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Abstract 

The microcirculation plays a critical role in tissue blood flow distribution and is thus a 

topic of importance for understanding organ pathophysiology. As an alternative to experimental 

investigations of microvasculature, this thesis introduces a computational algorithm based on 

constrained constructive optimization (CCO) which aims to generate visually and statistically 

realistic branching arteriolar network architecture in healthy skeletal muscle tissue. The 

algorithm includes a list of user-specified adjustable model parameters to generate networks 

characteristic of different skeletal muscle tissues. Geometric (including mean vessel diameters, 

lengths, and numbers of bifurcations per order, Horton’s Law ratios, and fractal dimension) and 

hemodynamic (Murray’s Law exponent and hematocrit) properties of the generated networks 

matched experimental values from literature when compared for validation. The resulting 

algorithm is a valuable tool for investigating network architecture and blood flow in various 

skeletal muscles. 

Keywords 

Microcirculation, arterioles, arteriolar network, hemodynamics, geometry, topology, 

biosimulation, computational modeling, perfusion distribution 
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Summary for Lay Audience 

Microvasculature refers to the smallest vessels of the cardiovascular system which embed 

and distribute blood flow to tissues. As the direct point of contact between the cardiovascular 

system and tissues, the microvasculature is a topic of focus in research on tissue 

pathophysiology. Experimental investigations into microvascular networks are often labor-

intensive, due to the large number and varying sizes of microvascular vessels, and difficult to 

collect due to limitations in modern-day technology. Additionally, individual and tissue-specific 

differences in microvasculature make experimental findings difficult to generalize. Therefore, 

computational modeling of vessel networks has been explored as an alternative in microvascular 

research which may circumvent experimental limitations. In this thesis, we present a 

computational algorithm which was produced with two main goals: 1) the algorithm generates 

networks comparable to real life physiology, and 2) the algorithm may be adjusted to generate 

networks applicable to different tissues and experimental conditions. To achieve the first goal, 

the algorithm was written based on constrained constructive optimization (CCO), a popular 

algorithm for computationally generating visually and statistically realistic vessel network 

architecture. To achieve the second goal, the algorithm was made to rely on user-adjustable 

geometric and hemodynamic parameters which will alter the generated networks. In order to 

validate that algorithm accomplishes these two goals, first, networks were generated with user-

adjustable parameters set to fit properties from different experimental datasets of healthy skeletal 

muscle arteriolar networks. Then, vessels within networks were labelled using the Strahler’s and 

centrifugal ordering schemes, two common methods for grouping vessels of similar 

geometric/topological properties. Using these two ordering schemes, geometric and 

hemodynamic properties of vessels may be calculated over multiple levels within the generated 

networks. To evaluate how statistically realistic and adaptable the generated networks are, their 

geometric and hemodynamic properties were matched and compared, based on their user-

adjustable parameters, to different experimental datasets of healthy skeletal muscle arteriolar 

networks. Results demonstrated that geometric and hemodynamic properties of the generated 

networks were similar to experimental values from different healthy skeletal muscle arteriolar 

network datasets. Notably, though it is commonly conceived in literature that both the Strahler’s 

and centrifugal ordering schemes group vessels of similar properties, and are hence 

interchangeable, these ordering schemes provided different vessel groupings when applied to 

identical networks. In conclusion, the resulting CCO-based algorithm has been proven to 

generate realistic and adaptable networks based on application to various experimental skeletal 

muscle datasets, making it a valuable tool for investigations into skeletal muscle microvascular 

architecture and blood flow. It may also act as a good reference for future work in developing 

adaptable algorithms that can generate realistic networks for different vascular territories.  
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Chapter 1 

1 Introduction and Literature Review 

In this thesis, we review the utility of computational microvascular network 

models as an alternative to, or an assistive tool for, experimental investigations in the 

microcirculation. Additionally, we explore how computational microvascular network 

models may be developed to simulate real life physiology more closely. For this purpose, 

we introduce an algorithm which attempts to generate visually and statistically realistic 

microvascular network architectures in different vascular territories and physiological 

conditions. After comparison of geometric and hemodynamic properties between 

microvascular networks from the algorithm and experimental literature data, it is 

concluded that the algorithm presented in this thesis performs well in generating 

microvascular architecture for various skeletal muscle tissues and may be used as a 

reference for future biosimulation work. 

To provide a fulsome understanding of the underlying background and 

motivations of this thesis, chapter 1 will cover the following subjects: the 

microcirculation is introduced as an essential component of the cardiovascular system 

due to its importance in blood flow distribution at the tissue level; different vessel types 

composing the microcirculation are described, as well as various geometric structures the 

vessels may create (e.g., branching vs. arcading networks); finally, experimental and 

computational methods for acquiring vessel network models are reviewed, including a 

brief commentary on their strengths and weaknesses. 
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1.1  The Cardiovascular System and the Microcirculation 

The cardiovascular system is composed of two main elements: the heart and blood 

vessels. With these two elements, the cardiovascular system facilitates the delivery of 

blood (a medium for oxygen/nutrients supply and waste removal) to all bodily tissues to 

ensure their proper functioning. The cardiovascular system’s blood delivery pathway may 

be described as such: the heart pumps bulk flow through large vessels (arteries) towards a 

branching network of progressively smaller vessels (arterioles) which distribute blood 

into capillaries, a network of tiny vessels capable of facilitating exchange of 

nutrients/waste with tissues via diffusion. From the capillaries, the blood is collected by a 

mirroring branching network of progressively larger vessels (venules and veins), which 

return blood to the heart. This looping path is referred to as systemic circulation, as it is 

the route in which blood is pumped to provide nutrients and oxygen for all tissues 

throughout the body. The cardiovascular system also contains a second loop known as 

pulmonary circulation, in which the heart directs blood towards the lungs for re-

oxygenation and removal of CO2. 

The cardiovascular system plays a critical role in homeostasis and is sensitive to 

all bodily changes, pathological or not. While the heart is known to pump at varying rates 

to match blood delivery to whole body demand (i.e., during exercise) (1), blood flow at 

the tissue level is primarily regulated by the microcirculation. The microcirculation refers 

to regions of the cardiovascular system composed of small vessels – i.e., arterioles, 

venules, and capillaries – which embed and thoroughly perfuse organs and functional 

tissue (2). While experimental identification of the microcirculation has varied between 

studies based on species, tissues, and physiological conditions, it is commonly defined by 
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a vessel diameter cutoff of approximately 100-300 μm (3–5). Due to its direct contact 

with tissue, the microcirculation is recognized as an essential region of study for 

understanding tissue and organ pathophysiology (6). 

It has been hypothesized that during disease conditions, dysfunctional interplay 

between vasoregulatory mechanisms results in inefficient microcirculatory flow, which 

may exacerbate cellular dysfunction and disease progression within tissues and organs. In 

the microcirculation, arterioles are commonly recognized as the vessels which control the 

inflow and distribution of blood in tissues. Microcirculation studies have suggested that 

arteriolar regulation results from the integration of a vast array of stimuli – as examples, 

changing blood volume, hormones, electrolytes, osmolarity, chemical balances, etc. – 

which may originate from a range of sources such as the adrenal glands, kidneys, the 

parasympathetic and sympathetic nervous systems, or medications (7, 8). As a result of 

these stimuli, acute arteriolar regulation of blood flow may be accomplished via smooth 

muscle dilation or constriction of vessel diameter. Meanwhile, longer-term regulation 

may occur via vascular remodeling, resulting in changes in vessel composition or entire 

network structures. Attempts to study arteriolar behavior have resulted in the need for a 

large sample size of microvascular models, as arteriolar behavior has been observed to 

vary in different physiological states, such as disease or exercise, and appears to be tissue 

specific (9–11). Additionally, individual- and demographic- specific differences seem to 

exist due to highly diverse and variable cell expressions (12). Understanding the 

specificity of arteriolar behavior in various microvascular models is essential for 

resolving complex interactions between vasoregulatory mechanisms which induce the 
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observed behavior and discussing the relation between arteriolar regulation and 

tissue/organ pathophysiology. 

1.2 Microvascular Network Properties 

This section presents common properties of the microcirculation from past 

experimental work. Information within this section will aid in the consideration of what is 

a physiologically realistic network model, as most models used in microvascular research 

contain limitations towards simulating in vivo conditions as discussed in section 1.3. 

1.2.1 Microvascular Vessel Types 

The microcirculation constitutes a complex network of vessels with varying roles 

and properties. Though properties of vessels of the microcirculation are not fixed 

between species, tissues, and physiological condition, they may generally be classified 

into arterioles, venules, and capillaries based on shared characteristics, such as diameter, 

structural makeup, physiological role, etc. The approximate structural composition of 

arteriole, capillary, and venule vessel walls have been illustrated in Figure 1 and further 

described below. 
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Figure 1. The approximate structural composition of A) arteriole, B) capillary, and C) 

venule walls. Differences may be observed in both structural composition and relative 

thickness of vessel walls.  

 

Arterioles are commonly observed branching off from arteries and connecting to 

capillaries embedded in tissues, acting as the transition point between the 

macrocirculation and the microcirculation. In the cardiovascular system, they are the site 

of highest flow resistance and cause the greatest drop in blood pressure, hence their 

alternative name ‘resistance vessels’. Arterioles typically range in diameter from 10 to 

200 μm. From inward out, arterioles consist of three main layers: the tunica intima 



6 

 

(endothelial cells sitting on a basement membrane), tunica media (smooth muscle), and 

tunica adventitia (thin sheath of connective tissue, which may contain collagen, nerve 

endings, and fibroblasts) (13). Typically, large arterioles will have two to four smooth 

muscle layers, the number decreasing as arteriolar diameter decreases. The structural 

makeup of arterioles may also vary slightly between tissues; for example, arterioles 

within expandable tissue such as skeletal muscle typically possess an additional external 

elastic lamina that allows arterioles to elongate or recoil with the tissue, which is missing 

in non-expandable tissue such as the brain (9). Arteriolar smooth muscles has been 

demonstrated to react in response to physical and chemical stimuli from various 

physiological sources (e.g., sympathetic innervation, parenchyma metabolism, 

endothelial cells, blood pressure, etc.) to constrict or dilate (7); as such, arterioles have 

been identified as the principal site of blood regulation to specific tissue areas and the 

gatekeepers of capillary beds, contributing to upstream perfusion pressure. 

Capillaries are the smallest vessels of the cardiovascular system, ranging up to 10 

μm in luminal diameter. In the microcirculation, capillaries are commonly found perfused 

by arterioles, drained by venules, and embedded within tissues/organs beside active cells 

and parenchyma; their proximity allows for exchange of nutrients to occur via diffusion, 

active cellular transport, and convection through the vessel wall according to tissue 

metabolic demand. From outside inward, capillaries consist of a single layer of 

endothelium surrounded by a basement membrane, lacking any smooth muscle. Their 

structural makeup is specialized to provide minimal diffusion distance between blood and 

tissue, enabling maximal exchange of certain molecules whilst blocking others. The 

number and geometry of capillaries also constitutes a large interfacing surface area to 
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facilitate this exchange (2). In the twentieth century, it was popularly theorized in August 

Krogh’s capillary motor hypothesis that blood flow control resides principally in the 

capillaries, not arterioles (14); it was theorized that only a fraction of capillaries is 

perfused at rest, with more being recruited under periods of stress (e.g. hypoxia). The 

ability to recruit capillaries was attributed to the existence of precapillary sphincters 

which ‘open’ or ‘close’ the capillary lumen via constriction. However, the existence of 

precapillary sphincters has an absence of supportive morphological findings (15). Now, it 

is more commonly believed that tissue perfusion is the result of upstream arterial 

regulation. Though Krogh’s capillary motor hypothesis has been largely disproven, 

capillaries may still contribute to blood flow control within tissues via structural 

adaptations (e.g. capillary pruning and angiogenesis) over long time scales, often in 

response to sustained physiological conditions such as hypoxia (16). 

While an abundance of data is available on arterioles and capillaries, less research 

has been done on venules. Venules tend to be wider than arterioles but have thinner walls 

as blood pressure in venules is far lower. The composition of venule walls are similar to 

that of arterioles; but while larger venules may have a layer of smooth muscle within 

their media, smaller venules tend to be devoid of smooth muscle (2). Venule walls tend to 

be porous, so they also play a role in the exchange of oxygen and nutrients with tissues. 

The organization of venules is similar to arterioles, except venules tend to be wider and 

more numerous in comparison. 

Though the microcirculation generally follows a pipeline of arterioles to 

capillaries to venules in a branching and reverse branching tree pattern, deviations are not 

uncommon. Oftentimes arterioles will directly connect to the venules, bypassing the 
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capillary bed. This may be observed within microcirculatory territories such as cutaneous 

perfusion and is known as the arteriovenous (A-V) shunt. A-V shunts play an important 

role in body temperature regulation due to their sympathetic innervation; sympathetic 

stimulation may induce constriction of arterioles, decreasing the volume of blood in the 

skin, to prevent heat loss (13). Other examples of growths which stray from the branching 

network pattern include anastomoses, multiple capillaries in series (rete mirabile), and 

arcades (12). For such growths, alternative classification schemes for vessel types within 

the microcirculation have been developed (17, 18). 

1.2.2 Network Geometry and Topology 

In the microcirculation, network structure has been recognized to be highly 

heterogenous, with a great variety of shapes and sizes between different tissues and 

species (2, 12, 19). Tissue-specific differences exist to ensure that blood perfusion 

matches the functional requirements of the tissue. Meanwhile, individual-specific 

differences suggest that network growth is partially stochastic. Due to the irregularity of 

microvascular architecture, blood flow distribution within specific tissues cannot be fully 

understood without careful characterization of network geometry and topology. As such, 

this section will identify geometric/topological patterns which persist in the 

microcirculation despite its heterogeneity and review quantitative methods of 

characterizing network architecture.  

A prominent topologic motif in vasculature is the branching pattern vessel 

networks form resembling tree branches or roots. This branching motif is commonly 

observed as arterioles transition into capillaries via diverging bifurcations and capillaries 

combine into venules as converging bifurcations. It is rare for vessels to branch into more 
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than two daughter vessels, with published cases only being seen in disease (20). This 

topological branching pattern may be considered a fractal property, due to its repeated 

appearance over multiple scale sizes, and has been taken advantage of in computational 

algorithms for modelling microvascular networks (Section 1.3.2). In order to characterize 

the geometry and topology of branching microvascular networks, a number of 

classification schemes have been introduced which group vessels of similar properties 

into ‘orders’. Within literature, the two most commonly employed schemes are the 

‘centrifugal’ and ‘Strahler’s’ ordering schemes (10). Differences between the two 

ordering schemes have been described below and illustrated in Figure 2. Ordering 

schemes for non-branching networks, such as arcades, are not common within literature 

and are often study-specific (18), hence they have not been described. 

