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Abstract 

Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine and its high 

levels of expression in the heart leads to cardiac dysfunction in sepsis. However, the 

underlying molecular mechanisms of regulating myocardial TNF-α expression are not 

fully understood. The aim of this thesis was to investigate the role of Rac1 in myocardial 

TNF-α expression and cardiac dysfunction during sepsis. Studies were performed using 

cultured neonatal cardiomyocytes and a mouse model of endotoxemia. 

I showed that lipopolysaccharides (LPS) activated Rac1 in the myocardium. To 

detect the mechanisms of Rac1 activation, phosphoinositide-3 kinase (PI3K) activity was 

measured. LPS activated PI3K, which was responsible for LPS-induced Rac1 activation 

in cardiomyocytes. PI3K-mediated Rac1 activation increased NADPH oxidase activity, 

O2
- generation, and ERK1/2 phosphorylation, leading to increased TNF-α mRNA 

expression in the myocardium. Moreover, the LPS-activated PI3K/Rac1/NADPH oxidase 

pathway inhibited myocardial Na/K-ATPase activity. The suppression of Na/K-ATPase 

activity enhanced TNF-α protein levels without any measurable effect on TNF-α mRNA 

expression or stability. Furthermore, inhibition of Na/K-ATPase activity resulted in 

activation of mammalian target of rapamycin (mTOR) in cardiomyocytes via Ca2+/ 

calmodulin-dependent protein kinases (CaMKs). mTOR activity increased LPS-induced 

TNF-α protein levels without any apparent effect on TNF-α mRNA expression. Most 

importantly, cardiomyocyte-specific Rac1 deletion significantly decreased myocardial 

TNF-α expression and improved cardiac function during endotoxemia in vivo.  

I also demonstrated that Rac1 mediated LPS-induced p21-activated kinase (PAK) 

1 activation, which increased p38 and JNK1 phosphorylation and TNF-α expression in 
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cardiomyocytes. On the other hand, LPS increased mitogen-activated protein kinase 

phosphatase-1 (MKP-1) expression in the myocardium in vivo and in cultured neonatal 

cardiomyocytes in vitro. Inhibition of Rac1, PAK1 and JNK1 decreased LPS-induced 

myocardial MKP-1 expression. LPS-induced ERK1/2 and p38 phosphorylation was 

prolonged in MKP-1-/- myocardium. Additionally, myocardial TNF-α mRNA and protein 

levels were enhanced in MKP-1-/- mice compared to WT mice in endotoxemia, which 

was associated with a further decrease in cardiac function. 

In conclusion, PI3K-mediated Rac1 activation is required for induction of TNF-α 

mRNA and protein expression in cardiomyocytes and cardiac dysfunction during 

endotoxemia. Rac1 promotes TNF-α mRNA expression via NADPH oxidase/ERK1/2 

and PAK1/p38 pathways. Rac1-mediated NADPH oxidase activation enhances TNF-α 

protein production via Na/K-ATPase inhibition and Ca2+/CaMK-dependent mTOR 

activation. On the other hand, Rac1/PAK1 pathway induces myocardial MKP-1 

expression via JNK1. MKP-1 attenuates ERK1/2 and p38 activation, thus limiting 

myocardial TNF-α expression and improving cardiac function in endotoxemia. These 

findings provide novel insight into the signal transduction mechanisms that regulate 

myocardial TNF-α expression, and may have therapeutic implications in the treatment of 

sepsis. 

 
Key words: sepsis, phosphoinositide-3 kinase, Rac1 GTPase, NADPH oxidase, Na/K-

ATPase, mammalian target of rapamycin, p21-activated kinase 1, mitogen-activated 

protein kinase phosphatase-1, tumor necrosis factor-alpha, cardiac function 
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Chapter 1. Introduction 

Literature Review 

Portions of this chapter appear in  

Zhang T, Feng Q. (2010) Nitric oxide and calcium signaling regulate myocardial tumor 
necrosis factor-alpha expression and cardiac function in sepsis. Can J Physiol Pharmacol 
88:92-104. Used with permission. 
 
1.1 Sepsis and myocardial dysfunction 

1.1.1 Overview of sepsis 

Sepsis is induced by a systemic immune response to infection. Sepsis, severe sepsis 

and septic shock represent increasingly grave stages. Sepsis is clinically identified when a 

patient has met two or more of the stated criteria for systemic inflammatory response 

syndrome (SIRS) and there is an evidence of infection. These criteria include body 

temperature greater than 38.5°C or less than 35.0°C, heart rate greater than 90 beats/min, 

respiratory rate greater than 20 breaths per minute or arterial CO2 tension less than 32 

mm Hg, white blood cell count greater than 12,000/mm3 or less than 4,000/mm3 or 

greater than 10% immature forms. Severe sepsis is defined as sepsis associated with 

organ dysfunction, hypoperfusion or hypotension (Merx & Weber 2007). Septic shock is 

defined as severe sepsis with hypotension, despite adequate fluid resuscitation, along 

with the presence of abnormalities in organ perfusion (Levy et al. 2003). 

The reported mortality rate in the United States is 20-30% in sepsis and 40-80% in 

septic shock (Angus & Wax 2001). In Canada, over 30% of hospitalized patients die with 

sepsis, compared to 18% of stroke patients and 9.1% for heart attack patients (CIHI 2007; 

CIHI 2009). The incidence of sepsis and sepsis-related deaths is increasing by 1.5% per 

year due to an aging population, the use of more invasive medical procedures and 
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widespread antibiotic resistance (Angus et al. 2001). This increasing incidence 

continuously puts a substantial burden on health care. A recent study showed that the 

total annual hospital cost of severe sepsis in the United States was approximately $16.7 

billion on the basis of 751,000 cases per year with 215,000 associated deaths (Angus et 

al. 2001).  

1.1.2 Myocardial dysfunction during sepsis 

Septic patients normally have significant cardiac morbidity. Studies have shown 

that 40% to 50% of patients with prolonged septic shock develop myocardial depression, 

characterized by decreased contractility and impaired myocardial compliance (Rudiger & 

Singer 2007). Myocardial dysfunction during sepsis causes a high risk of developing 

multi-organ failure, which is associated with a high mortality (Court et al. 2002).  

Clinically, septic shock is divided into two phases: an early hyperdynamic phase 

followed by a hypodynamic phase. At the hyperdynamic phase of septic shock, 

vasodilation from histamine, bradykinins, serotonin, and endorphins released during the 

early stages of sepsis significantly decreases total peripheral vascular resistance (Court et 

al. 2002). After adequate volume resuscitation, the cardiac output is elevated and tissue 

perfusion is increased. However, besides vasodilation, these vasoactive mediators also 

induce a marked capillary permeability and the so called “third space” fluid loss (ascites 

and pleural effusions), leading to hypovolemia. The rise in cardiac output is limited by 

hypovolemia and a fall in preload due to low cardiac filling pressures. The hypodynamic 

phase of septic shock is characterized by decreased cardiac output, a sign of cardiac 

dysfunction, and increased peripheral vascular resistance. The hypodynamic phase occurs 

between 4 and 7 hours after the injection of endotoxin into mice (Ullrich et al. 2000). 
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Rodents enter the hypodynamic phase 20 hours after cecal ligation and puncture (Yang et 

al. 2002). 

An early hypothesis was that global myocardial ischemia results in cardiac 

dysfunction in sepsis (Merx & Weber 2007). However, later findings dismissed this 

theory.  It has been reported that septic patients show a decreased oxygen difference 

between the coronary artery and coronary sinus, and increased coronary blood flow 

(Cunnion et al. 1986). Levy et al. found that septic mice exhibited reduced cardiac 

performance, higher deposits of glycogen and myocardial glucose uptake while arterial 

oxygen tension and myocardial perfusion are well preserved (Levy et al. 2005), 

suggesting that cardiac dysfunction is not due to myocardial ischemia during sepsis. 

The expression of adhesion molecules, including vascular cell adhesion molecule 

(VCAM)-1 and intercellular adhesion molecule (ICAM)-1, is enhanced in coronary 

endothelium and cardiomyocytes after lipopolysaccharide (LPS) stimulation (Merx & 

Weber 2007). These molecules increase myocardial neutrophil accumulation. Antibody 

blockade of ICAM-1 and VCAM-1 inhibits LPS-induced cardiac dysfunction. However, 

neutrophil depletion in sepsis does not offer any protection of cardiac function, 

suggesting that the effect of these adhesion molecules on myocardial dysfunction is 

independent of neutrophil accumulation (Raeburn et al. 2002). In addition, the activities 

of proapopotic caspases are increased in the myocardium in endotoxemia, but the rate of 

myocardial apoptosis is too low and disproportionate to the severity of cardiac 

dysfunction (Carlson et al. 2005).  

A number of factors have been identified to contribute to myocardial depression in 

sepsis. These factors include prostanoids, endothelin-1, nitric oxide and pro-inflammatory 
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cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor-alpha (TNF-α), 

(Kumar et al. 2000). Importantly, TNF-α treatment directly depresses cardiac 

contractility, implying that TNF-α plays a key role in myocardial dysfunction during 

sepsis (Walley et al. 1994).  

 

1.2 TNF-α in sepsis 

1.2.1 Overview  

TNF-α is a 17 kDa protein that was initially discovered as the molecule 

associated with necrosis in mouse tumors. It is an important pro-inflammatory factor that 

contributes to a wide range of pathologies (Meldrum 1998; Tracey & Cerami 1993). 

Systemic administration of TNF-α results in manifestations that are very similar to sepsis 

including hypotension, metabolic acidosis, diffuse pulmonary infiltration, pulmonary and 

gastrointestinal hemorrhage, tubular necrosis and death (Tracey et al. 1986). Notably, 

TNF-α impairs contractile function in cultured cardiomyocytes and isolated hearts as 

well as cardiac function in intact animals (Bozkurt et al. 1998; Grandel et al. 2000; Oral 

et al. 1997). The administration of TNF-α antiserum or TNF-α binding proteins improves 

cardiac function in endotoxemic mice (Peng et al. 2003b) and rats (Meng et al. 1998), and 

increases survival (Peng et al. 2003b). These inhibitory effects on the heart are mediated 

by the autocrine, paracrine and endocrine actions of TNF-α during sepsis.  To this end, 

macrophages and monocytes produce TNF-α and release it to the circulation (Schlag et 

al. 1991). Circulating TNF-α acts on the heart and promotes cytokine expression in 

cardiomyocytes. Additionally, cardiomyocytes themselves are the predominant local 

source of TNF-α in the myocardium during sepsis (Grandel et al. 2000; Kapadia et al. 
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1995; Peng et al. 2003a). Significant induction of TNF-α in the myocardium in septic 

rodent models supports the notion that local TNF-α is a major contributor to cardiac 

dysfunction (Grandel et al. 2000). 

1.2.2 LPS signaling in TNF-α expression 

Endotoxins, such as LPS, are the major pathogens responsible for myocardial 

dysfunction during sepsis (Natanson et al. 1989; Suffredini et al. 1989). Cardiovascular 

changes mediated by LPS simulate sepsis in both animal models (Natanson et al. 1989) 

and human volunteers (Kumar et al. 2005; Suffredini et al. 1989). LPS binds to LPS-

binding protein (LBP), which presents LPS to CD-14, a membrane glycoprotein with a 

glycosylinositol tail. With the assistance from MD-2, the LPS-LBP-CD-14 complex 

activates toll-like receptor (TLR)-4, the LPS receptor. Activation of TLR-4 results in the 

recruitment of myeloid differentiation factor (MyD) 88 and Toll/interleukin-1 receptor 

domain-containing adaptor protein (TIRAP). Binding of MyD88 promotes association 

with the interleulin-1 receptor-associated protein kinases (IRAKs), IRAK4 and IRAK1. 

IRAK4 phosphorylates IRAK-1, triggering IRAK-1 kinase activity, which in turn 

activates downstream signaling pathways, leading to the activation of transcription 

factors such as NF-κB and production of TNF-α (Monick & Hunninghake 2003). Studies 

have demonstrated that NADPH oxidase, mitogen-activated protein kinase (MAPK) 

signaling and intracellular Ca2+ all contribute to LPS-induced TNF-α expression in 

cardiomyocytes (Zhang & Feng 2010). 

1.2.3 Cardiac effects of TNF-α 

A major mechanism of TNF-α-induced myocardial dysfunction involves 

disturbances of Ca2+ homeostasis. Specifically, TNF-α disrupts Ca2+ influx through L-
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type Ca2+ channels and Ca2+-induced Ca2+ release from the sarcoplasmic reticulum 

(Krown et al. 1995). In addition to Ca2+ dysregulation, TNF-α also causes direct 

cytotoxicity, oxidative stress, disruption of excitation-contraction coupling, upregulation 

of other cardiac suppressing cytokines (e.g., IL-1β) and the induction of cardiomyocyte 

apoptosis (Song et al. 2000; Zhao et al. 2006). Studies have shown that myocardial 

dysfunction induced by TNF-α has two distinct phases. The early phase occurs within 

minutes after TNF-α exposure. During this phase, sphingosine production is increased 

and disturbs intercellular Ca2+ homeostasis. The late phase occurs hours after TNF-α 

exposure. During this phase, inducible nitric oxide synthase (iNOS) expression and 

cadiomyocyte apoptosis are increased. Also pyruvate dehydrogenase activity and 

mitochondrial function are inhibited (Meldrum 1998). The purpose of this thesis is to 

elucidate and understand the signal transduction mechanisms that regulate myocardial 

TNF-α expression and cardiac dysfunction in endotoxemia. 

 

1.3 Rac GTPases  

1.3.1 Overview 

Rac GTPases are low molecular weight (20-30 kDa) monomeric GTP-binding 

proteins, which are a subfamily of the Ras-homologous (Rho) GTPase family (Bustelo et 

al. 2007; Fritz & Kaina 2006). Rac family contains 4 members, Rac1, Rac2, Rac3 and 

RhoG (Haataja et al. 1997). Rac proteins play an important role in various cellular events, 

including actin cytoskeletal reorganization, transformation, proliferation, apoptosis, gene 

expression, superoxide production and migration (Bustelo et al. 2007; Fritz & Kaina 

2006). Rac1, Rac2 and Rac3 have similar genetic sequence with different expression 
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patterns. Rac1 is ubiquitously expressed, whereas Rac2 expression is mostly restricted to 

cells of hematopoietic origin and Rac3 is expressed in the brain, liver, lung and pancreas. 

RhoG has the lowest sequence similarity to Rac1 and is ubiquitously expressed (Heasman 

& Ridley 2008). 

1.3.2 Activation of Rac GTPases 

Rac GTPases act as molecular switches, cycling between active (Rac-GTP) and 

inactive (Rac-GDP) forms. GTP binding and hydrolysis are facilitated by 2 major classes 

of proteins, guanine nucleotide exchange factors (GEFs) and the GTPase activating 

proteins (GAPs), respectively. Under basal conditions, inactive Rac localizes in the 

cytosol and generally binds to a GDP dissociation inhibitor (GDI), such as ARHGDIA, 

ARHGDIB and ARHGDIG.  Binding with GDI maintains the Rac in a GDP-bound state 

in the cytosol and also promotes Rac dissociation from the membrane. Upon stimulation 

by various factors such as cytokines, Rac-GDP dissociates from its GDI. GEFs, such as 

P-Rex, SWAP-70, Tiam, Pix, Sos and Vav, become activated and open the GTPase’s 

nucleotide-binding site allowing the exchange of GDP for GTP on Rac proteins. 

Inactivation of Rac proteins occurs through the hydrolysis of GTP to GDP by their 

intrinsic GTPase activity, which is promoted by GAPs, such ARHGAP6, ARHGAP10 

and CHN (Schmidt & Hall 2002) (Figure 1.1).  

Phosphoinositide 3-kinase (PI3K) is one of the activators of Rac-GEFs. PI3K 

phosphorylates the phosphoinositide at the 3-OH position of the inositol ring. When the 

type 1 PI3Ks are activated, they use phosphatidylinositol (4,5)-diphosphate 

(PtdIns(4,5)P2) as a substrate and produce the second messenger phosphatidylinositol 

(3,4,5)-triphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 can bind to the pleckstrin  



 

 
 

8 

 

 
 
 
Figure 1.1. Schematic of Rac signaling pathways. In resting cells, Rac-GDP is generally 
bound to a GDI.  Upon stimulation by various factors, Rac-GDP dissociates from GDI 
and attaches to the membrane. GEFs become activated in PI3K-dependent or –
independent ways and allow the exchange of GDP for GTP on Rac. Inactivation of Rac 
proteins occurs through the hydrolysis of GTP to GDP by their intrinsic GTPase activity, 
which can be greatly accelerated by GAPs. Activated Rac GTPases interact with specific 
effectors (IQGAP, WAVE, p67phox and PAK) which influence diverse physiological 
outcomes.     
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homology (PH) domain of target proteins and then induce their membrane translocation 

and/or conformational changes (Welch et al. 2003). Rac-GEFs contain tandem Dbl 

homology (DH)/PH domains. Several Rac-GEFs, such as P-Rex, SWAP-70, Tiam, Pix, 

Sos and Vav have been reported to be activated by PI3K (Burridge & Wennerberg 2004; 

Welch et al. 2003).  

Besides PI3Ks, Rac-GEFs can also be activated by PI3K-independent 

mechanisms. For example, Vav consists of three regions, an N-terminal autoinhibitor 

region, a central catalytic region with a DH/PH domain and a C-terminal recruitment 

region. The N-terminal autoinhibitory region has a calponin homology (CH) domain and 

an acidic region with conserved tyrosines. Lck- and Src-mediated Tyr174 

phosphorylation disrupts the interaction between the acidic region and the DH domain, 

thereby liberating the catalytic site. In addition, some GEFs are activated by common 

second messengers, such as cyclic adenosine monophosphate (cAMP), Ca2+, and 

diacylglycerol (DAG) (Bos et al. 2007). 

1.3.3 Effectors of Rac GTPases 

Activated Rac GTPases interact with specific effectors, which coordinate 

activation of a multitude of signaling cascades and influence diverse physiological 

outcomes. These effectors include IQ motif containing GTPase activating proteins 

(IQGAPs), Wiskott–Aldrich syndrome protein with a V-domain (WAVE), p21-activated 

kinases (PAKs), and p67phox (Burridge & Wennerberg 2004; Ellenbroek & Collard 2007). 

IQGAP, WAVE and PAK are cytoskeletal remodeling proteins and known to regulate the 

formation of lamellipodia, filopodia and microtubule which are necessary for cell 

migration, adhesion and wound healing. Interaction of Rac-GTP with p67phox results in 
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activation of NADPH oxidase, which is a major source of reactive oxygen species (ROS) 

(Moldovan et al. 2006). Since PAKs and NADPH oxidase are key regulators of cardiac 

function in physiological and pathophysiological conditions (Bendall et al. 2002; Li et al. 

2002; Mohazzab et al. 1997; Sheehan et al. 2007; Xiao et al. 2002a), it is important to 

understand the molecular structure, expression, functions of NADPH oxidase and PAKs 

in the myocardium. 

1.3.4 Rac GTPases in the heart 

Rac1 and RhoG are expressed in cardiomyocytes, whereas Rac2 and Rac3 are 

undetectable in the heart (Satoh et al. 2006). Numerous studies have demonstrated that 

RhoG acts either upstream of or in parallel to Rac1 to mediate neurite outgrowth, cell 

motility, endocytosis and immune responses (Katoh et al. 2006; Katoh & Negishi 2003; 

Vigorito et al. 2004). However, the role of RhoG in regulating cardiac function has not 

been elucidated.   

Rac1 knockout mice are embryonic lethal due to defects in germ-layer formation 

(Sugihara et al. 1998), and thus tissue specific knockouts have been widely used to study 

Rac1 function (Heasman & Ridley 2008). A cardiac-specific Rac1 deletion mouse model 

is now available and shows decreased NADPH oxidase activity and superoxide anion 

production. Angiotensin II (AngII)-induced cardiac hypertrophy is diminished in these 

mice (Satoh et al. 2006). Rac1 transgenic mice that express constitutively activated Rac1 

specifically in the myocardium have been created. These transgenic mice develop cardiac 

hypertrophy within weeks after birth (Sussman et al. 2000). In addition, Rac1 enhances 

hyperglycemia-induced apoptosis in cardiomyocytes. The effect of Rac1 is mediated 

through NADPH oxidase activation and is associated with mitochondrial ROS generation 
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(Shen et al. 2009). A recent study demonstrated that LPS induces Rac1 activation, which 

contributes to NADPH oxidase activity and phosphorylation of ERK1/2 and p38 MAPK, 

leading to TNF-α expression in the heart (Zhu et al. 2009). The aims of my project were 

to investigate the molecular mechanisms of myocardial Rac1 activation as well as 

downstream effectors of Rac1 regulating TNF-α mRNA expression, protein synthesis 

and cardiac dysfunction during endotoxemia. 

 

1.4 NADPH oxidase  

1.4.1 Overview  

NADPH oxidase is a multi-component enzyme system that catalyzes the NADPH 

dependent reduction of O2 to O2
- (Babior 1999). The prototypic NADPH oxidase is 

composed of membrane bound flavocytochrome b558, which consists of gp91phox (Nox2) 

and p22phox (“phox” represents phagocyte oxidase), cytosolic regulatory proteins (p40phox, 

p47phox and p67phox) and Rac GTPase. The catalytic core of NADPH oxidase is the 

membrane-integrated flavocytochrome b558. Under basal conditions, the cytosolic 

complex is separate from the membrane-bound flavocytochrome b558. Upon stimulation, 

NADPH oxidase activation is triggered by the phosphorylation of the cytosolic phox 

proteins and their translocation to the plasma membrane. Concomitantly, Rac is activated 

and interacts with flavocytochrome b558 to form a binding partner for p67phox. The 

complete assembly of NADPH oxidase components is crucial for subsequent O2
− 

production (Figure 1.2). Increased O2
− production is known to modulate cardiomyocyte 

apoptosis, inflammatory response, contractility and cardiac hypertrophy (Babior 1999; 

Griendling et al. 2000).  
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Figure 1.2. Schematic of NADPH oxidase signaling pathways. NADPH oxidase is 
composed of membrane bound flavocytochrome b558, which consists of gp91phox (Nox2) 
and p22phox, cytosolic regulatory proteins (p40phox, p47phox and p67phox) and Rac GTPase. 
Upon stimulation, NADPH oxidase activation is triggered by the phosphorylation of 
cytosolic phox proteins and their translocation to the plasma membrane. Concomitantly, 
Rac is activated and interacts with flavocytochrome b558 to form a binding partner for 
p67phox.  
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There are at least six homologues of gp91phox (Nox2): Nox1, Nox3, Nox4, Nox5 

and Duox1/2. Both Nox1 and Nox4 contain 6 trans-membrane domains with NADPH-

binding domain in their C-terminal regions and two hemes. They form a complex with 

p22phox.  Nox5, Duox 1 and Duox 2 have a Ca2+-binding site, whereas Duox1 and Duox2 

have an additional transmembrane and a peroxidase-like domain (Lambeth et al. 2000; 

Leto & Geiszt 2006). Nox2 and Nox4 are expressed in cardiomyocytes. They exhibit 

different subcellular localization and play an important role in mediating oxidative stress. 

Nox2 is primarily localized on the plasma membrane, whereas Nox4 is found primarily 

on intracellular membranes, mitochondria, the endoplasmic reticulum or the nucleus 

(Maejima et al. 2011). Activation of Nox2 requires assembly of NADPH oxidase 

components  and participates in Ang II-induced cardiac hypertrophy. NOX4 produces O2
- 

and H2O2, which do not require the association with cytosolic regulatory proteins and 

Rac. NOX4 also is required for pressure overload-induced cardiac hypertrophy and heart 

failure (Byrne et al. 2003). 

1.4.2 NADPH oxidase and myocardial TNF-α  expression during endotoxemia 

NADPH oxidase is a major source of O2
- in the myocardium under 

pathophysiological conditions. The generation of O2
- cascades into multiple cardiac 

effects including hypertrophy, hypertension, fibrosis, apoptosis, proliferation and 

differentiation of ES cells into cardiomyogenic cell lineage (Bendall et al. 2002; Li et al. 

