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Abstract 

Urban flood risk assessment is critical for safeguarding lives and infrastructure amid 

frequent floods. Recent advances in Earth Observation (EO) data enable the creation of 

flood risk maps with enhanced spatial and temporal resolutions. While traditional Machine 

Learning (ML) algorithms lack optimal feature selection, Deep Learning (DL) algorithms 

excel in extracting complex patterns from EO data. This dissertation delves into the 

estimation of flood hazard and vulnerability within urban environments through DL 

algorithms and EO data. Several innovative methodologies were proposed: 1) A 

Convolutional Siamese Network (CSN) was devised for urban flood mapping using SAR 

satellite imagery. This method employed two parallel Convolutional Neural Networks 

(CNNs), processing pre-event and co-event images, respectively. By measuring feature 

space similarity, pixels were classified as flood or background using Contrastive Loss, 

Weighted Double Margin Contrastive Loss (WDMCL), and Triplet Loss functions. Testing 

with VGG16 and ResNet50 architectures yielded Precision, Recall, and F1 Score values of 

0.75, 0.6, and 0.67, respectively, for the SEN12-FLOOD dataset, which notably improved 

upon integrating DEM into input features. 2) First Floor Height (FFH) estimation based on 

vertical measurements from Google Street View (GSV) images facilitated the creation of 

a flood vulnerability map for Toronto's Lower Don River region. Utilizing the proposed 

vulnerability index, derived from water depth minus FFH, buildings were categorized by 

vulnerability levels. Additionally, First Floor Elevation was estimated using FFH and 

Lowest Adjacent Grade (LAG) heights, achieving RMSE and Bias values of 81 cm and 

−50 cm for the Greater Toronto Area (GTA) and 95 cm and −20 cm for Virginia. 3) A 

Dense Attention Network (DAN) CNN architecture was proposed for building footprint 

extraction from LiDAR and RapidEye images, demonstrating an improved F1 Score (0.71) 

over DL models like U-net (0.42) and ResUnet (0.49). 4) A fusion method combining CNN 

classifications from GSV, LiDAR, and Orthophoto data for building land-use type 

classification achieved superior accuracy indices compared to a previous CNN-based 

study, with an Overall Accuracy of 75%. These methodologies represent significant 

advancements in utilizing DL algorithms and EO data for urban flood risk assessment, 

promising enhanced accuracy and efficiency in mapping and mitigation efforts. 
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Summary for Lay Audience 

This dissertation explored the use of advanced technologies in assessing and mitigating 

urban flood risks, a common and significant natural disaster. Traditional flood risk 

assessments involve creating maps, and recent advances in Earth Observation (EO) data 

have enabled the use of Deep Learning (DL) algorithms for more accurate analysis. The 

study presented several innovative approaches: 1) Flood Mapping with Convolutional 

Siamese Network (CSN): A novel CSN was proposed for urban flood mapping using 

Synthetic Aperture Radar (SAR) satellite images. By employing DL algorithms, 

specifically CSN with VGG16 and ResNet50 architectures, the study achieved promising 

results, enhancing flood and background accuracy indices. 2) Estimating First Floor Height 

(FFH) for vulnerability assessment: The research utilized Google Street View (GSV) 

images and building information to estimate FFH. A vulnerability map for the Lower Don 

region was produced, considering FFH and water depth. The approach demonstrated 

accuracy improvements compared with a previous method. 3) Building Footprint 

Extraction with Dense Attention Network (DAN): A DL model called DAN was proposed 

for accurate building footprint extraction using LiDAR and RapidEye images. Compared 

to other models, DAN outperformed with an impressive F1 Score of 0.71. 4) Building 

Land-Use Type Classification using a Fusion Method: A fusion method was introduced to 

combine DL classifications derived from various data sources (GSV, LiDAR, Orthophoto) 

for building land-use type classification. This ranking-based fusion method showed higher 

accuracy indices compared to a traditional Fuzzy Fusion method. The research contributes 

valuable insights and methodologies for enhancing flood risk assessment using cutting-

edge technologies, ultimately promoting better urban planning and disaster preparedness. 
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Chapter 1 

Introduction 

1.1 Background 

Floods are among the most frequent natural hazards worldwide. Between 1995 and 2015, 

over 2.2 billion people were affected by floods constituting 53% of the people affected by 

all kinds of natural disasters (Mateo-Garcia et al., 2021). Climate change is expected to 

increase flood events frequency and intensity in many regions around the world 

(GebreEgziabher & Demissie, 2020). The main flood generation mechanisms can be 

divided into three categories based on the hydraulic processes involved in their generation, 

including fluvial, pluvial, and coastal flooding. A fluvial flood happens when water 

overtops the river banks, and usually occurs in the vicinity of rivers. A pluvial flood 

happens when intense sudden precipitation affects a watershed and water flow discharge 

exceeds the capacity of the drainage network. This exceedance can happen before the water 

flow reaches the drainage network or when the overflow from the drainage network 

happens. A combination of these two situations can also result in the pluvial flood (Bulti 

& Abebe, 2020). A coastal flood results from the combined effects of high tides and storm 

events (Muthusamy et al., 2019). Regardless of the type, floods cause damage to urban 

structures, such as damage to building contents and properties, as well as damage to 

building fabric, and can hinder access to roads and bridges. Also, they can result in soil 

erosion and deposition.  

 

Urban flooding can cause significant damage to people and infrastructures. For example, 

the 2013 Toronto flood event was the most expensive disaster for Ontario; according to the 

Insurance Bureau of Canada, the damage of the insured properties exceeded $850 million. 

Thus, accurate flood risk analysis is essential for supporting urban planning and ecosystems 

and reducing costs.  

  

  

Flood risk has three components, including hazard, exposure, and vulnerability.  Hazard 

refers to the possible future natural or human-induced flood events that may affect 
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vulnerable and exposed elements. Exposure refers to the extent to which humans and 

structures may be affected in an area where flood events may occur, and vulnerability 

measures the tendency of exposed elements such as human beings, livelihoods, and assets 

to suffer adverse effects when impacted by flood events (Cardona et al., 2012). One 

parameter that gives an estimate of the flood hazard severity is flood extent. The lack of 

reliable First Floor Height (FFH) information, defined as the building first floor height 

relative to the Lowest Adjacent Grade (LAG), on a large geographic scale, causes 

significant restrictions on flood management. FFH estimation can contribute significantly 

to setting flood insurance premium/rate maps, and flood cost analysis (Montgomery & 

Kunreuther, 2018; Xia & Gong, 2024). Because of climate change, land use evolution is 

also a key factor influencing future flood risk. An increased built area results in a decrease 

in infiltration, baseflow, and lag times, and an increase in runoff volumes, peak discharge, 

and frequency of floods. Human activities such as urbanization and the growth of 

settlements and assets in flooding areas likewise contribute to the increasing flood damage. 

The risks due to such hazards in urban areas can significantly hinder daily activities, incur 

costly damages, and contribute to large-scale life losses, which is the reason why, when 

such risks are realized, they are often referred to as disasters (Beckers et al., 2013; 

Genovese, 2006; Park et al., 2021). Building land-use and type can be correlated through 

various factors and characteristics: 1) Zoning Regulations 2) Building Codes and Standards 

3) Economic Factors 4) Infrastructure and Utilities 5) Demographics 6) Land Availability 

and Topography 7) Urban Planning Policies. For example, Zoning regulations typically 

dictate the types of buildings allowed in specific land-use zones. Residential zones may 

permit single-family homes, apartments, or townhouses, while commercial zones may 

allow for retail stores, offices, or mixed-use developments. Identifying land-use type of 

buildings can help in damage assessment context and vulnerability assessment. Besides, in 

practice, the estimation of direct damage to buildings is often achieved by applying the 

method of depth-damage function that connects flood depth directly to the economic value 

of damage (Pistrika et al., 2014). There is a different curve for each building land-use type 

and this valuable information can be applied for selecting the suitable depth-damage curve. 

This dissertation addresses pressing challenges in flood risk assessment and management 

by proposing innovative methodologies and techniques. Flood risk assessment requires a 
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comprehensive understanding of various factors, including flood extent, building 

characteristics, and land-use patterns. However, traditional methods for assessing flood 

risk may face limitations, such as the lack of reliable data on flood extent and building 

attributes. Therefore, the dissertation aims to fill these gaps by introducing novel methods 

for flood extent mapping, FFH estimation using Google Street View (GSV) images, and 

identification of building footprints and land-use types. These techniques are critical for 

enhancing flood risk analysis, enabling more accurate damage assessment, and supporting 

effective decision-making in flood-prone areas. By handling these challenges, the 

dissertation contributes to advancing the field of flood risk assessment and management, 

eventually improving the resilience of communities facing flood hazards.  

 

1.2 Urban Flood Risk Analysis Using Remote Sensing Data 

 

Remote Sensing (RS) is essential for generating crucial information related to water 

resources. Satellite-based maps depicting flood extents have been utilized to calibrate 

inundation models, whether they are based on a single flood event or multiple occurrences. 

The continuous and current measurements provided by satellite remote sensing techniques 

offer global coverage, contingent on their orbital characteristics.  RS data proves valuable 

in estimating various aspects of flood risk (Wang & Xie, 2018). For instance, Optical and 

Synthetic Aperture Radar (SAR) data can be employed for mapping flood extents and 

conducting hazard analysis. Additionally, geospatial and EO data, including Light 

Detection and Ranging (LiDAR) and GSV, can contribute to assessing flood vulnerability 

and damage analysis. 

 

1.2.1 SAR Satellite Images 

RS data can help estimate flood-related parameters such as extent and depth. While Optical 

and SAR data help detect flooded areas, SAR images are of particular interest because of 

their data availability day and night and under different weather conditions. The first step 
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toward flood risk analysis is flood hazard mapping, and it can be accomplished by flood 

extent detection.   

 

 SAR intensity and Coherence 

SAR observations have been previously used in emergency response for flood mapping 

because of the cloud-penetrating and night-and-day capability of microwave instruments. 

Moreover, the possibility of using interferometric techniques adds an advantage to the 

choice of such data (Y. Li et al., 2019; Nico et al., 2000). In the context of SAR acquisition 

systems, intensity refers to the intensity of the radiation backscattered by the surface; that 

is, the fraction of the incident energy reflected directly back toward the sensor (Lillesand 

et al., 2015). Coherence is a measure of statistical similarity between two SAR images and 

was first applied for change detection applications in the mid-90s. It can be estimated 

between two images using equations (1-1) and (1-2). Equation (1-1) is called population 

coherence, and equation (1-2) refers to sample coherence.  

 

𝜇0 =
〈𝑥1𝑥2

∗〉

√〈|𝑥1|2〉〈|𝑥2|2〉
 (1-1) 

|�̂�| ≈
∑ 𝑥1,𝑛𝑥2,𝑛

∗𝐿−1
𝑛=1

√∑ |𝑥1,𝑛|
2𝐿−1

𝑛=1 ∑ |𝑥2,𝑛|
2𝐿−1

𝑛=1

 
(1-2) 

 

In both equations, x1 and x2 are the reference (captured before the flood event) and event 

(captured during the flood event) images, respectively, and the asterisk sign means the 

complex conjugate of the image. L is the number of images used for coherence 

computation, and when the number of images increases, L→ ∞ , the sample coherence 

approaches population coherence.  In other words, coherence describes the degree of 

correlation between the two radar images, and its magnitude affects the phase measurement 

accuracy. In practice, several factors contribute to a reduction of coherence. One crucial 
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factor is temporal decorrelation, which describes changes in the scene microstructure such 

as changes in dark areas location (Moreira et al., 2013). Temporal decorrelation may, for 

example, be caused by changes in scattering behaviour because of the existence of 

floodwater or vegetation growth.  

 

 

1.2.2 Google Street View  

GSV service was founded in 2007, and at the time of writing this dissertation, it covers 

more than 90 countries, providing images of both streets and indoor spaces. GSV images 

capturing the streetscape view of the cities have gained great interest after the proliferation 

of GSV images, advances in Machine Learning (ML) and computer vision, and the growing 

computational capacity to process large numbers of images (Biljecki & Ito, 2021). These 

images have various applications for urban studies, such as detecting objects near the 

sidewalks, and as a replacement for in-person street surveys (X. Li & Ratti, 2019; Nesse & 

Airt, 2020). The images can be retrieved using the GSV Application Programming 

Interface (API). Parameters for the API include image size (640 × 640 is the maximum 

image size), geographic location (geographic coordinates or addresses), Field Of View 

(FOV) or zoom level, up or down angle of the camera relative to the street view vehicle 

(default is 0), and heading (the direction the camera is facing with 0 = north, 90 = east, 180 

= south and 270 = west) (Nguyen et al., 2019). 

 

1.2.3 Light Detection and Ranging  

LiDAR sensors are active systems that emit a laser pulse and receive it returning from the 

ground. The LiDAR data level of detail depends on factors, including sensor velocity, 

attitude, FOV, and sampling frequency (Barnsley et al., 2003). Four attributes can be 

retrieved from LiDAR systems: 1- the angle of the emitted pulse, 2- the time elapsed before 

the return signal is received at the sensor, 3- the intensity of the return signal, and 4- the 

timing of first and last returns. LiDAR and its derived elevation products, such as the 

Digital Elevation Model (DEM), can be applied for various flood risk applications. For 
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example, LiDAR-derived DEM can serve as the input to the hydraulic models to visualize 

the interface of floodwater with the elevation of the ground surface and determine flood 

inundation and depth. LiDAR data can also be applied for identifying terrain characteristics 

such as roughness, contributing significantly to hydraulic modeling. Elevation data derived 

from LiDAR can also serve as auxiliary information for land use mapping and determining 

the surface runoff characteristics (Muhadi et al., 2020). The intensity of the return signal 

gives information about the ground object's spectral reflectance properties and the 

wavelength of the laser pulse. The double return properties of LiDAR systems help 

differentiate solid objects (buildings) from permeable objects (vegetation canopies). While 

buildings' return pulses are mostly from the surface, canopies produce a more complex 

return signal because of the LiDAR pulse penetration through the canopy. LiDAR data can 

be used to detect the buildings' morphology, such as roof type and height (Meng et al., 

2012). This information can be used to detect building types, for example, to differentiate 

houses from apartments and office buildings and eventually find their corresponding depth-

damage curves. The accuracy of this information depends on the LiDAR point sample 

density and the buildings' size. 

1.2.4 Multi-Spectral Satellite Image 

Multi-spectral (MS) images provide information from the ground surface in discrete 

spectral bands from visible to short wavelength infrared portions of the electromagnetic 

spectrum. Early MS sensors provided around 10 bands while newer generation 

hyperspectral images, provide spectral imagery covering the same range but with hundreds 

of spectral bands. Although hyperspectral images are newer, in many applications, such as 

urban studies, MS images are preferred because of the trade-off between spectral and 

spatial resolution. A hyperspectral image's spatial resolution is usually coarser than an MS 

image because it covers thin portions of the electromagnetic spectrum, degrading its signal-

to-noise ratio and spatial resolution (Lim et al., 2024). 

1.2.5 Orthophoto 

Since the early days of aerial photography, aerial remote sensing has emerged as a form of 

data collection in urban areas (Alderton & Elias, 2020). An orthophoto is a geometrically 
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corrected aerial image after tilt, camera perspective, and terrain topography errors removal. 

The measurements on an orthophoto are comparable to real-world sizes and can produce 

meaningful information on a  building's geometric features, such as perimeter, area, and 

length-to-width ratio. Most aerial sensors provide images in RGB and Infrared bands, and 

their spatial resolution is below 1m, making them suitable for urban studies. 

 

 

1.3 Deep Learning for Urban Flood Risk Analysis 

In recent years, ML has been coupled with RS data and geospatial analyses and applied in 

numerous studies related to flood risk analysis. ML utilizes computer algorithms to 

evaluate information and produce predictions by being trained with a custom dataset. 

Several ML algorithms, including support vector machines (Opella & Hernandez, 2019), 

artificial neural networks (Q. Li et al., 2013), and random forest classification (Farhadi & 

Najafzadeh, 2021) have been applied for flood risk analysis. Traditional ML methods 

necessitate the prior application of specific feature engineering to raw data for effective 

processing. In contrast, Deep Learning (DL) can autonomously uncover the requisite 

representations essential for detection or classification directly from raw data. DL 

techniques operate as representation-learning methods, featuring multiple tiers of 

representation. These representations are derived by combining simple non-linear modules, 

each tasked with transforming the representation at a given level into a representation at a 

more advanced and abstract level. Consequently, the model can discern concealed patterns 

within the data, leading to enhanced performance over time (Bentivoglio et al., 2022). DL 

algorithms are of great interest because of their ability to learn complicated patterns and 

delicate changes in the images. They can be used for various applications such as 

classification, object detection, object localization, and segmentation. Classification and 

object localization are two areas in which the DL algorithm will be used for flood risk 

analysis in this dissertation.  
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1.3.1 Convolutional Neural Networks for flood mapping using remote 

sensing data 

o Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are artificial intelligence systems usually used for 

image classification, object detection, image segmentation, and Natural Language 

Processing. Figure 1-1 shows the different components of a CNN. A CNN is typically 

composed of four types of layers: 1- Convolution, 2- Pooling, 3- Activation Function, and 

4- Fully Connected Layers (Taye, 2023).  Convolution layers are usually embedded in the 

DL model layers to extract feature maps. Pooling layers are used for discarding redundant 

information and abstracting the feature maps. Activation functions control the output value 

of the learning elements (neurons) and can be in linear and non-linear formats. However, 

their primary usage is making the neurons learn non-linear patterns. Finally, Fully 

Connected Layers constitute a few layers with multiple neurons connected with all the 

neurons in their preceding layers. These layers are usually embedded in the last layers of a 

CNN. 

 

 

Figure 1-1: CNN for image classification; components of a CNN include Convolution 

Layer, Pooling Layer, Activation Function, and Fully Connected layer. 
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 Convolution Layer 

Convolution Layers consist of filters (kernels) with fixed width and height. Each kernel 

element is assigned a weight that is a random number in the first training iteration. The 

weights are adjusted during training to achieve the final sub-optimal feature map. Figure 

1-2 shows the convolution operation output after convolving a 2×2 filter on a 3×3 image. 

 

 Pooling 

Pooling is used for dimension reduction in CNNs and is equivalent to reducing the spatial 

resolution. There are different types of pooling methods, such as max pooling, average 

pooling, and global average pooling. Figure 1-3 shows these operations separately. Pooling 

layers help CNN to discard redundant information. 

 

Figure 1-2: Convolution operation with filter (kernel) size 2×2 for a 3×3 image;⊗ shows the 

convolution sign 
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Figure 1-3: Pooling operations; Average and Max Pooling were conducted with 

kernel size 2×2 

 Activation Function  

This layer adds non-linearity to the network. The function input is calculated using the 

weighted sum of input neurons and bias. The activation function decides whether to fire a 

neuron or not. These layers are usually used after the convolutional and fully connected 

layers. Four types of activation functions commonly used in a CNN are as follows: 

 Sigmoid:  

This activation function accepts real numbers as input and outputs values 

between 0 and 1. Equation (1-3) shows the function formula. 

 

Sigmoid = 
1

1+𝑒−𝑥
 

(1-3) 

 

 Tanh:  

This activation function is similar to Sigmoid but the output range is between -

1 and 1. Equation (1-4) presents the function formula. 
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tanh 𝑥 = 
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 

(1-4) 

 

 Rectified Linear Unit (ReLU): 

ReLU function is the most commonly used activation function in CNNs. It 

transforms the negative values to zero and acts as an identity function on other 

values. Equation (1-5) shows the function formula.  

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (1-5) 

 

 Leaky-ReLU 

The ReLU function returns a zero for negative values that can cause neurons to 

fail to learn after the ReLU enters the negative part. This problem resulted in 

the introduction Leaky-ReLU function, which has a small slope to the negative 

input. Equation (1-6) presents the Leaky-ReLU formula. In this Equation, k 

refers to the slope for negative values, which is between 0 and 1 (Xu et al., 

2020). 

𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈(𝑥) = max(𝑘𝑥, 𝑥) =  {
𝑥 𝑖𝑓 𝑥 ≥ 0

𝑘𝑥 𝑖𝑓 𝑥 ≤ 0
    𝑘

∈ [0,1] 

(1-6) 

 

 Fully Connected Layer (FCL) 

These layers have the same architecture as the multi-layer perceptron neural networks and 

are usually used for classification. The output from convolution and pooling layers is the 

input for FCLs. Training these layers takes up lots of time because the neuron in the 

preceding layer is connected to all the neurons in the previous layer, making the number of 
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trainable parameters significant. Figure 1-4 shows the architecture of a fully connected 

layer applied for the classification. 

 

 

Figure 1-4: Fully Connected Layers in a CNN; 

these layers include an input layer (feature 

vector), hidden layers, and a Softmax layer used 

for classification.Softmax is a mathematical 

function that converts a vector of real numbers 

into a vector of probabilities, which sum up to 1. 

It's often used in machine learning and neural 

networks, particularly in multi-class 

classification tasks. 
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1.3.2 Flood mapping using Change Detection 

Flood mapping using remote sensing data can be defined as a change detection problem in 

which flood pixels are considered as change pixels, and no change pixels are labeled as dry 

pixels. Among deep learning techniques, Convolutional Siamese Networks (CSN) have 

been widely used for change detection studies because their internal structure makes them 

capable of measuring similarity between the reference and event images (Chen et al., 2020; 

Daudt et al., 2018; de Gélis et al., 2023; Zhang et al., 2023). CSN includes two parallel 

CNNs, one accepting the pre-flood, and the other accepting the flood image. Then, based 

on the similarity between the extracted feature vectors from reference and event images, 

the pixels are labeled as flood or no flood. In this dissertation, the CSN is used to detect 

flooded areas in bi-temporal SAR images, one captured before and the other during the 

flood event. 

1.4 Deep Learning for Object Localization in Google Street 

View images 

Object localization aims at locating and classifying different objects in the image and 

creating a bounding box around each object. The uncertainty for the bounding box 

locations is usually reported with confidence of existence. Besides, the image coordinates 

of the upper left and lower right corners of the bounding boxes are included in the final 

results (Zhao et al., 2018).  

Deep Learning-based Object Localization includes the following elements: 

1. CNNs: CNNs use the convolution, pooling, and activation functions to extract 

patterns within the image. 

2. Regression Analysis: Object localization often involves regression analysis to 

predict the coordinates of the upper left and lower right corners of bounding boxes 

around the objects. This can be done using deep learning-based regression models. 

3. Intersection over Union (IoU): IoU is a fundamental metric used to assess object 

localization accuracy. This metric calculates the overlap between the predicted and 

the ground truth bounding boxes around the object. 
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4. Loss Functions: Loss functions, such as mean squared error (MSE) are used to 

quantify the difference between the predicted and ground truth bounding boxes. 

These functions help optimize the deep-learning model weights and produce 

accurate and precise bounding boxes. 

5. Gradient Descent and Backpropagation: These optimization techniques are 

necessary for training deep learning models. They involve iteratively updating the 

deep learning model's weights to minimize the loss function, hence improving the 

accuracy of the bounding box coordinates. 

6. Non-Maximum Suppression (NMS): NMS is a technique that operates based on the 

principle of selecting the box with the highest confidence score while discarding 

other overlapping boxes that probably represent the same object. 

7. Matrix Operations and Linear Algebra: The principles of the mathematical 

operations conducted in the CNNs and deep-learning-based regression are based on 

matrix operations and linear algebra. Understanding these basic concepts helps us 

understand how these models label and locate objects in the image. 

 

Using the above-mentioned elements, DL-based object detection algorithms can be used 

for various applications in computer vision. While DL-based object localization methods 

can be used in all kinds of images, they were used for object localization in GSV images 

in this dissertation.  

 

1.5 Convolutional Neural Networks for building land-use 

type detection  

In terms of land-use types, buildings can be categorized into apartments, houses, industrial, 

institutional, mixed residential/commercial, office buildings, and retail. CNNs can classify 

buildings' footprints into the previously mentioned building land-use type classes. The 

predictor part of existing DL model architectures, such as Visual Geometry Group with 16 

layers (VGG16), Residual Network with 50 layers (ResNet50), and InceptionV3 can be 
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adjusted to fit the problem. Because of the large number of parameters and the lack of train 

data, especially for complex classes such as mixed residential/commercial buildings, using 

these pre-trained CNNs can be beneficial. 

1.6 Accuracy Assessment 

Our accuracy validations are based on five pixel-based indices, Overall accuracy (OA), 

Precision, Recall, and F1 Score and Intersection over Union (IoU). These measures have 

been widely used in object detection studies (Rahman and Wang, 2016; Ghasemian and 

Shahhosseni, 2020) and can be reported in both ratio and percentage format. In this study, 

the values have been reported in a ratio format. The range for all of the parameters 

mentioned above is between 0-1, and their best value is one. Calculation of these measures 

requires computing: 1- True Positive (TP), which represents the number of correctly 

classified building pixels. 2- True Negative (TN), the number of correctly detected 

background pixels. 3- False Positive (FP), i.e., the number of building pixels identified 

incorrectly. 4- False Negative (FN), which is defined as the number of pixels classified 

incorrectly as background. 

OA represents the total accuracy of the object detection, and is calculated as follows: 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1-7) 

 

Precision, also known as positive predictive rate, measures the ratio of correctly detected 

pixels in a specific class to the total pixels classified in that class. This quantity is computed 

as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1-8) 

 

Recall, also known as sensitivity, quantifies the ratio of truly classified pixels out of the 

total number of pixels in ground truth data labelled as a pre-determined class. Its value 
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represents the strength of the object detection algorithm in remembering the attributes of 

the class. This quantity is calculated as follows:  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1-9) 

F1 Score is a classification accuracy measure and can be considered as the harmonic mean 

of the precision and recall values. It gives an overall performance of the object detection 

algorithm referring to both classification map and ground truth. The higher this index, the 

better the object detection result would be: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅
 

(1-10) 

 

In equation (1-10), P and R denote precision and recall values, respectively (Maltezos et 

al., 2017).   

 IoU measures the similarity between the object detection result and ground truth and is 

defined as follows: 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(1-11) 

 

1.7 Research Gaps, Objectives, and Questions 

Most previous SAR-based flood mapping techniques have focused on using intensity data 

for urban flood mapping, neglecting coherency, another valuable source of information 

extractable from SAR images. Further, previous DL-based flood mapping works have 

mainly taken advantage of optical images, overlooking the simultaneous use of CSN and 

SAR data for urban flood mapping. Most ML-based FFH estimation methods require 

training data, and no automatic FFH estimation method is solely based on image 
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measurements. Algorithms using deep learning for building land-use type classification 

have focused on residential buildings, neglecting other building types, such as office and 

mixed residential/commercial buildings. There is no fully automatic deep-learning-based 

workflow for building footprint detection and differentiating different building land-use 

types.  

The main objective of this dissertation was to estimate two risk components, hazard, and 

vulnerability, using DL algorithms. Three sub-objectives were defined to achieve this task: 

 

1- The first sub-objective was to map urban flood extent (hazard analysis). To achieve 

this task, we used a CSN with SAR satellite images. 

 

2-  The second sub-objective was to estimate FFH (vulnerability analysis). DL-based 

object localization methods and GSV images were applied to accomplish this task. 

 

3- The third sub-objective was to detect building footprints and land-use types. CNN 

models were used to extract building footprints and classify them into detailed 

building land-use types using EO  data. The output of building footprint and land-

use type detection impacts flood damage analysis indirectly. Flood damage analysis 

falls within the vulnerability analysis domain. 

 

This dissertation explores the following research questions to achieve flood hazard and 

vulnerability analysis: 

How can urban flood mapping accuracy using SAR satellite images be improved? 

How can FFH estimation be accomplished using computer vision? 

How can the building land-use type detection accuracy using EO data be improved? 

 How can buildings in mixed land-use types, such as mixed residential/commercial, be 

detected using EO data? 
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1.8 Study Area and Data 

Chapter 2 explored three flood events: the 2019 Ontario-Quebec and 2021 Abbotsford, BC 

flood events in Canada, and the Leverkusen, Germany flood event, which was one of the 

severe floods that hit Europe in the summer of 2021, causing significant damage to people 

and infrastructures. Also, two publicly available flood datasets, Sen1Floods11 and SEN12-

FLOOD, were used in Chapter 2 to explore flood mapping on flood events distributed all 

over the globe. Figure 1-5 shows the spatial distribution of the Sen1Floods11 dataset 

(Bonafilia et al., 2020). SEN12-FLOOD data includes the time series of Sentinel-1 and 

Sentinel-2 data, and most image scenes were from Southeastern Africa, but other samples 

were from West African, Iranian, and Australian locations (Rambour et al., 2020). Sentinel-

2 images in SEN12FLOOD data were not used in this dissertation because Chapter 2 was 

focused on SAR flood mapping.  

 

Figure 1-5: Sen1Floods11 data distribution 
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Flood damage assessment is conducted using depth-damage curves. These curves relate 

absolute or relative damage to the water depth. Each curve is usually developed separately 

for each building based on their land-use type. Hence, information on building land-use 

type is essential for accurate damage assessment. Insurance companies across North 

America have started documenting FFH in Elevation Certificates (EC) to set the premiums 

and protect people's lives and properties after flood events. Chapter 3 explores FFH 

estimation for the Greater Toronto Area (GTA) and Hampton Roads, Virginia, US using a 

DL-based object detection algorithm and GSV images.  