The Strahler’s (or ‘centripetal’) ordering scheme was first introduced by Arthur 

Newell Strahler in 1952 (21) as a modification of Robert E. Horton’s work in classifying 

river networks (22). To begin, the Strahler’s ordering scheme assigns order 1 to the 

terminal vessels of a network. Moving from the terminal vessels towards the feed vessel, 

if two daughters of the same order join, then the order of the parent is increased by one. If 

two daughters of different orders join, then the parent is assigned the higher of the two 

orders. Reminiscent of its origins, Strahler’s order is purely dependent on the topology of 

networks. Hence, it is ideal for terminal arteriolar networks which are located near 

capillary beds. It is also ideal for asymmetric networks, as it is capable of appropriately 

assigning side branches with significantly smaller diameters to lower orders, while 

assigning neighboring branches with large diameters to higher orders. However, due to its 

purely topological nature, the Strahler’s ordering scheme requires the identification of all 
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terminal vessels; if the vascular network is incomplete, as in the case of experimental 

studies or damaged tissue, then the Strahler’s ordering scheme will struggle to group 

vessels with similar properties. 

The centrifugal ordering scheme was developed by Mary P. Wiedeman in 1963 to 

be applied on the subcutaneous microcirculation of a bat’s wing (23). Unlike Strahler’s 

order, this ordering scheme assigns order 1 to the feed vessel of the network. Moving 

from the feed vessel towards the terminal vessels, the centrifugal order of either or both 

daughters will increase by one if one of the following conditions are satisfied: 1) if the 

bifurcation angle between them is sufficiently large, or 2) if the diameter of either or both 

daughters are sufficiently small compared to the parent. The centrifugal ordering scheme 

is capable of labelling vessels starting from different levels of the network, making it 

more effective at grouping similar vessels within incomplete networks compared to the 

Strahler’s ordering scheme. However, the bifurcation angle and diameter criteria are 

subjective, with cut-off values varying between studies, and thus must be considered 

when comparing data from different studies and vascular territories. 
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Figure 2. Comparison of centrifugal and Strahler's ordering schemes. In both panels, a 

simplified bifurcating network is labelled with centrifugal ordering in panel A, and 

Strahler’s ordering in panel B. Differences between the two ordering schemes may be 

observed, especially at bifurcations with significant changes in daughter 

diameter/bifurcation angle. 

 

As described, the Strahler’s and centrifugal ordering schemes are not perfect 

solutions for classifying vessels in branching networks, each having their own strengths 

and weaknesses. Thus, modifications to both ordering schemes or new ordering schemes 

are commonly introduced across studies to better classify similar vessels into the same 

order (24, 25). However, common use of Strahler’s and centrifugal ordering allows for 

comparison of data between studies and provides for a general understanding of vessel 

properties across generations in a network in spite of varying topologies. There is an 

additional benefit to using Strahler’s ordering – experimental studies have demonstrated 

that there is a power law relationship that exists between Strahler’s order and diameter, 
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length, and number of vessels within each order. This power law relationship is known as 

Horton’s Law (26) and has been proven to hold true across various vascular territories (3, 

17, 27, 28). Through Horton’s Law, the slope of the linear fit between the logarithm 

transform of mean diameter, length, and number of vessels per Strahler’s order has often 

been used to evaluate changes relative to the previous generation. These slope values are 

commonly known as the diameter, length, and bifurcation ratios, or cumulatively as 

Horton’s ratios. The Horton’s ratios may alternatively be defined as the ratio of mean 

diameter, length, or number of vessels from a higher order to an order one level lower. 

Methods for calculating the Horton’s ratios when averaging over multiple networks have 

varied between studies, however value differences due to method are generally 

insignificant (3, 28).  

Separate from ordering schemes, experimental studies have also demonstrated a 

power law relationship between blood flow and vessel diameter known as Murray’s Law 

(29). The power law exponent has been demonstrated to typically range between 2 and 4, 

varying between vascular territories (30): 

𝑸 ∝ 𝑫𝜸 (1) 

where 𝑄 is blood flow, 𝐷 is vessel diameter, 𝛾 is the power law exponent. Murray’s Law 

is particularly beneficial and commonly employed when considering the relationship 

between network geometry/topology and hemodynamics. 

1.2.3 Network Hemodynamics 

Flow within the cardiovascular system is primarily driven by pressure generated 

from the beating of the heart. The relationship between flow and pressure within any 
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closed system, whether it be a single vessel or the entire microcirculation, may be 

expressed using Ohm’s law for fluid flow: 

𝑹 =
∆𝑷

𝑸
 

(2) 

where ∆𝑃 is pressure difference driving the flow, Q is the volume flow rate, and R is flow 

resistance. According to Ohm’s law, flow resistance indicates the pressure required to 

sustain a given flow rate. Within a branching network of vessels, particularly within 

arterioles of the microcirculation, blood flow distribution and pressure drop depends on 

vessel resistances, which may be determined using rules analogous to circuits of 

electrical resistances: for elements in series (all carrying the same flow), e.g., an arteriole 

narrowing into a capillary without side branches, pressure drop is linearly proportional to 

the flow resistance of each element. Meanwhile, for elements in parallel (all subjected to 

the same pressure drop), as would be observed in a branching vessel network, the flow in 

each element is inversely proportional to their respective flow resistance. These rules 

allow for an understanding of blood flow distribution in vessel networks and demonstrate 

the influence of flow resistance on network hemodynamics. This is physiologically 

significant, as changing flow resistance via vessel diameter is the primary method of 

blood flow regulation employed by the cardiovascular system. 

In the 1830s, Jean-Louis-Marie Poiseuille directly measured arterial and venous 

blood pressure to discover that pressure in venous vessels was lower than arterial vessels, 

irrespective of vessel size (12, 31). Thus, he concluded that pressure drop in the 

cardiovascular system must primarily occur within peripheral circulation. To further 

investigate the source of cardiovascular flow resistance, Poiseuille observed the flow of 
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simple fluids (i.e., distilled water) through long, narrow glass tubes using a range of 

controlled pressures (32–34). The main findings of his work eventually led to the 

derivation of an equation generally known as Poiseuille’s Law:  

𝑸 =
𝛑 ∗ 𝒓𝟒 ∗ ∆𝑷

𝟖 ∗ 𝒍 ∗ 𝜼
 

(3) 

Poiseuille’s law describes the relationship between dynamic fluid viscosity (𝜂), pressure 

(∆𝑃) and flow (𝑄) within a cylindrical tube of length 𝑙 and radius 𝑟. Poiseuille’s law 

holds true under several assumptions: the tube is uniform with a circular cross-section, 

and the fluid is Newtonian (with a fixed viscosity), steady (unchanging in time), and 

laminar (not turbulent). Though these assumptions rarely hold true in practice, 

Poiseuille’s law is still a useful approximation of blood flow in microvessels. Derivations 

of Poiseuille’s law has been published in other texts (33–35), however an informal 

understanding is as follows: by combining the Poiseuille flow assumptions with Navier-

Stokes equations, which expresses conservation of mass and Newton’s second law for a 

fluid, the resulting fluid velocity profile becomes parabolic with radial position, being 

maximal at the tube center and zero at the wall. The coefficient of the parabola depends 

on pressure gradient (
∆𝑷

𝒍
) and fluid viscosity (𝜂). The centerline velocity is proportional to 

the square of the radius (𝒓). The volume flow rate (eq. 3) may thus be obtained by 

integrating velocity over the circular cross-sectional area. 

When combining Ohm’s law (eq. 2) with eq. 3, Poiseuille’s law can alternatively 

be written as such: 
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𝑹 =
𝟖 ∗ 𝒍 ∗ 𝜼

𝛑 ∗ 𝒓𝟒
 

(4) 

As observed from eq. 4, Poiseuille’s law suggests that small changes in vessel radii result 

in large changes in resistance (𝑅 ∝ 𝑟−4); this is physiologically important, as it explains 

how arterioles are capable of regulating blood flow distribution within tissues via 

relatively small changes in vessel diameter. 

While Poiseuille’s law provides a fair approximation of flow in microcirculatory 

vessels and may be applied to the macrocirculation on average, individual 

macrocirculatory vessels do not display Poiseuille’s law due to marked differences in 

hemodynamics. In large vessels, in the range of millimeters to centimeters, blood may be 

approximated as a homogenous Newtonian fluid – i.e., in addition to inertial effects, 

phenomena such as boundary layers, flow separation, instability, secondary flows, and 

turbulence may be observed (36). However, in the microcirculation, blood cannot be 

considered as a homogenous fluid since vessel diameters are not much greater than the 

cells it carries. Thus, flow dynamics in the microcirculation commonly considers blood as 

a multi-component fluid of primarily plasma and red blood cells (5, 12, 36). Another 

difference would be that the Reynold’s number of the microcirculation is generally much 

smaller than 1, thus unlike in the macrocirculation. Thus, inertial effects are negligible 

and only laminar flow is observed. 

The viscosity term from eq. 3, alternatively known as apparent or effective 

viscosity, applies to Newtonian fluids (fixed viscosity). However, as mentioned, blood 

cannot be considered as a continuum within microcirculation; the effects of red blood cell 
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deformation and aggregation within microcirculation causes blood to possess significant 

non-Newtonian properties. As such, experimentally measured values of blood viscosity 

often do not align with its apparent viscosity. A few important phenomena related to the 

noncontinuum nature of blood in the microcirculation are reviewed below. These 

phenomena are essential to understanding hemodynamics within microvascular networks 

and relevant to work described in Chapter 2 of the thesis. 

The Fahraeus effect: As a result of behaving as a particulate, noncontinuum fluid in 

microvessels, a cell-free layer of fluid (predominantly plasma) may be observed near 

vessel walls when blood flows through. This phenomenon is referred to as the Fahraeus 

effect, named after Robin Fahraeus, who observed the effect in glass tubes in the early 

twentieth century (37). The cause for red blood cell aggregation at the centerline, away 

from the vessel wall, is not completely understood. However, a few hypotheses have been 

considered (12): first, the center of mass of each cell cannot approach the vessel wall 

closer than a certain distance; assuming red blood cells are approximately 2 μm thick, this 

approximates a cell-free layer of 1 μm. However, since the cell-free layer has been 

observed to be thicker, the migration of red blood cells has alternatively been explained 

via the mechanical interaction between the deformation of red blood cells and the 

surrounding nonlinear flow environment (38). 

When observing the Fahraeus effect in microvessels, red blood cells migrate 

towards the centerline and flow at a faster velocity than the slow-moving cell-free layer 

near the vessel wall. As a consequence, the transit time of red blood cells is lower than 

would be expected in macrovascular flow. The Fahraeus effect is commonly 

mathematically described in terms of hematocrit, which is the volume ratio of red blood 
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cells to blood; the terms discharge hematocrit (𝑯𝑫) refers to the hematocrit of blood 

within some reserve (i.e., macrocirculation), while tube hematocrit (𝑯𝑻) refers to the 

hematocrit of blood flowing within a tube connected to the reserve (i.e., 

microcirculation). As such, the Fahraeus effect may be represented mathematically as 

follows: 

𝑯𝑫 =
𝑸𝒄

𝑸𝒃
=

𝑯𝑻 ∗ 𝒗𝒄 ∗ 𝑨

𝒗𝒃 ∗ 𝑨
 

(5) 

Or alternatively: 

𝑯𝑻

𝑯𝑫
=

𝒗𝒃

𝒗𝒄
 

(6) 

where A is the cross-sectional area, 𝑄𝑐 and 𝑄𝑏 is the flow rate of red blood cells and 

blood respectively, 𝑣𝑐 and 𝑣𝑏 is the velocity of red blood cells and blood respectively.  

While also known under the term ‘Fahraeus effect’, when vessel diameter is 

sufficiently small, typically around 10 μm,  
𝐻𝑇

𝐻𝐷
 may suddenly increase – this phenomenon 

is specifically referred to as the ‘reverse Fahraeus effect’. It is hypothesized that this 

reverse effect occurs when vessel diameter is small enough to force red blood cells into 

single-file flow. Due to the physical limitations of red blood cell deformation, further 

decreases in vessel diameter results in narrowing of the cell-free layer, resulting in an 

increase to tube hematocrit (2). 

The Fahraeus-Lindqvist effect: In addition to altering observed hematocrit values, the 

aggregation of red blood cells towards the centerline of microvessels also impacts blood 

viscosity. Due to the presence of the cell-free layer, blood viscosity in microvessels is 
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lower than as would be expected when compared to apparent viscosity (2, 36). Relative 

apparent viscosity is defined as the ratio of apparent viscosity to the suspending 

medium’s viscosity – in the case of blood, the viscosity of plasma. In order to quantify 

blood viscosity in microvessels, Pries et al. (39) conducted a meta-analysis of numerous 

glass tubes experiments to yield a description of relative apparent viscosity (𝜼𝒗𝒊𝒕𝒓𝒐) for 

suspensions of human red blood cells as a function of tube diameter and discharge 

hematocrit: 

𝜼𝒗𝒊𝒕𝒓𝒐 = 𝟏 + (𝜼𝟎.𝟒𝟓 − 𝟏) ∗
(𝟏 − 𝑯𝑫)𝑪 − 𝟏

𝒗𝒃
 

(7) 

where 𝜼0.45 is the relative apparent blood viscosity for a fixed discharge hematocrit of 

0.45, and C is the shape of the viscosity dependence on hematocrit:  

𝜼𝟎.𝟒𝟓 = 𝟐𝟐𝟎 ∗ 𝒆−𝟏.𝟑𝑫 + 𝟑. 𝟐 − 𝟐. 𝟒𝟒 ∗ 𝒆−𝟎.𝟎𝟔𝑫𝟎.𝟔𝟒𝟓
 (8) 

𝑪 = (𝟎. 𝟖 +  𝒆−𝟎.𝟎𝟕𝟓𝑫) ∗ (−𝟏 +
𝟏

𝟏 + 𝟏𝟎−𝟏𝟏 ∗ 𝑫𝟏𝟐
) +

𝟏

𝟏 + 𝟏𝟎−𝟏𝟏 ∗ 𝑫𝟏𝟐
 

(9) 

and D is the luminal vessel diameter.  

