
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-28-2024 10:30 AM

Efficient Algorithms and Parallel Implementations for Power Efficient Algorithms and Parallel Implementations for Power

Series Multiplication Series Multiplication

Seyed Abdol Hamid Fathi, Western University

Supervisor: Moreno Maza, Marc, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Seyed Abdol Hamid Fathi 2024

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Fathi, Seyed Abdol Hamid, "Efficient Algorithms and Parallel Implementations for Power Series
Multiplication" (2024). Electronic Thesis and Dissertation Repository. 10337.
https://ir.lib.uwo.ca/etd/10337

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F10337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/10337?utm_source=ir.lib.uwo.ca%2Fetd%2F10337&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Power series play an important role in solving differential equations and approximat-
ing functions. A key operation in manipulating power series is their multiplication. Power
series multiplication algorithms working based on a prescribed precision, say n (where
n is a natural number), take the first n coefficients of the two power series as input,
multiply them, and return the first n coefficients of the product. While these algorithms
can be fast, they incur the overhead of recomputing known terms to enhance the product
precision. On the other hand, lazy or relaxed multiplication algorithms compute the
product terms incrementally. This allows for dynamic updates of product precision with-
out the need to recompute the already known terms. In this thesis, we discuss efficient
multiplication algorithms for univariate and multivariate power series, based on various
schemes, including the Karatsuba algorithm, a novel partition multiplication technique
using FFT, and an evaluation-interpolation strategy, along with their complexity anal-
yses and parallelization opportunities. These algorithms and methods are implemented
in C++ and integrated in the BPAS (Basic Polynomial Algebra Subprograms) library.
To parallelize the implementations, we use a thread pool with a work-stealing scheduler
using modern C++ multithreading techniques. The performance results, comparing the
execution times of various algorithms in both serial and parallel modes, are presented
and analyzed.

Keywords: Power series multiplication, Karatsuba, Fast Fourier Transform (FFT),
Parallel programming, C++, Multithreading, Thread pool, Divide-and-conquer, Parti-
tion multiplication, Evaluation-interpolation.

ii

Lay Summary

Power series are polynomial-like objects with potentially infinite terms and are utilized
in various mathematical areas, such as function approximation and solving differential
equations. For example, computers approximate transcendental functions like sin(x) by
summing the terms of a power series. Our focus is on the multiplication of power se-
ries, which forms the basis for other mathematical operations. There are two primary
approaches to multiplying two formal power series, f and g. Methods working in pre-
scribed precision involve expanding f and g up to a predetermined order, multiplying
these expansions, and then truncating the product. While these methods can use fast
multiplication algorithms, such as the Fast Fourier Transform (FFT), they lack the flexi-
bility to reuse previous computations when higher precision is required. In contrast, lazy
and relaxed methods compute the product terms incrementally, allowing for dynamic
precision improvements. In this thesis, we explore and implement various static and re-
laxed algorithms and strategies for multiplying both univariate and multivariate power
series. We identify opportunities for concurrency within these algorithms and parallelize
them using appropriate parallel programming techniques. The performance results of
these implementations are presented and discussed.

iii

Acknowlegements

I would like to thank my supervisor, Professor Marc Moreno Maza, for his continuous
guidance, significant contributions, and constant support throughout all stages of this
research work. I am thankful to Dr. Alexander Brandt and Haoze Yuan for their valuable
discussions and assistance with the implementations. I am also grateful to every one at
the Ontario Research Centre for Computer Algebra (ORCCA) for their time and kind
help in the lab.

iv

Contents

Abstract ii

Lay Summary iii

Acknowlegements iv

Contents v

List of Tables viii

List of Tables viii

List of Figures ix

List of Figures ix

List of Algorithms xi

1 Introduction 1

2 Efficient Univariate Power Series Multiplication 5
2.1 Relaxed Karatsuba Multiplication Algorithm 6
2.2 Complexity Analysis of Karatsuba Method 7

2.2.1 Time Complexity . 7
2.2.2 Space Complexity . 7

2.3 Implementation in C++ . 8
2.3.1 The GMP Library . 8
2.3.2 Description of Classes and Methods 8

2.4 Experimental Results . 13

3 Parallelizing Algorithms with Multithreading 18
3.1 Theoretical Analysis of Parallel Algorithms 18

3.1.1 Graham-Brent Theorem . 19
3.2 Concurrency Versus Parallelism . 20
3.3 Parallel Programming Patterns . 20

3.3.1 Map . 20
3.3.2 Pipeline . 22

v

3.3.3 Reduction . 22
3.3.4 Fork-Join . 22

3.4 Why Multithreading . 24
3.5 Threads . 25
3.6 Multithreading and Synchronization in C++ 25

3.6.1 C++ Support for Multithreading 25
3.6.2 C++ Memory Model . 26
3.6.3 Launching Threads . 26
3.6.4 Protecting Shared Data Using Mutexes 27
3.6.5 Thread Synchronization Tools: Condition Variables, Futures, and

Promises . 28
3.6.6 Atomic Operations and Atomic Types 31

3.7 Data Structures in C++ Containers: Stack, Queue, Deque 31
3.8 Cache Complexity, Data Locality, and Data Contention 32
3.9 Thread Pool Design Pattern . 33
3.10 Work Stealing Strategy for Scheduling 34
3.11 Thread Pool Implementation . 34

3.11.1 Basic Thread Pool Functionalities 34
3.11.2 Thread-Safe Queue Data Structure 36
3.11.3 A Basic Thread Pool Implementation 37
3.11.4 Waiting on Tasks Completion . 39
3.11.5 A Separate Queue for Every Thread 42
3.11.6 Work Stealing Using a Double-Ended Queue 44
3.11.7 Thread Pool With Work Stealing Implementation 45

3.12 Multithreaded Implementation of Karatsuba Algorithm 47
3.13 Multithreaded Implementation of Inverting a Lower Triangular Matrix . 49
3.14 Performance Analysis of Multithreading 50

3.14.1 Parallelization with Cilk . 50
3.14.2 Performance Results of Multithreaded Static Karatsuba Multipli-

cation Method . 51
3.14.3 Performance Results of Multithreaded Relaxed Multiplication Method 53

4 Multivariate Power Series Multiplication 55
4.1 Multivariate Power Series . 55
4.2 Algorithms for Multiplying Multivariate Polynomials 56

4.2.1 Multi-way Karatsuba . 56
4.2.2 Multiplicaiton Based on Multi-dimension FFTs 57

4.3 Multiplication Schemes for Multivariate Power Series 57
4.3.1 The Polynomial Part of the Product of Two Power Series 58
4.3.2 Computing (fg)(2k) from f (2k), g(2k) and f (k)g(k) 59
4.3.3 The Truncation in Partial Degrees of the Product of Two Power

Series . 60
4.3.4 Computing (fg)(2k) from f [k]g[k] 61
4.3.5 Experimental Results . 61

vi

5 Modular Multiplication for Multivariate Power Series 67
5.1 An Evaluation-Interpolation Strategy . 67
5.2 Introductory Example . 68
5.3 Choosing the Evaluation Points . 69
5.4 The Evaluation Phase . 70
5.5 The Interpolation Phase . 71
5.6 Cost analysis . 71
5.7 Experimentation . 72

Bibliography 73

Appendices 79
.1 Fast Fourier Transform (FFT) in Polynomial Multiplication 79
.2 Implementation of Inverting a Lower Triangular Matrix 82

Curriculum Vitae 84

vii

List of Tables

2.1 Descriptions of the implemented power series multiplication algorithms. . 13
2.2 System Specifications. 14
2.3 Execution time (second) of the static naive and static Karatsuba with

different threshold values. 14
2.4 Execution times (seconds) for lazy and relaxed power series multiplica-

tion methods, which reuse previous computations, compared to naive and
Karatsuba methods, which do not reuse previous computations. 16

3.1 Execution time (seconds) for the serial and parallel (using Cilk and the
developed thread pool) Karatsuba multiplication methods with a divide-
and-conquer threshold of 16. 52

3.2 Cachegrind abbreviations and their meanings. 53
3.3 Memory access statistics for the case of product precision = 212 in Table 3.1

using the developed thread pool, with and without compiler optimization
(-O3). 53

3.4 Execution time (seconds) of the serial and parallel (using Cilk and the
developed thread pool) relaxed multiplication methods. 54

4.1 System Specifications. 62
4.2 Performance comparison for 2 variables in seconds. The Parallel Partition

Method is 5 serial multiplications executed in parallel. The Parallel Direct
Method is one parallel multiplication. 63

4.3 Performance comparison for 3 variables in seconds. The Parallel Partition
Method is 7 serial multiplications executed in parallel. The Parallel Direct
Method is one parallel multiplication. 63

4.4 Performance comparison for 4 variables in seconds. The Parallel Partition
Method is 9 serial multiplications executed in parallel. The Parallel Direct
Method is one parallel multiplication. 63

4.5 Performance comparison for 5 variables in seconds. The Parallel Parti-
tion Method is 11 serial multiplications executed in parallel. The Parallel
Direct Method is one parallel multiplication. 64

5.1 Execution time (s) of the evaluation-interpolation scheme for power series
of different number of variables and partial degrees. 72

viii

List of Figures

2.1 Execution time of static naive multiplication and static Karatsuba multi-
plication with different threshold values versus product precision. 15

2.2 Execution time of static Karatsuba multiplication method with different
threshold values versus product precision. 15

2.3 Execution times (seconds) for lazy and relaxed power series multiplication
methods, compared to static naive and Karatsuba methods. 16

2.4 Execution times (seconds) for the relaxed and static Karatsuba power
series multiplication methods. 17

3.1 A DAG representing the dependencies and execution order of tasks. The
critical path is shown in blue. 19

3.2 A diagram of the map pattern. Function f is applied to input elements in
parallel producing output results. 21

3.3 Diagram illustrating the pipeline pattern with N sequential stages. Each
stage can be executed by a separate processor or thread. 22

3.4 A diagram illustrating the reduction pattern. 23

3.5 Illustration of the fork-join model applied to a recursive divide-and-conquer
problem. 24

3.6 Illustration of a stack data structure. 31

3.7 Illustration of a queue data structure. 32

3.8 Illustration of a deque data structure. 32

3.9 A thread pool with work stealing mechanism. Rectangles represent tasks.
Each worker thread has its own double-ended queue (deque) for storing
tasks. Workers execute tasks in LIFO order, adding new tasks to the top
of their deque. When a worker’s deque is empty, it steals tasks from the
bottom of another worker’s deque or from a global queue. 35

3.10 Execution time (seconds) for the serial and parallel (using Cilk and the
developed thread pool) Karatsuba multiplication methods with a divide-
and-conquer threshold of 16. 52

3.11 Execution time (seconds) of the serial and parallel (using Cilk and the de-
veloped thread pool) relaxed multiplication methods across varying prod-
uct precision. 54

4.1 A graphical illustration of decomposing f(X1, X2) and g(X1, X2) in the
partition method. 62

ix

4.2 Execution time comparison for 2 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods. 64

4.3 Execution time comparison for 3 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods. 65

4.4 Execution time comparison for 4 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods. 65

4.5 Execution time comparison for 5 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods. 66

.1 The process of polynomial multiplication using FFT. Evaluation and in-
terpolation refer to converting a polynomial from coefficient representation
to value representation and vice versa. The ω2n terms are complex 2nth
roots of unity. 80

x

List of Algorithms

1 Karatsuba . 8
2 Map Pattern . 21
3 Pipeline Pattern . 22
4 Parallel Reduction Pattern . 23
5 Fork-Join Pattern . 24
6 Computing A−1 Using the Fork-Join Model 51
7 FFT . 81
8 Inverse FFT . 81

xi

Chapter 1

Introduction

Since the early days of scientific computing, numerical analysis has been the main provider
of algorithms for solving problems from the mathematical field of functional analysis,
such as continuous optimization and solving differential equations. Indeed, in the field of
functional analysis, the basic objects, such as real numbers and limits of functions, are
not always computable and, thus, must be be approximated.

While symbolic computation is the realm of exact methods, this latter field has devel-
oped exact solutions to approximate problems, which can be used to provide approximate
values to non-computable objects. A well-known example is the so-called symbolic New-
ton iteration method for approximating solutions of algebraic equations, see the landmark
textbook, Modern Computer Algebra [vzGG03].

At the heart of these methods is the manipulation of formal multivariate power series,
including Laurent series and Puiseux series.

Power series multiplication algorithms can be divided into two groups. First, there
are algorithms which set up a truncated degree in advance, say n, so that each power
series is “represented” by a polynomial of degree n which collects all the terms, of that
power series, with degree at most n, see [Knu97]. In particular, the product of two such
truncated power series is also represented by a truncated power series of the same degree
n. These power series multiplication algorithms are sometimes termed static. Note that
properly setting the degree n can be difficult, which can lead to either extraneous or
repeated computations.

A second strategy uses lazy evaluation. In this approach, the terms of a power series
are computed only when they are needed. Moreover, they are cached and no prescribed
degree n needs to be set ahead of time. The obvious advantages of this approach are that:
(1) unnecessary computations can be avoided, and (2) no prescribed degree n needs to
be guessed ahead of time. However, there is an inconvenience: a typical implementation
of power series arithmetic based on lazy evaluation tend to compute terms incrementing
their total degree by 1, instead of by a larger gap, which would open the door to use
faster algorithms for polynomial arithmetic, such as those based on Karatsuba’s trick or
Fast Fourier Transforms (FFTs). This inconvenience was solved by the scheme of relaxed
algorithms proposed by Joris van der Hoeven and that we review below.

Power series are polynomial-like objects, with potentially infinitely many terms. As
such, it is natural to represent a power series h as a function n 7−→ h(n) returning all the

1

https://en.wikipedia.org/wiki/Formal_power_series

2 Chapter 1. Introduction

terms of a given degree n. One may also store the terms of h that have already been
returned by this function. Indeed, computing h(n) may have a cost, for instance if h is
the product of two other power series f and g, in which case one uses the well-known
formula:

h(n) = Σi=n
i=o f

(i)g(n−i). (1.1)

This raises the following question. Suppose that h(0), h(1), . . . , h(n−1) have been computed
and stored, while h(n) has not been computed but is requested by other calculation.
Should we simply compute just h(n), or should we compute h(n) together with a few
more terms, say h(n+1), . . . , h(2n). The former approach, advocating for the least effort,
is that lazy evaluation, while the latter, depending on the context, can be called relaxed
evaluation or eager evaluation.

The advantage of lazy evaluation is to minimize the amount of computations and
stored data. Algorithms for arithmetic operations on power series based on lazy eval-
uation are studied in [BM21, ABK+21]. The advantage of the alternative approach is
that it offers the possibility to use faster algorithms for computing h(n), h(n+1), To
illustrate this observation, let us assume that h, f, g are univariate power series in the
variable X. We can write:

h(2n) = h0 + h1X + · · ·+ hnX
n + hn+1X

n+1 + · · ·+ h2nX
2n

f (2n) = f0 + f1X + · · ·+ fnX
n + fn+1X

n+1 + · · ·+ f2nX
2n

g(2n) = g0 + g1X + · · ·+ gnX
n + gn+1X

n+1 + · · ·+ g2nX
2n,

(1.2)

where hi (resp. fi) (resp. gi) is the coefficient of degree i of h (resp. f) (resp. g), for
0 ≤ i ≤ 2n. We can re-arrange h(2n), f (2n), g(2n) as follows:

h(2n) = h(n) +XnCn

f (2n) = f (n) +XnAn

g(2n) = g(n) +XnBn,
(1.3)

where each of Cn, An, Bn is a polynomial which is either zero, or non-zero with degree
at most n and at least 1. Indeed, if one of Cn, An, Bn has a term of degree n, then it
belongs to h(n), f (n), g(n) respectively. Suppose that h(n) and f (n) · g(n) are known and
that the goal is to compute all the terms of XnCn, so that h(2n) becomes known, as well
as f (2n)g(2n) in order to, later on, increase the precision from 2n to 4n. Of course, we are
also assuming that f (2n) and g(2n) are known since f and g are our input power series.
Observe that we have:

f (2n)g(2n) = D2n +XnE2n +X2nF2n, (1.4)

where:
D2n = f (n)g(n)

E2n = Ang
(n) +Bnf

(n)

F2n = AnBn.
(1.5)

Assume that both An ̸= 0 and Bn ̸= 0 hold. Then the degree of AnBn is at least 1, thus
the degree of X2nAnBn is at least 2n+ 1. It follows that all the terms of h(2n) appear in
D2n +XnE2n. To be more precise, we have:

f (2n) ≡ D2n +XnE2n mod X2n+1. (1.6)

3

In other words, it suffices to compute D2n +XnE2n and remove every term there which
is a multiple of X2n+1.

Using Karatsuba’s multiplication trick [KO63] we can re-arrange the computations of
D2n, E2n, F2n as follows:

D2n = f (n)g(n)

F2n = AnBn

E2n = (An −Bn)(f
(n) − g(n)) +D2n + F2n.

(1.7)

Hence, by computing the two products AnBn and (An −Bn)(g
(n) −h(n)) we deduce both

h(2n) and f (2n)g(2n). This is done at the cost of computing two products of polynomials of
degree at most n, which can be done via Karatsuba’s multiplication trick or Toom-Cook
algorithms [Too63, Coo66, BZ07, Zan09] or an algorithm based on FFT, see [vzGG03].

This implies that h(2n) and f (2n)g(2n) can be deduced from h(n) and f (n) ·g(n) at the cost
of two “fast” multiplications in degree at most n. If instead we compute f (n), f (n+1), . . .,
one after another in a lazy evaluation manner, using Equation (1.1) the cost of those
successive computations is necessarily quadratic in n, that is, equivalent to doing a plain
“non-fast” multiplications in degree n.

The scheme that we just presented was proposed for univariate power series mul-
tiplication by Joris van der Hoeven in his landmark article Relax, but Don’t be Too
Lazy [vdH02] with follow up works in [vdHL13, vdH14, vdH19].

It is highly desirable to adapt the relaxed multiplication presented above for univariate
power series to multivariate power series. Unfortunately, a major difficulty arises, which
is attributed to the dimensionality. Formula (1.3) no longer applies in a multivariate
setting. And, even if we could solve that issue, the number of terms in An, Bn, Cn

would be much larger than in f (n), g(n), h(n). Hence, the potential savings due to the
memorization of the products g(n)h(n) would be negligible.

In this thesis, we explore alternative solutions to obtain efficient multiplication for
multivariate power series. The contributions of this thesis are the following ones.

In Chapter 2, we implement the relaxed multiplication method for univariate power
series using the Karatsuba’s algorithm and compare its performance results with the
static Karatsuba and lazy multiplication methods.

In Chapter 3, we report on the implementation of a thread pool using the language
constructs of C++ Standard 14. The intention is to build multithreading support for our
power series multiplication relying only on the features of the C++ language. We use this
support in our parallelization of Karatsuba’s method and our experimental results suggest
that we obtain some improvement w.r.t. to our implementation based on Cilk. We note
that the parallelization of Karatsuba’s trick has also been studied in [CMPS10] and
[LZMQ19]. A study of the parallelization of Karatsuba’s method targeting distributed
memory architectures is presented in [CM96].

In Chapter 4, we consider different schemes of multivariate power series multiplica-
tions based on distributivity of multiplication over addition. Thus, these schemes are,
to some sense, in the spirit of Karatsuba. One of them, which combines two types of
truncation (in total degree and in partial degrees) outperforms the other studied schemes
experimentally.

4 Chapter 1. Introduction

In Chapter 5 we consider the evaluation-interpolation scheme based on [Sch05] for
computing the product of two multivariate power series modulo a monomial ideal. We
observe that, while this method has good theoretical performance for truncation in partial
degrees, it is not optimal for truncation in total degree. As a future work, for truncation
in total degree we would consider the work of Lecerf and Schost in [LS03]. We report on
an implementation and present the performance results.

Chapter 2

Efficient Univariate Power Series
Multiplication

In this chapter, we show that the Karatsuba multiplication method can be effectively
used as a relaxed method for univariate power series multiplication.

Power series are mathematical constructs similar to polynomials but with potentially
infinitely many terms. One approach of multiplying power series is to treat them statically
as polynomials by truncating them at a specific precision and then multiplying these
truncated power series (TPS) using standard polynomial multiplication techniques such
as the naive method (with quadratic time complexity), Karatsuba, or FFT. We refer
to this approach as static (or fixed precision) power series multiplication. Whenever we
need to achieve a higher product precision, we start over by truncating input power series
at a higher precision and then multiply larger TPS. This method incurs the overhead of
recomputing the already known product terms.

Another multiplication approach is to consider the dynamic nature of power series
and the possibility of increasing the precision. This approach tries to reuse the currently
computed product terms when trying to increase the product precision for the next round.
We call this approach dynamic (or varying precision) power series multiplication.

A power series multiplication method is referred to as lazy if it is dynamic, meaning it
reuses previous computations and applies the naive multiplication algorithm to compute
the product. On the other hand, a power series multiplication method is referred to as
relaxed if it is dynamic and uses the Karatsuba multiplication algorithm to compute the
product. The relaxed power series multiplication method reuses previous computations
in two ways. First, similar to the lazy method, the known product terms does not need
to be recalculated. Second, as will be detailed in this chapter, the previously computed
product is used as one of the three sub-products required by the Karatsuba algorithm to
compute the higher precision product.

Starting with the theory, we explain the Karatsuba multiplication algorithm used in
relaxed univariate power series along with its time and space complexities and how the
already computed terms of the product power series can be recycled and used to compute
the next number of terms of the series. Furthermore, we identify independent parts of
the Karatsuba algorithm that can be executed in parallel.

