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Abstract  

Assessment of consciousness in behaviourally unresponsive patients with critical brain 

injuries continues to be a challenge. There remains a need for robust tools that can 

accurately characterize preserved cortical function and predict patient outcomes. In the 

present study, functional near-infrared spectroscopy is employed in conjunction with 

graph theory and machine learning to quantify resting-state functional connectivity in 16 

acutely brain-injured patients and 23 healthy controls. Results revealed significant 

channel-level differences between the groups for three graph metrics, including degree, 

clustering coefficient, and local efficiency. Further investigation using machine learning 

algorithms revealed that these metrics can be used to distinguish between patients and 

healthy controls with 76% accuracy, and between good and poor patient outcomes with 

83% accuracy. Overall, findings from this study provide valuable insights into alterations 

in brain connectivity following acute brain injury, along with a robust statistical approach 

for determining patient diagnosis and prognosis.  
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Summary for Lay Audience  

Assessing consciousness in unresponsive patients with critical brain injuries in the 

intensive care unit poses a significant challenge for medical professionals. Accurately 

detecting preserved brain function and predicting patient outcomes is crucial for making 

informed decisions regarding patient care and management. To tackle these challenges, 

researchers are exploring the use of advanced functional neuroimaging techniques.  

In this study, we employed a mathematical approach called graph theory to analyze 

patterns of brain connectivity in 16 patients with critical brain injuries and 23 healthy 

controls. We used a non-invasive brain imaging technique called functional near-infrared 

spectroscopy to measure brain activity in both groups. Our analyses revealed significant 

connectivity differences between the patient and healthy control participants. We then 

used these connectivity measures to develop machine learning algorithms capable of 

distinguishing between patients and healthy controls with a 76% accuracy rate. 

Furthermore, the algorithms were able to predict good or poor patient outcomes with an 

83% accuracy rate. 

The findings of our study contribute to the understanding of how critical brain injuries 

impact brain connectivity. The results demonstrate the potential for combining advanced 

brain imaging techniques and mathematical analyses to enhance diagnostic and 

prognostic precision in this patient population. By developing more accurate and reliable 

tools to assess brain function in unresponsive patients, we aim to support medical teams 

and families in making well-informed decisions regarding patient care.   
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Chapter 1: Introduction 

1.1 Disorders of Consciousness  

Clinically, consciousness is generally considered as awareness of oneself and one’s 

environment (Posner et al., 2019). Consciousness is composed of two fundamental 

components: wakefulness (appearing to be awake, e.g., periods of eye-opening) and 

awareness (the ability to respond to stimuli, e.g., tactile, auditory, visual, noxious; 

Porcaro et al., 2022). In patients with brain injuries, impairment in either wakefulness or 

awareness can result in the onset of a disorder of consciousness (DoC; Edlow et al., 

2021).  

DoC can be distinguished into acute, subacute, and chronic phases. These phases are 

premised on a temporal continuum, beginning with the onset of the brain injury (Edlow et 

al., 2021). The acute phase is defined as the first 28 days post-injury, and includes the 

time spent at the location of the injury, the emergency department, and the intensive care 

unit (ICU; Edlow et al., 2021; Giacino et al., 2018). Following the acute phase are the 

subacute (> 28 days and ≤ 3 months) and chronic stages (> 3 months, prolonged DoC). 

These phases take into consideration the time spent in rehabilitation, nursing facilities, or 

the home (Edlow et al., 2021; Song et al., 2018).  

Besides different phases, DoC diagnoses can be characterized based on the severity of 

impairments in consciousness (Berlingeri et al., 2019; Owen, 2008, 2019). First, the 

Minimally Conscious State (MCS) represents the least severe type of DoC. Patients 

diagnosed with MCS exhibit wakefulness (i.e., preserved sleep-wake cycles), and 

reproducible yet minimal and inconsistent behavioural signs of awareness, such as simple 

command following (Giacino et al., 2018; Mat et al., 2022). Second, Unresponsive 

Wakefulness Syndrome (UWS), commonly referred to as the vegetative state, includes 

individuals who do not show signs of awareness but have preserved sleep-wake cycles 

and autonomic functions such as respiration, digestion, or thermoregulation (Laureys et 

al., 2010; Multi-Society Task Force on PVS, 1994). The third and most severe form of 

DoC is the coma, which includes individuals who do not show signs of wakefulness or 
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awareness. Typically, comatose patients remain immobile with their eyes closed and 

cannot be aroused with any form of stimulation (Posner et al., 2019).  

Coma can occur from a diverse range of brain damage. These causes can be classified as 

structural lesions (e.g., physical damage to brain tissue) or metabolic encephalopathies 

(e.g., unrelated to physical wounds; Posner et al., 2019). Structural lesions entail 

traumatic brain injuries (TBI) that physically damage or compress brain tissue. There are 

different types of TBIs that can result in structural damage in the brain, such as 

hematomas (i.e., pools of clotted blood), hemorrhages (i.e., ruptured blood vessels), 

abscesses (i.e., collection of pus due to infection), and infarcts (i.e., obstruction of blood 

supply; Posner et al., 2019). In contrast to structural lesions, metabolic encephalopathies 

result from chemical alterations in the brain. Metabolic encephalopathies can be triggered 

by medical conditions, including but not limited to cardiac arrest, liver disease, toxicity, 

and renal failure (Butterworth, 1999). Despite their categorization as distinct forms of 

brain damage, both structural lesions and metabolic encephalopathies result in hypoxic-

ischemic brain injury, characterized by inadequate blood flow. Insufficient blood flow to 

the brain subsequently curtails the delivery of glucose and oxygen to brain tissue, which 

are sources of energy crucial for maintaining normal brain function (Lacerte et al., 2024; 

Messina et al., 2024). Deficient energy supply to the brain due to hypoxic-ischemic brain 

injury can result in neuronal cell dysfunction and even cell death, causing neurological 

impairment (Huff & Tadi, 2024).  

1.1.1 Clinical Assessment of DoC 

When admitted to the ICU, behaviourally unresponsive patients with critical brain 

injuries frequently present medical teams with the challenge of evaluating impairments in 

consciousness. Presently, the primary assessment methods used by clinicians to assess 

acute consciousness levels and patient outcomes in DoC include behavioural measures, 

such as the Glasgow Coma Scale (GCS) and the Glasgow Outcome Scale Extended 

(GOSE; Berlingeri et al., 2019; Gomez et al., 2023; Teasdale & Jennett, 1974). With 

these behavioural measures, clinicians observe and evaluate the intentional behaviour of 

the patient, specifically motor and verbal ability, eye movement, brainstem reflexes, and 

respiratory patterns (Demertzi et al., 2015; Rohaut et al., 2019).  
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The GCS, one of the most widely used assessments for impairments in consciousness, 

evaluates three core components: eye, verbal, and motor response (Figure 1). Each 

component is scored on a range from 1 to 4, 1 to 5, and 1 to 6, respectively. Figure 1 

illustrates how patients are scored on the three components. The total GCS score, 

obtained by summing the scores of each component, spans from 3 to 15. A GCS score 

between 3 to 8 indicates severe impairments in consciousness, a score between 9 to 12 

denotes moderate impairments, and a score between 13 to 15 signifies mild impairments 

(S. Jain & Iverson, 2024). Typically, patients with a score of 8 or below on the GCS can 

be classified as comatose. 

 

Figure 1. Glasgow Coma Scale focused on eye-opening, verbal response, and motor response. 

[Interpreted from Kostiuk & Burns, 2023]. 

 

Another commonly used assessment is the GOSE, a structured interview that measures 

global functional outcomes in patients who have experienced a brain injury (Wilson et al., 

1998). The GOSE score is based on a patient’s functionality in routine life, such as their 

ability to obey commands, need for assistance at home, and engagement in social and 

leisurely activities (Wilson et al., 2021). The scores on the GOSE can be classified into 

eight states: (1) dead, (2) vegetative state, (3) lower severe disability, (4) upper severe 

disability, (5) lower moderate disability, (6) upper moderate disability, (7) lower good 

recovery, and (8) upper good recovery. Although the GCS and GOSE are currently the 
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primary methods for evaluating impairments in consciousness and post-injury outcomes 

in acute DoC, they have certain limitations, specifically the inability to detect covert 

awareness and capture subtle cognitive and neurological changes, which reduce their 

diagnostic and prognostic precision.  

1.1.2 Issues with Behavioral Assessments  

Assessments that are primarily reliant on behaviour, such as the GCS, can exhibit 

significant variability based on the patient’s condition (e.g., physical brain injury, sensory 

impairments, medications, sedation) and are prone to high examiner subjectivity, 

resulting in misdiagnoses (Edlow et al., 2017; Gill-Thwaites, 2006). Indeed, numerous 

studies have indicated that behavioural measures have high misdiagnosis rates in patients 

with critical brain injuries, reaching up to 27% for those in the acute stages and 48% for 

those in the chronic stages (Monti et al., 2010; Owen, 2019; Rohaut et al., 2019; 

Schnakers et al., 2009; Vanhaudenhuyse et al., 2010). Despite their widespread use and 

current gold standard status, behavioural measures have repeatedly exhibited unreliable 

diagnostic efficacy. These measures continue to be used primarily due to the lack of 

alternatives that can be easily administered at the patient bedside and the need for 

standardizing implementation of and interpretations from novel assessment techniques.  

The continued utilization of unreliable behavioural measures is problematic since precise 

assessment is critical for informing neuroprognostication and withdrawal of life support 

decisions during the acute phase of DoC (Edlow et al., 2017; Kazazian et al., 2021; 

Owen, 2019; Rohaut et al., 2019; Turgeon et al., 2011). Turgeon and colleagues (2011) 

showed that approximately 65% of deaths in the ICU for patients with TBI are due to the 

withdrawal of life-sustaining measures (WLSM; Turgeon et al., 2011). This study further 

reported that patients in the acute phase of DoC underwent WLSM because medical 

teams prognosticated either a poor chance of survival or poor long-term neurological 

outcome. While determining whether a patient has the capacity for recovery is difficult, 

studies have shown that predictions of poor survival or outcome can lead to the self-

fulfilling prophecy, such that they can influence the care and attention patients are 

provided and lead to WLSM (Becker et al., 2001; Izzy et al., 2013).  
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The importance of precise assessments was further highlighted by a recent study 

investigating the potential for recovery in 40 patients with an ischemic or hemorrhagic 

stroke. According to clinical predictions post-injury, none of the 40 patients had a chance 

of meaningful recovery. At the 6 month mark, while many of these patients had indeed 

passed away or were diagnosed with UWS, approximately half were still alive and one 

patient was even able to make a good functional recovery (Egawa et al., 2023). Overall, 

misdiagnosis or inaccurate neuroprognostication in the acute phase can contribute to 

withdrawal of life support decisions, highlighting the need for more reliable assessment 

tools to minimize the risk of withdrawing life support from patients who may have had 

the potential for recovery.  

In light of these limitations of behavioural measures, a promising avenue for objectively 

and accurately assessing residual brain activity in patients with DoC are anatomical and 

advanced functional neuroimaging techniques. Anatomical magnetic resonance imaging 

(MRI) and electroencephalogram are neuroimaging techniques routinely used in clinical 

settings to evaluate brain structure and electrical activity, respectively. In contrast, 

functional neuroimaging modalities (e.g., functional magnetic resonance imaging or 

fMRI) offer a means to measure brain activity in real-time and, therefore, can provide 

valuable insights into a patient’s level of consciousness (Berlingeri et al., 2019; Owen et 

al., 2006). While neuroimaging techniques have immense potential to improve 

assessment of consciousness in DoC patients, their adoption in clinical settings has been 

limited due to factors such as high cost of fMRI and need for specialized analyses to 

interpret the results. The lack of standardized protocols and the need to further validate 

neuroimaging techniques with larger patient samples have also contributed to the reliance 

on behavioural measures. However, these limitations are being continually addressed 

with the emergence of lower cost neuroimaging techniques and research efforts. 

Ultimately, by employing robust tools such as functional neuroimaging modalities, 

clinicians can be better equipped to tackle the challenges surrounding diagnostic and 

prognostic precision in brain-injured patients.  
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1.2 Resting-State Functional Connectivity  

Functional neuroimaging tasks used to assess brain connectivity can broadly be 

categorized into active, passive, and resting-state paradigms (Kondziella et al., 2016). 

Active paradigms evaluate higher-order cognitive functions and require willful execution 

of tasks, such as command following (e.g., mental imagery or spatial navigation). In 

contrast, passive paradigms evaluate lower-order cognitive functions and do not require 

participants to respond. Passive tasks consist of following external stimuli, such as 

auditory listening, somatosensory evoked potentials, or movie-watching. Lastly, resting-

state paradigms examine the brain at rest in the absence of external stimuli or tasks and 

do not require any intentional response or stimulus following. 

Although active task-based paradigms have significantly contributed to the understanding 

of brain activity in patients with DoC, these paradigms require sustained attention and 

active participation from the patient (R. Jain & Ramakrishnan, 2020). This can be 

particularly challenging for acute ICU patients due to fluctuations in awareness (e.g., 

sleep states, sedation), discomfort (e.g., in pain, delirium), difficulty in understanding the 

task (e.g., language differences), and/or impaired cognitive function (e.g., working 

memory, attention; Edlow et al., 2017, 2021; Rohaut et al., 2019). Therefore, in acute 

ICU patients, active paradigms underestimate the level of consciousness compared to 

assessments made using passive paradigms (Kondziella et al., 2016). Although a response 

is not required in passive paradigms, patients are still expected to direct their attention to 

stimuli. Consequently, active and passive task-based paradigms may not be optimal for 

evaluating covert brain activity in acutely unresponsive patients.  

Resting-State Functional Connectivity (RSFC) is the ideal neuroimaging paradigm for 

assessing acute ICU patients since it does not require active attention or responses from 

the patients. The resting-state paradigm entails observation of the intrinsic connections 

within the brain during periods of rest. When at rest (i.e., not attending to a specific 

stimuli or performing an explicit task), the brain remains operational and demonstrates 

spontaneous fluctuations in neural activity (Smitha et al., 2017). The functional 

connectivity component of RSFC examines the temporal relationship between two 

anatomically distinct brain regions and provides insight into the communication and 
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coordination between different brain areas (van den Heuvel & Hulshoff Pol, 2010). In the 

context of DoC, assessing functional connectivity can help identify alterations in brain 

network dynamics that may underlie impairments in consciousness that are observed in 

acute ICU patients. Furthermore, functional connectivity patterns noted in DoC patients 

during rest can be compared with those found in healthy controls to detect specific 

network disruptions, which can serve as diagnostic or prognostic markers. On the whole, 

RSFC can measure spontaneous neural activity and aid in the identification of task-

independent brain activity patterns, making it a promising protocol for assessing 

unresponsive patients (Lv et al., 2018; van den Heuvel & Hulshoff Pol, 2010).  

1.2.1 Resting-State Networks  

Brain regions that have strong functional connections during rest are referred to as 

resting-state networks. There are several resting-state networks, including the default 

mode network (DMN), somatomotor network, dorsal attention network, salience 

network, frontoparietal control network, visual network, auditory network, and limbic 

network (Yeo et al., 2011). These networks offer insight into general cognition, attention, 

sensory and motor systems, memory, and introspective thought processes (Laird et al., 

2011). One of the most prominently studied resting-state networks is the DMN (Greicius 

et al., 2003; Raichle et al., 2001). This network consists of areas of the posterior cingulate 

cortex/precuneus, medial frontal regions, medial temporal lobe, and inferior parietal 

regions (van den Heuvel & Hulshoff Pol, 2010). The DMN is notably active during rest 

and exhibits inactivity when the brain engages with external stimuli.  