Before detecting the building land-use type, the buildings' footprint extraction using DL 

algorithms is necessary. Then, the buildings' land-use type can be detected for each 

building footprint.  The building footprint extraction, covered in Chapter 4, was explored 

for Toronto using a Dense Attention Network (DAN). The proposed algorithm was also 

tested on the Massachusetts Building Dataset. Chapter 5 presents building land-use type 

detection for three case studies. The case studies were selected because of the high density 

of buildings of different types in these regions. The first case study included five cities in 

the GTA, including Toronto, Markham, Vaughan, Richmond Hill, and Peel Region. The 

second and third case studies included parts of Vancouver City, BC, and Fort Worth City, 

Texas. The location of these case studies are shown in Figure 1-6.  
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The selection of case studies from various cities was necessitated by the constraints of data 

availability. 

1.9 Structure of the Dissertation 

This dissertation is presented in an integrated article format and contains six chapters. 

Chapter 1 gives background information on the following chapters' topic, and introduces 

Figure 1-6: Case studies used in this dissertation.  Please note that the Greater 

Toronto Area (GTA) was a case study for two Chapters, including Building Land-

Use Type Mapping and First Floor Height (FFH) estimation. Toronto City was a 

case study for Chapter 4, Building Footprint Mapping. 
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case studies, research questions, and objectives. Chapter 2 proposes a method developed 

based on a CNN-based change detection algorithm, CSN, for SAR flood mapping in urban 

and agricultural areas. Also, it discusses the effect of loss function and adding DEM on 

flood mapping results. Chapter 3 introduces an automatic method based on a DL-based 

objection detection algorithm, YOLOv5s, to estimate FFH using GSV images. Chapter 4 

presents a CNN classifier based on skip connection and dense attention block concepts to 

detect building footprints using MS and LiDAR data. Chapter 5 introduces a fusion 

method, Ranking Classes Based on F1 Score, combining CNN classifiers trained on GSV, 

LiDAR, and Orthophoto for building land-use type detection. Chapter 6 contains the 

conclusion and presents future research directions. Figure 1-7 shows the overall 

relationships among chapters 2, 3, 4, and 5. 

 

 

  

Figure 1-7: Chapter topics and their relationships with flood risk analysis 
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Chapter 2 

Evaluation of urban flood mapping using Sentinel-1 and 

RADARSAT Constellation Mission image and Convolutional 

Siamese Network 

2.1 Introduction 

Urban flood mapping is challenging due to the complicated structures in cities, such as 

buildings, sidewalks, road culverts, and utility holes. Two types of satellite products are 

available for producing flood maps using remote sensing data, optical and SAR images. 

Optical images are not always available during a flood event because they are affected by 

dense cloud cover. SAR sensors, however, can capture images from flood-affected areas 

at longer electromagnetic wavelengths making it possible for the SAR signal to penetrate 

the cloud cover. Besides, since the SAR sensor is active, it is not dependent on sunlight. 

So, SAR images are available in all weather conditions and during the day and night. This 

characteristic makes SAR data suitable for flood mapping.  

Generally, three specific features can be extracted from a SAR image, intensity, 

polarimetry decompositions, and InSAR coherence. Intensity is a measure of the reflective 

strength of an object, polarimetry decomposition gives the polarimetric discriminators that 

can be used for classification and image interpretation, and interferometric coherence 

(correlation) is a measure of the accuracy of the determined radar signal, and its value 

decreases by temporal changes. While intensity reflects the electromagnetic characteristics 

of the radar backscattering, it is affected by the speckle noise. Flood mapping based solely 

on intensity data might result in erroneous flood maps because of the complex structures 

in urban areas. Vertical structures, like buildings, can enhance the double bounce scattering 

effect, which can be further intensified when the floodwater covers the bottom of the tree. 

Coherence data are complementary in flood mapping studies using the SAR dataset 

(Pulvirenti et al., 2021; Olthof and Svacina, 2020), and the coherency maps show high 

values in urban areas because of the stability of urban structures during short time intervals. 

When producing a flood map, a coherency map can complement the intensity data and 

improve flood mapping accuracy (Zhang et al., 2021). Besides, steady targets such as 



 

27 

 

buildings make InSAR coherence data useful for urban areas with limited vegetated 

regions. When vegetation cover is limited, any decrease in coherence values in an InSAR 

time series can be translated into a flood event. Also, speckle noise is reduced when 

producing coherency images because the noise is averaged when integrating the two SAR 

images. Because of the dynamic behaviour of the vegetated areas (due to growth), it is 

difficult to attribute coherence change to the vegetated areas or a flood. Sometimes this 

problem is addressed using SAR images with a short revisit time, less than five days, like 

COSMO-SkyMed, but such datasets are not accessible quickly, especially for flood hazard 

management studies in which time plays a vital role (Pierdicca et al., 2018). Another 

limitation when using SAR data for flood extent mapping in urban areas is the shadowing 

effect. The shadowing effect in a SAR image happens when the SAR signal does not reach 

some regions because higher objects create an obstacle between the SAR antenna and the 

area (Bouvet et al., 2018). The shadowed areas on the image are overlooked when 

performing flood extent mapping using SAR data. 

Flood extent mapping techniques can be categorized into four groups based on the theories 

applied: 1- Hydrologic/Hydraulic modelling; 2- Multi-Criteria Decision Analysis 

(MCDA); 3- Machine Learning; 4- Hybrid methods. Hydrologic models can simulate 

runoff values during a flood event, and Hydraulic models provide information on flow 

movement and inundation depth in areas near a river network. Multi-criteria techniques 

assign a weight to each flood indicator, such as topographic, hydrologic, climatic, and 

anthropogenic parameters, to produce a final flood risk map. Machine learning approaches, 

aka Artificial Intelligence techniques, use training data to discriminate between flooded 

and dry areas based on geospatial input features. Hybrid techniques use a combination of 

previously mentioned methods to model flood events, such as integrating hydraulic 

modelling and the Analytical Hierarchical Process (AHP) technique to produce a flood risk 

map (Nguyen et al., 2021). 

Deep Learning, aka deep structured learning, is a machine learning technique based on 

artificial neural networks with representation learning. Although ML algorithms such as 

neural networks, random forest, and support vector machines have proven promising 

methods for flood mapping, DL methods, especially CNNs, have shown higher capability 
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than the previous ML methods to extract features at different scales such as edges and 

objects (Muñoz et al., 2021). Li et al. (2019a) introduced a CNN to produce a flood map in 

Houston, USA, during Hurricane Harvey in August 2017 based on TerraSAR-X intensity 

and coherence data. This study focused on fluvial flooding, and its efficiency for coastal or 

pluvial flooding was not examined. Some DL-based segmentation models such as Unet, 

Unet++, and DeepLabV3 have been proposed in the literature for flood mapping, and they 

have achieved promising results on both optic and SAR images. Wang et al. (2022), 

proposed a DL model based on Unet for flood water extraction in Poyang Lake in China 

using Sentinel-1 SAR images. Jaisakthi et al. (2021), proposed a modified Unet algorithm 

for flood detection using Planet Scope images and reported an overall accuracy of about 

70% on validation data. The flood masks in this work were not compared with any ground 

truth dataset. Konapala et al. (2021), used Unet for flood inundation mapping using 

Sen1Floods11 data, including Sentinel-1 and Sentinel-2 images from 11 flood events 

around the globe. After adding elevation data to the input, the flood median F1 score 

improved from 0.62 to 0.73 compared with using only Sentinel-1 bands. Mateo-Garcia et 

al. (2021) used the WorldFloods dataset and CNN for flood segmentation and compared 

the method with linear and thresholding methods. A high recall rate above 94% was 

achieved for the flood. However, SAR data was not examined for flood mapping. Mayer 

et al. (2021) used Unet and Sentinel-1 data to map surface water in Cambodia in Southeast 

Asia. Accuracies above 80% were achieved. Although high accuracy indices were obtained 

for surface water, the method was not tested in urban areas. Chen et al. (2022) proposed a 

Siamese Network based on Unet for building change detection in very high-resolution 

remote sensing images and reported promising accuracies after comparison with ground 

truth data. Their method was not tested for flood-induced changes in satellite images.  

Convolution Siamese Network (CSN) is one type of DL algorithm that has been applied 

for change detection (Yang et al., 2021; Wang et al., 2020; Chen et al., 2020). This method 

highlights changed areas using a bi-temporal remote sensing dataset. CSNs use two parallel 

CNN in their internal architecture and are used in change detection problems. In CSN, one 

CNN focuses on the pre-event image and the other works on the co-event image. In this 

way, CSN is more applicable for change detection problems (here flood mapping) than the 

usual CNN network. Some recent studies have used Siamese Networks for remote sensing 
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change detection applications. For example, Jiang et al. (2021) applied a Siamese Network 

called S3N. This network used Visual Geometry Group (VGG) as subnetworks and was 

applied to detect changes in various types of remote sensing data, including panchromatic, 

MS, SAR, PolSAR and NDVI images. The problem of high computational cost and lack 

of training data was addressed by applying the transfer learning strategy. They concluded 

that their proposed architecture is more computationally efficient than state-of-the-art 

techniques while giving comparable results to the existing methods. Wang et al. (2021) 

presented a fully CSN trained on Focal Contrastive Loss (FCL) to address the imbalanced 

data problem by focusing on the samples with fewer train data. Zhang et al. (2022) 

proposed a Siamese Residual Multi-kernel Pooling module (SRMP) to improve the high-

level change information extraction from optical images. A feature difference module was 

also proposed to extract low-level features and help the model generate more accurate 

details. In another work, a Siamese Segmentation Network, SiHDNet, was proposed for 

building change detection. The proposed method was based on deep, high-resolution 

differential feature interaction. The difference map was created through a special fusion 

module to obtain sufficient and effective change information. The final binary change map 

was acquired through the improved spatial pyramid pooling module (Liang et al., 2022). 

Yang et al. (2021) proposed a new change detection algorithm based on the Siamese 

Network, MRA-SNet, for building, road, and land cover change detection in optical remote 

sensing images. The UNet network was used as the backbone architecture, and the bi-

temporal images were imported separately to the encoder. The ordinary convolution blocks 

were replaced with Multi-Res blocks to extract spatial and spectral features of different 

scales in remote sensing images. Hänsch et al. (2022) developed the Spacenet 8 dataset 

from high-resolution optical satellite images and used the Convolutional Siamese Network 

to detect flooded roads and buildings. The mean overall IOU of 0.66 was reported in the 

best case. 

These studies however were all based on optical image data for change detection, and they 

did not address the challenges associated with the SAR change detection problem. 

Recently, Siamese Networks have been used for flood mapping studies. Zhang et al. (2022) 

proposed a domain adaptation-based multi-source change detection method for 

heterogeneous remote sensing images. The Landsat-8 image was used as a pre-event, and 
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the Sentinel-1A image was used as the co-event for flood mapping of the 2017 California 

event. The area studied for flood mapping in this work covered agricultural lands, not dense 

urban areas. An urban flood mapping approach using SAR satellite image based on a 

change detection framework with CNN was proposed in this Chapter to address the 

mentioned research gaps. 

 

 

2.2 Study Area and Data 

Canada has experienced more frequent and intense flooding in recent years, such as the 

2019 Ontario-Quebec and 2021 B.C flood events. Sentinel-1 (launch in 2014) satellite 

imagery provides an opportunity to study these floods. In addition, flood detection for the 

Leverkusen city in Germany, which was severely impacted during the 2021 European flood 

event, was investigated to show the generalization of the proposed CSN to other areas and 

because of the availability of the ground truth data. Figure 2-1 shows the location of these 

case studies on the map. 
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Figure 2-1: Location of case studies; a) Ontario-Quebec and BC case studies. b) 

Germany case study. 

 

2.2.1 2019 Ontario and Quebec Flood Event 

Heavy rainfall from mid-April until mid-May and snowfall accumulation 50% greater than 

expected caused flooding in eastern Ontario and southern Quebec. This event was among 

the top ten natural disasters of the year and was even more severe than the flood event in 

2017. The Ottawa River peak height went beyond the values recorded in 2017, about 30 

cm. Ottawa and Gatineau were among the affected municipalities. These cities and nearby 

regions experienced a severe flood causing 111 homes to evacuate, 923 people injured, and 

insured losses from this event cost about $201 million across Ontario and Quebec (Olthof 

and Svacina, 2020).  
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Figure 2-2 shows the extent of the study area, which includes parts of Ottawa and Gatineau 

cities. 

Figure 2-2: Study area for the 2019 Ontario and Quebec flood event 

 

2.2.2 2021 British Columbia Flood Event 

The 2021 Pacific Northwest floods include a series of floods that influenced British 

Columbia, Canada, and neighbouring Washington state in the United States. Heavy rains 

caused flooding in parts of southern British Columbia and the northwestern United States, 

starting from November 14 until December 17. In December, the Insurance Bureau of 

Canada reported that the flooding was the costliest natural disaster in British Columbia's 

history, costing at least 450 million CAD in insured damage. The natural disaster provoked 
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an emergency state for British Columbia, and at least five people were killed, and ten others 

were hospitalized during the event. The Nooksack River which flows north of Bellingham 

in Washington State was flooded. The floodwater ended up in the Sumas River, and the 

water flowed northeast, crossing the border into Abbotsford. Figure 2-3 shows Abbotsford 

city and the selected region on the map. 

Figure 2-3: Abbotsford, BC 
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2.2.3 2021 Germany Flood Event 

In July 2021, several countries in Europe experienced severe floods. Some of these floods 

caused severe impacts on lives and properties. The floods started in the United Kingdom 

and later affected several river basins across Europe, including Germany. The states of 

Rhineland-Palatinate and North Rhine-Westphalia were particularly hard hit, causing 196 

death tolls. Further downstream of the Rhine river, the heaviest rainfall ever measured over 

24 hours caused flooding in cities including Cologne and Hagen, while in Leverkusen, 400 

people had to be evacuated from a hospital. Figure 2-4 shows the Leverkusen city location 

and the Rhine river on the map. 

Figure 2-4: Leverkusen City, Germany 
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2.2.4 Input Data For Flood Mapping Using CSN 

 

The dataset used for flood extent mapping was presented in Table 2-1. 

Table 2-1: Dataset used for flood events 

Case study/event Data Description 

2019 Ontario and Quebec 

flood, CA 

Sentinel-1 Level-1A GRD  

Data type: intensity SAR 

image 

Resolution: 10 m 

Imaging mode: IW 

Sentinel-1 Level-1A SLC 

 

Data type: interferometry 

SAR image 

Resolution: 10 m  

Imaging mode: IW 

SRTM DEM Resolution: 30m 

2021 BC flood, CA 

RADARSAT Constellation 

Mission (RCM) 

Data type: SAR image 

Resolution: 5m 

Imaging mode: Stripmap 

Gridded CDED format 

DEM 
Resolution: 25m 

2021 Leverkusen flood, 

Germany 

Sentinel-1 Level-1A/B 

GRD 

Data type: intensity SAR 

image 
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Resolution: 10m 

Imaging mode: IW 

Sentinel-1 Level-1A/B 

SLC 

 

Data type: interferometry 

SAR image 

Resolution: 10m 

Imaging mode: IW 

SRTM DEM Resolution: 30m 

 

Both intensity and coherence data were used in this study. Sentinel-1 GRD datasets were 

used for producing intensity data. One image before the flood event and the other during 

the flood was selected. The raw pixel values were converted to the radar backscatter 

coefficient (σ°) using the calibration toolbox in SNAP software. Also, the Sentinel-1 SLC 

dataset was used to produce the coherency feature maps for both the pre and co-event flood 

images. The coherency maps between two dates were computed in the SNAP software for 

both VV and VH images using the procedure shown in Figure 2-5.  

Figure 2-5: The procedure used in SNAP software for producing the coherency map 
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Pre and post-event images were selected temporally as close as possible to the event image 

acquisition date to reduce unwanted changes such as vegetation growth and anthropogenic 

activities. For the 2019 Ontario and Quebec case study, one coherency map was computed 

between the 27th Mar and the 8th Apr (two dates before the flood event). Another was 

computed between the 14th of May and the 8th Apr (one date during and another before 

the flood event). For Abbotsford city, three high-resolution dual-polarized RCM intensity 

images were available for the flood event. Two Radarsat Constellation Mission 3 (RCM 3) 

data were available, one from the flood event on 18th Nov and the other after the flood 

event on 30th Nov. Also, one RCM2 data was available during the flood event on 19th Nov 

that was used as the co-event test image. There were no RCM SLC data available for the 

area during the flood event. For the Leverkusen region (Germany), Sentinel-1A/B intensity 

and coherency data were used for flood mapping. The pre-event intensity data were 

captured on the 7th (S1B) and 10th (S1A) of July. The pre-event coherency maps were 

extracted from 24th Jun and 6th Jul, and two sets of co-event counterparts were computed 

between the 18th and 6th (S1A) July and 19th and 7th July (S1B). Figure 2-6 shows the 

original SAR images for this flood event. The input features used for flood mapping in the 

three case studies were shown in Table 2-2. 

 

Figure 2-6: Original Sentinel-1 intensity images for Leverkusen, Germany; (a): 

Pre-event intensity image (VV); (b): Co-event intensity image (VV); the 

highlighted areas show the regions where flood reduced backscattering values. 
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Table 2-2: Input dataset 

 

Data type 

Date(s) (Ottawa, ON and 

Gatineau, QC) 

 

Date(s) (Abbotsford, 

BC) 

 

Date(s) (Leverkusen, 

Germany) 

 

Intensity Pre-event Co-event Post-event Co-event Pre-event Co-event 

𝜎𝑉𝑉 
0 (𝑑𝑏), 𝜎𝑉𝐻 

0 (𝑑𝑏) 
08/04/2019 

(train/test) 

2019/04/25  

(train) 

07/05/2019 

(test) 

- - 

2021/07/10 

(train) 

2021/07/07 

(test) 

2021/07/18 

(train) 

2021/07/16 

(test) 

𝜎𝐻𝐻 
0 (𝑑𝑏), 𝜎𝐻𝑉 

0 (𝑑𝑏) - - 

2019/11/30 

(train/test) 

2019/11/18 

(train) 

2019/11/19 

(test) 

- - 

Coherency Pre-event Co-event Post-event Co-event Pre-event Co-event 

𝛾𝑉𝑉, 𝛾𝑉𝐻 

2019/03/27-

2019/04/08 

(train/test) 

2019/05/02-

2019/04/08 

(train) 

 

2019/05/14-

2019/04/08 

(test) 

- - 

2021/07/06-

2021/06/24 

(train/test) 

2021/07/18-

2021/07/06 

(train) 

2021/07/19-

2021/07/07 

(test) 
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Two publicly available flood image datasets, Sen1Floods11 and SEN12-FLOOD, were 

also included in the experiments to examine the generalization ability of the proposed CSN. 

Sen1Floods11 consists of 11 flood events, including, events in Bolivia, Cambodia, Ghana, 

India, Nigeria, Pakistan, Paraguay, Somalia, Spain, Sri Lanka, and the USA (Bonafilia et 

al., 2020). The images in this dataset are 512×512 Sentinel-1 images with VV and VH 

polarizations and 10m spatial resolution and were accessed via the Google Cloud storage 

bucket. The labels for the dataset are in two forms, hand-labeled and labels achieved using 

Otsu's thresholding (Otsu, 1979). The experiments in this work are based on the hand-

labeled dataset.  

The SEN12-FLOOD dataset consists of co-registered Senetinel-1 and Sentinel-2 image 

time series for flood detection. The data is freely available via the Radiant MLHUB 

website. Because the primary concern of this research work was SAR flood detection, just 

the SAR images were imported to the CSN. The SAR images consisted of images with a 

size of about 620×550 and 10m spatial resolution in VV and VH polarizations. The data 

were from flood events in West Africa, Iran, and Australia, and included pre-flood and 

post-flood images in urban and rural areas captured from December 2018 to May 2019 

(Rambour et al., 2020; Aparna and Sudha, 2022). It is worth mentioning that Sen1Floods11 

and SEN12-FLOOD use different labeling formats. While Sen1Floods11 was labeled pixel 

by pixel, SEN12-FLOOD was labeled image by image. It means that the images, in which 

flood was present, were tagged as flooded. 

2.3 Methodology 

2.3.1 Flood Mapping Using CSN Based On a Change Detection 

Framework 

In this study, flood mapping was conducted based on a deep learning-based change 

detection technique called Convolutional Siamese Network (CSN). Siamese networks 

generally consist of two CNN networks running parallel and having the same parameters, 

identical in number and value. One CNN network is applied on the pre-event image and 

the other one on the co-event image. Because of the high heterogeneity in the image scene, 
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the input image bands need to be divided into more homogenous regions or image segments 

with size (H, W, N), which denote the height, width, and the number of input bands for 

each input image segment (image patch hereafter), respectively. The size of the image 

patch depends on the CNN input layer configuration. In this study, the input layer was 

designed to accept image patches with a size of 32×32. The patch size was set based on 

experimental experience, a very small patch size reduces the information content and a 

very large patch size increases the processing time. So, it is a balance between the 

information content imported to the network and processing time. Input image bands are 

segmented into regions with sizes (32, 32, N) to be compatible with the input layer, and the 

central pixel label in each image patch is used as the target label. The proposed CSN has 

three blocks (subnetworks), the first block is the input layer, second is the feature 

extraction, and the third is the prediction block. Figure 2-7 shows how the three blocks 

have been embedded into the network, and Figures 2-8 - 2-10 show the graphical abstracts 

for each block.  

 

Figure 2-7: Different blocks in Flood Map generation using CSN 
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Figure 2-8: Graphical abstract for blocks 1 and 2 

 

Figure 2-9: Graphical abstract for block 3 (training phase) 
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Figure 2-10: Graphical abstract for block 4 (test phase); the dates are related to the  

2019 Ontario and Quebec flood event 

The configuration of train data depends on the loss function applied in the feature 

extraction phase. For example, if the Triplet Loss function is used, a triplet set of image 

patches [anchor, positive, negative] is imported into the network. In the case of a 

Contrastive Loss function, the input training set will be a duplet set of image patches, 

[positive, negative], and the anchor patches will be removed from the training data. The 

2D image patch is converted into a 1D feature vector using the convolution and pooling 

layers in the feature extraction block. The user defines the feature vector size, which is 

called the embedding dimension. Convolution layers extract the 2D feature maps, and 

pooling layers make the extracted feature maps more abstract and extract the gist of 

information from the feature maps. Some CNN networks have been designed, by computer 

vision experts, and trained on big RGB image databases, such as ImageNet. These pre-

trained CNN networks such as VGG16, VGG19 (Simonyan and Zisserman, 2016), 

ResNet50 (He et al., 2016), and inception_v3 (Szegedy et al., 2016) are available via the 

TensorFlow library in Python. These model parameters can be kept fixed and used for other 
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classification problems. Although the use of pre-trained models is valuable for flood 

mapping studies to create a map in the shortest possible time, because the input data was a 

SAR image with different textural information than the RGB image, both pre-training and 

training from scratch (when all the network parameters are trained from the very beginning) 

strategies were tested to evaluate which works better for the SAR data. The ResNet50 and 

VGG16 were used as the backbone CNN architecture because they have been previously 

found effective for image feature extraction. Although the applied CNN architectures here 

were ResNet50 and VGG16, the methodology is not limited to a specific architecture and 

can be generalized to other pre-trained CNN models. The imported train data via the input 

layer is used to adjust the feature extraction block parameters (CNN parameters). The CNN 

parameters are adjusted based on the loss function values, i.e., if the loss value is high, the 

parameters are changed to reduce the loss value. 

2.3.2 Train Data Preparation  

When using DL algorithms for flood mapping, train and test/ground truth data should not 

overlap for reliable accuracy assessment. In this chapter, a k-fold cross-validation 

procedure was applied to train and test the DL models, specifically for each of the three 

flood events and for each publically available dataset. In the k-fold approach, the data, D, 

is partitioned into k non-overlapping subsets, D1, D2, ..., and Dk of equal size. The model 

is trained k times, and at each iteration, t, the dataset D is used for training without the 

subset Dt, considered as test data. In the first iteration, the first subset is used as the test, 

while all the other subsets are considered as the train data. In the next iteration, a different 

subset is selected as the test while the rest of the dataset is considered as the train data, and 

the model is retrained. The number of folds, k, is usually set with trial and error in spatial 

applications (Ghorbanzadeh et al., 2018). For DL models, a validation dataset is also 

needed, so 20% of the train data in each fold was set as the validation. Before training the 

DL models in each iteration, data augmentation was applied on train, validation, and test 

data to increase the number of each set. The data augmentation method applied was 

horizontal flipping (Chen and Fan, 2021; Deng et al., 2020; Lalitha and Latha, 2022; 

Shawky et al., 2020; Yu et al., 2017). Please note that firstly, the data was split into folds, 

then data augmentation was applied to each set separately to make sure the train, validation, 
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and test data did not overlap. In this work, the number of folds was set to 5, and at each 

fold, about 400,000, 100,000, and 200,000 image patches, with size 32×32, were 

considered for train, validation, and test, respectively. These numbers were considered for 

each flood event, including 2019 Ontario and Quebec, 2021 BC, and 2021 Germany, 

separately. Figure 2-11 shows the flood masks used as input data for the case studies. 
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Figure 2-11: Input flood masks; the data was split to train and test using k-fold 

cross validation ; a) Ottawa and Gatineau area; b) Abbotsford, BC (agricultural 

area); c) Leverkusen, Germany; The blue and black shades were used for showing 

samples for the flood and background areas, respectively. 

 

The Sen1Floods11 dataset does not include pre-event images. Sentinel-1 pre-event images 

were automatically downloaded for each region using Google Earth Engine. The nearest 

dry month to the event image was selected as the pre-event month. For a dry month with 

more than one Sentinel-1 image available, the closest date to the flood image was 

considered a pre-event image date. The dataset were partitioned into five folds, and about 

310, 194, and 106 images in each fold were considered for train, validation, and testing 

(labeling is per pixel). The SEN12-FLOOD dataset was also divided into five folds in the 

same way, and about 357, 93, and 200 images were selected as non-flood samples for train, 

validation, and testing, respectively. Besides, about 175, 37, and 91 images were 

considered flood samples for train, validation, and testing, respectively (labeling is per 

image). We note that while image patch IDs are different for train, test, and validation, and 

images do not overlap completely, there might be some image patches in train, validation, 

and test from the same flood event. Randomly splitting data into folds without considering 

the flood event may increase the spatial autocorrelation between train and test data and 

result in model overfitting. One solution is to withhold one flood event as the test and train 

and validate on the others, switching to the next flood event in the next fold.  

2.3.3 Training CSN 

Two scenarios were tested for training the backbone CNN models in CSN. In scenario one, 

the CNN networks were Trained From Scratch (TFS), and all the parameters were trained 

from the beginning. In the second scenario, Transfer Learning (TL) was applied. TL means 

that the CNN model parameters are kept fixed based on their values obtained by training 

on popular RGB image databases like ImageNet, and only the newly added fully connected 

layers (the topmost layers) are trained. The TL method was tested for the 2019 Ontario and 

Quebec flood events and compared with the TFS method. For the other case studies, only 
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TFS was used because of the higher accuracy result it achieved for the 2019 flood event 

case study.  

Popular backbone architectures, such as ResNet50 and VGG16 mainly accept three input 

feature bands because they have been trained on three-band RGB images. One problem 

when using these networks for remote sensing images is that the number of feature bands 

(N) is usually higher than three. A PCA transformation was applied to the train data, and 

the number of PCA components was set to three to make N (number of input feature bands) 

the same as the backbone networks. 

A separate CSN was trained for each flood event, including 2019 Ontario and Quebec, 

2021 BC, and 2021 Germany flood events because the datasets applied to Ontario-Quebec 

and BC flood events were from different satellites with different polarizations (VV and VH 

for Sentinel-1 and HH and HV for RCM) and with different spatial resolutions (10m for 

Sentinel-1 and 5m for RCM). While Sentinel-1 image was used for the Ontario -Quebec, 

and Germany flood events, separate models were trained to develop a specific CSN for 

each location and increase the flood mapping accuracy. For publicly available datasets, 

Sen1Floods11 and SEN12-Flood, a separate CSN was trained because the two datasets use 

different labeling techniques. While Sen1Floods11 labels each pixel as to flood/non-flood 

pixel, SEN12-Flood labels the whole image/scene to flood/non-flood. For training the 

CSN, the network parameters, including the number of epochs, batch size, learning rate, 

and optimizer function, need to be set. Another critical parameter that needs to be set, 

especially for CSN, is the feature space vector dimension, aka embedding dimension. Table 

2-3 shows the assigned values to these parameters. 
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Table 2-3: CSN Parameters 

Number of epochs 200 

Batch size 50 

Embedding dimension 256 

Optimizer function Adam 

Initial learning rate 10-4 

Decay rate 0.8 

Decay steps 104 

 

The CSN was implemented using the Tensorflow library in Python. In Tensorflow, it is 

possible to set an early stopping condition to prevent overfitting. The condition is set so 

that the training will be stopped if the validation loss does not change during 50 epochs. 

When training a deep learning model, it is often helpful to lower the learning rate as the 

training progresses. One of the strategies available in Tensorflow for reducing the learning 

rate is exponential decay in which the initial value of the learning rate is reduced 

exponentially. The parameters for exponential decay include the initial learning rate, decay 

rate and decay step. These parameters were presented in Table 2-3. 

