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Abstract 

Mutations in the human ATRX gene cause alpha-thalassemia mental retardation X-linked 

(ATR-X) syndrome associated with severe cognitive and behavioural deficits, seizures, 

and microcephaly, indicating that ATRX is an essential factor in the normal development 

of the central nervous system (CNS).  Conditional inactivation of Atrx in the developing 

mouse forebrain leads to a reduction in cerebral cortical size, elevated levels of p53-

dependent neuronal apoptosis, and cortical dysgenesis, confirming a broad requirement 

for Atrx in mammalian brain development.  The mammalian ATRX gene encodes a 

member of the Snf2 family of chromatin remodeling proteins and was originally defined 

as a transcriptional regulator, however at the commencement of this research project no 

ATRX gene targets had yet been linked to CNS development.  In contrast, ATRX is 

highly enriched at pericentromeric heterochromatin in somatic and germ cells where it is 

required for normal meiotic cell division, however a requirement for ATRX in mitotic 

cell division has not yet been reported.  In chapters two and three, I investigated this by 

using RNAi to deplete ATRX levels in a human cancer cell line and found that cells 

depleted of ATRX showed mitotic dysfunction including chromosome congression and 

alignment defects and chromosome bridging, and reduced centromeric sister chromatid 

cohesion and elevated levels of cytokinetic failure and multinucleation.  Furthermore, 

mitotic neuronal progenitor cells from the embryonic Atrx-null mouse forebrain display 

mitotic dysfunction in vitro and in vivo, suggesting that the requirement for ATRX in 

normal cortical development and mitotic cell division might be linked.  Binary control of 

neuronal progenitor proliferation or differentiation is considered the primary mechanism 

of mammalian cortical neurogenesis in the developing brain, and is thought to be 

determined primarily by the regulation of asymmetric progenitor cell division.  In chapter 

four I report that apical neuronal progenitors of the Atrx-null forebrain display a 

disruption in the balance of symmetric to asymmetric cell divisions, leading to an altered 

complement of differentiated neurons in the postnatal cortex, providing a novel 

requirement for ATRX in cortical development.  Taken together, this data present a novel 

role for the chromatin remodeling protein ATRX in mitotic cell division and cortical 

neurogenesis. 
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Chapter 1  

1 Introduction 

1.1 General Introduction 

Mitotic cell division (Mitosis) is one of the most fundamental processes in the life cycle 

of every eukaryotic cell.  In essence, the objective of mitosis is to transmit a replicated 

copy of the parental genome to two daughter cells.  However, with the emergence of 

multicellular organisms, with diverse tissues and organs, mitotic cell division is no longer 

solely a process of genetic replication, but is a critical aspect of the global developmental 

process.  Progenitor cells can give rise to a variety of different cell types within a tissue, a 

process that is often governed by asymmetric (or ‘unequal’) cell division (Horvitz and 

Herskowitz, 1992).  Many studies have shown that asymmetric cell division in the 

developing mammalian brain is critical for normal brain development, and it is believed 

that disturbances in this process underlie some human intellectual disability disorders 

[Reviewed in (Kaindl et al., 2009)].  Mutations in the ATRX gene cause a mental 

retardation syndrome called alpha thalassemia mental retardation X-linked (ATR-X).  

Studies in the mouse have confirmed a requirement for ATRX in normal brain 

development, however the precise role of ATRX in neurodevelopment is largely 

unknown, and is the topic of this thesis. 

1.2 The ATRX Gene and Protein 

1.2.1 The ATRX Gene Encodes a Member of the Snf2 Family of 
Chromatin Remodeling Proteins 

The human ATRX gene contains 36 exons spanning over 300 kilobases (kb) of genomic 

DNA on the X chromosome (Xq13.3) (Gibbons et al., 1995b; Gibbons et al., 1995a; 

Picketts et al., 1996).  The gene produces two major protein isoforms, a full length 280 

kilodalton (kDa) protein (ATRX) encoded by a 10.5 kb messenger RNA (mRNA) 

(NM_000489.3), and a ~200 kDa truncated protein, ATRXt, encoded by a ~7 kb mRNA 

transcript truncated at exon 11 by an alternative splicing event that retains this intron and 

leads to the use of a proximal intronic poly(A) signal (Garrick et al., 2004).  The mouse 
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Atrx gene shows a similar genomic structure to its human homolog, and encodes a protein 

(mATRX) of similar molecular weight with broad regions of high sequence conservation 

(Picketts et al., 1998).  Both major protein isoforms are highly conserved in human and 

mouse, suggesting that each likely fulfill important biological functions in both 

organisms (Garrick et al., 2004).  Because of this homology the mouse has been used 

extensively as a model to study many aspects of the Atrx gene and protein, particularly its 

role in development.  ATRX transcripts have been detected in all human and mouse 

tissues examined to date, however the relative transcript abundance varies widely, as does 

the ratio between the two major transcripts (Gecz et al., 1994; Garrick et al., 2004).  An 

examination of ATRX expression in various human tissues found that, in human fetal 

tissues ATRX mRNA expression is highest in the brain, where the full-length transcript is 

most abundant.  In other fetal tissues where expression levels are lower, each transcript is 

present in roughly equivalent amounts.  In contrast, ATRX is poorly expressed in the adult 

brain, but is most abundant in skeletal muscle, where again the full-length transcript 

predominates (Garrick et al., 2004).  These observations support the hypothesis that the 

two major isoforms perform independent biological functions, and are subjected to 

different regulatory mechanisms in a variety of tissues throughout development. 

The full-length ATRX protein isoform contains two major conserved domains, (1) a 

carboxyterminal (C-terminal) helicase/adenosine triphosphatase (ATPase) domain 

belonging to the Sucrose non-fermenting 2 (Snf2) family of helicase-related chromatin 

remodeling enzymes, and (2) an N-terminal [ATRX-DNMT3-DNMT3L (ADD)] domain 

containing a plant homeodomain (PHD)-like zinc finger (Figure 1-1) (Picketts et al., 

1996).  The major truncated isoform, ATRXt, retains the N-terminal ADD domain but 

lacks the C-terminal Snf2 domain, likely conferring a unique biological function 

distinguishing the two isoforms (Garrick et al., 2004).  Sequence similarity between 

ATRX and mATRX are highest within these 2 domains (>90%), suggesting conservation 

of important functional properties between the two homologs (Picketts et al., 1998). 
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Figure 1-1.  Schematic of the ATRX protein domain structure 

The full length ATRX, and truncated ATRXt protein are depicted above.  Major domains 

are shown: the PHD zinc finger-like domain (ADD), Snf2 chromatin remodeling domain 

(Helicase domain), the P box a (P), and glutamine-rich region (Q).  Below is a 

representation of the amino acid similarity between the human and mouse proteins. 

Reproduced with permission from: Gibbons et al. (2008) Human Mutation 29(6):796-802 
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1.2.2 The ATRX Snf2 Domain 

The Snf2 protein family belongs to the SF2 superfamily of ATP-hydrolysing DNA and 

RNA helicases, which are characterized by a conserved stretch of seven short collinear 

helicase motifs (I, Ia, II, III, IV, V, VI), and have been found in all eukaryotes 

(Gorbalenya et al., 1988; Singleton et al., 2007).  Structurally, this array of motifs is 

organized into two recA-like domains with an active cleft between them, allowing the 

transformation of chemical energy from ATP hydrolysis into mechanical motion 

(Subramanya et al., 1996; Flaus et al., 2006). Members of the large Snf2 protein family 

are generally believed to utilize the energy of ATP hydrolysis to act as the catalytic 

molecular motor subunits of larger multi-protein complexes involved in many DNA and 

chromatin-dependent processes (Knizewski et al., 2008).  Snf2 proteins have been 

identified in many such complexes, including transcription-coupled repair (ERCC6 

subfamily), nucleotide excision repair (RAD16), recombination repair (RAD54 

subfamily), replication and gene-specific transcriptional activation (SNF2 subfamily), 

transcriptional repression (MOT1), destabilization of reconstituted nucleosomes (SNF2 

and SNF2L subfamilies) and chromosome segregation and mitotic recombination 

(lodestar) [Reviewed in (Carlson and Laurent, 1994)].  Based on sequence alignment 

data, ATRX has been classified within the Rad54-like subfamily of Snf2 proteins (Flaus 

et al., 2006).  Despite the presence of the conserved ‘helicase’-like motif, no member of 

the Snf2 family has been shown to possess DNA or RNA helicase (unwinding of double-

stranded nucleic acids) activity (Pazin et al., 1997).  Rather, most Snf2 family members 

exhibit ATP-dependent DNA translocation, and likely exert their biological effects 

through the disruption of DNA-nucleosome interactions, known as chromatin 

remodeling, as they translocate along a chromatin substrate, thereby altering the 

accessibility of nucleosomal DNA to functionally specific auxiliary proteins like 

transcription factors and DNA repair proteins [Reviewed in (Kingston et al., 1996; 

Mohrmann and Verrijzer, 2005; Clapier and Cairns, 2009)]. 

Initial in vitro studies confirmed that the helicase domain of recombinant ATRX 

(rATRX) does in fact possess ATPase activity at levels similar to other Snf2 proteins 

(SNF2H, SNF2L) that was stimulated (2-fold) by the presence of mononucleosomes, but 
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not by naked DNA (Tang et al., 2004).  More recently it was shown that the ATPase 

activity of rATRX can be stimulated by naked DNA (9-fold) and mononucleosomes (4-

fold), consistent with the known enzymatic properties of the Rad54 subfamily of Snf2 

proteins to which ATRX belongs (Mitson et al., 2011), however the cause of the disparity 

between the two studies is unknown.  Many Snf2 proteins utilize ATP hydrolysis to fuel 

DNA translocase activity (Lia et al., 2006; Amitani et al., 2006), which is classically 

measured by the ability of the enzyme to displace a third strand of DNA wrapped around 

a DNA double helix, known as a DNA triple helix (Saha et al., 2002; Jaskelioff et al., 

2003; Whitehouse et al., 2003; Dürr et al., 2005).  Triple-helix displacement activity has 

been confirmed for rATRX (Xue et al., 2003), and has been shown to depend upon intact 

ATPase activity (Mitson et al., 2011), confirming that the Snf2 domain of ATRX acts as 

an ATP-dependent DNA translocase consistent with its conserved sequence similarity to 

the Snf2 protein family. 

1.2.3 The ATRX ADD Domain 

The N-terminal ADD domain of ATRX is a cysteine-rich region containing a PHD-like 

zinc finger, a GATA-like zinc finger, and a flanking C2C2 α-helical motif, that assemble 

into a large globular domain through extensive hydrophobic interactions (Argentaro et 

al., 2007).  This region is highly related to, and unique to, the DNA methyltransferase 3 

(DNMT3) family of de-novo DNA methyltransferases (DNMT3A, DNMT3B, and 

DNMT3L) (Xie et al., 1999; Aapola et al., 2000; Argentaro et al., 2007).  Zinc fingers are 

common in chromatin-associated proteins and generally act to mediate protein-protein 

interactions that are thought to function primarily as tethers to chromatin via interactions 

with exposed histone tails (Bienz, 2006).  Not surprisingly, the ADD domain of 

DNMT3A and DNMT3L interact with unmodified histone H3 tails (Ooi et al., 2007; 

Otani et al., 2009), and ATRX has been found to associate with chromatin through 

specific histone modifications.  The ADD domain of ATRX can bind to histone H3 tails 

that are trimethylated at lysine 9 (H3K9me3) and unmethylated at lysine 4 (H3K4me0) 

(Dhayalan et al., 2011), and has recently been proposed to interact with the lysine 4 

residue of the histone variant H3.3 in mouse embryonic stem (ES) cells (Wong et al., 

2010).  
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Functionality of PHD domains depends on the coordinated binding of zinc ions within a 

conserved hydrophobic core that stabilizes protein folding (Frankel et al., 1987; Shi and 

Berg, 1995).  Although not identical in sequence to known PHD and GATA zinc fingers, 

the structure of the ATRX-ADD domain has been solved and shown to bind zinc ions in a 

configuration highly similar to those reported for GATA-1 and PHD fingers (Argentaro 

et al., 2007).  The zinc finger of GATA-1 is able to bind directly to target DNA elements, 

and the domain structure of the ATRX-ADD domain suggests a similar basic patch on α-

helix 1 may be used for DNA binding (Argentaro et al., 2007), supported by the 

observation that the ATRX-ADD domain can bind DNA homopolymers in vitro 

(Cardoso et al., 2000).  

Interestingly, the Snf2 and ADD domains are separated by a large unstructured stretch of 

~1300 amino acid residues.  It has been speculated that this placement of a long, 

potentially flexible, linker region between these two domains is a functionally important 

feature of the structure of ATRX (Mitson et al., 2011), as this region is also conserved in 

chicken and frog. 

1.2.4 ATRX Function 

In mammalian cells, ATRX is a nuclear protein and >50% of total ATRX is tightly 

associated with DNA and/or chromatin, consistent with the presence of the conserved 

domains in ATRX that are commonly found in chromatin associated proteins (McDowell 

et al., 1999).  ATRX is enriched primarily at pericentromeric heterochromatin (PCH), and 

at promyelocytic nuclear bodies (PML-NBs), and has more recently been localized to 

telomeric chromatin, and some euchromatic sites.  It is believed that ATRX functions 

primarily as a regulator of gene transcription and of condensed heterochromatin through 

distinct mechanisms, including direct DNA binding, regulation of genomic imprinting, 

and deposition of specific histone subunits at a variety of genomic regions. 

1.2.5 ATRX Interacts With the Death-Domain Associated Protein 
DAXX 

Because SWI/SNF family proteins are typically found in large nuclear chromatin 

remodeling complexes, early studies focused on characterizing the potential binding 
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partners of ATRX, and the nature of the potential complexes to which it belonged.  Co-

immunoprecipitations (Co-IPs) from human and mouse cells identified a specific 

interaction between ATRX and the death domain associated protein DAXX (Xue et al., 

2003; Tang et al., 2004; Ishov et al., 2004).  DAXX is a multifunctional protein found 

primarily in the nucleus where it localizes to PML-NBs (Ishov et al., 1999; Everett et al., 

1999; Torii et al., 1999) and condensed chromatin (Ishov et al., 1999) and interacts with 

multiple transcription factors, including Pax3, Pax5 and ETS1, and other chromatin 

associated proteins DNA methyltransferase 1, histone deacetylases, and core histones 

(Hollenbach et al., 1999; Li et al., 2000; Hollenbach et al., 2002; Lin et al., 2003a).  

Because of this, DAXX is believed to function primarily as a transcriptional regulator.   

Peptide studies revealed that most of the total full length ATRX pool is associated in near 

equimolar amounts with DAXX in human nuclear extracts (Xue et al., 2003), suggesting 

that ATRX function might depend primarily on this association.  These early studies 

found that the ATRX-DAXX complex possesses ATP-dependent chromatin remodeling 

activity, suggesting that together these proteins might influence a range of DNA-

dependent processes through the modulation of chromatin structure (Xue et al., 2003; 

Tang et al., 2004). 

1.2.6 The ATRX/DAXX Complex Localizes to PML-NBs and 
Constitutive Heterochromatin 

In both human and mouse cells, ATRX is primarily enriched at PCH throughout the cell 

cycle (McDowell et al., 1999).  Pericentromeric heterochromatin is a constitutively 

condensed region of heterochromatin flanking the centromeres of eukaryotic 

chromosomes, and is essential for the normal organization and function of the 

centromere, kinetochore assembly, and mitotic cell division [reviewed in (Pidoux and 

Allshire, 2005)].  Distinct mechanisms appear to recruit ATRX to PCH in mammalian 

cells.  The methyl-CpG binding protein 2 (MeCP2) and ATRX interact in vitro, and 

MeCP2 is required for the proper colocalization of ATRX to PCH in cortical neurons 

from the adult mouse brain (Nan et al., 2007).  ATRX also interacts with the 

heterochromatin binding protein 1 (HP1) family of proteins (Le Douarin et al., 1996; 

McDowell et al., 1999; Bérubé et al., 2000), and HP1α has been shown to recruit ATRX 
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to PCH in mESCs (Kourmouli et al., 2005).  HP1 proteins are an integral component of 

condensed chromatin at pericentric regions, and loss of HP1, or the yeast homolog Swi6, 

leads to loss of heterochromatin, centromeric instability and mitotic defects (Ekwall et 

al., 1995; Amor et al., 2004).  A growing number of chromatin remodeling enzymes have 

been found to maintain the structural integrity of PCH, with deficiencies leading to 

mitotic abnormalities (Lejeune et al., 2007; Bourgo et al., 2009).  Interestingly, depletion 

of ATRX in mouse oocytes leads to mitotic spindle and chromosome segregation defects, 

and centromere dysfunction, including centromere fusions, and centromere containing 

micronuclei (De La Fuente et al., 2004; Baumann et al., 2010) DAXX colocalizes to PCH 

with ATRX during S-phase in mouse embryonic fibroblasts (MEFs) (Ishov et al., 2004; 

Drané et al., 2010), and ATRX is required to recruit DAXX to PCH in mouse oocytes 

(Baumann et al., 2010).  Interestingly, Daxx knockout MEFs are prone to forming bi-

nucleated cells, suggesting a defect in cell division in these cells (Ishov et al., 2004). 

Within the nucleus, ATRX also co-localizes with DAXX at PML-NBs in human and 

mouse cells (Xue et al., 2003; Ishov et al., 2004), and the recruitment of ATRX to these 

sites is mediated by DAXX.  PML-NBs are large nuclear protein complexes implicated in 

nearly every cellular process, making functional classification difficult (Quimby et al., 

2006; Shen et al., 2006).  It is generally believed that PML-NBs serve two primary 

functions, (1) as protein depots that sequester abnormal proteins related to pathological 

conditions, and (2) to act as catalytic surfaces where proteins accumulate to be post-

translationally modified (Bernardi and Pandolfi, 2007).  More recently it has been 

proposed that PML-NBs could in fact be active sites for such nuclear functions as 

transcriptional regulation and chromatin remodeling (Lallemand-Breitenbach and de Thé, 

2010).   

1.2.7 ATRX and DAXX Deposit H3.3 at Specific Genomic Regions 

Recently several independent studies have identified a novel role for the ATRX-DAXX 

complex in the incorporation of the histone variant H3.3 at specific genomic regions, 

including telomeres and pericentric heterochromatin (Goldberg et al., 2010; Wong et al., 

2010; Drané et al., 2010; Lewis et al., 2010).   
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Histones can regulate chromatin function through the use of covalent post-translational 

modification (phosphorylation, methylation, acetylation, ubiquitylation) of amino acid 

residues on their tail domains, and by the use of non-allelic histone variants [Reviewed in 

(Kamakaka and Biggins, 2005)].  In mammals, the histone variant H3.3 varies from the 

canonical H3 (H3.1) at only 5 amino acids, which give H3.3 unique properties, such as 

targeting to specific chromatin domains.  Unlike H3.1, H3.3 can be incorporated into 

chromatin outside of S-phase, and is typically associated with sites of active DNA 

transcription.  These differences likely reflect the interactions of the histones with 

different assembly factors, termed histone chaperones.  In human cells, H3.1 is found 

mainly in a complex with the DNA replication dependent chaperone Chromatin 

Assembly Factor 1 (CAF-1) while H3.3 is found with the DNA replication independent 

chaperones HIRA or CHD1 (Tagami et al., 2004; Konev et al., 2007). 

Surprisingly, ATRX and DAXX were recently identified in purified histone H3.3, but not 

H3.1 preassembly complexes from HeLa cells (Drané et al., 2010; Lewis et al., 2010).  A 

purified complex of ATRX-DAXX can assemble and mobilize H3.3/H4 containing 

nucleosomes on a DNA template in vitro, indicating that this heterodimer possesses 

chromatin remodeling activity specific to H3.3-nucleosomes (Lewis et al., 2010).   

Depletion of ATRX or DAXX in mouse embryonic fibroblasts (MEFs) using RNAi 

reduced the amount of H3.3 deposition at pericentromeric heterochromatin, resulting in a 

downregulation of pericentric repeat transcripts in these cells (Drané et al., 2010).  It has 

recently been shown that pericentric repeats are highly transcribed in mammalian cells, 

and paradoxically in yeast these transcripts are required for the RNAi mediated 

heterochromatinization of PCH (Grewal and Elgin, 2007), and disruption of this pathway 

in yeast leads to loss of PCH and centromeric dysfunction leading to mitotic defects 

(Verdel and Moazed, 2005).   

In addition, ATRX is also enriched at telomeric chromatin in pluripotent mouse ES cells 

(ESCs) during interphase, when telomeric DNA is undergoing replication and processing 

(Wong et al., 2010).  In Atrx-null ESCs, H3.3 is depleted from telomeric regions, and 

there is an upregulation of telomere specific transcripts (Telomeric repeat containing 
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RNA, TERRA) in these cells, suggesting loss of a repressive/silent heterochromatic 

environment (Goldberg et al., 2010). PHD fingers have a marked preference for binding 

histone H3 lysine 4 (H3K4), and the interaction between ATRX and H3.3 is lost when 

the K4 residue of H3.3 is mutated, which also prevents the telomeric localization of 

ATRX (Wong et al., 2010).  In contrast, ATRX is not found in the H3.3 complex in 

DAXX-/- MEFs, indicating that DAXX is also required for the association of ATRX with 

H3.3 (Lewis et al., 2010).   

1.2.8 Mutations in the ATRX Gene Cause X-linked Mental 
Retardation 

The human ATRX gene (MIM# 300032) was first described in 1995.  Mutations in this 

gene cause ATR-X syndrome (Alpha-Thalassemia mental Retardation, X-linked) 

syndrome (MIM# 301040), a severe form of X-linked mental retardation (XLMR) that 

occurs almost exclusively in males (Gibbons et al., 1992; Gibbons et al., 1995b; Gibbons 

et al., 1995a).  Signs of ATR-X syndrome are evident at birth, and constitute a broad but 

remarkably uniform phenotypic spectrum affecting many bodily organs, most notably the 

central nervous system.  Typically, patients show global developmental delay with 

moderate to profound learning difficulties associated with severe expressive language 

disorder, severe to profound mental retardation (95% of cases), and facial dysmorphology 

(94%).  Affected individuals also show postnatal microcephaly (reduced brain and skull 

size developing after birth, 75%), genital abnormalities (80%), skeletal abnormalities 

(90%), short statue (65%), seizures (30%), cardiac defects (20%), and renal/urinary 

abnormalities (15%).  One of the characteristic manifestations, commonly used for 

clinical diagnosis, is a type of anemia called α-thalassemia (86%), caused by the 

reduction of α-globin gene expression in peripheral red blood cells [summarized in 

(Gibbons, 2006)].  This α-globin deficiency leads to the consequent aggregation of β-

globin peptides into tetrameric β4 (Haemoglobin H, or HbH), a non-functional form of 

haemoglobin with very high oxygen affinity and impaired ability to supply oxygen to 

tissues (Higgs and Weatherall, 2009).   

Mutations in ATRX have also been identified in a number of other XLMRs with a range 

of overlapping symptoms, including Juberg-Marsidi (Villard et al., 1996), X-linked 
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mental retardation with spastic paraplegia (Lossi et al., 1999), Carpenter-Waziri (Abidi et 

al., 1999), Holmes-Gang (Stevenson et al., 2000), Smith-Fineman-Myers (Villard et al., 

2000) and Chudley-Lowry (Abidi et al., 2005) syndromes. 

To date over 200 ATR-X cases from 182 families have been identified, carrying a total of 

113 different ATRX mutations.  Despite the steadily growing cohort, no population-based 

studies have yet been conducted to establish the prevalence of this condition, and the 

proportion of XLMRs attributable to ATRX mutations is currently unknown, but is 

currently estimated at around 1/1,000,000 (Gibbons et al., 2008). 

1.2.9 ATRX Disease Mutations Affect Protein Stability and 
Function 

Some pathogenic ATRX mutations have been studied biochemically, and all have been 

found to impair protein function, or reduce steady state protein levels, likely contributing 

to the disease etiology through protein dysfunction or insufficiency.  Nearly all non-

truncating ATR-X disease-causing mutations in ATRX lie within the conserved ADD 

(49%) or Snf2 (30%) domains, suggesting their importance for the normal function of 

ATRX during development (Figure 1-1) (Gibbons et al., 2008).  These two regions are 

separated by a structurally disordered stretch of over 1300 amino acid residues that lack 

any known pathological mutations.  Two theories have been proposed to explain this, (1) 

it is believed that mutations here may result in neutral polymorphisms, and thus are not 

detected because they do not result in protein dysfunction or pathology, or (2) mutations 

here are severely detrimental to normal protein function and act as non-viable null-

alleles. 

A number of mutations found in the Snf2 domain show impaired DNA stimulated 

ATPase and DNA translocase activity.  Other mutations result in uncoupled DNA 

binding and ATPase activity, resulting in abnormally high levels of ATPase activity even 

in the absence of stimulation by DNA, and reduced DNA translocase activity (Mitson et 

al., 2011).  The precise effect of these mutations on ATRX function is unclear, though 

due to their position within the folded peptide, they are speculated to directly affect ATP 
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hydrolysis, DNA binding, or the communication of a DNA binding event to the catalytic 

site.  

Structure/function analysis has found that many missense mutations in the ADD domain 

associated with ATR-X syndrome affect buried residues that are important for protein 

structural integrity and stability (Argentaro et al., 2007).  However other mutations that 

map to the surface-exposed zinc-binding cysteine residues, or protein binding helical 

regions, are predicted to directly interfere with DNA or protein interactions (Argentaro et 

al., 2007).  Indeed, some patient mutations in the ADD domain have been found to impair 

the DNA (Cardoso et al., 2000) or protein (Dhayalan et al., 2011) binding activity of 

ATRX.  Interestingly, mutations in the ADD domain are associated with more severe 

psychomotor retardation than those found in the Snf2 helicase domain for unknown 

reasons. 