Resting-state networks have been shown to contribute to human consciousness and 

describe the inherent functional organization in the brain (Qin et al., 2015; Threlkeld et 

al., 2018; Vincent et al., 2007). Particularly, investigating the brain at rest in acute 

patients with DoC can help uncover information about the intrinsic connections crucial 

for preserving consciousness. Resting-state networks can provide insight into the brain’s 

communication efficiency, specifically information processing and transmission 

mechanisms (Shu et al., 2023). Overall, examining the resting-state brain in DoC patients 

could yield valuable insights into functional organization, general cognition and 

communication, and overall preserved consciousness.  
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1.2.2 fMRI-based RSFC in DoC 

RSFC can be assessed using neuroimaging modalities such as functional MRI (fMRI). 

Resting-state fMRI has previously been used to evaluate brain connectivity in 

unresponsive brain-injured patients (Demertzi et al., 2015; Di Perri et al., 2016; Kazazian 

et al., 2020; Koenig et al., 2014; Kolisnyk et al., 2023; Kondziella et al., 2017; Long et 

al., 2016; Medina et al., 2022; Norton et al., 2012; Porcaro et al., 2022; Snider & Edlow, 

2020; Threlkeld et al., 2018; Vanhaudenhuyse et al., 2010; Wagner et al., 2020; X. Wu et 

al., 2015). These studies found that patients with brain injuries demonstrate disrupted 

functional connectivity in resting-state networks, such as the DMN. In addition, resting-

state fMRI has been used with machine learning algorithms in critically brain-injured 

patients to predict functional recovery outcomes with up to 80% accuracy when 

predicting good outcomes (Kolisnyk et al., 2023). Such robust predictions of good 

functional outcomes are well above current clinical neuroprognostication methods, 

indicating the potential for using functional neuroimaging tools in outcome prediction. 

Other than their effective implementation in unresponsive patients, available literature 

indicates that RSFC can provide insight into consciousness levels. Previous studies have 

shown that DMN RSFC and consciousness levels are positive correlated, such that 

decreases in DMN connectivity are proportional to decreases in levels of consciousness 

(Di Perri et al., 2016; Koenig et al., 2014; Snider & Edlow, 2020; Vanhaudenhuyse et al., 

2010; X. Wu et al., 2015). Differences in the extent of neural activity during rest can 

further be used to distinguish between levels of consciousness and types of DoC 

(Demertzi et al., 2015; Long et al., 2016; Medina et al., 2022; Porcaro et al., 2022). For 

example, studies suggest that compared to patients in MCS, patients with UWS have a 

reduced number of identifiable resting-state networks, as well as decreased activity 

within those networks. These findings indicate that resting-state paradigms can be used to 

gauge the level of consciousness and severity of DoC.  

Furthermore, resting-state paradigms have also been implemented to determine patient 

outcomes post-injury. Studies have shown that patients who regain consciousness post-

injury demonstrate more preserved resting-state network connectivity compared to those 

who do not recover (Koenig et al., 2014; Kondziella et al., 2017; Norton et al., 2012). 
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DMN connectivity, especially, may be indicative of recovery of consciousness post-

injury. Even during the recovery process, patterns of increased RSFC and normalizations 

in DMN connectivity have been documented in brain-injured patients (Kazazian et al., 

2020; Threlkeld et al., 2018). These findings underscore the significant role of functional 

and well-connected resting-state networks in the recovery of consciousness among 

patients with brain injuries.  

Resting-state fMRI has been used to assess functional connectivity in patients with DoC 

with relative success, however, there are merits and limitations to this neuroimaging 

modality that must be considered. fMRI offers high spatial resolution that allows the 

detection of localized deep brain activity, which can be used to understand the networks 

and neural activity associated with consciousness (Wang et al., 2023). However, the costs 

associated with fMRI act as a barrier to access for hospitals and communities with limited 

funding. Additionally, fMRI scans include high-noise levels and require participants to lie 

extremely still in the scanner due to susceptibility to motion artifacts (Wang et al., 2023).  

One of the major limitations of fMRI in the context of assessing patients with acute 

brain-injuries is the need to transport patients from the ICU to the scanner. This process 

can pose significant risks to patients due to the instability of their medical conditions and 

the presence of vital monitoring equipment, further resulting in delayed MRI scanning 

(Kazazian et al., 2020; Koenig et al., 2014; Rohaut et al., 2019). While portable MRI 

scanners have been developed, their current low field strength limits their ability to 

perform advanced functional neuroimaging, rendering them insufficient for clinical needs 

(Sarracanie & Salameh, 2020). Overall, the lack of portability of high-field MRI scanners 

impedes the utilization of fMRI in clinical settings, such as the ICU.  

These limitations indicate that there is a growing need for alternative neuroimaging 

modalities that can provide insight into brain function and connectivity in acutely brain-

injured patients while overcoming the challenges associated with fMRI (i.e., patient 

transportation, high cost, noise-levels, and motion artifacts). Functional near-infrared 

spectroscopy (fNIRS) has emerged as a promising neuroimaging alternative that 

overcomes many of the limitations associated with fMRI in assessing patients in the ICU. 
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1.3 Functional Near-Infrared Spectroscopy  

fNIRS is a non-invasive, optical neuroimaging technique that measures changes in 

hemoglobin concentration in the cortex and provides an indirect measure of neural 

activity (Novi et al., 2016; Scholkmann et al., 2014). By measuring the absorption of 

near-infrared light at different wavelengths, fNIRS detects changes in cerebral blood flow 

and oxygenation that occur in response to neural activity (Boas et al., 2014). One of the 

key advantages of fNIRS is its portability, allowing for continuous monitoring of brain 

activity at the patients’ bedside. This advantage can enable clinicians to obtain critical 

information about brain function and connectivity in real-time without extensive waitlists 

as common with fMRI (M. Li et al., 2021). In additional to being portable, fNIRS is 

relatively inexpensive compared to fMRI, making it a more accessible option for 

hospitals and communities (Rupawala et al., 2018). Unlike fMRI, fNIRS does not offer 

the advantages of high spatial resolution. However, it does have high temporal resolution, 

which allows for the detection of rapid changes in brain activity (Pinti et al., 2020). 

Lastly, fNIRS is less susceptible to motion artifacts than fMRI, making it more suitable to 

use in populations who may have difficulty remaining still (Pinti et al., 2020). 

1.3.1 fNIRS System 

The fNIRS system consists of sources (laser diodes) and detectors placed at specific 

distances on the surface of the head (Figure 2). Sources propagate near-infrared light 

(centered at 785, 808, 830, and 850 nm) through the scalp and cortex (Quaresima & 

Ferrari, 2019). The propagated light is then received by detectors. The source-detector 

pairs or (long) channels are placed 3 cm apart, which allows the near-infrared light to 

reach the cortex of the brain. The amount of light detected measures changes in 

oxygenated (HbO), deoxygenated (HbR), and total (HbT) hemoglobin concentrations 

resulting from neural activity in the brain (Liu et al., 2023; Othman et al., 2021). 
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Figure 2. Visual schematic of an fNIRS system, with sources (red dots), detectors (blue dots), 

channels or source-detector pairs (yellow lines), and short channels (purple circles). [Interpreted 

from Abdalmalak et al., 2022.] 

 

Short channels, placed 0.8 cm apart, measure scalp activity. Short-channel sources and 

detectors are placed closer together to ensure that the light is only propagated through the 

scalp rather than the cortex (Figure 3). This information can then be used to eliminate 

any confounding effects of systemic physiology, such as respiration, heart rate or blood 

pressure, on the neural signal associated with brain activity. Implementing this approach 

effectively mitigates the risk of inflating the correlation between fNIRS channels 

(Abdalmalak et al., 2021). 

 

Figure 3. Shows the difference between long-channels (source 1 and detector 2) used to measure 

changes in local hemodynamic response and short-channels (source 1 and detector 1) used to 

measure systemic physiology. [Interpreted from https://nirx.net/our-story.] 

 

1.3.2 fNIRS-based RSFC in DoC 

Over the past few years, an increasing number of studies have demonstrated that fNIRS is 

a promising neuroimaging modality with reliable spatial and temporal correlations 

(Bonilauri et al., 2023; Duan et al., 2012; Huppert et al., 2006). While fNIRS 

demonstrates potential for assessing acute patients in the ICU, studies using fNIRS to 

https://nirx.net/our-story
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assess impairments and outcomes of patients with DoC are limited (Abdalmalak et al., 

2021; Owen, 2019). Existing literature on fNIRS and DoC patients is focused on chronic 

DoC. These studies employed task-based paradigms, such as auditory stimuli, to assess 

whether patients can follow instructions or answer simple yes or no questions (M. Li et 

al., 2021; Shu et al., 2023). Findings from these studies demonstrate that fNIRS reliably 

and accurately detected patient responses, thus, emphasizing the feasibility of this 

modality to assess DoC patients.  

Only a handful of studies have employed resting-state fNIRS (rs-fNIRS) to assess DoC 

patients (Wang et al., 2023). While sparse, these studies suggested that patients with DoC 

show reduced functional connectivity in the frontal brain regions and altered structural 

organization of neural networks (Chen et al., 2023; Liu et al., 2023). Indeed, Liu et al. 

(2023) examined connectivity in MCS and UWS patients using rs-fNIRS. Findings from 

this study revealed that compared to healthy controls, both patient groups showed 

significant losses in the topological architecture (i.e., structural and functional 

organization of brain networks) and impairments in long-distance connectivity within the 

prefrontal cortex. Similarly, using rs-fNIRS, Chen et al. (2023) showed that MCS patients 

had highly disrupted functional connectivity in the frontal lobe, specifically the 

frontopolar area and right dorsolateral prefrontal cortex. It is important to note that both 

of these studies focused exclusively on the frontal lobe.  

This regionally focused approach is common when examining activity in the brain. Most 

studies use a more directed, seed-based analysis, which involves selecting a region of 

interest (a “seed”) based on a priori knowledge. The time series of the seed region is then 

correlated with all other brain areas, which informs about regions the specific seed is 

functionally connected with (van den Heuvel & Hulshoff Pol, 2010). Although a seed-

based analysis provides direction to study aims, restricting the area of interest to only one 

brain region can result in losing valuable information regarding functional connectivity 

patterns in the rest of the brain (Novi et al., 2016). Furthermore, a recent meta-analysis 

showed that findings on patterns of functional connectivity are typically highly 

influenced by seed selection, making it challenging to produce reliable results (M.-T. Li 

et al., 2023). To obtain robust results on functional connectivity, it is optimal to avoid 
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confining the analysis to a single seed region and instead assess connectivity across the 

entire brain using a comprehensive approach, such as graph theory. 

1.4 Graph Theory  

Graph theory studies mathematical structures that model the relationships between 

objects (Koutrouli et al., 2020). These models are implemented for understanding 

complex interacting networks by simplifying them to a set of points (i.e., nodes) 

connected by lines (i.e., edges; Fornito et al., 2016). Common examples of networks that 

can be quantified and analyzed using graph theory include road maps, the internet, social 

circles, genomics, and computer science. Graph theory can be extended to neuroscience, 

such that the brain can be depicted as a graph or network that is composed of nodes and 

edges (He & Evans, 2010). This mathematical application can quantify the nature of 

connectivity in the resting brain.  

1.4.1 Graphs and Network Metrics 

Simplifying the intricate patterns of brain connectivity to a core network of nodes and 

edges facilitates the computation of mathematical graphs and metrics that can reveal 

information about the form and function of a system (Newman, 2016). There are various 

types of graphs and metrics that can be computed. Graphs can be weighted or unweighted 

(also referred to as binary) and directed or undirected (Fornito et al., 2016). Weighted 

graphs have edges that represent the strength of connectivity between the nodes, whereas 

binary graphs have edges that only represent the presence or absence of a connection. 

Directed graphs have edges that indicate a start and end point between two nodes, 

whereas undirected graphs only indicate a connection between nodes and do not have 

direction. In this study, binary, undirected graphs will be the focus.  

Graphs can also be simplified into adjacency matrices, A. If two nodes are connected, 

they are said to be neighbours or adjacent. In other words, the neighbour of a node is the 

node directly connected to it by an edge. In an adjacency matrix, each row/column (i/j) 

represents a node, and non-zero elements in the row/column represent the presence of an 

edge (Fornito et al., 2016). Network metrics (or graph metrics) can be calculated from 

adjacency matrices to quantify specific properties or characteristics of the network, such 
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as connectivity, complexity, or efficiency. These metrics can provide insight into the 

structure and function of the network (Niu et al., 2013). Although there are many network 

metrics that can be calculated from adjacency matrices, only four will be discussed in this 

study. 

Networks usually consist of multiple components, in which one large component (i.e., the 

giant component, the most connected component) forms the majority of the network, 

along with other smaller, disconnected components (Figure 4; Newman, 2016). The 

smaller components may be isolated nodes or consist of only several nodes each. This 

division into multiple components decreases the values for the network metrics. Hence, 

network metrics can be recalculated for only the giant component. 

 

Figure 4. Visual schematic of a giant component (the most connected network, middle) and 

several smaller components composed of fewer nodes. [Interpreted from Newman, 2016.] 

 

1.4.1a Degree  

The degree of a node is the most basic network metric and is defined as the number of 

edges connected to a node (Figure 5). The degree provides information about the 

connectivity of the node to the rest of the graph and, consequently, the connectivity of the 

network as a whole (Wang et al., 2010). Values for degree can range from 0 (isolated 

node) to one less than the total number of nodes (fully connected node), N. The degree of 

a node can be calculated by taking the sum of a row in the adjacency matrix (since the 

matrix is symmetrical and each row is equivalent to each column). The mean degree of 

the whole graph can be calculated by taking the average of all nodal degrees. 
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Figure 5. The degree of each node is calculated as the number of edges connected to it. Isolated 

nodes have a degree of 0 (no edges). The node with 5 edges has a self-loop, where an edge is 

connected to the same node. 

 

1.4.1b Clustering Coefficient 

The clustering coefficient of a node indicates the level of local connectedness within a 

graph and the tendency of a node to form a tightly connected community (Figure 6). This 

metric assesses the interconnectivity of the nodes that are neighbouring a given node and 

provides information about the density of connections in the overall network (He & 

Evans, 2010; Wright et al., 2021). The clustering coefficient is calculated by dividing the 

number of existing connections (i.e., edges) between the neighbours of a node by the 

number of possible connections between those neighbours (Koutrouli et al., 2020). The 

mean clustering coefficient of the whole graph can be calculated by computing the 

average of all nodal clustering values. Clustering coefficient values can range from 0 to 1, 

with higher values indicating that the node or graph has a greater inclination to form 

clusters (Koutrouli et al., 2020). 

 

Figure 6. The clustering coefficient of a node (purple). The left image has 0/6 possible 

connections between the neighbours (Ci = 0), the middle image has 3/6 connections (Ci =1/2, red 

lines), and the image on the right has 6/6 connections (Ci =1, red lines).  

 

1.4.1c Local Efficiency  

The local efficiency of a node describes how well information can be transmitted through 

a network and is closely linked to the clustering coefficient (Figure 7; Wang et al., 2010). 
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Local efficiency provides information about the extent to which the graph is fault-

tolerant. In other words, it shows the efficiency of communication between the 

neighbours of a node, if the node in question was removed (Latora & Marchiori, 2001). 

This metric is calculated by considering the shortest paths (i.e., the fewest number of 

edges between two nodes) between neighbouring nodes within a specific node's 

neighbourhood (Wang et al., 2010). The mean local efficiency of the whole network can 

be calculated by computing the average across all nodes. Local efficiency values can 

range from 0 to 1, with 1 suggesting the most effective transmission of information. 