2002; Mohazzab et al. 1997; Xiao et al. 2002a). LPS stimulation markedly increases 

NADPH oxidase activity and O2
- production in cardiomyocytes. NADPH oxidase 

inhibitors, such as diphenyleneiodonium (DPI) and apocynin, decrease LPS-induced 

TNF-α expression (Peng et al. 2005b). Additionally, both O2
- production and TNF-α 
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production during LPS stimulation are blunted in Nox2-/- cardiomyocytes. Furthermore, 

deficiency of Nox2 also improves myocardial function in endotoxemia (Peng et al. 

2005b). These studies demonstrate a key role of Nox2-containing NADPH oxidase in 

myocardial TNF-α expression and cardiac dysfunction in sepsis. MAPKs are downstream 

factors of Nox2-containing NADPH oxidase signaling as pharmacological inhibition of 

NADPH oxidase blocked ERK1/2, p38 and JNK phosphorylation induced by LPS 

stimulation (Peng et al. 2005a; b). 

Interestingly, NADPH oxidase is also involved in the expression of 

cyclooxygenase (COX). COX is the rate-limiting enzyme that catalyzes the oxygenation 

and reduction of arachidonic acid, leading to the formation of cyclic endoperoxides and 

prostaglandins (PG) including PGE2 and PGI2 (Grandel et al. 2000; Hocherl et al. 2002; 

Liu et al. 1996; Peng et al. 2005a). COX has two isoforms, the constitutive COX-1 and an 

inducible COX-2. The full expression of COX-2 requires NF-κB (Rhee & Hwang 2000). 

Studies have shown that COX-2 is induced during sepsis and facilitates TNF-α 

expression in the heart (Grandel et al. 2000; Liu et al. 1996). Therefore, it is conceivable 

that upregulation of COX-2 enhances myocardial TNF-α expression and decreases 

cardiac function during sepsis. Our group demonstrated that an NADPH 

oxidase/MAPK/NF-κB-dependent pathway leads to COX-2 expression in LPS-stimulated 

cardiomyocytes (Peng et al. 2005a). Indeed, inhibition of either NADPH oxidase or 

MAPK activity prevents both NF-κB activation and COX-2/PGE2 production induced by 

LPS (Peng et al. 2005a). Thus, O2
- produced from NADPH oxidase promotes LPS-

induced TNF-α expression via a MAPK/NF-κB/COX-2 signaling pathway in 

cardiomyocytes.  
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1.5 PAKs  

1.5.1 Overview 

PAKs are serine-threonine protein kinases (Bosco et al. 2009) and each consists of a 

kinase domain at the C-terminas and a regulatory domain at N-terminus containing a p21-

binding domain (PBD). The family consists of two groups. Group I PAKs, including 

PAK1, PAK2 and PAK3, are activated by GTPases such as Cdc42 and Rac. These PAKs 

have an autoinhibitory domain (AID) which overlaps with the PBD. The AID interacts 

with the catalytic domain forming an intramolecular inhibitory conformation. This 

inhibition is released when activated Cdc42 or Rac binds with the PBD and straightens 

out the protein. After this conformational change, PAK autophosphorylates Thr423 (for 

PAK1) in the activation loop of the kinase. Phosphorylation of this site prevents refolding 

and consequent inhibition, even in the absence of GTPases. All Group I PAKs contain a 

threonine at the position corresponding to Thr423 in PAK1. PAK1, PAK2 and PAK3 

have different expression patterns (Bagrodia & Cerione 1999). PAK1 is mainly expressed 

in the brain, muscle, heart, and spleen. PAK2 is ubiquitously expressed. PAK3 is 

expressed in the brain and heart. The group II PAKs, including PAK4, PAK5 and PAK6, 

have no AID and can also bind to activated Rho-GTPases. However, binding with 

GTPases leads to the translocation of group II PAKs but has no apparent effect on kinase 

activity (Bagrodia & Cerione 1999; Molli et al. 2009).  

1.5.2 Biological effects of PAKs 

PAKs are important in cell motility, survival, proliferation and gene expression. 

Primarily, PAKs are considered as regulators of the actin cytoskeletal organization and 

cell motility. They phosphorylate several cytoskeleton regulators, such as LIM domain 
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kinase (LIMK), myosin light-chain kinase (MLCK), paxillin and filamin A, thereby 

modulating actin dynamics, cytoskeleton remodeling and focal adhesion dynamics (Molli 

et al. 2009). LIMK is an actin-binding kinase which phosphorylates cofilin and prevents 

the depolymerization of filament. PAK activates LIMK by phosphorylation and regulates 

cell motility. MLCK phosphorylates myosin light chain (MLC) and enables the myosin to 

bind to the actin filament. PAK blocks MLCK activity by phosphorylation and results in 

decreased stress fibers. Paxillin localizes to focal adhesions and functions as an adaptor 

protein. PAK phosphorylates paxillin which promotes the binding between paxillin and G 

protein-coupled receptor kinase-interactor 1 (GIT1). GIT1 forms a complex with PAK-

interacting exchange factor (PIX) and PAK, and promotes cell migration, protrusion and 

adhesion turnover. Filamin A is an actin-binding protein and necessary for building of the 

cytoskeleton that gives structure to cells and allows them to change shape and move. 

PAK1 phosphorylates filamin A and regulates actin dynamics at the leading edge of 

motile cells (Molli et al. 2009). 

PAKs have both pro- and anti-apoptotic functions. PAK1 improves Bcl2 activity by 

phosphorylating Bad and blocking the interaction between Bcl2 and Bad (Schurmann et 

al. 2000). Furthermore, PAK1 is capable of activating dynein light chain 1 (DLC1) and 

subsequently prevents inactivation of Bcl-2 (Vadlamudi et al. 2004). Activated PAK4 

increases cell survival through decreasing caspase activation and promoting Bad 

phosphorylation (Gnesutta et al. 2001). Specifically, PAK2 shows a dual effect in 

regulating cell survival and death. DNA damage and serum starvation activate caspases 

which cleaves PAK-2 proteolytically, producing a constitutively active fragment, PAK-

2p34. Activation of PAK2 as a full-length enzyme or as a proteolytic fragment leads to 
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different effects. Activation of full-length PAK2 by Rac or Cdc42 inhibits the interaction 

between Bad and Bcl-2 and promotes cell survival. In contrast, activation of PAK-2p34 

correlates with the induction of apoptosis (Jakobi et al. 2001). 

1.5.3 PAKs in the heart 

PAK1, PAK2 and PAK3 are all expressed in the myocardium. Activated PAK1 

localizes to sarcomeric Z-disks, interacts with protein phosphatase 2A (PP2A), and 

reduces phosphorylation of cardiac troponin I and myosin binding protein (MyBP)-C. 

These posttranslational modifications influence contractility by altering Ca2+ sensitivity 

(Sheehan et al. 2007). Recent studies showed that PAK1 colocalizes with both the α1C-

subunit of the L-type Ca2+ channel and PP2A. Expressing constitutively active PAK1 in 

adult rat ventricular myocytes decreases the time to peak shortening, rate of [Ca2+]i decay 

and time of relengthening, suggesting that PAK1 modifies Ca2+ flux (Sheehan et al. 

2009). Thus, PAK1 regulates cardiomyocyte contractility by facilitating the 

dephosphorylation of proteins that control myofilament activity and intracellular Ca2+ 

flux. Buscemi et al. reported that activated PAK3 increases fiber bundle Ca2+ sensitivity 

via phosphorylation of myofilament proteins (desmin, troponin I, troponin T) (Buscemi et 

al. 2002). In addition, PAK has been implicated in Rac1-induced cardiac hypertrophy in 

transgenic mice (Sussman et al. 2000). There is evidence that PAK regulates IL-1 

expression in macrophages through activation of MAPKs (Hsu et al. 2001). An objective 

of this thesis was to investigate if PAK1 plays a role in myocardial TNF-α expression and 

myocardial depression in endotoxemia (Chapter 4). 
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1.6 Na/K-ATPase  

1.6.1 Overview 

Na/K-ATPase is located in the plasma membrane and contains a catalytic α 

subunit, a β subunit and a regulatory subunit, FXYD. The α-subunit has 10 

transmembrane segments and contains binding sites for Na+, K+, ATP and proteins, such 

as Src. The β subunit is a glycoprotein, necessary for the transfer of the entire enzyme 

molecule from the endoplasmic reticulum, the site of synthesis, to the plasma membrane. 

There are presently four isoforms of the α subunit (α1, α2, α3, α4) and three isoforms of 

the β subunit (β1, β2, β3). Mouse hearts express α1, α2, β1 and β2, with α1 and β1 as the 

major isoforms. The FXYD protein family is a family of small membrane proteins 

sharing a conserved Pro-Phe-X-Tyr-Asp motif in the extracellular N-terminal domain. In 

mammals, the FXYD family contains seven members: FXYD1- FXYD7 (Geering 2006). 

1.6.2 Regulation of Na/K-ATPase activity 

Na/K-ATPase activity is regulated by a variety of factors that affect its activation 

and expression. The simplest and most straightforward determinant of this pump activity 

is the concentrations of substrates. Since intracellular Na+ concentration is a critical 

factor for determining the Na/K transport rate, any change in intracellular Na+ will have 

an impact on its activation. Besides, this pump is also sensitive to the changes in the 

intracellular ATP and extracellular K+ concentrations.  

Peptide hormones and neurotransmitters regulate Na/K-ATPase expression, 

translocation or endocytosis via the protein kinases (protein kinase A (PKA), PKC and 

protein kinase G (PKG)), phospholipases, and phosphatases (protein phosphatases 2B, 

PP2B) in a tissue specific manner (Therien & Blostein 2000). For example, in guinea-pig 
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ventricular myocytes, an isoprenaline-induced increase in Na/K-ATPase current is 

mediated by cAMP, which activates PKA (Gao et al. 1994). Noradrenaline analogously 

increases Na/K-ATPase current via PKC (Wang et al. 1998). In addition, steroid 

hormones regulate Na/K-ATPase subunit expression. For example, aldosterone stimulates 

α and β subunit gene transcription and leads to an increased pump number in the cell 

membrane (Therien & Blostein 2000). Recently, a novel mechanism of Na/K-ATPase 

activation has been reported. Ang II inhibits myocardial Na/K-ATPase via activating 

NADPH oxidase and glutathionylating the β subunit (Figtree et al. 2009).  

FXYD proteins do not affect Na/K-ATPase subunit expression but change the 

transport properties in a tissue-specific way (Geering 2006). FXYD1, known also as 

phospholemman, is expressed in the heart and liver, and has multiple phosphorylation 

sites at its cytosolic carboxyl terminus. In resting cardiomyocytes, FXYD1 binds with the 

α subunit and inhibits Na/K-ATPase activity by reducing its affinity to intracellular Na+. 

Upon stimulation, FXYD1 is phosphorylated by PKC and dissociates from Na/K-

ATPase, leading to increased Na+ affinity (Bers & Despa 2006). FXYD2 and FXYD4 are 

mainly expressed in kidney. FXYD2 decreases Na+ affinity of Na/K-ATPase, which 

favors an efficient reabsorption of Na+ at a high cellular Na+ load. However, FXYD4 

increases affinity for Na+ which allows Na+ reabsorption at low intracellular Na+ 

concentrations (Beguin et al. 2001). FXYD3 is detectable in the skin, colon, stomach and 

uterus and apparently decreases both Na+ and K+ affinity (Crambert et al. 2005). FXYD7 

is exclusively expressed in the brain and produces low K+ affinity (Beguin et al. 2002).  

1.6.3 Biological effects of Na/K-ATPase  

The primary function of Na/K-ATPase is to catalyze the chemical hydrolysis of 



 

 
 

20 

ATP to mediate active extrusion of Na+ and intracellular accumulation of K+. In resting 

cells, the ion binding sites of Na/K-ATPase are open to the inside of the cell. Once three 

Na+ ions bind to the sites, the pump is phosphorylated by ATP. The phosphorylation 

causes a conformational change and exposes the Na+ ions to the outside of the cells. 

Since the phosphorylated form of the pump has a low affinity for Na+ ions, Na+ ions are 

released. At the same time, two K+ ions bind to the binding sites which promote the 

dephosphorylation of the pump. The removal of the phosphate causes another 

conformational change that result in the return of the ion binding sites to the inside of the 

cell. Consequently, the K+ ions are released inside the cell. Na/K-ATPase is the main ion 

pump for Na+ and K+ transmembrane distribution, and therefore it plays an essential role 

in the maintenance of the Na+ and K+ gradients. These gradients are needed to facilitate 

transport, regulate cellular volume, and maintain the resting membrane potential. 

In addition to pumping ions, Na/K-ATPase also acts as a signal transducer. 

Binding of ouabain, a specific Na/K-ATPase inhibitor, with Na/K-ATPase results in the 

interaction with the cytoplasmic tyrosine kinase Src directly. The Na/K-ATPase/Src 

complex acts as a “binary receptor” and activates multiple downstream protein kinases 

including epidermal growth factor receptor (EGFR), MAPKs and PKC (Aydemir-Koksoy 

et al. 2001; Haas et al. 2000; Haas et al. 2002). These kinases affect various cellular 

functions, such as gene expression, the production of ROS, the formation of tight 

junctions, cell proliferation and attachment, the modification of immune responses, the 

induction of polarity, ion fluxes and protein trafficking (Aydemir-Koksoy et al. 2001; 

Contreras et al. 1999; Xie & Cai 2003).  
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1.6.4 Na/K-ATPase in the heart 

Although Na/K-ATPase is present in all cells, it also contributes to specialized 

tissue functions. In cardiomyocytes, Na/K-ATPase activity is tightly coupled to the 

activation of the Na+/Ca2+ exchanger (NCX), which transports one Ca2+ ion in exchange 

for three Na+ ions, therefore regulating cardiac contractility (Barwe et al. 2009; Clausen 

2003; James et al. 1999). Under physiological conditions, NCX is driven by the high Ca2+ 

transient and works in the Ca2+ extrusion mode. When Na/K-ATPase is inhibited, [Na+]i 

is elevated and subsequently drives NCX in a reverse mode.  Ca2+ enters the cells through 

NCX, resulting in increased cellular and sarcoplasmic reticulum (SR) Ca2+ 

concentrations. The higher intracellular Ca2+ concentrations lead to greater Ca2+ 

transients and enhanced contractility. 

Na/K-ATPase also participates in cardiomyocyte apoptosis and cardiac 

hypertrophy (Huang et al. 1997; Sapia et al. 2010). Ouabain induces cardiomyocyte 

apoptosis. This effect of ouabain is mediated by reverse mode NCX-dependent activation 

of calmodulin-dependent protein kinase (CaMK) II, and is counterbalanced by the 

simultaneous activation of PI3K/AKT signaling (Sapia et al. 2010). In addition, ouabain 

increases hypertrophic gene expression in cultured cardiomyocytes via Ca2+/CaMKs and 

PKC (Huang et al. 1997).  

Na/K-ATPase activity is decreased in multiple organs during sepsis (Guzman et 

al. 1995; Koksel et al. 2006; Ohmori et al. 1991). LPS markedly decreases Na/K-ATPase 

activity in the lung (Guzman et al. 1995; Koksel et al. 2006) and kidney (Guzman et al. 

1995; Koksel et al. 2006). Inhibition of Na/K-ATPase potentiates LPS-induced cytokine 

mRNA expression, including TNF-α mRNA, in macrophages (Ohmori et al. 1991). 
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However, changes in Na/K-ATPase activity in the heart during sepsis are not known. An 

objective of this thesis was to determine myocardial Na/K-ATPase activity and to 

investigate if Na/K-ATPase regulates myocardial TNF-α expression during endotoxemia 

(Chapter 3). 

 

1.7 Calcium signaling and TNF-α expression during endotoxemia 

Calcium is an important diffusible second messenger and controls a wide variety 

of intracellular processes ranging from secretion and contraction to differentiation and 

apoptosis (Clapham 2007). Levels of intracellular Ca2+ are tightly regulated. Normally, 

Ca2+ makes its entrance into the cytoplasm either from outside the cell through the cell 

membrane via Ca2+ channels, or from internal Ca2+ storages such as the sarcoplasmic 

reticulum, endoplasmic reticulum and mitochondria. Intracellular Ca2+ is removed from 

the cell by transport proteins, such as plasma membrane Ca2+-ATPase and the Na+/Ca2+ 

exchanger. Increased intracellular Ca2+ concentrations lead to Ca2+ binding by regulatory 

proteins, which control the location, amount and effect of Ca2+ influx, and turn the Ca2+ 

signal into a biological response.  Calmodulin is considered a major transducer of Ca2+ 

signals (Clapham 2007). Recent studies reported that intracellular Ca2+ concentrations are 

increased in LPS-stimulated macrophages and Kupffer cells leading to TNF-α production 

(Letari et al. 1991; Seabra et al. 1998; Wheeler et al. 2000; Zhou et al. 2006). The 

increased Ca2+ levels may be due to Ca2+ influx and release, and mediated by PLCγ 

(Zhou et al. 2006). In addition, a correlation between Ca2+/calmodulin, ERK activity and 

TNF-α expression is established in mononuclear cells (Mendez-Samperio et al. 2006; 

Rosengart et al. 2000b). Indeed, either the chelation of releasable intracellular stores of 
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Ca2+ or the inhibition of calmodulin decreased ERK1/2 phosphorylation and TNF-α 

levels induced by Mycobacterium bovis infection (Mendez-Samperio et al. 2006). 

Similarly, inhibition of Ca2+ /CaMK II prevented ERK1/2 activation and the TNF-α 

expression in response to LPS stimulation (Rosengart et al. 2000b).  

Intracellular Ca2+ levels in cardiomyocytes are mainly regulated throught L-type 

Ca2+ channels and sarcoplasmic reticulum Ca2+ release channels (or ryanodine receptors, 

RyRs) during depolarization, which initiates contraction. L-type Ca2+ channels are 

located primarily on the sarcolemma in close proximity with the sarcoplasmic reticulum, 

and generate an inward Ca2+ current during activation. Ca2+ entering through L-type Ca2+ 

channels locally increases Ca2+ concentration near RyRs and triggers Ca2+ release from 

the sarcoplasmic reticulum (via Ca2+ induced Ca2+ release). When Ca2+ binds to troponin 

C, it switches on the myofilaments and causes contraction. During relaxation and 

diastolic filling, Ca2+ dissociates from troponin C, thereby turning off the contractile 

machinery. Ca2+ is removed from the cytosol mainly via the sarcoplasmic reticulum Ca2+-

ATPase (SERCA), which takes Ca2+ back into the sarcoplasmic reticulum, and the NCX, 

and to a much less extent via sarcolemmal Ca2+-ATPase and the mitochondrial Ca2+ 

uniporter (Bers 2000). Apart from an essential role in cardiac excitation-contraction 

coupling, Ca2+ has been shown to be important in numerous physiological and 

pathophysiological processes in the heart, including cardiac hypertrophy, apoptosis, 

arrhythmia and heart failure as well as gene expression (Erickson & Anderson 2008; Frey 

et al. 2000).  

Sepsis is associated with increased myocardial TNF-α expression and cardiac 

dysfunction, both of which are regulated by cardiomyocyte Ca2+ homeostasis. Recent 
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studies have demonstrated that LPS increases Ca2+ transients and ERK1/2 

phosphorylation, leading to TNF-α expression in cardiomyocytes and cardiac 

dysfunction (Geoghegan-Morphet et al. 2007). Treatment with ERK siRNA decreased 

LPS-induced ERK activity and TNF-α expression, confirming an important role of ERK 

activation. Furthermore, inhibition of L-type Ca2+ channel activity by verapamil 

abrogated ERK1/2 phosphorylation and TNF-α production during LPS stimulation. These 

data suggest that Ca2+ signaling results in ERK activation and TNF-α expression in 

cardiomyocytes during LPS stimulation (Geoghegan-Morphet et al. 2007).  

 

1.8 Mammalian target of rapamycin  

1.8.1 Overview 

Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase and 

contains 2549 amino acids. It forms two multi-protein complexes with distinct functions, 

mTOR complex (mTORC)1 and mTORC2. mTORC1 consists of 5 components: mTOR, 

mammalian lethal with Sec13 protein 8 (mLST8), regulatory-associated protein of mTOR 

(Raptor), DEP-domain-containing mTOR-interacting protein (Deptor) and proline rich 

Akt substrate 40 kDa (PRAS40). Raptor contributes to the assembly of the complex and 

substrate recruitment for mTOR. The interaction of mLST8 with mTOR stabilizes 

mTOR-Raptor association. PRAS40 and Deptor are negative regulators of mTORC1 

activity (Laplante & Sabatini 2009). PRAS40 binds to Raptor and inhibits mTOR kinase 

activity by blocking substrate access to Raptor. Stimuli, such as insulin, cause a release of 

PRAS40 from Raptor and allow substrate presentation to mTORC1 (Wang et al. 2007). 

mTORC2 is comprised of six different proteins: mTOR; rapamycin-insensitive 
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companion of mTOR (Rictor), protein observed with Rictor-1 (Protor-1), mammalian 

stress-activated protein kinase interacting protein (mSIN1), Deptor and mLST8. Rictor 

and mSIN1 build the structural foundation of mTORC2. mLST8 is necessary for 

mTORC2 stability and activity. Deptor decreases mTORC2 activity (Laplante & Sabatini 

2009). 

1.8.2   Regulation of mTOR signalling 

mTORC1 activation is regulated by the PI3K/Akt pathway, AMP-activated 

protein kinase (AMPK), the tuberous sclerosis complex (TSC)1/TSC2 complex and Ca2+ 

(Averous & Proud 2006; Hay & Sonenberg 2004; Hoyer-Hansen et al. 2007; Lenz & 

Avruch 2005). Studies have demonstrated that growth factors activate PI3K/Akt, ERK1/2 

or p90 ribosmal S6 kinase 1 pathways which lead to the inhibition of TSC1/2 complex 

activation. The TSC1/2 complex comprises TSC1 and TSC2 and functions as a GAP for 

Rheb, a small Ras-related GTPase. Since activated Rheb directly activates mTORC1, 

TSC1/2, due to its GAP activity, negatively regulates mTORC1 activity (Hay & 

Sonenberg 2004; Laplante & Sabatini 2009). In energy depletion and hypoxic conditions, 

AMPK is activated upon the decline of the intracellular ATP levels. Activated AMPK 

phosphorylates TSC2, leading to a reduction in mTORC1 activity (Hay & Sonenberg 

2004). In primary mouse neurons, glutamatergic stimulation activates mTOR in a 

Ca2+/CaMK II dependent fashion (Lenz & Avruch 2005) (Figure 1.3).  

On the other hand, intracellular amino acids regulate mTORC1 via TSC1/2-

independent mechanisms. Rag proteins are required for mTORC1 activation induced by 

amino acids. Rag binds with Raptor and promotes the intracellular localization of mTOR 

to a compartment that contains its activator Rheb, resulting in the activation of mTORC1 



 

 
 

26 

 

 

 
Figure 1.3. Schematic of mTORC1 signaling pathways. mTORC1 consists of 5 
components: mTOR, mLST8, Raptor, Deptor and PRAS40. PI3K, AMPK and calcium 
activate mTORC1 by inhibiting TSC1/TSC2 and activating Rheb. Amino acides activate 
mTORC1 through Rag. mTORC1 plays a role in regulating protein synthesis, gene 
expression and autophagy via 4E-BP, p70S6K, transcription factors (NF-κB, STAT3, 
SREBP1 and PPARγ ) and the ULK1/ATG13/FIP200 complex.   
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(Kim et al. 2008; Sancak et al. 2008) (Figure 1.3). 

The mechanisms that activate mTORC2 are not well understood. Akt, a 

downstream factor of mTORC2, is phosphorylated by phosphoinositi-dedependent kinase 

(PDK) 1 which recruites to the membrane and binds with PIP3 at PH domain. Since 

mSIN1, the component of mTORC2, contains a C-terminal PH domain, it is possible that 

mSIN1 mediates the translocation of mTORC2 to the membrane and promotes 

phosphorylation of Akt (Laplante & Sabatini 2009). Further studies are required to verify 

this hypothesis.  

