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Abstract 

Comprising about 70% of the Earth’s surface, water is undoubtedly the most precious 

natural resource. According to the W.H.O, around 3.5 million people are dying every 

year from different water related diseases.  Different kinds of dyes and pharmaceutical 

products have been detected in drinking water, all over the world. These organic 

compounds being non removable by traditional water purification processes, made 

advanced oxidation processes come into existence. Among all kind of advanced 

oxidation processes, photocatalytic oxidation is the most promising one. The 

photocatalytic process is based on aqueous phase hydroxyl radical chemistry and couples 

low energy UV light with semiconductors acting as photocatalyst. The slurry form of 

TiO2 though being efficient has several disadvantages (particularly, post treatment 

expensive separation steps) which brings the immobilization of the catalysts on surfaces 

into existence. In this study, a TiO2-polymeric film photocatalyst was synthesized by 

reaction of gelatin, polyvinyl alcohol and polyvinyl pyrrolidone. TiO2 Degussa P25 

powder was embedded into the polymeric matrix. The characterization of the film by 

OM, SEM, FTIR, revealed the topography of the catalyst films. Optimization of 

photocatalysts functionality was carried out by varying the cross linking methods and 

conducting several photodegradation reactions both under UV and solar light. Aspirin 

and methyl orange were chosen as model compounds, as traces of these compounds were 

detected in the drinking water of South-Western Ontario. The freeze-dried film 

photocatalyst was observed to degrade organic compounds efficiently, under both UV 

and solar illuminations. Degradation of high concentrated organic pollutant, was 

observed to follow Langmuir-Hinshelwood kinetics while at low concentration, first-

order kinetics was observed. The effects of initial concentration, flow rate, pH, light 

intensity, photocatalyst loading, and thickness of the film on the degradation rates were 

studied. Mechanism of degradation of aspirin was studied from LC/MS analysis. The 

TOC analysis was carried out to analyse the organic carbon content of the intermediates 

formed during the course of degradation. Finally, photocatalytic degradation reaction was 

carried out in a continuous flow reactor under LED lights. In brief this TiO2-polymeric 
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film photocatalyst holds the potential of being an efficient and economical form of future 

photocatalyst for water purification. 

Keywords 

Water purification, Photocatalysis, Titanium dioxide Degussa P25, Gelatin, Polyvinyl 
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Chapter 1 

Introduction 

Environmental contamination, which is growing around the world, is a serious problem 

not to be neglected. Among all contaminations, water pollution is a major problem. One 

of the most pressing environmental issues of the present and most probably the future is 

the effective protection and utilization of the precious fresh water resources of the world. 

88% of the 4 billion annual cases of diarrheal disease are attributed to unsafe water and 

inadequate sanitation and hygiene, and 1.8 million people die from diarrheal diseases 

each year, all over the world [1]. The WHO estimates that 94% of these diarrheal cases 

are preventable through modifications to the environment, including access to safe water. 

As a consequence of human activities, organic compounds are often present as pollutants 

in waste water. Water pollution occurs when a body of water is adversely affected due to 

the addition of large amounts of materials to the water.  When it is unfit for its intended 

use, water is considered polluted.  Two types of water pollutants exist; point source and 

nonpoint source.  Point sources of pollution occur when harmful substances are emitted 

directly into a body of water. A nonpoint source delivers pollutants indirectly through 

environmental changes. The technology exists for point sources of pollution to be 

monitored and regulated. Nonpoint sources are much more difficult to control. The 

pollution which is arising from the non-point sources accounts for a  

majority of the contaminants in streams and lakes [2]. It is necessary to remove these 

contaminants to protect our water resources to produce water of desired quality. Many 

treatment technologies have been developed over the years and are currently being 

employed to remove these contaminants (dyes, pesticides, drugs) or degrade them into 

non-toxic ones. Azo dyes are one of the largest groups of pollutants found in the drinking 

water, coming from, and the food and textile industries.  Many studies indicate that these 

dyes are toxic or carcinogenic [3].  If these dyes come in contact with certain drugs in the 

human body they can induce allergic and asthmatic reactions. Physical, chemical and 

biological treatment technologies are currently applied to degrade these pollutants. 

Unfortunately, many types of organic pollutants in water are not removable by those 

http://en.wikipedia.org/wiki/Diarrhea
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conventional technologies. Advanced oxidation processes (AOPs) show the potential to 

become a preferred future treatment technology, attributed to their capability of 

completely degrading almost all organic pollutants into the ultimate products (carbon-

dioxide and water). Currently the main disadvantage of AOPs is their high cost. Among 

all the AOPs, photo catalytic oxidation (PCO) is the most promising one [4]. Photo 

catalytic oxidation is a process where degradation of organic compounds occur by the 

illumination of photo catalyst without introducing any other chemicals. Under such 

circumstances, it can be concluded that a new material is needed to degrade the 

contaminants into non-toxic products by using UV lamps and solar light. A novel 

Polymeric-TiO2 film was synthesized, which not only immobilizes the TiO2 in the cross-

linked polymer fibres but also efficient enough to degrade organic pollutants (e.g. Methyl 

orange and Aspirin), both under solar and UV lights. Both batch and continuous flow 

reactors have been tested in these studies. Rates of photodegradation of Methyl orange 

and Aspirin under the solar light were observed to be higher than under UV lights, which 

can be explained due to the photocatalysts unique nature. The exposure of the 

photocatalyst film to the UV light cures the polymeric substrate, which in turn makes the 

interstitial TiO2 particles unavailable for the reaction. The methyl orange decolourization 

was about 100% and the decrease in carbon content was measured by TOC. Though other 

researchers reported decolourisation of the dye by different sources of light, they have not 

studied the carbon content of the degraded samples [5].  The photocatalytic efficiency 

was 85%. The aspirin photodegradation has also been observed to have higher rates under 

solar light than the UV. The effects of initial concentration, flow rates, pH, catalyst 

loading, thickness of film photocatalyst and light intensities have been studied. Increase 

of initial concentration increased the rate initially which decreased on further increase of 

concentration. Increase of flow rates showed diminishing effects of mass transfer 

limitations, on the degradation rates. Acidic and alkaline pH changed the surface charges 

on both TiO2 particles and the organic pollutant, which in turn varied the degradation 

rates. It was observed that increase of the TiO2 amount also affected the degradation 

rates. It was also observed that the increased photocatalyst film thickness decreased the 

degradation rate. The instrumental analysis (HPLC, LC/MS, TOC, and FTIR) of the 

photo degraded samples of aspirin and methyl orange showed the mechanism of the 
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degradation reactions. These principles were applied in a large-scale reactor, where 

methyl orange was degraded in presence of visible LED lights and the effects of flow 

rates and initial concentrations were studied. 