 

Figure 7. The local efficiency of a node (red). The image on the left has a lower local efficiency 

since the node’s neighbours (grey) are connected by 2 edges each (solid black line, i.e., 

neighbours are only connected through the node). The image on the right has a higher local 

efficiency since the node’s neighbours (grey) are connected by 1 edge each (dotted red line, i.e., 

neighbours are not only connected through the node but also connected to each other directly), 

indicating a shorter path compared to the left. 

 

1.4.1d Betweenness Centrality  

The betweenness centrality of a node explains how frequently that node acts as a crucial 

link or bridge along the shortest path between other pairs of nodes in a network (Figure 

8; Newman, 2016). Betweenness centrality is calculated as the proportion of shortest 

paths between two nodes that pass through the node of interest (Koutrouli et al., 2020; 

Wright et al., 2021). This metric provides information about which nodes are central for 

connecting two communities. Nodes with higher betweenness centrality values control 

the flow of information through the system and therefore, play a key role in maintaining 

efficient communication and connectivity within the network (Fornito et al., 2016; van 

den Heuvel & Hulshoff Pol, 2010). 
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Figure 8. The betweenness centrality of a node. The red node represents the highest betweenness 

centrality since it acts as a bridge or link between the left (5 nodes) and right (3 nodes) 

communities of nodes. All paths between the two communities of nodes must pass through the red 

node. 

 

1.4.2 Graph Theory and fNIRS 

Graph theory can easily be applied to fNIRS data. In this case, each channel of the fNIRS 

system acts as a node, and edges are based on the Pearson’s correlations between each 

possible pair of nodes (Figure 9). If these correlation values exceed a given threshold, r, 

the nodes are considered to be functionally linked and have an edge between them (Novi 

et al., 2016; van den Heuvel & Hulshoff Pol, 2010). This conceptualization of nodes and 

edges creates a network or graph of the whole brain. Using this graph, network metrics 

can be calculated to quantify brain activity in different populations, such as acutely brain-

injured DoC patients and healthy controls. Only two studies have employed graph theory 

in rs-fNIRS to assess functional connectivity in the frontal regions of patients with DoC 

(Chen et al., 2023; Liu et al., 2023). The present study is the first to utilize using graph 

theory for investigating RSFC across the whole brain in patients with acute brain-injuries. 

 

Figure 9. Visual schematic of nodes and edges represented on the brain. (A) Each fNIRS channel 

acts as one node (green dot). (B) Pearson correlation between each possible pair of nodes acts as 

edges (green dotted line). (C) Whole-brain functional connectivity of the brain. [Interpreted from 

van den Heuvel & Hulshoff Pol, 2010.] 
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1.5 Machine Learning  

Machine learning is a branch of artificial intelligence and computer science, where a 

computer system is trained to identify patterns and make predictions based on a dataset 

(Shamout et al., 2021). In supervised machine learning, a dataset (X, e.g., graph metrics) 

is associated with specific labels (Y, e.g., healthy controls versus patients or good versus 

poor outcomes; Wernick et al., 2010). The dataset and associated labels are then used to 

generate a predictive model that can classify the labels of new, unseen data (Senders et 

al., 2018). This type of supervised machine learning is known as classification, which can 

be used to train a model to identify unique features specific to the labelled data (Nielsen 

et al., 2020). Machine learning algorithms can identify complex patterns and relationships 

within large datasets, enabling them to distinguish between groups more accurately and 

objectively than standard clinical assessments. Indeed, classification models have been 

previously used to aid patient diagnoses and outcome prediction (Erickson et al., 2017; 

Kolisnyk et al., 2023).  

In the context of this study, classification algorithms were developed and trained on graph 

theoretical data to differentiate between healthy controls versus patients as well as good 

versus poor patient outcomes. Classification models can be trained utilizing various 

algorithms. In this study, three algorithms were used to train the classification models, 

including the linear support vector classifier (SVC), k-nearest neighbours (KNN) 

classifier, and radial basis function (rbf) SVC. These classifiers were selected due to their 

ability to capture complex relationships between features and labels, and their successful 

application in previous neuroimaging studies (Amiri et al., 2023; Lanka et al., 2020; 

Magnin et al., 2009; Pereira et al., 2009; Tulay et al., 2019).  

1.5.1 Linear Support Vector Classifier  

The linear SVC algorithm is the simplest machine learning model, particularly adept for 

binary classifications. In this model, the algorithm identifies the optimal linear boundary 

(i.e., line) that separates the data into the different classification groups (Figure 10; 

Bhavsar & Panchal, 2012). The optimal linear boundary is established by maximizing the 

margin, which represents the space between the linear boundary and the closest data 
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points from each group. New data points are classified based on their position relative to 

the boundary line. 

 

Figure 10. Visual schematic of a linear SVC. A linear boundary is defined that best separates the 

two data classes. [Interpreted from L. Chen, 2019.] 

 

1.5.2 K-Nearest Neighbors Classifier 

The KNN algorithm is a viable option when delineating boundaries between data classes 

that may be more complex, and therefore, non-binary. This algorithm relies on the 

premise that similar data points share specific attributes. Hence, the algorithm identifies 

the data points neighbouring or closest in proximity to the data point of interest based on 

a given distance metric (Figure 11; Laaksonen & Oja, 1996). Once identified, the 

algorithm assigns the most frequently used label among the closest neighbouring data 

points to the data point of interest, thus, classifying it into a particular category. 

 

Figure 11. Visual schematic of KNN. The classification of a new data point (Pt) is based on the 

neighbours nearest to it (the three closest neighbours are from Class B). [Interpreted from 

Sachinsoni, 2023.] 
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1.5.3 Radial Basis Function Support Vector Classifier 

The rbf SVC is a more complex version of a linear SVC, which is employed when a 

simple linear boundary may be difficult to define. Unlike the linear SVC model, which 

defines a linear boundary, the rbf SVC algorithm determines the optimal curved or 

circular boundary to classify data points into different groups (Figure 12; Bhavsar & 

Panchal, 2012). 

 

Figure 12. Visual schematic of rbf SVC. A curved or circular boundary is defined between the two 

classes of data. [Interpreted from L. Chen, 2019.] 

 

1.6 The Present Study  

1.6.1 Rationale  

To date, no study has employed fNIRS-based RSFC to investigate whole-brain activity in 

patients with DoC, especially those in the acute phases of injury. Furthermore, no studies 

have yet applied graph theoretical analyses for fNIRS-based RSFC performed with 

acutely brain-injured patients in the ICU or integrated machine learning models to 

classify groups and predict patient outcomes. The present study aimed to bridge this 

knowledge gap, especially given the promise demonstrated by fNIRS-based RSFC, graph 

theoretical models, and machine learning classifications in available literature, and the 

need for objective and precise assessments of consciousness in acutely brain-injured 

patients.  

1.6.2 Objectives  

The present study has three objectives premised on the aim to enhance diagnostic and 

prognostic precision in assessments of acutely brain-injured patients.  
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1) Quantitatively describe brain functional connectivity using accessible 

neuroimaging modalities (i.e., fNIRS) and graph theoretical models.  

2) To classify healthy controls and patients using machine learning algorithms that 

can correctly differentiate between network metrics of the study groups. 

3) Use machine learning models to predict good and poor patient outcomes using 

network metrics acquired from acutely brain-injured patients in the ICU.  

1.6.3 Hypotheses  

Based on the previous literature, this study posits two key hypotheses.  

1) Patients will exhibit graphs and graph metrics that differ significantly from those 

of healthy controls. Particularly, these graph metrics are predicted to be decreased 

in acutely brain-injured patients, suggesting disruptions in network connectivity 

and functionality. 

2) Machine learning models will successfully distinguish healthy controls from 

patients and predict patient outcomes using network metrics calculated using 

graph theory. 

1.6.4 Impact  

While novel, this research has the potential to profoundly impact the healthcare system 

and the field of clinical neuroscience. Leveraging rs-fNIRS to evaluate intrinsic 

connectivity can allow for accurate, non-invasive, and continuous assessment of critically 

brain-injured patients in the ICU, a setting and population where traditional neuroimaging 

techniques (i.e., fMRI) and task-based paradigms are challenging to implement. 

Furthermore, examining the performance of cutting-edge analyses, such as graph theory 

and machine learning, in this study can facilitate the development of quantitative tools 

that can improve diagnostic and prognostic precision of acutely brain-injured patients. 

Ultimately, the present study aims to advance the understanding of functional 

connectivity in acutely brain-injured patients and empower clinicians and family 

members to make informed decisions regarding patient care.  
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Chapter 2: Methods and Materials  

2.1 Ethics 

The study was approved by the Research Ethics Board at Western University in 

compliance with the Tri-Council Policy Statement (TCPS): Ethical Conduct for Research 

Involving Humans guidelines (project identification number: 114967). Written informed 

consent was obtained for each healthy control participant and from the substitute decision 

maker for each patient.  

2.2 Participants 

2.2.1 Patients   

This research was part of the larger Multimodal Imaging in the Intensive Care Unit 

(MIMIC) study. For additional details, please refer to Kazazian et al. (2021). 

Patients were screened, recruited, and tested at the London Health Sciences Centre, 

University Hospital in London, Ontario, Canada from 2021-2023. Patients were tested 

within the first 10 days after admission to the ICU, with the aim to test at three time 

points: 2-4 days, 4-6 days, and 7-10 days post-injury, if appropriate. Eligibility included 

patients aged 18 and older with critical brain injuries that rendered them unresponsive. 

The severity of brain injury was clinically assessed by medical professionals at the 

bedside using the GCS (in the absence of sedation), and patients with a score of ≤ 8 prior 

to neuroimaging were eligible. Patients that were deemed medically unstable, had pre-

existing neurological disorders (e.g., Alzheimer’s disease, Parkinson’s disease), 

craniotomies, or hemorrhages (resulting in a loss of signal quality which precludes 

accurate fNIRS measurement) were excluded. Additionally, any patients who had brain 

injuries that would hinder the placement of the fNIRS cap and probes on their scalp were 

excluded. Contingent on this criteria, 19 patients (mean age 61.4 years, 7 females) were 

eligible for testing and proceeded to the data collection phase. I helped collect 

neuroimaging data for all tasks part of the MIMIC study for 10 of the 19 patients in the 

acute phase (i.e., in the ICU). From these 19 patients, three were excluded from further 

data analysis due to unusable short channels or a high count of bad channels (refer to 
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section 2.4.1). The mean age of the remaining 16 patients was 61.3 years (4 females). 

Specific patient demographic and clinical information for these 16 patients is provided in 

Table 1. 

Patient  
Age 

(years) 
Sex Etiology  

GCS 

(total) 

fNIRS Testing Day 

after ICU admission** 
GOSE  

1 68 M 
Stroke & vertebral artery 

occlusion 
6T 24 1 

2 61 M 

Return of spontaneous 

circulation in context of 

STEMI 

6T 5 1* 

3 55 M 

Ventricular fibrillation 

arrest in context of 

STEMI 

3T 3 1 

4 62 F 
Acute sensory-motor  

axonal neuropathy (GBS) 
3T 7 4 

5 63 F PEA arrest   5T 4 1* 

6 25 M OHCA 4T 5 1* 

7 67 M 
Intraparenchymal 

hemorrhage 
3T 2 1* 

8 78 M Herpes encephalitis 6T 6 1* 

9 60 F OHCA   3T 2 1* 

10 78 M HSV Encephalitis  8T 7 3 

11 67 M 

 Status epilepticus 

(resolved), metabolic 

encephalopathy 

8T 15 4 

12 49 M Hepatic encephalopathy 6T 16 1 

13 54 M 
OHCA in context of 

STEMI 
3T 3 1 

14 74 M PEA arrest 3T 3 -- 

15 61 M 
Right middle cerebral  

artery territory stroke 
6T 3 -- 

16 59 F Hepatic encephalopathy 5T 6 3 
Table 1. Patient clinical and demographic information.  

M = male, F = female, GCS = Glasgow Coma Scale, GOSE = Glasgow Outcome Scale Extended 

(6 months). STEMI: ST elevation myocardial infarction, PEA: Pulseless electrical activity, 

OHCA: Out-of-hospital cardiac arrest, HSV: Herpes simplex virus.  

Notes: * death was due to Withdrawal of Life Support Measures, -- GOSE score was not 

recorded, ** determined based on ICU admission and eligibility. 
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2.2.2 Healthy Controls Participants 

Neuroimaging data was also collected from a group of 25 healthy control participants 

(mean age 24.9 years, 13 females) prior to my arrival in the lab as a benchmark for 

typical neural activity during resting-state. From this healthy control group, two 

participants were removed due to unusable short channels (refer to section 2.4.1). The 

mean age for the remaining 23 healthy controls was 24.7 years (11 females). These 

participants had no history of neurological disorders or cognitive impairments.  

2.3 Data Acquisition  

2.3.1 fNIRS System 

Data was collected using the NIRScout system (NIRx Medical Technologies) with an 

optode design that provided coverage of the frontal, parietal, temporal, and occipital 

regions. The system consisted of 32 sources and 39 detectors (lasers, centered at 785, 

808, 830, and 850 nm), resulting in 121 source-detector pairs at 3 cm (i.e., channels) and 

8 source-detector pairs at 0.8 cm (i.e., short channels). In total, there were 129 channels. 

The optodes were positioned in hemispherically symmetrical grids based on the 10-20 

international system of electrode placement and secured on the head using a head cap 

(Homan et al., 1987). Figure 13 shows the location of each source and detector. 

 

Figure 13. The fNIRS montage used in this study. Red dots represent sources (32), blue dots 

represent detectors (31), and blue circles around the sources represent short channels (8). 

[Interpreted from Kazazian et al., 2021.] 
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2.3.2 Experimental Procedure  

2.3.2a Patient Behavioural Testing Procedure  

After consent was acquired from the substitute decision maker for the study, patients 

underwent behavioural testing prior to neuroimaging procedures. This test was completed 

by a trained professional and included the GCS.  

Patients who survived at the 6-month mark were contacted over the phone to complete 

behavioural testing to assess patient outcomes (using the GOSE).  

2.3.2b Patient fNIRS Testing Procedure  

Neuroimaging began after behavioural testing was complete. The patient’s bed was 

adjusted to a low-Fowler’s position (30 degrees). The head was supported using a towel 

behind the neck to ensure proper optode placement on occipital head regions. The 

patient’s head size was measured to find the appropriate cap size; a larger cap size was 

used for comfort and to prevent any tightness or swelling during testing. The fNIRS cap 

was fitted on the patient’s head and carefully strapped around the chin, if possible. Before 

each source and detector was individually attached to the cap, hair was gently moved to 

allow direct contact between the optode and scalp. The sources and detectors were 

secured using spring-loaded grommets of varying tension. The average setup time was 

approximately 45 minutes. 

The lighting in the patient’s room was minimized and the fNIRS system was calibrated to 

ensure high-quality signal acquisition from each optode. Any optodes that indicated low 

quality were adjusted (i.e., hair was moved or grommet was replaced) and the system was 

recalibrated. Once all the sources, detectors, and short channels were attached properly 

and the calibration was complete, testing began.  

It was unclear whether unresponsive patients understood verbal instructions. Nonetheless, 

standard protocols used in previous resting-state studies were followed. The patient was 

verbally informed the study was commencing and was provided with verbal instructions 

to stay relaxed and not focus their thoughts on anything in particular (Abdalmalak et al., 

2022). After 6 minutes of data acquisition, the resting-state task was complete.  
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As this was part of a larger study, several other tasks were performed on each patient, 

including mental imagery (motor imagery and spatial navigation), auditory processing 

(movie listening), and somatosensory stimuli (median nerve stimulation). Once all tasks 

were completed, the lights were turned back on. The patient was verbally informed that 

the study was complete, and the cap was removed to relieve any tension or discomfort the 

patient may have felt. The average data acquisition time was approximately 90 minutes.  

