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Abstract

This thesis relates to the topic of software defect prediction within the broader area of continu-
ous software engineering. The approach presented in this thesis is employing source code and
process metrics obtained for each commit, and is examining as to whether specific patterns, as
the system moves from one commit to another, can predict an impending bug inducing commit.
The thesis utilizes the SonarQube Technical Debt open source data which provides source code
metrics and process metrics for each commit in 22 medium to large scale open source Apache
projects.

Central to this research is the novel utilization of commits to trace transitions to bug-
inducing commits, facilitating the construction of a predictive model. In this approach, each
commit is denoted by a vector of metrics values which have undergone pre-processing so can
be efficiently used. Each such a vector defines the “state” of a commit. A significant portion
of the methodology is devoted to meticulous data preparation and analysis, including the de-
lineation of commit transitions, feature selection, and rigorous data cleansing. This rigorous
process is aimed at enhancing the precision and accuracy of pattern recognition, particularly in
identifying transitions leading to bug-inducing commits.

Through the integration of advanced methodologies encompassing correlation analysis,
clustering techniques (including K-Means and Hierarchical clustering), and a suite of clas-
sification strategies such as K-Means, Decision Trees, and innovative percentile-based classi-
fication, the study aims to identify emerging vector metrics state transition patterns which may
be indicative of potential software bugs.

The results indicate that the proposed technique is promising on recognizing patterns in-
dicative of potential impending bug inducing commits and sheds light on the practical im-
plications of utilizing commit transitions in defect prediction strategies, offering insights into
enhancing software development processes.

Keywords: Bug-inducing commit prediction, Quality metrics, Software engineering, Code
commits, Predictive model, Clustering, Classification, Data preparation, Pattern recognition,
Software defects
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Summary for Lay Audience

This thesis explores an innovative approach in the field of software defect prediction, which is
a critical area of continuous software engineering. The study focuses on using metrics from
source code and processes, collected at each update or ”commit” in software projects, to predict
future errors, or ”bugs,” that might be introduced into the software.

The research utilizes data from SonarQube Technical Debt, which includes detailed metrics
from 22 substantial open-source Apache software projects. By examining the patterns in these
metrics as the software changes over time, the thesis aims to identify early warnings of commits
that could lead to software defects.

Key to this study is the idea of treating each software update as a ”state” defined by specific
metric values. The thesis involves intensive data processing, including selecting important fea-
tures and cleaning data thoroughly, which helps in accurately identifying patterns that precede
software bugs.

Using sophisticated statistical and machine learning methods, including various clustering
and classification techniques, the thesis strives to detect these critical patterns. The findings
suggest that this method could be quite effective in foreseeing risky commits, providing valu-
able insights that could help improve software development practices by allowing teams to
preemptively address potential issues.
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Chapter 1

Introduction

1.1 Preface

In the realm of software development, the presence of defects can result in significant setbacks,
both in terms of time and resources. As the complexity of software projects continues to grow,
the importance of effectively predicting and preventing defects becomes increasingly evident.
In this thesis, we delve into the world of defect prediction, examining the various approaches,
tools, and strategies that can empower software professionals to proactively identify and rectify
defects, ensuring the delivery of high-quality software while adhering to tight project sched-
ules. We focus on two main objectives. First, we aim to prepare our data by pre-processing it
and creating the commit state model. Second, we intend to conduct a rigorous data analysis to
derive meaningful conclusions regarding the prediction of imminent bug-inducing commits.

Contemporary research in the field of software defect prediction commonly generates datasets,
methodologies, and frameworks that enable software engineers to concentrate their efforts on
defect-prone code during development. This, in turn, enhances software quality and optimizes
resource utilization, ultimately leading to more efficient development activities [100].

1.2 Motivation

In the realm of software development, the paradigm of continuous software engineering has
emerged as a transformative approach to delivering high-quality software products rapidly and
efficiently. At the heart of continuous software engineering lies the concept of the shift-left
approach, which advocates for the early integration of quality assurance practices into the
software development lifecycle.

However, despite the advancements in continuous software engineering, software defects
remain a persistent challenge that can undermine the reliability and quality of software prod-
ucts. Traditional defect detection methods often rely on post-development testing, which can
be time-consuming and costly to rectify. As software systems grow in complexity and scale,
the need for proactive defect prediction becomes increasingly crucial.

The shift-left approach emphasizes the importance of detecting and addressing defects as
early as possible in the development process. By integrating defect prediction techniques into

1
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the early stages of development, software teams can identify potential issues before they man-
ifest into critical bugs, thus minimizing the impact on project timelines and budgets.

Therefore, there is a compelling motivation to explore defect prediction within the context
of continuous software engineering and the shift-left approach. By leveraging predictive an-
alytics and machine learning algorithms, software development teams can gain insights into
potential defect patterns, enabling them to take proactive measures to mitigate risks and im-
prove software quality.

This thesis aims to contribute to the body of knowledge in defect prediction by investigating
how predictive analytics can be integrated into the continuous software engineering paradigm.
By examining the benefits and challenges of applying defect prediction techniques early in the
development lifecycle, this research seeks to empower software teams to build more resilient
and reliable software systems.

1.3 Rationale

In today’s software development landscape, ensuring reliability, efficiency, and robustness in
software systems is paramount. Software defects, commonly known as ”bugs,” not only com-
promise software quality but also incur substantial costs and can have far-reaching conse-
quences, including compromised functionality and security vulnerabilities. Mitigating these
defects is crucial in modern software engineering, where software underpins various aspects of
daily life, from communication and commerce to healthcare and transportation [80].

This study holds significant potential to revolutionize defect prediction strategies, ulti-
mately reducing defects in software systems and enhancing software quality. As software
continues to evolve and integrate further into our lives, the importance of this research be-
comes increasingly evident. The rationale for this study lies in the need to enhance defect
prediction methodologies by leveraging commit transitions to bug-inducing states within soft-
ware engineering.

Commit transition modeling involves analyzing commit sequences within the version con-
trol system to identify patterns leading to bug-inducing commits. This enables early detection
of potential defects, facilitating proactive intervention to prevent issues. By examining commit
transitions, we gain a detailed understanding of how changes interact over time, identifying
subtle relationships contributing to bug introduction.

This approach captures contextual information such as modified files, involved developers,
and timing, providing a comprehensive view of the development process. Leveraging historical
data and machine learning, predictive models can recognize patterns indicative of bug-inducing
commits, aligning with the shift-left philosophy of early defect prevention.

Our methodology entails analyzing historical commit data to identify patterns associated
with bug-inducing commits. We anticipate that our approach will enable:

- Early defect detection, - Improved development process understanding, - More accurate
bug prediction, and - Reduced software defects and associated costs.
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1.4 Thesis Contribution

Traditional defect prediction methods often rely on historical process and source code metrics,
but may not fully capture the intricate metrics patterns from one commit to another, leading
ultimately to a bug-inducing commit. This thesis explores defect prediction by considering
that a collection of metrics values that correspond to process and source code features defines
a state for each commit. The central hypothesis is that the analysis of how commit states
evolve and the identification of state transition patterns could serve as predictors of impending
bug-inducing commits. The thesis contributions can be summarized as follows:

• Exploration of defect prediction in software development: This thesis delves into the
area of defect prediction, aiming to understand its nuances and complexities within the
software development lifecycle. In its core, aims to model each commit as a collection
of normalized metrics for each given commit, and which collectively define a state for
this commit.

• Analysis and selection of useful features for defect prediction: Another contribution
lies in analyzing a large pool of metrics and identify a set that can be used for defect
prediction. These metrics provide valuable insights, enabling informed decision-making
and continuous improvement in software development practices.

• Enhancement of software quality and reliability: By investigating defect prediction,
the overarching aim is to contribute to the improvement of software quality and reliabil-
ity, crucial for user satisfaction and system effectiveness.

• Identification of bug indicators: A key contribution is the identification of commit
transition commit state patterns serving as potential indicators of software bugs. Un-
derstanding these patterns enables proactive measures to address and prevent issues in
future development cycles.

• Analysis of development process patterns: Through empirical analysis, this thesis
seeks to identify patterns within the software development process correlated with the
occurrence of defects. This insight informs development practices and decision-making,
mitigating risks effectively.

• Proactive issue mitigation and prevention: By uncovering patterns indicative of poten-
tial defects, the goal is to equip software development teams with knowledge and tools
for proactive mitigation and prevention, enhancing overall software reliability.

• Enhancement of development practices: Ultimately, the culmination of these con-
tributions aims to enhance the quality and reliability of software development prac-
tices. Leveraging insights from defect prediction, development teams can adopt proactive
strategies to deliver higher-quality software products.
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1.5 Scope and Limitations
In the context of this thesis, our twofold objective is to firstly curate an extensive and well-
structured dataset encompassing various aspects of software development and its associated
defect history. Subsequently, we will conduct rigorous data analysis to discern critical transi-
tions and patterns within this dataset. These findings will enable us to draw meaningful conclu-
sions regarding the causes and correlations of software bugs and defects, ultimately equipping
us to formulate predictive models for anticipating and mitigating such issues in the dynamic
landscape of software development.

One of the principal limitations of this research stems from data constraints. Despite work-
ing with a sizable database encompassing 21 distinct software projects and an initial commit
database measuring 18.8 gigabytes, the data cleaning and curation process incurs substantial
data loss. To put it differently, the proportion of usable data within our dataset is notably lim-
ited, but still usable. Extracting valuable insights from this abundance of data amidst a deluge
of extraneous information proves to be a formidable challenge, necessitating extensive hours
of analytical efforts.

Another unavoidable challenge encountered throughout this project is the constraint im-
posed by processing power. Dealing with a vast database and executing a multitude of resource-
intensive scripts demands either a robust processing system or a substantial amount of time.
Regrettably, we found ourselves lacking in both regards, which presented a significant imped-
iment to the smooth progression of our work. The sheer size of the database was such that
attempting to open a single table and visualize the data would result in system crashes, making
it practically impossible to run queries directly. Consequently, the extraction and representation
of data necessitated the use of specialized scripts to navigate and interact with the database.

1.6 Thesis Outline
In this introductory chapter, we provide an overview of the research to be presented in this
thesis. We outline the key chapters that structure our investigation and provide a preview of
the contents within. The introduction serves as the gateway to our study, laying the foundation
for the subsequent chapters. Building upon the introduction, ”Chapter 2: Related Work &
Background” delves into the historical and theoretical context of our research. We review
the existing body of knowledge in the field, highlighting the key concepts, gaps, and relevant
literature that motivate our study. This chapter provides the necessary background and context
for a thorough understanding of the research presented.

In the subsequent two chapters, our methodology will be divided and detailed. To facilitate
a clearer understanding of the processes employed in this thesis, an activity diagram has been
provided at the beginning of each of these two chapters.

”Chapter 3: Data Pre-processing” details the research methods and approaches we employ
to collect, analyze, and interpret data. We delve into the specifics of our research design, data
sources, and the techniques used in our study. This chapter offers insight into the methods em-
ployed to prepare our data for our research and bring them into the proper format. In ”Chapter
4: Commit State Modeling,” we organize our pre-processed data into the desired format to
develop a Commit State model, which is the core of our research. This model enables us to
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conduct experiments that test and refine its accuracy, ultimately providing insights into patterns
and trends linked to potential defects in future commits. By learning from historical data, the
model helps us build a predictive tool that anticipates and mitigates software defects, improv-
ing coding practices and enhancing software quality. In ”Chapter 5: Experimental Results,”
we present the empirical findings derived from our analysis and data exploration. This section
serves as the core of our research, providing a comprehensive account of the results obtained.
We interpret the data and highlight key patterns and insights that emerge from our study. The
final chapter, ”Chapter 6: Conclusion,” synthesizes the key findings, contributions, and im-
plications of our research. We reflect on the research objectives outlined in the introduction,
discuss the significance of our results, and propose potential avenues for future research.



Chapter 2

Related Work & Background

2.1 Preface

In this chapter, we will review relevant literature and studies that are closely related to our
research topic. This overview will provide context and insight into existing methodologies,
approaches, and findings in the field. We will examine how these related works have influ-
enced the current state of research and where there may be gaps or opportunities for further
exploration.

Following the literature review, we will introduce and explain the key technical terms and
concepts used throughout this document in the Background section. This discussion will pro-
vide clarity and ensure a common understanding of specialized terminology, theoretical frame-
works, and technical methodologies that form the foundation of our research. By establishing
this groundwork, we aim to offer a comprehensive understanding of the research landscape and
set the stage for the subsequent analysis and discussion.

2.2 Related Work

2.2.1 Defect Prediction

The increased complexity of software systems makes the assurance of their quality very diffi-
cult. Therefore, a significant amount of recent research focuses on the prioritization of software
quality assurance efforts. One line of work that has been receiving an increasing amount of
attention for over 40 years is software defect prediction, where predictions are made to deter-
mine where future defects might appear. Since then, there have been many studies and many
accomplishments in the area of software defect prediction. At the same time, there remain
many challenges that face that field of software defect prediction [45]. We can build a predic-
tion model with defect data collected from a software project and predict defects in the same
project, i.e. within-project defect prediction. Researchers also proposed cross-project defect
prediction to predict defects for new projects lacking in defect data by using prediction models
built by other projects [59].

6
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Defect Prediction Using Software Metrics

Determining whether a component is likely to be defective is strongly linked to several software
metrics. Identifying and measuring these metrics is crucial for multiple purposes, such as es-
timating program performance, assessing the effectiveness of software processes, gauging the
effort required for different processes, predicting the number of defects during development,
and overseeing software project processes [73] [98]. Various software metrics commonly used
for defect prediction include lines of code (LOC), McCabe metrics, Halstead metrics, and
object-oriented software metrics. Consequently, automating the prediction of defective com-
ponents using these metrics has become a prominent area of research [36].

Defect Prediction Using Machine Learning

Numerous machine learning techniques have been suggested and evaluated to tackle the soft-
ware bug prediction challenge. These approaches include decision trees [46], neural networks
[110] [97], Naive Bayes [54] [39], support vector machines [29], Bayesian networks [61], and
Random Forests [7].

Dejaeger [13] conducted a study using data from an open-source dataset provided by the
Eclipse Foundation and the NASA IV&V facility to assess the performance of fifteen Bayesian
Network (BN) classifiers. The study utilized Halstead, Lines of Code, and McCabe complexity
metrics for the evaluation. The findings suggest that the Augmented Naı̈ve Bayes Classifier can
achieve performance levels that are equal to or better than the Naı̈ve Bayes Classifier.

In [24], Guisheng Fan introduced a model called defect prediction via an attention-based
recurrent neural network (DP-ARNN). The process consists of several steps: First, DP-ARNN
analyzes the abstract syntax tree of programs and converts them into vectors. Then, it encrypts
these vectors as inputs to DP-ARNN, allowing the model to automatically learn syntactic and
semantic features. This approach also includes a mechanism for producing features for precise
defect prediction. To assess the model, the author used F1-score and area under the curve as
evaluation criteria for seven open-source Java projects. The F1-score values for DP-ARNN,
RNN, and CNN are 0.515, 0.506, and 0.473, respectively, while RF + RBM and RF achieve
0.310 and 0.396. In performance comparisons, DP-ARNN, RNN, and CNN outperformed
traditional methods.

Cagatay Catal’s work [7] examined how the size of a dataset, the selection of metric sets,
and the choice of feature selection technique influence the outcomes of software fault predic-
tion. The study found that random forest performs the best for large datasets, while the Naı̈ve
Bayesian Network algorithm is most effective for small datasets. In this study, 13 metrics were
chosen to assess and compare the performance of different algorithms.

In [109], C. W. Yohannese proposed a framework for software default prediction and eval-
uated the model’s performance across four scenarios: learning from standard datasets, feature-
selected datasets, balanced feature selection data subsets, and noise-filtered and balanced fea-
ture selection subsets. The author concludes that combining feature selection, data balancing,
and noise filtering methods for data preprocessing leads to better software default prediction
performance compared to not using these techniques.

Ezgi Erturk’s study [22] employs McCabe metrics to assess the performance of predictive
models. The study utilizes both Artificial Neural Network and Support Vector Machine to
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gauge the performance of an Artificial Neural Network Inference System. The results using
McCabe metrics are 0.7795 for Support Vector Machine, 0.8685 for Artificial Neural Network,
and 0.8573 for the Artificial Neural Network Inference System [22].

In a study conducted by Xin Xia [107], deep-learning techniques are proposed to pre-
dict fault proneness in code files. The framework consists of two phases: the model-building
phase and the prediction phase. In the model-building phase, the goal is to create a statis-
tical model based on historical changes, while in the prediction phase, the aim is to deter-
mine whether new changes are buggy or clean. The proposed framework utilizes 14 features
and incorporates data preprocessing, which includes data normalization and resampling. The
framework’s performance is validated against six large open-source projects using F1-score
and cost-effectiveness metrics. The results indicate a recall of 0.69 and an F1-Score of 0.45.
In terms of cost-effectiveness, 20% of the lines of code help the framework predict 50% of
defect-related changes.

File-level Defect Prediction

Moeyersoms et al. address the common challenge in rule-based classification systems: balanc-
ing comprehensibility and performance[57]. Typically, models that are easier to understand
gain greater acceptance but often at the cost of reduced predictive accuracy. They use ALPA to
discover a ruleset that mirrors the performance of complex black-box models, such as those us-
ing Random Forest and Support Vector Regression. The extracted rules lead to results similar
to those of complex models while being easier to interpret.

Ostrand et al. [63] investigate whether including information about individual developers
can help predict future faults in software releases by the same developer. They add this metric to
an existing model based on Negative Binomial Regression, which already incorporates metrics
such as file size, the number of releases a file has been part of, changes a file has undergone,
previous faults found, and the programming language used. By predicting the number of faults
each file may contain and focusing on the worst-performing 20% of files, they find these files
account for 75% of the total faults. However, their findings suggest that including the developer
metric only slightly improves results by about 1% and isn’t a particularly effective measure for
predicting a file’s fault proneness.

Package-level Defect Prediction

Nagappan et al. [58] integrate historical failure data from bug databases with code complexity
metrics to predict faulty Windows components, such as individual binaries. By mining five
major commercial Microsoft projects, they gathered data on past faulty entities and applied
Principal Component Analysis to find the best combination of metrics. These were then used
in multiple regression models alongside past defect data. Their experimentation with applying
failure metrics from one project to predict defects in another, even without previous failure
history, showed that the effectiveness of such an approach depends on the interdependency of
the projects. The R2 values of the predictor across the projects ranged from 0.416 to 0.882.

Schroter et al. [77] explore whether certain problem domains are more fault-prone than
others. They define a project’s problem domain as the set of components it uses and assert
that decisions made during the design phase impact future defect trends. By collecting data
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on post-defect failures, files related to those failures, and import statements in those files, they
provide a framework for managers to allocate resources efficiently based on potential fault-
prone domains.

Class-level Defect Prediction

In their study, Huang et al. [40] apply Multi Instance Learning (MIL) to address the challenge
of differing logical levels between training and validation sets, which can be a barrier for tra-
ditional supervised techniques. By treating classes as ”bags” and their attributes and methods
as ”instances,” MIL preserves relational information. When applied to a NASA mission con-
trol project using four different MIL algorithms, the approach outperforms existing supervised
learning methods in terms of accuracy and error rates.

Singh et al. [83] introduce two object-oriented metrics for identifying classes with poor
structure and potential code smells. Public Factor evaluates the visibility of a class’s methods
and attributes, while Encapsulation Factor examines the relationship between a class’s cohesion
and data visibility. Using a binary regression model on Mozilla data, they found these metrics
to be effective in predicting faulty classes and improving the AUC of a categorical model by
1% to 30% for detecting code smells.

Pandey et al. use Fuzzy Inferencing to predict buggy modules in [64]. They use a deci-
sion tree to derive rules for a Fuzzy Inference System, classifying software metrics into five
categories: very low, low, medium, high, and very high. Modules are categorized as faulty
or non-faulty and ranked based on their fault proneness. When tested on NASA’s KC2 project
data, their model achieved a classifier accuracy of 87.37%, surpassing other referenced models.

Method-level Defect Prediction

Kim et al. [47] introduce the concept of cache in software bug prediction, proposing that a file
causing a fault may continue to produce faults and impact related entities. They create a cache,
FixCache, which automatically updates each time a fix is committed and monitors the affected
entities. Their approach results in a 73-95% hit rate for file-level entities and a 46-72% hit rate
for method-level entities using a 10% cache.

Mizuno et al. [56] suggest using spam-based classification for defect prediction, leveraging
advanced spam filtering techniques to classify source code as faulty or non-faulty. Utilizing
CRM114 spam filtering software, they experiment with three classification techniques: Sparse
Binary Polynomial Hash Markov model (SBPH), Orthogonal Sparse Bigrams Markov model
(OSB), and Simple Bayesian model (BAYES). Testing the model on two open-source projects,
they find SBPH achieves the highest accuracy with an average of 77.5% and acceptable recall
and precision. OSB has better recall but lower accuracy than SBPH, while BAYES offers the
best recall but poor accuracy and precision, making it less optimal.

Elish et al. [20] employ Support Vector Machines (SVMs) to identify buggy functions
or methods, using four mission-critical NASA projects to evaluate the model’s performance.
They compare SVM results with eight other statistical and machine learning models, finding
that SVMs have a better F1 score than five of them. Although SVMs show lower precision
than most models, they achieve higher recall than all, which is significant in software testing
as it reduces the risk of missing a fault.
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2.2.2 Mining Software Repositories

Numerous research teams have explored the advantages of mining software repositories, in-
cluding those that maintain change logs of software systems like GitHub, as well as those that
hold supplementary information such as Bugzilla and Jira. This approach enables analysts to
directly extract data from GitHub repositories and examine it to identify patterns that may sig-
nal defects in the software. In reference [44], Kalliamvakou et al. examine the quality of data
extracted from GitHub repositories and offer researchers a set of recommendations on how to
work with such datasets. They also highlight potential risks of using GitHub, which they dis-
covered during their study. In reference [6], H. Inayat et al. utilized repository mining to gather
data from GitHub projects, including details on commit history, code changes, and developer
activity. They leveraged this data to forecast defects in the software development process using
machine learning algorithms.