2.4 Accuracy Assessment 

The accuracy assessment in this paper was achieved using three metrics (Chen et al., 2022; 

Jiang et al., 2021; Konapala et al., 2021), including precision, recall, and F1 score. These 

metrics have been described in Table 2-4. In this Table, TP (True Positive), refers to the 

number of correctly classified flood pixels, TN (True Negative) is the number of correctly 

detected background pixels, FP (False Positive), refers to the number of wrongly identified 
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flood pixels, and FN (False Negative), is defined as the number of pixels classified 

incorrectly as background. 

Table 2-4: Accuracy metrics 

Metric Definition 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score 
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

2.5 Results 

This section presents the experiments conducted for each case study, including the 2019 

Ontario and Quebec, 2021 Abbotsford, and 2021 Leverkusen flood events. The flood 

mapping results and the accuracies after adding DEM have been included for each case 

study.  

2.5.1 Flood Maps 

This section presents the flood contingency maps and flood maps for the 2019 Ontario and 

Quebec, 2021 BC, and 2021 Germany flood events. For the first and third flood events, the 

original flood mask was in the vector format and was converted into the raster format for 

compatibility with the produced flood mask. Based on the obtained results, CSN 

overestimated flood in urban areas. This result was in agreement with previous study by 

Tanim et al. (2022) when using Sentinel-1 data for flood extent mapping. Because of the 

medium resolution (10m) of Sentinel-1 images, there is a high chance of mixed flood and 

non-flood pixels that might cause overestimation.  
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Figure 2-12 shows the contingency map created using the proposed CSN for the Ottawa 

and Gatineau area overlaid onto the Government of Quebec flood mask. As mentioned 

above, results show that the proposed CSN overestimated the flood area, especially in the 

residential parts. 

Figure 2-12: Contingency map created using the proposed CSN for the 2019 Ontario 

and Quebec flood event overlaid onto the ArcMap base map ; the magenta shows 

True Negative areas (correctly detected background pixels) detected by the 

proposed CSN, and the dark yellow shade areas are False Alarms (erroneously 

detected flood pixels) 
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Figure 2-13 shows the flood map created using the proposed CSN for the Abbotsford area. 

Based on the figure, it is evident that the proposed CSN algorithm detected some 

fragmented flood areas across the city in the roads and residential parts. 

 

Figure 2-13: Flood map created using the proposed CSN for 2021 Abbotsford flood 

event 

 

Figure 2-14 shows the flood map created using the proposed CSN for the Leverkusen city 

overlaid onto the rasterized ground truth data. The original ground truth data was accessed 
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via the Copernicus Emergency Management Website (European Union, 1995–2022, 2021). 

Similar to the results obtained for the Ottawa area, the flood map produced using the 

proposed CSN shows overestimation compared with the reference data, and some granule 

noisy flood patterns can be seen on the map. In terms of capturing the permanent water 

bodies, the Rhine river width mapped using the proposed method was thinner than the river 

width in the reference data. 

Figure 2-14: Flood map created using the proposed CSN for the 2021 Leverkusen 

flood event; the light blue areas are the water bodies (both permanent water bodies 
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and flood regions) detected by the proposed CSN, and the dark blue areas are the 

water bodies (both permanent water bodies and flood regions) in the ground truth 

data 

The contingency map shown in Figure 2-12 resulted in a high false alarm rate because of 

the shadowing effect of both SAR sensors and high-rise buildings. Comparing flood maps 

in Figures 2-13 and 2-14, Figure 2-14 using Sentinel-1 achieved noisier results compared 

with 2-13, which used RCM with a spatial resolution of 5m, two times higher than Sentinel-

1, with a spatial resolution of 10m. 

2.5.2 Adding DEM Data for Flood Mapping 

Figure 2-15 shows the F1 score values for three case studies and the SEN12-FLOOD and 

Sen1Floods11 datasets for the background and flood classes before (BF) and after (AF), 

adding DEM data to the SAR dataset. It is evident from the bar chart that the background 

F1 score improved in most cases. The background F1 score improved by 0.16, 0.24, 0.04, 

and 0.12 for SEN12-FLOOD, Gatineau, Abbotsford, and Leverkusen, respectively. For the 

flood class, while the F1 score dropped by 0.03 and 0.01 for Abbotsford and Leverkusen 

areas, it improved by 0.05, and 0.01 for the Sen1Floods11, SEN12-FLOOD, and Gatineau 

area, respectively.  
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Figure 2-15: Effect of adding DEM data on the F1 score for the background and 

flood classes in Gatineau, Abbotsford, and Leverkusen case studies , along with 

Sen1Floods11 and SEN12-FLOOD datasets; BF is an acronym for Before Flood and 

AF is an acronym for After Flood 

 

2.6 Discussion 

This section examines the effect of changing the backbone architecture and the loss 

function in CSN. Besides, it compares the proposed CSN with other DL methods and 

explores the effect of adding DEM on flood mapping accuracy for three case studies. All 

the experiments were repeated on two publicly available datasets, Sen1Floods11 and 

SEN12-FLOOD, to test the generalization ability of the proposed CSN. 

2.6.1 Comparison of Flood Maps In Terms of CSN Backbone 

Architecture 

One of the uncertainty sources in the proposed CSN is the type of backbone architecture 

applied for the feature extraction. Figure 2-16 compares the accuracy indices for the three 
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case studies in terms of two kinds of networks used for feature extraction, including 

ResNet50 and VGG16. It can be inferred from the figure that the flood precision rate after 

changing the feature extractor from ResNet50 to VGG16 improved by 0.02, 0.02, and 0.08 

for the Gatineau area, Abbotsford, and Leverkusen, respectively. In terms of recall rate, 

except for the Gatineau area, for the other two case studies, the index dropped by 0.19 and 

0.64 after changing the backbone architecture to VGG16. Finally, the F1 score improved 

by 0.03 and 0.1 for the Gatineau area and Leverkusen areas but dropped by 0.01 for 

Abbotsford after using VGG16 as the feature extractor. Based on the obtained accuracy 

indices for the three case studies, it can be induced that VGG16 generally achieved higher 

flood accuracy than ResNet50. It is worth mentioning that there is no best feature extractor 

and the selection of the most suitable feature extractor for the Siamese Network depends 

on different factors such as the type of input data in terms of being optical, SAR, or 

topography data. Additionally, the selection can be affected by the case study, and a feature 

extractor might work for one case study but might not be suitable for the other case studies. 

Further, for the Abbotsford case study, the accuracy indices are more balanced between the 

background and flood classes than Gatineau and Leverkusen (Figure 2-16). The reason for 

more similar results between Gatineau and Leverkusen areas is the type of input data 

applied for these case studies. While for the Abbotsford area, the RCM dual-polarized 

intensity bands in HH and HV channels were tested, for Gatineau and Leverkusen, 

Sentinel-1 intensity and coherency data in VV and VH channels were applied for flood 

mapping. 
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Figure 2-16: Comparison between the proposed CSN performance in terms of 

feature extractor for Gatineau, Abbotsford, and Leverkusen case studies 

 

Figure 2-17 shows the flood and background accuracies for SEN12-FLOOD and 

Sen1Floods11 datasets using VGG16 and ResNet50 as the backbone architecture. For the 

SEN12-FLOOD dataset, when using ResNet50, the flood was not detected in the image 

scene. However, VGG16 achieved about 0.75 precision and 0.67 F1 score for the flood 

class. The same result was achieved for the Sen1Floods11 dataset, and VGG16 showed 

higher flood precision and F1 score than ResNet50. After using VGG16, flood precision 

increased from 0.09 to 0.2, and the F1 score increased from 0.14 to 0.25. Higher flood 

accuracies were obtained for SEN12-FLOOD than Sen1Floods11. The reason for this is 

that labeling the SEN12-FLOOD dataset is more straightforward than the Sen1Floods11 

dataset. SEN12-FLOOD marks the whole image scene as flood/non-flood, but 
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Sen1Floods11 is a per-pixel labeling task that is more complicated because of mixed pixels 

and speckle noise in SAR images. 

 

Figure 2-17: Comparison between the proposed CSN performance in terms of 

feature extractor for SEN12-FLOOD and Sen1Floods11 datasets 

 

2.6.2 Effect of Using Different Loss Functions 

Another uncertainty source in CSN is the loss function applied for training the feature 

extractor Network. Three loss functions, including Contrastive Loss, Weighted Double 

Margin Contrastive Loss (WDMCL), and Triplet Loss, were used in this study to assess 

the CSN sensitivity to the loss function applied.  
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Figure 2-18 shows the Gatineau case study's bar chart for flood and background accuracy 

indices. The flood recall rate improved after increasing flood sample weights. The 

background precision did not drop significantly after increasing flood sample weights and 

reducing background sample weights simultaneously, but its recall rate dropped. In other 

words, after decreasing background samples' contribution to the training process, the recall 

rate decreased. According to the bar chart, changing from Triplet Loss to WDMCL, the 

recall rate increased by 0.43 and by 0.47 after changing from Contrastive Loss to WDMCL. 

Although using WDMCL effectively increased the flood recall rate, the flood precision did 

not change after changing the loss function formulation. The flood precision index might 

be more affected by the input data type (optic, SAR or topography data) than the 

background and flood samples distribution. 

 

 

 

Figure 2-18: Background and flood accuracy indices for Contrastive Loss, 

WDMCL, and Triplet loss functions in Gatineau, QC 
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Figure 2-19 shows the same bar chart as figure 2-18 for Abbotsford city. Based on the 

figure, all three loss functions resulted in similar flood precision accuracy. Besides, the 

flood recall rate improved after emphasizing flood class in the WDMCL formulation. In 

terms of flood precision index, all three loss functions had comparable performance, 

achieving precision values lower than or equal to 15%, which means that in almost only 

15% of the cases, the detected flood pixel had consistency with the reference data. This 

low precision index might be related to the limitations of using only the SAR intensity data 

for flood mapping. Although the complementary role of SAR coherency and polarimetry 

data can be inferred from the literature, the only high-resolution RCM data available for 

the area was the intensity, adding limitations to examining the effect of other SAR 

products, such as polarimetry and coherency, for flood extent mapping.  

Figure 2-19: Background and Flood accuracy indices for Contrastive Loss, 

WDMCL, and Triplet loss functions in Abbotsford, BC 

Figure 2-19 suggests that the F1 score achieved for the WDMCL is about 1%, and 6% 

higher than the corresponding values for the Contrastive and Triplet Loss functions, 

respectively. While Contrastive and Triplet Loss functions achieved an F1 score of about 

23% and 16%, the WDMCL achieved a 24% because of its significantly higher recall value 
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of 68%. Another important point is that although adding more weight to the flood samples 

in the WDMCL improved the recall index, this strategy did not help increase the precision 

index for flooded areas in the SAR image. The flood recall rate improved by 0.51 compared 

to the Triplet and by 0.19 compared to the Contrastive Loss Functions. At the same time, 

after decreasing the emphasis on background class in WDMCL, the recall rate dropped by 

0.21 and 0.32 compared to Contrastive and Triplet Loss functions, respectively. 

 

Figure 2-20 shows the accuracy indices for the background and flood classes for the 

Leverkusen case study in terms of the Loss Function applied in the CSN. A similar trend 

to the Gatineau area and Abbotsford cases regarding flood recall value increase after 

changing the loss function from Triplet Loss to WDMCL can be seen. Precision values 

were not significantly affected by the loss function, and the index remained at the exact 

value of 0.93 and 0.15 for the background and flood classes, respectively. It can be inferred 

from the bar chart that although Contrastive Loss achieved the highest flood recall rate of 

0.99 among the loss functions, it could not achieve a high flood precision, and its value 

remained as low as in other cases. On top of that, the Contrastive Loss function resulted in 

a background recall index of 0.52, which was lower than its counterparts for the WDMCL 

and Triplet Loss functions which were 0.68 and 0.88, respectively. 
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Figure 2-20: Background and flood accuracy indices for Contrastive Loss, 

WDMCL, and Triplet Loss functions in Leverkusen, Germany 

 

Figure 2-21 shows the accuracy indices after applying different loss functions for SEN12-

FLOOD and Sen1Floods11 datasets. For SEN12-FLOOD data, the highest flood accuracy 

indices were for the Contrastive Loss function (between 0.6-0.75). For background, the 

highest accuracies were for the Triplet Loss function. For the Sen1Floods11 dataset, the 

highest flood recall and F1 score indices were for the Contrastive Loss function (0.58 recall 

and 0.63 F1 score). In terms of flood precision for Sen1Floods11, WDMCL, considering 

higher weights during training for flood pixels (minority class), improved the precision 

index by 0.19 and 0.16 compared with the Triplet Loss and Contrastive Loss functions. On 

the other hand, using WDMCL did not improve flood precision for SEN12-FLOOD data. 

This contradiction stems from the different labeling formats between the two datasets. For 

the background class, Triplet Loss resulted in a higher F1 score and recall rate than 

WDMCL and Contrastive Loss functions (0.97 for F1 Score and 1 for recall). 
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Figure 2-21: Background and flood accuracy indices for Contrastive Loss, 

WDMCL, and Triplet Loss functions for SEN12-FLOOD and Sen1Floods11 

datasets 

2.6.3 Comparison with Other Deep Learning Techniques 

For all flood events in the comparison section, the backbone architecture was VGG16 and 

the Loss function was Contrastive Loss. The input data for all the methods in this section 

were Sentinel-1 intensity and coherency data and a 30m resolution SRTM DEM data to 

help the deep learning algorithms to differentiate between the low and high-lying lands.   

Overall, after comparing the CSN with other DL algorithms, it was generally observed that, 

for the background class, higher recall and F1 score were achieved because of the higher 

number of training samples. The unbalanced training sample effects on recall and F1 score 

measures can be partly reduced by using a weighted loss function. It was also observed that 

the precision index for background class was higher than the flood in all cases whether the 

loss function be a weighted or non-weighted. 

Figure 2-22 compares the proposed CSN with four other state-of-the-art deep learning 

algorithms, including Unet, Unet++, DeepLabV3+, and Siamese-Unet for the 2019 Ottawa 

River flood event.  Based on the figure, Siamese-Unet and the proposed Siamese Network 
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performed better than other DL algorithms. Although Siamese-Unet showed higher flood 

recall (0.99), and F1 score (0.58), its low background recall rate, about 0.01, indicates flood 

overestimation. The proposed Siamese Network shows a higher background recall rate 

(about 0.42) than Siamese-Unet, and its accuracy indices are more balanced between flood 

and background classes. 

 

 

Figure 2-22: Comparison of the proposed CSN with Unet, Unet++, DeepLabV3+, 

and Siamese-Unet for Ottawa, ON and Gatineau, QC, CA 

Figure 2-23 compares the proposed CSN with four other state-of-the-art deep learning 

algorithms, including Unet, Unet++, DeepLabV3+, and Siamese-Unet for the urban area 

in Abbotsford, BC. The input data for all the methods were dual-polarized HH and HV 

RCM intensity and a 25m resolution DEM data. Based on the bar plot, it is apparent that 

the accuracy indices achieved for the background areas were higher than flooded regions 

because of the higher number of train data available for the background class. Another 

reason for this might be the limitation of the dual-polarized RCM data used for Abbotsford 

city. The RCM images applied were in HH and HV polarization modes. Based on the 
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literature, the most suitable polarization in C-band SAR data for urban flood mapping is 

the VV mode (Pramanick et al., 2022). It is also notable that the within-class accuracy 

distribution in Unet, Siamese-Unet, and our proposed CSN was more balanced than the 

Unet++ and DeeplabV3+. In other words, the values achieved for the precision, recall, and 

F1 score in each class were closer in the Unet, Siamese-Unet, and the proposed method 

than Unet++ and DeepLabV3+. Although DeepLabV3+ achieved 0.85 precision for 

background class and 0.93 recall rate for flood regions, it is still unreliable because of its 

low recall value for background class and low precision value for flood class. Siamese-

Unet had a comparable performance with the proposed CSN (because they both use change 

detection for flood map generation), but it achieved a lower recall rate on the background, 

about 5%, than the proposed CSN. Besides, it achieved a higher flood recall rate, about 

4%, than the proposed CSN. The low accuracy indices achieved for the flood areas in all 

the applied deep learning algorithms confirm the SAR data limitation for urban flood 

mapping applications. This result is in agreement with previous studies that used SAR data 

for urban flood mapping (Li et al., 2019b; Lin et al., 2019; Hertel et al., 2023). 

 

Figure 2-23: Comparison of the proposed CSN with Unet, Unet++, DeepLabV3+, 

and Siamese-Unet for Abbotsford, BC (Urban), CA 
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The method was also tested in an agricultural area near Abbotsford to further investigate 

the reliability of the proposed CSN. Figure 2-24 shows the flood mapping accuracy results 

for this area. While Unet++ and DeepLabV3+ resulted in low flood accuracies, the 

proposed CSN achieved precision and F1 score of 0.71 and 0.6, which were the highest 

among all the methods, and the method achieved more balanced accuracies between 

background and flood classes. 

  

 

 

Figure 2-24: Comparison of the proposed CSN with Unet, Unet++, DeepLabV3+, 

and Siamese-Unet for an agricultural area near Abbotsford, BC, CA 
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Figure 2-25 shows the contingency map of the proposed CSN for this suburban area. The 

low recall rate value for the proposed CSN shown in the bar chart can be justified by so 

many missed flood areas (red regions) on the map, and the reported high precision index 

of 0.71 is because the number of false alarms is relatively low, and most predicted flood 

areas are consistent with the ground truth data. 
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Figure 2-25: Contingency map for the agricultural area in Abbotsford, BC 

 

Figure 2-26 compares the proposed CSN and the previously mentioned deep learning 

algorithms, including Unet, Unet++, DeepLabV3+, and Siamese-Unet for Leverkusen, 

Germany. It can be seen that Unet++ achieved acceptable precision, recall, and F1 score 

rates of 0.79, 0.95, and 0.86 for flood areas, but the method resulted in high false alarms 

and mixed many background pixels with the flood. Further, Unet acquired higher 



 

67 

 

background precision and recall indices than Unet++ and DeepLabV3+. DeepLabV3+ 

achieved a high recall rate of 1 for the background class, but it could not detect any flood 

pixel in the scene. The proposed CSN and Siamese-Unet achieved the highest background 

precision of 0.93 among all the deep learning methods and had comparable performance 

because they both use Siamese architecture for flood map generation. The proposed method 

could not achieve high precision, recall, and F1 score for the flood areas. 

 

 

Figure 2-26: Comparison of the proposed CSN with Unet, Unet++, DeepLabV3+, 

and Siamese-Unet for Leverkusen, Germany 

 

Figure 2-27 compares the proposed CSN with other DL methods in terms of the flood and 

background accuracy indices for Sen1Floods11 and SEN12-FLOOD datasets. Please note 

that Unet, Unet++, and Siamese-Unet are per-pixel predictors and can not be applied to the 
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SEN12-FLOOD dataset. Hence, only DeepLabV3+ and the proposed CSN were tested on 

this dataset. The proposed CSN is adaptable to both per-pixel and per-scene labeling 

formats by modifying the last layer (prediction layer). For the Sen1Floods11 dataset, the 

highest flood precision index, 0.7, was for the proposed CSN, about 0.04 higher than Unet 

and Siamse-Unet. Regarding the recall index, the proposed CSN also achieved a higher 

value of 0.58 compared with 0.53 and 0.56 for Unet and Siamese-Unet, respectively. The 

other DL methods, Unet++ and DeepLabV3+ showed significant flood overestimation and 

underestimation. For the SEN12-FLOOD dataset, the flood accuracy indices for the 

proposed CSN were higher than Sen1Floods11 dataset because of the difference between 

labeling formats. Besides, the proposed CSN resulted in higher flood precision, and F1 

score than DeepLabV3+. While flood precision for DeepLabV3+ was 0.71, this index for 

the proposed CSN was 0.75. 

 

Figure 2-27: Comparison of the proposed CSN with Unet, Unet++, DeepLabV3+, 

and Siamese-Unet for SEN12-FLOOD and Sen1Floods11 datasets 
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2.6.4 Effect of Adding DEM Data on Flood Mapping Accuracy 

As mentioned in section 2.5, although the flood detection accuracy improved by 0.01 and 

0.05 for the Gatineau case study, SEN12-FLOOD, and Sen1Floods11 after adding DEM 

to SAR images, it reduced by 0.03 for Abbotsford area, respectively. This result contrasts 

with Konapala et al. 2021 which combined SRTM DEM and Sentinel-1 and reported an 

improvement of about 0.11 for the F1 score. A reason for this contradiction can be related 

to sensor differences between the two studies. While Konapala et al. 2021 used Sentinel-1 

for flood mapping, RCM data was used for the Abbotsford area. Sentinel-1 image applied 

in this work had VV and VH polarizations which were different from RCM images with 

HH and HV polarizations.  Another critical point inferred from the results is that the 

background accuracy increase was more significant after adding DEM in Leverkusen than 

in Abbotsford and Gatineau because the study area in Leverkusen was larger, and the 

elevation variation was more significant than in the others. In other words, the elevation 

variation for the Leverkusen region, a catchment near the Rhine River, was more 

significant than the Abbotsford case study, which was a relatively small area with lower 

elevation variation than the Leverkusen region. The exact wording holds for the Gatineau 

area. The accuracies reported in section 2.5 for Gatineau were for a small area at the 

Gatineau Hull and Ottawa rivers with a smooth elevation variation. 

 

2.7 Conclusions 

In this study, urban flood mapping using SAR data through a CSN was explored and 

validated against ground truth data for three flood events in Ottawa, ON and Gatineau, QC, 

Abbotsford, BC, and Leverkusen, Germany. Also, CSN was compared with three state-of-

the-art DL algorithms, including Unet, Unet++, and DeepLabV3+. For the sake of 

comparison with a network with similar architecture and taking advantage of Unet encoder-

decoder architecture, Siamese-Unet was also compared with the proposed CSN. The results 

indicated that Sentinel-1 data can detect flooded areas with an average accuracy above 0.5. 

However, the complexities of urban infrastructures and the shadowing effect of high-rise 

buildings and the SAR sensor caused the flood mapping accuracies to be lower than in non-
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urban regions. The reliability of the proposed CSN was also tested on two publicly 

available datasets SEN12-FLOOD and Sen1Floods11. A promising flood F1 score of 0.67 

was achieved, which was higher than its counterpart for Sen1Floods11, with an F1 score 

of 0.63.  

The variability of flood mapping accuracies among urban case studies can be related to 1- 

SAR system characterization, including band type, spatial resolution, polarization, and 

revisit time; 2- Flood extent and duration: longer lasting floods might be easier to capture 

using satellite images; 3- Buildings height and density: flood mapping in dense urban areas 

with high-rise buildings are more problematic; 4- Topography: metropolitan areas with 

varied topography, such as hills and valleys, can create additional challenges to SAR flood 

mapping. 

The effect of loss function on the CSN performance was also examined. It was inferred 

from the results that CSN is sensitive to the loss function selection, and the use of WDMCL 

can improve flood precision and recall at the cost of deteriorating the background indices. 

Another important finding was that the loss function selection had less contribution to the 

precision index. Precision was more affected by the input data type and the normalization 

method applied to the input data.  

The effect of adding DEM data on flood mapping accuracy was also explored. Although 

the highest F1 score improvement for the flood class was around 0.05, the results strongly 

confirmed the DEM data efficiency for improving the F1 score for the background class. 
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Chapter 3 

Automated First Floor Height Estimation for Flood 

Vulnerability Analysis Using Deep Learning and Google 

Street View 

3.1 Introduction 

Flooding can cause significant disruptions in cities and impact people, the economy, and 

the environment. These impacts may be exacerbated by climate and socio-economic 

changes. However, they can be reduced by creating a resilient community for which 

vulnerable areas are identified and reported to city planners and decision-makers to take 

the necessary measures (Hammond et al., 2013). Locating vulnerable areas at the building 

scale provides valuable information to conservation organizations and insurance industry. 

Previous studies have focused on flood vulnerability analysis at the building scale, for 

example, Milanesi et al. (2018) developed a physical model to examine flash flood 

vulnerability for masonry buildings in alpine areas. Percival et al. (2019) combined 

physical factors (such as population density, green areas, utilities, and dwellings) and 

socio-economic factors (such as age, household structure, illness, or disability) to model 

flood vulnerability and risk in Portsmouth, UK. Leal et al. (2021) combined building 

properties (such as materials and structure, condition status, and number of floors) with 

flow parameters such as velocity and depth to model flash flood vulnerability at the 

building scale in the Barcarena basin. 

First Floor Height (FFH) or the height of the building’s first lowest floor above the 

adjacent grade (FEMA), is one of the critical parameters for flood vulnerability analysis 

and damage/loss estimates in urban areas. FFH can be applied for locating vulnerable 

structures and helping decision-makers change flood management policies (Hampton 

Roads Planning District, 2020). Change in FFH by less than a foot can increase or decrease 

flood loss estimates by hundreds of structures and millions of dollars across the 

community. Paulik et al. (2022) used the Random Forest model and Spearman’s Rank 

correlation test to find important variables contributing to residential buildings damage for 

five flood events in New Zealand between the years 2013-2017. The results showed that 
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the water depth above the first finished floor is strongly correlated with total building 

damage ratios. Some recent studies have applied FFH indirectly or directly along with the 

number of stories, basement existence, area, and unit area repair cost in USD to calculate 

the average annual loss in Louisiana, USA (Gnan et al., 2022; Al Assi et al., 2023a; Al 

Assi et al., 2023b). Another application of FFH is in flood insurance models and setting 

premium policies. For example, Flood Risk 2.0 is a flood insurance model introduced by 

FEMA. This model applies FFH as one of the building attributes contributing to flood 

insurance premiums (Rahim et al., 2023). Another similar parameter used in the literature 

for flood vulnerability modeling is First Floor Elevation (FFE).  FFE is the height of the 

first finished floor relative to the vertical datum. Taghinezhad et al. (2020) addressed the 

missing FFE issue for Louisiana, USA using the imputation method. Wang and Sebastian, 

(2021) used the median of FFE, mean water depth, building age, and material, along with 

demographic and household income information to model flood vulnerability in North 

Carolina, USA. 

One of the informative documents commonly prepared at the building scale by emergency 

organizations is an Elevation Certificate (EC). This document presents the level of 

compliance with floodplain regulations to determine the building vulnerability to flooding 

and the cost of flood insurance premiums. EC gives information about the Lowest Adjacent 

Grade (LAG) which is the lowest point of ground level immediately next to the building 

(FEMA, 1999) along with information about buildings' latitude and longitude foundation 

type, and flood zone. This document also includes information on the FFE and the Base 

Flood Elevation, which is the elevation of water surface resulting from a flood that has a 

1% chance of equaling or exceeding that level in any given year (FEMA, 1999). The 

information in EC is commonly extracted through site inspection and ground survey, which 

is time-consuming and labor-intensive. Besides the ground survey method, other 

techniques, including statistical models and imagery-based analysis, were used in the 

literature for FFH estimation (Gordon and McFarlane, 2019; Du et al., 2020). Ning et al., 

(2021) developed a methodology based on Google Street View (GSV) images, Deep 

Learning (DL), and Tacheometric Surveying principals to estimate FFE for an area in the 

USA. This method was used in Gao et al., (2023) for FFE estimation in Galveston Islands, 

Texas, and the methodology expanded by estimating the cost of elevating FFE for buildings 
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at risk of flooding based on the FEMA formula. Statistical methods build a statistical 

relationship between the information in the EC, such as foundation type, structure age, 

building occupancy type, and difference in grade as explanatory variables, and the FFH 

parameter as the dependent variable. For example, Gordon and McFarlane (2019) 

developed a Random Forest model based on the foundation type, structure age, flood zone, 

and difference in grade to estimate FFH for Hampton and Chesapeake cities in Virginia 

State. One of the limitations of the RF algorithm was the FFH underestimation for high 

FFH values. Also, the developed RF model was based on the information derived from EC 

that is unavailable for most flood-prone areas worldwide, and its preparation is time-

consuming and a tedious task.  Diaz et al. (2022) used a positioning-enabled Unmanned 

Aerial System (UAS) and created a detailed 3D photogrammetric model to estimate the 

FFE of the buildings in Galveston Island, Texas. Although the reported mean absolute error 

was promising (0.16m), the method is costly and does not apply to large areas. 

Computer vision techniques can be applied to reduce the amount of fieldwork for FFH 

estimation. These methods include image classification, clustering, object localization, and 

object detection. Image classification involves assigning a class label to each pixel in an 

image, whereas clustering considers image pixels as connected components and labels each 

connected component. Object localization involves drawing a bounding box around one or 

more objects in an image, whereas object detection is more challenging and combines 

classification and localization tasks (Brownlee, 2019). It creates a bounding box around 

each object of interest in the image and assigns it a class label. DL can be used for object 

detection, with its foundation rooted in neural networks. These networks are algorithms 

that mimic the workings of the human brain and are designed to recognize patterns. DL is 

a way of classifying, clustering, and predicting variables using a neural network trained on 

vast amounts of data. It creates many layers of neurons, attempting to learn a structured 

representation of big data layer by layer. Two types of DL algorithms can be applied to an 

object detection problem;:1- Region-Based Convolutional Neural Networks (R-CNNs) 

developed by Girshick et al. (2014); 2- You Only Look Once, or YOLO, a second family 

of DL algorithms used for object recognition and designed for speed and real-time use 

(Redmon et al., 2016). The errors in YOLO algorithm were improved by developing 

subsequent versions of the algorithm, including YOLOv2 (Redmon and Farhadi, 2017), 
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YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy et al. 2020), and YOLOv5 

(Jocher, 2020). YOLOv5 has been used widely for object detection in natural and remote 

sensing images and has achieved promising results. Previous works used this algorithm for 

face masks, safety helmets, and fruit detection in natural images (Yang et al. 2020; Zhou 

et al. 2021; Yao et al. 2021). Wu et al. (2021) combined YOLOv5 with a Convolutional 

Neural Network (CNN) for detecting small targets in optical satellite images. Zhao et al. 

