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Abstract 

The study of human mobility provides a clear framework for examining and predicting a 

wide range of human activities. Irrespective of the approach, understanding mobility is not 

just about tracking movement but also about comprehending the context in which it occurs. 

This can be achieved by incorporating and integrating a variety of data sources into our 

mobility data analysis. This thesis uses three data sources—WORKANDHOME GPS 

tracking data, mobile network data, and NYC Yellow Taxi data—to thoroughly investigate 

how human mobility is related to environmental factors, geographical contexts, and 

community structures. 

The research begins with an evaluation of the effects of environmental factors on stress and 

happiness levels during travel. By applying geographic ecological momentary assessment, it 

documents instantaneous emotional reactions to surroundings, underscoring the importance 

of green and blue spaces in boosting happiness and lowering stress. This study highlights the 

critical influence of the environment on the feelings individuals experience during daily 

travels, advocating for sensible urban planning and policies to improve emotional well-being. 

The thesis then introduces the Mobility Deviation Index, a new concept incorporating 

geographical context into the analysis of human mobility patterns. This approach contrasts 

observed mobility with expected levels based on amenity availability. The results advocate 

for including geographical context in mobility research directly when calculating indices of 

mobility, showing that patterns are significantly influenced by local characteristics. Next, it 

presents the Local Mobility Index (LMI), a novel metric for measuring local mobility 

behaviors. The LMI examines individual destination choices relative to amenity distribution. 

Finally, the thesis proposes the Network Community Structure Similarity Index, a new 

method for evaluating changes in community structures over time in mobility networks. This 

approach overcomes the limitations of previous methodologies, offering a clearer view of 

community dynamics. This thesis significantly advances human mobility research, offering a 

better view that underscores the critical role of context in determining mobility patterns. It 

not only deepens our understanding of human movement but also lays the groundwork for 

future research and policymaking aimed at fostering more liveable, sustainable, and equitable 

urban environments. 
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Summary for Lay Audience 

In today’s fast-paced world, understanding how and why people move the way they do can 

tell us a lot about society. This research explores the study of human movement, not just by 

looking at where people go, but also by exploring the reasons behind their movements and 

the effects these journeys have on their emotions and well-being. Imagine walking through a 

park filled with green trees; doesn’t it make you feel happier and more at peace? Our study 

confirms that natural spaces like these indeed boost happiness and reduce stress during travel. 

We developed new tools and indices to better analyze human movement. One of these tools 

looks at how much people’s movements differ from what we might expect based on the 

amenities available in their area. Another measures local travel behavior, considering the 

choices people make about where to go based on what is around them. We also introduced a 

way to understand how community connections change over time, reflecting on how people’s 

movements can bring them together or apart. 

Through our work, we emphasize the importance of considering the environment and local 

features when thinking about urban planning and policies. Cities should be designed with 

people’s emotional well-being in mind, promoting access to nature and creating spaces that 

encourage positive community interactions. 

This research sheds light on the complex relationship between human mobility, our 

surroundings, and our emotions. It suggests that by paying attention to the environment and 

how people interact with it, we can create more livable, sustainable, and happy communities. 

This is not just about moving from point A to point B; it’s about making those journeys 

enrich our lives and the spaces we share. 
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Chapter 1  

1 Introduction 

This doctoral thesis explores the integration of geographical context in measuring and 

analyzing human mobility. Its primary objective is to enhance our understanding of how 

environmental, geographical, and social contexts influence mobility patterns. By 

methodically examining various contextual factors and their interaction with human 

movement, the research aims to contribute modestly to the broader field of human 

mobility studies, focusing on developing and refining metrics and methodologies that 

consider a wide range of influencing factors within urban and environmental settings. 

1.1 Background  

Human mobility casts light on the examination and prediction of a wide range of human 

activities (Wang et al., 2019). Studying human mobility offers insights beyond just 

locational shifts, exploring the reasons, patterns, and impacts of everyday human travel 

and interactions (Feng et al., 2020). The details of our daily movements reveal a wealth 

of information about social and economic aspects of life (Wu et al., 2016). Every 

individual's movement, be it routine urban travel or a short local trip, represents a mix of 

personal choices, socio-economic influences, and environmental factors (Chen et al., 

2023; Cuttone et al., 2018; Wu et al., 2018). These patterns of movement are fundamental 

to urban planning, influencing the development of transportation systems, urban layouts, 

and accessibility within cities (Wang et al., 2020). Studying these movement patterns 

helps us understand the mechanisms and interactions that drive modern societies. 

One of the key areas where analyzing human mobility can be beneficial is in urban and 

transportation planning. As cities grow larger, understanding human mobility becomes 

vital for urban and transportation planners (Boyce and Williams, 2015; Wang et al., 

2012). Every person's movement, whether within city limits or inter-regionally, provides 

valuable information that offers insights into individuals’ needs, preferences, and 
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challenges. By analyzing these patterns, city planners can effectively strategize urban 

development (F Xu et al., 2021), ensuring efficient transportation networks and smooth 

traffic flows (Asgari et al., 2013; Ferreira et al., 2018). Moreover, as cities sprawl and 

densities vary, knowing how, when, and where people move can significantly assist in 

designing sustainable cities, reducing congestion, and enhancing the overall quality of 

urban life. 

Beyond urban planning, human mobility analysis offers an invaluable perspective for 

health-related studies (Oliver et al., 2015; Tizzoni et al., 2014). The dynamics of disease 

transmission, identification of hotspots, and containment strategies are closely associated 

with human mobility patterns (Roy and Kar, 2020). This was particularly evident during 

the COVID-19 pandemic, where mobility data was crucial in tracking and predicting the 

spread of the virus (Bergman and Fishman, 2020; Borkowski et al., 2021; Elarde et al., 

2021; Franch-Pardo et al., 2020; Guzman et al., 2021; Long and Ren, 2022; Noi et al., 

2022), enabling health experts to implement timely interventions. By understanding these 

patterns, health experts can predict potential outbreaks, strategize interventions, and 

manage public health crises more effectively. 

Additionally, in the emerging field of neuro-urbanism, the interaction between urban 

environments and human psychological and physiological health is gaining attention 

(Pykett et al., 2020). Diverse urban environments, such as green spaces in cities, can have 

varying impacts on cognitive functions, emotional states, and overall mental health 

(Krekel et al., 2016; Willberg, Poom, et al., 2023). These findings underscore the 

significance of mobility patterns in influencing the psychological well-being of urban 

populations, as they interact with diverse urban landscapes. 

To conduct such studies effectively, it's essential to access precise and relevant data that 

captures the mobility patterns of individuals, whether through detailed individual-level 

data or comprehensive aggregate data of populations. This data is foundational for in-

depth analysis and understanding of human mobility. Since the year 2000, the field of 
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human mobility research has seen significant advancements, primarily due to the 

availability of diverse and comprehensive datasets  (Noulas et al., 2012). 

1.2 Movement data: Eulerian and Lagrangian approaches 

In the study of human mobility, data can be categorized into two main types, each 

offering a distinct perspective on how people move and interact with their environment 

(Laube, 2014). The Eulerian perspective observes the world from fixed locations, similar 

to watching water flow at a specific point in a river. This approach captures data on 

entities as they interact with these points, providing a broad understanding of movement 

patterns (Demšar et al., 2021). Data sources that take an Eulerian approach include 

stationary sensors (H Xu et al., 2021), traffic cameras (Chen et al., 2021), and mobile 

network datasets like Call Detail Records (CDRs) (González et al., 2008; Song et al., 

2010). CDRs are created each time a mobile phone is used for calls or texts, providing an 

Eulerian view of mobility by recording the user's location in relation to nearby cell 

towers (Blondel et al., 2015). These datasets are especially valuable in regions or 

demographics where continuous individual tracking might be challenging or invasive 

(Forghani et al., 2020). They provide a broad understanding of mobility patterns, helping 

to identify congested areas, popular transit nodes, and general movement trends. 

On the other hand, the Lagrangian perspective focuses on following entities throughout 

their movement, capturing their entire trajectory (Demšar et al., 2021). GPS tracking is a 

key example of this approach, continuously recording an entity's location over time. This 

method provides a detailed view of individual movement patterns, revealing travelling 

habits, regular routes, or changes in mobility over time (Rhee et al., 2011; Zheng et al., 

2008). However, while it offers detailed insights into individual movements, since it 

commonly features a smaller population, its granularity can sometimes overshadow 

broader, macroscopic trends evident in Eulerian datasets (Barbosa et al., 2018). Also, 

growing concerns about data privacy and ethics in continuous high-precision tracking are 

influencing how this method is used in human mobility studies (Leszczynski, 2018). 
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1.3 Mobility data analysis 

In today's data-rich environment, the primary challenge is to derive meaningful 

information and insights from the vast amounts of raw data available (Fayyad et al., 

1996; Laube, 2014). In human mobility studies, this transformation is facilitated using 

various mobility metrics, each offering a unique perspective on movement (Barbosa et 

al., 2018; Wang et al., 2019). Time-based metrics focus on the temporal aspects of 

movement, considering factors like how long an individual stays at a location (Demissie 

et al., 2019; Dijst and Vidakovic, 2000). Range-based metrics concentrate on the spatial 

and geometric aspects of movement. Metrics like the Radius of Gyration (ROG), which 

measures the extent of an individual's movement around a mean center of gravity 

(González et al., 2008), are examples of range-based metrics. Entropy-based metrics, 

such as Shannon Entropy, measure the unpredictability in a person’s choice of places 

(Song et al., 2010). A high Shannon Entropy value implies a varied and spontaneous 

pattern, while a lower value suggests more predictable and routine movements. These 

metrics collectively facilitate a comprehensive analysis of data, creating an empirical 

basis for urban planning, policy development, and enhancing our understanding of 

spatial-temporal human behaviors. However, although we have significantly advanced in 

understanding human mobility, there is a noticeable gap here: the direct integration of the 

context in which movement takes place. Mobility is not an isolated phenomenon; it is 

closely connected with the surrounding environment, societal frameworks, and individual 

experiences (Siła-Nowicka et al., 2016). 

Irrespective of the approach, understanding mobility is not just about tracking movement 

but also about comprehending the context in which it occurs. This can be achieved by 

incorporating and integrating a variety of data sources into our mobility data analysis. 

Satellite imagery, for instance, provides a bird's eye view of landscapes, helping 

researchers differentiate urban from rural, forested from barren, and residential from 

commercial (Jia et al., 2018). Volunteered Geographic Information (VGI) leverages 

crowd-sourced data, often offering real-time insights into road closures, construction 

activities, or even public events that might influence mobility (Antoniou and Skopeliti, 
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2015; Goodchild, 2007; Sangiambut and Sieber, 2016). Publicly available datasets, 

statistical reports from governmental bodies, and specialized questionnaires further enrich 

the context, providing socio-economic, demographic, and infrastructural details that 

influence movement patterns (Hanson and Johnston, 1985; Havet et al., 2021; Simini et 

al., 2012).  

To better define and understand context in human mobility studies, it is important to 

recognize that context is a complex and ever-changing concept, involving various factors 

that impact human movement (Brum-Bastos et al., 2021; Purves et al., 2014). Context 

can be related to the physical environment, including environmental factors like weather 

and the availability of green and blue spaces, and urban infrastructure design (Zhou et al., 

2019). These factors can significantly impact mobility choices (König and Axhausen, 

2002; Willberg, Tenkanen, et al., 2023). Additionally, context encompasses the socio-

economic environment, including cultural norms and personal experiences, which play a 

role in shaping commuting habits, residential preferences, and leisure activities (Palmer 

et al., 2013; Wu et al., 2016). Therefore, understanding context in human mobility is not 

just an additional aspect but a fundamental component that shapes movement patterns, 

underscoring the need to consider these diverse elements to fully grasp mobility 

behaviors (Purves et al., 2014; Siła-Nowicka et al., 2016).  

Integrating context with mobility data presents significant challenges due to the 

multifaceted nature of context and the intricacies of mobility patterns. This process 

requires a careful combination of varied datasets and metrics, and an interdisciplinary 

approach. Successfully combining context into mobility analyses involves using a variety 

of datasets, including geographical, socio-economic, and behavioral data, as well as 

developing and applying metrics that can capture the complex relationship between 

context and mobility. Integration of contextual factors into human mobility analyses, 

though challenging, allows for a more accurate interpretation of mobility patterns, 

ensuring that the patterns we observe, predict, and seek to influence are rooted in a 

deeper understanding of human behavior. 
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1.4 Research questions 

When examining context in human mobility analysis, the impact of the environment on 

our well-being emerges as a pivotal consideration. Understanding the relationship 

between an individual's psychological well-being and their daily interactions with 

geographical elements is particularly crucial. Given the significant importance of well-

being and the substantial time spent in transit, it is essential to explore how the 

environments we navigate during our travels influence our mental and emotional health. 

As the focus of our analysis expands to encompass large-scale movement patterns, the 

importance of geographical context becomes increasingly apparent. At this macro level, 

geographical context is a critical element in meaningful analysis. People from different 

regions exhibit distinct mobility behaviors influenced by their specific geographical 

context, highlighting the need for a robust method to compare these behaviors across 

different contexts. This method should directly incorporate the context into its 

measurement approach, taking into account the varied impacts of geographical context on 

movement patterns. 

A crucial aspect of studying mobility patterns is understanding the local nature of an 

individual's movements. However, analyzing just the geometric aspect of mobility falls 

short in capturing the full picture, as the context in which mobility occurs can 

significantly influence the degree of localness in a person's movements. Recognizing the 

importance of localness necessitates the development of a metric that not only quantifies 

it but also integrates the contextual factors influencing it. This approach allows for a 

more thorough examination of how various urban features and environmental contexts 

impact local mobility patterns, thereby providing a better understanding of individual 

movement behaviors within different geographical contexts. 

Beyond geographical considerations, human movement is influenced by a variety of 

contexts, including community structures. Analyzing mobility data can uncover complex 

community patterns, offering deeper insights into the relationship between human 
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mobility and communities. However, there is a notable gap in methodologies for 

comprehensively comparing these community structures over time. Developing such 

methodologies is essential for gaining insights into how mobility patterns and community 

structures influence each other through time, enhancing our understanding of their mutual 

relationship. 

Against this background, the research questions in this dissertation are: 

1. How do environmental factors during daily travel activities impact individuals' 

happiness and stress levels? 

2. How does incorporating geographical context into human mobility measurements 

alter the interpretation of human mobility analyses results? 

3. How to measure local human mobility behavior considering the influence of 

geographical context? 

4. How to compare two sets of communities derived from mobility flows? 

1.5 Research objectives 

The primary goal of this thesis is to explore the field of human mobility in depth, with a 

focus on integrating and intricately characterizing context in these studies. To answer the 

research questions proposed above, the following four specific objectives are defined: 

1. Investigate the relationship between environmental variables and happiness and 

stress levels by conducting a geographic ecological momentary assessment study. 

2. Introduce and define a measure that incorporates geographical context, facilitating 

researchers in the study and comparison of human mobility patterns among 

individuals residing in different contexts. 

3. Define a metric for quantifying the degree of localness in human mobility 

behavior, unveiling nuanced insights into localized mobility preferences, 

contributing to a more comprehensive understanding of movement behavior in 

urban contexts. 
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4. Define a measure that effectively captures the impact of label and weight changes 

in community structure, offering a new approach for community similarity 

measurement in complex networks. 

These research objectives lay the groundwork for a multi-dimensional exploration of how 

environmental, geographical, and social factors interact with and influence mobility 

patterns. By developing new methods and metrics for assessing the complex relationship 

between individuals and their surroundings, this thesis aims to bridge existing gaps in 

human mobility research. Each objective, while distinct, contributes to the overarching 

aim of enriching our understanding of human mobility through a contextual lens. This 

integrated approach not only advances our methodological capabilities but also enhances 

our ability to interpret complex mobility data in a way that is meaningful for urban 

planning, public health, and environmental policy. 

1.6 Structure of the dissertation 

This dissertation is organized into six chapters, with the next four chapters structured as 

individual papers that are either published or under revision. 

Chapter 2 explores the relationship between environmental factors and individual well-

being, employing a novel method to capture the real-time emotional impact of urban 

environments during the daily travels on happiness and stress levels. This study 

highlights the significance of green and blue spaces and weather in shaping residents' 

emotional states during their daily travels. 

Chapter 3 introduces the concept of a mobility deviation index (MDI), a measurement 

method for analyzing human mobility patterns across large areas, integrating 

geographical context to enable detailed comparison of human mobility patterns among 

individuals residing in different contexts. This method facilitates a deeper understanding 

of human mobility by providing different insights compared to traditional mobility 

measures, highlighting the importance of geographical context in interpreting mobility 

patterns and their association with socio-economic factors. 
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Chapter 4 introduces the local mobility index (LMI), a novel metric designed to quantify 

localness in human mobility patterns, integrating geographical context. This approach 

enables a refined analysis of urban movement trends, focusing on how individuals choose 

their destinations. By factoring in the spatial distribution of urban amenities, the LMI 

offers insights into the role of socio-economic and environmental factors in shaping local 

travel behaviors, contributing significantly to the field of urban mobility studies. 

Chapter 5 proposes a network community structure similarity index (NCSSI), a method 

for evaluating community structures in complex networks, integrating both connectivity 

and the importance of connections. This approach addresses limitations of prior methods, 

enhancing network dynamics analysis and offering a clearer understanding of community 

structure evolution over time. 

Chapter 6 concludes the dissertation, summarizing the key findings and discussions from 

the earlier chapters. It also suggests potential future research directions. 
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Chapter 2  

2 How does travel environment affect urban stress and 
happiness? A study using geographic ecological 
momentary assessment in England1 

2.1 Introduction 

The health and wellbeing effects of urban living have become a major public health 

priority. Apart from being associated with urban lifestyle aspects such as sedentary 

behavior and psychological stress, urban living is often associated with higher exposure 

to environmental hazards such as air pollution, noise, and heat and less access to natural 

environments including greenspace. It is well documented that a variety of trip attributes 

such as mode of transportation (Duarte et al., 2010; Olsson et al., 2013), the duration of 

trips (Ettema et al., 2012; Olsson et al., 2013), and the type of activity (Archer et al., 

2013; Ettema et al., 2012), can affect daily travel experiences (happiness, stress and 

satisfaction) during and following trips. 

A large body of literature has investigated the individual-level determinants of subjective 

wellbeing, broadly defined as how people feel about how well or happy they are as 

opposed to measurable factors of health and welfare (Pain & Smith, 2010). More recent 

research has studied the impact of external factors on wellbeing such as environmental 

influences in addition to the more commonly studied internal factors and genetics 

(Bevilacqua & Goldman, 2011). As an environmental factor of wellbeing, access to green 

space at people’s residential location has been studied showing the health and wellbeing 

benefits of ‘greenness’ (Dadvand et al., 2016). 

Given that daily travel constitutes a significant part of people's routines, averaging 1 hour 

per day in 2019 (Dept. for Transport, 2021), the objective of this study is to understand 

 

1
 A version of this chapter has been submitted for publication to Urban Studies. 
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how environmental context of daily travel influences urban stress and wellbeing.  Studies 

on the attributes of daily travel in relation to wellbeing have not studied the 

environmental context of urban travel, on the one hand.  Studies that have explored 

various environmental factors on wellbeing, on the other hand, have measured the 

wellbeing impact of environmental factors at the place where people live (Winters & Li, 

2017), neglecting that most people are also exposed to environmental factors at other 

relevant places in their daily lives and while travelling. This applies specifically to 

workers who have to commute to a workplace (Clark et al., 2020). Connecting these two 

strands of literatures, will help better understand how urban wellbeing can be improved 

or negative effects mitigated. 

Traditionally, studies on the environment and subjective wellbeing have used one-time 

questionnaire-based surveys which capture emotional snapshots within specific contexts 

(Guite et al., 2006; Singleton & Clifton, 2021). However, this approach is susceptible to 

recall bias, which emerges from the discrepancy between emotions recorded at the time 

of the survey and those actually experienced during the events in question (Kahneman et 

al., 2004; Robinson & Clore, 2002). Geographic Ecological Momentary Assessment 

(GEMA) has enabled the real-time tracking of everyday experiences (Pykett et al., 2020). 

Through the application of this approach, researchers can attain a deeper understanding 

of the complex interrelationships between urban elements like access to green spaces and 

noise levels, and the emotional states of individuals (Kou et al., 2020; Mennis et al., 

2018; X. Zhang et al., 2020). However, even within this framework, environmental 

attributes that affect daily wellbeing experiences associated with travel remain poorly 

understood (see, for example, (Kirchner & Shiffman, 2016; Mennis et al., 2018; Parrish 

et al., 2020)). Since GEMA studies are resource-intensive, existing studies have used 

small and/or non-representative samples (e.g. (Pykett et al., 2020)). 

In this study, we use GEMA to collect repeated information of the same individual on 

happiness (positive feeling/affect) and stress (negative affect) alongside other rich survey 

data in a large sample of individuals with workplaces in cities. The novel contributions of 
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this study are twofold. The first lies in linking daily travel with external (environmental) 

factors of wellbeing while the second contribution is methodological. We link the 

locational data and survey data to attributes characterizing the natural amenities while 

people travelled. Natural amenities are naturally-occurring locational attributes that 

enhance the desirability of a place and are expected to positively impact individual 

wellbeing (Winters & Li, 2017). We include as natural amenity factors that cover the 

proximity to the natural environment (green/blue spaces), exposure to weather (apparent 

temperature, visibility, daylight, and rain), and exposure to air pollution. By examining 

this range of factors within the context of daily travel in cities, we uncover relationships 

between urban stress and happiness (‘wellbeing’) and environmental context, and their 

relative effects beyond the stationary residential location. 

2.2 Background 

Daily travel, an integral aspect of daily urban life, is intimately tied to both the 

environment and wellbeing. Longer daily travel and commuting times have been 

associated with higher levels of stress, and lower mental wellbeing in several previous 

studies (Ettema et al., 2012; Stutzer & Frey, 2008). The stress of daily travel can also 

spill over into other areas of life, affecting work satisfaction, family relationships, and 

leisure activities (Clark et al., 2020). Moreover, accessibility to amenities, safety, and the 

overall pleasantness of the daily travel experience are key factors that influence 

commuters' wellbeing (Ettema & Schekkerman, 2016). Factors like temperature, 

precipitation, visibility (Böcker et al., 2016; Li et al., 2022), and air quality index (Ma et 

al., 2021) also play significant roles in influencing people's subjective wellbeing and 

overall health. Foggy weather and high humidity levels have been found to negatively 

affect individuals' moods (Čelić et al., 2019).  Additionally, studies have indicated that 

transportation mode can significantly impact happiness (Eriksson et al., 2013; 

Mokhtarian & Pendyala, 2018).  

The profound influence of green open spaces on subjective wellbeing has been 

extensively explored in previous studies. Previous evidence in research based on travel 
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surveys supports that trips occurring in greenspaces are associated with greater happiness 

levels (Wang et al., 2021). Access to green and open areas have also been linked with 

heightened physical activity and social interaction (Lee & Maheswaran, 2011; Maas et 

al., 2006; Matsuoka & Kaplan, 2008). Greater access to greenspace at residential 

locations has been related to increased life satisfaction and mental wellbeing, and reduced 

stress levels (Ambrey & Fleming, 2014; Fan et al., 2011; Smyth et al., 2008; Sugiyama et 

al., 2008; White et al., 2013). Such positive associations are further evident in studies 

connecting exposure to green space with reduced cortisol secretion, a hormone indicative 

of stress, suggesting a link to lower stress levels (Thompson et al., 2012). 