Similar to the Fahraeus effect, a ‘reverse Fahraeus-Lindqvist effect’ may also be 

observed when vessel diameter is sufficiently low, where further decreases in vessel 

diameter is associated with an increase in viscosity (39). 

Phase Separation at Bifurcations: When blood flows through a diverging branch point 

within microvascular networks, red blood cells and plasma may distribute non-

proportionally between the daughter vessels, depending on each daughter’s diameter. As 

a result, the discharge hematocrit of daughter vessels with the same parent may differ. 
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This effect is known as phase separation (5, 40). Over generations, phase separation leads 

to a large variation in hematocrit within a vessel network. Phase-separation also 

contributes to the ‘network Fahraeus effect’, which refers to the reduction of average 

discharge hematocrit in subsequent generations of a vascular network compared to the 

discharge hematocrit of the feeding vessel (12). The phase-separation effect was studied 

within the rat mesentery by Pries et al. (40) to yield the following empirical relation of 

blood and cell flow distribution at bifurcations: 

𝒍𝒐𝒈𝒊𝒕 𝑭𝑸𝑬 = 𝑨 + 𝑩 ∗  𝒍𝒐𝒈𝒊𝒕 (
𝑭𝑸𝑩 − 𝑿𝟎

𝟏 − 𝟐 ∗ 𝑿𝟎
) 

(10) 

where the logit function may be defined as 𝑙𝑜𝑔𝑖𝑡 𝑥 = ln [
𝑥

1−𝑥
]. The variables 𝐹𝑄𝐵 and 

𝐹𝑄𝐸 refers to the fraction of parent blood and red blood cell flow that enters a daughter 

branch, 𝑋0 is the critical blood flow fraction required to draw red blood cells into the 

daughter branch, 𝐵 and 𝐴 describes the nonlinearity of and difference between the red 

cell to blood volume flow relation. The variables 𝐴, 𝐵, and 𝑋0 of eq. 10 may be further 

defined below (40): 

𝑨 = −𝟗. 𝟗𝟔 ∗ 𝒍𝒏 (
𝑫𝜶

𝑫𝜷
)/𝑫𝒇 

(11) 

𝑩 = 𝟏 + 𝟔. 𝟗𝟖 ∗ (
𝟏 − 𝑯𝑫

𝑫𝒇
) 

(12) 

𝑿𝟎 =
𝟎. 𝟒

𝑫𝒇
 

(13) 

Where 𝑫𝜶 and 𝑫𝜷 are the diameters of the daughter branches, 𝑫𝒇 is the diameter of the 

parent vessel, and 𝑯𝑫 is discharge hematocrit within the parent vessel. The cause of 



20 

 

phase separation has been again tied to the presence of the cell-free layer; the daughter 

vessel with the smaller diameter appears to draw flow predominantly drawn from the 

cell-free layer, an event known as ‘plasma-skimming’. As a result, the daughter with the 

larger vessel diameter will have a larger discharge hematocrit than the other daughter and 

the parent. The ‘pathway effect’ refers to the tendency of red blood cells to travel on long 

flow pathways through microvascular networks due to phase separation. Additionally, as 

vessel diameter become smaller in the peripheral circulation, there is the possibility that 

red blood cells will have difficulty entering the daughters – this phenomenon is called 

‘red cell screening’ and contributes to the phase separation effect.  

1.3 Modelling of Microvascular Networks 

To understand disease progression in relation to the microcirculation, it is 

important to acquire a model of the vasculature of interest such that disease may be 

related to changes in the vasculature’s geometric/topological and hemodynamic 

properties. The following section will describe common experimental and computational 

means of acquiring microvascular models in the literature. 

1.3.1 Experimental Measurement of Microvascular Networks 

A review of the literature demonstrates that vascular network models are 

commonly acquired from experimental studies with a range of preparations (e.g., in vivo, 

in situ, in vitro) and models (e.g., different species, tissues, health conditions). The 

breadth of these experimental studies has enabled a general understanding of common 

vascular network properties. Additionally, these experimental studies allow for 
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developments in vascular biosimulation and other computational analysis work which 

may yield insights not normally acquirable using experimental methods. 

Methods for measuring vascular structure and blood perfusion have been 

reviewed in previous studies, evaluating their strengths and weaknesses (41–43). 

Noninvasive assessment of microvascular function is limited based on accessibility of the 

microvascular network, and thus, is commonly performed in regions such as the skin, 

bulbar conjunctiva, sublingual mucosa, and retina. Intravital video microscopy remains 

one of the most commonly cited methods, as it is able to yield high resolution real-time 

video recordings of microvascular networks, from which network geometry, topology, 

and hemodynamics can be evaluated (3, 44). Another commonly mentioned method is 

laser Doppler flowmetry, which is advantageous in being noninvasive, cheap, and easy to 

use; however, its indirect measurement of blood flow requires complex analyses in order 

to interpret its results in a physiological context (45). 

Experimental microvascular studies, while undoubtedly essential, are often 

accompanied by various difficulties. Some limitations may be inherent in the 

experimental procedure; for example, in situ setups may experience confounding factors 

from neighboring unobserved vascular networks. Additionally, modern day imaging 

methods, such as intravital video microscopy, are often limited in range of resolution 

based on the set magnification, which may lead to missing smaller or noisier vessel 

growths; this causes the collected data to represent an incomplete vascular network which 

may bias further analyses. It may be observed that most published data acquired from 

experimental microvascular studies features a limited vessel diameter range (10-40 um) 

which may not be representative of the full vascular tree. Another point worth 
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considering is how collecting structural or hemodynamic data at multiple vessel levels in 

a vascular network, especially in smaller microvessels, remains labor-intensive. The fact 

that the applicability of collected microvascular data to other vascular territories (e.g., 

different tissues, species, etc.) is usually rather constrained only propagates the need for 

more experimental work. 

The heterogeneity of microvascular networks, relating to their topology, 

morphology, hemodynamics, and functional parameters, has made it difficult to 

understand their properties and behavior on a vessel-to-vessel basis without a complete 

microvascular model. However, experimentally acquired microvascular models are 

difficult to attain and may contain limitations inherent in experimental procedures. 

Hence, computational models have been explored as an alternative or assistive tool in 

microcirculation studies. Computational models have been proposed to be capable of 

capturing missing data from experimental studies while being less labor-intensive to 

produce and replicate across various demographics of vascular tissues. 

1.3.2 Computational Models Built from Anatomical Data 

Computational models of microvascular networks are analogous to experimental 

models, in that they contain network architecture and hemodynamic information which 

may be used for hypothesis testing. Unlike experimental studies, modelers themselves 

must decide how to specify the network’s geometric/hemodynamic properties such that 

they will be physiologically realistic. Methods for doing so as mentioned in literature will 

be reviewed in this section. This section will address two challenges when designing a 
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computational network model: 1) how to describe realistic microvascular network 

structures and 2) how to simulate blood flow within those structures. 

1) Generating geometrically/topologically realistic network structures:  

While various algorithms for generating the vascular network geometric/topological 

structure have been proposed, few have been able to replicate the considerable amount of 

irregularity and randomness that is evident in experimental observation of microvascular 

beds. Often, microvascular networks are approximated using simplified network 

topologies; a common and straightforward representation depicts them as a series of 

merging and unmerging vessels, with vessels of the same ‘category’ (e.g., arterioles, 

capillaries, venules) arranged in parallel (46, 47). Figure 3 depicts an example of such a 

network. 
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Figure 3. An idealized representation of a microvascular network. The microvascular 

network is represented as a series of vessels organized into different ‘categories’, where 

vessels of the same category are displayed in parallel. Arrows represent the direction of 

blood flow, while A represents arterioles, C represents capillaries, and V represents 

venules. 

 

While these simplified topologies may be sufficient for a statistical approximation 

of certain network properties, the heterogeneity in real life vascular network architecture 

strongly impacts resulting hemodynamics, which may impact vascular function. For 

example, geometric heterogeneity (vessel length and diameter) within microvascular 

networks influences mean network hematocrit, while topological heterogeneity (vessel 

connections) has been strongly correlated with network conductance and pressure 
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distribution (4, 48). Additionally, spatial heterogeneity of microvascular flow distribution 

in tissues, which was linked to vessel diameter, is increased in physiological conditions 

such as metabolic syndrome (11). As such, computational models should aim to take the 

heterogeneity of microvascular geometry/topology into consideration when designing 

model architecture. 

One proposal for producing realistic microvascular models would be to simply 

generate the models from experimentally acquired imaging data; within this thesis, these 

models henceforth will be referred to as ‘anatomical’ models. An example would be 

machine learning-based segmentation of images acquired via magnetic resonance 

angiography to identify and generate vasculature (49). However, while anatomical 

models provide an accurate representation of the coarse structure, they possess many of 

the same limitations as experimental models by depending on the availability of imaging 

data. Additionally, since anatomical models are generated to identically match image 

data, they struggle in being applied to other vascular territories; there is no adjustment 

parameter that will allow for adaptation of the generated vasculature to different species, 

tissues, and disease conditions.  

Both experimental and anatomical models rely on the availability of experimental 

data and consequently struggle from limitations inherent in experimental procedures. 

Thus, a relatively new approach has been proposed in literature: to circumvent 

experimental limitations, and to create models which are adaptable to different vascular 

territories, computational models may be developed based on experimentally-derived 

mathematical relations rather than experimental data. Examples of such mathematical 

relations, which may describe microvascular geometric/topologic and hemodynamic 
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network properties, are included in sections 1.2.2 and 1.2.3. These mathematical relations 

allow for the generation of models which act in compliance with physiological criteria 

and morphometric constraints. The goal of computational models constructed thusly is 

for the generated networks to be statistically consistent with experimental data in 

reproducing geometric/topological features, functional responses, and heterogeneity of 

real vascular networks, without direct reliance on experimental data. 

Within the literature, two classes of algorithms for the automatic generation of 

vascular beds are commonly explored: fractal and space-filling algorithms. Fractal 

algorithms have been used to produce self-similar models which have been reported to 

successfully follow many statistical properties of real vascular trees (e.g., vessel radius, 

length, aspect ratio, and bifurcation angle); however, real vascular networks grow too 

stochastically to produce such perfectly replicating patterns (50, 51). Meanwhile, space-

filling algorithms allow for the generation of a vessel network within some pre-defined 

vascular territory in 2D or 3D space. While various interpretations of such algorithms 

have been proposed, the most popular approach to a branched arterial system is the 

constrained constructive optimization (CCO) algorithm, originally introduced by Shreiner 

(52, 53). CCO is based on the principle of optimum design, where the goal is to minimize 

some chosen cost function – e.g., blood volume or vessel path length (54). A CCO-based 

vascular tree is grown by successively adding new terminal segments while maintaining a 

set of physiological boundary conditions and constraints typically informed by 

experimental data; at each step of growth, geometric location of the new connecting 

segment and topology of the existing network is optimized according to a chosen cost 

function (e.g., blood volume of the vascular tree at the given step of growth). Through 
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CCO, the generation of realistic arterial model trees in full detail (including location, 

length, and diameter of vessel segments) can be performed across a large spatial scale. 

Validation of CCO-based algorithms with experimental data has demonstrated that CCO 

can reproduce the correct spatial arrangement of main arteries and the topology of the 

complete arterial system down to the capillaries (55, 56). Due to the detailed geometric 

information provided by CCO, blood flow simulations may also be performed in CCO-

based models as reviewed in the latter half of this section. 

CCO has been used to address various types of study, ranging from anatomical 

variation (56–59), network fractality (60, 61), shear stress distribution (62, 63), and 

others. An overview of current CCO usage in literature will be presented in the following 

paragraph: certain CCO variants have been proposed to recreate (61, 64–68) or speed up 

(66, 69) the generation of more complex vascular networks in hollow organs. Attempts to 

address more physiologically realistic scenarios have been made by using CCO to 

simulate territories supplied by multiple inlet vessels: partitioning of a territory into 

subdomains was proposed so CCO could independently be applied to vascularize non-

overlapping subdomains (66, 70, 71), or alternatively, Jaquet et al. proposed that a flow 

quota could be assigned to each inlet vessel, where vessels that temporally exceed their 

quota are put on hold (66, 72). Certain research has attempted to create patient-specific 

vascular models by combining image data with CCO, where patient vasculatures are 

segmented from the images to create a base model, and CCO is used to extend the image-

based model downwards to space-fill the uncaptured smallest vessels (67, 72). Latest 

works using CCO have focused on generating microvasculature for whole organs, 

defining multiple ad-hoc steps to generate vasculature accurate to different tissues in 
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organs (67, 73). Certain investigations have attempted to use CCO to address the need for 

a versatile vascular model that can be adjusted to suit vessel networks across various 

physiologies. For example, Talou et al. introduced an adaptation of the CCO algorithm 

termed aDaptive constrained constructive optimization (DCCO) which integrates an 

adaptive optimization criteria and multi-staged space-filling strategies to produce models 

for various vascular territories of varying complexity (74).  

2) Calculating blood flow within a given network structure:  

Blood flow simulation methods must always cater to how microvascular network 

architecture is defined. If the network is traced from imaging data to include irregularities 

such as the vessel lumen, rather than idealized into simple shapes, math for calculating 

hemodynamic parameters can become very complex.  

Computational microvascular network models often employ compartmental 

“branching tube” representations of blood vessels. In other words, microvascular vessels 

are idealized into straight cylindrical tubes within which blood flow calculations may be 

performed. In all aforementioned methods for generating microvascular network 

architecture (i.e., experimental, anatomical, and automatic generation), branching tube 

representations of blood vessels may be used. Pries et al. attempted to quantify the 

hemodynamic effects of diameter irregularity, demonstrating that the difference between 

predictions of vessel resistance from branching tube models and experimental 

measurements increases as vessel diameter decreases, from less than 5% at 20 μm to 

around 20% below 10 μm (75). Hence, though microvascular vessels are indeed not 

idealized cylindrical shapes, it remains a decent approximation for vessels above 10-20 
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μm. Additionally, the assumption is convenient, as it allows for the calculation of 

hemodynamic parameters within microvessels via previously derived (originating from 

glass tube studies and demonstrated in vivo) and commonly used equations describing 

microfluidic behaviors, such as the Fahraeus-Lindqvist effect, the Fahraeus effect, and 

phase separation (section 1.2.3). 