2.3.2c Healthy Control fNIRS Testing Procedure  

Healthy control participants were seated in a dimly lit room. The fNIRS setup was similar 

to that of patients, except the cap was sized down to ensure a snug fit. The average setup 

time was approximately 45 minutes. Participants were instructed to close their eyes, stay 

relaxed, try not to move, and not focus their thoughts on anything in particular. After 

fNIRS calibration, resting-state data was collected for 6 minutes. To ensure that 

participants did not fall asleep during the procedure, the research team observed the 

participant’s behaviour. Once the testing was completed, participants were asked if they 

had fallen asleep at any point and none of the participants reported having done so.  

2.4 Data Analysis  

Data was analyzed using Matlab R2022b (The Mathworks Inc.) and Python 3.9. First, the 

data was preprocessed, and graph metrics were calculated on Matlab. Then, the data was 

assessed using machine learning algorithms in Python.  

2.4.1 Preprocessing 

Data was preprocessed using scripts adapted from the HomER 2 software package 

(Huppert et al., 2009).  

The data preprocessing pipeline commenced with an evaluation of signal quality. 

Channels exhibiting a signal-to-noise ratio (SNR) below 8 were identified as poor quality 

and marked for removal in later analyses (Abdalmalak et al., 2022). Welch power spectral 

density estimates were plotted for the short channels to confirm the presence of a distinct 

peak around the heart rate frequency (~1Hz). Short channels that did not display a clear 

peak were excluded from further analysis. Participants without any usable short channels 

or excessive bad channels (i.e., the majority of the channels did not have good SNR) were 
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removed from subsequent analyses. Notably, two healthy controls were excluded due to 

the absence of usable short channels, and three patients were excluded due to similar 

issues (two without usable short channels and one with an exceptionally high count of 

109 bad channels). 

The light intensity measurements for each channel were then converted into changes in 

optical density. Next, motion artifacts caused by non-perpendicular optode placement and 

associated movements were corrected. This correction process involved spline 

interpolation to adjust for baseline shifts ensuring a continuous signal, and wavelet 

decomposition to mitigate sharp spikes in the data (Abdalmalak et al., 2022). Following 

this, optical density was converted into changes in hemoglobin concentrations using the 

modified Beer-Lambert law. 

The data was further band-pass filtered between 0.009 and 0.08 Hz to eliminate low- and 

high-frequency interference noise (Mesquita et al., 2010). Short channel data, derived 

from good-quality channels only, was regressed using a generalized linear model to 

remove physiological noise, such as variations in heart rate and respiration. Next, the 

time series data was pre-whitened to remove temporal autocorrelation and minimize false 

positives (Abdalmalak et al., 2022; Blanco et al., 2018). 

Finally, HbT was calculated as the sum of HbO and HbR concentrations. For further 

analyses, correlation matrices were then generated for HbO, HbR, and HbT. 

2.4.2 Graph Metric Calculation  

Once correlation matrices were generated, all diagonals of the matrices were made 0 to 

remove any self-loops (an edge that is connected to the same node). A threshold (r = 0.3) 

was defined and any channels that needed to be excluded (bad channels and short 

channels) were replaced with a non-numerical value (nan; Novi et al., 2016). Based on 

the threshold, binary graphs were then computed using the built-in Matlab graph 

function. These graphs were represented and stored as adjacency matrices, where a non-

zero value represents the presence of an edge. Using the adjacency matrices, graph 

metrics were calculated for degree, clustering coefficient, local efficiency, and 

betweenness centrality for HbO, HbR, and HbT.  
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2.4.2a Degree Calculation 

The degree of each node was calculated by finding the sum of each row in the adjacency 

matrix. This value was normalized by dividing each value by the size of the graph to 

account for the differing number of nodes across participants. The size of the graph was 

obtained by removing the number of bad channels and short channels from the total 

number of nodes. The following equation was used to calculate each node’s degree, D, 

using the adjacency matrix, A (Newman, 2016). 

𝐷(𝑢) =  
∑ 𝐴𝑖𝑗 

𝑢
𝑗=1

𝑁 − 1
 

In this equation: 

• u represents the node of interest,  

• A represents the adjacency matrix, 

• i and j represent the row and column of the adjacency matrix, and 

• N represents the size of the graph. 

2.4.2b Clustering Coefficient Calculation 

The clustering coefficient of each node was calculated by computing the ratio of the 

number of triangles to the total possible number of triangles that included the node and 

was only calculated if the degree of the node was ≥ 2. The following equation was used 

to calculate each node’s clustering coefficient, C, by finding the number of links between 

the neighbours of the node, L. This value was normalized by dividing L with the number 

of neighbours of the given node (Barabási, 2014; Newman, 2016; Watts & Strogatz, 

1998). 

𝐶(𝑢) =  
2𝐿

𝑘2 − 𝑘
 

In this equation: 

• u represents the node of interest,  

• L represents the number of links between the neighbours of node u, and 

• k represents the number of neighbours of the node. 
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2.4.2c Local Efficiency Calculation  

The local efficiency of each node was calculated by finding the inverse of the shortest 

path length in the neighbourhood of a node. The following equation was used to calculate 

each node’s local efficiency, E, using the shortest path length, P, between neighbours, j 

and h. This value was normalized by the number of neighbours of the given node, k 

(Latora & Marchiori, 2001). 

𝐸(𝑢) =  
1

𝑘2 − 𝑘
∑

1

𝑃𝑗ℎ
𝑗,ℎ∈𝐺

 

In this equation: 

• u represents the node of interest,  

• G represents the graph,  

• P represents the shortest path between two neighbours (j and h), and 

• k represents the number of neighbours of the node. 

2.4.2d Betweenness Centrality Calculation 

The betweenness centrality of each node was calculated using the built-in Matlab 

centrality function, specified with the ‘betweenness’ parameter. The following equation 

was used to calculate each node’s betweenness centrality, B, using the number of shortest 

paths between two nodes, s and t, that pass through the node, lst, and the total number of 

shortest paths between s and t, Lst. This value was normalized by dividing each value by 

N2, which represents the total number of nodal pairs (Newman, 2016). 

𝐵(𝑢) =  
∑

𝑙𝑠𝑡

𝐿𝑠𝑡
𝑠,𝑡 ≠𝑢

𝑁2
 

In this equation: 

• u represents the node of interest,  

• lst represents the number of shortest paths between two nodes (s and t) that pass 

through node u,  

• Lst represents the total number of shortest paths between two nodes (s and t), and 
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• N represents the total number of nodal pairs. 

2.4.2e Giant Component Extraction 

The giant component was extracted using the built-in Matlab conncomp function. This 

function finds all the components of the graph and stores the size of the connected 

components and the number of nodes in the component. The giant component graph was 

then extracted, and metrics were recalculated using the equations above. 

2.4.3 Statistical Analysis 

2.4.3a Whole-Brain Differences 

The whole-brain differences between patients and healthy controls were investigated for 

degree, clustering coefficient, and local efficiency for HbO, HbR, and HbT. The mean 

across all nodes in the brain was calculated to obtain a global brain value for each metric. 

The distribution of nodes, edges, and degrees was also examined. These whole-brain 

averages were compared between healthy controls and patients using a two-tailed 

Wilcoxon rank sum test (positive false discovery rate, PFDR < 0.05).  

2.4.3b Giant Component Differences 

Since each participant contained one giant network and several disconnected nodes, the 

giant component was extracted for each participant and metrics were recalculated and 

compared between groups. The main difference was that isolated nodes (nodes with no 

edges) were excluded when calculating graph metrics. The degree, clustering coefficient, 

and local efficiency were compared for HbO, HbR, and HbT using a two-tailed Wilcoxon 

rank sum test (PFDR < 0.05).  

2.4.3c Betweenness Centrality Scores 

The betweenness centrality score for each node was examined to find the location of 

important nodes in the brain. The higher the betweenness centrality, the more often that 

node acted as a bridge between two other nodes and was a critical connector node in the 

brain. The top three most important nodes were located for each participant. The 

proportion of nodes in the frontal, parietal, temporal, or occipital lobe was calculated to 

determine general regional differences in these nodes between groups. The number of 
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nodes was then grouped based on higher-order regions (frontal and parietal lobes) and 

sensory regions (temporal and occipital lobes). This grouping of regions was chosen 

since nodes in higher-order regions would be more important for higher-order functioning 

than sensory regions. To observe for differences in higher-order compared to sensory 

regions, the number of nodes in each of the four lobes was divided by 48 (top 3 nodes x 

16 patients) for patients and 69 (top 3 nodes x 23 healthy controls) for healthy controls. 

By then grouping these proportions into higher-order and sensory regions, a Chi-squared 

test was run to observe if there was a statistical difference between the number of 

important nodes in the frontal and parietal regions compared to the temporal and occipital 

regions. 

2.4.3d Local Channel Differences  

To observe local channel differences between groups, the distribution of values for each 

channel was compared between healthy controls and patients using a Wilcoxon rank sum 

test (PFDR < 0.05) and values were corrected for multiple comparisons (false discovery 

rate). Bad and short channels were excluded when comparing the distributions, resulting 

in a comparison of all 121 channels between groups. 

2.4.4 Machine Learning Analysis  

Graph metrics (degree, clustering coefficient, local efficiency, and betweenness 

centrality) were used in machine learning algorithms (in Python 3.9 using scikit-learn 

packages) to construct models that would accurately classify groups (Pedregosa et al., 

2011). Models were run to assess classification performance between three groups: (1) 

healthy controls and patients, (2) high and low GOSE scores, and (3) high and low GCS 

scores. Each model was run first for each individual graph metric (degree, clustering 

coefficient, local efficiency, betweenness centrality) and then for all metrics combined.  

2.4.4a Model Processing 

Outliers in the data were removed by calculating the z-score for each value and any 

values beyond 3 standard deviations were omitted from further analyses. This omission 

removed data points that were unlikely to represent the data and might instead reflect 

noise. Any values that were missing (i.e., bad channels across all participants; 0.04% for 
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degree, 1.61% for clustering coefficient, 2.03% for local efficiency, 1.82% for 

betweenness centrality) were imputed using data from the 3 nearest neighbours (using 

KNNImputer). To standardize the data and prevent any influence by extreme outliers in 

the dataset, all features were adjusted to have the same scale (using RobustScaler). Since 

combining all four graph metrics produced a dimensionality problem (39 participants x 

121 channels x 4 metrics, greatly increasing the complexity of the dataset), a feature 

selection technique was implemented to reduce the high dimensionality of the data 

(Zebari et al., 2020). This feature selection technique was only applied when all four 

metrics (degree, clustering coefficient, local efficiency, and betweenness centrality) were 

combined and inputted as a feature (not for each individual metric). This technique and 

other hyperparameter values (which control the model learning process) were optimized 

using hyperopt, a Bayesian optimization approach (Bergstra et al., 2013).  

2.4.4b Models 

 (i) Linear Support Vector Classifier  

A search space for hyperparameters was defined and included (1) C, or regularization 

strength, which controlled the size of the model’s coefficients, and (2) tol, or tolerance, 

which determined when the algorithm should stop iterating. 

(ii) K-Nearest Neighbours Classifier  

A search space for hyperparameters was defined and included (1) the number of 

neighbours (nearest data points) to use, and (2) the method used to calculate the weights 

the neighbours would be given based on their distance to the new data point.  

(iii) Radial Basis Function, Support Vector Classifier  

This model was set up similarly to the linear SVC and included the C and tol 

hyperparameters. The search space also included the gamma parameter, which defined 

the width or slope of the rbf function.  

2.4.4c Model Iteration  

The performance of each model was then estimated using a stratified three-fold cross-

validation with 100 iterations. For each iteration, the data was split randomly into three 
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folds, with data trained on two of the folds and tested on the remaining third one. This 

was iterated 100 times to ensure different training and testing data subsets were used.  

2.4.4d Model Evaluation 

Based on all iterations across all folds, balanced accuracy score (median), confidence 

interval, interquartile range, recall score, precision score, and specificity score were 

calculated to evaluate the model. A balanced accuracy score is preferred when the groups 

are imbalanced, as was the case in this study. The importance of each channel was also 

determined (by calculating z-scores based on the permutation_importance Python 

function) for each feature and model to observe which channels the algorithms used most 

often for classification. 

2.4.4e Group Classifications  

(i) Healthy Control Participants and Patients 

For the first classification, the three models described above were used to distinguish 

between all healthy controls (n=23) and patients (n=16). In this case, each fold was 

trained on 26 participants (15-16 healthy controls, 10-11 patients) and tested on 13 

participants (7-8 healthy controls, 5-6 patients).  

(ii) High and Low GOSE Scores (Patient Outcome) 

For the second classification, the three models were used to distinguish between GOSE 

scores from patients only (n=14, since 2 patients did not have recorded GOSE scores). 

Patients that had a GOSE score of 1 (indicating death) were categorized as one group (10 

patients, poor outcome group) and those with a score greater than 1 were another group 

(4 patients, good outcome group). This stratification was selected due to the small and 

already imbalanced sample size. In this case, each fold was trained on 9-10 patients (6-7 

poor outcome, 2-3 good outcome) and tested on 4-5 patients (3-4 poor outcome, 1-2 good 

outcome).  

(iii) High and Low GCS Scores (Patient Level of Consciousness) 

For the third classification, the three models were used to distinguish between GCS 

scores in patients at the time of neuroimaging (n=16). Patients with a low GCS score 

between 3-5 were categorized as one group (9 patients) and those with a high GCS score 
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between 6-8 were another group (7 patients). This stratification was selected due to the 

small sample size of patients and differences in survival chances. A GCS score of 3-5 can 

present with high mortality and a lower chance of survival, whereas a GCS score of 6-8 

shows more potential for survival if approached with aggressive treatment plans (Alves & 

Marshall, 2006). In this case, each fold was trained on 10-11 patients (6 with low GCS 

scores, 4-5 with high GCS scores) and tested on 5-6 patients (3 with low GCS scores, 2-3 

high GCS scores).  

2.4.4f Permutation Testing  

The performance of the classification models (for all group classifications) was assessed 

using non-parametric permutation testing, which is ideal for estimating bias in uneven 

and small group sizes (Combrisson & Jerbi, 2015; Nichols & Holmes, 2002). This 

statistical analysis relies on generating a null distribution using permutations of the given 

data. The null distribution represents a spread of balanced accuracy scores that would 

occur if there was no real association between the labels and the data. The mean and 

variance of the null distribution are often influenced by idiosyncrasies in the data, such as 

outliers or unusual patterns (Combrisson & Jerbi, 2015). This distribution can then act as 

a reference point for evaluating the balanced accuracy scores against chance alone. To 

complete this permutation in this study, the labels of the data were randomly reassigned 

and the same classification models were rerun using the new shuffled data (Nichols & 

Holmes, 2002). The null hypothesis distribution was generated from 100 permutations of 

the randomly shuffled data and was compared to balanced accuracy scores generated 

from correctly labelled data. For there to be a statistically significant difference between 

groups, the median balanced accuracy score had to fall outside the upper 95% of the null 

distribution.  



35 

 

 

Chapter 3: Results 

3.1 Whole-Brain Differences  

The number of nodes were first compared between healthy controls and patients to see if 

there were any differences between participants. Nodes provide information about how 

many good channels patients have compared to healthy controls. Since the number of 

nodes were consistent across chromophores (HbO, HbR, and HbT), only results for HbO 

are shown below.  

A Wilcoxon rank sum test for the number of nodes between the groups suggested that 

there is no significant difference between healthy controls and patients for any 

chromophores (Figure 14, Z = -0.614, p = 0.540). 

 

Figure 14. Number of nodes for healthy controls and patients. 