(2021) applied YOLOv5 for wheat spike detection using UAV images, and Mathew and 

Mahesh (2022) used the algorithm for leaf-based disease detection using the PlantVillage 

dataset. 

DL algorithms have recently been used for FFH estimation using imagery-based analysis. 

For example, Du et al. (2020) proposed a CNN for FFH estimation. The CNN was designed 

for feature extraction from the images captured from the front view of the buildings, and a 

fully connected network was considered for FFH estimation. The extracted features were 

the distance between the ground and the lowest boundary of the Front Door (FD) and the 

FD size on the image. Ning et al. (2021) estimated First Floor Elevation (FFE) using a DL 

algorithm, YOLOv5 (Jocher, 2020), to detect FD. Based on the principles of the 

Tacheometric Surveying and the depth maps extracted from the Google Street View (GSV) 

panorama images, the FFE was estimated for Hampton, Virginia. The developed algorithm 

in this work did not estimate FFH, which is a critical parameter for flood vulnerability 

analysis. Most hydraulic software tools provide flood depth maps as the output, not flood 

elevation. In other words, flood vulnerability analysis can be achieved by comparing the 

flood depth values with FFH. In addition, most existing works for FFH or FFE estimation 

have been conducted for the state of Virginia in the USA. However, testing the methods 

on just one case study introduces limitations due to the specific architectural and structural 

characteristics prevalent in that area. Besides, models tested on just one case study lack 

generalizability. Notably, there exists a research gap for FFH estimation using the DL 

algorithm, particularly within the Canadian context. The objective of this study is to 

propose an automatic algorithm based on DL to estimate FFH using the YOLOv5s 

algorithm, and GSV images. The proposed method is demonstrated through a case study 

for Greater Toronto Area (GTA).  
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3.2 Case study and dataset for FFH and flood vulnerability 

prediction 

The study region was the Greater Toronto Area (GTA), which includes the city of Toronto 

and four regional municipalities, including Durham, York, Peel, and Halton, and has a total 

land area of 7125 km2. The city of Toronto has a population of 2.48 million, constituting 

about 45% of the whole GTA. Toronto Region Conservation Authority (TRCA) is 

responsible for improving the health and well-being of watershed areas by protecting and 

restoration of the natural environment. TRCA has divided the GTA area into ten 

watersheds, including Carruthers, Don, Duffins, Etobicoke, Frenchman's Bay, Highland, 

Humber, Mimico, Petticoat, and Rouge. The delineation of GTA watersheds and the 

location of selected buildings was shown in Figure 3-1. 
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Figure 3-1: Delineation of GTA watersheds and selected buildings overlaid onto the 

Arc GIS base map 

 

The dataset applied in this work included GSV images captured from the front view of 

buildings in the Greater Toronto area (GTA) and Virginia State, USA. The Virginia State 

case study was added as a comparison with the method in Ning et al. (2021) developed for 

the region. GSV images were downloaded automatically using Google Cloud Application 
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Programming Interface (API). GSV image parameters, including camera Field Of View 

(FOV) and heading angles, were set to 90 and 0 degrees for most locations. Locations 

where there was no GSV image available or the building FD was not fully visible in the 

image were discarded from further analysis. Finally, 760 images were separated for FFH 

estimation for the GTA and Virginia State areas. Ontario Classified Point Cloud (LiDAR-

derived) (classified into Unclassified, Ground, Water, High, and Low Noise categories and 

consisted of non-overlapping 1km by 1km tiles) covering areas in southern Ontario and 

portions of northern Ontario and   the 2013 USGS Lidar point cloud data for Norfolk, 

Virginia State were converted from LAZ to LAS using the LASzip tool and then imported 

into ArcMap. The last returns were extracted from the point cloud data, and Digital 

Elevation Models (DEM) were generated with a cell size equal to 25cm. The building 

footprint data for the GTA region was accessed via the Open Database of Buildings from 

the Statistics Canada website, and the FFH ground truth data for GTA was provided by 

TRCA. The building footprints and EC data, including the FFH ground truth values for the 

Virginia area, were downloaded from the Hampton Roads Planning District Commission 

(HRPDC) website. The flood depth map for the Lower Don area was accessed under the 

data sharing agreement between the first author and TRCA. 

3.3 Methodology 

The proposed FFH estimation method includes three steps: 1- Extracting bounding box 

coordinates for the FD and stairs; 2- GSV pixel size estimation in y-direction; and 3- FFH 

estimation. To accomplish this task, we considered two priorassumptions:  

1- The camera's Line of Sight (LOS) is horizontal and does not have any rotation. This 

assumption makes it possible to measure the FFH using calculations in the y-direction. In 

other words, to be able to use the bounding box y (row) dimension to estimate the FFH 

value, the camera LOS must be horizontal. 

 2- The FD dimensions in American-style houses are usually 0.91m in width and 2.032m 

in height (Du et al., 2020).  Ning et al. (2021) made the same fixed FD height assumption, 

and the RMSE for the estimated FFE was 15% of the assumed FD height. The achieved 
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RMSE was competitive among methods that do not use Ground Control Points (GCP). For 

this reason, this work also made the same assumption for the FD height. 

Based on Figure 3-2a, the FFH in the image coordinate is the difference between the y 

(row) coordinates of the lower right corners of the stairs and FD bounding boxes. In Figure 

3-2b, y and x are the row and column direction of GSV image. Based on the second 

assumption, the GSV pixel size in the y (row)-direction can be estimated using Equation 

(3-1). In this Equation, y1 and y2 refer to the upper left and lower right row numbers for the 

FD bounding box, respectively. After substituting the y2 and y1 parameters with the image 

coordinates of the lower right corners of the stairs and FD, the FFH can be estimated using 

Equation (3-2). In this equation, 𝑦𝑆𝑡𝑎𝑖𝑟𝑠
𝐿𝑅  is the row number for the lower right corner of the 

bounding box around the stairs, 𝑦𝐹𝐷
𝐿𝑅 is the FD bounding box lower right corner row 

number, and 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦 is the GSV image pixel size in the y (row) direction, which is 

estimated based on the FD height (Figure 3-2b). 

 

FD Height = (𝑦2-𝑦1) × 𝑝𝑖𝑥𝑒𝑙𝑠 𝑠𝑖𝑧𝑒𝑦 

 
(3-1) 

𝐹𝐹𝐻 = ( 𝑦𝑆𝑡𝑎𝑖𝑟𝑠
𝐿𝑅 − 𝑦𝐹𝐷

𝐿𝑅) × 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦 

 

(3-2) 

 

 

 

 



 

83 

 

Figure 3-2: a) FFH definition b) GSV pixel size estimation in y-direction; 0.9 refers 

to the bounding box confidence value; UL and LR stands for the Upper Left and 

Lower Right corners 
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The next step was to predict flood vulnerability for selected buildings across GTA based 

on the estimated FFH using Equation (3-2) and the basement existence or lack of existence. 

If YOLOv5s detected a Basement Window (BW), a basement would be considered for the 

building. Figure 3-3 shows the steps for FFH estimation using the YOLOv5s DL algorithm 

and flood vulnerability prediction. The flood vulnerability for selected buildings was 

predicted using a water depth grid map, FFH, and basement information based on the 

YOLOv5s object detection algorithm. 

 

 

Figure 3-3: Flood vulnerability prediction based on FFH values estimated using 

GSV 

 



 

85 

 

3.3.1 Front Door and Stairs detection using YOLOv5s Deep Learning 

algorithm  

 

3.3.1.1 YOLOv5s Deep Learning algorithm 

YOLO, an acronym for 'You only look once,' is an object detection algorithm that divides 

images into a grid system. Each cell in the grid is responsible for detecting objects within 

itself. It is one of the most widely used object detection algorithms due to its speed and 

accuracy.  

The GSV images were manually classified into High, Medium, and Low FFH based on the 

definition presented in Equation (3-3). The assumption was that all the stairs have a similar 

standard height of 15cm. Then, the Yolov5s model was trained separately on each set of 

images, and the 5-fold cross-validation method was used for training the models and 

accuracy estimation. Table 3-1 shows the number of GSV images used at each category. 

 

 

{2 <

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 ≤ 2             𝐿𝑜𝑤 𝐹𝐹𝐻
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 ≤ 5        𝑀𝑒𝑑𝑖𝑢𝑚 𝐹𝐹𝐻
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠 > 5              𝐻𝑖𝑔ℎ 𝐹𝐹𝐻

 (3-3) 
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Table 3-1: Number of train, validation, and test GSV images in each FFH category 

Case Study Category  Number of GSV images 

GTA 

Low FFH 

Train 124 

Validation  10  

Test  65 

Medium FFH 

Train  286 

Validation  30 

Test  85 

High FFH 

Train  115 

Validation  15 

Test  30 

 

The model weights were downloaded from GoogleColab, and the models were loaded 

sequentially on the local computer by importing the saved custom weights to the Pytorch 

Hub load function. After loading the models, the test data were imported, and FD and stairs 

in each image were detected. The outputs were some bounding boxes around each detected 

object with the bounding box coordinates of the upper left and lower right corners. In 

images with more than one FD and more than one stair set, the lower object (higher y) was 

selected, and objects with lower y coordinates were removed from FFH estimation because 

of the confusion arising when locating the corresponding FD and stairs. So, there were just 

two objects/bounding boxes, one for the FD and the other for the stairs.  

After FFH estimation for each fold and image set using Equation (3-2), the addresses were 

geocoded by extracting the latitude and longitude values using the Python requests library 

and positionstack geocoding API. Four scenarios were considered for the Lowest Adjacent 

Grade (LAG) calculation, including Point, Maximum, Minimum, and Mean. In 

the Point case, the ground height at the address location was considered equivalent to the 

LAG parameter and extracted from the LiDAR-derived Digital Elevation Model (DEM), 

using the Extract Values to Points tool in ArcMap to convert FFH to FFE. In 

the Maximum, Minimum, and Mean cases, the Maximum, Minimum, and Mean DEM 
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height inside the buildings' footprints were calculated using the ArcMap Zonal 

Statistics tool. Finally, the FFE predictions for each fold and image set were combined and 

reported as the final result. 

 

Pseudo Code for FFE estimation 

Input: LiDAR-derived DEM, bounding boxes image coordinates for FD and Stairs 

were extracted using the YOLOV5s object detection algorithm 

Part 1: GSV pixel size estimation in height (y) direction 

Calculate FD height in image scale: 

Extract the Upper Left (UL) and Lower Right (LR) coordinates of the 

FD bounding box and calculate FD height using formula *: 

hFD=𝒚𝑳𝑹
𝑭𝑫 − 𝒚𝑼𝑳

𝑭𝑫   * 

Use the prior knowledge about standard FD height dimension (HFD) and 

estimate GSV pixel size in y direction using Equation (3-1). 

Part 2: FFH estimation 

If no FD detected in the image: 

Exclude the image from FFH estimation 

If no Stairs detected in the image: 

Consider the Building Extent bounding box LR corner instead of Stairs in Equation (3-

2) 

For all classes including, FD, Basement Window, and Stairs: 

If more than one object of the same class was detected in the image: 
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Keep the object with higher y coordinate and remove 

other objects 

Calculate FFH using Equation (3-2). 

Part 3: Convert FFH to FFE 

Geocoding the Addresses, finding their locations on the LiDAR-derived DEM, 

and extracting the height values at the corresponding locations (HDEM), using one 

of the Point, Maximum, Minimum, and Mean methods. Then, calculating FFE 

using formula ** : 

FFE= HDEM+FFH   ** 

 

Output: FFE value and a flag if the image includes basement or not 

 

3.3.2 Contribution of object detection uncertainty to FFH estimation 

In this section, the error propagation equation for FFH is formulated based on the variance 

of estimated image coordinates for the FD, stairs, and Building Extent (BE). Based on the 

error propagation rule (Ogundare, 2018), the variance for FFH in Equation (3-2) can be 

estimated using Equation (3-4).  

 

𝜎𝐹𝐹𝐻
2 = 𝛼 × 𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦

2 + (
𝐹𝐹𝐻

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦
)

2

× 𝜎𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦

2  
(3-4) 

 

with, α = ((𝜎𝑦𝐿𝑅
2 )𝐹𝐷 + (𝜎𝑦𝐿𝑅

2 )𝑆𝑇) , and  𝑦𝐿𝑅
𝑆𝑇 − 𝑦𝐿𝑅

𝐹𝐷 =  
𝐹𝐹𝐻

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦
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Based on Equation (3-1), the GSV pixel size in the y direction (𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦
) can be 

substituted with its value based on the real-world and image dimensions of the FD. Also, 

the variance for 𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦  can be estimated after taking the variance from both sides 

of Equation (3-1) using Equation (3-5): 

 

 

In Equation (3-5), 𝛽 =  (
𝐻𝐹𝐷

(𝑦𝐿𝐿
𝐹𝐷−𝑦𝑈𝐿

𝐹𝐷)2)2 , and σ =((𝜎𝑦𝐿𝐿
2 )𝐹𝐷 + (𝜎𝑦𝑈𝐿

2 )𝐹𝐷).The Equation 

above assumes that the real-world dimension of the FD (𝐻𝐹𝐷) is a fixed parameter. So, 

when calculating the 𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦
 variance, the derivative with respect to this parameter 

is zero. 

After substitution of Equation (3-5) in Equation (3-4), it can be reformulated as Equation 

(3-6): 

 

𝜎𝐹𝐹𝐻
2 = 𝛼 × 𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦

2 + (
𝐹𝐹𝐻

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦
)

2

× 𝛽 × 𝜎 (3-6) 

 

3.3.3 Flood vulnerability Prediction for selected buildings 

A flood depth map covering the Lower Don region accessed from the TRCA was used to 

conduct a flood vulnerability analysis for selected buildings. To assess the flood 

vulnerability, firstly, the water depths at selected addresses were extracted using the 

ArcMap Extract Values to Points tool, and the parameter water depth minus FFH, along 

with information about the basement, were considered indicators of flood vulnerability. If 

the building had a basement, its flood vulnerability value would be classified as very high, 

no matter what the water depth value minus FFH was. The lower the water depth 

value minus FFH, the lower the flood vulnerability. A large negative value for this 

difference shows that water depth is far below the FFH, and the chances of the building 

𝜎𝐺𝑆𝑉𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒𝑦

2 = (
𝐻𝐹𝐷

ℎ𝐹𝐷
2 )2𝜎ℎ𝐹𝐷

2 = 𝛽 × 𝜎 (3-5) 
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being flooded during a flood event are low and vice versa. After calculating the difference 

parameter at each location, the ArcMap Natural Break classification method was applied 

to the buildings where the DL algorithm did not detect any basement. Then, the 

vulnerability values were categorized into five flood categories, including very low, low, 

medium, high, and very high. The final output was flood vulnerability prediction showing 

the vulnerability values at selected buildings across GTA. Please note that any other 

classification method can be applied, and examining the flood vulnerability prediction 

sensitivity to the classification method was beyond the scope of this study. 

3.4 Results 

 

3.4.1 FFH uncertainty analysis 

As mentioned in the methodology section, the uncertainty in object detection can contribute 

to the FFH estimation uncertainty based on Equation (3-7). This section will discuss the 

uncertainty analysis for the GTA and Virginia areas. 

Based on Figure 3-4, the error distributions for both areas follow a lognormal distribution. 

It means the estimated FFH values are distributed around the mean, and the random error 

is around zero. The number of outliers for Virginia were higher than GTA because, for the 

GTA area, the downloaded GSV images were from a shorter distance to the building than 

in Virginia, and the building elements, including the FD and stairs/building extent, were 

more evident in the images compared to the Virginia case. Please note that a lower 

resolution was used for the data histogram than the fitted error distribution because of the 

limited number of samples. 
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Figure 3-4: Data probability distribution and fitted probability distribution for FFH 

standard deviation; a) GTA; b) Virginia  

Scatterplots in Figures 3-5 and 3-6 show the FFH standard deviations for the GTA area in 

terms of standard deviations for the FD Upper Left (UL) and Lower Left (LL) corners 
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(Figure 3-5) and based on the FD and stairs/building extent LL corners (Figure 3-6). 

Standard deviation larger than 50 pixels in either FD or stairs/building extent corners 

resulted in FFH standard deviations larger than 1m. For example, based on Figure 3-5, in 

three cases, FD UL standard deviations of 58.52, 57.69, and 54.13 pixels were observed. 

For cases (a) and (c), where buildings have a medium FFH, the uncertainty can increase 

based on Equation (3-6). For case (b), the garbage basket in front of the building was 

erroneously detected as stairs, and FFH was overestimated. This overestimation can 

contribute to a significant FFH uncertainty. Figure 3-6 shows a case in which large stairs 

LL corner standard deviation (89.69 pixels) increased FFH uncertainty to about 1.37m. The 

immediate adjacent staircase was considered as ground truth, but the algorithm estimated 

FFH based on the lower stair set, and FFH was overestimated. So, in this case, large stairs 

LL standard deviation and consequently FFH overestimation both contributed to the large 

FFH uncertainty (higher than 1m). This case shows a challenging situation in FFH 

estimation using the proposed algorithm and confirms the importance of correctly locating 

the LAG when estimating the FFH. 
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Figure 3-5: Examples of large FFH estimation uncertainty (outliers) based on the 

FD UL and LL corners (GTA) ; blue points show the records with FFH standard 

deviation less than 1m; red points are the records with FFH standard deviation 

larger than 1m; the red point not corresponding to any image also has FFH 

standard deviation larger than 1m and is replicating one of the shown scenarios on 

other GSV images 

 

Figure 3-6: Examples of FFH predictions with large uncertainty based on FD and 

stairs/building extent LL corners (GTA) ; blue points show the records with FFH 

standard deviation less than 1m; red points are the records with FFH standard 

deviation larger than 1m; the red points not corresponding to any image also have 

FFH standard deviation larger than 1m and are replicating the scenario shown in 

the GSV image 
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One source of considerable FFH uncertainty can be detecting windows as the FD. This 

false detection can increase FFH uncertainty in two ways. 1- large standard deviations for 

the FD UL and LR corners; 2- windows are usually located at higher elevations than the 

FD, causing FFH overestimation, and based on Equation (3-6), FFH uncertainty also 

increases. Figures 3-7 shows examples of cases when the algorithm erroneously detected 

the window as the FD, resulting in high FFH uncertainty. 
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Figure 3-7: Example of YOLOv5s object detection results in which windows were 

erroneously detected as the FD ; a) 7 Black Oak Court (σFFH = 1.177m); b) 2207 

Bayberry St (σFFH = 1.13m); c) 201 West Fourth Ave (σFFH = 1.705m); d) 198 Villa 

Drive (σFFH = 3.985m) 

Figure 3-8 compares the FFH uncertainty values for three GSV images. Cases (a) and (b) 

have similar FD and stairs standard deviation values to case (c), but based on the scatter 

plot, cases (a) and (b) have considerably higher FFH uncertainty with values of 9.46m and 

7.59m, respectively, compared with 1.19m for case (c). The reason is the difference 

between the estimated FFH values. For case (a), the building has a higher FFH value 

compared with case (c), so the FFH uncertainty based on Equation (3-6) is higher than (c). 

For case (b), the FFH has been overestimated because of erroneously considering the stairs 

of the adjacent building. These object detection errors usually happen when there is more 

than one building in the GSV image extent. The existence of more than one building object 

in the GSV increases the chance of errors in FFH estimation and its uncertainty. 
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Figure 3-8: Cases a and b have higher FFH uncertainty than c because of larger 

estimated FFH;  blue points show the records with FFH standard deviation less than 

1m; red points are the records with FFH standard deviation larger than 1m 

 

3.4.2 FFH prediction results 

Figures 3-9 and 3-10 show the predicted FFH values vs. ground truth for the GTA and 

Virginia regions. For some buildings with FFH over 0.6m (GTA) and 1.5m (Virginia), 

which can be considered buildings with relatively high and very high FFH based on the 

definition presented in Equation (3-3) (four steps and above in front of the FD), the 

algorithm underestimated FFH. The negative Bias value for both case studies admits that 

the proposed algorithm overestimated the FFH by about 20-50cm in most cases. 
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Figure 3-9: Scatter plot of FFH predicted values vs FFH ground truth for GTA; the 

solid line is y=x and the dotted line shows the trend line 
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Figure 3-10: Scatter plot of FFH predicted values vs ground truth values for 

Virginia region; the solid line is y=x and the dotted line shows the trend line 

 

3.4.3 Comparison with Tacheometric Surveying Method 

Ning et al. 2021 used the vertical dimension of GSV images and depth maps extracted from 

the panorama images to calculate the FFE for the Hampton Roads area in Virginia, USA. 

Their methodology was based on the principles of Tacheometric Surveying and is referred 

to as Tacheometric Surveying hereafter. 

3.4.3.1 FFE prediction for Virginia Region 

Table 3-2 shows FFE RMSE, R2, and Bias values for the Virginia region. Three cases were 

considered for the proposed method; in the first case, the latitude and longitude for 

addresses were used to extract the height from DEM (referred to as the Point method 

hereafter). In the second and third cases, the mean and minimum heights inside the building 

footprint were used to convert FFH to FFE (referred to as the Mean and Minimum methods 
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hereafter). The most accurate result was for the Mean method with an RMSE value of 

1.04m, and the least biased estimator was the Minimum method, with a Bias value of 2cm. 

However, the reported indices were computed on a smaller test dataset than 

the Point method because some addresses had no building footprint data available. RMSE 

and R2 values for the Minimum method were comparable to the Mean, with values of 

1.08m and 0.83. The higher R2 and lower RMSE values for 

the Mean and Minimum method compared with the Point method cannot be translated into 

a better FFE prediction because the results for these two methods were computed on fewer 

buildings because of the lack of access to building footprints for some locations. The 

negative Bias for the methods admits that the proposed algorithm overestimated the FFE. 

 

Table 3-2: FFE RMSE, R2, and Bias for the proposed and Tacheometric surveying 

methods for Virginia 
 

RMSE (m) R2 Bias (m) 

Proposed Method (Point) 2.71 0.42 -0.68 

Proposed Method (Mean) 1.04 0.86 -0.20 

Proposed Method (Minimum) 1.08 0.83 -0.012 

Tacheometric Surveying 2.97 0.44 -0.73 

 

 

Figure 3-11 compares the Virginia FFE predictions vs. ground truth for the proposed and 

Tacheometric Surveying methods. The circle, square, and triangle points are for 

the Point, Mean, and Minimum methods, respectively. Based on the Figure, the Trend Line 

for the Point method is far above the Reference Line (the solid line), which shows 

overestimation. For the Mean method and the FFE values below 5m, the Trend Line was 
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above the Reference Line, but for buildings with very high FFE, the method slightly 

underestimated the FFE, and the Trend Line fell below the Reference Line. Because the 

concentration of test samples was for FFE values below 5m, the method overestimated FFE 

on average, and the overall Bias reported in Table 3-2 was a negative value below 0.7m. 

The Trend Line for the Minimum Method was far below the Reference Line as the method 

underestimated FFE values by about 1cm, as reported in Table 3-2. After using 

the Mean method, the Trend Line became closer to the Reference Line, and the R2 value 

improved significantly by 0.44 and 0.42 compared to the Point and Tacheometric 

Surveying methods. The spike in the R2 happened because no FFE estimation was available 

for the addresses for which the other two methods considerably overestimated. As 

mentioned before, there was no building footprint for these addresses. After using the 

proposed method, the RMSE, and Bias improved by 1.93m and 0.53m (considering 

the Mean method) compared to the Tacheometric Surveying method, which shows the 

reliability of the proposed algorithm. 

 

Figure 3-11: Scatter plot of predicted FFE values vs ground truth for the proposed 

and Tacheometric Surveying methods for Virginia ; the point, square and triangle 

marks show the predictions for the Point, Mean, and Minimum methods, 

respectively; the cross marks are for the Tacheometric Surveying method; the small 
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dashed line, and the large dashed lines are trend lines for the Point and Mean 

methods, respectively, and the dashed-dotted line is the trend line for Minimum 

method; the solid line is the reference line (y=x)  

 

3.5 Discussion 

 

3.5.1 Comparison of calculating FFE with different height extraction 

methods 

Table 3-3 shows the difference between the statistical parameters of ground 

truth, Point, Mean, Minimum, and Maximum methods for the Virginia region. The 

statistical parameters include Min, Max, Median, interquartile distance (IQR), First 

Quartile, and Third Quartile. In terms of Min and IQR difference, 

the Point and Mean methods showed higher consistency to the ground truth than 

the Minimum and Maximum methods, with values of 12.57cm and 9.65cm, for Min and 

16.2cm and 18cm for IQR, respectively. In terms of the other statistical indicators, 

including the Median, First Quartile, and Third Quartile, the Minimum method indicated 

the highest consistency with the difference of 14cm, 21cm, and 1.6cm, 

respectively. However, the difference in Min and Max for this method was about 48cm and 

1.9m lower than the ground truth data. The high discrepancy in Min and Max values for 

this method shows a biased estimation and indicates that this method tends to underestimate 

FFE. Based on Tables 3-2 and 3-3, the most accurate result was for 

the Point and Mean methods. Figure 3-12, which shows the box plots for the ground 

truth, Point, Mean, Minimum, and Maximum methods, also confirms the superiority of 

the Point and Mean methods. In terms of comparison between Point and Mean, the 

analysis should be conducted on a more extensive test sample to make a reliable decision. 

However, the lack of access to building footprint data for all the addresses and the lack of 

good quality GSV images captured from the front view of the buildings at a suitable 

distance are some of the limitations to further examining the reliability of the proposed 

algorithm on more extensive test data. 
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Table 3-3: FFE difference statistics (StGT-Stmethod; St and GT are acronyms for 

Statistics and Ground Truth) between Point, Mean, Minimum, and Maximum 

methods and ground truth data distribution (values are in meters) 

 
Point Mean Minimum Maximum 

Min 0.1257 0.0965 0.4852 -0.1962 

Max 0.3699 0.5050 1.907 0.0217 

Median -0.2534 -0.2501 -0.1413 -0.3567 

IQR 0.162 0.1799 0.2285 0.2299 

First Quartile -0.3991 -0.4162 -0.2116 -0.5493 

Third Quartile -0.2361 -0.2363 0.0169 -0.3193 
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Figure 3-12: FFE box plots for ground truth, Point, Mean, Minimum and Maximum 

for Virginia  

 

3.5.2 Flood vulnerability prediction 

Figures 3-13a and 3-13b illustrate the predicted flood vulnerability and the reference, 

calculated based on TRCA-derived water depth grid and FFH values, for selected buildings 

across the Lower Don region. The water depth grid was simulated by the TRCA based on 

the flows from the Hurricane Hazel event in 1954. The software used for the northern part 

of the Lower Don region was a 1D Hydrological Engineering Center River Analysis 

System (HEC RAS) model. The modeling for this area was based on the GTA 2015 LiDAR 

collected DEM and was finalized in March 2020. For the other parts, a MIKE flood 2D 

model based on the GTA 2013 LiDAR collected DEM was used, and the modeling was 

finalized in February 2021 (Todd, personal communication, 2024). Many buildings on the 

reference  map were classified as very highly flood-vulnerable because of the basement. 

However, they were categorized into the lower vulnerability classes because of the failure 

of the DL algorithm to detect the basement windows. The algorithm failed because there 

was no basement window in the GSV image (from the front view), and in some cases, the 

basement windows were blocked by the bushes in front of the buildings. The failure of the 

DL algorithm to detect the invisible basements in the front view GSV image is one of the 

limitations of the imagery-based analysis for flood vulnerability estimation.  
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Figure 3-13: Flood vulnerability prediction for Lower Don region overlaid on the 

streets map from ArcGIS ; a) predicted flood vulnerability for selected buildings 

overlaid on the water depth map; b) reference flood vulnerability (calculated based 

on TRCA-derived flood depth grid and FFH values) for selected buildings overlaid 

on the water depth map. 

 

3.6 Conclusion 

This study employed imagery-based techniques and a DL-based object detection 

algorithm, YOLOV5s, to estimate FFH in both GTA and Virginia, US. Additionally, the 

basement windows were detected, and the buildings with a basement were marked. 

Subsequently, flood vulnerability was predicted for the Lower Don region, based on a 

water depth grid map accessed via the TRCA, building-level FFH values, and basement 

information derived from basement window existence. The study also conducted an 
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uncertainty analysis of FFH, showing that potential errors in FD and stairs/building extent 

bounding box coordinates contribute to FFH uncertainty. Although we assumed no camera 

rotation, this simplified assumption may lead to FFH overestimation or underestimation 

due to potential distortions in proportions of FD, stairs, and building extent. Therefore, 

accounting for image rotation should be considered in future work.  Comparative analysis 

with a DL-based algorithm developed for Virginia demonstrated the superiority of the 

proposed method in terms of RMSE, R2, and Bias values on the test data. The RMSE and 

Bias values reported for the proposed method were approximately 0.26-1.9m and 5-72cm 

smaller, respectively than the previous algorithm. The R2 index was also 0.39-0.42 higher 

when using the Mean and Min methods for FFE estimation. Besides, comparing imagery-

derived FFH with ground truth data, the proposed approach demonstrated promising results 

with an RMSE below 96cm and a Bias value below 55cm for both the GTA and Virginia. 