 

                                 

 

 

Figure 1.1: Photocatalysis by TiO2 [6] 

 

 

1.1 Scopes and Objectives 

In our study, a two-phase swirl-flow monolithic-type photocatalytic reactor and a batch 

reactor were used to investigate the kinetics of heterogeneous photocatalytic degradation 

of Methyl orange and Aspirin respectively in presence of polymeric-TiO2 film 

photocatalyst under ultraviolet as well as visible light illumination. 

       This thesis has nine chapters.  Following the introduction in this chapter, detailed 

literature review about photocatalysis is provided by chapter 2. In chapter 3, experiment 

details are illustrated, including experimental set-up, photocatalytic reactor structure and 

methodology of experiments. Chapter 4 presents the preparation and characterization of 

TiO2/polymeric film photocatalysts. Chapter 5 presents results and discussion of the 

photocatalytic degradation of methyl orange under UV light. Detailed experiments were 

conducted to study the effects of various operating parameters on the photocatalytic 

degradation performance. Photocatalytic kinetic models are developed and the kinetic 

parameters are obtained. Chapter 6 deals with the photocatalytic degradation of Aspirin 
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under visible and UV illumination with suspended catalysts. While, chapter 7 presents 

results in presence of TiO2/polymeric film. Chapter 8 describes mechanism of aspirin 

degradation under solar light. Chapter 9 presents some results for photo-degradation of 

Methyl orange in a large-scale continuous reactor under LED lights in presence of 

TiO2/polymeric film. Finally, chapter 10 summarizes conclusions reached as a result of 

this study and some recommendations for further studies.   
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Chapter 2 

Literature Review 

Approximately, 14,000 people die because of the water pollution, everyday all over the 

world. According to official classification, 41.3% of the United States’ water is polluted 

[1]. China is the latest victim of impure water tragedies. The environment is extremely 

fragile. Recent pollution offenses include mountaintop mining in the Appalachians, oil 

drilling at both the Arctic and Antarctic poles which results in massive wildlife death, and 

oil spills that sicken people, as was recently the case in United States [2]. Canada flushes 

some 200 billion liters of raw sewage directly into natural waterways every year, from the 

St. Lawrence River to the Strait of Juan de Fuca and the Pacific Ocean [3]. Scientists 

detected the traces of prescription drugs in the water that comes from many people's 

faucets. "Everything from antidepressants to heart medication to birth control pills to 

caffeine" has been found in the drinking water all over the world [4]. A vast array of 

pharmaceutical products, including antibiotics, anti-convulsants, mood stabilizers and sex 

hormones — have been found in drinking water supplies of at least 41 million 

Americans, as shown in Associated Press investigation. To be sure, the concentrations of 

these pharmaceuticals are tiny, measured in quantities of parts per billion or trillion, far 

below the levels of a medical dose. It has been proved by scientists that the traces of these 

drugs can cause several health problems to both human and wild life [5]. These, organic 

pollutants are not completely removable by traditional water treatment technologies like 

Distillation, reverse osmosis, ion-exchange, carbon adsorption, micro porous membrane 

filtration. Distillation and reverse osmosis remove a wide range of water supply 

contaminants. However, one of their major disadvantages is that they also remove the 

good stuff - that is, the trace mineral elements (heavy metals e.g. copper, zinc, iron) that 

are also present in water and vital to human health [6]. The premier activated carbon 

water filter on the market would not strip away these organic pollutants completely, 

either. Therefore, advanced oxidation processes have been introduced, to degrade these 

pollutants in water. Advanced Oxidation Processes (abbreviation: AOPs), refers to a set 

of chemical treatment procedures designed to remove organic and inorganic materials in 
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waste water by oxidation. In AOPs, the OH radicals are produced in the solution which 

helps in degradation of the organic pollutant. In recent years, different oxidation 

processes, which produce OH radicals, e.g. O3/UV, O3/H2O2 and UV/H2O2, 

photocatalytic oxidation etc., have been applied in wastewater treatment [7]. Among all 

kind of advanced oxidation processes, photocatalytic oxidation is the most promising one. 

In recent years, photocatalytic degradation mediated by illuminated TiO2 has received 

considerable attention as an alternative for treating polluted water. The semiconductor 

photocatalytic process is based on aqueous phase hydroxyl radical chemistry and couples 

low energy UV–A Light with semiconductors acting as photocatalyst. It has been proved 

that this process can degrade many toxic compounds in waste water into carbon dioxide 

and water. The most suitable semiconductor for the photocatalytic reaction is TiO2 [8]. 

 
2.1. Photo-catalyst and its functions  

Photo-catalyst activated by UV lights can oxidize organic pollutants into non-toxic 

materials, such as carbon dioxide, water and also disinfect certain bacteria. Photo-

Catalysis is defined as "acceleration of photoreaction in presence of a catalyst". A 

catalyst does not change in itself or being consumed in the chemical reaction. In 

catalyzed photolysis, light is absorbed by an adsorbed substrate. In photo generated 

catalysis the photo catalytic activity (PCA) depends on the ability of the catalyst to create 

electron–hole pairs, which generate free radicals (hydroxyl radicals: OH) able to undergo 

secondary reactions. Its comprehension has been made possible ever since the discovery 

of water electrolysis by means of the titanium dioxide [9]. In photo catalytic oxidation 

(PCO) process, it is generally conceded that the semiconductor photo-catalysts can act as 

sensitizers for light-induced redox processes, due to the electronic structures of these 

photo-catalysts that are characterized by a filled valence band and an empty conduction 

band [2, 7, 9]. Adsorption of a photon of energy greater than the band gap energy leads to 

the formation of an electron/photo hole pair. In the absence of suitable scavengers, the 

stored energy is dissipated within few nanoseconds by recombination. If a suitable 

scavenger or surface defect state is available to trap the electron or the photo-hole, the 

recombination is prevented and subsequent redox reaction may occur. The valence band 

holes are powerful oxidants (+1.0 to +3.5V), while the conduction band electrons are 

http://en.wikipedia.org/wiki/Waste_water
http://en.wikipedia.org/wiki/Oxidation
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good reductant (+0.5 to -1.5V). Most organic photo degeneration reactions utilize the 

oxidizing power of the holes either directly or indirectly. The interaction of the positive 

holes or the negative electrons with the absorbed organic pollutants can give rise to 

unstable intermediates which are further attacked by hydroxyl or proxy species 

occasioning a carbon-carbon bond rupture (or aromatic ring opening) with concomitant 

release of low molecular weight products which may in turn be further oxidized to CO2. 