 

Next, the number of edges between healthy controls and patients was compared for each 

chromophore. The number of edges provides insight into general connectivity differences 

since it directly corresponds to the number of total connections between nodes.  
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When comparing the number of edges between healthy controls and patients for HbO, 

there were no significant differences between the groups (Figure 15, Z = 1.642, p = 

0.101). 

 

Figure 15. Distribution of edges for healthy controls and patients for HbO. 

 

Comparing the number of edges between healthy controls and patients for HbR suggested 

no significant difference between the groups (Figure 16, Z = 0.328, p = 0.743). 

 

Figure 16. Distribution of edges for healthy controls and patients for HbR. 
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Lastly, there were no significant differences in the number of edges for HbT between 

healthy controls and patients (Figure 17, Z = 0.671, p = 0.502). 

 

Figure 17. Distribution of edges for healthy controls and patients for HbT. 

 

Although the number of nodes and edges did not differ significantly between groups for 

any chromophores, in principle, valuable information could still be derived from the 

graph metric values.  

Thus, the whole-brain averages were computed for each healthy control and patient, for 

degree, clustering coefficient, and local efficiency, and for each chromophore to observe 

any significant global brain differences between groups. This computation was done by 

calculating the mean across all nodes in the brain to obtain a global brain value for the 

given metric. Significant differences were found for clustering coefficient between 

patients and healthy controls at the whole-brain level only for HbO.  

Figures 18-20 show the global average degree, clustering coefficient, and local efficiency 

values, respectively, for each healthy control and patient for HbO, HbR, and HbT. 



38 

 

 

 

Figure 18. Whole-brain average degree values for healthy control and patient groups for all 

chromophores. 

 

 

Figure 19. Whole-brain average clustering coefficient values for healthy control and patient 

groups for all chromophores. *Black star indicates a statistical significance between groups. 
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Figure 20. Whole-brain average local efficiency values for healthy control and patient groups for 

all chromophores. 

 

Table 2 shows the Wilcoxon rank sum test p-values and z-values between groups for each 

metric and chromophore. 

 HbO HbR HbT 

p-value z-value p-value z-value p-value z-value 

Edges 0.101 1.642 0.743 0.328 0.502 0.671 

Degree 0.074 1.785 0.764 0.328 0.578 0.557 

Clustering Coefficient 0.031* 2.156 0.158 1.413 0.400 0.842 

Local Efficiency 0.051 1.956 0.638 0.471 0.830 0.214 

Table 2. Whole-brain Wilcoxon rank sum test p-values and z-values between healthy controls and 

patients for HbO, HbR, and HbT. *Star indicates a significant difference between groups. 

 

Since HbO showed significant differences between groups for clustering coefficient, only 

HbO was explored further. The degree is one of the most basic graph metrics and is 

related to the number of edges. The distribution of degree values for each node was 

compared between healthy controls and patients for HbO (Figure 21). This comparison 

was done to eliminate any effects averaging the number of edges across the brain may 

have had. Therefore, all values of degree were compared, and results indicated a 

significant difference between groups (Z = 13.534, p = 9.892e-42). This analysis 
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suggested that important differences between healthy controls and patients are present but 

are being lost when averaging the number of edges across the brain. 

 

Figure 21. Degree distribution for healthy controls and patients. 

 

3.2 Giant Component Differences 

After further investigation, it was found that each participant had one giant component 

and several disconnected nodes (participants’ isolated nodes comprised 0-18% of the total 

number of nodes). Table 3 shows descriptive statistics for the size of the giant component 

for healthy controls and patients. As evident in Table 3, there was no difference between 

the average size of the giant component between groups. 

 Mean  Median  Range Minimum Maximum 

Healthy Controls 117 118 13 108 121 

Patients 117 120 22 99 121 

Table 3. Descriptive statistics for the size of the giant component for healthy controls and 

patients. 

 

Although there was no difference in the mean size of the giant component between 

groups, the presence of isolated nodes still altered the values of metrics at the nodal level. 

When calculating graph metrics, isolated nodes compute a value of 0 since they do not 

have any edges connecting them to other nodes. Only the giant component was 



41 

 

 

investigated next to eliminate the effect these isolated nodes had on the metrics. Any 

nodes that were not part of the most connected network were removed. This changed the 

whole-brain metric values since all nodes that had values of 0 were removed when 

recalculating metrics. Thus, the giant component was extracted for each participant and 

each chromophore, and values for degree, clustering coefficient, and local efficiency 

were recalculated, as seen in Figures 22-24, respectively. 

For the giant component analysis, only HbO showed significant group differences for 

clustering coefficient and local efficiency. This analysis suggested that significant 

differences exist between groups using graph metrics and further investigation is required 

to detect specific distinguishing features. 

 

Figure 22. Giant component degree values for healthy control and patient groups for all 

chromophores. 
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Figure 23. Giant component clustering coefficient values for healthy control and patient groups 

for all chromophores. *Black star indicates a statistical significance between groups. 

 

 

Figure 24. Giant component local efficiency values for healthy control and patient groups for all 

chromophores. *Black star indicates a statistical significance between groups. 
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Table 4 shows the Wilcoxon rank sum test p-values and z-values between groups for each 

metric and chromophore for the giant component. 

 HbO HbR HbT 

p-value z-value p-value z-value p-value z-value 

Degree 0.070 1.813 0.743 0.328 0.558 0.585 

Clustering Coefficient 0.020* 2.327 0.079 1.756 0.368 0.899 

Local Efficiency 0.023* 2.270 0.297 1.042 0.578 0.557 

Table 4.Giant component Wilcoxon rank sum test p-values and z-values between healthy controls 

and patients for HbO, HbR, and HbT. *Star indicates a significant difference between groups. 

 

3.3 Betweenness Centrality Scores 

Although a global analysis (for the whole-brain and giant component) showed some 

significant differences between healthy controls and patients using clustering coefficient 

and local efficiency, it could be that averaging across this subset of nodes in the brain still 

resulted in a loss of information and a regional analysis would be more suitable. Thus, the 

next step was to locate important nodes in the brain, which was achieved by looking at 

the betweenness centrality score for each node. The higher the betweenness centrality 

score, the more that node acted as a bridge between two other nodes and would be an 

important connector node in the brain. Exploring where important nodes (top 3) in the 

brain were located can provide a better understanding of potential regional differences 

between groups.  

The betweenness centrality scores showed that for 23 healthy controls, 10 had their most 

important node in the frontal region, 10 in the parietal region, and 3 in the temporal 

region. Of the 16 patients, 10 had their most important node in the frontal region, 2 in the 

parietal region, 3 in the temporal region, and 1 in the occipital region. The second and 

third most important nodes (second and third highest betweenness centrality scores) were 

dispersed throughout the brain. Table 5 shows the proportion of participants that had their 

top three most important nodes in the frontal, parietal, temporal, or occipital lobe. 
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 Frontal Parietal Temporal  Occipital  

Healthy Controls 28/69 = 40.48% 24/69 = 34.78% 13/69 = 18.84% 4/69 = 5.80% 

Patients 28/48 = 58.33% 6/48 = 12.5% 12/48 = 25% 2/48 = 4.17% 

Table 5. Proportion of participants that have their top three most important nodes in the frontal, 

parietal, temporal, or occipital lobe. 

 

A chi-squared test was run between healthy controls and patients to investigate 

differences in the location of the important nodes in the context of higher-order regions 

(frontal and parietal) and sensory regions (temporal and occipital). The chi-squared test 

revealed no significant differences between groups, X2 (1, N = 117) = 0.30, p = 0.59. 

Regional analyses were too broad to locate differences between healthy controls and 

patients since there were no differences between where important nodes were located. 

3.4 Local Channel Differences  

Next, an even more localized analysis was used to probe findings from the giant 

component and regional analyses. This approach was more granular in that it examined 

the differences between groups without any averaging. In this analysis, the distribution of 

values for each channel was compared between healthy controls and patients using a 

Wilcoxon rank sum test and values were corrected for multiple comparisons (false 

discovery rate). This local analysis was completed for all graph metrics (i.e., degree, 

clustering coefficient, local efficiency, and betweenness centrality) and for all 121 

channels. All bad channels and short channels were excluded from this analysis.  

Findings from this approach showed significant differences between healthy controls and 

patients in 6 channels for degree, 80 channels for clustering coefficient, and 44 channels 

for local efficiency, as seen in Figures 25-27, respectively. All channels, for all metrics, 

had greater values for healthy controls compared to patients. Betweenness centrality 

showed no significant differences between groups for any channels. 



45 

 

 

 

Figure 25. Significant channels (z-score) for degree projected onto the brain. Warm colours 

represent values that were greater for healthy controls compared to patients. 

 

 

Figure 26. Significant channels (z-score) for clustering coefficient projected onto the brain. Warm 

colours represent values that were greater for healthy controls compared to patients. 

 

 

Figure 27. Significant channels (z-score) for local efficiency projected onto the brain. Warm 

colours represent values that were greater for healthy controls compared to patients. 

 

Table 6 shows the graph metric p-values, and z-scores for each channel and its associated 

channel name in the brain, which showed a significant difference between groups. 
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Channel  
Channel Name 

in the Brain  

Degree 
Clustering 

Coefficient 
Local Efficiency  

p-value z-value p-value z-value p-value z-value 

2 Frontal_Sup_Medial_L   0.021 2.091 0.038 2.121 

5 Frontal_Sup_Medial_L   0.040 1.374   

10 Frontal_Inf_Tri_L   0.026 1.870 0.042 2.013 

11 Cingulum_Mid_R   0.019 2.213 0.037 2.120 

12 Frontal_Sup_L   0.031 1.699 0.047 1.899 

14 Frontal_Sup_L   0.030 1.670   

15 Frontal_Mid_L   0.026 1.956 0.042 1.984 

16 Frontal_Mid_L   0.031 1.672   

17 Frontal_Mid_L   0.046 1.214   

18 Frontal_Inf_Orb_L   0.010 2.744 0.012 2.872 

19 Frontal_Inf_Tri_L   0.004 3.653 0.011 3.552 

20 Frontal_Mid_L   0.021 2.084 0.042 2.042 

21 Frontal_Mid_L   0.030 1.792   

22 Frontal_Mid_L   0.044 1.268   

23 Frontal_Inf_Tri_L 0.048 2.765 0.033 1.597   

24 Frontal_Inf_Oper_L   0.037 1.470   

25 Frontal_Inf_Oper_L   0.009 2.645 0.029 2.459 

26 Frontal_Inf_Oper_L   0.010 2.658 0.013 2.807 

27 Frontal_Inf_Oper_L   0.019 2.210 0.034 2.240 

28 Postcentral_L   0.010 2.688 0.021 2.598 

30 Precentral_L   0.047 1.195   

31 Precentral_L   0.032 1.676   

33 Parietal_Inf_L   0.033 1.583   

34 Precentral_L   0.031 1.670 0.037 2.156 

35 Precentral_L   0.013 2.454 0.028 2.425 

36 Postcentral_L 0.037 2.688     

38 Postcentral_L   0.032 1.628   

40 Temporal_Mid_L   0.006 3.178 0.010 3.208 

41 Temporal_Mid_L   0.030 1.763   

42 Temporal_Sup_L   0.010 2.707 0.015 2.738 

43 Temporal_Mid_L   0.032 1.626   

44 Temporal_Mid_L   0.006 3.001 0.014 2.942 

45 Temporal_Mid_L   0.036 1.464   

46 Temporal_Mid_L   0.007 3.001 0.013 2.883 

47 Temporal_Mid_L   0.014 2.479 0.028 2.389 

48 Temporal_Sup_L   0.005 3.300 0.009 3.315 

49 Postcentral_L   0.014 2.380 0.029 2.333 

50 Parietal_Inf_L   0.014 2.356 0.033 2.270 

51 Postcentral_L   0.035 1.508   

56 Temporal_Sup_L   0.035 1.499   

58 Temporal_Sup_L   0.038 1.413   

59 Parietal_Inf_L   0.021 2.120 0.032 2.240 
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60 Parietal_Inf_L   0.029 1.785 0.048 1.870 

68 Occipital_Mid_L   0.047 1.191   

70 Occipital_Sup_L   0.044 1.250   

73 Frontal_Mid_R   0.030 1.756 0.048 1.813 

76 Frontal_Sup_Orb_R   0.029 1.742   

78 Frontal_Sup_R 0.041 2.727 0.029 1.756 0.045 1.927 

79 Frontal_Mid_R   0.033 1.562   

81 Frontal_Inf_Tri_R   0.024 2.006 0.047 1.829 

82 Frontal_Inf_Orb_R   0.005 3.419 0.007 3.480 

83 Frontal_Inf_Oper_R   0.007 3.042 0.012 2.932 

84 Frontal_Sup_R   0.044 1.271   

85 Frontal_Mid_R   0.013 2.470 0.029 2.356 

86 Frontal_Sup_R   0.042 1.314   

87 Frontal_Inf_Tri_R   0.013 2.429 0.029 2.398 

88 Frontal_Inf_Oper_R   0.033 1.556 0.043 2.042 

89 Rolandic_Oper_R   0.006 2.986 0.015 3.016 

90 Rolandic_Oper_R   0.043 1.299   

91 Frontal_Inf_Oper_R   0.029 1.813 0.049 1.842 

94 Precentral_R   0.013 2.413 0.029 2.441 

96 Postcentral_R   0.024 2.013 0.048 1.842 

98 Rolandic_Oper_R   0.021 2.144 0.037 2.173 

101 SupraMarginal_R   0.030 1.727   

102 Insula_R   0.006 2.957 0.015 2.957 

103 Temporal_Sup_R   0.042 1.328   

104 Temporal_Sup_R   0.025 1.927 0.047 1.842 

106 Temporal_Mid_R   0.037 1.442   

107 Temporal_Mid_R   0.027 1.872 0.047 1.810 

108 Temporal_Sup_R   0.041 1.348   

109 Postcentral_R   0.044 1.253   

110 Parietal_Inf_R   0.025 1.911 0.042 1.971 

111 Parietal_Sup_R   0.035 1.523   

113 Temporal_Sup_R   0.049 1.156   

115 SupraMarginal_R   0.036 1.470   

116 Temporal_Mid_R   0.034 1.571   

120 Occipital_Mid_R 0.040 2.956     

121 Temporal_Mid_R   0.026 1.942 0.043 1.990 

122 Temporal_Mid_R 0.049 2.527 0.042 1.328   

124 Temporal_Mid_R   0.041 1.375   

126 Parietal_Sup_R   0.021 2.135 0.046 1.897 

127 Occipital_Mid_R   0.026 1.928 0.043 2.013 

128 Occipital_Mid_R 0.030 3.241     

Table 6. List of channels, their associated channel name in the brain, p-values, and z-scores for 

degree, clustering coefficient, and local efficiency that were significantly different between 

groups. 
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3.5 Machine Learning  

Once the local differences were detected, the data was inputted into machine learning 

models to determine if algorithms could classify between groups using the graph metrics. 

First, individual metrics (degree, clustering coefficient, local efficiency, betweenness 

centrality) for all 121 channels were inputted as features, and then all metrics were 

combined and inputted as one singular feature. Bad channels were removed for each 

metric, which included 0.04% of channels for degree, 1.61% for clustering coefficient, 

2.03% for local efficiency, and 1.82% for betweenness centrality. The importance of a 

channel (for classifying groups) was only shown for statistically significant models that 

used clustering coefficient, if applicable. The statistical significance of median accuracy 

rates was based on non-parametric permutation testing. 

3.5.1 Classification between Patients and Healthy Controls  

Figure 28 shows the median accuracy rates for classification between healthy controls 

and patients for linear SVC, KNN, and rbf SVC models for individual and all metrics 

combined. Linear SVC and KNN models performed significantly well for individual and 

all metrics combined. The rbf SVC model performed slightly above significance for 

degree and all metrics combined. 