This makes the proposed approach suitable for applying to flood risk models and directing 

urban planning efforts to mitigate flood-related damages. However, it is worth noting that 

the basement detection using imagery-based techniques has limitations as basements are 

typically not visible from the front side of the building. Future research in flood 

vulnerability analysis using image-based techniques should explore coupling imagery-

based analysis with ground survey data for more accurate basement detection. 

 

3.7 Supplementary information 

The code for the YOLOv5 model (available on GitHub) was used to train the model on the 

custom data using GoogleColab. Before training the model, labeled data are needed to train 

the object detection algorithm. The target objects in this work were the FD and 

stairs/building extent and these objects were critical elements in estimating the FFH 

parameter using the proposed method. Besides, the BW (if visible in the GSV image) were 

detected to identify the houses with a basement. The basement information is of interest 

for the flood vulnerability analysis. The assumption was that the existence of BW could be 

an indicator of a basement. After removing images in which stairs and FD were blocked 

by cars or trees, the remaining images were imported to the makesense.ai website, and the 

boundaries of the FD and stairs were delineated by drawing polygons. Then, the labeled 

https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://www.makesense.ai/
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images were exported to YOLO format. This format contains one text file per image (with 

coordinates of the bounding boxes drawn on the image and a numeric/alphabetic label 

representation). The annotated data were split into train, validation, and test using the 

Roboflow framework, which is a computer vision framework for better data collection, 

preprocessing, and model training techniques and can easily read and write YOLO files. 
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Chapter 4  

Building detection using a Dense Attention Network from 

LiDAR and image data 

 

4.1 Introduction 

Accurate building detection in urban areas is difficult due to nearby objects, such as trees, 

which can have similar height as buildings (Nahhas et al., 2018). LiDAR data have been 

widely used in previous studies for building detection because of their potential for 

extracting geometric features. The advantages of LiDAR data for building detection are: 

1- collecting high-density point clouds over a relatively short time; 2- high vertical 

accuracy. Remote sensing and aerial images can provide spectral information that can help 

discriminate between trees and buildings. Therefore, considering both LiDAR point clouds 

and image data can be an essential step toward improving building detection quality.  

Building extraction methods using remote sensing data can be divided into two categories: 

1- stereoscopic methods, which use image matching techniques to develop 3D 

reconstruction of buildings; 2- machine learning algorithms, aka Artificial Intelligence 

techniques, which are based on automatic learning of building characteristics from various 

data sources like spectral and geometric features extracted from the spatial dataset. The 

first category is not automatic and can be labour intensive. Machine learning methods, 

however, are robust against artifacts inherent in images like shadows, occlusion, and 

against the surrounding environmental variations if they use sufficient training data and 

suitable parameters.  

Among machine learning methods, Deep Learning (DL) algorithms such as Convolutional 

Neural Networks (CNN) allow for automatic extraction of the relevant features without 

requiring a separate stage for feature extraction and selection, contrary to conventional 

machine learning techniques such as Support Vector Machine (SVM) or neural networks. 

Maltezos et al. (2017) applied CNN and image matching techniques to detect building 

extents using normalized Digital Surface Model (nDSM) and orthoimages. The results 
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showed that the combination of image and height information can provide robust and 

efficient results. Maltezos et al. (2018) used CNN for building extent detection, based on 

the LiDAR data and LiDAR-derived geometrical features, including height variation, 

entropy, intensity, and normal vectors distribution. They concluded that higher accuracy 

can be achieved compared with using LiDAR and aerial images simultaneously.  Pirasteh 

et al. (2019) used multi-temporal LiDAR data to extract building boundaries and conduct 

change detection analysis. Firefly and ant colony algorithms were applied for building 

extent extraction. The results were compared with the Mask RCNN DL method. They 

reported that comparable results could be achieved after using LiDAR data. Nahhas et al. 

(2018) applied autoencoders for feature fusion and reduction using LiDAR and 

orthoimages and then converted the low-level features to high-level using CNN. The 

maximum accuracy obtained was 86.19%, which was higher than the SVM. The authors 

stated that higher accuracy would be achieved if the hyperparameters were set in the DL 

model. Zhou and Gong (2018) imported a 2D height map derived from 3D LiDAR point 

cloud data to the VGG network. The problem with this study was that its accuracy was 

dependent on the edge-aware clustering technique proposed in the post-processing stage. 

Huang et al. (2019) used Gated Residual Refinement Network (GRNN) to extract building 

extents using high-resolution orthoimage with a resolution of 0.15-0.3m and LiDAR data. 

The advantage of using GRNN was considering features at different scales simultaneously 

for building boundary extraction. This method obtained comparable results to other 

versions of GRNN. Zhao et al. (2018) imported pan-sharped orthoimages to Mask RCNN 

network to extract building boundaries. The authors regularized building boundaries using 

the Douglas-Pauker algorithm and MDL optimization. In another work, 1m resolution 

images with Red (R), Green (G), Blue (B), and Infrared (IR) bands were used for building 

boundary detection. Two SegNets (a type of DL algorithm) were applied; one pre-trained 

with RGB bands, and another was trained after adding IR bands. After using the IR band 

and a sign-distance labeling technique, the authors concluded that better results could be 

achieved compared with state-of-the-art methods (Yang et al., 2018).  

Accurate flood damage assessment in urban areas requires a detailed inventory of building 

footprints. DL algorithms can accurately detect building footprints because of their 

complicated architecture. However, these models face the vanishing gradient problem 
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because of their significant number of layers. One strategy to alleviate this issue is to apply 

skip connections in their architectures. It helps recover information from previous layers, 

improving the training process and keeping the information flow. Hence, a CNN based on 

dense attention blocks and skip connections was developed in this chapter to detect 

building footprints using MS and LiDAR data in Toronto and the widely known 

Massachusetts Building Dataset. 

4.2 Case Studies and Datasets 

 

4.2.1 Toronto Case Study   

The first case study was in Toronto, Ontario, Canada, which has a mixture of high and low 

buildings. Two Tiles, one located near Riverdale Park East and the other near the East 

Chinatown area, were selected for analysis. The selected Tiles were near Don River and 

included different macro features, such as vegetation, trees, river, tall and short buildings, 

which make the building detection challenging in this area. Figure 4-1 shows the case study 

location on the map.  
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Figure 4-1: Toronto Case Study area (outlined in black). 

The dataset used in this study included LiDAR and RapidEye analytic orthoimages. LiDAR 

data were acquired in 2015 covering an area of about 1km2. LiDAR data point density for 

the last pulse was about 9.32 points/m2 and 11.09 for the other LiDAR returns. Also, the 
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data had a sampling distance of about 0.3 m. The Rapid Eye images were acquired in the 

same year as LiDAR data and included four spectral bands, RGB, Red edge and NIR. The 

corresponding spatial resolution was about 5m. Tables 4-1 and 4-2 describe the dataset 

characteristics including data level, acquisition date, and spatial resolution. The DTM and 

DSM data are available for the case study through the Ontario Geo hub website. 

 

Table 4-1: RapidEye technical characteristics 

Name Level 
Acquisition 

Data 
Resolution Bands 

Rapid Eye Analytic Ortho 

Tile 
3A 23/09/2015 5 m 

Blue 

(440-510 

nm) 

Green 

(520-590 

nm) 

Red 

(630-685 

nm) 

Red edge 

(690-730 

nm) 

NIR 

(760-850 

nm) 
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Table 4-2: LiDAR data technical characteristics 

Name Year 

Covered 

area 

(each 

tile) 

Point 

density 
spacing 

1km176320483502015LGTA2015_CPC 

2015 
0.98 

km2 

All 

returns 

11.09 

points/m2, 

last only 

9.32 

points/m2 

All returns 

0.3m, last 

only 0.33m 
1km176320483602015LGTA2015_CPC 

 

4.2.2 Massachusetts Case Study 

The Massachusetts building dataset includes 151 aerial images of the city of Boston, 

Massachusetts, USA. Each original image is 1500 × 1500 pixels for an area of 2.25 km2, 

and the entire dataset covers approximately 340 km2. The dataset consists of urban and 

suburban areas and buildings of all sizes, including individual houses and garages. Figure 

4-2 illustrates three representative regions from the Massachusetts building dataset (Hinton 

& Mnih, 2013). The dataset used in this study was 512 × 512 pixels with a 1m spatial 

resolution obtained after cropping and resampling the original 1500 × 1500 pixel images. 

These data are the same dataset used for building detection in He et al. (2022) and contain 

1065, 36, and 90 labelled images for training, validation, and testing, respectively. 

 

https://cdnsciencepub.com/doi/full/10.1139/geomat-2021-0013?af=R#core-ref11
https://cdnsciencepub.com/doi/full/10.1139/geomat-2021-0013?af=R#core-ref6
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Figure 4-2 (a-c): Three representative areas from the Massachusetts Building 

Dataset.  

 

4.3 Methods 

 

4.3.1 Train and Test Data Selection 

Ground truth data were selected using Google Earth images. The data were sampled from 

building areas as class building and the river, vegetated, and ground areas as class other. 

Figure 4-3 shows the spatial distribution of ground truth data. The selected data spread all 

over the region. 70% of the data were selected randomly as train, and the remainder were 

selected as test for accuracy assessment. Also, 20% of the training data were considered 

for validation during training the network. 
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Figure 4-3: Spatial distribution of the ground truth data for Toronto case study 

 

Homogenous polygonal areas were selected from buildings, vegetated areas, roads, and 

rivers using Google Earth Pro software. Homogenous here means that all the selected 

pixels inside a polygon come from the same class. This sampling strategy is different from 

some existing methods that sample the whole building extent and its surrounding. The 

number of train, test and validation data would be different based on the designated input 

shape in the CNN architecture; for example, if the input shape is (9×9), the square areas 

with the same shape were selected inside the original regions. Tables 4-3 and 4-4 show the 

number of the train, test, and validation data for Toronto and Massachusetts case studies, 

respectively. 
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Table 4-3: Number of train, test, and validation samples for Toronto case study 

 

Number of samples (in pixel) 

Building Background 

First Tile Second Tile First Tile 
Second 

Tile 

Train data 

4681 

 

2554 

 

7281 

 

11744 

 

Test data 

2073 

 

1122 

 

3054 

 

5007 

 

Validation data 

20% of the train data was set randomly as validation 

for adjusting the CNN network parameters during 

training. 
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Table 4-4: Number of train, test, and validation samples for Massachusetts case 

study 

 

Number of samples (in pixel) 

 

Train data 1065 

Test data 90 

Validation data 36 

 

For Massachusetts Building Dataset, the data had already been divided into train, 

validation, and test data. So, it was not necessary to do further processing for data splitting.  

4.3.2 Input Features 

Input features to the network contained two categories; 1- LiDAR-derived features; 2- 

Spectral features. LiDAR-derived features included DSM, DTM, nDSM, hillshade, 

curvature, and slope. nDSM is the difference between DSM and DTM, which represents 

the ground features elevation. The spectral features included RapidEye analytical ortho tile 

spectral bands. LiDAR-derived DSM and DTM, as well as LiDAR data, were downloaded 

from the Ontario GeoHub website. Radiometric calibration and atmospheric correction of 

the RapidEye images were conducted using the ENVI software to convert digital numbers 

to ground surface reflectance. FLAASH atmospheric correction module in ENVI was used 

for atmospheric correction. Then, RapidEye bands were resampled to LiDAR-derived 

features' size for spatial resolution consistency. 
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4.3.3 Dense Attention Learning 

Conventional CNN use the bottom-up approach to extract the image features. These 

networks focus on specific areas of the image and gradually convert low-level features to 

high-level features. CNN can extract multi-scale features when they become deeper, but 

one issue related to a deep CNN is that it becomes difficult for the succeeding layers to 

retrieve information from previous layers as the number of layers increases. This problem 

has been referred to as the vanishing gradient problem, and some recent studies have been 

conducted to alleviate this issue. The first strategy to tackle the vanishing gradient problem 

was residual networks, like ResNet50, and the second solution was introducing DANs 

(Zhang et al., 2020).  

Suppose we have a convolutional feature map, X, extracted by convolutional layers, and 

H, a composite mapping function created by a dense attention block. The mapping function 

H can be a series of Batch Normalization (BN), convolutional, and pooling layers. The 

proposed mapping function in this study is formed by combining BN + Conv2D + drop out 

+ average pooling + BN + Conv2D. Conv2D is the 2D convolution. The dense attention 

mapping can be formulated as Equation (4-1): 

{𝑤𝑖𝑗} = 𝐻(𝑋) (4-1) 

 

In Equation (1), wij is the weight value for the feature map at position (i,j). The weight 

values are computed during training, and based on these weight values, the mapping 

function H is computed and is convolved on the convolutional feature map as in Equation 

(4-2): 

In Equation (4-2), ⊗ refers to the element-wise product, and Xʹʹ is the output feature map 

from the dense block. 

𝑋′′ = 𝐻(𝑋) ⊗ 𝑋 (4-2) 
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As the extracted discriminative feature map via a dense attention block might interrupt the 

usual convolutional feature extraction process, a concatenation of all or some of the 

previous feature maps can retrieve the feature extraction process. Concatenation refers to 

the stacking of the outputs from several previous layers and passing them to the next layer. 

DANs fuse convolutional features, extracted by usual convolutional layers and 

discriminative features extracted by dense attention blocks to ease feature propagation 

through the layers. This fusion is achieved using concatenation layers embedded in the 

network and can be formulated as shown in Equation (4-3). In this equation, the subscripts 

refer to layer number; for example, Xl is the feature map in the lth layer, [] is the 

concatenation sign, and Xʹʹʹ is the output feature map from concatenation layer. 

𝑋′′′ = [𝑋𝑎 , 𝐻( 𝑋𝑎) ⊗ 𝑋𝑎 , 𝑋𝑏 ⊗ 𝑋𝑏 , … , 𝑋𝑙 , 𝑋𝑙 ⊗ 𝐻(𝑋𝑙)]  (4-3) 

 

4.3.4 Proposed Dense Attention Network Inputs and Parameters 

The input data to the proposed network was LiDAR derived features and Rapid Eye 

spectral bands, and the training parameters included learning rate, batch size, the number 

of epochs, loss function, and optimizer. The assigned values for these parameters were 

reported in Table 4-5. 
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Table 4-5: Proposed Dense Attention Network (DAN) parameters 

Parameter Value 

Learning rate 10-4 

Batch size 20 

Number of epochs 400 

Loss function Binary cross entropy 

Optimizer Adam 

 

These parameters were set by trial and error because it is more computationally efficient 

than using optimization algorithms like Genetic Algorithm applied in previous studies. The 

loss function was binary cross-entropy because the problem is a binary classification. The 

learning rate, and batch size were adjusted to 10-4, and 20, respectively. The Adam 

optimizer function was considered during training, and the number of epochs was set to 

400, but an early stopping condition was considered for faster training. This condition was 

set so that if the loss function on validation data had a tolerance not greater than 10-3 during 

50 epochs, the training would be stopped. 

 

4.3.5 Proposed Dense Attention Network Architecture 

The proposed architecture was inspired by a DL method called DAN applied previously 

for building detection, but our method does not use an encoder-decoder structure to extract 

feature maps (Yang et al., 2018). It uses two dense attention blocks embedded in between 



 

123 

 

layers to convert low-level features to high-level features. Figure 4-4 shows the proposed 

architecture. The DAN block refers to a cascade of batch normalization, 2-D convolution, 

drop out, and average pooling layers in this figure. The last two dense layers assign either 

the label value of zero (other) or one (building) to the feature maps extracted by previous 

layers. The network patch (window) size was set to 9 because of the tradeoff between 

processing time and meaningful information content. Image patch size smaller than nine 

did not result in optimal classification because the small patch size might fail to include 

meaningful information for building detection.  

 

Figure 4-4: Proposed CNN architecture 
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Our method selects the samples at the polygon level, and the building detection stage labels 

the whole image scene at the pixel level by dividing the scene into overlapping areas with 

the same size as the input shape. After extracting the relevant features during the feature 

extraction stage, the FC layers, embedded on the top of the CNN network, assign a label to 

the central pixel inside the initially selected area. Figure 4-5 shows the flowchart of the 

study. 

Figure 4-5: Flowchart of the study 
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4.3.6 Model Training 

Figures 4-6 and 4-7 show the loss (cost) function and classification accuracy diagrams for 

training and validation data. Training stopped after about 140 epochs when the loss 

function and accuracy values for both training and validation data reached the same value. 

The train and validation accuracy reached to 100% at the last epochs. 

Figure 4-6: Loss function during training for train and validation data 
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Figure 4-7: Classification accuracy during training for train and validation data 

 

4.4 Results 

This section analyzes the effects of changing the patch size and input features on building 

detection accuracy. 

4.4.1 CNN results with different patch sizes 

This section examines the proposed CNN results regarding classification accuracy indices 

and classification maps after changing the patch size parameter and keeping the same input 

features. Support, in Table 4-6, refers to the number of samples in each class and as a 

whole. The number of samples in each class seemed balanced because the 

class other constituted a larger part of the scene than the class building. All patch sizes 

acquired full accuracy on test data except for patch size 5. Accuracy indices for building 

pixels, including precision, recall, and F1 Score, dropped by 4%, 2%, and 3%, respectively, 

after changing the patch size parameter to 5 because larger patch sizes are more informative 

and contain more features than smaller patch sizes (Hamwood et al., 2018). The patch size 

9 was selected for the network based on the outcome accuracy indices.   
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Table 4-6: CNN accuracy indices with different patch sizes (Tile 1) 

Patch size Class Precision Recall F1 Score Support 

5 

Other 0.99 0.98 0.98 5171 

building 0.96 0.98 0.97 3539 

accuracy 
  

0.98 8710 

7 

other 1 1 1 3923 

building 1 1 1 2795 

accuracy 1 1 1 6718 

9 

other 1 1 1 3054 

building 1 1 1 2073 

accuracy 
  

1 5127 

11 

other 1 1 1 2391 

building 1 1 1 1541 

accuracy 1 1 1 3932 

 

Table 4-7 shows the same accuracy indices in Table 4-6 for the second Tile. The results 

for the second Tile are consistent with the first Tile. The accuracy indices were reduced by 

5%, 6%, and 5% after changing the patch size to 5, and full accuracy parameters were 

achieved for the class building after changing the patch size to 7 and remained the same 

when testing larger patch sizes of 9 and 11. Table 4-8 shows IoU indices. The computed 
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values confirm the results obtained in Tables 4-6 and 4-7. It can be seen that the least IoU 

values were for patch size 5, with almost 0.94 and 0.89 for the first and second Tiles, 

respectively. Higher IoU values were achieved after changing the patch size to 7, 9, and 

11. Looking at the support column in Tables 4-6 and 4-7, changing the patch size resulted 

in a change in the sample numbers in both classes, and the network building detection 

accuracy improved after decreasing the number of samples. In this case, a greater patch 

size means decreasing the number of samples because samples are selected from an area 

with a fixed size. This result implies that building detection accuracy is more dependent on 

the training data patch size than the number of samples because the sample patch size 

controls the information content transferring between CNN layers. Overall, it was expected 

that more training data would result in higher accuracy. Here, there was a reverse 

relationship between the number of samples and the patch size. It means that having a 

greater patch size would result in fewer training samples. A larger patch size caused more 

information content to be imported to the network and resulted in higher classification 

accuracy. It should be noted that while a small patch size can cause the loss of information 

content, a relatively large patch size can also result in inclusion of more than one object in 

patch size, however assigning a single classification label to more than one object is not 

correct.  

 

 

 

 

 

 

 

Table 4-7: CNN accuracy indices with different patch sizes (Tile 2) 
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Patch size class Precision Recall F1 Score Support 

5 

other 0.98 0.99 0.98 7140 

building 0.95 0.94 0.95 2097 

accuracy 
  

0.98 9237 

7 

other 1 1 1 5875 

building 1 1 1 1540 

accuracy 1 1 1 7415 

9 

other 1 1 1 5007 

building 1 1 1 1122 

accuracy 
  

1 6129 

11 

other 1 1 1 4377 

building 1 1 1 805 

accuracy 1 1 1 5182 
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Table 4-8: IoU values for different patch sizes 

Patch size IoU (Tile 1) IoU (Tile 2) 

5 0.95 0.90 

7 1 1 

9 1 1 

11 1 1 

 

Receiver Operative Characteristics (ROC) is applied to evaluate the diagnostic ability of 

one or multiple classifiers. As the Area Under the ROC Curve (AUC) increases, the 

classifier performance improves.  Figure 4-8 shows the ROC curves for the Tiles. Again, 

full AUC values were obtained for patch sizes 7, 9, and 11, and this index was reduced to 

0.97 and 0.96 after training the network with patch size 5. Here, patch size can be related 

to the size of the buildings in the scene. While small patch sizes contain no relevant 

information about building geometry and spectral characteristics, larger patch sizes are 

more likely to import meaningful information to the Dense Attention blocks.  
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Figure 4-8: ROC curves with different patch sizes for first and second Tiles; dashed 

lines represent the ROC curves for random classifiers. a: first Tile; b: second Tile 

 

4.4.2 CNN results with different input features 

Tables 4-9, 4-10, and 4-11 show accuracy indices as well as IoU for the first and second 

Tiles, before adding hillshade, curvature, slope and spectral features, and after considering 

both LiDAR-derived and spectral features. Regardless of which kind of feature (LiDAR-

derived or RapidEye spectral bands) was imported to the network, excellent result on the 

test data was achieved. This result verifies the effectiveness of the proposed Dense 

Attention Network (DAN) one more time.  
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Table 4-9: CNN accuracy indices with different features (Tile 1) 

Features 

 

class Precision Recall 
F1 

Score 
Support 

DTM, DSM, nDSM 

other 1 1 1 3054 

building 1 1 1 2073 

accuracy 
  

1 5127 

DTM, DSM, nDSM, Hillshade 

other 1 1 1 3054 

building 1 1 1 2073 

accuracy 1 1 1 5127 

DTM, DSM, nDSM, Hillshade, 

Curvature, Slope, RGB 

other 0.99 1 0.99 3054 

building 1 0.99 0.99 2073 

accuracy 
  

0.99 5127 

DTM, DSM, nDSM, Hillshade, 

Curvature, Slope, RGB, Red edge 

other 1 1 1 3054 

building 1 1 1 2073 

accuracy 1 1 1 5127 
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Table 4-10: CNN accuracy indices with different features (Tile 2) 

 

 

Features class Precision Recall 
F1 

Score 
Support 

DTM, DSM, 

nDSM 

other 1 1 1 5007 

building 1 1 1 1122 

accuracy 
  

1 6129 

DTM, DSM, 

nDSM, 

Hillshade 

other 1 1 1 5007 

building 1 1 1 1122 

accuracy 1 1 1 6129 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature, 

Slope, RGB 

other 1 1 1 3054 

building 1 1 1 2073 

accuracy 
  

1 5127 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature, 

Slope, RGB, 

Red edge 

other 1 1 1 3054 

building 1 1 1 2073 

accuracy 1 1 1 5127 
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Table 4-11: IoU values for different input features 

Input Features IoU (Tile 1) 
IoU 

(Tile 2) 
Input features IoU (Tile 1) 

IoU 

(Tile 2) 

DTM, DSM, 

nDSM 
1 1 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature, 

Slope, RGB 

0.98 1 

DTM, DSM, 

nDSM, Hillshade 
1 1 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature, 

Slope, RGB, 

Red edge 

1 1 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature 

1 1 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature, 

Slope, RGB, 

Red edge, NIR 

1 1 

DTM, DSM, 

nDSM, 

Hillshade, 

Curvature, Slope 

1 1    

 

Figure 4-9 illustrates the classification maps with different input features for the first Tile. 

There are some visual errors on the middle top and the bottom. Some high roads were 

labeled as building even after adding geometric LiDAR-derived features because although 

building and high roads edge pixels may have different slopes and curvature, these 

parameters are the same within the boundary area of both objects where the train data are 
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selected. Another reason for this commission error (erroneously classifying background 

pixels as buildings) would be integrating samples from rivers, roads, and vegetated regions 

as one class. This integration may cause difficulty in discriminating buildings from high 

roads due to high variance in class other, and the problem may be solved by considering a 

multi-class classification (Hamaguchi and Hikosaka, 2018). Multiclass classification was 

ignored because this study was focused on building detection. Test data are usually selected 

from pure pixels in the middle of an object, far from the edges. Therefore, these visual 

errors were not reflected in the accuracy indices. 

 

Figure 4-9: Building detection results with different input features (Tile 1); yellow 

areas show the detected building pixels. a: classification result with DSM, DTM, and 

nDSM ; b: DSM, DTM, nDSM and hillshade; c: DSM, DTM, nDSM, hillshade and 

curvature;  d: DSM, DTM, nDSM, hillshade, curvature, and slope; e: Google Earth 

image 
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Figure 4-10 depicts the same result for the second Tile and also by adding RapidEye 

spectral features. Again, some visual errors exist on high roads, but another challenge here 

is the commission error of labeling the edge pixels between trees and roads as buildings. 

This kind of error may be solved by adding morphological operations as the post-

processing step. 
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Figure 4-10: Building detection results with different input features (Tile 2); yellow 

areas show the detected building pixels. a: classification result with DSM, DTM, and 

nDSM ; b: DSM, DTM, nDSM and hillshade; c: DSM, DTM, nDSM, hillshade and 

curvature;  d: DSM, DTM, nDSM, hillshade, curvature, slope, RGB, and Red edge; 

f: DSM, DTM, nDSM, hillshade, curvature, slope, RGB, Red Edge, and NIR; e: 

Google Earth image 

 

4.5 Discussion 

This section presents a comparison between some of the state-of-the-art DL techniques, 

including VGG16, ResNet50, Unet, ResUnet, and the proposed DAN network on two case 

studies, Toronto and Massachusetts Building Dataset. It also compares the building 

detection results of these DL methods with the building masks extracted from the Toronto 

Land Cover Map. 

4.5.1 Comparison of building detection results with different patch sizes 

Figure 4-11 shows the output building mask with different patch sizes, including 5, 7, 9, 

and 11 for the first Tile. As can be seen in the red square areas, some line objects in the 

road area are apparent in the building mask for smaller patch sizes, but these detailed 

features have been partially removed for larger patch sizes because the detailed objects 

such as edges are more likely to be captured by a smaller patch size than a larger one. As 

shown in Figure 4-12, the same situation can also be seen for the second Tile. Small 

vegetated areas in the vicinity of the river have been detected as buildings when masking 

the built-up areas with patch sizes 5 and 7, but these areas were gradually merged with the 

background by increasing the patch size. 
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Figure 4-11: Building masks for the first Tile with different patch sizes (the red 

square highlights a road edge that is more apparent in patch sizes 5 and 7 than 9 

and 11) ; a: Patch Size 5; b: Patch Size 7; c: Patch Size 9; d: Patch Size 11; e: Google 

Earth image.  
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Figure 4-12: Building masks for the second Tile with different patch sizes (the red 

square shows a vegetated area in the vicinity of the river that has been detected as 

the building in patch sizes 5 and 7 but these areas are starting to merge with the 

background in patch sizes 9 and 11); a: Patch Size 5; b: Patch Size 5; c: Patch Size 

9; d: Patch Size 11; e: Google Earth image 
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4.5.2 Comparison with other Deep Learning techniques 

The proposed method was compared with two other well-known DL techniques, VGG16 

and ResNet50 on the Toronto case study. VGG16 is a DL network developed by the Oxford 

Visual Geometry Group (VGG), which has sixteen weight layers and five convolutional 

blocks (Ünlü and Kiriş, 2021). VGG16 has been previously used for damaged building 

detection, classification, and pavement distress detection. ResNet50, with 50 layers, is 

based on the assumption that learning the residual function is more accessible than the 

actual mapping function (He et al., 2016). Although VGG16 and ResNet50 were previously 

trained, and their weights can be kept fixed and used for other classification problems, they 

have been trained on natural images having different semantic information to satellite 

images and LiDAR data (Jiang et al., 2021). Here, the preference was to retrain these 

networks on the train data to increase their accuracy.  Two other recently developed state-

of-the-art DL algorithms, including Unet and ResUnet (Ronneberger et al., 2015; 

Diakogiannis et al., 2020) were compared with our proposed DAN method on the 

Massachusetts Building Dataset to further explore the validity of the algorithm. Unet 

consists of an encoding-decoding architecture. The encoding part has the conventional 

architecture of a convolutional network. It consists of the repeated layers of two 3x3 

convolutions, each followed by a Rectified Linear Unit (ReLU) function and a 2x2 max 

pooling operation with stride 2 for downsampling. Concatenation with the corresponding 

feature maps from the encoding part and two 3x3 convolutions, each followed by a ReLU, 

is conducted in each decoding step. Every step in the decoding part consists of an 

upsampling of the feature map followed by 2x2 Transpose Convolutional layers. ResUnet 

uses an encoder-decoder architecture. Instead of using standard convolution layers in the 

encoder-decoder part, it uses ResNet units containing multiple in-parallel atrous 

convolutions. Pyramid scene parsing pooling is embedded in the middle and end of the 

network. Unet and ResUnet were trained from scratch, and training parameters, including 

optimizer, initial learning rate and batch size, were set to Adam, 10-4, and 20, respectively. 