Moving on to the implementation, we first demonstrate how we represent power series

5

6 Chapter 2. Efficient Univariate Power Series Multiplication

as instances of classes in an object-oriented programming language with data members
to store the already known terms and member functions to compute additional terms
of the series. Regular power series, product power series using naive multiplication,
and product power series using divide-and-conquer (DnC) Karatsuba multiplication have
different implementations of the functions used to compute more terms of the series.

Finally, we perform experiments on our product power series implementation and
compare the running times of the static naive, lazy, static Karatsuba, and relaxed al-
gorithms with different problem input sizes and DnC threshold values and present and
analyze the results. We parallelize the static Karatsuba and the relaxed methods in
Chapter 3.

2.1 Relaxed Karatsuba Multiplication Algorithm

Karatsuba’s method for multiplying polynomials is based on the observation that the
product (a1X + a0) × (b1X + b0) = a1b1X

2 + (a1b0 + a0b1)X + a0b0 can be calculated
using a1b1X

2 + ((a1 + a0)(b1 + b0)− a1b1 − a0b0)X + a0b0, therefore requiring only three
multiplications instead of four, and each of the three multiplications can be computed
by recursively applying Karatsuba’s method.

Given two truncated univariate power series f = f0 + f1z + ... + fn−1z
n−1 and g =

g0 + g1z + ...+ gn−1z
n−1, we define f∗ = f0 + ...+ f⌈n/2⌉−1z

⌈n/2⌉−1 and f ∗ = f⌈n/2⌉ + ...+
fn−1z

⌈n/2⌉−1. Similarly, we define g∗ = g0 + ... + g⌈n/2⌉−1z
⌈n/2⌉−1 and g∗ = g⌈n/2⌉ + ... +

gn−1z
⌈n/2⌉−1. Hence, we can write f and g as

f = f∗ + f ∗z⌈n/2⌉

g = g∗ + g∗z⌈n/2⌉
(2.1)

Then, similar to what Karatsuba and Ofman [KO63] found, we can write

fg = f∗g∗ + ((f∗ + f ∗)(g∗ + g∗)− f∗g∗ − f ∗g∗)z⌈n/2⌉ + f ∗g∗z2⌈n/2⌉ (2.2)

Applying the above formula recursively for calculating f∗g∗, (f∗+f ∗)(g∗+g∗), and f ∗g∗

multiplications, we can devise a divide-and-conquer algorithm as shown in Algorithm 1.
In this algorithm the product f∗g∗ is denoted by the array variable low, the product
(f∗ + f ∗)(g∗ + g∗) is denoted by the array variable mid, and the product f ∗g∗ is denoted
by the array variable high.

The DnC Karatsuba algorithm can be a relaxed method of univariate power series
multiplication. We recall that relaxed methods for power series multiplication share the
properties of zealous and lazy methods. That is the time complexity of the relaxed
power series multiplication is less than O(n2) as in zealous methods, and increasing
the product precision does not involve recomputing the previous product coefficients
which is a feature of lazy methods. If one wants to increase the product precision from
h(2N−1) = f (N) × g(N) to h(4N−1) = f (2N) × g(2N), f∗

(2N)g∗
(2N) is actually h(2N−1) which

has already been computed.
It is noted that in Algorithm 1, there are three recursive function calls that are

independent and hence can be parallelized. The parallelization of the Karatsuba method
using multithreading and the implementation results are shown in Chapter 3.

2.2. Complexity Analysis of Karatsuba Method 7

2.2 Complexity Analysis of Karatsuba Method

In this section, we analyze the time and space complexities of the Karatsuba method.
Since the Karatsuba method is a recursive divide-and-conquer algorithm, we use master
theorem for its analysis.

Based on master theorem [CLRS22], if a > 0 and b > 1 are constants, f(n) is a
nonnegative function, and we have the following recurrence for T (n) for n ∈ N.

T (n) = aT (n/b) + f(n), (2.3)

1. If there exists a constant ϵ > 0 such that f(n) = O(nlogb a−ϵ), then T (n) = Θ(nlogb a).
2. If there exists a constant k ≥ 0 such that f(n) = Θ(nlogb a logk n), then T (n) =

Θ(nlogb a logk+1 n).
3. If there exists a constant ϵ > 0 such that f(n) = Ω(nlogb a+ϵ), and if f(n) additionally

satisfies the regularity condition af(n/b) ≤ cf(n) for some constant c < 1 and all
sufficiently large n, then T (n) = Θ(f(n)).

2.2.1 Time Complexity

If we denote by T1 the serial execution time of the Karatsuba algorithm, and n the input
size, here is the recurrence relation for the time complexity of the algorithm:

T1(n) = 3T1(n/2) +O(n) (2.4)

This recurrence relation falls within the first case of the master theorem, and hence,
the asymptotic time complexity of the serial Karatsuba algoirthm is O(nlog2 3).

In parallel execution, assuming that there are an infinite number of threads, the three
recursive multiplications can be performed in parallel, and hence, the execution time is
reduced to the time required for one multiplication plus the linear combining time. If we
denote the parallel execution time by T∞, we will have:

T∞(n) = T∞(n/2) +O(n) (2.5)

The recurrence relation above falls within the third case of the master theorem, and
therefore the parallel time complexity of the algorithm is O(n).

2.2.2 Space Complexity

If we denote by S the memory storage required for the Karatsuba algorithm execution,
we will have the following recurrence relation:

S(n) = 3S(n/2) +O(n) (2.6)

which is the first case of master theorem, and thus, the space complexity of the
Karatsuba algorithm is O(nlog2 3).

We note that there exist versions of Karatsuba and Toom-Cook algorithms working
in place, that is, working in space O(n), see the paper [CMPS10], or nearly in-place (that
is, with an extra storage in O(log(n)), see [Roc09].

8 Chapter 2. Efficient Univariate Power Series Multiplication

Algorithm 1 Karatsuba

Input: Univariate polynomials f = f0 + ...+ fn−1z
n−1 and g = g0 + ...+ gn−1z

n−1.
Output: The product fg.
1: function DNCMultiply(f, g, n)
2: if n ≤ Threshold then
3: return

∑2n−2
i=0 (

∑min(n−1,i)
j=max(0,i+1−n) fjgi−j)z

i

4: else
5: low = DNCMultiply(f∗, g∗, n/2)
6: mid = DNCMultiply((f∗ + f ∗), (g∗ + g∗), n/2))
7: high = DNCMultiply(f ∗, g∗, n/2)
8: return low +mid× z⌈n/2⌉ + high× z2⌈n/2⌉

9: end if
10: end function

2.3 Implementation in C++

We have implemented the lazy and relaxed multiplication of univariate power series in the
fast and object-oriented C++ programming language following van der Hoeven [vdH02].

Basically, a power series is implemented as a class that stores the already computed
terms representing a truncated power series or polynomial and has the functionality to
compute more terms when needed.

The polynomial part of a power series is represented by an array. In this array, each
element stores the coefficient of a polynomial term, and the index of the element is the
exponent of that term. Since the coefficients can be arbitrarily large, we use the GMP
Library to handle them.

2.3.1 The GMP Library

The The GNU Multiple Precision Arithmetic Library (GMP) [GtGdt21] is a portable li-
brary in C language for arithmetic operations on integers, rational numbers, and floating-
point numbers that require higher precision than what standard C types can support.

GMP aims to provide the fastest possible arithmetic on high precision numbers by
using fullwords as the basic arithmetic type, sophisticated algorithms with an emphasis
on speed, and including carefully optimized assembly code for many different CPUs.

All GMP types and functions are declared in the <gmp.h> header file, and programs
using GMP must link against the libgmp library (-lgmp on Unix-like systems). The
GMP types for storing integers, rational numbers, and floating-point numbers are mpz t,
mpq t, and mpf t. The corresponding arithmetic functions start with the prefixes mpz ,
mpq , and mpf respectively.

2.3.2 Description of Classes and Methods

The truncated power series are represented by instances of the class TPS. As shown in
Listing 2.1 This class has a pointer to an array of elements of rational numbers and the

2.3. Implementation in C++ 9

length of the array which is the truncation order. This array of rational numbers are the
coefficients of the terms of the univariate truncated power series, and the the index of
each element is the degree of the corresponding term. Clearly, since all elements of the
truncated power series are stored, this implementation is most efficient in handling dense
power series.

Power series are implemented as objects of the Series class that are to be used
directly by the user. The Series class has a series representation class SeriesRep. The
SeriesRep class in turn has a TPS class and a virtual method next() which yields the
coefficients of a series one by one. The Series and SeriesRep classes are shown in
Listing 2.2.

Whenever the coefficient of a term of degree k of a series class with known terms up
to degree n is requested, the series class first checks if k ≤ n in which case the element
k of the current coefficient array of the truncated power series is returned; otherwise,
the next() method is called repeatedly until the coefficients of degree n + 1, ..., k are
computed and the coefficient array of the truncated power series is updated, and then
the coefficient of the element k is returned.

The product series representation classes, LazyProdSeriesRep and RelaxedProdSeriesRep,
shown in Listings 2.3 and 2.4 respectively, inherit from the SeriesRep class and override
the next() method. In the LazyProdSeriesRep class, the next() method calculates
the term(s) of the product series of the next required degree using the naive multipli-
cation method, as shown in Listing 2.6. Whereas in the RelaxedProdSeriesRep class,
the next() method computes a group of terms of the product series using the relaxed
Karatsuba multiplication method, as shown in Listing 2.5. It is noted that the naive
multiplication method is also used in the relaxed Karatsuba multiplication method when
the problem input size is less than a threshold.

The LazyProdSeries and the RelaxedProdSeries classes, intended for direct user in-
teraction, inherent from the Series class and have an instance of the LazyProdSeriesRep
class and the RelaxedProdSeriesRep class respectively, as shown in Listing 2.7.

1 class TPS {

2 int arraySize;

3 mpq_t *coefficientArray;

4 };

Listing 2.1: The TPS class.

1 class SeriesRep {

2 public:

3 TPS* getTPS () const {

4 return phi;

5 }

6 int getSize () const {

7 return n;

8 }

9 void setSize(const int size) {

10 n = size;

11 }

10 Chapter 2. Efficient Univariate Power Series Multiplication

12 virtual void next();

13 private:

14 TPS *phi;

15 int n;

16 };

17 class Series {

18 SeriesRep sRep;

19 virtual void getCoefficient(int index , mpq_t coefficient);

20 };

Listing 2.2: The SeriesRep and Series classes.

1 class LazyProdSeriesRep : public SeriesRep {

2 public:

3 LazyProdSeriesRep(Series , Series);

4 void next() override;

5 private:

6 void naiveMultiply(int arraySize , mpq_t *fArray , mpq_t *

gArray , mpq_t *prodArray);

7 Series f, g;

8 };

Listing 2.3: The LazyProdSeriesRep class.

1 class RelaxedProdSeriesRep : public SeriesRep {

2 public:

3 RelaxedProdSeriesRep(Series , Series);

4 void DnCMultiply(int arraySize , mpq_t *fArray , mpq_t *gArray ,

mpq_t *prodArray);

5 void next() override;

6 private:

7 void naiveMultiply(int arraySize , mpq_t *fArray , mpq_t *

gArray , mpq_t *prodArray);

8 Series f, g;

9 int DnCThreshold;

10 };

Listing 2.4: The RelaxedProdSeriesRep class.

1 void RelaxedProdSeriesRep :: DnCMultiply(int arraySize , mpq_t *

fArray , mpq_t *gArray , mpq_t *prodArray) {

2 if (arraySize <= DnCThreshold) {

3 naiveMultiply(arraySize , fArray , gArray , prodArray);

4 } else {

5 mpq_t *fLowStar = fArray;

6 mpq_t *gLowStar = gArray;

7 mpq_t *fUpStar = fArray + arraySize / 2;

8 mpq_t *gUpStar = gArray + arraySize / 2;

9 mpq_t *fLowPlusUp = new mpq_t[arraySize / 2];

2.3. Implementation in C++ 11

10 mpq_t *gLowPlusUp = new mpq_t[arraySize / 2];

11

12 for (int i = 0; i < arraySize / 2; ++i) {

13 mpq_init(fLowPlusUp[i]);

14 mpq_init(gLowPlusUp[i]);

15 mpq_add(fLowPlusUp[i], fArray[i], fArray[arraySize / 2 + i

]);

16 mpq_add(gLowPlusUp[i], gArray[i], gArray[arraySize / 2 + i

]);

17 }

18

19 // low = (f_*)(g_*)

20 // mid = (f_* + f^*)(g_* + g^*)

21 // high = (f^*)(g^*)

22 // size (# of elements) of these = arraySize - 1

23 mpq_t *lowArray = new mpq_t[arraySize - 1];

24 mpq_t *midArray = new mpq_t[arraySize - 1];

25 mpq_t *highArray = new mpq_t[arraySize - 1];

26 for (int i = 0; i < arraySize - 1; ++i) {

27 mpq_init(lowArray[i]);

28 mpq_init(midArray[i]);

29 mpq_init(highArray[i]);

30 }

31

32 // calculation of low , mid , high

33 DnCMultiply(arraySize / 2, fLowStar , gLowStar , lowArray);

34 DnCMultiply(arraySize / 2, fUpStar , gUpStar , highArray);

35 DnCMultiply(arraySize / 2, fLowPlusUp , gLowPlusUp , midArray);

36

37 // mid = mid - low - high

38 for (int i = 0; i < arraySize - 1; ++i) {

39 mpq_sub(midArray[i], midArray[i], lowArray[i]);

40 mpq_sub(midArray[i], midArray[i], highArray[i]);

41 }

42

43 // assemble product array from low , high , mid - low - high

44 for (int i = 0; i < arraySize - 1; ++i)

45 mpq_add(prodArray[i], prodArray[i], lowArray[i]);

46 for (int i = 0; i < arraySize - 1; ++i)

47 mpq_add(prodArray[arraySize / 2 + i],

48 prodArray[arraySize / 2 + i], midArray[i]);

49 for (int i = 0; i < arraySize - 1; ++i)

50 mpq_add(prodArray[arraySize + i],

51 prodArray[arraySize + i], highArray[i]);

52

53 // memory deallocation

54 for (int i = 0; i < arraySize / 2; ++i) {

12 Chapter 2. Efficient Univariate Power Series Multiplication

55 mpq_clear(fLowPlusUp[i]);

56 mpq_clear(gLowPlusUp[i]);

57 }

58 for (int i = 0; i < arraySize - 1; ++i) {

59 mpq_clear(lowArray[i]);

60 mpq_clear(midArray[i]);

61 mpq_clear(highArray[i]);

62 }

63 delete [] fLowPlusUp;

64 fLowPlusUp = nullptr;

65 delete [] gLowPlusUp;

66 gLowPlusUp = nullptr;

67 delete [] lowArray;

68 lowArray = nullptr;

69 delete [] midArray;

70 midArray = nullptr;

71 delete [] highArray;

72 highArray = nullptr;

73 }

74 }

Listing 2.5: The DnCMultiply method.

1 void RelaxedProdSeriesRep :: naiveMultiply(int arraySize , mpq_t *

fArray , mpq_t *gArray , mpq_t *prodArray) {

2 mpq_t partialProduct;

3 mpq_init(partialProduct);

4 for (int i = 0; i < arraySize; ++i) {

5 for (int j = 0; j < arraySize; ++j) {

6 mpq_mul(partialProduct , fArray[i], gArray[j]);

7 mpq_add(prodArray[i + j], prodArray[i + j], partialProduct)

;

8 }

9 }

10 mpq_clear(partialProduct);

11 }

Listing 2.6: The naiveMultiply method.

1 class LazyProdSeries : public Series{LazyProdSeriesRep lPSR ;};

2 class RelaxedProdSeries : public Series{RelaxedProdSeriesRep rPSR

;};

Listing 2.7: The LazyProdSeries and RelaxedProdSeries classes.

2.4. Experimental Results 13

Power Series Description Polynomial
Multiplication Multiplication
Algorithm Used

Fixed precision Computes (f (d)g(d) mod xd) Plain
Naive for a given d without (Quadratic)

reusing previous results.
Lazy Computes the terms of Plain

(varying precision) degrees d/2, . . . , d− 1
of fg and stores them,

assuming results up to d/2− 1.

Fixed precision Computes (f (d)g(d) mod xd) Karatsuba
Karatsuba for a given d without

reusing previous results.
Relaxed Computes the terms of Karatsuba

(varying precision) degree d− 1
of fg,

reusing previous results,
and stores those terms.

Table 2.1: Descriptions of the implemented power series multiplication algorithms.

2.4 Experimental Results

In this section, we present the experimental results from testing our implementations of
the static naive, lazy, static Karatsuba, and relaxed multiplication methods. For further
clarity, given two univariate power series f and g, Table 2.1 specifies the characteristics
of the computation of their product (as a truncated power series) for the 4 methods
mentioned in Table 2.4.

We note that, in the literature, there exist versions of the plain multiplication (for
dense univariate polynomials) which are optimized in terms of cache complexity, see [CMPS10],
by means of a divide-and-conquer scheme. However, the version that we are using is a
purely iterative one based on a 2-loop nest.

We measure and compare the time required to compute the product of power series
using these methods at varying levels of precision.

All tests were run on a system with the specifications listed in Table 2.2.

The execution times for the static naive multiplication method and the static Karat-
suba multiplication method with different divide-and-conquer thresholds are presented
in Table 2.3 and shown graphically in Figures 2.1 and 2.2. These experimental results
show that the static Karatsuba method outperforms the static naive method, and the
threshold value of T = 16 gives the optimal performance in the static Karatsuba method.

The lazy power series multiplication algorithm, which uses naive polynomial multi-
plication, and the relaxed power series multiplication algorithm, which uses Karatsuba
polynomial multiplication, both reuse previously computed products when an increase in
product precision is required. Table 2.4 and Figures 2.3 and 2.4 present comparisons of

14 Chapter 2. Efficient Univariate Power Series Multiplication

Component Specifications

CPU Intel Core i7-4710HQ @ 2.50GHz
L1 Data Cache (L1d) 128 KiB (4 instances)
L1 Instruction Cache (L1i) 128 KiB (4 instances)
L2 Cache 1 MiB (4 instances)
L3 Cache 6 MiB (1 instance)
Hyperthreading Enabled
RAM 8GB
Operating System Ubuntu 22.04.1 LTS
Compiler clang++ 16.0.6
Compiler Optimization Level Default (-O0)

Table 2.2: System Specifications.

Product Static Static Karatsuba

Precision Naive T = 2 T = 4 T = 8 T = 16 T = 32 T = 64 T = 128

2 5.47e-5 2.10e-5 2.50e-5 4.50e-5 9.00e-5 0.0003 0.0009 0.0036
4 8.81e-5 1.50e-5 6.00e-6 2.60e-5 6.40e-5 0.0003 0.0009 0.0035
8 0.0001 3.90e-5 2.70e-5 2.00e-5 6.00e-5 0.0003 0.0009 0.0033
16 0.0002 0.0001 8.50e-5 7.60e-5 5.90e-5 0.0003 0.0009 0.0032
32 0.0005 0.0004 0.0003 0.0002 0.0002 0.0002 0.0009 0.0031
64 0.0014 0.0012 0.0009 0.0008 0.0007 0.0008 0.0009 0.0030
128 0.0026 0.0035 0.0027 0.0024 0.0022 0.0025 0.0029 0.0035
256 0.0064 0.0102 0.0080 0.0072 0.0069 0.0082 0.0080 0.0083
512 0.0221 0.0254 0.0216 0.0190 0.0181 0.0203 0.0214 0.0240
1024 0.0848 0.0677 0.0547 0.0488 0.0468 0.0516 0.0566 0.0703
211 0.3400 0.2040 0.1641 0.1426 0.1366 0.1525 0.1697 0.2100
212 1.3647 0.6150 0.4961 0.4328 0.4126 0.4628 0.5142 0.6383
213 5.5781 1.8566 1.5011 1.3127 1.2566 1.4128 1.5612 1.9354
214 22.2973 5.6013 4.5192 3.9757 3.8064 4.2768 4.7292 5.8319
215 90.3683 16.8652 13.6735 12.0067 11.5153 12.9148 14.2982 17.6861
216 373.7040 50.8692 41.3140 36.2653 34.8404 39.0014 43.2828 53.5939
217 1512.7900 153.4520 124.8990 109.5690 105.4290 117.8210 130.8930 162.2700
218 5995.5200 459.6320 373.1990 327.3920 316.3050 351.9760 389.8980 483.2490

Table 2.3: Execution time (second) of the static naive and static Karatsuba with different
threshold values.

the results from these lazy and relaxed algorithms with those obtained using the naive
and Karatsuba methods without reuse of previous computations. It can be observed
that the lazy and relaxed methods are more efficient than the static naive and static
Karatsuba methods, respectively.

2.4. Experimental Results 15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

·105

0

1,000

2,000

3,000

4,000

5,000

6,000

Product precision

E
x
ec
u
ti
on

ti
m
e
(s
)

Naive
T=2
T=4
T=8
T=16
T=32
T=64
T=128

Figure 2.1: Execution time of static naive multiplication and static Karatsuba multipli-
cation with different threshold values versus product precision.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

·105

0

100

200

300

400

500

Product precision

E
x
ec
u
ti
on

ti
m
e
(s
)

T=2
T=4
T=8
T=16
T=32
T=64
T=128

Figure 2.2: Execution time of static Karatsuba multiplication method with different
threshold values versus product precision.

