatment of with anti-coagulants 

might prevent metastasis from a primary tumor that has acquired a pro-thrombotic 

phenotype but has not yet metastasized.  It may also prevent the formation of VTE deep 

vein thromboses by identifying patients who would be prone to thrombotic events prior to 

symptom presentation.   

Additionally, knowledge of TF expression prior to tumor resection may allow the 

physicians to make an informed decision regarding the inclusion of anti-fibrinolytic 
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agents at the time of surgery.  If a patient is identified as having a pro-thrombotic 

expression pattern, it is more likely that those cells shed from that primary tumor will 

exploit host hemostatic systems to successfully metastasize.  By the same reasoning,  it 

may be also be advisable to avoid treatment with agents that would stabilize the 

interaction between metastatic cells and thrombi, as shown in Chapter 2, as stabilization 

of this interaction may lead to a significant increase in metastasis.   

5.2.2 Concomitant tumor resistance and murine models of metastasis 

Investigation of metastasis is generally performed using two types of experimental 

models, each with their benefits and challenges
27

.  In a spontaneous metastasis model, a 

primary tumor is genetically induced or injected into an orthotopic or subcutaneous site 

and the animal is observed over time to identify signs of metastatic disease.  The 

spontaneous metastasis model is the most clinically relevant of current models used, as it 

most closely mimics patient disease, with primary tumor development followed by 

metastatic progression.  The major drawback, however is establishing a timeline of 

metastasis formation so that tissues can be analyzed at the best stage of metastasis 

development.  In well-established models, the timing of metastatic progression is known 

and animals can be sacrificed at essential time-points, but establishing this information 

takes a great deal of time and a large number of animals.  Additionally, spontaneous 

metastasis models generally take an extensive length of time to allow for primary tumor 

development and then metastatic progression.  Finally, the inability to measure the 

number of cells that have been shed to distant organs makes the spontaneous metastasis 

model difficult to quantify.  To address these shortcomings, experimental metastasis 

models were developed.  In these models, cells are introduced as a suspension directly 

into the circulation, with the site of injection varying by the organ of interest.  To 

investigate lung metastasis cells are injected via the lateral tail vein.  To target the liver, 

cells are injected via the mesenteric vein and for a global analysis of metastatic outcome, 

cells are injected via the left ventricle of the heart.  Experimental metastasis models 

mimic the shed of cells into the vasculature and allow for direct quantification of the 

number of cells that survive and begin to grow
27

.  Additionally, co-injection of a known 

ratio of inert micron-sized beads (microspheres) enables comparison between time-points 
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to determine the proportion of injected cells that progress from single cells to 

micrometastases to macrometastases
28, 29

.  The major drawback of these models is that 

they inject a large bolus of cells at a single time, rather than truly mimicking a steady 

release of cells into the vasculature as is seen clinically.  They also bypass the earliest 

stages of metastasis where cells leave the primary tumor and enter the vasculature.  

Additionally, the potential impact that a primary tumor may have on metastatic 

progression is unable to be investigated.   

The data presented in Chapter 3 and 4 indicates that pre-clinical investigation of 

metastasis without the presence of a primary tumor does not allow for analysis of all 

potential players involved.  Evaluation of metastasis using both spontaneous and 

experimental metastasis models is essential, but may not be the most relevant, especially 

when testing new therapeutic agents.  It is possible that the effect of the agent on 

metastasis would be tempered by the presence of a primary tumor.  Yet relying on a 

spontaneous model for this type of investigation would be further complicated by the 

effect that the agent was having on the primary tumor itself.  Analysis of a new agent in a 

spontaneous metastasis model would potentially lead to a reduction in metastasis, but this 

reduction would be less easily understood due to potential reduction in primary tumor 

size.  Additionally, the step in metastasis affected by the therapeutic would be difficult to 

identify.  Therefore, the use of a model that provides both the primary tumor and the 

ability to quantify and analyze metastatic outcome through a bolus injection of a known 

number of cancer cells may provide information not available when utilizing a 

spontaneous or experimental model alone.   

This thesis identifies the ability of a primary tumor to restrict metastatic growth in two 

well-studied cell lines.  Interestingly, the mechanism behind the identified concomitant 

tumor resistance does not align with the more commonly reported mechanisms, rather it 

provides insight into the extensive role that the host hemostatic system plays in 

metastasis.  Also, previous studies have shown that both the B16
15

 and MDA-MB-231
17

 

cell lines can instead stimulate metastasis progression through release of specific factors 

that cause BMDC mobilization to the primary tumor site or to the pre-metastatic niche.  