Almost all female carriers of pathogenic ATRX mutations show no disease symptoms, 

however approximately 1 in 4 have signs of mild alpha thalassemia (Gibbons et al., 

1992).  Most carriers have drastically skewed pattern of X chromosome inactivation with 

the disease bearing X being preferentially inactivated, preventing pathogenesis.  Some 

exceptions to this paradigm have been documented.  Two cases of balanced (random) X 

inactivation have been documented, one of which presented with mild MR (Wada et al., 

2005), however an association with the ATRX mutation was not clear.  In a unique case, a 

girl heterozygous for an ATRX mutation showed preferential silencing of the wild type X 

chromosome and presented with characteristics of ATR-X syndrome (Badens et al., 

2006). 

No known ATRX null alleles have been identified, and all clinical mutations assayed to 

date, including nonsense mutations, retain some basal expression levels of full-length 

ATRX protein and are thought to primarily disrupt protein function by destabilization or 

protein mislocalization resulting in hypomorphic alleles (Argentaro et al., 2007; Gibbons 

et al., 2008; Mitson et al., 2011).  The mechanism leading to production of full-length 

protein from an allele carrying a truncating mutation remains unclear, though it has been 

speculated that mutational skipping via alternative splicing may be predominantly used to 
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preserve some full-length protein expression.  ATRX dosage also appears to be critical 

for normal protein function, since all studied disease cases show significantly reduced 

protein levels (3-55% of normal levels), despite some retaining apparently normal protein 

function, demonstrated by normal ATPase activity (Argentaro et al., 2007; Mitson et al., 

2011). Interestingly, loss of full length ATRX beginning at the morula stage of 

development results in embryonic lethality by E9.5, likely due to defects in the 

extraembryonic trophoblast (Garrick et al., 2006), and may explain why no null alleles 

are observed in humans.  Furthermore, depletion of ATRX in the mouse oocyte leads to 

meiotic abnormalities and aneuploidy in fertilized 1-cell zygotes, and severely reduced 

fertility (Baumann et al., 2010), suggesting that genomic instability may also contribute 

to embryonic lethality. 

Taken together, the collection of disease causing mutations, and their effects on protein 

function and stability suggest a critical role of ATRX in development, specifically related 

to the integrity of the conserved Snf2 and ADD domains.  

1.2.10 Loss of DNA Methylation at Repetitive Sequences in ATR-X 
Patients 

In human cells, immunofluorescence staining revealed that ATRX is enriched on the 

short arms of acrocentric chromosomes where the GC-rich ribosomal DNA (rDNA) 

arrays are found (McDowell et al., 1999).  More recently ATRX was localized to rDNA 

sequences in human erythroblasts using ChIP (Law et al., 2010).  The rDNA genes 

encode the ribosomal RNAs (rRNA), essential components of the ribosome, and their 

highly regulated expression is required to meet the demand for protein synthesis in 

growing cells.  Expression of rRNA is regulated by complex patterns of DNA 

methylation within the promoters and coding sequences, however in general DNA 

methylation at rDNA genes is associated with transcriptional silencing (Bird et al., 1981).  

In peripheral blood cells from normal individuals, approximately 20% of the transcribed 

rDNA units are methylated within Cytosine-Guanine dinucleotide (CpG) rich regions, 

likely corresponding to silenced rDNA genes.  Surprisingly, in ATR-X patients, most 

rDNA genes have lost genomic methylation at CpG rich regions, corresponding to the 
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transcribed 28S, 18S, and 5.8S rDNA genes (Gibbons et al., 2000).  A similar loss of 

rDNA methylation was also observed in mouse ES cells lacking Atrx expression (Atrxnull 

ES cells) (Garrick et al., 2006), and ATRX deficient mouse brain (Kernohan et al., 2010).  

The effect of this hypomethylation on rRNA transcription has not yet been assessed, and 

any relationship to disease pathology is unknown.  Furthermore, other repetitive elements 

from ATR-X patients show disturbed DNA methylation, including a Y chromosome 

specific repeat element (DYZ2), a subtelomeric/centromeric repeat (TelBam3.4), and loss 

of pericentromeric DNA methylation (Nan et al., 2007) indicating that ATRX influences 

DNA methylation at specific regions (Gibbons et al., 2000). 

1.2.11 ATRX Regulates Gene Expression 

The first evidence that that ATRX regulates the expression of particular genes was the 

observation that ATR-X patient erythrocytes were severely depleted of α-globin 

transcripts (leading to α-thalassaemia), despite the presence of a normal α-globin locus, 

and normal expression from the highly related β-globin locus (Wilkie et al., 1990).  The 

α- and β- globin genes, although related, are found within very distinct genomic 

environments.  The α-globin cluster is found in a GC (Guanine-Cytosine) rich 

subtelomeric region with a high density of CpG islands and G-rich tandem repeats, 

suggesting that ATRX might regulate gene expression by targeting specific chromatin 

environments.  Recently it was shown that ATRX is enriched at many GC rich regions of 

the human and mouse genome, including G-rich telomeric (TTAGGG)n repeats, 

subtelomeric TAR1 repeats, and CpG islands (Law et al., 2010). Interestingly, many of 

these elements are associated with variable nucleotide tandem repeat elements (VNTRs), 

and are predicted to adopt unusual G-quadruplex (G4) structures under physiological 

conditions (Lipps and Rhodes, 2009).  These non-β G4 DNA conformations are likely to 

form once the DNA becomes single stranded, such as during DNA replication or 

transcription, and may consequently interfere with these processes through stochastic 

inhibition.  It was recently shown that ATRX can bind G4 DNA structures in vitro, and it 

has been proposed that under physiological conditions ATRX may associate with, and 

resolve these structures in different genomic contexts to facilitate gene transcription, 

DNA replication, and DNA repair (Law et al., 2010).  Indeed it is now known that the α-
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globin cluster is associated with a VNTR, and that the α-globin downregulation observed 

in ATR-X patients is proportional to the size of the VNTR associated with the α-globin 

locus (Law et al., 2010), providing a possible mechanism explaining the variable degrees 

of α-thalassaemia seen in individuals with identical ATRX mutations. 

To further examine the role of ATRX in transcriptional regulation of gene expression, 

microarray studies on ATRX-deficient mouse brain tissue revealed that a number of 

imprinted genes are upregulated in the absence of ATRX, including the H19 gene (Levy 

et al., 2008; Kernohan et al., 2010).  Imprinted genes are expressed from parental-specific 

(maternal/paternal) alleles, determined by the differential methylation of regulatory 

elements (DMRs).  The H19/Igf2 imprinted domain contains several DMRs, including 

one 2 kb upstream of H19 that acts as an imprinting control region (ICR).  The H19 ICR 

is methylated on the silent paternal allele in many tissues, including the brain (Ferguson-

Smith et al., 1993; Bartolomei et al., 1993).  It was found that ATRX binds to the 

maternal H19 ICR and is required to recruit the proteins MeCP2 and cohesin to this site 

(Kernohan et al., 2010).  Interestingly DNA methylation at the maternal H19/Igf2 ICR 

was unchanged in the ATRX-deficient cells, but there was increased acetylation of 

histone H3 and H4 (H3Ac and H4Ac), markers of open chromatin, indicating that ATRX 

is required for normal epigenetic regulation of specific imprinted loci.  Therefor, ATRX 

can function as a transcriptional regulator of a subset of genes. 

1.2.12 ATRX Dosage is Critical for Normal Development of the 
Mouse Brain 

The study of ATRX function in mammalian development has relied exclusively on the 

mouse model system.  To date, conventional zygotic-null Atrx mice have proven 

impossible to obtain, hindering traditional reverse genetic approaches to study global 

protein function.  To circumvent this limitation, conditional models of Atrx inactivation 

have been developed that rely on the Cre recombinase-loxP (Cre-lox) mediated DNA 

recombination system to induce tissue- and stage-specific Atrx null alleles (Bérubé et al., 

2005; Garrick et al., 2006; Ritchie et al., 2008; Seah et al., 2008; Levy et al., 2008; 

Medina et al., 2009; Solomon et al., 2009).  The Cre recombinase enzyme is a type I 

topoisomerase from P1 bacteriophage that catalyzes site-specific DNA recombination, 
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and has been used extensively in the field of molecular genetics as a tool to modify 

chromosomal DNA sequences.  The enzyme acts on the 34 bp loxP DNA sequence, 

irreversibly fusing two loxP sites together while excising the intervening DNA.   

To apply the Cre-lox system in the study of Atrx function during development, an Atrx 

allele with loxP sites flanking exon 18 (AtrxloxP) has been generated, and a mouse line has 

been established using targeted recombination that carries this allele at the endogenous 

Atrx locus (as either heterozygous or homozygous) without any deleterious effects 

(Bérubé et al., 2005).  These AtrxloxP female mice can be mated with male mice carrying 

the Cre recombinase gene to produce offspring carrying both the AtrxloxP and Cre alleles.  

The expression of Cre in the presence of the AtrxloxP allele leads to the recombination of 

the loxP sites flanking Atrx exon 18 and results in the loss of full length ATRX 

expression via mRNA truncation and destabilization, yielding no detectable full-length 

protein, while retaining normal ATRXt expression (Bérubé et al., 2005).  Selectivity of 

the Cre mediated inactivation of ATRX has been achieved by using tissue- or stage-

specific promoters to drive Cre expression, either by transgenesis of a full expression 

cassette or targeted knock-in of the Cre coding sequence (CDS) at a specific gene locus 

(Bérubé et al., 2005; Garrick et al., 2006; Ritchie et al., 2008; Seah et al., 2008; Levy et 

al., 2008; Medina et al., 2009; Solomon et al., 2009).  Using this system, a model of 

conditional Atrx inactivation beginning at the 8-16 cell stage was found to be lethal 

during embryogenesis due to failure of extraembryonic trophoblast formation (Garrick et 

al., 2006), indicating a fundamental requirement for ATRX during early placental 

development.   

Since inherited ATRX mutations lead to diseases affecting the central nervous system, 

most molecular genetic approaches have focused on disrupting Atrx expression in the 

developing mouse brain using brain-specific gene promoters from the forkhead box G1 

(Foxg1) and Nestin genes to drive Cre expression (Bérubé et al., 2005; Ritchie et al., 

2008; Seah et al., 2008; Levy et al., 2008; Kernohan et al., 2010).  In one extensively 

used model, a targeted knock-in allele of the Cre CDS at the FoxG1 (Foxg1Cre) locus 

results in the expression of Cre between E8/E9 wherever Foxg1 is usually expressed, 

including in the telencephalic neuroepithelium, basal ganglia, olfactory bulbs, and nasal 
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epithelium (Hébert and McConnell, 2000).  When male mice heterozygous for the 

Foxg1Cre allele (Foxg1Cre/+) are crossed with female mice carrying AtrxloxP, the 

inheritance of both alleles in offspring (AtrxFoxg1Cre mice) results in the elimination of full 

length Atrx expression in the tissues where Cre recombinase is expressed, and all tissues 

derived from them (Bérubé et al., 2005).  Importantly, this model eliminates Atrx 

expression in the progenitor cell population of the developing forebrain (the neuronal 

progenitors of the telencephalic neuroepithelium) prior to the onset of neurogenesis, 

resulting in the complete loss of Atrx expression in nearly all of the cells of the ensuing 

forebrain.  The postnatal AtrxFoxg1Cre (also referred to as Atrx-null) forebrain is 

characterized by increased levels of neuronal apoptosis, cortical hypocellularity, and 

decreased cortical and hippocampal volume at birth (Bérubé et al., 2005).  Interestingly, 

rescue of neuronal cell death using a p53-null background only partially rescues cortical 

size in the Atrx-null mouse, suggesting that additional mechanisms contribute to the 

hypocellular Atrx-null brain outside of strict cell survival (Seah et al., 2008).  

Furthermore, this model also leads to a reduced birth weight and perinatal lethality in 

AtrxFoxg1Cre offspring, suggesting that Atrx expression in the developing brain is important 

for normal growth and viability.   

Another model of Cre mediated Atrx inactivation in the developing brain has been 

characterized that utilizes Cre expression from a randomly integrated Nestin-Cre 

transgene (AtrxNestinCre mice) (Bérubé et al., 2005).  Nestin expression is specific to the 

neuronal progenitors of the developing forebrain, similar to Foxg1, but expression is 

detected later, resulting in preserved ATRX expression only in the early-born neurons of 

the marginal zone and subplate of the cortical plate (Bérubé et al., 2005).  The cortex of 

AtrxNestinCre mice is hypocellular, however to a lesser extent than AtrxFoxg1Cre mice, 

possibly due to the delayed temporal inactivation of the Atrx gene and the retained ATRX 

expression in a subset of neurons (Bérubé et al., 2005). 

To further investigate the role of Atrx in neurodevelopment, a transgenic mouse model of 

Atrx overexpression has also been characterized (Bérubé et al., 2002).  Global 

overexpression of human ATRX cDNA under the control of a CMV enhancer/chicken β-

actin promoter shows growth retardation, neural tube defects, and high incidence of 
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embryonic death.  The embryonic forebrain displays a thickening and disorganization of 

the neuroepithelium and increased cellularity.  Mice that survive into the postnatal period 

display high rates of perinatal death, seizures, craniofacial defects, and abnormal 

behaviour (Bérubé et al., 2002).   

Taken together, these findings indicate that ATRX dosage is essential for normal neuronal 

proliferation and neuron survival, and is a critical determinant of cortical size, however, 

the mechanisms linking ATRX deficiency with abnormal neurodevelopment remain 

largely unknown. 

1.3 Mitotic Cell Division 

Mitotic cell division (Mitosis) is the process whereby a eukaryotic cell separates its 

replicated genome, and other cell constituents, into two genetically identical daughter 

cells.  The primary result of mitosis is the propagation and multiplication of a complete 

genome into a new generation of cells, however in multicellular organisms mitosis also 

generates the diverse cell types produced during development, and is required for tissue 

homeostasis in adult organisms, including mammals.  Disruption of mitotic cell division 

can lead to many diseases in humans, including cancer and mental retardation [reviewed 

in (Thompson et al., 2010) and (Woods et al., 2005)]. 

1.3.1 The Cell Cycle: Overview 

In actively dividing cells, the cell cycle is divided into two major phases, Interphase and 

the Mitotic (M) phase.  Interphase consists of three distinct phases, Gap 1 (G1), Synthesis 

(S), and Gap 2 (G2), while M-phase consists of both mitosis and cytokinesis.  The longest 

stage of the cell cycle is G1, while the cell undergoes protein and organelle synthesis and 

growth.  Prior to the onset of mitosis, the cellular genome is replicated entirely during S 

phase of the cell cycle, followed by a second period of growth and protein synthesis 

during G2 in preparation for cell division.  

1.3.2 The Stages of Mitosis 

Mitosis is categorized into a sequence of specific phases (Prophase, Prometaphase, 

Metaphase, Anaphase, and Telophase), each characterized by specific events that occur 
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within the cell at the microscopic level.  Mitotic initiation and progression are tightly 

regulated by a number of signaling pathways and checkpoints that act to ensure accurate 

transmission of the cellular genome to the daughter cells, including the G2/M DNA 

damage checkpoint and spindle assembly checkpoint (SAC).  

During prophase, the nuclear envelope is disassembled and the chromatin fibers spread 

throughout the nucleus are condensed into compacted mitotic chromosomes.  Nuclear 

envelope breakdown (NEBD) allows access of cytosolic factors, including the mitotic 

spindle and chromosome condensing proteins (the condensin protein complex), to the 

nuclear chromatin.  As prophase proceeds, the mitotic spindle begins to form at the 

centrosomes and the microtubule fibers elongate in search of the proteinaceous 

kinetochores assembled on the chromosomal centromeres.  Once the mitotic spindle has 

captured a kinetochore from each sister chromatid, the replicated chromosome begins to 

move towards the cell equator (or midzone) in preparation for segregation.  The process 

of moving the scattered chromosomes to the midzone is called chromosomes 

congression.  The replicated chromosomes are aligned at the midzone in a bi-orientation, 

with each kinetochore bound by microtubules from opposing spindle poles.  At this point 

the spindle assembly checkpoint (SAC) prevents sister chromatid separation and 

segregation by monitoring the kinetochore attachment to spindle microtubules.  Once the 

SAC is satisfied, the protein complex (cohesin) that prevents sister chromatid dissociation 

is removed, allowing the segregation of one of each sister chromatid towards the 

opposing spindle poles during anaphase.  The polar movement of the sister chromatids is 

facilitated by the shortening of the spindle microtubules.  In addition, microtubules from 

opposing poles push apart through forces exerted by the motor protein kinesin, and 

cortical microtubules pull towards each pole through a dynein mediated force.  During 

telophase the chromosomes decondense due to the removal of chromatin bound 

condensin proteins, and the nuclear lamina reforms around each new diploid complement 

of chromosomes.  The new nuclei, as well as cytosolic components and the plasma 

membrane are terminally partitioned by a membrane fusion event during cytokinesis, the 

final stage of M-phase (discussed below). 
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1.3.3 Centromere Structure and Function 

The centromere is the site of kinetochore assembly during mitosis, and is an essential 

locus on each chromosome that is required for accurate division of genetic material 

(Pidoux and Allshire, 2000).  The kinetochore is a highly proteinaceous structure that 

interacts with the microtubule fibers of the mitotic spindle, allowing the mechanical 

motion of the chromosomes during mitosis.  Dysfunction of the centromere or 

kinetochore can cause chromosome missegregation that can lead to aneuploidy or 

polyploidy, typically rendering the cell inviable or possibly leading to tumorigenesis 

(Weaver and Cleveland, 2005).   

The centromeres of higher eukaryotes form on long stretches of repetitive DNA 

sequences that typically span many hundreds to many thousands of kilobases (kb) (Gieni 

et al., 2008).  Primate centromeres are comprised of arrays of repetitive alpha satellite 

DNA, a repeating unit of 171 base pairs (bp), which occur in higher order repeat units of 

2-16 alpha-satellite monomers arranged in tandem to form arrays ranging from 200-5,000 

kb (Schueler et al., 2001).  In the mouse, Mus musculus domesticus, centromeric DNA is 

composed of two distinct repetitive DNA sequences, the minor satellite DNA that is 

found in the centromere and the major satellite DNA, which is located pericentrically 

(Choo, 1997).  Minor satellite units are 120 bp long and span ~600 kb of genomic DNA, 

while the major satellite units are 234 bp long and span ~6 megabases (mb).  Primate 

alpha satellite repeat monomers show DNA sequence variation of up to 60% around a 

common consensus sequence throughout the entire genome, and centromeric DNA 

sequences between species are highly divergent, suggesting that DNA sequence alone 

may not specify centromere function (Henikoff et al., 2001).  Although the DNA 

sequences of eukaryotic centromeres vary widely, they are all commonly enriched with 

nucleosomes containing the histone 3 variant centromeric protein A (CENP-A) 

(Earnshaw and Migeon, 1985; Palmer et al., 1991; Meluh et al., 1998; Henikoff et al., 

2000; Sullivan, 2001; Oegema et al., 2001).  The assembly of a functional kinetochore 

depends on the centromeric enrichment of CENP-A containing nucleosomes, highlighting 

the importance of chromatin composition in centromere specification.  However, CENP-

A alone is not sufficient for centromere specification and kinetochore assembly (Van 
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Hooser et al., 2001).  Because of this, it is now believed that epigenetic mechanisms may 

in fact be the primary means of centromere specification rather than DNA sequence.   

1.3.4 Pericentromeric Heterochromatin and Chromatid Cohesion 

The centromere is flanked on each side by constitutively condensed regions of chromatin 

known as pericentromeric heterochromatin (Sullivan, 2001).  Rather than being 

nonfunctional blocks of silent condensed chromatin, these regions are in fact essential for 

centromere specification and contribute to sister chromatid cohesion and condensation 

during mitosis (Hendzel et al., 1997; Bernard et al., 2001).  Pericentromeric regions are 

enriched with specific repressive epigenetic marks, including methylation of histone H3 

at lysine 9 (H3K9me2 and H3K9me3) and histone H4 at lysine 20 (H4K20me3), and 

enrichment of heterochromatic factors including Heterochromatin Protein 1 (HP1, the 

homolog of yeast Swi6).  Recruitment of HP1 to pericentromeric chromatin depends on 

the interaction of its chromodomain with the H3K9me3 modification, which is catalyzed 

by the histone methyltransferase enzyme Suv39h1 (Lachner et al., 2001).  In turn, HP1 

recruits the DNA methyltransferase 3b (DNMT3b), which methylates the cytosine (C) 

residues of cytosine-guanine (G) dinucleotides (CpG), leading to silencing and 

heterochromatinzation of pericentromeric DNA.  These marks serve to maintain the 

condensed structure of the pericentric chromatin and maintain chromatid cohesion 

through recruitment of the cohesin protein complex (Nonaka et al., 2002; Amor et al., 

2004).  HP1 proteins are an integral component of condensed chromatin at pericentric 

regions, and loss of HP1 or Swi6 leads to loss of heterochromatin, centromeric instability 

and mitotic defects (Ekwall et al., 1996; Amor et al., 2004).  Interestingly, HP1α has been 

shown to recruit ATRX to PCH in mESCs (Kourmouli et al., 2005), suggesting a specific 

function for ATRX at this genomic locus.  Supporting this hypothesis, a growing number 

of chromatin remodeling enzymes have been found to maintain the structural integrity of 

PCH, with deficiencies leading to mitotic abnormalities (Lejeune et al., 2007; Bourgo et 

al., 2009). 

Chromatid cohesion is achieved through the recruitment of the ring-shaped cohesin 

complex, a protein tetramer that is thought to function by topologically encircling sister 

chromatids, preventing their dissociation during the early stages of mitosis (Hirano, 2005; 
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Nasmyth, 2005).  The cohesin complex contains four core subunits: two subunits of the 

structural maintenance of chromosomes (SMC) protein family, Smc1 and Smc3, the 

kleisin family protein Rad21 and the accessory subunit SA1.  At pericentromeric 

heterochromatin, HP1 recruits the cohesin subunit Rad21.  Loss of HP1, and thus PCH 

integrity, results in abnormal chromosome segregation during mitosis (Taddei et al., 

2001), premature loss of sister chromatid cohesion, and aneuploidy (Inoue et al., 2008).  

Therefore, the proper association of cohesin with pericentromeric regions is essential for 

normal mitotic cell division. 

Recently it was discovered that RNA is an essential component of constitutive 

pericentromeric heterochromatin (Maison et al., 2002; Muchardt et al., 2002).  In the 

fission yeast S. pombe, small double stranded RNA (dsRNA) generated by an RNAi-

dependent mechanism is involved in the establishment and maintenance of 

heterochromatic regions (Reinhart and Bartel, 2002; Volpe et al., 2002; Grewal and 

Moazed, 2003; Ekwall, 2004; Schramke and Allshire, 2004).  Surprisingly, these small 

dsRNAs are encoded by the repetitive pericentromeric regions that were previously 

thought to have been transcriptionally silent (Grewal and Elgin, 2007).  Mutants for 

components of the RNAi machinery, Argonaute (Ago1), Dicer (Dcr1) and RNA-

dependent RNA polymerase (Rdp1) show loss of pericentric heterochromatin and gene 

silencing, loss of H3K9me3 and hpSwi6hp1 (the S. pombe homolog of mammalian HP1) 

enrichment and mitotic defects (Volpe et al., 2002; Provost et al., 2002; Hall et al., 2003).  

Because spSwi6hp1 contains a chromodomain with RNA binding properties, it is believed 

that the siRNAs produced by Dicer are used to target Swi6 to pericentric regions to 

promote heterochromatinization.  Transcripts have now been detected from 

pericentromeric sequences throughout different stages of mammalian development, 

during cellular differentiation, proliferation, senescence, and adaptation to environmental 

stress (Jolly et al., 1997; Denegri et al., 2002; Jolly et al., 2004; Eymery et al., 2010), 

however their role in heterochromatin formation is less clear. 

1.3.5 Mitotic Checkpoints 

Mitotic entry is ultimately controlled by the G2 DNA-damage checkpoint, which acts as a 

surveillance mechanism to ensure genomic integrity prior to cell division.  Lesions of 
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DNA damage activate the PI3K (phosphoinositide 3-kinase)-related protein kinases ATM 

and ATR, which phosphorylate and activate the CHK1/CHK2 effector kinases [reviewed 

in (Chen et al., 2003)].  Active CHK1/CHK2 phosphorylate and inactivate CDC25C, 

preventing dephosphorylation and activation of cyclin B1-CDK1.  Other signaling 

pathways are critical for the G2 DNA-damage checkpoint, including the MAPKAPK2 

[MAPKAP (MAPK-activated protein) kinase-2] and JNK (c-Jun N-terminal kinase) 

pathways which act through the phosphorylation and inactivation of CDC25B.  Mitosis is 

initiated by the activation of the M-phase promoting factor (MPF), a heterodimer of 

cyclin B1-CDK1 (cyclin-dependent kinase 1).  Activation of the MPF is achieved by 

PLK1 (polo-like kinase 1)-mediated phosphorylation of cyclin B1 and CDC25 

phosphatase-mediated dephosphorylation of CDK1, which function to retain the MPF in 

the nucleus, and activate its kinase activity respectively [Reviewed in (Stark and Taylor, 

2006)].  The MPF is a Serine/Threonine (Ser/Thr) protein kinase with many substrates 

involved in mitotic initiation and progression, including nuclear lamins, condensins, 

microtubule associated proteins, and histones.    