1.8.3 Biological effects of mTORC1 signalling 

mTORC1 acts as a central regulator of cell survival, proliferation and metabolism 

by controlling biosynthesis of proteins, lipids and organelles and autophagy (Laplante & 

Sabatini 2009) (Figure 1.3). It primarily controls protein synthesis by regulating 

translation. The 5’ end of all nuclear-transcribed mRNAs possess a 7 methyl guanosine 

cap (m7G) which is essential in cap-dependent protein translation initiation and is 

recognized by eukaryotic translation initiation factor 4E (eIF4E). eIF4E forms a complex 

with eIF4G and the RNA helicase. This complex binds the 5’ cap and unwinds the 

mRNA 5’-proximal secondary structure to facilitate the binding of the 40S ribosomal 

subunit. The interaction between eIF4E and eIF4G is regulated by the eIF4E-binding 

proteins (4E-BPs), a family of translational repressor proteins. The 4E-BPs compete with 

eIF4G proteins for an overlapping binding site on eIF4E. This process is prevented by 

4E-BP phosphorylation. mTORC1 promotes protein synthesis by directly 

phosphorylating 4E-BPs which enables eIF4E to bind with eIF4G to initiate translation 

(Hay & Sonenberg 2004).  
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Besides 4E-BPs, activated mTORC1 can also phosphorylate protein 70 S6 kinase 

(p70S6K). p70S6K promotes translation by activating the ribosomal protein S6, eIF4B, 

and eukaryotic elongation factor 2 kinase (eEF2K). Activated ribosomal protein S6 is 

necessary for recruitment of mRNA to ribosomes and the formation of translation 

initiation complexes. eIF4B is a protein involved in unraveling the inhibitory secondary 

structure in the 5’-UTRs of certain mRNAs. p70S6K phosphorylates eIF4B and promotes 

its association with translation initiation complexes. Eukaryotic elongation factor 2 

(eEF2) mediates the translocation step of translation elongation and is inactivated by 

eEF2K. p70S6K negatively regulates eEF2K and thereby activates eEF2 (Laplante & 

Sabatini 2009). 

mTORC1 also controls the transcription of certain genes via transcription factors 

such as NF-κB, STAT3, peroxisome proliferator-activated receptor-γ (PPARγ) and 

regulatory element binding protein 1 (SREBP1). SREBP1 and PPARγ modulate gene 

expression involved in lipid and cholesterol homeostasis (Kim & Chen 2004).  mTORC1 

regulates lipid synthesis through SREBP1 and PPARγ (Huffman et al. 2002; Kim & Chen 

2004; Porstmann et al. 2008). In macrophages, mTORC1 promotes LPS-induced pro-

inflammatory factor expression via NF-κB but inhibits IL-10 expression via STAT3 

(Weichhart et al. 2008). 

Autophagy is the process of self-digestion by a cell through the action of enzymes 

originating within the same cell. This process is necessary for maintaining a balance 

between the synthesis, degradation, and subsequent recycling of cellular products. 

mTORC1 inhibits autophagy through a protein complex containing focal adhesion kinase 

family-interacting protein of 200 kDa (FIP200), autophagy-related gene 13 (ATG13) and 
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unc-51-like kinase 1 (ULK1). ULK1 is a mammalian serine/threonine protein kinase and 

plays a key role in the initial stages of autophagy. FIP200 and ATG13 are critical for the 

correct localization of ULK1 to the pre-autophagosome and the stability of ULK1 

protein. mTORC1 phosphorylates and thereby represses ULK1 and ATG13, leading to 

inhibition of autophagy (Ganley et al. 2009; Jung et al. 2009).  

1.8.4  Biological effects of mTORC2 signaling 

mTORC2 participates in cell survival, metabolism, proliferation and cytoskeleton 

organization (Laplante & Sabatini 2009). Akt is a well known factor contributing to cell 

survival, metabolism and proliferation. Activation of Akt requires phosphorylation at 

Ser308 and Ser473 of the protein (Manning 2004). Deletion of mTORC2 components 

inhibits the phosphorylation of Akt at Ser473 and activity of transcription factors 

(forkhead box protein O1, FoxO1 and FoxO3α). These two transcription factors control 

the expression of genes involved in cell survival, proliferation and metabolism (Guertin 

et al. 2006). mTORC2 controls the actin cytoskeleton by paxillin phosphorylation, 

relocalization of paxillin to focal adhesions, and the activation of Rho-GTPases (Jacinto 

et al. 2004). 

1.8.5 mTOR in the heart 

mTOR is now considered to be an essential regulator of cardiac function, contributing 

to the development of cardiac hypertrophy in physiological or pathological conditions 

(Balasubramanian et al. 2009; McMullen et al. 2004; Shioi et al. 2003). In the pressure-

overloaded myocardium, both mTORC1 and mTORC2 are activated. Rapamycin, an 

inhibitor of mTORC1, promotes the regression of compensated hypertrophy as well as 

decompensated hypertrophy, via a p70 ribosomal S6 kinase 1–dependent mechanism 
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(McMullen et al. 2004; Shioi et al. 2003). Akt, the downstream mediator of mTORC2, 

promotes cardiomyocyte growth and survival, which are critical events in hypertrophic 

heart, supporting a role of mTORC2 signaling in hypertrophy (Balasubramanian et al. 

2009). Moreover, under hypoxic conditions, inhibition of mTORC1 by everolimus 

decreases infarct size and left ventricular remodeling after myocardial infarction through 

enhanced autophagy in the border region of the infarct zone (Buss et al. 2009). 

Recent studies have reported that LPS activates mTOR in phagocytes, bone 

marrow cells (Chen et al. 2010) and HL-1 cells (Weichhart et al. 2008). However, the 

effect of mTOR on pro-inflammatory factor expression is still controversial. mTOR 

promotes pro-inflammatory factors (TNF-α, IL-12) in monocyte-derived dendritic cells 

(Haidinger et al. 2010). On the contrary, mTOR is a negative regulator of TNF-α 

production in monocytes (Weichhart et al. 2008), macrophages (Baker et al. 2009) and 

HL-1 cells (Song et al. 2010). However, the role of mTOR in the heart during sepsis has 

not been elucidated. An objective of this thesis was to investigate if mTOR regulates 

myocardial TNF-α production during endotoxemia (Chapter 3). 

 

1.9 Regulation of TNF-α expression by MAPKs during endotoxemia 

 MAPKs are a family of serine/threonine protein kinases. There are three well-

characterized subfamilies: p38, ERK1/2 and JNK. MAPK pathways are activated by a 

dual-specificity serine-threonine MAPK-kinase (MKK) that, in turn, is phosphorylated 

and activated by an upstream MKK-kinase (MKKK) at two serine residues. The 

phosphorylation of MAPKs leads to increased substrate accessibility and catalysis (Cobb 

& Goldsmith 2000). Activated MAPKs can activate a wide range of downstream targets 
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and regulate gene transcription, mRNA stability, transport and translation (Davis 1993; 

Dong et al. 2002; Hazzalin & Mahadevan 2002). These signaling cascades are not only 

involved in normal cellular process, but have also been implicated in the pathology of 

many diseases, such as cancer, atherosclerosis, diabetes, arthritis and septic shock (Liu et 

al. 2007).   

1.9.1 p38 

  To date, five p38 isoforms have been identified: p38α, p38β, p38β2, p38γ and 

p38δ. The p38α and p38β genes are ubiquitously expressed. However, p38γ and p38δ are 

differentially expressed in different tissues. p38γ is synthesized mostly in skeletal muscle 

and p38δ is expressed in lung, kidney, testis, pancreas and small intestine (Ono & Han 

2000). The p38 pathway is known to be responsible for a multitude of cellular events, 

such as proliferation, differentiation, apoptosis and inflammation (Herlaar & Brown 

1999). Recently, p38 has been recognized as an important regulator of heart function in 

various animal models. For example, transgenic mice with targeted activation of p38 in 

cardiomyocytes have impaired systolic as well as diastolic functions of the heart (Liao et 

al. 2001). p38 is activated in the myocardium during ischemia and reperfusion. Deletion 

of p38α gene decreases infarct size following myocardial ischemia and reperfusion (Otsu 

et al. 2003). In spontaneously hypertensive stroke-prone rats receiving a high-salt/high-

fat diet, myocardial p38 is activated during the development of cardiac hypertrophy and 

contributes to hypertensive end-organ damage and premature mortality (Behr et al. 2001). 

Moreover, evidence suggests a key role of p38 activity in myocardial TNF-α expression 

and cardiac dysfunction in sepsis. For instance, LPS increases p38 phosphorylation in 

primary neonatal cardiomyocytes (Peng et al. 2005a; b; Peng et al. 2003a; Peng et al. 
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2003b). Pharmacological inhibition of p38 or specific down-regulation of p38α 

significantly suppresses both TNF-α mRNA and protein levels in cardiomyocytes (Peng 

et al. 2003b). Consistent with these in vitro studies, p38 is also activated and mediates 

myocardial TNF-α expression in sepsis. Inhibition of p38 activity significantly reverses 

LPS-induced left ventricular depression and decreases mortality to 65% in endotoxemia 

(Peng et al. 2003b). Therefore, p38 activation plays a critical role in myocardial TNF-α 

expression and myocardial depression in endotoxemia (Zhang & Feng 2010).  

1.9.2 ERK1/2 

Phosphorylation of ERK1 and ERK2 (p44 MAPK and p42 MAPK, respectively) 

are catalyzed by MEK1/2, which in turn, are activated by Raf-1. The ERKs can 

phosphorylate transcription factors, such as Elk-1, SAP1, Ets, and NF-κB, thereby 

regulating expression of proteins required for a given response. Activation of ERK1/2 

promotes TNF-α expression during sepsis in several types of cells including 

cardiomyocytes (Peng et al. 2005a; b; Rosengart et al. 2000b). Indeed, ERK1/2 in 

cardiomyocytes is phosphorylated transiently but dramatically by LPS stimulation. 

Inhibition of ERK1/2 by ERK siRNA or pharmacological inhibitors (e.g., PD98059 and 

U0126) abrogates TNF-α production induced by LPS (Geoghegan-Morphet et al. 2007; 

Peng et al. 2005b), suggesting that ERK1/2 play an important role in TNF-α expression. 

Furthermore, inhibition of ERK1/2 by U0126 decreases TNF-α production and protects 

the lung from LPS-induced injury in mice (Schuh & Pahl 2009).  

1.9.3 JNKs 

JNKs are activated by MKK4 and MKK7. The JNK family contains three 

members: JNK1, JNK2 and JNK3. JNK1 and JNK2 are expressed in the myocardium (Ip 
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& Davis 1998). LPS activates JNK and increases TNF-α transcription and translation in 

macrophages and monocytes (Comalada et al. 2003; Swantek et al. 1997). LPS also 

increases phosphorylation of JNKs in cultured mouse neonatal cardiomyocytes (Peng et 

al. 2005a; Peng et al. 2009). Unexpectedly, JNK1 activation decreases TNF-α expression 

in these cells (Peng et al. 2009). Deficiency of the JNK1 gene further enhances TNF-α 

expression in cardiomyocytes in response to LPS. In addition, blocking JNK1 signaling 

pathway also enhances the ROS production stimulated by LPS (Peng et al. 2009), which 

may be due to the increase of TNF-α levels (Garg & Aggarwal 2002). Increased ROS 

production and TNF-α expression may lead to myocardial depression. Indeed, cardiac 

function in JNK1-/- mice is further decreased in endotoxemia, compared with wild-type 

animals (Peng et al. 2009).  These data demonstrate that JNK1 activation inhibits 

myocardial TNF-α expression and improves cardiac function in endotoxemia. In 

addition, deficiency in JNK1 enhances LPS-induced p38 and ERK1/2 activity (Peng et al. 

2009), suggesting crosstalk among the MAPK subfamily members in cardiomyocytes 

during sepsis. 

1.9.4 Crosstalk among MAPKs  

Crosstalk among different MAPK signaling pathways may determine the final 

biological response upon stimulation and the nature of the crosstalk varies depending on 

the cell types and stimuli. For example, transforming growth factor-β (TGF-β)-stimulated 

ERK1/2 activation caused dephosphorylation of LPS-induced p38 in macrophages (Xiao 

et al. 2002b). Conversely, activation of p38 by adenoviral expression of MKK3b 

dephosphorylates MEK1/2 via phosphatase 2A in human skin fibroblasts (Junttila et al. 

2008; Li et al. 2003). Additionally, sustained JNK activation due to mitogenic factors 
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inhibits ERK activity in COS-7 cells (Shen et al. 2003).  

In cardiac myocytes, activation of different MAPKs shows completely opposite 

effects in sepsis. In this regard, activation of p38 and ERK1/2 promote TNF-α 

production, while activation of JNK1 inhibits TNF-α expression during LPS stimulation 

(Peng et al. 2009). Our group has shown that deficiency in JNK1 enhances LPS-induced 

p38 and ERK1/2 activity and TNF-α production in myocardium, suggesting a negative 

feedback of JNK1 on p38 and ERK1/2 activity (Peng et al. 2009). Interestingly, the 

inhibitory effects of JNK1 are mediated by c-fos, an immediate early response gene 

involved in a wide spectrum of cellular response including cell proliferation, growth and 

cytokine production (Herrera & Robertson 1996; Lee et al. 2004). The expression of c-

fos is enhanced by LPS stimulation in the myocardium, and disrupted by an adenovirus 

encoding dominant negative mutant of JNK1 and a JNK pharmacological inhibitor 

(SP600125), suggesting the c-fos is downstream of JNK1 (Meng et al. 1998; Peng et al. 

2009). Furthermore, deficiency of c-fos gene augmented p38 and ERK1/2 activity and 

cardiac TNF-α expression. Conversely, over-expression of c-fos inhibited TNF-α 

production associated with reductions in p38 and ERK1/2 activity. More importantly, 

deficiency in c-fos resulted in a further damage in cardiac function during endotoxemia 

(Peng et al. 2009). These results demonstrate the inhibitory effects of c-fos on p38 and 

ERK1/2 activity, and TNF-α expression, leading to improvement in cardiac function 

during endotoxemia. c-fos can dimerise with c-jun to form the activator protein 1 (AP-1), 

which upregulates the transcription of a diverse range of genes. However, the effects of c-

fos in cardiac myocytes are independent of AP-1 since inhibition the formation of c-

fos/c-jun AP-1 complex or treatment with a decoy AP-1 oligodeoxynucleotide did not 
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alter TNF-α expression (Peng et al. 2009). Therefore, the JNK1 inhibits LPS-induced 

TNF-α expression through inhibition of ERK1/2 and p38 activation (Zhang & Feng 

2010). This negative crosstalk is mediated by c-fos (Figure 1.4). 

 

1.10  MAPK phosphatases 

1.10.1 Overview  

The strength and duration of MAPK signaling are tightly controlled in cells and 

tissues.  Dephosphorylation of MAPKs is the most efficient way for termination of these 

pathways. Dual-specificity (tyrosine and threonine) MAPK phosphatases (MKPs) have 

been shown to inactivate MAPK by dephosphorylating phosphothreonine and 

phosphotyrosine residues (Liu et al. 2007).  

In mammalian cells, 11 MKPs have been identified (MKP-1 – MKP-5, MKP-7, 

MKPX, dual specific phosphatase 2 (DUSP2), human VH1-like PTPase-3 (HVH3), 

HVH5, DUSP24) (Dickinson & Keyse 2006). According to subcellular localization and 

patterns of transcriptional regulation, MKPs are divided into two groups. Group 1, 

including MKP1, MKP2, HVH3 and DUSP2, is primarily localized in the nucleus. 

Expression of these MKPs can be quickly induced by extracellular stimuli to negatively 

controls MAPK activity. The MKPs in group 2 are localized in the cytoplasm and/or 

nuclear compartments. The expression of these genes is induced at a much slower rate 

compared with the genes that encode the first group of MKPs (Keyse 2000). 

1.10.2 MKP-1 and TNF-α  expression during endotoxemia 

MKP-1, the founding member of this family, is a critical regulator of innate immune  
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Figure 1.4. Crosstalk among MAPKs on regulating LPS-induced TNF-α expression in 
cardiomyocytes. ERK1/2 and p38 MAPK activity enhance LPS-induced TNF-α 
production, while JNK1 activity shows an inhibitory effect. This function of JNK1 is 
performed by attenuating LPS-induced ERK1/2 and p38 MAPK activity via c-fos. 
(Adapted from Can. J. Physiol. Pharmacol., Zhang and Feng, 2010). 
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responses (Liu et al. 2007). Overexpression of MKP-1 accelerates JNK and p38 

inactivation and attenuates TNF-α production in RAW264.7 macrophages in response to 

LPS, indicating that MKP-1 preferentially inactivates p38 and JNK relative to ERK 

(Chen et al. 2002). Consistently, MKP-1 deficiency leads to sustained activation of p38 

and JNK, and enhances pro-inflammatory factor expression in LPS-treated macrophages 

(Zhao et al. 2006). Furthermore, MKP-1-/- mice exhibit significantly increased serum 

TNF-α, IL-1β, CC-chemokine ligand 2 (CCL2), interferon-gamma (IFN-γ) and IL-6, and 

show a higher incidence of multi-organ failure and a greater mortality rate in 

endotoxemia, compared with wild-type mice (Hammer et al. 2006; Salojin et al. 2006), 

these findings suggest that MKP1 is an important negative regulator of MAPK and 

inhibits TNF-α expression during the inflammatory response of the innate immune 

system (Liu et al. 2007). 

1.10.3 Regulation of MKP-1 activity 

The phosphatase activity of MKP-1 is regulated by transcriptional induction and 

protein stability (Liu et al. 2007). MKP-1 expression is inducible. In fibroblasts, MKP-1 

induction is dependent on ERK1/2 (Brondello et al. 1997) or JNK activation (Bokemeyer 

et al. 1996). PKC, Raf-1 and JNK1 are involved in MKP-1 transcriptional induction in 

macrophages (Sanchez-Tillo et al. 2006; Sanchez-Tillo et al. 2007; Stawowy et al. 2003; 

Valledor et al. 2000; Valledor et al. 1999). The Ras/Rac pathway is necessary for 

increasing MKP-1 expression in smooth muscle cells in response to cyclic strain stress 

(Li et al. 1999). 

MKP-1 can be post-translationally modified via phosphorylation, which is not 

necessary for MKP-1 activity, but leads to stabilization of the protein. Indeed ERK-
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induced phosphorylation of MKP1 at Serine 359 and Serine 364 increases MKP1 half-life 

by two to three folds (Brondello et al. 1999). The reduced degradation results in a greater 

MKP-1 accumulation and thereby greater MKP-1 activity. 

1.10.4 MKP-1 in the heart 

MKP-1 has been demonstrated in cardiomyocytes and regulates cardiac hypertrophy 

and cardiomyocyte apoptosis (Fischer et al. 1998; Kaiser et al. 2004; Palm-Leis et al. 

2004). MKP-1 is upregulated in hypertrophic hearts induced by Ang-II (Fischer et al. 

1998). Overexpression of MKP-1 in cardiomyocytes significantly inhibits cyclic stretch- 

and Ang II-induced JNK and p38 activation, and the consequent increase in protein 

synthesis (Palm-Leis et al. 2004). These results indicate that MKP-1 limits the cardiac 

hypertrophic response. In addition, transgenic mice overexpressing MKP-1 show 

significant inhibition of baseline p38 and JNK activation in the heart. Ischemia-induced 

prominent p38 phosphorylation and cardiomyocyte apoptosis are significantly inhibited 

in MKP-1 transgenic mice. Consistently, MKP-1-/- mice show greater injury compared 

with wild-type littermates after ischemia/reperfusion (Kaiser et al. 2004). The evidence 

supports the notion that MKP-1 decreases cardiomyocyte apoptosis and cardiac injury 

after ischemia/reperfusion via deactivating p38. Although MKP-1 may protect the heart 

during hypertrophy and ischemia/reperfusion, the effect of MKP-1 on cardiac 

dysfunction during sepsis remains unknown. One of the objectives of this study was to 

elucidate the role of MKP-1 in cardiac TNF-α expression during endotoxemia (see 

Chapter 4).  
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1.11 Rationale and hypotheses 

The induction of tumor necrosis factor-α (TNF-α) expression in cardiomyocytes 

leads to myocardial depression during sepsis. However, the underlying molecular 

mechanisms are not fully understood. Rac1, a small monomeric GTP-binding protein, 

regulates various cellular functions, such as superoxide (O2
-) production, microtubule 

stability, cytoskeletal remodeling and gene transcription (Burridge & Wennerberg 2004; 

Hordijk 2006). It is an essential regulator of cardiac function under physiological and 

various pathological conditions (Satoh et al. 2006; Shen et al. 2009; Sussman et al. 2000). 

A recent study has reported that LPS activates Rac1 in cardiomyocytes. Rac1-GTP 

activates NADPH oxidase and then leads to TNF-α mRNA expression in cardiomyocytes 

(Zhu et al. 2009). However the mechanisms of Rac1 activation and the downstream 

signaling of Rac1 on TNF-α production and myocardial dysfunction during endotoxemia 

are not fully elucidated. Thus, the overall hypothesis of this thesis was that Rac1 

promotes TNF-α expression and myocardial dysfunction during endotoxemia (Figure 

1.5).  

PI3K is an important activator of Rac-GEFs (Welch et al. 2003). PtdIns(3,4,5)P3, a 

product of PI3K, activates Rac through PtdIns(3,4,5)P3-sensitive GEFs in neutrophils and 

fibroblasts (Burridge & Wennerberg 2004; Welch et al. 2003). On the other hand, Rac 

can also be activated by PI3K-independent mechanisms, such as cAMP, Ca2+, DAG and 

Src (Welch et al. 2003). Until now, the mechanisms of myocardial Rac1 activation in 

endotoxemia are unclear. Thus the first specific hypothesis of this thesis (Chapter 2) was 

that PI3K-mediated Rac1 activation is required for myocardial TNF-α expression and 

cardiac dysfunction via NADPH oxidase in endotoxemia (Figure 1.5).  
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Figure 1.5. Proposed hypotheses of Rac1 in regulating myocardial TNF-α expression and 
cardiac dysfunction in endotoxemia. Hypothesis 1: PI3K-mediated Rac1 activation is 
required for myocardial TNF-α expression and cardiac dysfunction via NADPH oxidase 
in endotoxemia.  Hypothesis 2: Rac1 promotes LPS-induced TNF-α production via 
inhibition of Na/K-ATPase. Hypothesis 3: Rac1/PAK1 induces myocardial MKP-1 
expression via JNK1 in response to LPS. It was further hypothesized that increased 
MKP-1 production limits TNF-α expression and improves heart function in endotoxemia.    

 

 

 

 

 

 

 

LPS 

MAPKs 

NADPH oxidase 

Cardiac Dysfunction  

PI3K 

TNF-! 

PAK1 Na/K-ATPase 

MKP-1 

Rac1-GDP Rac1-GTP 



 

 
 

41 

Na/K-ATPase catalyzes ATP hydrolysis to actively transport Na+ out of and K+ into 

cells. It is the main pathway for Na+ extrusion from the cells and therefore plays an 

essential role in the regulation of intracellular Na+ concentrations, which, via the 

Na+/Ca2+ exchanger, control intracellular Ca2+. Our group has reported that LPS increases 

Ca2+ concentration in cardiomyocytes, which participates in TNF-α expression in these 

cells. In addition, Na/K-ATPase activity is decreased in the lung (Koksel et al. 2006) and 

kidney (Guzman et al. 1995) and is involved in regulating TNF-α expression in 

macrophages in response to LPS. However, effects of LPS on Na/K-ATPase activity in 

the heart are not known and no published study to date has examined the effect of Na/K-

ATPase in regulating myocardial TNF-α protein production during endotoxemia. 

Therefore, the second specific hypothesis of this thesis (Chapter 3) was that Rac1 

promotes LPS-induced TNF-α production via inhibition of Na/K-ATPase (Figure 1.5).  