2.3 Methods 

2.3.1 Data 

We collected data from 1017 participants across three cities in England: Brighton and 

Hove, Leeds, and Birmingham. Participants were recruited from October 2018 to May 

2019 in Brighton & Hove and Leeds, and September 2019 to April 2020 in Birmingham. 

The sample included participants between 18 and 64 years old who were in employment 

(paid employment or self-employment) and who worked in the selected cities. While 

workers formed the sampling frame, the study aimed to capture all their daily travel 

experiences, not solely their commutes. We were conservative in application of data 

integrity measures which led to the exclusion of 411 participants due to insufficient data 

necessary for our statistical models. Therefore, our final analysis included data from n = 

606 individuals. 

Participation in the study consisted of two parts: a questionnaire survey which captured 

sociodemographic characteristics and a mobile-phone app-based survey of approximately 

seven days which should be a ‘normal’ working week. Participants were asked to install a 

bespoke mobile application on their phones designed to facilitate data collection. This 

application was comprised of two core components: a location tracking feature and real-

time survey delivered through push notifications. The former recorded participants’ 

geographical positions using a dynamic motion-based approach, incorporating a two-state 
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rolling geofence system. The delineation between motion and stationary states was 

established by a geofence threshold of 50 meters. This approach allowed detailed GPS 

tracking of geographical movement during motion states while conserving resources (i.e., 

battery) during stationary phases. Participants' movement was continuously tracked, and 

the termination of any trip (i.e., transition to a stationary phase from a motion phase) 

prompted the delivery of a GEMA survey through the mobile app.  

Trip is defined as the segment of data recorded between two consecutive stop points. 

Stop points are locations where participants remained stationary for ≥5 minutes, with 

movement between consecutive points <75 meters. We employed agglomerative 

clustering on the stop points to identify the home location of participants. This clustering 

method grouped nearby stop points within a defined distance threshold (75 meters), 

generating clusters that represented potential residential places. We assigned the cluster 

with the longest duration as the primary home location. To assess the precision of the 

GPS-derived locations, we cross-referenced them with the centroid locations of the postal 

codes that participants self-reported as their home postal codes. Our examination shows 

that the GPS-derived home locations matched the self-reported home postal code centroid 

within a 1 km radius in 81 % of instances. This method aligns with established practices 

in GPS tracking studies and allowed us to accurately determine participants' key locations 

based on their time spent at these sites (Kung et al., 2014; Siła-Nowicka et al., 2016). 

This enabled us to calculate the Euclidean distance between individuals' residential 

locations and the city center of the respective cities, allowing us to capture distinctions 

between those residing closer to the urban core and those located on the outskirts of the 

city. 

Not all trips in the dataset are associated with a completed GEMA survey. We retained 

only those trips with a corresponding GEMA survey completed within one hour of 

travelling. The final dataset comprises 8,083 trips (25% completion rate) contributed by 

our 606 participants, which is an average of 13.3 trips per individual. In order to calculate 
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individual’s ‘baseline’ happiness and stress levels, we also use GEMA surveys not 

associated with trips (n = 21,349 GEMA survey responses). 

2.3.2 Happiness and stress 

We are focusing on the two GEMA response variables: happiness and stress. Both are 

measured using a 7-point Likert scale. Since individuals have differing ‘baseline’ 

happiness or stress levels, a comparison between individuals needs to control for the fact 

that some people are happier than others or cope with stressors differently (Nes & 

Røysamb, 2017). We therefore adjusted each participant’s GEMA scores for happiness 

and stress by subtracting the mean response for each individual across all GEMA surveys 

(including those GEMA surveys not associated with a trip) from each response to get a 

relative measure (to their overall mean) of happiness and stress for each trip (Veenhoven, 

1991).  

2.3.3 Natural amenities 

2.3.3.1 Green and blue spaces 

We derive a measure of the exposure to green or blue space during individual trips as 

proportion of the trip through or close to green/blue space. We calculated the area of 

green and blue space present in a buffer of 50 meters around each trip's GPS data. The 

area of green and blue space related to each trip was divided by the area of the 50 m 

buffer to give a numerical proxy representing the proportion (between 0 and 1) of a trip 

(by area) within green and/or blue space (0 – no green or blue space, 1 – all green or blue 

space). We used the UK Centre for Ecology & Hydrology (UKCEH) land cover dataset 

to extract information on green and blue spaces (Morton et al., 2020). UKCEH uses 

Sentinel-2 Seasonal Composite Images reflecting the median reflectance for each season. 

The land cover dataset is comprised of 21 classes of land cover. Eleven green-related 

classes including deciduous woodland, coniferous woodland, arable, improve grassland, 

neutral grassland, calcareous grassland, acid grassland, fen, heather, heather grassland, 
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and bog, and two blue-related classes including saltwater and freshwater were merged to 

define the green-blue space.  

The impact of green spaces on wellbeing can vary across seasons, as the presence or 

absence of leaves and other seasonal changes might affect our perception of these spaces 

(Mennis et al., 2018). However, quantifying the specific characteristics of green areas on 

a daily, monthly, or seasonal basis is a significant challenge. To address this, we have 

incorporated temperature and the season in which the trip was conducted as a proxy in 

our model to account for potentially seasonality effects of influence of green spaces on 

our happiness and stress levels. 

2.3.3.2 Weather data 

We linked weather condition data from the Meteorological Office Integrated Data 

Archive System (MIDAS) to each trip. We selected the timestamp at the midpoint of 

each trip to serve as a representative time of trips. The nearest weather station was 

identified that corresponded to the time of the trip.  

MIDAS is a comprehensive weather database managed by the UK's national weather 

service (Met Office, 2006b, 2006a). With more than 200 stations, it covers the whole UK. 

Hourly data for rainfall (in millimeters) is used and converted into a binary variable to 

measure exposure to rain (yes/no) while travelling. Hourly horizontal visibility data, 

measured in meters, is also used directly from MIDAS without any modification. 

Previous research has demonstrated that apparent temperature is a useful variable for 

capturing how individuals experience weather, and therefore, we calculated the apparent 

temperature (AT) (in Centigrade) (Brum-Bastos et al., 2018; Steadman, 1994)  

𝐴𝑇 = 𝑇 + 0.33 ∗ 𝑒 − 0.70 ∗ 𝑊𝑆 − 4.00 2.1 

where AT is the apparent temperature in Centigrade, T is the air temperature in 

Centigrade, e is the water vapour pressure in hPa, and WS is the wind speed in m/s. 
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2.3.3.3 Air pollution 

An air quality index score ranging from 1 to 10 (with 1 representing the least polluted air 

and 10 indicating extremely polluted air quality) is used to assess the impact of air quality 

on wellbeing in this study. We use daily data from the UK Air Information Resource (UK 

Air Information Resource, 2023) . Our analysis included five pollutants: sulfur dioxide 

(SO2), ozone (O3), nitrogen dioxide (NO2), particulate matter less than 10 μm in 

diameter (PM10), and particulate matter less than 2.5 μm in diameter (PM2.5). We 

employed a ten-point scale for each pollutant, in line with the standards set by the 

Committee on the Medical Effects of Air Pollutants (Ayres, 2011). The values of these 

pollutants were determined based on the closest monitoring site for each trip on the 

respective day. Following the recommended approach (Cheng et al., 2004; Tan et al., 

2021), we then used the highest value among all pollutants to represent the air quality 

index for each trip.  

2.3.4 Other travel and environmental variables 

2.3.4.1 Travel mode detection 

We did not directly request participants to report their mode of travel. Thus, we infer the 

travel mode from participants’ tracking data. We employed a Fuzzy Logic system based 

on Xu et al.’s approach to detect the travel modes (Xu et al., 2010). We used six 

transportation mode categories: walk, run, bike, bus, train, and car. In our fuzzy system 

we employed four variables: median speed, standard deviation speed, proximity to bus 

routes, and proximity to train routes. Incorporating four variables enabled us to 

distinguish between modes that are similar in one aspect but different in the other. For 

example, bus and car might have the same median speed, but their proximity to bus 

routes is different; consequently, our fuzzy system differentiates these two from each 

other. With six distinct modes to be identified using four variables, a total of 24 fuzzy 

membership functions were created (Figure 2-1). These membership functions were 

designed in a trapezoidal form. We employed min-max operation (minimum value in 
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each parameter and maximum value between all mode categories) to identify each mode 

of transportation. 

 

Figure 2-1 Trapezoidal fuzzy memberships for 6 different modes for 4 variables. 

The bottom plots feature black lines illustrating the overlapping membership 

functions of modes other than the bus on the left and the train on the right. 

To build the fuzzy system for mode detection, our initial step involved segmenting the 

trajectory into single-mode segments. This segmentation process relied on identifying trip 

start and end points and mode transition points, which were extracted from the pre-

processed GPS data. Typically, walking served as the mode for transitioning between 

different modes (Xu et al., 2010). Our procedure began by classifying each data point as 

either walk or non-walk based on whether its speed was less than or equal to 2.5 meters 

per second or higher. Subsequently, we examined the data for segments where walk 
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points consistently persisted for a minimum duration of 120 seconds; these segments 

were labelled as walk segments. All consecutive points located between the start, walk 

segments, and end points of the trip were clustered as single-mode segments. These 

segments, including the walk segment, were then used as input for the fuzzy system. The 

inclusion of walk segments served as a reliability check to ensure the accurate 

identification of these segments. The outcome of this process was the detection of the 

travel mode for each segment and consequently, the whole trip, expressed as a percentage 

breakdown of the different modes utilized. For example, a trip could be entirely 

composed of walking, while another might consist of 25% walking, 50% car, and 25% 

bus usage. 

To incorporate the proximity to bus routes and proximity to train routes in our model, we 

used the Open Street Map (OSM) dataset to extract train and bus routes of any kind. 

Though its coverage around the world varies (Mashhadi et al., 2013), it can be considered 

one of the most accurate and publicly available datasets (Barron et al., 2014; Girres & 

Touya, 2010; Haklay, 2010), and it has comprehensive coverage in England. 

2.3.4.2 Daylight 

To determine whether a trip occurred during the day or night, we used the Astral package 

in Python (Kennedy, 2022). By considering the coordinates and timestamp of each trip's 

midpoint, we ascertained whether the trip took place during daylight or nighttime hours. 

This process generated a binary attribute for each trip, with a value of 1 signifying that 

the majority of the trip occurred during daylight hours (between sunrise and sunset), and 

a value of 0 indicating nighttime. 

2.3.5 Statistical analysis 

Linear mixed-effect models were used to study self-reported happiness and stress levels 

in a multivariate modelling framework. Individual random effects were used to account 

for multiple trips of the same individual. Environmental factors were included as key 

independent variables all at once to measure their relative importance. Potential 
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confounding factors include trip attributes and destination attributes (hereafter control 

variables). The individual-level fixed effects incorporated into our analysis were gender, 

age, hometown, and the distance from the individual's home to their respective hometown 

city center. The trip attributes include the travel mode, the duration of the trip, and the 

season in which the trip occurred. The travel destination attributes include the type of 

destination, the activities in which the individual engaged at the destination, and whether 

the individual was alone or accompanied by others.  

We ran three versions of the model: with the environmental variables only, with the 

control variables only, and with both the environmental and control variables. The model 

fit was assessed using the marginal R2 and conditional R2 values which determine, 

respectively, the proportional variance explained by the fixed effects-only, and the 

proportional variance explained by both the fixed and random effects (Nakagawa & 

Schielzeth, 2013). 

2.3.6 Sample description 

The sample contains a greater number of female participants and an age range primarily 

concentrated in the mid-career stages (Table 2-1). A larger proportion of participants was 

recruited in Leeds, followed by Brighton and Hove. Birmingham has the smallest sub-

sample size due to a shorter recruitment period. Most participants lived relatively close to 

the city center. 

Table 2-1 Summary of individual-level variables of n = 606 individuals tracked by a 

mobile app. 

Variable Freq.  

Gender Women 348 

 Men 258 

Age 18-24 75 

 25-34 142 

 35-44 168 

 45-54 147 

 55-64 74 

City Leeds 327 

 Brighton and Hove 202 
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 Birmingham 77 

Distance from Home to City Center (km) – Mean (Sd) 6.04 (4.84) 

The reported happiness and stress levels after the trips averaged zero, which was 

expected as these values were adjusted based on individuals' average happiness and stress 

levels. The corresponding standard deviations were 1.02 and 1.11, respectively. Trip 

duration is on average 18.7 minutes (sd = 18.2), with 69% occurring during the day. A 

minority of trips (12%) took place in rainy conditions. On average, 13% of the area 

within a 50-meter buffer of each trip consists of green-blue spaces (Table 2-2). The most 

prevalent modes of transportation are walking and using the car. The number of trips was 

roughly the same in winter and autumn but trips in spring and summer are 

underrepresented in the data. The most common travel destination is the home, followed 

by work. The dominant activity reported at these destinations is work-related. 

Table 2-2 Summary statistics of environmental and control trip-level variables 

associated with n = 8083 trips by n = 606 individual tracked by a mobile app to 

study daily travel patterns in England. 

Variable Mean (Sd) 

Dependent Variables  

 Happiness 0 (1.02) 

 Stress 0 (1.11) 

Independent Variables  

     Environmental Factors  

 Proximity to Nature  

  Exposure to Green-Blue Spaces (proportion of trip) 0.13 (0.19) 

 Exposure to Weather  

  Apparent Temperature (c) 3.10 (4.58) 

  Visibility (m) 1188 (939) 

  Rain (binary) 0.12 

 Exposure to Air pollution  

  Air Quality Index 3.39 (1.78) 

Control Variables  

 Trip Attributes  

  Travel mode  Walk 0.376 (0.39) 

     Run 0.016 (0.09) 

     Bike 0.045 (0.17) 

     Bus 0.043 (0.17) 

     Train 0.002 (0.04) 

     Car 0.516 (0.44) 

  Duration (min) 18.70 (18.2) 
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  Daylight (binary) 0.69 

 Freq. 

  Season   Winter 3200 

     Spring 1785 

     Summer 3 

     Autumn  3095 

  Destination Type Home 3475 

     Work 1284 

     Other 3324 

  Destination Activity Work 5767 

     Housework 451 

     Leisure 1797 

     Eating 23 

     Other 45 

  Presence of People 

  at the destination 

Alone 4087 

Not Alone 3996 

2.4 Results 

When individual characteristics and trip and destination attributes are accounted for, the 

exposure to green and blue spaces during trips shows an association with both happiness 

and stress (Table 2-3). Increasing the area within a 50-meter buffer of each trip from zero 

green-blue space to completely composed of green-blue spaces, we see happiness levels 

increase by 0.17 points on the Likert scale while keeping all other variables constant, and 

stress levels decrease by 0.2 points on the Likert scale while keeping all other variables 

constant. These results support a relatively high effectiveness of green-blue spaces in 

improving happiness and reducing stress associated with urban travel. Creating a travel 

environment with higher levels of green-blue spaces is an achievable goal, particularly 

for short trips around residential or work areas where active transportation modes are 

typically used for daily activities. 

Apparent temperature during trips was positively associated with happiness levels, where 

a 1-degree increase raised happiness by 0.01 points on the Likert scale while keeping all 

other variables constant, but showed no significant association with stress level (Table 2-

3). The positive association we observed between apparent temperature and happiness 

may be explained by previous studies, which indicate that individuals engage more in 
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leisure and fun activities (Kim & Brown, 2022; Pivarnik et al., 2003), and have a better 

mood (Keller et al., 2005) during warmer days and seasons. 

The positive association between visibility during trips and happiness levels, where a 1 

km increase raises happiness by 0.05 points on the Likert scale while keeping all other 

variables constant, coupled with the negative association with stress levels, where a 1 km 

increase reduces stress by 0.04 points on the Likert scale while keeping all other variables 

constant, (Table 2-3). This suggests poor visibility may heighten feelings of uncertainty 

and vulnerability. Second, from a practical standpoint, better visibility is crucial for safe 

navigation and orientation during travel. Individuals likely experience increased comfort 

and reduced anxiety when they can clearly perceive their surroundings, anticipate 

potential hazards, and feel confident in their ability to respond to the environment. 

Our findings revealed that travel in rainy weather can reduce stress levels, yet it showed 

no significant impact on happiness levels. This contrasts with Ettema et al.’s, (2017) 

research which indicated that rain or snow led to a decrease in participants' feelings of 

pleasure post-commute.  The discrepancy in findings can be attributed to our inclusion of 

the horizontal visibility variable in the model. Rainy conditions inherently decrease 

visibility and increase travel hazards. By including the horizontal visibility variable in our 

model, we likely offset the impact of rain on visibility, explaining the absence of a 

relationship with happiness and the positive relationship with stress levels observed in 

our findings. 

The air quality index during trips is neither related with happiness nor stress (Table 2-3). 

This contrasts previous studies that have shown that air pollution negatively affects 

overall subjective wellbeing (Lu, 2020).  This is likely because our study primarily 

examined immediate happiness and stress levels rather than long-term health outcomes 

like respiratory issues or the prolonged psychological effects of pollution. By adjusting 

survey responses to the individuals’ average, our analysis primarily captures the short-

term influence of these environmental factors on happiness and stress, potentially 

sidelining their long-term wellbeing impacts. 



30 

 

 

 

Table 2-3 Linear mixed-effect regressions of happiness and stress level with and 

without control variables 
 

Happiness Stress Happiness Stress 

Variables ß p ß p ß p ß p 

(Intercept) -0.10 0.004 0.10 0.005 0.14 0.102 -0.03 0.728 

Independent Variables         

     Environmental Factors         

 Proximity to Nature         

  Green-Blue Spaces 0.06 0.336 -0.08 0.248 0.17 0.013 -0.20 0.010 

 Exposure to Weather         

  Apparent Temperature 0.00 0.062 -0.00 0.473 0.01 0.001 -0.00 0.174 

  Visibility 0.06 <0.001 -0.05 0.001 0.05 <0.001 -0.04 0.005 

  Rain 0.03 0.391 -0.08 0.050 0.04 0.251 -0.08 0.039 

 Exposure to Air pollution         

  Air Quality Index 0.00 0.961 -0.01 0.238 -0.00 0.594 -0.01 0.420 

Control Variables         

     Individual Factors         

 Gender [RCa: Female] Male     0.04 0.140 -0.00 0.880 

 Age [RC: 18-24]         

  25-34     0.07 0.183 -0.11 0.061 

  35-44     0.06 0.236 -0.13 0.029 

  45-54     0.02 0.674 -0.09 0.130 

  55-64     0.01 0.823 -0.06 0.385 

 City [RC: Leeds]         

  Brighton and Hove     -0.04 0.163 0.06 0.083 

  Birmingham     0.01 0.732 0.05 0.297 

 Distance from Home to City Center     -0.00 0.375 0.01 0.002 

     Trip Attributes         

 Travel Modes         

  Walk     0.02 0.761 -0.05 0.362 

  Run     0.04 0.746 -0.15 0.267 

  Bike     -0.04 0.629 -0.01 0.886 

  Bus     -0.14 0.070 0.08 0.352 

  Train     -0.30 0.286 0.21 0.491 

  Car     -0.08 0.091 0.01 0.840 

 Duration     -0.00 0.088 0.00 0.328 

 Daylight     -0.28 <0.001 0.23 <0.001 

 Season [RC: Winter]         

  Spring     0.05 0.176 -0.06 0.113 

  Summer      0.26 0.657 -0.02 0.969 

  Autumn     -0.08 0.012 -0.03 0.428 

     Destination Attributes         

 Destination Type [RC: Home]         

  Work     0.05 0.179 -0.05 0.284 

  Other     0.01 0.821 0.02 0.634 

 Destination Activity [RC: Work]         

  Housework     0.00 0.979 0.03 0.664 

  Leisure     0.00 0.994 0.07 0.059 

  Eating     -0.34 0.121 0.19 0.427 

  Other     0.04 0.832 -0.11 0.570 

 Presence of People at the Destination 

 [RC: Alone] Not Alone 

    -0.02 0.556 -0.03 0.380 

Number of observation 8083 8083 8083 8083 

Marginal R2 / Conditional R2 0.004 / 0.014 0.002 / 0.018 0.022 / 0.030 0.016 / 0.031 

Note: Bold numbers indicate significant association at a p-level of 0.05. 
a RC: Reference Category 
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Overall, the models exhibited relatively low explanatory power with marginal R2 values 

≤ 0.022 and conditional R2 values ≤ 0.031. The control-only model had the lowest 

marginal R2 and conditional R2 for both happiness and stress levels (Appendix A). The 

model with both control and environmental factors (Table 2-3) yielded the highest 

marginal R2 and conditional R2 values for both happiness and stress during trips. 

2.5 Discussion 

Among the four environmental factors identified as significantly influencing stress and 

happiness, green-blue spaces are the most actionable in terms of policy changes in urban 

environments. The observed effects of green-blue spaces on happiness and stress during 

travel are consistent with previous findings, which demonstrate advantages for 

individuals who have access to, or are present in, such spaces. This points at a consistent 

impact of environmental exposure on wellbeing (De Vries et al., 2016; Kondo et al., 

2020) and adds a critical role of green-blue spaces not only within residential areas but 

also along streets and in transit spaces throughout urban environments. Incorporating 

more green-blue areas along streets not only enhances perceptions of pleasantness, 

quietness, and safety (Nawrath et al., 2019; Zhu et al., 2022), but also promotes active 

travel behaviors (Wu et al., 2020). 

Transportation mode was not significantly associated with self-reported happiness and 

stress levels after trips. Previous studies have suggested that certain modes of 

transportation, such as active transportation (walking, cycling) and private transportation 

(car use), can positively influence happiness levels and reduce stress (Chen et al., 2019; 

Duarte et al., 2010; Eriksson et al., 2013; Fan et al., 2019). Our results, however, indicate 

the mode of transportation itself does not significantly impact happiness or stress levels; a 

result that was consistent when we only considered the control variables (Supplementary 

Material II). This suggests that the surrounding environment during travel may play a 

more pivotal role in influencing subjective wellbeing than the mode of transportation. 

This finding is particularly significant for urban planners and policymakers, as it 

highlights the potential of environmental enhancements over transportation mode 
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changes to improve psychological wellbeing. This highlights the need for additional 

research into the direct effects of transportation mode on mental health. It is important for 

future studies to investigate the connections between transportation choices and mental 

health, taking into account the influence of environmental factors. 

As happiness and stress are complex responses to capture in survey data and, therefore, 

often difficult to measure (Plutchik, 2001; Pykett et al., 2020), we tried to control this 

complexity by adjusting the happiness and stress levels by individuals’ average 

responses. However, there are numerous other factors not controlled for in our analysis, 

which could potentially be additional determinants of stress and happiness levels that 

remain unaccounted for. The subjective nature of responses to surveys regarding 

happiness and stress are influenced not only by environmental factors but also by 

numerous other factors, including individual genetics and personal character (Bevilacqua 

& Goldman, 2011), interpersonal connections (Ogihara & Uchida, 2014), subjective 

characteristics, including perceived accessibility, safety, and social-spatial factors like 

inequality (Ettema & Schekkerman, 2016), as well as one's relative position within the 

neighborhood (Brodeur & Flèche, 2012).  Therefore, it is likely that the complexity of 

individual happiness and stress levels may limit the explanatory power of our models (as 

observed here, overall model fit was low (R2 <3%). This finding aligns with previous 

studies that have used a variety of explanatory variables and techniques to explore the 

relationship between environmental factors such as greenspace and happiness and stress 

levels, which have also reported varying, but generally low, explanatory powers (Hazer et 

al., 2018; Roe et al., 2013). 

We employed the UKCEH land cover dataset, derived from satellite images (Sentinel-2 

Seasonal Composite Images) for extracting green areas, employing a top-down 

perspective. However, it is important to acknowledge that the perception of people on the 

street may differ because these satellite images disregard the vertical dimension of 

greenery (Gupta et al., 2012). To gain a better understanding of how individuals perceive 

greenery on the street, several efforts have been made to use street view images for 
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greenery extraction (Dong et al., 2018; Larkin & Hystad, 2019; Long & Liu, 2017). 