The separation of sister chromatids during anaphase is blocked by the spindle assembly 

checkpoint (SAC), which functions to ensure the accurate segregation of chromosomes 

during mitosis (Musacchio and Salmon, 2007; Cheeseman and Desai, 2008).  To achieve 

this, the checkpoint blocks chromosome segregation until every kinetochore has been 

correctly bound by spindle microtubules.  The mechanism governing this checkpoint is 

believed to rely on diffusible signaling emanating from unattached kinetochores that 

target Cdc20, an essential activator of the anaphase-promoting complex/cyclosome 

(APC/C).  Prior to anaphase, Mad2 (mitotic-arrested deficient), BubR1 (budding 

uninhibited by benzimidazole), Bub3 and Cdc20 itself are assembled into the mitotic 

checkpoint complex (MCC) at the kinetochore.  The MCC is diffusible throughout the 

cytoplasm, and binds the anaphase promoting complex/cyclosome (APC/C), preventing 

APC/C activation by Cdc20.  This prevents cells from entering anaphase by inhibiting the 

ubiquitination and destruction of cyclin B and securin by Cdc20 dependent activation of 

the APC/C ubiquitin ligase (Musacchio and Salmon, 2007).  Securin prevents anaphase 

onset by binding and sequestering the cysteine protease separase, which, when active, can 

target and cleave the cohesin subunit Rad21, opening the cohesin ring and allowing sister 
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chromatid separation (Sun et al., 2009).  Defects in the SAC can lead to chromosome 

non-disjunction and aneuploidy due to premature anaphase onset without chromosome 

biorientation (Fang and Zhang, 2011).  

1.3.6 Cytokinesis 

Cytokinesis is the final stage of the mitotic process that culminates in a membrane-fusion 

event that produces two physically distinct and genetically identical daughter cells, each 

possessing a diploid (2N) complement of chromosomes.  Following the segregation of 

the replicated sister chromosomes to the opposing poles of the mitotic cell, the two 

diploid genomes, along with a complement of organelles, cytosolic factors, and plasma 

membrane components, are physically partitioned into two discrete and fully functional 

cells. 

The first major step in cytokinesis is the accurate placement and ingression of the 

actomyosin ring, ensuring that the segregated genomes are properly inherited by the two 

daughter cells.  Cleavage furrow ingression involves the contractile activity of the 

actomyosin ring, made of the actin motor protein non-muscle myosin II and a network of 

cortical actin filaments.  This ring assembles at the equatorial cell cortex on the inner 

surface of the plasma membrane, and contracts in due to ATP dependent myosin II 

activity in response to the active form of the small GTPase RhoA, which is enriched in a 

narrow zone on the cell cortex where the future cleavage furrow will form (Bement et al., 

2005).  To establish this precise domain of active RhoA the mitotic spindle positions 

upstream RhoA activators, the GDP-GTP exchange factor (GEF) ECT2/Pebble, and the 

GTPase-activating protein (GAP) MgcRacGAP/CYK-4/RacGAP50C at the central 

spindle (Somers and Saint, 2003; Piekny et al., 2005).  Active RhoA in turn regulates 

actin polymerization and myosin II activation, promoting the contractile function of the 

actomyosin ring.  The positional signal for cleavage furrow induction is believed to 

emanate from the central spindle, which is the region of overlapping microtubules from 

each spindle pole at the cell equator [Reviewed in (Glotzer, 2004)].   Cleavage furrow 

ingression continues until the actomyosin contractile ring comes within a close proximity 

of the central spindle.  A number of proteins found at the central spindle are critical 

regulators of cytokinesis, either through the regulation of microtubule function, or 
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through discrete signaling pathways.  One such signaling protein is the mitotic kinase 

PLK1.  At the midzone, Plk1 phosphorylates a number of substrates, including the 

kinesin microtubule motor proteins MKLP2 and the dynein component NudC (Zhou et 

al., 2003; Neef et al., 2003).  This phosphorylation is essential for the normal completion 

of cytokinesis, and overexpression of dominant negative Plk1 leads to cytokinetic failure 

and multinucleation.  Plk1 is also required for cleavage furrow ingression by regulating 

the localization of RhoA to the cleavage furrow cortex (Petronczki et al., 2007; Brennan 

et al., 2007).  The actomyosin ring however cannot continue ingressing and cleave the 

cells in two, rather the dense network of microtubules that were the central spindle are 

condensed into the cytokinetic midbody, an intercellular bridge structure required for the 

final stages of cytokinesis [Reviewed in (Eggert et al., 2006)].  Proteomic analysis of 

midbodies has identified over a hundred different proteins, many of which have 

subsequently been shown to be essential for abscission (Skop et al., 2004). 

The final step in cytokinesis is a membrane abscission event that yields two physically 

independent cells, and involves poorly understood protein degradation pathways and 

plasma membrane vesicle trafficking. Membrane vesicles accumulate in the cleavage 

furrow and intercellular bridge, and key membrane trafficking proteins, including 

SNAREs [SNAP (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein) 

receptors], dynamin, and clathrin, localize to the cleavage furrow and intercellular bridge 

[Reviewed in (Neto et al., 2011)].  Inhibition of the midbody-localized membrane vesicle 

transport proteins (the t-SNARE/v-SNARE pair syntaxin 2 and endobrevin/VAMP-8) by 

dominant-negative overexpression blocks the completion of cytokinesis in mammalian 

cells, but does not affect earlier events such as cleavage furrow ingression (Low et al., 

2003), highlighting the importance of membrane trafficking in the terminal stages of 

cytokinesis. One view of membrane trafficking in this context may be to ensure delivery 

of key components to the midbody in the correct temporal sequence.  An alternative role 

for vesicle accumulation in the midbody prior to abscission is to deliver additional 

membrane area, such that upon fusion with each other and the PM there is a thinning and 

extension of the intercellular bridge (Neto et al., 2011).   
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Completion of cytokinesis is also intimately linked with prior events in the mitotic cycle.  

One well-documented cause of cytokinetic failure is the presence of chromosome bridges 

spanning the cytoplasmic bridge during cytokinesis (Shi and King, 2005). These bridges 

are believed to be a consequence of earlier mitotic abnormalities, including chromosome 

fusions or chromosome misalignment and nondisjunction, which often result in DNA 

damage, aneuploidy or tetraploidy (Shi and King, 2005).  It is thought that the cytokinetic 

block in these cases is due to genoprotective pathways that detect chromosome 

missegregation and DNA damage and prevent the completion of cytokinesis by blocking 

and reversing cleavage furrow ingression (Tutt et al., 1999; Lin et al., 2003b; Daniels et 

al., 2004; Meng et al., 2007). 

1.4 Mammalian Cerebral Cortical Development 

1.4.1 The Mammalian Central Nervous System 

The mammalian central nervous system (CNS) comprises the brain and spinal cord, and 

functions to integrate sensory information from the peripheral nervous system (PNS), and 

coordinate the activity of the body.  Mammalian neural development begins with the 

formation of the neural tube, the precursor to the brain and spinal cord.  In the mouse, this 

process (known as neurulation) begins at embryonic day 8.5 (E8.5) and ends at E11.5 and 

involves the invagination, folding, and closure of a specialized strip of dorsal ectoderm 

called the neural plate [Reviewed in (Colas and Schoenwolf, 2001)].  The ensuing neural 

tube is then regionalized and subdivided, with the brain forming from the anterior-most 

region.  The brain is subdivided along the anterior-posterior axis into the prosencephalon 

(forebrain) and brain stem (midbrain & hindbrain).  The anterior most segment of the 

forebrain becomes the embryonic telencephalon, which eventually develops into the 

cerebrum, containing the striatum, hippocampus, and cerebral cortex of the mature brain.  

The cerebrum is the most complex region of the adult mammalian brain, and is 

responsible for many higher-order cognitive functions, including motor coordination, 

conscious thought, learning, memory, emotions, speech and language in humans.  Not 

surprisingly, pathologies affecting the cerebrum are associated with cognitive and 

behavioural deficits, and intellectual disability (Vaillend et al., 2008).  
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1.4.2 Cortical Neurogenesis 

Neurogenesis is the process of neuron production by neuronal progenitor cells.  In the 

mouse, the neurogenic interval is the period during embryonic development where 

differentiated cortical neurons are being produced that begins at E11 and terminates at 

E17 (Takahashi et al., 1995). 

The neural tube begins as a single pseudostratified layer of cells known as the 

neuroepithelium, which composed of neuroepithelial cells, the progenitors of every 

neuron in the adult CNS.  In the dorsal telencephalon, where the cerebral cortex is 

formed, the neuroepithelium is known as the ventricular zone (VZ).  Prior to 

neurogenesis the neuroepithelial progenitors proliferate through symmetric cell divisions 

to expand the population of progenitor cells.  During the early stages of neurogenesis, the 

neuroepithelial cells of the VZ begin to divide asymmetrically, producing the earliest 

born neurons of the cortex, and two other progenitor populations: radial glial cells, and 

apical progenitors.  Radial glial cells are distinguished from neuroepithelial cells by the 

expression of an array of glial-specific markers, but share many properties, including the 

undertaking of cell division at the ventricular surface (Kriegstein and Götz, 2003; Huttner 

and Kosodo, 2005).  Radial glial cells in turn give rise to most of the projection neurons 

of the cerebral cortex, either directly through asymmetric cell division, or indirectly 

through the generation of another type of progenitor cell, the basal progenitors (BPs).  

Basal progenitors are distinguished from apical progenitors (neuroepithelial cells and 

radial glia) because they undergo cell division in the sub-ventricular zone (SVZ) on the 

basal side of the VZ and typically divide symmetrically, only once, producing two 

neurons and thus amplifying the neuronal output of the radial glia (Noctor et al., 2004; 

Haubensak et al., 2004; Miyata et al., 2004).  The mature mammalian cerebral cortex is 

composed of six morphologically distinct cellular layers (I, II, III, IV, V, VI), each 

populated by neurons that project to specific regions within the cortex, midbrain, and 

spinal cord.  This lamination is achieved through the temporal regulation of neuron 

production in the two germinal zones, the VZ and SVZ, and their controlled migration of 

neurons to specific regions depending on the developmental stage.  The earliest born 

post-mitotic neurons migrate to the deepest cortical layers and later-arising neurons 
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migrate past them to sequentially more superficial layers in a stereotyped ‘inside-out’ 

pattern (Sidman and Rakic, 1973; Caviness, 1982).  

1.4.3 The Mode of Cell Division Regulates Neurogenesis in the 
Developing Cerebral Cortex 

The apical, but not basal progenitor cells are highly polarized along their apicobasal axis, 

and this polarity is the basis of their symmetric or asymmetric cell division (Figure 1-2; 

Figure 1-3) (Götz and Huttner, 2005; Farkas and Huttner, 2008).  It has been shown that 

the angle of progenitor cell division relative to the apical cell surface could largely 

predict the outcome of the cell division, either proliferative or neurogenic (Kosodo et al., 

2004).  Because of this, it has been proposed that apical progenitor cell fate is determined 

primarily by the differential inheritance of specific cellular constituents to the daughter 

cells (Figure 1-3) (Wodarz and Huttner, 2003; Götz and Huttner, 2005; Huttner and 

Kosodo, 2005).  The apical plasma membrane has been shown to serve such a role: in 

predicting the cell fate outcome of apical progenitor cell divisions, where inheritance of 

the apical membrane correlates with the preservation of progenitor cell identity (Kosodo 

et al., 2004).  Although the apical plasma membrane of the apical progenitor cells 

represents only a tiny fraction of the total cell surface, it is enriched for unique proteins 

not found on the basolateral membrane.  The PAR-3 (partitioning defective 3 homolog) 

protein is found at the apical membrane, and compromising PAR-3 expression prevents 

progenitor self-renewal by causing both daughter cells to exit the cycle and become 

neurogenic (Costa et al., 2008).  Another candidate protein is Prominin-1, a 

transmembrane protein expressed in the apical plasma membrane of many somatic stem 

cells, including neuroepithelial progenitors and radial glia (Corbeil et al., 2001).  The 

protein interacts with membrane cholesterol, and it has been proposed that apical 

neuronal progenitor proliferation may involve a poorly understood, cholesterol-dependent 

mechanism at the apical membrane (Götz and Huttner, 2005).  Ultimately, the 

mechanisms by which these and other potential determinants promote a progenitor-cell 

fate in neuroepithelial cells are not currently established.  
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Figure 1-2.  The cell biological features of apical and basal progenitors during cell 

division. 

The aspects of apical neuronal progenitor cell polarity compared to basal progenitor cells 

are illustrated (see legend for details).  Importantly, the apical neuronal progenitors are 

polarized and possess a distinct apical plasma membrane.  In contrast, basal neuronal 

progenitors do not show this type of apical membrane polarization.  This difference in 

membrane organization between these two types of neuronal progenitor cells is thought 

to influence the symmetry of mitotic cell division and the fate of daughter cells (see Fig 

1-3).   

Reproduced with permission from Farkas et al. (2008) Curr Opin Cell Biol 20:707-715.  
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Symmetric self-renewing divisions predominate early during neurogenesis and ultimately 

expand the progenitor cell population, while asymmetric differentiative divisions become 

more frequent as neurogenesis proceeds.  A disruption in the balance and timing of 

neurogenic versus proliferative cell divisions can have dramatic results on neuronal 

output (Caviness et al., 2003).  For example, a premature initiation of neurogenic 

divisions will initially increase the number of early born neurons in the deep cortical 

layers at the expense of the superficial layers, and result in a smaller cortex.  In contrast, a 

delay in the onset of neurogenesis can lead to the opposite effect (Caviness et al., 2003).  

A number of centrosomal proteins have been implicated in the regulation of cortical size 

through control of mitotic spindle angle during apical progenitor cell division.  Mutations 

in the human homologs of a number of these centrosomal proteins are associated with a 

neurodevelopmental disorder called autosomal recessive primary microcephaly (MCPH) 

(Woods et al., 2005).  Microcephaly is the clinical finding of reduced skull circumference 

(which closely correlates with reduced brain volume) three standard deviations below the 

mean (-3SD) for age and gender (Aicardi, 1998), and is often associated with mental 

retardation, with the severity microcephaly being strongly correlated with the risk and 

severity of mental retardation (Dolk, 1991).   Individuals with MCPH have intellectual 

disability, and show a reduction of brain growth in utero, with the cortex being the most 

affected, however overall brain structure is normal (Roberts et al., 2002).  Primary 

microcephaly is generally non-progressive and is thought to result from defective 

neurogenic mitosis during development, leading to a reduction in the number of neurons 

(Dobyns, 2002; Woods et al., 2005).  Conversely, secondary microcephaly, which 

develops after birth, is believed to be caused by processes such as high rates of pathologic 

apoptosis, proliferation and patterning abnormalities, migration defects, disturbance of 

extracellular matrix integrity, and defects of synaptogenesis, and is often a progressive 

neurodegenerative condition (Woods et al., 2005).  Currently, four MCPH related genes 

have now been identified: autosomal recessive primary microcephaly 1 

(MCPH1/Microcephalin), abnormal spindle-like microcephaly associated 
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Figure 1-3.  A comparison of symmetric and asymmetric cell division of 

neuroepithelial and radial glial cells. 

The relationship between cell polarity and the equal or unequal partitioning of the apical 

membrane upon (a) symmetric or (b, c) asymmetric cell division, is shown.  (a) A vertical 

cleavage plane results in the partitioning of the apical membrane to both daughter cells 

and symmetric, self renewing cell division.  (b, c) Horizontal cleavage planes result in the 

asymmetric inheritance of the apical membrane by a single daughter cells and leading to 

neurogenic differentiation of the other.  

Reproduced with permission from Götz and Huttner (2005) Nat Rev Mol Cell Biol (6): 

777-788. 
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(MCPH5/ASPM), cyclin-dependent kinase 5 regulatory subunit-associated protein 2 

(MCPH3/CDK5RAP2) and centromere protein J (MCPH6/CENPJ).  All four MCPH 

genes are expressed in the neuroepithelium of the developing brain, three are centrosomal 

components (ASPM, CENPJ, CDK5RAP2), and one (Microcephalin) is associated with 

chromatin, which has lead to the hypothesis that MCPH is primarily a result of the 

disruption of neurogenic mitosis (Jackson et al., 2002; Bond et al., 2003; Bond et al., 

2005; Woods et al., 2005).  Knockdown of ASPM expression using in vivo RNAi 

electroporation in the developing embryonic mouse forebrain increases the number of 

asymmetrically oriented mitotic progenitor cells which in turn correlates with an increase 

of non-progenitor daughter cell fate (Fish et al., 2006).  Interestingly, ASPM is naturally 

downregulated by apical neuronal progenitors undergoing asymmetric neurogenic 

divisions, suggesting that regulation of ASPM expression is a mechanism used to govern 

the balance and timing of neurogenetic cell divisions (Fish et al., 2006).  

Another MCPH-associated gene, cyclin-dependent kinase 5 regulatory subunits 2 

(CDK5RAP2), encodes a centrosomal protein with a role in γ-tubulin ring complex (γ-

TuRC) recruitment and microtubule nucleation at the centrosome (Fong et al., 2008).  

The cortex of the CDK5RAP2 null mouse is severely dysmorphic, with cortical 

hypoplasia, and reduction in brain and hippocampal size (Lizarraga et al., 2010).  The 

cortex is characterized by a loss of later born superficial layer (II/III) neurons and an 

increase in early born neurons of the deep cortical layer (VI).  The apical progenitors 

show defects in mitotic spindle positioning, with an increase in the proportion of 

horizontal/asymmetric cell divisions and a premature depletion of the neuronal progenitor 

cell population.  

Cytokinesis has also been found to influence the cellular control of cortical development.  

Mutations in the citron kinase (CitK) gene cause microcephaly in mice and rats, and the 

mutant cortex is characterized by binucleated cells and massive apoptosis in the 

proliferative zones of the embryonic cortex (Di Cunto et al., 2000; Sarkisian et al., 2002).  

Citron kinase is localized to the cytokinetic midzone and cleavage furrow during 

anaphase and telophase and then translocates to the cytokinetic midbody during 
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cytokinesis (Di Cunto et al., 1998; Eda et al., 2001).  Furthermore, overexpression of 

truncated mutant isoforms causes erratic cytokinetic behaviour and cytokinesis failure in 

HeLa cells (Madaule et al., 2000).  Taken together, mitotic cell division is clearly a 

critical regulator of brain size and neurogenesis through the partitioning of cell fate 

determinants and maintenance of cell viability. 

1.5 Thesis Overview 

The objective of the work presented in this thesis was to determine whether the chromatin 

remodeling protein ATRX is required for normal mitotic cell division and whether this 

requirement is relevant in the proliferating cells of the developing embryonic mouse 

brain. 

1.5.1 Rationale and Hypothesis 

Although ATRX is a known transcriptional regulator, many studies have confirmed its 

enrichment at the highly condensed, gene-poor region of PCH flanking the centromere.  

In most cells ATRX is recruited to PCH by HP1, an integral component of PCH that is 

required for the epigenetic maintenance of heterochromatin.  I therefore hypothesized that 

ATRX is an essential component of PCH, and a deficiency in ATRX would lead to 

mitotic abnormalities and chromosome alignment and segregation errors (Chapter two 

and three).  The mitotic defects observed in ATRX-deficient HeLa cells inspired a second 

hypothesis, that this mitotic requirement might also exist in the neuroepithelial 

progenitors of the developing mouse forebrain, and may be relevant to the 

neurodevelopmental abnormalities in the Atrx-null mouse (Chapter four).  

1.5.2 Chapter Two: Loss of ATRX Leads to Chromosome 
Cohesion and Congression Defects 

This initial study aimed to determine the possible mitotic requirement for ATRX in 

mammalian somatic cells.  At the time this study was conceived and initiated, a 

requirement for ATRX in meiotic chromosome alignment had recently been shown in 

2004 (De La Fuente et al., 2004), establishing a proof of principle for this study.  To 

achieve this aim, HeLa cells were depleted of ATRX using different RNAi strategies, and 
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scored for mitotic abnormalities using techniques for both fixed and live-cell imaging.  

This study showed not only a mitotic disruption, but it revealed that sister chromatids 

from mitotic ATRX-depleted HeLa cells had greatly reduced centromeric cohesion, 

identifying a particular mechanism that might underlie the observed mitotic defects.  

Furthermore I found evidence of mitotic defects in the neuroepithelial progenitors in the 

developing Atrx-null mouse cortex in vivo, suggesting that this mitotic requirement exists 

in a biologically relevant tissue. 

1.5.3 Chapter Three: Cytokinetic Abnormalities and 
Multinucleation Induced by ATRX Depletion 

Chapter three is an extension of the study conducted in chapter two.  Although mitotic 

chromosome congression, alignment, and segregation were disrupted in the ATRX-

depleted HeLa cells, live cell imaging revealed that these cells also had dramatically 

prolonged cytokinesis, which more frequently failed and produced binucleated cells.  

Assessment of cytokinetic midbody structure in these cells using immunofluorescent 

staining revealed that ATRX does not influence the formation or integrity of the 

cytokinetic midbody.  This study suggests that a deficiency in ATRX leads to cytokinetic 

abnormalities and failure through an indirect mechanism, likely related to chromosome 

nondisjunction. 

1.5.4 Chapter Four:  ATRX Regulates Cortical Development 
Through Control of Neuronal Progenitor Cell Division 

The final aspect of my studies aimed to identify whether ATRX-dependent mitotic cell 

division contributed to the neurodevelopmental phenotype of the Atrx-null mouse.  Using 

a combination of primary cell culture and histological sectioning, I confirmed that 

neuronal progenitors from the Atrx-null forebrain exhibited mitotic defects identical to 

those observed in the ATRX-depleted human cells, including chromosome misalignment 

and missegregation.  Furthermore, these cells were more often asymmetrically oriented 

during cell division in vivo and this correlated with a predictably altered neuronal output 

in the postnatal brain, characterized by a depletion of the late developmental stage 

neuronal progenitors and late born cortical neurons.  The work presented in this thesis 
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represent the first studies to show a mitotic requirement for the ATRX protein, and the 

first to link such a requirement to a specific neurogenic role for the Atrx gene. 
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Chapter 2  

2 Loss of ATRX Leads to Chromosome Cohesion and 
Congression Defects 

In 2005, prior to undertaking the research presented in this chapter, the ATRX protein 

had been studied almost exclusively in the context of gene regulation.  However in 1999 

it was surprisingly reported that ATRX is highly enriched at PCH in mouse and human 

somatic cells (McDowell et al., 1999), and in mouse oocytes in 2004 (De La Fuente et al., 

2004).  The highly condensed domains of PCH on each chromosome are devoid of 

traditional mRNA producing genes, but are required structurally to ensure the proper 

interaction of the centromere with the mitotic spindle. Subsequently it was reported that 

ATRX was required for normal chromosome alignment on the metaphase II (MII) 

meiotic spindle (De La Fuente et al., 2004), however a similar requirement in somatic 

cells had not yet been reported.  In this chapter I sought to investigate whether ATRX 

was required for normal chromosome alignment during mitotic cell division in human 

and mouse somatic cells. 

This chapter was previously published as (Ritchie et al., 2008).  Permissions for 

reproduction are found in Appendix 1. 

2.1 Introduction 

ATRX is a chromatin-remodeling enzyme implicated in early development of several 

organs, particularly the central nervous system (CNS).   The ATRX protein contains 

conserved domains suggestive of a role in the epigenetic regulation of chromatin 

structure and function, including a plant homeodomain-like zinc finger domain shared 

with de novo methyltransferases (DNMT3A/B, 3L) and a SWI/SNF family ATPase 

domain.  ATRX has the ability to remodel chromatin and displays ATP-dependent 

translocase activity (Xue et al., 2003).  It is highly enriched at pericentromeric 

heterochromatin (PCH) in mouse and human cells (McDowell et al., 1999) and associates 

directly with the chromoshadow domain of heterochromatin protein 1α (HP1α) (Lechner 

et al., 2005). It is also targeted to promyelocytic leukemia nuclear bodies (PML-NBs) by 
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the C-terminal portion of the protein (Bérubé et al., 2008). Atrx loss of function in the 

mouse starting at the 8 to 16 cell stage is embryonic lethal (Garrick et al., 2006), and 

conditional ablation of the full-length ATRX isoform in the mouse forebrain results in 

decreased cortical size at birth (Bérubé et al., 2005).  Although ATRX has been proposed 

to regulate gene transcription, the protein appears to be hyperphosphorylated and highly 

enriched at condensed chromosomes during mitosis in human cells, suggesting an 

additional function during this stage of the cell cycle (Bérubé et al., 2000). 

The faithful segregation of chromosomes during mitosis requires the physical linkage of 

sister chromatids from S-phase until the onset of anaphase.  The ring-shaped cohesin 

multiprotein complex is required for the maintenance of sister chromatid cohesion, and 

plays a role in the proper separation and segregation of sisters during anaphase (Hirano, 

2005).  Cohesin at the chromosomal arms is released during prophase by the Polo and 

Aurora B kinases and the chromatin protein wings apart-like (Wapl) (Sumara et al., 2002; 

Kueng et al., 2006; Gandhi et al., 2006).  Cohesion at pericentromeric heterochromatin is 

protected by the Shugoshin (Sgo) family of proteins and prohibitin 2 (PHB2) and 

consequently persists until all the chromosomes are bi-oriented at the metaphase plate 

(McGuinness et al., 2005; Kitajima et al., 2006; Takata et al., 2007). Only then is the 

spindle checkpoint satisfied, resulting in the activation of the anaphase-promoting 

complex/cyclosome (APC/C) and subsequent cohesin cleavage by the thiol protease 

separase.   

Stable loading of cohesin onto chromatin before DNA replication is mediated by the 

Scc2-Scc4 heterodimer in yeast (Ciosk et al., 2000; Watrin et al., 2006).  Human Scc2, 

known as NIPBL (Delangin), mediates cohesin transfer onto chromatin during S phase 

and, like ATRX, associates with the chromoshadow domain of HP1α (Lechner et al., 

2005).    Chromatin remodeling proteins have been implicated in chromosome cohesion. 