Although ERK1/2, p38 and JNK1/2 are activated in cardiomyocytes during 

endotoxemia, they show different effects on TNF-α expression (Peng et al. 2005b; Peng 

et al. 2003b; Peng et al. 2009; Rosengart et al. 2000a; Thakur et al. 2006). Activated 

ERK1/2 and p38 promote TNF-α expression (Peng et al. 2005b; Peng et al. 2003b; 

Rosengart et al. 2000a; Thakur et al. 2006). In contrast, JNK1 decreases TNF-α 

expression and improves cardiac function during endotoxemia through inactivating 

ERK1/2 and p38 (Peng et al. 2009). However, the molecular mechanisms of the cross-

talk among JNK, ERK1/2 and p38 are not fully understood. MKP-1 is an important 

negative feedback regulator of innate immune response via its prolonging of p38 and 

JNK activation and decreasing of the production of pro-inflammatory cytokines (Hammer 

et al. 2006; Salojin et al. 2006; Zhao et al. 2006). To our knowledge, the effects of MKP-
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1 on myocardial TNF-α expression and myocardial dysfunction during endotoxemia have 

not been investigated. It has been shown that Rac/MAPK is one of the pathways that 

promote MKP-1 expression (Li et al. 1999). PAK1 is a downstream effector of Rac1 and 

participates in modulating cardiomyocyte contractility and cardiac hypertrophy (Sheehan 

et al. 2007; Sussman et al. 2000). There is evidence that PAK regulates proIL-1 

expression in macrophages through activation of MAPKs (Hsu et al. 2001). Thus, the 

third specific hypothesis of this thesis (Chapter 4) was that Rac1/PAK1 induces 

myocardial MKP-1 expression via JNK1 in response to LPS. It was further hypothesized 

that increased MKP-1 production limits TNF-α expression and improves heart function 

in endotoxemia (Figure 1.5). 
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Chapter 2: PI3K-mediated Rac1 promotes LPS-induced TNF-α  expression and 

cardiac dysfunction via NADPH oxidase      

A version of this chapter has been published: 
 
Zhang T, Lu X, Beier F, Feng Q. 2011. Rac1 activation induces tumor necrosis 

factoralpha expression and cardiac dysfunction in endotoxemia. J Cell Mol Med 15:1109-

21, Used with permission.  

 

2.1 Introduction 

Sepsis is a major consequence of infectious diseases and one of the leading causes 

of death in the intensive care unit (Angus & Wax 2001). Myocardial dysfunction induced 

by endotoxins or lipopolysaccharides (LPS) of Gram-negative bacteria is a common 

complication of septic shock and renders septic patients at high risk of developing multi-

organ failure, which is associated with high mortality (Court et al. 2002). The inhibitory 

effect of LPS on cardiac function is mediated through the production of pro-inflammatory 

cytokines (Parrillo et al. 1985). TNF-α is a major cytokine responsible for cardiac 

dysfunction during sepsis (Bozkurt et al. 1998; Grandel et al. 2000; Meng et al. 1998; 

Natanson et al. 1989; Oral et al. 1997; Peng et al. 2003; Tracey et al. 1986). However, the 

molecular mechanisms underlying myocardial TNF-α production during sepsis are not 

fully understood.   

 Rac GTPases are a subfamily of Ras-homologous (Rho) GTPases and act as 

molecular switches, cycling between active GTP-bound and inactive GDP-bound states 

(Burridge & Wennerberg 2004; Hordijk 2006). The switch is activated when an upstream 

signal activates a guanine nucleotide exchange factor (GEF) which then acts to facilitate 

the release of GDP from the Rac GTPase and the subsequent binding of GTP. Rac 
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activity is terminated by hydrolysis of GTP to GDP, a process which is accelerated by 

GTPase-activating proteins (GAPs). Rac is an intracellular transducer of signaling and 

can interact with specific effectors that regulate diverse cellular functions, such as 

cytoskeletal remodeling, microtubule stability, gene transcription, and superoxide (O2
-) 

production (Burridge & Wennerberg 2004; Hordijk 2006).  

There are four different Rac proteins: the ubiquitously expressed Rac1, the 

hematopoietic cell-specific Rac2, Rac3 that is expressed in the brain, liver, lung and 

pancreas and widespread RhoG (Haataja et al. 1997). Previous studies have shown that 

LPS increases Rac1 activity in phagocytes, however the effect of Rac1 on TNF-α 

expression in these cells remains controversial (Monick et al. 2003; Sanlioglu et al. 2001; 

Thakur et al. 2006). Rac1 is the predominant Rac protein in cardiomyocytes (Pracyk et al. 

1998; Satoh et al. 2006). Furthermore, Rac1 is activated during LPS stimulation and 

contributes to myocardial TNF-α expression (Zhu et al. 2009). However, regulation of 

Rac1 activation during LPS stimulation is not fully understood. Phosphoinositide-3 

kinases (PI3K) are a family of evolutionary conserved signaling molecules that mediate 

many cellular responses. The production of phosphatidylinositol (3,4,5)-triphosphate 

(PtdIns(3,4,5)P3) from PI3K activates Rac via a PtdIns(3,4,5)P3-sensitive GEF. However, 

Rac can also be activated by PI3K-independent mechanisms (Welch et al. 2003). 

Whether Rac activation in cardiomyocytes during LPS stimulation is mediated by PI3K 

remains to be determined. 

NADPH oxidase is an enzyme system that catalyzes the NADPH-dependent 

reduction of oxygen to O2
- and consists of multi-subunits including Nox2 (gp91phox), 

p22phox, p40phox, p47phox, p67phox and Rac. It has been shown that NADPH oxidase is a 
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major source of O2
- in cardiomyocytes under pathophysiological conditions and 

activation of Rac is essential for NADPH oxidase activation (Moldovan et al. 2006). We 

have demonstrated that Nox2-containing NADPH oxidase plays a pivotal role in LPS-

induced cardiac TNF-α production (Peng et al. 2005). However, the role of Rac1 in 

cardiac dysfunction during sepsis remains unknown.  

In the present study, we hypothesized that Rac1 was necessary for LPS-induced 

TNF-α expression and myocardial dysfunction via NADPH oxidase activation. To test 

this hypothesis, a cardiac-specific Rac1-deficient mouse was generated. Our results 

demonstrated that LPS-induced Rac1 activation in cardiomyocytes is PI3K-dependent. 

Rac1 deficiency blocked cardiomyocyte TNF-α expression and decreased LPS-induced 

O2
- generation. Furthermore, cardiac-specific deficiency of Rac1 improved myocardial 

function in endotoxemia.  

 

2.2  Materials and methods 

2.2.1 Animals and preparation of neonatal mouse cardiomyocytes 

The investigation conforms with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institute of Health (NIH Publication #85-23, 

revised 1996) and experimental protocols were approved by Animal Use Subcommittee 

at the University of Western Ontario. C57BL/6 wild-type (WT) and Rac1 floxed (Rac1f/f) 

mice (Glogauer et al. 2003) were purchased from the Jackson Laboratory (Bar Harbor, 

Maine). In Rac1f/f mice, LoxP sites were inserted at both sides of exon 1 of the Rac1 

gene. Cre transgenic mice (CreTG/+) with over-expression of Cre recombinase under the 

control of α-myosin heavy-chain (MHC) promoter were provided by Dr. E. Dale Abel 
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(University of Utah, UT). This Cre recombinase can excise the region between the loxP 

sites and is specifically expressed in cardiomyocytes since is it under the control of the α-

MHC promoter. The generation of cardiomyocyte-specific Rac1 knockout mice 

(Rac1CKO) was achieved by breeding Rac1f/f mice with CreTG/+ mice as we have recently 

described (Rui et al. 2005).  

2.2.2 Isolation and culturing of neonatal mouse cardiomyocytes 

The neonatal cardiomyocytes were prepared and cultured according to methods 

we have previously described (Song et al. 2000). The neonatal cardiomyocyte cultures 

were prepared from mice born within 24 hours. For each cell culture, 5-10 neonatal 

mouse hearts were isolated, washed and minced in sodium bicarbonate, Ca2+ and Mg2+-

free Hanks balanced salt solution (D-Hanks, Sigma, Oakville, Ontario). Cardiomyocytes 

were dispersed by 10 min of incubation with 22.5 µg/mL liberase 4 (Roche, Laval, 

Quebec) in D-Hanks at 37 °C with gentle agitation. Cells were collected by 

centrifugation at 200 g for 5 min and re-suspended in 10% FCS-containing M199 

medium (Sigma). Noncardiomyocytes were removed through 1 hour of preplating after 

which cardiomyocytes were plated in M199 medium containing 10% fetal bovine serum 

(FBS) on culture plates precoated with 1% gelatin (Sigma). Neonatal cardiomyocytes 

were cultured in a humidified incubator at 37°C, in the presence of 5% CO2. A 

subconfluent spontaneously beating monolayer of cardiomyocytes was formed within 2 

days. Cells were treated with LPS (1 µg/ml, Sigma), apocynin (400 µM, Sigma), 

LY294002 (10 µM, Sigma) and U0126 (10 µM, Sigma) or infected with adenoviruses. 

2.2.3 Adenoviral infection of neonatal cardiomyocytes 

Cardiomyocytes were infected with adenoviruses carrying a dominant-negative 
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form of Rac1 (Ad-Rac1N17, Vector Biolabs, Philadelphia, PA), Cre recombinase (Ad-

Cre, Vector Biolabs, Philadelphia, PA) or green fluorescence protein (Ad-GFP, a gift 

from Dr. J. Lipp, Medical University of Vienna, Austria) as a control, at a multiplicity of 

infection (MOI) of 10 plaque forming units/cell. Adenovirus-mediated gene transfer was 

implemented as previously described (Peng et al. 2003). Briefly, cells were incubated for 

4 hours in the present of minimal volume of M199 containing adenoviruses. Following 

the incubation, full volume of 10% FBS M199 was applied. All experiments were 

performed after 48 hours of adenoviral infection. 

2.2.4 Rac1 activity assay 

Rac1 activity was measured using the EZ-Detect Rac1 activation kit (Pierce, 

USA) according to the manufacturer’s protocol. Briefly, cells or tissues were lysed. 

Thirty micrograms of protein lysates were taken to detect total Rac1 protein. At the same 

time, 1 mg of protein lysates were incubated with 20 µg of glutathione S-transferase 

(GST)-human Pak1-p21 binding domain at 4° C for 1 hour. The beads were washed three 

times to remove the unbound material and were then boiled in 2x SDS buffer for 5 

minutes to elute Rac1-GTP. Rac1-GTP and total Rac1 protein levels were detected by 

western blot analysis using an anti-Rac1 antibody included in the kit. Rac1 activity was 

expressed as a ratio of Rac1-GTP to total Rac1 proteins. 

2.2.5 PI3K activity assay  

PI3K activity in cultured cardiomyocytes or myocardial tissue lysates was 

determined using a competitive ELISA kit (Echelon Biosciences, Salt Lake City, UT) 

according to the manufacture’s protocol with modifications (Bonnans et al. 2006). 

Briefly, cell or tissue lysates (25 µg protein) were incubated with phosphatidylinositol 
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(4,5)-bisphosphate [PI(4,5)P2] substrate (100 pmol) in 100 µL kinase reaction buffer. The 

reaction products were incubated with a PI(3,4,5)P3 detector protein, and then added to 

the PI(3,4,5)P3-coated microplate for competitive binding. A peroxidase-linked 

secondary detection reagent and colorimetric detection at 450 nm was used to detect 

PI(3,4,5)P3 detector protein binding to the plate.  

2.2.6 Measurement of TNF-α  mRNA  

Total RNA was extracted from cardiomyocytes using the Trizol Reagent (Gibco-

BRL) as per manufacturer's instructions. TNF-α mRNA levels were determined by real-

time reverse-transcriptase polymerase chain reaction (RT-PCR) as as previously 

described (Peng et al. 2003). Total RNA (1 µg) was reverse transcribed using random 

hexamers. 28S rRNA was used as an internal control. The primers were: TNF-α upstream 

5′-CCG ATG GGT TGT ACC TTG TC-3′ and downstream 5′-GGG CTG GGT AGA 

GAA TGG AT-3′. 28S rRNA upstream 5’-TTG AAA ATC CGG GGG AGA G-3’ and 

downstream 5’-ACA TTG TTC CAA CAT GCC AG-3’. Samples were amplied for 34 

cycles using MJ Research Opticon Real-time PCR machine. The levels of TNF-α were 

compared to that of 28S rRNA, and the relative expression of these genes was obtained.  

2.2.7 Measurement of TNF-α  protein 

TNF-α protein levels were measured using a mouse TNF-α ELISA kit 

(eBioscience, USA), according to the manufacturer’s instructions. Briefly, ELISA plates 

were coated with coating buffer containing capture antibody for overnight. The wells 

were washed and blocked with assay diluent. Standards and samples were added to the 

appropriate well and incubated overnight at 4°C. After wash, wells were incubated with 

the detection antibody for 1 hour and then avidin-HRP for 30 min at room temperature. 



 

 
 

60 

After thorough washing, each well was incubated with substrate solution for 15 min. 

Reaction was stopped by 1 M H3PO4. Plate was read at 450 nm. The concentration of 

TNF-α was calculated according to the standard curve. The measurements were 

standardized with cell numbers or expressed as TNF-α levels to total proteins. 

2.2.8 Western blot analysis 

Thirty micrograms of protein lysates were subjected to separation on a 10% SDS-

PAGE gel, followed by electrotransfer to nitrocellulose membranes. Blots were probed 

with specific antibodies against ERK1/2 (1:500) and phospho-ERK1/2 (1:500), p38 

(1:500) and phospho-p38 (1:500; Cell Signaling Technology, Danvers, MA), followed by 

incubation with horseradish peroxidase-conjugated secondary antibodies (1:3000, Santa 

Cruz Biotechnology, CA) respectively. Signals were detected by the chemiluminescence 

detection method and quantified by densitometry. 

2.2.9 Lucigenin assay 

NADPH-dependent superoxide (O2
-) generation was measured in cell lysates by 

lucigenin-enhanced chemiluminescence (40 µg of protein, 100 µM β-NADH, 5 µM 

lucigenin, sigma). The chemiluminescence was detected by a mutilabel counter 

(SpectraMax M5, Molecular Devices). Replicates were incubated in the presence of the 

flavoprotein inhibitor (diphenyleneiodonium, DPI, 10 µM) to ensure O2
- was generated 

from NADPH oxidase, as previously described (Peng et al. 2005). The light signal was 

monitored for 1.5 seconds and counts per second (CPS) were presented as NADPH 

oxidase activity that was DPI inhibitable.   

2.2.10 Isolated mouse heart preparations 

Adult Rac1f/f and Rac1CKO (male, 3 months old) mice were treated with LPS  
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(2mg/kg, i.p.) or saline. After 2 hours, mouse hearts were isolated and perfused in a 

Langendorff-system with Kreb’s-Henseleit buffer at 3 ml/min constant flow. The 

perfusion buffer was kept at 37 °C and consistently bubbled with a mixture of 95% O2 

and 5% CO2. Myocardial function was assessed as previously described with 

modifications (Peng et al. 2005). Briefly, a 6-0 silk suture was passed through the apex of 

the left ventricle and threaded through a light-weight rigid coupling rod, which was 

connected to a force-displacement transducer (FT03) to record tension and heart rate. The 

heart work was calculated by multiplying the force (g) by the heart rate (bpm). Maximal 

and minimal first derivatives of force (+dF/dtmax and -dF/dtmin) which represent the rate 

of contraction and relaxation respectively, were analyzed by PowerLab Chart program 

(AD Instruments). 

2.2.11 Statistical analysis  

Results are presented as mean ± SEM from at least three independent 

experiments. Differences between two groups were analyzed by a standard Student t-test. 

For multigroup comparisons, one or two-way ANOVA followed by Student-Newman-

Keuls or Bonferroni post-test was performed. P < 0.05 was considered statistically 

significant. 

 

2.3 Results 

2.3.1 Myocardial Rac1 activation by LPS 

To examine the effect of LPS on Rac1 activity, neonatal cardiomyocytes isolated 

from C57BL/6 mice were treated with LPS (1 µg/ml) for 5, 15, 30 and 60 minutes. As 

shown in Figure 2.1A, Rac1 activity in these cells peaked at 15 minutes and declined to 
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Figure 2.1. LPS activates Rac1 in neonatal cardiomyocytes and in the adult myocardium. 
A. Cardiomyocytes were isolated from WT mice, cultured for 48 hours, and then treated 
with vehicle or LPS (1 µg/ml) for 5, 15, 30 and 60 minutes. Rac1 activity was measured 
using the EZ-Detect Rac1 activation kit. B. Adult male Rac1f/f mice were treated with 
LPS (2 mg/kg, i.p.) for 30 minutes. Rac1 activity in the left ventricular myocardium was 
measured as described above. Data are means ± SEM from 3 - 4 mice or independent 
experiments.  *P<0.05 vs. control. 
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about control levels by 60 minutes after LPS stimulation. To verify these in vitro results, 

Rac1f/f mice were treated with LPS (2 mg/kg, i.p.) or saline for 30 minutes and 

myocardial Rac1 activity was measured. In response to LPS, myocardial Rac1 activity 

was significantly increased (P<0.05, Figure 2.1B). These data show that LPS activates 

Rac1 in cardiomyocytes in vitro and in the myocardium in vivo. 

2.3.2 Rac1 activation and cardiomyocyte TNF-α  expression during LPS stimulation  

To elucidate the role of Rac1 in LPS-induced TNF-α expression, neonatal 

cardiomyocytes isolated from WT mice were infected with an adenovirus carrying a  

dominant negative form of the Rac1 gene (Ad-Rac1N17), which selectively inhibits Rac1 

activity. As shown in Figure 2.2A and 2.2B, overexpression of Rac1N17 significantly 

decreased LPS-induced TNF-α mRNA and protein levels by 60% and 56%, respectively 

(P<0.01). This result was further confirmed using Rac1 deficient cardiomyocytes. 

Cultured neonatal cardiomyocytes from Rac1f/f mice were infected with Ad-Cre. 

Expression of Cre recombinase in Rac1f/f cells decreased Rac1 protein levels by 70% 

(Figure 2.2C). LPS-induced TNF-α mRNA and protein expression were reduced by 67% 

and 41% in Ad-Cre infected Rac1f/f cells, respectively (P<0.05, Figure 2.2D and 2.2E).  

These data showed that LPS-induced TNF-α expression requires Rac1 activity. 

2.3.3 Involvement of PI3K in Rac1 activation in cardiomyocytes during LPS 

stimulation 

To investigate the involvement of PI3K in Rac1 activation in cardiomyocytes 

during LPS stimulation, PI3K activity was determined. In response to LPS (1 µg/ml), 

PI3K activity was significantly increased in cultured neonatal cardiomyocytes (P<0.05, 

Figure 2.3A). In vivo treatment of LPS (2 mg/kg, i.p.) also activated PI3K in the 
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Figure 2.2. Rac1 promotes LPS-induced TNF-α expression in neonatal cardiomyocytes. 
WT cardiomyocytes were infected with Ad-GFP or Ad-Rac1N17 for 24 hours. 
Cardiomyocytes were treated with LPS (1 µg/ml) for 3 hours or 5 hours. TNF-α mRNA 
(A) and TNF-α protein in culture medium (B) were measured by real-time RT-PCR and 
ELISA, respectively. Neonatal cardiomyocytes from Rac1f/f mice were infected with Ad-
GFP and Ad-Cre for 24 hours. Rac1 protein was measured by Western blot analysis (C). 
Rac1f/f cells, infected with Ad-GFP or Ad-Cre, were treated with LPS for 3 hours or 5 
hours. TNF-α mRNA (D) and TNF-α protein in culture medium (E) were measured as 
described above.  Data are means ± SEM from 3 - 7 independent experiments. **P<0.01 
vs. Ad-GFP; †P<0.05, †† P <0.01 vs. Ad-GFP+LPS. 

Ad-GFP Ad-GFP Ad-Rac1N17
0.00

0.02

0.04

0.06

0.08
**

   LPS

**††

TN
F-
α

 m
R

N
A

/2
8S

Ad-GFP Ad-GFP Ad-Cre
0

50

100

150

200

250 **

LPS

**††

TN
F-
α

 p
ro

te
in

(p
g/

5×
10

5  c
el

ls
)

E 

D C 

B A 

Rac1 

!-actinin 

Ad-GFP Ad-Cre 

Ad-GFP Ad-GFP Ad-Rac1N17
0

30

60

90

120

LPS

**

**††

TN
F-
α

 p
ro

te
in

(p
g/

5×
10

5  c
el

ls
)

Ad-GFP Ad-GFP Ad-Cre
0.00

0.04

0.08

0.12

0.16 **

LPS

†
TN

F-
α

 m
R

N
A

/2
8S



 

 
 

65 

 

 

 

 

 

 

 

 

 

 
Figure 2.3. PI3K promotes LPS-induced Rac1 activation and TNF-α expression in 
neonatal cardiomyocytes. Cultured WT neonatal cardiomyocytes was stimulated with 
LPS at 1 µg/ml for 30 min. WT mice were treated with LPS (2 mg/kg, i.p.) for 30 min. 
PI3K activities in cardiomyocytes (A) and myocardium (B) were determined by 
competitive ELISA. Rac1 activities in WT cardiomyocytes (C) and myocardium (D) 
stimulated with LPS for 30 minutes in the presence or absence of the PI3K inhibitor 
LY294002 (LY, 10 µM and 7.5 mg/kg, i.p.) were determined by EZ-Detect Rac1 
activation kit. WT cardiomyocytes were treated with LPS (1 µg/ml) in the presence or 
absence of the PI3K inhibitor LY294002 for 3 or 5 hours. TNF-α mRNA (E) and TNF-α 
protein in culture medium (F) were measured by real-time RT-PCR and ELISA, 
respectively. Data are means ± SEM from 3 - 5 independent experiments. *P<0.05, 
**P<0.01 vs. control or sham; †P<0.05, ††P<0.01 vs. LPS. 
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myocardium in the adult mice (P<0.05, Figure 2.3B). To further study the contribution of 

PI3K in LPS-induced Rac1 activation, cardiomyocytes were treated with LY294002, a 

selective inhibitor of PI3K. Our data showed that LY294002 decreased LPS-induced 

Rac1-GTP by 41% in cardiomyocytes (Figure 2.3C). Similarly, LPS-stimulated Rac1-

GTP levels in the myocardium were also blocked by 71% after LY294002 treatment 

(Figure 2.3D). In addition, LY294002 significantly decreased LPS-induced TNF-α 

mRNA and protein levels (P<0.05, Figure 2.3E and 2.3F). These results indicate that 

Rac1 activation in cardiomyocytes is mediated by PI3K during LPS stimulation. 

2.3.4 Role of PI3K and Rac1 in NADPH oxidase activation during LPS stimulation 

Our lab has recently demonstrated that Nox2-containing NADPH oxidase 

contributes to LPS-induced TNF-α expression in cardiomyocytes (Peng et al. 2005). 

Consistent with this notion, the present study demonstrated that LPS increased NADPH 

oxidase-mediated O2
- generation (P<0.05, Figure 2.4A), which was blocked by apocynin, 

a selective NADPH oxidase inhibitor. Moreover, apocynin, significantly reduced TNF-α 

mRNA levels by 46% and protein levels by 43% in response to LPS (P<0.01, Figure 

2.4D and 2.4E). To detect if PI3K activation mediates LPS-induced NADPH oxidase 

activity, cardiomyocytes were treated with LY294002. Figure 2.4A showed that O2
- 

production stimulated by LPS was significantly blocked by LY294002. To determine 

whether Rac1 is involved in regulating NADPH oxidase activity, cardiomyocytes were 

treated with Ad-Rac1N17 to specifically block Rac1 activation. Our data showed that 

LPS-induced O2
- generation in these cells was significantly inhibited by Ad-Rac1N17 

(P<0.05, Figure 2.4B). Similarly, O2
- production was also significantly reduced in Rac1 

deficient cardiomyocytes (P<0.05, Figure 2.4C). These results suggest that PI3K and  
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Figure 2.4. PI3K and Rac1 promote LPS-induced superoxide (O2
-) generation and TNF-

α expression in neonatal cardiomyocytes. A. Effects of apocynin and LY294002 on O2
- 

production. WT cells were treated with LPS (1 µg/ml) for 2 hours with or without 
apocynin (400 µM) and LY294002 (LY, 10 µM). O2

- production was measured by the 
lucigenin assay. B. Effects of Ad-Rac1N17 on O2

- production. WT cells were infected 
with Ad–GFP or Ad-Rac1N17. O2

- production was measured 2 hours after LPS treatment 
(1 µg/ml). C. O2

- production in Rac1 deficient cardiomyocytes. Rac1f/f cardiomyocytes 
were infected with Ad-GFP or Ad-Cre for 24 hours followed by treatment with LPS for 2 
hours. O2

- production was measured. WT cardiomyocytes were treated with LPS (1 
µg/ml) in the presence or absence of 400 µM apocynin for 3 and 5 hours. TNF-α mRNA 
(D) and TNF-α protein in culture medium (E) were measured by real-time PCR analysis 
and ELISA, respectively. Data are means ± SEM from 3 - 5 independent experiments. 
*P<0.05, **P <0.01 vs. control and Ad-GFP; †P<0.05, ††P <0.01 vs. LPS and Ad-
GFP+LPS. 
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Rac1 are critical for NADPH oxidase activation in cardiomyocytes during LPS 

stimulation. 