However, research by (Torkko et al., 2023) has shown that both street view-based 

methods and satellite imagery-based methods exhibit a high correlation with individuals' 

perceived greenery. 

In future research directions, reducing subjectivity in analyses is paramount when 

assessing individuals' experiences within urban environments. Ambulatory assessment, 

with an emphasis on biosensing, emerges as an invaluable tool for this purpose. This 

methodology enables the simultaneous and real-time capture of both physiological 

indicators (such as heart rate and cortisol levels) using biosensors and psychological data 

(including emotional states and stress levels) using real-time surveys as individuals 

navigate urban surroundings (Pykett et al., 2020; Wilhelm & Grossman, 2010). However, 

it is crucial to acknowledge that the acquisition of such data can be challenging due to 

practical considerations such as the burden placed on individuals to carry specialized and 

often expensive biosensing devices dedicated to this purpose. 

2.6 Conclusion 

The primary aim of this study was to investigate how environmental factors influence 

individuals' self-reported happiness and stress levels in relation to daily travel. The 

emphasis has been on evaluating environmental factors related to trips, advancing 

previous studies that predominantly focused on understanding the impact of various 

environmental factors, particularly greenspaces, on happiness and/or stress levels based 

on individuals’ residential location (Krekel et al., 2016; Wendelboe-Nelson et al., 2019; 

Y. Zhang et al., 2017), and not during daily travel. For instance, our measurement 

involves assessing the proportion of the trip covered by green-blue spaces based on area 

during a trip as a proxy to the exposure to green-blue spaces during the trip, rather than 

solely assessing access or presence at green-blue spaces. In our approach, we employed 

GEMA surveys and continuous individual tracking, offering a more comprehensive view 

of the travel experience. This entails not only detailed information about paths taken 

during trips but also the immediate post-trip happiness and stress levels. This nuanced 
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perspective provides a more holistic understanding of the interplay between travel 

experiences and happiness and stress. 

The findings reveal that environmental factors, notably green and blue spaces, play a 

more substantial role in influencing urban happiness and stress levels than either the 

mode of transportation or individual trip characteristics. The consistent positive impact of 

green-blue spaces on wellbeing, regardless of the context—whether within residential 

areas, or along transit routes—underscores their importance in urban planning and public 

health strategies. This strategic placement of green-blue spaces not only within residential 

areas but also along routes and in transit areas throughout urban environments enhances 

the aesthetic and experiential quality of daily commutes and activities, contributing 

significantly to urban wellbeing. Hence, our research advocates for a holistic approach in 

urban planning and public health initiatives, emphasizing the need to distribute green and 

blue spaces across the urban landscape, including areas frequented by commuters and 

pedestrians. Such an approach ensures that the benefits of these natural spaces are 

accessible to a broader segment of the urban population, thereby maximizing their 

positive impact on public health and wellbeing. 
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Chapter 3  

3 Mobility deviation index: Incorporating geographical 
context into analysis of human mobility1 

3.1 Introduction 

Spatial and temporal patterns of the movement of individuals are shaped by the 

configuration of the environment in which they live, and this configuration is, in turn, 

shaped by people’s movements (Haggett, 1966). The structure of the places within which 

an individual moves, including the affordances they provide (Jordan et al., 1998), can 

constrain or limit movement opportunities, or provision easy movement and access to 

activities (Sharif & Alesheikh, 2017). Therefore, when studying human mobility patterns, 

it is important to consider the relationship between observed movement patterns and the 

geographical context within which they occur (Brum-Bastos et al., 2021).  

Failure to capture the context within which human movement occurs may alter our 

understanding and interpretation of human mobility. However, it is very rare in 

movement analysis to specifically adjust for the effects of the surrounding local 

environment when directly measuring human mobility levels. Therefore, measured 

mobility levels, and the outcomes of subsequent analyses (e.g., investigating the 

associations of human mobility with socio-economic variables), may be more reflective 

of the structural nature of the places in which the individual lives and moves. To 

elaborate, consider person A living in a suburban area who has to travel long distances to 

reach daily tasks due to the lack of amenities in their proximal environment. In contrast, 

person B lives in an urban area, and all the amenities they need are relatively proximal. If 

both persons A and B exhibit similar mobility patterns and levels, existing measurement 

 

1
 A version of this chapter has been published (Malekzadeh, M., & Long, J. A. Mobility deviation index: incorporating 

geographical context into analysis of human mobility. J Geogr Syst (2024). https://doi.org/10.1007/s10109-024-00444-

1). This chapter is included in this dissertation with permission under the Springer Nature License Number 

5832511011688, issued on July 19, 2024, to Milad Malekzadeh. 

https://doi.org/10.1007/s10109-024-00444-1
https://doi.org/10.1007/s10109-024-00444-1
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methods quantify their mobility levels equally. However, it is clear that person A had 

fewer proximal options for activities and thus required higher mobility levels to 

participate in those activities, while person B had proximal choices but chose activities at 

greater distances resulting in similar mobility levels to person A. Quantifying and, 

consequently, comparing these two individuals’ mobility patterns without appraising 

geographical context may lead to spurious associations in the resulting inferences and 

erroneous interpretations about their mobility patterns relative to other individuals and 

areas. 

The geographical context within which a person moves will significantly influence the 

analytical results of geographical studies (e.g., human mobility studies) when attempting 

to associate an individual’s movement with a single place (e.g., through aggregation). 

Purves et al., (2014) put forward different alternatives for defining geographical context 

in movement studies, such as (1) information derived from additional data which are 

collected concurrently with movement data, (2) information on the spaces within which 

movement can occur, and (3) information gained by comprehensive understanding of the 

processes being studied used to guide initial hypotheses. Brum-Bastos et al., (2021) also 

present a general definition of context as one or more variables that characterize the 

external or internal conditions that led to a movement decision or caused specific 

movement behavior. In this study, we focus only on the external conditions of individual 

movement – which we call geographical context, as we do not consider the internal 

conditions of the individual. To be specific, here, our current focus is assessing the 

availability of nearby amenities as a means to integrate contextual factors into the 

measurement of human mobility. 

Currently, the prevailing practice often involves classifying an individual's residential 

region to quantify the extent of urbanization or suburbanization (Noi et al., 2022; Turner 

& Niemeier, 1997), or incorporating the geographical context indirectly into statistical 

models through proxies such as proximity to downtown (Cheng et al., 2022; Ma et al., 

2018) or density of amenities (Barthelmes et al., 2022; Yue et al., 2017). Despite their 
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utility, these approaches possess certain limitations. The categorization of areas is 

typically executed through arbitrary definitions, frequently relying on factors like 

population density (e.g., the official definition of population centers in Canada (Statistics 

Canada, 2017)). This introduces variability that can impact outcomes in different cases. 

Employing distance to downtown may lose effectiveness when the study area 

encompasses a mix of rural, suburban, and urban zones, as many of these regions lack a 

city center or downtown core for reference, or there are multiple centers.  

In this paper, we address this research limitation in human mobility studies by integrating 

geographical contextual data directly into the measurement of human mobility. In doing 

so, we aim to rescale observed human mobility levels by their respective expected 

mobility level, computed by a model into which geographical contexts are integrated. We 

introduce the concept of mobility deviation index (MDI) which is both a general and 

relative measure of human mobility that aims to rescale observed human mobility 

measurements to account for geographical contextual factors.  

The rest of the paper is organized as follows. We first introduce the concept of mobility 

deviation index. Then we define how we compute expected mobility, which serves as a 

measure to compare the observed mobility level against. We use a case study in Ontario, 

Canada, to demonstrate how mobility deviation index differs from traditional methods, 

when investigating human mobility’s relationship with socio-economic variables. In our 

discussion, we elaborate on the added value of using mobility deviation index compared 

to existing mobility measurements and discuss some limitations and possible future 

directions for the use of mobility deviation index in human mobility studies. 

3.2 Materials and methods  

3.2.1 Human mobility data 

 Mobility data were obtained from a large, aggregated and de-identified network mobility 

dataset provided by TELUS Communications Inc. (see (Long & Ren, 2022)). In Ontario, 

the TELUS mobile network includes around 90,000 distinct tower receivers. As mobile 
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devices move, they transition their connection from one tower receiver to another, 

typically connecting to the closest one. The data comprises the beginning and end times 

of each tower connection, as well as the geographical location of the corresponding tower 

receiver. By analyzing the sequence of tower connections for each device, we can infer a 

basic trajectory of movement, identifying the series of tower receivers to which the 

device was connected. The data are then used to compute estimates of the mobility levels 

aggregated to Canadian census units (aggregated dissemination areas – ADAs; (Statistics 

Canada, 2016)). Aggregated dissemination areas usually consist of populations of ~5000-

10000 individuals. The dataset comprises average estimates of mobility for the week of 

02 February 2020 for each ADA. We limited our analysis to the n=1542 ADA regions 

(out of 1685 in Ontario) which were determined as having sufficient data (> 100 mobile 

devices) to both protect individual privacy and provide a reliable area-level estimate of 

mobility (Long & Ren, 2022). 

3.2.2 Mobility Deviation Index 

We take a practical definition for mobility deviation index simply as the ratio of observed 

mobility relative to the expected level of mobility given the context of a specific location. 

We adopt this formulation of the classical OE ratio: 

𝑀𝐷𝐼 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦
 

3.1 

The value of MDI is technically bounded on [0, +∞), but has the simple interpretation 

that mobility deviation index is 1 if the observed value is equal to the expected value, 

greater than 1 if it is greater than expected, and less than 1 if it is lower than expected. 

The magnitude of MDI can be interpreted as the proportional difference in observed 

mobility relative to expected mobility. For example, a MDI value of 0.5 is interpreted as 

having half the level of mobility as expected, while a MDI value of 2 as double the 

expected level of mobility. In this sense, the distribution of MDI is expected to be 

asymmetric around 1. The log(MDI) is anticipated to follow a normal distribution with a 

mean of 0. Therefore, interpretations should align with those of traditional OE ratios. 
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While in this study we use a measure of human mobility that captures the range of 

movement in our case study, it is worth mentioning that MDI is not limited to this type of 

measurement and the concept of MDI can be applied broadly on any type of human 

mobility measurement. The challenge in using MDI in analysis then involves deriving a 

suitable method for determining expected mobility for a given individual or location 

based on the chosen measure of human mobility. In the following, we first discuss the 

method with which we measured human mobility, and then we introduce four models to 

compute the expected mobility. 

3.2.3 Observed mobility 

We use a popular measure of human mobility – the radius of gyration (ROG) (González 

et al., 2008). ROG is defined as: 

𝑅𝑂𝐺 = √
∑ (𝑑𝑖,𝑐)2𝑛

𝑖

𝑛
 

3.2 

Where i is each activity location selected by an individual, c is the mean center of all the 

activity points in the trajectory, n is the number of activity points in the trajectory, di,c is 

the distance between the mean center to point i. ROG is computed regardless of 

transportation mode as its computation uses only activity points and their distance to the 

central point. ROG has been widely used in mobility studies due to its operability and 

low computational cost (Shi et al., 2015). Specifically, we employ a modified version of 

the classical ROG measure, as implemented by Long et al., (2021). We replaced the 

centroid with an estimate of home location in our modified version of ROG because of 

the importance of the home as central activity place in mobility patterns (Song et al., 

2010). Extracting home locations is an essential component of many studies that wish to 

characterize human mobility (Chen et al., 2016; Hoteit et al., 2016; Xu et al., 2015) since 

much of human mobility behavior is tied to the home location, and several human 

movement models are developed by assuming humans’ preferential return to their home 

or workplace (Song et al., 2010). These models make the assumption that people tend to 
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work in jobs closer to their home, at least in the distance they can easily commute to and 

from their workplace as well as purchasing goods for ease/convenience. Home-Work 

trips often influence other trips, too (Shearmur, 2006). This assumption is a cornerstone 

of the space-time prism concept (Hägerstrand, 1970) since shorter commutes augment 

individuals’ available time budget, consequently increasing individuals’ accessible area 

and enabling them to have more freedom in their activity selection.  

3.2.4 Expected mobility 

Previous efforts on simulating mobility patterns are either based on historical or statistical 

mobility information to predict the next location (Monreale et al., 2009; Song et al., 

2017), or they are developed to support routing protocols in mobile networks (Ghosh et 

al., 2007; Mei & Stefa, 2009). Neither of these approaches are ideal in our case because 

we do not have information on individual movement trajectories (because of the nature of 

the network mobility data we are working with). Also, we aim to integrate geographical 

context into our measurement rather than find the next possible locations for individuals. 

Therefore, the process we employed is relatively simple in that we simulate an activity 

pattern by sampling from a set of possible activities, and then computing the ROG 

mobility measure for each simulation, which we call expected ROG (EROG). Generally, 

individuals choose locations for desired activities based on distance and attractiveness 

factors. We draw on previous models studying human mobility to determine two main 

criteria that influence the selection set of activities to be included in the calculation: (1) 

types of activities, and (2) geographical distance (Chen & Jia, 2019; Piovani et al., 2018; 

Tao et al., 2018; Vickerman, 1974). In our model, to simulate an activity pattern for each 

point, two primary inquiries need sequential addressing: "Which type of amenity should 

be chosen?" followed by "Which specific point of that type should be selected?" It is 

upon these two questions that we formulate a straightforward method for simulating 

mobility patterns. 

Our approach is fundamentally a two-step approach: in the first step, we determine the 

number of activities of each type that a simulated mobility pattern should encompass. We 
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used the 2016 Transportation Tomorrow historical survey data conducted in the Greater 

Golden Horseshoe area of Southern Ontario, which is home to 7.826 million people, 

accounting for more than half of Ontario's total population of 14.57 million, (Government 

of Ontario, 2016) to guide how many activities of each type each simulated mobility 

pattern should include. Specifically, to assign relative proportions of trip types based on 

the survey data (Government of Ontario, 2016), we used the total number of trips to and 

from different activities such as work (Φ𝑤𝑜𝑟𝑘 = 42.2%), school (Φ𝑠𝑐ℎ𝑜𝑜𝑙 = 14.5%), 

shopping-related (Φ𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔−𝑟𝑒𝑙𝑎𝑡𝑒𝑑 = 17.3%), and other trips (Φ𝑜𝑡ℎ𝑒𝑟 = 25.9%). 

However, because of the nature of the data we used, we did not have information on work 

locations, therefore, we assumed that work locations were associated with available POIs 

and were evenly distributed between them. This assumption led to the determination of 

the final weights for each category, which are school (Φ𝑠𝑐ℎ𝑜𝑜𝑙 = 25%), shopping-related 

(Φ𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔−𝑟𝑒𝑙𝑎𝑡𝑒𝑑 = 29.9%), and other trips (Φ𝑜𝑡ℎ𝑒𝑟 = 44.8%). As an example, if a 

simulated mobility pattern is to include N=10 activities, there would be n𝑠𝑐ℎ𝑜𝑜𝑙 = 2 

chosen from the school category, n𝑠ℎ𝑜𝑝𝑠= 3 chosen from the shops category, and n𝑜𝑡ℎ𝑒𝑟 = 

5 chosen from the other category (Figure 3-1). 

Having established the relative proportions of each type, we need to calculate the total 

number of activities (N) within an activity pattern before proceeding to compute the 

number of activities for each type. We employed the Poisson distribution as the discrete 

probability distribution of the number of activities to simulate the total number of 

activities. The gamma parameter for the Poisson distribution was estimated by the 

average number of activities observed from the sample data (Zhao et al., 2020). 

Following this, we utilize the relative proportions attributed to each type to calculate the 

number of activities within each type.  

We use point-of-interest (POI) data (from Open Street Map (OSM); (OpenStreetMap 

contributors, 2017)) as the activity points. We categorized the OSM POI data into the 

same three categories: school, shopping-related, and other (see Appendix B).  
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 The second step is to use geographical distance to assign weights to POIs (Figure 

3-1); the farther a POI, the less attractive it becomes. To incorporate distance decay, we 

modeled the weighting of POIs as an inverse relationship with distance (Haggett, 1966).  

We used a negative exponential function as the distance decay function, which is the 

most commonly used approach (Skov-Petersen, 2001) and is efficient in distinguishing 

local interactions (Y. Chen, 2008) 3.3. 

𝑊𝑖𝑗 = 𝑒−𝜃𝑑𝑖𝑗  3.3 

Where Wij is the weight of point j for the chosen location i, 𝜃 is the parameter of the 

distance decay function, and dij is the distance between the POI and the chosen location i. 

We used the geographical distance over network or time distance functions due to the 

nature of the mobility data we were working with (large mobile phone data analyzed only 

in an aggregate form) and the fact that deriving network or time distances would be 

computationally difficult in such a simulation study. The use of geographical distance 

(over network distance) is also related to our chosen mobility measure (ROG) which is a 

simple measure of movement range (González et al., 2008) based on the geographical 

distances from a known center point. 
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Figure 3-1 Example showing a single simulation of a mobility pattern (EROG).  The 

flowchart demonstrates the process of selecting a set of POIs for the computation of 

expected mobility. The numbers in the parentheses are simply an example and vary 

based on the local data. We ran the simulation s=100 times for each ADA to 

simulate expected mobility. 
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Selecting an appropriate distance decay formulation (specifically the selection of 𝜃 in 

equation 3) is necessary to model this geographical relationship. Finding and using an 

optimal distance decay function has a long history in geography and social science 

studies (Haggett, 1966; Ravenstein, 1885; Taylor, 1971). A high value of 𝜃 would result 

in a narrower selection of POIs, i.e., the POIs will be selected more locally, and a low 

value of 𝜃 would result in a selection of more distant POIs. We employed a bisection 

algorithm (Burden et al., 2015) to iteratively optimize the distance decay parameter (𝜃 in 

equation 3) for the distance decay function weights for expected mobility. We determined 

the optimal 𝜃 value when the median MDI value was found to be 1 (+/- 0.001). 

Optimizing the 𝜃 using all observed mobility values incorporates people’s behavior in 

choosing the activities in the simulation process. The simulation process is presented as a 

flowchart to diagram the manner in which mobility patterns were simulated (Figure 3-2). 

 

Figure 3-2 Implementation flowchart for how activity patterns were simulated. 

Simulations of observed mobility patterns exhibit a degree of randomness, and therefore 

we simulate s activity patterns for each chosen location. We then used the mean ROG of 
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the s simulations as the Expected ROG for that chosen location. We conducted a 

sensitivity analysis to help choose the number of simulations s, as lower values will 

reduce computational time. We found that the mean expected mobility value stabilized 

after approximately s = 50 simulations (Appendix C). Therefore, we chose a conservative 

value of s = 100 as our number of simulated activity patterns for each location. 

Employing multiple activity patterns for each ADA aligns with the inherent nature of our 

observed data, wherein the observed mobility values of all mobile devices within each 

ADA were aggregated into a singular value. 

3.2.5 Statistical analysis of mobility deviation index and Socio-
Economic Factors 

To highlight how the calculation of mobility deviation index might influence inferences 

made in human mobility analyses we tested whether using the ROG or MDI models 

resulted in different associations when compared with socio-economic factors commonly 

shown to be associated with observed mobility levels at the aggregated level. Given that 

prior researchers employed POI density as a proxy to control geographical context in 

their models, we aim to assess the extent to which its inclusion could impact outcomes. 

As a result, we employ two models for ROG: one without POI density and another 

incorporating it as an independent variable. POI density is characterized by the ratio of 

the total count of POIs over the area of the region. In this analysis, we also use six chosen 

socio-economic variables (Table 3-1Error! Reference source not found.) that are 

widely used in previous studies (Chakrabarti et al., 2021; Luo et al., 2016; Pappalardo et 

al., 2015; Ruktanonchai et al., 2021). 

Table 3-1 Six socio-economic variables chosen to compare with observed mobility 

(ROG) and mobility deviation index based on different models of expected mobility. 

All descriptions are based on Statistics Canada, (2017a). 

Variables Mean Min Max SD Description 

Average Age 41.1 25 57.8 3.93 Average age of the population (years) 
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Median Income 34577 8232 68510 8321 In Canadian dollars (CAD) 

Proportion of 

Visible Minority 

28% 0% 97.6% 27.2% Refers to whether a person belongs to a visible 

minority group as defined by the Employment 

Equity Act (Government of Canada, 1995) 

Proportion of 

Postsecondary 

Graduates 

64.3% 6.5% 90.6% 11.1% Refers to a person who holds 'Postsecondary 

certificate, diploma or degree'  

Proportion of 

Detached 

Households  

57.5% 0% 99.7% 26.8% Refers to households that live in a single-

detached house in terms of its structural type.  

Proportion of 

Private Transport 

Commuters 

25.4% 0% 46.2% 10.5% Represents the proportion of the labor force 

aged 15 and over who have a usual workplace 

or no fixed workplace address and primarily use 

a private car, truck, or van as their mode of 

commuting. 

We considered observed ROG and the MDI as dependent variables separately in 

regression models and included all six socio-economic factors and POI density. We first 

ran the Variance Inflation Factor (VIF) test to assess multicollinearity of our six socio-

economic variables and no value greater than 3 was found, which suggests 

multicollinearity is not present (Rogerson, 2019). Given that we are studying mobility 

aggregated into geographical units, the assumption of independent errors should be 

further examined in light of spatial autocorrelation which can lead to biased regression 

estimates (Anselin, 1988). We ran a general regression model and fit the model by 

ordinary least squares. We then ran a Moran’s I test to examine the spatial autocorrelation 

of the residual errors using a classical queen contiguity definition of the spatial 

neighborhood as a common practice based on previous research (Long & Ren, 2022; 

Tokey, 2021). If the residual errors were found to exhibit significant positive spatial 

autocorrelation, we then chose to employ a spatial regression model; to adjust for the 

observed spatial autocorrelation in the regression model (Anselin, 1988). We then ran 

Lagrangian Multiplier (LM), and robust Lagrangian Multiplier (RLM) tests to choose 

between a spatial lag model and spatial error model (Wang & Mu, 2018). According to 

Anselin’s, (1988) framework, the model with the larger test statistics between RLM tests 
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will be chosen as the suitable model. We assessed model goodness of fit using pseudo R2 

values, which are defined as the square correlation between the dependent variable and its 

prediction (Anselin, 1988).  In addition, no skewness in the residuals of the models was 

found. All analysis was conducted in python, using the PySAL package (Rey & Anselin, 

2010) for fitting spatial regression models. 

3.3 Results 

In order to enhance result clarity and facilitate seamless comparisons, we use Statistics 

Canada’s definition of population centers to delineate the four types of areas along the 

urban-rural gradient (Statistics Canada, 2017): large urban population center, medium 

population center, small population center, and rural areas (Figure 3-3-A). As anticipated, 

the density of POIs is greater in urban areas compared to other area types (Figure 3-3-B). 