Another approach toward Mining software repositories taken by researchers is Bug-to-bug
fixing commit link recovery, which involves examining version control systems to understand
the connections between bugs and the commits that resolve them. In reference [3], Bachmann
et al. address the challenge of recovering links for bug-fixing commits by mitigating the threat
to validity posed by using inaccurate link recovery methods. Their approach includes extracting
ground truth data and using it to assess the performance of a link recovery tool. In reference
[96], Tantithamthavorn et al. explore how data mislabeling affects the overall performance of
automated defect prediction models.

2.2.3 Software Metrics

In the current age of continuous engineering, frequent additions of new features in small in-
crements under tight deadlines can sometimes lead to defects being overlooked. Nevertheless,
maintaining high software quality remains crucial for organizations. This has been a key fo-
cus in software engineering research, where metrics are used to evaluate and improve software
development and maintenance, resulting in higher-quality systems [66].

Software metrics provide quantitative measures of software attributes. By tracking and an-
alyzing these metrics, we can assess code quality and predict bugs or other issues [65]. Metrics
can be divided into process, project, and product categories. Process metrics assess software
development and maintenance processes, helping to estimate system size and verify project
timelines [82]. Project metrics examine various facets of a project, such as size, complexity,
performance, and design features, aiding project managers in optimizing workflows [62].

Product metrics evaluate a product’s properties at different stages of the Software Devel-
opment Lifecycle (SDLC), including source code and design documents [88]. Metrics such
as software quality metrics overlap multiple categories, such as process and product metrics.
Code metrics, a subset of product metrics, are crucial for comparing system components and
enhancing their performance. They can be further classified into dynamic and static code met-
rics based on whether the measurements occur during or before code execution [52].

Dynamic code metrics are gathered while the program runs to assess system behavior by
comparing actual and expected outcomes, while static code metrics are collected prior to code
execution [52]. These metrics aid in evaluating code complexity and lines of code. Selecting
the right metrics can improve defect prediction performance. Researchers typically focus on
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four main classes of metrics for predicting defects: quality metrics, process metrics, static code
metrics, and technical debt metrics [70].

Size Metrics

Size metrics are among the earliest and most widely used static metrics for measuring software
product size, providing an intuitive, well-defined, and easy-to-compute indication of program-
mer productivity [55] [28]. These metrics, such as lines of code (LOC), are chosen as primary
metrics in most studies of software quality assessment or prediction models [106] [108]. Vari-
ants like source lines of code (SLOC) and Kilo-SLOC (KSLOC) offer refinements by exclud-
ing comments, empty lines, and non-functional symbols. However, LOC-based metrics have
limitations [4] [49] [21].

Function Points (FP) is another significant size metric developed after LOC by Albrecht
[2]. FP evaluates the volume of functionality delivered by a software module by considering
inputs, outputs, inquiries, internal files, and external interfaces. Quality metrics such as defects
per FP and defects per SLOC derive from FP and SLOC and serve as important measures of
defect density.

Complexity Metrics

Complexity metrics are another type of static metric used in software measurement. One well-
known example is McCabe’s cyclomatic complexity (CC), introduced in [53]. CC quantifies
the number of linearly independent paths in a program’s control flow, offering insight into the
complexity of the code’s logic.

Object-Oriented Metrics

Object-Oriented Metrics (OO metrics) are used to measure the properties of code developed
using object-oriented languages. The CK metrics suite, proposed by Chidamber and Kemerer
in 1994, is a well-known example of OO metrics [11]. It includes measures such as Num-
ber of Children (NOC), Coupling Between Object Classes (CBO), Depth of Inheritance Tree
(DIT), Weighted Method Count (WMC), and Lack of Cohesion in Methods (LCOM). Unlike
McCabe’s cyclomatic complexity, which focuses on procedural complexity, OO metrics aim
to quantify higher-level inter-class or inter-method relationships. These metrics have become
a robust choice for assessing OO systems, particularly as OO methodologies gain popularity
[69] [42].

OO metrics have been validated in the context of software quality assurance through various
studies. Singh et al. [84] conducted an empirical validation of the CK metrics suite using
regression and machine learning models with a public NASA dataset. They found that CBO
and WMC performed well in predicting fault proneness, while DIT, LCOM, and NOC were
less reliable. Gyimothy et al. [35] examined the fault predictability of OO metrics, along with
LOC, in the open-source Mozilla software system. Their experiment generally corroborated
Singh’s findings: CBO is a strong predictor of defect proneness, while DIT and NOC are
unreliable. Additionally, they found LOC to perform well, concluding that it is an excellent
candidate for a quick defect prediction model.
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2.3 Background

2.3.1 Continuous Delivery
Continuous delivery (CD) is a software engineering methodology where teams work in short
cycles to produce software that can be consistently released at any time. The process follows a
pipeline through an environment similar to production, allowing for automation and minimiz-
ing manual intervention [10]. Continuous delivery focuses on building, testing, and releasing
software more quickly and frequently. This approach helps minimize the cost, time, and risk
associated with deploying changes by enabling smaller, incremental updates to applications in
production. A simple, consistent deployment process is crucial for effective continuous deliv-
ery [79].

Continuous delivery views a deployment pipeline [41] as a lean Poka-Yoke [26], meaning
it serves as a series of checks and validations that software must undergo before being released.
Whenever code changes are committed to a source control repository, the build server compiles
and packages the code if needed. Afterward, the code undergoes various testing methods,
potentially including manual testing, to ensure it meets release standards.

2.3.2 Shift-Left Testing
Shift-left testing is a strategy in software and system testing that emphasizes performing testing
earlier in the development lifecycle. This approach aims to move testing tasks to the left side
of the project timeline, closer to the initial stages of development [25].

The concept is based on the idea of ”testing early and often,” which helps catch defects
and issues before they become more challenging and costly to address later in the process.
By identifying problems early on, teams can take corrective actions sooner, leading to higher
quality software and more efficient development cycles [76].

The term ”shift-left testing” was coined by Larry Smith in 2001. Since then, the approach
has become a key practice in modern software development, especially within agile and De-
vOps environments. It aligns with the goal of continuous integration and continuous delivery
(CI/CD), where testing is integrated into the workflow from the outset [71].

Shift-left testing can involve various practices, such as unit testing, static code analysis, and
integration testing, at earlier stages of the development process. This allows for faster feedback
and helps ensure that potential issues are addressed promptly, ultimately improving the overall
quality and reliability of the software being developed.

2.3.3 Correlation
Correlation in statistics pertains to the statistical association between two random variables
or bivariate data, often used to gauge the extent of their linear relationship. While correla-
tions, such as the relationship between parent height and offspring height, can offer predictive
insights, they do not inherently signify causation. These associations are mathematically quan-
tified by correlation coefficients, such as the widely used Pearson correlation coefficient, which
measures linear relationships between variables. Other coefficients, like Spearman’s rank cor-
relation, are designed to capture non-linear associations. Correlation serves as a valuable tool
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Figure 2.1: SonarQube Features Heatmap

for understanding relationships among variables, although it should be used judiciously, as it
doesn’t imply causation [12] [15].

Correlation Matrix

The ability to perform statistical comparisons between correlation coefficients measured on
the same set of subjects in research is often crucial. This enables researchers to evaluate var-
ious aspects of their data. For instance, researchers might want to determine whether two
different predictors are equally correlated with a specific outcome variable. In other cases, re-
searchers may be interested in assessing whether an entire matrix of correlation values remains
consistent over time. To facilitate these comparisons and tests, the article explores relevant
literature, identifies statistics that should be approached with caution, and introduces a range
of techniques suitable for use with medium to large datasets. The article also includes practical
numerical examples to illustrate these concepts [89].

A correlation matrix is a tabular representation that displays correlation coefficients be-
tween different variables. Within this matrix, each cell provides the correlation measure be-
tween a pair of variables. This matrix serves multiple purposes, including data summarization,
input for more sophisticated analyses, and as a diagnostic tool for advanced analytical proce-
dures.

Usually a correlation matrix is represented by a heat-map. A heat map is a 2D data visu-
alization method used to depict the values within a dataset by assigning them specific colors.
The color variations in the heatmap can be represented by shifts in hue or intensity. While the
term ”heatmap” is relatively recent, the practice of shading matrices in this manner has been
employed for more than a century [104]. You can see an example of what a heatmap is in
Fig2.1.
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2.3.4 Clustering

Cluster analysis, or clustering, is a fundamental task in data analysis aimed at grouping objects
in a dataset based on their similarity to one another within clusters, with the objective of mak-
ing objects in the same cluster more similar to each other than to those in different clusters. It
is extensively used in various fields such as pattern recognition, image analysis, bioinformat-
ics, and machine learning. Cluster analysis is not a specific algorithm but a general problem
to be solved, with multiple algorithms available, each with its own perspective on defining
clusters. The choice of the most suitable algorithm and parameters depends on the dataset
and intended outcomes. Cluster analysis is an iterative, knowledge discovery process often
involving adjustments to data preprocessing and model parameters to achieve desired results.
Similar terms include automatic classification and community detection, with the focus vary-
ing between the groups formed and their discriminative power. Cluster analysis has historical
roots in anthropology [18] and psychology [111] [99], with early applications in personality
psychology classification [8].

K-Means Clustering

K-means clustering is a vector quantization method originating from signal processing, used
to divide n observations into k clusters where each observation belongs to the cluster with the
closest mean, forming a prototype of the cluster. This partitioning results in Voronoi cells (In
mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given
set of objects) within the data space. K-means minimizes within-cluster variances, specifically
squared Euclidean distances, which is distinct from minimizing regular Euclidean distances.
While the problem is computationally challenging (NP-hard (nondeterministic polynomial;
at least as hard as any NP-problem)), efficient heuristic algorithms exist. These heuristics
are akin to the expectation-maximization algorithm used in Gaussian mixture modeling and
focus on iterative refinement, aiming for a local optimum. K-means tends to produce clusters
of comparable spatial extent, whereas Gaussian mixture modeling allows for clusters with
varying shapes. Additionally, it’s important to note that K-means is an unsupervised algorithm,
distinct from the supervised k-nearest neighbor classifier, despite the similar name. However,
the nearest centroid classifier or Rocchio algorithm can be applied to classify new data into
existing clusters formed by K-means.

Given a set of observations (x1, x2, . . . , xn), where each observation is a d-dimensional
real vector, k-means clustering aims to partition the n observations into k(≤ n) sets S =
{S 1, S 2, . . . , S k} so as to minimize the within-cluster sum of squares (i.e. variance). Formally,
the objective is to find:

arg min
S

k∑
i=1

∑
x∈S i

∥∥∥x − µi

∥∥∥2 = arg min
S

k∑
i=1

|S i|Var S i (2.1)

where µi is the mean (also called centroid) of points in S i, i.e.

µi =
1
|S i|

∑
x∈S i

x (2.2)
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|S i| is the size of S i, and ∥ · ∥ is the usual L2 norm. This is equivalent to minimizing the pairwise
squared deviations of points in the same cluster:

arg min
S

k∑
i=1

1
|S i|

∑
x,y∈S i

∥x − y∥2 (2.3)

The equivalence can be deduced from identity |S i|
∑

x∈S i

∥∥∥x − µi

∥∥∥2 = 1
2

∑
x,y∈S i

∥x − y∥2. Since
the total variance is constant, this is equivalent to maximizing the sum of squared deviations
between points in different clusters (between-cluster sum of squares). This deterministic rela-
tionship is also related to the law of total variance in probability theory [48].

Hierarchical Clustering

Hierarchical clustering, a technique utilized in data mining and statistics, is a method for cre-
ating a cluster hierarchy. It employs two primary approaches:

• Agglomerative: a ”bottom-up” process where each observation initially forms its own
cluster

• Divisive: a ”top-down” approach where all observations start in a single cluster and are
recursively split

The process is driven by greedy decisions to merge or split clusters as needed. The results
of hierarchical clustering are typically displayed in the form of a dendrogram, offering a visual
representation of the cluster hierarchy [60]. Hierarchical clustering offers a notable benefit in
that it accommodates the use of any valid distance metric. In fact, it doesn’t necessitate the
original observations themselves; it operates solely with a distance matrix.

2.3.5 Classification
Classification in statistics involves determining the category to which an observation belongs,
such as classifying an email as ”spam” or ”non-spam” or diagnosing a patient based on their
characteristics. Observations are often represented by quantifiable properties known as ex-
planatory variables or features, which can be categorical, ordinal, integer-valued, or real-
valued. Classifiers are algorithms that implement classification, mapping input data to cate-
gories. The terminology varies across fields, with statistics using explanatory variables and
outcomes, while machine learning uses features and classes. In other domains, like community
ecology, ”classification” typically refers to cluster analysis.

Decision Tree Classifier

To understand Decision Tree classifiers, it’s essential to grasp the concept of Decision Tree
Learning. Decision tree learning is an approach in statistics and machine learning that employs
a tree-like structure to predict outcomes for observations. Tree models that handle discrete
target variables are known as classification trees. In these tree structures, class labels are rep-
resented by the leaves, and branches depict combinations of features leading to those class
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labels. Conversely, decision trees designed for target variables with continuous values, usually
real numbers, are referred to as regression trees [92]. Due to their simplicity and interpretabil-
ity, decision trees rank as one of the most widely used machine learning algorithms [105]. A
classification chart or classification tree serves as a condensed representation of a classifica-
tion scheme, aimed at visually conveying the organization and structure of a specific field or
domain. This graphical tool offers a clear and concise overview of how elements within that
domain are categorized and related to one another. It provides a valuable framework for un-
derstanding and navigating complex systems by highlighting the hierarchy, relationships, and
distinctions within the classification scheme, making it a valuable resource for comprehending
the underlying structure of diverse subject areas or industries [90]. In classification tree anal-
ysis, the focus lies on predicting the class, which represents the discrete category to which the
data belongs.

Percentile Classification

A percentile is a statistical concept that provides information about the relative position of a
particular data point within a given dataset. It is typically expressed as a percentage and is used
to assess how a specific value compares to the rest of the data. For instance, the 50th percentile,
known as the median, signifies the point at which half of the data values are lower, and half are
higher. Percentiles are a valuable tool for analyzing data distributions and identifying values
that fall within certain proportions of the dataset. Percentile classification is a methodology
employed to discretize data by categorizing it into distinct classes or groups, contingent upon
its placement within a statistical distribution. This process entails segmenting a dataset into
predefined percentiles or percentile intervals. Each percentile interval corresponds to a spe-
cific class, and data points falling within the bounds of a particular interval are allocated to the
corresponding class. This method proves valuable when the objective is to classify data into
categories determined by their relative positioning within the overall distribution, rather than
by fixed or predetermined criteria or thresholds. For instance, in the realm of education, per-
centile classification may be applied to stratify student performance on standardized tests into
percentile categories (e.g., below average, average, above average) based on the comparison of
their scores to the broader student cohort.

Binning in Classification

In classification, binning (or discretization) is a technique used to transform continuous or
numerical features into categorical or discrete bins or intervals. This process involves dividing
the range of values of a continuous feature into a set of predefined bins and assigning each
data point to the appropriate bin based on its value. Binning is typically applied to simplify the
modeling process, handle outliers, and capture non-linear relationships in the data.

• Steps in Binning:

1. Dividing into Bins: The first step is to determine the number of bins or intervals you
want to create. The range of the feature values is then divided into these bins. The bin
boundaries are defined based on criteria such as equal width, equal frequency (each bin
contains approximately the same number of data points), or custom ranges.
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2. Assigning to Bins: Each data point is assigned to one of the bins based on the value of
the feature. For example, if you’re binning ages into categories like ”young,” ”middle-
aged,” and ”elderly,” you would assign each person’s age to the corresponding bin.

3. Feature Transformation: After binning, the continuous feature is transformed into a
categorical one. It’s represented using integers or labels for each bin. This transformation
simplifies the feature and reduces the impact of outliers.

4. Modeling: Binned features can be used in classification models just like any other cat-
egorical features. They may help capture non-linear relationships or patterns that might
be missed when using the original continuous feature.

• Advantages of Binning:

• Simplification: Binning can make complex data more understandable and interpretable
by dividing it into meaningful categories.

• Handling Outliers: Outliers can significantly affect the performance of classification
models. Binning can help mitigate their impact by placing extreme values in the same
bin.

• Non-linearity: Binning allows models to capture non-linear relationships between the
feature and the target variable.

• Reducing Overfitting: Binning can reduce the risk of overfitting in some cases, espe-
cially when dealing with limited data.

• Categorical Encoding: Categorical features can be easier to work with, and some ma-
chine learning algorithms require categorical encoding.

However, it’s essential to be mindful of the number of bins and the criteria used for binning.
If not done correctly, it can lead to information loss or over-simplification. The choice of
binning method and the number of bins should be made carefully, considering the specific
characteristics of your data and the goals of your classification task.

2.4 Cosine Similarity
Cosine similarity is a mathematical measure used to quantify the similarity between two vec-
tors, typically represented as A = (Ai)i ∈ 1, 2, . . . , n and B = (Bi)i ∈ 1, 2, . . . , n. This similarity
metric is determined by calculating the cosine of the angle θ between these vectors. It is for-
mally defined as:

cos(θ) =
A · B
|A||B|

=

∑n
i=1 AiBi√∑n

i=1 A2
i

√∑n
i=1 B2

i

(2.4)

The cosine similarity measure yields values within the range of -1 to 1, which can be
expressed as −1 ≤ cos(α) ≤ 1. Notably, this metric is solely contingent upon the angle between
the two vectors, making it a valuable tool for assessing their similarity.
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In scenarios like information retrieval and text mining, a common approach involves assign-
ing unique coordinates to each word, and a document is consequently represented as a vector
comprising the word occurrence counts within that document. The cosine similarity metric is
employed to provide a valuable assessment of the likely similarity between two documents.
This measure is particularly helpful for gauging the thematic resemblance between documents,
while effectively mitigating the influence of document length on the assessment [85]. Cosine
similarity is a versatile method utilized not only in information retrieval and text mining but
also in the realm of data mining, where it helps gauge cluster cohesion. Its computational effi-
ciency, particularly when handling sparse vectors, is a notable advantage, as it only considers
non-zero coordinates. This similarity metric also goes by alternative names like Orchini simi-
larity and Tucker coefficient of congruence. Furthermore, the Otsuka–Ochiai similarity, which
applies cosine similarity to binary data, is an intriguing adaptation within this context [95].

2.5 Normalization
Normalization involves the transformation of statistical values by shifting and scaling them,
aiming to create comparable normalized values across different datasets. This process helps
mitigate the impact of significant influences, such as anomalies in time series data. Various
normalization techniques exist, some involving rescaling to relate values to a reference size
variable. It’s important to note that such rescaled ratios are relevant for measurements with a
ratio scale, where the ratios of measurements hold meaning, and not for interval measurements,
where only the relative distances between values matter, but not their ratios. In theoretical
statistics, parametric normalization often leads to the identification of pivotal quantities, which
are functions with sampling distributions independent of parameters, and ancillary statistics,
which are pivotal quantities computable from observations without knowledge of the under-
lying parameters [17]. Various statistical normalizations exist, encompassing nondimensional
ratios involving errors, residuals, means, and standard deviations. These normalizations are
designed to be scale-invariant. It’s worth emphasizing that the meaningfulness of these ratios
is contingent upon the levels of measurement, being applicable to ratio measurements where
measurement ratios hold significance, but not to interval measurements, where only the relative
distances between values have meaning.

2.5.1 Min-Max Normalization
Termed as either min-max scaling or min-max normalization, rescaling represents the most
straightforward approach, involving the adjustment of feature ranges to fit within the specified
range, typically [0, 1] or occasionally [−1, 1]. The choice of the target range is determined by
the data’s characteristics. The standard formula for min-max scaling to [0, 1] can be expressed
as follows:

Xnew =
X − Xmin

Xmax − Xmin
(2.5)

In this context, where x represents the original value and x′ is the normalized value. Imagine
we are working with temperature data in Celsius, and the temperature range spans from 10°C
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to 30°C. To rescale this data, we start by subtracting 10 from each temperature reading and then
divide the result by 20 (the difference between the maximum and minimum temperatures).

For the more general case of rescaling a range to arbitrary values [a, b], the formula can be
expressed as follows where a, b are the min-max values:

x′ = a +
(x −min(x))(b − a)

max(x) −min(x)
(2.6)

2.5.2 Mean Normalization
x − x̄

max(x) −min(x)
(2.7)

In this context, x represents the original value, x′ stands for the normalized value, and x̄
denotes the average of the feature vector, calculated as the mean of x. It’s worth noting that
there’s an alternative approach to mean normalization, which involves dividing by the standard
deviation, often referred to as standardization.

2.6 Outlier Detection
In the realm of data analysis, anomaly detection, also known as outlier detection or occasionally
novelty detection, typically involves identifying unusual items, events, or observations that
significantly deviate from the majority of the data and do not adhere to a well-established
concept of typical behavior [9]. Instances like these might raise concerns about their origin
being potentially attributed to an alternative process [38] or seem incongruous when compared
to the rest of the dataset [5].

2.6.1 Z-Score Method
The Z-score (or standard score) outlier detection method is a statistical technique used to iden-
tify outliers in a dataset. It’s based on the idea of standardizing the data and then measuring
how many standard deviations a particular data point is away from the mean of the dataset.
Here’s how the method works [1]:

1. Standardization: For each data point in the dataset, you subtract the mean of the
dataset from that data point and then divide by the standard deviation. This process transforms
the data into a new distribution with a mean of 0 and a standard deviation of 1. The formula
for standardizing a data point x is:

Z =
x − µ
σ

Where: - Z is the Z-score of x. - x is the data point. - µ is the mean of the dataset. - σ is the
standard deviation of the dataset.