The attacking hydroxyl radical presumably comes from the photo splitting of water by 

photo generated hole. Alternatively, the peroxyl radical may come from the protonation 

of a superoxide anion, O2
-
 produced from electron uptake of dissolved O2. Among all 

semiconductors photo-catalysts studied including TiO2, ZNO, Fe2O3, CdS and ZNS most 

researchers focused on TiO2 because of its low cost and relatively high photo-catalytic 

activity, as well as its chemical stability in aqueous systems [8, 9]. As the band gap 

energy of TiO2 is about 3.0-3.2 eV, only the light that have short wavelength within the 

UV range (< 380nm) are powerful enough to activate the photo catalytic reaction. As a 

result, the high cost associated with the generation and supply of UV light from 

electricity has constituted one of the major drawbacks hindering the commercial 

application of the current photo catalytic oxidation technology in actual water and 

wastewater treatment. A solution to this problem may resort to the utilization of the solar 

energy that is naturally available [8-10]. However, the UV light only accounts for about 

3-4% of the sunlight. It is therefore of great use to develop photo-catalysts that can work 

under sunlight.  

2.2   TiO2 as photo catalyst  

Titanium Dioxide has proved itself to be the most efficient semi-conductor available for 

photocatalysis. Indeed there are already a large number of commercial photocatalytic 

TiO2 products available [4, 5]. TiO2 is available in 3 forms-anatase, rutile and brookite. 

Degussa is a mixture of anatase and rutile form with higher efficiency. The high activity 

is due to the more positive conduction band of anatase and the light promoted e
-
 may pass 

from rutile to anatase phase enhancing the separation of h
+
 and e

-
. There is a great deal of 

research currently trying to improve the photocatalytic potential of titanium dioxide, both 

in effectiveness and in trying to expand the light spectrum with which it reacts into the 
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visible range. The most common technique currently tried is to dope titanium dioxide 

with another element and more recently two elements, co-doping has been tried. 

However, many factors, within the preparation process of photocatalyst affect the 

degradation reactions. The basic process of photo catalysis consists of ejecting an 

electron from the VB (Valence band) to conduction band of the TiO2 semi-conductor 

creating an ―hvb
+
‖ hole in the valence band. This is due to UV irradiation of TiO2 with an 

energy equal/superior to the band gap (> 3.2 eV)  

TiO2+ hv → ecb
-
 + hvb

+
                                 (2.1)  

 

 

 

Figure 2.1: TiO2 as photocatalyst [10] 

 

This is followed by the formation of extremely reactive radicals (like OH
-
) at the semi-

conductor surface and a direct oxidation of the polluting species.  

hvb
+
+ H2O → OH

-
 + H

+
                               (2.2)  

hvb
+
+OH

- 
→  

.
OHads                                                      (2.3)  

hvb
+
+ Rads → R

+
                                          (2.4)   

The ejected electron reacts with the electron acceptors such as O2 absorbed or dissolved 

in H2O  

ecb
-
 + O2→ O2

-
                                            (2.5)  

Also the electron and holes may recombine together without electron donor or acceptors  

ecb
-
 + hvb

+
 → TiO2                                       (2.6) 
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In general, the goal of the application of photocatalysis in water treatment is the 

transformation, deactivation and finally mineralization of environmentally persistent 

compounds [11, 12].  

 

2.3  Modes of TiO2 addition 

In photocatalytic degradation using TiO2, two modes of TiO2 application are adopted: (1) 

TiO2 immobilized on rigid inert support materials, e.g., quartz sand, glass, glass wool 

matrix, ceramic membrane, noble metal, carbon fibres etc., and (2) TiO2 suspended in 

aqueous medium [13,14]. In terms of technical application, immobilized TiO2 is 

preferable [15] compared to dispersed TiO2 because it does not need additional post-

treatment for the recovery of catalyst particles after oxidation.  

In large-scale applications, however, the catalyst particles must be filtered prior to the 

discharge of the treated water, even though TiO2 is harmless to the environment. Hence, a 

liquid-solid separator must follow the slurry reactor. The installation and operation of 

such a separator will raise the cost of the overall process because the separation of the 

ultrafine catalyst particles is a slow and expensive process. Besides, the penetration depth 

of the UV light is limited because of the strong absorption by TiO2 and dissolved organic 

species, particularly for dyes. All of these disadvantages render the scale-up of a slurry 

reactor very difficult. The preceding problem can be eliminated by immobilizing the TiO2 

catalyst over suitable supports [16]. The immobilization has a few advantages over slurry 

system. First, they eliminate the need for the ultra fine expensive filtration system for 

separation of the catalyst particles from the treated liquid and enable the contaminated 

water to be treated continuously. However, immobilization of TiO2 on supports also 

creates its own problems [17]. At least two obvious problems have been reported to arise 

from this arrangement: the accessibility of the catalytic surface to the photons and the 

reactants and a significant influence of the external mass transfer particularly at low fluid 

flow rate, because of the increasing diffusional length of the reactant from bulk solution 

to the catalyst surface [17]. On the other hand, with an increase of the catalyst film 

thickness, it has been reported that the internal mass transfer might play a dominant role 
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by limiting the utilization of the catalyst near the support surface. All of these usually led 

to a lower overall degradation rate when the catalyst is immobilized compared with the 

suspended system [16, 17].  

                                                       

2.4   Factors influencing the photocatalytic degradation 

2.4.1   Effects of pollutant concentration 

It is important both from a mechanistic and from an application point of view to study the 

dependence of the photocatalytic reaction rate on the substrate concentration. It is 

generally noted that the degradation rate increases with the increase of dye concentration 

to a certain level and a further increase in dye concentration leads to decrease the 

degradation rate of the dye [18, 19]. The rate of degradation relates to the probability of 

•OH radicals formation on the catalyst surface and to the probability of •OH radicals 

reacting with dye molecules. With the increase in initial concentrations of the dye, the 

increase in the probability of reaction between dye molecules and oxidizing species also 

increases, which leads to an enhancement in the decolourization rate. On the contrary, the 

degradation efficiency of the dye decreases as the dye concentration increases further. 

The presumed reason is that at high dye concentrations the generation of •OH radicals on 

the surface of catalyst are reduced since the active sites are covered by dye ions [19]. 