Observed mobility levels (ROG) varied considerably throughout Ontario, Canada (Figure 

3-3-C). This variability underscores the multifaceted nature of human mobility, shaped 

by geographical, infrastructural, and socio-economic influences. This emphasizes the 

necessity for a comprehensive province-wide comparison, rather than focusing solely on 

individual cities or urban regions. 
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Figure 3-3 A) Map of types of areas based on Statistics Canada’s definition of 

population centers: urban areas, medium population centers (PC), small population 

centers (PC), and rural areas Statistics Canada, (2017a). These population centers 

are defined based on a specific range of population and population density per 

square kilometer. B) Map of POI Density defined as the ratio of the number of POIs 

over the area of ADA in Ontario, Canada using on OSM POI data (OpenStreetMap 

contributors, 2017). C) ROG values for the week of February 02, 2020, to February 

08, 2020 in Ontario, Canada. Mobility data sourced from a large, de-identified 

network mobility dataset provided by TELUS Communications Inc. 
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Variance in observed ROG was also greatest in rural areas (µ = 29.74, σ2 = 154.25) 

compared to small population centers (µ = 23.73, σ2 = 34.63), medium population 

centers (µ = 19.46, σ2 = 26.61), and large urban centers (µ = 17.52, σ2 = 29.84). We 

observe almost all rural areas (95%; 217 out of 229) demonstrate a mobility level above 

the provincial median, while a large proportion of large urban population centers (64%; 

643 out of 996) show mobility levels below the provincial median (Figure 3-4-A). We 

found a strong negative correlation between POI density and observed ROG (using a log-

log scale – r = -0.41; Figure 3-4-B).  

 

Figure 3-4 A) Boxplots of observed ROG in different types of population centers. 

The red dotted line is the provincial median ROG. B) Scatter plot of the log of ROG 

values against the log of POI density for each ADA. The different colors show 

different types of population centers. The definition of population centers is based 

on Statistics Canada. 

In the expected ROG values derived from the simulation, we observe a range of values 

similar to the observed values (Figure 3-5-A), indicating no systematic positive or 

negative skewness compared to the observed values. The MDI values predominantly 
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cluster around 1, yet they exhibit a substantial span of variability ranging from close to 0 

to above 9. (Figure 3-5-B, Table 3-2). For a more comprehensive understanding of the 

model's outcomes, we plotted ROG values against EROG values (Figure 3-5-C), as well 

as the natural logarithm of ROG values against MDI values (Figure 3-5-D). It is evident 

that a significant proportion of ADAs situated within urban areas and medium population 

centers exhibit ROG values below the median ROG level, while many of these ADAs 

demonstrate MDI values exceeding the median MDI level. In contrast, ADAs located in 

rural areas tend to display ROG values surpassing the median ROG level, yet 

concurrently exhibit MDI values lower than the median MDI level. This observation 

underscores the influence of incorporating geographical context on shaping our 

comprehension of mobility levels. Furthermore, we extended our examination to 

geographical representations, with maps depicting ROG, EROG, and MDI distributions 

across the Greater Toronto Area (see Appendix D). 
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Figure 3-5 A) box plots of ROG values: observed and expected. The red dashed line 

is the provincial median of observed ROG values. B) box plots of MDI values. The 

red dashed line is associated with the value of MDI=1 (indicating an OE ratio of 1). 

C) Scatter plot of ROG values against EROG values. We colored each node based 

on their area type. D) Scatter plot of the natural logarithm of ROG values against 
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MDI values. The black horizontal dashed line is the provincial median of observed 

ROG values, and the black vertical dashed line is where MDI=1. 

Table 3-2 Summary statistics of observed and computed values for ROG and MDI 

resulted from different models. 

Model Metric Mean Median SD 

Observed ROG 21.33 19.53 12.40 

Simulation ROG 19.38 18.44 8.28 

MDI 1.28 0.99 0.91 

We performed a multivariate regression of ROG values and MDI against six socio 

economic factors (Table 1). We found positive and significant values for Moran’s I tests 

on the model residuals when fit using ordinary least squares (Table 3-3). The Lagrangian 

Multiplier (LM) tests were significant for the ROG and MDI models (Table 3-3); 

therefore, we employed the Robust Lagrangian Multiplier (RLM) tests to choose the best 

model. The results of RLMs for all models were significant also (Table 3-3), thus we 

chose the spatial error model over the spatial lag model as the RLM test of the spatial 

error model had larger test statistics in ROG and MDI models (Table 3). 

Table 3-3 Summary of the model selection procedure using Moran’s I test of spatial 

autocorrelation on ordinary least squares regression model residuals, and the 

Lagrangian multiplier (LM) and robust Lagrangian multiplier (RLM) tests for the 

spatial error and spatial lag models. 

Dependent variable Moran’s I LMerr LMlag RLMerr RLMlag 

ROG 0.37** 572.94** 403.36** 288.52** 118.94** 

MDI - Simulation 0.56** 1285.87** 1233.51** 68.60** 16.24* 

** p value < 0.01, * 0.01 < p value ≤ 0.5 
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From the results of the spatial regression models (spatial error model) we identify some 

notable differences between the observed ROG models (with and without POI density as 

a covariate) and the MDI model (Table 3-4). While models’ fit levels varied, the pseudo 

R-squared of the MDI model was the highest (R2 = 0.145).  The spatial autocorrelation 

parameter (λ) was significant and positive in all models, suggesting a strong spatial 

autocorrelation effect was present. 

Although numerous prior studies have employed POI density as a proxy to incorporate 

geographical context into their models, our observation indicates that the inclusion of 

POI density in our model did not yield discernible distinctions. All variables with the 

exception of median income exhibited similar coefficients, standard errors, and p-values 

in both ROG model I and ROG model II. 

However, comparing the ROG models and the MDI model, we observe a substantial 

change in both the significance levels and directions of associations (Table 3-4). To be 

more specific, the association between average age and mobility in the observed ROG 

model was negative and significant, meaning mobility levels tend to be higher in ADAs 

containing younger people. Median income was a negative and not-significant predictor 

of mobility in the observed ROG model. The association between the ratio of visible 

minority and mobility in the observed ROG model was negative and significant. This 

indicates that ADAs with a higher minority ratio move less than those with a lower 

minority ratio. The ratio of postsecondary graduates was a positive and not-significant 

predictor of mobility in the observed ROG model, meaning that the level of education is 

not associated with mobility level. The association between the ratio of detached 

households and mobility was found to be positive and significant in the observed ROG 

model. This association indicates that people in these ADAs tend to move more than 

those who are in urban settings living in apartments or other types of households. The 

association between the ratio of private transport commuters and mobility in the observed 

ROG model was negative and significant. This highlights that in areas where the 
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predominant mode of transport for commuting is by private car, truck, or van, individuals 

tend to exhibit lower mobility level. 

In contrast, we observed different statistical associations in five out of six of the model 

variables when employing the MDI model. The age variable was not a significant 

predictor of mobility in the MDI model. Median income was a positive and significant 

predictor of mobility in the MDI model, suggesting that ADAs containing people with 

higher income exhibit higher than expected mobility. We observed the same result as the 

observed ROG model for the visible minority variable in the MDI model. The proportion 

of visible minority showed a significant negative association with mobility deviation 

index. While the level of education was not significant in the observed ROG model, in 

the MDI model, we observed a positive and significant association between the 

proportion of postsecondary graduates and mobility. The proportion of detached 

households was a negative and significant predictor of mobility in the MDI model. 

Although the proportion of commuters using private transport was significant in the 

observed ROG model, it was not observed to be significant in the MDI model. 

Table 3-4 Spatial error models summaries using radius of gyration (ROG) and 

mobility deviation index (MDI) values computed by different models as dependent 

variables. 

Dependent Variable ROG  ROG MDI 

 β SE p β SE p β SE p 

Intercept 0.03 0.004 0.000 0.03 0.004 0.000 0.00 0.004 0.026 

Average Age -0.40 0.141 0.004 -0.39 0.141 0.005 0.01 0.127 0.905 

Median Income -0.00 0.097 0.99 0.01 0.097 0.891 0.23 0.091 0.011 

% Visible Minority -0.23 0.035 0.000 -0.23 0.035 0.000 -0.15 0.040 0.000 

% Postsecondary 

Graduates 

0.08 0.133 0.545 0.02 0.135 0.828 0.57 0.129 0.000 

% Detached 

Households 

0.17 0.039 0.000 0.19 0.041 0.000 -0.09 0.037 0.009 

% Private Transport 

Commuters 

-0.11 0.03 0.000 -0.10 0.032 0.001 -0.02 0.028 0.44 
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POI Density    0.04 0.018 0.034    

Lambda 0.56 0.027 0.000 0.55 0.027 0.000 0.78 0.018 0.000 

Number of observation 1543 1543 1543 

Pseudo R-squared 0.129 0.140 0.145 

Log Likelihood 4817.96 4820.14 4966.04 

To gain insight into how MDI and ROG differ when compared to socio-economic 

variables, we plotted all ADAs’ observed ROG values and MDI values against these 

socio-economic variables (see Appendix E). 

3.4 Discussion 

Mobility deviation index is a broad concept which can be employed with different 

measures of human mobility – not just using ROG as done here. A rigorous method for 

defining and calculating expected mobility is fundamental to estimating mobility 

deviation index. Importantly then the derivation of the expected mobility when calculated 

mobility deviation index should be based on the measure of mobility being used. For 

example, if the observed mobility is being measured as the average travel time for an 

individual, then the expected mobility level should represent a relevant estimate of the 

expected average travel time for that same individual based on geographical context. 

There are a number of ways this can be done in practice, for example, using model-based 

methods (Jiang et al., 2016; Yin et al., 2017), model-free methods (Kulkarni et al., 2018; 

Ouyang et al., 2018), simulations (Camp et al., 2002; Rhee et al., 2011), or by some 

combination of these. Here, we chose to use ROG as a spatial measure of mobility and 

derived expected mobility by using a simulation approach that was specifically relevant 

to ROG. 

ROG is one of the most commonly employed measures of human mobility, especially 

with modern big mobility datasets (Yan et al., 2011). ROG is an effective measure of the 

range or spatial extent of mobility, and is able to distinguish how far an individual’s 

activity locations are from their center of mass (E.g., home location) (Asgari et al., 2013). 

However, ROG (as a standalone measure) is unable to capture the effect of geographical 
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context on human mobility. Therefore, by adjusting and rescaling existing metrics for 

geographical context, through the use of MDI, we are able to highlight and capture a 

different dimension of human mobility. Specifically, in urban areas and medium-sized 

population centers, a considerable number of ADAs display ROG values that fall below 

the median. Conversely, these same ADAs often have MDI values that are above the 

median MDI level. This indicates that although these areas show low mobility levels 

when measured by ROG, they exhibit a higher level of mobility when context is 

integrated into the measurement. 

We conducted spatial regression models to illustrate the potential influence of various 

approaches to measuring human mobility on the interpretations of the results. Our models 

showed that four out of six socio-economic factors (average age, median income, 

proportion of postsecondary graduates, proportion of private transport commuters) 

changed from significant to not-significant or not-significant to significant (at the 95% 

level) between the ROG models, and the MDI. The only consistent variable in all three 

models was the proportion of visible minorities which was significant and negative. This 

clear contrast provides strong evidence that interpreting human mobility levels without 

considering geographical context will directly influence inferences being made. While 

many studies have studied the relationship between people’s mobility behavior and socio-

economic factors (Chakrabarti et al., 2021; Luo et al., 2016; Pappalardo et al., 2015; 

Ruktanonchai et al., 2021), these studies do not adjust the measured mobility indicators to 

account for geographical context. In doing so, the inferences made may be incorrectly 

associated with geographical contextual factors and not representative of overall mobility 

levels. For instance, in our models using observed ROG values as the dependent variable, 

the ratio of detached households has a positive association with human mobility at the 

aggregate level, while in our MDI model, it is found to be a negative indicator of mobility 

deviation index. This makes sense as higher detached household levels might be 

associated with more suburban regions, but after accounting for the geographical 

distribution of amenities in these areas (i.e., expected mobility) these mobility levels may 

be relatively lower than expected. Therefore, the contrasting interpretation here is relative 
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to the geographical context of the location. When mobility data are used by decision-

makers from different disciplines to improve and solve problems such as inequity in 

transportation accessibility, urban design and planning, and long-term governmental 

policies (Hidayati et al., 2021) it is important that analytical models of human mobility 

properly account for geographical contextual factors. It is important to note that the six 

socio-economic factors selected in our study serve as examples demonstrating how MDI 

can enhance the understanding of the relationship between human mobility and socio-

economic variables. While these factors are illustrative, there are other commonly used 

variables in similar studies that we did not include in our model. 

The MDI offers valuable insights for urban policy and transportation planning. For 

instance, changes in local amenities, such as the opening or closing of schools, 

restaurants, or post offices, can alter human mobility patterns (Gupta et al., 2021). To 

examine this effect, we can employ MDI as a valuable tool. If people do not change their 

mobility pattern, ROG remains the same, but the MDI will show a difference in value due 

to the altered context, and vice versa. This property of MDI is helpful for evaluating 

hypotheses regarding the effects of modifications to local amenities or broader urban 

transformations on mobility patterns. As MDI provides a tool to quantify mobility 

behavior based on the local geographical context, another application of MDI is 

optimizing services to achieve a targeted MDI value. For example, urban planners can 

aim for an MDI value of 1 or less by optimizing infrastructure or promoting more local 

mobility behavior. 

In our model to compute the expected mobility values, we aimed to simulate EROG 

values by choosing a set of activity points and their distance to individuals’ home 

locations (here, the centroid of each ADA as an aggregated estimation of home locations 

of all people living in each ADA). Since work locations account for a large portion of 

human activities, they should be incorporated into the calculation of the simulated 

expected mobility values. One of the constraints of working with big data is being unable 

to access/derive individuals’ home and work location information because of how data 
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are stored and aggregated to maintain individual privacy. Due to this constraint, we 

assumed that work locations were associated with the POIs and we did not explicitly 

incorporate a work location in our simulation of expected mobility.  

In our case study, we decided to use the OSM POI dataset, since it is one of the most 

accurate and extensive publicly available datasets on POIs (Barron et al., 2014; Girres & 

Touya, 2010; Haklay, 2010). However, its coverage depends on different socio-economic 

factors of contributors and is not uniformly distributed (Mashhadi et al., 2013). Other 

potential options could be explored whether at a global scale, such as Foursquare POI 

datasets (McKenzie et al., 2015), or local scale, such as Baidu Map Services POIs dataset 

in China (Zhai et al., 2019), and Ordnance Survey POIs dataset in the UK (Ordnance 

Survey, 2022). The dataset of POIs must contain needed information with regard to the 

measurement method of the observed value. For instance, if one uses a time-based 

measurement method, the dataset must include information on authority constraints of 

these POIs (i.e., closing/opening time), to have a more realistic estimation of expected 

values. 

In our simulation method, we used the Transportation Tomorrow historical survey data to 

reference people’s daily activity destinations (Government of Ontario, 2016). This survey 

classified activity destinations into 7 classes: work, attend school, daycare 

pickup/dropoff, shopping/retail service, facilitate passenger, return home, and other. We 

used all classes except return home and facilitate passenger since the locations of these 

two are not considered an activity location in ROG computation. In Transportation 

Tomorrow survey, return home refers to the proportion of trips that ended at home, and 

facilitate passenger to the proportion of trips in which people travel to a destination only 

to facilitate someone else’s trip (e.g., driving someone to the train station). We also 

merged daycare and attend school since OSM POI dataset’s definition of daycare and 

school overlaps. Within the OSM POI data there is no standard classification for defining 

activity locations and POIs (McKenzie et al., 2015), we had to merge similar classes of 

the OSM POI dataset to align them with the Transportation Tomorrow historical survey 
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analogy. Undoubtedly, this process of categorizing POIs and simulating trips/activities 

may vary depending on the dataset used and the study purpose.  

During the simulation process, essentially, we employed distance as a proxy for attraction 

level. However, POIs in the same category might have different attraction levels based on 

other attributes. The POI dataset we used did not have attraction-level information. 

Therefore, the probability of selecting a small boutique cafe is the same as a large chain 

restaurant. Alternatively, where possible, the attraction level of POIs can be derived from 

different sources or datasets directly or by using methods to extract this information from 

available datasets, such as using the number of check-ins in the Foursquare platform 

(McKenzie et al., 2015). Nevertheless, access to such datasets was not readily available 

in this case. 

We chose ROG as the measure of mobility and an essential part of its calculation is how 

to compute the distance between activity points. The distance values differ significantly 

with regard to the embedded space and the distance type. We used Euclidean distance as 

an estimate of the distance between two points because our observed mobility data was 

derived from millions of mobile-phone locations, network-based ROG was 

computationally limiting. To avoid inconsistencies in our comparison, we also used 

Euclidian distance in our expected mobility simulations as well. However, we are aware 

that, especially in urban regions, the distance between two locations can rarely be 

approximated by their Euclidean distance (Buczkowska et al., 2019). Using travel time as 

the distance between two points might change the degree of mobility, especially in areas 

with high traffic congestion, but is highly challenging to compute when using large 

mobility datasets such as was done in this paper. 

Aggregated mobility data is an average of a local population’s behavior, and therefore we 

cannot infer individual patterns.  The aggregation level of data can influence the final 

results and smooth over the variation in mobility patterns within local regions (Yan et al., 

2013). While we observed varying levels of mobility throughout the study area (among 

all ADAs), the data for each ADA will not show outliers or anomalies that would be 
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observed within individual-level data. When studying individual-level data, the data may 

contain highly-varying ranges of mobility levels within a single areal unit which may 

influence the simulation procedure of expected mobility values, and subsequently the 

interpretation of the results. This highlights a key challenge in spatial analysis: the 

selection of an appropriate scale, often referred as the modifiable areal unit problem 

(Fotheringham & Wong, 1991; Manley, 2021). In the context of mobility deviation index, 

analyzing the effects of data aggregation level and the scale of geographical unit on MDI 

values is crucial. Such analysis is fundamental to understanding the broader applicability 

and interpretive validity of our findings across varying spatial contexts. 

3.5 Conclusion 

In this study, we aimed to quantify the role of geographical context in human mobility 

measurement methods. The primary question we address is how geographical context 

affects the measurement of human mobility levels and subsequently associations with 

socio-economic variables. Specifically, we introduce the concept of mobility deviation 

index, defined as the ratio of observed mobility to expected mobility. We proposed a 

model to compute the expected mobility using OSM POI data. A case study, using de-

identified and aggregated network mobility data to measure mobility (using radius of 

gyration as a mobility indicator) was used to compare mobility deviation index to 

observed mobility levels. Our results demonstrated that when we rescale observed 

mobility measures (in this case, the radius of gyration – ROG) by model estimates of 

expected mobility, the associations with socio-economic factors believed to influence 

mobility can change. We showed that when using MDI in comparison to the observed 

ROG, different associations were found with 5/6 socio-economic variables we employed 

in our models. This is even after we control for a similar contextual variable (in this case 

POI density). Our results highlight these differences across urban, suburban, and rural 

configurations which are likely to influence human mobility patterns. Thus, here we have 

demonstrated that geographical context is not a peripheral factor in human mobility, and 

rather that when properly controlled for in human mobility analysis, may lead to new 
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inferences and interpretations about how socio-economic factors and the built 

environment are associated with levels of human mobility. 

Future research could further refine the MDI measure by incorporating network distance, 

which reflects actual travel routes along the road network, offering a more realistic view 

of urban mobility patterns (Buczkowska et al., 2019). Additionally, integrating potential 

work locations into the MDI analysis could provide a deeper understanding of individual 

mobility, considering significant daily travel destinations like places of employment 

(Sila-Nowicka et al., 2023). Exploring alternatives to the ROG could also enhance 

mobility pattern analysis. Metrics that capture visit frequency or the diversity of visited 

places (Song et al., 2010), along with incorporating a temporal dimension into the MDI 

measure, would allow for the examination of mobility changes across different times and 

conditions, contributing to a dynamic portrayal of human mobility. 
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Chapter 4  

4 Quantifying local mobility patterns in human mobility 
data1 

4.1 Introduction 

Current urban planning strategies aim to encourage localized mobility patterns by 

adopting smart growth interventions that shift from monocentric city structures to 

polycentric configurations (Brezzi & Veneri, 2015). These interventions, including the 

concept of a 15-minute city, emphasize the provision of various local amenities within a 

relatively small radius (Graells-Garrido et al., 2021; Pozoukidou & Chatziyiannaki, 2021; 

Veneri, 2018). 

Individuals tend to prefer travelling within relatively close distances to their primary 

locations with a power law distribution (Brockmann et al., 2006; Schneider et al., 2013; 

Song, Koren, et al., 2010). However, various factors contribute to longer distance 

mobility behaviors. For example, although people often prefer to choose residences close 

to their workplaces or vice versa in an effort to reduce commuting time and optimize 

daily routines (Shuttleworth & Gould, 2010), there are trade-offs. In high-priced urban 

areas, households tend to accept longer commutes for larger houses or lower housing 

costs further from central urban locations (Alonso, 1964; Muth, 1961).  

Despite the importance of understanding local mobility patterns, there is a notable gap in 

directly measuring and quantifying the localness of individuals' mobility patterns, which 

takes into account their choices. When choosing where to shop, eat out or partake in other 

types of activity, individuals may exhibit distinct behaviors influenced by their own set of 

preferences. Extensive research has examined various factors that impact consumers' 

 

1
 A version of this chapter has been submitted for publication to International Journal of Geographical Information 

Science. 
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choice preferences when selecting retail locations, including pricing, quality or service of 

products, sales personnel, location convenience, sales promotions, advertising, store 

ambiance, and reputation (Bearden, 1977; Belk, 1975; Degeratu et al., 2000; Doyle & 

Fenwick, 1974; Erdem et al., 1999; Hackett et al., 1993; Lindquist, 1974; Yilmaz, 2004; 

Yılmaz et al., 2007). However, these aspects of preference and choice have not been 

considered in human mobility research. Traditional time-based methods, such as 

measuring time spent outside the home or workplace (Demissie et al., 2019), or travel 

time ratio (TTR) (Dijst & Vidakovic, 2000), do not capture the degree of localness, as 

individuals may spend varying amounts of time locally or further afar. Similarly, 

diversity-based measures, like the Shannon diversity index (Song, Qu, et al., 2010), fail 

to accurately assess localness since proximity or distance is not explicitly considered. 

Additionally, classical mobility measures, such as the number of trips taken (Zhao et al., 

2016), do not provide insights into the localness aspect of mobility. 

Among the commonly used measures, range-based approaches, such as the farthest 

distance from home or the maximum distance between any two points visited by 

individuals (Isaacman et al., 2011; Mir et al., 2013), the size of the activity space (Hirsch 

et al., 2014), the radius of gyration (ROG) (González et al., 2008), or the local travel 

index (LTI) (Manaugh & El-Geneidy, 2012), offer the potential to quantify localness in 

mobility patterns. However, these measures are limited by two common characteristics of 

individual mobility data. The first is that these measures do not directly account for the 

influence of the relative proximity/accessibility to amenities on individuals' mobility 

patterns (Malekzadeh & Long, 2023). This limitation relates to well-known geographical 

disparities in equitable access to different services and activities within cities, which 

manifests in different mobility patterns owing to differential spatial access to necessary 

activities (Frey, 2017; Logan et al., 2021; Pandey et al., 2022; Purifoy, 2021; Rigolon, 

2016). As a result, synthesizing an outcome solely based on the raw geometry of 

observed movement patterns without accounting for the underlying geographical 

distribution of activities will bias measurement towards individuals with greater access to 

activities and amenities (Malekzadeh & Long, 2023).  Crucially, this overlooks the equity 
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dimension in urban mobility, as it fails to capture how spatial inequalities influence 

individual mobility patterns. Addressing this gap is vital for a comprehensive 

understanding of human mobility behavior, advocating for measures that recognize and 

rectify these disparities. The second limitation is that very long trips (which are often 

rare) can significantly impact the outcome of these measures, potentially skewing the 

representation of an individual's actual mobility behavior (Sahasrabuddhe et al., 2021).  

To address these two limitations, it is necessary to quantify local mobility patterns using 

methods that are both less sensitive to rare, long-distance trips, while at the same time 

able to capture the geographical disparity in locally-available amenities on individuals’ 

mobility patterns. Hence, in this paper, we propose a new method termed the Local 

Mobility Index (LMI) for measuring the relative localness of individual mobility patterns 

that overcomes limitations of existing methods.  