Using the branching tube assumption, one of the most popular methods for 

simulating blood flow and hemodynamic parameters within an entire vascular network is 

described in Pries et al., 1990 (5). The method consists of two procedures, which are 

carried out alternately until the final blood flow solution is reached. The first procedure 

involves the calculation of blood flow in each vessel segment and pressure at each node 

(coordinates at the start and end of each segment). For the first run, some initial guess of 

unknown rheological parameters may be used; more accurate guesses will result in faster 

computation (less iterations) of the blood flow simulation solution. The first procedure 

starts by assuming conservation of flow at any node, i.e., that the sum of inflowing and 

outflowing blood at the center node of any bifurcation (or ‘bifurcating’ node) is zero: 

𝑸𝟏 + 𝑸𝟐 + 𝑸𝟑 = 𝑹𝟏 ∗ (𝑷𝟎 − 𝑷𝟏) + 𝑹𝟐 ∗ (𝑷𝟎 − 𝑷𝟐) +  𝑹𝟑 ∗ (𝑷𝟎 − 𝑷𝟑) (14) 

where 𝑸𝟏 and 𝑹𝟏 is the blood flow and resistance within the parent segment. 𝑷𝟎 and 𝑷𝟏 

are the start and end nodes of the parent segment. 𝑸𝟐 and 𝑸𝟑, 𝑹𝟐 and 𝑹𝟑, and 𝑷𝟐 and 

𝑷𝟑 are the blood flows, resistances, and pressure at the end nodes of the daughter 

segments. Eq. 14 may be used to construct a system of linear equations for every 

bifurcation in the network, solving for pressures at every node (assuming pressures at the 

start node of the feed vessel and the end node of each terminal vessel is known). This 
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system of linear equations may become lengthy with large networks, however it can 

easily be solved using equation solvers, which are available in most programming 

libraries, or the iterative method of successive overrelaxation (76). 

 The second procedure involves the computation of discharge hematocrit and 

apparent viscosity of each segment, using blood flow and pressure values from the first 

procedure. Conservation of blood flow and red blood cell flow rates is applied at every 

node to form a system of equations, assuming discharge hematocrit and apparent 

viscosity is known in the feed vessel. This system of equations may also be solved using 

successive overrelaxation. Phase separation effects (eq. 10-13) are integrated with the 

system of equations for the calculation of discharge hematocrit and viscosity; however, 

these equations require values from the parent vessel. Thus, the calculation of the second 

procedure must occur from upstream to downstream. This may be performed by 

assigning a label to each vessel in the order of decreasing pressure, which would 

correspond to how far from the feed vessel the vessel is and, running calculations in the 

order of the labels. Once discharge hematocrit has been calculated, relative apparent 

viscosity may be solved using the Fahraeus-Lindqvist effect (eq. 7-9). Tube hematocrit 

may be calculated from the Fahraeus effect (eq. 5). Finally, blood flow and hematocrit 

are adjusted based on the error between the current and previous iteration; these updated 

values will be fed into the first procedure in the subsequent iteration. By iterating the two 

procedures, where hemodynamic values are updated based on error between every loop, a 

solution is reached when there is convergence – i.e., the hemodynamic solution is no 

longer changing with each iteration within some level of tolerance. 
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While section 1.3.2 has focused primarily on branching tube representations of blood 

vessels and the blood flow simulation method described by Pries et al., 1990, many other 

theoretical models exist for simulating blood flow in individual vessels or entire 

networks; certain areas of interest within microcirculatory blood flow simulation include 

the impact of interactions between red blood cells, pressure wave propagations within 

blood, and blood flow in tortuous and irregular vessel geometries (77, 78). Additionally, 

while blood flow simulations often focus on red blood cells and plasma, the impact of 

other blood components (e.g., white blood cells) have also been explored (79, 80). 

1.4 Thesis Aim and Contents 

This thesis presents an approach addressing a major challenge relating to the 

computational simulation of real-life vasculature: the generation of vascular networks 

with realistic geometric/topological structure. The following chapter of this thesis will 

walk through the step-by-step development and validation of a CCO-based simulation 

code which generates geometrically/topologically realistic computational models of 

microvasculature within rat skeletal muscle tissue. The aim of this thesis is to provide a 

framework for future development of computational models which can generate realistic 

vasculature within different tissues, as such work will be conducive to yielding an 

alternative method or assistive tool which can overcome limitations in experimental 

hypothesis testing. 

An in-depth summary of the following chapter is as follows: 



32 

 

Blood flow regulation within the microvasculature reflects a complex interaction 

of regulatory mechanisms and varies spatially and temporally according to 

conditions such as metabolism, growth, injury, and disease. Understanding the 

role of microvascular flow distributions across conditions is of interest to 

investigators spanning multiple disciplines; however, data collection within 

networks can be labor-intensive and challenging due to limited resolution. To 

overcome these experimental challenges, computational network models which 

can accurately simulate vascular behavior are highly beneficial. Constrained 

constructive optimization (CCO) is a commonly used algorithm for vascular 

simulation, particularly well known for its adaptability towards vascular 

modelling across tissues. The present work demonstrates an implementation of 

CCO aimed to simulate a branching arteriolar microvasculature in healthy 

skeletal muscle, validated against literature including comprehensive rat gluteus 

maximus vasculature datasets, and reviews a list of user-specified adjustable 

model parameters to understand how their variability affects the simulated 

networks. Network geometric properties, including mean element diameters, 

lengths, and numbers of bifurcations per order, Horton’s Law ratios, and fractal 

dimension, demonstrate good validation once model parameters are adjusted to 

experimental data. This model successfully demonstrates hemodynamic properties 

such as Murray’s Law and the network Fahraeus effect. Application of centrifugal 

and Strahler ordering schemes results in divergent descriptions of identical 

simulated networks. This work introduces a novel CCO-based model focused on 

generating branching skeletal muscle microvascular arteriolar networks based on 
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adjustable model parameters, thus making it a valuable tool for investigations 

into skeletal muscle microvascular structure and tissue perfusion. 
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Chapter 2 

2 A Constrained Constructive Optimization Model of 
Branching Arteriolar Networks in Rat Skeletal Muscle 

The contents of this chapter have been published in Journal of Applied Physiology in 

May 2024. 

2.1 Introduction 

 The role of the circulatory system is to effectively deliver and distribute blood 

throughout the body. Arteries and arterioles are an essential component of the process as 

they deliver oxygen and nutrients to the organs and tissues and link to capillaries, which 

act as sites of resource exchange within tissue. The degree of active tone in the arterioles, 

defined by the state of constriction of vascular smooth muscle within the vessel, is the 

integrated result of regulatory mechanisms such as local oxygen tension, intravascular 

pressure, autonomic nervous stimuli, wall shear stress, etc. (1), and will cause constant 

changes to arteriolar diameter, which greatly influence perfusion resistance (2), and thus, 

the distribution of blood within the tissue or organs under investigation. Vascular 

remodeling and changes in capillary density are also used to influence blood supply; 

however, these mechanisms are not relevant for moment-to-moment control of blood flow 

distribution. 

 Disease and disease risk is often associated with impaired or disturbed blood flow 

distribution both to and within tissues and organs, which manifests as impaired function. 

Due to the importance of arteriolar diameter and vessel network structure on blood flow 

regulation (2–4), investigations to understand blood flow distribution under 
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pathophysiologic conditions necessitate models for the relevant vascular networks. While 

models can be, and have been, based on data acquired from experimental procedures, 

arteriolar networks have a range of vessel dimensions, and it can be unrealistic to acquire 

sufficiently accurate data across all necessary levels of resolution using standard clinical 

and experimental approaches. As a result, there is potential for large amounts of important 

data to be excluded in experimentally acquired models, limiting their likeness to real 

vasculature. For tissues such as skeletal muscle, geometric and topological data of 

arteriolar networks have been reported (3, 5–8), however they are often limited to small 

microvascular segments with a narrow range of arteriolar diameters (typically 10-40 m). 

Computational models have alternatively been built using mathematical algorithms 

which aim to approximate the real world physical and physiological characteristics of the 

networks under investigation. For example, some studies have attempted to use 

computational modelling to address sections of missing vascular data in experimental 

models, attaching computationally generated data to extend existing vasculature (9–11). 

Some studies attempt to generate realistic vascular networks without building upon pre-

existing experimental data. Various methods have been proposed for such models, such as 

using simplified topologies (12), fractals (13), or a space-filling method (14–16).  

Theoretical models based on simplified topologies attempt to represent vascular 

networks as a chain of elements in series, with each element representing a vessel (12). 

While such approaches may be sufficient for the statistical approximation of a vascular 

network, actual networks are heterogenous in structure which may play a significant role 

in vasculature function by causing flow heterogeneity (4). Models based on fractal patterns 

also bear a similar problem: fractal models are built based on the observation that branching 
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vessel networks possess the notable repeating pattern of parent vessels splitting into two 

daughter vessels at each bifurcation, irrespective of diameter; branching networks possess 

a degree of self-similarity at different scales which gives them fractal properties (17). 

Fractal models attempt to generate networks based on the concept of self-similarity by 

repeating fixed patterns of vessel connectivity, but often result in networks with geometries 

which are almost impossible to find in nature (18, 19). 

Space-filling methods attempt to emulate the way that real vasculature grows 

through computational means. Algorithms for space-filling have been proposed based on 

whether real vasculature is hypothesized to grow based on avoiding existing vasculature 

(16) or filling in space as much as possible (15). By implementing a series of constraints 

on how the network can grow and adding an optimization target that aligns with what real 

vasculature is hypothesized to target, the vascular networks can be forced to grow within a 

space in the pre-specified “optimal” way, naturally resulting in heterogenous, realistic 

networks. 

The most prevalent space-filling method is known as constrained constructive 

optimization (CCO), which sequentially generates and attaches vessels to existing 

vasculature, filling in the tissue space based on the minimization of some select parameter 

hypothesized to be costly in the process of microvascular vessel growth, such as blood 

volume (15). As a result, CCO constructs branching networks which obey bifurcation rules, 

such as fractal scaling and flow conservation, while incorporating geometric and structural 

optimizations and ensuring uniform blood perfusion in a designated area. CCO has been 

used to study network properties relating to anatomical variability (20), fractal properties 

(14), and shear stress distribution (21), among others. Given this, using the CCO approach 
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has been demonstrated to provide for a flexible method of generating vessel networks 

which can be readily adapted to various desired outcomes.  

Past usages of computational models have frequently been catered towards the 

exploration of specific physiologies and conditions. Due to difficulties in acquiring 

experimental models, it would be beneficial for investigators to have access to a 

customizable computational model which can generate realistic vasculatures for various 

physiologies of interest, but such a product has been rarely explored. Current attempts to 

address such a demand have not been well validated against experimental data and have 

not been made accessible to those who are unable to develop models on their own. 

An overarching aim of the present work is to develop a CCO-based model which 

can generate realistic arteriolar networks for a range of tissues, depending on user-

adjustable parameters such as the tissue’s geometry, the network density and size, etc., 

which are experimentally informed to be appropriate for the specific tissue. While current 

efforts to utilize CCO tend to occur at the macrovascular scale, the present work will 

implement CCO at the microvascular level. Microvascular networks are commonly studied 

in skeletal muscle due to the ease of access and flat tissue geometry of some skeletal muscle 

preparations. This enables data collection with a high degree of accuracy, as imaging 

modalities such as intravital video microscopy (IVVM) do not have to penetrate the tissue 

very deeply to reach the vessels. The microvasculature is also an area of importance 

because it is the location of blood flow-tissue exchange, and hence is highly sensitive to 

changes in the physiological state such as disease. Hence, as a starting point for the 

overarching aim, the present work showcases an implementation of CCO aimed at 

simulating branching arteriolar networks within skeletal muscle based on data from 
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microvascular networks within healthy rat gluteus maximus tissue. The model will be 

validated to demonstrate whether it can generate networks which are closely comparable 

to arteriolar microvascular networks within skeletal muscle tissue; structural and 

hemodynamic properties for the simulated networks will be comprehensively validated 

according to values published in literature and previously collected experimental data (22, 

23) which, to date, is one of the most detailed analyses of geometric and topological 

structure of arteriolar networks within rat skeletal muscle. Model parameters will be further 

explored to evaluate their impact on the geometric and hemodynamic properties of the 

generated networks, and to understand the adaptability of the generated networks for 

modelling microvasculature in various skeletal muscle tissues. 

2.2 Methods 

Rat Gluteus Maximus Muscle Vascular Data: The vascular data used to validate the 

model was collected in a previous study (22), in collaboration with an affiliated group at 

Western University. Vascular networks within the gluteus maximus muscle of Sprague-

Dawley rats (n=8; 8-9 weeks of age; mass = 303 ± 15g) were measured in situ under control 

conditions (i.e., no imposed intervention) using IVVM over eight arteriolar orders. A 

photomontage composed of ~500 overlapping frames, with a total microvascular area of 

~4 cm2, was constructed from each animal using MATLAB (MathWorks Inc., Natick, MA, 

USA; RRID:SCR_001622). The hemodynamic and geometric properties of the 

intramuscular vasculature were analyzed from the IVVM photomontage: vessel segment 

lengths, vessel segment diameters, and number of vessels per vascular order were measured 

using ImageJ (RRID:SCR_003070) (24). Additionally, the overall fractal dimension for 
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multiple networks was analyzed using single line tracings of the IVVM networks using 

FracLac (25), a toolbox in ImageJ. Full details on the data collection procedure for the 

networks’ geometric properties are described in (22). 

To collect hemodynamic data, fluorescent red blood cells were injected into the rats 

via the jugular vein, and fluorescent images were collected at 5-20 millisecond exposure 

times, higher for larger, and lower for smaller arterioles. As such, fluorescing red blood 

cells formed short streaks in the images. Based on the number of red blood cells spanning 

each arteriolar lumen, the lumens were split into “lanes”. Multiple streak measurements 

were made across the lumen within each lane using ImageJ, and the average red blood cell 

velocity in each lane was plotted to create a velocity distribution profile for each vessel 

segment. Based on the velocity distribution profile and red blood cell dimensions, red blood 

cell flow and flow through the cell-free layer was calculated in MATLAB (R2010a, The 

MathworksTM, Inc.).  Full details on data collection and processing are described in (23). 

Model Algorithm: The model was built to generate branching arteriolar tree networks 

grown in a circular 2D tissue space, which was considered to represent a portion of the 

gluteus maximus area.  Since the gluteus maximus is a relatively thin muscle, its arteriolar 

vasculature has previously been considered two-dimensional in experiment-based 

reconstructions (22, 23); here too, a 2D approach to applying the CCO network 

construction algorithm to the GM was determined to be appropriate for the present study. 