Another possible cause for such results is the UV-screening effect of the dye itself. At a 

high dye concentration, a significant amount of UV may be absorbed by the dye 

molecules rather than the TiO2 particles and that reduces the efficiency of the catalytic 

reaction because the concentrations of •OH and O2•− decrease [20 - 25]. The major 

portion of degradation was reported to occur in the region near to the irradiated side 

(termed as reaction zone) where the irradiation intensity was much higher than in the 

other side [26]. Thus at higher dye concentration, degradation decreased at sufficiently 

long distances from the light source or the reaction zone due to the retardation in the 

penetration of light. Hence, it was concluded by researchers that as initial concentration 

of the dye increased, the requirement of catalyst surface needed for the degradation also 

increased [27].  In case of other organic compounds, the photonic efficiency increased as 
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the initial concentration of organic pollutant concentration was raised up. As reported in 

several publications [4, 28, 29] the rate, and therefore the photonic efficiency (maximum 

numbers of photons adsorbed, which increased the e
-
 and h

+
 formation, increasing the 

degradation in turn.), of the degradation process is a function of the initial pollutant 

concentration, at least in a certain concentration range, when other parameters, such as 

the concentration of molecular oxygen, the ionic strength, and the light intensity, were 

kept constant. The effect of the initial concentration of organic dyes on its initial 

degradation rate during UV-A illumination was investigated [4, 5, 6, 10, 28, and 29]. 

 

2.4.2   Effect of TiO2 loading 

Whether in static, slurry or dynamic flow reactors the initial reaction rates were reported 

to be directly proportional to catalyst concentration indicating the heterogeneous regime 

[30-33]. However, it was observed by researchers that above a certain level of 

concentration the reaction rate even decreased and became independent of the catalyst 

concentration [34]. Most of studies reported enhanced degradation rates for catalyst 

loading up to 400–500 mg/l [30-34]. Only a slight enhancement or decrease was observed 

when TiO2 concentration further increased up to 2000 mg/l [35]. This can be rationalized 

in terms of availability of active sites on TiO2 surface and the light penetration of photo 

activating light into the suspension. The availability of active sites increased with the 

increase of catalyst loading, but the light penetration, and hence, the photo activated 

volume of the slurry form of photocatalyst decreased, due to catalyst agglomeration. 

Agglomeration and sedimentation of the TiO2 particles were observed elsewhere when 

2000 mg/l of TiO2 was added to the dye solution [35, 36]. In such a condition, part of the 

catalyst surface probably became unavailable for photon absorption and dye adsorption, 

thus bringing little stimulation to the catalytic reaction. On the contrary, continuous 

increase of the photocatalytic degradation rate of pollutant was found up to 3500 mg/l 

TiO2 [37]. The crucial concentration of TiO2 depends on the geometry, the working 

conditions of the photo reactor and the type of UV-lamp (power, wavelength). The 

optimum amount of TiO2 has to be added in order to avoid unnecessary excess catalyst 
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and also to ensure better absorption of light photons for efficient photo mineralization. 

This optimum loading of photo catalyst was found to be dependent on the initial solute 

concentration [38]. 

 

2.4.3 Effect of different kinds of catalysts 

Several researches have been carried out all around the world by applying different kind 

of doped, polymer complexed TiO2 and also different forms of TiO2. The photocatalytic 

degradation of methyl orange in aqueous solutions was examined by treating with slurry 

TiO2, Hombikat UV 100, TiO2 nano composites, TiO2-FeZSM5 composite and also TiO2 

immobilized on carbon fibres, by several researchers. It has been reported by many 

researchers that Degussa is the most efficient form of TiO2 [37-41].  

 

2.4.4 Effect of pH 

Although the pH can be one of the most important parameters for the photocatalytic 

process, its influence on the photocatalytic degradation has been investigated in detail 

only by a few research groups. The interpretation of pH effects on the efficiency of dye 

photodegradation process is a very difficult task because of its multiple roles. Firstly, it is 

related to the ionization state of the surface according to the following reactions. Also, 

related to that of reactant dyes and products such as acids and amines. 

 

TiOH + H
+
        TiOH2

+
                                (2.7) 

TiOH + OH
−
       TiO

−
 + H2O                          (2.8) 

pH changes can thus influence the adsorption of dye molecules onto the TiO2 surfaces, an 

important step reported by scientists [39-41] have already reviewed that acid-base 

properties of the metal oxide surfaces can have considerable implications upon their 

photocatalytic activity. The point of zero charge (pzc) of the TiO2 (Degussa P25) is at pH 

6.2 [42]. Thus, the TiO2 surface is positively charged in acidic media (pH < 6.2), whereas 
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it is negatively charged under alkaline conditions (pH > 6.2). Second, hydroxyl radicals 

can be formed by the reaction between hydroxide ions and positive holes. The positive 

holes were considered as the major oxidation species at low pH whereas hydroxyl 

radicals were considered as the predominant species at neutral or higher pH levels [43, 

44]. It was stated that in alkaline solution •OH radicals were easier to be generated by 

oxidizing more hydroxide ions available on TiO2 surface, thus the efficiency of the 

process was logically enhanced [45-49]. Similar results were reported in the 

photocatalysed degradation of acidic azo dyes and triazine containing azo dyes [50, 51], 

although it should be noted that in alkaline solution there is a Coulombic repulsion 

between the negative charged surface of photocatalyst and the OH
-
 ion. Formation of 

more •OH and thus decreased the photoxidation. Very high pH has been found favourable 

even when anionic azo dyes should hamper adsorption on the negatively charged surface 

[56]. At low pH, reduction by electrons in conduction band may play a very important 

role in the degradation of dyes due to the reductive cleavage of azo bonds. Third, the 

TiO2 particles tend to agglomerate under acidic condition and the surface area available 

for dye adsorption and photon absorption would be reduced [57]. Hence, pH played an 

important role both in the characteristics of textile waters and in the reaction mechanisms 

that can contribute to dye degradation, namely, hydroxyl radical attack, direct oxidation 

by the positive hole and direct reduction by the electron in the conducting band.  The 

degradation rate of some azo dyes increased with decrease in pH as reported elsewhere 

[58]. At pH <6, a strong adsorption of the dye on the TiO2 particles was observed as a 

result of the electrostatic attraction of the positively charged TiO2 with the dye. At pH > 

6.2 as dye molecules were negatively charged in alkaline media, their adsorption is also 

expected to be affected by an increase in the density of TiO2. Thus, due to Coulombic 

repulsion the dyes were scarcely adsorbed [59]. For the above reasons the photocatalytic 

activity of anionic dyes (mainly sulphonated dyes) reached a maximum in acidic 

conditions followed by a decrease in the pH range 7–11 [55-60]. Moreover, the higher 

degradation rate at acid pH was seen also for Vis/TiO2 experiments due to the efficient 

electron-transfer process due to strong surface complex bond formation. This effect was 

less marked in neutral/basic pH solutions [61]. On the contrary, different optimal pHs [6, 

7] have been observed for the photocatalytic degradation of other azo dyes, and a 
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decrease of degradation in both acidic and alkaline pH was reported [62 - 64]. The 

inhibitory effect seems to be more pronounced in the alkaline range (pH = 11–13). At 

high pH values the hydroxyl radicals were rapidly scavenged and they do not have the 

opportunity to react with dyes. 