2.3.5 Role of PI3K and Rac1 in ERK1/2 activation during LPS stimulation  

We have previously shown that activation of ERK1/2 was essential for NADPH 

oxidase signaling and LPS-induced TNF-α expression in cardiomyocytes (Peng et al. 

2005). The effects of LPS on ERK1/2 activation were also determined in the present 

study. As shown in Figure 2.5A, LPS rapidly increased phosphorylation of ERK1/2 

which peaked at 30 minutes and returned to control levels after 2 hours. LPS-induced 

ERK1/2 phosphorylation was completely blocked by a PI3K inhibitor, LY294002 (Figure 

2.5B), suggesting that LPS regulated ERK1/2 activity via PI3K. To examine whether 

Rac1 activity leads to ERK1/2 phosphorylation, ERK1/2 activation was measured in Ad-

Rac1N17 infected cardiomyocytes. Overexpression of Rac1N17 significantly decreased 

LPS-induced phosphorylation of ERK1/2 compared with Ad-GFP infected group (Figure 

2.5C). Furthermore, U0126, a selective ERK1/2 inhibitor, decreased LPS-stimulated 

TNF-α mRNA and protein levels by 46% and 69%, respectively (Figure 2.5D and 2.5E). 

Taken together, these results suggest that the effects of PI3K and Rac1 on 

cardiomyocytes are mediated by ERK1/2.  

2.3.6 Role of Rac1 in myocardial dysfunction during endotoxemia 

To study the role of Rac1 in myocardial depression during endotoxemia in vivo, 

we generated cardiac-specific Rac1 knockout mice (Rac1CKO) using Cre-loxP 

recombination as described in the methods. Our data showed that the Rac1 protein was  
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Figure 2.5. PI3K and Rac1 promote LPS-induced ERK1/2 phosphorylation in neonatal 
cardiomyocytes. A. WT cardiomyocytes were treated with vehicle or LPS (1 µg/ml) for 
15 min, 30 min, 1 hour and 2 hours. ERK1/2 phosphorylation in these cells was measured 
by Western blot analysis. B. WT cardiomyocytes were treated with LPS (1 µg/ml) for 30 
min with or without LY294002 (LY, 10 µM). ERK1/2 phosphorylation in these cells was 
measured. C. Neonatal cardiomyocytes were infected with Ad-GFP or Ad-Rac1N17 for 
24 hours. Cardiomyocytes were treated with LPS (1 µg/ml) for 30 min. ERK1/2 
phosphorylation was measured as described above. D and E. Cardiomyocytes were 
treated with LPS with or without the ERK1/2 inhibitor U0126 (10 µM) for 3 and 5 hours. 
TNF-α mRNA (D) and protein in culture medium (E) were measured by real-time RT-
PCR and ELISA, respectively. Data are means ± SEM from 3-5 independent 
experiments. *P<0.05, **P<0.01 vs. control; †P<0.05, ††P<0.01 vs. Ad-GFP+LPS and 
LPS. 
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Figure 2.6. TNF-α expression in Rac1f/f and Rac1CKO adult mouse myocardium during 
endotoxemia. A. Rac1 protein expression in heart, skeletal muscle and lungs in Rac1f/f 
and Rac1CKO mice as determined by Western blot analysis. TNF-α mRNA (B) and 
protein (C) levels in Rac1f/f and Rac1CKO heart tissues were measured after 2 and 4 hours 
of LPS treatment (2 mg/kg, i.p.). Data are means ± SEM, n=3 to 10 per group. ** P<0.01 
vs. sham Rac1f/f, † P <0.05 vs. LPS Rac1f/f. 
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Figure 2.7. Cardiac function in Rac1f/f and Rac1CKO mice after 2 hours of LPS treatment 
(2 mg/kg, i.p.). Mouse hearts were isolated and perfused using the Langendorff system. 
Contractile function of heart was determined. Changes in contraction (+dF/dtmax, A), 
relaxation (-dF/dtmin, B), heart rate (C) and heart work (D) are presented. Data are means 
± SEM, n=5 to 7 per group. * P <0.05 vs. sham Rac1f/f, † P <0.05 vs. LPS Rac1f/f. 
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selectively knocked-down in the heart but not in the skeletal muscle and lungs in 

Rac1CKO  mice (Figure 2.6A). Rac1CKO and Rac1f/f mice were treated with vehicle or LPS 

(2 mg/kg, i.p.). Our data demonstrated that LPS-induced myocardial TNF-α mRNA and 

protein levels were significantly decreased (P<0.01, Figure 2.6B and 6C). After 2 hours 

of LPS in vivo treatment, cardiac function was determined using the Langendorff 

preparation. The rate of contraction and relaxation, heart rate, and heart work were 

significantly reduced in both Rac1f/f and Rac1CKO mice after endotoxemia (P<0.05, 

Figure 2.7). However, compared with Rac1f/f mice, heart work and rate of contraction 

(+dF/dtmax) were significantly increased in Rac1CKO mice (P<0.05, Figure 2.7). 

 

2.4 Discussion 

The present study demonstrated for the first time that Rac1-mediated TNF-α 

expression following LPS stimulation occurs downstream of PI3K signaling in 

cardiomyocytes. Rac1 activation increased O2
- generation, and ERK1/2 MAPK 

phosphorylation leading to increased TNF-α expression in cardiomyocytes. More 

importantly, our study provided evidence that cardiac-specific Rac1 deficiency improved 

cardiac function during endotoxemia. PI3K-mediated activation of Rac1 represents a 

novel signaling pathway by which LPS induces cardiomyocyte TNF-α expression and 

cardiac dysfunction (Figure 2.8). 

Rho GTPases are a large family of proteins that include the Rac proteins (Rac1, 2 

and 3) as well as RhoA and Cdc42. The role of Rho GTPases on TNF-α production 

during LPS stimulation has been studied, but the results differ depending on cell types 
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Figure 2.8. Schematic of Rac1 signaling pathway leading to cardiomyocyte TNF-α 
expression and cardiac dysfunction during LPS stimulation. LPS activates Rac1 via 
PI3K/PtdIns(3,4,5)P3 signaling. Activation of Rac1 activates NADPH oxidase leading to 
production of O2

-, phosphorylation of ERK1/2 MAPK, and expression of TNF-α. 
Increased myocardial TNF-α production results in cardiac dysfunction during 
endotoxemia. TLR4, toll-like receptor 4. 
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and experimental conditions (Fessler et al. 2007; Monick et al. 2003; Sanlioglu et al. 

2001; Thakur et al. 2006). For example, toxin B, an inhibitor Rho GTPase family, 

increased TNF-α production in macrophages in both basal and endotoxemic conditions 

(Monick et al. 2003). In resting neutrophils, RhoA suppresses TNF-α production by 

inhibiting NF-κB activity (Fessler et al. 2007). Upon LPS stimulation, RhoA is activated 

and increases TNF-α expression, suggesting a dual role of RhoA in TNF-α production in 

human neutrophils (Fessler et al. 2007). Additionally, studies have shown that Rac1 

activation promoted LPS-induced TNF-α expression in macrophages and Kupffer cells 

(Sanlioglu et al. 2001; Thakur et al. 2006). Furthermore, Rac1 mediates myocardial TNF-

α expression during LPS stimulation (Zhu et al. 2009). However, the role of Rac1 in 

cardiac dysfunction during endotoxemia remains unknown. In the present study, we 

demonstrated that Rac1 is rapidly and transiently activated by LPS in cultured neonatal 

cardiomyocytes and in the adult myocardium. Rac1 inhibition or deficiency blocked LPS-

induced TNF-α production. Furthermore, Rac1CKO mice showed significant improvement 

in cardiac function during endotoxemia, which was assessed using the Langendorff 

preparation to avoid the influence of other organs, the systemic circulation and signals 

from both the central and the autonomic nervous systems. Thus, both in vitro and in vivo 

evidence from our study demonstrate that LPS activates Rac1 and promotes 

cardiomyocyte TNF-α expression leading to cardiac dysfunction.  

Rac GTPases are regulated by GEFs that promote the exchange of GDP for GTP, 

and GAPs that accelerate the hydrolysis of GTP. Available evidence suggests that Rac 

activation depends mainly on the activation of GEFs (Welch et al. 2003). In this regard, 

Rac-activating GEFs such as Vav, Sos, PIX, SWAP-70 and P-Rex, can be activated by 
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phosphoinositol-3-kinase (PI3K) (Welch et al. 2003). The PI3K family is divided into 

three major classes: type 1, type II and type III. The type I PI3K comprises a catalytic 

subunit, p110 and a regulatory adapter subunit p85. Activated type I PI3K is recruited to 

the plasma membrane, where it can phosphorylate its main substrate PtdIns(4,5)P2 and 

thereby generate PtdIns(3,4,5)P3. The type II PI3K uses phosphatidylinositol (PI) and 

PtdIns(4)P as substrates and  forms PtdIns(3)P and PtdIns(3,4)P2, respectively. The type 

III PI3K phosphorylates phoshatidylinositol (PtdIns) to produce phosphoinositol-3-P 

(PtdIns(3)P). PtdIns(3,4,5)P3, the production of the type I PI3K, can interact with the 

homology (PH) domain of target proteins, including GEFs, and promote protein 

activation (Welch et al. 2003). In the present study, type I PI3K activity, as determined 

by PtdIns(3,4,5)P3 levels, was significantly increased in cultured cardiomyocytes in vitro 

and in the myocardium in vivo during LPS stimulation. Inhibition of PI3K activity by a 

selective inhibitor, LY294006, significantly decreased Rac1-GTP levels and resulted in a 

concomitant decrease in TNF-α expression stimulated by LPS. These results indicate that 

PI3K is required for Rac1 activation in cardiomyocytes during LPS stimulation.  

Activated Rac1 interacts with specific effectors that regulate diverse physiological 

functions. One of these effectors is p67phox, a subunit of NADPH oxidase (Bosco et al. 

2009). A critical step for NADPH oxidase assembly and activation is the hetero-

dimerization of Nox2 with p67phox (Dang et al. 2001). Interestingly, the interaction 

between p67phox and Rac1 results in increased affinity of p67phox for Nox2 (Nisimoto et 

al. 1997). In addition, recent studies involving p67phox–Rac1 chimeras have reported that 

Rac1 induced an "activating" conformational change in p67phox (Gorzalczany et al. 2002; 

Sarfstein et al. 2004). Thus, Rac proteins are required for NADPH oxidase activation and 
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superoxide production. NADPH oxidase is an important source of reactive oxygen 

species in the heart and activation of NADPH oxidase has been shown to contribute to 

the pathogenesis of cardiovascular diseases including: cardiac hypertrophy (Bendall et al. 

2002), hypertension (Rajagopalan et al. 1996), atherosclerosis (Warnholtz et al. 1999) 

and heart failure post myocardial infarction (Gao et al. 2008; Murdoch et al. 2006). We 

have recently demonstrated that NADPH oxidase is activated in cardiomyocytes which 

results in myocardial TNF-α expression and cardiac dysfunction during endotoxemia 

(Peng et al. 2005). In agreement with these data, the present study demonstrated that LPS 

increases O2
- generation. Inhibition of NADPH oxidase activity by apocynin significantly 

decreased LPS-induced TNF-α expression in cardiomyocytes by 50%. This partially 

inhibitory effect of apocynin on TNF-α expression also indicates the exitance of other 

parallel signaling pathways, such as eNOS and PLCγ pathways, accounting for the 

remaining TNF-α expression (Zhang & Feng 2010). Furthermore, we showed that 

inhibition of PI3K activity decreased LPS-induced O2
- production. Similarly, deficiency 

in Rac1 or overexpression of dominant-negative Rac1 significantly suppressed O2
- 

generation and TNF-α expression in response to LPS stimulation. These results suggest 

that PI3K-mediated Rac1 activity promotes neonatal cardiomyocyte TNF-α expression 

induced by LPS via activation of NADPH oxidase. 

MAPKs (p38, ERK1/2 and JNKs) are key signaling molecules involved in the 

regulation of many biological processes including inflammatory responses and the 

expression of pro-inflammatory cytokines. Indeed, activation of ERK1/2 and p38 

regulates the expression of TNF-α in phagocytes during sepsis (Fessler et al. 2007; 

Rosengart et al. 2000; Thakur et al. 2006). We have recently demonstrated that ERK1/2 
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is downstream of NADPH oxidase signaling in LPS-induced TNF-α expression (Peng et 

al. 2005). In the present study, we showed that LPS increased the phosphorylation of 

ERK1/2 in cultured neonatal cardiomyocytes. Inhibition of PI3K and Rac1 activity 

blocked LPS-stimulated ERK1/2 phosphorylation. Moreover, inhibition of ERK1/2 

activity decreased LPS-induced TNF-α production. Thus, PI3K-mediated Rac1 activity 

regulates LPS-induced TNF-α expression in cardiomyocytes via ERK1/2 activation.  

In summary, the present study provides strong evidence that Rac1 activation is 

required for cardiomyocyte TNF-α expression and cardiac dysfunction during 

endotoxemia. Activation of Rac1 through PI3K increases NADPH oxidase and ERK1/2 

activity, leading to increased myocardial TNF-α expression during LPS stimulation 

(Figure 2.8). Our study suggests that Rac1 may represent a novel therapeutic target for 

TNF-α expression and myocardial dysfunction in sepsis. 
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Chapter 3. Rac1 promotes LPS-induced TNF-α  production via Na/K-ATPase  

3.1 Introduction  

Sepsis is a leading cause of death in hospital intensive care units. Myocardial 

expression of pro-inflammatory cytokines, especially tumor necrosis factor-alpha (TNF-

α) contributes to cardiac dysfunction and high mortality (40-80%) (Dellinger et al. 2008; 

Merx & Weber 2007; Parrillo et al. 1985). However the underlying molecular 

mechanisms of cardiac TNF-α production during sepsis remain elusive. 

Na/K-ATPase catalyzes ATP hydrolysis to actively transport 3 Na+ ions out of 

and 2 K+ into the cell, and thus maintains trans-membrane gradients of Na+ and K+. 

Changes in intracellular Na+ regulate intracellular Ca2+ via the Na+/Ca2+ exchanger (Bers 

et al. 2006). In cardiomyocytes, Na/K-ATPase activity is inhibited by phospholemman 

(Han et al. 2006) and glutathionylation induced by NADPH oxidase (Figtree et al. 2009). 

In addition, Na/K-ATPase also acts as a signal transducer that regulates protein kinases 

including Src and ERK (Li & Xie 2009). In the heart, Na/K-ATPase modulates 

cardiomyocyte apoptosis (Sapia et al. 2010), contractility (Barwe et al. 2009; James et al. 

1999) and hypertrophy (Huang et al. 1997) via Ca2+-dependent mechanisms. LPS inhibits 

Na/K-ATPase activity in the lung (Koksel et al. 2006) and kidney (Guzman et al. 1995). 

Inhibition of Na/K-ATPase potentiates LPS-induced-cytokine expression including TNF-

α in macrophages (Ohmori et al. 1991). Although we have previously shown that LPS 

increases intracellular Ca2+ in cardiomyocytes (Geoghegan-Morphet et al. 2007), changes 

in Na/K-ATPase activity were not studied. Thus, the role of Na/K-ATPase in myocardial 

TNF-α expression during endotoxemia remains unknown. 

Mammalian target of rapamycin (mTOR), a Ser/Thr protein kinase, acts as a 
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central regulator of cell growth and metabolism by controlling protein synthesis and other 

cellular processes (Hay & Sonenberg 2004). It is sensitive to tuberous sclerosis complex 

(TSC)1/TSC2 activation and intracellular Ca2+ concentration (Hay & Sonenberg 2004; 

Hoyer-Hansen et al. 2007; Lenz & Avruch 2005). Studies have shown that mTOR 

contributes to cardiac hypertrophy (McMullen et al. 2004; Shioi et al. 2003) and 

ventricular remodeling after myocardial infarction (Buss et al. 2009). LPS activates 

mTOR (Baker et al. 2009; Chen et al. 2010; Haidinger et al. 2010; Weichhart et al. 2008), 

however its role in pro-inflammatory cytokine expression during sepsis remains 

controversial. For example, mTOR activation by LPS promotes TNF-α and interleukin-

12 expression in monocyte-derived dendritic cells (Haidinger et al. 2010). On the 

contrary, mTOR activation inhibits TNF-α production in monocytes (Weichhart et al. 

2008), macrophages (Baker et al. 2009) and HL-1 cells during LPS stimulation (Song et 

al. 2010). Thus, the effects of mTOR activation are cell type specific. Importantly, the 

role of mTOR in myocardial TNF-α protein production during endotoxemia remains 

unknown. 

In the present study, we hypothesized that myocardial Na/K-ATPase activity is 

inhibited during endotoxemia via PI3K/Rac1/NADPH oxidase pathway. We further 

hypothesized that inhibition of Na/K-ATPase activates Ca2+/CaMK-dependent mTOR, 

leading to enhanced TNF-α protein production in cardiomyocytes during LPS 

stimulation. To test these hypotheses, cultured cardiomyocytes and in vivo endotoxemia 

mouse models were employed. Our study demonstrated a novel function of Na/K-ATPase 

in the regulation of myocardial TNF-α expression during endotoxemia.  
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3.2. Materials and Methods 

3.2.1 Animals and preparation of neonatal mouse cardiomyocytes 

The investigation conforms with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institute of Health (NIH Publication #85-23, 

revised 1996) and experimental protocols were approved by Animal Use Subcommittee 

at the University of Western Ontario. C57BL/6 wild-type (WT) and Rac1 floxed (Rac1f/f) 

mice (Glogauer et al. 2003) were purchased from the Jackson Laboratory (Bar Harbor, 

Maine). Cre transgenic mice (CreTG/+) which overexpress Cre recombinase under the 

control of a-myosin heavy-chain (MHC) promoter were provided by Dr. E. Dale Abel 

(University of Utah, UT). The generation of cardiomyocyte-specific Rac1 knockout mice 

(Rac1CKO) was achieved by breeding Rac1f/f mice with CreTG/+ mice (Rui et al. 2005).  

3.2.2 Isolation and culturing of neonatal mouse cardiomyocytes 

The neonatal cardiomyocytes were prepared and cultured according to methods 

we have previously described (Song et al. 2000; Chapter 2). Cells were treated with LPS 

(Sigma, Oakville, Ontario, Canada), apocynin (Sigma), ouabain (Sigma), KN-93 (Sigma), 

rapamycin (Cell Signaling Technology, Danvers, MA) or infected with adenoviruses. 

3.2.3 Adenoviral infection of neonatal cardiomyocytes 

Cardiomyocytes were infected with adenoviruses carrying a dominant-negative 

form of Rac1 (Ad-Rac1N17, Vector Biolabs, Philadelphia, PA), green fluorescence 

protein (Ad-GFP, a gift from Dr. J. Lipp, Medical University of Vienna, Austria) and 

LacZ (Ad-LacZ, Vector Biolabs, Philadelphia, PA) at a multiplicity of infection (MOI) of 

10 plaque forming units/cell. Adenovirus-mediated gene transfer was applied as 

previously described (Peng et al. 2003; Chapter 2).  
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3.2.4 Na/K-ATPase activity assay 

Na/K-ATPase activity in neonatal cardiomyocytes and LV myocardium was 

determined by a fluorometric method with modifications (Barr et al. 2005; Johansson et 

al. 2003). Briefly, homogenates were prepared in a buffer containing 250 mM sucrose, 2 

mM EDTA, 1.25 mM EGTA, 5 mM NaN3, and 10 mM Tris (pH 7.4). Homogenates were 

freeze-thawed four times. 30 µg protein lysates were incubated for 5 min at 37°C in a 

buffer containing 5 mM MgCl2, 1.25 mM EDTA, 100 mM Tris base (pH 7.4), 1 mM 

EGTA, and 5 mM NaN3, with or without 6 mM ouabain. 3-O-methylfluorescein 

phosphate (3-O-MFP, 160 µM) was added to the lysates followed by incubation at 37°C 

for 1 min. Activated Na/K-ATPase hydrolyzes 3-O-MFP and forms a fluorescent 

compound 3-O-MF. To activate Na/K-ATPase, 10 mM KCl was added and fluorescence 

was recorded. The excitation and emission wavelengths were 470 nm and 515 nm, 

respectively. The amplitude of the emission was shown to be proportional to the 

concentration of 3-O-MF, and a standard curve was created using varying concentration 

of 3-O-MF. K+-dependent 3-O-MFPase activity was determined by subtracting activity 

with KCl from the activity without KCl. Na/K-ATPase activity was determined by 

subtracting K+-dependent 3-O-MFPase activity without ouabain from the activity with 

ouabain and expressed as micromoles of liberated phosphate (Pi) per minute per 

milligram protein. 

3.2.5 Measurement of TNF-α  mRNA  

Total RNA was extracted from cardiomyocytes using the Trizol Reagent (Gibco-

BRL) as per manufacturer's instructions. TNF-α mRNA levels were determined by real-

time reverse-transcriptase polymerase chain reaction (RT-PCR) as as previously 
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described (Peng et al. 2003; Chapter 2). TNF-α mRNA stability was assessed in the 

present of a transcription inhibitor, actinomycin D. Neonatal cardiomyocytes were 

stimulated with LPS (0.1 µg/ml) with or without ouabain (50 µM) for 3 hours followed 

by actinomycin D (5 µg/ml) treatment. After 20, 60 and 120 minutes of actinomycin D 

exposure, total RNA was extracted from cardiomyocytes. TNF-α mRNA levels were 

measured. 

3.2.6 Measurement of TNF-α protein 

TNF-α protein levels were measured using a mouse TNF-α ELISA kit 

(eBioscience, USA), according to the manufacturer’s instructions. The measurements 

were standardized with cell numbers or expressed as TNF-α levels to total proteins. 

3.2.7 [3H]-Leucine incorporation 

Neonatal cardiomyocytes were seeded into 12-well plates (8×105 cells/well). After 

48 hours, cells were treated with LPS (1 µg/ml) with or without rapamycin (10 nM) in the 

present of [3H]-leucine (1 µCi/ml, Amersham, GE Healthcare, Baie d’Urfe, Quebec) for 5 

hours. Cells were then washed 3 times with ice-cold PBS. Proteins were precipitated with 

5% tricholoroacetic acid (TCA) for 30 minutes on ice. Cell precipitates were washed 2 

additional times with TCA and solubilized in 0.2 M NaOH. The radioactivity of [3H]-

leucine incorporated into proteins were measured by a liquid scintillation counter (Tri-

Carb 2900TR, Perkin-Elmer, Woodbridge, Ontario). 

3.2.8 Adult cardiomyocyte isolation 

Cardiomyocytes were isolated from the hearts of adult male Rac1f/f and Rac1CKO 

mice as previously described with modifications (Burger et al. 2009).  Hearts were 

mounted on a Langendorff system and perfused with digestion buffer containing 75 
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µg/mL of liberase blendzyme IV (Roche, Laval, Quebec). Following digestion, cells were 

resuspended and exposed to a series of sedimentation and resuspension steps in buffer 

containing increasing concentrations of Ca2+ (12.5 µM-1.5 mM). Healthy, rod-shaped 

myocytes were used for measurements of Ca2+ transients. 

3.2.9 Intracellular Ca2+ transients 

Free intracellular Ca2+ concentrations ([Ca2+]i) were measured in isolated 

ventricular cardiomyocytes using fura-2-AM as previously described (Burger et al. 2009). 