The vessels of the network were modeled as straight cylindrical tubes, a commonly 

implemented approximation for the vessel’s geometry in microvascular networks (26). 
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For the model to produce experimentally accurate vascular networks, some of the 

key initial parameters were specified based on previously collected vascular and 

hemodynamic data from the rat gluteus maximus muscle (22, 23). 𝑄𝑝𝑒𝑟𝑓, defined as the 

total flow within each terminal arteriole, was set to 1.2×10-7 mL/s by assuming a terminal 

arteriole of approximately 9 microns in diameter and using the diameter-flow relation in 

(23). 𝐴𝑝𝑒𝑟𝑓, the tissue area perfused per terminal arteriole, was set to 3.6×10-3 cm2 by 

assuming the area of the arteriolar network in (22) was approximately 2cm2 and the largest 

arteriole was approximately 100 microns in diameter. Using the diameter-flow relation in 

(23), dividing total flow by terminal arteriole flow gave the number of terminal arterioles, 

which was used to calculate 𝐴𝑝𝑒𝑟𝑓. 𝑑𝑃𝑡𝑜𝑡, the pressure gradient from network inlet to 

outlet of each terminal arteriole, was set to 8050 dyne/cm2 (6 mmHg) by assuming initial 

arteriole length (L) and diameter (D) of 300 and 9 microns, respectively, and a viscosity of 

 =3.6cP, and applying the Poiseuille pressure-flow relation, d𝑃𝑡𝑜𝑡 = 128𝜇𝐿𝑄𝑝𝑒𝑟𝑓/𝜋𝐷4. 

Initial input for the Murray’s law exponent 𝛾, which characterizes the relationship between 

diameter and blood flow, was set to 2.6 (23). Unless otherwise specified, all networks 

generated within this study used these parameters by default. Variable names and 

definitions in the present work are summarized in Table 1. 
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Table 1: Summary of Model Parameter Variables and their definitions. 

 

 

The algorithm used to implement CCO for a healthy vascular network within the flat 

circular tissue can be described as follows: 

1. Specify a 𝑁𝑏𝑖𝑓 value. This is the number of bifurcations desired within the 

network. 

2. Specify the radius of the flat circular tissue which the network will be growing 

within. The area of this circle will be equivalent to 𝐴𝑝𝑒𝑟𝑓 initially, as only the inlet 

arteriole will be initially present.  
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3. Specify the starting location where the inlet arteriole of the network should be 

placed. Randomly select a point in tissue space (which theoretically, requires blood 

perfusion) and connect a terminal arteriole from the starting location to the point.  

4. Repeat the below steps until the vascular network has sufficiently filled in the tissue 

space (i.e., the desired 𝑁𝑏𝑖𝑓 is reached): 

a. Increase the tissue space size by 𝐴𝑝𝑒𝑟𝑓 to accommodate the perfusion area 

of one more terminal arteriole. 

b. Randomly select a point within the tissue space which requires blood 

perfusion. 

c. Connect a new vessel from the existing vascular network to that point; the 

new vessel should bifurcate from the vessel that will yield a minimum total 

network blood volume. 

5. Optimize the bifurcation angles between the existing vascular network and the 

newly added vessel to further reduce total blood volume. 

For further clarity, Figure 4 provides a visual of the algorithm in a step-by-step fashion. 

The random selection of points in step 3 and 4b was implemented for the purpose of 

generating networks which are different in each run, and yet statistically similar, provided 

no other parameters are changed. Ideally, such a procedure would be able to reflect the 

slight variations in growth found in real life vasculatures of the same physiology. 

Regarding the tissue space size 𝐴𝑡𝑜𝑡 = (𝑁𝑏𝑖𝑓 + 1) ∙ 𝐴𝑝𝑒𝑟𝑓, where 𝑁𝑏𝑖𝑓 is the number of 

bifurcations, the tissue will continue to grow as bifurcations are added, but the relative rate 

of growth (1/ 𝑁𝑏𝑖𝑓) will approach zero as the number of bifurcations becomes large. 
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Figure 4. A step-by-step diagram of the model algorithm, as described in the methods. 

The dotted circle is the tissue area within which the network is allowed to grow. The 

vessels are represented by lines, colored by diameter in cm. Panel a) represents steps 1, 2 

and 3 of the algorithm. Panel b) represents step 4. Step 4a is depicted via the increase in 

size for the dotted circle from the previous panel, step 4b is depicted by the red star, 

which represents the randomly chosen end point for the newly added segment, and step 

4c is depicted via the colored squares, which are potential bifurcation points tested across 

space between each vessel and the red star. Panel c) represents the resulting optimized 

bifurcation in step 5, once the optimal bifurcation point is chosen from step 4c and the 

vessels are connected accordingly, after which there is a return to step 4a to further 

expand the network. 

 

Total network blood volume was chosen as the constrained cost function under the 

assumption that blood is an expensive resource that the body should aim to preserve (19). 

Each calculation of blood volume required updating the radii of the existing vessels of the 

network for each additional vessel added. The calculation of radii was performed following 

a two-step process: First, for some initial estimate of radii in each vessel in the network, 

the corresponding blood flow was solved using either a single linear inversion (constant 

viscosity) or following the iterative network flow simulation method (diameter- and 

hematocrit-dependent viscosity) described by Pries et al., 1990 (27) and previously 
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implemented by our group (28, 29) (note that the Pries at al. model implements 

conservation of both blood flow and red cell volume flow at each bifurcation). Second, 

given the pressure values from the flow calculation, the diameter values of all terminal 

vessels were adjusted such that their blood flow matched 𝑄𝑝𝑒𝑟𝑓, and the diameters in the 

rest of the network were recalculated up to the inlet vessel by applying Murray’s law at 

each bifurcation. This two-step process was repeated until satisfactory convergence of 

diameter values was achieved, which typically occurred in 3-5 iterations. 

While blood typically behaves as a homogenous fluid, on the microvascular scale, 

blood tends to behave as a two-phase fluid due to the differing properties of plasma and 

red blood cells (27). To test the impact of blood’s two-phase nature on the properties of the 

network model, the networks were generated with fixed viscosity of 0.036 dyne*s/cm2 for 

blood (30), to simulate blood as a single-phase fluid, as well as with variable blood 

viscosity for each vessel, to simulate blood as a two-phase fluid (in which each vessel may 

have a different proportion of plasma and red blood cells). The resulting single-phase and 

two-phase flow-derived networks were compared after generation based on their geometric 

and topological statistics. In addition to targeting 𝑄𝑝𝑒𝑟𝑓 = 0.12 nL/s of blood flow at the 

terminal vessels for both single-phased and two-phased networks, an alternative target was 

set under the two-phased assumption based on fixing red blood cell flow in terminal 

arterioles to 0.12 nL/s * 0.4 = 0.064 nL/s, assuming a discharge hematocrit of 0.4 (27). 

This alternative target was to evaluate whether a red blood cell target would generate 

networks which are more similar to real vasculature, assuming tissues prioritize red blood 

cells within their received blood flow. 
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To fully fill out the tissue space and prevent the intersection of vessels, vessels were 

restricted from growing within a certain distance of other vessels, following suggestions 

from Schreiner & Buxbaum 1993 (31). If a vessel is added such that it is within a certain 

distance to another already existing vessel, then it is discarded and point 2b) must be 

resampled until the vessel is acceptably distal. This distance was set to 𝑑𝑡ℎ𝑟𝑒𝑠ℎ =

 √𝜋𝑟2/ 𝑛𝑡𝑒𝑟𝑚 , where r is the radius of the tissue space and 𝑛𝑡𝑒𝑟𝑚 is the number of terminal 

vessels within the vasculature. If a suitable vessel cannot be found after 50 attempts of 

resampling point 2b), then the acceptable distance is scaled down via 𝑑𝑡ℎ𝑟𝑒𝑠ℎ =  𝑑𝑡ℎ𝑟𝑒𝑠ℎ ∗

0.9. This cycle repeats until a suitable vessel is found. 

A few changes were made to shorten the computation time. Instead of testing 

connections to every single vessel of the existing vasculature in step 2c), to find the vessel 

that yields a minimum total blood volume, only the 12 vessels closest to the point in 2b) 

were tested. Additionally, the optimization of bifurcation angles was performed by finding 

the discrete point in the triangular space formed by the vessel chosen in 2c) and the point 

in 2b) which yields a minimum blood volume; only 66 points were tested within this 

triangular space, instead of using a higher resolution. These assumptions minimally 

impacted the resulting networks compared to when generated without. 

Certain experimental studies do not include vessels sprouting from extremely 

asymmetric bifurcations due to challenges in collecting the data, such as limitations in 

imaging resolution. To better simulate such experimental conditions, in which the 

published experimental data may truly be representing an incomplete network, a 

percentage value 𝑒𝑥𝑝𝑉𝑎𝑙 was applied to the model such that any daughter vessel with a 



53 

 

diameter which is less than 𝑒𝑥𝑝𝑉𝑎𝑙 percent of the parent’s diameter is ignored. The 

percentage value is adjustable and was used to fit the model’s geometric statistics to that 

of previously published experimental data. Unless the 𝑒𝑥𝑝𝑉𝑎𝑙 value is specified, the model 

otherwise has this feature turned off, and presents the complete generated network without 

removal of any vessels. Figure 5 demonstrates an example of how increasing 𝑒𝑥𝑝𝑉𝑎𝑙 

affects the resulting network by removing decreasingly asymmetric bifurcations. 

 

 

Figure 5. An example of how increasing 𝒆𝒙𝒑𝑽𝒂𝒍 from a) 0% (i.e., the complete 

network), to b) 40% and c) 60% affects a generated network of size 900 bifurcations. 

 

Calculation of Geometric and Hemodynamic Statistics:  

Calculation of all geometrical and hemodynamic statistics for the generated 

networks was performed in MATLAB, save for fractal dimension. MATLAB was also 

used to label all vessels within the network according to Strahler’s order, a purely 

topological, centripetal ordering scheme, using methods from Koller et al., 1987 (5). 
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Centrifugal order, another standardly used ordering scheme (3), was also calculated for the 

networks to facilitate comparisons to different datasets within the literature. To define the 

difference between the two ordering schemes: in Strahler’s order, order 1 is assigned to 

terminal arterioles. Moving from the terminal arterioles to the inlet vessel, when two 

vessels of the same order join, the order of the parent is increased by one. If two vessels of 

different orders join, the parent is designated the higher of the two orders. In contrast, 

centrifugal order assigns order 1 to the inlet vessel. Moving from the inlet vessel to the 

terminal arterioles, if either or both daughters have a diameter less than 80% of the parent, 

or if the daughters form a bifurcation angle greater than 30°, the order of the daughters are 

increased by one.  

Statistics were calculated based on the definition of “elements and segments” (32, 

33), in which each unbranched vessel is called a “segment”, and consecutive segments of 

the same order constitute one element. It is with the concept of segments and elements that 

the intuitive idea of a single major vessel with multiple smaller offshoots (one element with 

several different elements connected to it) was conceptualized. As a visual example, Figure 

6 illustrates how Strahler’s order was assigned to each “segment” within a sample network, 

and how consecutive “segments” of the same order compose one “element”. The definition 

of elements and segments remained the same if centrifugal ordering was used instead, 

resulting in alternative interpretations based on ordering scheme of which segments 

compose an element. 
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Figure 6. A schematic representation of the labeling convention for arteriolar networks in 

the present study based on Strahler’s order. Strahler’s order begins with order 1 at the 

terminal vessels, where the diameter is the smallest, and increases moving upwards 

towards the inlet arteriole, depending on if two daughters of the same order coincide at a 

bifurcation (in which the parent order will increase), or if two daughters of different 

orders coincide (in which the greater order number will persist to the parent vessel). 

Segments and elements are labelled, where connecting segments must have the same 

order number to be considered an element. 

 

Fractal dimension has often been applied to characterizing vascular networks, as 

the repeating branching pattern of parent and daughter vessels has previously been 
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identified as fractal in nature (17). The CCO-based model introduced in the present study 

was built to follow the repeating branching pattern, and thus, is also fractal in nature. The 

FracLac toolbox (25) in ImageJ (24) was used to calculate the fractal dimension of the 

generated networks, as done in previous work (22). By saving the generated networks as 

images, the toolbox was able to scan the network image using a hull and circle technique, 

wherein the software calculates statistics for the tissue geometry’s convex hull and 

minimum bounding circle, to characterize the circular geometry of the tissue. The box 

counting method was used to calculate the fractal dimension of the generated network, by 

generating boxes of varying sizes and finding the slope of the linear fit between the 

logarithm of the number of boxes containing a segment of the network and the logarithm 

of the box sizes. 

Validation of Geometric and Hemodynamic Properties: 

The model was primarily validated via comparison to previously collected 

vasculature data from the rat gluteus maximus skeletal muscle (22, 23), as it provides a 

highly comprehensive overview of geometric and hemodynamic properties from the same 

microvascular data. However, the model was also compared to multiple other skeletal 

muscle datasets within the literature (3, 5) to overcome experimental limitations and 

inconsistencies between data collection and data processing procedures. Within this study, 

the model was considered validated against experimental data if it 1) satisfied generally 

observed properties including being fractal and obeyed Horton’s law and Murray’s law, 

and 2) showed potential to match geometric and hemodynamic properties (e.g., fractal 

dimension and Murray’s law exponent) in several specific muscles when model parameters 

are adjusted. As certain model inputs (such as domain geometry) are not adjusted, we do 
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not expect to exactly match network properties in the muscles considered. In addition, as 

noted, there are issues with available datasets (e.g., those motivating use of 𝑒𝑥𝑝𝑉𝑎𝑙) that 

make exact matching challenging. To validate the hemodynamic accuracy of our 

constructed networks, properties were chosen (Murray’s law exponent and the network 

Fahraeus effect, described below) that have been reported in the literature and represent 

the integrated hemodynamic behavior of microvascular networks, since individual 

hemodynamic parameters (e.g., flow or hematocrit in a certain size vessel) are highly 

variable, even within a given set of experiments or single network.   