The structure of this paper is as follows: Section 4.2 presents our methodology where we 

outline the theoretical foundations and calculation of the Local Mobility Index (LMI), 

alongside detailing our validation process and the statistical analyses employed. In 

Section 4.3, we present a case study in England using a GPS tracking dataset. Section 4.4 

discusses the findings of the presented application, interpreting their significance in the 

broader context of urban mobility and planning, while also acknowledging the limitations 

of our study. Finally, the paper concludes with Section 5, summarizing our key insights 

and contributions. 

4.2 Methodology 

4.2.1 Local Mobility Index (LMI) 

LMI is conceptualized as a metric reflecting local mobility behavior, designed to 

incorporate geographical disparities in access to amenities into its measurement and 

minimize the impact of outliers (i.e., singular long trips). We define local mobility 

behavior as an individual consistently opting for the nearest available option across 

various activities relative to their significant locations (i.e., home and second-place), 

drawing on the core geographical concept of nearest neighbor distances. Increasing 
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deviations from the choice of the nearest amenity signify an increasing degree of non-

local mobility behavior. In the LMI framework, we assess the localness for each activity 

choice, factoring in dwell time as a proxy for activity importance to mitigate outlier 

effects. Summarizing localness values for all activity choices yields a single LMI value 

for each individuals’ mobility pattern. 

Implementing the LMI requires two key datasets. First, we require a dataset which 

captures individual mobility, and specifically represents spatially an individual’s activity 

(stop) points. Practically, these data may be derived from GPS (or other form of) tracking 

data which is represented as a series of stops and moves (Spaccapietra et al., 2008). 

Alternatively, many modern mobility datasets exclusively capture individual activity 

points only (Chen et al., 2011). Second, we need a dataset that characterizes the 

geographical distribution of amenities within an individual’s range. Typically, we will 

use available point-of-interest (POI) GIS data, which can be derived from any of a variety 

of sources. To simplify the analysis POI data are here used to map potential activities (or 

amenities) which should be categorized into different types. The categorization of POIs 

into activity types may be situationally dependent, and may reflect local behaviors or 

specific study questions.  

To measure an individual's LMI, we calculate a localness score for each activity (stop) 

point. Localness is defined relative to an anchor; therefore, we choose the home location 

of the individual as the anchor point from which to assess localness. Other choices for the 

anchor point are possible (e.g., work location, geometric centroid of activities), but for 

most applications it will make sense to use the home location. Similarly, multiple anchor 

points can be chosen (see section 4.2.2) to capture the multi-centric nature of many 

individuals’ mobility patterns associated with commutes to a workplace or more anchors 

(Ahas et al., 2010; Peng et al., 2012). 

To calculate the localness score of stop points, we compare the distance of a chosen 

activity location (from the anchor) to the nearest available activity of the same type. In 

doing so, first, we find the closest activity of the same type to the anchor (e.g., home). 
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Then we calculate the ratio of the distance between the anchor location (e.g., home) and 

the nearest available activity to the distance between the anchor location (e.g., home) and 

the chosen activity (Equation 4.1), 

𝐿𝑖
𝑎 =  

�̂�𝑎

𝑑𝑖
𝑎 

4.1 

where 𝐿𝑖
𝑎 is the localness score for activity stop i with POI activity type a (the nearest 

POI within search radius r), �̂�𝑎 is the distance from the anchor location (e.g., home) to 

the nearest activity POI of type a, and 𝑑𝑖
𝑎 is the distance from the anchor location (e.g., 

home) to the chosen activity stop i. This ratio varies from 0 to 1, with a value of 1 

indicating a very local choice (i.e., choosing the nearest POI of that type). Values near 0 

signify non-local behavior, (i.e., choosing a POI much further than the nearest POI of that 

type). It is important to note that by utilizing the ratio, we consider variations in the 

availability of POIs in individuals' activity space. For instance, comparing someone 

residing in an area with limited POI availability to another person in a densely populated 

POI environment, the former might cover longer distances geometrically. However, they 

could still exhibit a high level of localness by opting for closer POIs. In contrast, the 

latter might travel shorter distances but opt for non-local choices, resulting in a lower 

level of localness. Figure 4-1 shows how this process works in practice. 
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Figure 4-1 An example scenario of the components of LMI. The stop point is 

surrounded by several nearby POIs. Among these, the restaurant (a), the nearest 

POI to the stop point (i), is identified as the destination at the stop point. 

Accordingly, the analysis identifies the closest POI of the same type as i (a) from the 

anchor location. d ̂^a is the distance from the anchor location (e.g., home) to the 

nearest activity POI of type a, and d_i^a is the distance from the anchor location 

(e.g., home) to the chosen activity stop i. All other POI types depicted in gray, are 

not considered for this particular stop point in the calculation. 

In practice, the definition used in Equation 4.1 (Figure 4-1) is imperfect because not all 

stops are found to be close to a POI. This can be due to a variety of reasons, but is likely 

owing to either activities not being associated with a POI (such as visiting a friend or 

relative) or due to errors/missing data in the chosen POI dataset. Identifying such 

instances requires that we choose a POI search radius (r) at which to define when an 

activity stop is associated with any POI. Typically, the prevalence of non-POI stops may 

be associated with the nature of mobility behavior and spatial accuracy of the mobility 
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data used to identify activity locations. We hereafter refer to activity stop points with a 

POI within the specified search radius as POI stop points, and those without a POI as 

non-POI stop points. 

To incorporate non-POI stop points into the analysis of local mobility behavior, we need 

a method for assigning a localness score (between 0 and 1) to non-POI stop points in a 

similar fashion to Equation 4.1. To do so, we use a simple heuristic based on a critical 

distance threshold (�̂�𝑐) that is used to generate a similar localness score (Equation 4.2), 

{
𝐿𝑖

𝑏 = 1 − 
𝑑𝑖

�̂�𝑐

      𝑑𝑖 ≤ �̂�𝑐

𝐿𝑖
𝑏 = 0                 𝑑𝑖 > �̂�𝑐

 

4.2 

where 𝐿𝑖
𝑏 is the localness score for stop i that has no POI within the search radius r 

(termed a non-POI stop), 𝑑𝑖 is the distance between the anchor location (e.g., home) and 

non-POI stop i, and �̂�𝑐 is the critical distance threshold. In practice, �̂�𝑐 can be chosen to 

be relevant based on local mobility behaviour, representing some upper bound on travel 

distance, or can be estimated based on the data. 

To compute an individual’s overall LMI score we take the weighted sum of the localness 

scores for each activity (i). We choose weights as the proportion of time spent at each 

activity point. The temporal weighting is used to quantify the significance of each stop, 

representing that the time spent on an activity reflects its importance. The temporal 

weighting helps further mitigate the impact of rare outlier trips. The sum of these 

weighted ratios yields an individual's LMI measurement (Equation 4.3). 

𝐿𝑀𝐼 =  ∑ 𝐿𝑖
{𝑎,𝑏}

∗
𝑡𝑖

𝑇
 

4.3 

where 𝐿𝑖
{𝑎,𝑏}

 is the localness score of activity i associated with activity type a (defined in 

equation 1) or non-POI stops b (defined in equation 2), 𝑡𝑖 is the dwell time of activity i, 

and T is the cumulative sum of all dwell times for the individual (𝑇 =  ∑ 𝑡𝑖).  
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4.2.2 Incorporating multi-centric activity patterns into measures of 
local mobility 

In this section, we refine our methodology to better capture multi-centric activity 

patterns. We recognize that individuals' activities are frequently distributed across several 

significant locations (Ahas et al., 2010; Sila-Nowicka et al., 2023), often extending 

beyond just the residential home location, such as workplaces and schools. This 

understanding is crucial for analyzing patterns of local mobility, considering how these 

diverse centers influence individuals' activity choices and contribute to reducing daily 

travel times including, for example, commutes. Our revised approach evaluates the 

proximity of chosen destinations to these multiple significant locations. For example, an 

individual might choose an activity destination that is far from their home but close to 

their workplace or school. This decision reflects a preference for activities located near 

these key centers, and despite the distance from home, it is still considered a 

manifestation of local behavior. 

To compute localness scores considering more than one anchor location, we compute the 

distances between the chosen activity point I to each anchor locations, selecting the one 

with the nearest distance as 𝑑𝑖
𝑎 in equation 4.1. We then determine the distance between 

the closest available POI of the same type to the chosen anchor location �̂�𝑎 in Equation 

4.1. Calculating 𝐿𝑖
𝑏 for non-POI stops follows an identical format as in Equation 4.2 

where again we compute the distances between the chosen destination to each anchor 

locations, selecting the one with the shortest distance as 𝑑𝑖 in Equation 4.2. The 

calculation of the LMI follows identically thereafter, again using a temporal weighting 

scheme. Figure 4-2 presents a schematic of a multi-centric activity pattern with two 

anchor locations used in the calculation of 𝐿𝑖
𝑎. 
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Figure 4-2 An example scenario of the components of multi-centric LMI with two 

anchor locations. The stop point is surrounded by several nearby POIs. Among 

these, the restaurant (a), the nearest POI to the stop point, is identified as the 

destination at the stop point. Accordingly, the analysis identifies the closest POI of 

the same type as a (a restaurant) from the two anchor locations. 𝒅𝒊
𝒂

𝟏
 and 𝒅𝒊

𝒂
𝟐
 are the 

distances between the first and second anchor locations and the nearest POI to the 

stop point. �̂�𝒂
𝟏 and �̂�𝒂

𝟐 are the distances between the first and second anchor 

locations and the closest POI of the type a. All other POIs, depicted in gray, are not 

considered for this particular stop point in the calculation. 

To promote the reproducibility of the LMI method, we have developed a Python script 

for computing the LMI statistic for any set of individual mobility data globally 

(https://figshare.com/s/5b26511ccb33d2de7c4e). The function requires as input a set of 

https://figshare.com/s/5b26511ccb33d2de7c4e
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activity locations, with dwell times attached. A further set of parameters such as home 

location and/or second-place is also required. The script automatically downloads and 

processes the necessary network and POI data from OpenStreetMap (OpenStreetMap 

Wiki, 2022) using a buffer around the submitted mobility data as the bounding box.  

4.3 Case study 

4.3.1 GPS tracking data and study area 

We collected GPS data from 1017 participants using a bespoke mobile phone app across 

three cities in the United Kingdom: Brighton and Hove, Leeds, and Birmingham. The 

dataset was collected during two distinct sampling periods: September 2018 to May 2019 

for Leeds and Brighton & Hove, and September 2019 to March 2020 for Birmingham. 

The dataset provides a comprehensive view of participants' daily mobility behaviors, 

allowing us to explore the relative localness in individual movement patterns. The 

sampling frame were 18-64-year-olds who were in employment in one of the target cities. 

Participants were recruited from the Dun & Bradstreet business directory which contains 

addresses of firms, including very small firms with no employee other than the owner. 

This sampling frame was used to study the daily mobility of city workers. The study 

sample comprised individuals from a range of age groups and occupational backgrounds, 

reflecting the diversity of the workforce in these cities. 

Participants were requested to install a customized mobile app designed to track their 

movement over seven days of a normal week, following their explicit consent. The 

mobile app consisted of two main components: a location tracking feature and real-time 

survey questions delivered through push notifications, which also recorded the 

participants’ location. Our developed mobile application employed a motion-based 

approach, utilizing a two-state rolling geofence system to differentiate between the 

moving and stationary states. The geofence had a threshold set at 50 meters, determining 

whether participants were actively moving or stationary based on their location updates. 

Within the moving state, location data were recorded at a high temporal frequency to 

capture detailed movement patterns. Conversely, in the non-moving state, location 
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positions were only recorded when participants received real-time survey questions or 

during state transitions from stationary to moving. In addition to GPS data, an onboarding 

survey captured individual-level socio-economic data including attributes, such as age, 

sex, and occupation, characteristics of their daily routines, and the postal code of their 

homes (the postcode of the workplace was included in the Dun and Bradstreet data). 

We excluded participants who contributed less than 5 days of data. For participants with 

data spanning more than 10 days, we selected a 10-day window frame yielding the 

highest number of data points. This resulted in a dataset containing data spanning from 5 

to 10 days for each individual. We conducted a typical post-processing procedure that 

involved the removal of outlier and low-accuracy GPS location points.  During the 

analysis and processing of the data, we removed a total of 258 participants due to 

insufficient data or missing sociodemographic attributes necessary for our models. These 

exclusions were necessary to ensure the integrity and reliability of our findings by 

focusing only on participants with complete data (n=759 individuals). We followed a 

typical GPS tracking data workflow that focuses on identifying stops (e.g., activities) and 

trips connecting stops (Gong et al., 2014). Stop points were defined as locations where 

participants remained stationary for at least 5 minutes, with the movement between 

consecutive GPS points measuring less than 75 meters (Long et al., 2023).  

To accurately determine the participants’ home and work locations, we employed 

agglomerative clustering on the stop points recorded during the study. This clustering 

approach allowed us to group together spatially proximal stop points within a distance 

threshold of 75 meters, providing clusters that represent potential home and second-place 

locations. We assigned the mean location of the cluster with the longest duration as the 

participant’s home location, representing their primary residential area, and the second 

longest duration as their second place (which would typically be considered their work 

location). This methodology aligns with previous studies that have successfully identified 

home locations from GPS tracking data using similar measures, such as the longest 
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duration of time spent (Siła-Nowicka et al., 2016) or the longest duration of time spent at 

night (Kung et al., 2014). 

To validate the accuracy of the GPS-derived home locations, we compared them with the 

self-reported home postal code (from the survey questionnaire) as well as the centroid 

locations of the postal codes provided by the United Kingdom Office for National 

Statistics. Our analysis revealed that the GPS-derived home locations were within 1 km 

of the self-reported home postal code centroid in approximately 80.7% of cases. 

Similarly, we compared the GPS-derived second-place locations to the provided work 

postal code centroid and found they were within 1 km of the provided work postal code 

centroid in about 50% of cases. This proximity suggests that these second-place locations 

often correspond to an individual’s workplace; however, they are not exclusively 

representative of work locations. This is likely especially true in the context of people 

working from home for whom the second-place might not be their workplace. Therefore, 

these locations more broadly reflect a significant place in an individual’s daily routine 

beyond their home. 

We employed the OpenStreetMap (OSM) road network dataset for the calculation of all 

distances between location points (i.e., as defined in equations 1-3). The OSM road 

network is globally more than 80% complete, providing a comprehensive and reliable 

source of road network data (Barrington-Leigh & Millard-Ball, 2017). This extensive 

coverage is even more pronounced in Western countries like the United Kingdom, where 

the road network in OSM is considered a reliable representation of the true road network 

(Barrington-Leigh & Millard-Ball, 2017). We also used the OSM POI dataset to represent 

the geographical distribution of available amenities and activities. The OSM POI dataset 

is known for its global coverage, although the level of detail may vary in different regions 

(Mashhadi et al., 2013). However, it is regarded as one of the most accurate and publicly 

accessible datasets for points of interest (Barron et al., 2014; Girres & Touya, 2010; 

Haklay, 2010). This dataset provided us with comprehensive coverage of various types of 

establishments and amenities (number of types=188) in the United Kingdom.  
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4.3.2 Data analysis 

For each individual with complete data (n = 759), we calculated the local mobility index 

using, first, only their home location as an anchor point (LMI1), and second, using both 

the home location and the second-place as two anchor locations reflecting a bi-centric 

activity pattern (LMI2). To associate stop points with nearby POIs from the OSM POI 

dataset, we used a search radius of r = 75m. Our analysis showed a low sensitivity to the 

POI search radius, with only minor variations observed across different distances 

(Appendix F).  In all cases, we used the mean distance of all trips (for the entire dataset; 

�̂�𝑐 = 10050 m) as the critical distance for quantifying the localness score of non-POI 

stops in equation 4.2. In our analysis, 70.4 % of all activities (stops) were associated with 

a nearby POI (using r = 75m), and therefore the influence of non-POI stop points on LMI 

in our study was relatively low. 

To determine the extent to which the LMI is capturing information already present in 

existing measures, we compare the newly derived LMI with six existing and widely used 

mobility and activity space measures (Table 4-1). We calculated Pearson’s correlation 

coefficient between LMI and each of the six commonly employed mobility metrics from 

Table 4-1 and visually explored their relationship using scatter plots. 

Table 4-1 Summary of currently available mobility metrics often used to capture 

relative local mobility patterns and a selected reference. 

Measure Description Selected 

Reference 

Average number 

of daily stops 

(NDS) 

Reflects the average number of stops each participant 

makes per day, serving as an indicator of individual 

travel frequency. The calculation involves counting the 

number of stops made by each individual per day, 

defined by a time threshold of 5 minutes and a distance 

(Yang et 

al., 2024) 
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threshold of 75 meters. The average of these daily stop 

counts is then calculated for each participant to 

determine their NDS. 

Average total 

daily travel 

distance (TDD) 

Reflects the average total daily distance traveled by 

participants, which provides insights into their mobility. 

The distance is computed from the GPS data of each 

individual for each day. 

(Yang et 

al., 2024) 

Farthest distance 

from home 

(FDH) 

Measures the maximum travel distance of participants. 

It is determined by calculating the Euclidean distance 

from the home location to each stop point and then 

selecting the maximum distance among these. 

(Yang et 

al., 2024) 

Radius of 

gyration (ROG) 

Quantifies the spatial dispersion of participants' 

movements, offering insight into the extent of their 

mobility range. The classical Radius of Gyration is 

calculated using the centroid of all stop points, with the 

Euclidean distance between the centroid and each stop 

point determining the radius. 

(González 

et al., 2008) 

Convex hull 

area (CHA) 

Represents the individuals' activity space, calculated by 

creating a convex hull using all stop points for each 

individual and then measuring the area of this convex 

hull. 

(Williams 

et al., 2013) 

Local Travel 

Index (LTI) 

A previously established metric for evaluating local 

mobility behavior. It is calculated using the areas of the 

convex hulls, assessing the spatial dispersion and 

standardization of these areas. For detailed calculation 

methods, refer to the provided reference. 

(Manaugh 

& El-

Geneidy, 

2012) 
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To explore the relationship between the LMI (and other commonly used mobility 

measures) and individual-level sociodemographic attributes, we use a generalized linear 

model. We included 14 independent variables included in the analysis: self-reported 

gender, age (in range categories), education, occupation, having a health issue that limits 

mobility, presence of children in the household, household type, car access and 

employment characteristics (part-time/full-time employed, employment status). 

Additionally, we incorporated a variable for distance from home to city-center to capture 

differences between urban core and city periphery residents. We also included the metric 

percentage of time homeworking, which represents the proportion of each individual's 

total working hours spent at home. The number of days of survey effort (ranging from 5 

to 10) was also controlled for in our analysis. To assess multicollinearity among the 

selected covariates, we used the variance inflation factor (VIF). The results indicated no 

evidence of multicollinearity, as all chosen independent variables had VIF values below 

3. We ran 8 versions of the same model using LMI1 and LMI2 as the dependent variable, 

along with the six commonly reported spatial measures of mobility (Table 4-1). We 

assessed goodness-of-fit of each model using the adjusted R2. All statistical analysis was 

performed in R.  

4.3.3 Results 

In our dataset we found LMI values spread across the full range of LMI values from 0 to 

1 (Figure 4-3). We found a large difference in the mean LMI values between the two 

LMIs with LMI2 on average twice as large as LMI1 (mean LMI1 =0.33, mean LMI2 = 

0.69; Figure 4-3-a). There was a relatively strong, positive correlation between LMI1 and 

LMI2 measures (r=0.50). However, it was observed that the distribution of LMI1 was 

positively skewed (skewness=1.16), while the distribution of LMI2 exhibited a negative 

skew (skewness=-0.67) (Figure 4-3-b). There was a large peak at LMI = 1 in both 

frequency distributions (Figure 4-3-b) suggesting that these individuals have hyper-local 

movement patterns. Further inspection of the data revealed that these users typically had 

only a few activities in their data, associated with the home-only or home and second-

place.  
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Figure 4-3 LMI1: local mobility index to home; and LMI2: local mobility index to 

home and second-place. a) Scatter plot of LMI1 and LMI2, showing that almost all 

LMI2 values (with the exception of 26 data points) are equal to or greater than 

LMI1 values. b) Histograms of LMI1 and LMI2, where a positive skewness is 

observed in LMI1 and a negative skewness in LMI2. 

Correlation analysis between LMI1 and LMI2 and the six commonly employed mobility 

measures revealed that in all cases the LMI is uncorrelated with these existing measures 
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(r < 0.15 in all cases; Figure 4-4). The strongest relationship observed was a weak 

negative correlation (r = -0.13) between the LMI and the ROG metric (Figure 4-4). The 

negative direction of the weak correlations in most cases in these plots are expected based 

on the definition of the LMI vs the other metrics, where increasing values represent 

increasingly local behavior in the LMI.  The magnitude of these comparatively weak 

correlations supports that LMI is providing altogether different information of local 

mobility behavior relative to the selected six established measures. 
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Figure 4-4 Correlations between two LMI metrics and six commonly used mobility. 

LMI1: local mobility index to home; LMI2: local mobility index to home and 

second-place; NDS: average number of daily stops; TDD: average total daily travel 
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distance (km); FDH: farthest distance from home (km); ROG: radius of gyration 

(km); CHA: convex hull area (km2); LTI: local travel index. 

In our analysis, we investigated how various mobility metrics, including two different 

LMI measurement methods, correlate with various social and demographic attributes 

(Table 4-2). We also created boxplots for employment characteristics in the LMI models 

to provide a clearer visualization of the variability within each category of these 

variables. Those with part-time jobs have a more local behavior centered around their 

home than full-time employees in the LMI1, but there is no significant difference 

between part-time and full-time employment when home and second-location (LMI2) are 

used (Table 4-2; Figure 4-5-a). Employees show a more local behavior compared to self-

employed individuals or business owners on both measures (Table 4-2; Figure 4-5-b). 

Moreover, when considering only the home location as the anchor, the greater the 

distance of the home to the city center, the less local are individual’s mobility patterns, 

but when both the home and the second-location are measured, those reside closer to the 

city centre show more local patterns. (Table 4-2; Figure 4-6). Age, gender, education 

level, parenthood status, employment characteristic, having a health issue that limits 

mobility, household status, car access, city of residence, percentage of time spent 

homeworking, and survey effort showed no significant association with LMI1 and LMI2. 