49 

 

 

 

Figure 28. Median accuracy scores (with confidence interval as error bars) for classification 

between healthy controls and patients using three different models with various features 

(individual metrics and all metrics combined). Red stars represent statistical significance based 

on non-parametric permutation testing. 
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Table 7 shows the median accuracy, interquartile range, precision, recall, and specificity 

scores in percentages for classification between healthy controls and patients. 

 Degree 
Clustering 

Coefficient 

Local 

Efficiency 

Betweenness 

Centrality  
All Metrics 

Linear 

SVC 

Median 63.75 76.19 65.00 65.00 63.75 

IQR 16.25 16.25 16.25 16.56 16.25 

Precision 69.50 79.77 71.98 72.45 71.44 

Recall 83.27 82.19 75.83 73.64 63.07 

Specificity  45.71 68.03 54.78 57.98 39.79 

KNN 

Median 60.98 70.00 67.50 53.75 63.75 

IQR 17.57 16.25 19.06 10.00 17.19 

Precision 67.06 76.42 73.38 62.29 70.34 

Recall 75.49 74.58 71.16 96.95 82.50 

Specificity  45.52 64.12 59.74 14.89 57.29 

rbf  

SVC 

Median 51.19 50.00 50.00 50.00 53.57 

IQR 13.75 20.24 13.75 11.25 18.08 

Precision 63.69 68.24 64.40 64.24 67.13 

Recall 90.06 91.29 89.17 90.27 79.50 

Specificity  23.08 31.28 24.17 22.38 8.82 

Table 7. Median accuracy, interquartile range (IQR), precision, recall, and specificity scores (all 

in %) for classifying healthy controls and patients for all models and feature combinations. 
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Table 8 shows the confusion matrices for the models and features that achieved 70%+ 

performance accuracy for classification between healthy controls and patients. 

 
Clustering Coefficient 

Linear SVC 

 

KNN 

 

Table 8. Confusion matrices for classification between healthy controls and patients for linear 

SVC clustering coefficient and KNN clustering coefficient. In each matrix, the top left and bottom 

right boxes represent the number of patients and healthy controls that were correctly classified, 

whereas the top right and bottom left boxes represent patients and healthy controls that were 

misclassified. 
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Figures 29-30 show the importance of each channel (z-scores) when using clustering 

coefficient values to distinguish between healthy controls and patients using a linear SVC 

and KNN model, respectively. 

 

Figure 29. Importance of each channel (z-scores) when using clustering coefficient to distinguish 

between healthy controls and patients using a linear SVC. 

 

 

Figure 30. Importance of each channel (z-scores) when using clustering coefficient to distinguish 

between healthy controls and patients using a KNN model. 

 

Linear SVC and KNN models performed well above chance when differentiating 

between healthy controls and patients using several metrics. Based on the importance 

scores, several channels were helpful for classifying between study groups using 

clustering coefficient. As expected, many of these channels overlapped with those that 

were significantly different between groups using statistical analyses (refer to section 

3.4). 
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3.5.2 Classification between GOSE Scores 

Figure 31 shows the median accuracy rates for classification between good outcomes 

(i.e., GOSE score > 1) and poor outcomes (i.e., GOSE score = 1) for all three models and 

features. Linear SVC and KNN models performed significantly well using degree, 

clustering coefficient, and all metrics combined. Local efficiency and betweenness 

centrality metrics for these models did not reach statistical significance. The rbf SVC 

model performed at chance-levels for all features. 

 

Figure 31. Median accuracy scores (with confidence interval as error bars) for classification of 

patient outcome using three different models with various features (individual metrics and all 

metrics combined) for all models and feature combinations. Red stars represent statistical 

significance based on non-parametric permutation testing. 
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Table 9 shows the median accuracy, interquartile range, precision, recall, and specificity 

scores in percentages for classification between high and low GOSE scores. 

 Degree 
Clustering 

Coefficient 

Local 

Efficiency 

Betweenness 

Centrality  
All Metrics 

Linear 

SVC 

Median 83.33 75.00 50.00 50.00 83.33 

IQR 41.67 50.00 50.00 0.00 43.75 

Precision 62.33 52.50 43.17 0.33 58.28 

Recall 67.50 50.50 46.67 0.33 67.00 

Specificity  87.19 98.89 97.44 99.33 97.81 

KNN 

Median 75.00 75.00 50.00 50.00 75.00 

IQR 37.50 50.00 40.62 0.00 50.00 

Precision 50.00 62.50 33.83 2.67 49.06 

Recall 65.83 55.33 29.67 2.17 48.33 

Specificity  83.17 99.19 99.83 98.56 99.00 

rbf  

SVC 

Median 50.00 50.00 50.00 50.00 50.00 

IQR 33.33 12.50 0.00 0.00 25.00 

Precision 31.28 22.61 15.00 3.11 23.39 

Recall 35.83 23.33 14.50 3.83 23.67 

Specificity  92.89 98.25 99.28 98.33 99.78 

Table 9. Median accuracy, interquartile range (IQR), precision, recall, and specificity scores (all 

in %) for classifying patient outcomes for all models and feature combinations. 
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Table 10 shows the confusion matrices for the models and features that reached 70%+ 

accuracy for classification between high and low GOSE scores. 

 Degree Clustering Coefficient 

Linear 

SVC 

 
 

KNN 

  

Table 10. Confusion matrices for classification of patient outcome for linear SVC degree and 

clustering coefficient, and KNN degree and clustering coefficient. In each matrix, the top left and 

bottom right boxes represent the number of patients with poor and good outcomes that were 

correctly classified, whereas the top right and bottom left boxes represent the number of patients 

with poor and good outcomes that were misclassified. 

 

When distinguishing between high and low GOSE scores, linear SVC and KNN models 

performed well above chance when using degree, clustering coefficient, and all metrics 

combined.  
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3.5.3 Classification between GCS Scores  

Figure 32 shows the median accuracy rates for classification between low (3-5) and high 

(6-8) GCS scores for all three models and all features. The linear SVC model performed 

significantly well for clustering coefficient and all metrics combined, and slightly above 

significance for degree. The KNN model performed significantly well for clustering 

coefficient, local efficiency, betweenness centrality, and all metrics combined. The rbf 

SVC model performed at chance-levels for all features. 

 

Figure 32. Median accuracy scores (with confidence interval as error bars) for classification of 

patient level of consciousness using three different models with various features (individual 

metrics and all metrics combined). Red stars represent statistical significance based on non-

parametric permutation testing. 
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Table 11 shows the median accuracy, interquartile range, precision, recall, and specificity 

scores in percentages for classification between high and low GCS scores. 

 Degree 
Clustering 

Coefficient 

Local 

Efficiency 

Betweenness 

Centrality  
All Metrics 

Linear 

SVC 

Median 58.33 66.67 50.00 50.00 66.67 

IQR 16.67 25.00 16.67 8.33 25.00 

Precision 44.58 57.83 33.29 27.11 54.12 

Recall 39.61 51.67 31.17 22.56 65.22 

Specificity  76.56 79.89 72.67 84.00 85.22 

KNN 

Median 50.00 66.67 66.67 58.33 66.67 

IQR 25.00 16.67 33.33 16.67 25.00 

Precision 42.63 63.12 53.41 46.57 57.18 

Recall 65.50 88.17 76.72 41.78 66.61 

Specificity  39.78 55.33 56.22 74.22 37.78 

rbf  

SVC 

Median 50.00 50.00 50.00 50.00 50.00 

IQR 8.33 16.67 0.00 0.00 16.67 

Precision 23.98 23.51 14.17 14.97 32.11 

Recall 22.83 21.67 14.00 12.28 35.67 

Specificity  84.22 92.00 89.56 91.33 98.11 

Table 11. Median accuracy, interquartile range (IQR), precision, recall, and specificity scores (all 

in %) for classifying patient level of consciousness for all models and feature combinations. 

 

Figure 33 shows the importance of each channel (z-scores) when using clustering 

coefficient values to distinguish between high and low GCS scores using a linear SVC 

model. 

 

Figure 33. Importance of each channel (z-scores) when using the clustering coefficient to 

distinguish between patient level of consciousness using a linear SVC. 
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Classifying between high and low GCS scores was most accurate using linear SVC and 

KNN models and graph metrics of clustering coefficient, local efficiency, and all metrics 

combined were the most useful for this classification. 
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Chapter 4: Discussion 

The present study investigated RSFC in 16 acutely brain-injured patients and 23 healthy 

controls using graph-theoretical analyses and machine learning algorithms. Whole-head 

neuroimaging data was collected using fNIRS, while behavioural assessments included 

measures of consciousness levels (i.e., GCS) and post-injury outcomes (i.e., GOSE).  

Findings from this study indicated that whole-brain graph theory analyses could not 

distinguish between patients and healthy controls. However, local analyses identified 

differences in graph metrics, including degree, clustering coefficient, and local efficiency 

for multiple channels between groups. In particular, healthy controls had higher values 

for the three metrics than patients. These results were further investigated using three 

machine learning models. Of the three models used to assess these findings, the linear 

SVC and KNN algorithms performed above chance-levels when discriminating between 

two groups. Notably, clustering coefficient emerged as an important metric as the 

machine learning models were able to distinguish between healthy controls and patients 

with up to 76% accuracy using this metric. Furthermore, these algorithms discriminated 

between good and poor patient outcomes with up to 83% and 75% accuracy using degree 

and clustering coefficient, respectively. Lastly, using behavioral scores, machine learning 

models classified patients’ level of consciousness with up to 66.67% accuracy using 

clustering coefficient and local efficiency. 

4.1 Detecting Connectivity Differences using Graph Theory 

Resting-state paradigms, which function as a ‘baseline’ measure of neural activity, can 

provide valuable information about network functionality, information integration and 

processing, and overall consciousness (Koculak & Wierzchoń, 2022). This paradigm 

captures the intrinsic connectivity in the brain and, therefore, can inform about any 

network disruptions that affect cognitive processing. According to studies on 

consciousness using resting-state paradigms, functional brain networks need to integrate 

and transfer information from a local to a global level for efficient conscious processing 

(Barttfeld et al., 2015; Heine et al., 2012). To achieve this, conscious processing requires 

complex interaction between multiple networks and the preserved ability to integrate 
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multisensory information (Crone et al., 2014; Demertzi et al., 2015; Di Perri et al., 2016; 

Han et al., 2016). When these functional networks within the brain are disrupted, 

information integration and communication are disturbed, which can result in altered 

states of consciousness.  

4.1.1 Global and Local Connectivity Differences  

The present study further explored how whole-brain RSFC differed in acutely brain-

injured patients compared to healthy controls using graph theory. While previous studies 

have generally reported decreased functional connectivity across networks in critically 

brain-injured patients, this investigation aimed to provide a more comprehensive 

understanding of network connectivity, communication, and information processing in 

this population (Han et al., 2016; Hannawi et al., 2015; Koenig et al., 2014; Kondziella et 

al., 2016; Long et al., 2016; Norton et al., 2012; Snider & Edlow, 2020; Vanhaudenhuyse 

et al., 2010; Weng et al., 2017; X. Wu et al., 2015).  

However, the analysis of RSFC data using graph metrics only revealed minimal 

differences between acutely brain-injured patients and healthy controls at the whole-brain 

level. This finding was unexpected, as it was hypothesized that patients would exhibit 

significant alterations in global network properties, given the severe disruption of 

consciousness and cognitive functions. The lack of significant differences at the whole-

brain level suggests that acute brain injury may have resulted in minor localized changes 

in network connectivity, which did not substantially impact the overall functionality of 

the brain network (van der Horn et al., 2017). Nonetheless, the absence of whole-brain 

differences is consistent with previous studies that investigated connectivity in patients 

with mild TBI (Achard et al., 2012; Huang et al., 2024; van der Horn et al., 2017).  

To further investigate this finding, targeted analyses were conducted to identify potential 

local, nodal connectivity differences. Compared to the control participants, acutely brain-

injured patients showed reduced connectivity throughout the brain. The areas with 

reduced connectivity overlapped with resting-state networks, including the DMN and 

salience network, which have been consistently implicated in consciousness and 

cognitive processing (Crone et al., 2014; Demertzi et al., 2015). The DMN, in particular, 

has been associated with self-referential processing and autobiographical memory, both 
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of which are considered essential components of conscious experiences (Raichle, 2015). 

The salience network, in contrast, plays a crucial role in detecting and orienting attention 

toward stimuli, coordinating behavioural responses, and integrating cognitive, sensory, 

and emotional information (Uddin, 2015). The interplay between the DMN and salience 

network is thought to contribute to the emergence of consciousness due to their roles in 

the integration of internally generated and external information (Demertzi et al., 2015). 

These findings indicate that localized disruptions in the connectivity within resting-state 

networks, such as the DMN and salience networks, may underlie the alterations in 

consciousness and cognitive functioning of patients in the present study. The absence of 

global differences despite the presence of local disruptions could suggest that the brain 

may have developed compensatory mechanisms to maintain global functionality. Other 

resting-state networks or brain regions may compensate for the reduced connectivity in 

the default mode and salience networks, preserving the overall information integration 

and processing ability in the brain.  

Alternatively, the absence of significant global differences between the graph metrics of 

the two groups could be explained by the small patient group size in this study. The 

sample size plays a crucial role in determining the power of a study to detect significant 

differences between groups. With a smaller sample size, higher within group variability, 

which is possible given the nature of the clinical population in this study, can reduce the 

ability to detect subtle but potentially meaningful differences between the groups. In this 

study, the small patient group size (n=16) may have resulted in insufficient statistical 

power to detect group differences in graph metrics at the whole-brain level. However, 

when specific channel-wise differences were assessed, variability was reduced and 

allowed for the detection of subtle and significant alterations in connectivity at the local 

level.  

Given these findings, future research should aim to recruit larger samples for the patient 

group to ensure the presence of sufficient statistical power for detecting significant 

differences in the graph metrics at both global and local levels. Alternatively, longitudinal 

studies that follow patients from acute stages to the recovery or prolonged injury stages 



62 

 

 

can be utilized. This study design could provide insight into how local connectivity 

evolves and potentially influences whole-brain network functionality over time. 

In line with previous research, the findings on connectivity at the nodal level 

demonstrated that critically brain-injured patients had lower metric values for degree, 

clustering coefficient, and local efficiency when compared to healthy controls (Achard et 

al., 2011; Chen et al., 2023; Crone et al., 2014; Han et al., 2016; Liu et al., 2023; Pandit et 

al., 2013; Weng et al., 2017). The brain is a complex system that relies on a balanced 

interplay between local processes and global integration (Heuvel & Sporns, 2013). When 

local processes are compromised, as indicated by the lower graph metric values of 

patients in this study, it can have widespread consequences on the overall network 

functionality and cognitive capacity. Particularly, local level network disruptions can lead 

to deficits in higher-order functioning (Han et al., 2016). For instance, disruptions in local 

connectivity within the DMN have been associated with impairments in self-referential 

processing and consciousness (Crone et al., 2013). This finding highlights the role of 

local network integrity in supporting higher-order cognitive processes.  

In contrast to findings in the present study, previous studies have reported increased 

connectivity and higher values for degree, clustering coefficient, and local efficiency in 

patients with TBI (Caeyenberghs et al., 2012, 2017; Hillary, Rajtmajer, et al., 2014; 

Hillary, Román, et al., 2014; Imms et al., 2019; Nakamura et al., 2009; Yuan et al., 

2017). These findings align with the hyperconnectivity hypothesis, which postulates that 

damage to a neural system can result in increased connections as a compensatory 

mechanism. Such compensation entails the recruitment of supplementary neural 

resources during network disruptions to enhance connectivity density, which could lead 

to high metabolic costs throughout the brain (Hillary, Román, et al., 2014).  

The results from the present study do not align with the hyperconnectivity hypothesis. 