An additional explanation for the pH effects can be related with changes in the 

specification of the dye. That was, protonation or deprotonation of the dye can change its 

adsorption characteristics and redox activity [65]. Since the influence of the pH is 

dependent on dye type and on properties of TiO2 surface therefore the effect on the 

photocatalytic efficiency must be accurately checked before any application.  

 

2.4.5   Light sources 

TiO2 absorbs radiation below the visible range of light spectrum. Hence, photo activation 

of TiO2 requires radiation with light of wavelength less than or equal to 384 nm, with an 

absorbance maximum at approximately 340 nm. The vast majority of studies quoted in 

the literature have been carried out between the wavelengths 320- 380 nm [10, 12, 15, 25, 

and 28]. The light that gives rise to the required radiation field can be produced by 

artificial lamps or by solar irradiation. In a photocatalytic reactor, UV-A (320-380 nm) 

radiation was provided by fluorescent low-pressure mercury lamps emitting low-intensity 

UV-A radiation. Medium pressure mercury lamps have also been used, which emit high 

intensity UV light in the short, medium and long UV spectrums. However, short (UV-C; 

200-280 nm) and medium (UV-B; 280-320 nm) UV radiation emitted by the mercury 

were usually cut off by the transparent photo reactor material, unless it is made of quartz.  

Some studies had also reported increased efficiency with UV-C radiation than UV-A for 

the degradation of certain organic materials [77, 78]. Direct photolysis and the higher 

probability of trapping of electron-hole pairs with shorter wavelength excitation were 

thought to be the possible reasons for such an effect. It has been estimated that only 5% 

of the incident solar irradiation is of use for the TiO2 band gap photocatalytic reaction. 

This significantly limits its practical application.  
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2.4.5.1   Solar Vs UV lamps 

More significantly, the current photo catalytic oxidation processes generally applies the 

photo catalyst within the water medium, either in the suspended slurry or immobilized 

form. This has resulted in a major problem of low light utilization efficiency because UV 

light, attenuate very fast in water [79]. As a result, the prospect of direct use of natural 

sunlight as the sole energy source for photo catalytic reaction in water is greatly limited 

with the current status of photo catalytic technology. The preference to use solar or UV 

lamps as the irradiation source depends largely on light intensity and the cost of the light-

producing or light collecting equipment. UV lamps are conventionally used for 

photocatalysis, but more efficient, longer life and safe UV light-emitting diodes (LEDs) 

are prospective replacements. The costs still remain a challenge, however, and much 

focus has been given to sunlight as the initiator of the photochemical reaction. Solar 

photochemical systems are based on the collection of only high-energy short-wavelength 

UV or near-UV sunlight (300–400 nm) to promote photochemical reactions especially 

with TiO2 as the catalyst. A useful overview of solar photocatalysis was provided by a 

group of researchers [40-45]. Solar photocatalytic treatment with TiO2 as a catalyst, 

however, poses some challenges. Solar photocatalysis uses only the UV portion of 

sunlight and as much as 50% or more of this may be present in diffused form. As would 

be expected, local variability in cloud cover and other factors may change actual levels. 

Even under the limitations of solar applications, by far the greatest advantages are the 

cleanness, cheapness, and abundance of the energy source. 

 

2.4.6   Effect of light intensity and irradiation time 

Ollis et al. [68] reviewed the studies reported for the effect of light intensity on the 

kinetics of the photocatalysis process and stated that (i) at low light intensities (0–7 

mW/cm
2
), the rate would increase linearly with increasing light intensity (first order), (ii) 

at intermediate light intensities beyond a certain value (approximately 17 mW/cm
2
) , the 

rate would depend on the square root of the light intensity (half order), and (iii) at high 

light intensities the rate is independent of light intensity. This might be likely because at 
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low light intensity reactions involving electron–hole formation are predominant and 

electron–hole recombination would be negligible. However, at increased light intensity 

electron–hole pair separation competes with recombination, thereby causing lower effect 

on the reaction rate. The enhancement of the rate of decolourization as the light intensity 

increased was also observed [67-69]. It was evident that the percentage of decolourization 

and photodegradation increased with increase in irradiation time. The reaction rate 

decreased with irradiation time since it followed apparent first-order kinetics and 

additionally a competition for degradation might occur between the reactant and the 

intermediate products [69]. The slow kinetics of dyes degradation after certain time limit 

was due to: (a) the difficulty in converting the N-atoms of dye into oxidized nitrogen 

compounds (b) the slow reaction of short chain aliphatic with •OH radicals , and (c) the 

short life-time of photocatalyst because of active sites deactivation by strong by-products 

deposition [100]. 

 

2.4.7 Substrate catalyst/ Liquid catalyst illumination 

Experiments were performed to study the photocatalytic degradation rate when catalyst 

was immobilized either on the bottom plate or on the top plate [70, 71]. In the latter case, 

light intensity falling on the catalyst surface would be considerably reduced, as it would 

have to travel through the absorbing liquid medium. The two circumstances can be 

depicted as substrate-catalyst SC and liquid-catalyst LC illumination, depending on 

whether the catalyst is activated from the substrate side or from the liquid side.  

SC Illumination:- In this case, light  passes from the side of substrate to the catalyst film. 

LC illumination:- In this case, the light passes through the liquid to the catalyst film. The 

light source can be positioned either on the top - LC illumination or at the bottom - SC 

illumination.  Sequences of events have been postulated for photocatalytic degradation of 

benzoic acid under both SC and LC illumination [70]. It has been observed by researchers 

that SC illumination was more efficient as in LC illumination light gets absorbed by the 

liquid. It has been reported by a researcher [71], that an optimum catalyst layer thickness 
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existed for SC illumination, while the rate reached a saturation value for LC illumination, 

and increasing the catalyst layer thickness had no effect on the rate thereafter.  

 

2.4.8 Effect of natural occurring ions and solvents 

The occurrence of dissolved inorganic ions is rather common in dye-containing industrial 

wastewater. Often, wastewater contains a mixture of pollutants, organic solvents as well 

as dissolved organic matter and humic substances, if mixed with other waste streams. 

These substances may compete for the active sites on the TiO2 surface or deactivate the 

photocatalyst and, subsequently, decrease the degradation rate of the target dyes. 