16 Chapter 2. Efficient Univariate Power Series Multiplication

Product Static Naive Lazy Static Karatsuba Relaxed

Precision Multiplication Multiplication Multiplication Multiplication

2 0.0001 0.0001 0.0001 0.0001
4 0.0001 0.0001 0.0001 0.0001
8 0.0001 0.0001 0.0001 0.0001
16 0.0002 0.0001 0.0001 0.0001
32 0.0005 0.0002 0.0002 0.0002
64 0.0014 0.0003 0.0007 0.0006
128 0.0026 0.0011 0.0022 0.0017
256 0.0064 0.0042 0.0069 0.0047
512 0.0221 0.0167 0.0181 0.0131
1024 0.08480 0.0667 0.0468 0.0319
211 0.3400 0.2614 0.1366 0.0910
212 1.3647 1.0560 0.4126 0.2736
213 5.5781 4.2607 1.2566 0.8177
214 22.2973 17.2254 3.8064 2.4597
215 90.3683 69.6232 11.5153 7.4391
216 373.704 282.392 34.8404 22.4544
217 1512.79 1149.76 105.429 68.3184
218 5995.52 4601.09 316.305 202.588

Table 2.4: Execution times (seconds) for lazy and relaxed power series multiplication
methods, which reuse previous computations, compared to naive and Karatsuba methods,
which do not reuse previous computations.

0 0.5 1 1.5 2 2.5

·105
0

1000

2000

3000

4000

5000

6000

Product precision

E
x
ec
u
ti
on

ti
m
e
(s
)

Static Naive
Lazy

Static Karatsuba
Relaxed

Figure 2.3: Execution times (seconds) for lazy and relaxed power series multiplication
methods, compared to static naive and Karatsuba methods.

2.4. Experimental Results 17

0 0.5 1 1.5 2 2.5

·105
0

50

100

150

200

250

300

Product precision

E
x
ec
u
ti
on

ti
m
e
(s
)

Static Karatsuba
Relaxed

Figure 2.4: Execution times (seconds) for the relaxed and static Karatsuba power series
multiplication methods.

Chapter 3

Parallelizing Algorithms with
Multithreading

In designing fast and high-performance algorithms, it is essential to consider the capabil-
ities and constraints of contemporary hardware architectures. Hardware manufacturers
have shifted focus towards parallel architectures due to the physical limitations of in-
creasing clock speeds. In this chapter, we begin by reviewing the theoretical performance
measures of parallel algorithms and explaining various parallel programming patterns.
Next, we discuss the fundamentals of multithreading using C++ and develop a thread
pool with a work-stealing scheduler. We parallelize the static Karatsuba and relaxed
power series multiplication methods discussed in Chapter 2 using this thread pool and
compare the results with those obtained using Cilk. Although using Cilk for multi-
threading is relatively effortless and efficient, it introduces an external dependency to
the project, which can lead to compatibility and portability issues. Additionally, Cilk
does not provide the programmer with low-level control over thread management, syn-
chronization, and error handling. Our multithreaded implementation does not rely on
external libraries and achieves execution results that outperform those of Cilk.

3.1 Theoretical Analysis of Parallel Algorithms

This section reviews analytic performance measures of parallel programs from a theo-
retical perspective. These measures enable us to compare parallelization strategies and
algorithms. First, we define the relevant concepts and terminology. Then, we discuss
theorems related to the analysis of parallel algorithms.

Work, denoted by T1, is the total amount of time it takes to run a program on a
single processor. It is essentially the sum of the execution times of all operations of the
algorithm performed sequentially.

Span, denoted by T∞, is the minimum amount of time it takes to execute the program
on a machine with an infinite number of processors. Span is also referred to as the
critical path length and represents the longest sequence of dependent computations in
the algorithm.

The ratio of work to span (T1/T∞) is called parallelism.

18

3.1. Theoretical Analysis of Parallel Algorithms 19

If we denote by TP the total amount of time it takes to execute the program on P
processors, the speedup S is defined as T1/TP .

Efficiency E is speedup divided by the number of processors, E = S/P = T1

PTP
, with

an ideal value of 1.

An algorithm that runs P times faster on P processors, i.e., SP = T1/TP = P , is
said to have a linear speedup. Although linear speedup is considered optimal, achieving
that in practice is challenging due to factors such as task dependencies, communication
overhead, and resource contention. Generally, we have the following lower-bound for TP :

T1

P
≤ TP (3.1)

It is natural to represent the execution order and dependencies between operations
using a directed acyclic graph (DAG). A DAG consists of nodes and directed edges with-
out cycles. Each node represents a computational task, and each edge represents a
dependency between tasks. An example of a DAG is shown in Figure 3.1.

w

a

b f

c

e

y g

d

h

i

k

l

x

Figure 3.1: A DAG representing the dependencies and execution order of tasks. The
critical path is shown in blue.

3.1.1 Graham-Brent Theorem

The Graham-Brent Theorem [Bre74] states that the execution time TP of a parallel
algorithm on P processors is bounded by:

TP ≤ T1/P + T∞ (3.2)

20 Chapter 3. Parallelizing Algorithms with Multithreading

To prove the theorem, we denote by mi the number of operations on level i of the
algorithm DAG with n levels. From the definition of T1, we can write:

T1 =
n∑

i=1

mi. (3.3)

Also T∞ = n. The time it takes for P processors to execute level i of the DAG is:

T i
P =

⌈mi

P

⌉
≤ mi

P
+ 1. (3.4)

Therefore,

TP =
n∑

i=1

T i
P ≤

n∑
i=1

(mi

P
+ 1

)
= T1/P + T∞. (3.5)

3.2 Concurrency Versus Parallelism

Concurrency refers to handling multiple tasks together, but not necessarily executing
them simultaneously. It can involve interleaving the execution of these tasks. For exam-
ple, when the processor encounters long-latency operations, such as memory reads that
result in cache misses, it can switch to other tasks instead of idly waiting [MRR12a].

Parallelism, on the other hand, refers to executing multiple tasks simultaneously,
typically on multiple processors or cores. Concurrency is a more general term that
includes actual parallelism. Here, we are concerned with concurrency that comes from
parallelism.

3.3 Parallel Programming Patterns

Parallel programming patterns identify reusable structures and themes frequently en-
countered in parallel computing [MRR12a]. These patterns apply to parallel program-
ming systems regardless of the hardware architecture or programming language being
used. Here, we describe the fork-join, map, stencil, reduction, and pipeline patterns.
The fork-join pattern is used to parallelize the recursive divide-and-conquer Karatsuba
method from Chapter 2, and the map pattern is used to parallelize the partition method
discussed in Chapter 4.

3.3.1 Map

The map parallel pattern is a foundational concept in parallel computing, often used in
functional programming and data parallelism. In a map pattern, a function is applied to
every element in a collection, such as a list or an array, independently and concurrently
to produce a new collection of elements. This pattern is particularly powerful because it
is naturally parallelizable, meaning that the operations on each element do not depend
on one another. Algorithm 2 and Figure 3.2 respectively show pseudo-code and an
illustration of the map pattern.

3.3. Parallel Programming Patterns 21

Algorithm 2 Map Pattern

Input: Collection, function
Output: Results
1: if Collection is empty then return Empty collection
2: else
3: Results = Empty list
4: for all Element in Collection parallel do
5: result = function(Element)
6: Append(Results, result)
7: end for
8: return Results
9: end if

R1 R2 R3 R4

f(E1) f(E2) f(E3) f(E4)

E1 E2 E3 E4

Output Elements

Input Elements

Function
Application

Figure 3.2: A diagram of the map pattern. Function f is applied to input elements in
parallel producing output results.

22 Chapter 3. Parallelizing Algorithms with Multithreading

3.3.2 Pipeline

Pipeline is a parallel programming pattern that processes tasks in a linear sequence of
stages, where each stage performs a part of the overall computation on the data. Two
consecutive stages of a pipeline form a producer-consumer pair. Pipelines with a fixed
number of stages are not scalable with more processors; however, they multiply the
speedup by a constant factor, with the maximum being equal to the number of stages. A
pipeline pseudo-code and diagram are shown in Algorithm 3 and Figure 3.3, respectively.

Algorithm 3 Pipeline Pattern

1: Initialize pipeline stages
2: while more data do
3: Receive data element from previous stage
4: Perform operation on data element
5: Send data element to next stage
6: end while

Stage 1 Stage 2 ... Stage N
Input Data Output Data

Figure 3.3: Diagram illustrating the pipeline pattern with N sequential stages. Each
stage can be executed by a separate processor or thread.

3.3.3 Reduction

The reduction pattern involves combining all elements in a collection into a single result
using an associative combiner function, which ensures that the function produces the
same result regardless of the grouping of operations. This pattern is efficient for parallel
execution as it allows the problem to be broken down into smaller subproblems that can
be processed concurrently. Each processor performs the combiner function on its subset
of elements independently, and the partial results are then combined in a hierarchical
manner until a single final result is obtained. Examples of reduction operations include
summing an array of numbers, finding the maximum value in a set, or performing a
logical AND across a series of boolean values. Algorithm 4 presents the pseudocode
for performing summation using parallel reduction. Figure 3.4 shows a diagram of the
reduction pattern.

3.3.4 Fork-Join

The fork-join model is a parallel computing design pattern in which the program execu-
tion branches off (forks) at certain points in the program, the branches run in parallel,
and they merge (join) at a later point of the program execution [MRR12b, Con63, NL16].

3.3. Parallel Programming Patterns 23

Algorithm 4 Parallel Reduction Pattern

1: function ParallelReduction(array, n)
2: Input: array of n elements
3: Output: result of reduction operation
4: Initialize: threadCount = GetNumberOfThreads
5: Parallel:
6: localSum[threadId] = 0

7: for i = threadId; i < n; i += threadCount do
8: localSum[threadId] += array[i]

9: end for
10: Synchronize threads
11: Reduction:
12: globalSum = 0

13: for i = 0; i < threadCount; i++ do
14: globalSum += localSum[i]

15: end for
16: return globalSum

17: end function

Figure 3.4: A diagram illustrating the reduction pattern.

24 Chapter 3. Parallelizing Algorithms with Multithreading

Algorithm 5 shows the fork-join model pseudo-code, and Figure 3.5 shows a diagram of
the fork-join model applied to a recursive divide and conquer problem.

Fork

Base case

Join

Figure 3.5: Illustration of the fork-join model applied to a recursive divide-and-conquer
problem.

Algorithm 5 Fork-Join Pattern

1: function forkJoin(Problem)
2: if Problem is base case then return Solve sequentially
3: else
4: Divide Problem into Sub-problems and spawn a thread for each Sub-problem
5: for all Sub-problems do forkJoin(Sub-problem)
6: end for
7: Join all threads spawned for Sub-problems
8: Return combined results
9: end if
10: end function

Recursive divide and conquer problems can be parallelized by nested fork-join model.
The fork-join model is typically implemented using a thread pool paradigm to avoid

oversubscription with a work stealing scheduler to ensure proper load balancing [MRR12b,
Lea00].

3.4 Why Multithreading

Until around 2005, the general trend of improving program execution speed was to in-
crease the CPU frequency made possible by improvements in semiconductor manufac-
turing. After that, it became clear that simply increasing clock speeds was no longer

3.5. Threads 25

sustainable due to the physical limitations such as the exponential increase in power
consumption and heat generation at higher CPU frequencies. As a result, the computer
architecture industry shifted focus from increasing clock speeds to multicore processors
to improve performance [Bor07, HP11].

Maximum utilization of multicore processors requires concurrency where the program
performs multiple independent tasks in parallel rather than sequentially.

Concurrency can be achieved with creating multiple single-threaded processes or mul-
tiple threads in one process.

Compared to multithreading, multiprocessing is more resource-intensive and incurs
higher overhead. This is because the operating system devotes extra internal resources
to manage the processes and prevent them from accidentally modifying data belonging
to other processes. In multithreading, however, multiple threads within a process can
run independently while sharing the same address space, resulting in lower overhead.
The challenge with multithreading is that the programmer must carefully manage shared
data and synchronize threads to prevent issues such as race conditions, deadlocks, and
data corruption.

3.5 Threads

A thread is a basic unit of CPU utilization. A thread has a thread ID, a program
counter (PC), a set of registers, and a stack. Threads within the same process share the
same address space, which includes the code segment, data segment, and other operating
system resources such as open files and signal handlers.

Thread support can be provided either at the user level, by user threads, or at the
operating system level, by kernel threads. User threads are handled by a user-level library,
whereas kernel threads are created and managed directly by the operating system. User
threads are mapped to kernel threads in a many-to-one, one-to-one, or many-to-many
model [SGG18]. The threads in the C++ Standard Library are intended to map one-
to-one with the operating system’s threads [Str13].

3.6 Multithreading and Synchronization in C++

3.6.1 C++ Support for Multithreading

In the C++ programming language, support for multithreading was introduced in the
C++11 Standard and enhanced by the C++14, C++17, and C++20 Standards to pro-
vide robust, portable, and efficient concurrency features for modern software development
[Com11, Com14, Com17, Com20].

Currently, the C++ Standard Thread Library has a thread-aware memory model, and
includes classes for managing threads, protecting shared data, synchronizing operations
between threads, and low-level atomic operations. Notably, the Resource Acquisition Is
Initialization (RAII) technique is used with locks to ensure that mutexes are unlocked
when the relevant scope is exited [Wil19].

26 Chapter 3. Parallelizing Algorithms with Multithreading

3.6.2 C++ Memory Model

An important feature of the current C++ Standard is its multithreading-aware memory
model. This model describes how different threads interact with memory.

The building blocks of data in C++ are objects. According to the C++ Standard
[ISO20], an object has a type, it occupies a region of storage, and it can have a name.
Some objects are simply values of fundamental types such as int while others are in-
stances of user-defined classes. Some objects such as arrays or instances of derived classes
contain sub-objects. Each memory location, that is the smallest addressable unit of stor-
age, is either an object (or a sub-object), or a series of adjacent bit fields.

In a C++ program, every object has a modification order that includes all writes to
that object by all threads, beginning with its initialization. While this order can differ
between program runs, all threads must agree on the order within any single execution.

When two or more threads access the same memory location and at least one of them
is modifying the data, there is a potential for a race condition and undefined behavoir.
A race condition occurs when the result of operations depends on the order in which two
or more threads execute those operations.

The race condition is avoided by enforcing an ordering among the accesses of the
threads. One way to ensure there is an ordering is to use mutexes. Another way is to
use atomic operations.

3.6.3 Launching Threads

Every C++ program starts with a single thread running the main() function. This
thread can launch additional threads that run concurrently with itself and each other.

The functions and classes for managing threads are declared in the <thread> header.
Threads are launched by constructing a std::thread object. Every thread has to be
given a callable object in the constructor of the std::thread object that specifies the
task to be run by that thread. The callable object can be a regular function, a function
pointer, a lambda function, a function object (functor), a std::function object or any
other callable type.

A started thread needs to be joined or detached before the std::thread object is
destroyed, otherwise, the std::thread destructor calls std::terminate() and the pro-
gram terminates. Joining a thread means waiting for it to finish and detaching it means
leaving it to run in the background and passing its ownership over to the C++ Runtime
Library.

Creating more threads than the hardware can support is known as oversubscription
and can result in excessive context switching and memory waste which significantly de-
creases the performance. The maximum number of threads that can run concurrently
can be determined using the std::thread::hardware concurrency() function from the
C++ Standard Library.

A naive approach to avoid the overhead of creating too many threads in recursive
divide-and-conquer programs is to execute recursive calls serially after reaching a max-
imum recursion depth. Listing 3.1 illustrates this approach. This maximum recursion
depth is problem-dependent, and one needs to experiment with different values to find

3.6. Multithreading and Synchronization in C++ 27

the one that gives the best performance. A better approach is to use a pool of threads,
which is explained in section 3.9.

1 if (recursionDepth < maxRecursionDepth) {

2 // creating a thread for each recursive call

3 // for computing low , high , and mid.

4 std:: thread t1 ([&]() {

5 DnCMultiply(arraySize / 2, fLowStar , gLowStar , lowArray);

6 });

7 std:: thread t2 ([&]() {

8 DnCMultiply(arraySize / 2, fUpStar , gUpStar , highArray);

9 });

10 std:: thread t3 ([&]() {

11 DnCMultiply(arraySize / 2, fLowPlusUp , gLowPlusUp , midArray);

12 });

13 // wait for all threads to complete

14 t1.join();

15 t2.join();

16 t3.join();

17 } else {

18 // calculation of low , high , and mid sequentially.

19 DnCMultiply(arraySize / 2, fLowStar , gLowStar , lowArray);

20 DnCMultiply(arraySize / 2, fUpStar , gUpStar , highArray);

21 DnCMultiply(arraySize / 2, fLowPlusUp , gLowPlusUp , midArray);

22 }

Listing 3.1: Threads are created in recursive divide-and-conquer if recursion depth is
below a maximum value; otherwise, execution is sequential.

3.6.4 Protecting Shared Data Using Mutexes

If the shared data among threads is read-only, it does not need protection since multiple
threads can read it simultaneously without affecting the data. However, if one or more
threads start modifying the shared data, it could lead to a race condition and cause
undefined behavior.

To avoid race conditions, a simple approach is to wrap the data structure with a
protection mechanism that ensures only one thread making modifications can see the
intermediate states of the data. For all other threads trying to access the data structure,
these modifications either have not started yet or are completed. The C++ Standard
Library offers several such mechanisms. The most basic and general one is the mutex.

A mutex (mutual exclusion) is a synchronization primitive used to protect shared
data. A thread locks the mutex before accessing a shared data structure and unlocks it
once it is done. The C++ Standard Thread Library ensures that when a thread locks a
mutex, other threads attempting to lock the same mutex must wait until the mutex is
unlocked.

A mutex can be created in C++ by constructing an instance of std::mutex. This
mutex can be locked with a call to the lock() member function, and unlocked with a call

28 Chapter 3. Parallelizing Algorithms with Multithreading

to the unlock() member function. It is, however, recommended to use std::lock guard

from the C++ Standard Library, which is based on the RAII idiom and is more exception-
safe, instead of directly accessing a mutex. The std::lock guard locks the supplied
mutex on construction and unlocks it on destruction, ensuring that a locked mutex is
unlocked when the scoped block is exited.

std::unique lock is another locking mechanism provided by the C++ Standard
Library that is more flexible than std::lock guard. It allows for manual locking and
unlocking, deferred locking, transfer of lock ownership, and use with condition variables.
However, this flexibility comes with a slightly higher overhead.

std::mutex, std::lock guard, and std::unique lock are declared in the <mutex>
library header.

It is noted that simply locking a mutex before accessing shared data and unlocking it
afterwards does not guarantee data protection. If a member function returns a pointer or
reference to the protected data, then any code that has access to that pointer or reference
can modify the shared data even without acquiring the lock. Therefore, a careful interface
design is needed to ensure that no uncontrolled code can modify the shared data.

3.6.5 Thread Synchronization Tools: Condition Variables, Fu-
tures, and Promises

Sometimes we want a thread to wait for a specific event to occur or a condition to be met.
One approach is to have the waiting thread keep checking the state of a shared variable
to see if it has been changed by another thread. In this approach, the waiting thread
consumes a lot of processing resources by constantly checking the state of the variable.
Also, when the waiting thread checks the state of the variable, it has to lock a mutex
which keeps other threads from accessing the shared data. Another approach is to have
the waiting thread sleep for specific intervals and then check the state of the variable
upon waking. Although this method consumes less processing power, the waiting thread
might wake up late, reducing the program’s speed. The best way is that the thread that
has made the condition satisfied, notify the thread(s) waiting for that event.

A basic synchronization primitive offered by the C++ Standard Library for waiting
for an event to be triggered by another thread is the condition variable.

std::condition variable is an implementation of a condition variable declared in
the <condition variable> header that is used with a std::mutex to block one or more
threads until notified by another thread.

wait(), notify one(), and notify all() are member functions of the
std::condition variable. wait() blocks the current thread until notified. notify one()

unblocks one of the waiting threads, and notify all() unblocks all of the waiting
threads.

Sometimes a waiting thread might be unblocked by a spurious wakeup. To handle
this, the wait() function can accept a second optional parameter which is a predicate
that rechecks the condition to ensure it is truly met. This predicate can be in the form
of a lambda function.

Let us say we want a thread t1 to access a shared resource as soon as notified by

3.6. Multithreading and Synchronization in C++ 29

another thread t2. This scenario can happen in a parallel producer-consumer model,
where a producer thread notifies a consumer thread(s) that a data item is ready to be
consumed. Here are the steps involved:

1. Thread t1 locks the mutex using a std::unique lock (so that it can be unlocked
and relocked later).

2. The wait() function blocks thread t1 and unlocks the mutex (so that other thread(s)
can acquire the lock).

3. Thread t2 locks the mutex (typically using a std::lock guard), modifies the
shared data, unlocks the mutex (by exiting the scope), and notifies the condition
variable using notify one() or notify all() functions.

4. The wait() function unblocks thread t1 once it is notified and the condition is
met.

5. Thread t1 locks the mutex again and accesses the shared resource.

Listing 3.2 shows an implementation of the producer-consumer model which allows
the producer to add data to a queue and the consumer to process data from the queue
concurrently using std::condition variable.