The Sth1 subunit of the yeast RSC chromatin remodeling complex has been shown to 

participate in cohesin loading on chromosomal arms, but not at the centromere (Baetz et 

al., 2004; Huang et al., 2004).  In human cells, the SNF2h/ISWI chromatin remodeling 

protein, a component of several remodeling complexes, was shown to participate in 

cohesin recruitment to specific sites on chromosome arms (Hakimi et al., 2002).   
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ATRX mutations in humans cause mental retardation and microcephaly (Gibbons et al., 

1995; Picketts et al., 1996).   Given that Atrx loss of function in the mouse forebrain 

results in reduced cortical mass (Bérubé et al., 2005) and that the protein becomes 

hyperphosphorylated at the onset of mitosis (Bérubé et al., 2000), we postulated that 

ATRX could have specific functions during mitosis. We now provide evidence that the 

SWI/SNF-like chromatin remodeling protein ATRX is required for normal chromosome 

congression, cohesion and segregation in human cultured cells.  Loss of ATRX in 

neuronal progenitors by Cre/loxP recombination in vivo also resulted in abnormal 

chromosome segregation, as evidenced by the high incidence of micronuclei and 

dispersed chromosomes.  Mitotic dysfunction could induce cell death in the developing 

brain and/or cause a reduction in symmetric cell divisions, therefore reducing the 

progenitor pool.  Either of these scenarios or a combination thereof would be predicted to 

reduce cortical size at birth.  

2.2 Materials and Methods 

2.2.1 Cell Culture and Transfection 

HeLa cells (ATCC) and HeLa-H2B-GFP cells (GM Wahl, The Salk Institute, La Jolla, 

CA 92037) were grown at 37oC with 5% CO2 in Dulbecco’s Modified Eagle’s Medium 

supplemented with 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO).  HeLa-H2B-

GFP growth media was supplemented with 2µg/ml Blasticidin S HCl (Invitrogen, 

Carlsbad, CA) to maintain transgene expression.  For siRNA transfection, cells were 

seeded 24 hours prior to transfection using Lipofectamine 2000 following the 

manufacturer’s instructions (Invitrogen).  The final siRNA concentration used in all 

experiments was 8nM.  In HeLa cells, the transfection efficiency was approximately 90-

95% based on immunofluorescence detection of the ATRX protein isoforms.  For 

population synchronization at G1/S, transfected cells were incubated with hydroxyurea 

(10µM) and released after 16 hours by removal of the drug.   

2.2.2 RNA Interference 

The synthetic oligonucleotides siATRX1 (5’-GAGGAAACCUUCAAUUGUAUU-3’), 

siATRX2 (5’- GCAGAGAAAUUCCUAAAGAUU-3’) and siATRX1 Scrambled (5’-
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GAUUGAAGACUGAUAUCACUU-3’) were obtained from Dharmacon (Lafayette, 

CO).  Control (non-targeting) siRNA duplex was obtained from Sigma.  siRNA duplexes 

were transfected with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

instructions. Mock-transfected samples were treated similarly but without addition of 

siRNA. 

2.2.3 Western Blot Analysis 

Cells were lysed with RIPA buffer [150 mM NaCl, 1 % NP-40, 50 mM Tris pH 8.0, 0.5 

% deoxycholic acid, 0.1 % SDS, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), 0.5 

mM NaF, 0.1 mM Na3VO4, 1 protease inhibitor cocktail tablet (Complete Mini, EDTA-

free, Roche Diagnostics GmbH, Mannheim, Germany)] for 5 min on ice.  Extracts were 

sonicated and quantified using the DC Protein Assay (Bio-Rad, Hercules, CA). Protein 

(20 µg) was resolved on 6 % or 12 % SDS-PAGE and transferred onto nitrocellulose 

membranes (Bio-Rad). The membranes were probed with rabbit α-ATRX H300 (Santa 

Cruz Biotechnology, Santa Cruz, CA), mouse α-ATRX 39f (gift of D.J. Picketts and D. 

Higgs, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, 

UK), followed by appropriate horseradish peroxidase-conjugated secondary antibody 

(Amersham Biosciences, Quebec, 1:5000). After washing, the membrane was incubated 

in ECL before exposure to X-ray film. The membrane was re-probed with mouse α-anti-

tubulin (Sigma; 1:40,000) as a loading control.  

2.2.4 Quantitative Reverse-Transcriptase Polymerase Chain 
Reaction (Q-RT-PCR) Analysis 

Total RNA was isolated using the RNeasy Mini kit (QIAGEN, Valencia, CA).  First-

strand cDNA was synthesized from 3 µg of total RNA using random primers and a 

reverse transcriptase (RT) cocktail containing 5X first strand buffer, 100 mM DTT, 25 

mM dNTPs, RNA guard and Superscript RT.  PCR reactions were performed on a 

Chromo4 Continuous Fluorescence Detector (MJ Research) in the presence of iQTM 

SYBR Green supermix (Bio-Rad) and analyzed with Opticon Monitor 3 and GeneX 

software (Bio-Rad) using the standard curve Ct method of quantification.  Samples were 

amplified as follows: 95 oC for 30 sec, 55 oC for 30 sec, 72 oC for 30 sec. After 30 cycles, 
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a melting curve was generated to visualize amplicon purity.  Standard curves were 

generated for each primer pair using fivefold serial dilutions of control cDNA.  Primer 

efficiency was calculated as %E = [(10-1/slope) – 1]x100, where a desirable slope is –3.32 

and r2>0.99.  All data was normalized GAPDH expression levels.  The primers used for 

Q-RT-PCR were as follows: ATRX-F: 5’-TCCTTGCACACTCATCAGAAGAATC-3’ 

ATRX-R: 5’-CGTGACGATCCTGAAGACTTGG-3’ GAPDH-F: 5’-GAGTCAACGG 

ATTTGGTCGT-3’ GAPDH-R: 5’-GACAAGCTTCCCGTTCTCAG-3’. 

2.2.5 Flow Cytometry 

Exponentially growing cells were harvested, washed with CMF PBS (NaCl 137mM, KCl 

2.7mM, Potassium Phosphate Monobasic 1.5mM, Sodium Phosphate Dibasic 12mM) 

three times and 1.5x106 cells fixed drop wise with 90% ethanol and stored at 4ºC for at 

least 12 hours.  To detect DNA content, cells were washed and stained with propidium 

iodide/RNase staining solution (10µg/ml PI), 250µg/ml RNase A (Sigma) 2% BSA in 

CMF PBS for 30 min at room temperature, followed by overnight incubation at 4oC.  Cell 

populations were analyzed by flow cytometry on a Beckman-Coulter EPICS XL-MCL 

instrument.  Data analysis to determine the proportion of cells in each phase of the cell 

cycle was carried out using the Expo 32 software package (Beckman Coulter). 

2.2.6 Indirect Immunofluorescence Microscopy 

For immunofluorescence detection, cells were fixed with EtOH:MeOH (3:1) up to four 

days following siRNA transfection and incubated with the following primary antibodies:  

α-ATRX H300 antibody (Santa Cruz, 1:200), α-ATRX 39f antibody (D.J. Picketts, 

Ottawa Health Research Institute, Ottawa, Canada; 1:20)  α-alpha tubulin (Sigma, 

1:1500), α-phosphohistone H3(S10) (Upstate, Billerica, MA; 1:200) human α-CREST 

(W. Brinkley, Baylor College of Medicine, Houston, TX; 1:10000)  α-BubR1 (BD 

Transduction Labs, 1:200), α-Bub1 (a gift from S. Taylor, University of Manchester, 

Manchester, UK, M13 9PT; 1:1000), α-CENP-E (Santa Cruz; 1:400), α-CENP-F (S. 

Taylor 1:100), α-HP1α (Upstate, 1:200), α-HP1β (Upstate, 1:200).  Secondary antibodies 

included goat α-rabbit Alexa 594 (1:1500), donkey α-rabbit Alexa 488 (1:1500) goat α-

mouse Alexa 488 (1:1500), goat α-mouse Alexa 594 (1:1500), and goat α-human Alexa 
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647 (1:1500) (Invitrogen).  Coverslips were mounted with Vectashield H-1000 (Vector 

Laboratories). 

2.2.7 Generation of ATRX-depleted Stable Clones 

Pairs of sense 60-mer oligonucleotides corresponding to the 19-mer siATRX1 and 

siATRX2 siRNA target sequences and their reverse complement (underlined sequences) 

were designed that contained 5’ BglII and 3’ HindIII restriction sites to facilitate cloning 

(Integrated DNA Technologies, Inc):.shATRX1 (sense) 5’-GATCCCCGAGGAAACCT 

TCAATTGTATTCAAGAGATACAATTGAAGGTTTCCTCTTTTTA-3’ and shATRX2 

(sense) 5’-GATCCCCGCAGAGAAATTCCTAAAGATTCAAGAGATCTTTAGGAAT 

TTCTCTGCTTTTTA-3’. The oligonucleotides were annealed to complimentary anti-

sense 60-mer oligonucleotides in buffer containing 10mM Tris pH 7.5, 50 mM NaCl, and 

1 mM EDTA at 90ºC for 4 min, followed by 70ºC for 10 min, then step cooled to 37ºC 

for 20 min using a thermocycler (MJ research) and cloned into the pSuper.retro.neo 

plasmid (Oligoengine Inc.) using the Quick Ligation Kit according to manufacturer’s 

instructions (New England Biolabs).  The resulting vectors, designated pSUPER-

shATRX1 and pSUPER-shATRX2, were subsequently sequenced to confirm sequence 

identity.  Exponentially growing HeLa-H2B-GFP were transfected with empty pSuper 

vector or with pSuper-shATRX1 and pSuper-shATRX2 vectors (1µg/ml) using 

Lipofectamine 2000 (Invitrogen).  Two days after transfection, cells were replated at low 

density and selection was applied 24 hours later (800µg/ml Geneticin, GIBCO).  Drug-

resistant colonies were picked and expanded in selection media (400µg/ml Geneticin). 

2.2.8 Time-Lapse and Live-Cell Microscopy 

HeLa-HG, HG-pSuper, HG-shATRX1, or HG-shATRX2 cells were plated on 35mm 

glass bottom tissue culture dishes (Mattek) in DMEM 10% FBS.  After 24h, the media 

was replaced with CO2-independent media (Gibco) supplemented with 10% FBS and 

4mM L-glutamine (Sigma).  For transient experiments, cells were plated and transfected 

and scored 48-72h following transfection.  Cells were imaged using a Leica DMI 6000b 

automated inverted microscope equipped with a live cell stage-mounted environment 

chamber (Neue Biosciences) to maintain the cells at 37°C during imaging.  Phase 
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contrast and fluorescence (GFP) images were captured every 3 min for 10 hours using 

Openlab Software automation (v5.0, Improvision).  To measure mitotic duration, cells 

that initiated mitosis (determined by nuclear envelope breakdown) and re-entered G1 

(nuclear decondensation) within the time frame of the experiment (10 hours) were 

analyzed (n>50).  This analysis did not include cells that were arrested at pro-metaphase 

or that died during the timeframe of the experiment.  To measure the frequency of 

unaligned chromosomes at metaphase, cells were seeded in 35mm culture wells (BD 

Bioscience) in DMEM 10% FBS, and at least 500 metaphase cells were scored per 

sample.  For mitotic spindle checkpoint arrest, HeLa-HG or HG-shATRX1 cells were 

treated with 100ng/ml nocodazole for 16 hours.  Rounded mitotic cells and adherent 

interphase cells were quantified using live cell microscopy (n>1000). 

2.2.9 Fixed Chromosome Spreads 

HeLa cells were transiently transfected with no siRNA duplex (mock), siATRX1 

Scrambled (non-specific control), siATRX1, or siATRX2.  Mitotically arrested cells were 

removed by shake-off 70 hours following transfection and adherent cells were treated 

with 100 ng/ml Karyomax Colcemid (Invitrogen) for 2 hours.  Mitotic cells were then 

isolated and incubated in hypotonic solution (75mM KCl) for 20 minutes, followed by 

fixation in Carnoy’s Fix (3:1 MeOH:AcOH) and stored at -20°C.  Fixed cells were 

dropped onto Fisher Superfrost Plus glass microscope slides and air dried, DNA was 

counterstained with DAPI (100ng/ml) and mounted in Vectashield H-1000 (Vector 

Labs).  For Z-stack imaging, 0.4 µm interval Z-stacks were captured and deconvolved 

using iterative restoration with Volocity imaging software (v4.0 Improvision). 

2.2.10 Measure of Interkinetochore Distances 

To measure interkinetochore distance, mitotic HeLa-HG, HG-pSuper, HG-shATRX1 and 

HG-shATRX2 stable cells were fixed in 3:1 EtOH:MeOH,  the kinetochores were stained 

using the human CREST antibody (1:10,000), and imaged using a 63x 1.4na oil-

immersion objective.  Z-stacks were captured at 0.4µm z-intervals spanning 20µm.  

Kinetochore pairs were connected from the outer edges of the CREST signal and the 

distance measured using Volocity software (v4.0, Improvision).  Only kinetochore pairs 
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in single optical sections that were aligned at the metaphase plate were used to measure 

interkinetochore distances (n≥100). Statistical differences were assessed by analysis of 

variance (ANOVA).  Significant differences in mean interkinetochore distance were 

assessed by Analysis of Variance (ANOVA) and a Tukey’s multiple comparison post hoc 

test.  Differences were considered significant when p<0.05. Statistical analysis was 

performed using Graph Pad Prism (v4.02). 

2.2.11 Kinetochore Microtubule Assay 

HeLa-HG, HG-pSuper, HG-shATRX1, or HG-shATRX2 cells were seeded in 35mm 

dishes (Corning) in 2ml DMEM 10% FBS on 22mm2 glass coverslips (VWR scientific).  

After 48h, the growth media was replaced with ice-cold growth media and the cells were 

incubated on ice for 10 minutes.  The cells were rinsed twice with ice cold PHEM buffer 

(60mM piperazine ethanesulfonic acid, 45mM HEPES, 10mM EGTA, 2mM MgCl2, pH 

6.9), permeabilized with cold 0.5% TritonX-100 in PHEM buffer for 3 minutes, and then 

fixed in cold 3.5% paraformaldehyde in PHEM for 15 minutes.  The coverslips were 

rinsed with PHEM and processed for immunofluorescence staining and microscopy. 

2.2.12 Analysis of Mitotic Cells in the Developing Telencephalon 

The generation of AtrxloxP mice was described previously (Bérubé et al., 2005; Garrick et 

al., 2006) and were obtained from D. Higgs and R. Gibbons (University of Oxford, 

Oxford, UK, OX3 9DS).  Male embryos conditionally deficient for Atrx were obtained by 

crossing homozygous AtrxloxP females to heterozygous Foxg1Cre knock-in male mice and 

embryonic yolk sac DNA from E13.5 embryos were genotyped by PCR as previously 

described (Bérubé et al., 2005).  Midday of the day of vaginal plug discovery was 

considered as embryonic day 0.5. At scheduled times, pregnant females were 

anesthetized by CO2 and sacrificed by cervical dislocation.  Embryos and postnatal brains 

were fixed in 4% paraformaldehyde/phosphate buffered saline (PBS) overnight at 4oC, 

sunk in 30% sucrose in PBS and embedded in 15% sucrose and 50% OCT (Sakura 

Finetek USA Inc.).  Tissue sections were cut at 10 µm thickness and mounted on Fisher 

SuperFrost Plus slides, air dried at room temperature and stored at –80oC. For 

immunofluorescence staining, sections were thawed, rehydrated in PBS for 10 min, 
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counterstained with DAPI and mounted in Vectashield (Vector Laboratories).  

Micronuclei and misaligned chromosomes from the mitotic layer lining the lateral 

ventricle were scored from both hemispheres of brain sections (n=3) in four litter 

matched control (Foxg1Cre) and ATRX-null embryos using fluorescence microscopy.   

Analysis was restricted to the mitotic layer that lines the hippocampal hem, hippocampal 

primordium and the dorsal cortical neuroepithelium (indicated by the area between 1 and 

2 in Figure 5C).  

2.2.13 Details of Image Acquisition and Processing 

All samples processed for microscopy were imaged using a Leica DMI 6000b automated 

inverted microscope.  Images were captured using a 63x 1.4NA and 40x NA 1.25 oil 

immersion lens (Leica), or a 5x dry objective (Leica).  For oil immersion microscopy, we 

used Leica immersion oil with a refractive index of 1.518.  All images were captured at 

ambient temperature, except for image capture of live cells and time-lapse experiments, 

which were performed at 37°C.  Experiments used different combinations of DAPI, Goat 

anti-rabbit Alexa 594, Goat anti-mouse Alexa 594, Donkey anti- rabbit Alexa 488, Goat 

anti-mouse Alexa 488, and Goat anti-human 594 secondary antibodies.  Digital 

microscopy images were captured with a Hammamatsu ORCA-ER digital camera.  

Openlab (v5.0, Improvision) imaging software was used for manual and automated image 

capture, and processing was performed using Volocity (v4.0, Improvision).  All 

deconvolution was performed using iterative restoration set with a confidence limit of 

95%. 

2.3 Results 

2.3.1 ATRX-depleted HeLa Cells Exhibit Unusual Nuclear 
Morphology and DNA Bridging 

The ATRX gene yields two major protein isoforms: a full-length 280kDa protein and a 

truncated form, ATRXt, of 180kDa (Garrick et al., 2004).  Both ATRX protein isoforms 

exhibit an exclusive nuclear localization and are highly enriched at pericentromeric 

heterochromatin (Figures 2-1A and 2-1C). We induced transient ATRX depletion in 

HeLa cells by transfecting small interfering (si)RNAs.  Cells were treated with two 
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siRNA duplexes, siATRX1 and siATRX2, each designed to simultaneously silence the 

full length and truncated ATRX proteins.  Both duplexes caused substantial silencing of 

ATRX isoforms as assessed by immunostaining (Supplementary Figure 2-1A), and this 

was confirmed by quantitative reverse-transcriptase-PCR (Q-RT-PCR; Supplementary 

Figure 2-1B) and Western blot analysis (Figure 2-1B).  Co-immunofluorescence staining 

of centromeres using the CREST antibody demonstrated that only minimal amounts of 

ATRX protein are detectable at pericentromeric heterochromatin in siRNA-treated cells 

(Figure 2-1C).  We observed that the nuclei of depleted cells appeared lobulated and the 

cells showed evidence of intranuclear DNA bridges and poorly resolved chromatin 

masses during interphase (Figure 2-1D).  We scored the number of abnormal nuclei at 48, 

72 and 96 hours post-transfection and found an increased incidence of lobulated nuclei 

and of intranuclear bridges (Figure 2-1E).  Such abnormalities can be indicative of 

mitotic defects and prompted us to further investigate the function of ATRX in mitosis. 

2.3.2 Prolonged Prometaphase to Metaphase Transition upon 
Downregulation of ATRX 

To investigate the kinetics of mitotic progression, we assessed the outcome of both 

transient and stable depletion of ATRX in HeLa cells that express histone H2B fused to 

the green fluorescent protein, HeLa-H2B-GFP (HG).  Stable clones were difficult to 

expand, suggesting that reduced ATRX expression imparts negative effects on cell 

division, proliferation, or viability.  A negative impact on cell division was previously 

reported upon conditional ablation of the full-length ATRX protein in embryonic stem 

(ES), although the cause was not determined (Garrick et al., 2006)   We chose two stable 

cell lines for our analysis, designated shATRX1 and shATRX2, each expressing a 

shRNA that targets a distinct sequence within the ATRX transcript.  Both stable clones 

expressed substantially reduced levels of ATRX RNA and protein as determined by Q-

RT-PCR and Western blot analysis (Figure 2-2A).   

Time-lapse videomicroscopy was used to evaluate the outcome of both transient and 

stable ATRX silencing.  We generated videos of live cells (10 hours) and from these, 

measured the time required to complete each stage of mitosis (stable clone n=50; 

transient depletion n≥120). This analysis revealed that ATRX-depleted cells took longer 
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Figure 2-1.  Transient ATRX depletion in HeLa cells induces abnormal nuclear 
morphology.  

(A) Immunofluorescence detection of ATRX (green) and the kinetochore marker CREST 
(red) on prometaphase and metaphase chromosomes. (B) Western blot analysis of HeLa 
cells transiently transfected with siATRX 19-mer duplexes demonstrate ATRX protein 
depletion starting at 48 h and up to 96 h after transfection. ATRX protein levels remained 
constant upon mock transfection and in cells transfected with a control siATRX 
scrambled sequence duplex (left). Both ATRX isoforms were effectively silenced by 48 h 
after transfection (right). α-Tubulin protein expression (αTub) was used as a control in all 
experiments. Numbers on top of the blot indicate hours after transfection and numbers in 
parenthesis indicate the molecular mass in kDa. (C) Co-staining of kinetochores and 
ATRX with the CREST and 39f antibodies, respectively, reveals loss of ATRX protein at 
PCH in siRNA-treated cells. (D) Cells stained with DAPI show abnormal nuclear 
morphology in ATRX-depleted cells compared with control (scrambled siRNA) treated 
cells. Common defects include lobulated nuclei and intranuclear DNA bridges (right). (E) 
The number of nuclei displaying abnormalities was quantified at 48, 72, and 96 h after 
siRNA treatment (n > 1,000 nuclei at each time point). Bars: (A and C) 5 µm; (D) 20 µm.  
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than control siRNA transfected cells to undergo mitosis (Supplementary Figure 2-2) due 

to an extended transition from prometaphase to a fully aligned metaphase (Figure 2B, 

p<0.001).  The delays in prometaphase were underestimated since a subset of mitotic 

cells that were arrested at prometaphase or metaphase for the total duration of the 

observation period (10 hours) were not included in this analysis.  These chronically 

arrested prometaphase cells often became non-adherent and/or died, as indicated by 

membrane blebbing and highly condensed chromatin (Video S2-1).  Taken together, 

these results show that ATRX is required for the normal transition from prometaphase to 

metaphase during mitosis. 

2.3.3 ATRX Depletion Affects Chromosome Congression 

The mitotic delay in ATRX-depleted cells occurred primarily between prometaphase and 

metaphase, a time when condensed chromosomes are congressing toward the metaphase 

plate.  We noticed that metaphase plates in transiently depleted cells and in the shATRX1 

and shATRX2 stable cell lines were often characterized by misaligned chromosomes or 

by chromosomes that remained randomly distributed over the bipolar microtubule spindle 

(Figure 2-2C and Video S2-2), suggesting that the prometaphase-to-metaphase delay 

might be caused by impaired chromosome congression (chromosome movement 

mediated by the mitotic spindle) to the spindle equator.  To evaluate the extent of this 

defect, we scored the number of metaphasic cells with misaligned chromosomes in 

control siRNA transfected and ATRX-depleted live cell cultures.  A greater proportion of 

metaphase plates had misaligned chromosomes in the shATRX1 and shATRX2 depleted 

clones compared to control HG-pSuper cells (Figure 2-2C and 2-2E).  In addition, we 

followed stably (shATRX1; n=100) and transiently (siATRX; n≥120) depleted mitotic 

cells by videomicroscopy over a 10 hour period and observed an approximately 3-fold 

(stable depletion) and 4-fold (transient depletion) increase in the number of cells 

displaying congression defects in ATRX-depleted cells compared to control HG-pSuper 

cells during that time period (Figure 2-2D).  In addition, metaphasic cells often appeared 

less condensed in ATRX-depleted cells and were sometimes observed to undergo 

decondensation/recondensation (or mitotic rotation) prior to anaphase onset by live-cell 

imaging (Figure 2-2E, middle panels and Video S2-3). We further confirmed the general 
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Figure 2-2.  Stable and transient depletion of ATRX extends the transition to 
metaphase and induces congression defects.  

(A) HeLa-HG cells that stably express pSuper-shATRX1, pSuper-shATRX2, or pSuper 
(empty vector control) were generated and the level of ATRX depletion was measured by 
Q-RT-PCR (top) and Western blot analysis (bottom). Q-RT-PCR results were normalized 
to GAPDH expression and protein loading on the Western blot was controlled with α-
tubulin. Error bars represent the standard deviation from triplicate samples. (B) Mitotic 
cells were followed in real time by videomicroscopy and the duration of prometaphase 
was measured for pSuper control and HG-shATRX1 stably depleted cells (n = 50 each) 
and also in transient transfections with siATRX1 (n > 120). Horizontal lines indicate the 
mean value of each dataset. (C) The fraction of metaphasic cells with misaligned 
chromosomes (inset) was evaluated in live cell cultures of HeLa-HG, HG-pSuper, HG-
shATRX1, and HG-shATRX2 stable clones (n = 100 for each).  To score chromosome 
misalignment, any visibly discrete GFP-positive signal that was distinct from the 
metaphase plate was scored as a misaligned chromosome(s).  (D) Live mitotic cells were 
followed over a 10 h period and scored for congression defects in stable (n = 50) and 
transient experiments (n > 120). (E) Selected panels from live cell videomicroscopy 
experiments of control HeLa-HG cells and ATRX-depleted cells from nuclear envelope 
breakdown (NEBD) to anaphase onset (AO). ATRX-depleted mitotic cells often 
displayed misaligned chromosomes (arrowheads) that resolved before the onset of 
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anaphase (middle), whereas, in some cases, anaphase was initiated despite the presence 
of misaligned chromosomes (bottom). A subset of metaphase chromosomes underwent 
cycles of general decondensation and recondensation, or mitotic rotation (the asterisk 
indicates a decondensed metaphase plate). Numbers indicate minutes after NEBD. (F) 
Morphological assessment of chromosome decondensation in control siRNA treated and 
cells transiently depleted of ATRX. Graph depicts the percentage of metaphase spreads 
that display a more decondensed appearance (far right). Bars: (C) 5 µm; (E) 16 µm, (F) 
20 µm. 
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 decondensed appearance of ATRX-depleted metaphasic chromosomes by staining 

chromosome spreads with DAPI. The frequency of spreads with a staining pattern 

indicative of more decondensed chromatin (wider chromosomes) was higher in cells 

transiently depleted of ATRX using siATRX1 and siATRX2 duplexes (Figure 2-2F) than 

in control siRNA treated cells.  These results demonstrate that transient as well as stable 

silencing of ATRX interferes with normal prometaphase-to-metaphase progression, 

causes impaired chromosome congression and is sometimes accompanied by 

chromosome decondensation.  