Identification of an increase in VEGFR1
+
 cells in the lung of 231LN-scr primary tumor-
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bearing animals indicates that it is possible that the 231LN (and perhaps also the B16F10) 

primary tumors are causing BMDC mobilization, but that the significant role of 

hemostasis in metastasis formation is able to over-ride any benefit provided by the 

recruited BMDC.    

5.2.3 Clinical implications 

The work presented in this thesis emphasizes that changes in patient homeostasis are not 

just an unfortunate complication of malignancy.  Rather, clinical identification of VTE or 

other thrombotic events indicates that the host hemostatic system is being engaged by a 

primary tumor or metastatic cells.  These changes lead to the morbidity and mortality 

associated with thrombotic events, but also to alterations in tumor progression.  It is also 

important to recognize that due to the holistic nature of metastatic disease, treatment of 

one facet of patient health can have an impact on overall patient outcome, potentially 

beyond the expected mechanism of the treatment.  As shown in Chapter 2, treatment of 

cancer patients undergoing surgery to remove a primary tumor with an anti-fibrinolytic 

agent will likely reduce the risk of blood loss and transfusion requirements during 

surgery
30

, but may also lead to increased metastasis of those cells shed from the primary 

tumor.  Additionally, development of chemotherapy-induced thrombocytopenia is treated 

quickly to restore normal platelet numbers
31

.  The work presented in Chapter 3 would 

suggest that maintaining low platelet numbers could significantly reduce metastatic 

progression.  Additionally, chemotherapeutic efficacy has been found to be increased in 

thrombocytopenic animals due to increases in vascular permeability allowing for 

increased drug delivery
32

.  Induction of thrombocytopenia led to increased tumor 

hemorrhage, but no other blood loss, and allowed for a 40% increase in drug localization 

in the tumor.  Therefore, though thrombocytopenia represents a significant complication 

in patient treatment, it may also provide an opportunity to increase therapeutic efficacy.   

In evaluating overall status of disease in a cancer patient, platelets represent a particularly 

valuable resource.  Platelets are known to actively sequester VEGF, platelet factor 4 and 

TSP released from tumor cells
33

.  It has been noted that despite normal levels in the 

plasma or serum of the patient, platelet levels of these factors are already elevated, even 

when tumors are < 1 mm
34

.  Therefore, analysis of platelet granules to identify markers of 
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aggressive disease could provide advance notice of pending disease progression.  

Additionally, several clinical studies have identified an improvement in cancer patient 

outcome following long term treatment with anti-coagulants, especially for those patients 

without metastases at time of entry to the clinical trial
35

.   

This thesis suggests that identification and treatment of malignancy-associated 

complications should be investigated beyond the symptom alone.  Each change in overall 

patient well-being could represent a progression in disease state.  Overall, this thesis 

illustrates that metastasis is a complex process that is affected by a balance of interplay 

between tumor and host factors.  Investigation of individual proteins on tumor cell 

behavior in vitro, while necessary, is not sufficient to identify the true mechanisms 

behind disease progression.  Many competing influences exist in vivo, therefore 

investigation of cancer progression in model systems that most closely mimic the clinical 

situation is essential.  Through understanding of the effect of cancer on the host, novel 

treatments that prevent the exploitation of the host by tumor cells or bolster host-

mediated tumor cell killing could be developed.   

5.3 Future directions 

The focus of cancer metastasis research has previously been on the innate properties of 

tumor cells which allow for successful metastasis.  As described in this thesis, the 

interaction between a primary tumor, the host and metastatic cells is extensive and can be 

a major determinant of disease progression.  The innate characteristics of a tumor cell 

that lead to successful metastasis may in fact be those that provide the cell the ability to 

exploit host systems and tissues.  Through identification of the major components of the 

host which are involved in metastasis, such as the hemostatic system, novel 

characteristics and important attributes of aggressive tumor cells will be identified, and 

could provide novel treatment avenues.   