Alternatively, they may act as light screens, thus reducing the photon receiving 

efficiency. The photocatalytic degradation of different classes of dyes in presence of TiO2 

is reported to get slowed down by many commonly used industrial solvents and acids, as 

well as by many naturally abundant mineral species and dissolved organic matter. The 

retardation by humic substances might be by the combined effects of light attenuation, 

competition for active sites and surface deactivation. Finally, various solvents such as 

acetonitrile and ethanol were found to have a significant retardation effect on the photo 

bleaching of dyes even at low concentrations as it is also stated for phenols and aromatic 

products [72]. 

 
2.5 Methods of increasing TiO2 efficiency  

2.5.1 Polymer/TiO2 complex  

A polymer–metal complex is composed of synthetic polymer and metal ions bound to the 

polymer ligand by a coordinate bond. A polymer ligand contains anchoring sites like 

nitrogen, oxygen or sulphur obtained either by the polymerization of monomer 

possessing the coordinating site or by a chemical reaction between a polymer and a low 

molecular weight compound having the coordinating ability. The polymer–metal 

complexes may be classified into different groups according to the position occupied by 

the metal, which was decided by the method of preparation [72].  Various works on the 
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co-ordination complexes have revealed that the heterogeneous systems possess more 

economical potentials and advantages over homogeneous systems. In addition these 

TiO2-polymer complexes were reported to help in ion selectivity in waste water 

treatment, recovery of trace metal ions, and hydrometallurgy are enlightened in the final 

part [72, 73]. Researchers showed how PVP affects the structure of TiO2 - PVP composite  

which in turn affects the gelation time [73].  

 

2.5.2  Doping of TiO2 for better efficiency (Metal oxides)  

Metal oxides of low band gap energy have been considered as the candidate photo 

catalyst for visible light activity, but many of these photo catalysts lose their photo 

catalytic activity fast and therefore are rarely used [9]. Recently attempts have been made 

to modify those metal oxides, particularly TiO2, that are photo catalytically stable even 

though have large band gap energies. The modification has been done though doping 

TiO2 with small amount of noble metals, other metal compounds or non-metals. When a 

small amount of a noble metal was doped into the TiO2, the electrons and photo hole 

produced by the light irradiation were retained respectively on the noble metal and TiO2 

semiconductor because the noble metal trapped the electrons, which limited the 

recombination of the electrons and photo holes and thus improved the reactivity of the 

photo catalyst [65, 67]. However, through this approach, the large band gap of TiO2 was 

not significantly reduced. Doping of TiO2 with precious metal (Pt), metal oxides such as 

ZnO, Fe2O3 and inorganic components such as N for extended visible light activities has 

been successfully conducted [65-70]. A recent preliminary investigation by a team of 

researchers revealed a significant enhancement of visible light activity (up to 60-70% 

absorbance) by doping a combination of N and C or silver into TiO2 in a nano sol-gel 

system. Many researchers had already reported that photo catalysts with visible light 

activity have only achieved light absorbance at < 30%. It has also been revealed that in 

surface modification and grafting technology through chemical oxidation or plasma 

treatment would serve as the basis for solving the challenge of immobilizing inorganic 

photo catalysts on inert substrates [74 - 77].  
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2.6 Immobilization of catalyst on organic or inorganic 
substrates 

These micro or nano-sized catalysts are usually applied to water treatment directly in a 

form of suspension slurry. Although, researches showed that the reaction rates were high, 

in the slurry systems but it required the separation of these small catalysts particles from 

the treated slurry, which has been found to be difficult to accomplish and hence reduce 

the economical viability [23]. The immobilization of nano catalyst particles on macro 

supports is a process to solve the separation problem encountered in the slurry systems. 

To avoid the separation problem, photocatalyst particles have been immobilized onto 

macro supports. So far, the immobilization has been more successfully done on inorganic 

substrates such as metal tubes or glass plates [24-25], because the crystallization and 

immobilization reaction of TiO2-based photocatalysts usually has to be conducted at a 

high temperature (300-400° C or higher). However, the use of an inorganic substrate has 

limited the possibility to make buoyant or floating photocatalysts, and the required high 

temperature reactions to be carried out. Studies have been carried out to immobilize the 

catalyst on a buoyant support that can float on the surface of water to effectively absorb 

the sunlight energy for the photo catalytic degradation of organic pollutants [73].  

Immobilizations were carried out through sol-gel method at low temperature and also at 

elevated temperature. More preferably, the support materials should be selected from 

organic materials that can concentrate through sorption, the organic contaminants from 

water or waste water and thus enhance the photo catalytic degradation rate by providing 

sufficient organic compounds in contact with the catalyst particles. Organic support 

materials are readily available and cheap or can be easily recovered from plastic wastes. 

In another method of catalyst immobilization, inorganic substrate has been used and 

treated at elevated temperature as inorganic substrates can endure (300°- 400 °C) [74]. A 

new method for immobilization has been reported by researchers [75]. Several unique 

reaction processes has been developed to immobilize nano catalyst particles on polymeric 

substrates directly through the in-situ production of the nano catalyst particles at a 

moderately low temperature (150° C) [75]. 
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2.7 Physical and chemical properties of polymers employed 
for photocatalyst preparation 

2.7.1 Polyvinyl alcohol 

Polyvinyl alcohol (synonyms, vinyl alcohol polymer, PVA) is a water-soluble synthetic 

resin, prepared by the polymerization of vinyl acetate, followed by partial or complete 

catalyzed hydrolysis. PVA is fully degradable and is a quick dissolver. PVA has a 

melting point of 230°C and 180° – 190°C for the fully hydrolysed and partially 

hydrolysed grades, respectively. It decomposes rapidly above 200°C as it can undergo 

pyrolysis at high temperatures. PVA is an atactic material but exhibits crystallinity as the 

hydroxyl groups are small enough to fit into the lattice without disrupting it. FDA has 

approved this polymer as additives in food and drugs [76].   

 

2.7.2 Gelatin 

Gelatin is a protein produced by partial hydrolysis of collagen extracted from the boiled 

bones, connective tissues, organs and some intestines of animals such as domesticated 

cattle, pigs, and horses. The natural molecular bonds between individual collagen strands 

are broken down into a form that rearranges more easily. Gelatin melts to a liquid when 

heated and solidifies when cooled again [77]. Together with water, it forms a semi-solid 

colloid gel. Gelatin forms a solution of high viscosity in water, which sets to a gel on 

cooling, and its chemical composition is, in many respects, closely similar to that of its 

parent collagen. Gelatin solutions show viscoelastic flow and streaming birefringence. 