1 // producer -consumer model

2 std:: mutex theMutex;

3 std::queue <dataType > dataQueue;

4 std:: condition_variable condVar;

5 void dataProducer () {

6 while(isDataAvailable ()) {

7 dataType data = prepareData ();

8 {

9 std:: lock_guard <std::mutex > lock(theMutex);

10 dataQueue.push(data);

11 }

12 condVar.notify_one ();

13 }

14 }

15 void dataConsumer () {

16 while (! isLastData(data)) {

17 std:: unique_lock <std::mutex > lock(theMutex);

18 condVar.wait(lock , []{ return !dataQueue.empty();});

19 dataType data = dataQueue.front ();

20 dataQueue.pop();

21 lock.unlock ();

22 process(data);

23 }

24 }

Listing 3.2: A concurrent producer-consumer model implementation.

A more abstracted approach to handle asynchronous operations is to use std::future

and std::async.
std::future is a class template that allows a program to access the result of an asyn-

chronous operation. It acts as a placeholder for the eventual result of a computation that

30 Chapter 3. Parallelizing Algorithms with Multithreading

may not be available immediately. The std::future::get() function waits until the fu-
ture object has a valid result and retrieves it. The std::future::wait for(duration)

function blocks until either the specified duration has elapsed or the result becomes
available. It returns an enum of type std::future status indicating the state of the
result:

� std::future status::ready means that the asynchronous result is ready.
� std::future status::timeout indicates that the specified duration has passed,
and the result is not ready.

� std::future status::deferred specifies that the asynchronous result contains a
deferred function that has not started yet.

std::async is a function template that runs a function asynchronously (potentially
with a new thread) in the background and returns a std::future object that can be
used to retrieve the result. When the result is needed, a call to std::future::get()

blocks the thread until the result is available, and then returns it. std::future and
std::async are declared in the <future> header.

A simple usage of std::async with std::future is shown in Listing 3.3, where
std::async launches a task in the background and returns a std::future<int>.

1 auto future = std:: async(std:: launch ::async , [] {

2 // perform some computation

3 return result;

4 });

5

6 int result = future.get();

Listing 3.3: A simple usage of std::async with std::future.

A lower level mechanism for decoupling the execution of tasks from their eventual
result is to use std::promise which is a class template that allows a value to be set
in the future and accessed via an associated std::future object. std::promise and
std::future provide a means of communication between threads in a producer-consumer
manner. One thread creates a std::promise and obtains a std::future from it. The
std::promise and function arguments are then moved into another thread, where the
function executes and fulfills the promise by setting its value. The original thread can
wait for and retrieve the result using the std::future object.

Listing 3.4 shows an example where std::promise is used to set a value from another
thread, which is then retrieved via the associated std::future object.

1 std::promise <int > promise;

2 std::future <int > future = promise.get_future ();

3

4 // a thread that sets the value

5 std:: thread ([& promise] {

6 // perform some computation

7 promise.set_value(someValue);

8 }).detach ();

9

10 // another thread that blocks until the value is set

3.7. Data Structures in C++ Containers: Stack, Queue, Deque 31

11 int result = future.get();

Listing 3.4: Synchronizing two threads, where one thread sets a value and the other one
waits for the value to be set using std::promise and std::future.

3.6.6 Atomic Operations and Atomic Types

Atomic operations and atomic types provide facilities for low-level and lockless synchro-
nization operations.

An atomic operation on an object is an indivisible operation, i.e. other threads can
only see the state of the object either before the operation starts or after it finishes and
cannot see any intermediate states. Atomic types are defined in <atomic> library header.
std::atomic<> is the template class for such types. All operations on these types are
atomic.

Listing 3.5 shows a simple example of using atomic operations to increment a counter.
Multiple threads can concurrently execute the incrementCounter() function without the
need for explicit locks.

1 std::atomic <int > counter (0);

2

3 void incrementCounter () {

4 ++ counter;

5 }

Listing 3.5: Incrementing a shared counter using atomic operations.

3.7 Data Structures in C++ Containers: Stack, Queue,

Deque

The std::stack class, defined in the <stack> library header, is a container adapter
providing the functionality of a stack. A stack is a data structure to store a collection of
elements in a LIFO (last-in, first-out) manner, that is, the last element added is the first
one to be removed. Figure 3.6 shows a stack data structure.

top

pushpop

Figure 3.6: Illustration of a stack data structure.

32 Chapter 3. Parallelizing Algorithms with Multithreading

The std::queue class, defined in the <queue> library header, is a container adapter
providing the functionality of a queue, that is, a FIFO (first-in, first-out) data structure.
The push() function inserts an element at the back of the queue, and the pop() function
removes the front element from the queue. The front() and back() functions access
the front and last element respectively without removing them. The empty() function
checks if the queue is empty. A schematic diagram of a queue data structure is shown in
Figure 3.7.

Queue
frontback

push pop

Figure 3.7: Illustration of a queue data structure.

The std::deque (double-ended queue), defined in the <deque> header, is a sequence
container with a dynamic size that can be expanded or contracted on both ends (front or
back). A deque allows insertion and removal of elements from both ends efficiently. The
push front() function adds an element to the front of the deque, and the push back()

function adds an element to the back of the deque. The pop front() and pop back()

functions remove the first and last elements of the deque respectively. The front() and
back() functions access the first and last elements of the deque respectively without
removing it. The empty() function checks if the deque is empty. Figure 3.8 shows a
deque data structure.

Deque
frontback

push front

pop front

push back

pop back

Figure 3.8: Illustration of a deque data structure.

It is noted that the std::stack, std::queue, and std::deque from the C++ Stan-
dard Library are not thread-safe, and to achieve thread-safety, we need to manage syn-
chronization ourselves.

3.8 Cache Complexity, Data Locality, and Data Con-

tention

Cache complexity and data locality play a crucial role in the performance of multithreaded
programs.

3.9. Thread Pool Design Pattern 33

Cache memory is smaller and faster than main memory and is located closer to the
CPU. It stores copies of frequently accessed data from main memory to speed up data
retrieval. Modern processors have multiple levels of cache (L1, L2, L3), with L1 being
the smallest and fastest, and L3 being the largest and slowest. Memory is divided into
cache lines, and when data is accessed, the entire cache line containing the data is loaded
into the cache. When the CPU needs to access a data item, it first checks the cache. If
the requested data item can be found in the cache, a cache hit occurs, otherwise, a cache
miss occurs, and the CPU must retrieve the data from the slower main memory.

Cache misses can be categorized into several types: cold miss (when the first time data
is accessed), capacity miss (when data previously accessed is evicted because the working
data set is too large), and conflict miss (when multiple data items are mapped to the
same cache location, leading to eviction before the cache is full). Generally, data locality
improves cache performance by keeping frequently accessed data close together (spatial
locality) and reusing data within short periods (temporal locality). In multithreaded
programs, true sharing and false sharing misses are also introduced.

If two or more threads from different processors try to read the same data, the data
will be copied into their respective caches, and the processors can work on the data.
However, if at least one of the threads modifies the data, this change has to be propagated
to the cache of the other processors before the processors can proceed. This scenario,
where multiple threads access and modify the same data, is known as true sharing. For
example, if two threads keep accessing a global counter variable and incrementing it, the
value of the counter must be passed back and forth between the two processors’ caches
so that the thread from each processor has the most recent value of the counter variable
before it increments. This back and forth transfer of data between caches, which is called
“cache ping-pong”, can significantly impact the performance of the application since a
processor waiting for a cache transfer cannot do any work in the meantime [Wil19]. One
way to mitigate this issue is by minimizing data sharing among threads. If too many
processors want to increment the counter variable, they might find themselves mostly
waiting for each other to update the counter variable and propagating this change. This
situation is referred to as “high contention”.

False sharing happens when threads from different processors access different variables
on the same cache line. When a thread modifies a variable in its cache line, the entire
cache line is updated, even if the other variables in that cache line remain unchanged.
This is because the cache hardware only operates in cache-line-sized blocks of memory.

False sharing leads to unnecessary cache traffic and overhead. This problem can be
reduced by padding data structures so that each thread works on variables apart from
each other in different cache lines, preventing interference.

3.9 Thread Pool Design Pattern

A thread pool is a concurrency design pattern used to avoid the overhead of creating and
destroying threads for each task and prevent oversubscription [GS01, Hol00].

In a thread pool, the number of created pool threads are fixed and the same threads
are reused to perform different tasks throughout the program lifetime. By setting the

34 Chapter 3. Parallelizing Algorithms with Multithreading

number of pool threads created at the beginning of the program to a fixed value less than
or equal to the maximum number of threads the hardware can support, oversubscription
is avoided. Choosing the optimal number of pool threads which is referred to as the pool
size is crucial for program performance [LML00].

3.10 Work Stealing Strategy for Scheduling

Two dynamic load balancing strategies can be used to schedule multithreaded computa-
tions: work sharing and work stealing. In work sharing, whenever new work items are
created on a thread, the scheduler attempts to migrate some of them to other threads
to distribute the work. In work stealing, however, the idle threads, i.e., the threads with
no work to do, take the initiative and attempt to “steal” work from other threads. Work
stealing involves less work migration compared to work sharing, because contrary to a
a work stealing scheduler, a work sharing scheduler still does work migration even if all
threads have work to do [BL99].

The idea of work stealing dates back to the implementation of Multilisp and parallel
execution of functional programs [BL99, BS81, 10.84]. Now, work stealing is employed
in the scheduler for the Cilk programming language [BJK+95a], the OpenMP [DM98],
the Java fork/join framework [Lea00], the .NET Task Parallel Library [LSB09], and the
Intel’s Threading Building Blocks (TBB) [MRR12b].

The basic notion of work stealing is as follows. Each thread maintains a queue of
work items, i.e. a set of instructions, to execute. A work item might create new work
items during its execution which are initially put on the queue of the same thread. When
a thread runs out of work, it checks the queues of other threads and steals a piece of
work from them. In an advanced design, each thread maintains a double-ended queue or
a deque which allows for insertion and removal of work items from both ends, i.e. top
and bottom. New work items are added to the top of the deque, and threads execute
tasks by removing them from the top. A thread that has run out of work steals from the
bottom of other threads’ deques. The work stealing algorithm distributes the scheduling
work over the threads, and there will be no scheduling overhead if all threads have work
to do [KLJ14]. Figure 3.9 shows an illustration of a thread pool with work stealing
mechanism.

3.11 Thread Pool Implementation

3.11.1 Basic Thread Pool Functionalities

At its most basic implementation, a thread pool class launches a fixed number of worker
threads in its constructor to process work. The callable object given to the threads
upon creation takes off work from a queue of tasks, executes the task, and goes back
to the queue for more work. The thread pool class also has a function to enqueue new
tasks. The destructor ensures that all threads are joined before the thread pool object
is destroyed.

3.11. Thread Pool Implementation 35

Global Pool Queue

Thread 1 Thread 2 Thread 3

Worker Threads and Their Deques

Spawned
tasks go
to the top

of the deque.

Idle thread
takes tasks

from bottom of
another thread’s deque
or global pool queue.

Figure 3.9: A thread pool with work stealing mechanism. Rectangles represent tasks.
Each worker thread has its own double-ended queue (deque) for storing tasks. Workers
execute tasks in LIFO order, adding new tasks to the top of their deque. When a worker’s
deque is empty, it steals tasks from the bottom of another worker’s deque or from a global
queue.

36 Chapter 3. Parallelizing Algorithms with Multithreading

3.11.2 Thread-Safe Queue Data Structure

A fundamental part of implementing a thread pool is to construct a thread-safe queue.

Listing 3.6 shows an implementation of a thread-safe queue that uses a std::mutex to
protect the std::queue<T> from concurrent access. It also uses a std::condition variable

to manage the synchronization between threads.

1 #include <queue >

2 #include <mutex >

3 #include <condition_variable >

4 #include <memory >

5

6 template <typename T>

7 class ThreadSafeQueue {

8 private:

9 mutable std:: mutex theMutex;

10 std::queue <T> dataQueue;

11 std:: condition_variable condVar;

12 public:

13 ThreadSafeQueue () {}

14 void push(T newItem) {

15 std:: lock_guard <std::mutex > lk(theMutex);

16 dataQueue.push(std::move(newItem));

17 condVar.notify_one ();

18 }

19 void waitAndPop(T& value) {

20 std:: unique_lock <std::mutex > lk(theMutex);

21 condVar.wait(lk ,[this]{ return !dataQueue.empty();});

22 value=std::move(dataQueue.front ());

23 dataQueue.pop();

24 }

25 std:: shared_ptr <T> waitAndPop () {

26 std:: unique_lock <std::mutex > lk(theMutex);

27 condVar.wait(lk ,[this]{ return !dataQueue.empty();});

28 std:: shared_ptr <T> result(

29 std:: make_shared <T>(std::move(dataQueue.front())));

30 dataQueue.pop();

31 return result;

32 }

33 bool tryPop(T& value) {

34 std:: lock_guard <std::mutex > lk(theMutex);

35 if(dataQueue.empty ())

36 return false;

37 value=std::move(dataQueue.front ());

38 dataQueue.pop();

39 }

40 std:: shared_ptr <T> tryPop () {

41 std:: lock_guard <std::mutex > lk(theMutex);

3.11. Thread Pool Implementation 37

42 if(dataQueue.empty ())

43 return std:: shared_ptr <T>();

44 std:: shared_ptr <T> result(

45 std:: make_shared <T>(std::move(dataQueue.front())));

46 dataQueue.pop();

47 return result;

48 }

49 bool empty() const {

50 std:: lock_guard <std::mutex > lk(theMutex);

51 return dataQueue.empty();

52 }

53 };

Listing 3.6: A thread-safe queue implementation.

In Listing 3.6, the default constructor ThreadSafeQueue() initializes an empty queue.
The push() method adds a new element to the queue. This method locks the mutex

to ensure exclusive access to the queue while the new element is added. After pushing the
element, it calls notify one() on the condition variable to wake up one of the waiting
threads, signaling that new data is available.

The waitAndPop() methods provide a mechanism for threads to wait until an element
is available in the queue before removing and returning it.

The tryPop() methods attempt to remove and return an element from the queue
without blocking.

The empty() method checks if the queue is empty.
It it noted that in this implementation, the waitAndPop() methods are useful in

scenarios where the consumer thread should wait for data to become available rather
than repeatedly checking the queue. Since the waitAndPop() methods use a condition
variable, they avoid busy-waiting and save CPU cycles by putting the thread to sleep
until data is available. On the other hand, the tryPop() methods provide a non-blocking
behavior and are useful in scenarios where the consumer thread has other tasks to perform
and does not block if no data is available.

The std::shared ptr<T> overloads of the waitAndPop() and the tryPop() methods
use a shared pointer, which handles memory management automatically, and do not
require the caller to manage the lifetime of the popped value. However, they incur
slightly more overhead.

The std::move in the waitAndPop() and tryPop() methods transfers ownership of
resources (such as dynamically allocated memory) directly to the new object without
duplicating them.

3.11.3 A Basic Thread Pool Implementation

Listing 3.8 shows an implementation of a basic thread pool.

1 #include <thread >

2 #include <vector >

3 #include <atomic >

38 Chapter 3. Parallelizing Algorithms with Multithreading

4 #include <functional >

5

6 class JoinThreads {

7 std::vector <std::thread >& threads;

8 public:

9 explicit JoinThreads(std::vector <std::thread >& threadsParam):

10 threads(threadsParam) {}

11 ~JoinThreads () {

12 for(unsigned long i = 0; i < threads.size(); ++i) {

13 if(threads[i]. joinable ())

14 threads[i].join();

15 }

16 }

17 };

18

19 class ThreadPool {

20 std:: atomic_bool done;

21 ThreadSafeQueue <std::function <void()> > workQueue;

22 std::vector <std::thread > threads;

23 JoinThreads joiner;

24 void workerThread () {

25 while (!done) {

26 std::function <void()> task;

27 if (workQueue.tryPop(task)) {

28 task();

29 } else {

30 std:: this_thread :: yield();

31 }

32 }

33 }

34 public:

35 ThreadPool () : done(false), joiner(threads) {

36 unsigned const threadCount = std:: thread ::

hardware_concurrency ();

37 try {

38 for (unsigned i = 0; i < threadCount; ++i) {

39 threads.push_back(

40 std:: thread (& ThreadPool :: workerThread , this));

41 }

42 } catch (...) {

43 done = true;

44 throw;

45 }

46 }

47 ~ThreadPool () {

48 done = true;

49 }

3.11. Thread Pool Implementation 39

50 template <typename FunctionType >

51 void submitTask(FunctionType f) {

52 workQueue.push(std::function <void() >(f));

53 }

54 };

Listing 3.7: A basic thread pool implementation.

This thread pool uses the thread-safe queue from Listing 3.6 to store tasks. The tasks are
encapsulated using the std::function<void()>. The submitTask() function enables
users to add new tasks to the queue.

The thread objects are stored in the std::vector<std::thread> container. The
JoinThreads class ensures that all threads are properly joined before the thread pool is
destroyed.

done is an atomic boolean flag which indicates when the thread pool should stop
processing tasks.

The constructor initializes the done flag to false, sets up the joiner, and starts the
worker threads.
The number of threads is determined by std::thread::hardware concurrency().

The destructor sets the done flag to true, signaling all worker threads to stop pro-
cessing tasks.

The workerThread() function is the main loop for each worker thread. It continu-
ously checks the task queue for new tasks and executes them. If no tasks are available,
the thread yields to allow other threads to run.

3.11.4 Waiting on Tasks Completion

In parallel divide and conquer algorithms, the results of computations done by worker
threads are needed by the main thread. Generally, when threads are explicitly spawned,
the main thread waits for them to finish before returning to the caller. With thread
pools, the main thread waits for submitted tasks to complete rather than waiting for
individual worker threads to finish. The thread pool implementation in Listing 3.8 does
not support waiting for tasks to complete or retrieving return values. To enable this
functionality, one can use futures to wait for a task to complete and pass the resulting
value to the waiting thread.

The class template std::packaged task from the <future> header provides a means
to associate a std::future with a task. An instance of the std::packaged task wraps
a callable target and allows it to be executed asynchronously. The return value is stored
in a shared state that can be accessed through std::packaged objects. Listing 3.8 shows
an example of using std::packaged task with std::future.

1 int add(int a, int b) {

2 return a + b;

3 }

4 int main() {

5 std:: packaged_task <int(int , int)> task(add);

6 std::future <int > future = task.get_future ();

40 Chapter 3. Parallelizing Algorithms with Multithreading

7 std:: thread t(std::move(task), 1, 1);

8 int result = future.get();

9 t.join();

10 return 0;

11 }

Listing 3.8: An example of using std::packaged task to execute a function
asynchronously and retrieve the result using std::future.

Instances of the std::packaged task are only movable and not copyable. If we want
to use std::packaged task in a thread pool queue, we cannot use std::function to
hold queue elements because std::function requires that the stored functions are copy-
constructible. Hence, we need to use a custom function wrapper that handles move-only
types. Listing 3.9 shows an example of such a wrapper [Wil19].

1 #include <future >

2 #include <memory >

3 #include <functional >

4

5 class FunctionWrapper {

6 struct implBase {

7 virtual void call() = 0;

8 virtual ~implBase () {}

9 };

10 std:: unique_ptr <implBase > impl;

11 template <typename F>

12 struct implType : implBase {

13 F f;

14 implType(F&& fParam) : f(std::move(fParam)) {}

15 void call() {f();}

16 };

17 public:

18 template <typename F>

19 FunctionWrapper(F&& f):

20 impl(new implType <F>(std::move(f))) {}

21

22 void call() {impl ->call();}

23

24 FunctionWrapper(FunctionWrapper && other):

25 impl(std::move(other.impl)) {}

26

27 FunctionWrapper& operator =(FunctionWrapper && other) {

28 impl = std::move(other.impl);

29 return *this;

30 }

31 FunctionWrapper(const FunctionWrapper &) = delete;

32 FunctionWrapper(FunctionWrapper &) = delete;

33 FunctionWrapper& operator = (const FunctionWrapper &) = delete;

34 };

3.11. Thread Pool Implementation 41

Listing 3.9: An example of a wrapper for movable-only callable objects.

Listing 3.10 presents a modified version of the basic thread pool in Listing 3.8. This
modified version waits for tasks to complete and passes the return values from the tasks
to the waiting thread.

1 class ThreadPool {

2 std:: atomic_bool done;

3 ThreadSafeQueue <FunctionWrapper > workQueue;

4 std::vector <std::thread > threads;

5 JoinThreads joiner;

6

7 void workerThread () {

8 while (!done) {

9 FunctionWrapper task;

10 if (workQueue.tryPop(task)) {

11 task();

12 }

13 else {

14 std:: this_thread :: yield();

15 }

16 }

17 }

18 public:

19 ThreadPool () : done(false), joiner(threads) {

20 unsigned const threadCount = std:: thread ::

hardware_concurrency ();

21 try {

22 for (unsigned i = 0; i < threadCount; ++i) {

23 threads.push_back(

24 std:: thread (& ThreadPool :: workerThread , this));

25 }

26 }

27 catch (...) {

28 done = true;

29 throw;

30 }

31 }

32 ~ThreadPool () {

33 done = true;

34 }

35 template <typename FunctionType >

36 std::future <typename std::result_of <FunctionType () >::type >

37 submitTask(FunctionType f) {

38 typedef typename std::result_of <FunctionType () >::type

resultType;

39

42 Chapter 3. Parallelizing Algorithms with Multithreading

40 std:: packaged_task <resultType ()> task(std::move(f));

41 std::future <resultType > result(task.get_future ());

42 workQueue.push(FunctionWrapper(std::move(task)));

43 return result;

44 }

45 };

Listing 3.10: A thread pool with waitable tasks.