Table 4-2 Results (β coefficients) from eight linear regression models with the eight 

mobility metrics as the dependent variable. Bold relationships indicate p < 0.05
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 LMI1 LMI2 Num. of 

Daily 

Stops 

Total 

Daily 

Distance 

Farthest 

Distance 

ROG 

 

Convex 

Hull 

LTI 

Variable         

(Intercept) 0.40*** 0.40*** 1.33 -2.03*** -2.77*** -3.11*** -3.31*** -3.46*** 

Male [RCa: Female] 0.02 0.01 0.53*** 0.28*** 0.22** 0.17* 0.29*** 0.35* 

Age [RC: 18-24]         

     25-34 0.05 0.02 -0.30 -0.09 -0.22 -0.02 -0.14 -0.11 

     35-44 0.02 0.04 -0.12 -0.12 -0.24 -0.17 -0.10 0.07 

     45-54 0.04 0.03 -0.50 -0.13 -0.28* -0.12 -0.20 -0.13 

     55-64 0.05 0.06 -0.05 -0.08 -0.52** -0.35* -0.34* -0.44 

No higher education [RC: Higher education] 0.02 0.02 0.20 0.02 -0.02 -0.13 -0.03 -0.13 

Has child/ren [RC: No child] 0.04 0.02 0.36* 0.02 -0.08 -0.10 -0.09 -0.12 

Part-time job [RC: Full-time job] 0.06** 0.00 0.09 -0.10 0.01 -0.18* 0.09 0.31* 

Has a mobility issue [RC: No mobility issue] -0.02 -0.03 -0.04 -0.10 0.01 0.03 -0.17 -0.09 

Occupation [RC: Managers, Directors and Senior 

Officials] 

        

     Administrative and Secretarial  -0.02 -0.00 0.29 0.00 -0.16 -0.08 -0.08 -0.05 

     Associate Professional and Technical  -0.01 -0.06* 0.06 0.06 -0.19 -0.07 0.00 0.03 

     Caring, Leisure and Other Service  0.04 -0.01 0.62* -0.06 -0.27 -0.16 -0.01 -0.06 

     Elementary -0.04 -0.12** -0.47 -0.09 -0.43* -0.04 -0.10 -0.05 

     Process, Plant and Machine Operatives -0.10 -0.04 2.58*** 0.97** -0.13 -0.23 0.18 -0.49 

     Professional 0.01 -0.01 0.21 0.21 -0.01 -0.08 0.06 -0.09 

     Sales and Customer Service -0.07 -0.00 -0.31 -0.24 -0.42* 0.01 -0.21 -0.08 

     Skilled Trades -0.02 0.03 0.25 0.13 -0.17 -0.01 -0.01 -0.16 

     Other/Insufficient detail to code 0.06 0.01 -0.22 0.09 -0.39 -0.03 -0.00 0.05 

Single household [RC: Multiple occupants] -0.03 -0.05 0.38 -0.13 0.06 -0.15 0.04 0.27 

Has access to car [RC: No access to car] 0.03 0.02 0.12 0.44*** 0.45*** 0.26** 0.33*** 0.12 

Employee [RC: Self-employed/Business owner] 0.06* 0.04* -0.21 -0.15 -0.15 0.07 -0.21* -0.29 

City [RC: Brighton and Hove]         

     Birmingham 0.03 0.05 0.68** 0.17 -0.15 -0.19 -0.10 -0.17 
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     Leeds 0.01 0.03 0.11 -0.07 -0.07 -0.12 -0.01 0.19 

Distance to city center -0.02* 0.02* 0.05 0.16*** 0.26*** 0.33*** 0.29*** 0.38*** 

% of time homeworking 0.01 -0.01 -0.07 -0.00 -0.04 -0.02 -0.02 -0.03 

Survey effort -0.00 0.00 0.05 0.06* 0.09*** 0.06** 0.11*** 0.02 

Number of observationb 759 759 759 759 759 759 737 737 

R2 0.053 0.098 0.109 0.196 0.184 0.155 0.183 0.087 

R2 adjusted 0.020 0.066 0.078 0.167 0.155 0.125 0.153 0.053 

a 
Reference Category. *** for p < 0.001, ** for p < 0.01, and * for p < 0.05. 

b LTI and Convex Hull methods necessitates a minimum of three data points. Participants with fewer than three points yield NA values and were consequently 

excluded from the regression analysis. 
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Figure 4-5 a) Boxplots of employment characteristics against LMI models. b) 

Boxplots of worker type categories against LMI models. SE/BO: self-

employed/business owner. 
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Figure 4-6 Scatter plots and best fit lines of distance to city center against LMI1 and 

LMI2 (n=765). To enhance clarity in visualization, we have applied a log10 

transformation to the distance values before plotting. 

Individuals who identified as men were associated with a greater number of daily stops, 

longer total travel distances, farther distances from home, higher ROG values, larger 

convex hull areas, and higher LTI values compared to women. Having access to a car 

significantly increases total daily distance, farthest distance, ROG, and convex hull 

measurements. Furthermore, the distance to the city center was positively associated with 

all other range-based mobility metrics except with the average number of daily stops. 

Survey effort (number of days in the survey) was positively associated with total daily 

distance, farthest distance from home, ROG, and convex hull. 

The R2 values for the LMI to home and LMI to home and second place models are 

notably low, at 0.020 and 0.066 respectively. This indicates a limited variance in the 

dependent variable being explained by the independent variables in these models. In 

contrast, the total daily distance, farthest distance from home, and convex hull models 

exhibited a higher R-squared value among all the models, suggesting a stronger 

explanatory power of the independent variables for the variation in these metrics. 

4.4 Discussion 

In this paper, we developed a new local mobility index (LMI) which can be used to 

quantify the ‘relative localness’ of an individual’s activity pattern through linking 

individuals' choices for localized destinations with their travel patterns. While previous 

research focused on comparing mobility levels among individuals (Manaugh & El-

Geneidy, 2012), addressing ‘local relative to whom,’ our approach shifts the emphasis to 

‘local relative to where,’ evaluating activity choices against the nearest available options. 

We demonstrate how the anchor location used in LMI (typically the home) can be altered 

to capture multi-centric activity patterns (e.g., home and second place; (Ahas et al., 2010; 

Sila-Nowicka et al., 2023)). In our data we focused on individuals who are workers, and 
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therefore over 50% of the second most significant places (anchor points) in our dataset 

are associated with individual’s work location. Other applications of LMI could 

creatively choose the anchor location to explore other local-mobility hypotheses, for 

example associated with key urban features (Kloosterman & Musterd, 2001), second-

homes (Hiltunen & Rehunen, 2014), or the home-work-corridor (Adler & Ben-Akiva, 

1979; Hanson, 1980; X. Wang et al., 2013). Increasing the number of anchor points is 

expected to raise the LMI values, tending closer to 1. 

When quantifying mobility patterns, it is essential to recognize that people residing and 

working in different environments often have different levels of access to amenities 

(Newman & Kenworthy, 2006; Vine et al., 2012), which in turn impacts mobility 

patterns. While accessibility methods assess the accessibility to amenities by 

concentrating on the static interplay of supply and demand (Geurs & Van Wee, 2004; 

Guagliardo, 2004; Hansen, 1959; Luo & Wang, 2003; F. Wang, 2012), they do not 

consider individual movement and cannot be regarded as mobility metrics. The proposed 

LMI has addressed this limitation in existing methods by incorporating both individual 

movement patterns and the availability of amenities within their respective environments. 

We found no strong correlation between LMI metrics and six established mobility 

metrics. This outcome underscores the distinctiveness of LMI as a novel and 

complementary measure that stands apart from these conventional mobility indicators and 

provides a potentially new dimension (i.e., localness) of individual mobility patterns 

(Fillekes et al., 2019; Long et al., 2023). This divergence highlights the necessity of 

considering LMI alongside commonly used metrics to comprehensively capture and 

interpret individual mobility patterns. This suggests that assumptions underlying 

traditional metrics—such as considering longer distances as indicative of greater mobility 

(Barbosa et al., 2018)—may not fully account for the complexity of local travel 

behaviors, which include not just the extent but the nature of engagement with the local 

environment. 
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It is noteworthy that LMI metrics offer new insights, especially when considering the 

relationship with sociodemographic factors.  Variables, such as sex and age, which are 

frequently associated with variations in travel behavior and choices (Benito & Oswald, 

2000; McQuaid & Chen, 2012; Rouwendal & Rietveld, 1994; Schmöcker et al., 2005), 

did not emerge as significant predictors of LMI. We only included individuals who are in 

employment which could be one reason for the observed differences. However, it could 

be, and this should be investigated further using different data, whether LMI produces 

different findings such as in relation to sex and age differences in travel behavior.  The 

relatively low R2 values, particularly in the context of LMI metrics, underscore the 

complexity and multifaceted nature of mobility behaviors, suggesting that they cannot be 

fully explained by a limited set of sociodemographic variables.  

Part-time employment was observed to increase localness according to LMI1, but this 

effect was not observed with LMI2. This difference suggests that full-time workers, who 

often have their workplace as the second significant location measured in our study, 

display less localized movement patterns compared to part-time workers when only the 

home location is considered. This discrepancy arises because when the second-place 

location is not included in the LMI calculation, movements related to and around the 

workplace—significant for full-time employees due to their longer hours and higher 

engagement—are likely to be categorized as non-local compared to their home location. 

Consequently, this leads to an apparent decrease in localness for full-time workers in the 

first model. However, when second places are considered in LMI2, movements related to 

work for full-time workers are recognized as local, diminishing the observed difference 

in localness between part-time and full-time workers. This highlights the importance of 

inclusion or exclusion of significant places in shaping the perceived localness values. 

Our findings highlight that self-employed individuals and business owners exhibit a 

lower degree of localness in their mobility behavior compared to employees. This is 

consistent with findings from studies such as those by Long and Reuschke (Long & 

Reuschke, 2021), which showed that the daily mobility patterns of small business owners 
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and self-employed individuals demonstrate higher daily mobility compared to premise-

based employees. This could be attributed to a variety of reasons, including the structured 

nature of premise-based employees’ work, which typically necessitates travel to a fixed 

defined location. Exhibiting a higher degree of localness in premise-based employees’ 

mobility potentially results in shorter travel times and lower travel costs compared to 

self-employed individuals and small business owners. This implies a different set of 

transportation and urban planning needs for self-employed individuals and small business 

owners group compared to employees who commute to a fixed workplace. Understanding 

these distinctions is crucial for developing tailored policies and infrastructure that support 

the diverse mobility needs of urban populations, thereby enhancing overall urban 

mobility efficiency and sustainability. 

We observed that not accounting for second-places in LMI1 leads to a decrease in 

measured localness for individuals living farther from the city center. In contrast, when 

second-places are included in LMI2, localness increases for those residing at a greater 

distance from the city center. This change occurs because, in the first model, second 

places are counted as stops and included in the calculation, often leading to decreased 

localness due to their distance from home. Conversely, in the second model, second-place 

stops are excluded from the calculation, and any other stops near the second-place are 

measured in relation to second place location and its nearby POIs. This method reveals 

that incorporating second places when measuring relative local mobility behavior that 

may be especially important to consider when individuals have regular daily mobility 

patterns around their second-places.  

LMI1 and LMI2 exhibit no correlation with traditional range-based indices, underscoring 

the LMIs' capacity to reveal distinct aspects of mobility patterns that range-based metrics 

fail to capture (Figure 4-4). This observation suggests that relying solely on range-based 

indices to evaluate localness could lead to misinterpretations, as these indices might 

either overestimate or underestimate localness levels. This is further substantiated by the 

varied range values associated with different levels of localness, demonstrating that high 
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or low ranges are not reliable indicators of localness (Figure 4-4). This variability 

underscores the importance of incorporating contextual information, such as the 

availability of nearby activities, into mobility assessments. Localness is inherently 

relative (Manaugh & El-Geneidy, 2012), emphasizing the necessity for measures like 

LMI that consider the geographical context to accurately reflect individuals' mobility 

patterns. 

While our methodology involved selecting the closest available POI to participants' stop 

points representing the intended destination, similar to (Bohte & Maat, 2009), we 

acknowledge that there may be cases where individuals chose a different yet nearby POI. 

This variation in POI selection can potentially impact the calculation of LMI, as we 

compare the distance to the nearest POI of the same type. If the closest POI differs from 

the one the individual actually visited, it could alter the resulting LMI value. However, it 

is important to note that with the data at hand, we are unable to always accurately 

determine the exact destination chosen by individuals – especially in urban areas with a 

high density of POIs. Additionally, it is possible that individuals visited multiple 

destinations during a single stop, exploring such multi-destination scenarios represents an 

area of opportunity for future developments in studying relative localness and urban 

travel behavior. 

Although our study focused on individual patterns, future research could broaden the 

scope to include the impact of geographical contexts, such as differences in home 

neighborhoods and workplaces, on LMI. This expanded analysis could inform 

infrastructure optimization and urban accessibility improvements (El-Geneidy & 

Levinson, 2006; Grengs et al., 2010; Handy, 1993). Specifically, by aggregating LMI 

scores for different areas, urban planners can tailor their strategies to local needs. For 

example, high aggregate LMI scores, reflecting strong local mobility, suggest a focus on 

enhancing resources for active transportation like walking and biking. Conversely, low 

aggregate scores highlight areas where local mobility is limited, prompting an 

investigation into the barriers to local travel. Addressing these barriers might involve 
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improving pedestrian infrastructure and expanding public transit options. Additionally, 

examining aggregated LMI scores can reveal how mobility patterns affect socioeconomic 

factors, including local business growth and community engagement. Analyzing the 

relationship between neighborhood LMI scores and access to essential services or levels 

of community participation could guide community development efforts and urban policy 

decisions (Guzman et al., 2021; Zhang et al., 2021).  

4.5 Conclusion 

We developed a novel approach to measuring local mobility, termed the local mobility 

index (LMI) which offers a more comprehensive understanding of individual movement 

behaviors through considering the unequal distribution (and accessibility) of urban 

amenities. We were able to uncover distinct patterns of localized mobility preferences 

among individuals. By bridging the gap between spatiotemporal movement indicators 

and accessibility measurement methods, the LMI contributes to various fields, including 

transportation planning and urban studies. The lack of substantial correlations between 

LMI and commonly used mobility metrics emphasizes its uniqueness as a distinct 

measure that captures a different facet of mobility behavior. 

Our analysis highlights the importance of various demographic and social factors in 

influencing local mobility behavior. Although some variables were significant in both 

LMI models and other metrics, we observed a diverse range of variables with differing 

levels of significance. These findings underscore the distinct nature of LMI compared to 

other metrics. It is crucial to clarify that this does not imply LMI is a replacement for 

existing measures, but rather, we aim to emphasize the unique information and insights 

LMI provides in analyzing human mobility behavior. 

In light of these insights, our study contributes to a more nuanced understanding of 

mobility behaviors, underscoring the intricate interplay between individual preferences, 

social dynamics, and urban characteristics. The methodology we introduced opens new 
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avenues for research into understanding the factors that shape local mobility behaviors, 

which, in turn, can inform urban planning, policy-making, and resource allocation. 
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Chapter 5  

5 A Network Community Structure Similarity Index for 
Weighted Networks1 

5.1 Introduction 

Due to their complex structure, the identification of communities continues to be an 

essential part of the analysis of networks (Fortunato, 2010a). Accordingly, measuring 

similarities between communities is a fundamental part of analyzing community structure 

in different (usually related) networks (Dongen, 2000; Fan et al., 2007; Gusfield, 2002; 

Gustafsson et al., 2006; Meilă, 2007; Mirkin, 1996; Rand, 1971; Traud et al., 2008; 

Wallace, 1983; Zhang et al., 2006). Methods for assessing network community similarity 

can be employed to assess network models (e.g., comparing to known communities) (Hu 

et al., 2008; Lancichinetti & Fortunato, 2009), comparing different states of the system 

(e.g., before and after an intervention), or time series analysis in networks (Duan et al., 

2009). 

Although several methods exist for quantifying network community similarity, such as 

the widely-used Jaccard index (Meilă, 2007) and mutual information (Danon et al., 

2005), they predominantly focus on community labels and neglect the intricate 

relationships encoded within edge weights. A critical drawback arises when a uniform 

metric treats dissimilarities in edges and their corresponding weights equivalently. For 

example, in a subway network, the cost of incorrectly clustering the central station (with 

a high number of edges and traffic flows due to its functionality) is the same as the cost 

of incorrectly clustering an intermediate station (with a low number of edges and traffic 

flows). This gap in the existing literature underscores the need for a novel approach that 

 

1
 A version of this chapter has been published (Malekzadeh, M., & Long, J. A. (2023). A network community 

structure similarity index for weighted networks. Plos one, 18(11), e0292018. 

https://doi.org/10.1371/journal.pone.0292018). 

https://doi.org/10.1371/journal.pone.0292018
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effectively incorporates edge weights into the community similarity calculation. 

Additionally, the application of current methods is not possible when comparing 

networks with different number of nodes.   

We propose a novel network community structure similarity index (NCSSI) as a 

similarity index for comparing network communities. The formulation of the NCSSI is 

based on the concept of edit distance, whereby the cost of each node changing its 

community is computed based on their edges and corresponding weights. By taking this 

approach, the NCSSI provides an advantage over existing methods in that it is able to 

incorporate community labels, edges and their weights into a single measurement of 

community similarity. Employing simulated data and real-life New York Yellow Taxi 

flows data, we highlight how NCSSI compares to existing approaches and provides an 

alternative view of how similarity structure can be measured between communities.  

The structure of the article is as follows: in section 2 we provide a general background on 

network structure, community detection, and similarity of communities. Then we 

introduce NCSSI and its implementation. In section 4 we experiment with NCSSI and 

simulated data in two different scenarios: on benchmarks to compare with existing 

similarity methods, and on benchmarks where we change the weights of random nodes to 

highlight the limitation of existing similarity methods. Then in section 5 we implement 

NCSSI on a real-life mobility dataset, New York Yellow Taxi flows data. In the 

discussion and conclusion, we discuss the advantages of the proposed method and the 

results, and we conclude the study. 

5.2 Background/Literature Review 

Many complex systems can be modeled by networks (also commonly termed graphs) 

(Fortunato, 2010b). A network consists of a set of nodes (or vertices) and a set of edges 

(Saoub, 2021). Edges can include varying weights or direction and nodes can have 

multiple attributes. Different systems can be modeled by different structures of graphs 
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such as directed (Barabasi & Oltvai, 2004), weighted (Bast et al., 2016), overlapping and 

clustered (Palla et al., 2005), or hierarchical graphs (Kemp & Tenenbaum, 2008).  

Unlike random graphs, in which the probability of having an edge between two nodes 

among all pairs of nodes is equal and the distribution of edges is homogenous (Erdős & 

Rényi, 1960), real-life networks show a high level of heterogeneity in edge distribution 

(Fortunato, 2010a). These heterogeneities are often represented as clusters within which 

intra-cluster edge density is much higher than inter-cluster edges. These clusters are 

typically referred to as communities in networks (Girvan & Newman, 2002) and these 

two terms are usually used interchangeably. In real-life networks, nodes of communities 

usually share similar characteristics and/or similar interests (e.g., social networks; 

(Girvan & Newman, 2002)) and/or have higher levels of interactions (e.g., transportation 

networks; (Zheng et al., 2014)). Finding communities in networks can provide new 

insights into the structure of networks and enable us to better understand the underlying 

complex system. 

Different algorithms have been developed to detect communities from networks. Graph 

partitioning methods divide the graph into a specific number of communities with a 

specified number of nodes to minimize the number of inter-community edges (Barnes, 

1982; Kernighan & Lin, 1970). Hierarchical algorithms comprise two types (Hastie et al., 

2009): bottom-up (agglomerative) in which all similar communities are merged until 

reaching a specified threshold and top-down (divisive) which adhere to the opposite 

direction–dividing dissimilar communities until reaching a specified threshold. A very 

well-known divisive community detection method was proposed by Girvan and Newman 

(Girvan & Newman, 2002; Newman & Girvan, 2004). In Girvan and Newman's method, 

edges are iteratively removed based on their value of betweenness which expresses the 

frequency of shortest paths between all pairs of nodes that pass along the edge. An 

alternative set of methods are modularity-based algorithms (Clauset et al., 2004; 

Newman, 2004b). Modularity, as a quality measurement of community detection, is 

computed based on the comparison between the existing structure of edges in the 
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subgraph and the density of edges in the subgraph if the nodes were attached irrespective 

of the community structure (Newman, 2004a; Newman & Girvan, 2004). Spectral 

algorithms (Donetti & Munoz, 2004), methods based on statistical inferences (Newman 

& Leicht, 2007), and algorithms that use deep learning methods (Kipf & Welling, 2016) 

are the other alternatives. For a more comprehensive review of clustering and community 

detection algorithms, refer to (Fortunato, 2010b; Jin et al., 2021). 

Methods for measuring the similarity (or differences) between two sets of communities 

have been employed in methodological work to test the performance of a community 

detection method on a benchmark (Huang et al., 2010), or to cross-check the results of 

community detection using different methods (Lancichinetti & Fortunato, 2009). In 

applied settings, network community similarity is used across various domains such as 

studying similarity of sets of communities over time (Yang et al., 2011), and comparing 

different types of networks (Taya et al., 2016). While there is extensive literature on 

community detection methods, there is a lack of attention to similarity measurements for 

network communities (Fortunato, 2010a).  

There are four primary types of measures for assessing network community similarity: 

pair counting, community matching, information theory, and distance. Pair counting 

methods identify corresponding communities in two different sets. If a node is identified 

in the same community (two communities with the highest overlapping) in two different 

sets, it is considered correctly detected. The Rand index (Rand, 1971) and its adjusted 

version (Meilă, 2007), the Jaccard index and its adjusted version (Meilă, 2007), and the 

Mirkin metric (Mirkin, 1996) are all pair counting methods. Community matching 

measures are based on finding the largest overlap between two sets of communities. 

However, these methods may only consider the largest similar portion of communities, 

potentially disregarding certain parts of the community set as a whole. Classification 

error, defined by Meilă & Heckerman  (Meilă & Heckerman, 2001), and the normalized 

Van Dongen metric (Dongen, 2000) are examples of community matching measures. A 

third type of similarity measure is based on information theory (MacKay, 2003). Using 
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information theory, if two sets are alike, there is little information needed to derive one 

set from the other. Less similarity between the two sets indicates that more information is 

needed to infer one from the other. A commonly used measure of this type is the 

normalized mutual information (Danon et al., 2005). Lastly, distance-based measures in 

which the number of movements and divisions are considered to calculate the distance 

between two sets. Movement is defined as the minimum number of nodes that are needed 

to be moved from one community to the meet set of two communities to match, and 

divisions are defined as the number of divisions needed for one community to match with 

the meet set of two communities (Gusfield, 2002; Gustafsson et al., 2006).  

5.3 Network Community Structure Similarity Index (NCSSI) 

We first define notation that will be used throughout the paper. Let: 

V be a set of n nodes in network N 

E be a set of edges that connect network nodes 

W be a set of weights associated with each edge 

A community set is defined as a set of  >1 communities derived from a given network. 

The goal of NCSSI is to quantify the similarity between two community sets. NCSSI is 

derived from the edit distance concept in which the distance is computed based on the 

total cost to transform one community set into another. The critical feature of NCSSI is 

the cost function which is associated with each of the necessary edits (inserts and 

removes) to perform this transformation. We should emphasize that in NCSSI, we are not 

trying to transform one network to another but rather to transform one community set into 

another. This is an important distinction as transforming the whole structure of the graphs 

is unnecessary when the principal focus is only on the community structures. Hence, 

NCSSI focuses on nodes whose labels differ between the two sets. Then, for each of 

these nodes, we calculate the cost associated with the minimum edits needed to change 

the community labels. Calculation of NCSSI follows a three-step method outlined below.  
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5.3.1 Step 1 – Pairing communities 

To find the similarity between two community sets, we must find the most similar 

community pairs in each of these two sets. Since both community sets have different 

community labels, to find the most similar community pairs, we must calculate the most 

overlapping communities in each set in terms of both nodes and weighted edges. To 

calculate this, assume we have two communities x and y, from the community sets X and 

Y, respectively, where the intersection set of their nodes is ∩xy and the union set is ∪xy.  

We focus on incorporating edge weight information into the measurement of NCSSI. 