Cells were loaded with 1 µM fura-2-AM and then paced at 0.5, 1, 2 and 4 Hz using a 2.5 

ms duration pulse. Fluorescence intensity at 510 nm was measured with alternating 345 

and 380 nm excitation using a Deltascan monochrometer system (Photon Technology 

International, London, ON, Canada). [Ca2+]i was calculated by the methods of 

Grynkiewicz (Grynkiewicz et al. 1985). 

3.2.10 Western blot analysis 

Thirty micrograms of protein lysates were subjected to separation on a 10% SDS-

PAGE gel, followed by electrotransfer to nitrocellulose membranes. Blots were probed 

with specific antibodies against total mTOR (1:1000) and phospho-mTOR (1:1000; Cell 

Signaling Technology, Danvers, MA), followed by incubation with horseradish 

peroxidase-conjugated secondary antibodies (1:3000, Santa Cruz Biotechnology, CA) 

respectively. Signals were detected by the chemiluminescence detection method and 

quantified by densitometry. The relative phosphorylation levels of mTOR under various 

experimental conditions were estimated by taking the ratio of the densitometric signal 

acquired with anti-phospho-mTOR to the corresponding signal acquired with anti-mTOR. 

3.2.11 Statistical analysis 
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Results are presented as mean ± SEM. Differences between two groups were 

analyzed by unpaired Student t-test. For multigroup comparisons, one or two-way 

ANOVA followed by Student-Newman-Keuls or Bonferroni post-test was performed. A 

P value less than 0.05 was considered statistically significant. 

 

3.3 Results 

3.3.1 LPS inhibits myocardial Na/K-ATPase activity 

To examine the effect of LPS on Na/K-ATPase activity, neonatal cardiomyocytes 

isolated from C57BL/6 mice were treated with LPS (1 µg/ml) for 2 hours. LPS decreased 

Na/K-ATPase activity by 44% (Figure 3.1A). To study Na/K-ATPase activity in the 

myocardium in vivo, Rac1f/f mice were treated with LPS (2 mg/kg, i.p.) or saline for 1, 2, 

3 or 4 hours, after which hearts were obtained and myocardial Na/K-ATPase activity was 

measured. After 2 hours of LPS treatment, myocardial Na/K-ATPase activity was 

decreased by 93%, and returned back to control levels at 4 hours (Figure 3.1B). These 

data showed that LPS strongly inhibits Na/K-ATPase activity in cardiomyocytes in vitro 

and in myocardium in vivo. 

3.3.2 Inhibition of Na/K-ATPase promotes TNF-α  protein production during LPS 

stimulation 

TNF-α is a major pro-inflammatory cytokine contributing to cardiac dysfunction 

during endotoxemia. To elucidate the role of Na/K-ATPase on LPS-induced TNF-α 

expression, neonatal cardiomyocytes were incubated with ouabain, a selective inhibitor of 

Na/K-ATPase. A concentration-dependent enhancement of LPS-induced TNF-α protein 

levels was observed following ouabain treatment (Figure 3.2A). Surprisingly, ouabain  
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Figure 3.1. LPS inhibits myocardial Na/K-ATPase activity. (A) Neonatal 
cardiomyocytes from WT mice were treated with vehicle or LPS (1 µg/ml) for 2 hours. 
Na/K-ATPase activity in these cells was determined using a fluorometric assay. (B) 
Adult male Rac1f/f mice were treated with LPS (2 mg/kg, i.p. injection) for 1, 2, 3 and 4 
hours. Na/K-ATPase activity in the left ventricular myocardium was determined. Data 
are means ± SEM from 3-5 independent experiments. *P<0.05, **P<0.01 vs. control. 
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Figure 3.2. Ouabain enhances LPS-induced TNF-α expression. Neonatal cardiomyocytes 
from WT mice were treated with LPS (0.1 µg/ml) with or without ouabain for 3 or 5 
hours. (A) TNF-α protein levels in culture medium were measured by ELISA. (B) TNF-
α mRNA levels in cardiomyocytes were determined by real-time RT-PCR. (C) Stability 
of TNF-α mRNA was assessed in the presence of actinomycin D, an inhibitor of 
transcription.  Data are means ± SEM from 3-4 independent experiments. *P<0.05 
**P<0.01 vs. control; †P<0.05, ††P <0.01 vs. LPS 
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had no measurable effect on LPS-induced TNF-α mRNA expression (Figure 3.2B). 

Furthermore, ouabain did not alter TNF-α mRNA stability during LPS stimulation 

(Figure 3.2C). These data indicate that inhibition of Na/K-ATPase activity enhances 

LPS-induced TNF-α protein levels without any apparent effects on its mRNA expression 

or stability in cardiomyocytes. 

3.3.3 Inhibition of Na/K-ATPase by LPS is mediated by the PI3K/Rac1/NADPH 

oxidase pathway  

We have recently shown that the PI3K/Rac1/NADPH oxidase pathway is 

activated and important for cardiac TNF-α production during endotoxemia (Zhang et al. 

2011 Chapter 2; Zhu et al. 2009). To determine if PI3K acts as an up-stream regulator of 

Na/K-ATPase, the PI3K inhibitor LY294002 was employed. LY294002 had no effect on 

Na/K-ATPase activity under control conditions but completely restored Na/K-ATPase 

activity after LPS stimulation in neonatal cardiomyocytes (Figure 3.3A). These results 

were further confirmed in vivo. Adult male WT mice were pretreated with LY294002 

(7.5 mg/kg, i.p.) for 30 minutes followed by LPS stimulation (2 mg/kg, i.p.). The dose of 

LY294002 was chosen from our recent study, which showed significant inhibition of 

PI3K-mediated responses in mice (Wu et al. 2011). As shown in Figure 3.3B, LY294002 

blocked myocardial Na/K-ATPase activity suppression by LPS, indicating that LPS 

inhibits cardiac Na/K-ATPase activity via PI3K. 

To determine the effect of Rac1 on Na/K-ATPase activity, neonatal 

cardiomyocytes isolated from WT mice were infected with an adenovirus encoding a 

dominant negative form of Rac1 (Ad-Rac1N17), which specifically inhibits Rac1 

activity. Overexpression of Rac1N17 restored Na/K-ATPase activity inhibited by LPS  
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Figure 3.3. LPS-induced PI3K, Rac1 and NADPH oxidase activities suppress Na/K-
ATPase. (A) WT neonatal cardiomyocytes were treated with LPS (1 µg/ml) with or 
without LY294002 (LY, 10 µM) for 2 hours. Na/K-ATPase activity in these cells was 
measured. (B) Adult male C57BL/6 mice were pretreated with saline (control) or 
LY294002 (7.5 mg/kg) for 30 minutes followed by treatment with LPS (2 mg/kg, i.p.) for 
2 hours. Na/K-ATPase activity in the LV myocardium was determined. (C) WT neonatal 
cardiomyocytes were infected with Ad-LacZ or Ad-Rac1N17 for 24 hours followed by 
treatment with LPS (1 µg/ml). Na/K-ATPase activity was measured. (D) Na/K-ATPase 
activity in Rac1f/f and Rac1CKO myocardium were measured after 2 hours of LPS 
treatment (2 mg/kg, i.p.). (E) Cells were incubated with LPS with or without apocynin 
(400 µM) for 2 hours. Na/K-ATPase activity was measured. Data are means ± SEM from 
3-5 independent experiments. *P<0.05, **P<0.01 vs. control and Ad-LacZ; †P<0.05, 
††P<0.01 vs. Ad-LacZ+LPS and LPS. 
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(Figure 3.3C). Consistently, LPS decreased Na/K-ATPase activity in the myocardium of 

Rac1f/f mice but had no effect on Rac1CKO mice (Figure 3.3D). To determine if NADPH 

oxidase regulates Na/K-ATPase activity in response to LPS, neonatal cardiomyocytes 

were treated with apocynin, a specific inhibitor of NADPH oxidase. Apocynin prevented 

the diminution of Na/K-ATPase activity in response to LPS (Figure 3.3E). Taken 

together, these data implicate the PI3K/Rac1/NADPH oxidase pathway in the inhibition 

of myocardial Na/K-ATPase activity during LPS stimulation. 

3.3.4 LPS-induced intracellular Ca2+ is mediated by Rac1 

Inhibition of Na/K-ATPase is known to increase intracellular Ca2+ (Bers et al. 

2006). Since LPS-induced inhibition of Na/K-ATPase is mediated by Rac1 as shown 

above, the role of Rac1 in intracellular Ca2+ during LPS stimulation was studied. To this 

end, Ca2+ transients were recorded using fura-2 in adult cardiomyocytes isolated from 

Rac1f/f and Rac1CKO mice. These cells were paced over a range of frequencies (0.5 to 4 

Hz) (Figure 3.4A-G). Rac1CKO cells showed lower systolic Ca2+ compared with Rac1f/f 

cells, but diastolic Ca2+ was similar between these two groups (Figure 3.4A-C). In 

addition, systolic and diastolic Ca2+, and the difference between systolic and diastolic 

Ca2+ concentrations were all significantly increased by LPS stimulation in Rac1f/f 

cardiomyocytes, but not in Rac1CKO cells (Figure 3.4A-C). Collectively, these data 

suggest that Rac1 is not only required for maintaining cardiac Ca2+ homeostasis under 

basal physiological conditions but also contributes to increased intracellular Ca2+ in 

response to LPS.  
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Figure 3.4 Rac1 increases LPS-induced intracellular Ca2+ transient in cardiomyocytes. 
Adult cardiomyocytes from Rac1f/f and Rac1CKO hearts treated with vehicle or LPS (5 
µg/ml) for 30 minutes were paced at 0.5, 1, 2 and 4 Hz. Intracellular Ca2+ transients were 
recorded. (A) Systolic, (B) diastolic and (C) difference between systolic and diastolic 
intracellular Ca2+ concentrations in response to pacing were determined. (D) and (F) 
representative tracings from Rac1f/f and Rac1CKO, respectively. (E) and (G) representative 
tracings from Rac1f/f and Rac1CKO stimulated by LPS respectively. Data are mean ± SEM 
from 4-6 mice per group (8-12 cells). *P<0.05 vs. Rac1f/f; †P<0.05 vs. Rac1f/f+LPS. 
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3.3.5 Ca2+/CaMK mediates LPS-induced TNF-α  expression 

Ca2+/calmodulin-dependent protein kinase (CaMK) activation promotes TNF-α 

expression in monocytes and macrophages (Liu et al. 2008; Mendez-Samperio et al. 

2006; Rosengart et al. 2000). To determine if CaMK regulates TNF-α expression in 

cardiomyocytes, neonatal cardiomyocytes were pretreated with KN-93, a CaMK 

inhibitor. KN-93 decreased LPS-induced TNF-α mRNA and protein levels in a dose-

dependent manner (Figure 3.5A and B). 

3.3.6 mTOR mediates LPS-induced TNF-α  protein expression 

To gain insight into the molecular mechanisms by which Na/K-ATPase regulates 

TNF-α protein production, we studied mTOR, a master regulator of protein synthesis, 

activation during endotoxemia. Our data showed that mTOR phosphorylation was 

significantly increased in neonatal cardiomyocytes in response to LPS stimulation (Figure 

3.6A). Inhibition of mTOR by rapamycin resulted in a significant decrease in LPS-

induced TNF-α protein levels in a dose-dependent manner without any effect on TNF-α 

mRNA expression (Figure 3.6B and C).  

To assess the effects of the above treatments on global protein synthesis, [3H]-

leucine incorporation was determined in cultured cardiomyocytes. In response to LPS, 

[3H]-leucine incorporation showed a trend but not significant increase compared to 

controls (Figure 3.6D). Importantly, treatment with rapamycin did not have a significant 

effect on [3H]-leucine incorporation during LPS stimulation (Figure 3.6D). Taken 

together, our data showed that inhibition of mTOR by rapamycin selectively decreases 

LPS-induced TNF-α protein synthesis.  
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Figure 3.5. Inhibition of CaMK activity diminishes LPS-induced TNF-α production. WT 
neonatal cardiomyocytes were treated with vehicle or LPS (1 µg/ml) with or without KN-
93. TNF-α protein (A) and mRNA (B) levels were measured at 5 and 3 hours after LPS 
treatment, respectively. Data are mean ± SEM from 3-4 independent experiments. *P 
<0.01 vs. control; †P<0.01 vs. LPS. 
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Figure 3.6. mTOR activity promotes LPS-induced TNF-α production in cardiomyocytes. 
(A) WT neonatal cardiomyocytes were cultured in serum free medium overnight 
followed by treatment with LPS (1 µg/ml) for 7, 15, 30 and 60 minutes. Phospho-mTOR 
was determined by western blotting. Cells were treated with vehicle or LPS (1 µg/ml) 
with or without rapamycin (Rap). TNF-α mRNA (C) and protein (B) levels were 
measured following 3 and 5 hours of LPS treatment, respectively. (D) Global protein 
synthesis in cardiomyocytes was assessed by [3H]-leucine incorporation following 5 
hours of LPS (1 µg/ml) treatment with or without Rap. Data are mean ± SEM from 3-6 
independent experiments. *P <0.05, **P <0.01 vs. control; †P <0.01 
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3.3.7 mTOR activation is mediated by Rac1/ Na/K-ATPase /CaMK signaling  

To determine the role of Rac1/ Na/K-ATPase / CaMK signaling on mTOR 

activity during LPS stimulation, neonatal cardiomyocytes were treated with Ad-

Rac1N17, ouabain and KN-93, respectively. Rac1N17 and KN-93 blocked LPS-induced 

mTOR phosphorylation (Figure 3.7A and C). In contrast, ouabain enhanced mTOR 

phosphorylation induced by LPS (Figure 3.7B). Taken together, these data suggest that 

Rac1/ Na/K-ATPase/ CaMK pathway mediates LPS-induced mTOR activation, which 

promotes TNF-α protein expression. 

 

3.4. Discussion 

The present study provides the first evidence that LPS negatively regulates 

cardiac Na/K-ATPase activity via the PI3K/Rac1/NADPH oxidase pathway. Inhibition of 

Na/K-ATPase activates mTOR apparently via Ca2+/CaMK, leading to TNF-α protein 

production in cardiomyocytes. Na/K-ATPase/ Ca2+/CaMK /mTOR signaling represents a 

novel molecular mechanism by which LPS stimulates cardiac TNF-α protein production 

(Figure 3.8).  

Na/K-ATPase is an important ion transporter and signal transducer located at the 

cell membrane. It has been demonstrated that Na/K-ATPase activity is decreased during 

the inflammatory response of the lung, kidney and innate immune system and contributes 

to pro-inflammatory factor mRNA expression (Guzman et al. 1995; Koksel et al. 2006; 

Ohmori et al. 1991). Here, we provided both in vivo and in vitro evidence to show that 

LPS inhibits Na/K-ATPase activity in the heart. It is interesting to note that Na/K-

ATPase inhibition enhances LPS-induced TNF-α protein production without any 



 

 
 

100 

 

 
 
 

 
 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.7. Role of Rac1, Na/K-ATPase and CaMK in LPS-induced mTOR activation in 
cardiomyocytes. (A) WT neonatal cardiomyocytes cultured in serum free medium were 
infected with Ad-Rac1N17 followed by LPS treatment (1 µg/ml) for 15 min. (B and C) 
Cultured cardiomyocytes were treated with LPS (1 µg/ml) with ouabain (50 µM, B) or 
KN-93 (10 µM, C) for 15 minutes. Phospho-mTOR was detected by western blotting. 
Data are mean ± SEM from 3-4 independent experiments. *P <0.05, **P <0.01 vs. 
control; †P <0.01 vs. LPS. 
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Figure 3.8. Schematic diagram illustrates the involvement of Na/K-ATPase/mTOR 
signaling pathways leading to cardiomyocyte TNF-α protein production during LPS 
stimulation. LPS suppresses Na/K-ATPase activity via the PI3K/Rac1/NADPH oxidase 
pathway in the myocardium. Inhibition of Na/K-ATPase activates mTOR via 
Ca2+/CaMK. Activated mTOR promotes TNF-α protein production. TLR4, toll-like 
receptor 4. 
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apparent effects on TNF-α mRNA expression in cardiomyocytes. Since TNF-α mRNA 

stability is not affected, these results suggest that inhibition of Na/K-ATPase may 

promote TNF-α protein translation or inhibit its degradation in cardiomyocytes during 

LPS stimulation.  

Studies have shown that activation of NADPH oxidase inhibits Na/K-ATPase by 

glutathionylation of its β subunit (Figtree et al. 2009). We have demonstrated previously 

that LPS activates NADPH oxidase via PI3K/Rac1 signaling in cardiomyocytes (Zhang 

et al. 2011 Chapter2). In agreement with this finding, the present study showed that the 

reduction of myocardial Na/K-ATPase activity during LPS stimulation was prevented by  

inhibition of PI3K, Rac1 or NADPH oxidase, indicating that activation of 

PI3K/Rac1/NADPH oxidase pathway inhibits myocardial Na/K-ATPase activity during 

endotoxemia.  

It is well established that inhibition of Na/K-ATPase activity increases 

intracellular Ca2+ via the Na+/Ca2+ exchange (Bers et al. 2006). We have previously 

shown that intracellular Ca2+ levels are increased by LPS in cardiomyocytes and 

contribute to TNF-α expression (Geoghegan-Morphet et al. 2007). To study the role of 

Rac1, a negative regulator of Na/K-ATPase in Ca2+ homeostasis, we measured Ca2+ 

transients in cardiomyocytes and found that Rac1 deficient cardiomyocytes exhibited 

significantly lower intracellular Ca2+ levels compared with Rac1f/f cells during basal 

conditions and in response to LPS, suggesting that activation of Rac1 increases 

intracellular Ca2+ via inhibition of Na/K-ATPase. CaMK is a downstream target of Ca2+ 

(Mendez-Samperio et al. 2006; Rosengart et al. 2000). Our study further demonstrated 

that inhibition of CaMK decreased TNF-α expression during LPS stimulation. CaMK 
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appears to affect both TNF-α protein and mRNA levels, which presumably reflects the 

multiplicity of cellular effects triggered by this kinase. Taken together, our data suggest 

that LPS activates Rac1/Ca2+/CaMK signaling leading to TNF-α protein expression. 

Activation of mTOR stimulates global protein synthesis by directly 

phosphorylating eukaryotic initiation factor 4E-binding protein (4E-BP) and in the longer 

term increases levels of ribosomal proteins(Hay & Sonenberg 2004; Ruvinsky & 

Meyuhas 2006). LPS activates mTOR in phagocytes (Baker et al. 2009; Haidinger et al. 

2010; Weichhart et al. 2008), bone marrow cells (Chen et al. 2010) and HL-1 cells (a 

cardiomyocyte cell line) (Song et al. 2010), however the role of mTOR in pro-

inflammatory cytokine expression is cell type specific. For example, rapamycin, an 

mTOR inhibitor decreased the production of pro-inflammatory cytokines such as IL-12 

and TNF-α in dendritic cells (Haidinger et al. 2010). In contrast, rapamycin enhanced 

LPS-induced TNF-α mRNA and protein levels in monocytes (Weichhart et al. 2008) and 

macrophages (Baker et al. 2009). Similarly, overexpression of mTOR in HL-1 cells 

decreased TNF-α protein levels stimulated by LPS (Song et al. 2010). In the present 

study, we showed that mTOR was rapidly and transiently activated between 15 to 30 

minutes after LPS stimulation in neonatal cardiomyocytes cultured in serum free 

medium. Our data showed that Na/K-ATPase activity were decreased in the cells cultured 

in medium contain 10% FBS after 2 hours of LPS stimulation. The mismatch between the 

time points of Na/K-ATPase and mTOR activation is possibly due to different culture 

conditions with and without serum. Rapamycin decreased TNF-α protein levels after LPS 

stimulation but had no apparent effect on TNF-α mRNA expression or global protein 

synthesis. Our data suggest that mTOR is important in LPS-induced TNF-α protein 
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synthesis in cardiomyocytes.  

mTOR activation is regulated by a number of factors including TSC1/TSC2 and 

Ca2+ (Hay & Sonenberg 2004; Hoyer-Hansen et al. 2007; Lenz & Avruch 2005). The 

relationship between intracellular Ca2+ concentrations and mTOR activity is cell-type 

specific (Hoyer-Hansen et al. 2007; Lenz & Avruch 2005). In primary mouse neurons, 

glutamateric stimulation activates mTOR in a Ca2+/CaMK-dependent manner (Lenz & 

Avruch 2005). On the other hand, mTOR activity is inhibited by an increase in cytosolic 

Ca2+ in MCF-7 breast cancer cells (Hoyer-Hansen et al. 2007). The present study showed 

that LPS-induced inhibition of Na/K-ATPase activity increases intracellular Ca2+ in 

cardiomyocytes. To study the role of CaMK, a downstream effector of Ca2+ in mTOR 

activation, a selective inhibitor of CaMK was employed. Our data showed that inhibition 

of CaMK decreased mTOR activity in response to LPS. Furthermore, LPS-induced 

mTOR activity was blocked by inhibition of Rac1 but enhanced by the inhibition of 

Na/K-ATPase. Our results suggest that Rac1 inhibits Na/K-ATPase and increases 

Ca2+/CaMK activity, which subsequently activates mTOR and promotes TNF-α protein 

translation in cardiomyocytes during LPS stimulation. In addition, our study also showed 

that inhibition of CaMK blocked LPS-induced TNF-α mRNA and protein expression, 

indicating that there are other parallel pathways through which Na/K-ATPase regulates 

mTOR activation.  

Interestingly, mTOR also promotes the translation of cellular mRNAs that have a 

5’ terminal oligopyrimidine (TOP) tract adjacent to the cap site (Ruvinsky & Meyuhas 

2006).  The 5’TOP tracts, which are found in all mRNAs that encode ribosomal proteins, 

enhance translation upon mTOR activation (Ruvinsky & Meyuhas 2006).  Examination 
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of the 5’ untranslated region of TNF-α mRNA reveals that both the mouse (GenBank: 

U68414) and human (GenBank: NM_000594) forms contain a 5’ CTCCCTC sequence, 

which conforms to the established consensus for regulatory 5’TOP motifs (Ruvinsky & 

Meyuhas 2006). The presence of this putative 5’TOP motif further supports our 

hypothesis that TNF-α is controlled at the translational level by mTOR in cardiomyocytes 

during LPS stimulation. 

In conclusion, our study demonstrated that LPS inhibits Na/K-ATPase activity via 

PI3K/Rac1/NADPH oxidase pathway in the myocardium. Inhibition of Na/K-ATPase 

activity promotes TNF-α protein production by Ca2+/CaMK-dependent mTOR activation 

in cardiomyocytes. This Na/K-ATPase/ Ca2+/CaMK /mTOR pathway provides novel 

insight into the signal transduction mechanisms that regulate myocardial TNF-α 

expression, and may have therapeutic implications in the treatment of sepsis (Figure 3.8). 
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Chapter 4. Rac1 regulates LPS-induced TNF-α  expression and cardiac dysfunction 

via MKP-1 

4.1 Introduction  

Sepsis is the 10th most common cause of death in the United States (Dellinger et 

al. 2008). Cardiac dysfunction frequently accompanies severe sepsis and septic shock, 

and is associated with a significant increase in mortality rate (70% to 90%) compared 

with septic patients without cardiovascular impairment (20%) (Merx & Weber 2007). 

Tumor necrosis factor-alpha (TNF-α) produced by cardiomyocytes is a major 

contributing factor to cardiac dysfunction (Merx & Weber 2007; Parrillo et al. 1985). 

However, the underlying molecular mechanisms regulating myocardial TNF-α 

production during sepsis remain elusive. 

Mitogen-activated protein kinases (MAPKs) including p38, ERK1/2, and JNK1/2 

are key signaling molecules regulating inflammatory responses and the expression of pro-

inflammatory cytokines (Dumitru et al. 2000; Kotlyarov et al. 1999). It has been 

demonstrated that these MAPKs exhibit different effects on myocardial TNF-α 

expression during endotoxemia (Peng et al. 2005b; Peng et al. 2003; Peng et al. 2009; 

Rosengart et al. 2000; Thakur et al. 2006). Indeed, activation of ERK1/2 and p38 

promotes TNF-α expression (Peng et al. 2005b; Peng et al. 2003; Rosengart et al. 2000; 

Thakur et al. 2006). In contrast, we recently demonstrated that JNK1 decreases TNF-α 

expression and improves cardiac function through inhibition of ERK1/2 and p38 activity 

(Peng et al. 2009). However, the molecular mechanisms by which JNK inhibits ERK1/2 

and p38 are not fully understood. 