The submitTask() function has been modified so that it returns a std::future to
hold the return value of the task and enable the caller to wait for the task to com-
plete. The task is wrapped in an instance of the std::packaged task and the future
is obtained before the task is added to the queue. The queue elements are of type
FunctionWrapper presented in Listing 3.9 instead of std::function because the in-
stances of the std::packaged task are not copyable.

3.11.5 A Separate Queue for Every Thread

If a thread pool has only one queue for tasks, such as the thread pool in Listing 3.10,
then the threads that submit the tasks to the queue and the threads that pop off the
tasks from the queue and run them access and modify the same data structure. This will
create contention on the queue and cache ping-pong. To avoid this, we create a separate
queue per thread and one global queue. Each worker thread of the pool adds new tasks
to its own queue and takes off tasks from its own queue. A worker thread only removes
tasks from the global queue if its own queue is empty. Threads that do not belong to the
pool add tasks to the global queue. An implementation of such a thread pool is shown
in Listing 3.11.

1 class ThreadPool {

2 std:: atomic_bool done;

3 ThreadSafeQueue <FunctionWrapper > poolQueue;

4 typedef std::queue <FunctionWrapper > localQueueType;

5 static thread_local std:: unique_ptr <localQueueType > localQueue;

6 std::vector <std::thread > threads;

7 JoinThreads joiner;

8

9 void workerThread () {

10 localQueue.reset(new localQueueType);

11 while (!done) {

12 runPendingTask ();

13 }

14 }

15 public:

16 ThreadPool () : done(false), joiner(threads) {

17 unsigned const threadCount = std:: thread ::

hardware_concurrency ();

18 try {

19 for (unsigned i = 0; i < threadCount; ++i) {

3.11. Thread Pool Implementation 43

20 threads.push_back(

21 std:: thread (& ThreadPool :: workerThread , this));

22 }

23 }

24 catch (...) {

25 done = true;

26 throw;

27 }

28 }

29 ~ThreadPool () {

30 done = true;

31 }

32 template <typename FunctionType >

33 std::future <typename std::result_of <FunctionType () >::type >

34 submitTask(FunctionType f) {

35 typedef typename std::result_of <FunctionType () >::type

resultType;

36

37 std:: packaged_task <resultType ()> task(std::move(f));

38 std::future <resultType > result(task.get_future ());

39 if(localQueue) {

40 localQueue ->push(std::move(task));

41 } else {

42 poolQueue.push(std::move(task));

43 }

44 return result;

45 }

46 void runPendingTask () {

47 FunctionWrapper task;

48 if(localQueue && !localQueue ->empty()) {

49 task = std::move(localQueue ->front());

50 localQueue ->pop();

51 task();

52 } else if(poolQueue.tryPop(task)) {

53 task();

54 } else {

55 std:: this_thread :: yield();

56 }

57 }

58 };

59

60 thread_local std:: unique_ptr <ThreadPool :: localQueueType >

ThreadPool :: localQueue = nullptr;

Listing 3.11: A thread pool with local queues for every pool thread and one global queue.

Although the thread pool presented in Listing 3.11 minimizes contention, it lacks a
system for efficient load balancing among threads. This can lead to a scenario where one

44 Chapter 3. Parallelizing Algorithms with Multithreading

thread is overwhelmed with tasks while another remains idle. To achieve proper load bal-
ancing, a work-stealing algorithm can be implemented, allowing threads to dynamically
redistribute tasks by taking work from each other.

3.11.6 Work Stealing Using a Double-Ended Queue

Work stealing is an efficient way of load balancing and dynamic distribution of work in
a thread pool. To enable this technique, each worker thread maintains its own double-
ended queue (deque) of tasks. Worker threads push tasks to the front and pop tasks from
the front of their deque. When a thread runs out of tasks in its own deque, instead of
becoming idle, it tries to take tasks from the back of the deques of other threads. This
means that the deque works as a LIFO stack for the thread it belongs to, where the
most recently added task is the first to be executed. This LIFO behavior can enhance
performance due to cache locality since the data associated with the most recently pushed
task is more likely to remain in the cache.

To allow threads to take tasks from each other, their deque must be accessible to each
other, and the data in the deque must be protected with a mechanism such as a mutex.
Listing 3.12 shows an implementation of a thread-safe deque suitable for work stealing.

1 class WorkStealingQueue {

2 private:

3 typedef FunctionWrapper dataType;

4 std::deque <dataType > theQueue;

5 mutable std:: mutex theMutex;

6 public:

7 WorkStealingQueue () {}

8 WorkStealingQueue(const WorkStealingQueue& other) = delete;

9 WorkStealingQueue& operator =(const WorkStealingQueue& other) =

delete;

10 void push(dataType data) {

11 std:: lock_guard <std::mutex > lock(theMutex);

12 theQueue.push_front(std::move(data));

13 }

14 bool empty() const {

15 std:: lock_guard <std::mutex > lock(theMutex);

16 return theQueue.empty();

17 }

18 bool tryPop(dataType& result) {

19 std:: lock_guard <std::mutex > lock(theMutex);

20 if(theQueue.empty ()) {

21 return false;

22 }

23 result = std::move(theQueue.front());

24 theQueue.pop_front ();

25 return true;

26 }

27 bool trySteal(dataType& result) {

3.11. Thread Pool Implementation 45

28 std:: lock_guard <std::mutex > lock(theMutex);

29 if(theQueue.empty ()) {

30 return false;

31 }

32 result = std::move(theQueue.back());

33 theQueue.pop_back ();

34 return true;

35 }

36 };

Listing 3.12: An implementation of a thread-safe deque.

3.11.7 Thread Pool With Work Stealing Implementation

Listing 3.13 shows an implementation of a thread pool that uses work stealing mechanism
for load balancing. This thread pool uses thread-safe deques from Listing 3.12.

1 class ThreadPool {

2 typedef FunctionWrapper taskType;

3 std:: atomic_bool done;

4 ThreadSafeQueue <taskType > poolQueue;

5 std::vector <std:: unique_ptr <WorkStealingQueue >> queues;

6 std::vector <std::thread > threads;

7 JoinThreads joiner;

8

9 static thread_local WorkStealingQueue* localWorkQueue;

10 static thread_local unsigned myIndex;

11

12 void workerThread(unsigned myIndex_) {

13 myIndex = myIndex_;

14 localWorkQueue = queues[myIndex].get();

15 while (!done) {

16 runPendingTask ();

17 }

18 }

19

20 bool popTaskFromLocalQueue(taskType& task) {

21 return localWorkQueue && localWorkQueue ->tryPop(task);

22 }

23

24 bool popTaskFromPoolQueue(taskType& task) {

25 return poolQueue.tryPop(task);

26 }

27

28 bool popTaskFromOtherThreadQueue(taskType& task) {

29 for (unsigned i = 0; i < queues.size(); ++i) {

30 unsigned const index = (myIndex + i + 1) % queues.size();

31 if (queues[index]->trySteal(task)) {

46 Chapter 3. Parallelizing Algorithms with Multithreading

32 return true;

33 }

34 }

35 return false;

36 }

37

38 public:

39 ThreadPool ():

40 joiner(threads), done(false) {

41 unsigned const threadCount = std:: thread ::

hardware_concurrency ();

42

43 try {

44 for (unsigned i = 0; i < threadCount; ++i) {

45 queues.push_back(std:: unique_ptr <WorkStealingQueue >(

46 new WorkStealingQueue));

47 }

48 for (unsigned i = 0; i < threadCount; ++i) {

49 threads.push_back(

50 std:: thread (& ThreadPool :: workerThread , this , i));

51 }

52 } catch (...) {

53 done = true;

54 throw;

55 }

56 }

57

58 ~ThreadPool () {

59 done = true;

60 }

61

62 template <typename FunctionType >

63 std::future <typename std::result_of <FunctionType () >::type >

submitTask(FunctionType f) {

64 typedef typename std::result_of <FunctionType () >::type

resultType;

65 std:: packaged_task <resultType ()> task(f);

66 std::future <resultType > result(task.get_future ());

67 if (localWorkQueue) {

68 localWorkQueue ->push(std::move(task));

69 } else {

70 poolQueue.push(std::move(task));

71 }

72 return result;

73 }

74

75 void runPendingTask () {

3.12. Multithreaded Implementation of Karatsuba Algorithm 47

76 taskType task;

77 if (popTaskFromLocalQueue(task) ||

78 popTaskFromPoolQueue(task) ||

79 popTaskFromOtherThreadQueue(task)) {

80 task();

81 } else {

82 std:: this_thread :: yield();

83 }

84 }

85 };

86

87 thread_local WorkStealingQueue* ThreadPool :: localWorkQueue =

nullptr;

88 thread_local unsigned ThreadPool :: myIndex = 0;

Listing 3.13: A thread pool implementation with work stealing mechanism for load
balancing.

3.12 Multithreaded Implementation of Karatsuba Al-

gorithm

The Karatsuba method for multiplying univariate polynomials, explained in section 2.1,
is a recursive divide-and-conquer algorithm that can be parallelized using the fork-join
model. In this section, we present how we can parallelize the Karatsuba algorithm
implemented in Listing 2.5 using C++ multithreading and the created thread pool in
Listing 3.13.

We note that other ways of parallelizing Karatsuba algorithm in the fork-join model
have been reported in the literature. For instance, in [CMPS10], the authors report on
a parallel and in-place versions of Karatsuba and Toom-Cook algorithms for multiplying
univariate polynomials. In the case of Karatsuba, this is done by slightly increasing the
span from O(n) to O(n log(n)) while reducing the space usage from O(nlog2(3)) to O(n).
In the case of Toom-Cook, this is done without increasing the span, while reducing the
space usage from O(nlog3(5)) to O(n).

Listing 3.14 shows a multithreaded implementation of the Karatsuba algorithm. A
thread pool instance is created in the caller function and passed by reference to the
recursive divide-and-conquer DnCMultiply() function, which calls itself three times.

1

2 void DnCMultiply(int indSeriesSize , mpq_t *f, mpq_t *g, mpq_t *

product , ThreadPool &pool) {

3 // if indSeriesSize <= Threshold , we don’t apply DnCMultiply ,

4 // we perform ordinary multiplication

5 if (indSeriesSize <= DnCThreshold) {

6 ordinaryMultiplication(indSeriesSize , f, g, product);

7 } else {

8 mpq_t *fLowStar = f;

48 Chapter 3. Parallelizing Algorithms with Multithreading

9 mpq_t *gLowStar = g;

10 mpq_t *fUpStar = f + indSeriesSize / 2;

11 mpq_t *gUpStar = g + indSeriesSize / 2;

12 mpq_t *fLowPlusUp = new mpq_t[indSeriesSize / 2];

13 mpq_t *gLowPlusUp = new mpq_t[indSeriesSize / 2];

14 for (int i = 0; i < indSeriesSize / 2; ++i) {

15 mpq_init(fLowPlusUp[i]);

16 mpq_init(gLowPlusUp[i]);

17

18 mpq_add(fLowPlusUp[i], f[i], f[indSeriesSize / 2 + i]);

19 mpq_add(gLowPlusUp[i], g[i], g[indSeriesSize / 2 + i]);

20 }

21 mpq_t *lowArray = new mpq_t[indSeriesSize - 1];

22 mpq_t *midArray = new mpq_t[indSeriesSize - 1];

23 mpq_t *highArray = new mpq_t[indSeriesSize - 1];

24 for (int i = 0; i < indSeriesSize - 1; ++i) {

25 mpq_init(lowArray[i]);

26 mpq_init(midArray[i]);

27 mpq_init(highArray[i]);

28 }

29

30 // Parallel execution

31 std::future <void > lowFuture = pool.submitTask ([&] {

32 DAC(indSeriesSize / 2, fLowStar , gLowStar , lowArray , pool ,

depth + 1);

33 });

34 std::future <void > highFuture = pool.submitTask ([&] {

35 DAC(indSeriesSize / 2, fUpStar , gUpStar , highArray , pool ,

depth + 1);

36 });

37 std::future <void > midFuture = pool.submitTask ([&] {

38 DAC(indSeriesSize / 2, fLowPlusUp , gLowPlusUp , midArray ,

pool , depth + 1);

39 });

40

41 while ((lowFuture.wait_for(std:: chrono :: seconds (0)) ==

42 std:: future_status :: timeout) ||

43 (highFuture.wait_for(std:: chrono :: seconds (0)) ==

44 std:: future_status :: timeout) ||

45 (midFuture.wait_for(std:: chrono :: seconds (0)) ==

46 std:: future_status :: timeout)) {

47 pool.runPendingTask ();

48 }

49

50 // Wait for tasks to complete

51 lowFuture.get();

52 highFuture.get();

3.13. Multithreaded Implementation of Inverting a Lower Triangular Matrix 49

53 midFuture.get();

54

55 for (int i = 0; i < indSeriesSize - 1; ++i) {

56 mpq_sub(midArray[i], midArray[i], lowArray[i]);

57 mpq_sub(midArray[i], midArray[i], highArray[i]);

58 }

59 // assemble product array from low , high , mid - low - high

60 for (int i = 0; i < indSeriesSize - 1; ++i)

61 mpq_add(product[i], product[i], lowArray[i]);

62 for (int i = 0; i < indSeriesSize - 1; ++i)

63 mpq_add(product[indSeriesSize / 2 + i],

64 product[indSeriesSize / 2 + i], midArray[i]);

65 for (int i = 0; i < indSeriesSize - 1; ++i)

66 mpq_add(product[indSeriesSize + i],

67 product[indSeriesSize + i], highArray[i]);

68

69 // memory deallocation

70 for (int i = 0; i < indSeriesSize / 2; ++i) {

71 mpq_clear(fLowPlusUp[i]);

72 mpq_clear(gLowPlusUp[i]);

73 }

74 for (int i = 0; i < indSeriesSize - 1; ++i) {

75 mpq_clear(lowArray[i]);

76 mpq_clear(midArray[i]);

77 mpq_clear(highArray[i]);

78 }

79 delete [] fLowPlusUp;

80 fLowPlusUp = nullptr;

81 delete [] gLowPlusUp;

82 gLowPlusUp = nullptr;

83 delete [] lowArray;

84 lowArray = nullptr;

85 delete [] midArray;

86 midArray = nullptr;

87 delete [] highArray;

88 highArray = nullptr;

89 }

90 }

Listing 3.14: Multithreaded implementation of the Karatsuba polynomial multiplication.

3.13 Multithreaded Implementation of Inverting a

Lower Triangular Matrix

Another recursive divide-and-conquer problem encountered in the multiplication of power
series, which can be parallelized using the fork-join model, is the inversion of a lower

50 Chapter 3. Parallelizing Algorithms with Multithreading

triangular matrix.
In Section 5.1, we introduce an evaluation-interpolation strategy for multiplying power

series. This strategy requires computing the interpolation matrix (Minterp), which is the
inverse of the evaluation matrix (Meval). We do the inversion in the following steps. First,
we perform LU factorization on Meval to decompose it into a lower triangular matrix L
and an upper triangular matrix U as shown in Equation 3.6. Then, we transpose U
to make it a lower triangular matrix and apply our recursive divide-and-conquer matrix
inversion function to L and UT . Finally, we use Equation 3.7 to obtain Minterp.

Meval = L× U (3.6)

Minterp =
(
(UT)−1

)T × L−1 (3.7)

Now, we describe the method to invert a lower triangular matrix. If A is an n×n lower
triangular matrix with all non-zero diagonal elements, it is invertible. Assuming that n
is a power of 2, computing the inverse A−1 of A can be done using a divide-and-conquer
strategy as follows. Let A be partitioned into n/2× n/2 blocks as follows:

A =

[
A1 0
A2 A3

]
. (3.8)

Then, the matrix A−1 is given by:

A−1 =

[
A−1

1 0
−A−1

3 A2A
−1
1 A−1

3

]
. (3.9)

Algorithm 6 shows the process of computing A−1. This is a recursive divide-and-
conquer algorithm with two independent inner calls that can be parallelized using the
fork-join model.

Listing 1 in the Appendix shows a multithreaded implementation of inverting a lower
triangular matrix described in Algorithm 6.

3.14 Performance Analysis of Multithreading

In this section, we evaluate our multithreaded implementations of the static Karatsuba
and relaxed multiplication methods using the developed thread pool with a work-stealing
scheduler in Subsection 3.11.7 (see Listing 3.14) and compare the performance results
with the serial implementation (see Listing 2.5) and multithreading with Cilk (see Listing
3.15). These tests were run on a system with the specifications listed in Table 2.2. It
can be observed that for large values of the product precision, the speedup is around 3.

3.14.1 Parallelization with Cilk

Cilk, originally developed at MIT, is a language extension to the C and C++ program-
ming languages that enables multithreaded parallel computing by adding simple con-
structs. The cilk spawn keyword preceding a function call signals that the function can

3.14. Performance Analysis of Multithreading 51

Algorithm 6 Computing A−1 Using the Fork-Join Model

Input: Lower Triangular Matrix A of size n× n, Threshold B.
Output: Matrix A−1.
1: function MatrixInverse(A, n)
2: if n > B then
3: Partition A into A1 (top-left), A2 (bottom-left), and A3 (bottom-right) quar-

ters.
4: Spawn threads.
5: AInvTopLeft = MatrixInverse(A1, n/2)
6: AInvBottomRight = MatrixInverse(A3, n/2)
7: Synchronize threads.
8: AInvBottomLeft = −AInvBottomRight × A2 × AInvTopLeft

9: Assemble A−1 from AInvTopLeft, AInvBottomLeft, AInvBottomRight.
10: else
11: Compute A−1 using forward substitution.
12: end if
13: end function

execute concurrently with the statements that follow it, without mandating the sched-
uler to run them in parallel. The cilk sync statement acts as a synchronization barrier,
ensuring that the program cannot continue until all previously spawned threads have
completed. The runtime environment uses a work-stealing strategy to distribute the
tasks among processors [BJK+95b].

To parallelize the implementation of the static Karatsuba method using Cilk, we only
need to change Lines 33-35 in Listing 2.5, as shown in Listing 3.15.

1 cilk_spawn DnCMultiply(arraySize /2, fLowStar , gLowStar ,

lowArray);

2 cilk_spawn DnCMultiply(arraySize /2, fUpStar , gUpStar , highArray

);

3 DnCMultiply(arraySize /2, fLowPlusUp , gLowPlusUp , midArray);

4 cilk_sync;

Listing 3.15: Adding Cilk constructs to parallelize the recursive calls in the Karatsuba
method.

3.14.2 Performance Results of Multithreaded Static Karatsuba
Multiplication Method

In this section, we present the performance results of the multithreaded static Karatsuba
multiplication using the developed thread pool in Subsection 3.11.7 and compare them
with the results of the serial and Cilk parallel executions. These tests were run on a
system with the specifications listed in Table 2.2. The test results are shown in Table 3.1

52 Chapter 3. Parallelizing Algorithms with Multithreading

and Figure 3.10. It can be observed that the parallel execution time is about one-third
of the serial execution time.

Product Serial Parallel Karatsuba Parallel Karatsuba with Developed Thread Pool

Precision Karatsuba with Cilk Developed Thread Pool Speedup

2 7.24e-5 0.0001 0.0001 1.8166
4 8.08e-5 7.44e-5 0.0001 1.6717
8 9.28e-5 7.15e-5 0.0001 1.4927
16 9.13e-5 7.66e-5 0.0001 1.5029
32 0.0002 0.0011 0.0003 1.5298
64 0.0005 0.0009 0.0007 1.3520
128 0.0016 0.0016 0.0014 1.1552
256 0.0048 0.0049 0.0027 1.7779
512 0.0179 0.0087 0.0067 2.6720
1024 0.0468 0.0225 0.0182 2.5698
211 0.1374 0.0600 0.0513 2.6802
212 0.4159 0.1589 0.1537 2.7066
213 1.2632 0.4436 0.4223 2.9920
214 3.8125 1.2809 1.2045 3.1640
215 11.5335 3.7492 3.6231 3.1821
216 34.8514 11.5012 10.6497 3.2736
217 105.8640 36.4011 33.6434 3.1465
218 316.8210 125.5320 110.7680 2.8603

Table 3.1: Execution time (seconds) for the serial and parallel (using Cilk and the devel-
oped thread pool) Karatsuba multiplication methods with a divide-and-conquer threshold
of 16.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·105
0

100

200

300

400

Product precision

E
x
ec
u
ti
on

ti
m
e
(s
)

Serial Karatsuba
Cilk

Developed Thread Pool

Figure 3.10: Execution time (seconds) for the serial and parallel (using Cilk and the
developed thread pool) Karatsuba multiplication methods with a divide-and-conquer
threshold of 16.

3.14. Performance Analysis of Multithreading 53

The cache performance statistics with no compiler optimization and with the compiler
optimization flag -O3 for one of the cases (product precision = 212) are shown in Table
3.3. Valgrind [NS07, Val24] is a programming framework used to build dynamic analysis
tools for memory debugging, leak detection, and profiling. We use the Cachegrind tool
in Valgrind to measure cache reads and misses.

Abbreviation Meaning

I Instruction cache
I1 Level 1 instruction cache
LLi Last level instruction cache
D Data cache
D1 Level 1 data cache
LLd Last level data cache
LL Last level cache (instruction and data)

Table 3.2: Cachegrind abbreviations and their meanings.