To understand the geometrical features of the model and the difference between the 

Strahler’s and centrifugal ordering schemes, the distribution of element diameter and 

length was evaluated. The distributions of the geometric properties were related to the rat 

gluteus maximus microvasculature (22). From those same elements, the mean diameter, 

length, and number of elements per order were calculated and plotted for both ordering 

schemes. To explore the flexibility of the model, adjustments were made to model 

parameters (e.g., 𝑁𝑏𝑖𝑓 and 𝑒𝑥𝑝𝑉𝑎𝑙) to match the resulting mean diameter, length, and 

number of elements per order to experimental values from previously collected 

microvascular data within the rat gluteus maximus muscle (22), along with other skeletal 

muscle datasets from the literature. 

Horton’s Law: Past experimental studies have demonstrated that a power law 

relationship exists between Strahler’s order and diameter, length, and number of elements 

– this relationship is known as Horton’s Law (34). To explore whether the model displays 

Horton’s law, the strength of a linear fit between the log transform of mean diameter, 

length, and number of elements per Strahler and centrifugal order was evaluated. 
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Due to the linear relationship between geometric features, the slopes of the linear 

fits have also been used to describe the geometric properties of networks. The slope values 

are referred to as Horton’s ratios, or diameter, length, and bifurcation ratios, which 

characterize the relative proportion of diameter, length, and number of elements between 

each successive and previous order. Due to variations in how past studies have attempted 

to quantify the ratios (3, 5), three methods of calculating the ratios have been presented. 

Method 1 consisted of finding the mean number, length, and diameter of vessels per 

Strahler’s order from vessels accumulated from all five networks and applying a linear 

regression to the logarithm of those means. The ratio values were determined by the slope 

of the regression lines. Method 2 consisted of finding the mean number, length, and 

diameter of vessels per Strahler’s order for vessels within each individual network, 

calculating ratios based on the slope of the linear fit to the logarithm of the means from 

each of those networks, and averaging the calculated ratios from all networks. Method 3 

consisted of finding the mean number, length, and diameter of vessels per Strahler’s order 

for each individual network, averaging the means across all networks, and finding the ratios 

based on the slope of the linear fit to the logarithm of the averaged means. Once the model 

ratio values were calculated based on these three methods, a review of Horton’s law ratio 

values in previously published datasets was performed to enable comparison and 

validation. 

Murray’s Law: Like Horton’s law, past experimental studies have demonstrated 

that a power law relationship exists between flow and diameter, known as Murray’s Law 

(35). The Murray’s law exponent typically ranges between approximately 2 and 4, 

depending on the site of flow (36). The exponent value was calculated based on the log 
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transforms of diameter and blood flow within all segments of multiple networks when fitted 

with a linear regression; since vessel length does not affect the Murray’s law exponent, the 

calculation of elements was not necessary. Segments were used instead of elements to 

avoid biases relating to how ordering scheme affects element diameter, which is calculated 

based on the average diameter of the segments composing it. The Murray’s law exponent 

value calculated from generated model networks was compared to the measured Murray’s 

law exponent from vasculature within rat skeletal muscle (23). 

Fahraeus Effect: The Fahraeus effect refers to the decrease of tube (volume-

averaged) hematocrit, given fixed discharge (flow-averaged or ‘reservoir’) hematocrit, as 

vessel diameters decrease from approximately 300 to 10 microns. This occurs in single 

vessels, due to red cells being excluded from the plasma layer near the vessel wall and 

having a higher velocity than blood as a whole, and is not related to microvascular network 

properties. The network Fahraeus effect, whose origin is the unequal distribution of red 

cells and plasma at diverging bifurcations (‘plasma skimming’), refers to the decrease in 

average discharge hematocrit in a network as diameter decreases over multiple generations, 

which leads to decreases in tube hematocrit beyond those predicted by the standard 

Fahraeus effect. The Fahraeus effect is incorporated into the two-phase blood flow model 

used in the present work, as is a description of plasma skimming. To verify that the model 

can simulate the network Fahraeus effect, which requires both plasma skimming and a 

suitable sequence of bifurcations in the network, discharge and tube hematocrits for 

segments within multiple networks were calculated and plotted versus segment diameter. 

Note that there are also observed reverse Fahraeus and reverse network Fahraeus effects 

when vessel diameters are around 10μm and smaller, due to the thinning of the plasma 
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layer (37). In the model, during the process of calculating each vessel’s radius based on 

optimizing total network blood volume, discharge and tube hematocrit results were 

generated for cases that used the two-phase flow simulation (27).  

Exploration of Model Properties: 

To explore whether assumptions of blood as a single-phase or two-phase fluid 

affects the geometric properties of the model, networks were generated for each of three 

phase cases outlined in the model algorithm: 1) assuming blood is a single-phase fluid in 

which constant blood flow is maintained at the terminal arterioles, 2) assuming blood is a 

two-phase fluid in which constant blood flow is maintained at the terminal arterioles, and 

3) assuming blood is a two-phase fluid in which constant red blood cell flow is maintained 

at the terminal arterioles. Case 1 may be performed by using the previously mentioned 

simple linear inversion method (constant viscosity) of calculating vessel radii and 

optimizing for 𝑄𝑝𝑒𝑟𝑓, whereas cases 2 and 3 rely on the iterative network flow simulation 

method (diameter- and hematocrit-dependent viscosity) suggested by Pries et al., 1990 (27) 

– with the difference of optimizing for 𝑄𝑝𝑒𝑟𝑓 (case 2) vs. red blood cell flow (case 3). 

Differences in geometric properties between the cases were analyzed based on the mean 

and standard deviation of diameter, length, and number of elements per order, the Horton’s 

ratios, and fractal dimension. Differences in hemodynamic properties were analyzed based 

on the Murray’s law exponent and tube and discharge hematocrit per order. 

To explore the relationship between model properties and the geometric statistics 

of the generated networks, changes in the diameter, length, and bifurcation ratios was 

explored with five networks generated under three varying cases: 1) 100 bifurcations with 
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varying Murray’s law exponent 𝛾, 2) 100 bifurcations with varying the tissue area perfused 

by each terminal arteriole in the network 𝐴𝑝𝑒𝑟𝑓, and 3) 100 bifurcations with varying 

amount of blood flowing through the terminal vessels of the network 𝑄𝑝𝑒𝑟𝑓. The Horton’s 

ratios were calculated based on method 2, finding the average of the linear regressions on 

diameter, length, and number of elements per order. Values are calculated as the ratios ± 

the 95% confidence interval, with the assumption that cases with overlapping confidence 

intervals demonstrate insignificant differences. 

To explore the fractal properties of the generated networks over varying levels of 

magnification, i.e., the fractal dimension of the entire network vs. smaller, local regions of 

similar vessel sizes, the fractal dimension was calculated in ImageJ using an increasing 

number of boxes and averaged. To understand how model properties affect the fractal 

dimension of the generated networks, fractal dimension values were calculated for 

networks of varying number of bifurcations 𝑁𝑏𝑖𝑓, for networks growing with varying 

terminal arteriole perfusion areas 𝐴𝑝𝑒𝑟𝑓, for varying amounts of blood flow maintained at 

the terminal vessels of the networks 𝑄𝑝𝑒𝑟𝑓, for varying percentage values of 𝑒𝑥𝑝𝑉𝑎𝑙, and 

for varying initial Murray’s law exponents 𝛾. Comparisons of resulting fractal dimension 

values were made to published fractal dimension values for the rat gluteus maximus 

microvasculature (22), and observations were made relating to which model parameters 

significantly impact fractal dimension and yield the best validation to the experimental 

data. 
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2.3 Results 

To note: in investigating the multi-phase nature of blood, networks which were 

generated under 3 different cases, assuming blood is case 1) a single-phase fluid with a 

constant amount of flow maintained at terminal vessels, case 2) a two-phase fluid with a 

constant amount of flow maintained at terminal vessels, and case 3) a two-phase fluid 

with a constant amount of red blood cell flow maintained at terminal vessels, showed 

negligible differences in geometric statistics (mean diameter, length, and number of 

elements per order, Horton’s ratios, and the fractal dimension in Figure 7 and 8). Though 

cases 2 and 3 enabled the prediction of hematocrit in all vessels, unlike in case 1, 

differences in hemodynamic properties between cases 2 and 3 were also negligible 

(Figure 9). Since considering blood as a multi-phase fluid does not seem to significantly 

impact the geometric properties of generated networks, for brevity, further results 

regarding the networks’ geometric properties have only been produced with the 

assumption that blood is a single-phase fluid (case 1). Further results regarding the 

networks’ hemodynamic properties (e.g., network Fahraeus effect) have been produced 

with the assumption that blood is a two-phase fluid, with blood flow maintained at the 

terminal vessels (case 2). 
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Figure 7. Mean and standard deviation of diameter, length, and number of bifurcations 

𝑵𝒃𝒊𝒇 per Strahler’s and centrifugal order for five networks of size 100 bifurcations 

generated for the 3 blood flow cases: case 1) a single-phase fluid with a constant amount 
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of flow maintained at terminal vessels colored in blue, case 2) a two-phase fluid with a 

constant amount of flow maintained at terminal vessels colored in red, and case 3) a two-

phase fluid with a constant amount of red blood cell flow maintained at terminal vessels 

colored in yellow. Error bars represent the plus minus standard deviation per order. 

 

 

Figure 8. In panels a-c) the mean ± 95% confidence interval of the Horton’s Law ratios 

and in panel d) mean ± standard deviation of fractal dimension across five 200-

bifurcation networks generated for the 3 flow cases, case 1) a single-phased fluid with a 

constant amount of blood flow maintained at terminal vessels, case 2) a two-phased fluid 

with a constant amount of blood flow maintained at terminal vessels, and case 3) a two-

phased fluid with a constant amount of red blood cell flow maintained at terminal vessels. 

The ordering schemes are colored blue for Strahler’s and red for centrifugal, black for 

fractal dimension. 
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Figure 9. Hemodynamic properties tested between the three blood flow cases, calculated 

over five networks of 100 bifurcations per case. On the left, is the Murray’s law exponent 

plotted as mean ± the 95% confidence interval. On the right is the hematocrit per 

Strahler’s order: case 2 is represented as black for discharge hematocrit and blue for tube 

hematocrit, case 3 is represented as red for discharge hematocrit, and green for tube 

hematocrit. A linear fit has been applied to the hematocrit values per order, represented 

by the dotted line, and the error bars represent the standard deviation. 

 

Figures 10 and 11 are presented to aid in understanding the model’s generated 

network outputs and the categorization of the vessels within for further hemodynamic and 

geometric statistical analyses. To provide a visual example of what the typical generated 

network looks like, Figure 10 presents a network generated using the CCO-based 

algorithm, grown to a total of 900 bifurcations (or 901 terminal vessels), with vessels 

colored by diameter. The generated vascular tree structure filling the dotted circle, which 

signifies the perfusable tissue area, is similar to many vascular trees observed within 

physiology. To clarify the difference between centrifugal and Strahler’s ordering schemes, 
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Figure 11 demonstrates a 100-bifurcation network being ordered using both centrifugal and 

Strahler’s ordering schemes, with the resulting element numbers labelled. Despite the same 

network being plotted, segment order and element numbering differ greatly between 

ordering schemes. 

 

 

Figure 10. An example generated network, with 900 bifurcations, grown in a 2cm 

diameter circular flat tissue. Vessels colored by diameter (cm). Total blood volume is 

6.89×10-4 mL. 
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Figure 11. An example generated network with 100 bifurcations, with vessels colored by 

a) Strahler’s order and b) Centrifugal order, where each segment is labelled a number 

which refers to the element that segments of the same number cumulatively compose. 

 

To analyze the geometric properties of the generated networks, in Figures 12 and 

13, all element values from ten randomly generated networks of size 900 bifurcations 

were accumulated, and the distributions of diameter and length for each order were 

plotted using Strahler’s and centrifugal ordering respectively. The distribution of 

diameter can be approximated as Gaussian in both ordering schemes, though it shifts 

towards a more exponential distribution at the earlier orders for centrifugal ordering.  The 

distribution of length is consistently more exponential for all orders and both ordering 

schemes. Alternatively, in Figure 14, elements from the same ten 900-bifurcation 

networks used in Figures 12 and 13 were compiled to calculate the mean diameter, mean 

length, and the number of the elements per centrifugal and Strahler’s order. Due to the 

non-Gaussian distribution of geometric properties, the interquartile range is represented 
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by the error bars. Mean diameter and length decrease with increasing centrifugal order, 

while number of elements per centrifugal order demonstrates a Gaussian-like curve with 

increasing order. In Strahler’s order, mean diameter and length increase with order, while 

number of elements decreases. 

 

 

Figure 12. Frequency distributions of diameter (top row) and length (bottom row) in μm 

in Strahler’s order, for elements accumulated from ten 900-bifurcation networks. 
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Figure 13. Frequency distributions of diameter (top row) and length (bottom row) in μm 

in centrifugal order, for elements accumulated from ten 900-bifurcation networks. 
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Figure 14. Mean diameter (μm), length (μm), and number of elements per centrifugal 

(left) and Strahler’s (right) order, calculated over ten 900-bifurcation networks, where 

error bars represent interquartile range. 
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To compare and validate the geometric properties of the generated networks to 

that of previously published experimental data, in Figure 15, the model networks were 

grown to size 700 bifurcations with an 𝑒𝑥𝑝𝑉𝑎𝑙 of 43%. Mean diameter, mean length, and 

number of elements per centrifugal order are compared between model results and 

previously collected microvascular data from rat gluteus maximus muscle (22), where the 

order of the diameter and length data has been decreased so that first-order diameters 

match between model and experiment. The model generally matches the experimental 

data well, suggesting successful validation, except for the first two orders of mean length 

per centrifugal order. There is also poor matching between model and experimental data 

for the number of elements per centrifugal order. To compare and validate the model’s 

generated networks against another experimental dataset, in Figure 16, the model 

networks were grown to 300 bifurcations with an 𝑒𝑥𝑝𝑉𝑎𝑙 of 54% and matched to 

vascular data in the rat spinotrapezius from Engelson et al. (38). For further fitting, model 

parameters 𝐴𝑝𝑒𝑟𝑓 and 𝑄𝑝𝑒𝑟𝑓 were adjusted from their default values to 3.6×10-5 cm2 

and 1.2×10-9 mL/s respectively. The mean diameter, mean length, and number of 

elements per Strahler’s order for the model fit well with the experimental data. 
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Figure 15. Mean diameter, mean length, and number of elements for each centrifugal 

order compared between model, for ten 700-bifurcation networks generated with 𝒆𝒙𝒑𝑽𝒂𝒍 

= 43%, and rat gluteus maximus vasculature data from Al Tarhuni et al., 2016 (22). Data 

replotted from Figure 3 in (22), with permission and slight modification. 