Inactivation of MAPKs is achieved primarily by MAPK phosphatases (MKPs) 
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that dephosphorylate phosphothreonine and phosphotyrosine residues of MAPKs (Liu et 

al. 2007). Studies have shown that MKP-1 negatively regulates the inflammatory 

response of the innate immune system by accelerating MAPK inactivation and 

attenuating the production of pro-inflammatory cytokines including TNF-α, interleukin 

(IL)-1β and IL-6 in macrophages following LPS stimulation (Chen et al. 2002; Zhao et 

al. 2006). Furthermore, deficiency in MKP-1 results in a significantly higher incidence of 

mortality during endotoxemia, suggesting a protective role of MKP-1 in sepsis (Hammer 

et al. 2006; Salojin et al. 2006; Zhao et al. 2006). MKP-1 is also expressed in 

cardiomyocytes and is involved in cardiomyocyte apoptosis and cardiac hypertrophy 

(Fischer et al. 1998; Kaiser et al. 2004; Palm-Leis et al. 2004). However, the role of 

MKP-1 in myocardial TNF-α expression and cardiac dysfunction in endotoxemia 

remains unknown. 

MKP-1 has intrinsic phosphatase activity and is inducible in response to 

extracellular stimuli. The mechanisms responsible for regulating MKP-1 expression are 

cell type specific (Bokemeyer et al. 1996; Brondello et al. 1997; Li et al. 1999; Sanchez-

Tillo et al. 2007). For example, ERK1/2 (Brondello et al. 1997) and JNK (Bokemeyer et 

al. 1996) are responsible for MKP-1 induction in fibroblasts while ERK, JNK1, and p38 

are required for MKP-1 expression in macrophages (Ananieva et al. 2008; Chen et al. 

2002; Kim et al. 2008; Sanchez-Tillo et al. 2007). Rac is necessary for cyclic strain 

stress-induced MKP-1 expression in smooth muscle cells (Li et al. 1999). We have 

demonstrated that Rac1 is a critical regulator of TNF-α expression and cardiac 

dysfunction in endotoxemia (Zhang et al. 2011 Chapter 2). Interestingly, p21-activated 

kinase (PAK), a serine-threonine protein kinase, acts as a downstream effector of Rac 
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(Molli et al. 2009). Furthermore, activation of the Rac1/PAK pathway increases pro-

inflammatory factor expression in macrophages through JNK and p38 (Hsu et al. 2001). 

PAK1 is the main PAK isoform in cardiomyocytes (Sheehan et al. 2007). The role of 

PAK1 in TNF-α expression in cardiomyocytes has not been elucidated. 

In the present study, we hypothesized that MKP-1 is induced during endotoxemia 

via the Rac1/PAK1/JNK pathway in cardiomyocytes, leading to inhibition of TNF-α 

expression and improvement of cardiac function in endotoxemia. To test this hypothesis, 

cultured cardiomyocytes and MKP-1-/- mice were employed. Our results demonstrated for 

the first time that MKP-1 represents an important negative feedback mechanism in 

limiting pro-inflammatory response in the heart during endotoxemia. 

 

4.2 Materials and methods 

4.2.1 Animals and preparation of neonatal mouse cardiomyocytes 

The investigation conforms to the Guide for the Care and Use of Laboratory 

Animals published by the National Institutes of Health (NIH Publication #85-23, revised 

1996) and the experimental protocols were approved by the Animal Use Subcommittee at 

the University of Western Ontario. C57BL/6 wild-type (WT), Rac1 floxed (Rac1f/f) and 

JNK1-/- mice and were purchased from the Jackson Laboratory (Bar Harbor, Maine). Cre 

transgenic mice (CreTG/+), which over-express Cre recombinase under the control of α-

myosin heavy-chain (MHC) promoter, were provided by Dr. E. Dale Abel (University of 

Utah, UT). The generation of cardiomyocyte-specific Rac1 knockout mice (Rac1CKO) 

was achieved by breeding Rac1f/f mice with CreTG/+ mice as previously described (Rui et 

al. 2005). MKP-1-/- mice were kindly provided by Bristol-Myers Squibb Pharmaceutical 
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Research (Dorfman et al. 1996).  

4.2.2 Isolation and culturing of neonatal mouse cardiomyocytes 

The neonatal cardiomyocytes were prepared and cultured according to methods 

we have previously described (Song et al. 2000; Chapter 2). Cells were treated with LPS 

(Sigma, Oakville, Ontario, Canada), p21-activated kinases inhibitor III (IPA-3, EMD 

Biosciences, San Diego, CA) and SP600125 (Enzo Life Sciences, Plymouth Meeting, 

PA), infected with adenoviruses or transfected with small interfering RNAs (siRNAs). 

4.2.3 Adenoviral infection of neonatal cardiomyocytes 

Cardiomyocytes were infected with adenoviruses carrying a dominant-negative 

form of Rac1 (Ad-Rac1N17, Vector Biolabs, Philadelphia, PA), or LacZ (Ad-LacZ, 

Vector Biolabs, Philadelphia, PA) at a multiplicity of infection (MOI) of 10 plaque 

forming units/cell. Adenovirus-mediated gene transfer was applied as previously 

described (Peng et al. 2003; Chapter 2). All experiments were performed after 48 hours 

of adenoviral infection. 

4.2.4 siRNA transfection of neonatal cardiomyocytes 

Cardiomyocytes were treated with murine PAK1 siRNA to knock down PAK1 

expression (Santa Cruz Biotechnology Inc., Santa Cruz, CA). A scrambled siRNA (Santa 

Cruz Biotechnology Inc.) was used as a control. The transfection was performed with 

transfection reagent (Santa Cruz Biotechnology Inc.) according to the manufacturer’s 

instructions. After transfection, cells were maintained in normal culture medium for 

additional 48 hours before LPS treatment. 

4.2.5 Measurement of TNF-α  and MKP-1 mRNA  

Total RNA was extracted from cardiomyocytes using the Trizol Reagent (Gibco-
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BRL) as per manufacturer's instructions. TNF-α mRNA levels were determined by real-

time reverse-transcriptase polymerase chain reaction (RT-PCR) as as previously 

described (Peng et al. 2003; Chapter 2). 28S rRNA was used as an internal control. The 

primers were: TNF-α upstream 5′-CCG ATG GGT TGT ACC TTG TC-3′ and 

downstream 5′-GGG CTG GGT AGA GAA TGG AT-3′; MKP-1 upstream 5′-GGA GAT 

CCT GTC CTT CCT GTA-3′ and downstream 5′-CTG ATG TCT GCC TTG TGG TTG-

3′; 28S rRNA upstream 5’-TTG AAA ATC CGG GGG AGA G-3’ and downstream 5’-

ACA TTG TTC CAA CAT GCC AG-3’. Samples were amplied for 34 cycles using MJ 

Research Opticon Real-time PCR machine. The levels of TNF-α and MKP-1 were 

compared to that of 28S rRNA, and the relative expression of these genes was obtained.  

4.2.6 Measurement of TNF-α protein 

TNF-α protein levels were measured using a mouse TNF-α ELISA kit 

(eBioscience, USA), according to the manufacturer’s instructions.  

4.2.7 Western blot analysis 

Ten to twenty micrograms of protein lysates were subjected to separation on a 

10% SDS-PAGE gel, followed by electrotransfer to nitrocellulose membranes. Blots 

were probed with specific antibodies against ERK1/2 (1:500), phospho-ERK1/2 (1:500), 

p38 (1:500), phospho-p38 (1:500), JNK1/2 (1:500), phospho-JNK1/2 (1:500), PAK1 

(1:1000) and phospho-PAK1 (1:500, Cell Signaling Technology, Danvers, MA), MKP-1 

(1:1000, Upstate, Lake Placid, NY), α-actinin (1:2000) and GAPDH (1:2000, Santa Cruz 

Biotechnology Inc.) followed by incubation with horseradish peroxidase-conjugated 

secondary antibodies (1:3000, Santa Cruz Biotechnology, CA) respectively. Signals were 

detected by chemiluminescence and quantified by densitometry. 
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4.2.8 Isolated mouse heart preparations 

Adult WT and MKP-1-/- mice (male, 10 weeks old) were treated with LPS (10 

mg/kg, i.p.) or saline. After 4 hours, hearts were isolated and perfused in a Langendorff 

system with Kreb’s-Henseleit buffer at 3 ml/min constant flow. The Kreb’s-Henseleit 

buffer was kept at 37 °C and consistently bubbled with a mixture of 95% O2 and 5% 

CO2. Myocardial function was detected as previously described (Zhang et al. 2011 

Chapter 2). 

4.2.9 Statistical analysis 

Results are presented as mean ± SEM from at least three independent 

experiments. Differences between two groups were analyzed by a standard Student t-test. 

For multigroup comparisons, one or two-way ANOVA followed by Student-Newman-

Keuls or Bonferroni post-test was performed. P < 0.05 was considered statistically 

significant. 

 

4.3 Results 

4.3.1 LPS increases myocardial MKP-1 expression   

To examine whether LPS regulates cardiac MKP-1 expression in cardiomyocytes, 

we first measured MKP-1 protein levels in neonatal cardiomyocytes and found that 

MKP1 protein was increased after 1 hour of LPS stimulation (Figure 4.1A). To verify 

these in vitro results, WT mice were treated with LPS or saline for 1 and 1.5 hours.  

Hearts were then harvested and myocardial MKP-1 mRNA and protein levels were 

detected. Myocardial MKP-1 mRNA and protein levels were markedly increased after 

LPS stimulation (Figure 4.1B & 4.1C). These data show that LPS promotes MKP-1  
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Figure 4.1. LPS induces MKP-1 expression in neonatal cardiomyocytes and in the adult 
myocardium. (A) WT cardiomyocytes were cultured in serum free medium for 24 hours 
and then treated with vehicle or LPS (1 µg/ml) for 7, 15, 30, 60 and 120 minutes. MKP-1 
protein was detected by western blotting. Adult male WT mice were treated with LPS (4 
mg/kg, i.p.) for 1 or 1.5 hours. MKP-1 mRNA (B) and protein (C) levels in the left 
ventricular myocardium were measured. Data are means ± SEM from 3 - 4 mice or 
independent experiments.  *P<0.05 vs. control. 
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expression in cardiomyocytes in vitro and in myocardium in vivo. 

4.3.2 MKP-1 inhibits LPS-induced myocardial ERK1/2 and p38 activation  

MKP-1 inactivates MAPKs by dephosphorylating phosphothreonine and 

phosphotyrosine residues. To determine the role of MKP-1 in cardiac MAPK inactivation 

after LPS stimulation, we examined myocardial ERK1/2 and p38 phosphorylation in WT 

and MKP-1-/- mice. In response to LPS, ERK1/2 and p38 phosphorylation was induced in 

both WT and MKP-1-/- myocardium. Phosphorylation of ERK1/2 was diminished in the  

WT myocardium between 2 and 3 hours after LPS stimulation, but it was sustained in the 

MKP-1-/- myocardium. Similarly, p38 phosphorylation was increased in the WT 

myocardium between 1.5 and 3 hours after LPS stimulation. Importantly, p38 

phosphorylation was significantly higher in MKP-1-/- than the WT myocardium (Figure 

4.2). Thus, MKP-1 deficiency enhanced ERK1/2 and p38 phosphorylation, demonstrating 

an important role for MKP-1 in reducing the levels of myocardial ERK1/2 and p38 

activation after LPS stimulation. 

4.3.3 MKP-1 attenuates myocardial TNF-α  expression in endotoxemia 

To investigate the role of MKP-1 in myocardial TNF-α expression and heart 

function during endotoxemia in vivo, WT and MKP-1-/- mice were treated with vehicle or 

LPS. Our data showed that LPS increased myocardial TNF-α expression in both WT and 

MKP-1-/- mice. Compared with the WT group, MKP-1-/- mice exhibited significantly 

higher TNF-α mRNAand protein levels (Figure 4.3). These results suggest that MKP-1 

limits myocardial TNF-α expression in response to LPS.  

4.3.4 MKP-1 improves cardiac function during endotoxemia 

Cardiac function was determined using the Langendorff preparation after 4 hours  
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Figure 4.2. MKP-1 inhibits LPS-induced myocardial ERK1/2 and p38 activation. Adult 
male WT and MKP1-/- mice were treated with LPS (4 mg/kg, i.p.) for 60, 90, 120, 150 
and 180 minutes. ERK1/2 and p38 phosphorylation in myocardium were detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. TNF-α expression in WT and MKP-1-/- myocardium during endotoxemia. 
TNF-α mRNA (A) and protein (B) levels in WT and MKP-1-/- heart tissues were 
measured after 1 and 2 hours of LPS treatment (4 mg/kg, i.p.). Data are means ± SEM, 
n=3 to 5 per group. ** P <0.01 vs. control, † P <0.05 vs. WT+LPS. 
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of LPS in vivo treatment. The rates of contraction (+dF/dtmax) and relaxation (-dF/dtmin), 

and heart work in LPS-treated hearts were reduced in both WT and MKP-1-/- mice 

relative to vehicle-treated mice. Furthermore, compared with WT mice, rate of 

contraction and relaxation and heart work were significantly lower in MKP-1-/- mice 

(Figure 4.4), indicating that MKP-1 expression improves cardiac function during 

endotoxemia. 

4.3.5 LPS activates PAK1 in cardiomyocytes   

Rac contributes to the induction of MKP-1 expression in smooth muscel cells (Li 

et al. 1999). PAK is a downstream effector of Rac (Molli et al. 2009). Activation of PAK 

promotes pro-inflammatory cytokine expression (Hsu et al. 2001). To assess the role of 

PAK1 in cardiac MKP-1 and TNF-α expression during endotoxemia, we first examined 

PAK1 activity after LPS stimulation. Neonatal cardiomyocytes isolated from WT mice 

were treated with LPS (1 µg/ml) for 7, 15, 30 and 60 min. PAK1 phosphorylation in these 

cells peaked at 15 min and then returned to control levels at 60 min (Figure 4.5A), 

indicating that LPS activates PAK1 in cardiomyocytes.  

4.3.6 PAK1 increases LPS-induced TNF-α  expression 

To elucidate the role of PAK1 in LPS-induced TNF-α expression, neonatal 

cardiomyocytes were treated with IPA-3, an inhibitor of PAKs. IPA-3 (1–10 µM) 

decreased LPS-induced TNF-α mRNA expression and TNF-α protein levels in a dose-

dependent manner (Figure 4.5B & 4.5C). These results were further verified by using 

PAK1 siRNA. As shown in Figure 4.5D, PAK1 mRNA expression was decreased by 

56% after PAK1 siRNA transfection. The inhibition of PAK1 expression was associated  
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Figure 4.4. Cardiac function in WT and MKP-1-/- mice after 4 hours of LPS treatment 
(10 mg/kg, i.p.). Mouse hearts were isolated and perfused using the Langendorff system. 
Contractile function of heart was determined. Changes in contraction (+dF/dtmax, A), 
relaxation (-dF/dtmin, B) heart work (C) and heart rate (D) are presented. Data are means 
± SEM, n=5 to 7 per group. * P <0.05 vs. control, † P <0.05 vs. WT+LPS. 
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with decreased TNF-α mRNA and protein levels (Figure 4.5E & 4.5F). These data 

indicate that activation of PAK1 promotes cardiac TNF-α expression in response to LPS. 

4.3.7 PI3K/Rac1 pathway mediates LPS-induced PAK1 activation  

It is well known that PAK1 is activated by certain small GTPases such as Rac 

(Molli et al. 2009). We have demonstrated that the PI3K/Rac1 pathway is activated by 

LPS and critical for cardiac TNF-α expression during endotoxemia (Zhang et al. 2011 

Chapter 2). To determine if PI3K acts as an upstream regulator of PAK1, the PI3K 

inhibitor, LY294002, was employed. LY294002 significantly decreased PAK1 

phosphorylation induced by LPS (Figure 4.6A). To determine the role of Rac1 on PAK1 

activity, neonatal cardiomyocytes were infected with an adenovirus encoding a dominant 

negative form of Rac1 gene (Ad-Rac1N17), which specifically inhibits Rac1 activity. 

Overexpression of Rac1N17 inhibited PAK1 activity in response to LPS (Figure 4.6B). 

Taken together, these data imply that LPS activates PAK1 via PI3K/Rac1 in 

cardiomyocytes. 

4.3.8 PAK1 mediates LPS-induced p38 and JNK phosphorylation  

To determine whether PAK1 regulates p38, ERK1/2 and JNK phosphorylation, 

neonatal cardiomyocytes were transfected with PAK1 siRNA. Interestingly, PAK1 

siRNA blocked p38 and JNK phosphorylation in response to LPS, but did not show any 

effect on ERK1/2 phosphorylation (Figure 4.7).  

4.3.9 The Rac1/PAK1/JNK pathway mediates LPS-induced MKP-1 expression 

To further explore the downstream effectors of the Rac1/PAK1/JNK pathway, 

MKP-1 expression was studied. Overexpression of Rac1N17 in neonatal cardiomyocytes 

significantly decreased MKP-1 protein levels (Figure 4.8A). This result was further 
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Figure 4.5. PAK1 activity promotes LPS-induced TNF-α expression in neonatal 
cardiomyocytes. (A) Cardiomyocytes isolated from WT mice were treated with vehicle or 
LPS (1 µg/ml) for 7, 15, 30 and 60 minutes. PAK1 phosphorylation was measured by 
western blotting. Cells were treated with IPA-3 with or without LPS (1µg/ml) for 3 or 5 
hours. TNF-α mRNA (B) and TNF-α protein in culture medium (C) were measured by 
real-time RT-PCR and ELISA, respectively. (D) WT cardiomyocytes were transfected 
with scrambled or PAK1 siRNA. PAK1 mRNA expression in these cells were detected. 
Cells, transfected with scrambled and PAK1 siRNA, were treated with LPS (1µg/ml) for 
3 or 5 hours. TNF-α mRNA (E) and protein levels (F) were measured.  Data are means ± 
SEM from 3 - 4 independent experiments. *P<0.05, **P<0.01 vs. control; †P<0.05, †† 
P<0.01 vs. LPS and Scramble+LPS. 
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Figure 4.6. PI3K and Rac1 activity increases LPS-induced PAK1 activation. (A) WT 
neonatal cardiomyocytes were incubated with LPS (1 µg/ml, 15 min) with or without 
LY294002 (LY). (B) Cells were infected with Ad-Rac1N17 followed by LPS treatment 
(1 µg/ml) for 15 minutes. PAK1 phosphorylation in these cells was detected by western 
blotting. Data are mean ± SEM from 3 independent experiments.  **P <0.01 vs. control;  
††P <0.01 vs. LPS or Ad-LacZ+LPS. 
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Figure 4.7. Effect of PAK1 on LPS-induced p38, JNK1/2 and ERK1/2 activation in 
neonatal cardiomyocytes. WT cardiomyocytes, transfected with scrambled and PAK1 
siRNA, were treated with LPS (1 µg/ml) for 1 hour. P38 (A), JNK1/2 (B) and ERK1/2 
(C) phosphorylation and were detected by western blotting. Data are mean ± SEM from 3 
independent experiments. *P <0.05 vs. control; †P <0.05 vs. Scramble+LPS. 
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Figure 4.8. Effect of Rac1, PAK1 and JNK on LPS-induced MKP-1 expression. (A) WT 
neonatal cardiomyocytes were infected with Ad-Rac1N17 followed by LPS treatment (1 
µg/ml) for 1 hour. MKP-1 protein levels were detected by western blotting. (B) Adult 
male Rac1f/f and Rac1CKO mice were treated with LPS (4 mg/kg, i.p. injection) for 1.5 
hours. MKP-1 protein levels in the left ventricular myocardium were determined. (C) WT 
cardiomyocytes were transfected with PAK1 siRNA followed by LPS treatment for 1 
hour. Cells were incubated with LPS for 1 hour with or without IPA-3 (10µM, D) and 
SP600125 (SP, 10µM, E). MKP-1 protein levels in these cells were detected. (F) Adult 
male WT and JNK1-/- mice were treated with LPS (4 mg/kg, i.p. injection) for 1.5 hours. 
MKP-1 protein levels in the left ventricular myocardium were determined. Data are mean 
± SEM from 3 - 4 independent experiments. *P <0.05, **P <0.01 vs. control; †P <0.05, 
††P <0.01 vs. LPS, Ad-LaZ +LPS, Scramble+LPS. 
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confirmed in vivo. As shown in Figure 4.8B, LPS enhanced MKP-1 protein levels in 

Rac1f/f but not in the Rac1CKO myocardium. To examine whether PAK1 mediates MKP-1 

expression, cardiomyocytes were treated with IPA-3 or transfected with PAK1 siRNA. 

LPS-induced MKP-1 protein expression was blocked by both IPA-3 and PAK1 siRNA 

(Figure 4.8C & 4.8D). To determine if JNK is involved in regulating MKP-1 expression, 

cardiomyocytes were treated with SP600125, an inhibitor of JNK. LPS-induced MKP-1  

protein expression was significantly reduced by SP600125 (Figure 4.8E). To verify this 

result in vivo, WT and JNK1-/- mice were treated with LPS (4 mg/kg, i.p.) or saline for 

1.5 hours. LPS significantly increased myocardial MKP-1 protein levels in WT mice but 

had no apparent effect in JNK1-/- mice (P<0.05, Figure 4.8F). Taken together, these data 

indicate that the Rac1/PAK1/JNK pathway mediates LPS-induced MKP-1 expression. 

 

4.4 Discussion 

The present study would appear to demonstrate for the first time that myocardial 

MKP-1 is induced by LPS via the PI3K/Rac1/PAK1/JNK pathway. Enhanced MKP-1 

expression attenuates ERK1/2 and p38 phosphorylation, leading to inhibition of 

myocardial TNF-α expression and improvement of cardiac function during endotoxemia. 

MKP-1 is constitutively active, thus its phosphatase actvity depends on its protein 

expression but does not rely on post-translational modifications such as phosphorylation 

(Liu et al. 2007). MKP-1 dephosphorylates MAPKs and impedes their cellular functions. 

Recent studies have shown that MKP-1 expression is up-regulated in macrophages in 

response to LPS (Chen et al. 2002). Deficiency of MKP-1 enhances p38 and JNK 

phosphorylation and pro-inflammatory cytokine production including TNF-α, IL-1β and 
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IL-6 in macrophages (Chen et al. 2002; Zhao et al. 2006). Consistent with this notion, 

MKP-1-/- mice exhibit significantly higher serum cytokine concentrations and higher 

mortality rate after LPS stimulation (Hammer et al. 2006; Salojin et al. 2006; Zhao et al. 

2006). In the present study, we showed that LPS induced myocardial MKP-1 expression. 

Furthermore, MKP-1 deficiency enhanced myocardial ERK1/2 and p38 phosphorylation 

and increased cardiac TNF-α expression. Most importantly, MKP-1 deficiency worsened 

cardiac function during endotoxemia. Thus, both in vitro and in vivo evidence 

demonstrated that LPS induces MKP-1 expression, which inhibits ERK1/2 and p38 

activation and myocardial TNF-α expression, and improves cardiac function during 

endotoxemia. 

Rac is one of the factors that are responsible for MKP-1 expression (Li et al. 

1999). We recently demonstrated that PI3K-mediated Rac1 activation promotes TNF-α 

expression and cardiac dysfunction in endotoxemia (Zhang et al. 2011 Chapter 2). PAK 

proteins are downstream effectors of Rac and regulate many cellular events including cell 

motility, survival, proliferation and gene expression (Molli et al. 2009). PAK1 is the main 

isoform of this enzyme in the myocardium and plays an important role in cardiac 

contractility and hypertrophy (Sheehan et al. 2009; Sussman et al. 2000). Studies have 

shown that PAK protein is activated and contributes to IL-1 expression through MAPKs 

upon ligand stimulation in macrophages (Hsu et al. 2001). In the present study, LPS 

enhanced PAK1 activity in cardiomyocytes. Inhibition of PAK1 activity by the 

pharmacological inhibitor, IPA-3, or PAK1 expression by PAK1 siRNA decreased LPS-

induced TNF-α expression in cardiomyocytes. Furthermore, inhibition of PI3K and Rac1 

decreased PAK1 activity in response to LPS in cardiomyocytes. These results indicate 
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that PI3K/Rac1-mediated PAK1 activation plays an essential role in LPS-induced TNF-α 

expression in cardiomyocytes. 