Cache Utilization Metrics Without Optimization With Optimization (-O3)

I refs 4,233,333,251 4,081,865,658
I1 misses 1,824,934 4,284
LLi misses 5,417 3,365
I1 miss rate 0.04% 0.00%
LLi miss rate 0.00% 0.00%
D refs 1,652,343,301 (1,035,349,659 rd + 616,993,642 wr) 1,568,869,497 (975,983,709 rd + 592,885,788 wr)
D1 misses 6,741,114 (5,523,511 rd + 1,217,603 wr) 6,661,397 (5,526,429 rd + 1,134,968 wr)
LLd misses 4,472,521 (3,276,345 rd + 1,196,176 wr) 4,406,618 (3,294,083 rd + 1,112,535 wr)
D1 miss rate 0.4% (0.5% + 0.2%) 0.4% (0.6% + 0.2%)
LLd miss rate 0.3% (0.3% + 0.2%) 0.3% (0.3% + 0.2%)
LL refs 8,566,048 (7,348,445 rd + 1,217,603 wr) 6,665,681 (5,530,713 rd + 1,134,968 wr)
LL misses 4,477,938 (3,281,762 rd + 1,196,176 wr) 4,409,983 (3,297,448 rd + 1,112,535 wr)
LL miss rate 0.1% (0.1% + 0.2%) 0.1% (0.1% + 0.2%)

Table 3.3: Memory access statistics for the case of product precision = 212 in Table 3.1
using the developed thread pool, with and without compiler optimization (-O3).

3.14.3 Performance Results of Multithreaded Relaxed Multi-
plication Method

In this section, we present the performance results of the multithreaded relaxed multi-
plication using the developed thread pool in Subsection 3.11.7 and compare them with
the results of the serial and Cilk parallel executions. These tests were run on a system
with the specifications listed in Table 2.2. The test results are shown in Table 3.4 and
Figure 3.11.

54 Chapter 3. Parallelizing Algorithms with Multithreading

Product Serial Parallel Relaxed Parallel Relaxed with Developed Thread Pool

Precision Relaxed with Cilk Developed Thread Pool Speedup

2 0.0001 0.0007 0.0008 0.125
4 0.0001 0.0001 0.0001 1.000
8 0.0001 0.0001 0.0001 1.000
16 0.0001 0.0001 0.0001 1.000
32 0.0002 0.0003 0.0006 0.333
64 0.0006 0.0007 0.0011 0.545
128 0.0017 0.0011 0.0013 1.308
256 0.0047 0.0027 0.0044 1.068
512 0.0131 0.0069 0.0054 2.426
1024 0.0319 0.0191 0.0155 2.058
211 0.0910 0.0493 0.0374 2.433
212 0.2736 0.1381 0.0985 2.777
213 0.8177 0.3981 0.2937 2.784
214 2.4597 1.1558 0.8202 2.999
215 7.4391 3.4227 2.3974 3.102
216 22.4544 10.4685 7.1766 3.129
217 68.3184 33.5267 21.9230 3.116
218 202.588 116.4900 74.9096 2.705

Table 3.4: Execution time (seconds) of the serial and parallel (using Cilk and the devel-
oped thread pool) relaxed multiplication methods.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·105
0

100

200

300

400

Product Precision

E
x
ec
u
ti
on

T
im

e
(s
)

Serial Relaxed
Cilk

Developed Thread Pool

Figure 3.11: Execution time (seconds) of the serial and parallel (using Cilk and the
developed thread pool) relaxed multiplication methods across varying product precision.

Chapter 4

Multivariate Power Series
Multiplication

Section 4.1 is a review of the basic notions on multivariate power series. For more details,
see [BKM20, ABK+20] and the references therein.

Since multiplying multivariate power series requires multiplying polynomials, we re-
view in Section 4.2 some useful constructions which are used to reduce computational
costs in polynomial multiplication.

In Section 4.3, we discuss various schemes for computed truncated products of mul-
tivariate power series. These schemes are based on the distributivity of multiplication
over addition, and they are related in spirit to multi-way Karatsuba multiplication. We
consider two truncations: w.r.t. total degree and w.r.t partial degree. In Chapter 5 we
shall consider another scheme based on evaluation-interpolation.

Section 4.3.5 concludes this chapter with experimental results and observations.

4.1 Multivariate Power Series

Let K be a field. We assume that K is either of characteristic zero, or has a characteristic
which is “large enough” to provide interpolation points, when needed, see Section 5.3.
We denote by K[[X1, . . . , Xn]] the ring of formal power series with coefficients in K and
with ordered variables X1 < · · · < Xn. For f ∈ K[[X1, . . . , Xn]], we write

f =
∑

e∈Nn
aeX

e,

where ae ∈ K, Xe = Xe1
1 · · ·Xen

n , e = (e1, . . . , en) ∈ Nn, and |e| = e1 + · · ·+ en.
Let k be a non-negative integer. The homogeneous part and polynomial part of f in

degree k are denoted f(k) and f (k), and are defined by

f(k) =
∑

|e|=k
aeX

e and f (k) =
∑

i≤k
f(i).

The order of f , denoted ord(f), is defined as min{i | f(i) ̸= 0}, if f ̸= 0, and as ∞
otherwise.

55

56 Chapter 4. Multivariate Power Series Multiplication

Recall several properties regarding power series. First, K[[X1, . . . , Xn]] is an integral
domain. Second, the set M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal
ideal of K[[X1, . . . , Xn]]. Third, for all k ∈ N, we have Mk = {f ∈ K[[X1, . . . , Xn]] |
ord(f) ≥ k}. Note that for n = 0 we have M = ⟨0⟩. Further, note that f(k) ∈ Mk\Mk+1

and f(0) ∈ K. Fourth, a unit u ∈ K[[X1, . . . , Xn]] has ord(u) = 0 or, equivalently, u ̸∈ M.
Let f, g, h, p ∈ K[[X1, . . . , Xn]]. The sum and difference h = f ± g is given by∑

k∈N (f(k) ± g(k)). The product p = f g is given by
∑

k∈N
(
Σi+j=k f(i)g(j)

)
. Notice that

the these formulas naturally suggest a lazy evaluation scheme, where the result of an
arithmetic operation can be incrementally computed for increasing precision. A power
series f is said to be known to precision k ∈ N, when f(i) is known for all 0 ≤ i ≤ k.

4.2 Algorithms for Multiplying Multivariate Polyno-

mials

We review in this section two basic schemes for multiplying dense multivariate poly-
nomials. The first one, Multi-way Karatsuba, reduces the cost by taking advantage of
the distributivity of multiplication over addition. It is suitable for relatively small input
polynomials. The second one, multi-dimensional FFTs, offers additional advantages in
terms of data locality and should be considered for those large problems not fitting in L3
cache.

4.2.1 Multi-way Karatsuba

Let R be a polynomial ring over the field K and n be a positive integer. Let A0, A1, . . .,
An, B0, B1, . . . , Bn be arbitrary elements of R, and let X1, . . . , Xn be monomials of R.
We define:

A := A0 + A1X1 + · · ·+ AnXn, and B := B0 +B1X1 + · · ·+BnXn. (4.1)

We have:

AB = A0B0 +
∑i=n

i=1AiBiX
2
i +

∑
1≤i<j≤n(AiBj + AJBi)XiXj. (4.2)

This can be re-arranged to:

= A0B0 +
∑i=n

i=1AiBiX
2
i +

∑
1≤i<j≤n ((Ai + Aj)(Bi +Bj)− AiBi − AjBj)XiXj.

(4.3)
Equation (4.3) can be seen as a generalization of Karatsuba’s trick for multiplying big in-
tegers [KO63] and univariate polynomials. Assume that the polynomials A0, A1, . . . , An,
B0, B1, . . . , Bn are dense of total degree d. Computing AB using Equation (4.2) leads to
compute (n+ 1)2 products of two polynomials taken from A0, A1, . . . , An, B0, B1, . . . , Bn.
Using Equation (4.3) reduces this number of products to 1

2
n2+ 1

2
n+1 thus realizing of sav-

ing of 1
2
n2− 3

2
n, thus roughly (and only) dividing by 2 the number of products. Moreover,

this reduction has a cost which is 3
2
n2 + 3

2
n+ 3 sums of two polynomials.

4.3. Multiplication Schemes for Multivariate Power Series 57

If X1, . . . , Xn are algebraically independent over K, then we beleive that one cannot
reduce the number of products further. However, if X1, . . . , Xn are powers of a given
variable, we can realize more savings, by considering the family of algorithms known as
Toom-Cook algorithms [Too63, Coo66, BZ07, Zan09]

4.2.2 Multiplicaiton Based on Multi-dimension FFTs

We recall a result of [MY22] on the multiplication of dense multivariate polynomial based
on multi-dimensional FFT. For algorithm details, we refer to the paper [MY22].

We call TFT time any function ℓ 7−→ F(ℓ)
� giving an upper bound for the number of operations in K necessary for computing
either the TFT or the inverse TFT of a vector of size ℓ and using at most 2⌈log2(ℓ)⌉

elements of K for storage, and
� satisfying the following inequality for any finite sequence z1, . . . , zm ≥ 2 of positive
integers:

m∑
i=1

(z1 · · · zi−1zi+1 · · · zm)F(zi) ≤ F(z1 · · · zm). (4.4)

Let a, b ∈ K[X1, . . . , Xn] be multivariate polynomials. Let i be an integer satisfying
1 ≤ i ≤ n. We denote by di (resp. d′i) the degree in Xi of a (resp. b). We assume the
existence in K of a primitive si-th root of unity ωi, where si is the smallest power of 2
satisfying si > di + d′i. We write s := s1 · · · sn. Then, Proposition 6 of [MY22] states
that, in the fork-join model, the product ab can be computed in time

W (n, s) ≤ 3F(s) + s. (4.5)

Assume that a and b are the polynomial parts f (k) and g(k
′), where k, k′ are two positive

integers. Then, for 1 ≤ i ≤ n, we have

di = k and d′i = k′. (4.6)

We have:
si = s(k, k′) where s(k, k′) := 2⌈log2(k+k′+1)⌉ (4.7)

Therefore, the product of f (k) and g(k
′) can be computed in time

T (n, k, k′) ≤ 3F(sn(k, k′)) + sn(k, k′). (4.8)

4.3 Multiplication Schemes for Multivariate Power

Series

Let f, g ∈ K[[X1, . . . , Xn]]. Let k be a non-negative integer. Our goal is to compute
(fg)(2k)

1. using either a divide-and-conquer approach (based on the ideas of Karatsuba or
Toom-Cook algorithms) or a modular method (based on an evaluation-interpolation
method, if possible FFT-based), and

58 Chapter 4. Multivariate Power Series Multiplication

2. recycling as much as possible the computations that were performed to obtain
(fg)(k).

In Section 4.3.1, we make a few observations on the polynomial part of the prod-
uct of two power series. In Section 4.3.2, we discuss a first scheme computing (fg)(2k)

from f (2k), g(2k) and f (k)g(k). While this scheme seems theoretically attractive, its is
of limited interest in practice, in particular when polynomial multiplication is done via
multi-dimensional FFT. To overcome this difficulty in Section 4.3.4, we combine trunca-
tion in total degree and truncation in partial degrees. We discuss this latter truncation
in Section 4.3.3.

4.3.1 The Polynomial Part of the Product of Two Power Series

Recall that f (k) and g(k) denote the polynomial parts of f and g in degree k. Thus, the
polynomial f (k) (resp. g(k)) consists of all the terms in f (resp. g) of (total) degree equal
or less than k. We denote by T (n, k) the maximum number of those terms and we have:

T (n, k) =
∑
0≤i≤k

(
n+ i− 1

i

)
=

(
n+ k

k

)
. (4.9)

Considering the product fg of the formal power series f and g, the following clearly
holds

f (k)g(k) ≡ (fg)(k) mod Mk+1. (4.10)

Indeed, we have:
(fg)(k) = Σℓ=k

ℓ=0 (fg)(ℓ)
= Σℓ=k

ℓ=0

(
Σi+j=ℓ f(i)g(j)

)
= Σi+j≤k f(i)g(j)
≡ Σi+j≤2k f(i)g(j) mod Mk+1

≡ f (k)g(k) mod Mk+1

It follows from Equation (4.10) that (fg)(k) is the normal form of f (k)g(k) w.r.t. any
Gröbner basis of Mk+1 for any graded term order.

In order to better exploit the theory of Gröbner bases in the sequel of this work, we
introduce some notations.

Notation 1. Let I ⊆ K[X1, . . . , Xn] be an ideal and let τ an admissible monomial or-
dering on K[[X1, . . . , Xn]]. Let G = {G1, . . . , Gm} be the reduced Gröbner basis for I
w.r.t. τ . Let A ∈ K[X1, . . . , Xn] be a polynomial. We denote by Rem(A,G) the normal
form of A w.r.t. G and by Quo(A,G,Gi) the quotient of A w.r.t. the generator Gi of G.
Therefore, we have:

A = Rem(A,G) + Quo(A,G,G1)G1 + · · ·+ Quo(A,G,Gm)Gm. (4.11)

Following up on Notation 1, let B ∈ K[X1, . . . , Xn] be a second polynomial. Similarly
to Equation (4.11), we have:

B = Rem(B,G) + Quo(B,G,G1)G1 + · · ·+ Quo(B,G,Gm)Gm. (4.12)

4.3. Multiplication Schemes for Multivariate Power Series 59

Obviously, we have:

Rem(AB,G) ≡ Rem(A,G)Rem(B,G) mod ⟨G⟩. (4.13)

For the purpose of increasing the precision of the polynomial part of the product of two
power series, we are interested in Rem(AB, ⟨G⟩2) where ⟨G⟩ = I is a monomial ideal,
typically Mk′ for some positive integer k′.

Since GiGj ∈ I2 for all 1 ≤ i ≤ j ≤ m, we have:

AB ≡ Rem(A,G)Rem(B,G) +
Rem(A,G) (Σm

i=1Quo(B,G,Gi)Gi) +
Rem(B,G) (Σm

i=1Quo(A,G,Gi)Gi) mod I2.
(4.14)

4.3.2 Computing (fg)(2k) from f (2k), g(2k) and f (k)g(k)

With Equation (4.10), we have:

f (2k)g(2k) ≡ (fg)(2k) mod M2k+1. (4.15)

Let H be the degree-reverse-lexicographic reduced Gröbner basis of Mk+1. With Equa-
tion (4.11), we have:

f (2k) = Rem(f (2k), H) + Σh∈H Quo(f (2k), H, h)h
= f (k) + Σh∈H Quo(f (2k), H, h)h.

(4.16)

Similarly, we have:
g(2k) = g(k) + Σh∈H Quo(g(2k), H, h)h. (4.17)

Since for all h, h′ ∈ H, we have:

hh′ ≡ 0 mod M2k+1 (4.18)

we deduce the following.

Proposition 1. We have:

(fg)(2k) ≡ f (k)g(k) +
f (k)Σh∈H Quo(g(2k), H, h)h +
g(k)Σh∈H Quo(f (2k), H, h)h mod M2k+1.

(4.19)

Proposition 1 provides a way to save on computations w.r.t. directly computing
(fg)(2k) as

Rem((f)(2k)(g)(2k),M2k+1).

One should also note that the decompositions given by Equation (4.16) and Equa-
tion (4.17) are made essentially at no cost since H is a monomial basis.

However, after computing

Σh∈H Quo(g(2k), H, h)h+ g(k)Σh∈H Quo(f (2k), H, h)h (4.20)

60 Chapter 4. Multivariate Power Series Multiplication

one still needs to compute the remainder of that polynomial w.r.t. M2k+1. Therefore,
Proposition 1 does not provide a fully satisfactory solution to the question of computing
(fg)(2k) from f (2k), g(2k), and f (k)g(k), since many computed terms will be discarded.

Moreover, in each of the products of Equation 4.20, one factor has total degree 2k
and the other has degree k. If these two factors are dense, which will often be the case
in the context of power series, and are multiplied a multi-dimensional FFT algorithm,
then their product will be computed as a polynomial of degree

2⌈log2(3k+1)⌉ (4.21)

If k = 2e, the above formula evaluates to 2e+2. Therefore, in this context, the fact that
one factor has degree k brings the same benefits as if it had degree 2k−1, due the padding
done by FFT computations.

In order to make a better use of FFT, one should rather use it for multiplying dense
polynomials of the same total degree k where k is of the form 2e−1 so that their product
has total degree 2e+1 − 2, thus minimizing padding.

4.3.3 The Truncation in Partial Degrees of the Product of Two
Power Series

We denote by f [k] (resp. g[k]) and call the k-th cubic truncation or truncation in partial
degrees of f (resp. g), that is, the sum of all the terms in f (resp. g) where the partial
degree w.r.t. Xi does not exceed k, for all i = 1 · · ·n.

We are curious about the ratio between the number of terms in f (k) and the number
of terms in f [k]. We denote by C(n, k) the maximum number of the terms in f [k]. Clearly,
we have:

C(n, k) = (k + 1)n. (4.22)

For n = 1, we have T (n, k) = k + 1 = C(n, k). For n = 2, we have T (n, k) = (k+2)(k+1)
2

and C(n, k) = (k + 1)2, thus
C(2, k)

T (2, k)
=

1

2

k + 1

k + 2
. (4.23)

For n = 3, we have T (n, k) = (k+3)(k+2)(k+1)
6

and C(n, k) = (k + 1)3, thus

C(2, k)

T (2, k)
=

1

6

(k + 1)2

(k + 3)(k + 2)
. (4.24)

It is easy to check that, asymptotically, the ratio C(n,k)
T (n,k)

is equivalent to 1
(n+1)!

.

Now, we are curious about the relation between f [k], g[k] and (fg)[k]. We denote by
Ck the polynomial ideal ⟨XK

1 , XK
2 , . . . , XK

n ⟩. We note that its generators are a Gröbner
basis (for any term order) of that ideal.

Similarly to Equation (4.10), we have the following identity:

f [k] g[k] ≡ (fg)[k] mod ⟨XK
1 , XK

2 , . . . , XK
n ⟩, (4.25)

4.3. Multiplication Schemes for Multivariate Power Series 61

with K = k+ 1. Indeed, any term of (fg)[k] is necessarily a term of f [k] g[k]. Conversely,
any term of f [k] g[k] with no partial degree exceeding k is also a term of (fg)[k]. Therefore,
(fg)[k] is the normal form of f [k]g[k] w.r.t. any Gröbner basis of Mk+1 for a graded term
order.

4.3.4 Computing (fg)(2k) from f [k]g[k]

Using the same notations as in the previus sections, we observe that there exist polyno-
mials Qf

1 , . . . , Q
f
n, Q

g
1, . . . , Q

g
n such that we have:

f (2k) = f [k] +Qf
1X

k
1 + · · ·+Qf

nX
k
n and g(2k) = g[k] +Qg

1X
k
1 + · · ·+Qg

nX
k
n, (4.26)

so that none of the Qf
1 , . . . , Q

f
n, Q

g
1, . . . , Q

g
n has a constant term, and each of them has a

total degree of at most k.
It follows from Equation 4.10 that:

Proposition 2. We have:

(fg)(2k) ≡ f [k]g[k] + (Qf
1g +Qg

1f)X
k
1 + · · ·+ (Qf

ng +Qg
nf)X

k
n. mod M2k+1. (4.27)

Proposition 2 shows that (fg)(2k) mod M2k+1 can be computed by computing 2n+1
products (namely f [k]g[k], Qf

1g +Qg
1f , . . . , Q

f
ng +Qg

nf) in partial degrees all eqaul to k,
n shifts (namely the multiplications by Xk

1 , . . . , X
k
n) and 1 truncation (namely modulo

M2k+1). Since the n shifts and the truncation only involve operations on the exponent
vectors, we deduce that Proposition 2 shows that (fg)(2k) mod M2k+1 can be computed
within

(2n+ 1)(3F(sn) + sn) (4.28)

coefficient operations, where s = 2⌈log2(2k+1)⌉.
A graphical illustration for the case of decomposing and multiplying power series

f(X1, X2) and g(X1, X2) using 4.27 (hereafter referred to as the partition method) is
shown in Figure 4.1, where we have:

(fg)(2k) =
[
f [k] + Ck(f)X

k
1 +Dk(f)X

k
2

]
·
[
g[k] + Ck(g)X

k
1 +Dk(g)X

k
2

]
mod M2k+1

= f [k]
(
g[k] + Ck(g)X

k
1 +Dk(g)X

k
2

)
+ g[k]

(
Ck(f)X

k
1 +Dk(f)X

k
2

)
(4.29)

4.3.5 Experimental Results

In this section, we present the performance comparison between the direct and partition
power series multiplication methods with varying numbers of variables and degrees in
both serial and parallel implementations. Notably, the multiplications in the partition
method are independent, making it suitable for parallelization. We parallelize them using
the map pattern in [Bra22]. The tests were conducted on a system with the specifications
listed in Table 4.1.

The execution times for both the serial and parallel implementations of the direct
and partition methods and the partition method speedup for 2, 3, 4, and 5 variables with

62 Chapter 4. Multivariate Power Series Multiplication

X1

X2

f [k]

Dk(f)

Ck(f)

k 2k

k

2k

X1

X2

g[k]

Dk(g)

Ck(g)

k 2k

k

2k

Figure 4.1: A graphical illustration of decomposing f(X1, X2) and g(X1, X2) in the par-
tition method.