The initial learning rates were decreased exponentially using the learning rate scheduler 

library in TensorFlow to prevent overfitting. The training parameters for these DL methods 

have been presented in Table 4-12.  
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Table 4-12: Training parameters for VGG16 and ResNet50 

Method 

Number of 

input 

features 

Number 

of 

Epochs 

Batch 

size 

CNN 

patch 

size 

Optimizer 
Initial 

Learning rate 
Loss 

Early 

stopping 

condition 

VGG16 3 400 20 33 SGD 

10-1 

(it was 

decreased 

exponentially) 

Binary 

cross 

entropy 

Same as 

DAN 

ResNet50 

11 (all of 

the LiDAR-

derived and 

spectral 

features) 

400 20 9 SGD 

10-2 

(it was 

decreased 

exponentially) 

Binary 

cross 

entropy 

Same as 

DAN 

Unet 3 400 20 512 Adam 

10-4 (it was 

decreased 

exponentially) 

Dice 

loss 

Same as 

DAN 

ResUnet 3 400 20 512 Adam 

10-4 (it was 

decreased 

exponentially) 

Binary 

cross 

entropy 

Same as 

DAN 

 

4.5.3 Comparison with VGG16 and ResNet50 algorithms on Toronto 

case study 

Figures 4-13 – 4-16 show the loss function and accuracy values on training and validation 

data for the first Tile. The loss and accuracy diagrams for the second Tile showed a similar 

trend as the first Tile and were not included for brevity purposes. In these figures, DAN 

refers to the Dense Attention Block after omitting the concatenation layers.  The training 

diagram shows a descending trend for all the methods that proves the parameters, including 
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the learning rate, optimizer, batch size, number of epochs, and early stopping condition, 

have been set correctly. Our proposed technique shows lower loss values on both the train 

and validation datasets. On top of that, it has been converged to a minimum loss value more 

quickly than the VGG16 and ResNet50. VGG16 has a considerable number of parameters, 

and this characteristic increases its convergence time. To reduce model complexity in 

VGG16, it does not contain batch normalization layers which are beneficial for speeding 

up the learning process. So, the parameters, especially the learning rate, should be set 

carefully to converge the network. Also, the early stopping condition in VGG16 was set so 

that its training time decreases. VGG16 is quite sensitive to parameter setting, especially 

the learning rate value, and this can be a limitation for this method. Although newer models, 

like ResNet50, include batch normalization layers and converge more quickly, it can be 

seen that the proposed DAN has even less training time (better convergence) than 

ResNet50. The proposed DAN network has achieved smaller loss values than VGG16 and 

ResNet50 on the validation data, which shows its better performance in terms of 

generalization. Some evident fluctuations can be seen for VGG16 in figure 4-14. These 

fluctuations can be caused by the small number of validation data compared with the large 

number of parameters in VGG16.  

 

Figure 4-13: Train loss values during epochs 
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Figure 4-14: Validation loss values during epochs 

 According to figures 4-15 and 4-16, the proposed DAN network acquired higher accuracy 

values than VGG16 and ResNet50 on both the train and validation data, and the lowest 

accuracy was for ResNet50. 

Figure 4-15: Training accuracy values during epochs 

 

 

 



 

144 

 

 

Figure 4-16: Validation accuracy values during epochs 

Figures 4-17 and 4-18 show the bar plots for building detection accuracy indices for 

different techniques applied. It can be observed that the proposed method with or without 

concatenation layers can achieve high precision, recall, and F1 Score. However, after 

removing the concatenation layers in the first Tile, the accuracy indices dropped by 1%.  

ResNet50 showed lower recall and F1 Score values than VGG16 on test data because it 

has fewer parameters (23 million<138 million) and thus might fail when modelling 

complex mapping functions. Although VGG16 had comparable performance to the 

proposed DAN in terms of recall index, its precision was lower than both proposed DAN 

networks because of its higher false alarm rate. VGG16 has been designed to process RGB 

images; therefore, more than three bands cannot be imported to this network, reducing its 

efficiency and flexibility.  In addition, it does not accept small image patches as input. This 

limitation can increase its processing time when the GPU is not available. Another issue 

regarding not accepting small patches is the mixed object problem, for example, building 

and vegetation in the same patch. So, the original 9×9 patches were resampled to 33×33 

size using linear interpolation rather than dividing the image into 33×33 segments. Our 

proposed method solves this limitation, and it can accept any patch size. 
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Figure 4-17: Building detection accuracy indices for the proposed method (both 

with and without concatenation), VGG16, and ResNet50 (first Tile) 
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Figure 4-18: Building detection accuracy indices for the proposed method (both 

with and without concatenation), VGG16, and ResNet50 (second Tile) 

Table 4-13 shows IoU values for different methods. It can be concluded that the highest 

agreement with the test data was achieved when using the proposed methods (both DAN 

and DAN with concatenation), and the IoU values were even improved by 1% after 

applying the concatenation technique. This Table also shows that although ResNet50 has 

more layers than VGG16 and DAN, it resulted in the lowest IoU values on both Tiles. 
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Table 4-13: IoU values for the proposed method (both with and without 

concatenation), VGG16, and ResNet50 for the first and second Tiles 

Method IoU (Tile 1) IoU (Tile 2) 

DAN with concatenation 1 1 

DAN 0.99 0.99 

VGG16 0.98 0.97 

ResNet50 0.93 0.84 

 

4.5.4 Comparison with Unet and ResUnet algorithms on Massachusetts 

case study 

Based on the accuracy indices reported for the three methods in Figure 4-19, it is apparent 

that our proposed method acquired both higher precision and recall values than Unet and 

ResUnet. While the precision and recall values for the proposed technique were 0.81 and 

0.71, respectively, the corresponding accuracy indices were 0.31 and 0.64 for Unet and 

0.50 and 0.48 for ResUnet. Although the Unet method achieved a comparable accuracy 

value on the training dataset, its building detection ability was lower than DAN and 

ResUnet because of overfitting on the train data. Still, Unet acquired a 0.14 higher recall 

score than ResUnet, and there were more missed building blocks in ResUnet than Unet. 

On the other hand, our proposed technique resulted in 0.07 and 0.21 higher recall scores 

than other methods because of the use of dense attention blocks and importing semantic 

features from previous layers using concatenation layers. The F1 Score, the weighted 

average of the precision and recall values, was 0.76 for the proposed algorithm compared 

with the 0.49 and 0.42 values for ResUnet and Unet. Although Unet acquired a 0.14 higher 

recall value than ResUnet, its F1 Score is still 0.07 lower than ResUnet, which means 
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ResUnet shows higher overall building detection ability than the Unet algorithm on the 

Massachusetts Building Dataset. 

 

 

 

Figure 4-19: Accuracy indices for Unet, the proposed DAN, and ResUnet on the 

Massachusetts Building Dataset 

Based on figures 4-20 and 4-21, it can be seen that our proposed DAN created building 

masks with a lower amount of background noise compared with ResUnet because this 

method is more sensitive to detailed background objects such as road edges because of its 

dependency to feature extraction based on residual function. Although ResUnet resulted in 

classification maps with higher precision than Unet, the method has merged some adjacent 

building blocks as one entity, as seen in areas highlighted by red squares on the building 

masks. It can be observed in figure 4-22 that this merging level was even more intense in 

Unet building masks than ResUnet because of the overfitting. In terms of the IoU index, 

the same trend as the F1 Score can be seen in Table 4-13; the proposed algorithm achieved 
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considerably higher IoU, about 0.61, than Unet and ResUnet, which acquired 0.26 and 0.33 

F1 Score, respectively.  

 

 

 

Figure 4-20: Building detection result on three representative areas using the 

proposed DAN on the Massachusetts Building Dataset. See text for explanation of 

red boxes.  
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Figure 4-21: Building detection result on three representative areas using ResUnet 

on the Massachusetts Building Dataset 

 

Figure 4-22: Building detection result on three representative areas using Unet on 

the Massachusetts Building Dataset 

The Massachusetts Building dataset structure differed from the Toronto building data 

because the ground truth data were 2D label maps instead of pixel-based labels. So, a 

modification was carried out, and the FC layers in the initial architecture were replaced 

with the 2D Convolutional layers to produce label maps instead of pixel-based predictions. 

Regardless of the use of FC layers or 2D Convolutional layers in the prediction part, our 

proposed DAN achieved higher accuracy than the state-of-the-art methods in terms of 

precision, recall, and F1 Score. These results show the flexibility of the algorithm to both 

object-based and pixel-based predictions. 

 

4.5.5 Comparison with building footprints from Toronto Land Cover 

Map 

The most recent Toronto Land Cover Map was created in 2018, and it has been considered 

the most accurate land cover data of the area at the time of its creation. The dataset was 

created as part of the Toronto Tree Canopy Study, and it includes eight land cover classes: 
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(1) tree (2) grass (3) bare (4) water (5) building (6) road (7) other paved surfaces and (8) 

shrub. For this study, only building footprints were required, so other classes were merged 

as class other. Figure 4-23 shows building footprints after the combination of classes other 

than building.  

 

Figure 4-23: Building footprints extracted from 2018 Toronto Land Cover Map; a: 

building footprints for the first Tile; b: building footprints for the second Tile 

 

The following average accuracy indices between building and background classes and tiles 

were computed after comparing the building footprints extracted from the DL methods 

with 2018 Toronto data. Figure 4-24 demonstrates the bar plots for average accuracy 

indices, including F1 Score, recall, and precision for proposed DAN, VGG16, ResNet50, 

Unet, and ResUnet. The vertical axis shows the method, and the horizontal axis refers to 

the average accuracy indices between classes and tiles. It can be observed that while all DL 

techniques have achieved agreements between about 50%-60%, the proposed DAN shows 

higher agreement with the reference data in terms of all the accuracy indices with a recall 
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value slightly above 60%. Higher agreements might be achieved using higher-resolution 

spectral data than Rapid Eye images. 

Looking at the average F1 Score between building and background classes, VGG16 

obtained a higher F1 Score by 4% than ResNet50 and ResUnet because its building 

detection results were more balanced between the first and second tiles. ResNet50 and 

ResUnet achieved lower building detection precision than VGG16 in the second tile, and 

hence their average F1 Score dropped to 41%. On the other hand, ResUnet achieved 

comparable performance to our proposed method in terms of recall score, with a recall 

value of 59%, because this method is a more recent DL algorithm than other techniques, 

and it takes advantage of both the residual learning strategy in ResNet networks and the 

Unet architecture. 
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Figure 4-24: Average accuracy indices for ResUnet, Unet, ResNet50, VGG16, and 

Proposed DAN 

 

4.6 Conclusion 

This study proposed a CNN architecture based on the dense attention block concept for 

building detection in Toronto, Ontario, Canada. The inputs to the network were LiDAR-

derived features, and the RapidEye spectral bands, resampled to the same resolution as 

LiDAR data. It was observed that excellent accuracy indices in terms of precision, recall, 

F1 Score, and IoU on test data were achieved using features extracted by LiDAR alone or 

after adding RapidEye spectral features. This result showed the capability of DAN 

networks to extract features at different scales and the efficiency of LiDAR-derived 

features in extracting building footprints with high accuracy. The results also showed that 

stacking high- and low-level features using concatenation layers slightly improved the 

accuracy indices. A comparison with four other state-of-the-art DL techniques, including 
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VGG16, ResNet50, Unet, and ResUnet, was also conducted to test the efficiency of the 

proposed DAN network. The results showed that the accuracy indices obtained were higher 

in most cases, which demonstrates the effectiveness of our proposed method. The building 

detection result of the proposed DAN was compared with the 2018 Toronto building 

footprint dataset. The results showed that the proposed DAN achieved a higher agreement 

than VGG16 and ResNet50 because VGG16 and ResNet50 were initially developed for 

RGB image processing, and their use for satellite image processing might not always be a 

good solution. Even efficient for satellite image processing, they need to be retrained for 

the new dataset, which takes a long time because of the high number of layers and 

parameters. Our proposed model, which has far fewer parameters (~200 000) than VGG16 

and ResNet50 and fewer layers than ResNet50, can detect buildings with higher precision 

without requiring a post-processing step and is a suitable model for building detection in 

satellite images. In addition, the proposed method can predict at both the pixel and object 

levels. For the prediction at the pixel level, the flattening operation was embedded after the 

feature extraction stage, followed by the Fully Connected (FC) layers and a softmax 

function at the prediction layer. On the other hand, for prediction at the object level, the 

2D convolutional layer was replaced with FC layers to create a 2D building mask at once 

instead of predicting the labels pixel by pixel. Therefore, it can be inferred that the proposed 

CNN is adjustable for prediction at both pixel and object levels. 

The proposed training and test data preparation approach presented here is not similar to 

some state-of-the-art DL algorithms, such as Unet and ResUnet. While Unet and ResUnet 

accept input patches not smaller than 32 × 32, our proposed training data preparation 

procedure is limited to smaller patch sizes of up to 11 × 11 because of the memory issues 

arising when using larger patch sizes. In other words, our predictions are conducted on a 

smaller scale than those of Unet and ResUnet, which might limit the proposed training data 

preparation strategy. However, the proposed DAN network is still adjustable to object-

level prediction using 2D convolution as the prediction layer, instead of using a dense layer. 
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Chapter 5 

Fusion of Google Street View, LiDAR, and Orthophoto 

classifications based on a ranking method for building 

Land-Use type detection 

5.1 Introduction 

Building land-use type is valuable information for municipalities to assess flood damage 

and estimate the number of exposed people during or after the flood event, but this 

information is either unavailable or not in a standard format (Al-Habashna, 2022). The 

traditional method for collecting building land-use type information is ground surveying, 

which is labor-intensive. Some studies in the literature addressed this issue by automating 

this task using machine learning and EO data. Belgiu et al. 2014 used Light Detection and 

Ranging (LiDAR) data to categorize the buildings into residential/small, factory/industrial, 

and apartments. First, building footprints were extracted, and four kinds of features related 

to extent, shape, height, and slope were computed for each building footprint. Then, 

Random Forest (RF) classifier and some IF/THEN rules based on the building type 

ontology were applied to produce the final building type classification map. The results 

showed that although a high F1 score, about 98%, was achieved for residential/small 

buildings, the F1 scores for factory/commercial buildings and apartments were 

considerably lower, about 51% and 60%, respectively. Lu et al. 2014 used LiDAR data for 

building land-use type classification. They applied three feature types: 1- The basic 

statistical features such as minimum, maximum, and standard deviation computed on the 

first and last return pulses. 2- The Shape attributes such as length, width, and length-to-

width ratio. 3- The spatial relationship between buildings together and between buildings 

and other landscape features. Wurm et al. 2016 applied 1D, 2D, and 3D building shape 

attributes and a Linear Discriminant Analysis method to classify buildings into different 

types, such as terraced houses/row houses, and detached/semi-detached. The results 

showed that shape features are unsuitable for discriminating similar building types, 

including perimeter block development, and block development. Although LiDAR can 

give a valuable source of information about building geometric features, which can help 

classify buildings into residential/commercial, it does not give any spectral information, 
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which can be helpful when discriminating other types of buildings. Orthophotos can 

provide spectral information, and the simultaneous use of LiDAR and orthophoto can 

improve identifying land-use type of buildings and reduce the chance of commission and 

omission errors. Meng et al. 2012 used LiDAR, aerial images, and a road network map to 

discriminate residential buildings from other types of buildings in Austin City, Texas using 

a C4.5 classification algorithm. The results were compared with the field survey data, and 

the accuracy of about 81% was achieved for residential buildings. 

Machine Learning algorithms are a great choice when we have no prior assumption on the 

data distribution and can be used for various tasks, including multivariate non-linear non-

parametric regression, supervised classification, and unsupervised classification (Lary et 

al., 2018). When doing supervised classification, we need a dataset, referred to as train 

data, large enough to span the parameter space as much as possible. In the remote sensing 

data context, supervised classification refers to when labeled data exists on the class 

membership of single pixels (Camps-Valls, 2009). These data are used to generalize the 

model to the whole image. Unsupervised classification is when the training step is skipped, 

and the image is partitioned into different parts based on the spatial or spectral 

characteristics of the input image. These tasks can be achieved using different algorithms, 

such as Neural Networks, Support Vector Machines, Decision Trees, and Random Forests.  

While previous studies were extensively focused on using Machine Learning and Deep 

Learning (DL) algorithms for building footprint extraction (Yan et al., 2011; Abdollahi et 

al., 2020; Liu et al., 2022; Rastogi et al., 2022; Yu et al., 2023), recent efforts have been 

made for building land-use type classification using EO data. Xie and Zhou, 2017 extracted 

features from high-resolution satellite images at multiple resolutions using an Extended 

Multiresolution Segmentation (EMRS) algorithm and classified buildings into different 

functionality types with a Soft Classification using a Back Propagation (BP) network. The 

overall accuracy improved by 19.8% compared with a single-resolution segmentation 

space using a hard classification with the BP network. Huang et al. 2022 created a building 

roof type and functionality dataset from high-resolution satellite images for Beijing and 

Munich Cities. They examined DL based segmentation algorithms, including Mask R-

CNN, Cascade Mask R-CNN, SOLOV2, and QueryInst, and achieved Average Precision 
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at Intersection Over Union = 0.5 (AP0.5) of 23.5, 25.5 for Beijing and Munich Cities, 

respectively. Additionally, Google Street View (GSV) images have been used for building 

land-use type classification. Wang et al. 2017 used AlexNet to classify GSV images and 

achieved an overall test accuracy of about 90% on non-independent test data. Zhang et al. 

2017 used LiDAR, high-resolution orthophotos, and GSV images for building land-use 

classification of an area in New York City, USA. It was concluded that although the overall 

accuracy did not improve significantly after using GSV images, the mixed commercial and 

residential class accuracy improved by 10%. Kang et al. 2018 used Convolutional Neural 

Networks (CNN) to classify buildings into apartments, churches, garages, houses, 

industrial, office buildings, retail, and roofs using façade information from GSV images. 

Four CNNs were tested, including AlexNet, Visual Geometry Group with 16 convolutional 

layers (VGG16), Residual Network with 18 (ResNet18) and 34 (ResNet34) deep layers. 

The best model was VGG16. Al-Habashna, 2022 used GSV images and CNNs for building 

land-use type classification. The models used in this study were VGG16, ResNet18, 

ResNet34, and Residual Network with 50 deep layers (ResNet50). The overall accuracies 

achieved were up to 78% when the train and test were from the same city, and up to 69% 

when the train and test data were from different cities. Laupheimer et al. 2018 used GSV 

images to classify buildings as commercial, hybrid, residential, special use, and under 

construction using four CNN models, VGG16, VGG19, ResNet50, and InceptionV3. The 

highest overall accuracy was achieved using InceptionV3, with a value of 64%. Wu et al. 

2023 used GSV and OSM land use information to estimate mixed land use types 

throughout New York City. The image and text information were imported into two 

separate encoders, and the dot product of the resultant image and text embeddings was 

calculated as a similarity measure. The focus of this study was more on ground land-use 

type detection rather than building land-use. In another similar research, a CNN called 

Conv-Depth Block Res-Unet was proposed for land-use classification in three metropolitan 

areas in Korea. The proposed method combined convolution and depth-wise separable 

convolutions and achieved an overall accuracy of 83.7% on test samples. Although the 

proposed method achieved high overall accuracy, and the model outperformed existing 

CNNs, including DeepLab V3+, ResUnet, ResASPP-Unet, and Context-based ResUnet, 
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the classification maps were not detailed in terms of building land-use type (Yoo et al., 

2022). 

Some previous studies used the fusion of GSV, LiDAR, and aerial images for building 

land-use type classification. For example, Hoffmann et al. 2019 fused aerial and GSV 

images for classifying buildings into commercial, industrial, public, and residential. Three 

fusion methods based on DL were explored: 1- Use of a single DL network pre-trained on 

GSV dataset (Places365) and ImageNet data. 2- Using two streams of DL networks 

(VGG16), one for the GSV data and the other one for the aerial image. Then, the fine-

tuning was used for training the DL networks. 3- Decision Level Fusion by combining the 

Softmax probabilities or the classification labels directly using model blending and 

stacking approaches. The highest overall F1 Score was for the Decision Level Fusion with 

a value of 75%. Cao et al. 2018 combined GSV and aerial images using the SegNet DL 

network. Two encoders were used for feature extraction, one for the GSV and the other for 

the aerial image. The extracted feature maps using the encoders were stacked and fed into 

the decoder part. The model was tested on the New York City aerial and GSV image dataset 

with an overall accuracy of up to 74% achieved after fusion. The highest per-class accuracy 

was for one and two-family buildings with a value of up to 84%.  

This reviews shows that a comprehensive classification of buildings into building 

categories, like institutional, industrial, office buildings, and retail, remains deficient. 

Furthermore, most previous studies missed mixed building categories, such as mixed 

residential/commercial. Addressing these gaps, this Chapter introduces a fusion method 

using ranking classes based on the F1 Score index to produce a detailed building land-use 

type map for regions in Vancouver, BC and Fort Worth, Texas. The reason for selecting 

GSV is that it includes façade texture information. Also, LiDAR and orthophotos contain 

height and spectral information of buildings’ façades and roofs. By combining CNNs 

trained on GSV, LiDAR, and Orthophoto using the proposed ranking method, this study 

aims to improve building land-use type detection accuracy.   
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5.2 Case Studies and Dataset 

Three case studies were explored in this work. These areas were selected because of the 

ground truth data availability. The first case study included four cities in the Greater 

Toronto Area (GTA), Toronto, Vaughan, Richmond Hill, and Peel Region, with areas of 

1829.05, 273.56, 100.79, and 1.25k square kilometers, and population densities of 3087.7, 

1185, 2004.4, 1108.1 inhabitants per square km. The number of occupied private 

dwellings, reported in 2021, were 1160892, 107159, 69314, and 450746 for Toronto, 

Vaughan, Richmond Hill, and Peel Region, respectively (Government of Canada, Statistics 

Canada, 2023; Vaughan Economic Development, 2021; Government of Canada, Statistics 

Canada, 2017). Figure 5-1 shows the extent of the cities on the Open Street Map (OSM) 

map, along with the building samples used in this study. The zoomed areas show the 

building footprints.  

Figure 5-1: Greater Toronto Area (GTA) case study.  The color dots indicate 

building samples within the boundary including the cities of Toronto, Markham, 

Vaughan, Richmond Hill, and the Peel region. The background map corresponds to 

OpenStreetMap (OSM). 



 

162 

 

 

Two independent test case studies, including the Vancouver and Fort Worth Cities, were 

explored to make the train and validation data as separate as possible from the test dataset. 

Vancouver City, with an area of 115 square kilometers, holds a population density of 5249 

per square km. In 2021, of 1,043,320 occupied private dwellings in Vancouver about 28%, 

24.5%, 19%, 16%, 10%, 2%, 0.4%, and 0.1% were single-detached houses, apartments 

with less than five stories, apartments with five stories and more, apartments or flats in a 

duplex, row houses, semi-detached houses, movable dwellings, and other single detached 

houses (Government of Canada, Statistics Canada, 2023a). Fort Worth City, located in 

Texas, US, with an area of 916.76 square kilometers, has a population density of 2677 per 

square mile, and 326647 households were living in the city between 2018-2022 (City of 

Fort Worth, 2019; United States Census Bureau, 2022). Figures 5-2 and 5-3 show the 

orthophoto images of the test case studies and their ground truth maps. 

The GSV, LiDAR, and Orthophoto data for the GTA were used for training the DL models.  

 

Figure 5-2: Vancouver test region; (a): orthophoto image; (b): ground truth map 
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Figure 5-3: Fort Worth test region; (a): orthophoto image; (b): ground truth map 

 

5.2.1 GSV Dataset 

The building land-use type GSV image dataset created by Kang et al. 2018 was used to 

train the DL algorithms. The data included 17600 512×512 GSV images captured with a 

pitch angle of 10 degrees from cities across the U.S. and Canada, for example, Montreal, 

New York, and Denver. The ground truth labels for this data were extracted from OSM.   

5.2.2 LiDAR Point Cloud Dataset 

Ontario Classified Point Cloud data were accessed via the Scholars GeoPortal website. The 

data were in 1km×1km tiles in LAZ format, and the vertical accuracy was 20.76cm, with 

6234 feet of flight height above the ground level. The horizontal spatial reference system 

of the data was Universal Transfer Mercator (UTM) Zone 17N, and the datum was the 

North American Datum 1983 Canadian Spatial Reference System. The vertical spatial 

reference system was the Canadian Geodetic Vertical Datum 2013.   

For the Vancouver test area, the Classified LiDAR Point Cloud Data were downloaded 

from the Government of British Columbia (BC) website with 78cm vertical accuracy in 

non-vegetated areas. The LiDAR sensor flight height was 1850m, and the LiDAR point 

density was 8 points/m2. The horizontal spatial reference system was UTM Zone 10N, with 

the North American Datum 1983. The vertical spatial reference system was the Canadian 
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Geodetic Vertical Datum of 2013. For the Fort Worth test area, the data were accessed via 

the Texas Natural Resources Information System (TNRIS) Hub, acquired during the 

United States Geological Survey (USGS) 2019 Pecos Dallas LiDAR Project. The data were 

in 21.2cm vertical accuracy in non-vegetated areas with the 6000 feet flight height, and the 

Average Nominal Pulse Density not less than 2 points/m2. The horizontal spatial reference 

system was UTM Zone 14N, and the Datum was North American Datum 1983. The vertical 

spatial reference system was the North American Vertical Datum of 1988. 

5.2.3 Orthophoto Dataset 

Orthophoto images for the GTA were downloaded from the Scholars GeoPortal website. 

The data were acquired during the 2018 South Central Ontario Orthophotography Project 

(SCOOP 2018) and were provided in 1km×1km tiles. Besides, they included Red, Green, 

and Blue (RGB) and Near Infrared bands with 20cm spatial resolution. For the Vancouver 

test area, the data were downloaded from the Vancouver Open Data Portal. The images 

were captured in 2015 with 7.5cm spatial resolution and in RGB bands. For the Fort Worth 

test region, the data were accessed via the Texas Natural Resources Information System 

(TNRIS) Hub. The data were acquired by the National Agriculture Imagery Program 

(NAIP) between May 2018 and April 2019. Each image tile covered an area of 16 square 

miles, with 60cm spatial resolution. The images were in 4 bands (RGB and Infrared). 

 

5.2.4. Building Footprint Data 

The 2019 building footprint data for the GTA region was downloaded from the Statistics 

Canada website. The data included latitude, longitude, Building Identity Document (ID), 

building area, and length for buildings across GTA. The building footprint data for 

Vancouver were accessed via the city Open Data Portal and were generated from the city 

of Vancouver's 2015 orthophotos. The data included Building IDs for buildings across 

Vancouver. For Fort Worth city, the building footprint data were provided by the City of 

Fort Worth and included information such as ID, address, owner, building area, and length. 
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5.2.5 ImageNet Data 

The ImageNet dataset contains 14197144 annotated RGB images. The annotation was 

conducted manually with two approaches: 1- image-level binary labeling and 2- object-

based labeling with bounding boxes around the objects. The reported annotation precision 

was 99.7%. The images were from six subtrees, including mammals, vehicles, geo forms, 

furniture, birds, and musical instruments (Deng et al., 2009). These data have been used 

for training different types of CNNs. The CNN parameters trained on ImageNet data can 

be transferable to another classification problem. 

5.3 Method 

 

5.3.1 Preprocessing 

Some modifications were applied to the GSV dataset to make it suitable for this study. The 

garage and roof classes were ignored, and the new mixed residential/commercial class was 

added. The final building land-use type classes included apartment, church, house, 

industrial, mixed residential/commercial (referred to as mixed r/c hereafter), office 

building, and retail. The addresses for the mixed r/c buildings were extracted using web 

scraping from real estate listing platforms, including CREXi, and LoopNet. The 

corresponding GSV images were downloaded using Google Application Programming 

Interface (API). Then, the GSV images were divided into five folds, and, 500, 100, and 

200 images were considered as train, validation, and test in each fold. Because of data 

scarcity for the mixed r/c class, the original number of samples was lower, with 45, 10, and 

10 images as train, validation, and test. The imbalance data problem was resolved using 

data augmentation (Chen and Fan, 2021). The samples in mixed r/c class were flipped 

horizontally to make the number of train, validation, and test images the same as other 

classes (C). 

 

The LiDAR-derived statistics, including mean, minimum, maximum, standard deviation, 

and range were calculated in ArcGIS Pro based on products of Classified Point Cloud data, 
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including First Return (FR) pulse, Last Return (LR) pulse, Intensity, and Slope. Besides, 

normalized Digital Surface Model (nDSM) variance inside each building footprint was 

calculated because of the roof height variations among building land-use type classes. 

Figure 5-4 shows the screenshots of LiDAR-derived DSM showing building footprints.  

 

Figure 5-4: Screenshots of LiDAR-derived Digital Surface Model 

(DSM) from building footprints in two selected areas in Greater 

Toronto Area (GTA) 
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These statistics were calculated based on neighborhood analysis in a 3×3 window. The 

total number of LiDAR-derived features was 13, as listed in Table 5-1. Then, the features 

were clipped to the extent of each building footprint and reshaped into 512×512 for 

consistency with the GSV image size. The building land-use type labels were extracted 

using OSM. The number of samples in each class was made equal by over-sampling images 

in the minority classes and under-sampling images in the majority classes. After that, the 

created data were split into five folds. In each fold, 200, 40, and 60 feature bands, consisting 

of 13 LiDAR-derived features for each building footprint, were considered for train, 

validation, and testing. The OSM labels were relabeled for consistency with the GSV data. 

The commercial and government buildings were relabeled as office buildings. Also, the 

religious, educational, and military buildings were merged as institutional. Besides, some 

building footprints assigned irrelevant or general labels such as construction, brownfield, 

grass, recreation ground, and fairground were relabeled as other. Finally, six classes 

of industrial, institutional, office building, other, residential, and retail were considered 

for further analysis. The Principal Component Analysis (PCA) transform was applied to 

the input LiDAR-derived features to equal the number of feature bands to 

the ImageNet dataset. In other words, in order to achieve fine-tuning, the original 13 

features were reduced to 3 using PCA transformation. 