ERK1/2, p38 and JNK MAPKs are important signaling molecules regulating 

TNF-α expression in cardiomyocytes (Peng et al. 2005b; Peng et al. 2003; Peng et al. 

2009; Rosengart et al. 2000; Thakur et al. 2006). ERK1/2 and p38 are positive regulators 

of TNF-α expression (Peng et al. 2005b; Peng et al. 2003; Rosengart et al. 2000; Thakur 

et al. 2006). In contrast, JNK1 inhibits TNF-α expression via inactivating LPS-induced 

ERK1/2 and p38 MAPKs (Peng et al. 2009). In the present study, inhibition of PAK1 

activity blocked LPS-induced p38 and JNK phosphorylation. These results suggest that 

PAK1 may have both stimulatory and inhibitory effects on LPS-induced TNF-α 

expression in cardiomyocytes. Its activation on p38 promotes TNF-α expression. On the 

other hand, PAK1-mediated JNK activation inhibits LPS-induced TNF-α expression.  

To address the molecular mechanisms by which JNK inhibits LPS-induced TNF-

α expression, we studied the role of MKP-1 in this process. Studies have shown that 

MAPKs are involved in regulating MKP-1 expression. For example, ERK1/2 and JNK 

activation are responsible for MKP-1 induction in fibroblasts (Bokemeyer et al. 1996; 

Brondello et al. 1997). However, the effects of ERK1/2, p38 and JNK on MKP-1 

expression in macrophages are controversial. Several studies have showed that ERK1/2 

and p38 are required for MKP-1 expression in macrophages (Ananieva et al. 2008; Chen 

et al. 2002; Kim et al. 2008). On the other hand, Sanchez-Tillo et al. reported that JNK1 

is necessary for MKP-1 expression in macrophages which consequently decreases 

ERK1/2 and p38 phosphorylation levels (Sanchez-Tillo et al. 2007). In the present study 

we demonstrated that LPS-induced MKP-1 production was blocked by the inhibition of 
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Rac1, PAK1 and JNK1 in cardiomyocytes, suggesting that the Rac1/PAK1/JNK1 

pathway is required for LPS-induced MKP-1 expression in cardiomyocytes. MKP-1 

mediates the inhibitory effect of JNK1 on ERK1/2 and p38 activity. Therefore, 

Rac1/PAK1/JNK1-mediated MKP-1 expression provides a key negative feedback 

mechanism to limit myocardial TNF-α production and improve cardiac function during 

endotoxemia. 

In conclusion, the current study showed that PAK1 is activated by the PI3K/Rac1 

pathway and increases p38 and JNK activity. PAK1 increases TNF-α expression via p38 

activation in response to LPS. On the other hand, Rac1/PAK1/JNK1 pathway enhances 

MKP-1 expression, which inactivates ERK1/2 and p38, limits TNF-α expression and 

improves cardiac function during endotoxemia (Figure 4.9). Thus, the 

Rac1/PAK1/JNK1/MKP-1 signaling pathway represents a novel negative feedback 

mechanism in regulating TNF-α expression and cardiac function in endotoxemia, and 

may have therapeutic implications in the treatment of sepsis. 
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Figure 4.9. Schematic of the MKP-1 signaling pathway regulating TNF-α expression and 
cardiac function during LPS stimulation.  PAK1 is activated by PI3K/Rac1 pathway and 
increases P38 and JNK activity. PAK1 increases TNF-α expression via p38 activation in 
response to LPS. On the contrary, Rac1/PAK1/JNK pathway enhances MKP-1 
expression, which inactivates ERK1/2 and p38, limits TNF-α expression and improves 
cardiac function during endotoxemia. 
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Chapter 5 Discussion 

5.1 Summary and major findings 

The overall goal of this thesis was to investigate the role of Rac1 in myocardial 

TNF-α expression and dysfunction during sepsis. Specifically, the activation of Rac1 and 

its signaling in the regulation of myocardial TNF-α mRNA expression and protein 

synthesis in endotoxemia were examined (see Figure 5.1).  

In Chapter 2, the mechanisms of Rac1 activation in the heart and the role of Rac1 

in cardiac dysfunction during endotoxemia were studied. The results showed that LPS 

activates PI3K in cardiomyocytes both in vitro and in vivo. Furthermore, activated PI3K 

is responsible for Rac1 activation.  Rac1 activity is required for induction of myocardial 

TNF-α expression by LPS. This effect of Rac1 on TNF-α expression is mediated by 

NADPH oxidase and ERK1/2. Finally, using cardiac-specific Rac1 knockout mice, I 

showed that Rac1 activation leads to myocardial depression during endotoxemia (Figure 

5.1).  

In Chapter 3, I discovered that Rac1 promotes cardiac TNF-α protein synthesis 

via the Na/K-ATPase/mTOR pathway in endotoxemia. Previous studies have shown that 

Na/K-ATPase activity is inhibited in macrophages (Ohmori et al. 1991), lung (Koksel et 

al. 2006) and kidney (Guzman et al. 1995) by LPS. I showed for the first time that Na/K-

ATPase activity in the myocardium is decreased during endotoxemia. The suppression of 

myocardial Na/K-ATPase activity is mediated through PI3K/Rac1/NADPH oxidase 

pathway. This finding is consistent with a previous recent study showing that NADPH 

oxidase decreases Na/K-ATPase activity in cardiomyocytes by glutathionylating its β 

subunit (Figtree et al. 2009). Inhibition of Na/K-ATPase has been shown to potentiate  
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Figure 5.1. Schematic Rac1 signaling pathway regulating TNF-α expression and cardiac 
function in endotoxemia. LPS activates Rac1 through PI3K. Activation of Rac1 increases 
NADPH oxidase and ERK1/2 activity, leading to increased myocardial TNF-α mRNA 
expression. Moreover, Rac1-containing NADPH oxidase inhibits Na/K-ATPase and 
activates Ca2+/CaMK-dependent mTOR, causing enhanced TNF-α protein synthesis. 
Another effector of Rac1 is PAK1. PAK1 increases TNF-α expression via p38 MAPK. 
On the other hand, PAK1 promotes JNK1-dependent MKP-1 expression, which 
inactivates ERK1/2 and p38 MAPK, reduces TNF-α expression and improves heart 
function.  
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LPS-induced cytokine expression in macrophages (Ohmori et al. 1991). A novel finding 

from my study is that, in cardiomyocytes, reduction of Na/K-ATPase activity leads to 

enhanced TNF-α protein levels in response to LPS without any measurable effect on 

TNF-α mRNA expression or stability.  

It has been demonstrated that inhibition of Na/K-ATPase activity increases 

intracellular Ca2+ concentrations via the Na/Ca exchanger (Bers et al. 2006). Since Rac1 

is a negative regulator of Na/K-ATPase, I measured Ca2+ transients in Rac1f/f and 

Rac1CKO ventricular cardiomyocytes and found that Rac1CKO cardiomyocytes exhibited 

significantly lower intracellular Ca2+ levels compared with Rac1f/f cells in basal 

conditions and in response to LPS. It appears that Rac1-mediated Na/K-ATPase 

inhibition increases intracellular Ca2+ concentrations during endotoxemia. mTOR is a 

Ca2+ sensitive regulator of protein expression which does so by controlling mRNA 

expression, translation initiation and elongation (Hay & Sonenberg 2004; Hoyer-Hansen 

et al. 2007; Lenz & Avruch 2005). Results in Chapter 3 demonstrated that mTOR is 

activated by LPS in cardiomyocytes and increases TNF-α protein levels without any 

significant effect on TNF-α mRNA expression or stability. In addition, LPS-induced 

mTOR activity was blocked by inhibition of Rac1 and CaMKs but enhanced by 

inhibition of Na/K-ATPase. Taken together, these results provide the first evidence that 

inhibition of Na/K-ATPase activates Ca2+/CaMK-dependent mTOR, which increases 

TNF-α protein production in cardiomyocytes (Figure 5.1).  

In the Chapter 4, I identified a negative feedback mechanism, which limits 

myocardial TNF-α expression and improves heart function in endotoxemia. Recent 

studies have demonstrated that MKP-1 is an important negative regulator of the 
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inflammatory response of the innate immune system (Chen et al. 2002; Hammer et al. 

2006; Salojin et al. 2006; Zhao et al. 2006). In Chapter 4, I found that LPS increased 

MKP-1 expression in the myocardium. Deficiency in MKP-1 prolonged myocardial 

ERK1/2 and p38 activities and increased cardiac TNF-α expression in response to LPS. 

MKP-1-/- mice showed a further decrease in cardiac function during endotoxemia, 

compared to the corresponding WT group. Taken together, these results imply that LPS 

induces myocardial MKP-1 expression, which inhibits TNF-α expression and improves 

heart function in endotoxemia. 

PAK1 is a downstream effector of Rac1 (Molli et al. 2009) and increases pro-

inflammatory factor expression in macrophages through MAPKs (Hsu et al. 2001). My 

results showed that LPS activated PAK1 through PI3K/Rac1 in cardiomyocytes (Chapter 

4), consistent with previous studies (Molli et al. 2009). Activated PAK1 increased p38 

MAPK activity and promoted TNF-α expression in cardiomyocytes. Rac1 is necessary 

for MKP-1 expression in smooth muscle cells (Li et al. 1999). I showed that Rac1/PAK1 

activation increased JNK1 activity, which induced MKP-1 expression, leading to 

decreased TNF-α expression in cardiomyocytes during LPS stimulation. Therefore, I 

demonstrated for the first time that Rac1/PAK1/JNK1-mediated MKP-1 represents an 

important negative feedback mechanism in limiting the pro-inflammatory response in the 

heart during sepsis (Figure 5.1). 

Therefore, results from these chapters provide insight into the molecular 

mechanisms of myocardial Rac1 activation as well as the pathways through which Rac1 

regulates TNF-α mRNA expression and protein production in myocardium and cardiac 

dysfunction during endotoxemia.  These studies may increase our understanding of 
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mechanisms that regulate myocardial TNF-α expression and cardiac function during 

sepsis. 

 

5.2 Clinical implications 

The heart is a major organ that produces TNF-α in sepsis (Grandel et al. 2000; 

Kapadia et al. 1995; Peng et al. 2003). High levels of TNF-α produced by 

cardiomyocytes impair cardiac function via direct suppression of cardiac contractility, the 

induction of myocardial apoptosis, and inflammatory response (Meldrum 1998). 

Therefore, understanding the underlying mechanisms of myocardial TNF-α production 

may lead to new therapeutic approaches. A novel finding reported in this thesis is that 

Rac1 is a critical regulator of myocardial TNF-α production and cardiac dysfunction in 

sepsis. PI3K-mediated Rac1 activation promotes LPS-induced TNF-α mRNA expression 

and protein production through the NADPH oxidase/ERK, PAK1/p38 and Na/K-

ATPase/mTOR pathways. Cardiomyocyte specific deletion of Rac1 decreased 

myocardial TNF-α expression and improved cardiac function in endotoxemia. These 

results suggest that Rac1 may represent a novel therapeutic target for inhibiting TNF-α 

expression and improving myocardial function in sepsis.  

In contrast to its pathogenic effects, Rac1 activation also triggers a negative 

feedback mechanism to limit myocardial TNF-α production via MKP-1. Myocardial 

TNF-α mRNA and protein levels in MKP1-/- mice were enhanced compared to WT mice 

in endotoxemia, which was associated with a further decrease in cardiac function. These 

results indicate that MKP-1 may protect the heart from sepsis-induced injuries. To this 

end, future studies may test the hypothesis that cardiomyocyte specific overexpression of 
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the MKP-1 gene improves cardiac function during sepsis. While cardiac specific 

overexpression of MKP-1 may benefit the heart during sepsis, a recent study showed that 

overexpression of MKP-1 in the hippocampus of nonstressed rats produces profound 

depressive-like responses (Duric et al. 2010). Therefore, tissue specific overexpression of 

MKP-1 is critical to developing MKP-1 as a treatment for sepsis in humans. 

 

5.3 Study limitations 

5.3.1 Use of mouse models to simulate human disease conditions 

All of the studies presented in this thesis were done either in primary neonatal 

cardiomyocytes or adult cardiomyocytes in vitro or in an endotoxemic mouse model in 

vivo. Animal models have many advantages in studying signaling pathways. For 

example, animal models allow for the control of experimental conditions, collection of 

tissue samples and the manipulation of the genetic systems, which are difficult or not 

ethical to do in humans. Furthermore, mice have relatively shorter gestation (20 days) 

and maturation (2 months), which enable experiments to be carried out with sufficient 

sample size in a reasonably short period of time. In addition, approximately 99% of all 

mouse genes have a human homologue (Waterston et al. 2002).  

This thesis utilized LPS to simulate human sepsis. LPS is an endotoxin produced 

by Gram-negative bacteria and is effective in inducing a sepsis-like state in animal 

models.  But it does not represent all sepsis-associated infections. It has been 

demonstrated that 37.6% of the septic cases from 1979 through 2000 were caused by 

Gram-negative bacterial infection, while the rest resulted from Gram-positive bacterial, 

polymicrobial and fungi infections (Martin et al. 2003). In addition, clinical studies have 
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shown that 49% of the infections originated in the respiratory system while 21% were 

abdominal infection. Patients with abdominal infection are more likely to have septic 

shock and early renal failure, whereas patients with respiratory infections more 

commonly exhibit early alterations in neurological function (Volakli et al. 2010). To this 

end, intraperitoneal injection of LPS has been shown to induce septic shock, renal 

dysfunction and abnormalities in coagulation (Doi et al. 2009; Levy & Deutschman 

2004). Therefore, the endotoxemic model induced by LPS provides an appropriate model 

for studying many manifestations of sepsis. 

5.3.2 Use of pharmacological inhibitors to delineate signaling pathways 

In this thesis, the following pharmacological inhibitors were used: LY294002, 

apocynin, U0126, ouabain, KN-93, rapamycin, IPA-3 and SP600125 to selectively inhibit 

PI3K, NADPH oxidase, ERK1/2, Na/K-ATPase, CaMKs, mTOR, PAK1 and JNK1, 

respectively. LY294002 inhibits PI3K activity via competitive inhibition of an ATP 

binding site on the p85α subunit. At low dose, it specifically abolishes PI3K activity (IC50 

= 1.40 µM) and does not inhibit other lipid and protein kinases such as PI4K, EGFR, 

PKA, PKC, MAPKs, ATPase, diacylglycerol kinase or Src (Vlahos et al. 1994). Thus, 

LY294002 is highly selective for PI3K and represents an excellent tool for studying 

PI3K-dependent signaling in this thesis. 

Apocynin (4'-hydroxy-3'-methoxy-acetophenone) is a cell-permeable, relatively 

selective inhibitor of NADPH oxidase (IC50 value: 10 µM in human neutrophils). Once 

inside the cell, apocynin reacts with ROS and peroxidase to form an apocynin radical, 

which prevents the translocation of two essential cytosolic proteins, p47phox and p67phox to 

the cell membrane and their binding with Nox2, thereby inhibiting the assembly of 
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NADPH oxidase (Stefanska & Pawliczak 2008). Besides its ability to inhibit NADPH-

oxidase, apocynin also inhibits cytochrome P450 (IC50 value: 600 µM) (Pietersma et al. 

1998), and thromboxane synthase (IC50 value: 1 µM- 0.1nM) (Engels et al. 1992). 

Although, in this thesis, apocynin (400 µM) significantly decreased LPS-induced O2
- 

production in cardiomyocytes, the effects of apocynin on thromboxane synthase cannot 

be excluded. 

U0126 is a cell permeable, potent inhibitor of MEK1 and MEK2 (IC50 of 72 nM 

and 58 nM, respectively), both of which activate ERK1/2 (Duncia et al. 1998). U0126 

noncompetitively binds with the deltaN3-S218E/S222D site of MEK1/2 and inhibits 

MEK1/2 activation (Favata et al. 1998). This compound also inhibits other kinases 

including MKK-3/4/6, p38, PRAK and PKBα at 4-10 times higher IC50 concentrations 

compared with its effect on MEK-1 (Davies et al. 2000; Favata et al. 1998). Although the 

effect of U0126 on the above protein kinases cannot be completely ruled out, U0126 is 

still a relatively specific inhibitor of MEK1/2.  

Ouabain, a cardiac glycoside, is a specific inhibitor of Na/K-ATPase which dose 

so by binding to a cavity formed by the transmembrane helices of the α subunit of Na/K-

ATPase, thereby blocking ion transportation (Ogawa et al. 2009) or promoting the 

interaction of Na/K-ATPase with signaling molecules, such as Src and MAPKs (Li & Xie 

2009). Ouabain has no effect on the Mg2+-ATPase and the HCO3
--ATPase (Knauf et al. 

1976). Therefore, ouabain selectively inhibits Na/K-ATPase without any measureable 

effect on other ATPases. 

KN-93 is a potent and cell-permeable inhibitor of CaMKs by competitively 

blocking calmodulin binding to the calmodulin-binding region of CaMK. It inhibits 
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CaMK I (IC50 = 5 µM), CaMK II (IC50 = 1 µM) and CaMK IV  (IC50 = 7 µM) (Means 

2008). This compound does not affect the activities of PKA, PKC, MLCK, or Ca2+-

phosphodiesterase (Riganti et al. 2009). However, KN-93 shows inhibitory effects on 

aminopyrine uptake in parietal cells (IC50 = 300 nM) (Mamiya et al. 1993) and voltage-

gated K+ channels in smooth muscle cells (IC50 = 270 nM) (Ledoux et al. 1999). 

Interestingly, both Kv4.2 and Kv4.3 channels are substrates of CaMK II in 

cardiomyocytes (Colinas et al. 2006) and the effects of KN-93 on K+ channels are a result 

of CaMK II inhibition, making KN-93 a specific inhibitor of CaMKs in cardiomyocytes. 

Rapamycin is a potent allosteric mTORC1 inhibitor by forming a complex with 

the FK-binding protein 12 (FKBP12). This complex interacts with the multiprotein 

complex composed of mTOR, mLST8, and raptor, leading to inhibition of mTORC1. A 

recent study showed that prolonged rapamycin treatment (24 hours) reduces the levels of 

mTORC2, which phosphorylates and activates Akt (Sarbassov et al. 2006). Rapamycin 

has no significant inhibitory effect on other kinases (Davies et al. 2000). In the present 

thesis, cells were treated with rapamycin for 3-5 hours. During this period of time, it 

seems unlikely that rapamycin would have any nonspecific effect.  

IPA-3 is a cell-permeable symmetrical disulfide allosteric inhibitor of group I 

PAK activation, and 10 µM of IPA-3 inhibits PAK1, PAK2 and PAK3 activity by 90%, 

70% and 60%, respectively. IPA-3 binds covalently to the PAK regulatory domain and 

prevents binding to the upstream activator (Viaud & Peterson 2009). A recent study 

showed that IPA-3 at 10µM inhibits PKBβ, FGR, GRK4, GSK3, p38α, PLK3 and SGK3 

activity to 68%, 51%, 68%, 66%, 70%, 88% and 93% respectively (Deacon et al. 2008). 

These nonspecific effects of IPA-3 cannot be ruled out in my thesis. To exclude these 
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nonspecific effects, PAK1 siRNA was also employed to specifically inhibit PAK1 

activity.  

SP600125 is a potent, cell permeable inhibitor of JNK (IC50 = 40 nM for JNK-1 

and JNK-2; 90 nM for JNK-3) (Bogoyevitch & Arthur 2008). It competes with ATP for 

the ATP-binding site of JNK. Unlike ATP, SP600125 cannot be used in the 

phosphotransfer reaction, thereby inhibiting JNK activity. This agent exhibits greater than 

300-fold selectivity for JNK in relation to other MAPKs (ERK and p38) and PKA 

(Bogoyevitch & Arthur 2008). This limitation of SP600125 cannot be ruled out in the 

present thesis. To overcome this limitation, JNK1-/- mice were employed to confirm the 

results of JNK inhibition by SP600125 in this thesis.  

 

5.4 Future directions 

Besides regulating TNF-α expression, it is possible that Rac1 contributes to 

cardiac dysfunction in endotoxemia through other mechanisms that are not explored in 

this thesis. Studies have shown that LPS increases caspase activation in the heart (Carlson 

et al. 2005). Inhibition of caspase activity and transgenic overexpression of Bcl-2 

improve myocardial function in endotoxemic mice, suggesting that cardiomyocyte 

apoptosis may play a role in myocardial depression (Fauvel et al. 2001; Lancel et al. 

2005). A recent study showed that Rac1 is required for cardiomyocyte apoptosis during 

hyperglycemia (Shen et al. 2009). Therefore, one of the future studies of interest would 

be to determine if Rac1 has any effect on cardiomyocyte apoptosis in endotoxemia.  

Microcirculatory dysfunction plays an important role in the pathogenesis of sepsis 

and is characterized by loss of vasomotor reactivity, endothelial cell injury, activation of 
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coagulation, and disordered leukocyte trafficking (Trzeciak et al. 2008). The endothelium 

is known to dynamically regulate thrombosis, profibrinolysis, leukocyte 

adhesion/migration, microvascular tone, permeability, and blood flow in both 

physiological and pathophysiological conditions (Aird 2004). Numerous studies have 

demonstrated that LPS enhances adhesion molecule and pro-inflammatory factor 

expression in endothelial cells and endothelial permeability, leading to leukocyte 

adhesion, migration and coagulation (Berman et al. 1993; Carlos & Harlan 1994; 

McCuskey et al. 1996). Rac1 deficiency in endothelial cells prevents endothelial cell 

migration, tubulogenesis, adhesion, and permeability in response to vascular endothelial 

growth factor (VEGF) and sphingosine-1-phosphate (S1P) (Tan et al. 2008), indicating a 

critical role of Rac1 in endothelial cell function. It would be interesting to investigate the 

role of Rac1 in the microvascular circulation during sepsis. 

In addition, in Chapter 3, I found that Rac1 deficiency decreased systolic Ca2+ 

concentration in cardiomyocytes through regulating Na/K-ATPase activity. Ca2+ has been 

shown to be important in regulating cardiac contractility, hypertrophy, apoptosis, and 

arrhythmia as well as gene expression (Erickson & Anderson 2008; Frey et al. 2000). It is 

possible that Rac1 may regulate cardiac function in other pathophysiological conditions, 

such as myocardial infarction. In this regarding, it is would be interesting to study the 

role of Rac1 in cardiomyocyte apoptosis, arrhythmia, infarct healing and left ventricular 

remodeling after myocardial infarction.  

 

5.5 Conclusions 

My studies provide strong evidence that Rac1 is a critical regulator of myocardial 
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TNF-α expression and cardiac dysfunction in endotoxemia (Figure 5.1). LPS activates 

Rac1 through PI3K. Activation of Rac1 increases NADPH oxidase and ERK1/2 activity, 

leading to increased myocardial TNF-α mRNA expression (Chapter 2). Furthermore, 

Rac1-containing NADPH oxidase inhibits Na/K-ATPase and activates Ca2+/CaMK-

dependent mTOR, resulting in enhanced TNF-α protein production (Chapter 3). These 

effects of Rac1 on TNF-α expression lead to cardiac dysfunction in endotoxemia. 

Another downstream effector of Rac1 is PAK1. PAK1 increases TNF-α expression via 

p38 MAPK. On the other hand, PAK1 promotes JNK1-dependent MKP-1 expression, 

which inactivates ERK1/2 and p38 MAPK, reduces TNF-α expression and improves 

cardiac function. Rac1/MKP-1 pathway represents a negative feedback mechanism to 

limit myocardial TNF-α expression and cardiac dysfunction in endotoxemia (Chapter 4). 

These Rac1 pathways provide novel insights into the signal transduction mechanisms that 

regulate myocardial TNF-α expression, and may have therapeutic implications in the 

treatment of sepsis. 
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