Component Specifications

CPU Intel Xeon X5650 @ 2.67GHz
Architecture x86 64
CPU(s) 24
On-line CPU(s) list 0-23
Thread(s) per core 2
Core(s) per socket 6
Socket(s) 2
Stepping 2
Frequency boost Enabled
Hyperthreading Enabled
L1 Data Cache (L1d) 384 KiB (12 instances)
L1 Instruction Cache (L1i) 384 KiB (12 instances)
L2 Cache 3 MiB (12 instances)
L3 Cache 24 MiB (2 instances)

Table 4.1: System Specifications.

varying degrees are shown in Tables 4.2, 4.3, 4.4, and 4.5 and Figures 4.2, 4.3, 4.4, and
4.5. As the number of variables increases, the partition method increasingly outperforms
the direct method.

4.3. Multiplication Schemes for Multivariate Power Series 63

Total Degree Direct Partition Parallel Parallel Partition Method

(k) Method Method Direct Method Partition Method Speedup

2 0.0001 0.0002 0.0023 0.0002 0.9016
4 0.0003 0.0005 0.0025 0.0005 0.9765
8 0.0011 0.0015 0.0047 0.0005 2.8048
16 0.0042 0.0052 0.0068 0.0015 3.4791
32 0.0128 0.0179 0.0139 0.0050 3.5881
64 0.0494 0.0579 0.0298 0.0142 4.0757
128 0.2116 0.2355 0.0815 0.0656 3.5903
256 0.8285 1.0217 0.3018 0.2308 4.4278
512 3.3755 3.9346 0.9162 0.9589 4.1033
1024 14.4911 16.8674 3.6976 4.0522 4.1629
211 61.8196 73.0748 15.6075 16.4796 4.4356
212 273.0004 309.6342 67.2966 71.7569 4.3162

Table 4.2: Performance comparison for 2 variables in seconds. The Parallel Partition
Method is 5 serial multiplications executed in parallel. The Parallel Direct Method is
one parallel multiplication.

Total Degree Direct Partition Parallel Parallel Partition Method

(k) Method Method Direct Method Partition Method Speedup

2 0.0008 0.0009 0.0040 0.0006 1.4761
4 0.0054 0.0050 0.0075 0.0018 2.8185
8 0.0366 0.0328 0.0271 0.0062 5.3004
16 0.2902 0.2292 0.0905 0.0417 5.4897
32 2.4415 1.9020 0.5981 0.3285 5.7904
64 18.5132 17.0732 3.6049 3.0133 5.6647
128 194.3451 129.6254 35.0982 21.7583 5.9590
160 355.3166 259.5845 61.8392 41.6352 6.2358

Table 4.3: Performance comparison for 3 variables in seconds. The Parallel Partition
Method is 7 serial multiplications executed in parallel. The Parallel Direct Method is
one parallel multiplication.

Total Degree Direct Partition Parallel Parallel Partition Method

(k) Method Method Direct Method Partition Method Speedup

2 0.0052 0.0036 0.0073 0.0015 2.4711
4 0.0541 0.0360 0.0284 0.0080 4.5106
8 0.9321 0.4569 0.2197 0.0961 4.7554
16 14.6326 7.3545 2.7641 1.5972 4.6050
32 265.8875 132.6068 37.8152 17.7673 7.4638
40 421.1498 204.8680 70.5869 27.0816 7.5664

Table 4.4: Performance comparison for 4 variables in seconds. The Parallel Partition
Method is 9 serial multiplications executed in parallel. The Parallel Direct Method is
one parallel multiplication.

64 Chapter 4. Multivariate Power Series Multiplication

Total Degree Direct Partition Parallel Parallel Partition Method

(k) Method Method Direct Method Partition Method Speedup

2 0.0465 0.0192 0.0325 0.0047 4.1256
4 1.1803 0.4159 0.2401 0.0871 4.7768
6 9.4207 2.4694 1.6607 0.3709 6.6585
8 45.8923 11.5437 6.9359 1.3823 8.3512
10 148.4728 43.2585 20.4864 5.2195 8.2857
12 336.4207 104.9664 43.8913 12.0742 8.6923

Table 4.5: Performance comparison for 5 variables in seconds. The Parallel Partition
Method is 11 serial multiplications executed in parallel. The Parallel Direct Method is
one parallel multiplication.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

50

100

150

200

250

300

350

Total Degree (k)

E
x
ec
u
ti
on

ti
m
e
(s
)

Performance comparison for 2 variables

Direct Method
Partition Method

Parallel Direct Method
Parallel Partition Method

Figure 4.2: Execution time comparison for 2 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods.

4.3. Multiplication Schemes for Multivariate Power Series 65

0 20 40 60 80 100 120 140 160
0

100

200

300

400

Total Degree (k)

E
x
ec
u
ti
on

ti
m
e
(s
)

Performance comparison for 3 variables

Direct Method
Partition Method

Parallel Direct Method
Parallel Partition Method

Figure 4.3: Execution time comparison for 3 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods.

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

Total Degree (k)

E
x
ec
u
ti
on

ti
m
e
(s
)

Performance comparison for 4 variables

Direct Method
Partition Method

Parallel Direct Method
Parallel Partition Method

Figure 4.4: Execution time comparison for 4 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods.

66 Chapter 4. Multivariate Power Series Multiplication

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

150

200

250

300

350

Total Degree (k)

E
x
ec
u
ti
on

ti
m
e
(s
)

Performance comparison for 5 variables

Direct Method
Partition Method

Parallel Direct Method
Parallel Partition Method

Figure 4.5: Execution time comparison for 5 variables using Direct, Partition, Parallel
Direct, and Parallel Partition methods.

Chapter 5

Modular Multiplication for
Multivariate Power Series

In this chapter, we describe a method for computing the product of two multivariate
power series modulo a monomial ideal. This is a more general problem than the one
discussed in Chapter 4. We follow the deflation technique presented in [Sch05]. We have
implemented the algorithms of that paper in their full generality, that is, for an arbitrary
monomial ideal, whereas the author’s implementation reported in [Sch05] deals only with
univariate power series.

In Section 5.1, we set up the notations. In Section 5.2, we go through an introductory
example. In Section 5.3, we explain how to choose the evaluation points. The evaluation
and interpolation phases are detailed in Sections 5.4 and 5.5. Cost analysis is discussed 5.6
and some experimentation is reported in Section 5.7.

5.1 An Evaluation-Interpolation Strategy

We will be using standard results from the theory of Gröbner bases, for which we refer
to the landmark textbooks [CLO97, CLO05].

Let G = {g1, . . . , gm} be the reduced minimal Gröbner basis of a monomial ideal I of
K[X1, . . . , Xn], w.r.t. some admissible monomial order τ , which refines the partial order
comparing total degrees of monomials. We assume that I is zero-dimensional, thus the
residue class ring K[X1, . . . , Xn]/I is a vector space Q over K of dimension d, where d is
the degree of the ideal I. Moreover, for every i such that 1 ≤ i ≤ n there exists j such
that 1 ≤ j ≤ m and a positive integer δi,j so that we have:

gj = X
δi,j
i .

More generally, we write every polynomial gj ∈ G, for 1 ≤ j ≤ m as:

gj = X
δ1,j
1 · · ·Xδn,j

n . (5.1)

We denote by T the set of the monomials that do not belong to I; those monomials
form a basis of the vector space Q. In practice, the ideal I would often be Mk or

67

68 Chapter 5. Modular Multiplication for Multivariate Power Series

⟨Xk
1 , X

k
2 , . . . , X

k
n⟩ for some positive integer k. Let A,B ∈ K[X1, . . . , Xn]. Our goal is to

compute

C := A ·B mod I (5.2)

For that goal, we can view A and B as elements of Q. There exists a positive integer r
(called the regularity of the K-algebra Q) so that we can decompose A as:

A = A0 + A1 + · · ·+ Ar, (5.3)

where Ai is the homogeneous component of A of degree i, for 0 ≤ i ≤ r. Similarly, we
write B as:

B = B0 +B1 + · · ·+Br, (5.4)

where Bi is the homogeneous component of B of degree i, for 0 ≤ i ≤ r.

5.2 Introductory Example

We first consider an example with n = 1 and I = ⟨X2
1 ⟩. Thus we can write:

A = a1 X1 + a0 and B = b1 X1 + b0 , (5.5)

for some a1, a0, b1, b0 in K. We have T = {1, X1}.
One would like to use an evaluation-interpolation scheme. If I wold be ⟨X1(X1− 1)⟩,

then we could do it by means of the Chinese Remaindering Theorem. To reduce to this
case, we replace I with IZ := ⟨X1(X1 − Z)⟩, where Z is a new variable, which is meant
to be specialized to zero in order to retrieve the ideal I.

Now we evaluate A and B at X1 = 0 and X1 = Z. We build the corresponding
evaluation matrix, by evaluating each of the basis elements of T = {1, X1} at each of the
points of {0, Z}, yielding to:

Meval =

(
1 0
1 Z

)
(5.6)

Next, we compute the coordinates of A and B in the basis given by T :

A =

[
a0
a1

]
and B =

[
a0
a1

]
(5.7)

Hence the values of A and B at the points of PZ = {0, Z} are given by:

Aeval =

[
a0

Za1 + a0

]
and Beval =

[
b0

Zb1 + b0

]
(5.8)

In order to obtain A · B mod IZ , we compute the product of the above vectors, which
produces:

(AB)eval =

[
a0b0

(Za1 + a0) (Zb1 + b0)

]
(5.9)

5.3. Choosing the Evaluation Points 69

Next, we prepare for interpolating AB by computing the interpolation matrix, that is,
the inverse of the evaluation matrix:

Minterp =

[
1 0

− 1
Z

1
Z

]
(5.10)

Computing the matrix-vector product Minterp(AB)eval produces:

AB := a0b0 +

(
−a0b0

Z
+

(Za1 + a0) (Zb1 + b0)

Z

)
x1 . (5.11)

Finally, we evaluate this latter at Z = 0 which yields:

a0b1x1 + a1b0x1 + a0b0 , (5.12)

that is, A ·B mod I.

5.3 Choosing the Evaluation Points

The previous example can be generalized to an algorithmic procedure but one needs to
specify how to choose the set of evaluation points. Let us continue with the univariate
case, considering now the ideal I = ⟨Xd

1 ⟩. Assume that K admits a d-th primitive root
of unity ω. Then, we choose:

IZ = ⟨Xd
1 − Zd⟩ (5.13)

and we have

K[X1]/IZ ≃ Πd−1
i=0 K[X1]/⟨X1 − ωiZ⟩. (5.14)

Now consider the multivariate case. Recall that, since the ideal I is zero-dimensional,
for each 1 ≤ i ≤ n there exists a positive integer δi so that Xδi

i belongs to the Gröbner
basis G. In fact δi is δi,j (defined earlier) if Xδi

i is the polynomial gj.
Now for each 1 ≤ i ≤ n, for each 0 ≤ j < δi choose ai,j ∈ K so that the collection

ai,0, ai,1, . . . , ai,δi consists of pairwise different values of K. If there exists a δi-th primitive
root of unity ωi, then one can choose ai,j = ωj

i . Next, for 1 ≤ i ≤ n, we define the set:

Ωi = {ai,1, ai,2, . . . , ai,δi−1}. (5.15)

Finally we define the sets

VT = {(a1,e1 , a2,e2 , . . . , an,en) | Xe1
1 Xe2

2 · · ·Xen
n ∈ T}, (5.16)

and

PZ = {(a1,e1Z, a2,e2Z, . . . , an,enZ) | Xe1
1 Xe2

2 · · ·Xen
n ∈ T}, (5.17)

where Z is our new variable. We note that the points of VT (resp. PZ) are pairwise
different and the number of those points is equal to the cardinality of T . We note that
every point p of PZ writes v · Z where v is a point of VT .

70 Chapter 5. Modular Multiplication for Multivariate Power Series

5.4 The Evaluation Phase

In order to evaluate the polynomials A and B at every point p of PZ , we use their
homogeneous decompositions given by Equations (5.3) and (5.4). For every point p of
PZ , we clearly have:

A(p) = A0(v) + A1(v)Z + · · ·+ Ar(v)Z
r, (5.18)

and,
B(p) = B0(v) +B1(v)Z + · · ·+Br(v)Z

r, (5.19)

where v is such that p = v · Z. It follows that evaluating A and B at every point of PZ

reduces to evaluating A and B at every point of VT .
Note that the above evaluation at every point of PZ defines a linear map EQ,W from

Q to the vector space W of dimension r + 1 over the field K consisting of the univariate
polynomials over K of degree at most r.

Recall that Q is a vector space over K with T as a basis. We denote by Qi the sub-
vector space of Q generated by Ti, where Ti consists of all terms of T with total degree i.
We denote by di the dimension of Qi over K, that is, the number of elements in Ti. Hence,
Q, and the direct sum Q0 ⊕ · · · ⊕ Qr of the vector spaces Q0, . . . , Qr, are isomorphic.
For 0 ≤ j ≤ r, we order the elements of Ti using the lexicographical order induced by
X1 < · · · < Xn. Then, we concatenate these ordered sets (in the order Q0, . . . , Qr) so as
to order the elements of T .

Correspondingly, we decompose the set VT as:

VT = VT0 ∪ · · · ∪ VTr , (5.20)

where:
VTi

= {(a1,e1 , a2,e2 , . . . , an,en) | Xe1
1 Xe2

2 · · ·Xen
n ∈ Ti}, (5.21)

and we order the elements of VT using the order induced by T .
Similarly, we decompose the set PZ as:

PZ = P
(0)
Z ∪ · · · ∪ P

(r)
Z , (5.22)

where:
P

(i)
Z = {(a1,e1Z, a2,e2Z, . . . , an,enZ) | Xe1

1 Xe2
2 · · ·Xen

n ∈ Ti}, (5.23)

and we order the elements of PZ using the order induced by T .
Next, we form two square matrices of order d that we denote by Meval(T, VT) and

Meval(T, PZ). For 1 ≤ i ≤ d and 1 ≤ j ≤ d, the element ci,j(T, VT) (resp. ci,j(T, PZ)) of
Meval(T, VT) (resp. Meval(T, PZ)) at the intersection of the i-th row and j-th column is
the value of the j-th element of T on the j-th element of VT (resp. PZ). By construction,
we have:

ci,j(T, PZ) = ci,j(T, VT)Z
e, (5.24)

where e is the positive integer defined by:

d0 + · · ·+ de−1 < j ≤ d0 + · · ·+ de. (5.25)

5.5. The Interpolation Phase 71

Consider the diagonal matrix Di of order di where every diagonal entry is equal to Zi.
Then, we define the matrix D as the diagonal matrix whose diagonal elements consist of
the diagonal elements of D1, followed by those of D2, . . . , followed by those of Dr. With
Equation (5.24) we obtain the following result.

Theorem 1. We have:

Meval(T, PZ) = Meval(T, VT) ·D (5.26)

In practice, evaluating A and B at every point p = v ·Z of PZ can be done simply by
1. evaluating their homogeneous components A0, A1, . . . , Ar and B0, B1, . . . , Br at ev-

ery point v of VT ,
2. forming the vector C of (K(Z))d given, for every p = v · Z of PZ , by:

C(p) = A(p)B(p) (5.27)

We stress the fact that the product given by Equation (5.27) should not be expanded.
The reason will be clear in the next section.

5.5 The Interpolation Phase

It follows from Theorem 1 that the matrix of the interpolation map (with the choices of
bases used in Section 5.4) is given by:

Minterp(T, PZ) = D−1 ·Meval(T, VT)
−1. (5.28)

We observe that D−1 is the diagonal matrix whose diagonal elements consist of the
inverses of the diagonal elements of D1, followed by those of D2, . . . , followed by those
of Dr.

Let i be a positive integer such that i ≤ d. We note that the the i-th diagonal element
of the matrix D−1 is Z−e, where e is the positive integer defined by:

d0 + · · ·+ de−1 < i ≤ d0 + · · ·+ de. (5.29)

It follows that for computing the i-th coordinate of C, where C was defined by Equa-
tion (5.2), we proceed as follows:

1. we determine e with Equation (5.29),
2. we compute and return the coefficient of Ze in A(p)B(p), where p is the i-th point

of PZ .
Indeed, the term of degree k in the i-th coefficient of A(p)B(p), for all k < e (resp. e < k)
is necessarily zero (resp. specializes to zero at Z = 0).

5.6 Cost analysis

As explained in [Sch05], the proposed deflation technique runs in Ω(rd). In practice, the
ideal I is often Mk+1 or ⟨Xk+1

1 , Xk+1
2 , . . . , Xk+1

n ⟩ for some non-negative integer k. In

72 Chapter 5. Modular Multiplication for Multivariate Power Series

the former case, the regularity r and the degree d are k + 1 and
(
n+k
k

)
, while they are

nk + n− 1 and (k + 1)n in the latter case.
For the case of the ideal Mk+1, the deflation technique of [Sch05] is not optimal,

essentially due to the factor r in the lower bound Ω(rd). In fact, for that ideal and for the
case of characterisitic zero, an algorithm running in O (d), that is, in time proportional
to d up to log factors, is presented in [LS03].

5.7 Experimentation

In this section we present the experimentation results from executing our evaluation-
interpolation implementation in the BPAS library. The running times for multiplication
of power series with different number of variables (n) and partial degrees (di) are shown
in Table 5.1. Since the matrix inversion step is independent of polynomial coefficients
and is the same for any polynomial with the same number of variables and degrees, its
timing is not taken into account.

n = 2 n = 3

di Time (s) di Time (s)

2 0.0001 2 0.0003
4 0.0010 3 0.0017
6 0.0077 4 0.0091
8 0.0213 5 0.0380
16 0.3622 6 0.1121

Table 5.1: Execution time (s) of the evaluation-interpolation scheme for power series of
different number of variables and partial degrees.

Bibliography

[10.84] Lfp ’84: Proceedings of the 1984 acm symposium on lisp and functional pro-
gramming, New York, NY, USA, Association for Computing Machinery, 1984.

[ABK+20] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc Moreno
Maza, and Erik J. Postma, Multivariate power series in maple, Maple in
Mathematics Education and Research - 4th Maple Conference, MC 2020,
Waterloo, Ontario, Canada, November 2-6, 2020, Revised Selected Papers
(Robert M. Corless, Jürgen Gerhard, and Ilias S. Kotsireas, eds.), Commu-
nications in Computer and Information Science, vol. 1414, Springer, 2020,
pp. 48–66.

[ABK+21] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc Moreno
Maza, and Eric Postma, Multivariate power series in Maple, Proc. of MC
2020, 2021.

[BJK+95a] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou, Cilk: an efficient multithreaded
runtime system, Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (New York, NY, USA),
PPOPP ’95, Association for Computing Machinery, 1995, p. 207–216.

[BJK+95b] , Cilk: an efficient multithreaded runtime system, SIGPLAN Not. 30
(1995), no. 8, 207–216.

[BK78] Richard P Brent and Hsiang T Kung, Fast algorithms for manipulating for-
mal power series, Journal of the ACM (JACM) 25 (1978), no. 4, 581–595.

[BKM20] Alexander Brandt, Mahsa Kazemi, and Marc Moreno Maza, Power series
arithmetic with the BPAS library, Proc. of CASC 2020, LNCS, vol. 12291,
Springer, 2020, pp. 108–128.

[BL99] Robert D. Blumofe and Charles E. Leiserson, Scheduling multithreaded com-
putations by work stealing, J. ACM 46 (1999), no. 5, 720–748.

[BM21] Alexander Brandt and Marc Moreno Maza, On the complexity and par-
allel implementation of hensel’s lemma and weierstrass preparation, Com-
puter Algebra in Scientific Computing - 23rd International Workshop, CASC
2021, Sochi, Russia, September 13-17, 2021, Proceedings (François Boulier,

73

74 BIBLIOGRAPHY

Matthew England, Timur M. Sadykov, and Evgenii V. Vorozhtsov, eds.),
Lecture Notes in Computer Science, vol. 12865, Springer, 2021, pp. 78–99.

[Bor07] Shekhar Borkar, Thousand core chips: A technology perspective, Proceedings
of the 44th Annual Design Automation Conference (DAC), 2007, pp. 746–
749.

[Bra22] Alexander Brandt, The Design and Implementation of a High-Performance
Polynomial System Solver, Phd dissertation, The University of Western On-
tario, 2022, Electronic Thesis and Dissertation Repository. 8733.

[Bre74] Richard P. Brent, The parallel evaluation of general arithmetic expressions,
J. ACM 21 (1974), no. 2, 201–206.

[BS81] F. Warren Burton and M. Ronan Sleep, Executing functional programs on a
virtual tree of processors, Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture (New York, NY, USA),
FPCA ’81, Association for Computing Machinery, 1981, p. 187–194.

[BZ07] M. Bodrato and A. Zanoni, Integer and polynomial multiplication: towards
optimal Toom-Cook matrices, ISSAC, 2007, pp. 17–24.

[CLO97] David A. Cox, John Little, and Donal O’Shea, Ideals, varieties, and algo-
rithms - an introduction to computational algebraic geometry and commuta-
tive algebra (2. ed.), Undergraduate texts in mathematics, Springer, 1997.

[CLO05] David A Cox, John Little, and Donal O’shea, Using algebraic geometry, vol.
185, Springer Science & Business Media, 2005.

[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to algorithms, 4th ed., MIT Press, Cambridge, MA, 2022.

[CM96] GIOVANNI CESARI and ROMAN MAEDER, Performance analysis of the
parallel karatsuba multiplication algorithm for distributed memory architec-
tures, Journal of Symbolic Computation 21 (1996), no. 4, 467–473.

[CMPS10] Muhammad F. I. Chowdhury, Marc Moreno Maza, Wei Pan, and Éric Schost,
Complexity and performance results for non fft-based univariate polynomial
multiplication, ACM Commun. Comput. Algebra 44 (2010), no. 3/4, 99–100.