Gelatin gels exist over only a small temperature range, the upper limit being the melting 

point of the gel, which depends on gelatin grade and concentration and the lower limit, 

the freezing point at which ice crystallizes.  
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2.7.3 Polyvinyl pyrrolidone 

Polyvinylpyrrolidone (PVP), also called Polyvidone, is a water-soluble polymer made 

from the monomer N-vinylpyrrolidone [78]. PVP is soluble in water and other polar 

solvents. When dry it is a light flaky powder, which readily absorbs up to 40% of its 

weight in atmospheric water. In solution, it has excellent wetting properties and readily 

forms films. This makes it good as a coating or an additive to coatings [79]. 

 

2.8 Types of water pollutants and theirs effects 

Water pollution are caused by different sources. Water bodies are getting polluted by 

microbes, chemicals, radioactive contaminants and metals [80]. 

Microbiological organisms in drinking water: Can cause gastrointestinal illnesses, 

legionnaire's disease and nausea. Examples of such organisms are cryptosporidium and 

giardia lamblia. 

Inorganic chemicals: Potential health effects include learning disorders, kidney and liver 

damage. Examples of inorganic compounds are copper, lead and fluoride. 

Inorganic chemicals in water : Potential health effects include learning disorders, kidney 

and liver damage. Examples of inorganic compounds are copper, lead and fluoride. 

Organic chemicals in drinking water: Potential health effects include, Eye, kidney and 

liver damage as well as increased risk of cancer. Organic compounds include benzene, 

carbofuran and lindane. 

Radioactive contaminants or radio nuclides: Most water supplies have very low levels of 

these contaminants. The ones that are present in your water are usually naturally 

occurring, but man-made radioactive contamination can occur. Increased risks of cancer 

and kidney toxicity are potential health hazards of these contaminants 
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2.8.1 Organic water pollutants 

Textile dyes and other industrial dyestuffs constitute one of the largest groups of organic 

compounds that represent an increasing environmental danger. About 2–20% of the total 

world production of dyes are lost during the dyeing process and are released in the textile 

effluents [81]. The release of those coloured waste waters in the environment is a 

considerable source of nonaesthetic pollution and eutrophication and can originate 

dangerous by-products through oxidation, hydrolysis, or other chemical reactions taking 

place in the waste water treatment. Decolourization of dye effluents has therefore 

received increasing attention. For the removal of dye pollutants, traditional physical 

techniques (adsorption on activated carbon, ultra filtration, reverse osmosis, coagulation 

by chemical agents, ion exchange on synthetic adsorbent resins, etc.) can generally be 

used efficiently. Nevertheless, they are non-destructive, since they just transfer organic 

compounds from water to another phase, thus causing secondary pollution. Consequently, 

regeneration of the adsorbent materials and post-treatment of solid-wastes, which are 

expensive operations, are needed. Due to the large degree of aromatics present in dye 

molecules and the stability of modern dyes, conventional biological treatment methods 

are ineffective for decolourization and degradation [82]. Furthermore, the majority of 

dyes is only adsorbed on the sludge and is not degraded. Therefore several researches are 

ongoing by applying photo catalysis oxidation process to degrade these organic dyes in 

water. 

Methyl orange is an organic dye used as pH indicator in titration. Many studies revealed 

the toxicity and carcinogenic nature of this  dye. If this colorant comes in contact with 

certain drugs in the human body it can induce allergic and asthmatic reactions in sensitive 

people. An additional difficulty is that, when present, this dye is not removed normally by 

conventional waste water treatment systems. Therefore, the effluents must be treated 

before being released into water. In this research methyl orange has been used as a model 

compound. TiO2 degrades organic pollutants in water. Methyl orange is an indicator in 

strong acid-weak base titrations. It changes   from red (at pH 3.1) to orange-yellow (at pH 

4.4).  The  colour  of  methyl orange  changes because  it  absorbs  light  in the visible  

part of  the electromagnetic spectrum. Its molecule contains an extended system of 
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delocalised electrons called chromophores. The differences in energy between the 

quantised electronic energy levels correspond to the energies of photons of visible light. 

Electrons are promoted when these photons are absorbed, removing their frequencies 

from those that enter the eye. In methyl orange, when the molecule becomes protonated 

in acidic solution, the differences in energy between the electron energy levels change 

slightly from the unprotonated form. This results in the absorption of different 

frequencies of visible light and so a change in colour of the indicator. Methyl orange in 

acidic solution absorbs blue-green light, which makes its solution appear red. In alkaline 

solution it absorbs blue-green and red light making it appears yellow [79]. Methyl orange 

is one of the indicators commonly used in titrations. In an alkaline solution, methyl 

orange is yellow and the structure is: 

 

Figure 2.2: Structure of methyl orange in alkaline pH [81] 

In fact, the  hydrogen  ion attaches  to one of  the nitrogen  in the nitrogen-nitrogen 

double  bond  to give  a structure  which might  be drawn like this: 

 

Figure 2.3: Structure of methyl orange in acidic pH [81] 

Since, TiO2 is known to posses positive surface charges at specific pH range (3 - 6.2). 

Also, TiO2   shows zero charge at pH 6.3 and beyond this it posses’ negative charges up 

to pH 14 [83]. The change in reactivity occurs due to the surface charge change with pH 

and methyl orange charge (acidic/alkaline). At low pH methyl orange have positive 

javascript:display_molecule('methylorangebasic','features/molecules');
javascript:display_molecule('methylorangeacidic','features/molecules');
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charges and TiO2 also possessing positive surface charges showed very  less attraction or 

repulsion, while at pH 4.4-6.2 methyl orange having negative charges and TiO2 surface 

carrying positive charges showed strong attraction beyond this point again weak 

attraction to repulsion occurs with the rise in pH [84]. 

NSAIDS are non steroidal anti-inflammatory drugs, used as pain killer, antipyretics and 

anti-inflammatory medicine. Aspirin, known as acetylsalicylic acid (ASA), is a 

commonly used Non-steroidal anti-inflammatory drug (NSAIDs) to relieve minor aches 

and pains. Aspirin was the first discovered member of the class of drugs known as no 

steroidal anti-inflammatory drugs (NSAIDs), not all of which are salicylates. Although 

they all have similar effects and most have inhibition of the enzyme cyclooxygenase as 

their mechanism of action. They are widely used for the treatment of inflammatory 

disorders and painful conditions such as rheumatoid arthritis, gout, bursitis, painful 

menstruation, and headache. They are effective in the relief of pain. It is also used as an 

antipyretic to reduce fever and as an anti-inflammatory medication. ASA can also be used 

during a heart attack to reduce the death risk.  