2.3.4 Sister Chromatid Cohesion is Compromised in ATRX 
Depleted Cells 

Abnormal chromosomal congression could be caused by perturbed targeting of outer 

kinetochore proteins to the centromere, spindle defects, abnormal pericentromeric 

heterochromatin or reduced cohesion between sister chromatids.  Congression defects 

have been reported upon depletion of the outer-kinetochore proteins CENP-E and CENP-

F (mitosin) that are essential for stable MT-kinetochore capture (Yao et al., 1997; Wood 

et al., 1997; McEwen et al., 2001; Yang et al., 2005).  We examined the ability of CENP-

E and CENP-F to localize to kinetochores in ATRX depleted cells and found that both 

proteins localized normally at the kinetochore of metaphasic cells (Figure 2-3A).  The 

loss of factors that control pericentromeric heterochromatin (PCH) structure can also 

cause aberrant mitosis (Melcher et al., 2000; Peters et al., 2001). Specific histone 

modifications that characterize PCH, including trimethylated H3K9 and H4K20 and 

monomethylated H3K27, were not visibly affected in ATRX-depleted cells (data not 

shown).  Trimethylation of Lys9 on histone H3 (H3K9me3) by the Suv39H1 

methyltransferase recruits HP1α and forms a compact heterochromatic structure.  HP1α 

in turn interacts with several chromatin factors, including NIPBL, ATRX and CAF-1 

(Lechner et al., 2005).  However, we observed that nuclear HP1α as well as HP1β 

immunoreactivity was indistinguishable between transiently-depleted and control siRNA 

treated cells (Supplementary Figure 2-3), suggesting that ATRX is not required for 

proper targeting of these proteins to PCH.  
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Figure 2-3.  Increased interkinetochore distances and reduced cohesion in ATRX-
depleted cells.  

(A) ATRX-depleted metaphase cells were stained for the kinetochore proteins CENP-F 
or CENP-E (green) in combination with CREST (red) and imaged at different z planes. 
Images represent an extended focus rendering of deconvoluted z stacks. (B) Control and 
ATRX-depleted cells were stained with anti-CREST antibody to stain kinetochores. 
Distances between paired kinetochores (n = 100) were measured at individual z planes 
and were significantly increased in shATRX1 and shATRX2 cells compared with control 
HG-pSuper cells (P < 0.05 by ANOVA). (C) Mitotic HeLa cells were transiently 
transfected with either siATRX-Scr control or siATRX1 and siATRX2 duplexes. After 
mitotic shake-off to remove any cells in mitosis, cells were treated with colcemid and 
chromosome spreads were stained with DAPI and scored for the percentage of 
chromatids displaying cohesion defects (n = 50 per treatment). Chromosomes from 
ATRX-depleted cells showed reduced cohesion compared with control scrambled 
siRNA-treated cells. (D) Microscopic images of representative chromosome spreads 
scored as normal (<10% cohesion defect), moderate (10–90% cohesion defect), or severe 
(>90% cohesion defect). Insets show representative chromosomes from each spread with 
normal (left), moderate (middle), and severe (right) cohesion defects. Bars: (A and B) 5 
µm; (C) 20 µm. 
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We next measured the distance between metaphasic sister kinetochores in ATRX-

depleted cells using CREST immunostaining.  Sister chromatid inter-kinetochore 

distances were significantly increased in both shATRX1 and shATRX2 aligned 

metaphases compared to control (HG-pSuper) metaphases (Figure 2-3B; p<0.05 

ANOVA).  Increased distance between sister chromatids could reflect a more 

decondensed state of chromatin and perhaps fewer nucleosomes associated with centric 

chromatin.  Alternatively, increased interkinetochore distances could be explained by 

reduced cohesion between sister chromatids. We evaluated the extent of cohesion 

between the chromatid pairs in DAPI stained metaphase chromosome spreads following 

transient depletion using siATRX1 and siATRX2 duplexes in HeLa cells.  To rule out 

possible effects of extended mitotic arrest (Figure 2-2B), we performed a mitotic shake-

off to remove mitotic cells before colcemid treatment.  As a control for non-specific 

siRNA effects, cells were transfected with an siATRX1 scrambled duplex.  Mitotic 

chromosomes from control metaphase spreads exhibited an association of the 

chromosome arms with a primary constriction at the centromeres, resulting in the typical 

“X-shaped” chromosomal morphology (Figure 3D, left panel).  In contrast, following 

transient ATRX interference, we observed a higher proportion of chromosomes that were 

separated along the chromosome length with no evidence of primary centromeric 

constrictions, indicating reduced centromeric cohesion (Figure 3C).  To evaluate the 

extent of this defect, chromosome spreads (n=100 per treatment) were categorized as 

having a normal (<10%), moderate (10-90%) or severe (>90%) loss of chromatid 

cohesion (see examples in Figure 3D). We found that ATRX-depleted cells had a higher 

occurrence of spreads displaying cohesion defects compared to the mock-transfected and 

non-specific siRNA control (Figure 3C).   Severe loss of cohesion (>90% of chromosome 

pairs displaying loss of cohesion) was observed at low levels in both controls and 

depleted cells (Figure 3C,D), indicating that ATRX depletion results in reduced but not 

complete loss of sister chromatin cohesion.  
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2.3.5 ATRX Depletion Transiently Activates the Spindle 
Checkpoint 

The mitotic delay incurred by ATRX depletion prompted us to survey the status of the 

spindle checkpoint proteins in ATRX-depleted cells.  As such, the pre-anaphase mitotic 

delay might result from continued mitotic checkpoint signaling at misaligned 

chromosomes.  Activation of the spindle checkpoint was confirmed by staining for the 

checkpoint proteins BubR1 and Bub1 at misaligned chromosomes.  We observed that 

both proteins were enriched at a subset of kinetochores in ATRX-depleted metaphases, 

with a strong signal at misaligned chromosomes (Figure 2-4A).  We further tested the 

robustness of the spindle checkpoint by analyzing the fate of cells after exposure to 

nocodazole, a microtubule-depolymerizing agent.  Nocodazole-induced mitotic arrest was 

robust in both control HG-pSuper and ATRX-depleted cells, demonstrating that ATRX is 

not required for spindle checkpoint activation (Figure 2-4B). We next selectively 

destabilized non-kinetochore fibers by cold treatment. The residual intact kinetochore 

fibers (K fibers) were visualized by α-tubulin staining.  We observed that ATRX 

depleted cells were characterized by highly irregular arrays of K-fibers (Supplementary 

Figure 2-4). 

2.3.6 Reduced Levels of ATRX Induce Chromosome Segregation 
Defects 

Despite the activation of spindle checkpoint proteins, we observed a modest 

accumulation of mitotic cells in ATRX-depleted cultures by FACS analysis 

(Supplementary Figure 2-2B), suggesting that the checkpoint activation could not be 

maintained completely in all cells.   As a result, an increased number of cells with lagging 

chromosomes at anaphase, telophase, and G1 (Figure 2-4D and Video S2-4) were 

observed, indicating a problem with chromosome segregation.  A 3 to 7 fold increase in 

the number of cells displaying interphase DNA bridges were observed at 48 to 96 hours 

post-transfection with ATRX siRNA duplexes compared to control non-targeting siRNA 

treated cells (Figure 2-4D and 2-4E).   DNA bridges in mammalian cells produce 

micronuclei when the bridges resolve and reform as small membrane bound DNA bodies 

(Hoffelder et al., 2004).  The number of micronuclei increased 3.4 fold compared to 
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Figure 2-4.  Spindle checkpoint activation and aberrant chromosome segregation in 
ATRX-depleted cells.  

(A) The spindle checkpoint protein BubR1 was detected in ATRX-depleted metaphase 
cells at both aligned and misaligned chromosomes (top). Another checkpoint protein, 
Bub1, was also found to be adjacent to the centromeres (CREST staining) in ATRX-
depleted metaphase cells. (B) Mitotic index of control HG-pSuper and ATRX-depleted 
cells after 16 h of nocodazole treatment. Control HG-pSuper and ATRX-depleted cells 
were cultured with or without nocodazole for 16 h and live cells were photographed and 
scored for the percentage of mitotic rounded cells by phase imaging (n > 1,000). (C) Live 
cell imaging of control HG-pSuper and ATRX-depleted mitotic cells (n = 100 for each 
cell line) revealed an increased number of cells that undergo repeated failed attempts at 
initiating anaphase, an increased number of cells that initiate anaphase without full 
chromosome alignment, and an increased incidence of segregation defects as indicated by 
the formation of chromosome DNA bridges and micronuclei. (D) The number of 
internuclear bridges and micronuclei indicative of chromosome missegregation were 
quantified at 2–4 d after transfection of the siATRX1 duplex and the fold difference 
between mock and depleted cells was calculated. (E) Fixed mitotic cells stained with 
DAPI (blue) and a phosphohistone H3S10 antibody (red) showing intranuclear DNA 
bridges and micronuclei in transiently depleted cells. Bars in (A) = 5 µm. 
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control cells by 96 hours after siRNA treatment (Figure 2-4D).  Taken together, these 

data suggest that the spindle checkpoint control is compromised in a subset of cells, 

causing chromosome segregation errors characterized by lagging chromosomes, 

interphase DNA bridges and the subsequent formation of micronuclei. 

2.3.7 Defective Mitosis in vivo in ATRX-null Neuroprogenitors 

The Cre-mediated deletion of the Atrx gene in the developing mouse forebrain leads to a 

reduction in cortical and hippocampal size in newborn pups.  In these mice, conditional 

deletion of the Atrx gene occurs in nearly 100% of cells in the developing forebrain 

starting at approximately embryonic day (E) 8.5 (Bérubé et al., 2005).  The analysis of 

the mitotic defects by live cell videomicroscopy in ATRX-depleted HeLa cells now 

provided indicators of mitotic anomalies that could potentially occur in the Atrx-null 

developing mouse brain, and evidence of such abnormalities would indicate that ATRX 

contributes to corticogenesis in part by participating in progenitor cell mitosis.  The 

primary progenitor cells in the developing cortex are the neuroepithelial (NE) cells in the 

proliferative ventricular zone (VZ).  Due to the fact that cells undergo cyclical migration 

within the ventricular zone, mitotic progenitors are always localized at the edge of the VZ 

facing the lateral ventricle (LV).   Cortical sections from normal embryos at E13.5 were 

first examined for the pattern of ATRX protein expression and localization.  ATRX 

immunoreactivity was indeed enriched at condensed chromatin of mitotic 

neuroprogenitors lining the lateral ventricle, consistent with a mitotic function (Figure 2-

5A, white arrows).  ATRX was also expressed in cycling cortical progenitors in a 

punctate nuclear pattern characteristic of PCH in mouse cells and in differentiated 

neurons, as previously reported (McDowell et al., 1999; Bérubé et al., 2005).    To 

evaluate the outcome of Atrx loss of function on mitotic cells in vivo during 

corticogenesis, brain sections from four different Atrx-null and littermate controls 

(Foxg1Cre) were fixed, stained with DAPI to visualize nuclei and chromatin, and the 

status of mitotic NE cells lining the ventricular space was evaluated.  We observed a high 

occurrence of pyknotic nuclei, indicative of cells undergoing apoptosis in the vicinity of 

mitotic cells, which confirms previous findings (Bérubé et al., 2005).  We also observed a 

very high incidence of micronuclei or misaligned chromosomes (Figure 2-5B).  
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Figure 2-5.  ATRX association with mitotic chromosomes and evidence of mitotic 
defects in ATRX-deficient neuroprogenitors in vivo.  

(A) ATRX staining of the cortex at E13.5. ATRX is highly expressed in all cells but is 
highest in the cortical hem (CH), which gives rise to hippocampal structures. ATRX is 
also expressed at increased levels in the differentiated neurons of developing cortical 
plate (CP). Mitotic cells that line the lateral ventricle are highly enriched for ATRX 
protein (arrows). Higher magnification of the cortical hem (right) demonstrates ATRX 
staining of mitotic chromosomes in cells that line the lateral ventricle (arrow). Punctate 
nuclear staining of ATRX in cycling cells of the ventricular zone (VZ) is characteristic of 
ATRX localization at PCH. (B) Cryosections obtained from Foxg1Cre control and 
ATRX-null telencephalon were stained with DAPI to visualize mitotic chromosomes 
lining the lateral ventricle (LV) at E13.5. An increased incidence of micronuclei or 
dispersed chromosomes was detected in the vicinity of the mitotic layer (arrows) in the 
ATRX null embryonic brain. (C) The mean number of micronuclei or dispersed 
chromosomes were scored in the mitotic layer from point 1 to 2 as indicated by the white 
arrows (top) and are represented in the graph below (n = 4 for each control Foxg1Cre and 
ATRX-null brain; P < 0.0001 by nonpaired t test). Error bars represent the standard 
deviation of counts from a total of 24 cortical hemispheres from a total of four brains. Cn, 
cortical neuroepithelium; Hh, hippocampal hem; Hp, hippocampal primordium. Bars: (A) 
100 µm; (B) 40 µm; (C) 200 µm. 
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We quantified the occurrence of micronulei/misaligned chromosomes by scoring both 

hemispheres in sections from four littermate Atrx-null and control Foxg1Cre embryos and 

limited our analysis to the mitotic layer that lines the hippocampal hem, hippocampal 

primordium and the dorsal cortical neuroepithelium (Figure 2-5C, between points 1 and 

2).  This analysis revealed a significant increase in the number of micronulei in Atrx-null 

mice compared to Foxg1Cre controls (Figure 2-5C), suggesting that Atrx loss of function 

in vivo in mouse neuroprogenitors causes mitotic defects that are similar to that observed 

by RNA interference in cultured human cells. 

2.4 Discussion 

It has been suggested that brain size is partly dictated by the correct expression of genes 

that control neuroprogenitor mitosis. Namely, MCPH1 (Alderton et al., 2006; Bartek, 

2006), ASPM (Bond et al., 2002; Fish et al., 2006), CDK5RAP2 and CENPJ (Bond et al., 

2005) all have roles in assembling, maintaining and orienting the mitotic spindle, and 

mutations of these genes in humans causes primary microcephaly.  Our data now suggest 

that loss of both ATRX protein isoforms (full-length and truncated form), either by 

transient or stable depletion in HeLa cells causes defective sister chromatid cohesion and 

chromosome congression at the metaphase plate and that loss of ATRX in the mouse 

forebrain also results in mitotic defects. Although ATRX is highly enriched at PCH, we 

did not detect abnormal targeting of CENP-E, CENP-F, or HP1α, or in the enrichment of 

histone modifications that characterize condensed chromatin at PCH.  However, we did 

observe a general effect on chromosome condensation in metaphasic chromosomes that 

will require further investigation.  Misaligned chromosomes were also observed at 

meiosis II upon RNA interference of Atrx expression and by antibody injections in mouse 

oocytes (De La Fuente et al., 2004).  It is unclear at present whether similar phenomenon 

are responsible for the meiotic and mitotic defects, but it is possible that loss of 

centromeric cohesion could explain misalignment of chromosomes at meiosis II.  Further 

investigation of ATRX function on chromatin dynamics and architecture during meiosis 

will be required to clarify these issues. 
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Several genes involved in chromosome cohesion cause multiple developmental 

abnormalities when mutations arise in humans. The best examples to date include the 

NIPBL (delangin), SMC1A, and SMC3 genes mutated in Cornelia de Lange syndrome 

(CdLS) and the ESCO2 gene mutated in Robert’s syndrome (Krantz et al., 2004; Vega et 

al., 2005; Musio et al., 2006; Borck et al., 2007; Deardorff et al., 2007).  All of these 

factors are components of the cohesin complex or regulators of cohesin loading or 

unloading.  Syndromes caused by ATRX mutations display partial phenotypic overlap 

with CdLS syndrome including cognitive delay, craniofacial dysmorphisms, 

microcephaly, gastrointestinal defects, problems in the genitourinary system, hearing and 

ocular development.   Another similarity between ATRX and NIPBL is a shared protein 

motif that confers the ability to associate with the HP1α chromoshadow domain (CSD) 

(Lechner et al., 2005).  

ATRX now joins other chromatin remodeling complexes, such as RSC and Snf2h/NURD 

implicated in cohesion, either by loading cohesin during DNA replication or by recruiting 

the cohesin complex to specific chromosomal regions (Hakimi et al., 2002; Baetz et al., 

2004; Huang et al., 2004).   While the cohesin complex is required for normal chromatid 

cohesion during mitosis, it also has a function in facilitating long-range enhancer-

promoter interactions.  The developmental abnormalities in CdLS and the ATR-X 

syndromes could therefore be explained by the specific deregulation of gene expression 

at loci that rely on long range enhancer interactions mediated by the cohesin complex and 

its regulators. An important focus of research will therefore be to identify such target 

genes and determine how chromosome cohesion might control their expression. 
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2.5 Supplementary figures 

 

Supplementary Figure 2-1.  Validation of ATRX depletion in HeLa cells.  

(A) Indirect immunofluorescence detection of the ATRX protein in HeLa cells 
transfected with no siRNA (Mock) or with 8nM siATRX1 or siATRX2 siRNA duplexes. 
DAPI staining in the lower panels indicates cell confluence at the time of antibody 
staining. Bar, 100 µm. (B) ATRX expression was assessed by quantitative RT-PCR using 
primers that amplify both ATRX isoforms and the results were normalized to GAPDH 
expression. Error bars represent the standard deviation from triplicate samples. 
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Supplementary Figure 2-2.  ATRX depletion prolongs mitotic duration.  

(A) Live cells in culture were followed for 10 h by time-lapse fluorescence microscopy 
and the total time from NEBD to G1 reentry was measured for control and ATRX-
depleted cells. The error bars represent the SEM from mitoses (n = 50). (B) FACS 
analysis of cells stained for DNA content using propidium iodide shows ATRX depletion 
does not impact cell cycle progression. 
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Supplementary Figure 2-3.  HP1α and HP1β immunocytochemistry in ATRX-
depleted cells.  

HeLa cells were transfected with siATRX1 duplex (8 nM) and, 72 h after transfection, 
indirect immunofluorescence was performed using the anti-ATRX H-300, anti-HP1α, or 
anti-HP1β antibodies, and counterstained with DAPI. HP1α (top) and HP1β (bottom) 
proteins are unchanged after transient ATRX depletion when compared with wild-type 
untransfected cells. Bar, 20 µm. 
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Supplementary Figure 2-4.  Abnormal mitotic spindle morphology in ATRX-
depleted cells.  

Control (HG) and ATRX-depleted stable clones (shATRX1 and shATRX2) were cold-
treated, fixed, and stained with anti–α-tubulin antibody to reveal kinetochore-bound 
microtubule fibers at metaphase (bottom). (top) Endogenous H2B-GFP fluorescence in 
these cells. Images represent extended focus of multiple z planes after deconvolution. Bar 
= 5 µm. 
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Chapter 3  

3 Cytokinetic Abnormalities and Multinucleation Induced 
by ATRX Depletion 

During the course of studying the mitotic cell division in ATRX-depleted HeLa cells, I 

consistently observed abnormalities during the terminal stages of cell division, during 

anaphase, telophase, and cytokinesis.  I decided to more closely examine these stages of 

the cell cycle, and to investigate the effect of ATRX depletion on the outcome of a full 

cell division cycle.  Interestingly, I found that ATRX depleted HeLa cells fail cytokinesis 

and produce multinucleated cells at a higher rate than control cells, suggesting an 

additional and important consequence of ATRX depletion on mitotic progression and cell 

biology. 

3.1 Introduction 

Cytokinesis is the final stage of the mitotic cell division cycle (M phase), when the newly 

generated daughter cells become physically separated following genome replication and 

partitioning.  This event is achieved through the temporally and spatially co-ordinated 

actions of the cell cycle machinery (Wheatley et al., 1997), the cytoskeleton (Rappaport, 

1997), and lipid membrane systems (Xu et al., 2002).  Cytokinesis is an essential step in 

the proliferative program of eukaryotic cells, and is now recognized as a critical process 

by which complex organisms are able to achieve their precise morphological fates during 

development (Li, 2007).  Not surprisingly, cytokinetic regulators are being increasingly 

implicated in the aetiology of diverse diseases including short stature (Rauch et al., 

2008), primary microcephaly (Fish et al., 2006; Fu et al., 2007), and cancer (Fu et al., 

2007; Andersen et al., 2007). 

Microcephaly is characterized by a reduction of skull circumference and brain volume 

resulting primarily from disrupted neuroprogenitor proliferation (Woods et al., 2005) and 

survival (Chen et al., 2009) during cortical neurogenesis.  Supporting this model, a 

number of human genes mutated in primary microcephaly are proposed regulators of cell 

division during neurogenesis, including abnormal spindle-like microcephaly-associated 
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(ASPM/MCPH5) (Bond et al., 2002), CDK5 regulatory subunit associated protein 2 

(CDK5RAP2) (Cox et al., 2006), centromere protein J (CENPJ) (Bond et al., 2005), and 

pericentrin (Rauch et al., 2008).  In addition, genes that specifically regulate 

neuroprogenitor cytokinesis in murine models have been implicated in achieving normal 

brain size, including the Rho-effector Citron Kinase (Di Cunto et al., 2000; LoTurco et 

al., 2003).   

ATRX is a SWI/SNF chromatin remodelling protein required for the early development 

of several organs, particularly the central nervous system (CNS).  In humans, ATRX gene 

mutations cause α-thalassemia/mental retardation X-linked (ATR-X) syndrome, 

characterized by postnatal microcephaly, severe cognitive and behavioural deficits, and 

skeletal and urogenital abnormalities.  Affected patients also often display α-thalassemia 

caused by decreased levels of α-globin (Gibbons et al., 1995; Gibbons, 2006).  ATRX 

mutant alleles have been identified in other X-linked mental retardations (XLMRs), 

including Carpenter-Waziri (Abidi et al., 1999), Juberg-Marsidi (Villard et al., 1996), 

Holmes-Gang (Stevenson et al., 2000), Smith-Fineman-Myers (Villard et al., 2000), and 

Chudley-Lowry syndromes (Abidi et al., 2005).  In the mouse, Atrx loss of function from 

the 8- to 16-cell stage is lethal at embryonic day 9.5 (E9.5) due to defective formation of 

the extraembryonic trophoblast (Garrick et al., 2006).  Targeted disruption of the full-

length ATRX isoform in the mouse forebrain from E8.5 results in decreased forebrain 

size and elevated neuronal cell death, suggesting a role for ATRX in cortical expansion, 

and neuronal survival (Bérubé et al., 2005).  ATRX deficiency is therefore detrimental to 

both mouse and human development, indicating a requirement for ATRX in basic cellular 

functions.    

Although ATRX has been proposed to primarily regulate gene transcription, the protein 

is enriched at pericentromeric heterochromatin (McDowell et al., 1999), and appears 

hyperphosphorylated and highly enriched at condensed chromosomes during mitosis in 

human cells, suggesting an additional function during this stage of the cell cycle (Bérubé 

et al., 2000).  ATRX is required for chromosome alignment on the metaphase II meiotic 

spindle in mouse oocytes (De La Fuente et al., 2004), and more recently we have shown a 

requirement for ATRX in mitotic chromosome congression, alignment, and cohesion in 
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human cells (Ritchie et al., 2008).  We now extend our previous studies and report 

defects in the progression of cytokinetic events upon depletion of ATRX in HeLa cells.  

We show that RNAi-mediated depletion of ATRX results in an increased proportion of 

polynucleated cells and prolonged cytokinetic duration accompanied by morphological 

abnormalities of the cell membrane.  These results show that ATRX loss of function can 

impede the cytokinesis process, either indirectly due to abnormal chromosome 

segregation, or directly by a yet unknown mechanism. Cytokinetic failure might provide 

an explanation for the increased cell death and size reduction observed in the ATRX-null 

mouse forebrain and some of the developmental abnormalities that characterize ATR-X 

patients. 

3.2 Materials and Methods 

3.2.1 Cell Culture and Generation of Stable Clones 

All cell lines were grown in a humidified environment at 37 °C and 5 % CO2.  HeLa cells 

were grown in DME (Sigma) supplemented with 10 % FBS (Gibco).  HeLa-HG cells 

were grown in DME supplemented with 10% FBS and 2 µg/ml Blasticidin S-HCl 

(Gibco) to maintain transgene expression.  HeLa-HG-sh1 cells were grown in DME 

supplemented with 10% FBS and 2 µg/ml Blasticidin S-HCl and with 400 µg/ml 

G418/Geneticin (Invitrogen) to maintain short-hairpin RNA (shRNA) expression.  Stable 

HeLa-HG clones expressing shRNA corresponding to the siATRX1 sequence (HeLa-

HG-sh1) were generated and validated as described in (Ritchie et al., 2008).  Briefly, 

pairs of sense 60-mer oligonucleotides corresponding to the 19-mer siATRX1 siRNA 

target sequences and their reverse complement (underlined sequences) were designed that 

contained 5’ BglII and 3’ HindIII restriction sites (Integrated DNA Technologies, Inc.) to 

facilitate cloning into the pSuper.retro.neo plasmid vector (Oligoengine Inc.): shATRX1 

(sense) 5’-GATCCCCGAGGAAACCTTCAATTGTATTCAAGAGATACAATTGAAG 

GTTTCCTCTTTTTA-3’. The oligonucleotides were annealed to complementary anti-

sense 60-mer oligonucleotides in buffer containing 10 mM Tris pH 7.5, 50 mM NaCl, 

and 1 mM EDTA at 90ºC for 4 min, followed by 70 ºC for 10 min, then step cooled to 37 

ºC for 20 min using a thermocycler (MJ research) and cloned into the pSuper.retro.neo 

plasmid (Oligoengine Inc.) using the Quick Ligation Kit according to manufacturer’s 
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instructions (New England Biolabs).  The resulting vector construct, designated 

pSUPER-shATRX1, was subsequently sequenced to confirm sequence identity.  