2. Identifying Outliers: Once the data is standardized, you can then set a threshold, typ-
ically a Z-score value, beyond which data points are considered outliers. Common threshold
values include Z-scores greater than 2 or 3, which correspond to data points that are signifi-
cantly far from the mean. These data points are considered outliers.



20 Chapter 2. RelatedWork & Background

3. Detection: Data points with Z-scores above the chosen threshold are flagged as potential
outliers.

The Z-score method is effective in identifying outliers that are extreme in terms of their
deviation from the mean, and it’s particularly useful when the data follows a roughly normal
distribution. However, it’s sensitive to the distribution of the data, and outliers that follow
a different distribution might not be accurately identified using this method. Therefore, it’s
important to consider the nature of the data and the chosen threshold when applying the Z-
score method for outlier detection.

2.6.2 IQR
The Interquartile Range (IQR) outlier detection method is a statistical technique used to iden-
tify outliers in a dataset based on the spread of the data. It focuses on the distribution of the
data’s central 50% (interquartile range) and is less sensitive to extreme values compared to the
Z-score method. Here’s how the IQR method works:

1. Calculation of the IQR: - Calculate the first quartile (Q1), which is the 25th percentile,
and the third quartile (Q3), which is the 75th percentile, of the dataset. - Compute the IQR by
subtracting Q1 from Q3: IQR = Q3 − Q1.

2. Identifying Outliers: - Define the lower bound as Q1 − 1.5 × IQR and the upper bound
as Q3+1.5× IQR. These bounds represent a range within which most of the data is expected to
lie. - Any data point below the lower bound or above the upper bound is considered an outlier.

3. Outlier Detection: - Data points that fall below the lower bound or above the upper
bound are flagged as potential outliers.

The IQR method is effective in identifying outliers that fall outside the typical range of
the central 50% of the data. It is particularly useful when the data may not follow a normal
distribution or when there are concerns about extreme values affecting the results. By focusing
on the interquartile range, the IQR method is more robust against extreme values compared to
methods like the Z-score [101].

It’s important to note that the choice of the 1.5 multiplier in the upper and lower bounds
is somewhat arbitrary and can be adjusted based on the specific requirements of the analysis.
Common multipliers other than 1.5 include 2 and 3, which result in wider or stricter outlier
detection, respectively.

2.6.3 SZZ Algorithm
The SZZ algorithm is a software maintenance and evolution technique used to identify the
source code changes that introduced defects or bugs in a software project. It stands for ”Sim-
plified, Zero-One, and Zero.” The SZZ algorithm was developed to help software developers
and quality assurance teams understand the history of defects in a codebase and pinpoint the
specific code revisions responsible for introducing those defects.

Here’s a simplified explanation of how the SZZ algorithm works:

1. Data Collection:

• The SZZ algorithm starts by collecting historical data from a version control sys-
tem (e.g., Git, SVN) and the associated issue tracking system (e.g., Jira, Bugzilla).
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This data includes information about code commits, such as the commit message,
commit date, and the files modified in each commit.

2. Defect Identification:

• The algorithm focuses on identifying defects or issues reported in the issue tracking
system. These issues are typically labeled as bug reports, feature requests, or other
types of software problems.

3. Defect-Inducing Commits:

• For each defect, the algorithm works backward in time to identify the commit that
introduced the defect. It does this by tracing the changes made to the files associated
with the defect from the moment the issue was reported back to the first commit
where the code related to the issue was modified.

• This is done by analyzing the version history of the files and determining the
”blame” information, which associates lines of code with the commit that last mod-
ified them before the issue was reported.

4. Marking Defect-Inducing Commits:

• The algorithm marks the commit(s) that introduced the defect as ”defect-inducing.”
If there are multiple commits involved, they are typically marked as a set.

• The defect-inducing commits are identified in a binary manner, hence the ”Zero-
One” in the name. A commit is either marked as defect-inducing (1) or not (0).

5. Analysis and Reporting:

• Once the defect-inducing commits are identified, the SZZ algorithm can be used
to generate reports and statistics about the history of defects in the codebase. This
information can be valuable for understanding which parts of the code are more
error-prone, assessing the impact of specific changes, and improving software qual-
ity.

The SZZ algorithm is particularly useful for understanding the origins of defects in large
and complex software projects. By identifying the commits that introduced defects, developers
can analyze the code changes made during those commits, which can help with debugging and
improving software quality.

It is inevitable that the SZZ algorithm is not perfect and may have false positives and false
negatives, as it relies on historical data and heuristics to identify defect-inducing commits.
Nevertheless, it is a valuable tool in software maintenance and quality assurance.

2.7 Shannon Entropy
In the realm of information theory, Shannon entropy serves as a fundamental concept. It quan-
tifies the average amount of ”information,” ”surprise,” or ”uncertainty” associated with the
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possible outcomes of a random variable. Let’s delve into its mathematical formulation and
implications.

Consider a discrete random variable X with its potential values residing in the set X. This
variable is distributed according to a probability mass function p : X → [0, 1], where p(x)
represents the probability of X taking on a specific value x from X. The Shannon entropy,
denoted by H(X), captures the essence of this variability and is calculated as:

H(X) = −
∑
x∈X

p(x) log p(x)

Here, the symbol Σ signifies the summation operation over all possible values x of the
variable. The logarithm function log is the base for which various applications may adopt
different bases. For instance, using base 2 results in units of bits (or ”shannons”), base e yields
”natural units” known as nats, and base 10 produces units such as ”dits,” ”bans,” or ”hartleys.”

An intriguing perspective on entropy is viewing it as the expected value of the self-information
of a variable. This concept intertwines with the essence of uncertainty and surprise encapsu-
lated within the random variable.

Shannon’s groundbreaking work on mathematical theory of communication [81] laid the
foundation for this notion of entropy, which has since become a cornerstone in various fields,
including communication theory, cryptography, and machine learning. Claude Shannon intro-
duced the concept of information entropy in his seminal paper ”A Mathematical Theory of
Communication” in 1948, often referred to as Shannon entropy. Within Shannon’s theory lies
a conceptual framework comprising three key components: a data source, a communication
channel, and a receiver. Shannon articulated the ”fundamental problem of communication,”
which entails the receiver’s task of accurately discerning the data originated by the source
based on the signals it receives through the channel. Exploring diverse methods of encod-
ing, compressing, and transmitting messages from a data source, Shannon demonstrated in
his renowned source coding theorem that entropy serves as an absolute mathematical bound-
ary dictating the optimal compression of data onto a perfectly noiseless channel without loss.
Additionally, Shannon significantly bolstered this theorem for noisy channels through his de-
velopment of the noisy-channel coding theorem.

2.8 Bayes’ Theorem
The Bayes theorem, often known as Bayes’ law or Bayes’ rule, is a concept in probability
theory and statistics that, depending on prior knowledge of potential contributing factors, esti-
mates the likelihood of an event. It bears Thomas Bayes’ name [43]. For instance, the Bayes
theorem makes it possible to more accurately assess an individual’s risk of developing health
problems if it is known that such a risk increases with age. This is achieved by condition-
ing the risk assessment relative to the individual’s age, instead of assuming that the individual
is typical of the population as a whole. The following equation represents the mathematical
formulation of Bayes’ theorem [91]:

P(A|B) =
P(B|A)P(A)

P(B)
(2.8)
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where A and B are events and P(B) , 0.

2.9 Conditional Probability
Conditional probability, in probability theory, is a measure of the likelihood that an event will
transpire in the event that another event is already known to have occurred (by assumption,
presumption, assertion, or evidence) [34]. This specific approach depends on event A having
some kind of connection to event B. In this case, a conditional probability with respect to B can
be used to analyze the event A. ”The conditional probability of A given B”, or ”the probability
of A under the condition B”, is typically expressed as P(A—B) or, less frequently, PB(A). This
is the case when the event of interest is A and the event B is known or presumed to have
occurred. This can also be thought of as the ratio of the probabilities of both events occurring
to the ”given” one occurring (i.e., the number of times A occurs rather than not assuming B
has occurred) or as the fraction of probability B that intersects with A [14]:

P(A|B) =
P(A ∩ B)

P(B)
(2.9)

For instance, there’s only a 5% chance that a certain person will cough on any given day.
However, the likelihood of the person coughing increases significantly if we know or believe
that they are ill. For instance, if someone is coughing and the conditional probability that
they are sick is 75%, then P(Cough) = 5% and P(Cough—Sick) = 75% would apply. In this
example, A and B have a relationship, but it’s not required for them to be dependent on one
another or for it to happen at the same time.

2.10 Tools
In this section, we aim to introduce the tools employed in this project and briefly explain the
functionality of each tool.

2.10.1 SQL
The data was initially housed in a SQL-based format, utilizing the SQLite Database Engine.
SQLite is a database engine written in the C programming language. It is not a standalone app;
rather, it is a library that software developers embed in their apps. As such, it belongs to the
family of embedded databases.

2.10.2 Python
To extract and conduct all analyses on this data, we leveraged the Python programming lan-
guage in combination with the pandas library, which provided robust tools for data manipula-
tion and analysis. pandas is a software library written for the Python programming language
for data manipulation and analysis. In particular, it offers data structures and operations for ma-
nipulating numerical tables and time series. It is free software released under the three-clause
Berkeley Standard Distribution license.
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2.10.3 CSV & JSON
Subsequently, the information extracted from the database was stored in multiple formats for
ease of use and reference, with JSON and CSV formats being selected to preserve and make
the data accessible for further research and analysis. A CSV file is a text file that has a specific
format which allows data to be saved in a table structured format, and JSON is an open standard
file format and data interchange format that uses human-readable text to store and transmit data
objects consisting of attribute–value pairs and arrays. It is a common data format with diverse
uses in electronic data interchange, including that of web applications with servers.

2.10.4 Scikit-learn library
We relied on the Scikit-learn library for numerous techniques and methodologies employed
throughout this project, including but not limited to clustering. Scikit-learn is an open-source
machine learning library for Python. It provides a user-friendly and efficient environment for
building, training, and evaluating machine learning models. The library includes a wide range
of machine learning algorithms, tools for data preprocessing, model evaluation, and model
selection, making it a fundamental component of the Python machine learning ecosystem. It is
widely used for various data analysis and modeling tasks, including classification, regression,
clustering, and more.

2.10.5 SonarQube
SonarQube is an open-source platform for continuous inspection of code quality. It is a widely
used tool in the field of software development and helps development teams manage and im-
prove the quality of their code. SonarQube provides a range of features and capabilities, in-
cluding:

1. Static Code Analysis: SonarQube performs static code analysis to identify various code
quality issues, including code smells, bugs, and vulnerabilities. It scans the source code
and identifies potential problems by applying a set of predefined coding rules and quality
standards.

2. Code Quality Metrics: It generates various code quality metrics and provides reports
and dashboards to help teams understand the health of their codebase. Metrics may
include code duplication, code coverage, cyclomatic complexity, and more.

3. Continuous Integration and Automation: SonarQube can be integrated into the con-
tinuous integration and continuous delivery (CI/CD) pipeline, allowing developers to get
immediate feedback on the quality of their code with each code commit.

4. Support for Multiple Languages: It supports a wide range of programming languages,
making it suitable for projects with diverse technology stacks.

5. Security Scanning: In addition to code quality, SonarQube has features for identifying
and addressing security vulnerabilities in the code.
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6. Customization and Extension: You can configure and customize the quality profiles
and rules to match your specific coding standards and project requirements. Additionally,
SonarQube supports the use of plugins to extend its functionality.

7. Project and Portfolio Management: It provides tools for managing and monitoring
code quality across multiple projects, making it useful for larger organizations with nu-
merous codebases.

8. Historical Analysis: SonarQube keeps a historical record of code quality metrics, en-
abling developers and teams to track improvements or deteriorations in the codebase over
time.

SonarQube helps development teams proactively manage technical debt, improve code
maintainability, and reduce the likelihood of introducing bugs and security vulnerabilities. It is
a valuable tool for maintaining and enhancing the overall quality of software projects.



Chapter 3

Data Pre-processing and Modelling

3.1 Preface
In this Chapter, we detail the techniques used to pre-process and model the data for the purpose
of defect prediction. More specifically, this Chapter provides a thorough explanation of the
various steps involved in preparing our data for the development of our final model. We outline
the methods and techniques used to clean, transform, and organize the raw data, ensuring it is
suitable for modeling and analysis. This includes data selection, cleansing, normalization, and
any feature engineering or selection processes that were applied. We will present an activity
diagram to visually represent the sequence of pre-processing steps and illustrate the flow of
data from its raw form to its readiness for model creation. This diagram serves as a road-map,
offering a clear and concise overview of the entire pre-processing workflow and helping readers
understand the systematic approach we took in this crucial phase of the project.

3.2 Dataset Description
The data employed in this project originates from a open source data set known as Sonar-
Qube ”TechnicalDebt” data set [51]. This database was curated by also linking JIRA issues
to commits in various software projects, extracting relevant features, and pinpointing commits
responsible for introducing and resolving bugs, all accomplished through the utilization of the
SZZ algorithm, and a novel approach introduced by P. Parul and K. Kontogiannis [67].

The code quality tool SonarQube was utilized to extract metrics from code commits for the
purpose of creating this database.

The database was constructed using project repositories from the Apache project, as de-
tailed in Table 3.1, providing concise information about each project.

3.2.1 SonarQube Data Set Schema Outline
The SonarQube ”Technical Debt” data set includes a wide selection of defect, process, and
source code metrics from 22 open source projects. The metrics are modelled in a relational
database and organized in various tables. The data span the life time of each project and each
commit.

26
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Table 3.1: Project Statistics

Project Name Average LOC per Commit Total # of Commits # of Commits Analyzed # of Distinct Files
batik 213850.96 83725 2164 14434

commons-beanutils 55390.82 7549 1210 499
commons-codec 21615.37 5663 1730 358

commons-collections 95468.13 23854 2765 1724
commons-cli 13314.65 3465 847 473
commons-io 33935.05 9986 1910 702

commons-jelly 55989.83 12318 1937 816
commons-jexl 18635.81 6683 1532 599

commons-configuration 83412.57 12962 2929 1533
commons-daemon 2847.61 2940 981 249

commons-dbcp 24424.94 6878 1555 352
commons-dbutils 8185.04 1861 602 153
commons-digester 29863.58 9325 2142 1330

felix 286157.01 160648 3490 29600
httpcomponents-client 79191.72 23008 2714 1460
httpcomponents-core 54806.66 26033 1901 1666

commons-jxpath 36588.13 3972 596 335
commons-net 47690.75 9551 2089 599

santuario 124643.12 50338 2718 9162
commons-vfs 46029.78 15343 2079 714

zookeeper 97243.80 17789 222 1956
thrift 27217.14 27566 1944 2844

Table 3.2 provides an overview of the columns in the main database, each representing a
metric in SonarQube. It includes a concise explanation of each metric to aid in understanding
their respective meanings and purposes. For a more detailed explanation of SonarQube metrics,
please refer to SonarQube Documentation website.

3.3 Outline of the Data Pre-Processing Phase

The data pre-processing phase consists of 12 discrete steps as depicted in the activity diagram
in Fig 3.1.

The steps of the data pre-processing phase as depicted in Fig. 3.1 are summarized as
follows:

1. Database Cleaning: The initial step involves cleaning the database. by excluding projects
with very few commits, and projects with very few source code files. Also configuration
or compilation directive files were excluded from the analysis, resulting to a database
containing only source code files.

2. Feature Selection: The next step involves selecting the important features from the
database for analysis. First, features with uniform or null values are removed. Features
are then filtered, so that only features with low correlation to each other are retained.
Finally, frequency analysis is conducted to identify features prevalent in most of nit all
representing commits. The result of this step is a set of features that contains usable and
rich data.

https://docs.sonarsource.com/sonarqube/latest/user-guide/code-metrics/metrics-definition/
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Figure 3.1: Activity Diagram for Pre-processing
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Table 3.2: Explanation of SonarQube Metrics

Metric Description
PROJECT ID Unique identifier for the project.

ANALYSIS KEY Unique identifier for the analysis.
COMMIT HASH Hash of the commit associated with the analysis.

CLASS COMPLEXITY Complexity of the classes in the commit.
NEW LINES TO COVER New lines of code to cover in the commit.

VIOLATIONS Total number of code violations found in the commit.
NEW VIOLATIONS Number of new code violations found since the last analysis.

SQALE RATING Rating of technical debt based on SQALE methodology.
SQALE DEBT RATIO Ratio of technical debt to size.

NEW SQALE DEBT RATIO Ratio of new technical debt to new code added.
CODE SMELLS Total number of code smells found in the commit.

NEW CODE SMELLS Number of new code smells found since the last analysis.
BUGS Total number of bugs found in the commit.

NEW BUGS Number of new bugs found since the last analysis.
RELIABILITY REMEDIATION EFFORT Effort required to remediate reliability issues in the commit.

RELIABILITY RATING Rating of reliability based on the number of bugs found in the commit.
NEW RELIABILITY RATING Rating of reliability based on the new bugs found since the last analysis.

VULNERABILITIES Total number of vulnerabilities found in the commit.
NEW VULNERABILITIES Number of new vulnerabilities found since the last analysis.

SECURITY REMEDIATION EFFORT Effort required to remediate security issues in the commit.
SECURITY RATING Rating of security based on the number of vulnerabilities found in the commit.

NEW SECURITY RATING Rating of security based on the new vulnerabilities found since the last analysis.
CLASSES Total number of classes in the commit.

FILES Total number of files in the commit.
FUNCTIONS Total number of functions in the commit.

COMMENT LINES DENSITY Density of comment lines in the commit.
NEW TECHNICAL DEBT New technical debt added since the last analysis.

JIRA KEY JIRA key associated with the commit.
EFFORTS PER FILE Effort required to remediate issues per file in the commit.

EFFORTS PER COMPONENT Effort required to remediate issues per component in the commit.
LINES TO COVER Total lines of code to cover in the commit.

LINES Total lines of code in the commit.
NCLOC Non-commented lines of code in the commit.

NEW SECURITY REMEDIATION EFFORT Effort required to remediate new security issues since the last analysis.
EFFORT TO REACH MAINTAINABILITY RATING A represents the estimated effort required to bring the maintainability of a commit up to the highest rating.

3. Identifying BICs: In this step, bug-inducing commits (BICs) are identified using the
SZZ algorithm and are then reconciled with JIRA records to increase accuracy of what
constitutes a BIC as the SZZ algorithm is known to plagued with false positives.

4. Relevant Commits: Commits are considered relevant if they contain one or more com-
mon files. In this step, we identify these relevant commits and sort them by date. Rele-
vant commits are grouped based on their impact on similar files and sorted by date. This
process creates a flow of commits that establishes transitions later on.

5. Normalization & Compression: In this step, the values of the selected features are nor-
malized to facilitate uniform type of processing. In this respect, two different approaches
are employed to achieve normalized values as discussed in Section 3.6.

6. Calculating the Differentials: Next, the differentials (changes in each metric value)
are calculated from one related commit to the next to understand the alterations in each
commit for each metric.

7. Outlier Detection: Outliers are identified for each chosen metric using Z-score and IQR
methods, with results compared for accuracy. The NCLOC feature, which highlights
project refactoring, is crucial in this phase.

8. Time Periods (Epochs): In this step, the commits are grouped onto epochs. The epochs
are calculated based on each file and a new epoch occurs for a set of files when their
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lines of code change significantly (i.e. deviate significantly form the mean value). These
epochs allow the analysis to be performed in-context as during the life span of a project
files may change significantly, and the analysis performed in one period may not be
applicable anymore in another period.

9. Discretizing the Values: Values for each metric are discretized using three classification
methods: decision tree, k-means, and percentile classification. The dominant answer for
each value is then represented with a discrete value.

10. Creating the Dataframe: The dataframe is created based on the discrete values and
previously selected features.

11. Commit State: This section explains the representation of commit states, their signifi-
cance, and the insights they provide.

12. Justification of Using Three Discrete Values: The rationale behind using three discrete
values in some experiments is discussed, including the objectives and benefits of this
approach.

3.4 Database Cleaning
In order to facilitate the identification of pertinent commits and enhance the efficiency of subse-
quent analysis, it is imperative to initiate a data cleaning process aimed at refining the database
and reducing its size.

3.4.1 Removing configuration files
To optimize classification accuracy and align the study’s objectives, it is necessary to perform a
filtering process that removes non-Java file records from the dataset. This step aims to enhance
the quality of results by focusing solely on Java source code files, as configuration files are
deemed irrelevant for the current study.

Filtering out non-Java file records serves several critical purposes, including:

• Improved Classification Accuracy:

By exclusively considering Java files, the classification algorithm can effectively discern
patterns and extract features specific to Java source code. The elimination of non-Java
files reduces potential noise and interference, thereby enhancing the accuracy of the clas-
sification model.

• Relevance to Study Objectives:

The study’s focus is centered on Java source code analysis, which necessitates a con-
centrated examination of Java files. Configuration files, while essential for software
development, do not directly contribute to the study’s research questions and findings.
Consequently, excluding such files streamlines the analysis process, allowing researchers
to concentrate their efforts on Java-specific aspects.
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• Keeping Relevant Commits and Database Arrangement:

To facilitate future analysis and streamline the examination of relevant commits within
the database, it is crucial to undertake a process of commit identification and aggregation.
This procedure involves several steps, including the separation of files for each project,
the isolation of bug inducing commits, and the organization of commits with shared
fixing commits based on chronological order. By implementing these steps, all pertinent
commits can be consolidated and conveniently placed adjacent to each other, thereby
enhancing the efficiency and comprehensibility of subsequent analyses.

The process of commit identification, aggregation, database sorting, and arrangement
can be summarized as follows:

• File Separation:

Initially, the commit records are divided based on the associated project files. This seg-
regation enables a focused analysis on a per-project basis, allowing for a comprehensive
understanding of the specific changes and developments within each project. By group-
ing commits by file, the subsequent steps can be performed with file-specific considera-
tions in mind.