The concept of concomitant tumor resistance has been recognized for decades
13

, yet has 

not been fully evaluated to determine the potential mechanisms behind the extensive 

metastatic inhibition identified.  Importantly, concomitant tumor resistance does not 

represent simply a pre-clinical phenomenon, as it has been found in cancer patients that 
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resection of a primary tumor can lead to an explosive outgrowth of previously undetected 

metastases (reviewed in 
36

).  As discussed in Chapter 4, the timing of breast cancer 

recurrence may indicate a synchronization of tumor cell growth that aligns with tumor 

resection
37

.  Through investigation of concomitant tumor resistance, understanding of the 

process of angiogenesis was fundamentally altered by identification of angiogeneisis 

inhibitors
38

.  Unfortunately, these inhibitors did not show great clinical success, yet the 

understanding gained has revolutionized understanding of normal and tumor 

angiogenesis and metastasis.   

In this thesis, I identified that two different tumor cell lines are capable of inducing 

concomitant tumor resistance.  It is known that the presence of cancer can alter the host 

hemostatic system but it has not been previously recognized that a primary tumor could 

restrict metastatic growth through manipulation of hemostasis.  Therefore the mechanism 

behind this inhibition of metastasis does not align with previously elucidated mechanisms 

of concomitant tumor resistance involving immune-mediated rejection of metastatic cells 

or growth suppression through anti-angiogenic factors released from the primary tumor.  

The B16F10 cell line is non-immunogenic, and the 231LN cells are grown in 

immunocompromised mice, therefore exposure to the primary tumor would not be 

expected to increase surveillance of secondarily injected cells.  Additionally, in both the 

B16F10 and 231LN model, animals were sacrificed at an early time-point following the 

second injection.  Developing metastases remained very small (18000 µm
3
 and 300 µm

3
 

respectively) and were well below the 1 mm size where a tumor must recruit its own 

vasculature
39, 40

.  Therefore, anti-angiogenic factors released from the primary tumor 

would not yet have had an effect on metastatic establishment.  Changing perspective and 

considering malignancy as a holistic disease will aid current understanding of the tumor 

impact on the host, and could lead to different treatment avenues.  Thorough 

investigation of the impact of a primary tumor on metastasis of secondarily injected cells 

will provide great insight into potential new means to restrict metastatic growth.  It is 

essential to understand the relationship between concomitant tumor resistance and pre-

metastatic niche formation.  It is likely that differential expression of key factors will lead 

to either metastatic inhibition or promotion; it is essential that these factors be identified 

and investigated to determine their role in clinical cancer progression.  Interestingly, OPN 
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expression has been linked with BMDC mobilization
16

, and the MDA-MB-231 cell line 

has been found to stimulate pre-metastatic niche formation, leading to increased 

metastasis
17

.  In this thesis we show that using a variant of the MDA-MB-231 line 

(231LN), there is an increased number of VEGFR1
+
 cells present in the lungs of primary 

tumor-bearing animals, and induced larger clusters of these cells than in tumor-naïve 

animals.  These clusters were often associated with tumor cells and may indicate the 

presence of a pre-metastatic niche, yet no overall increase in metastasis was identified.  It 

appears that the metastatic inhibition induced by the primary tumor is able to overcome 

the promotion of metastasis by the presence of VEGFR1
+
 cell clusters.  This difference in 

metastatic outcome as compared with previously published reports
15, 17

 may be due to 

differences in the mouse strain used, but if these two related cell lines show a similar 

pattern of metastasis-promotion or -inhibition when grown in the same mouse strain then 

they present a great opportunity.  Given the similar heritage of these cell lines, direct 

comparison of gene expression patterns could provide great insight into the factors 

essential for either concomitant tumor resistance and/or pre-metastatic niche formation.  

Additionally, investigation of the effect of a primary tumor on secondary metastasis 

should be investigated using primary tumors that have both high and low OPN 

expression.  The MDA-MB-435 cells would be a valuable model in this regard, as it has 

been shown that shOPN transfection results in complete abrogation of OPN expression
41

.  

Additionally, these cells are known to express TF, therefore the role of hemostasis 

identified here would be preserved
42

.   

Cancer exists and progresses through interaction and manipulation of host tissues, 

systems and responses.  Only through understanding the effects of a developing 

malignancy on normal host biology will the process of metastasis be thoroughly 

understood.  This understanding will provide insight into new avenues of treatment and 

will significantly improve disease management and disease outcome. 
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