Differences in the findings reported in this study and those conducted in the past could be 

attributed to differences in pathophysiological mechanisms that may be involved in 

patients with hypoxic-ischemic brain injury (i.e., focus of the current study) versus 

patients with TBIs (i.e., samples from existing literature). TBIs include a physical injury 

to the brain, typically by a violent blow to the head, that results in damaged brain tissue 
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and altered brain function (Menon et al., 2010). Since hypoxic-ischemic brain injuries are 

caused by another underlying medical condition and not physical damage to brain tissue, 

they may not trigger the same hyperconnectivity response as TBIs but may lead to more 

localized disruptions in neural networks, as indicated by the decreased graph metric 

values in this study (Busl & Greer, 2010).  

Other than nature of brain injuries, inconsistencies between connectivity and graph metric 

findings between the current study and previous research could be due to methodological 

differences, such as testing patients in different phases (e.g., post-acute or chronic injury 

phases), employment of different neuroimaging paradigms (e.g., passive or active 

paradigms), or utilization of different types of graphs (e.g., weighted or directed graphs). 

To elaborate, investigating patients months or even years post-injury, for example, can 

result in hyperconnectivity, which as mentioned above acts as a functional compensatory 

mechanism (Caeyenberghs et al., 2012). Hyperconnectivity may occur in the chronic or 

prolonged phases as patients have had more time to reconstruct and transform network 

connectivity in response to their injuries. Alternatively, the graph theory approach 

employed can also yield different results across studies. For example, using weighted 

graphs can provide insight into both the presence and strength of connectivity, whereas 

binary graphs only examine the presence or absence of a connection (Hillary, Rajtmajer, 

et al., 2014). These, albeit subtle, differences in data collection and analysis can 

potentially drive the variability in results acquired in this field. Nonetheless, the current 

study builds on previous literature with the findings that connectivity and graph metric 

values are decreased in acutely brain-injured patients (Pandit et al., 2013).  

Overall, the absence of global connectivity differences and the presence of local 

connectivity differences, have important implications for understanding consciousness 

and brain functionality in acutely brain-injured patients. While localized disruptions in 

multiple resting-state networks, such as the DMN and salience network, may contribute 

to altered states of consciousness, the brain’s ability to maintain overall network 

functionality suggests some magnitude of resilience and adaptability. This highlights the 

complexity of brain connectivity and the need to consider both global and local network 

properties in critically brain-injured patients when assessing brain function.  
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4.1.2 Graph Metrics and Network Functionality  

The degree, clustering coefficient, and local efficiency describe the functionality of the 

resting brain and how network connectivity, information processing, and communication 

may be altered post-injury. The degree of a node indicates the number of connections 

each channel has and, therefore, how connected the brain as a whole may be. A higher 

degree indicates that the channel functionally interacts with many other channels 

(Bullmore & Sporns, 2012; Rubinov & Sporns, 2010).  

Results from the present study demonstrate that certain nodes across patients had a 

significantly lower number of connections, which indicates decreased interactions from 

those nodes. Nodes with a reduced number of connections were primarily located in the 

frontal and postcentral gyri, and the middle temporal and middle occipital gyri. These 

findings have important implications for the altered states of consciousness observed in 

the patient group. Self-reflective and somatosensory processes, mediated by the frontal 

and postcentral gyri, are crucial components of conscious experience  (Morin & Michaud, 

2007; Weilnhammer et al., 2021; G.-R. Wu et al., 2019). These processes contribute to 

introspective thought, self-awareness, and bodily self-consciousness (Blanke, 2012; 

Northoff et al., 2006). Furthermore, the middle temporal and middle occipital gyri, which 

are associated with attentional and memory processes, play a role in the content and 

maintenance of conscious states by selecting relevant information that can provide for a 

continuous conscious experience (Baddeley, 2003; Boly et al., 2013; Hannawi et al., 

2015; Koch et al., 2016; Tu et al., 2013; G.-R. Wu et al., 2019).  

Since conscious experiences arise from the complex interplay of self-reflective, 

somatosensory, attentional, and memory processes, a decrease in the degree of nodes in 

these regions support a disruption in these processes, and by extension, consciousness 

(Giacino et al., 2014). Decreases in connectivity, observed in these specific nodes, could 

potentially lead to widespread changes throughout the brain, affecting overall network 

dynamics. Moreover, the nodes with a lower degree in the present study are considered 

part of the DMN and frontoparietal network. In the consciousness literature, both of these 

networks are considered central for integrating information across brain regions and 

supporting conscious experiences (Demertzi et al., 2013; Raichle, 2015). Studies have 
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reported impairments in these networks in patients with DoC, which further indicates that 

disruptions in the connectivity of these resting-state networks may be resulting in deficits 

in widescale information integration and processing, and ultimately producing a 

fragmented conscious experience.  

The clustering coefficient measures the interconnectivity in local neighbourhoods. A 

higher clustering coefficient indicates increased connections between neighbouring nodes 

and represents the ability to functionally segregate local information processing 

(Bullmore & Sporns, 2012; Caeyenberghs et al., 2017). This ability to divide processes 

allows for faster and more efficient processing. However, if clustering is low, local 

neighbourhoods may not be as connected and information processing can be disrupted.  

Findings from this study reported that 66% of channels in patients had lower clustering 

coefficient values compared to healthy controls, which is indicative of deficits in local 

information processing. Although the clustering coefficient values represent a local 

deficit, numerous channels showed disruptions in clustering ability, which suggests that 

deficits in clustering ability may contribute to whole network disturbances. In addition, 

channels that showed clustering disruptions were highly dispersed throughout the brain, 

and therefore, multiple networks were possibly affected. These findings are in line with 

previous studies that have shown disruptions in multiple resting-state networks, including 

the default mode, frontoparietal, visual, executive control, somatomotor, salience, and 

auditory networks in patients with DoC (Crone et al., 2014; Han et al., 2016; Hannawi et 

al., 2015; Heine et al., 2012; Kazazian et al., 2020; X. Wu et al., 2015).  

Reduced clustering in functional networks has significant implications for the emergence 

and maintenance of conscious states. For instance, the DMN is involved in processes that 

support consciousness, including self-referential processing, autobiographical memory, 

and higher-order cognition (Raichle, 2015). Therefore, disruptions in the local 

connectivity of the DMN may lead to impairments in multiple processes critical for 

consciousness, such as self-awareness and integration of personal experiences, ultimately 

affecting consciousness as well (Demertzi et al., 2013). Similarly, the frontoparietal 

network has been implicated in attentional control, working memory, and conscious 

perception (Bor & Seth, 2012). Decreased clustering in the frontoparietal network, 
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therefore, may impair the ability to perceive and attend to internal and external stimuli, 

which can further prompt changes in the conscious experience of those stimuli (Boly et 

al., 2013). Furthermore, disruptions in the sensory networks, including the visual, 

somatomotor, and auditory networks, can also impact consciousness. These networks 

provide the raw materials required for the perception and construction of conscious 

experiences (Dehaene & Changeux, 2011). Impairments in sensory networks can distort 

the integration and processing of sensory information, and lead to distortions in conscious 

experiences of the stimuli. Overall, decreases in clustering coefficient across multiple 

networks may have a global impact, which can disrupt the brain’s ability to support 

conscious processing.  

Local efficiency measures the brain’s ability to communicate and transfer information at 

the local level and assesses the capacity to distribute and integrate information (Bullmore 

& Sporns, 2012; Chen et al., 2023). Inefficient integration of information at the local 

level could result in far-reaching effects, where information is not being transferred, 

leading to disrupted communication throughout the brain.  

In the present study, compared to healthy controls, 36% of channels in patients had lower 

values for local efficiency. Analogous to previous findings, the regions with lower local 

efficiency scores in this study included the auditory, default mode, salience, executive 

control, and frontoparietal networks (Achard et al., 2011; Liu et al., 2023; Weng et al., 

2017). As discussed above, these networks play a crucial role in supporting different 

aspects of conscious processing. For example, the auditory and salience networks are 

involved in detecting and integrating relevant sensory stimuli, whereas the default mode, 

executive control, and frontoparietal networks are associated with higher-order cognition 

(Bor & Seth, 2012; Raichle, 2015; Seeley et al., 2007). Decreased local efficiency in 

these networks can compromise the processing and integration of sensory information, 

which can disrupt the generation of a unified conscious experience. The dispersion of 

channels with reduced local efficiency throughout multiple resting-state networks 

suggests a negative impact on the overall connectivity and functionality of each network. 

This disruption across networks can result in a breakdown of the brain’s local 

organization, leading to difficulties in maintaining consciousness.  
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The results from patients discussed in this study indicate a disruption in RSFC in multiple 

regions of the brain. Specifically, patients demonstrated decreased connectivity and an 

imbalance between functional segregation and integration of information (Bullmore & 

Sporns, 2012; Chen et al., 2023; Oujamaa et al., 2023; Weng et al., 2017). Such 

disturbances in processing across neural networks could potentially be driving deficits in 

higher-order cognitive functioning and conscious processing in critically brain-injured 

patients (Pandit et al., 2013; Weng et al., 2017). Altogether, these results highlight the 

importance of specialized local processes and global distribution processes for overall 

network functionality.  

The application of graph theory in this study provides a quantitative and objective 

approach for understanding the neural mechanisms underlying critically brain-injured 

patients in the ICU. While the findings here are correlational, they offer valuable insights 

into the relationship between graph metrics and consciousness-related processes that may 

be affected in the brain. In this study, the decreases noted in degree, clustering coefficient, 

and local efficiency suggest that disruptions in local connectivity, information processing, 

and communication may alter overall network functionality. These findings highlight the 

importance of considering the brain as an integrated system of multiple networks that 

interact in complex ways to allow for consciousness. By identifying disturbances in 

specific networks and processes, this study provides a more comprehensive 

understanding of the neural correlates underlying impairments in consciousness in 

patients with critical brain injuries. Future work can build on these findings by exploring 

additional graph metrics to determine differences, especially between patients with 

various brain injuries, in network connectivity and functionality.  

4.1.3 Classification of Healthy Controls and Patients  

Following the assessment of local connectivity, machine learning classifiers were 

employed to investigate the distinguishability of graph metrics between patients and 

control participants. The linear SVC model demonstrated the highest accuracy of up to 

76%, which indicates that this classifier was able to find an optimal linear boundary that 

effectively separated the two study groups. This finding suggests that differences in graph 

metrics between patients and control participants are linearly separable. In addition to 
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accuracy scores, other performance measures can reveal details about the model’s ability 

to correctly identify healthy controls and patients. The recall score describes the model’s 

ability to identify most of the patients, whereas the precision score describes how 

correctly the model can predict a patient. The high recall and precision scores indicate 

that this algorithm correctly identified most of the patients in the dataset. Additionally, 

the specificity score describes the model’s ability to correctly identify the healthy 

controls. In this classification, the low specificity scores indicate that the algorithm had 

some difficulty discerning all the control participants.  

The KNN model, which relies on proximity between data point values, achieved an 

accuracy rate of up to 70% for differentiating between graph metrics of patients and 

healthy controls. This accuracy score suggests that graph metrics, especially clustering 

coefficient, form relatively distinct clusters in the feature space, allowing the classifier to 

identify new data points accurately. Furthermore, the recall, precision, and specificity 

scores, indicate that the KNN algorithm correctly identified a large proportion of patients. 

However, analogous to the linear SVC model, this machine learning algorithm also had 

issues when identifying all healthy controls.  

Lastly, the rbf SVC model performed at or around 50% for all graph metrics, indicating 

that determining a non-linear decision boundary between the two groups was difficult. 

Despite the low accuracy score, this model was highly effective at identifying most 

patients in the dataset, as indicated by the high recall scores. This finding suggests that 

the algorithm rarely missed identifying a patient. However, the low precision scores 

imply that the model frequently misclassified healthy controls as patients. In other words, 

while the model was able to correctly identify a large proportion of the patients, it also 

incorrectly labeled many healthy controls as patients, leading to a high number of false 

positives. The low specificity scores further supported that the model struggled to 

identify healthy controls correctly.  

Overall, the performance accuracies for the machine learning classifiers investigated in 

this study imply that simple algorithms, such as linear SVC and KNN, may be sufficient 

for distinguishing between critically brain-injured patients and healthy controls. This 

finding is expected due to the significant differences in levels of consciousness and 
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cognitive processing between the patient and healthy control groups. It could be that the 

machine learning models are able to identify patterns that can easily binarize the graph 

metrics based on the presence or absence of impairments in consciousness. Furthermore, 

the model’s ability to identify and classify patients with high sensitivity suggests that the 

patient group must have unique or consistent graph metric features that distinguish them 

from the control participants. In contrast, the inconsistency in the identification and 

classification of the healthy controls implies that there may be more variability in the 

features of the controls (i.e., more heterogeneity), which makes them difficult to 

categorize. Therefore, these models demonstrate the ability to identify patients 

successfully but require further refinements for accurately classifying healthy controls. 

Although high accuracy scores were noted in the machine learning classifiers 

implemented in this study, 100% accuracy was not accomplished due to the sample size 

and neurobiological heterogeneity within the patient group. The sample size in this study 

is relatively small, which can reduce the models’ ability to learn and generalize the 

algorithms effectively. A larger and more representative dataset could improve the 

classification accuracy and reliability. Alternatively, the heterogeneity within the patient 

group and any overlap in graph metrics between groups could lead to challenges in 

accurate classification. Indeed, the patient group in this study presented with diverse 

etiologies, including differences in the severity and location of the brain injury, which 

could have led to variability in their graph metrics. Furthermore, patients with less severe 

brain injuries and impairments may have had graph metrics that were more similar to 

those of healthy controls, making it difficult for the models to establish clear boundaries 

between the two groups with 100% accuracy.  

Despite these limitations, the linear SVC and KNN models were able to achieve 

relatively high-performance accuracy scores, suggesting that there are indeed identifiable 

pattens and meaningful differences between the graph metrics of patients and healthy 

controls.  
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4.2 Clinical Assessment of Acutely Brain-Injured Patients  

4.2.1 Prognosis using Graph Metrics and Machine Learning 

Although several clinical tools exist to help inform the prognostic process, tools that can 

predict good functional recovery after severe brain injury are scarce (Fins & Bernat, 

2018; Fischer et al., 2022). Given this, neuroimaging can become an objective substitute 

for or complement to behavioural assessments for predicting good or poor patient 

outcomes (Fernández-Espejo & Owen, 2013; Owen, 2022; Young & Edlow, 2021; Young 

& Peterson, 2022). Many studies have used functional neuroimaging, primarily fMRI, for 

neuroprognostication in patients (Arbabshirani et al., 2017; Edlow et al., 2021; Huang et 

al., 2024; Koenig et al., 2014; Kolisnyk et al., 2023; Moreira da Silva et al., 2020; 

Nakamura et al., 2009; Oujamaa et al., 2023; Owen, 2022; Wagner et al., 2020; X. Wu et 

al., 2015). Moreover, minimal research has been conducted using fNIRS and graph 

theory for prognosticating acutely brain-injured patients. Studies that have used this 

approach investigated recovery from DoC rather than acute outcome prediction (Shu et 

al., 2023). Thus, the present study is among the first to lay the groundwork for using 

fNIRS, along with graph theory and machine learning, for early neuroprognostication of 

functional recovery in acute ICU patients.  

Early-stage neuroprognostication in critically brain-injured patients is crucial for making 

decisions regarding life-sustaining measures and general patient care. 