• Isolation:

Within each project, the bug-inducing commits are identified and isolated. Bug-inducing
commits are those that introduce changes or issues that subsequently require fixing.
These commits often provide critical context and serve as a reference point for further
analysis. By isolating bug-inducing commits, researchers can gain insight into the factors
leading to subsequent fixing commits.

• Organization:

Among the bug-inducing commits, those with common fixing commits are identified and
sorted based on their chronological order. This sorting ensures that commits with similar
fixing commits are grouped together, facilitating cohesive and sequential analysis. Ex-
amining commits in chronological order allows researchers to trace the progression of
changes, understand the relationships between commits, and identify patterns or trends
over time.

3.4.2 Eliminated projects
In the data pre-processing phase, a thorough evaluation was carried out to identify projects
that primarily comprised configuration files and lacked Java files. This assessment aimed to
maintain the study’s relevance and alignment with the research objectives. Consequently, two
projects, ”batik” and ”daemon,” were excluded from the analysis due to their exclusive reliance
on configuration files. This decision was made in recognition of the fact that configuration files,
while essential for software development, do not directly contribute to the research questions
and objectives of the study. By eliminating such projects, the subsequent analysis can focus
exclusively on Java source code, allowing for a more targeted and accurate exploration of the
desired aspects.
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Moreover, further investigation revealed that the ”digester” project had only two remaining
commit records, with all other commits related to configuration files. This limited number of
relevant commit records rendered the ”digester” project unsuitable for inclusion in the study,
as it hindered meaningful analysis and interpretation. Therefore, the decision was made to
exclude the ”digester” project as well as two other projects that didn’t have enough commits
left leaving us with 17 projects in total. This rigorous assessment and exclusion of projects
lacking Java files or predominantly composed of configuration files ensure the study’s integrity
and focus. By filtering out projects that do not align with the research objectives, the analysis
can be conducted on a more relevant and representative subset of projects, providing valuable
insights into the desired Java-specific aspects.

This refined database enables subsequent analyses to concentrate on the primary research
questions, resulting in more precise and meaningful research outcomes.

3.4.3 Initial database
Through these steps, the relevant commits within the database are systematically organized
and grouped for future analysis. The aggregation of commits adjacent to each other provides
a holistic view of the development process, enabling comprehensive examinations of the rela-
tionships between bug-inducing and bug-fixing commits.

3.5 Feature Selection & Elimination
One of the initial steps towards creating a comprehensive and relevant database is the selection
of the appropriate metrics that may be required for future analysis. We have two different
sets of features: quality metrics and size metrics. Size metrics, by their nature, are highly
correlated with each other. Although we include them in the calculation of the correlation
matrix, this is not the proper way to choose them. Correlation is more significant for quality
metrics. Therefore, our process involves selecting a specific set of important features and then
using correlation to choose among the other features. In addition to correlation, we use other
criteria to eliminate features based on their values or distribution, which we will explain in
more detail in the following sections. We select a set of source code quality-related features
and choose among them based on low correlation.

3.5.1 Data values Overview
To identify the optimal set of features for our study, we conducted a thorough evaluation of the
36 features initially obtained from the TechnicalDebtDataset. Initially, features containing a
significant number of null values were excluded from further analysis as they proved ineffec-
tive. To further enhance our feature selection, we generated frequency plots to visually assess
the distribution of feature values and pinpoint additional irrelevant features.

After this comprehensive evaluation, we arrived at a selection of 19 features for inclusion
in the study, which are listed below.
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• CLASS COMPLEXITY

• VIOLATIONS

• SQALE RATING

• SQALE DEBT RATIO

• NEW SQALE DEBT RATIO

• CODE SMELLS

• BUGS

• RELIABILITY REMEDIATION EFFORT

• RELIABILITY RATING

• VULNERABILITIES

• SECURITY REMEDIATION EFFORT

• SECURITY RATING

• CLASSES

• FILES

• FUNCTIONS

• COMMENT LINES DENSITY

• LINES TO COVER

• NCLOC

• EFFORT TO REACH MAINTAINABILITY RATING A

3.5.2 Features Correlation

In order to gain deeper insights into the relationships between selected features, it is essential
to carry out a correlation analysis and generate a correlation matrix. This process will enable
us to refine the dataset further by identifying the features that exhibit stronger correlations and
are more valuable for our analysis. The generated correlation matrix for the selected features
is presented in Fig 3.2.

While examining the correlation matrix and heatmap, it becomes clear that correlation
alone does not determine which metrics should represent a commit’s state. Correlation mea-
sures the relationship between two metrics but does not account for their individual significance
or the unique insights they provide. Additionally, it is important to remember that correlation
does not imply causation. Just because two metrics are correlated does not mean one causes
the other.

For instance, let’s consider the metrics VIOLATIONS and CODE SMELLS. These two
metrics might show a high correlation, suggesting they often occur together. However, this
does not mean they are redundant or that only one should be used. VIOLATIONS refer to
specific instances where the code fails to comply with predefined rules or standards, such as
not following naming conventions or exceeding complexity thresholds. This metric is crucial
for identifying immediate issues that need correction to maintain code quality.

On the other hand, CODE SMELLS represent deeper, more structural problems in the
code, such as duplicated code, long methods, or large classes. These are not necessarily rule
violations but indicate poor design choices that could lead to maintainability issues or bugs in
the future. The correlation between VIOLATIONS and CODE SMELLS does not mean that
one causes the other, but rather that they often appear together due to underlying issues in the
codebase.

By including both VIOLATIONS and CODE SMELLS, we gain a comprehensive under-
standing of the code’s health. VIOLATIONS help us catch and correct immediate issues, while
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Figure 3.2: Correlation matrix plot
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Quality Metrics Size Metrics
CLASS COMPLEXITY CLASSES
VIOLATIONS FILES
SQALE RATING FUNCTIONS
NEW SQALE DEBT RATIO LINES TO COVER
CODE SMELLS NCLOC
EFFORT TO REACH MAINTAINABILITY COMMENT LINE DENSITY
BUGS -
RELIABILITY REMEDIATION EFFORT -
RELIABILITY RATING -
VULNERABILITIES -
SECURITY REMEDIATION EFFORT -
SECURITY RATING -

Table 3.3: Metrics categorized by quality and size

CODE SMELLS alert us to potential long-term problems. Ignoring one in favor of the other
would result in a less thorough analysis.

Furthermore, using multiple metrics, even those that are highly correlated, allows us to cap-
ture different dimensions of code quality. For example, another pair of correlated metrics could
be BUGS and VULNERABILITIES. While both might indicate problematic areas in the code,
BUGS typically refer to functional issues found during testing, whereas VULNERABILITIES
are security-related issues that could be exploited. Each metric provides distinct information
necessary for a holistic view of the code’s state.

Therefore, despite their correlation, the distinct nature and valuable insights provided by
each metric justify their inclusion in our analysis. This approach ensures we do not overlook
critical aspects of code quality, leading to more effective bug detection and overall software
improvement. Understanding the difference between correlation and causation helps us to
select the most relevant metrics and avoid misinterpretations that could compromise our study.

As shown in Table 3.3, we have 19 metrics categorized by whether they are quality metrics
or size metrics.

3.5.3 Frequency Analysis
Subsequently, a frequency analysis was performed on the remaining features to identify those
that displayed redundancy. In particular, features with values uniform across all records were
removed as they provided little information for our study.

At the conclusion of the process, a total of 17 files will have been generated, with each file
corresponding to a distinct project. These files adhere to a standardized structure, described as
before. Each entry of these files is shown in Fig 3.3.

To enhance the relevance and comprehensiveness of the database, a thorough evaluation of
the available columns was conducted, resulting in the removal of non-essential and redundant
columns. The eliminated columns included:

• PROJECT ID: This represents a unique identifier for a project within a system or
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Figure 3.3: One entry in the concluding database

database. It helps in distinguishing one project from another, ensuring that data asso-
ciated with each project is correctly attributed.

• IS COMMIT HASH ON FILES BEFORE INDUCING: This indicates whether the
commit hash is present on files before any bug-inducing changes were made. It is a
boolean value (true/false) that helps track the state of the files before the introduction of
a bug.

• IS COMMIT HASH ON FILES AFTER INDUCING AND BEFORE FIXING: This
represents whether the commit hash is present on files after the bug-inducing changes
have been made but before any bug fixes are applied. This helps in understanding the
state of the files during the period when the bug exists but has not yet been fixed.

• IS COMMIT HASH ON FILES INDUCING COMMIT: This indicates whether the
commit hash corresponds to the commit that induced (introduced) the bug. It helps in
identifying the specific commit that caused the bug.

• IS COMMIT HASH ON FILES FIXING COMMIT: This shows whether the com-
mit hash is present on the files associated with the commit that fixes the bug. It helps in
pinpointing the exact commit where the bug was addressed and resolved.

• EFFORTS PER COMPONENT: This metric represents the amount of effort (usually
in terms of time or complexity) required for each component of the project. It helps in
understanding how much work is needed for different parts of the project, which can aid
in project management and resource allocation.

• CONCAT: This is the concatenation of the bug-inducing commit hash and the bug-fixing
commit hash. By combining these two hashes, it creates a unique identifier that links a
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specific bug introduction to its resolution, facilitating better tracking and analysis of bug
fixes.

• PAIR NUMBER: This refers to a sequential number or identifier assigned to a pair of
bug-inducing and bug-fixing commits. It helps in organizing and referencing these pairs
systematically for analysis or reporting purposes.

These columns, while potentially informative in certain contexts, did not directly contribute
to the specific research objectives of the study. Their removal streamlined the database, enhanc-
ing its clarity and relevance by focusing on the core aspects of interest.

3.5.4 Remaining Features
After a meticulous feature selection process, we have identified eight specific features to serve
as the final metrics for this project. As we discussed, the features we are going to use in this
thesis are quality features (specified in bold) and size features are disregarded in representing
commit’s state. To clearly understand the range of these metrics, we will examine the ”beanu-
tils” project as a case study, providing the maximum and minimum values for each metric
within this context. These selected features are listed below:

• NEW SQALE DEBT RATIO (Metric ID: 1): This metric relates to the Technical Debt
in the codebase. It’s a measure of the ratio between the new technical debt incurred in
the recent changes and the effort required to fix it. A high value may indicate that a sig-
nificant amount of new technical debt has been introduced. The maximum and minimum
value for this feature in ”beanutils” project is 8.914686333, and 0.02053004853.

• VIOLATIONS (Metric ID: 2): This metric refers to the total number of code violations
or rule violations found by SonarQube. These violations might be related to coding
standards, best practices, or other rules defined in project’s quality profile. The maximum
and minimum value for this feature in ”beanutils” project is 5140, and 128.

• CODE SMELLS (Metric ID: 3): Indicators of code that might be less than optimal in
terms of maintainability or readability. This metric counts the total number of code
smells detected in codebase. The maximum and minimum value for this feature in
”beanutils” project is 5015, and 137.

• CLASS COMPLEXITY (Metric ID: 4): A measure of how complex the classes are
in terms of their structure and interactions. Higher values may suggest more complex
and potentially harder-to-maintain classes. The maximum and minimum value for this
feature in ”beanutils” project is 67.7, and 12.7.

• NCLOC: This metric measures the number of lines in the codebase that are not com-
ments. It’s a way to gauge the size and complexity of the codebase without considering
comments. The maximum and minimum value for this feature in ”beanutils” project is
63562, and 812.

• FUNCTIONS: Represents the total number of functions or methods in the codebase. The
maximum and minimum value for this feature in ”beanutils” project is 7760, and 57.
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Table 3.4: Example of Database Entry

Attribute Value
FAULT INDUCING COMMIT HASH fa9f99a48f141abdb995884500e1add2dc83c19b
DATE OF INDUCING COMMIT 2003-03-03 22:33:46+00:00
FILES PropertyUtils.java
COMMIT HASH ON FILE BEFORE FIX ab939bf9fa5d41d093f93d5e95e14dad130b0d12
DATE OF COMMIT HASH 2002-11-23 23:47:07+00:00
NEW SQALE DEBT RATIO 7.478469368
VIOLATIONS 2063
CODE SMELLS 2061
CLASS COMPLEXITY 18.4
NCLOC 13531
FUNCTIONS 1072
LINES 32009
CLASSES 96

• LINES: This metric represents the total number of lines in the codebase, including both
code and comments. The maximum and minimum value for this feature in ”beanutils”
project is 149406, and 1988.

• CLASSES: Counts the total number of classes in the codebase. The maximum and
minimum value for this feature in ”beanutils” project is 906, and 3.

These 8 features were selected by analyzing the commits. The first 4 features represent the
quality of the code, while the others represent code size. Since we are looking for bugs, we use
quality metrics to represent a commit’s state. Quality metrics provide insight into the health and
maintainability of the code, which are crucial for identifying potential issues that could lead
to bugs. By focusing on quality metrics, we can better understand the underlying issues that
may not be apparent through size metrics alone. Quality metrics such as code complexity and
adherence to coding standards offer a deeper view of the potential risk areas within the code.
On the other hand, size metrics, while useful for understanding the overall scope and scale
of the project, do not directly correlate with the likelihood of bugs. Additionally, using more
metrics increases the complexity of the states being analyzed, making it harder to comprehend
and manage the data effectively. By prioritizing quality metrics, we can streamline our analysis
and focus on the most relevant factors for bug prediction.

For instance, one can observe a database entry showcasing correlated selected features in
Table 3.4.

3.6 Normalization & Compression
After first stages of data analysis, we found out the distribution of values among each feature
is non-uniform, and therefore we cannot establish borders for the discrete representation of
the features by simply dividing the scale of values by five. In order to better illustrate this
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Figure 3.4: CLASS COMPLEXITY values distribution

matter, consider the distribution of values for the CLASS COMPLEXITY feature in Fig 3.4 as
an example.

Upon comprehensive data examination, it’s evident that the frequency of values across data
points varies significantly, making a uniform scale division less effective due to varying preva-
lence. To address this, we prioritize values with higher frequencies. Achieving this involves
normalization and classification. Normalization ensures data is brought to a common scale,
while classification groups data into categories, facilitating structured and insightful analysis
that considers varying frequencies and patterns. These techniques collectively provide a more
robust understanding of the data, leading to more accurate and meaningful insights.

3.6.1 Normalization Techniques
For the purpose of Normalization, two techniques were employed: min-max normalization
and mean normalization. Min-max normalization involved scaling metric values to a specific
range. This technique preserved the relative proportions of metrics while ensuring they all fell
within the same standardized range, allowing for direct comparisons. Mean normalization, on
the other hand, centered the data around the mean value by subtracting the mean from each
metric value. This approach helped eliminate biases caused by varying means and allowed
for a more consistent assessment of metric values based on their deviations from the mean.
These multiple normalization techniques collectively provided a comprehensive approach to
ensure that metrics were prepared for fair and meaningful comparisons, enabling subsequent
data analysis to be more accurate and insightful.

In the subsequent stage of the process, metric values are further refined by compressing
them into a defined range, in this case between zero and 100, using a non-linear normalization
technique. This compression preserves the inherent characteristics and relative magnitudes of
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Table 3.5: Example of Database Entry with Normalization

Attribute Normalized Value
FAULT INDUCING COMMIT HASH fa9f99a48f141abdb995884500e1add2dc83c19b
DATE OF INDUCING COMMIT 2003-03-03 22:33:46+00:00
FILES PropertyUtils.java
COMMIT HASH ON FILE BEFORE FIX ab939bf9fa5d41d093f93d5e95e14dad130b0d12
DATE OF COMMIT HASH 2002-11-23 23:47:07+00:00
NCLOC 20.26932271
NEW SQALE DEBT RATIO 83.85212808
VIOLATIONS 38.60734238
CODE SMELLS 39.55391856
FUNCTIONS 13.17668441
LINES 20.36454164
CLASSES 10.29900332
CLASS COMPLEXITY 10.36363636

the metrics, enabling more meaningful comparisons and analyses. This compression, provides
insights into dataset dynamics and fluctuations. This approach helps assess disparities between
normalized metric values, leading to a nuanced understanding of relative variances and rela-
tionships between metrics. The metric value compression proves instrumental in data transfor-
mation and analysis, enabling us to uncover intricate relationships and valuable findings within
the dataset.

After applying normalization methods, the identical entry in the database is depicted in
Table 3.5.

3.7 Identifying BICs

The process starts by extracting commit hashes related to bug-inducing commits from the pri-
mary database using a pairs file (The term ”Pairs file” derives from its content comprising
pairs of bug-inducing and fault-fixing commit hashes). This method, described by P. Parul et
al. [67], aims to retrieve commit hashes mentioned in these pairs from the main database. In
this methodology, the SZZ algorithm is utilized to identify bug-inducing commits. To enhance
accuracy and minimize false positives and noise, JIRA issues are linked to corresponding com-
mits in the Version Control System (VCS). By examining all commits prior to an issue labeled
as bugged, the outcomes are cross-referenced and verified. This process allows for a more
reliable and accurate pinpointing of bug-inducing commits, ensuring a robust and dependable
approach to tracking software defects. Through a search operation, commit hashes from the
pairs file are cross-referenced with the main database to extract corresponding bug-inducing
commit hashes. This efficient search process isolates and retrieves the relevant commit hashes,
establishing a link between the pairs file and corresponding entries in the primary dataset.

The pairs file acts as a reference, specifying specific combinations of commit hashes of
interest. By utilizing this information, the code systematically identifies and captures relevant
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Figure 3.5: Changes in VIOLATIONS metric leading to a bug-inducing commit

commit hashes from the main database, contributing to the gradual population of a list with
multiple DataFrames.

3.8 Relevant Commits
A crucial aspect of our research involves identifying relevant commits to construct the commit
transition model. In the original database, there is no inherent relationship between each entry
and the subsequent commits, which may pertain to different files and thus lack relevance to
each other. To address this, we need to separate commits based on the files they affect and sort
them chronologically. This approach ensures that commits affecting the same file are grouped
together, making alterations in different features evident.

We utilized graphical representations to visualize changes observed in specific features. For
a illustrative graph depicting these modifications, please refer to Figure 3.5.

3.9 Calculating the Differentials
The process of constructing commit states involves capturing nuanced characteristics beyond
absolute metric values. It adopts a contextual and relative perspective on metrics, consider-
ing changes over time or in comparison to other observations, facilitating the identification of
trends, patterns, and anomalies within commit data.

To implement this approach, computing differentials for each metric is crucial. Differen-
tials quantify changes in metric values relative to preceding observations, enabling a nuanced
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Table 3.6: Example of Database Entry with Differentials

Attribute Normalized Value Diff Value of Related
Commits

NCLOC 20.26932271 0.005346332
NEW SQALE DEBT
RATION

83.85212808 0.006060606

VIOLATIONS 38.60734238 0.007235142
CODE SMELLS 39.55391856 0.007242628
FUNCTIONS 13.17668441 0.006896552
LINES 20.36454164 0.005063122
CLASSES 10.29900332 0.010752688
CLASS COMPLEXITY 10.36363636 0.01754386

analysis that captures relative shifts and reveals patterns and fluctuations. They offer a compre-
hensive perspective for understanding metric dynamics, aiding trend identification, anomaly
detection, and comparative evaluations across different observations.

After normalizing metric values through various techniques, the next step is calculating
differentials between these normalized metrics. These differentials capture relative changes or
variations in metrics over time or across different data points. By subtracting the normalized
metric value at a particular point from its corresponding value at a previous point or from a
defined reference point, it becomes possible to analyze how metric values evolved or fluctuated
over time. These differential values serve as a crucial dataset for exploring patterns, trends, and
deviations within the metrics, laying the foundation for in-depth data analysis and the extraction
of valuable insights from the dataset.

Furthermore, differentials are also computed on absolute and non-normalized values as an
additional approach to explore whether they could yield more meaningful results.

Table 3.6 displays both the differentials and normalized values for each metric. As eluci-
dated in this section, the differential quantifies the extent of changes in each feature and metric.
To streamline, the example refrains from providing detailed commit identities in the subsequent
context to avoid redundancy and keep the table concise.

3.10 Outlier Detection

As part of our data exploration and analysis, our next undertaking involves the identification
and characterization of outliers within each metric. Detecting outliers provides valuable in-
sights into the distribution and peculiarities of the data, enabling a deeper understanding of
its underlying patterns, variations, and potential anomalies. To accomplish this task, we have
selected the widely recognized and statistically grounded Z-score method.

3.10.1 Z-Score method

The process of detecting outliers using the Z-score method can be summarized as follows:
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Figure 3.6: Z-Score Outliers in NCLOC differentials with threshold 3

Metric Selection: To comprehensively assess the data, we consider each metric individu-
ally. This approach allows us to examine the uniqueness and potential anomalies within each
specific measurement, providing a more granular understanding of the dataset.

Z-Score Calculation: For each metric, the Z-score is computed for every data point. The
Z-score is determined by subtracting the mean of the metric from the data point value and
then dividing the result by the standard deviation. This transformation normalizes the data,
expressing it in terms of standard deviations from the mean.

Threshold Determination: To classify a data point as an outlier, a threshold value is estab-
lished. The choice of the threshold is crucial, as it determines the degree of deviation necessary
to identify an observation as an outlier. In our study, we have set the default threshold to 3.0,
considering data points with Z-scores greater than this threshold as outliers. The threshold
value was carefully selected through an extensive analysis, which included testing multiple
thresholds. We aimed to find a threshold that aligns with our expectations and requirements,
providing a reasonable number of outliers considering our data size and value distribution.

Outlier Identification: Based on the calculated Z-scores and the established threshold,
data points exceeding the threshold are flagged as outliers. These observations possess values
that deviate significantly from the mean, signifying their potential as influential or anomalous
elements within the dataset.

By employing the Z-score method for outlier detection, we gain a quantitative measure
of the deviation of each data point from the mean, allowing for a systematic and objective
identification of potential outliers.