[Com11] C++ Standards Committee, C++11 standard, 2011, https://isocpp.org/
std/the-standard.

[Com14] , C++14 standard, 2014, https://isocpp.org/std/the-standard.

[Com17] , C++17 standard, 2017, https://isocpp.org/std/the-standard.

[Com20] , C++20 standard, 2020, https://isocpp.org/std/the-standard.

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

BIBLIOGRAPHY 75

[Con63] Melvin E. Conway, A multiprocessor system design, Proceedings of the
November 12-14, 1963, Fall Joint Computer Conference (New York, NY,
USA), AFIPS ’63 (Fall), Association for Computing Machinery, 1963,
p. 139–146.

[Coo66] S. A. Cook, On the minimum computation time of functions, Ph.D. thesis,
1966, URL: http://cr.yp.to/bib/entries.html#1966/cook.

[DM98] Leonardo Dagum and Ramesh Menon, Openmp: An industry-standard api
for shared-memory programming, IEEE Comput. Sci. Eng. 5 (1998), no. 1,
46–55.

[GS01] Rajat P. Garg and I.A. Sharapov, Techniques for optimizing applications:
High performance computing, 2001.

[GtGdt21] Torbjörn Granlund and the GMP development team, Gnu mp: The gnu
multiple precision arithmetic library, GNU Project, 2021, https://gmplib.
org/.

[Hol00] Allen Holub, Taming java threads, Apress, 2000.

[HP11] John L. Hennessy and David A. Patterson, Computer architecture: A quan-
titative approach, Elsevier, 2011.

[ISO20] ISO/IEC 14882:2020: Information technology – programming languages –
C++, 6th ed., International Organization for Standardization, Geneva, 2020.

[KLJ14] Hsien-Kai Kuo, Bo-Cheng Charles Lai, and Jing-Yang Jou, Reducing con-
tention in shared last-level cache for throughput processors, ACM Trans. Des.
Autom. Electron. Syst. 20 (2014), no. 1.

[Knu97] Donald E. Knuth, The art of computer programming, 3 ed., vol. 1-4, Addison-
Wesley, Boston, MA, 1997.

[KO63] A. A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on au-
tomata, Soviet Physics Doklady 7 (1963), 595–596, URL: http://cr.yp.to/
bib/entries.html#1963/karatsuba.

[Lea00] Doug Lea, A java fork/join framework, Proceedings of the ACM 2000 Con-
ference on Java Grande (New York, NY, USA), JAVA ’00, Association for
Computing Machinery, 2000, p. 36–43.

[LML00] Yibei Ling, Tracy Mullen, and Xiaola Lin, Analysis of optimal thread pool
size, SIGOPS Oper. Syst. Rev. 34 (2000), no. 2, 42–55.

[LS03] Grégoire Lecerf and É Schost, Fast multivariate power series multiplication
in characteristic zero, Electronic Journal of SADIO 5 (2003).

[LSB09] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt, The design of a
task parallel library, vol. 44, 10 2009, pp. 227–242.

https://gmplib.org/
https://gmplib.org/

76 BIBLIOGRAPHY

[LZMQ19] Yin Li, Yu Zhang, Xingpo Ma, and Chuanda Qi, On the complexity of non-
recursive n-term karatsuba multiplier for trinomials, IACR Cryptol. ePrint
Arch. (2019), 111.

[MRR12a] Michael McCool, Arch D. Robison, and James Reinders, Chapter 3 - patterns,
Structured Parallel Programming (Michael McCool, Arch D. Robison, and
James Reinders, eds.), Morgan Kaufmann, Boston, 2012, pp. 79–119.

[MRR12b] Michael D. McCool, Arch D. Robison, and James Reinders, Structured par-
allel programming patterns for efficient computation, 2012.

[MY22] Marc Moreno Maza and Haoze Yuan, Balanced dense multivariate multipli-
cation: The general case, 24th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2022, Hagenberg /
Linz, Austria, September 12-15, 2022, IEEE, 2022, pp. 35–42.

[NL16] Linus Nyman and Mikael Laakso, Anecdotes: Notes on the history of fork
and join, IEEE Annals of the History of Computing 38 (2016), 84–87.

[NS07] Nicholas Nethercote and Julian Seward, Valgrind: A framework for heavy-
weight dynamic binary instrumentation, Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI ’07), ACM, 2007, pp. 89–100.

[Roc09] Daniel S. Roche, Space- and time-efficient polynomial multiplication, Sym-
bolic and Algebraic Computation, International Symposium, ISSAC 2009,
Seoul, Republic of Korea, July 29-31, 2009, Proceedings (Jeremy R. John-
son, Hyungju Park, and Erich L. Kaltofen, eds.), ACM, 2009, pp. 295–302.

[Sch05] Éric Schost, Multivariate power series multiplication, Symbolic and Algebraic
Computation, International Symposium ISSAC 2005, Beijing, China, July
24-27, 2005, Proceedings, ACM, 2005, pp. 293–300.

[SGG18] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne, Operating system
concepts, 10th edition, Wiley, 2018.

[Str13] Bjarne Stroustrup, The c++ programming language, 4th ed., Addison-Wesley
Professional, 2013.

[Too63] A. L. Toom, The complexity of a scheme of functional elements realizing the
multiplication of integers, Soviet Mathematics Doklady 3 (1963), 714–716.

[Val24] Valgrind Developers, Valgrind: Instrumentation framework for building dy-
namic analysis tools, 2024, Available at http://www.valgrind.org/.

[vdH02] Joris van der Hoeven, Relax, but don’t be too lazy, J. Symb. Comput. 34
(2002), no. 6, 479–542.

http://www.valgrind.org/

BIBLIOGRAPHY 77

[vdH14] , Faster relaxed multiplication, Proc. of ISSAC 2014, ACM, 2014,
pp. 405–412.

[vdH19] , Effective power series computations, Found. Comput. Math. 19
(2019), no. 3, 623–651.

[vdHL13] Joris van der Hoeven and Gregoire Lecerf, On the bit-complexity of sparse
polynomial and series multiplication, J. Symb. Comput. 50 (2013), 227–254.

[vzGG03] J. von zur Gathen and J. Gerhard, Modern computer algebra, 2 ed., Cam-
bridge University Press, NY, USA, 2003.

[Wil19] Anthony Williams, C++ concurrency in action, second ed., Manning Publi-
cations, Shelter Island, NY, 2019.

[Zan09] Alberto Zanoni, Toom-cook 8-way for long integers multiplication, SYNASC
(Stephen M. Watt, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu,
and Daniela Zaharie, eds.), IEEE Computer Society, 2009, pp. 54–57.

Appendices

78

.1. Fast Fourier Transform (FFT) in Polynomial Multiplication 79

.1 Fast Fourier Transform (FFT) in Polynomial Mul-

tiplication

The Fast Fourier Transform (FFT) is an efficient method for polynomial multiplication
with a time complexity of O(n log n). The idea is that instead of directly multiplying
two polynomials, as in the naive or Karatsuba methods with time complexities of O(n2)
and O(nlog2 3), respectively, we can evaluate the two polynomials at a set of points,
multiply these points pairwise, and then interpolate the product points to get the product
polynomial. This approach uses the Polynomial Interpolation Theorem, which states
that for any set {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} of n points where all xk values are
distinct, there is a unique polynomial A(x) of degree at most n− 1 such that yk = A(xk)
for k = 0, 1, . . . , n − 1. Such a set of points is referred to as the value representation of
the polynomial.

Although it is enough to represent polynomials A and B of degree n− 1 by n unique
points, when these points are multiplied, the resulting n points are not enough to repre-
sent the product polynomial C = A×B which has a degree of 2n−2. Therefore, extended
value representations for A and for B are needed which consist of at least 2n− 1 points.
The FFT procedure represents the input polynomials by 2n points and assumes that
n is a power of 2. If this is not the case, one can use zero-padding, which is adding
higher-order zero coefficients.

The pairwise points multiplication has a time complexity of O(n). One would expect
that the evaluation and interpolation steps have a time complexity of O(n2); however, if
the evaluation points are chosen to be complex roots of unity, the evaluation and inter-
polation time complexities will reduce to O(n log n), and therefore, the whole polynomial
multiplication process using FFT will have a time complexity of O(n log n).

A number ω ∈ C is an nth root of unity if ωn = 1. There are exactly n complex nth
roots of unity: ωk

n = e2πik/n for k = 0, 1, . . . , n−1. Euler’s formula, eix = cos(x)+i sin(x),
is used to represent the complex exponential function as trigonometric functions.

The FFT method uses a divide-and-conquer strategy to separate the even-indexed and
odd-indexed coefficients of each of the two input polynomials into two new polynomials,
each with n

2
terms. For a given coefficients sequence a = (a0, . . . , an−1) ∈ Cn, we can

write:
Aeven(x) = a0 + a2x+ a4x

2 + · · ·+ an−2x
n
2
−1,

Aodd(x) = a1 + a3x+ a5x
2 + · · ·+ an−1x

n
2
−1.

(30)

And, the polynomial A can be evaluated at any x ∈ C using the formula:

A(x) = Aeven(x
2) + xAodd(x

2). (31)

Therefore, the problem of evaluating A at ω0
n, ω

1
n, . . . , ω

n−1
n reduces to evaluating two

polynomials of degree n
2
− 1 at the points (ω0

n)
2
, (ω1

n)
2
, . . . , (ωn−1

n)
2
and combining the

results using Equation 31. According to the Halving lemma, if n > 0 is even, then the
squares of the n complex n-th roots of unity are the n

2
complex (n

2
)-th roots of unity.

Therefore, the list of values (ω0
n)

2
, (ω1

n)
2
, . . . , (ωn−1

n)
2
consists of only n

2
complex (n

2
)-th

roots of unity.

80

The FFT algorithm recursively evaluates the polynomials Aeven and Aodd of degree
n
2
− 1 at the n

2
complex (n

2
)-th roots of unity. With each recursion, the size of the

problem is halved. The inverse FFT algorithm is used to convert the product of pointwise
multiplications back to the coefficient form of the product polynomial.

The polynomial multiplication process using FFT is illustrated in Figure .1. Algo-
rithms 7 and 8 show the FFT and inverse FFT in pseudo-code [CLRS22].

a0, a1, . . . , an−1

b0, b1, . . . , bn−1

A(ω0
2n), B(ω0

2n)
A(ω1

2n), B(ω1
2n)

...
A(ω2n−1

2n), B(ω2n−1
2n)

C(ω0
2n)

C(ω1
2n)
...

C(ω2n−1
2n)

c0, c1, . . . , c2n−2

Naive multiplication
O(n2)

Evaluation
O(n log n)

Pointwise multiplication
O(n)

Interpolation
O(n log n)

Value
representations

Coefficient
representations

Figure .1: The process of polynomial multiplication using FFT. Evaluation and interpo-
lation refer to converting a polynomial from coefficient representation to value represen-
tation and vice versa. The ω2n terms are complex 2nth roots of unity.

.1. Fast Fourier Transform (FFT) in Polynomial Multiplication 81

Algorithm 7 FFT

Input: Polynomial A = [a0, a1, . . . , an−1] of degree n− 1, where n is a power of 2.
Output: The FFT of A.
1: function FFT(A, n)
2: if n = 1 then
3: return A
4: end if
5: ω := e2πi/n

6: Aeven := [a0, a2, . . . , an−2]
7: Aodd := [a1, a3, . . . , an−1]
8: yeven := FFT(Aeven, n/2)
9: yodd := FFT(Aodd, n/2)
10: y := [0, 0, . . . , 0] ▷ Initialize y with n zeros
11: for k = 0 to n/2− 1 do
12: y[k] := yeven[k] + ωkyodd[k]
13: y[k + n/2] := yeven[k]− ωkyodd[k]
14: end for
15: return y
16: end function

Algorithm 8 Inverse FFT

Input: Y = [y0, y1, . . . , yn−1], where n is a power of 2.
Output: The inverse FFT of Y , i.e., the polynomial coefficients.
1: function IFFT(Y , n)
2: if n = 1 then
3: return Y
4: end if
5: ω := (1/n) · e−2πi/n

6: Yeven := [y0, y2, . . . , yn−2]
7: Yodd := [y1, y3, . . . , yn−1]
8: aeven := IFFT(Yeven, n/2)
9: aodd := IFFT(Yodd, n/2)
10: a := [0, 0, . . . , 0] ▷ Initialize a with n zeros
11: for k = 0 to n/2− 1 do
12: a[k] := aeven[k] + ωkaodd[k]
13: a[k + n/2] := aeven[k]− ωkaodd[k]
14: end for
15: return a
16: end function

82

.2 Implementation of Inverting a Lower Triangular

Matrix

1 void findMatrixInverse(mpq_t *AInv , mpq_t *A, int n, int B, ThreadPool

&pool) {

2 if (n > B) { // partition A into blocks of (n/2) * (n/2).

3 mpq_t *A1 , *A2 , *A3;

4 A1 = new mpq_t[(n/2)*(n/2)];

5 A2 = new mpq_t[(n/2)*(n/2)];

6 A3 = new mpq_t[(n/2)*(n/2)];

7 for (int i = 0; i < n; ++i) {

8 for (int j = 0; j < n; ++j) {

9 if (i < n/2 && j < n/2) {

10 mpq_init(A1[i * n/2 + j]);

11 mpq_set(A1[i * n/2 + j], A[i * n + j]);

12 } else if (j < n/2) {

13 mpq_init(A2[(i - n/2) * n/2 + j]);

14 mpq_set(A2[(i - n/2) * n/2 + j], A[i * n + j]);

15 } else if (i >= n/2) {

16 mpq_init(A3[(i - n/2) * n/2 + (j - n/2)]);

17 mpq_set(A3[(i - n/2) * n/2 + (j - n/2)], A[i * n + j]);

18 }

19 }

20 }

21 // find inverse of A1 and A3.

22 mpq_t *A1Inv , *A3Inv;

23 A1Inv = new mpq_t[(n/2)*(n/2)];

24 A3Inv = new mpq_t[(n/2)*(n/2)];

25

26 std::future <void > fut1 = pool.submitTask ([&] {

27 findMatrixInverse(A1Inv , A1, n/2, B, pool);

28 });

29 std::future <void > fut2 = pool.submitTask ([&] {

30 findMatrixInverse(A3Inv , A3, n/2, B, pool);

31 });

32 while ((fut1.wait_for(std:: chrono :: seconds (0)) ==

33 std:: future_status :: timeout) ||

34 (fut2.wait_for(std:: chrono :: seconds (0)) ==

35 std:: future_status :: timeout)) {

36 pool.runPendingTask ();

37 }

38 fut1.get();

39 fut2.get();

40

41 // ABLInv = -(A3^(-1))*A2*(A1^(-1)) = - A3Inv * A2 * A1Inv

42 mpq_t *ABLInv = new mpq_t [(n/2)*(n/2)];

43 mpq_t *tempMatrix = new mpq_t [(n/2)*(n/2)];

44

45 multiplyMatrix(tempMatrix , A3Inv , A2 , n/2);

46 multiplyMatrix(ABLInv , tempMatrix , A1Inv , n/2);

47 negateMatrix(ABLInv , n/2);

48

.2. Implementation of Inverting a Lower Triangular Matrix 83

49 // assembling four quarters of A^(-1)

50 for (int i = 0; i < n; ++i) {

51 for (int j = 0; j < n; ++j) {

52 mpq_init(AInv[i * n + j]);

53 if (i < n/2 && j < n/2) {

54 mpq_set(AInv[i * n + j], A1Inv[i * n/2 + j]);

55 } else if (j < n/2) {

56 mpq_set(AInv[i * n + j], ABLInv [(i - n/2) * n/2 + j]);

57 } else if (i >= n/2) {

58 mpq_set(AInv[i * n + j], A3Inv[(i - n/2) * n/2 + (j - n/2)]);

59 } else {

60 mpq_set_ui(AInv[i * n + j], 0, 1);

61 }

62 }

63 }

64

65 // memory clean -up.

66 for (int i = 0; i < (n/2)*(n/2); ++i) {

67 mpq_clear(A1[i]);

68 mpq_clear(A2[i]);

69 mpq_clear(A3[i]);

70 mpq_clear(A1Inv[i]);

71 mpq_clear(A3Inv[i]);

72 mpq_clear(ABLInv[i]);

73 mpq_clear(tempMatrix[i]);

74 }

75 delete [] A1;

76 delete [] A2;

77 delete [] A3;

78 delete [] A1Inv;

79 delete [] A3Inv;

80 delete [] ABLInv;

81 delete [] tempMatrix;

82

83 } else { // when n <= B, no recursion , use forward substitution.

84 // create identity matrix

85 mpq_t tmp;

86 mpq_init(tmp);

87 mpq_t one;

88 mpq_init(one);

89 mpq_set_ui(one , 1, 1);

90 for (int i = 0; i < n; ++i) {

91 for (int j = 0; j < n; ++j) {

92 mpq_init(AInv[i * n + j]);

93 if (i == j) {

94 mpq_div(tmp , one , A[i * n + j]);

95 mpq_set(AInv[i * n + j], tmp);

96 } else {

97 mpq_set_ui(AInv[i * n + j], 0, 1);

98 }

99 }

100 }

101 mpq_clear(one);

102

84

103 mpq_t sum;

104 mpq_init(sum);

105 // forward substitution

106 for (int i = 1; i < n; ++i) {

107 for (int j = 0; j < i; ++j) {

108 mpq_set_ui(sum , 0, 1);

109 for (int k = j; k < i; ++k) {

110 mpq_mul(tmp , A[i * n + k], AInv[k * n + j]);

111 mpq_add(sum , sum , tmp);

112 }

113 mpq_div(tmp , sum , A[i*n + i]);

114 mpq_neg(tmp , tmp);

115 mpq_set(AInv[i * n + j], tmp);

116 }

117 }

118 mpq_clear(tmp);

119 mpq_clear(sum);

120 }

121 }

Listing 1: A multithreaded implementation of inverting a lower triangular matrix.

Curriculum Vitae

Name: Hamid Fathi

Post-Secondary Western University
Education and London, ON, Canada
Degrees: M.Sc. in Computer Science

2022 - 2024

Sharif University of Technology
Tehran, Iran
M.Sc. in Engineering
2018 - 2020

Related Work Teaching Assistant
Experience: Western University

2022 - 2024

Research Assistant
Ontario Research Center for Computer Algebra
Western University
2022 - 2024

R&D Intern
Maplesoft, Waterloo, Canada
Summer 2024

C++ Software Developer
MTC, Tehran, Iran
2020-2022

Software:

� Basic Polynomial Algebra Subprograms (BPAS), https://bpaslib.org/.

85

https://bpaslib.org/

	Efficient Algorithms and Parallel Implementations for Power Series Multiplication
	Recommended Citation

	Abstract
	Lay Summary
	Acknowlegements
	Contents
	List of Tables
	List of Tables
	List of Figures
	List of Figures
	List of Algorithms
	Introduction
	Efficient Univariate Power Series Multiplication
	Relaxed Karatsuba Multiplication Algorithm
	Complexity Analysis of Karatsuba Method
	Time Complexity
	Space Complexity

	Implementation in C++
	The GMP Library
	Description of Classes and Methods

	Experimental Results

	Parallelizing Algorithms with Multithreading
	Theoretical Analysis of Parallel Algorithms
	Graham-Brent Theorem

	Concurrency Versus Parallelism
	Parallel Programming Patterns
	Map
	Pipeline
	Reduction
	Fork-Join

	Why Multithreading
	Threads
	Multithreading and Synchronization in C++
	C++ Support for Multithreading
	C++ Memory Model
	Launching Threads
	Protecting Shared Data Using Mutexes
	Thread Synchronization Tools: Condition Variables, Futures, and Promises
	Atomic Operations and Atomic Types

	Data Structures in C++ Containers: Stack, Queue, Deque
	Cache Complexity, Data Locality, and Data Contention
	Thread Pool Design Pattern
	Work Stealing Strategy for Scheduling
	Thread Pool Implementation
	Basic Thread Pool Functionalities
	Thread-Safe Queue Data Structure
	A Basic Thread Pool Implementation
	Waiting on Tasks Completion
	A Separate Queue for Every Thread
	Work Stealing Using a Double-Ended Queue
	Thread Pool With Work Stealing Implementation

	Multithreaded Implementation of Karatsuba Algorithm
	Multithreaded Implementation of Inverting a Lower Triangular Matrix
	Performance Analysis of Multithreading
	Parallelization with Cilk
	Performance Results of Multithreaded Static Karatsuba Multiplication Method
	Performance Results of Multithreaded Relaxed Multiplication Method

	Multivariate Power Series Multiplication
	Multivariate Power Series
	Algorithms for Multiplying Multivariate Polynomials
	Multi-way Karatsuba
	Multiplicaiton Based on Multi-dimension FFTs

	Multiplication Schemes for Multivariate Power Series
	The Polynomial Part of the Product of Two Power Series
	Computing (f g)(2k) from f(2k), g(2k) and f(k) g(k)
	The Truncation in Partial Degrees of the Product of Two Power Series
	Computing (f g)(2k) from f[k] g[k]
	Experimental Results

	Modular Multiplication for Multivariate Power Series
	An Evaluation-Interpolation Strategy
	Introductory Example
	Choosing the Evaluation Points
	The Evaluation Phase
	The Interpolation Phase
	Cost analysis
	Experimentation

	Bibliography
	Appendices
	Fast Fourier Transform (FFT) in Polynomial Multiplication
	Implementation of Inverting a Lower Triangular Matrix

	Curriculum Vitae