Exponentially growing HeLa-H2B-GFP were transfected with empty pSuper vector or 

with pSuper-shATRX1 vector (1 µg/ml) using Lipofectamine 2000 (Invitrogen).  Two 

days after transfection, cells were re-plated at low density and selection was applied 24 

hours later (800 µg/ml Geneticin, Invitrogen).  Drug-resistant colonies were picked and 

expanded in selection media (400 µg/ml Geneticin). 

3.2.2 RNA Interference, Immunostaining and Microscopy 

All siRNA transfections were conducted using 8nM siRNA and the cationic lipid reagent 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions.  The synthetic 

RNA oligonucleotides siATRX1 (5’-GAGGAAACCUUCAAUUGUAUU-3’) was 

obtained from Dharmacon (Lafayette, CO).  Control (non-targeting) duplex was obtained 

from Sigma Aldrich. Mock-transfected samples were treated similarly but without the 

addition of siRNA to the transfection mixture.  For immunofluorescence experiments, 

cells were grown on 22 mm2 glass coverslips (VWR Inc.) and fixed using ice cold 3:1 

EtOH:MeOH up to 4 days following plating or 3 days following siRNA/mock 

transfection.  Following fixation, coverslips were incubated with sequential dilutions of 

primary followed by fluorophore-conjugated secondary antibodies diluted in PBS + 0.3% 

TX-100.  Primary antibodies used: rabbit anti-ATRX H300 (Santa Cruz Biotech, 1:200), 

mouse-anti-α-Tubulin (Sigma-Aldrich, 1:1000), mouse-anti-Plk1 (Upstate, 1:200), 

mouse-anti-Myosin II (Upstate, 1:200).  Secondary antibodies used: Alexa Fluor 594 goat 

anti-mouse IgG, Alexa Fluor 488 goat anti-mouse IgG, Alexa Fluor 594 goat anti-rabbit 

IgG, and Alexa Fluor 488 goat anti-rabbit-IgG (Invitrogen, 1:1500).  The DNA dye DAPI 

was used as a nuclear counterstain.  Coverslips were mounted using Vectashield H-1000 

antifade solution (Vector Labs).  Imaging was performed using a DMI 6000b inverted 

microscope (Leica) and digital camera (ORCA ER; Hamamatsu).  Image acquisition was 

performed using a Power Mac G5 computer (Apple Inc.) and Openlab imaging software 

(v5.0, Perkin-Elmer).  Image analysis was performed using Volocity imaging software 

(v4.0, Perkin-Elmer) and Adobe Photoshop (vCS4, Adobe). 
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3.2.3 Live-Cell Video-Microscopy 

HeLa-HG or HG-shATRX1 cells were grown in 35 mm dishes (Corning).   Following a 

24 hour incubation in a tissue culture incubator at 37°C and 5 % CO2, growth media was 

replaced with CO2 independent media (Gibco) supplemented with 10% FBS (Sigma) and 

4mM L-Glutamine (Gibco). The culture dish was mounted on an inverted microscope 

(DMI 6000b; Leica) and maintained at 37°C using a Livecell incubator (Neue 

Biosciences).  Phase-contrast and fluorescence images were captured at intervals between 

2 and 10 minutes for up to 48 hours using the automation feature of Openlab and 

analyzed using Volocity. To measure cytokinetic duration, cells (N=100) were measured 

from anaphase onset (AO), characterized by the visible cytokinetic cleavage furrow and 

initiation of chromatid segregation, until the end of telophase, characterized by nuclear 

decondensation and cytoplasmic expansion. 

3.3 Results 

3.3.1 ATRX Depletion Causes Multinucleation 

Actively growing HeLa cells were treated with a small interfering RNA (siATRX1) that 

specifically targets full-length ATRX transcripts.  We have previously shown that RNA 

interference under these conditions results in substantial depletion of both ATRX mRNA 

and protein (Ritchie et al., 2008).  Following transfection, staining for the microtubule 

protein α-tubulin revealed an increased number of cells connected to each other by 

cytoplasmic microtubule bridges at the cytokinetic midzone (Figure 1A, asterisk).  

Spindle midzone formation in ATRX depleted cells often appeared bent or narrow, while 

only minor variability in organization was observed in control cells expressing normal 

levels of ATRX (see example Fig 3-1A, asterisk).  We also observed increased number of 

cells with more than one nucleus or with multilobular nuclei (Figure 3-1A, arrowheads).  

This phenotype was quantified and revealed a 3- to 4-fold increase in the number of bi- or 

multinucleated cells in HeLa cells transiently depleted of ATRX at 24 hours following 

siRNA transfection, and this effect persisted until at least 96 hours post transfection 

(Figure 3-1B). 
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Figure 3-1.  Transient ATRX depletion causes cellular multinucleation. 

(A) HeLa cells were depleted of ATRX using transient siRNA (siATRX1) transfection, 
or mock transfected with Lipofectamine only (Mock).  Immunostaining with anti-ATRX 
antibody confirmed ATRX depletion in the majority of cells treated with siATRX1 
duplex.  (B) Cells were immunostained with anti-α-tubulin antibody and the nuclear 
counterstain DAPI 48 hours following transfection.  Cells treated with siATRX1 had a 
higher frequency of multinucleation (asterisk), lobulated nuclei (arrows), and nuclear 
holes (chevron) than controls. (C) Multinucleation was quantified in mock-treated and 
siATRX1-treated cells every 24 hours following siRNA transfection, up to 96 hours (n > 
300 cells at each time point).  Cells treated with siATRX1 showed increased levels of 
multinucleation at all time points examined following treatment. 



 

 95 

3.3.2 ATRX-Depleted Cells Take Longer to Progress from 
Anaphase to G1 

Increased levels of multinucleation in ATRX-depleted cells suggested that many cells fail 

to undergo cytokinesis following mitosis.  To investigate the role of ATRX during cell 

cycle progression in live cells, we utilized HeLa cells that express Histone 2B fused with 

the green fluorescent protein (HeLa-HG cells).  Using a combination of phase contrast 

and fluorescence microscopy, we were able to follow mitotic events in actively dividing 

HeLa-HG cells using time-lapse imaging.  Stable ATRX depletion was achieved by 

generating a HeLa-HG clone (HG-shATRX1) that constitutively expresses a short hairpin 

RNA (shRNA) targeting the full length ATRX mRNA, yielding very good reduction of 

ATRX protein levels, as previously described (Ritchie et al., 2008).  Using time-lapse 

microscopy, we measured the amount of time required for the mitotic cells to proceed 

from anaphase onset (first imaging frame with evidence of chromatid segregation) to re-

entry into G1 (time of complete nuclear decondensation) (Figure 3-2A).  This analysis 

demonstrated that the duration of anaphase to G1 transition was more than doubled in 

ATRX depleted HG-shATRX1 compared to wild type cells (N=100, p<0.0001, t-test), 

with an average of 74.1 min and 36.0 min, respectively (Figure 3-2A,B and Video S3-1 - 

HeLa-HG Normal Cytokinesis and additional file 2: Video S3-2 - HG-shATRX1 

Membrane Instability). 

3.3.3 Increased Cytokinetic Failure in ATRX-deficient Cells 

The increased time required to reach G1 following chromosome segregation, as well as 

the higher levels of multinucleation, suggested that the process of cytokinesis might be 

disrupted in ATRX-depleted cells.  We thus examined the cellular events of cytokinesis, 

including anaphase and telophase, and observed morphological abnormalities during the 

telophase and cytokinetic phases in ATRX-depleted cells.  Cells lacking ATRX exhibited 

a high frequency of spontaneous disorganization of the lipid membrane.  Immediately 

following ingression of the cleavage furrow during anaphase, the cell membrane 

frequently appeared disorganized and highly unstable (Figure 3-2A,C and additional file 

2: Video S3-2 - HG-shATRX1 Membrane Instability).  Plasma membrane 

disorganization was seen in 6.0% of control mitotic cells, but increased to 19.0% of 
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Figure 3-2.  ATRX depletion causes delayed progression from anaphase to G1. 

(A) Actively growing control (HG) cells and ATRX-depleted (HG-sh1) HeLa cells were 
visualized using time-lapse microscopy with a combination of phase and fluorescence 
microscopy from the onset of anaphase (AO, Time = 0 min) to G1 re-entry (nuclear 
decondensation, last frame shown in sequence). ATRX-depleted HG-sh1 cells were often 
delayed in reaching G1 phase after anaphase onset relative to control cells. (B) 
Cytokinetic duration was measured from time-lapse live-cell videomicroscopy 
experiments of control HG or ATRX-depleted HG-sh1 cells (n = 100), and was found to 
be significantly increased in HG-sh1 cells (p < 0.0001, t-test). (C) Membrane instability, 
defined as membrane blebbing between anaphase onset and the completion of cytokinesis 
(see panel A, HG-sh1), was found to be increased (p < 0.05, Yates’ χ2 test) in ATRX-
depleted HG-sh1 cells (6%, N = 100) compared to controls (HG) (19%, N=100).  Bar in 
(A) = 16 µm. 
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HG-shATRX1 mitotic cells (N=100, Figure 3-2C).  In addition, we observed that ATRX 

depleted cells failed the terminal stages of cytokinesis and produced binucleated cells 

(Figure 3-3, additional file 3: Video S3-3 - HG-shATRX1 Failed Cytokinesis).  

Cytokinetic failure occurred in 5% of control HeLa-HG cells, and more than doubled to 

11% of HG-shATRX1 cells (Figure 3-3B).  We followed these binucleated cells using 

live-cell time-lapse video microscopy, and found that they often underwent programmed 

cell death several hours later (Figure 3-4, additional file 4: Video S3-4 - HG-shATRX1 

Binucleate Cell Death). 

3.3.4 Normal Midbody Organization in ATRX-depleted Cells 

To determine if the observed cytokinetic defects were due to disruption of the midzone 

spindle or cytokinetic midbody, mock and siATRX1 treated cells were stained with an 

antibody against Polo-like kinase 1 (Plk1).  Plk1 is normally localized to the midzone and 

midbody, where it phosphorylates a number of substrates, including kinesin (MKLP2) 

and dynein (NudC) subunits and is required for normal cytokinetic progression and 

termination.  Plk1 localized to the midzone and midbody normally in ATRX-depleted 

cells, suggesting that the integrity of the central spindle and the associated Plk1-

dependent signaling pathway is intact (Figure 3-5). 

3.3.5 Relationship Between Cytokinetic Abnormalities and 
Chromosome Bridging 

We have previously reported that ATRX depletion in HeLa cells causes chromosome 

congression, cohesion, and segregation defects during mitosis (Ritchie et al., 2008).  It 

was therefore possible that chromosomal bridges are impeding cytokinetic progress in 

ATRX-depleted HeLa cells.  To investigate this possibility, we conducted time-course 

live-cell microscopy of actively dividing HG and HG-sh1 cells, measured the number of 

mitotic cells that failed cytokinesis and determined whether this defect was preceded by 

the appearance of a chromosome bridge.  We found that distinct chromosome bridges 

during anaphase and telophase often preceded cytokinetic failure and binucleation in 

ATRX depleted cells.  Of 70 HG-sh1 cells that underwent cytokinesis, 11 were seen to  
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Figure 3-3.  ATRX depleted cells show elevated levels of cytokinetic failure.   

(A) ATRX-depleted (HG-sh1) cells more often failed cytokinesis (arrows, lower panel) 
than control (HG) cells.  Cytokinetic failure was measured from time-lapse live-cell 
video microscopy and was defined as the generation of bi-nucleated cells following the 
end of M phase (asterisk, lower panel). Numbers indicate time in minutes following the 
first frame (Time = 0).  (B) Successful completion or failure of cytokinesis was scored 
using time-lapse live-cell video microscopy.  ATRX-depleted cells failed cytokinesis 
more often than control HG cells (11% vs. 5% of observed cytokinetic events 
respectively, n = 100 per genotype, not statistically significant).  Bar in (A) = 16 µm. 
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Figure 3-4.  Cell death following cytokinetic failure and multinucleation.   

Selected captured images from time-lapse videomicroscopy of ATRX depleted HG-
shATRX1 cells.  The arrow indicates a cell that failed cytokinesis and became 
multinucleated, and then underwent cell death.  Numbers indicate time in minutes 
following the first frame (0 min).  Bar = 16µm. 
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produce binucleated progeny, 8 (73%) of which were associated with the appearance of a 

chromosome bridge during anaphase, telophase, or cytokinesis.  Notably, no apparent 

chromosomal abnormalities could be identified during cytokinesis in approximately 27% 

of the mitotic cells that failed cytokinesis.  These results suggest that that failure to 

complete cytokinesis is often a consequence of chromosome bridges, possibly caused by 

ATRX dependent chromosome alignment and segregation, but that some cytokinetic 

abnormalities might result from alternative mechanisms.   

3.4 Discussion 

Our data demonstrate that decreased levels of ATRX can often result in cytokinetic 

defects or even failure.  We used live cell microscopy to show that ATRX depletion 

causes a delay at the end of mitosis and during cytokinesis, morphological abnormalities 

of the plasma membrane, and cytokinetic failure.  Our recent report that ATRX plays a 

critical role during mitosis in human cells suggests that altered chromatid cohesion and 

segregation in ATRX-deficient cells may indirectly impact normal cytokinetic progress 

(Ritchie et al., 2008).  DNA bridges and poorly resolved chromatin masses pose a 

physical barrier to cytokinesis (Cutts et al., 1999), whereby the cell actively halts 

cytokinesis to prevent physical damage to its own genome.  Notably, many ATRX-

depleted cells displaying cytokinetic failure were accompanied by chromosome 

segregation defects, suggesting that the observed phenotypes may be dependent on 

chromosomal nondisjunction. Furthermore, the cytokinetic midzone and midbody are 

properly enriched for Plk1 in ATRX-depleted cells, suggesting that the cytokinetic 

abnormalities do not reflect a defect in general functional composition of the midzone or 

midbody.  Regulatory proteins have now been identified that integrate early mitotic 

events with cytokinesis.  Named the chromosome passenger complex (CPC) by virtue of 

its dynamic localization during M-phase, the core CPC complex is comprised of inner 

centromeric protein (INCENP), aurora B kinase, survivin, and borealin (Ruchaud et al., 

2007).  The CPC proteins are centromeric during early stages of M phase where they play 

an essential role in chromosome alignment (Mackay et al., 1998; Gassmann et al., 2004; 

Vong et al., 2005), but are shuttled to the spindle midzone and equatorial cell cortex upon 

anaphase commitment where they stabilize the central spindle and are essential 
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Figure 3-5.  Plk1 normally localizes to the spindle midzone and midbody in ATRX-

depleted cells. 

HeLa cells were depleted of ATRX using transient RNAi (siATRX).  After 72h, protein 
knockdown was confirmed using ATRX immunostaining.  Cells were stained with an 
antibody against PLK1 (green).  Different stages of the cell cycle were determined based 
on the pattern of Plk1 staining at the midzone (Anaphase) or midbody 
(Telophase/Cytokinesis). 
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for cytokinesis (Ruchaud et al., 2007).  Other kinetochore-associated proteins have been 

implicated in both mitotic chromosome alignment and cytokinesis, including the DNA 

binding protein CENP-C (Kwon et al., 2007), the kinetochore motor protein CENP-E 

(Liu et al., 2006), and the large coiled-coil protein CENP-F/Mitosin (Holt et al., 2005).  

These examples demonstrate the relationship between centromeric proteins and 

cytokinesis, which may describe a novel function of the ATRX protein  

Cytokinetic abnormalities caused by Citron kinase deficiency in the mouse brain result in 

strikingly similar morphological defects seen in the Atrx-null brain (Bérubé et al., 2005), 

including smaller forebrain  (especially in the caudal areas), normal proliferation but 

increased cell death, and decreased numbers of superficial layer neurones (Di Cunto et 

al., 2000).  ATRX is highly expressed in the neuroepithelial cells lining the lateral 

ventricles of the embryonic mouse forebrain.  Based on the data presented in the present 

report, we speculate that ATRX could play a role during cytokinesis during 

neuroprogenitor proliferation.  Loss of ATRX in the embryonic forebrain of the 

conditional knockout mouse may disrupt the proliferative divisions of the 

neuroprogenitor cells, depleting the pool of neuroprogenitors required for subsequent 

cortical expansion.  These results provide a functional link between ATRX-dependent 

cell division and the cortical defects observed in the ATRX-null mouse forebrain. 

In addition to a broad spectrum of developmental consequences, mitotic defects can be 

associated with oncogenic events and tumorigenesis due to genomic instability 

(Montgomery et al., 2003). To date there is no evidence that ATR-X patients exhibit 

mitotic defects or are prone to developing cancer, however there is increasing evidence 

for a role of ATRX in neoplasia outside of the context of ATR-X syndrome (Steensma et 

al., 2004). Recently, ATRX was found to be mutated in a large proportion of pancreatic 

neuroendocrine tumours (PanNETS), suggesting that it might have tumour suppressive 

functions (Jiao et al., 2011). All ATRX mutations correlated with loss of immunolabeling 

in these hyperplastic pancreatic islet cells, suggesting that complete loss of ATRX protein 

is associated with oncogenetic events in PanNETs.  Furthermore, another recent study of 

PanNETs found substantial chromosomal alterations in 98% of samples  (Hu et al., 

2010), suggesting that genomic instability could contribute to PanNET oncogenesis.  
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Together these data suggest that ATRX might be a novel tumor suppressor gene, possibly 

through maintaining the accuracy of chromosome segregation during mitosis. 
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Chapter 4  

4 ATRX Regulates Cortical Development Through Control 
of Neural Progenitor Cell Division 

Mitotic cell division is considered one of the primary mechanisms used by neural 

progenitor cells to initiate the neuronal/glial fate commitment.  Studies of the Atrx-null 

mouse cortex had previously identified cortical defects, including a reduction in the 

volume of the forebrain, and reduction in the radial and tangential dimensions of the 

cortex, suggesting a broad neurodevelopmental defect.  This phenotype is similar to those 

observed in rodent models deficient for other genes involved in neural progenitor cell 

division (Cit){LoTurco 2003; Di Cunto 2000;Chang 2010}.  Importantly, disruption of 

neural progenitor cell division can lead to changes in the regulation of neuron production, 

and lead to altered patterns of cortical layering and imbalances in the proportions of 

different neuronal layers, something that had not yet been investigated in the Atrx-null 

mouse. 

4.1 Introduction 

Inherited mutations of the ATRX gene, encoding the SWI/SNF2 family chromatin 

remodeling protein ATRX, are associated with a spectrum of syndromic and non-

syndromic mental retardations characterized by developmental delay, cognitive deficits 

and microcephaly (Gibbons, 2006).  ATRX utilizes the energy of ATP hydrolysis to 

disrupt histone-DNA interactions, and has strong DNA translocase activity (Xue et al., 

2003), suggesting a role for ATRX in chromatin remodeling and regulation of gene 

transcription.  Supporting this, ATRX has been shown to regulate the expression of a 

number of imprinted target genes in the mouse brain (Kernohan et al., 2010), to bind 

tandem repetitive DNA elements in telomeric and euchromatic regions as a means to 

regulate gene expression (Law et al., 2010), and to deposit the histone variant H3.3 at 

telomeric and pericentric heterochromatin in cooperation with the histone chaperone 

Daxx (Goldberg et al., 2010; Drané et al., 2010; Lewis et al., 2010). ATRX is highly 

enriched at pericentromeric heterochromatin in mouse and human cells throughout the 

cell cycle (McDowell et al., 1999) where it becomes hyperphosphorylated at the onset of 
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the mitotic phase (Bérubé et al., 2000), and is required for normal chromosome alignment 

during both mitosis and meiosis (De La Fuente et al., 2004; Ritchie et al., 2008; Baumann 

et al., 2010).  Conditional inactivation of Atrx in the developing mouse forebrain prior to 

the onset of neurogenesis leads to reduced forebrain size, hippocampal dysgenesis, and 

elevated p53-dependent neuronal apoptosis (Bérubé et al., 2005; Seah et al., 2008).  

Inactivation of p53 leads only to a partial rescue of cortical size, indicating that additional 

mechanisms contribute to the Atrx-dependent cortical phenotype in this model (Seah et 

al., 2008).    

The mature mammalian cerebral cortex is laminated into six stratified layers, each 

populated by distinct neuronal subtypes with unique cell morphologies, gene expression 

profiles, and neuronal connectivites (Campbell, 2005).  Excitatory glutamatergic 

projection neurons constitute the large majority of cortical neurons, and are produced by 

apical and basal neural progenitor cells (NPCs) in the germinal ventricular and 

subventricular zones, respectively, adjacent to the lateral ventricles in the dorsal 

telencephalon (Gorski et al., 2002; Noctor et al., 2004). In the mouse, cortical 

development is characterized by an initial expansion of the neural progenitor cell 

population through symmetric proliferative cell divisions, followed by a transition to 

asymmetric neurogenic cell divisions at embryonic day (E) 14 (McConnell, 1995).  These 

new neurons migrate radially away from the lateral ventricle along a scaffold of radial 

glia projections to their final cortical destinations in a temporally determined inside-out 

fashion, with the earliest born neurons populating the deep cortical layers (V-VI), and 

late born neurons found in the superficial layers (II-IV) (Rakic, 1974).  Throughout 

cortical neurogenesis the appropriate balance of neural progenitor self-renewal, 

differentiation, and survival is required to achieve proper cortical size and functional 

organization (Rakic, 1995; Haydar et al., 1999; Kriegstein et al., 2006).  Ultimately, the 

fate of a daughter cell born from a dividing apical NP depends in part upon the 

inheritance of the relatively small apical membrane and its associated factors, including 

m-Numb (Petersen et al., 2002; Shen et al., 2002; Petersen et al., 2004) and Par-3 

(Kosodo et al., 2004; Bultje et al., 2009), which likely specify cell fate through the notch 

signaling pathway.  Inheritance of the apical domain by the two daughter cells during 

symmetric cell division yields two NPCs, resulting in a proliferative expansion of the 



 

 110 

progenitor pool during the early stages of neurogenesis.  Conversely, inheritance of the 

apical domain by only one daughter cell during asymmetric cell division leads to the 

differentiation of the daughter cell lacking the apical domain.   Certain proteins 

implicated in cortical development and microcephaly have been shown to regulate the 

orientation of the mitotic spindle during apical neural progenitor mitosis (Woods et al., 

2005), including ASPM (Fish et al., 2006), and CDK5RAP2 (Lizarraga et al., 2010).  In 

these cases it is thought that disrupted mitotic spindle and cleavage plane orientation 

increases the proportion of asymmetric NPC divisions, prematurely depleting the NPC 

pool and leading to a loss of late-born neurons and a smaller cortex.  

In the present report, we show that isolated Atrx-null neuroprogenitors display mitotic 

chromosome misalignment and missegregation phenotypes similar to those observed in 

an ATRX depleted human somatic cell line (Ritchie et al., 2008).  Dividing apical neural 

progenitors in the Atrx-null embryonic forebrain are more often seen in an asymmetric 

orientation, suggesting that the absence of ATRX might affect the timing and balance of 

apical progenitor cell differentiation.  Indeed, we observed an overproduction of Tbr1 

expressing layer VI neurons in the postnatal Atrx-null cortex, and fewer Brn2 expressing 

neurons in the superficial cortical layers.  Furthermore, the NPC pool was reduced in the 

late-stage Atrx-null forebrain.  We propose that loss of Atrx early in neurogenesis disrupts 

the ability of apical progenitor cells to maintain the highly regulated symmetric 

orientation of the mitotic spindle, possibly due to failed mitotic chromosome alignment 

and segregation, consequently disrupting the balance of progenitor cell proliferation and 

neuronal differentiation, and ultimately leading to abnormal cortical architecture.  

4.2 Materials and Methods 

4.2.1 Animal Husbandry 

Conditional deletion of Atrx in the mouse forebrain was achieved by crossing AtrxloxP 

females with heterozygous Foxg1Cre knock-in males, as previously described (Bérubé et 

al., 2005; Ritchie et al., 2008; Seah et al., 2008).  The AtrxloxP line was kindly provided by 

D. Higgs and R.J. Gibbons (Weatherall Institute of Molecular Medicine, John Radcliffe 

Hospital, Oxford, United Kingdom).  For embryonic studies, vaginal plugs were checked 
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at 9 am and midday of positive plugs were considered E0.5.  All animal studies were 

conducted in compliance with the regulations of The Animals for Research Act of the 

province of Ontario, the guidelines of the Canadian Council on Animal Care, and the 

policies and procedures approved by the University of Western Ontario Council on 

Animal Care. 