 

 

Figure 16. Mean diameter, mean length, and number of elements for each Strahler’s 

order compared between model, for ten 300-bifurcation networks generated with 𝒆𝒙𝒑𝑽𝒂𝒍 

= 54%, 𝑨𝒑𝒆𝒓𝒇 = 3.6×10-5 cm2,  𝑸𝒑𝒆𝒓𝒇 = 1.2×10-9 mL/s, and rat spinotrapezius 

vasculature data from Engelson et al., 1985 (38). 

 

For understanding of the generated networks’ ability to demonstrate Horton’s 

Law, in Figure 17, linear regression analysis was performed between each geometric 
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variable (diameter, length, and number of elements) and Strahler’s or centrifugal order, 

calculated for ten model networks grown to 100 bifurcations – preliminary simulations 

demonstrated that for greater 𝑁𝑏𝑖𝑓 values (e.g., 900 bifurcations), results were similar. 

All calculated geometric variables presented had a strong linear fit (R2 > 0.9), 

demonstrating Horton’s Law, except for the number of elements per centrifugal order 

which demonstrates a poor linear fit (R2 = 0.236). Strahler’s order seems to yield a 

stronger linear fit than centrifugal order, based on the calculated coefficients of 

determination. Seeing that the model generally successfully demonstrates Horton’s Law, 

Table 2 provides Horton’s law ratio values calculated for both ordering schemes and 

using three different methods for ten 100-bifurcation networks. It can be observed that all 

three calculation methods yielded similar ratio values. While length ratio values seem 

similar between ordering schemes, with the diameter ratio being slightly less so, 

Strahler’s order yields a significantly larger bifurcation ratio value compared to 

centrifugal order. For contextual understanding of the model’s Horton’s Law ratios 

against that of the literature, Table 3 demonstrates a literature review of Horton’s law 

ratios published from other datasets, originally reviewed by Al Tarhuni (39). The table 

provides context regarding the model’s Horton’s ratios compared to that of other tissues 

found in literature. It can be observed that ratio values from the model, which is based on 

the rat gluteus maximus skeletal muscle microvasculature, are not only similar to ratio 

values of microvasculature from other skeletal muscle tissues, but also non-skeletal 

muscle microvasculature and bronchial trees. 
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Figure 17. Linear regression analysis performed between each geometric variable 

(diameter, length, and number of elements) and Strahler’s (top row) or centrifugal 

(bottom row) order, calculated for ten model networks grown to 100 bifurcations. 
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Table 2: The diameter (RD), length (RL), and bifurcation (RB) ratios for centrifugal (left) 

and Strahler's (right) order, calculated using three different methods. 
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Table 3: Horton’s Law ratios collected from literature for various types of tissues: 

skeletal muscle, non-skeletal muscle, and non-vascular tissue. 

 

 

To explore the model’s user-adjustable parameters and their effect on the 

generated networks, Figure 18 explores changes in the Horton’s ratios ± the 95% 

confidence interval based on single networks of 100 bifurcations generated under three 

different cases: case 1) varying Murray’s Law exponent 𝛾, case 2) varying 𝐴𝑝𝑒𝑟𝑓, and 
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case 3) varying 𝑄𝑝𝑒𝑟𝑓. Out of all tested properties, only the Murray’s Law exponent 

appears to significantly affect the networks’ Horton’s ratios. 
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Figure 18. Five generated networks plotted as mean ± 95% confidence interval, as the 

Horton’s ratios are tested over three cases for 𝑵𝒃𝒊𝒇 = 𝟏𝟎𝟎 bifurcations. Top row: 

varying Murray’s law exponent 𝜸. Middle row: varying the tissue size within which the 

network is generated 𝑨𝒑𝒆𝒓𝒇. Bottom row: varying the amount of blood flowing through 

the terminal vessels of the network 𝑸𝒑𝒆𝒓𝒇. 
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To evaluate the generated networks’ fractal dimension, in Table 4, the mean 

fractal dimension of three networks of size 100 bifurcations is calculated for varying 

numbers of boxes and averaged. As expected, the networks are fractal, and it does not 

appear that their fractal dimension changes significantly across varying levels of 

magnification for three randomized networks with the same model parameters. To 

evaluate the effect that the model’s user-adjustable parameters have on fractal dimension, 

Figure 19 demonstrates changes in fractal dimension evaluated from networks of varying: 

number of bifurcations 𝑁𝑏𝑖𝑓, terminal arteriole supply area 𝐴𝑝𝑒𝑟𝑓, amounts of terminal 

arteriole blood flow 𝑄𝑝𝑒𝑟𝑓, Murray’s law exponents 𝛾, and asymmetry limit 𝑒𝑥𝑝𝑉𝑎𝑙. 

Out of the listed properties, provided that all other parameters remain the same except for 

the property of interest, only  𝑁𝑏𝑖𝑓 and 𝑒𝑥𝑝𝑉𝑎𝑙 affected the fractal dimension.  
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Table 4: Fractal dimension, calculated over varying levels of boxes using the box 

counting method, in which three individual networks are calculated and then averaged. 
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Figure 19. Fractal dimension calculated for single networks of 100 bifurcations over five 

varying model parameters: a) 𝑵𝒃𝒊𝒇, b) 𝑨𝒑𝒆𝒓𝒇, c) 𝑸𝒑𝒆𝒓𝒇, d) 𝜸, e) 𝒆𝒙𝒑𝑽𝒂𝒍. Aside from 

the varying model parameter, all other values were kept at default for these 100-

bifurcation networks. 

 

For understanding of the generated networks’ ability to demonstrate Murray’s 

law, in Figure 20, linear regression analysis was performed between the logarithmic 

transformations of flow and diameter of each segment of ten generated networks grown 

to 100. The calculated Murray’s law exponent for this data is around 2.18. Murray’s law 

exponent when excluding vessels with a diameter smaller than 20μm was 2.81. 
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Figure 20. The logarithm of blood flow plotted vs. logarithm of diameter to evaluate the 

Murray’s Law exponent. The starred points represent the logarithm of the blood flow-

diameter value pairing for each segment within ten 100-bifurcations networks, while lines 

represent the linear fit applied. The red data represents the full model dataset, while the 

blue data represents excluding segments with diameters lower than 20 μm, which 

attempts to approximate experimental conditions. Equations for the linear fits are 

presented in the legend. 

 

For understanding of the generated networks’ ability to demonstrate the network 

Fahraeus effect, in Figure 21, a cubic smoothing spline fit was plotted between the 

diameter and hematocrit of each segment accumulated from five networks of size 100 

bifurcations which were generated with two-phase blood flow, based on maintaining 

constant blood flow at terminal vessels (case 2). The cubic smoothing spline fit is an 

interpolation of the data which may be used to estimate the trend when there is 
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substantial noise. Based on the cubic spline, the tube hematocrit appears to decrease with 

decreasing diameter, while discharge hematocrit increases slightly initially and then 

decreases as diameter approaches 10m. Both hematocrits stop decreasing around 10μm, 

when tube hematocrit is around 0.25 and discharge hematocrit is around 0.38. The 

hematocrits increase significantly as diameter continues to decrease past 10μm. 

 

 

Figure 21. The discharge (left) and tube (right) hematocrit plotted versus diameter in μm 

for segments accumulated from five 100-bifurcation networks calculated with simulation 

case 2. Segment hematocrit-diameter values are colored based on the network they came 

from, and solid black lines represent the cubic spline fit. 

 

2.4 Discussion 

To summarize, a CCO-based network model was constructed to generate branching 

arteriolar networks in various skeletal muscles based on user-adjustable model parameters. 

The model was comprehensively validated according to previously collected rat gluteus 
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maximus vasculature data (22, 23), along with other skeletal muscle vasculature datasets 

which, though they may not be as comprehensive, support the model’s capability of 

flexibly characterizing vascular data from different skeletal muscles and under different 

experimental conditions. Regarding which model properties affect the generated networks, 

the Murray’s law exponent 𝛾 affects the networks’ diameter ratio, and number of 

bifurcations 𝑁𝑏𝑖𝑓 and 𝑒𝑥𝑝𝑉𝑎𝑙 affects the fractal dimension. While blood in the 

microvasculature may behave as a two-phase fluid of red blood cells and plasma, there was 

no significant effect between modelling blood as a single-phase fluid and two-phase fluid 

on the geometric properties of the generated networks. There was also no significant effect 

on the hemodynamic properties of the generated network when changing constant blood 

flow maintained at terminal vessels as is implemented in case 1 and case 2 to red blood cell 

flow, case 3.  

Several factors may be considered which makes the present study unique in its 

presentation. Previous usage of CCO-based algorithms has commonly taken a more 

macrovascular view by focusing on arteries rather than arterioles; additionally, any usage 

of CCO on arterioles typically involved the generation of arterioles from pre-existing 

vasculature, rather than de novo. Additionally, the present work showcases in-depth the 

ability of CCO-generated networks to approximate the geometrical and topological 

features of real vasculature through validations to several relevant skeletal muscle 

experimental datasets. Validation of CCO-based models via comparison to experimental 

data has not been commonly performed in literature; while past work has demonstrated 

experimental validation of computational models following CCO-like algorithms (40), the 

experimental datasets have been limited in range of vessel diameters included, reflecting 
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previously discussed difficulties in acquiring data through experimental measures. The 

presented experimental validation of the model’s flow properties, such as the Murray’s Law 

exponent or the network Fahraeus effect, has not been commonly reported in relation to 

CCO, or computationally-generated vascular models in general, within the literature.  

One notable finding in this study is the distinct difference between the two ordering 

schemes, centrifugal and Strahler’s. The two ordering schemes have generally performed 

a similar role within the literature, and thus, have been assumed to be interchangeable.  

Recalling that order 1 refers to the terminal vessels in Strahler’s order, and the inlet arteriole 

in centrifugal order, comparisons can be attempted between the two ordering schemes 

when one ordering scheme is flipped. Under ideal circumstances, the vessel properties per 

order should be comparable since the goal of ordering schemes is to identify vessels of 

similar properties as within the same ‘class’, or order. However, findings in the current 

study suggest that this is not the case. 

In Figure 14, the variation in mean diameter, length, and number of bifurcation 

within each ordering scheme respectively is generated due to the randomization of 

sampled points included within the methods for network generation – this variation is 

expected and aligns with the goal to be able to generate different, but statistically similar 

networks, as is observable in real life where there may be slight individual-specific 

variations in growth when focusing on the exact same anatomies. The mean diameter, 

mean length, and number of elements per Strahler’s order is approximately exponential, 

which aligns with previous findings (20, 33). Between ordering schemes, there is a large 

difference in data values, more than can be explained by the randomization of vessel 

placements inherent to the network generation algorithm; since the two ordering schemes 
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are used on the same ten networks, these differences in data values can only be attributed 

to the different ordering schemes. It can be assumed that differences in the categorization 

of segments into specific orders will result in differences in the grouping of segments into 

elements, which most of the presented geometric and hemodynamic statistics were 

calculated based on.  

To further understand the significance of ordering schemes, Figure 11 provides a 

visual demonstration of how ordering scheme can result in greatly differing categorization 

of elements in a single network. Order 1 element identified according to centrifugal 

ordering starts from the inlet arteriole and extends all the way to a terminal vessel, while 

the order 5 (max order) element in Strahler’s order gets cut off and splits into two order 4 

elements, far before the terminal vessels. With the exact same network being used, 

differences in element numbering must result from the ordering scheme, as the two 

ordering schemes have different classifications of which segments compose an element.  

Additionally, differences in ordering schemes can be further evaluated in Figure 

12 and 13, which shows a difference in the distributions of elements per order for 

Strahler’s and centrifugal ordering respectively. Model frequency distributions in Figure 

13 demonstrate agreement with previously published centrifugally ordered experimental 

results in rat gluteus maximus vasculature (22) which suggest that diameter results have 

an approximately normal distribution (R2 > 0.8 for most orders), while for length results, 

lesser centrifugal orders have a poorer fit (R2 = 0.2-0.4) compared to larger centrifugal 

orders (R2 > 0.8). The validation of Figure 13 reinforces the model’s capability of 

generating networks with experimental distributions of geometric data. Additionally, if 

the generated networks in Figure 13 possess appropriate distributions of geometric data, 
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then the Strahler’s distributions in Figure 12, which are based on the same networks, 

should be similarly appropriate. As such, the validation also reinforces the accuracy of 

these results which suggest a significant difference between the ordering schemes. 

In summary, Figures 11, 12, 13 and 14 support the idea that the ordering scheme 

plays a significant role in what the expected network statistics will be per order and the two 

ordering schemes are not as comparable as one may think. Since the ordering scheme 

appears to play a significant role in the resulting statistics per order, it would be reasonable 

to suggest that for further validations to experimental data, the computational model should 

use the same ordering scheme as was experimentally used. 

Regarding the model’s performance in the validation with experimental data, with 

the adjustment of model parameters, the model compared well. In Figure 15, mean 

diameter matches between model and experimental measurements over all centrifugal 

orders. Mean length is not quite matched in orders 1 and 2, however this can be attributed 

to how the model and experimental data differ in the consideration of asymmetric 

bifurcations. In the model, 𝑒𝑥𝑝𝑉𝑎𝑙 removes all vessels which are lower than a certain 

percentage of the parent. In the experimental data, however, there may be inconsistencies 

in terms of which asymmetric bifurcations are ignored or missed, and which are kept. 

Inconsistent inclusion and exclusion of small daughter vessels may result in more small 

daughters being included on large parent vessels, resulting in shorter elements being 

included in lower centrifugal orders, and hence, lower mean length in orders 1 and 2. 

Regarding the number of elements per order, the model data demonstrates a bell-like 

curve, which is expected of data collected based on a centrifugal ordering scheme (Figure 

14). However, the experimental data seems almost exponential, with a significantly lower 
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number of elements per order, suggesting that there are many vessels that the 

experimental data may have missed. Generally, Figure 15 demonstrates that the model 

successfully simulates the experimental data, with discrepancies in length and number of 

elements per order being explainable by missed or ignored vessels in the experimental 

data. 

As previously stated, to perform a stronger validation of the model, it was also 

compared to other skeletal muscle microvasculature datasets within the literature to 

overcome experimental limitations and inconsistencies between datasets. Engelson et al. 