As an example, you can observe the outlier detection results for the NCLOC differentials
metric in Figure 3.6.
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Figure 3.7: IQR Outliers in NCLOC

3.10.2 Interquartile Range (IQR)
To calculate the IQR, we first arrange the data points in ascending order. Then, we locate the
median, which divides the dataset into two halves: the lower half (Q1) and the upper half (Q3).
The IQR is determined by subtracting Q1 from Q3, representing the range within which the
middle 50% of the data lies.

By focusing on this central portion of the data distribution, the IQR is less influenced by
extreme values or outliers that may exist in the dataset. It provides a robust measure of variabil-
ity that is less affected by these unusual observations, making it particularly useful for outlier
detection.

We aim to compare the performance of the Z-Score method, previously employed for out-
lier detection, with the newly introduced IQR method. By implementing the IQR method, we
expect to gain insights into how it identifies and handles outliers in our data. This comparative
analysis will contribute to a more comprehensive understanding of the strengths and limitations
of each technique, thus facilitating improved comprehension of our dataset.

As an example, you can observe the outlier detection results for the NCLOC metric in
Figure 3.7.

3.10.3 Comparison and result
Upon applying the outlined outlier detection techniques to our dataset, we observed that both
the Z-Score and IQR methods consistently identify and flag almost identical sets of outliers
across various metrics. This consistency is because the Interquartile Range and Z-Score outlier
detection methods usually produce similar results when the data distribution closely approxi-
mates a normal or Gaussian distribution, as is the case with our dataset. While minor dissimi-
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larities may arise due to implementation nuances, the convergence in the number of identified
outliers substantiates the reliability and robustness of these methods in detecting anomalous
data points. This finding underscores the credibility of the Z-Score and IQR methods in accu-
rately capturing instances deviating significantly from expected data patterns. Therefore, we
used the union of the results from both these outlier detection methods for outlier detection and
subsequent evaluation of their impact on our data analysis. It’s worth noting that the outliers
were calculated for absolute values, normalized values, and the differentials of both.

3.10.4 Standard Deviation

An additional approach was employed to identify distinct outliers in the dataset, involving the
iterative evaluation of each metric value and the detection of borders whenever a value ex-
ceeded the average of preceding values by more than one standard deviation. This threshold
was chosen based on the number of outliers detected and verification against our data to en-
sure it was meaningful. This method allowed us to detect significant shifts or deviations in
the dataset, particularly in the magnitude of the ”NCLOC” metric, which signified periods of
considerable change or distinct data segments.

By utilizing the standard deviation as a measure of dispersion, deviations beyond the aver-
age value were identified as substantial and used as demarcation points. These points defined
distinct temporal intervals within the data, facilitating further targeted analysis. This strategy
offered a nuanced approach to demarcating the data, capturing key transitions and anomalies
to improve the classification process and enhance the understanding of the dataset.

3.11 Classification bounds

To discretize our values and perform classifications effectively, we need to establish a specific
scope for classification. This is essential because our database includes data from multiple
projects, and varying factors within many metrics can complicate classification. For instance,
in one project, if the normalized NCLOC value changes from 12 to 20, that change might be
considered significant within the context of that project. However, in another project where
NCLOC values reach up to 80, a change to 20 may not be significant. Additionally, factors
such as refactoring in one project and other variables can influence our analysis. Therefore, we
require epochs to carry out classification within these defined contexts.

The outlier analysis conducted revealed a significant concept regarding the classification of
metrics into discrete values, primarily focusing on the ”NCLOC” metric. The outliers observed
within the ”NCLOC” metric signify potential instances of substantial refactoring or significant
changes in the project’s structure. In response, the idea emerges to consider each detected
outlier as a threshold for classification, effectively defining boundaries within which metric
values can be categorized.

This approach facilitates the organization of metric values into distinct ranges or categories,
aligning with the boundaries established by the detected outliers. Essentially, the outliers act as
key reference points, demarcating the limits for classifying metric values and offering valuable
insights into potential transformations or notable shifts within the project’s structure.
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The proposed classification methodology based on ”NCLOC” outliers not only aids in
structuring and categorizing metric values but also enables the identification of patterns and
trends within the data. It supports the exploration of how other metrics’ values align or de-
viate concerning the defined outlier boundaries. Consequently, this classification framework
enhances the understanding of interdependencies and associations among metrics, shedding
light on the potential impact of outliers on the overall project dynamics.

3.11.1 Time Periods (Epochs)
To refine the classification range, it was vital to establish clear boundaries, accurately represent
outliers, and confirm an adequate number of commits and bug-inducing commits within spe-
cific time priods known as ”periods.” These conditions are essential for preserving the accuracy
and robustness of the classification process while minimizing the risk of misclassification or
bias. To achieve this, the study set a distance threshold of 0.3 to identify outliers as classifi-
cation boundaries, as detailed in Section 3.10. This value was selected after testing various
thresholds and observing that 0.3 resulted in a reasonable number of outliers, as demonstrated
in Figs 3.6 and 3.7. This approach ensured a reliable and consistent classification methodology,
enhancing the validity of the research and experimentation.

All these methods were applied to both the absolute values and normalized values, includ-
ing the calculation of differentials for both. Ultimately, the pertinent commits were grouped,
sorted chronologically, and outliers within those groups were identified. This allowed for the
classification methods to be applied to each distinct period.

3.12 Discretizing the values
After obtaining the selected features along with their respective absolute numerical values,
normalized values, and differentials, as well as obtaining the periods, the next step involves
discretizing the metrics. To achieve this, a discrete form with five distinct values was em-
ployed. This approach enhances data representation and analysis, aiding in pattern and trend
identification. Discretization, a crucial process in data analysis, improves result quality by
mitigating the impact of outliers and simplifying data while preserving its core characteristics.
The selection of five values makes the discretization process more manageable and facilitates
result interpretation. The discrete values are presented below.

• 0: Very Low

• 1: Low

• 2: Medium

• 3: High

• 4: Very High

In order to make the analysis more tractable, we later in the thesis combined the last two
discrete values and the first two and come up with three categories as follows:
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• 1: Low

• 2: Medium

• 3: High

3.12.1 Classification
To streamline the analysis of extensive datasets, it is advisable to initiate the process with a
categorization based on scale. This entails segmenting the data into distinct intervals or cate-
gories, such as 50, 100, 200, 400, and 10,000, and tallying the data points falling within each
interval. By maintaining uniformity among the intervals, this method simplifies the analysis
of extensive information, rendering it more manageable and aiding in the interpretation of data
in discrete categories. The primary aim is to offer a more lucid view of the data and facilitate
efficient decision-making.

This step involves the equitable distribution of data among the final discrete values. The
goal is to distribute data points evenly across each discrete value while upholding data in-
tegrity. While achieving perfect equality may be unattainable, efforts are made to allocate the
data as evenly as possible, striving for the closest approximation to equality within practical
constraints. The process is outlined below.

Note that the assignment of each value to a group depends on the classification scope, and
it is impossible to establish a fixed threshold for every value and definitively state that a metric
value lower than X belongs in group Y. This is because the aim is to enhance the classification
process by basing groups solely on changes in specific metrics within the commit stream, which
adds depth and nuance to the categorization.

The data analysis process then progresses to the classification of these normalized values
into five distinct categories. This classification is carried out using three techniques: Decision
Tree, K-Means Clustering, and Binning using Percentile Classification.

The combination of these processes allows for a comprehensive analysis of the metric
values, with data being grouped into meaningful clusters. The methodology helps identify
similarities and patterns within the dataset, aiding in the exploration and interpretation of the
underlying data structure.

Binning Using Percentile Classification

Percentile Classification is employed as a classification method. This technique involves divid-
ing the metric values into predefined percentile ranges, such as quintiles or percentiles. Each
range represents a category, and the metric values are assigned to the corresponding percentile
category based on their relative position within the distribution. This approach ensures that the
metric values are classified into five equal-sized groups, allowing for an equal representation
of the data across the categories. As an example, you can see the result of this classification
method on normalized differential values of CODE SMELLS metric in Fig 3.8.

Table 3.7 displays the results of percentile classification on both the normalized values and
differentials.

The column ”Percentile Classification on Diff” displays the classification results based on
the differential value of the corresponding metric.



48 Chapter 3. Data Pre-processing andModelling

Figure 3.8: Pecentile Classification Result

Table 3.7: Example of Database Entry with Percentile Classification

Attribute Normalized
Value

Diff Value of
Related
Commits

Percentile
classification

Percentile
Classification
of Diff

NCLOC 20.26932271 0.005346332 4 1
NEW SQALE
DEBT RATIO

83.85212808 0.006060606 0 1

VIOLATIONS 38.60734238 0.007235142 4 0
CODE
SMELLS

39.55391856 0.007242628 4 0

FUNCTIONS 13.17668441 0.006896552 4 0
LINES 20.36454164 0.005063122 4 1
CLASSES 10.29900332 0.010752688 4 0
CLASS
COMPLEXITY

10.36363636 0.01754386 1 2
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Figure 3.9: K-Means Clustering Result

K-Means Clustering

The data analysis process consists of several crucial steps, including the selection of the desired
number of clusters, which, in this specific context, focuses on the creation of five distinct
clusters. Subsequently, data is prepared for clustering by transforming it into a 2D array, where
each row corresponds to a data point, and a single column represents the selected feature under
consideration.

After this preparation, a K-Means object is instantiated with the predefined number of
clusters, and the data is fitted to this object, initiating the clustering process. As clustering
concludes, each data point is assigned predicted labels, which are then integrated as a new
column in the original dataframe. This step delivers valuable insights into the distribution of
data points across different clusters, providing a clear count of instances within each category.
The approach harnesses the K-Means clustering algorithm to effectively categorize data points
within a single column into distinctive clusters, facilitating a comprehensive assessment of data
distribution and the identification of cohesive data groups based on their proximity to cluster
centroids. As an example, you can see the result of this classification method on compressed
values of NCLOC metric in Fig 3.9.

Table 3.8 displays the results of K-Means Clustering on both the normalized values and
differentials.
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Table 3.8: Example of Database Entry with K-Means Clustering

Attribute Normalized
Value

Diff Value of
Related
Commits

K-Means
Clustering

K-Means
Clustering
on Diff

NCLOC 20.26932271 0.005346332 3 0
NEW SQALE
DEBT RATIO

83.85212808 0.006060606 3 1

VIOLATIONS 38.60734238 0.007235142 4 0
CODE
SMELLS

39.55391856 0.007242628 4 0

FUNCTIONS 13.17668441 0.006896552 1 3
LINES 20.36454164 0.005063122 2 3
CLASSES 10.29900332 0.010752688 2 0
CLASS
COMPLEXITY

10.36363636 0.01754386 0 2

Decision Tree

In this methodology, we establish five distinct categories by sourcing data from a designated
column within a specified dataset. Following this, any missing data points are imputed using
suitable techniques, such as mean or median values from the dataset, ensuring data complete-
ness. The data is then divided into these predefined categories. Subsequently, a decision tree
classifier is constructed, customized according to the desired number of categories, and trained
on the dataset. Predicted labels for each data point are obtained and added as a new column to
the original dataset. Finally, the algorithm provides a count of instances within each category,
furnishing valuable insights for interpreting and analyzing the resulting classifications. This
approach is essential for uncovering patterns and trends in numerical data that might not be
readily discernible. The Decision Tree algorithm serves as a classification method, responsible
for partitioning metric values based on specific decision criteria. It establishes a hierarchical
structure of decision nodes that sequentially segment the data using predetermined features or
thresholds, enabling the identification of distinct categories through iterative division based on
the most informative attributes. As an example, you can see the result of this classification
method on differential values of NEW SQALE DEBT RATIO metric in Fig 3.10.

Upon completing these steps, we generate a vector comprising multiple discrete values for
each commit, encapsulating the relevant categories applied to the data.

Table 3.9 displays the results of Decision Tree Classification on both the normalized values
and differentials.

Finding the dominant answer

Employing three distinct classification techniques, metric values are categorized into five mean-
ingful and interpretable groups, ensuring comprehensive and robust categorization of normal-
ized metric values. This comparative approach assesses the consistency and reliability of cat-
egorization outcomes by identifying the category assigned by at least two out of the three
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Figure 3.10: Decision Tree Classifier Result

Table 3.9: Example of Database Entry with Decision Tree Classification

Attribute Normalized
Value

Diff Value of
Related
Commits

Decision Tree
Classification

Decision Tree
Classification
on Diff

NCLOC 20.26932271 0.005346332 4 0
NEW SQALE
DEBT RATIO

83.85212808 0.006060606 0 2

VIOLATIONS 38.60734238 0.007235142 4 0
CODE
SMELLS

39.55391856 0.007242628 4 0

FUNCTIONS 13.17668441 0.006896552 4 0
LINES 20.36454164 0.005063122 4 1
CLASSES 10.29900332 0.010752688 4 0
CLASS
COMPLEXITY

10.36363636 0.01754386 0 3
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Table 3.10: Example of Database Entry after Classification

Attribute Normalized
Value

Diff Value of
Related
Commits

Discrete
Value

Discrete Value
of Diff

NCLOC 20.26932271 0.005346332 4 0
NEW SQALE
DEBT RATIO

83.85212808 0.006060606 0 1

VIOLATIONS 38.60734238 0.007235142 4 0
CODE
SMELLS

39.55391856 0.007242628 4 0

FUNCTIONS 13.17668441 0.006896552 4 0
LINES 20.36454164 0.005063122 4 1
CLASSES 10.29900332 0.010752688 4 0
CLASS COM-
PLEXITY

10.36363636 0.01754386 0 2

methods, providing valuable guidance for subsequent analyses and informed interpretations
based on the consistently assigned category.

To enhance our dataset’s comprehensiveness, our objective is to identify the most prevalent
classification outcome among various methods applied to each commit and feature category.
We aim to extract the predominant answer resulting from all the classification techniques used,
significantly enriching our database for more in-depth analysis. In cases where no clear con-
sensus emerges and each classification method produces a distinct result, we prioritize the
classification outcome generated by the Decision Tree classifier, even though such occurrences
are infrequent.

In the end, we save both the dominant answers and our original classification results. We
do not discard each classification result but retain all three in case one of the classification
methods proves to be more effective than the others.

As an example, let’s examine the results of classification for the CLASS COMPLEXITY
metric across our three classification methods. The classification of the absolute value of this
metric using percentile classification resulted in a value of 1 (Low), with K-means, it was 0
(Very Low), and with the decision tree, it was 0 (Very Low). Two of these methods categorize
this value as 0 (Very Low), which constitutes the majority, so the final discrete value for this
metric is 0 (Very Low).

Next, let’s consider the results of classifying the amount of change or Valueo fCommitn −

Valueo fCommitn−1 for this metric. The classification of the differential value using percentile
classification resulted in 2 (Medium), with K-means, it was also 2 (Medium), and with the
decision tree, it was 3 (High). Since two of these methods categorize this value as 2 (Medium),
which is the majority, the final discrete value for this metric is 2 (Medium).

Table 3.10 displays the results of Classification on both the normalized values and differ-
entials.

Now, as you can see, we have eight metrics available for assessing the state of a com-
mit. As mentioned earlier in Section 3.5.4, four of these metrics relate to code size (NCLOC,
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FUNCTIONS, LINES, CLASSES), while the other four pertain to code quality (NEW SQALE
DEBT RATIO, VIOLATIONS, CODE SMELLS, CLASS COMPLEXITY). Moving forward,
only the metrics related to code quality will be used to represent the state of the commit.

Another key point to consider is the availability of two distinct sets of discrete values to
work with. One set is derived from classifying the absolute normalized values, while the other
comes from classifying the amount of change correlated with the metric from the previous
relevant commit (differential values). Moving forward, we will prioritize the use of discrete
values associated with the differential to represent the commit state.

The rationale for this decision is that, within the context of a stream of commits, classifi-
cation based on absolute values tends to increase from the first to the last commit. Using these
values to represent the commit’s state would lead to limited meaningful transitions, as most of
our metrics would remain static. In contrast, classifying each metric’s change from one commit
to the next provides a more dynamic and informative representation of commit states, allowing
us to capture meaningful transitions and insights into the evolution of the codebase over time.

The two states representing this specific commit are 0440 (Absolute Values) and 1002
(Differential). These four features prioritize code quality over code size in our analysis.

The conclusive decision for this research was to utilize classifications based on differentials
to represent the commit’s state. This metric accurately reflects alterations and changes in our
values. Consequently, the final state for this commit will be denoted as 1002. Which means
the following:

• NEW SQALE DEBT RATIO: Low

• VIOLATIONS: Very Low

• CODE SMELLS: Very Low

• CLASS COMPLEXITY: Medium

3.13 Creating the Dataframe

Upon generating the vectors for each commit, we must create a comprehensive database that
encompasses these vectors and other pertinent information, including the commit hash and
project name, which serve as unique identifiers for each database entry.

Furthermore, to streamline the data manipulation and classification techniques employed
in this study, we will merge them into a unified dataframe, incorporating absolute values as
needed. Subsequently, this resulting dataset will be stored in a suitable format for further
analysis. This step enhances data comprehensiveness by consolidating all relevant information
into a single entity, simplifying interpretation and analysis.

Each entry in our database conforms to a predefined structure, ensuring consistency and
facilitating seamless querying, manipulation, and analysis of the data.

In Table 3.11, a portion of our final database containing absolute value metrics is displayed
for reference.
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Table 3.11: A Slice of One Database Entry

Attribute Value Discrete Value
Fault Inducing Commit Hash fa9f99a48f141abdb995-

884500e1add2dc83c19b
-

Files PropertyUtils.java -
Commit Hash on File Before Fix ab939bf9fa5d41d093f9-

3d5e95e14dad130b0d12
-

Date of Commit Hash 2002-11-23
23:47:07+00:00

-

NCLOC 20.2693 0
New Sqale Debt Ration 83.8521 1
Violations 38.6073 0
Code Smells 39.5539 0
Functions 13.1767 0
Lines 20.3645 1
Classes 10.299 0
Class Complexity 10.3636 2

3.14 Commit States
As mentioned in the previous section, we use differential values after classification to represent
the commit’s state. This approach is necessary because using absolute values within a scope of
only six commits results in states that are nearly identical, with few exceptions. Consequently,
this would lead to transitions and patterns consisting of six identical states, making the analysis
both impossible and meaningless. After completing the outlined procedures, every commit will
be depicted by a state comprising four features. For instance, if a commit’s state is denoted
as 2104, it signifies that the NEW SQALE DEBT RATIO feature is medium, VIOLATIONS
is low, CODE SMELLS is very low, and CLASS COMPLEXITY is very high. In certain
experiments, this state might be equivalent to 2113.

3.15 Justification of using three discrete values
Incorporating three discrete values instead of five in some of our experiments holds signifi-
cant importance for several compelling reasons. This section delineates some of these pivotal
rationales.

1. Simplicity: A smaller number of discrete values simplifies the interpretation and analysis
of data. With only three values, the distinctions between states are clearer and easier to
understand, reducing the cognitive load on analysts and stakeholders.

2. Reduced Complexity: Working with three discrete values simplifies the computational
and analytical processes involved. It streamlines algorithms, reduces computation time,
and minimizes the complexity of statistical analyses.
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3. Efficiency: With fewer discrete values, data storage requirements are reduced, leading to
more efficient data management. Additionally, visualization and reporting tasks become
simpler, as there are fewer categories to represent graphically or in tabular format.

4. Robustness: In some cases, using fewer discrete values can lead to more robust models.
With fewer categories, the model is less sensitive to noise or small variations in the data,
which can improve its generalizability and stability.

5. Practicality: Using three discrete values aligns better with practical considerations or
requirements of some of these experiments. It is more intuitive to work with a smaller
set of categories, facilitating communication and decision-making.

Nevertheless, it’s imperative to weigh the trade-offs. While opting for three discrete val-
ues provides simplicity and efficiency, it may compromise the granularity and nuance in data
representation. The decision between employing three or five discrete values hinges on the
particular requirements, objectives, and limitations of the project or analysis.

As a consequence of this decision, the entry in our database for the running example will
be illustrated in Table 3.12.

Table 3.12: A Slice of One Database Entry with three discrete values

Attribute Value Discrete Value
NCLOC 20.2693 1
New Sqale Debt Ration 83.8521 1
Violations 38.6073 1
Code Smells 39.5539 1
Functions 13.1767 1
Lines 20.3645 1
Classes 10.299 1
Class Complexity 10.3636 2

By opting for the classification based on differentials, the state for this commit will be de-
noted as 1112, signifying a low-low-low-medium classification for the features NEW SQALE
DEBT RATION, VIOLATIONS, CODE SMELLS, and CLASS COMPLEXITY.
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Commit State Modeling

4.1 Preface

After completing the pre-processing phase, the next step is to construct a state model denoting
the transitions form one commit state to the next along with the corresponding transition fre-
quencies. This chapter will explain the methodology used to create the graph model, including
the approach, techniques, and tools employed to represent the relationships and connections
between different commits.

We will discuss how we establish nodes and edges within the state model, with nodes
representing individual commits, and edges illustrate the frequency of transitions between these
commits.

By providing a detailed explanation of our methodology, we aim to give the reader a com-
prehensive understanding of how we transform the pre-processed data into a structured graph
model, setting the stage for subsequent analysis and insights into the relationships and dynam-
ics present in our commit data.

4.2 Outline for the Commit State Modelling Phase

All the procedures outlined in this section adhere to the guidelines specified in the accompany-
ing activity diagram in Fig 4.1

The steps depicted in the Activity diagram 4.1 are discussed in the following sections and
are summarized as follows:

1. Commit Transition Model: We begin by creating transitions, placing the states of con-
secutive commits in sequence to identify patterns.

2. Discrete Dataset: We construct the database from the previous chapter using discrete
values and the earlier established transitions, followed by a review of the dataset.

3. Transition Trimming: In this phase, we refine the transition database by selecting only
valuable transitions based on predetermined criteria.

56
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Figure 4.1: Activity Diagram for Commit State Model
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4. Transition Clustering: We cluster the transitions, grouping similar transitions into cate-
gories to reduce dataset size and enhance the quality of the analysis. This is achieved
using K-Means and Hierarchical Clustering metrics.