4.2.2 Western Blot Analysis 

Protein was extracted from mouse forebrain cortical tissues of Atrx-null (Atrxf/y Foxg1Cre) 

and control (Atrxwt/y Foxg1Cre) littermates at P7 and P10 using RIPA buffer (150 mM 

NaCl, 1 % NP-40, 50 mM Tris, pH 8.0, 0.5 % deoxycholic acid, 0.1 % SDS, 0.2 mM 

PMSF, 0.5 mM NaF, 0.1 mM Na3VO4, and 1 % protease inhibitor cocktail tablet 

[Complete mini, EDTA-free; Roche]) for 30 minutes on ice (for Tbr1 and Ctip2), or 

using the NE-PER nuclear and cytoplasmic protein extraction kit (for Brn2) (Thermo 

Scientific) and protein concentration was quantified from 280 nm absorbance 

measurements using a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific).  

Isolated total protein (10-30 µg) was resolved using 8 % SDS-PAGE and transferred onto 

nitrocellulose membranes (Bio-Rad Laboratories).  The membranes were probed with 

goat anti-Brn2 (1:1000, Santa Cruz Biotechnology, Inc.), rabbit anti-Tbr1 (1:1000, 

Abcam), and rabbit anti-Ctip2 (1:1000, Abcam) followed by the appropriate horseradish 

peroxidase (HRP)–conjugated secondary antibody (1:5,000; GE Healthcare).  The 

membranes were incubated in enhanced chemiluminescence reagent (ECL) before 

exposure to x-ray film (Amersham).  The membranes were reprobed with mouse anti-α-

tubulin (1:40,000; Sigma-Aldrich) or anti-INCENP as a loading control.  Band intensities 

were quantified from developed film using a Fluorchem 8800 gel documentation system 

(Alpha Innotech Corp., San Leandro, CA) 

4.2.3 Neuroprogenitor Cultures 

Embryos were isolated at E13.5 days of gestation, measured after the observation of a 

mating plug (E0.5).  Pregnant dams were euthanized by CO2 asphyxiation.  Embryonic 

cortices were dissected into ice-cold Hank’s Balanced Salt Solution (HBSS, Sigma), 

dissociated by trituration and plated in Neurobasal media (Gibco) supplemented with 1 % 
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Penicillin-Streptomycin, 1 % Glutamax (Gibco), 1 % N2 supplement, and 25 ng/ml bFGF 

in 4-well plates (Nunc).  Cultures were maintained in a humidified tissue culture 

incubator at 37 °C and 5 % CO2.  

4.2.4 Cryosectioning 

For embryonic time points, whole mouse embryos were collected from CO2 euthanized 

pregnant dams at specific gestational ages (E13.5, E16.5) and stored in phosphate 

buffered saline (PBS) pH 7.4 with 4 % paraformaldehyde (PFA) at 4 °C for 16-24 hours.  

For postnatal day P7, mice were lethally sedated with CO2 and were transcardially 

perfused with 4 % PFA-PBS pH 7.4.  Brains were then dissected and stored in 4 % PFA-

PBS pH 7.4 at 4 °C for 16-24 hours.  Samples were cryoprotected in 10-30 % sucrose-

PBS pH 7.4, embedded in Shandon Cryomatrix (Thermo Scientific), sectioned using a 

Leica cryostat (CM 3050S), and collected on Superfrost+ glass microscope slides 

(VWR). 

4.2.5 Immunofluorescence Staining and Quantification 

Prior to immunostaining, tissue cryosections were heated for 10 minutes in 10 mM Na-

Citrate (pH 6.0) in a microwave to unmask antibody binding-sites.  Cryosections were 

incubated with primary antibodies diluted in PBS + 0.3 % Triton X-100 overnight at 4 °C 

in a Shandon Sequenza slide rack (Thermo), rinsed in PBS, incubated with secondary 

antibodies diluted in PBS + 0.3 % Triton X-100 for 1 hour, followed by a 5 minute 

incubation with DAPI (1 µg/ml in PBS, Sigma) as a nuclear counterstain, rinsed with 

PBS and mounted in SlowFade Gold (Invitrogen) or Vectashield H-1000 (Vector Labs) 

fluorescent mounting media.  Antibodies used were anti-γ-Tubulin, anti-Ctip2 (1:500, 

Abcam), anti-Tbr1 (1:200, Abcam), anti-Brn2 (1:50, Santa Cruz), anti-Tbr2 (1:500, 

Abcam), anti-Pax6 (1:50, Santa Cruz).  Immunofluorescence images were captured using 

a Leica DMI-6000B inverted microscope (Leica Microsystems) equipped with a digital 

camera (ORCA-ER, Hammamatsu).  Image capture was achieved using Openlab v5.0 

(Perkin Elmer) and processed using Volocity v5.4 (Perkin Elmer) and Photoshop CS3 

(Adobe).  To analyze P7 cortical layer thickness, three different measurements separated 

by 100 µm were made perpendicular to the lateral cortical axis in equivalent regions from 
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three sequential cryosections per brain from n = 5 mice for both control and Atrx-null 

samples.   For P7 cortical cell quantifications, 200 µm-wide columns perpendicular to the 

lateral cortical axis were quantified for specific immunopositive cells in equivalent areas 

from 3 adjacent cryosections per brain from n = 5 mice for control and Atrx-null samples.  

Statistical analysis of the sample means was performed using student’s t-test.  For 

neuroprogenitor mitotic figure analysis, cultures were fixed with 2 % PFA in PBS pH 7.4 

after 2-3 days in culture, immunostained with anti-Atrx (Santa Cruz) and counterstained 

with DAPI (1 µg/ml in PBS), and mounted in Vectashield H-1000 mounting media 

(Vector labs).  Cells were quantified from n = 3 mice for control and n = 4 for Atrx-null. 

4.3 Results 

4.3.1 Abnormal Chromosome Alignment and Segregation in 
Cultured Atrx-null Neuroprogenitors 

A mouse model of Cre-mediated Atrx inactivation in the developing embryonic mouse 

forebrain has been previously described (Bérubé et al., 2005) (AtrxFoxg1Cre mice, defined 

as Atrx-null hereafter).  In this model, Atrx is inactivated in cortical NPCs at age E8.5, 

prior to the onset of neurogenesis, resulting in loss of Atrx expression in all cortical 

neurons.  The Atrx-null forebrain is reduced in size at birth, with elevated P53-dependent 

cortical cell death (Bérubé et al., 2005; Seah et al., 2008).  We have previously reported 

that the Atrx-null embryonic forebrain displays dispersed chromatin fragments in close 

association with the mitotic NPCs of the ventricular zone lining the embryonic lateral 

ventricles (Ritchie et al., 2008).   To determine whether this phenotype reflects disrupted 

mitotic chromosome alignment in the NPCs of the developing neuroepithelium, we 

established primary cell cultures of control and Atrx-null NPCs isolated from E13.5 

telencephalon.  Isolated cells were cultured in Neurobasal media supplemented with N2 

and bFGF to allow for colony growth of dividing NPCs, and the cultures were fixed and 

stained with DAPI two days after plating.  Mitotic figures were identified by 

characteristic condensed chromatin morphologies, and scored for evidence of 

abnormalities.  We found that embryonic NPCs isolated from Atrx-null cortices were 

more often seen with abnormal mitotic figures, including misaligned chromosomes 

during metaphase and chromatin bridges during anaphase/telophase (Control = 10/161 
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(6.21%), Atrx-null = 23/114 (20.18%)) (Figure 4-1A, B).  These results indicate that Atrx 

is required for proper chromosome dynamics during mitotic cell division of cortical 

NPCs. 

4.3.2 Disrupted Angle of Division in Atrx-null Apical 
Neuroprogenitors Lining the Ventricular Zone 

Normal neocortical development relies on the temporally choreographed balance of 

progenitor cell divisions.  Initially the progenitor population is expanded through 

symmetric proliferative cell divisions, which is then followed by a shift to asymmetric 

differentiative divisions that yield the variety of cell types found in the mature cortex.  

The balance and timing of these two modes of division are critical to achieve normal 

cortical size and patterning (Kriegstein et al., 2006).  The differential inheritance of the 

apical plasma membrane is considered a key determinant in the ultimate fate decision of 

daughter neuroprogenitor cells.  This mechanism is achieved by controlling the 

orientation of the mitotic spindle and cytokinetic cleavage furrow to orient that axis of 

cell division relative to the apical cell surface.  Disruption of spindle orientation or 

cleavage angle has been linked to microcephalic phenotypes in murine models.  To assess 

whether ATRX is required to achieve a normally oriented mitotic axis, we cryosectioned 

control and Atrx-null E13.5 embryos and scored the orientation of the mitotic spindle axis 

relative to the ventricular surface in apical NPCs.   Angular measurements of the mitotic 

spindle were achieved by staining cryosections with the DNA counterstain DAPI in 

conjunction with an antibody against the centrosomal marker γ-Tubulin, an indicator of 

the mitotic spindle poles (Figure 4-1C).   In control forebrains (n = 3), we observed that 

in 84% of dividing cells, the mitotic spindles were oriented in a near-parallel (0-20°) 

angle to the apical surface, only 63 % of dividing cells in the Atrx-null forebrain were 

oriented in this manner.  In contrast, mitotic apical NPCs in the Atrx-null forebrain (n = 

3) were more frequently oriented in asymmetrically, with 25.3 % between 20-39° and 

11.3 % between 40-90° relative to the apical surface, in contrast only 12% of control 

NPCs were between 20-29° and 4% between 40-90°.   
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Figure 4-1.  Atrx-null neuroprogenitors exhibit mitotic defects in vitro and altered 
cell division axis in vivo.   

(A) Cultured neural progenitors from E13.5 control and Atrx-null forebrain were fixed, 
immunostained with an anti-ATRX antibody and counterstained with DAPI to detect 
DNA. (B) Mitotic cells were scored for mitotic defects (control n = 161 from 3 mice, 
Atrx-null n = 114 from 4 mice), specifically for misaligned chromosomes at the 
metaphase plate and chromosome bridges or lagging chromosomes at 
anaphase/telophase. (C) Cryosections of E13.5 control and Atrx-null cortex were labeled 
with anti-γ-Tubulin antibody to detect the centrosomes (arrowheads), and counterstained 
with DAPI to detect DNA. The axis of neural progenitor cell division at the 
neuroepithelial surface was measured using the axis between centrosomes (white dashed 
line) relative to the neuroepithelial surface (red dashed line)  (D) Orientation of the cell 
division axis relative to the axis of the apical neuroepithelial surface was scored in 
control and Atrx-null cortex (n = 50 cells/mouse, 3 mice/genotype). Scale in (A) & (C) = 
10 µm. 
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These findings demonstrate that dividing apical neuroprogenitors of the Atrx-null 

embryonic forebrain were aligned more often in an asymmetric mode of cell division, 

which may alter the inheritance of the apical plasma membrane and disturb the pattern of 

neuronal differentiation. 

4.3.3 Altered Cortical Architecture in the Postnatal Atrx-null 
Forebrain 

Our observation of increased asymmetrically oriented mitotic NPCs in the embryonic 

Atrx-null neuroepithelium suggested a potential defect in the timing and balance of 

projection neuron differentiation during this stage of neurogenesis.  Our observation of 

increased asymmetric cell divisions at E13.5 would initially cause an overproduction of 

deep layer neurons (layers V-VI), eventually leading to a depletion of the progenitor pool 

and thus reduced capacity to produce superficial layer neurons (Layers II-IV).   To test 

this, we examined cortical lamination and the different neuronal subpopulations in the 

Atrx-null P7 cortex, when most cortical neurons have been produced and have migrated 

to their final laminar positions.   We first examined the status of the deep layer VI 

neurons, which are born following the splitting of the preplate into the subplate and 

marginal zone. Corticothalamic projection neurons of the deep cortical layer VI are 

characterized by expression of the T-box transcription factor Tbr1 (Bulfone et al., 1995). 

Consistent with increased asymmetric neurogenic cell divisions at E13.5, we found that 

the postnatal Atrx-null cortex was characterized by an increased population of deep 

cortical layer VI neurons, as assessed by immunofluorescence staining for Tbr1-

expressing cells (Control = 130.93 ± 20.37 cells, Atrx-null = 211.80 ± 27.18 cells, p < 

0.01, n = 5) (Figure 4-2).  In the Atrx-null cortex, this deep layer of Tbr1 expressing cells 

was dramatically expanded along the dorsal-ventral axis (Control = 259.26 ± 34.94 µm, 

Atrx-null = 352.78 ± 66.91 µm, p < 0.05, n = 5) (Figure 4-2).  Surprisingly, total cortical 

thickness was not significantly changed in this cortical region (Control = 754.09 ± 65.05 

µm, Atrx-null = 767.46 ± 124.49 µm, p = 0.83, n = 5), though the depth of layer VI 

relative to the entire depth of the cortex was significantly increased in the Atrx-null 

forebrain (Figure 4-2).  These results indicate a disproportionate increase in the number 
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Figure 4-2.  Cortical layer IV is expanded in the postnatal Atrx-null forebrain. 

(A) Cortical sections at P7 from control and Atrx-null mice were stained with an anti-
Tbr1 antibody to detect deep cortical layer VI projection neurons. (B) Results in (A) were 
quantified by measuring the thickness of the domain of Tbr1 expressing deep cortical 
layer neurons and total cortical thickness.  Layer VI represents an increased proportion of 
the total cortical depth in the Atrx-null mouse. Measurements were taken from 3 points 
100 µm apart in 3 sequential sections per animal (n = 5 mice per genotype). The total 
number of Tbr1 expressing cells in cortical layer VI is increased in the Atrx-null mouse, 
along with the total number of layer VI cells (p < 0.01), as determined by DAPI 
coutnerstaining. Cells counts were quantified from single 200 µm-wide columns 
spanning the entire depth of the cortex from 3 sequential sections (n = 5 mice for both 
control and Atrx-null genotypes).  Scale in (A) = 200 µm. Error bars represent mean +/- 
s.e.m. Single asterisk = P < 0.01. (C) Western blot analysis of total protein from P7 
cortices shows an increase in the amount of Tbr1 protein in the Atrx-null (Null) forebrain 
relative to the Foxg1Cre control (Ctrl) forebrain. 
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of Tbr1 expressing neurons within the deep cortical layers of the postnatal Atrx-null 

cortex. The expansion of layer VI and concurrent increase in the number of Tbr1- 

expressing cells was confirmed by semi-quantitative Western Blot analysis of P7 cortex, 

which showed an increase in Tbr1 protein levels in the Atrx-null cortex relative to control 

samples (Fig 4-2C). 

4.3.4 The Neural Progenitor Population is Reduced in the Late 
Embryonic Atrx-null Cortex 

Because we observed a dramatic increase in the number of Tbr1 expressing layer VI 

cortical projection neurons in the P7 Atrx-null forebrain, in conjunction with an increase 

in asymmetrically oriented neural progenitor cell divisions during mid-neurogenesis, we 

theorized that the late-embryonic progenitor pool might be prematurely depleted as a 

consequence.  We investigated the populations of neural progenitor cells in E16.5 control 

and Atrx-null forebrain by immunostaining cryosections with antibodies against the 

transcription factors Pax6 and Tbr2, markers of apical and basal progenitors, respectively 

(Figure 4-3).  Both progenitor populations appeared reduced in the Atrx-null forebrain, 

however the Tbr2 expressing basal progenitors were more severely affected.  This effect 

was consistent at both caudal (Figure 4-3A) and rostral (Figure 4-3B) cortical depths, and 

affected both the dorsal cortical progenitors and hippocampal progenitors, consistent with 

the hippocampus being a severely affected cerebral structure in the post-natal Atrx-null 

forebrain.  These results suggest that the overproduction of early born, deep cortical 

projection neurons in the Atrx-null forebrain comes at the expense of the late-embryonic 

neural progenitor population. 

4.3.5 Superficial Cortical Projection Neurons are Depleted in the 
Atrx-null Forebrain 

The depletion of both neural progenitor populations at E16.5, especially of the basal 

progenitor cells, suggested that the neural output during the later stages of neurogenesis 

might be limited in the Atrx-null cortex.  At E16.5, the projection neurons destined for the 

most superficial cortical layers (II/III) are being produced, primarily by the basal 

progenitor cells of the SVZ.  The corticospinal projection neurons of cortical layer V 

express high levels of the C2H2-type zinc finger transcription factor Ctip2.  Control and  
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Figure 4-3.  Neural progenitor cells are depleted in the late-embryonic Atrx-null 
cortex.   

Cryosections of E16.5 control and Atrx-null forebrain were immunostained with 
antibodies against Pax6 and Tbr2 to detect apical and basal neural progenitor cells, 
respectively, at both rostral (A) and caudal (B) cortical depths.  The Atrx-null cortex 
shows a small reduction of Pax6 and more severe reduction of Tbr2 expressing cells in 
the germinal VZ and SVZ.  Scale in (A) & (B) = 200 µm. 
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Atrx-null P7 forebrain cryosections were immunostained with an antibody against Ctip2to 

identify the projection neurons of layer V.  Interestingly, we found no change in the 

number of cells in layer V (Control: 113 ± 21.03 cells, Atrx-null 113.60 ± 19.23 cells, p = 

0.98, n = 5), or Ctip2-positive cells in layer V (Control = 56.60 ± 9.61 cells, Atrx-null = 

63.00 ± 12.25 cells, p = 0.38, n = 5), or of overall layer V thickness (Control: 228.11 ± 

23.24 µm, Atrx-null: 199.37 ± 31.29 µm, p = 0.14, n = 5) however the entire layer was 

shifted dorsally, possibly to accommodate the expansion of the deeper cortical layer VI 

(Figure 4-4A, C)(Figure 4-2).  We next examined the status of the corticocortical 

projection neurons of the superficial layers (II-IV) that express the class III POU domain 

transcription factor Brn2.   Control and Atrx-null P7 forebrain cryosections were 

immunostained with an antibody against Brn2 to identify superficial layer projection 

neurons.  Indeed, most Brn2 positive cells were observed in the superficial cortical region 

corresponding to layer II-IV in both control and Atrx-null cortices (Fig 4-4A).  In the 

Atrx-null cortex, this upper layer (Cortical layers II-IV) of strong Brn2 expressing cells 

was dramatically reduced in thickness along the dorsal-ventral axis  (Control: 359.08 ± 

42.49 µm, Atrx-null 256.63 ± 26.76 µm, p < 0.01, n = 5) (Fig 4-4B).  This decrease in 

layer thickness was accompanied by a reduction in the number of Brn2 expressing cells 

within the superficial cortical layers (Control = 208.60 ± 45.97 cells, Atrx-null = 116.40 ± 

31.41 cells, n = 5, p < 0.01) (Figure 4-4B).  Together these results show that the Atrx-null 

cortex is specifically depleted of late-born superficial cortical projection neurons.  

4.4 Discussion 

Using a conditional model of Atrx inactivation, we have shown altered cerebral cortical 

patterning and neuron production in the post-natal Atrx-null mouse forebrain.  In addition 

we show that when cultured under proliferative conditions, NPCs isolated from the 

embryonic Atrx-null cortex exhibit characteristic mitotic defects, including chromosome 

misalignment at metaphase, and chromatin bridges at anaphase/telophase, supporting the 

proposal that the DNA fragments observed in the embryonic lateral ventricles lining the 

apical ventricular zone represent mitotic defects in vivo (Ritchie et al., 2008).  We have 

previously reported mitotic abnormalities in ATRX depleted HeLa cells, characterized by 
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Figure 4-4.  Superficial cortical layers are reduced in the Atrx-null cortex.  

(A) Forebrain cryosections from P7 control and Atrx-null mice were immunostained with 
antibodies against CTIP2 and BRN2.  (B) Superficial cortical layers II-IV in the Atrx-null 
mouse are thinner, and have a reduced number of BRN2+ cells (C) Cortical layer V is 
unaffected in the Atrx-null mouse, showing conserved thickness, total cell number, and 
CTIP2+ cell number. Measurements represent n = 5 mice per genotype.  Single asterisk = 
P<0.05, double asterisk= P<0.01.  Error bars are mean ± s.e.m. Scale in (A) = 200 µm. 
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chromosome congression defects during prometaphase, chromosome misalignment 

during metaphase, and chromosome bridging during telophase/anaphase (Ritchie et al., 

2008).  Taken together our data suggests that ATRX may regulate mitotic division in a 

variety of cell types.   

Loss of Atrx increased the proportion of apical progenitor cell divisions that exhibited 

asymmetrically oriented mitotic spindles during early neurogenesis (E13.5), suggesting a 

possible disruption of the normal timing of neuronal differentiation in the Atrx-null 

cortex, as the mode of cell division is postulated to ultimately direct the choice of cell 

differentiation or self-renewal.  In the Atrx-null cortex at P7, cortical layer VI contained 

significantly more cells and was much thicker along the dorsoventral axis compared to 

equivalent control cortices, indicating an overproduction of early born deep-layer 

neurons.   As these cells are produced during the early stages of cortical neurogenesis 

(E11-E14), this observation supports the hypothesis that increased asymmetric apical 

progenitor cell divisions during this period increases the amount of early neuronal 

differentiation.  Notably, the overall cell density of layer VI was unchanged in the Atrx-

null mouse, suggesting that overall cell packing density was largely unaffected by loss of 

ATRX expression.  In contrast to the deep cortical layers, the superficial cortical layers 

(Layers II-IV) of the Atrx-null cortex were significantly reduced in thickness along the 

dorsal-ventral axis, and contained fewer superficial Brn2+ neurons.  Upper cortical layer 

neurons are produced during the later period of cortical neurogenesis (E14.5-E18.5), and 

are derived primarily from neurogenic cell divisions of basal progenitors in the 

embryonic subventricular zone.  In the Atrx-null cortex, excessive asymmetric cell 

division during the early developmental stages might result in a consequent loss of late-

born superficial layer neurons due to the depletion of the late-stage population of cortical 

progenitor cells in both the ventricular and subventricular zones.  Immunostaining of the 

late (E16.5) progenitor population showed a reduction in the domain of Pax6 and Tbr2-

expression in the progenitor populations in the ventricular and subventricular zones.  

These results show that the late-embryonic apical (Pax6 positive) and basal (Tbr2 



 

 123 

positive) progenitor populations are depleted in the Atrx-null forebrain, likely as a 

consequence of excessive neurogenesis during the early stages of development.  

Studies of the primary microcephaly-associated gene cyclin-dependent kinase 5 

regulatory subunits 2 (CDK5RAP2) have found that the forebrain of the knockout mouse 

is severely dysmorphic, with cortical hypoplasia, and reduction in brain and hippocampal 

size (Lizarraga et al., 2010).  The cortex is characterized by a loss of later born superficial 

layer (II/III) neurons and an increase in early born neurons of the deep cortical layer (VI), 

a phenotype strikingly similar to that of the Atrx-null mouse, albeit more severe.  The 

neural progenitors of the embryonic cortex are characterized by mitotic defects, including 

delayed mitotic progression and abnormal mitotic spindles with supernumerary spindle 

poles, and increased levels of cell death.  These progenitors also show defects in mitotic 

spindle positioning, with an increase in the proportion of horizontal/asymmetric cell 

divisions and a premature depletion of the neural progenitor cell population.  A premature 

increase in cell cycle exit in neural progenitors is predicted to increase the amount of 

early born neurons, and decrease the amount of later born neurons in a predictable way 

(Caviness et al., 2003), matching the observations in the cdk5rap2 deficient mouse, and 

the Atrx-null mouse here.  Defects in spindle orientation have also been shown to 

correlate with increased cell death during neuroepithelial stem cell divisions (Yingling et 

al., 2008), pointing to a possible mechanism leading to the phenotype in the Atrx-null 

forebrain.   

It has recently been shown that ATRX partners with DAXX in the deposition the H3.3 

histone variant at specific genomic loci, including telomeric repeats and pericentromeric 

heterochromatin (Goldberg et al., 2010; Drané et al., 2010; Lewis et al., 2010).  

Interestingly, reduced ATRX-dependent H3.3 deposition at pericentromeric chromatin 

inhibits the expression of pericentromeric transcripts in mouse embryonic fibroblasts 

(Drané et al., 2010).  In fission yeast, these transcripts are required for the formation of 

heterochromatin and sister chromatid cohesion (Zaratiegui et al., 2007), however a role in 

mammalian cells remains unclear.  The mitotic defects induced by Atrx disruption may 

suggest that the incorporation of histone H3.3 is important for the organization and 
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function of pericentromeric heterochromatin, with ramifications on mitotic division and 

cell type ratios in the developing cerebral cortex.  

These observations demonstrate a novel requirement for Atrx in the generation of specific 

neuronal subtypes in the developing mouse cortex.  Importantly, they show that Atrx is 

required to maintain the appropriate level of symmetric neural progenitor cell divisions 

during corticogenesis.  The regulation of pericentromeric heterochromatin and mitotic 

cell division by Atrx may be a critical feature in the control of neurogenesis, and may 

help us understand the disease mechanisms related to ATRX deficiency. 
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Chapter 5  

5 General Discussion and Future Directions 

The body of work presented in this thesis describes a novel role for the chromatin 

remodeling protein ATRX in mitotic cell division and mammalian cortical neurogenesis. 

Based on the results presented in chapters two and three, I conclude that ATRX is 

required for normal mitotic progression, sister chromatid cohesion, and cytokinesis in 

human somatic cells.   Furthermore, chapter four shows that in the developing mouse 

brain, ATRX regulates cortical neurogenesis by maintaining mitotic fidelity in dividing 

neuronal progenitor cells and promoting accurate symmetric proliferative cell divisions.   