 

 

 

 

 

 

 



 

168 

 

Table 5-1: Features and their corresponding statistics extracted from LiDAR Point 

Cloud data. For example, mean, maximum, and standard deviation were calculated 

in a 3 ×3 moving window in the First Return (FR) image. 

 

Feature Statistics 

FR* 

Mean 

Max 

Standard Deviation 

LR** 

Mean 

Max 

Standard Deviation 

Intensity 

Mean 

Standard Deviation 

Slope 

Min 

Mean 

Standard Deviation 

Range 

nDSM Variance 

* First Return 

**Last Return 
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5.3.2 Deep Learning models applied for building land-use type 

classification 

CNNs with pre-trained parameters have been used in the literature for classification tasks 

(Karadal et al., 2021; Kumar et al., 2021; Liu et al., 2020). Some examples of these models 

are VGG16, MobileNetV2, and Residual Networks, such as ResNet18, ResNet34, and 

ResNet152. VGG16 was selected for the GSV dataset because Kang et al. 2018 applied 

this models, and the best results, compared with AlexNet, ResNet18, and ResNet34, were 

achieved. To explore the suitability of other CNNs, MobileNetV2, ResNet152, and 

InceptionV3 (Sandler et al., 2018; Simonyan and Zisserman, 2014; He et al., 2016; 

Szegedy et al., 2016) models were also applied to building land-use type classification. 

MobileNetV2 and VGG16 models were used for GSV images, and MobileNetv2, 

ResNet152, and InceptionV3 were tested for the Orthophoto and LiDAR datasets. The 

parameters, including the optimizer, and the initial learning rate were reported in Table 5-

2. 

 

Table 5-2: DL model parameters; optimizer, and initial learning rate; SGD, and 

Adam are acronyms for Stochastic Gradient Descent, and Adaptive Moment 

Estimation, respectively 

Data DL Model Optimizers 
Initial Learning 

Rate 

GSV 

MobilenetV2 SGD 10-1 

VGG16 SGD 10-3 

Orthophoto 

MobilenetV2 SGD 10-1 

ResNet152 SGD 10-2 

InceptionV3 Adam 10-3 
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LiDAR 

MobileNetV2 SGD 10-6 

ResNet152 SGD 10-3 

InceptionV3 Adam 10-3 

 

The loss function for all the DL models were set to the categorical cross-entropy. The initial 

learning rate in all the models was reduced exponentially with a decay rate and decay step 

of 0.9 and 500, respectively. Each DL model consisted of two parts: 1- Feature Extractor; 

and 2- Predictor. For all DL models, the Feature Extractor part was kept, and the predictor 

model was replaced with three layers, including, the Average Pooling, Drop out with 0.2 

rate, and a Softmax function for class probability prediction. Finally, the arg max function 

was applied to the class probabilities, and the class with maximum probability was selected. 

For the MobileNetV2 model, just a Softmax function was added to the top of the Feature 

Extractor. Two scenarios were tested for training; 1- training the whole network, including 

the Feature Extractor and Predictor models, referred to as training from scratch; 2- 

initializing the weights in the primary layers of the Feature Extractor with pre-trained 

parameters based on the ImageNet dataset and training the other layers with train data, 

referred to as Transfer Learning.  

 

5.3.2.1 MobileNetV2 

MobileNetV2 uses 19 Residual Blocks in its architecture. Each Residual Block consists of 

three layers. The first layer is a 1×1 convolution layer with a Rectified Linear Unit6 

(ReLU6) activation function. The second layer includes the depthwise convolution, and the 

last layer is a 1×1 convolution layer with a linear activation function. This model has 154 

layers in the feature extractor. Figure 5-5 shows the network architecture. 
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Figure 5-5: MobileNetV2 model architecture ; ReLU6, and Dwise refer to the 

Rectified Linear Unit function limited to the maximum value of 6, and Depth-wise 

separable convolutions, respectively; Prc represents the probability for class c 

 

5.3.2.2 VGG16 Model 

VGG16, VGG stands for Visual Geometry Group, and 16 refers to the number of 

convolutional layers. This model has a smaller receptive field than the earlier CNNs, 

AlexNet, and ZFNet (Krizhevsky et al., 2017; Zeiler and Fergus, 2014). In other words, 

instead of having a 7×7 or 11×11 convolution layer, VGG16 uses three layers of a 3×3 

convolution layer but adds more depth to the network. The smaller receptive field has three 

advantages: 1- It makes the activation functions more discriminative and increases the 

network's ability to converge faster; 2- It reduces the number of the network parameters; 

3- By replacing the 7×7 convolution layer with three layers of 3×3 convolution and adding 

ReLU non-linearity between layers, the chance of overfitting is reduced. This model has 

13 layers in the feature extractor. Figure 5-6 shows the network architecture.  
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Figure 5-6: VGG16 model architecture; Prc represents the probability for class c 

5.3.2.3 ResNet152 

ResNet152 stands for Residual Network with 152 deep layers, and is deeper than its 34 or 

101-layer counterparts. The main idea of Residual Networks is applying skip connections. 

It means the information flow can skip intermediate layers, and the feature maps can be 

connected to the following layers directly. There are two types of skip connections shown 

in Figure 5-7: 1- The solid line skip connection for the case when the feature map does not 

need upscaling; 2- The dotted-line skip connection: this connection is for when the feature 

map should be increased in size. This upscaling is accomplished by either the zero padding 

or a 1×1 convolution.  
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Figure 5-7: ResNet152 model architecture ; just 34 layers were shown for brevity 

purposes; the arrows between convolution blocks show the skip connections; the 

numbers after Conv, show the output feature map depth; for example, Conv, 64 

means the layer outputs a feature map with 64 layers; Pol, /2 represents the pooling 

layer halving the output size; the prediction layer was added to the top of the 

feature extractor part; Prc represents the probability for class c 

 

5.3.2.4 InceptionV3 

InceptionV3 model is a variant of the Inception networks, which use the Inception modules 

in their architecture. Inception modules use convolution factorization in their structure. In 

other words, they replace n×n convolution layer with two layers of n×1 and 1×n 

convolutions. The convolution factorization can save computational power. Figure 5-8 

shows the InceptionV3 model architecture. The network consists of the Inception, 

Reduction modules, and the Auxiliary Classifier Block, shown separately in Figure 5-9. 

The Reduction module is embedded into the network to avoid the representational 

bottleneck and reduce the computational burden. The Auxiliary Classifier Block improves 

the network convergence and pushes the useful gradients to the lower layers (Szegedy et 

al., 2016). The model has 313 layers in the feature extractor. 
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Figure 5-8: InceptionV3 model architecture with Stem block ; n, s, and p refer to the 

number of feature layers, stride, and padding parameters; Aux represents the 

Auxiliary Classifier Block; Prc represents the probability for class c 
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Figure 5-9: Inception, Reduction, and Auxiliary Classifier Blocks in InceptionV3 

model 

 

5.3.3 Fusion methods 

The building land-use type classification maps from Orthophoto, LiDAR, and GSV images 

were combined using two fusion methods. We proposed a methodology based on ranking 

classes using the F1 Score. The second method applied the Fuzzy Fusion concept to 

combine classification maps. The methods were explained in this section. 
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5.3.3.1 Ranking classes based on F1 Score 

DL models for classification problems are usually evaluated using Precision and Recall 

rates. Precision for class c in a multi-class classification problem is the ratio of correctly 

classified samples in that specific class divided by the total number of samples classified 

in class c by the DL model (Equation (5-1)). The recall rate for class c is the ratio of 

correctly classified samples in that specific class divided by the total number of samples in 

the ground truth data for that class (Equation (5-2)). In Equations (5-1) and (5-2), True C 

is the total number of samples correctly classified in class c, False C is the total number of 

samples erroneously predicted in class c, and False NC is the total number of samples 

belonging to class c but were incorrectly predicted in other classes. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝐶

𝑇𝑟𝑢𝑒 𝐶 + 𝐹𝑎𝑙𝑠𝑒 𝐶
 (5-1) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝐶

𝑇𝑟𝑢𝑒 𝐶 + 𝐹𝑙𝑠𝑒 𝑁𝐶
 (5-2) 

 

F1 Score combines Precision and Recall rates and takes the harmonic mean of these two 

indices as following: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5-3) 

 

F1 Score is a suitable metric for evaluating a classifier performance because it considers 

both accuracy and predictive power of the DL model. Hence, it is a desired metric for per 

class performance evaluation. When there are multiple classifiers, ranking classes based 
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on F1 Score can be a useful fusion methodology to compare classes from different 

information sources. We presented a methodology based on this concept to combine 

building land-use type classification maps from three data sources, including, Orthophoto, 

LiDAR, and GSV. This method ranks classes according to their F1 Score values. The class 

with the lowest F1 Score was ranked 1, and the class with the highest F1 Score was ranked 

the last. The assigned rankings determine the order in which the pixels for each class is 

imported to the combined map. For example, if we consider the fused map as a two-

dimensional empty array, first, the pixels for the class with the lowest F1 Score are 

imported to the array, and then the pixels for the class with the second lowest F1 Score are 

imported, and the last class imported is the class with the highest F1 Score. The sequential 

import of pixels for each building land-use type class allows classes with low scores to be 

corrected by classes with higher scores. The combination process was carried out in two 

phases due to two reasons. Firstly, the GSV ground truth labels were in agreement with the 

ground truth labels in Kang et al. 2018. However, the LiDAR and Orthophoto ground truth 

labels were different and were extracted from OSM. Secondly, the method was designed 

to be easily comprehensible to the end user. In the first phase, Orthophoto and LiDAR 

classification maps were combined based on the ranking methodology, and in the second 

phase, the output from Orthophoto and LiDAR maps combination was fused with the GSV 

classification map using the same F1 Score-based ranking methodology. Please note that 

GSV classification maps could have been used in the first phase (after matching the labels 

with either Orthophoto or LiDAR classification), and it should not affect the final 

classification results. Besides, the proposed fusion method is conducted at the pixel level.  

Figure 5-10 shows the proposed method, including phases 1 and 2.  
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Figure 5-10: A graphical depiction for F1 Score ranking fusion method 

 

 



 

179 

 

5.3.3.2 Fuzzy fusion based on Gompertz function 

Assume we have M classifiers with Confidence Factors (CFs), {𝐶𝐹1, 𝐶𝐹2, 𝐶𝐹3, … , 𝐶𝐹𝑀}. 

These confidence factors resemble the degree of membership to a class, and their sum 

across different classes of a specific classifier should be equal to 1. In Equation (5-4), C, 

and M refer to the total number of classes, and the total number of classifiers, respectively. 

Also,  𝐶𝐹𝑐
𝑖 represents the Confidence Factor for class c of ith classifier. 

 

∑ 𝐶𝐹𝑐
𝑖 = 1 ∀𝑖 = 1 , … , 𝑀

𝐶

𝑐=1

 (5-4) 

 

 

The Fuzzy Rank value for class c of the ith classifier is calculated based on the Gompertz 

Function and by using the 𝐶𝐹𝑐
𝑖 as in Equation (5-5): 

 

𝑅𝑐
𝑖 = (1 − exp[− exp[−2 × 𝐶𝐹𝑐

𝑖]]), ∀𝑖 = 1, … , 𝑀; 𝑐

= 1, … , 𝐶 
(5-5) 

 

 

The values of 𝑅𝑐
𝑖   lies in the range [0.127, 0.632]. The smallest value, 0.127, is analogous 

to the highest confidence value resulting in the lowest (best) rank.  

The Final Decision Score (FDS) for class c is calculated based on the Fuzzy Rank Sum 

(FRS) for class c (Equation (5-6) and the Complement of Fuzzy Rank Sum (CFRS) of class 

c (Equation (5-7)) : 
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𝐹𝑅𝑆𝑐 =  {
𝑅𝑐

𝑖        𝑖𝑓 𝑅𝑐
𝑖 ∈  𝐾𝑖

𝑃𝑐
𝑖,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-6) 

𝐶𝐹𝑅𝑆𝑐 =  
1

𝑀
∑ {

𝐶𝐹𝑐
𝑖          𝑖𝑓 𝑅𝑐

𝑖 ∈  𝐾𝑖 

𝑃𝑐
𝐶𝐹 ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑠𝑒

𝑀

𝑖=1

 (5-7) 

 

In the Equations above, 𝐾𝑖 refers to the top k ranks for class c, i.e. ranks from 1, …, k. 𝑃𝑐
𝑖   

and 𝑃𝑐
𝐶𝐹 are the penalty factors imposed on class c if it does not belong to the top k ranks. 

𝑃𝑐
𝑖 is set to 0.632 and is achieved by putting 𝐶𝐹𝑐

𝑖 = 0 in Equation (5-5).  𝑃𝑐
𝐶𝐹  is set to 0.  

 

The Final Decision Score (FDS) for class c is calculated using Equation (5-8) as follows: 

 

𝐹𝐷𝑆𝑐 =  𝐹𝑅𝑆𝑐  ×  𝐶𝐹𝑅𝑆𝑐 (5-8) 

 

 

In the Equation above, 𝐹𝑅𝑆𝑐  refers to the Fuzzy Rank Sum for class c and 𝐶𝐹𝑅𝑆𝑐  

represents the Complement of Fuzzy Rank Sum for class c. The final predicted class of 

instance I of the dataset is calculated by taking the class with the minimum FDS score as 

in Equation (5-9): 

 

𝑐𝑙𝑎𝑠𝑠 (𝐼) =
𝑎𝑟𝑔𝑚𝑖𝑛 {𝐹𝐷𝑆𝑐}

𝑐 = 1, 2, … , 𝐶
 (5-9) 
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5.3.4 Accuracy assessment 

We accomplished the accuracy assessment at two different scales; 1- Pixel-Based; and 2- 

Object-Based. In the Pixel-Based accuracy assessment, Precision, Recall, F1 Score, and 

Overall Accuracy were calculated by considering each pixel in the ground truth map as a 

test sample. For the Object-Based case, the accuracy metrics were achieved by assuming 

each building footprint in the ground truth map as a test sample. The Equations for the 

Precision, Recall, and F1 Score were mentioned in section 5.3.3.1, and Equation (5-10) 

presents the formula for the Overall Accuracy: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑟𝑢𝑒 𝑖𝐶

𝑖=1  

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (5-10) 

 

In the Equation above, True i, refers to the number of correctly classified samples in the 

ith class, and C is the total number of classes. 

 

5.4 Experiments 

This section includes the results and discussion on building land-use type classification 

using GSV, LiDAR, and Orthophoto separately and fusion of the classifiers. Per-class 

accuracies and learning curves for the best DL models were reported in the Appendices A-

C. 

 

5.4.1 Experiments on Google Street View Image 

Two DL models were examined on GSV images, including MobileNetV2 and VGG16. 

MobileNetV2 has 154 layers in the feature extractor part, and five scenarios were examined 

based on the number of trained layers. In the first case, all the weights in all layers of the 

feature extractor network (154 layers) were trained. In the second, third, and fourth cases, 

150, 100, and 50 layers out of 154 were trained, and the pre-trained weights based on 
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the ImageNet dataset were used for the rest of the layers. In the last scenario, all the weights 

in 154 layers were frozen, and none of the weights in the feature extractor were trained. In 

other words, just the weights in the prediction layers were trained, and the weights trained 

on the ImageNet dataset were used in the feature extractor. Table 5-3 shows the average 

training, validation, and test accuracies across five folds and the training time (in hours) 

for each above-mentioned transfer learning scenario. The number of trained layers in the 

Table refers to the number of trained layers in the feature extractor. The highest accuracies 

and the lowest training time have been bolded in the table. The highest overall training, 

validation, and test accuracies were for the MobileNetV2 with 150 trained layers, with 

accuracies of 89.63%, 72.17%, and 94.28%, respectively. These accuracies dropped to 

50.48%, 58.87%, and 81.62% when none of the layers were trained. The training for the 

network with 150 trained layers took longer than other cases, about 15 hours longer than 

the fastest model. While it was expected that the fastest training time would be for the case 

when all the weights were frozen, the fastest model among all MobileNetV2 models was 

for the network with 100 trained layers. The reason is the early stopping condition defined 

when training the models. Based on the condition, the algorithm would be stopped if the 

validation accuracy did not change more than 1% over 100 epochs. In other words, in the 

model for which the validation accuracy converges more quickly, the training time would 

be the least. Although this model was the fastest, the training, validation, and test 

accuracies were about 0.5%, 1%, and 1.5% lower than the best MobileNetV2 model. 
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Table 5-3: Average accuracies across five folds and training times based on the 

number of trained layers. Bold values represent the highest accuracies and shortest 

training time in each column and method. 

Model Number of 

trained 

layers 

Average 

training 

accuracy 

(%) 

Average 

validation 

accuracy (%) 

Average 

Test 

accuracy 

(%) 

Training 

time 

(hours) 

MobileNetV2 154 (from 

scratch) 

89.26 72.78 93.87 22.07 

150 89.63 72.17 94.28 32.37 

100 88.94 71.08 92.76 17.61 

50 87.03 71.02 93.03 25.45 

0 50.48 58.87 81.62 19.33 

VGG16 13 (from 

scratch) 

72.66 71.27 92.15 23.96 

10 72.94 71.06 92.86 29.33 

5 72.17 71.38 92.19 22.09 

0 44 54.15 74.61 22.06 

 

 

VGG16 model has 13 layers in the feature extractor part, and four transfer learning 

scenarios were explored. In the first scenario, all the layers in the feature extractor were 

trained, and in the second, and third scenarios, 10 and 5 layers out of 13 were trained, 
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respectively. The weights for the rest of the layers were kept frozen. In the last scenario, 

all the weights were kept frozen, and pre-trained weights based on the ImageNet dataset 

were used. The fastest VGG16 model, with a training time of 22.06 hours, was the model 

in which the whole parameters were kept frozen. This result can be justified based on the 

lower number of trainable parameters in this network compared with other VGG16 transfer 

learning cases. The highest train and test accuracies, with values of 72.94% and 92.86%, 

were for the model with 10 trained layers. Similar to MobileNetV2, the best model in terms 

of test accuracy, resulted in the highest training time, 29.33 hours, about 7 hours longer 

than the fastest VGG16 model. All the average accuracy indices dropped significantly, 

about 29%, 17%, and 18% for train, validation, and test accuracies after freezing the whole 

weights in the feature extractor and using the pre-trained weights based on 

the ImageNet dataset.  

Based on Table 5-3, the train and validation accuracies were 4-30% lower than test 

accuracy because the internal cross validation was applied for accuracy assessment. It 

means the test data come from the same population as the train and validation data.  To 

combat this issue, the experiments were repeated on independent test data from GTA. 

 

5.4.1.1 Examining the generalization ability of DL models trained on 

GSV images for Greater Toronto Area 

The generalization ability of the trained models was examined on an independent test 

dataset created for the GTA. The images were extracted from real-estate websites using the 

web scraping technique. These websites included LoopNet, Royallepage, and Remax. 

There was no image available for some addresses on the website. In these cases, the GSV 

images were used and downloaded using Google API. When downloading the GSV 

images, heading angles of 0, 90, 180, and 270 degrees and Field Of View (FOV) of 22.5, 

45, and 90 degrees were traversed to expand the GTA database. The extra images created 

using this technique were labeled based on google maps and street view inspection. The 

labels for other images were extracted from the above-mentioned real-estate websites. 
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There was no building land-use type information available on the Remax website, so the 

labels were exploited from the OSM. Table 5-4 shows the number of images for each class. 

 

Table 5-4: Number of images in each class for GTA dataset 

Class Number of images 

apartment 149 

house 465 

industrial 95 

mixed r/c 9 

office building 28 

retail 63 

 

 

Based on the test accuracies in the previous section, the best MobileNetV2 and VGG16 

models were selected for building land-use type prediction for GTA. Figure 5-11 shows 

the building land-use type classification results for GTA using MobileNetV2.  
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Figure 5-11: MobileNetV2 building land-use type classification result; many houses 

(green dots) were misclassified as churches (cyan dots); (a): Ground truth; (b) 

Predicted Map 

 

Based on Figure 5-11, many houses were misclassified as churches. The reason for this 

confusion is the similarities between the two classes in GSV images. Another type of 
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building rarely discriminated from the house because of the similar appearance was mixed 

r/c. For example, Figure 5-12 shows some houses in GSV images misclassified as mixed 

r/c. On the first row, the images show the houses having a similar appearance (sloped roof 

between the first and second floor and some windows on the second floor) to the mixed r/c 

image in the second row.  

 

 

 

Figure 5-12: Houses misclassified as mixed r/c because both building types have a 

sloped roof between the first and second floor and some windows on the second 

floor; the images on the first row are houses misclassified as mixed r/c; the image on 

the second row is a mixed r/c building  
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It is important to take into account that the accuracy values presented in section 5.4.1 (Table 

5-3) may not accurately represent the confusions mentioned above. This is because the 

results were obtained using GSV images, which differ from the real estate website images 

used for evaluation. Although the images from real estate websites used for accuracy 

assessment in this section may appear similar to GSV images visually, they may have 

inconsistent image characteristics as they are from a different source. 

5.4.2 Experiments on LiDAR-derived features 

Because of the limitations of building land-use type detection using GSV images, for 

example similarities between apartments, and office buildings, and houses to churches in 

a GSV image, we also explored the building land-use type classification using LiDAR and 

Orthophoto images. The results for the analysis were reported in sections 5.4.2 and 5.4.3. 

 

5.4.2.1 Influence of DL model and learning rate on building land-use 

type detection accuracies when training models from scratch 

Three DL models were tested for building land-use type classification using LiDAR-

derived features, including MobilenetV2, ResNet152, and InceptionV3. For each model, 

different learning rates, including, 10-6, 10-5, 10-4, 10-3, 10-2, and 10-1 were explored to find 

the suitable value for building-land use type classification. Two scenarios were tested for 

training, including, training from scratch and transfer learning.  

Figure 5-13 shows the results for each DL model when training from scratch. InceptionV3 

generally achieved superior performance compared with other DL methods. The 

classification accuracies for Residential buildings were higher than other building types, 

with a maximum accuracy of 64.33% when using InceptionV3 and setting the learning rate 

to 0.1. The building land-use type classification using LiDAR-derived features generally 

resulted in lower accuracies than GSV and Orthophoto. 
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Figure 5-13: Building land-use type classification accuracies for LiDAR-derived 

features when training from scratch and using DL models, including, MobileNetV2, 

ResNet152, and InceptionV3 (the red circles show the highest accuracy for the 

residential class with 64. 33% test accuracy and the highest overall accuracy with a 

value of 52.78%) 
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Based on accuracies for training from scratch, the DL model with the highest overall 

accuracy, the InceptionV3, was selected for transfer learning. Different numbers of trained 

layers, including, 50, 100, 150, 200, 250, and 300 were examined for building land-use 

type classification, but transfer learning was not successful on LiDAR data, and all 

accuracies fell below 50%. Hence, DL models trained using the transfer learning strategy 

were not used in the fusion part. 

 

5.4.3 Experiments on Orthophoto images 

This section presents the building land-use type classification accuracies when using 

orthophoto images. 

5.4.3.1 Influence of DL model and learning rate on building land-use 

type detection accuracies when training from scratch  

Figure 5-14 shows the orthophoto results with learning rates, 10-6, 10-5, 10-4, 10-3, 10-2, and 

10-1, when training all the parameters. The figure shows that the model performance 

depends on the learning rate parameter significantly. The highest accuracy was for the 

residential class, with 71% accuracy when using the ResNet152 model with a learning rate 

of 10-2. This result was about 7% higher than LiDAR-derive features. The second highest 

accuracy was for the InceptionV3 model, with an accuracy of 70% for the residential class 

when setting the learning rate to 10-6. 
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Figure 5-14: Building land-use type classification accuracies for orthophoto when 

training from scratch and using DL models, including, MobileNetV2, ResNet152, 

and InceptionV3 (the highest accuracy was for residential class with 71% test 

accuracy in the best case) 
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5.4.3.2 Influence of DL model and learning rate on building land-use 

type detection accuracies when using transfer learning 

Transfer learning strategy was also examined on orthophoto dataset, and the results were 

shown in Figure 5-15. The transfer learning strategy was more efficient than LiDAR case 

because of the spectral similarity (RGB bands) between ImageNet data and orthophoto 

images. When training 150 layers, with learning rate 10-3, the accuracy of 81.33% was 

achieved for residential class. The worst performance was for the case of using the default 

parameters (Szegedy et al., 2016).  
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Figure 5-15: Building land-use type classification accuracies for orthophoto when 

using transfer learning and InceptionV3 (the red circles show the highest accuracies 

for the residential class with a value of about 81% and overall with a value of about 

53%; the vertically dotted red line shows the number of trained layers that resulted 

in the highest accuracies); LR is an acronym for Learning Rate; Adam and 

RMSProp refer to the Adaptive Moment Estimation and Root Mean Square 

Propogation optimizers, respectively. 
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5.4.4 Deep Learning models training time 

DL algorithms have millions of parameters, and training this huge amount of parameters 

is time-consuming. Finding the trade-off between training time and accuracy has always 

been one of the challenges in DL models. Figure 5-16 shows the training time when training 

all the parameters for LiDAR-derived features and Orthophoto images with learning rates, 

10-6, 10-5, 10-4, 10-3, 10-2, and 10-1. Most models had training time of less than 1.5 hours 

except ResNet152 trained on orthophoto images, with training time fluctuating between 2-

3 hours. DL model, GPU type, optimizer, and input dataset contribute to the training speed. 

The most time-consuming model was ResNet152 on orthophoto images because the model 

has 60.4 million parameters, the highest among the three models. The least training time 

was for MobileNetV2 on both LiDAR and orthophoto data because this model has the 

lowest number of parameters compared with InceptionV3 and ResNet152. 

Figure 5-16: Training time for DL models; T4, A100, and V100 refer to the GPU 

types 
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5.4.5 Fusion of Orthophoto, LiDAR and GSV 

The GSV, LiDAR, and orthophoto classification maps were fused to improve the 

generalization ability of GSV classifications. We examined two fusion methods. 1- 

Ranking Classes Based on the F1 Score, and 2- Fuzzy Fusion based on Gompertz Function 

(Kundu et al., 2021) mentioned in sections 5.3.3.1 and 5.3.3.2. Two ground truth data used 

by Kang et al. 2018 were tested in this section. The dataset included building land-use type 

labels for Vancouver and Fort Worth. The ground truth datasets are shown in Figure 5-17.  

 

 

 

Figure 5-17: Ground truth labels for (a): Vancouver; (b): Fort Worth 

 

The results in Figure 5-18 show the precision and recall rates for each building land-use 

class in the City of Vancouver, as well as the overall accuracy. In this experiment, the 

building types of church and industrial were not included because they had very few 

samples in the ground truth, and none of the classifiers were able to detect these building 

types before or after fusion.  

The proposed method was able to improve the precision of house detection by 36% 

compared to GSV, achieving a value of 41%. In addition, the proposed method was able 
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to detect buildings with building land-use class other with precision and recall rates of 13% 

and 26%, respectively, while GSV was not able to detect them at all. The background recall 

rate for the proposed method was 91%, which was 2% higher than the corresponding value 

for the GSV result. Overall accuracy also improved by 1% after using the proposed method, 

achieving a value of 67%. 

Although the proposed method showed superior performance for background recall rate, 

with 6% higher rate than the fuzzy fusion method, and 13% and 26% precision and recall 

rates for class other, respectively, the fuzzy fusion method generally showed better 

performance for pixel-based accuracy indices in the City of Vancouver. The fuzzy method 

showed better performance for apartment and house, with 4% and 32% improvement in 

precision and recall rates, respectively. Additionally, precision and recall rates for class 

retail improved after using the fuzzy fusion method, with values of 16% and 42%, 

respectively. Another improvement when using the fuzzy fusion method was in terms of 

background precision, which improved from 81% to 87%. Furthermore, the overall 

accuracy also improved by 3%, achieving a value of 70% when using the fuzzy fusion 

method. 
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Figure 5-18: Pixel-based precision (blue bars), recall (orange bars), and overall 

accuracies (gray bars) for GSV, proposed method, and fuzzy fusion.  (a): Precision 

and recall indices for building land-use type classes apartment, house, office 

building, and others. (b): Precision and recall indices for classes retail and 

background, and overall accuracies. 
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Object-based per-class precision, and recall, as well as overall accuracies in the City of 

Vancouver are presented in Figure 5-19. The office building class was excluded from the 

analysis due to the absence of building footprints in both pre and post-fusion stages. 

Similarly, the background class was not considered in the object-based analysis, as it is a 

pixel-based class and does not include any building footprint. After applying the proposed 

fusion method, there was a 21% and 11% increase in precision and recall rates for the 

apartment class, respectively, resulting in values of 72% and 39%. The proposed method 

also led to a 2% and 17% improvement in the precision and recall rates of the house class, 

respectively. However, the fusion method had an adverse effect on the other class, with no 

building footprint being classified under this category. The proposed method did not affect 

the performance of the retail class, and no buildings were detected in this group before or 

after fusion. Overall accuracy was enhanced by 20% after applying the proposed fusion 

method, with a more significant increase compared to the 1% improvement in the pixel-

based overall accuracy.  