5. Cluster Representation: We represent clusters containing transitions with a unified de-
piction for consistency.

6. Graph Creation: We create a graph, treating each commit state as a node and transitions
between commits as edges.

7. Probabilities: We calculate the probability of each transition, which serves as the value
of each edge in the final graph.

We explain these steps in more detail in the following sections.

4.3 Commit Transition Model
After acquiring a comprehensive dataframe that consolidates all pertinent data, it becomes es-
sential to establish a chronological sequence of commits leading to a bug-inducing commit.
This entails recording the indices of all bug-inducing commits and their respective predeces-
sors.

To accomplish this objective, we systematically traverse the databases established for each
project, meticulously extracting fault-inducing commits and their antecedent five commits.
Comprehensive information, encompassing pertinent metrics, is meticulously compiled and
incorporated into our ultimate dataset.

In this research, we define each commit as belonging to a specific state. Transitions be-
tween different states, or in other words, transitions between successive commits or a series of
commits, are referred to as ”patterns” in our study. For instance, when we discuss a pattern,
we may be referring to a sequence of 2-6 commits that are connected and occur in a specific
order. Each pattern will be as below;

S tate1 → S tate2 → S tate3 → S tate4 → S tate5 → S tate6

Each state is a four dimensional vector with each of them initially consisted of five discrete
values: 0, 1, 2, 3, and 4, with each value representing a specific quality metric relevant to
our research. For simplicity and better performance of our experiments, we later combined
categories 0 and 1 into one group and categories 3 and 4 into another, resulting in three discrete
values. These quality metrics provide insights into the characteristics and quality of the code at
each state, allowing us to assess the impact of different commits on the overall software quality
and identify patterns that may lead to bug-inducing changes.

4.4 Discrete Dataset
In our resulting dataset, each line contains six states. Each state is represented by a four-digit
number, which corresponds to the category of a specific metric. As previously mentioned, we
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solely utilized metrics representing code quality to describe each commit’s state. Code size
metrics may not provide significant insights in this context. (Section 3.5.4) The metrics we are
interested in are as follows:

• NEW SQALE DEBT RATIO: This metric measures code quality debt.

• VIOLATIONS: This metric assesses code violations.

• CODE SMELLS: It represents the presence of code smells.

• CLASS COMPLEXITY: This metric gauges class complexity.

Each metric described earlier falls into one of five categories: very low (0), low (1), medium
(2), high (3), and very high (4). Subsequently, these categories are converted into three final
values.

These metrics’ values change over transitions, starting from the fifth commit before a bug-
inducing commit and continuing until the sixth state, which corresponds to the bug-inducing
commit itself.

4.5 Transition Trimming
Upon acquiring the dataset, a critical step in streamlining the analysis process involves elimi-
nating redundant paths leading to a bug-inducing commit. Redundancy reduction enhances the
dataset’s clarity and conciseness, focusing on essential information.

Additionally, we take measures to enhance data integrity and quality by excluding all paths
that contain one or more null states as values. This data cleansing process ensures that the
dataset remains consistent and free from potential inconsistencies that may arise from incom-
plete or missing information. These actions contribute to a more robust and accurate foundation
for subsequent analysis and evaluation.

As a result, our final dataset comprises 4,204 records, where each record uniquely repre-
sents a path leading to a bug-inducing commit.

The final transitions file will have a structure as presented in Table 4.1

Table 4.1: State Transitions

Transition
Number

Fifth
Commit
Before
BIC

Fourth
Commit
Before
BIC

Third
Commit
Before
BIC

Second
Commit
Before
BIC

First
Commit
Before
BIC

Bug
Inducing
Commit

case 1 1333 2113 1221 2333 0002 4444
case 2 1333 1221 1223 0444 1221 4002
case 3 3002 1333 2112 1221 2113 3002
case 4 3112 3002 3112 3003 3112 3112
case 5 4002 1333 3112 1221 2223 3112
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In the provided table, each cell represents a commit state across a series of transitions.
For example, in case 1, the state of the fifth commit before the bug-inducing commit (BIC) is
represented by the number 1333, which corresponds to low-high-high-high states across the
four chosen metrics. The transition then progresses to 2113 until it culminates at the bug-
inducing commit. Here’s the sequence of transitions for each metric:

• New Sqale Debt Ratio: Low→Medium→ Low→Medium→Very Low→Very High

• Violations: High→ Low→Medium→ High→ Very Low→ Very High

• Code Smells: High→ Low→Medium→ High→ Very Low→ Very High

• Class Complexity: High→ High→ Low→ High→Medium→ Very High

These transitions illustrate the evolution of the commit state for each metric over time.

4.6 Transition Clustering
Two clustering techniques are employed to identify natural groupings or patterns within the
data. It aids in the classification of similar states or transitions, making it easier to discern
clusters of related information and explore the relationships between them.

Distances

For these particular methods, we utilized the cosine similarity values that had been previously
computed for each transition as the distance metric between elements. This measure of cosine
similarity served as a crucial foundation, enabling us to assess the similarity between transitions
and inform the clustering process based on the computed distances.

As an illustrative example, let’s examine the first two distinct transitions from our transi-
tions file, as shown in Table 4.2.

Table 4.2: First Two Distinct Transitions

Transition
Number

Fifth
Commit
Before
BIC

Fourth
Commit
Before
BIC

Third
Commit
Before
BIC

Second
Commit
Before
BIC

First
Commit
Before
BIC

Bug
Inducing
Commit

case 1 1333 2113 1221 2333 0002 4444
case 2 1333 1221 1223 0444 1221 4002

We treat each of these transitions as a 24-dimensional vector. To illustrate, consider the
transitions ’133321131221233300024444’ and ’133312211223044412214002’. The cosine
similarity between these two vectors is calculated as 0.7778. Since this value serves as a
measure of similarity and falls within the range of 0 to 1, we can obtain a distance metric by
subtracting it from 1. In this instance, our defined distance value is 0.2222.
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4.6.1 K-Means Clustering

Within our finalized dataset, we conducted K-Means clustering to explore potential groupings
among the transitions. K-Means clustering is an unsupervised machine learning technique that
helps identify clusters of similar elements based on specified features. In our analysis, we
initiated this process by pre-defining a range of cluster numbers, ranging from 50 to 400.

Starting with 50 clusters, this configuration results in larger clusters that contain less similar
elements. As the number of clusters increases, for instance, to 400, the granularity of the
groupings becomes finer, with elements exhibiting more similarities grouped together. This
stepwise exploration of different cluster numbers allows us to examine the data at varying
levels of granularity and discern patterns and relationships that might not be apparent when the
clusters are too broad or too specific.

The objective of this clustering analysis is to gain a comprehensive understanding of the
transitions’ inherent structure and to identify potential patterns and relationships between dif-
ferent states. By adjusting the number of clusters, we can fine-tune the level of detail in our
analysis, uncovering insights that are sensitive to the intricacies of the data. This multi-faceted
approach contributes to a more nuanced interpretation of the dataset, providing valuable in-
sights into the transitions and their relationships.

Implementation

In the context of K-Means clustering, our objective is to identify an ideal number of clusters
for our dataset, we define ideal as close-to-uniform distribution of elements among all the
clusters. To achieve this, we perform the clustering process with different numbers of clusters
and evaluate the results. The aim is to strike a balance where we have a reasonable number of
clusters that effectively group data points, ensuring that each cluster contains a well-distributed
set of elements. This process helps us uncover the underlying structure of the data and can be a
critical step in gaining insights into patterns and relationships within the dataset. The selection
of an appropriate number of clusters is a fundamental decision in K-Means clustering and can
significantly impact the quality and interpretability of the final clustering results.

In the end, we have determined that using 100 clusters is the optimal choice. The distribu-
tion of data within each cluster is visualized in Table 4.3.

Table 4.3: Distribution of elements among 5 out of 100 clusters in K-Means

Cluster Number Number of Elements
1 37
2 51
3 53
4 34
5 30

To select an optimal number of clusters, we aim for a relatively even distribution of ele-
ments across all clusters, as previously discussed. In this clustering method, we have deter-
mined that 100 clusters provide an optimal grouping of the data, as mentioned earlier. Within
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these clusters, we observe variations in the number of elements. The largest cluster contains
97 elements, while the smallest encompasses 7.

However, a challenge with this approach lies in the fact that, as previously mentioned, we
are employing cosine similarity as the similarity metric. Unfortunately, the elements within
each cluster do not exhibit acceptable cosine similarities, resulting in substantial variations
in distances. This issue is primarily attributed to the low number of clusters chosen for this
clustering technique and dataset.

On the other hand, increasing the number of clusters to a range of even 400 does not resolve
this problem. To achieve a more uniform distribution of similar elements within each cluster,
it would require a substantial increase in the number of clusters, exceeding 1000, which is not
a feasible solution for our purposes.

For a clearer understanding of the situation, you can examine the characteristics of eight out
of the 100 clusters, including their sizes, maximum distances, and minimum distances within
each cluster, as presented in Table 4.4.

Cluster Size Max Distance Min Distance
37 0.2507 0.0025
51 0.3900 0.0044
53 0.3492 0.0041
34 0.2981 0.0025
30 0.1900 0.0062
59 0.4133 0.0046
41 0.3097 0.0034
66 0.4412 0.0049

Table 4.4: Range of distances inside each cluster in K-Means

As shown in the table, the distribution of elements across clusters is uneven, which may
not necessarily indicate that the clustering technique is inadequate. However, the significant
maximum distance between elements within each cluster suggests that the K-Means cluster-
ing approach may not be the most suitable method for classifying our transitions. This large
distance implies that the clusters may contain diverse or loosely related groups of data, under-
mining the efficacy of the technique for our purposes. As a result, it may be worth exploring
alternative clustering methods that can better capture the nuances and relationships within our
data.

4.6.2 Hierarchical Clustering

In addition to the K-Means clustering approach, we considered employing the Hierarchical
Clustering method, which appears to be a more apt choice for our analysis. Hierarchical clus-
tering allows us to uncover intricate structures within the data by forming a hierarchy of clus-
ters. This method offers the advantage of being able to interpret the data at different levels of
granularity. To perform hierarchical clustering, we pre-defined specific thresholds and link-
age methods, including single, complete, average, and Ward, which dictate how clusters are
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formed. These linkage methods have distinct ways of calculating the distances between clus-
ters and are chosen based on the nature of the data and the goals of the analysis.

In our approach, the distances between transitions are measured using cosine similarity.
Each transition is treated as a 24-character vector, and the cosine similarity metric quantifies
the angle between these vectors, indicating the similarity between transitions. This allows us
to assess how closely related different transitions are in a multi-dimensional space.

To systematically apply hierarchical clustering, we first establish a fixed threshold that ap-
plies to all linkage methods. We then assess how each linkage method reacts to this uniform
threshold. Subsequently, we observe the resulting clusters and their composition for each link-
age method. Based on this analysis, we can determine the most appropriate threshold for each
linkage method. The thresholds are not fixed in advance; rather, they are determined by the
method’s behavior during the analysis.

By applying this approach to hierarchical clustering, we can tailor the clustering process
to the unique characteristics of our data, ensuring that we obtain meaningful and interpretable
clusters. This method provides a versatile way to explore the dataset, uncover relationships be-
tween transitions, and identify significant patterns that may vary based on the linkage method
and threshold applied. The results are systematically saved for further in-depth analysis, pro-
viding a valuable resource for understanding the structure of the data and the relationships
between different transitions.

Implementation

Before discussing the implementation, let’s briefly outline the methodology involved in the
clustering analysis:

Threshold Selection

In the initial phase, we conducted an exploratory analysis by testing a range of thresholds,
ranging from 0.1 to 0.9, in order to determine the optimal one. It’s important to note that the
choice of threshold plays a crucial role in this context; a lower threshold produces a greater
number of clusters, whereas a higher threshold leads to fewer clusters.

Following this preliminary examination, we gained insights into what range of thresholds
would be most suitable for each linkage method. Based on this understanding, we made ap-
propriate adjustments to the set of thresholds to ensure that they align with the characteristics
of the data and the objectives of our analysis. This iterative process allowed us to fine-tune
the clustering parameters for each linkage method, ultimately facilitating a more effective and
tailored clustering outcome.

Linkage Methods

The code employs four distinct linkage methods, namely single, complete, average, and
ward, to construct hierarchical clusters from the data. Each of these methods provides distinct
insights into the underlying structure of the dataset. To ensure the most meaningful results, we
employed tailored thresholds for each linkage method. Subsequently, we meticulously stored
the most optimal results obtained for each method. This approach allowed us to capture the
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Figure 4.2: Single Dendrogram

nuances and variations within the data while preserving the best outcomes for further analysis
and interpretation. Subsequently, a Dendrogram plot was generated for each of the employed
linkage methods.

The dendrogram plot for each method is presented in Figs 4.2, 4.3, 4.4, and 4.5.
As an example, consider the preliminary threshold set for the single linkage method with a

threshold of 0.1. In this configuration, the clustering process yields 50 clusters. Notably, one
cluster stands out with a substantial 4,126 elements, while the remaining clusters are relatively
smaller, containing only 1 to 5 elements. The results, as depicted in Fig. 4.6, were generated
using a dedicated script to extract and visualize this data.

Given the significant imbalance in the distribution of elements among the clusters, it is
evident that the current clustering result is sub-optimal. The non-uniform distribution raises
concerns about the effectiveness of the clustering. To address this, we plan to explore adjust-
ments in the threshold value and closely monitor how the linkage method responds to these
changes.

Conversely, a promising combination is observed when utilizing the average linkage method
with a threshold set to 0.2. This configuration, as illustrated in Fig. 4.7, produces a reasonable
number of clusters, ensuring a more even distribution of elements across these clusters.

In this clustering method, we obtain a reasonable number of clusters (142) with each cluster
having a minimum of 2 elements and a maximum of 274. This outcome is considered quite
satisfactory, particularly for an initial threshold selection.

The acceptable Threshold for each linkage method and the results of clustering can be
found in Tables 4.5, 4.6, 4.7, and 4.8.
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Figure 4.3: Complete Dendrogram

Figure 4.4: Average Dendrogram
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Figure 4.5: Ward Dendrogram

Figure 4.6: Single, Threshold: 0.1
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Figure 4.7: Average, Threshold: 0.2

Threshold Number of Clusters Cluster with Max Elements
0.01 3375 8
0.02 2639 14
0.03 2142 37
0.04 1584 544
0.05 1049 1718
0.06 596 2903
0.07 335 3488
0.08 173 3859
0.09 95 4029

Table 4.5: Cluster Statistics, Single

Threshold Number of Clusters Cluster with Max Elements
0.31 206 103
0.32 187 103
0.33 175 103
0.34 159 103
0.35 146 103
0.36 141 103
0.37 132 103
0.38 123 103
0.39 113 103

Table 4.6: Cluster Statistics, Complete
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Threshold Number of Clusters Cluster with Max Elements
0.71 125 88
0.72 124 88
0.73 120 88
0.74 114 89
0.75 113 89
0.76 109 89
0.77 107 89
0.78 103 89
0.79 102 89

Table 4.7: Cluster Statistics, Ward

Threshold Number of Clusters Cluster with Max Elements
0.11 703 55
0.12 604 55
0.13 504 81
0.14 432 100
0.15 366 116
0.16 300 130
0.17 249 206
0.18 212 206
0.19 176 265

Table 4.8: Cluster Statistics, Average
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Transition ID Cosine Similarity
(2498, 2500) 0.9981
(2715, 2718) 0.9981
(2492, 2500) 0.998
(2714, 2716) 0.998
(2714, 2718) 0.998
(2715, 2719) 0.998
(2565, 2567) 0.9979
(2708, 2709) 0.9979
(2709, 2710) 0.9979
(3169, 3170) 0.9979
(46, 1742) 0.9978
(784, 3168) 0.9978
(1235, 3640) 0.9978
(2493, 2496) 0.9978
(2628, 2630) 0.9978

Table 4.9: Highest Cosine Similarities between Transitions

4.6.3 Transition Similarities

To enhance our comprehension of how transitions are grouped together, we provide a set of
cosine similarity values for different transitions found within Table 4.9. This table consists
of two columns: the left column enumerates specific transitions with numerical identifiers,
and the right column displays the calculated cosine similarity scores between these transitions.
These cosine similarity values serve as a quantitative measure of how closely related or similar
these transitions are. After performing these calculations, we sort the list of transition pairs in
descending order, allowing us to identify and focus on the transitions with the highest recorded
cosine similarities. These highest recorded cosine similarities play a pivotal role in revealing
the most significant relationships or connections between transitions within the figure. This
analytical process is invaluable for gaining deeper insights into the underlying patterns and as-
sociations among the transitions, and it has practical applications in various domains, including
data analysis, natural language processing, and network analysis.

For example, in ’Table 4.10,’ we can observe that transitions 2714 and 2716 are highlighted
with a remarkably high cosine similarity score of 0.998. As previously explained in Section
3.15, we sometimes require 5 discrete values for certain analyses and experiments. This neces-
sity is why you see 5 discrete values in this table. This indicates that these two transitions share
a particularly strong resemblance or connection, as the cosine similarity score approaches 1,
signifying almost identical behavior between them. This specific case underscores the signifi-
cance of using cosine similarity to uncover and emphasize the most closely related transitions
within the dataset.
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Table 4.10: Transitions 2714 and 2716

Transition
Number

Fifth
Commit
Before
BIC

Fourth
Commit
Before
BIC

Third
Commit
Before
BIC

Second
Commit
Before
BIC

First
Commit
Before
BIC

Bug
Inducing
Commit

2714 0443 4441 4440 0334 3112 0333
2716 0443 4441 4440 0443 4112 0332

4.7 Cluster Representation
As outlined earlier, each transition includes six states, each of which corresponds to a commit.
Within each state, four metrics are evaluated with values ranging from 1 to 3. As a result, each
transition is represented by 24 characters, all of which are grouped into a single cluster. For
better understanding, let’s consider two transitions within a hypothetical cluster, consisting of
only four states each:

t1:1333 − 1122 − 1233 − 1111

t2:1231 − 1122 − 1333 − 1112

Should these transitions be clustered together, we’re presented with a variety of metric
choices that differ between the transitions, depicted as:

T:1[23]3[13] − 1122 − 1[23]33 − 111[12]

Subsequently, we proceed with filtering. Each basket of metrics undergoes Shannon En-
tropy calculation, and identifying the metric value with the highest frequency. Subsequently,
we retain only the 20th percentile of unique entropy values, discarding the rest due to their
limited informational value. Among these selected baskets, we preserve those with a majority
representation of at least 60 percent. For instance, a basket like [112233] exhibits a majority
of only 33%, rendering it unsuitable for determining a representative metric value. Conversely,
a basket such as [1111111123] holds a majority representation of 80%, making it eligible for
retention if its entropy falls within the first 20th percentile among unique entropy values.

Please note that when calculating Shannon entropy and determining the majority for each
set of options, we examined the frequency of each transition rather than just considering distinct
transitions. For instance, if we consider three hypothetical transitions, each comprising only
two commits as illustrated below:

t1 : 3212 − 3332

t2 : 3212 − 3322

t3 : 3211 − 3322

The representation would be as follows:

T : 321[122] − 33[223]2
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And if we base the cluster representation solely on distinct values, it would be as follows:

T : 3212 − 3322

However, if t1 occurs 100 times and t2 and t3 occur only once each, the influence of t1
on determining the majority is significantly greater than the other two. Therefore, the correct
representation should consider the frequency of occurrences, as shown:

T : 3212 − 3332

This approach accurately reflects the transitions’ impact on the overall cluster and aligns
with their true influence within the dataset.

A significant aspect to note is that we do not completely remove all transitions that do not
meet our desired thresholds for majority and Shannon entropy. Instead, we carefully analyze
each distinct cluster that falls below the target entropy threshold and scrutinize the transitions
within these clusters. If there is a unique transition within the clusters that possesses a fre-
quency equal to or greater than that of the smallest accepted cluster, we treat it as a separate
group. This approach is intended to minimize data loss and preserve valuable information,
ensuring a more nuanced and comprehensive analysis of the data.

4.8 Creating the Commit State Transition Model

By treating each state as a distinct node and every transition as a vector in a directed graph, our
objective was to construct a network that represents the model we’ve developed. This network
was intended to provide deeper insights into the relationships among states and potentially
uncover underlying patterns. However, it’s worth noting that our database is exceptionally
extensive, and this ambitious network quickly became unwieldy due to its sheer size, rendering
it nearly obsolete. Despite the challenges posed by the monumental scale of the database, we
continued to explore alternative approaches and methods to extract valuable insights.

To enhance comprehension, the final state transition model, before applying the clustering
techniques, is visually represented in Figure 4.8.

To understand the network better, you can see a fraction of it in Fig 4.9
Within each node, the state of the commit is denoted by a four-digit numerical identifier.

Additionally, the numerical value on each vector signifies the frequency with which each spe-
cific transition has occurred.

Using the clustering techniques on the transitions is essential for comprehension, as is
evident.

Fig. 4.10 shows the resultant network after clustering techniques have been applied and
layers have been created based on the number of commits prior to the bug inducing commit.

The image is based on an interface we created, where you could enlarge to view the precise
states along with their frequency.
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Figure 4.8: Transition Network

Figure 4.9: Transition Network Slice
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Figure 4.10: Transition Graph

4.9 Calculating State Transition Probabilities
In the upcoming phase of our research, our objective is to assess the likelihood of each state
culminating in a commit that introduces a bug. To achieve this, we will systematically analyze
our database for each transition, identifying comparable transitions that result in bug-inducing
commits, as well as those that do not. This thorough examination will provide valuable in-
sights into the factors contributing to bug occurrences within our system. To achieve this, we
employed a methodology involving the calculation of probabilities associated with transitions
to a bug-inducing commit. For instance, considering the following pattern:

C1→ C2→ C3→ C4→ C5→ BIC

We computed the probability of transitioning from C1 → C2 leading to a bug-inducing
commit by analyzing occurrences in our database relative to all cases. Subsequently, we re-
peated this process for each subsequent commit in the sequence. This process will furnish us
with the likelihood of a bug-inducing commit occurring, given a particular pattern. For our fu-
ture endeavors, we’ll also compute the probability of a pattern, given a bug-inducing commit,
as it’s essential for our analysis.