5.1 Thesis Summary 

The ATRX protein belongs to the Snf2 family of chromatin remodeling proteins, and 

although ATRX was originally presumed to function primarily as a transcriptional 

regulator, my work has revealed a novel role for ATRX in mitotic cell division.  In both 

human and mouse cells, ATRX is enriched at the gene-sparse PCH domains throughout 

the cell cycle, raising the possibility that it might have additional functions beyond 

transcriptional control of gene expression.  There, ATRX interacts with other factors 

implicated in the establishment and maintenance of PCH, including HP1 (McDowell et 

al., 1999), MeCP2 (Nan et al., 2007; Kernohan et al., 2010), Daxx (Xue et al., 2003), and 

H3.3 (Goldberg et al., 2010; Wong et al., 2010; Drané et al., 2010; Lewis et al., 2010), 

suggesting that it may also perform a specific function at this heterochromatic domain.  

Proper assembly of PCH is required for normal centromere function and chromatid 

cohesion during mitotic cell division, with disturbances leading to errors in chromosome 

biorientation and segregation during mitosis. 

In Chapter two, I tested the hypothesis that ATRX is required to maintain mitotic fidelity 

in mammalian somatic cells.  I found that RNAi mediated depletion of ATRX expression 

in a human cancer cell line (HeLa) leads to increased levels of mitotic abnormalities, 

including chromosome congression, alignment, and segregation errors.  This phenotype 

was accompanied by reduced sister-chromatid cohesion at metaphase, pointing to a 
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potential mechanism underlying these defects.  Importantly, I reported evidence of 

mitotic abnormalities in Atrx-null embryonic cortical neuronal progenitor cells in vivo, 

suggesting that a requirement for ATRX in mitotic cell division might extend to a 

physiologically relevant tissue. 

In Chapter three, I reported a further disturbance of the terminal stages of mitotic cell 

division in ATRX depleted HeLa cells, notably cytokinetic failure, multinucleation, and 

cell death.  There were two possible explanations for this phenotype; firstly that 

unresolved chromosome bridges or lagging chromosomes were inhibiting the cellular 

cleavage through mechanical hindrance, or secondly, that the cytokinetic cleavage furrow 

or midbody were functionally impaired, perhaps due to an unidentified role for ATRX in 

regulating the expression of factors related to the function of these cellular structures.  It 

appears that the cytokinetic midbody and cleavage furrow are correctly assembled and 

functional in these cells, suggesting that this phenotype may be a consequence of 

chromosome segregation errors during mitosis. 

In Chapter four, I investigated more thoroughly the effect of Atrx loss on neuronal 

progenitor cell division and cerebral cortical organization and neurogenesis in the 

developing mouse forebrain.  I found that cultured neuronal progenitor cells from the 

embryonic Atrx-null cortex displayed elevated levels of mitotic defects, including 

chromosome misalignment on the metaphase spindle; reminiscent of the phenotype 

observed in ATRX depleted HeLa cells.  The apical neuronal progenitors within the 

embryonic Atrx-null cortex were more often asymmetrically oriented during cell division, 

suggesting an increase in neuronal differentiation.  Consistent with these findings, the 

postnatal Atrx-null cortex was characterized by a significant increase in early-born deep 

cortical projection neurons.  Furthermore the late-embryonic neuronal progenitor 

population was depleted, accompanied by a decrease in the late-born neurons of the 

superficial cortical layers.  These findings specifically identify a functional role for 

ATRX in cerebral cortical development, and contribute partly to the cortical phenotype of 

the conditional Atrx-null mouse used in this study. 
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5.2 A Novel Function for ATRX in Cell Division 

The initial goal of my research was to investigate a potential requirement of ATRX for 

normal mitotic cell division by virtue of its seemingly ubiquitous enrichment at PCH in 

both human and mouse somatic cells.  To meet these ends I depleted HeLa cells of 

ATRX using transient small interfering RNA (siRNA) and stable short hairpin RNA 

(shRNA) mediated RNAi.  These experiments revealed a general mitotic defect in 

proliferating ATRX deficient cells, associated with reduced chromatid cohesion and a 

transient delay in mitotic progression.  Other groups have also reported a requirement for 

ATRX in normal meiotic progression.  In the fully-grown mouse oocyte, ATRX is found 

at PCH, and functional ablation in vitro using RNAi severely disrupts chromosome 

alignment at the metaphase II (MII) meiotic spindle (De La Fuente et al., 2004).  More 

recently, further work showed that mouse oocytes depleted of ATRX by RNAi using a 

stably expressing zona pellucida 3 (ZP3)-driven Atrx-short hairpin vector had 

chromosome segregation defects with lagging chromosomes, loss of sister chromatid 

cohesion at MII and greatly increased incidence of aneuploidy (Baumann et al., 2010).  

Meiotic spindle abnormalities and faulty chromosome congression to the metaphase plate 

are associated with advanced maternal age and are suspected of contributing to the 

observed age-related increases of aneuploid eggs in humans (Battaglia et al., 1996).  In 

addition, an age-associated decrease in chromosome cohesion has also been reported, and 

could also contribute to the observed increase in aneuploidy (Hodges et al., 2005).  

Furthermore, a study by Pan et al. revealed that ATRX expression is reduced in eggs 

obtained from old female mice, which have up to a 6-fold increase in hyperploidy, 

associated with reduced fidelity of the metaphase I (MI) spindle assembly checkpoint 

(SAC) (Pan et al., 2008).   

Earlier this year, Bagheri-Fam et al. investigated the role of ATRX in testis development, 

as ATR-X patients often display urogenital abnormalities, including small testis 

(Bagheri-Fam et al., 2011).  In this study, Atrx was conditionally inactivated in the 

supporting cell lineage (Sertoli cells) of the mouse testis, and it was found that these Atrx-

negative Sertoli cells exhibit prolonged G2/M phase, and elevated levels of apoptosis 

during development, leading to tubule dysgenesis.  However, it was not clear whether the 
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decrease in cell viability was related to the mitotic delay or an alternative cause like 

impaired cellular maturation. 

In addition to broad developmental consequences, mitotic defects can be associated with 

oncogenic events and tumorigenesis due to genomic instability (Montgomery et al., 

2003).  To date there is no evidence that ATR-X patients exhibit mitotic defects or are 

prone to developing cancer, however there is increasing evidence for a role of ATRX in 

neoplasia outside of the context of ATR-X syndrome (Steensma et al., 2004). Recently, 

ATRX and DAXX mutations were found in a large proportion of pancreatic 

neuroendocrine tumours (PanNETS), suggesting that they have tumour suppressive 

functions.  Although rare, PanNETs are the second most common malignancy of the 

pancreas, with a 10-year survival rate of only 40%.   Exomic sequencing of 68 pancreatic 

PanNETS identified mutations in both ATRX and Daxx in 17.6% (12/68) and 25% 

(17/68) of the samples, respectively, but never together, suggesting that they act through 

the same biological pathway in this context (Jiao et al., 2011). All ATRX mutations 

correlated with loss of immunolabeling in these hyperplastic pancreatic islet cells, 

suggesting that complete loss of ATRX protein is associated with oncogenetic events in 

PanNETs.  Furthermore, another recent study of PanNETs found substantial 

chromosomal alterations in 98% of samples (Hu et al., 2010), suggesting that genomic 

instability could contribute to PanNET oncogenesis.  It may be that null mutations in 

ATRX lead to more severe genomic instability with a much higher propensity for 

oncogenesis than hypomorphic mutations.  Although I observed mitotic defects in human 

cells retaining low levels of ATRX transcript (20% of control levels), both full-length and 

ATRXt protein were not detectable using western blots analysis (see Figure 2-2), 

suggesting that this approach may produce an effect more similar to a null-allele rather 

than a hypomorphic allele. 

A growing number of reports have now linked ATRX and cancer.  In a study of 132 

adults with de novo acute myeloid leukemia (AML), low ATRX expression correlated 

with high-risk karyotype and poor clinical outcome (Serrano et al., 2006).  Altered ATRX 

expression levels have also been reported in gene expression profiling experiments using 

prostate cancer primary cells (Coutinho-Camillo et al., 2006), esophageal squamous cell 
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carcinoma cell lines (Bo et al., 2004), chronic lymphocytic leukemia primary cells, and 

irradiated breast cancer cell lines (Roy et al., 2008). 

Myelodysplastic syndromes (MDS) are a diverse group of neoplastic bone marrow 

disorders, associated with a diverse array of cytogenetic abnormalities (Davids and 

Steensma, 2010).  Acquired somatic ATRX mutations were identified in the bone marrow 

or blood cells of nearly all cases of alpha thalassemia myelodysplastic syndrome 

(ATMDS) (Steensma et al., 2004), a pre-leukemic condition accompanied by alpha 

thalassemia, typically observed in elderly men.  It has not yet been determined whether 

ATRX mutations in this context are the cause of the myeloproliferative syndrome, or are 

acquired passenger mutations affecting only α-globin synthesis (Steensma et al., 2004; 

Higgs and Weatherall, 2009).  In some ATMDS cases, the α-thalassemia has been found 

to be more severe than that associated with germline ATRX mutations, suggesting that 

these somatic mutations may produce a null-allele, or that disparate mechanisms govern 

this phenotype depending on the context of the mutation (Steensma et al., 2004). 

Although ATRX deficiency induces a general mitotic or meiotic phenotype in some types 

of actively dividing cells, the potential mechanisms leading to this defect have not yet 

been determined.  This may soon change after a number of recent reports identified a 

novel role for ATRX, together with its binding partner DAXX, in the specific deposition 

of H3.3 containing nucleosomes at discrete heterochromatic domains (Goldberg et al., 

2010; Wong et al., 2010), including PCH (Drané et al., 2010).  Depletion of Atrx in MEFs 

resulted in reduced H3.3 incorporation at pericentric repeats, and a decrease in the 

abundance of pericentric transcripts (Drané et al., 2010).  It is speculated that H3.3 

facilitates transcription by reducing the stability of nucleosomes into which it is 

incorporated, facilitating removal from the DNA template (Jin and Felsenfeld, 2007).  

Interestingly, contrary to previous assumptions, the repetitive and heterochromatic 

pericentric repeats are highly transcribed in fission yeast (Cam et al., 2005; Djupedal et 

al., 2005) and mammals (Lu and Gilbert, 2007), and these transcripts are in fact required 

for the formation of pericentric DNA as condensed heterochromatin through an RNAi 

mediated mechanism (Maison et al., 2002; Djupedal et al., 2005).  Importantly, 

pericentric heterochromatin structure is essential for kinetochore assembly (Gieni et al., 
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2008), centromeric cohesion (Nonaka et al., 2002), and accurate chromosome segregation 

during mitosis (Peters et al., 2001; Pidoux and Allshire, 2004).  In the ATRX depleted 

HeLa cells described in my thesis, the kinetochore appears to be assembled properly as 

CREST immunoreactivity [CREST is a human autoimmune anti-centromere antiserum, 

predominantly detecting CENPA and CENPB (Brenner et al., 1981; Earnshaw and 

Migeon, 1985)] appeared identical in control and ATRX deficient cells.  Loss of the 

H3K9me3 methyltransferase, Suv39h1, results in abnormal assembly of PCH, and 

aberrant chromosome segregation and premature sister chromatid separation (Lehnertz et 

al., 2003; García-Cao et al., 2004).  This raises the possibility that the mitotic defects I 

have described in ATRX compromised HeLa cells and mouse embryonic neuronal 

progenitors are due to abnormal PCH assembly, perhaps due to the lack of H3.3 

deposition and pericentric transcription, and subsequent failure to recruit or retain 

appropriate amount of cohesin at PCH.  To continue these studies, it will be important to 

investigate the composition of PCH in these cells using immunofluorescence and ChIP 

analysis to measure the presence of PCH antigens like HP1 and H3K9me3.  In addition, it 

would be useful to examine the level of pericentric repeat transcripts produced in these 

cells, to confirm a disturbance in the RNAi-mediated pathway of PCH assembly.  Other 

studies conducted in the Bérubé lab have found that ATRX interacts with members of the 

cohesin protein complex and recruits them to discrete gene regulatory regions of the 

genome (Kernohan et al., 2010). A logical next step will be to determine whether ATRX 

is required for the localization of cohesin to PCH in HeLa cells or cortical progenitors, as 

this may provide a mechanism to explain the chromatid cohesion and mitotic defects.  I 

predict that ATRX is also required for normal enrichment of cohesin at PCH, as it is at 

discrete gene loci.  A chromatin ChIP approach to examine cohesin enrichment at the 

human α-satellite or mouse major satellite pericentric repeats in ATRX deficient cells 

could be used to address this question.  To determine if this is a direct recruitment of 

cohesin or an indirect mechanism through the maintenance of PCH structure by ATRX, 

the domains of interaction between ATRX and cohesin will need to be identified.  

Directed mutagenesis of ATRX and/or cohesin could be used to localize the interacting 

regions, and in vivo reconstitution of these mutant isoforms could help distinguish 

between these possibilities, for example if ATRX directly recruits cohesin to PCH, 
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disrupting the interacting domains on either protein should lead to loss of recruitment.  In 

fission yeast, cohesin is primarily recruited to PCH by the HP1 homolog, Swi6 (Nonaka 

et al., 2002).  Because of the similarities in centromere regulation between mammals and 

yeast, it was assumed that similar mechanisms of cohesin recruitment were active in both 

systems.  In fact, researchers have been unable to identify an interaction between cohesin 

and mouse HP1 (Koch et al., 2008), suggesting that novel mechanisms of cohesin 

recruitment may have evolved in the mammalian system (Gartenberg, 2009).   

In Chapter three I presented evidence that ATRX-depletion induces cytokinetic 

instability, whereby human cells depleted of ATRX more frequently fail cytokinesis, 

producing multinucleated progeny.  This phenotype may indicate a direct effect of ATRX 

in the transcriptional regulation of genes required for the normal function of the 

cytokinetic midbody or cleavage furrow, or a potential secondary effect of chromosome 

instability during mitosis.  To investigate this we conducted an examination of midbody 

and cleavage furrow formation in these cells by immunostaining for specific proteins 

associated with these cellular features, but were unable to identify any difference between 

the control and ATRX depleted cells.  However, this analysis was not exhaustive, and did 

not include all potential protein targets involved in this complex process.  I would 

continue this study by expanding the cohort of protein candidates to achieve a more 

detailed profile of the cleavage furrow and cytokinetic midbody in ATRX deficient cells.  

One protein candidate we investigated was Plk1, a serine/threonine kinase enriched at the 

cytokinetic midzone during anaphase, telophase, and at the cytokinetic midbody.  Elegant 

studies using a selectively inhibitable Plk1 isoform have shown that Plk1 activity is 

required for cleavage furrow formation (Burkard et al., 2007; Petronczki et al., 2007; 

Santamaria et al., 2007; Brennan et al., 2007).  It will be worthwhile to investigate the 

recruitment of downstream Plk1 cofactors, such as RhoA, and the RhoA GTP exchange 

factor ECT2, to the central spindle and midbody, to confirm that the Plk1 pathway is 

intact in ATRX-deficient cells. The phenotype observed in the Atrx depleted HeLa cells 

suggested a failure to complete the terminal stage of cytokinesis, a process known as 

cellular abscission.  Abscission is the least well-understood reaction in cytokinesis, but is 

believed to involve membrane trafficking to remodel the midbody (Glotzer, 2001).  

Therefore it may be informative to assess lipid membrane composition, focusing on the 
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phospholipid phosphatidylethanolamine (PE), a required component of the lipid 

membrane at the midbody (Emoto et al., 1996), and the syntaxin 2 membrane trafficking 

proteins (Low et al., 2003), as the cytoplasmic membrane if often highly disorganized in 

ATRX-depleted HeLa cells undergoing cytokinesis.  Cytokinesis can also be blocked by 

the presence of chromosome bridges that might signal via DNA damage response 

pathways to block and reverse the ingression of the cleavage furrow, resulting in 

aneuploidy or tetraploidy.  Because chromosome bridges were observed in ATRX-

depleted HeLa cells, and Atrx-null neuroprogenitors, it is possible that cytokinetic failure 

is due strictly to chromosome nondisjunction.  To investigate this, it would be important 

to first examine the activation or post-translational modification of specific DNA-damage 

signaling proteins such as BRCA2 phosphorylation, and Aurora B poly-ADP-

ribosylation, both implicated in cytokinetic regulation [Reviewed in (Normand and King, 

2010)]. 

5.3 ATRX and the Control of Cell Division in 
Neurodevelopment 

The severe developmental consequences of ATRX mutations on the human CNS highlight 

the importance of characterizing the role of ATRX in mammalian neurodevelopment.  

After observing mitotic defects in ATRX deficient human cells and mouse neuronal 

progenitors, and because of the direct relationship connecting cell division and cortical 

neurogenesis, I chose to investigate progenitor cell division in the conditional Atrx-null 

mouse forebrain.   

In Chapter four, I reported that apical neuronal progenitors in the embryonic Atrx-null 

forebrain are more often oriented asymmetrically during cell division, suggesting an 

increase in the proportion of neurogenic divisions during cortical development.  It is 

likely that abnormalities in the progression or completion of mitosis or cytokinesis in 

these cells, such as in the ATRX depleted HeLa cells described in chapter two, promote 

deviation of mitotic spindle positioning and/or cleavage furrow ingression, resulting in 

aberrant mitotic orientation relative to the apical ventricular surface and altered cell fate 

commitment. The murine animal model system has been used to identify a number of 

genes that are specifically involved in neuronal progenitor cell division, many of which 
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have human homologs associated with neurodevelopmental abnormalities, including 

MCPH.  One such gene is abnormal spindle microcephaly (ASPM), in which mutations 

are the leading cause of human MCPH.  ASPM is localized to the spindle poles 

(centrosomes) of mitotic cells (Fish et al., 2006; Higgins et al., 2010), and is 

downregulated by apical neuronal progenitors undergoing neurogenic divisions (Fish et 

al., 2006).  Knockdown of ASPM expression using in vivo RNAi electroporation in 

developing embryonic mouse forebrain resulted in more asymmetrically oriented mitotic 

progenitor cells and an increase of non-progenitor daughter cell fate (Fish et al., 2006).   

In addition, the products of the other characterized MCPH associated genes are also 

centrosomal components, including CDK5RAP2, CENP-J, and Microcephalin, 

suggesting a common mechanism linking mitotic regulation, neurogenesis, and cortical 

size.   

Striking results have been obtained from studies of one such MCPH-associated gene, 

cyclin-dependent kinase 5 regulatory subunits 2 (CDK5RAP2), encoding a centrosomal 

protein with a role in γ-tubulin ring complex (γ-TuRC) recruitment and microtubule 

nucleation at the centrosome (Fong et al., 2008).  Interestingly, this gene is mutated in the 

Hertwig’s anemia (an) mouse line, where homozygous mutant animals have a 

hypoproliferative anemia and leukopenia (Barker and Bernstein, 1983).  These mice have 

germ cell deficiencies with meiotic defects in embryonic germ cells and a high level of 

spontaneous aneuploidy in primary cultures of hematopoietic fetal liver, bone marrow 

and kidney epithelial cells (Eppig and Barker, 1984).  More recently it was found that the 

forebrain of this mouse is severely dysmorphic, with cortical hypoplasia, and reduction in 

brain and hippocampal size (Lizarraga et al., 2010).  The cortex is characterized by a loss 

of later born superficial layer (II/III) neurons and an increase in early born neurons of the 

deep cortical layer (VI), a phenotype strikingly similar to that of the Atrx-null mouse, 

albeit more severe.  The neuronal progenitors of the embryonic cortex are characterized 

by mitotic defects, including delayed mitotic progression and abnormal mitotic spindles 

with supernumerary spindle poles, and increased levels of cell death.  These progenitors 

also show defects in mitotic spindle positioning, with an increase in the proportion of 

horizontal/asymmetric cell divisions and a premature depletion of the neuronal progenitor 

cell population.  Defects in spindle orientation have also been shown to correlate with 
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increased cell death during neuroepithelial stem cell divisions (Yingling et al., 2008), 

pointing to a possible mechanism leading to this phenotype in the Atrx-null forebrain.  A 

premature increase in cell cycle exit in neuronal progenitors is predicted to increase the 

amount of early born neurons, and decrease the amount of later born neurons in a 

predictable way (Caviness et al., 2003), matching the observations in the cdk5rap2 

deficient mouse, as well as my results presented in chapter four. 

Cytokinesis is also a critical step in the cellular control of cortical development, 

exemplified by mutations in the CIT gene encoding the serine-threonine kinase Citron 

(CitK).  Initial functional studies found that overexpression of truncation mutations 

causes erratic cytokinetic behaviour and cytokinesis failure when overexpressed in HeLa 

cells (Madaule et al., 2000).  Citron kinase is specifically found at the cytokinetic 

midzone spindle and cleavage furrow during anaphase/telophase, where it then 

translocates to the midbody during cytokinesis (Di Cunto et al., 1998; Eda et al., 2001).  

The only known substrate of citron kinase is the regulatory light chain of myosin II, a 

subunit of the ATP-dependent +-end actin motor protein that helps to organize actin 

filaments into the contractile ring.  In rodent models, cit null mutations lead to 

microcephaly, cellular binucleation, cytokinetic failure, and massive apoptosis in the 

proliferative zones of the embryonic cortex (Di Cunto et al., 2000; Sarkisian et al., 2002).   

Together these data demonstrate the critical role of cytokinetic regulation in cortical 

development.  Notably, the cortical phenotype of the Cit-null mouse is similar to that of 

the conditional Atrx-null mouse studied in this thesis, with microcephaly, neuronal 

apoptosis, and abnormal cell division.  In addition to the phenotype described in Chapter 

four, previous studies have shown that the embryonic Atrx-null cortex is also 

characterized by elevated levels of p53-dependent apoptosis (Seah et al., 2008).  It may 

be that deficiency of ATRX in the developing cortex could lead to aneuploidy, which 

could reduce cell viability and result in elevated apoptosis. It will be important for future 

studies of the Atrx-null cortex to investigate the occurrence of neuronal binucleation in 

vivo. 

The Atrx-null forebrain used in this study retains normal expression of the truncated 

ATRXt isoform.  This isoform is not affected by the loxP-mediated recombination of 
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Atrx exon 18, as this isoform naturally truncates at exon 11, producing a protein that 

lacks the SWI/SNF homology domain.  The function of ATRXt is not known, but it may 

be useful to study a null allele of this isoform, or both isoforms in conjunction, to further 

extend our understanding of the developmental and biological function of this gene.  I 

predict that a complete knockout of both alleles will be more severe than either single 

allele in isolation, but might be difficult to study in the mouse if it leads to lethality when 

induced in the developing brain.  The RNAi-mediated depletion of ATRX in HeLa cells 

described in chapter two targeted both full-length and ATRXt transcripts, therefore the 

mitotic phenotype might also have been made more severe by a deficiency of both 

proteins (versus only full length in the Atrx-null mouse).  Furthermore, the Atrx-null 

allele used here may produce a more profound effect than that of a more biologically 

appropriate hypomorphic allele, because pathological mutations in ATRX are always 

hypomorphic (with relation to ATR-X syndrome).  This is supported by the observation 

that somatic ATRX mutations associated with ATMDS can confer a more severe 

hematological phenotype than inherited germline mutations associated with ATR-X 

(Steensma et al., 2004).  One explanation is that the somatic mutations produce null-

alleles that would otherwise be developmentally lethal, but can be tolerated in a clonal 

population of erythrocytes.  However, since some mutations associated with this disparity 

are identical to those found in ATR-X patients, who typically display less severe α-

thalassemia, other contributing factors must be important, for instance the polymorphic 

G-rich VNTRs adjacent to the α-globin locus that are thought to be resolved by ATRX as 

a means to regulate gene expression.  Although the approaches presented in this thesis are 

useful for the study of ATRX function, it will be important to introduce hypomorphic 

patient mutations into the endogenous Atrx allele in the mouse followed by a study of 

neurodevelopment to more accurately model the human disease. 
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5.4 Proposed model: The Role of ATRX in Mitosis and 
Neurogenesis 
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Figure 5-1.  Proposed model of ATRX function in mitosis and neurogenesis.   

(A) In mammalian somatic cells, ATRX is required for normal sister chromatid cohesion, 

possibly through the recruitment of the cohesin protein complex to pericentromeric 

heterochromatin (PCH).  In ATRX-deficient cells, cohesin occupancy (or function) might 

be disrupted at PCH, resulting in reduced centromeric sister chromatid cohesion.  During 

mitosis in ATRX-deficient cells, the spindle microtubules exert a force on the 

kinetochores, pulling the sister chromatids towards opposing centrosomes prematurely, 

resulting in mitotic defects.  (B) In the embryonic Atrx-null mouse cortex, mitotic neural 

progenitors in the neuroepithelium, which line the lateral ventricles, are less often 

symmetrically oriented during cell division, suggesting abnormally elevated levels of 

neurogenic cell division.  Mitotic abnormalities due to loss of ATRX-dependent sister 

chromatid cohesion might disrupt the precise symmetric orientation of the mitotic 

spindle. The postnatal Atrx-null cortex is characterized by an expansion of the deep 

cortical layers and a reduction of the superficial cortical layers, suggesting excessive 

production of early-born deep-layer neurons at the expense of later-born superficial layer 

neurons, consistent with excessive neuron production during the earlier stages of 

neurogenesis.  
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5.5 Concluding Remarks 

The work presented in this thesis identifies a novel role for the Snf2 chromatin 

remodeling protein in the process of mitotic cell division both in cultured human cells 

and in the neuronal progenitors of the developing mouse brain.  The observation that 

ATRX depleted cells exhibit chromatid cohesion defects contributes to the rapidly 

expanding role for ATRX at constitutively condensed pericentromeric heterochromatin.  

In addition to regulating the expression of a subset of genes, different lines of research 

now point to a likely role for ATRX in maintaining the structure and function of PCH.  

Together with the growing list of malignancies associated with somatic ATRX mutations, 

these data suggest a possible mechanism contributing to genomic instability in certain 

cases of severe ATRX deficiency. Furthermore, ATRX now joins a growing list of genes 

that are implicated in neurodevelopment through the regulation of cell division. 
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