Generally, the fuzzy fusion method resulted in a higher performance than the fuzzy method 

in terms of object-based accuracy indices. For example, the recall rate for apartment was 

24% higher than the proposed method and achieved a value of 63%. Also, the precision 

and recall rates for house were 12% and 43% higher than the proposed method when using 

the fuzzy fusion algorithm, with values of 39% and 63%. However, the proposed method 

had a better performance than the fuzzy fusion method in terms of apartment precision. 

When using the proposed method, the index was higher by 33%. Although both fusion 

methods degraded the class other performance, the fuzzy fusion improved class retail 

precision and recall rates. Before fusion and when using the proposed method, no building 

footprint was detected in retail. However, when using the fuzzy fusion, the precision and 

recall rates of 35% were achieved. Because of the improvements in class performance 

when using the fuzzy fusion method, the overall accuracy when using this method was 2% 

higher than the proposed algorithm. 
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 Figure 5-19: Object-based precision (blue bars), recall (orange bars) for each 

building land-use type and overall accuracy (gray bars) indices in the City of 

Vancouver. The results are for GSV, proposed fusion method and fuzzy fusion 

classifications. 

 

Figure 5-20 shows the pixel-based per-class precision and recall indices along with overall 

accuracies in Fort Worth City. The proposed fusion method was more effective than GSV 

in improving several accuracy indices. Specifically, the proposed method achieved 

precision and recall rates of 9% for the industrial building class, which GSV could not 

detect. Furthermore, the precision and recall rates for office building improved by 2% and 

8%, respectively, with values of 43% and 38% being achieved. Additionally, the 

background recall rate improved by 2% after using the proposed method, resulting in a 

value of 89%. Finally, the pixel-based overall accuracy increased by 3% after the proposed 

method was used, resulting in a value of 75%. 

In terms of comparing the proposed fusion method with fuzzy fusion, the fuzzy fusion 

technique was unable to detect any pixel in the industrial class. However, the proposed 

fusion method achieved precision and recall rates of 9% and 10%, respectively. Moreover, 

the recall rates for office building and background were higher by 35% and 2% compared 
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to the fuzzy method. Overall, the proposed method improved the pixel-based accuracy by 

7% with a value of 75% achieved, whereas the overall accuracy index of the fuzzy fusion 

was even lower than GSV classification. Although the proposed method generally showed 

better performance than the fuzzy fusion, there were instances where the fuzzy fusion 

demonstrated superior performance. For instance, the precision of the office building was 

9% higher with a value of 52% achieved compared to the proposed method. Furthermore, 

while GSV and the proposed method could not detect any pixels in other and residential 

classes, fuzzy fusion achieved 80% precision and 14% recall rates for the other class and 

7% precision and 31% recall rates for the residential class. In the retail class, the fuzzy 

fusion achieved higher precision and recall rates by 2% and 44%, respectively. Finally, the 

fuzzy fusion method achieved a higher precision of 89% for the background class, which 

was 3% higher than the proposed method. 

 

Figure 5-20: Per-class pixel-based precision (blue bars) and recall (orange bars)  for 

GSV, proposed method, and fuzzy fusion classifications in Fort Worth City. The 

gray bars show overall accuracy indices for the classifications. 

 

The object-based precision, recall rates, and overall accuracy for Fort Worth are depicted 

in Figure 5-21. After using the proposed method for fusion, there were notable 
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improvements in the precision and recall indices for office buildings, with a 18% and 46% 

increase resulting in values of 38% and 51% respectively. The class retail also experienced 

a 1% and 9% increase in precision and recall rates after the fusion process. Finally, the 

overall accuracy had a 10% improvement, resulting in a value of 25%. When compared 

with fuzzy fusion, the proposed method yielded even better results. For instance, office 

building precision and recall rates both experienced a 5% and 48% increase respectively. 

Additionally, the proposed method achieved a higher precision rate for the retail class by 

4%. On the other hand, the overall accuracy for fuzzy fusion was lower, with a value of 

7%, when compared to both GSV and the proposed method. 

 

Figure 5-21: Per-class object-based precision (blue bars) and recall (orange bars) 

for GSV, proposed method, and fuzzy fusion classifications in Fort Worth City. 

Gray bars depict the overall accuracies for classifications. 

 

The Fuzzy Fusion and F1 Score fusion achieved overall accuracies about 1% and 8% 

higher than the previous study using GSV and VGG16 model for the Fort Worth test region 

(Kang et al., 2018). The method applied in our work differs from the previous study in 
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terms of using an information fusion approach for building land-use type classification. 

While the previous work focused on GSV data, we combined three DL-based classifiers 

trained on GSV, LiDAR, and Orthophoto for classification. 

 

Figure 5-22: Building land-use type classification maps for Vancouver case study; 

(a): Ground truth; (b): GSV classification map; (c): Proposed Fusion Method; (d): 

Fuzzy Fusion. 

Figure 5-22 shows the ground truth, GSV, and Fusion classification maps for Vancouver. 

Based on the F1 Score Fusion classification map (part (c)), many building footprints were 

merged into the background because this class was given the highest rank over other 

classes. While some buildings in Fusion maps were not in the ground truth map because of 

inconsistency between the 2015 Vancouver building footprint data and ground truth, most 

buildings in the Fuzzy Fusion map were labeled. The fuzzy fusion method faced difficulty 

in distinguishing between houses and apartments within residential buildings due to 

inconsistencies between the ground truth labels for Orthophoto-LiDAR and GSV images. 

The web scraping technique used for ground truth creation in GSV image classification 

could not be applied for LiDAR and Orthophoto classifications because it was not possible 

to find LiDAR and Orthophoto data for the same address as the addresses retrieved from 

web scraping. Although the proposed method did not show significant improvement 
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compared to GSV, it outperformed the fuzzy fusion method by accurately classifying 

buildings into houses and apartments. The classification maps in Figure 5-23 show building 

land-use type classification results in Fort Worth City. After comparing the building land-

use type classification maps generated using GSV images and the proposed algorithm, 

some improvements can be observed after the fusion. For instance, in the GSV map, there 

was one building footprint on the top and three small building footprints on the right 

(rectangles) that were incorrectly detected as other or industrial, but the proposed method 

correctly classified them as office buildings. Additionally, while the fuzzy fusion 

mislabeled many office buildings as retail, the proposed method was able to correctly 

classify these buildings. 

 

Figure 5-23: Building land-use type classification maps for Fort Worth case study; 

(a): Ground truth; (b): GSV classification map; (c): Proposed Fusion Method; (d): 

Fuzzy Fusion. 
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5.5 Conclusion 

This study explored a detailed building land-use type classification. The building footprints 

were classified as apartments, houses, churches, industrial, office buildings, other, and 

retail. Also, mixed r/c buildings were detected using the GSV dataset. When no detailed 

ground truth information existed, apartments and houses were aggregated into residential. 

While reducing the number of classes might increase the overall accuracies, this study 

aimed to train models to classify buildings into more detailed land-use classes than 

previous studies. Class other included different land use/land cover types, including 

construction, brownfield, grass, recreation ground, and fairground, and had a significant 

intra-class class variability. While the intra-class variability would cause lower 

classification performance, the accuracies did not change significantly after excluding class 

other. The building land-use type classification was accomplished using the fusion of three 

DL-based classifiers trained on GSV, LiDAR, and Orthophoto data using the proposed F1 

Score fusion and Fuzzy Fusion methods to improve the GSV classification result. A Fuzzy 

Fusion method based on the Gompertz function was tested for combining classifiers at the 

decision level. The results showed that although the fuzzy method improved recall rates 

and overall accuracies for Vancouver, almost all accuracy indices dropped for Fort Worth 

City. The proposed F1 Score method improved the Pixel-Based and the Object-Based 

Precision and Overall Accuracies for both independent test data. In comparison among 

GSV, LiDAR, and Orthophoto, the best test accuracy on non-independent test data was for 

the GSV data, but the accuracy degraded significantly after testing the DL models on the 

independent test data. The transfer learning method was efficient on GSV and Orthophoto 

datasets but was not successful on LiDAR data because of inconsistency between 

the ImageNet data and LiDAR-derived features. MobileNetV2 and InceptionV3 models 

achieved the highest test accuracies for GSV, LiDAR, and Orthophoto data, 

respectively. While this work introduced a data fusion method at the decision-level, using 

other types of fusion, like feature-level fusion, are worth exploring. Furthermore, preparing 

building-land use type data or developing the existing datasets for training DL models are 

crucial research directions to pursue.    
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Chapter 6 

 

6 Conclusions 

 

6.1 Summary 

This dissertation explored the development of DL-based algorithms for urban flood risk 

mapping. Two risk components, hazard and vulnerability, were estimated using DL-based 

algorithms. Four studies were conducted to achieve the goals stated in Chapter 1. Firstly, 

using the proposed CSN and SAR satellite images, flood extent maps were created. 

Secondly, a method was proposed that relied on the YOLOv5s object detection algorithm 

and vertical measurements on GSV images to estimate the FFH of buildings. Based on the 

FFH and water depth values, the buildings were then classified as highly vulnerable, 

moderately vulnerable, or low vulnerable. Thirdly, a Dense Attention Network was 

developed to detect building footprints using LiDAR and MS data. Finally, a fusion method 

called Ranking Classes Based on F1 Score was proposed to combine building land-use type 

classifications derived from LiDAR, Orthophoto, and GSV.  

In Chapter 2, a DL-based change detection framework (CSN) was developed to accomplish 

flood extent mapping in urban areas using SAR satellite images. The SAR images applied 

were Sentinel-1 and dual-polarized RCM data. The applied data were captured in C-band, 

and their resolutions were 10m and 5m for Sentinel-1 and RCM, respectively. The intensity 

and coherence features were extracted from the pre-event and co-event SAR images and 

imported to the corresponding CNN in CSN. Three different loss functions were tested, 

including Contrastive Loss, WDMCL, and Triplet Loss functions. It was observed that 

after applying the WDMCL the flood precision and recall rates were improved. After 

adding DEM the flood F1 Score accuracy improved slightly, but the background F1 Score 

improvement was more significant. Comparison with other DL-based segmentation 

algorithms, including Unet, Unet++, DeepLabV3+, and Siamese-Unet, confirmed the 

reliability of the proposed CSN. Although a promising flood recall rate of about 0.7 was 
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achieved, it was inferred from the flood precision and F1 Score that medium resolution 

Sentinel-1 data might hinder its application for urban flood mapping. Further, RCM data 

were also tested in both urban and non-urban areas, and a precision of 0.79 was achieved 

for the non-urban case. Experiments on two existing datasets, SEN12-FLOOD and 

Sen1Floods11, showed that the proposed CSN achieved a higher precision index of 0.75 

on SEN12-FLOOD compared to the Sen1Floods11 dataset, with a precision of 0.2, because 

Sen1Floods11 ground truth labels were per-pixel rather than per scene in SEN12-FLOOD 

dataset. Per-pixel classification is more complex than per-scene and requires satellite 

images with low radiometric distortions. 

Chapter 3 presented a method to estimate the First Floor Height (FFH) using the YOLOv5s 

object detector and vertical measurements on the Google Street View (GSV) image. The 

standard size of the Front Door (FD) in American-style houses was used to convert the 

image measurements to real-world scale. The FFH was then converted to the First Floor 

Elevation (FFE) using the LiDAR-derived DEM. Four scenarios were tested to extract the 

Lowest Adjacent Grade (LAG) height from the DEM, namely Point, Mean, Minimum, and 

Maximum. The Point and Mean methods showed the best consistency in terms of the 

Interquartile (IQR) distance. Buildings were classified into Very High to Very Low 

vulnerability classes using the Natural Break classification method based on the difference 

between water depth and FFH. Finally, a vulnerability map was produced for selected 

buildings across the Lower Don region. The FFH variance equation was derived based on 

the error propagation rule, which showed the relationship between the FFH uncertainty and 

Lower Left (LL), Upper Left (UL), Lower Right (LR) bounding box coordinates for FD 

and LR bounding box coordinates for stairs/building extent, and GSV image pixel size. 

Additionally, the YOLOv5s algorithm was utilized to identify basement windows and 

assess basement existence. Experiments were conducted in both the GTA and the state of 

Virginia in the United States to validate the methodology. The results demonstrated an 

achievement of FFE RMSE and Bias values of 81 cm and -50 cm for GTA, and 95 cm and 

-20 cm for the Virginia region, respectively. 

Chapter 4 presented a CNN for building footprint extraction from LiDAR and MS data. 

Two Dense Attention Blocks were embedded into the CNN architecture. Each Dense 
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Attention Block consisted of a cascade of BN, Conv2D, Dropout, and Average Pooling 

layers. Six concatenation layers were embedded into the CNN layers to prevent the 

vanishing gradient problem. The proposed method was tested on two case studies, 

including Toronto and Massachusetts Building Dataset. Compared with two widely used 

DL techniques, VGG16 and Resnet50, the proposed method had a simpler architecture and 

converged faster with higher accuracy. Also, a comparison with the two other state-of-the-

art DL algorithms, including Unet and ResUnet, showed that the proposed technique could 

achieve a higher F1 Score (0.71), compared with those for Unet (0.42) and ResUnet (0.49). 

In Chapter 5, buildings were classified into apartment, house, industrial, mixed r/c, office 

building, retail and others using GSV, LiDAR-derived features, and Orthophoto images. 

Features extracted from each dataset were imported to the corresponding DL network. The 

DL models were trained on building land-use type data for the GTA. The data was created 

using building land-use type labels from OSM and web scraping. Three DL-derived 

classification maps from GSV, LiDAR, and Orthophoto images were combined at the 

decision level using the proposed Ranking Classes Based on the F1 Score method. The 

method included two steps. In the first step, the classes in the LiDAR and Orthophoto 

classifications were ranked from the lowest to the highest F1 Score, and class labels were 

imported from the lowest to the highest ranks. Then, the F1 Score metric was calculated 

for the classification from the first step, and the classes for the combined and GSV 

classifications were ranked from the lowest to the highest F1 Score. Finally, the labels were 

imported the same as the previous step, and the final building land-use type classification 

map was produced. The proposed method was compared to the Fuzzy Fusion method based 

on the Gompertz Function, and improvements in terms of overall accuracy and precision 

were observed for residential and office building classes. The results of two independent 

case studies, Vancouver and Fort Worth, showed that the proposed fusion method could 

achieve an overall accuracy of 75%, up to 8% higher than Kang et al. 2018 using CNNs 

and the same ground truth data. Also, the results showed that while mixed r/c buildings 

were correctly detected using GSV images, the DL models confused many houses in the 

GTA with churches and mixed r/c because of their similar appearance in GSV images. 
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6.2 Conclusions and Contributions 

This dissertation focused on DL algorithms to analyze urban flood risk mapping using EO 

data. The study estimated two risk components, hazard and vulnerability, and successfully 

achieved the main objective and three sub-objectives outlined in Chapter 1. The findings 

suggested that applying DL algorithms could help reduce the fieldwork required to collect 

urban flood risk-related parameters, such as FFH and building land-use type and also 

improve the flood extent mapping accuracy. 

Based on the research questions and objectives outlined in Chapter 1, the following 

conclusions were obtained from the four studies:  

1. Flood detection accuracy using CSN and SAR satellite images was lower in urban areas 

than in non-urban areas. Floods were overestimated due to the SAR shadowing effect, 

which was further exacerbated when using Sentinel-1 images. The selection of loss 

function had a significant impact on the CSN flood mapping accuracy, and using WDMCL 

improved flood precision and recall indices. The precision index was more affected by the 

input data type and normalization method than the loss function. The addition of DEM 

improved the SAR flood mapping F1 Score by 5%. Comparison with Unet, Unet++, 

DeepLabV3+, and Siamese-Unet showed comparable performance in terms of flood 

detection accuracy indices. Experiments on two publicly available datasets, Sen1Floods11 

and SEN12-FLOOD, resulted in F1 Score values of 0.63 and 0.67, respectively. 

2. While basement and FFH information were useful for flood vulnerability analysis at the 

building scale, vulnerability estimation solely based on image data resulted in flood 

vulnerability underestimation because some basements were not visible in GSV images. 

The FFH uncertainty analysis showed a strong relationship between the FD and 

stairs/building extent bounding boxes accuracies and FFH accuracies. FFE estimation 

using DL-based object detectors and vertical measurements on GSV images resulted in 

lower RMSE and Bias, and higher R2 than the previous method using Tacheometric 

Surveying principles. Among four different scenarios examined for estimating FFE, and 

six statistical indices, including Min, Max, Median, IQR, First Quartile, and Third Quartile, 

compared with their ground truth counterparts, the Mean method resulted in the least 
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difference between FFE and ground truth distributions in terms of the Min index. 

The Maximum and Minimum methods showed the least discrepancies according to the Max 

and Median indices, respectively. The Point method achieved the best consistency based 

on IQR distance, and finally, the Minimum method achieved the least discrepancy in terms 

of the First and Third Quartile indices. 

3. The use of Dense Attention Blocks in CNN architecture improved the building footprint 

detection accuracy using LiDAR and MS data. Additionally, the use of concatenation 

layers reduced the vanishing gradient problem and improved building footprint detection 

precision, recall, F1 Score, and IOU by 1%. Despite having a simpler architecture and 

fewer number of parameters, the proposed DAN achieved higher accuracies than the state-

of-the-art DL models, including VGG16, Resnet50, Unet, and ResUnet. 

4. The fusion of CNN-based building land-use type classifications extracted from GSV, 

LiDAR, and Orthophoto data achieved higher precision, recall, and overall accuracy than 

GSV alone after using Ranking Classes Based on the F1 Score method. The proposed 

method achieved higher precision and overall accuracy for Vancouver and Fort Worth case 

studies than the Fuzzy Fusion method based on the Gompertz Function. The mixed r/c class 

was successfully detected using GSV images. The building land-use type detection using 

GSV and Orthophoto images was improved by fine-tuning pre-trained DL models trained 

on ImageNet. However, the fine-tuned models using LiDAR data did not yield high 

building land-use type detection accuracies due to inconsistencies between ImageNet and 

LiDAR data. As a result, these models were discarded from the fusion step. The proposed 

fusion method, Ranking Classes Based on the F1 Score, was conducted in two steps to 

make it more meaningful to the end user. However, it is possible to achieve this method in 

one step by ranking the classes from the three classifications. In other words, the highest 

priority should be given to the class from the classification with the lowest F1 Score, the 

second priority to the class with the medium F1 Score, and the last priority should be given 

to the class with the highest F1 Score. 

 

This dissertation has made multiple contributions.  
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1. This dissertation aimed to improve urban flood mapping using SAR satellite images 

through a change detection approach with the CSN DL algorithm. SAR data 

imposes challenges due to geometric distortions such as layover, shadowing effects, 

and speckle noise, compounded by the computational intensity of DL algorithms. 

The study addressed these complexities, making the first attempt to use SAR data 

and CSN for urban flood mapping. 

2. A method based on the YOLOv5s object detection algorithm and GSV image 

measurement was proposed to estimate FFH and FFE in the GTA region. It was the 

first study estimating both FFH and FFE (using zonal statistics) and the first to use 

computer vision for basement detection and flood vulnerability prediction. 

Furthermore, it performed superior to Ning et al. 2021 in terms of RMSE, R2, and 

Bias.   

3. A new CNN based on multiple dense attention blocks and concatenation layers was 

proposed. The inspiration for the concatenation layers came from DAN (Yang et 

al., 2018). The issue with using dropout and pooling layers in the CNN is that these 

operations can cause the omission of useful features. To retrieve this information, 

the proposed CNN stacked information from previous layers and added it to the 

following layers through concatenation layers. These layers helped to improve the 

feature extraction ability of the simple CNN. While a simple CNN uses a cascade 

of feedforward convolutional and pooling layers for feature extraction, the 

proposed CNN was based on multiple dense attention blocks and concatenation 

layers to retrieve information from the previous layers and import them directly 

into the following layers. For the first time, DAN was used for building footprint 

extraction in Toronto. The proposed method could be adapted to both pixel-by-

pixel and object-based predictions, and the latter could be achieved by replacing 

FC layers with 2D convolutional layers. 

4. This dissertation introduced a Decision Level Fusion method, Ranking Classes 

Based on F1 Score, which combined three DL-based classifications trained on 
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GVS, LiDAR, and Orthophoto. To address the lack of building land-use type train 

data, the study utilized three techniques: 1- Web scraping to create labels for 

building types, 2- Testing different heading angles when downloading GSV images 

to increase sampling frequency, and 3- Applying transfer learning strategy to 

reduce the DL model dependency on train data. Also, it explored producing a 

comprehensive building land-use type classification map, and classified buildings 

into apartments, houses, churches, industrial, office buildings, other, and retail. 

Detection of mixed r/c buildings using GSV images was also another contribution 

of this study. 

To enhance flood risk mapping, it is crucial to incorporate advancements in 

machine learning methodologies that utilize EO data. DL algorithms have been 

utilized for computer vision tasks since the mid-1960s. This thesis has implemented 

DL algorithms to assess their ability to map flood risk components in conjunction 

with EO data. In general, the four studies applied DL algorithms with EO data and 

improved the effectiveness of DL models for flood risk-related applications and 

building a flood-resilient community.  

The proposed chapters can be integrated into a framework to estimate various flood 

risk components. For example, a flood extent map can be overlaid onto the building 

footprint map to count how many residential buildings were affected during the 

flood event or what percentage of highly vulnerable structures were inundated 

during the flood event. These initial analyses after the flood event can aid in prompt 

disaster response and equip policymakers with valuable insights to enhance 

preparedness for potential future events. 

6.3 Limitations and Future Research 

This dissertation has made significant progress in flood risk mapping and the estimation of 

flood risk-related parameters. However, there are still some areas of improvement and 

future research directions that are worth considering: 
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 The SAR satellite images used in this dissertation had spatial resolutions of 10 and 

5m. To improve urban flood mapping, it is necessary to examine very high-

resolution SAR satellite images with spatial resolutions of less than 5m (Popien et 

al., 2023; Baghermanesh et al., 2022). This study focused on flood extent mapping 

to estimate the hazard component. Other flood parameters, such as volume and 

depth, can be retrieved using RS data and are worth considering for future works 

(Santillan et al., 2016; Gao et al., 2018; Cohen et al., 2019; Popandopulo et al., 

2023). 

 SAR satellite images have limitations in accurate flood extent mapping due to 

speckle noise, and geometric distortions such as shadowing and layover effects. 

Urban flood mapping using SAR satellite images is challenging due to the water 

dynamic complexities in urban areas. One alternative to overcome these limitations 

is to fuse SAR and Optical satellite images (Yonghua et al., 2007; Irwin et al., 2017; 

Quang et al., 2019).  

 We used pixel-based accuracy assessment for flood mapping. This method is more 

challenging than object-based accuracy assessment, especially for SAR flood 

mapping. Using an object-based approach might result in higher accuracy values. 

 The DL parameters recommended in the chapters are case study specific, and 

practitioners should find the sub-optimal model parameters that work best for their 

case studies. 

 One of the major limitations when using DL algorithms in a supervised manner is 

the training data. DL models because of having a huge number of layers and 

weights require a significant number of train data which might not be available. 

Besides, because of their black-box nature, their architecture cannot be physically 

interpreted. These limitations require future studies of semi-supervised learning and 

physically interpretable deep learning models. 

 Using computer vision and image processing techniques for urban flood 

vulnerability mapping can lead to vulnerability underestimation because basements 

may not be fully visible in GSV images. The basements could be blocked by 

obstacles in front of the building or might not be visible in the building's front view. 
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An alternative is to use virtual reality and GSV image combinations for flood 

vulnerability analysis at the building scale.  

 The rotation of GSV images can lead to geometric distortions, resulting in building 

elements appearing in exaggerated or understated relative sizes. In this study, the 

rotation of GSV images was not taken into account when estimating FFH, and this 

issue needs to be examined in future research. Another limitation of the proposed 

method for FFH estimation was the assumption of a fixed FD size for all buildings. 

While this may be reasonable for houses, apartments may have a different FD size, 

and the effect of the fixed FD size on FFH estimation should be investigated in 

future studies. Furthermore, the proposed method's accuracy was highly dependent 

on object detection accuracy. As mentioned in Chapter 3, α, β, and σ in Equation 

(3-6) were functions of the FD and stairs/building extent bounding box coordinates, 

and a significant FFH uncertainty of 1.37m was reported due to inaccurate object 

detection results. Besides, while this study focused on FFH uncertainty estimation, 

FFE also contributes to flood vulnerability analysis and its uncertainty needs to be 

explored (Bodoque et al., 2016).   

 While acceptable object detection results were achieved using YOLOv5, more 

advanced versions of YOLO object detector families, such as YOLOv8, should be 

used in future works.  

 One limitation of using GSV for FFH estimation is their unavailability for most 

developing countries, such as the Middle East, parts of Africa and Asia. Besides, 

they are not as accurate as drone images. Drone images provide a more precise 

geometry than GSV. Hence, their usage for FFH estimation is worth exploring.  

 Creating a detailed building land-use type classification map using CNN requires 

high-quality and quantity training samples with accurate building land-use type 

labels. While the OSM provides labels for building land-use types and is accessible 

via GIS software, the quality of the labels is uncertain. In addition, web scraping 

using real estate websites cannot be fully substituted with the OSM as quite a few 

websites provide detailed building land-use type information. The lack of training 

data is even worse for mixed-building land-use types such as mixed 

residential/commercial and mixed retail/institutional. The use of semi-supervised 



 

219 

 

DL algorithms or developing building land-use type databases for supervised 

learning using GSV image inspection can be applied to resolve this issue (Xie et 

al., 2022; Bortoloti et al., 2022). 

 The GSV, LiDAR, and orthophotos were not co-registered, resulting in spatial 

discrepancies. In other words, the pixels may not represent the same geographic 

locations across datasets, leading to errors and inaccuracies in the decision-level 

fusion process. Consequently, this misalignment can distort feature matching and 

data interpretation, affecting the reliability and accuracy of the fused output. 

Another limitation when combining information from different sources is the time 

discrepancy. While GSV images are usually the most recent images captured from 

the houses, the exact time of their acquisition is not evident. This ambiguity can be 

a considerable limitation, adding uncertainty to the fusion process. 

 

 This dissertation aimed to investigate the estimation of hazard and vulnerability 

using RS data. However, it is important to note that this research did not cover the 

estimation of flood exposure, which is essential for a comprehensive flood risk 

analysis. Further research is required to explore this aspect (Ramesh et al., 2023). 

 Urban flood mapping and capturing critical flooding time are essential for effective 

disaster management. The need for accurate and timely data to mitigate the impact 

of floods on urban areas cannot be overstated. However, the unavailability of high-

resolution SAR data due to access restrictions, high cost, limited coverage, and 

technical complexities often creates a scarcity, hindering the process.  

 If policymakers need to choose between ground-based measurements and high-

resolution SAR images for disaster response, I recommend taking a hybrid 

approach. In other words, combining SAR data with ground-based observations to 

leverage the strengths of both methods is the optimal strategy. If budget constraints 

necessitate a choice, consider the following: 

o Immediate Need for Real-Time Data: Prioritize ground-based observing 

systems for their ability to provide real-time, localized data critical for 

emergency response. 
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o Need for Broad and Consistent Coverage: Prioritize SAR data if the goal is 

to monitor large urban areas and integrate data into long-term flood risk 

management and planning. 
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Appendices 

 

Appendix A: Confusion matrices and learning curves for 

best building land-use type detection DL models trained on 

GSV 

Figure A-1: MobileNetV2 confusion matrix for model with 150 trained layers 
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Figure A-2: MobileNetV2 confusion matrix for model with 100 trained layers 
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Figure A-3: MobileNetV2 confusion matrix with 50 trained layers 
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Figure A-4: MobileNetV2 confusion matrix for frozen model (0 trained layers) 
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Figure A-5: Learning curves for MobileNetv2 (Codes used to create this figure are 

available at  https://github.com/nafisegh/Building-Land-Use-Type). 
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Appendix B: Confusion matrices and learning curves for 

best building land-use type detection DL models trained on 

LiDAR data 

 

Figure  B-1: InceptionV3 confusion matrix when training the model from scratch 

(LiDAR) 
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Figure B-2: InceptionV3 confusion matrix with 300 trained layers (LiDAR) 
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Figure B-3: InceptionV3 confusion matrix with 250 trained layers (LiDAR)  

 

Figure B-4: InceptionV3 confusion matrix with 200 trained layers (LiDAR) 
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Figure B-5: InceptionV3 confusion matrix with 150 trained layers (LiDAR) 
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Figure B-6: InceptionV3 confusion matrix with 100 trained layers (LiDAR) 
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Figure B-7: InceptionV3 confusion matrix with 50 trained layers (LiDAR) 
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Figure B-8: Learning curves for InceptionV3 with the learning rate 10-3 (LiDAR) 
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Appendix C: Confusion matrices and learning curves for 

best building land-use type detection DL models trained on 

Orthophoto images 

 

Figure C-1: InceptionV3 confusion matrix when training the model from scratch 

(Orthophoto) 
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Figure C-2: InceptionV3 confusion matrix with 300 trained layers (Orthophoto) 
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Figure C-3: InceptionV3 confusion matrix with 250 trained layers (Orthophoto) 
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Figure C-4: InceptionV3 confusion matrix with 200 trained layers (Orthophoto) 

 

 

Figure C-5: InceptionV3 confusion matrix with 150 trained layers (Orthophoto) 
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Figure C-6: InceptionV3 confusion matrix with 100 trained layers (Orthophoto)  

 

Figure C-7: InceptionV3 confusion matrix with 50 trained layers (Orthophoto) 
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Figure C-8: Learning curves for InceptionV3 with learning rate 10-3 (Orthophoto) 
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