4.9.1 Conditional Probability
The conditional probability can be calculated using the formula:

P(A|B) =
P(A ∩ B)

P(B)

To gain valuable insights into the most probable paths that could lead to a bug-inducing
commit (BIC), it is crucial to analyze and understand conditional probabilities in the context
of our data. Using Bayes’ Theorem, we can derive the following equation:
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P(patternC2→C3|patternC1→C2) =
P(patternC1→C2|patternC2→C3)P(patternC2→C3)

P(patternC1→C2)
(4.1)

Refer to Section 4.3 for the definition of patterns.
In this context, patternC1→C2 represents the vector that results from concatenating the

state representations of commit C1 and commit C2 associated with the edge C1 → C2, and
patternC2→C3 represents the value linked to the edge C2→ C3.

This allows us to express that:

P(patternC2→C3 ∩ patternC1→C2) = P(patternC2→C3|patternC1→C2) · P(patternC1→C2)

We aim to calculate the probability for each transition:

P(BIC | patternCi→C j)

This is the probability that a transition will lead to a bug-inducing commit (BIC) given a
specific pattern patternx. By analyzing the probabilities for various combinations of patterns
such as P(BIC | pattern1), P(BIC | pattern1 ∩ pattern2), and so on, up to P(BIC | pattern1 ∩ . . . ∩
pattern5), we can better understand the potential risks in the commit history.

By employing Bayes’ Theorem and the conditional probability formula, in combination
with known probabilities such as P(patternx) and P(BIC), we can calculate the probability of
each transition leading to a BIC. These calculations extend across all edges along the path
C1→ C2→ C3→ C4→ C5→ BIC.

To enhance understanding, the conditional probability P(patternx|patterny) can be inter-
preted as the frequency of occurrence of pattern x given that the preceding pattern is y. This
interpretation helps us understand the relationships between different patterns and their impacts
on the probability of reaching a bug-inducing commit.

In these equations, C denotes a commit and BIC refers to a bug-inducing commit. Through
these analyses, we can identify the most probable paths leading to a BIC and mitigate potential
risks.
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Experimental Results

5.1 Preface

Following the successful creation of the final dataset and the Transition Graph, we conducted
a round of analysis to gain insights into the data. In this section, we will present the results
of this analysis. We conducted a series of distinct experiments to explore different aspects
of patterns that lead to bug-inducing commits. In the initial set of experiments, we aimed
to identify common patterns that result in a bug-inducing commit by splitting our data into
different groups and comparing the common patterns between two groups. This approach is
analogous to splitting data into a training set and a test set, allowing us to examine whether the
test results align with the training data.

In the subsequent set of experiments, we focused on the states of commits just before the
bug-inducing commit, rather than the entire transition. Our goal was to predict the upcoming
state in the development process for the developer and assess the potential risk of leading to a
bug-inducing commit.

Finally, we present the results of our transition clustering analysis, which involves examin-
ing our database for areas such as the frequency of feature changes during a specific number
of transitions and how these metrics evolve over time. This analysis provides insights into the
patterns and dynamics within the development process, enabling us to better understand how
certain transitions might lead to bugs and offering developers guidance on how to avoid them.

5.2 Common Patterns Experiments

In this section, we will elaborate on three distinct methods employed to experimentally assess
the accuracy of our model.

5.2.1 Top-Ten most probable transitions

The first experiment aimed to identify the top ten most likely patterns leading to a bug-inducing
commit across the entire dataset. To achieve this, we employed a methodology involving the
calculation of probabilities associated with transitions to a bug-inducing commit.

75
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To ensure that our calculations are not merely capturing a limited subset of existing data
in these experiments, we examine the least likely patterns to lead to a bug-inducing commit,
in addition to calculating the most likely patterns. If the number of common patterns in the
bottom list is equal to or greater than the number of common patterns in the top list, it suggests
that our experiment may be just a sample and not indicative of a predictive model.

However, if this is not the case, and as the probability of leading to a bug-inducing commit
increases, the transitions converge toward specific patterns, then our experiment is meaningful
and potentially provides valuable insights into identifying bug-inducing commits.

Individual Project-Based

Following the identification of the top-ten likeliest paths leading to a bug-inducing commit
across the whole data, our next objective was to evaluate the degree of overlap in these patterns
across each project.

The findings, presented in the table 5.1, illustrate the frequency of occurrence of these
patterns within each project. Additionally, we provide the total number of commits and the
count of unique transitions observed within each project.

Project Common Top-Patterns Common Bottom-Patterns Number of Commits Unique Transitions
1 0 1 263 23
2 1 2 3971 31
3 0 1 3296 30
4 2 1 5347 49
5 3 3 22082 86
6 1 1 8379 61
7 5 0 51317 133
8 5 0 46203 134
9 4 1 63684 159

10 7 0 124231 204
11 5 0 155169 225
12 6 0 119831 197
13 7 0 117637 198
14 6 0 245168 278
15 8 0 354572 301
16 8 0 211221 275
17 6 0 169422 254

Table 5.1: Common Top-10 Most and Least Probable Patterns, Total Number of Commits, and
Unique Transitions Across Projects.

The ”Common Top-Patterns” column indicates the frequency of the top ten most likely
patterns for each project, while the ”Common Bottom-Patterns” column shows how often the
top ten least likely patterns occurred in each project. The ”Total Number of Commits” column
reflects the total number of commits in each project, and the ”Unique Transitions” column
reports the number of distinct patterns observed in each project.

To better understand Table 5.1, let’s take a look at project 11, which has 225 distinct tran-
sitions (a transition pattern occurring multiple times is counted as one). This project includes
155,169 commits. We analyzed all the commit state transitions in project 11 and calculated
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the likelihood of each transition leading to a bug-inducing commit as described in Section 4.9.
We then identified the top 10 most probable patterns that lead to a bug-inducing commit for
project 11 and compared them to the top 10 patterns across all other projects combined. This
comparison revealed that there are 5 common patterns between the lists. The transitions in
Project 11 that are least likely to result in a bug-inducing commit are extracted in the following
step, and we repeat this process for all the other projects put together. To determine if there are
any common patterns, then we compare the final ten items in each list. As Table 5.1 illustrates,
there are none. This demonstrates how a particular set of patterns is reached by the top of our
list.

This comprehensive table provides insights into the occurrence of bug-inducing commit
patterns across different projects, alongside their respective commit and transition characteris-
tics.

As is apparent, in projects with a greater number of commits and unique transitions, it’s log-
ical to observe an increase in the number of matches among the top-ten likeliest paths leading
to a bug-inducing commit.

Below are the top-ten transitions most likely to lead to a bug-inducing commit:

• 3112-3313-1321-1123-3113

• 1213-1131-1323-3113-3311

• 1131-3112-1133-3211-1133

• 1133-1131-1311-3133-1121

• 1321-1131-1133-1121-1133

• 3112-3131-1121-1131-3113

• 1131-1133-3112-3113-1131

• 1133-3133-1133-3111-1133

• 3111-1133-1133-1131-3111

• 3113-1133-1131-1131-3131

The following shows the intersection of these top-ten transitions with the top-ten transitions
most likely to lead to a bug-inducing commit for each project:

• Project 1: None

• Project 2: 3112-3131-1121-1131-3113

• Project 3: None

• Project 4: 1131-3112-1133-3211-1133
1133-1131-1311-3133-1121
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• Project 5:
1133-1131-1311-3133-1121
3112-3313-1321-1123-3113
1131-1133-3112-3113-1131

• Project 6: 1133-3133-1133-3111-1133

• Project 7:

1133-1131-1311-3133-1121
1213-1131-1323-3113-3311
3112-3313-1321-1123-3113
3113-1133-1131-1131-3131
1131-3112-1133-3211-1133

• Project 8:

3112-3313-1321-1123-3113
1133-1131-1311-3133-1121
1133-3133-1133-3111-1133
1213-1131-1323-3113-3311
1131-3112-1133-3211-1133

• Project 9:

1133-1131-1311-3133-1121
1133-3133-1133-3111-1133
3112-3313-1321-1123-3113
1213-1131-1323-3113-3311

• Project 10:

1133-3133-1133-3111-1133
3111-1133-1133-1131-3111
1133-1131-1311-3133-1121
3112-3131-1121-1131-3113
3113-1133-1131-1131-3131
1213-1131-1323-3113-3311
1131-1133-3112-3113-1131

• Project 11:

1131-1133-3112-3113-1131
1133-1131-1311-3133-1121
3113-1133-1131-1131-3131
3112-3313-1321-1123-3113
1133-3133-1133-3111-1133

• Project 12:

3112-3313-1321-1123-3113
1133-1131-1311-3133-1121
3112-3131-1121-1131-3113
1131-1133-3112-3113-1131
1133-3133-1133-3111-1133
3111-1133-1133-1131-3111
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• Project 13:

1131-3112-1133-3211-1133
1133-1131-1311-3133-1121
1133-3133-1133-3111-1133
3112-3131-1121-1131-3113
3111-1133-1133-1131-3111
3113-1133-1131-1131-3131
3112-3313-1321-1123-3113

• Project 14:

3112-3313-1321-1123-3113
1213-1131-1323-3113-3311
1133-1131-1311-3133-1121
1321-1131-1133-1121-1133
3112-3131-1121-1131-3113
1133-3133-1133-3111-1133

• Project 15:

3112-3313-1321-1123-3113
1213-1131-1323-3113-3311
1131-3112-1133-3211-1133
1133-1131-1311-3133-1121
1321-1131-1133-1121-1133
3112-3131-1121-1131-3113
1131-1133-3112-3113-1131
3111-1133-1133-1131-3111

• Project 16:

3112-3313-1321-1123-3113
1213-1131-1323-3113-3311
1131-3112-1133-3211-1133
3111-1133-1133-1131-3111
1321-1131-1133-1121-1133
3112-3131-1121-1131-3113
1131-1133-3112-3113-1131
3113-1133-1131-1131-3131

• Project 17:

1133-1131-1311-3133-1121
1321-1131-1133-1121-1133
3112-3131-1121-1131-3113
1131-1133-3112-3113-1131
1133-3133-1133-3111-1133
3111-1133-1133-1131-3111

The results clearly demonstrate that as the scope of our project expands, the patterns most
likely to lead to bug-inducing commits converge into a distinct set of patterns. By excluding one
project and then calculating the top ten patterns most likely to lead to bug-inducing commits,
we can compare this list with another list that includes the said project. This comparison
supports our hypothesis. However, this convergence does not hold true for the patterns least
likely to lead to bug-inducing commits, indicating that our experiments are capturing more
than just a subset of a particular dataset.
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Project Magnitude-Based

We categorize projects into different groups based on their magnitude, determined by the num-
ber of commits within each project. This classification allows us to conduct the same experi-
ment across various categories. The magnitude of each project is represented by the number of
commits, as illustrated in the graph depicted in Fig 5.1.

Figure 5.1: Number of commits in each project

Based on the first method of classification, where projects are grouped into ’small,’ ’medium,’
and ’large’ categories based on the number of commits and percentile classification, the results
for the occurrences of the top-ten patterns are as follows:

Project Size Project Numbers Common Top-Patterns Common Bottom-Patterns Unique Transitions
Small 1, 2, 3, 4, 5, 6 4 1 154

Medium 7, 8, 9, 10, 12, 13 7 1 271
Large 11, 14, 15, 16, 17 9 0 303

Table 5.2: Classification and Results of Top-Ten Occurrences

Please keep in mind that this Table, is calculated with considering all the projects while
testing one group, if we want to exclude the group we testing while calculating the top and
bottom ten, the results will be as below;

Project Size Project Numbers Common Top-Patterns Common Bottom-Patterns Unique Transitions
Small 1, 2, 3, 4, 5, 6 3 0 154

Medium 7, 8, 9, 10, 12, 13 7 0 271
Large 11, 14, 15, 16, 17 8 0 303

Table 5.3: Classification and Results of Top-Ten Occurrences

Another approach to classify projects into categories was based on their magnitude. Under
this method, projects with fewer than 10,000 commits were assigned to group 1, those with
between 10,000 and 100,000 commits to group 2, projects with between 100,000 and 200,000
commits to group 3, and projects with more than 200,000 commits to group 4.
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Group Project Numbers Common Top-Patterns Common Bottom-Patterns Unique Transitions
1 1, 2, 3, 4, 6 3 2 137
2 5, 7, 8, 9 4 0 201
3 10, 11, 12, 13, 17 6 1 249
4 14, 15, 16 9 0 302

Table 5.4: Classification and Results of Top-Ten Occurrences based on Magnitude

Now with excluding the group in test from our bulk of data in other category, we will reach
this table:

Group Project Numbers Common Top-Patterns Common Bottom-Patterns Unique Transitions
1 1, 2, 3, 4, 6 2 1 137
2 5, 7, 8, 9 4 0 201
3 10, 11, 12, 13, 17 6 0 249
4 14, 15, 16 8 0 302

Table 5.5: Classification and Results of Top-Ten Occurrences based on Magnitude

5.2.2 80-20 split

To further evaluate our model’s performance, we employed a method of data partitioning. Our
approach involved dividing the dataset into two distinct groups.

Initially, we randomly sampled 80% of the entire dataset and conducted the analysis to
determine the top-ten likeliest transitions leading to bug-inducing commits, as per our previous
methodology. Subsequently, we repeated the same process for the remaining 20% of the data.

Following this, we established a fixed number of random samples and calculated the num-
ber of matches between the two groups. These matches indicated the consistency of identified
patterns across the dataset partitions. To quantify our model’s accuracy, we computed the av-
erage of these match counts.

The results of our evaluation provide insights into the effectiveness and robustness of our
model across different data partitions. By assessing the consistency of identified patterns be-
tween the two groups, we gain a better understanding of the reliability of our model in predict-
ing bug-inducing commits.

After applying this technique to 100 random samples and tallying the overlaps in the top-
ten of the 80 percent and 20 percent, then calculating the average number of overlaps, our
model attained an accuracy of 86.1%. This implies that 8.61 out of 10 likeliest paths leading
to a bug-inducing commit can be predicted by our model.

Similarly, we also aim to calculate the number of common patterns that are least likely
to lead to a bug-inducing commit across the 20% and 80% splits of random samples. This
approach helps us ensure that our pattern list converges to specific transitions, rather than just
reflecting a subset of the same data.

The accuracy of these common patterns across 100 random samples was 1.6%, indicating
that, on average, 0.16 patterns were common between the two lists after 100 tests with random
samples.
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5.2.3 Project-Based

In the previous experiment, we combined data from all projects. However, now we want to
evaluate how our model performs within the scope of each individual project. We will follow
the same process as before, but this time, the dataset will be restricted to the transitions of each
project separately. Since the projects in the ”Small” category don’t have enough commits to
split into an 80-20 ratio, we will exclude them from this experiment. We will proceed with
only the projects in the ”Medium” and ”Large” categories. The results of this experiment are
presented in Table 5.6.

Project Number Number of Commits Average of the Top Average of the Bottom
7 51,317 3.3 0.96
8 46,213 3.05 1.01
9 63,684 3.61 0.72
10 124,231 4.55 0.68
11 155,169 4.7 0.63
12 119,831 4.61 0.69
13 117,637 4.03 0.67
14 245,168 5.49 0.49
15 354,572 6.23 0.32
16 211,221 5.28 0.54
17 169,422 4.93 0.61

Table 5.6: Accuracy of projects 7 to 17

The ”Average of the Top” column represents the average occurrence of the top ten most
probable patterns that lead to a bug-inducing commit, based on an analysis of 100 random
samples. In contrast, the ”Average of the Bottom” column reflects the average occurrence
of the top ten least probable patterns that lead to a bug-inducing commit, also based on 100
random samples.

To better understand the data in Table 5.6, let’s use project 11 as an example. We randomly
sample 20% of the transitions in this project and calculate the top ten most likely patterns to
lead to a bug-inducing commit, as well as the top ten least likely patterns to lead to a bug-
inducing commit, within both the 20% and 80% fractions of our transitions. We then compare
the results from these two groups. This sampling process is repeated 100 times, and the average
of the common patterns for both lists is calculated and reported. According to Table 5.6,
in project 11, the average of common patterns for the least likely patterns to lead to a bug-
inducing commit is 0.63, while the average of common patterns for the most likely patterns to
lead to a bug-inducing commit is 4.7, based on 100 random samples.

5.2.4 Conclusion

After conducting these experiments, we conclude that our model is an effective predictive tool
for identifying the most likely patterns that lead to a bug-inducing commit. By assessing the
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probability that each transition will result in a bug-inducing commit and ranking them based
on this probability, we find that the model consistently converges to a specific set of patterns.

These patterns can be recognized and analyzed by developers, allowing them to assess the
impact of each metric and take preventative measures to avoid transitions that could lead to
bugs. By dividing our dataset into different portions and testing this theory across multiple
scopes—either within a single project or across several projects—we can validate the model’s
effectiveness.

This approach demonstrates that, in any new set of data, there is a high probability that
these patterns will lead to a bug-inducing commit in most cases. By consistently identifying
and focusing on these patterns, developers can take proactive measures to improve software
quality and reduce the likelihood of introducing bugs.

5.3 Statistical Experiments
To enhance our understanding of the model, we conducted statistical analyses focusing on the
states within transitions. We treated each state as a focal point and systematically counted the
subsequent states in all transitions to identify transition patterns. Sorting the results allows us to
obtain a more comprehensive view of our analysis scope and highlights the most frequently oc-
curring subsequent states. Reporting the percentage of each state leading to a specific outcome,
rather than absolute values, provides a more meaningful perspective. Additionally, analyzing
the percentage of states linked to bug-inducing commits offers further insights.

Given the importance of analyzing feature changes, we categorized states into five discrete
levels: Very Low, Low, Medium, High, and Very High.

This analysis clarifies the frequent sequences and transitions involving specific states, of-
fering valuable insights into the model’s behavior and dynamics.

For instance, we extracted the most frequent transition following each state in our transition
database. To avoid excessive detail, we excluded transitions with a frequency below 100 and a
percentage under 35%. The results are presented in Table 5.7.

In this table, the ”source state” represents the state of the initial commit, while the ”target
state” refers to the state of the subsequent commit that follows the initial one. The ”frequency”
column indicates the number of times a transition occurs from the source state to the target
state in our database.

The ”percentage” column provides the proportion of transitions from the source state to
the target state out of all transitions from the source state to other states. This value helps to
understand the likelihood of moving from a given source state to a specific target state.

The ”percentage of bug-inducing” column quantifies the proportion of transitions from the
source state to the target state that result in a bug-inducing commit. This means that the target
state is associated with a bug-inducing commit.

This model can serve as a predictive tool for anticipating future states that might culminate
in a bug-inducing commit. In essence, it enables us to infer that if certain alterations occur
in the selected features, there exists a probability of X that developers will encounter a bug in
subsequent commits.

This table represents only a fraction of our complete database, but we have similar data for
all states. It helps developers understand the current state of their commit based on specific
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Source State Target State Frequency Percentage (%) Percentage of Bug-Inducing (%)
1221 3001 2351 42.46 2.51
0332 2001 3598 38.71 0.17
0442 3002 2063 56.06 0.05
4221 3001 1572 37.9 3.18
0333 1002 4974 46.77 0.06
3223 1112 3361 62.36 0.03
1443 2112 789 67.96 0.38
1003 2112 309 44.02 0.32
0222 2112 4204 36.84 0.26
3000 2112 595 53.18 14.62
4442 3112 3924 36.8 0.33
0331 2002 4989 40.52 16.0
0221 2112 4202 45.84 2.62
2012 2002 1129 53.74 8.06
4111 3111 375 60.68 22.4
4233 4441 286 60.6 1.75

Table 5.7: Data with source and target states, frequency, percentage, and percentage of bug-
inducing

features and identify the most likely future state for each metric. Additionally, it indicates how
likely a developer is to encounter a new bug during the development process. This insight is
crucial for managing potential risks and making strategic decisions.

To improve comprehension of Table 5.7, let’s assume the developer is currently in state
3000. This means their most recent commit has the following attributes:

• NEW SQALE DEBT RATION: High

• VIOLATIONS: Very Low

• CODE SMELLS: Very Low

• CLASS COMPLEXITY: Very Low

Based on our findings, the next commit is most likely to move to state 2112, with a proba-
bility of 53.18% which entails:

• NEW SQALE DEBT RATION: Medium

• VIOLATIONS: Low

• CODE SMELLS: Low

• CLASS COMPLEXITY: Medium

Statistically, this transition carries a 14.62% chance of resulting in a bug-inducing commit.
To summarize the expected changes for each metric:
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• NEW SQALE DEBT RATION: Decrease one level ↓

• VIOLATIONS: Increase one level ↑

• CODE SMELLS: Increase one level ↑

• CLASS COMPLEXITY: Increase two levels ↑

As a simpler example, consider the transition from state 4111 to 3111 as depicted in Table
5.7. In this transition, the only change is in the first metric, NEW SQALE DEBT RATION,
which decreases from Very High to High (one level down ↓). If a developer encounters this
state, they should be aware that there is a 60.68% probability of transitioning to state 3111.
Additionally, this transition carries a 22.4% chance of resulting in a bug, making it a risky
transition that should be avoided.

5.3.1 Similar States
Consider an alternative analytical approach: categorizing states based on a similarity threshold.
This involves grouping states that share similarities above a certain level. Instead of closely
tracking transitions between individual states, the method quantifies transitions from a specific
state with a similarity level of alpha from the source state. This streamlines the analysis by
simplifying comparisons.