Neuroprognostication in the ICU is an ongoing process in which decisions are re-

evaluated as more information is uncovered (Young & Peterson, 2022). Decisions 

regarding WLSM are based on physician prognosis and the patients’ level of 

consciousness in real-time, which is influenced by GCS scores and severity of the injury 

(McCredie et al., 2016; van Veen et al., 2020; Williamson et al., 2020; Young & Edlow, 

2021). While important, these subjective measures are not reliable. Indeed, physicians 

often do not have enough information to determine patient prognosis in the acute phase of 

injury accurately. Up to 65% of physicians have reported that an accurate prognosis 

would be more helpful within the first 7 days of admission and greatly influence patient 

care decisions (Turgeon et al., 2013; Williamson et al., 2020). Studies have also shown 

that up to 26% of out-of-hospital cardiac arrest patients who had early WLSM may not 



71 

 

 

only have survived if they remained on life-support, but possibly, 64% of them may have 

had favourable functional outcomes (Elmer et al., 2016). This finding exemplifies that 

poor prognosis can lead to biases that ultimately impact patient care and lead to the self-

fulfilling prophecy (Becker et al., 2001; Bernat, 2016). Since a critical aspect of patient 

care and decisions regarding life-sustaining measures is identifying the presence of covert 

consciousness, investing all possible efforts in detecting covert consciousness in acutely 

brain-injured patients is a moral responsibility (Fernández-Espejo & Owen, 2013). 

Therefore, to provide additional information during early-stage prognosis, functional 

neuroimaging can be implemented to aid physicians and family members when making 

important decisions regarding patient care and life-sustaining measures.  

The present study employed neuroimaging in conjunction with graph theory and machine 

learning algorithms to prognosticate critically brain-injured patients. Indeed, the machine 

learning models implemented in this study classified good and poor patient outcomes 

with up to 83% accuracy using degree, clustering coefficient, and a combination of all 

graph metrics combined. Analogous to results for between group differentiation, the 

linear SVC model had the highest performance accuracy for distinguishing between good 

and poor outcomes. Furthermore, the KNN model performed well when differentiating 

between outcomes, which indicates local similarity between data points of the same class. 

In contrast, the chance-level performance of the rbf SVC algorithm suggests that the 

graph metrics used in this study may not be well-suited for a non-linear boundary. 

Overall, the performances of these models once again suggest that simple algorithms may 

be sufficient for classifying patient outcomes using graph metrics.  

To comprehensively assess the models, the classifier’s performance measures were 

further investigated. First, specificity scores were used to measure the proportion of 

patients with poor outcomes that the model correctly identified. A high specificity score 

indicates that the model effectively identified patients with poor outcomes. A machine 

learning model’s specificity can aid in early identification of patients who are more likely 

to have a poor outcome, which is essential for ensuring appropriate treatment planning 

and resource allocation. In contrast, recall scores measure the model’s ability to correctly 

identify all patients with good outcomes, which minimizes the risk of patients being 



72 

 

 

misclassified as having poor outcomes. Finally, precision scores measure the model’s 

ability to ensure that patients predicted to have a good outcome truly have a good 

outcome, which minimizes the erroneous misclassification of patients with poor 

outcomes as those with good outcomes. A high recall score can reduce undertreatment 

ensuring that all patients receive the appropriate care they require, whereas a high 

precision score can reduce overtreatment. The findings from this study suggest that all 

three models had high specificity and a high capacity for correctly identifying patients 

with poor outcomes. The linear SVC model presented with the highest recall and 

precision scores, suggesting that it was most effective and accurate at identifying patients 

with good outcomes. 

Although promising, these findings are limited by the small and uneven sample size in 

this study (10 patients had poor outcomes while only 4 had good outcomes). While 

efforts were made to mitigate the effect of the imbalanced sample size, such as 

calculating balanced accuracy scores and implementing three-fold cross-validation 

techniques over multiple iterations, the results should be interpreted with caution. 

Furthermore, the small sample size in this study may lead to overfitting, where a model 

learns to fit the noise along with the underlying patterns in the dataset, and therefore, fails 

to generalize to new data (Vabalas et al., 2019). As a result, the accuracy scores observed 

in this study may be optimistic, and the model’s performance on new, unseen data could 

be lower. Future studies should recruit larger and more balanced patient cohorts to 

validate findings, such as those in this study, and further assess the performance of the 

machine learning models. Even with the small sample size and variability in the 

etiologies of the patient group, the machine learning analysis conducted in this study was 

able to accurately distinguish between good and poor patient outcomes. This finding 

indicates that graph theory and machine learning methods may be generalizable across 

different types of brain injuries. Future research should follow-up on these findings by 

identifying graph metrics specific to different brain injuries (e.g., structural vs metabolic 

injuries) and investigating the precision of single-subject level neuroprognostication.  

Another important point to note about the sample is that out of the 10 patients who passed 

away (i.e., the poor outcome group), 6 underwent WLSM. This observation raises the 
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question of whether the graph theory and machine learning approach used in this study 

would have been able to determine patient survival had they remained on life-sustaining 

measures. What if the patients misclassified as good outcome would have indeed 

survived if they remained on life-support measures? If some of these patients had the 

potential for recovery, their graph metrics may have been more similar to those of the 

good outcome group, which could have also affected the classifier’s performance, 

potentially leading to lower accuracy in distinguishing between the two outcome groups. 

Given this, future investigations should explore the effect WLSM has on graph metrics 

and whether graph metric values change post-injury, potentially acting as an indicator of 

recovery. Despite WLSM in the poor patient outcome group, the high-performance rates 

of linear SVC and KNN models on graph metrics obtained using fNIRS is a promising 

starting point. The results from our study suggest that these analyses warrant further 

investigation for predicting good and poor patient outcomes. Future studies with larger 

sample sizes and more balanced outcome groups could help validate these findings and 

address the effects of WLSM on graph metrics in the poor outcome group.  

4.2.2 Diagnosis using Graph Metrics and Machine Learning 

In this study, graph metrics were also used to distinguish patients’ level of consciousness, 

as assessed by the GCS. Patients were classified based on whether they received a low (3-

5) or high (6-8) GCS score. Machine learning models were able to classify GCS scores 

with up to 66% accuracy, using clustering coefficient, local efficiency, and all metrics 

combined. 

Again, the interpretation and generalizability of these findings is limited by the small 

sample size in this study. An accuracy score of 66% means that approximately 10-11 

patients were correctly classified, which is only 2-3 more patients than those classified at 

the chance-level of 8 correct classifications. This marginal improvement raises questions 

about the practical utility of this machine learning model for this specific classification, 

given that the accuracy rates obtained in this study are similar to behavioural 

assessments. The remaining 33% of misclassified patients warrant further discussion. As 

mentioned earlier, behavioural measures can be inaccurate, leading to high misdiagnoses 

rates. Hence, there is a possibility that some patients in this study may have had higher 
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levels of consciousness than that indicated by the low GCS scores, however, the classifier 

could not accurately identify them. Suppose the GCS scores were indeed inaccurate in 

assessing the level of consciousness in some of the misclassified patients. In that case, 

graph metrics may have captured aspects of consciousness that were not reflected in 

behavioural scores, thereby classifying patients as a higher level of consciousness and 

resulting in a lower accuracy score.  

An example of this limitation is the case of the Guillain-Barré Syndrome (GBS) patient in 

this study. GBS is a neurological disorder in which the immune system attacks the 

peripheral nervous system. In severe cases, this disorder can lead to muscle weakness that 

results in full-body neuromuscular paralysis (Willison et al., 2016). Although these 

patients cannot communicate or move, they may be fully conscious and aware of their 

surroundings (Norton et al., 2023). In the present study, the GBS patient received a GCS 

score of 3, indicating the lowest possible level of consciousness at the time of testing. 

However, this patient went on to make a full neurological recovery. If the machine 

learning models had correctly identified a higher level of consciousness in this patient 

compared to the GCS score, then the classifier’s performance would be lower. In addition 

to misclassification of higher consciousness levels, it is important to consider the 

possibility that some of the misclassified patients had lower levels of consciousness than 

what was indicated by their GCS scores. In such cases, the classifiers’ performance would 

once again be lower due to the inaccurate and inflated GCS scores.  

Thus, it is crucial to recognize that the graph metrics were used to predict the patients’ 

behavioural scores (i.e., GCS scores) rather than their actual level of consciousness. The 

inaccuracies in behavioural assessments imply that a significant portion of the graph 

metric classification could be based on inaccurate GCS scores, potentially leading to 

misclassifications and incorrect conclusions about levels of consciousness. Despite these 

limitations, the findings in this study may still provide some insight into the relationship 

between graph metrics and behavioural measures of consciousness. Specifically, the 

findings in this study suggest that the relationship between graph metrics and behavioural 

measures can be classified more effectively using a linear SVC and KNN model rather 

than the complex rbf SVC model. 
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Future studies should address the limitations discussed above to understand the 

diagnostic potential of graph metrics further. Next steps in this specific area involve 

recruitment of a larger patient group and comparison between the performance of graph 

metric classifiers and more established diagnostic tools. While it may seem promising 

that classification of patients’ GCS scores reached up to 66% accuracy using graph 

theory, it is important to interpret these findings with caution. Overall, the results from 

this study highlight the potential for graph metrics to provide insight into consciousness 

beyond that acquired from behavioural assessments, all the while emphasizing the need 

for more accurate and comprehensive assessments of consciousness.  

4.3 Feasibility of fNIRS in the ICU 

Findings from the present study demonstrate the feasibility of using fNIRS to test acutely 

brain-injured patients. ICU patients typically present with unstable medical conditions 

that require frequent surveillance, and therefore, can not be transported to different areas 

of the hospital for fMRI scans without significant risks (Fanara et al., 2010). fNIRS 

allows for non-invasive bedside testing, which ensures continuous monitoring of patients, 

eliminating potential complications that might arise during relocation. In addition to 

portability, fNIRS offers inexpensive and high-quality measurement of neural activity. 

Indeed, previous studies have demonstrated that HbO rs-fNIRS signals highly correlate 

with observations made using fMRI (Duan et al., 2012; Sasai et al., 2012; Scarapicchia et 

al., 2017).  

Over the course of the present study, several disadvantages associated with using fNIRS 

for testing brain-injured patients emerged. Primarily, patients with critical brain injuries 

may have structural damages that can affect the position of the optodes on the scalp. 

Improper positioning of optodes can reduce the signal quality and introduce motion 

artifacts (Abdalmalak et al., 2021). Furthermore, certain intracranial injuries, such as 

subdural or superficial lobar hematomas, may interfere with the signal quality, making 

data collection impractical. Brain injuries and surgeries, such as open-head wounds or 

craniotomies, altogether prevent the use of fNIRS in a large subset of brain-injured ICU 

patients. While these limitations reduce the generalizability of this modality, fNIRS 

nevertheless allows for accessible and early-stage neuroimaging in many ICU patients, 
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which remains a largely understudied clinical population. Another limitation of fNIRS 

includes the difficulties associated with setting up the cap, such that all regions of interest 

are adequately captured. For instance, unresponsive patients are typically lying on their 

backs, which makes attaching probes for the occipital lobe and other areas at the back of 

the head difficult. Future studies should design and test montages that can narrow the 

scope of regions and probes to those of the highest importance in this clinical population.  

Overall, this study provided valuable insights into the practical application of fNIRS in 

the ICU setting. Particularly, it emphasized that careful consideration of patient 

positioning, probe placement, and signal quality is essential for obtaining reliable data. 

Despite challenges encountered, such as the optode placements in occipital regions, 

fNIRS data was successfully collected from a large cohort of critically brain-injured 

patients (n=16). While fNIRS may not be suitable for all brain-injured patients, this study 

demonstrates its potential as a valuable tool for assessing acute brain function in the ICU 

setting. 

4.3.1 Hemoglobin Differences in fNIRS Data 

One unexpected yet interesting finding from this study was the lack of differences for all 

chromophores between patients and healthy controls. While HbO showed some 

differences at the whole-brain and giant component level, HbR and HbT did not show 

any differences at any level. Previous studies have shown that an increase or decrease in 

HbO should be expected with a respective decrease or increase in HbR (Kinder et al., 

2022; Luke et al., 2021; Pinti et al., 2020). Although the present study detected changes 

in HbO, there were no significant changes in HbR between groups.  

The absence of HbR differences in the present study could be due to the fact that HbO is 

more sensitive to changes in cerebral blood flow, which is why it is reported more 

frequently in fNIRS literature compared to HbR or HbT (Hoshi et al., 2001; Suzuki et al., 

2004). The discrepancy in HbO and HbR findings may be attributed to their distinct roles 

in neurovascular coupling (i.e., local neural activity and subsequent changes in cerebral 

blood flow). Typically, the amount of oxygen delivered to active brain regions exceeds 

the amount used by those regions. This results in a significant increase in HbO, and only 

a slight decrease in HbR (Ferrari & Quaresima, 2012; Kim et al., 2017). The relatively 
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higher increases in oxygenated blood suggests that HbO may be a more sensitive 

indicator of neuronal activity, whereas changes in HbR may be too small to capture 

significant group differences (Buxton et al., 2004). Indeed, this was observed in the 

present study as changes in HbO, but not HbR, were detected between patients and 

healthy controls. This finding indicates that for resting-state paradigms, where 

spontaneous neuronal activity is measured, HbO may be more suitable for detecting 

changes in neural activity. 

Although HbO may be a more sensitive measure for assessing neural activity, reporting 

findings from all chromophores is essential. A recent review revealed that fNIRS 

literature does not have standardized practices for choosing which chromophore to report 

(Kinder et al., 2022). Most studies only report HbO without providing any justification as 

to why other chromophores were excluded. This is problematic since numerous studies 

have shown that when only one chromophore is reported, results trend toward 

significance. When both HbO and HbR (or HbT) are reported, findings are less likely to 

trend towards significance, which can mitigate the issue of falsely positive results 

(Botvinik-Nezer et al., 2020; Hocke et al., 2018). With consideration of these reports and 

recommendations from relatively more standardized fNIRS protocols, the present study 

reported findings for HbO, HbR, and HbT, which provided a comprehensive profile of 

the results (Kinder et al., 2022). Therefore, even though there were significant differences 

for HbO between patients and control participants at the local level in this study, these 

differences should be carefully considered alongside the non-significant findings for HbR 

and HbT.  

4.4 Conclusion  

The present study explored the acute phase of critical brain injury in 16 patients and 23 

healthy controls using fNIRS-based RSFC. Resting-state data was analyzed using graph 

theory and machine learning to find quantifiable differences in the functional connectivity 

of patients and healthy controls. Although whole-brain differences between groups were 

minimal, graph theory analysis was able to detect significant local channel-level 

differences for three metrics, including degree, clustering coefficient, and local efficiency. 

These graph metrics were significantly lower for patients than healthy controls across all 
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channels that showed a difference. Furthermore, machine learning models, particularly 

linear SVC and KNN algorithms, were able to distinguish between patients and healthy 

controls with up to 76% accuracy. These same models were also able to predict good and 

poor outcomes with up to 83% accuracy and differentiate between high and low 

behavioural assessment scores with up to 66% accuracy.  

The findings from this study have several implications. First, this study validated the use 

of rs-fNIRS in the ICU, a setting where behavioural assessments are insufficient when 

assessing consciousness and traditional fMRI is not feasible. Second, quantifiable 

differences between critically brain-injured patients and healthy controls were detected 

through the use of graph theory. These differences led to a better understanding of brain 

processes and functionality, including changes in network connectivity, communication, 

and information transmission in altered states of consciousness. Third, the machine 

learning algorithms developed in this study reached high accuracy scores when 

differentiating between study groups and predicting patient outcomes. These findings 

provide a gateway to continue exploring rs-fNIRS, graph theory, and machine learning 

for patient diagnosis and prognosis.  

Overall, this study provided a better understanding of network functionality in altered 

states of consciousness, robust tools for diagnosis and prognosis in acutely brain-injured 

patients, and, most importantly, the hope to improve patient care and treatment. 
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