(38) acquired vasculature data from the rat spinotrapezius muscle, and similarly 

published mean diameter, length, and number of elements per order, however, using the 

Strahler’s ordering scheme. In Figure 16, when using Strahler’s order, the model 

networks demonstrate good agreement with the experimental data for mean diameter, 

mean length, and number of elements per order. This is despite experimental limitations 

Engelson et al. describe in which there may be discrepancies in expected measured values 

due to unusually large branches which invariably connect transverse arterioles to 

capillary networks within the spinotrapezius muscle, resulting in higher order vessels 

being occasionally shorter than the length of the next lower order vessel. Overall, despite 

varying experimental limitations between the Al Tarhuni et al. and Engelson et al. 

datasets, the model was able to generate networks with comparable geometric properties 

to both datasets, supporting the model’s flexibility in generating networks for various 

skeletal muscle vasculatures. 

The following concerns the model’s ability to demonstrate Horton’s Law and 

comparisons of its Horton’s Law ratios to the ratio values found in literature. In Figure 
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17, since the linear fits in all ratios and both ordering schemes are strong, it can be 

concluded that the model successfully demonstrates the experimentally proven Horton’s 

Law. Strahler’s order seems to yield a stronger fit compared to centrifugal order, which 

may be attributed to previously discussed differences in how elements are defined 

according to their ordering scheme. These findings suggest that Strahler’s order yields a 

more exponential distribution of mean diameter, length, and number of elements per 

order (as plotted in Figure 14). The poor fit of the number of elements per centrifugal 

order can be related to the more Gaussian curve of the values in Figure 14. 

Despite having found three different methods of calculating the Horton’s Law 

ratios within literature, Table 2 demonstrates that all three methods yield similar ratio 

values. However, there is a notable difference in ratio values between the ordering 

schemes, especially concerning the bifurcation ratio. This difference can once again be 

attributed to differences in segment ordering and element categorization between the 

ordering schemes. As is reflected in Figure 11, out of all geometric properties, the 

number of elements per order is most differently described by the two ordering schemes.  

When comparing the model’s centrifugal ordering scheme ratios in Table 2 to that 

of the experimental data from Al Tarhuni et al. 2016 (Table 3), the ratio values are 

similar. The difference in RL can be attributed to experimental inconsistencies with 

missing vessels at asymmetric bifurcations. While Strahler’s order yields ratios which are 

further from expected experimental values, by using 𝑒𝑥𝑝𝑉𝑎𝑙 set to 60%, the Strahler’s 

order ratios become RD, RL, and RB = 1.5, 2.1, and 2.7, respectively, for all three 

methods for centrifugal ordering (R2 > 0.9), which is closer to skeletal muscle vasculature 

datasets such as Koller et. al., 1987 (5), Engelson et al., 1985 (38) and Ellsworth et al., 
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1987 (3), which used Strahler ordering to calculate their ratios. The agreement of the 

model’s ratios and the ratios in Table 3 demonstrates that with adjustments, the model 

can agree with ratios from other datasets, including even non-skeletal muscle vasculature 

and non-vascular tissue. The agreement of values regardless of physiology suggests that 

there is an optimization of geometric properties in biological branching network 

structures which the model is capable of capturing. 

Fractal analysis results can be found in Table 4, where the fractal dimension for 

networks generated with default model parameters were calculated to be consistently 

around 1.5. The mean ± SD of the fractal dimension of eight arteriolar networks in the rat 

gluteus maximus muscle has previously been found to be 1.3844+-0.02 (22). Figure 19 

demonstrates that by adjusting the number of bifurcations 𝑁𝑏𝑖𝑓 and 𝑒𝑥𝑝𝑉𝑎𝑙 of the 

generated networks, the fractal dimension of the resulting networks can be adjusted. For 

example, to achieve a fractal dimension of around 1.3844 from the experimental data, 

model parameters can be adjusted to 𝑒𝑥𝑝𝑉𝑎𝑙 = 40-50%. 

Figure 20 presents the first of the current study’s hemodynamic results, showing 

the model’s ability to demonstrate Murray’s law when user-adjusted parameters are 

changed from default to experimental conditions. The concept of element as defined by 

centrifugal or Strahler’s order was not used for this analysis, as Murray’s law relates 

purely to the blood flow within and diameter of vessels, without concern for vessel 

length. Thus, no artifacts should have been introduced by differing element 

categorization. While the calculated Murray’s law exponent was around 2.18, the 

exponent when excluding smaller vessels (with diameters lower than 20μm) is 2.81, 

which is closer to the value of 2.63 measured in the rat gluteus maximus arteriolar 
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vasculature (23). The exclusion of smaller vessels was performed to simulate 

experimental conditions, in which smaller vessels may be missed during the data 

collection process. A possible explanation of why the calculated Murray’s Law exponent 

from the ten generated networks does not align with the model’s input Murray’s Law 

exponent value γ, which was set to 2.6, is that γ was used to characterize the diameter-

flow relationship at individual bifurcations during network generation and does not 

extend to characterizing the relationship between diameter and flow for segments 

accumulated from the entire network. 

Regarding the impact of adjusting model parameters on the resulting generated 

networks, Figure 18 demonstrates that the only parameter that significantly affects the 

Horton’s ratios of the generated networks is the Murray’s Law exponent 𝛾, which is 

expected, as 𝛾 characterizes the power law relationship between diameter and blood flow. 

Since the relationship between diameter and blood flow is otherwise maintained by 𝛾, 

increases to 𝑄𝑝𝑒𝑟𝑓 result in proportional increases in diameter and blood flow such that 

the ratios are not significantly affected. Similarly, increases to 𝐴𝑝𝑒𝑟𝑓 and 𝑁𝑏𝑖𝑓 only 

caused proportional increases in diameter, length, and number of elements. Though 

𝑄𝑝𝑒𝑟𝑓 and 𝐴𝑝𝑒𝑟𝑓 do not significantly affect the geometric features of the generated 

networks, they may still be adjusted, given the experimental data, to affect hemodynamic 

properties such as O2 delivery. 

Finally, Figure 21 presents the model’s ability to demonstrate the Fahraeus and 

network Fahraeus effects. In Figure 21, the cubic spline-based decreases in tube and 

discharge hematocrit as diameter approaches 10m align with experimental findings (41) 
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in demonstrating the network Fahraeus effect. The increases in both discharge and tube 

hematocrit around the 10μm diameter mark correspond with the reverse Fahraeus and 

reverse network Fahraeus effects, proving that the model successfully incorporates both 

hemodynamic properties. 

The utility of the presented network model is far-reaching for any investigations 

related to the skeletal muscle microvasculature, as its adjustable parameters provide a 

convenient way of allowing experimenters to confirm results and test/refine novel 

hypotheses across branching arteriolar networks within various skeletal muscle tissues. 

While anatomical variability has been explored before with CCO-based algorithms, 

models for arteriolar branching networks within skeletal muscle tissue is a niche that has 

not been commonly addressed, as most CCO-based models continue to focus on more 

macrovascular vessel structures. 

A few limitations in the present work are as follows: Firstly, the computation time 

of the model is long compared to other existing models (31). At its current state, it takes 

around 12 hours for the average CPU to generate a 900-bifurcation network. Further 

optimizations towards reducing computation time are expected to be implemented in 

future work. Inconsistencies in and between experimental datasets make it hard to 

perfectly validate the model, as with the parameter adjustments considered, the model 

struggles to exactly match any specific experimental dataset. Additionally, data from the 

literature tended to be limited in comparison to the rat gluteus maximus experimental 

data, and hence may not have captured muscle-specific properties for the model to 

simulate; for example, arteriolar networks in highly oxidative muscles may contain 

properties which are not present in glycolytic and fast-twitch muscles such as the gluteus 
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maximus. Nevertheless, the model has been proven to be adaptable enough to 

approximate experimental data of vasculature in various skeletal muscles, and thus the 

model may be viewed as representing an ‘average’ of what the skeletal muscle 

vasculatures generally resemble on a statistical basis.  

Being that the overarching goal is to develop a CCO-based model which will 

generate networks for any tissue, the scope of the present model will be greatly expanded 

in future work, and a version of the model that is more readily usable for a broader 

readership will be made available to others. While the current model can only 

characterize branching arteriolar networks, future work will aim to increase the 

complexity of the vasculature geometry to incorporate arcading structures into the vessel 

network. To enable simulation of vasculature within a broader option of physiologies, the 

model’s perfused tissue space will be expanded from a 2D circular area to incorporate 

customizable tissue areas for non-uniform and 3D tissue geometries. These changes to 

allow for more customization of the vasculature should allow for closer matching to 

experimental data, and should enable completion of experimental microvascular datasets. 

It should also enable computational modeling of blood-tissue oxygen transport based on 

complete 3D arteriolar networks. Most importantly, the model will be expanded to 

incorporate regulators of arteriolar diameter (e.g., vasodilators, oxygen, etc.), such that 

the generated networks can respond to stimuli by changing vessel diameter, and thus 

tissue perfusion, in real time. Such developments will allow the model to make great 

strides towards simulating adaptive or maladaptive situations at the site of vasculature-

tissue blood flow exchange, which would be highly beneficial for understanding how 
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vascular mechanisms come together in a myriad of multi-scale interactions to regulate the 

blood circulatory system in a way that results in healthy vs. disease outcomes. 

2.5 Summary 

The present work introduces a CCO-based algorithm for simulating branching arteriolar 

networks in healthy skeletal muscle tissue that is relatively thin. Comprehensive 

comparison of the network hemodynamic and geometric properties to experimental data 

collected both previously at our institution and from other literature demonstrates the 

model’s flexibility in potentially approximating microvasculature in various skeletal 

muscles, given that some model parameters (e.g., 𝛾 and  𝑁𝑏𝑖𝑓) were not adjusted for 

specific muscles considered. Understanding of arteriolar behavior within the 

microvasculature is conducive to understanding complex health conditions due to its role 

in flow regulation and proximity to the capillary bed, the site of blood flow exchange 

between tissue and circulatory system, and this model can act as an alternative solution to 

challenges inherent in experimental procedures. This model is one of few comprehensively 

validated CCO-based models to focus on the simulation of microvasculature within any 

skeletal muscle via the adjustment of model parameters, making it a beneficial and widely 

applicable investigative tool to perform hypothesis testing and validation for 

microvasculature in various skeletal muscle tissues. 
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Chapter 3 

3 Conclusion 

3.1 Thesis Contributions 

This thesis attempts to answer a central question involved in developing 

computational models for microvascular networks: how should you specify network’s 

geometry and topology? The literature has introduced many methods for approximating 

network architecture, these methods often do not incorporate the structural and 

hemodynamic heterogeneity of real-life vasculature (1, 2). Since vascular function has 

been tied to network heterogeneity (2, 3), computational models aiming to simulate real 

life vasculature should incorporate the irregularity of microvascular geometry and 

topology. 

The computational model presented within this thesis attempts to replicate real 

life skeletal muscle microvascular architecture using a CCO-based algorithm. CCO was 

chosen due to its ability to generate visually and statistically realistic vascular trees in the 

literature (4, 5). While CCO has commonly been applied to macrovasculature, it is 

seldom employed to model microcirculation, making the presented model a unique 

exploration of CCO application. To verify the model’s closeness to real life, we validated 

the generated networks via comparison with experimental datasets collected in skeletal 

muscle over a comprehensive list of geometric and hemodynamic statistics. While most 

models are tissue-specific, this model introduces user-adjustable parameters which may 

be altered to better fit different data sets, contributing as an example towards future work 
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in developing adaptable network models. Another notable contribution of this thesis is 

the analysis of the commonly used ordering schemes, Strahler’s and centripetal, for 

microvascular networks. The common purpose of ordering schemes is to group vessels 

with common properties, yet it was demonstrated in this thesis that the Strahler’s and 

centripetal ordering schemes yield significantly different representations of identical 

networks.  

3.2 Future Directions 

As mentioned within Chapter 2, future work will aim to expand the capabilities of 

the presented model. Relevant tasks are as follows: the model may include adjustable 

parameters to fit the tissue perfusion area to specific tissues/organs. The model may also 

have adjustable hemodynamic and perfusion resistance parameters to enable simulation 

of health vs. disease conditions and experimental challenges; the outcome will be highly 

applicable to any demographic-specific modifications (e.g., sex, age, etc.). Future work 

will also implement the ability to simulate oxygen transport via blood. 

Of all relevant tasks, we have given priority to the simulation of arteriolar 

behavior in response to the integration of various regulation mechanisms. While vascular 

models have been created, the incorporation of vasoregulatory mechanisms across a 

vessel network tree has not been widely explored. Models present in the literature thus far 

are often static geometric structures with unchanging diameters, ignoring vasomotion. 

Models which do without consideration of vessel behavior are often limited in resolution, 

focusing on the animation of a single vessel. 
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In previous work from Halvorson et al. 2023 (6), arteriolar response to the 

simulation of five well known vasoregulators was measured: metabolism (via adenosine 

concentration), adrenergic activation (via norepinephrine concentration), myogenic 

activation (altered intravascular pressure), oxygen (superfusate PO2), and wall shear rate 

(altered intralumenal flow). This work, which was conducted within arterioles of healthy 

Zucker rat skeletal muscle tissue, aimed to establish a systematic approach for 

understanding the integrated regulation of skeletal muscle arteriolar tone. The result is a 

comprehensive experimental dataset of changes in arteriolar diameter against five chosen 

vasoregulators, in combinations from one up to three. Additionally, two machine learning 

models were trained on the experimental data to integrate the five regulation mechanisms 

and provide an arteriolar diameter prediction. Both machine learning models performed 

well, demonstrating high accuracy when compared to experimental data (R2 > 0.9). 

 In the future, we aim to incorporate the machine learning models with our CCO-

based network generation model, both of which were created and validated based on 

experimental arteriolar data within healthy rat skeletal muscle. After our CCO-based 

model (which has been validated in Chapter 2) generates an arteriolar network, the 

machine learning models should be able to adjust vessel diameters as appropriate when 

provided with data for the five regulation mechanisms. As a result, the combined models 

will yield arteriolar networks based on the principle of optimization (CCO) which are 

sensitive to moment-by-moment vasoregulation. The incorporation of vasoregulation into 

our CCO-based model will hold significance in the investigation of arteriolar network 

behavior in varying physiological states (e.g., disease and exercise) or in varying 

moments of time (e.g. over the cardiac cycle). If vasoregulation data is provided at high 
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time resolutions, then second-by-second animation of arteriolar network behavior may be 

possible. 
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