Therefore, we sum all edge weights (W) between the nodes in ∩xy and ∪xy and adjust 

them by dividing it by the total weights of edges in the network. Since we have two 

community sets with different configurations regarding their edges and associated 

weights, we need to calculate the sum of all edge weights for both Networks. Finally, the 

overlap score (OS) of communities x and y is defined as the ratio of the sum of all 

adjusted edge weights in ∩xy to ∪xy: 

𝑂𝑆𝑥𝑦 =  

∑ 𝑊𝑖𝑗
𝑋

𝑖,𝑗∈∩𝑥𝑦

∑ 𝑊𝑖𝑗
𝑋

𝑖,𝑗
+

∑ 𝑊𝑖𝑗
𝑌

𝑖,𝑗∈∩𝑥𝑦

∑ 𝑊𝑖𝑗
𝑌

𝑖,𝑗

∑ 𝑊𝑖𝑗
𝑋

𝑖,𝑗∈∪𝑥𝑦

∑ 𝑊𝑖𝑗
𝑋

𝑖,𝑗
+

∑ 𝑊𝑖𝑗
𝑌

𝑖,𝑗∈∪𝑥𝑦

∑ 𝑊𝑖𝑗
𝑌

𝑖,𝑗

 

5.1 

Where OSxy is the overlap score between communities x and y from the community sets 

of X and Y; ∩xy and ∪xy are the intersection and union sets of nodes from communities x 

and y; and 𝑊𝑖𝑗
𝑋 and 𝑊𝑖𝑗

𝑌 are the edge weights between i and j in the community sets X and 

Y, respectively. 

To find the paired communities, we need to calculate all the possible OS values between 

communities of two community sets, resulting in an OS matrix. The unordered bijective 

pairs are chosen by the maximum OS, meaning each community in a set is paired only 

with one community from the other set with the highest overlap. It is possible to have 

different numbers of communities between the two community sets. If, due to the 
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difference in the number of communities in sets, a community (let us assume x) is not 

paired with a community in the other set, the pair will be denoted as (x, ϕ). 

5.3.2 Step 2 – Calculating edit costs of nodes 

Based on the definition of communities, the stronger the intra-community links, and the 

weaker the inter-community links, the stronger the structure of communities. Hence, in 

calculating NCSSI, we concentrate on the nodes' labels and the edge weights associated 

with the nodes.  

In this step, we need to calculate the minimum cost associated with the edits needed to 

transform the node i's membership (Equation 5.2 and 5.3). In equation 5.2 and 5.3, we 

assume that we have community set X, which contains communities x1 and x2, and Y, 

which contains communities y1 and y2. Additionally, x1 and y1, and, x2 and y2, are paired 

with each other. 

𝐸𝐶𝑖
𝑋 = | ∑ 𝑊𝑖𝑗

𝑗∈𝑥1

−  ∑ 𝑊𝑖𝑗

𝑗∈𝑥2

| 5.2 

𝐸𝐶𝑖
𝑌 = | ∑ 𝑊𝑖𝑗

𝑗∈𝑦1

− ∑ 𝑊𝑖𝑗

𝑗∈𝑦2

| 5.3 

Where 𝐸𝐶𝑖
𝑋 and 𝐸𝐶𝑖

𝑌 is the adjusted edit cost of node i in the community sets X and Y, 

respectively; Within Equation 5.2, x1 is the community in which i is a member; and x2 is 

the community which is the paired community of the changed community y2 ; similarly 

within  Equation 5.3, y2 is the community in which i is a member; and y1 is the 

community which is the paired community of the changed community x1;  j is a node 

member of the communities x1, x2, y1, and y2; and Wij is the weight associated with the 

edge between nodes i and j. 

These costs reflect the necessary modifications required to transform the membership of a 

node from one community to another while considering the associated edge weights. 
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However, it is important to note that these costs may not be on the same scale for both 

community sets X and Y, as they depend on the specific characteristics of the community 

sets and the corresponding edge weights. To calculate edit costs on a common scale, it is 

necessary to adjust them by the sum of intra-community edge weights associated with 

node i and the sum of weights between i and paired community nodes. To adjust edit 

costs, we need to compute the adjustment factors for both community sets X and Y 

(Equation 5.4 and 5.5). It should be noted that the adjustment factors include weightings 

from all nodes irrespective of whether the node's community membership remains 

unchanged or changed. 

𝐴𝐹𝑋 = ∑( ∑ 𝑊𝑖𝑗

𝑗∈𝑥1

+  ∑ 𝑊𝑖𝑗

𝑗∈𝑥2

)

𝑖

 5.4 

𝐴𝐹𝑌 = ∑( ∑ 𝑊𝑖𝑗

𝑗∈𝑦1

+  ∑ 𝑊𝑖𝑗

𝑗∈𝑦2

)

𝑖

 5.5 

Where AFX and AFY are the adjustment factor associated with community X and Y, 

respectively. The notation for i, j, x1, x2, y1, y2, and Wij remains the same as previously 

defined. 

By dividing the edit costs by the adjustment factors, we obtain the adjusted edit costs on a 

common scale for both community sets (Equation 5.6 and 5.7). These adjusted edit costs 

are bounded between 0 and 1 for each community set, ensuring that both community sets 

are on the same scale and comparable. It is important to note that the sum of all adjusted 

edit costs for each community set cannot exceed 1, as they represent the relative 

transformation costs within the community sets. 

𝐴𝐸𝐶𝑖
𝑋 =

𝐸𝐶𝑖
𝑋

𝐴𝐹𝑋
 

5.6 

𝐴𝐸𝐶𝑖
𝑌 =

𝐸𝐶𝑖
𝑌

𝐴𝐹𝑌
 

6.7 
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Where 𝐴𝐸𝐶𝑖
𝑋 and 𝐴𝐸𝐶𝑖

𝑌 are the adjusted edit cost of node i in the community sets X and 

Y, respectively. The notation for 𝐸𝐶𝑖
𝑋, 𝐸𝐶𝑖

𝑌, AFX and AFY remains the same as previously 

defined. 

As an example, with the same assumption as before, we have community set X, which 

contains communities x1 and x2, and Y, which contains communities y1 and y2. 

Additionally, x1 and 𝑦1, and, x2 and y2, are paired with each other. If node i is a member 

of x1 in community set X and a member of y1 in community set Y, as the two communities 

are paired with each other, the node i has not changed its community membership—𝑁𝐸𝐶𝑖 

is zero. However, if node i is a member of x1 in community set X and a member of y2 in 

community set Y (Figure 5-1), as these two communities are not paired with each other, it 

means that the node has changed its community membership and we need to consider it 

in our calculation. In this case, in each community set (let us first consider community set 

X and then we must repeat this procedure for community set Y) we have two communities 

that we need to concentrate on; x1 in which i is a member, and x2 which is the paired 

community of the changed community y2 (Figure 5-1). 
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Figure 5-1 An example of edit cost calculation when node i has changed its 

community membership. Blue lines and red lines represent the edges that are 

considered in the calculation of the edit cost related to node i, as intra-community 

edges and edges to the paired community. Dashed black lines represent the inter-

community edges and black lines represent the intra-community edges that were not 

considered in the calculation of the edit cost related to node i. The paired 

communities in different community sets are colored the same (dark green and light 

green). All the other communities that are not considered in the edit cost calculation 

for node i, are colored gray. 

5.3.3 Step 3 – NCSSI calculation 

NCSSI is the total cost associated with transforming a node's membership and is equal to 

the sum of the adjusted edit costs of the node in each of the two sets. Consequently, to get 

the total cost of transforming one community set into another, we need to sum up all 

nodes’ NECs from each community set. Then the total cost is obtained by averaging the 

total adjusted edit costs of both community sets (Equation 5.8). The selection of the 

average as the method for combining the adjusted edit costs is justified by several factors. 

Firstly, taking the average ensures a balanced consideration of both community sets, 

allowing for equal evaluation of their respective edit costs. Secondly, it preserves the 

information from both sets by incorporating the collective impact of changes, rather than 

favoring one set over the other (unlike selecting the minimum or maximum). Thirdly, the 

average maintains sensitivity to changes in both community sets, capturing the nuanced 

transformation between the structures. Finally, since the adjustment factors and edit costs 

are already on the common scale, the average does not introduce bias towards a specific 

range. 

𝑁𝐶𝑆𝑆𝐼𝑋𝑌 = 1 −  
∑ 𝐴𝐸𝐶𝑖

𝑋
𝑖 + ∑ 𝐴𝐸𝐶𝑖

𝑌
𝑖

2
 5.8 

Where NCSSIXY is the Network Community Structure Similarity Index of community sets 

X and Y; i is a node from the set of nodes that have changed their community 
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memberships. This results in a value between 0 to 1, which highlights the distance 

between two community sets. To convert distance to similarity, it is then subtracted from 

1. The final value is then defined as the NCSSI of the two sets of communities ranging 

from 0 to 1 where 0 represents low similarity and 1 identical sets of communities 

An example of identical sets of communities: 

 

1
2
3
4

[

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

] and  

1
2
3
4

[

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

] 

In which community pairs are (red, blue; OS=1) and (green, yellow; OS=1) and NCSSI=1 

An example of the most dissimilar sets of communities: 

 

1
2
3
4

[

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

] and 

1
2
3
4

[

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

] 

In which community pairs are (red, blue; OS=0) and (green, yellow; OS=0) and NCSSI=0 

In these examples, all weights assigned to the edges were 1 for simplicity. 

5.4 Simulation Tests 

5.4.1 Benchmark 

A benchmark network is a network in which all nodes' community labels are known. 

These benchmarks were originally introduced to enable researchers to test the results of 

community detection methods. Here, we are not interested in testing the clustering and 

community detection methods, rather, we want to test the community similarity measures 

using these benchmarks. We use computer-generated benchmarks as they enable us to 

adjust the network and its attributes with specifically chosen parameters. The most 

popular class of computer-generated benchmarks works based on pin as the probability of 

1

2

3

4

and

1

2

3

4

and

1

2

3

4

1

2

3
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having intra-community links for nodes and pout as the probability of having inter-

community links while these two probabilities are independent (Condon & Karp, 2001). 

A specific case of this type was proposed by Girvan and Newman (Girvan & Newman, 

2002) in which a graph with 4 communities and 32 nodes in each community is 

considered. This benchmark is not an ideal representative of real-life networks as the 

number of communities and the number of nodes in each community are constant and 

nodes' degrees are almost similar in each community. 

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark introduced by Lancichinetti et 

al., (Lancichinetti et al., 2008) is a modified version of this model in which the 

heterogeneity of nodes' degrees, the community sizes, and the number of communities is 

taken into account (Figure 5-2). In the LFR the distribution of nodes' degrees and the size 

of communities are determined by power law functions with two parameters of τ1 and τ2, 

respectively. The intra-community degrees are determined by the fraction of 1 – μ of 

nodes' degree. Thus, the inter-community degrees are computed based on the fraction of 

μ of nodes' degrees.  When μ is 0 we have highly separated communities but when μ is 1 

we have highly interconnected communities. Here, we use the LFR benchmark in our 

experiments. 
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Figure 5-2 A) LFR benchmark (Lancichinetti et al., 2008) when μ equals 0.05, and 

B) LFR benchmark when μ equals 0.95. Each color is representative of the nodes' 

communities. 

5.5 Different community detection methods 

We generated simulated community graphs for comparison using the LFR benchmark. 

We varied μ from 0.1 to 0.95 and for each μ we ran the process 100 times as suggested by 

(Lancichinetti et al., 2008) to avoid random bias. We used n = 1000 nodes in the graph 

and τ1 = 1.5 and τ2 = 3, as the parameters of the LFR benchmarks. We deployed the 

Louvain community detection algorithm (Blondel et al., 2008) to derive communities 

from each benchmark. We computed the similarity index using the Jaccard index, mutual 

information, and NCSSI by comparing the communities detected by the algorithm to the 

known benchmark communities. We repeated this process deploying Clauset's algorithm 

(Clauset et al., 2004), asynchronous label propagation algorithm (Raghavan et al., 2007), 

and semi-synchronous label propagation algorithm (Cordasco & Gargano, 2010) 

(Appendix G). 

The Jaccard index and mutual information resulted in low similarity between two sets of 

communities when μ > 0.5 (Figure 5-3). However, considering the network's structure in 

the similarity measurement, we observe that increasing μ decreases the similarity between 

known and computed community sets. The relationship between μ and NCSSI is more 

linear and monotonic than with the Jaccard index and mutual information measures. The 

reason that we still observe a low-level of similarity when μ > 0.5, is that even in 

networks with low community structure, there is an inevitable random degree of 

similarity across the community sets. Based on LFR benchmark algorithm, when μ equals 

0.5, the number of inter-links and cumulative intra-links (links with all the other 

communities) will be equal. Although community structure is commonly perceived to 

weaken after μ = 0.5, it is important to note that in networks with a substantial number of 

nodes and communities, community structure can still be discernible even when μ > 0.5. 

This is because the presence of a large number of nodes and communities ensures that the 
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intra-links within each community outnumber the inter-links to individual communities. 

Thus, despite the higher fraction of inter-community edges, the overall network can still 

exhibit noticeable community structure. 

 

Figure 5-3 Similarity scores deploying Louvain similarity measure on LFR 

benchmarks using two existing similarity measurement methods (the Jaccard index 

and mutual information) and the proposed method NCSSI. 

5.5.1 Manually changing nodes' community memberships and 
their weights 

In this example, we used an LFR benchmark (n = 1000, τ1 = 1.5, τ2 = 3, and μ = 0.2), in 

which all edges had the same weight of 1. We randomly selected a subset of 10 nodes, 

which constituted 1% of all nodes. To assess the impact of weights, we increased the 

weights of all the edges connected to these nodes incrementally from 10 to 100 (with an 

interval of 10). Then we changed these nodes' communities as an intervention (intentional 

misclustering). We aimed to examine how different similarity measures can capture the 

difference between the communities before and after the intervention. We repeated this 



131 

 

 

 

process for each weight 100 times and took the mean similarity score of the 100 

repetitions. 

The Jaccard index and mutual information measures were not sensitive to the changes in 

the weights of nodes as increasing the weights associated with these nodes did not affect 

similarity scores (Figure 5-4). In contrast, NCSSI captured the effect of increasing 

weights associated with the misclassified nodes, leading to lower similarity between 

community sets. These results clearly demonstrate that NCSSI is sensitive to changes in 

edge weights and the subsequent effect on network community similarity, while Jaccard 

index and mutual information measures are not. 

 

Figure 5-4 Similarity values for an LFR benchmark while changing the weights 

associated with 10 randomly chosen nodes using two existing similarity 

measurement methods (the Jaccard index and mutual information) and the 

proposed method NCSSI. 
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5.6 Case study: NYC Taxi Flow dataset 

As a real-life example of how NCSSI can be implemented, we compared how community 

structures computed based on human mobility flows differ from 2011 to 2021 using 

Yellow Taxi Pick-up/Drop-off data provided by the New York City Taxi and Limousine 

Commission, USA (New York Taxi & Limousine Commission, 2023). This dataset 

contains more than 1.3 billion trips for 13,587 taxis in New York City, USA. The 

locational information in the dataset is aggregated into 263 taxi zones. Each data entry 

includes a pick-up zone and time, and drop-off zone and time, along with other attributes. 

We aggregated the data seasonally and created a flow (Origin-Destination) matrix 

between taxi zones for each season which is a form of a spatial network where zones 

represent nodes and taxi trip frequencies between zones represent edge weights. We then 

detected the communities employing Louvain's algorithm for each season. To avoid 

seasonal effects, we compared each season's community structure to the previous year's. 

There is no true community structure to compare to, however we can make some 

hypotheses. First, we do not expect to see community structures change drastically over 

time, and year to year communities should be relatively stable. However, we do expect to 

see strong differences associated with the COVID-19 pandemic and associated changes 

in human mobility patterns in 2019-2020. Further, the advent of ridesharing services 

(e.g., Uber, Lyft) which originated in 2011 may have an impact over time as they 

increase in popularity, especially in the less dense areas of NYC. Seven taxi zones 

appeared to have no trips for at least one season throughout the study period. This causes 

an inconsistency in the number of nodes in the networks. As mutual information and 

Jaccard index require the same number of nodes in both networks, this limitation forced 

us to eliminate inconsistent zones in the networks to compare the results of different 

methods. 

We observe a relatively low similarity level between all pairs of consecutive years 

throughout 2011 to 2021 using the Jaccard index (Figure 5-5), but this is perhaps not 

surprising as Jaccard index always presented the lowest similarity between benchmarks. 

However, the similarity scores of the Jaccard index showed the greatest variation (i.e., 
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lack of consistency in similarity) between consecutive pairs of years (Figure 5-5). In 

general, mutual information found higher similarity values relative to Jaccard index 

(Figure 5-5), but again showed highly variable results from consecutive pairs of years. 

NCSSI exhibited the highest similarity values in each pair of years, and more 

interestingly, NCSSI demonstrated more stable similarity values in all pairs of years 

leading up to 2019. We see the effect of the COVID-19 pandemic on mobility result in a 

drop in similarity values in 2019-2020 spring for all measures. In the winter, fall, and 

spring we see that Jaccard index and mutual information measures show that this 

similarity continues to be low in the 2020-21 comparisons, but this pattern is not 

observed using NCSSI.  
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Figure 5-5 The seasonal level of similarity in community structures for pairs of 

consecutive years using different indices from 2011 to 2021. The vertical axis 

demonstrates the similarity score. The dotted red line highlights the three periods of 

time we discuss in this section (spring 2016-2017; summer 2016-2017; and summer 

2020-2021). 



135 

 

 

 

We chose three periods of time to compare different scenarios and mapped them to 

visually evaluate the results (Figure 5-6). The first period is the spring of 2017 compared 

to the spring of 2018, where the Jaccard index and mutual information resulted in a low 

level of similarity, but NCSSI showed a high level of similarity. Next is the summer of 

2017 compared to the summer of 2018, where all measures demonstrated a high level of 

similarity. Finally, as an interesting period related to the Covid-19 pandemic, we 

compared the summer of 2020 to the summer of 2021 where all measures showed a 

relatively low level of similarity. We observe when the number of zones that changed 

their communities are higher, as in 2017-2018 Spring and 2020-2021 Summer, the 

Jaccard index and mutual information resulted in a low level of similarity. However, 

while the number of communities that changed their community was high, NCSSI did not 

result in a low level of similarity as the weights of the intra-community flows and flows 

to the paired community were not substantial in this case, resulting in low edit costs 

(Figure 5-7). On the other hand, when the flows substantially changed (as in the summer 

of 2020-2021), this results in high edit costs, and NCSSI captures a relatively low 

similarity level (Figure 5-7).  

 

Figure 5-6 Maps of New York communities computed based on NY Yellow Taxis 

flow data. Taxi zones colored red represent the areas that changed their 

communities, and gray zones, represent the areas that did not. Base map and its 

related data are from OpenStreetMap and OpenStreetMap Foundation 

(OpenStreetMap Wiki, 2022). 
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We plotted intra-community adjusted flows and adjusted flows to paired communities for 

the spring of 2016 and 2017, and the summer of 2020 and 2021, choosing taxi zone #222, 

which had a community change in all three periods of interest (Figure 5-7). It is important 

to note that the calculated adjusted flows presented in the plots are obtained by dividing 

the flows by the corresponding adjustment factors associated with each season and year. 

It is crucial to emphasize that these adjusted flows should be distinguished from actual 

flows. Despite the fact that the actual flows during the 2020-2021 period experienced a 

significant decrease, the higher values of adjusted flows compared to the 2016-2017 

period is attributed to the flow adjustment process. This process is exclusively employed 

for the purpose of facilitating visualization, enabling us to visually compare the adjusted 

flows and providing clarification on how NCSSI incorporates edge weights in its 

calculations. 

We observe that the adjusted flows in the summer of 2020 and 2021 have a higher values 

relative to the spring of 2016 and 2017. While the number of taxi zones that changed 

their communities is almost the same in both cases (2016-2017 Spring = 190, and 2020-

2021 Summer = 193), the adjusted flow levels differed greatly. For instance, the intra-

community and paired community adjusted flows of the zone taxi #222 for the spring of 

2016 are 0.003, and 0.141, for the spring of 2017 are 0.017, and 0, for the summer of 

2020 are 0.066, and 0.26, and for the summer of 2021 are 0.043, and 0.18 respectively. 

Since the Jaccard index and mutual information only consider the difference in 

community memberships and not the flows, they resulted in low values of similarity in 

both scenarios. 
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Figure 5-7 Intra community adjusted flows and adjusted flows to the paired 

community for taxi zone number 222 for the spring of 2016 and 2017, and the 

summer of 2020 and 2021. This zone is chosen since it changed its community in all 

the chosen periods. Intra-community adjusted flows are presented with blue and 

adjusted flows to the paired community are presented with orange. The width of the 

flows is based on their intensity; the thicker, the higher rate of adjusted flows. 

5.7 Discussion and conclusion 

In the simulated examples, we changed the fraction of inter-community edges (μ) of the 

benchmarks from 0.1 to 0.95. The Jaccard index and mutual information methods 



138 

 

 

 

exhibited low similarity after a certain point (μ > 0.5) (Lancichinetti & Fortunato, 2009), 

while NCSSI had a more consistent decrease across the range of the fraction of inter-

community edges (from 0.1 to 0.95). Therefore, NCSSI seems to be more closely 

associated with the fraction of inter-community edges than both the Jaccard index and 

mutual information methods. This observation underscores the intrinsic sensitivity of 

these methods to changes in network configurations. While the Jaccard index and mutual 

information methods exhibited diminishing sensitivity when μ > 0.5, NCSSI consistently 

responded across the full μ range, capturing variations in edge structures. This behavior 

highlights NCSSI's relationship with μ, distinguishing it from the Jaccard index and 

mutual information methods.  

In another experiment, we intentionally changed the labels of several nodes and their 

associated weights to create an intentional difference in the community sets. We observed 

that Jaccard index and mutual information could capture the differences created by 

mislabeled nodes, but changing weights did not affect their similarity values as they are 

primarily sensitive only to changes in the node labels rather than changes in the weights. 

In contrast, NCSSI demonstrated a distinct advantage in capturing the difference when 

the weights of intervened nodes change. NCSSI effectively considered both the label and 

weight information in the communities, enabling it to capture the impact of changes in 

weights in measuring the similarity between community sets. While there has been 

considerable focus on integrating weights into community detection methods (Blondel et 

al., 2008; Meo et al., 2011; Steinhaeuser & Chawla, 2008), little attention has been given 

to incorporating edge weights into similarity measurement methods for community sets. 

This experiment highlights the distinct advantage of NCSSI over mutual information and 

the Jaccard index methods, where both label and weight variations are related factors in 

measuring similarity between community sets. 

We employed NCSSI on the New York Yellow Taxi flows dataset as a real-life case 

study. We computed similarity scores for each season between each pair of consecutive 

years. Different factors such as technological advancements (Surry & Baker III, 2016), 
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economic development (Summers & Branch, 1984), political and environmental factors 

(Duerden, 2004; Fischer et al., 2013; Schoennagel et al., 2017)  can influence human 

communities. The pace of these changes is insufficient (Marsden et al., 2020) to expect 

major variations in human community structures within two consecutive years. However, 

we observed a relatively high rate of change in the Jaccard index and mutual information 

results. On the other hand, NCSSI demonstrated a more stable similarity degree between 

the communities, except after the outbreak of COVID-19 in early spring 2020. 

It is common that entities in complex systems change (established or annihilated) (Negre 

et al., 2011). For example, people might die or be born in social networks, or through 

policy changes, the number of census tracts might differ over time. While in most cases, 

community detection is conducted for the same set of nodes (Fortunato, 2010a), there are 

cases where the number of nodes changes (e.g., social networks, friendship, or 

professional networks). The NCSSI can handle this without requiring any modifications. 

To elaborate, when a node is added or removed from one community set to another, the 

corresponding edge weights connected to that node will also change (added or removed). 

As NCSSI effectively captures the transformation of community sets by pairing similar 

communities and calculating the edit costs associated with node membership and their 

edge weight changes, node additions or removals and consequently edge weights 

additions and removals will directly impact the NCSSI result. Hence, NCSSI is well-

equipped to handle cases where the networks being compared have different numbers of 

nodes. 