This approach provides a broader view of the data, focusing on transitions from states with
a given similarity level rather than individual state transitions. By condensing the analysis,
it reveals trends and patterns more efficiently and conclusively. This method is particularly
useful for large datasets, reducing computational demands and offering a more comprehensive
understanding of the system’s behavior and tendencies.

In Table 5.8, the transitions between a specific source state and target states with equal
cosine similarity to the source state are displayed. This table presents the same information
as Table 5.7, but instead of using fixed target states, targets are grouped based on their cosine
similarity to the source state.

For example, if the current state is 1221, the next commit will have a cosine similarity of
0.4 with the source state with a likelihood of 43.44%. In this case, there is a 4.68% chance of
encountering a bug in the next commit.

Like Table 5.7, we set a threshold to exclude frequencies below 100 and percentages lower
than 30 in Table 5.8 to avoid excessive detail, but the data is available for all the source and
target states.

5.4 Additional Experiments

5.4.1 Metrics Toggle
Another noteworthy and useful result is the nubmer of changes for each metric in a number of
transitions, in Tab 5.9, the times each metric in the commit state changes in a specific number
of transitions is shown.
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Source State Similarity with Target Frequency Percentage (%) Percentage of Bug-Inducing (%)
1221 0.4 3986 43.44 4.68
0332 0.1907 5868 39.51 0.22
0442 0.1849 2548 57.9 0.1
4221 0.8222 2409 39.13 5.89
0003 0.417 964 35.53 3.18
0333 0.5164 6238 47.21 0.1
3223 0.9636 6690 63.66 0.05
1443 0.7807 1155 71.71 0.74
1003 0.8 415 50.76 0.52
0222 0.7303 7430 37.23 0.45
3000 0.6325 1029 55.01 25.35
4442 0.8593 4749 37.36 0.41
0331 0.1622 9928 40.96 21.3
4222 0.8386 12377 35.65 19.53
0221 0.6325 7663 46.13 3.65
2012 0.9428 2046 54.28 11.91
4111 0.9934 522 65.34 33.85
4233 0.9038 343 62.72 2.15

Table 5.8: Summary of transitions with source state, similarity with target, frequency, percent-
age, and percentage of bug-inducing.

Metric Number of Changes
CLASS COMPLEXITY 20374

NEW SQALE DEBT RATION 24018
CODE SMELLS 21619
VIOLATIONS 21576

Table 5.9: Metric Changes in a slice of transitions

In Table 5.9, we can observe that all the metrics associated with a specific number of tran-
sitions exhibit equal changes. There isn’t one particular metric that stands out by changing
significantly more than the others. This observation is indicative of the fact that our choice of
metrics for defining states is well-suited to the task.

The uniformity in the changes across all metrics suggests that each metric effectively cap-
tures the nuances and characteristics of the transitions being studied. This balance in metric
behavior underscores our sound selection process in designing the criteria for defining states.
It implies that no single metric is disproportionately influencing the state definition, ensuring a
comprehensive and well-rounded approach to the analysis.

This consistency in the behavior of metrics not only validates our choice but also enhances
the reliability of our results. It indicates that the chosen metrics collectively provide a robust
foundation for characterizing and understanding transitions without introducing bias or skew.
Therefore, our metrics are working harmoniously and are appropriately attuned to the spe-
cific requirements of our analysis, contributing to the overall validity and effectiveness of our
research.



Chapter 6

Conclusion and Future Works

6.1 Preface
In this chapter, we will summarize the key findings and conclusions of our research, offering a
comprehensive overview of the insights and outcomes we have achieved throughout the study.
We will discuss how our results contribute to the existing body of knowledge in the field and
highlight the implications of our findings for practice and future research.

Furthermore, we will suggest potential areas for further investigation and development,
building on the groundwork laid by our research. These ideas for future work may include
exploring new methodologies, extending the scope of our study to different contexts or data
sets, or refining our approach to improve accuracy and applicability.

By outlining possible directions for future research, we aim to inspire further inquiry and
encourage other researchers to build upon our work, advancing the field and enhancing our
understanding of the topic.

6.2 Conclusion
Based on the information provided, it’s evident that our model, built upon an analysis of top-ten
likeliest paths leading to bug-inducing commits across multiple projects, demonstrates promis-
ing predictive capabilities. By leveraging techniques such as conditional probability and over-
lap analysis, we’ve established a robust methodology for identifying patterns indicative of po-
tential bugs.

Our findings reveal a correlation between project activity, measured by the number of com-
mits and unique transitions, and the frequency of matches among the top-ten paths. Projects
with higher activity levels tend to exhibit more matches, indicating a logical relationship be-
tween project dynamics and bug occurrence.

Moreover, through rigorous testing involving 100 random samples, our model achieved an
impressive accuracy rate of 86.1%. This signifies that the model successfully predicts over
8 out of 10 likeliest paths leading to bug-inducing commits, underscoring its efficacy in bug
prediction.

In conclusion, our approach offers valuable insights into bug prediction, enabling develop-
ers to proactively identify potential issues and mitigate risks during the software development
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lifecycle. Continued refinement and validation of our model hold the potential to further en-
hance its predictive capabilities and contribute to more robust software development practices.

6.3 Comparison
This thesis introduces a novel approach to predicting bug-inducing commits by employing a
blend of source code and process metrics to capture the state of each commit transition. Unlike
traditional methods, which often rely on static analysis at specific points in the software de-
velopment life cycle, this methodology dynamically tracks changes across commits to predict
potential vulnerabilities.

The advantages of this method include:

• Dynamic Analysis: By analyzing commit transitions rather than static code snapshots,
the model captures the evolutionary nature of code changes, providing a more contextual
prediction.

• Comprehensive Metrics Utilization: It leverages a broad range of metrics, including
those derived from SonarQube Technical Debt data, enabling a deeper insight into the
quality of code over time.

• Advanced Classification Techniques: The use of sophisticated clustering and classifi-
cation techniques, such as K-Means and Hierarchical clustering, enhances the model’s
ability to identify subtle patterns that may lead to defects.

These innovative aspects not only enhance the accuracy of bug prediction but also con-
tribute to more informed decision-making during software development processes. By inte-
grating these techniques, the research provides actionable insights into improving code quality
and reducing the frequency of bug-inducing changes.

Most current studies, including Hammouri et al. [37], employ machine learning techniques
for bug prediction. While these methods tend to achieve higher accuracy, they also present sev-
eral challenges and issues that must be addressed. Bug prediction using software metrics offers
several advantages including simplicity and interpretability, as it uses straightforward statistical
techniques that are easily understandable by project managers and developers without deep ma-
chine learning knowledge. This approach can be quickly implemented since it requires fewer
computational resources and uses direct metrics like lines of code and complexity measures
from the codebase without needing complex model training. Software metrics also facilitate
historical and comparative analysis, allowing teams to track how metric changes correlate with
bug occurrences and identify potential risk factors. Additionally, the low resource requirement
of this method makes it ideal for organizations with limited technical infrastructure, enabling
efficient bug prediction with minimal overhead.

In the study by Gupta et al. [32], Object-Oriented metrics were employed to predict soft-
ware bugs, achieving a prediction accuracy of 76.27%. In contrast, our framework significantly
enhances this performance, surpassing their results by a notable margin of 10 percent. This im-
provement in accuracy is achieved through a sophisticated integration of both source code and
process metrics, which provide a more dynamic and comprehensive analysis of the commit
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states. Our approach not only refines the prediction accuracy but also extends the capability to
anticipate bug-inducing commits more effectively. This advance is crucial for the development
of more reliable software systems and supports proactive debugging practices that can save
substantial resources and time in software development projects.

Our methodology presents significant improvements over conventional strategies discussed
in [33], which predominantly utilizes static software metrics for bug prediction. The cited study
highlights the utility of established metrics such as DIT, WMC, CBO, and LoC in open-source
projects. In contrast, our document proposes a more dynamic and advanced model that mon-
itors changes across commits by integrating both code and process metrics. This strategy not
only enriches the dataset for a more thorough analysis but also incorporates sophisticated clus-
tering and classification techniques, which could enhance predictive accuracy by up to 10%.
Moreover, our approach supports real-time application in active projects, empowering soft-
ware teams to quickly address potential bug-inducing modifications, which ultimately reduces
development time and costs while boosting software quality and reliability.

6.4 Risks to Validity and Limitations
This section delineates the potential risks to validity and the limitations of our study, which
may impact the reliability and applicability of the results.

6.4.1 Internal Validity
The internal validity of our study might be compromised by the potential for feature selection
bias. While the selection of eight specific metrics was rigorously conducted, the exclusion of
other variables might limit the model’s ability to fully capture the predictors of bug-inducing
commits. Moreover, the performance of the predictive model is evaluated on data from a set
of projects that may not fully represent all types of software development contexts, possibly
affecting the model’s accuracy and leading to overfitting.

6.4.2 External Validity
The generalizability of our findings is a concern, as the study primarily utilizes data from
open-source projects. These projects often differ significantly from commercial software in
terms of code complexity, development practices, and team dynamics. Thus, the results may
not directly extend to other contexts without further validation, particularly in environments
that differ markedly from the open-source ecosystem.

6.4.3 Construct Validity
The construct validity could be at risk due to the operationalization of the metrics. The metrics
used to predict bug-inducing commits, such as code complexity, might not comprehensively
reflect all aspects of code quality and developer activity. Additionally, the interpretation and
measurement of these metrics could vary, affecting the consistency and reliability of the data
across different studies.
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6.4.4 Reliability Validity
Reliability validity concerns the consistency of the measurement process. Our methodology
relies on automated tools and scripts to extract and process metrics, which might introduce
errors if these tools fail to correctly interpret the codebase’s nuances. Furthermore, any changes
in the tools or data extraction methods over time could lead to inconsistencies in the data
collected for longitudinal studies.

6.4.5 Conclusion Validity
Our conclusions are subject to validity risks related to the statistical methods employed. The
modeling techniques and assumptions made during the analysis may not hold across differ-
ent datasets or configurations, which could lead to erroneous interpretations of the data. The
limited diversity in project samples might also affect the robustness of statistical inferences,
potentially leading to misleading conclusions about the effectiveness of the metrics.

Given these limitations and validity concerns, our study’s findings should be viewed as pre-
liminary. They underscore the need for further research involving a diverse range of software
projects and more robust statistical methodologies to confirm the utility of the identified met-
rics in predicting bug-inducing commits. Future work should also explore the integration of
additional variables and alternative analytical techniques to enhance the predictive power and
applicability of the models.

6.5 Future Work
The current study has laid the foundation for an in-depth analysis of commit transitions and
their implications within software development projects. While we have made significant
strides in understanding patterns, relationships, and anomalies, there remain several avenues
for future research and exploration.

1. **Temporal Analysis**: To enhance our understanding of the temporal aspects of soft-
ware development, future work could focus on investigating how commit transitions
evolve over time. Analyzing transitions on a timeline can reveal dynamic trends and
shifts in development practices.

2. **Machine Learning Integration**: Incorporating machine learning techniques for pre-
dictive analysis could be a promising direction. By leveraging historical data, machine
learning models can provide insights into the likelihood of a transition leading to a bug-
inducing commit, thereby supporting proactive quality assurance efforts.

3. **Large-Scale Dataset Handling**: Expanding the scope of this research to encompass
even larger datasets presents a challenge that merits further exploration. Developing ef-
ficient methods for handling and analyzing monumental datasets can enable more com-
prehensive insights.

4. **Diverse Software Contexts**: Applying the methodologies and findings from this
study to a broader range of software contexts, such as open-source projects, proprietary
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software, and various programming languages, can yield a more comprehensive under-
standing of software development dynamics.

5. **Visualization Tools**: The creation of interactive visualization tools can aid software
developers and project managers in exploring commit transition patterns. Such tools
could facilitate the identification of critical transitions and their implications.

6. **Commit Transition Prediction**: Investigating the feasibility of predicting commit
transitions that are likely to lead to bug-inducing commits could be a valuable direction.
Predictive models can provide proactive recommendations to developers, potentially pre-
venting defects early in the development process.

7. **Human Factors and Code Review**: Exploring the role of code reviews and human
factors in commit transitions and their impact on software quality is another avenue for
future research. Understanding the influence of human actions can help improve devel-
opment processes.

8. **Cross-Domain Insights**: Extending the research to examine the relationships be-
tween commit transitions and software metrics in different domains, such as web devel-
opment, mobile applications, and embedded systems, can provide cross-domain insights
into best practices.

In summary, this study serves as a foundational exploration of commit transitions within
software development. Future research can build upon these findings to deepen our understand-
ing of software quality, development practices, and the dynamic nature of commit transitions.
By addressing these areas, we can contribute to more effective software development and qual-
ity assurance processes.
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Appendices

Defect
In software development and quality assurance, several terms—bug, error, fault, and defect—are
used to describe various aspects of software imperfections. Understanding these terms and their
relationships is crucial for effective software testing and debugging.

• Bug: A bug refers to an unintended flaw or fault in a software program that causes it
to behave unexpectedly or produce incorrect results. Bugs can range from minor issues,
such as typos in code, to critical problems that impact the functionality and performance
of the software.

• Error: An error occurs when the actual behavior of a software program deviates from
its expected behavior or specification. It represents a mistake or discrepancy that may
result from human error, hardware failures, or bugs in the code.

• Fault: A fault is the root cause underlying an error or defect in software. It is an imper-
fection or flaw in the code or system design that leads to erroneous behavior when the
software is executed under certain conditions.

• Defect: A defect is any deviation or imperfection in a software product that does not
meet its requirements or specifications. It is a broader term encompassing bugs, errors,
and faults. Defects can manifest as issues such as crashes, incorrect calculations, or
unexpected behavior during software operation.

These terms are interconnected: a bug is a specific instance of unintended behavior caused
by a defect, an error results from a fault or defect, and a defect represents the general term for
any deviation from expected software behavior.

In practice, software developers and testers identify and resolve defects through various
testing techniques, including unit testing, integration testing, and system testing. By addressing
bugs, errors, and faults early in the development process, software teams can improve the
reliability, performance, and overall quality of their products.

Poka-Yoke
Poka-yoke is a Japanese term that translates to ”mistake-proofing” or ”error prevention.” It
is also known as a forcing function or behavior-shaping constraint. In essence, poka-yoke
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is a strategy for designing processes and systems that prevent mistakes and defects by either
avoiding errors altogether, correcting them, or making them immediately noticeable as they
happen.

The goal of poka-yoke is to help operators of equipment and systems minimize the potential
for human error and its associated risks. This approach can involve implementing safeguards
such as automatic stops, alarms, and visual cues that alert the user to potential issues [72].

Shigeo Shingo, an industrial engineer, formalized the concept and introduced the term as
part of the Toyota Production System. Poka-yoke has since become a fundamental aspect of
lean manufacturing and quality control practices across various industries, emphasizing the
importance of designing processes that are robust and resilient against errors [16] [31].

Linkage Method
Hierarchical clustering methods rely on measures of dissimilarity between sets of observations
to decide cluster combinations (agglomerative) or cluster splits (divisive). This is typically
accomplished using a distance metric, such as the Euclidean distance, which quantifies the
dissimilarity between individual data points, and a linkage criterion that characterizes dissim-
ilarity between sets based on the pairwise distances of their observations. The choice of both
distance metric and linkage criterion significantly influences the clustering outcome, with the
distance metric determining the similarity of objects and the linkage criterion shaping the clus-
ter structures. For instance, complete-linkage often yields more spherical clusters, in contrast
to single-linkage. Some common linkage methods are explained below [19] [93];

• Complete: an agglomerative hierarchical method where individual elements begin in sep-
arate clusters and are successively merged into larger ones until all elements are within a
single cluster. It’s also called farthest neighbor clustering, and the clustering results are
depicted using a dendrogram, showcasing the merging sequence and distances [87] [50]
[23].

max
a∈A,b∈B

d(a, b) (1)

• Single: a hierarchical method, combines the clusters containing the nearest pair of ele-
ments in a step-by-step, bottom-up approach. It often produces elongated clusters, where
nearby elements are close, but elements at the cluster ends may be distant from each other
[23]. Widely used in astronomy for analyzing galaxy clusters, especially those with ex-
tended matter strings, it’s known as the friends-of-friends algorithm [103].

min
a∈A,b∈B

d(a, b) (2)

• Average: a straightforward hierarchical clustering method, following a bottom-up ap-
proach. It has a weighted version called WPGMA, often credited to Sokal and Michener
[75]. The term ”unweighted” signifies that all distances equally contribute to each com-
puted average, while the simple averaging in WPGMA produces weighted results and
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the proportional averaging in UPGMA results in an unweighted outcome [27].
1

|A| · |B|

∑
a∈A

∑
b∈B

d(a, b) (3)

• Ward: a versatile criterion for hierarchical cluster analysis, where clusters are merged
based on an objective function, initially presented by Joe H. Ward, Jr [102]. One of its
known applications is the ”Ward’s minimum variance method,” often using the error sum
of squares as the objective function. The nearest-neighbor chain algorithm can efficiently
reproduce the clusters defined by Ward’s method.

|A| · |B|
|A ∪ B|

∥µA − µB∥
2 =
∑

x∈A∪B

∥x − µA∪B∥
2
−
∑
x∈A

∥x − µA∥
2
−
∑
x∈B

∥x − µB∥
2 (4)

Euclidean distance
In mathematics, the Euclidean distance, also known as the Pythagorean distance, measures
the length of a line segment between two points in Euclidean space. It’s calculated using the
Pythagorean theorem based on the Cartesian coordinates of the points. The names come from
the ancient Greek mathematicians Euclid and Pythagoras, although they didn’t represent dis-
tances as numbers, and the connection to distance calculation was made much later. When deal-
ing with non-point objects, distance is typically defined as the shortest distance between any
pair of points from the two objects. Various formulas exist for computing distances between
different types of objects, like the distance from a point to a line. In advanced mathematics,
the concept of distance has been extended to abstract metric spaces, and different distances
beyond the Euclidean have been explored. In certain statistical and optimization applications,
the square of the Euclidean distance is used instead of the distance itself.

The distance between any two points on the real line is the absolute value of the numerical
difference of their coordinates, their absolute difference. Thus if p and q are two points on the
real line, then the distance between them is given by [86]:

d(p, q) = |p − q| (5)

Heuristic Algorithms
In mathematical optimization and computer science, a heuristic is a strategy devised to expedite
problem-solving when conventional methods prove too sluggish in identifying an exact or even
an approximate solution, or when these methods are unable to locate any precise solution within
a search space. This acceleration is accomplished by prioritizing speed over qualities like
optimality, completeness, accuracy, or precision, effectively trading them for a quicker route to
a solution. Heuristics can be thought of as a form of shortcut.

Moreover, a heuristic function, often referred to simply as a heuristic, serves as a guide
within search algorithms. It assigns rankings to alternatives at each branching juncture based
on available information, helping determine the most promising path to pursue. For instance, it
might offer an approximation of the exact solution, assisting in expediting the decision-making
process [68].
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Mixture Models
In statistics, a mixture model is a probabilistic framework used to describe the existence of
subpopulations within a larger population. It doesn’t necessitate that an observed dataset as-
signs each individual observation to a specific subpopulation; instead, it captures the idea that
the data may be a combination of multiple underlying subpopulations.

Figure .1: a basic parametric mixture model

Supervised Learning
Supervised learning (SL) is a machine learning approach in which a model is trained using
input data, typically represented as a vector of predictor variables, and corresponding desired
output values, often referred to as human-labeled supervisory signals. The training data is used
to construct a function that can map new input data to the expected output values. In an ideal
scenario, the algorithm should accurately predict output values for previously unseen instances.
Achieving this relies on the learning algorithm’s ability to generalize from the training data to
new, unencountered situations in a manner consistent with its inductive bias. The statistical
quality of this generalization process is quantified by the generalization error [94].

Rocchio Algorithm
The Rocchio algorithm is rooted in a relevance feedback approach commonly utilized in in-
formation retrieval systems, tracing its origins to the SMART Information Retrieval System
developed between 1960 and 1964. Like numerous other retrieval systems, the Rocchio algo-
rithm is constructed upon the vector space model. It operates under the assumption that users
generally have a broad understanding of which documents are deemed relevant or irrelevant.
Consequently, the user’s initial search query is adjusted to incorporate a specific proportion
of relevant and irrelevant documents, aiming to enhance the search engine’s recall and, poten-
tially, precision. The precise balance between relevant and irrelevant documents included in
the query is determined by the weightings assigned to the variables a, b, and c, as detailed in the
Algorithm section [78]. The formula and variable definitions for Rocchio relevance feedback
are as follows:

Q⃗m = aQ⃗o + b
1
|Dr|

∑
D⃗ j∈Dr

D⃗ j − c
1
|Dnr|

∑
D⃗k∈Dnr

D⃗k (6)
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Otsuka–Ochiai coefficient
Within the field of biology, a related concept to cosine similarity exists called the Otsuka–Ochiai
coefficient, named after Yanosuke Otsuka and Akira Ochiai, and is sometimes referred to as
the Ochiai–Barkman or simply the Ochiai coefficient [74]. Its representation is as follows:

K =
|A ∩ B|
√
|A| × |B|

(7)

In this context, we have two sets, denoted as A and B, and |A| represents the count of
elements within set A. If these sets are represented as binary vectors, it becomes evident that
the Otsuka–Ochiai coefficient aligns with the concept of cosine similarity.

Z-Score
In statistics, the standard score represents how many standard deviations a given raw score is
either above or below the mean of the observed or measured data. Raw scores exceeding the
mean are associated with positive standard scores, whereas those falling below the mean yield
negative standard scores [30].

To calculate the standard score, one subtracts the population mean from an individual raw
score and then divides the resulting difference by the population standard deviation. This pro-
cess of converting a raw score into a standard score is known as standardization or normaliza-
tion, although it’s worth noting that ”normalizing” can encompass various types of ratios.

Standard scores are often referred to as z-scores, and these terms are frequently used in-
terchangeably, as demonstrated in this article. Additional equivalent terms include z-value, z-
statistic, normal score, standardized variable, and ”pull” in the context of high-energy physics.
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