In cases when the NCSSI yields high similarity scores for two sets of communities, it is 

important to recognize that the underlying community set topologies could still differ. It 

is crucial to emphasize that the NCSSI does not assess the overall similarity of network 

(graph) structures. Instead, its focus is specifically on quantifying the similarity between 

the structures of the community sets themselves. 

In conclusion, NCSSI offers a new approach to better measure and assess community 

similarities. By considering both node labels and edge weight variations in communities, 
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NCSSI enhances the accuracy of the similarity measurement between community sets. It 

also allows measuring similarity between communities with different number of nodes. 

This capability is particularly valuable where the community sets are of varying sizes and 

compositions. It is worth noting that NCSSI incorporates the principles of edge 

importance, weight awareness, and edge submodularity, introduced in (Koutra et al., 

2016) primarily for graph similarity measurements, since it effectively captures the 

impact of edge changes only on the edges associated with nodes that change their 

communities, acknowledges the significance of edge weights in weighted graphs, and 

accounts for the varying importance of edge changes in dense and sparse networks.  
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Chapter 6  

6 Conclusion 

6.1 Summary 

This dissertation presents four studies on human mobility, addressing critical aspects of 

how environmental factors, geographical context, and community structures influence 

urban travel behaviors. Presented as standalone peer-reviewed manuscripts, this body of 

work sheds light on the complex relationships between human mobility patterns and their 

broader contexts. The research is grounded in a multidisciplinary approach, merging 

insights from urban planning and public health with advanced spatial and statistical 

analyses. Collectively, these studies contribute to our understanding of human mobility, 

offering perspectives beyond traditional mobility analyses. 

In chapter 2, I examine the impact of environmental factors on urban stress and happiness 

during daily travel. I employed Geographic Ecological Momentary Assessment (GEMA) 

to collect data on from a large sample of workers from cities in the United Kingdom: 

Birmingham, Leeds, and Brighton and Hove. This approach allowed us to track 

individuals’ experiences of stress and happiness in direct response to their environment. 

The study focused on key environmental variables such as the presence of green and blue 

spaces, daylight, visibility, and varying weather conditions, exploring how these factors 

influence individuals' experiences of stress and happiness during urban travel. 

Results from this study indicate a significant relationship between environmental factors 

and variations in urban stress and happiness. Exposure to green and blue spaces during 

daily travels was identified as a key variable, showing a positive association with 

heightened happiness and diminished stress levels. This finding underscores the 

importance of natural spaces in urban environments for enhancing emotional well-being. 

These insights are particularly relevant for urban planning and public health policy, 

suggesting that thoughtful design and structuring of urban environments can significantly 
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influence daily experiences of stress and happiness among city residents. The application 

of GEMA in this context provided a detailed understanding of the dynamic relationship 

between environmental factors and urban well-being. 

In chapter 3, I investigate the complex relationship between socio-economic factors and 

human mobility, emphasizing the significant role of geographical context. I introduce the 

concept of Mobility Deviation Index (MDI) to quantify the relative level of observed 

mobility in comparison to expected mobility for a given location, with expected mobility 

accounting for nearby amenities. This method represents a significant advancement in the 

study of human mobility, as it enables a more detailed understanding of mobility 

behaviors by incorporating context directly into measurement. I use a large network 

mobility dataset, aggregating mobile device connections to cell tower receivers across 

Ontario, Canada. This data provides a comprehensive view of mobility patterns, offering 

insights into how different geographical contexts influence human movement. 

The findings from this research demonstrate that considering geographical context leads 

to significant shifts in our interpretation of human mobility and its association with socio-

economic factors. In our statistical analysis, I found that when geographical context is 

accounted for, the associations between mobility levels and neighborhood-level socio-

economic variables, such as income, age, and minority status, differed from when using 

traditional methods. This highlights the importance of geographical context in 

interpreting human mobility data, challenging existing methodologies that often overlook 

this critical factor. The concept of Mobility Deviation Index provides a more accurate and 

context-sensitive understanding of human movement, especially in large landscapes, 

making it a valuable tool for planners and policymakers. 

In chapter 4, I introduce the Local Mobility Index (LMI), a novel metric designed to 

quantify the extent of localized mobility behavior. This index is innovative in its 

approach, as it not only considers the geometry of individual travel patterns but also 

integrates the availability and accessibility of amenities in the surrounding area. I use 

GPS data from a large sample of workers across three UK cities, along with 
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OpenStreetMap POI data, to calculate the LMI. This metric is calculated by assessing the 

proximity of individuals' chosen destinations to the nearest available amenities, with a 

higher LMI score indicating a greater tendency towards localized travel. The study's 

analytical approach highlights the variability in local mobility behavior, shedding light on 

how individuals' choices of destinations are influenced by the distribution of amenities in 

their environment. I demonstrate that the LMI provides insights into local mobility 

patterns, capturing aspects of travel behavior that are not addressed by conventional 

mobility metrics. The study's findings have important implications for urban planning 

and policy, as they highlight the need to consider the geographical distribution of 

amenities when assessing and facilitating local mobility patterns. 

In chapter 5, I introduce a novel approach to assess similarities between community 

structures called the Network Community Structure Similarity Index (NCSSI). I 

specifically address the limitations of current methods that overlook the effects of edge 

weights and are unable to evaluate the similarities between networks with varying 

numbers of nodes. The NCSSI is formulated based on the edit distance concept, where 

the similarity between two community sets is quantified based on the total cost to 

transform one community set into another. This cost function incorporates both 

community labels and edge weights, allowing for a better comparison of network 

community structures. Analyzing community structure over time is crucial for 

understanding the dynamic evolution of urban communities derived from human mobility 

patterns. This knowledge enhances our quantitative understanding of urban development, 

facilitating improvements in commercial activities, public safety, social interactions, and 

the overall creation of sustainable, vibrant living spaces (Wang et al., 2018). 

The study demonstrates the application of NCSSI through simulated data and a case 

study analysis of New York Yellow Taxi flows, comparing its performance with other 

commonly used methods like mutual information and the Jaccard index. The results from 

applying NCSSI show its effectiveness in capturing the impact of label and edge weight 

changes on community structures, which are aspects not addressed by existing methods. 
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In the case study with New York Yellow Taxi flows, I used NCSSI to compare 

community structures derived from taxi trip data over different years. This application 

highlighted how NCSSI could discern changes in community structures over time, 

including the significant shifts caused by external factors such as the COVID-19 

pandemic. Unlike other methods, NCSSI's sensitivity to both label and weight changes in 

networks allows for a more comprehensive understanding of community dynamics. 

These findings position NCSSI as a valuable tool for analyzing complex networks, 

offering new perspectives in understanding how community structures evolve. 

6.2 Contributions 

6.2.1 Empirical findings 

In chapter 2, I conducted an empirical study examining the impact of environmental 

factors on happiness and stress levels during daily travel. This study filled a gap in the 

literature by leveraging granular GPS tracking data alongside surveys of happiness and 

stress at the end of each trip, using a large dataset. This approach was motivated by the 

significant portion of life spent traveling and the potential for enhancing mental well-

being through improved travel environments. The findings revealed that when 

environmental factors are considered, other factors previously thought to significantly 

influence stress and happiness become less important. This underscores the necessity for 

detailed, longitudinal studies to minimize recall bias and accurately assess travel routes 

and their environments, highlighting a shift away from traditional cross-sectional studies. 

In the case studies for both MDI and LMI (chapters 3 and 4), integrating context into 

mobility measurements revealed contrasting results to those obtained using previous 

metrics, especially for individuals in suburban and rural areas. Contrary to earlier 

methods which suggested higher mobility levels in less urbanized areas, incorporating the 

availability of local amenities revealed a reverse trend. Specifically, rural area residents 

displayed lower MDI levels compared to their urban counterparts. This finding 

underscores the significance of including contextual factors in mobility analysis, as 

discarding them can lead to fundamentally different interpretations and outcomes in 
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social science research where we are interested to learn the underlying derives of 

mobility patterns. 

In the NCSSI (chapter 5) case study using New York taxi data, we noted not just changes 

in mobility flows and volumes, as observed in other studies (Dueñas et al., 2021), but 

also alterations in community structures due to COVID-19. While previous 

methodologies reported consistent dissimilarities in community structures in the years 

leading up to the COVID-19 pandemic, the NCSSI specifically highlighted significant 

dissimilarities only in the year the pandemic struck. This indicates NCSSI's exceptional 

sensitivity to significant events capable of altering community dynamics. The 

dissimilarity in community structures found by the NCSSI underscores the profound 

impact of a pandemic on both mobility patterns and the structural composition of 

communities, highlighting a deeper level of change than previously understood. 

6.2.2 Conceptual and methodological contributions 

In chapters 3 and 4, I introduced two concepts – MDI and LMI – addressing the gap in 

integrating context into the direct measurement of human mobility patterns. The MDI 

merges contextual and mobility data, establishing a baseline for expected mobility against 

which observed mobility can be compared. Previously, there was no established concept 

for measuring deviation from expected mobility. Researchers often compared the 

observed mobility of individuals or areas in aggregated forms against a baseline, typically 

defined as the mean or median over a certain period (Long & Ren, 2022). The MDI 

represents an advancement by offering a refined analysis that captures deviations from 

expected mobility more effectively than these earlier approaches. Additionally, I 

formulated a methodological framework to compute the expected mobility, simulating 

mobility behaviors using the radius of gyration concept. This framework represents a 

methodological advancement within a specific case study context. Nonetheless, it is 

crucial to distinguish between the methodological and conceptual contributions of this 

study. The MDI offers a broad conceptual insight, enhancing our understanding of human 
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mobility through contextual analysis; however, the methodological contribution is 

specific, applying this concept in a detailed case study. 

Furthermore, I introduced the concept of Local Mobility Behavior, enhancing the 

conceptual framework by integrating context into the understanding of local behavior. 

"Local" is inherently relative, prompting the question: local relative to what? Previous 

research focused on comparing mobility levels among individuals (Manaugh & El-

Geneidy, 2012), addressing "local relative to whom." My approach shifts the emphasis to 

"local relative to where," evaluating activity choices against the nearest available options. 

This shift offers insights into the reasons behind an individual's non-local behavior, 

whether due to infrastructure, environmental design, or personal characteristics. 

Additionally, I enhanced the methodological framework by extracting activity choices 

from tracking data and comparing these to the nearest alternatives. 

In chapter 5, my contribution focused on advancing methodology to address the 

longstanding issue of comparing sets of communities. By considering all features of 

network structure, rather than limiting focus to member labels as done in previous 

methods (Danon et al., 2005; Meilă, 2007), the NCSSI proved highly valuable. This 

approach, using the concept of edit distance tailored for network analysis, allowed for 

more precise measurement of community similarities than previous methods. This 

methodological innovation enhances our ability to compare community networks 

effectively. 

6.2.3 Open-source code and reproducibility  

Throughout my dissertation, I have prioritized open-source code and reproducibility. 

Although most datasets used were private and sensitive, I made the codes for chapters 2, 

3, and 4 publicly accessible. The code for the MDI is publicly available 

(https://doi.org/10.6084/m9.figshare.20405808.v2). It requires a dataset as input to 

optimize its parameters, thereby calculating the MDI level for each area. This 

functionality allows for a detailed analysis of mobility behavior by area, leveraging 

https://doi.org/10.6084/m9.figshare.20405808.v2
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dataset information to enhance the precision of MDI calculations. The LMI code is also 

available (https://github.com/miladmzdh/LMI) as a standalone function that computes 

LMI levels from individual trajectories, automatically incorporating contextual data, 

downloading OSM POI dataset. Additionally, I intend to contribute the NCSSI function 

(https://doi.org/10.6084/m9.figshare.24021324.v1) to the NetworkX library (Hagberg et 

al., 2008), widely used for network analysis. This commitment ensures that the research 

advancements made in my dissertation are accessible to all. 

6.3 Future research 

Building on my empirical, conceptual, and methodological work, I aim to further explore 

the impact of urban environments on well-being, altering my analytical perspective and 

the types of data used for environmental factors. Unlike the top-down approach common 

in greenery studies (Torkko et al., 2023), I plan to assess how individuals experience 

environments on the ground, considering a combination of high-resolution greenery data 

from not only satellite imagery (Li, Zhang, Li, Kuzovkina, et al., 2015; Yang et al., 

2009), but also Google Street View (Li, Zhang, Li, Ricard, et al., 2015), and LiDAR 

(Klingberg et al., 2017). Additionally, while traditionally studies have relied on 

subjective measures to understand the environmental impact on well-being, reflecting our 

direct perception, they often overlooks unconscious effects on our health. By 

incorporating longitudinal objective measures (Pykett et al., 2020; Wilhelm & Grossman, 

2010), I can bridge this gap, providing a clearer, more comprehensive understanding of 

environmental influences on well-being beyond our immediate awareness. 

Incorporating feature detection and AI models (Khosla et al., 2014) into my research 

opens a new avenue for understanding the effect of urban environment's features on 

individuals’ well-being. Manually evaluating large areas and their features is nearly 

impossible, necessitating the automatic extraction of features through feature detection 

models. I can then assess the relationship between people's subjective perceptions, 

alongside the objective responses to the environment with these automatic extracted 

features, using statistical analysis. 

https://github.com/miladmzdh/LMI
https://doi.org/10.6084/m9.figshare.24021324.v1
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Furthermore, exploring the urban environment's impact on individuals with mental and 

physical disorders offers a significant research avenue. For instance, individuals with 

autism spectrum disorder (ASD) may perceive urban environments uniquely, 

necessitating further investigation to foster inclusive and accessible city designs. This 

aspect is particularly crucial in public transit, which is a predominant mode of 

transportation for people with ASD (Falkmer et al., 2015). Understanding their specific 

needs and perceptions can guide the development of more inclusive urban planning and 

public transportation systems. 

Expanding on the Local Mobility Index concept, I plan to apply this framework in 

environmental studies, specifically to investigate the carbon footprint associated with 

non-local movement behavior. While urban design often receives attention for its role in 

carbon emissions (Bartholomew, 2009; Kinigadner et al., 2020; Sun & Leng, 2021), the 

contribution of city residents to their carbon footprint through non-local mobility 

behavior remains understudied. This avenue of research will explore the extent of 

individuals' responsibility for their carbon footprint versus the influence of city design in 

prompting higher-than-expected emissions, bridging a gap in understanding the interplay 

between local mobility behavior and environmental impact. 

I plan to advance the MDI methodology by incorporating metrics based on other mobility 

measures, including time-based (Demissie et al., 2019) and entropy-based (Song et al., 

2010) metrics. This expansion will enable the MDI concept to be applicable across a 

broader range of studies with diverse measurement methods. Additionally, I aim to 

enhance the NCSSI methodology by integrating the hierarchical structure of networks 

into its measurement, offering a better understanding of community structures similarities 

and differences, particularly in urban mobility networks where hierarchical structures are 

common (Louail et al., 2015; Murali et al., 2016; Yildirimoglu & Kim, 2018). 
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Appendices 

Appendix A: Results of linear mixed-effect regression models 
of happiness and stress level 

Table A.1 Results of linear mixed-effect regression models of happiness and stress 

level with only control variables 
 

Happiness Stress 

Variables ß p ß p 

(Intercept) 0.21 0.008 -0.12 0.169 

Control Variables     

     Individual Factors     

 Gender [RC: Female] Male 0.04 0.161 -0.00 0.921 

 Age [RC: 18-24]     

  25-34 0.07 0.191 -0.11 0.055 

  35-44 0.06 0.269 -0.13 0.031 

  45-54 0.02 0.679 -0.09 0.128 

  55-64 0.01 0.835 -0.06 0.385 

 Hometown [RC: Leeds]     

  Brighton and Hove -0.02 0.526 0.05 0.163 

  Birmingham 0.01 0.849 0.07 0.164 

 Distance from Home to City Center 0.00 0.893 0.01 0.016 

     Trip Attributes     

 Travel Modes     

  Walk 0.01 0.801 -0.04 0.425 

  Run 0.03 0.819 -0.14 0.295 

  Bike -0.05 0.499 0.00 0.967 

  Bus -0.14 0.067 0.08 0.343 

  Train -0.26 0.361 0.16 0.609 

  Car -0.08 0.104 0.01 0.915 

 Duration -0.00 0.435 0.00 0.995 

 Daylight -0.27 <0.001 0.23 <0.001 

 Season [RC: Winter]     

  Spring 0.06 0.100 -0.07 0.098 

  Summer 0.26 0.656 -0.00 0.994 

  Autumn -0.06 0.031 -0.03 0.378 

     Destination Attributes     

 Destination Type [RC: Home]     

  Work 0.05 0.198 -0.05 0.288 

  Other -0.01 0.640 0.03 0.417 

 Destination Activity [RC: Work]     

  Housework -0.01 0.917 0.03 0.646 

  Leisure -0.00 0.897 0.07 0.045 

  Eating -0.33 0.132 0.18 0.465 

  Other 0.03 0.880 -0.11 0.570 

 Presence of People at the Destination 

 [RC: Alone] Not Alone 

-0.02 0.524 -0.03 0.374 

Marginal R2 / Conditional R2 0.018 / 0.025 0.014 / 0.028 
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Appendix B: MDI POI categorization 

In our analysis, we faced the challenge of aligning the diverse POI types from the OSM 

dataset with the limited destination types specified in the 2016 Transportation Tomorrow 

historical survey data conducted in the Greater Golden Horseshoe area of Southern 

Ontario. The OSM dataset offers a wide range of POI categories. To make our analysis 

compatible with the survey data, we grouped the extensive OSM categories into broader 

classes that correspond to the survey's three destination types: school, shop, and other. 

This merging was necessary due to the differing classification schemes in the two 

datasets and was performed with the aim of capturing the essence of each destination type 

while maintaining the integrity of our analysis. Table B.1 outlines how specific OSM 

categories were amalgamated into each survey category, providing a structured and 

logical framework for our approach. 

Table B. 1 Categories of OSM POI datasets and their according category in the 

survey 

Category in 

the survey 

Categories in OSM 

school college, library, school, university, kindergarten 

shop atm, bank, beauty_shop, bicycle_rental,  bicycle_shop, bookshop,  

butcher, car_dealership, car_rental,  car_sharing,  car_wash , chemist, 

clothes,  computer_shop, convenience, convenience, department_store, 

florist, furniture_shop, garden_centre, gift_shop, greengrocer, hairdresser, 

jeweller, laundry, mall , mobile_phone_shop, newsagent, outdoor_shop, 

pharmacy, shoe_shop,  sports_shop, stationery, supermarket, toy_shop, 

vending_any, vending_machine, video_shop 

other archaeological, arts_centre,  artwork, attraction, bakery, battlefield, bench, 

camp_site, caravan_site, chalet, cinema, community_centre, dog_park, 
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fountain, golf_course, graveyard, guesthouse, hostel,  hotel, hunting_stand,  

ice_rink, lighthouse, memorial, monument, motel, museum, nightclub, 

observation_tower, park, picnic_site, pitch, playground, ruins, shelter, 

swimming_pool, theatre,  theme_park,  toilet, tourist_info, tower,  

town_hall, travel_agent, vending_parking, viewpoint, water_mill, 

water_tower,  water_well, water_works, wayside_shrine, windmill, zoo, 

track,  sports_centre, biergarten, bar, beverages, cafe, drinking_water,  

fast_food, food_court, pub, restaurant, hospital, post_office, optician, 

public_building, recycling, recycling_clothes, recycling_glass, 

recycling_metal, recycling_pape, veterinary, courthouse fire_station, 

police, prison, wastewater_plant,  doctors, dentist  airfield, airpor,  

bus_station, ferry_terminal , helipad, railway_halt, railway_station, taxi 
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Appendix C: MDI sensitivity analysis 

We conducted a sensitivity analysis to test how the number of potential activity patterns 

can influence our results (Figure C-1). We subtracted each set of expected ROG from the 

previous one (starting from 5 potential activity patterns to 200). We found that the mean 

expected mobility value stabilized after approximately s = 50 simulations. After 100 

activity patterns, we observed that the lower and upper quartiles stayed in the range of (-

1, +1) percent of the mean value of all observed ROG. Also, lower and upper whiskers 

are in the range of (-5, +5) percent of the mean value of all observed ROG. Therefore, we 

chose a conservative value of s = 100 as our number of simulated activity patterns for 

each location 

 

Figure C-1 Sensitivity analysis for finding the optimum number of activity patterns. 

Each box plot shows the results of the subtraction of each set from the previous one. 

To better understand how these differences can be interpreted, four vertical lines 

(blue lines) are plotted to show the thresholds of -5, -1, +1, and +5% of the mean of 

all observed ROG values. 
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Appendix D: ROG, EROG, and MDI maps 

 

Figure D-1 Maps illustrating the spatial distribution of ROG, EROG, MDI values 

across the Greater Toronto Area for each model. 
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Appendix E: Socio-economic factors-MDI scatter plot 

 

 



164 

 

 

 

 

 



165 

 

 

 

 

 

Figure E-1 Scatter plots of four socioeconomic factors against observed ROG values 

and MDI values. Different colors demonstrate the area type of each point. 
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Appendix F: LMI search radius sensitivity analysis 

To determine an appropriate threshold for calculating LMI, we computed the LMI values 

for all individuals using varying search radius. Since calculating LMI is computationally 

intensive, we considered search radius of 50, 75, and 100 meters to evaluate how the 

results would change and identify the best option (Table F.1). Choosing a larger search 

radius provides more POI stop points, while smaller search radius may result in more 

non-POI stop points. However, larger search radius could potentially associate POIs with 

stop points that were not actually visited by the individual. For both LMI1 and LMI2, the 

mean and median values showed a slight decrease, and their standard deviation remained 

relatively stable (Table F.1). 

Table F. 1 Summary Statistics of LMI Models using varying search radius 

Threshold LMI1 LMI2 

 Mean Median  sd Mean Median  sd 

50 0.26 0.19 0.25 0.59 0.58 0.24 

75 0.25 0.18 0.25 0.56 0.55 0.25 

100 0.24 0.16 0.25 0.55 0.53 0.25 

We visualized the distribution of each LMI metric at different search radius using 

boxplots and histograms (Figure F-1 and F-2). For both LMI1 and LMI2, we observe a 

modest decrease in LMI values with increasing the search radius.  
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Figure F-1 Distribution of LMI1 with varying search radius via boxplots and 

histograms 
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Figure F-2 Distribution of LMI2 with varying search radius via boxplots and 

histograms 

Given that these two models exhibit a modest decrease with increase in search radius, we 

established a criterion for selecting the appropriate search radius. Considering 75-meter 

threshold used in the stop detection algorithm and the 75 meters threshold for cellphone 

GPS error used in data cleaning, we opted for a more conservative choice of 75 meters as 

the suitable search radius. 
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Appendix G: Community detection algorithms’ Similarity 
scores 

We computed different similarity scores using different similarity methods on LFR 

benchmarks. Here are the results of three different community detection algorithms. 

 

 

Figure G- 1 Similarity scores of three different community detection algorithms 

(Clauset's algorithm, asynchronous label propagation algorithm, and semi-

synchronous label propagation algorithm) on LFR benchmarks using three 

different similarity measurement methods. 
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Appendix H: Ethics Approval Letters 

For Chapters 2 and 4, where the WorkAndHome dataset was used, the data usage adhered 

to the ethical guidelines and regulations set forth by the University of Southampton’s 

Ethics and Research Governance Online (ERGO) system (Ethics number: 30058). 

In Chapter 3, where the network mobility dataset provided by TELUS Communications 

Inc. was used, the data usage complied with the ethical guidelines and regulations 

established by the Western University Non-Medical Research Ethics Board (Ethics 

number: 115997). 

Chapter 5 did not require ethics approval for data usage. 
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