 

 

Figure 2.4: Structure of Aspirin [85] 

The main undesirable side effects of aspirin are gastrointestinal ulcers, stomach bleeding, 

and tinnitus, especially in higher doses. Today, aspirin is one of the most widely used 

medications in the world, with an estimated 40,000 tonnes of it being consumed each 

year. Aspirin degrades in aqueous medium into several toxic intermediates causing 

environmental pollution and affect human health in several ways. Aspirin is a transparent, 

colourless, odourless crystals having solubility of 1g per 100ml of water at 37° 

Centigrade. Specific gravity of 1.40.Its boiling point is 130°Centigrade. Stable in dry air 

(hydrolyzes in moist air, decomposes in hot water) and have acidic pH [85]. 

http://en.wikipedia.org/wiki/Tonnes
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NSAIDs inhibit the cyclooxygenase (COX) activity resulting in decreased synthesis of 

prostaglandin, leukotriene and thromboxane precursors such as the ubiquitous enzyme 

which catalyzes the initial step in the synthesis of prostanoids. Prostanoid is any of a 

group of C-20 fatty acids complex with an internal five or six carbon rings such as 

prostaglandins, prostanoic acid, prostacyclins, and thromboxane; derived from 

arachidonic acid (C-20 polyunsaturated fatty acid with four cis double bonds). The action 

or the synthesis of prostanoids are involved in the modulation of a variety of patho-

physiologic processes which include inflammation, hemostasis, thrombosis, 

cytoprotection, ulceration, hemodynamic and other the progression of kidney diseases. 

Thus, NSAIDs as non-selective inhibitors of the cyclooxygenases (both the 

cyclooxygenase-1 and cyclooxygenase-2 isoenzymes) may have beneficial as well as 

untoward effects on a variety of human diseases. Low stomach prostanoid levels caused 

by COX-1 inhibitors can result in ulceration and internal bleeding and perforation. The 

selective COX-2 inhibitors such as oxicam, meloxicam, and coxibs (celecoxib, rofecoxib, 

valdecoxib, parecoxib and etoricoxib) do not interfere with COX-1. The most prominent 

NSAID is aspirin [85]. Removal of these organic compounds by traditional techniques 

(charcoal adsorption, ozonization) is challenging and costly. These methods usually 

generate concentrated effluent streams, which are harmful to environment. Recent 

advanced technologies in photocatalytic oxidation of organic materials can be safely 

employed in treatment of organic wastes as the final products are mostly carbon dioxide 

and water. 

 

2.9  Photo degradation of methyl orange and aspirin 

Several researches have been conducted on degradation of organic compounds with TiO2 

powder or doped form under solar rays and UV/Hg lamps. Researchers have shown photo 

degradation of methyl orange under solar rays is faster than that with UV lamp [86]. 

Doped forms of TiO2 and TiO2 films have been studied by many researchers to 

demonstrate the degradation kinetics of methyl orange under solar ray and UV lamp [18-

20].  
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2.10   Photocatalytic mineralization of pollutants and 
Analysis of the end products 

In order to assess the degree of mineralization reached during the photocatalytic 

treatment the formation of CO2 and inorganic ions were generally determined. However, 

in the presence of real wastewaters the monitoring of inorganic ions and CO2 gives only a 

global estimation on the well functioning of the treatment, but does not provide 

information on the real decay of the contaminant. In such cases the determination of total 

organic carbon (TOC) and/or the measurement of the chemical oxygen demand (COD) or 

the biological oxygen demand (BOD) of the irradiated solution were generally used for 

monitoring the mineralization of the dye [85-87]. In general, it has been reported that at 

low reactant levels or for compounds which do not form important intermediates, 

complete mineralization and reactant disappearance proceed with similar half lives, but at 

higher reactant levels where important intermediates occur, mineralization were reported 

to be slower than the degradation of the parent compound [86, 87]. Until now, total 

mineralization has been observed for the photacatalytic degradation of most of the azo 

dyes even at longer irradiation periods. Usually, it was observed by researchers that the  

COD or TOC values decrease with increase in irradiation time whereas the amount of 

NH4
+
 and NO3

−
 ions increase with increase in irradiation time [87]. Titanium dioxide 

(TiO2) has been employed in photocatalytic oxidation processes due to its capability of 

producing hydroxyl radical (
.
OH) when exposed to ultraviolet/solar light. Contradictory 

results have been reported for the contribution of TiO2 in degradation of organic 

materials. It was shown that at low pH the positive holes were considered as the major 

oxidizing species, whereas hydroxyl radicals were considered as the predominant species 

at neutral or high pH levels [83]. Interestingly it was claimed in another report that holes 

are the major oxidizing species at pH = 3, while below and above this pH the hydroxyl 

radicals were the major degrading agents [84]. Such a discrepancy is most probably due 

to the nature of the organic compounds and operating conditions. Therefore it can be 

concluded that aspirin undergoes the following reactions when exposed to the catalyst 

illuminated by solar light: 
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Aspirin+ hvb
+ 

→ Oxidation products              (2.9) 

Aspirin + ecb 
- 
→ reduction products             (2.10) 

Aspirin + 
.
OH → Oxidation products             (2.11) 

Several mechanisms have been proposed to account for the initial steps of 

semiconductor-mediated photo degradation of aliphatic and aromatic organics. The 

heterogeneous reaction mechanisms proposed were similar to their homogeneous 

counterparts [96]. These mechanisms can be summarized as; 

(i) Direct charge transfer from the semiconductor to the dissolved molecule. 

(ii) Generation of radicals from water decomposition, which then attack the aromatic 

ring. Most of the studies on photocatalytic degradation of several drugs include a detailed 

examination of the so-called primary processes under different working conditions, while 

little information is available on the reaction mechanisms involved in the degradation 

process.   

In this research the applications of the polymeric-TiO2 film photocatalysts were 

examined. TiO2 got immobilized in the polymeric networks, which prevented the TiO2 

particles to agglomerate during the reaction process and in turn prevented ultrafiltration 

process. This photocatalyst being buoyant can utilize the light more effectively. In one 

study, the developed photo catalyst was immobilized on inorganic substrates. Photo 

degradations of organic pollutants were carried out both under solar and UV light, in 

presence of both film catalyst and immobilized film on glass plates. The degradation 

kinetics of methyl orange and aspirin were studied in details. The effects of initial 

concentration, flow rates, catalyst loading, film thickness and light intensity were studied. 

Also, in this study, mechanism of degradation of aspirin in the presence under solar light 

was investigated.  The most probable reactions and the mechanisms were suggested based 

on the qualitative and quantitative analysis. My investigations have enabled natural 

sunlight to be used as the light source and also eradicated the ultra filtration method, 

thereby reducing the cost of the treatment. Besides, a new type of film photo catalyst has 

been introduced which holds the potential of oil/chemical spill recovery. 
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Figure 2.5: Thesis Outline 
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Chapter 3 

Experimental Details 

 

3. Experimental equipments 

3.1 Materials and Methods 

3.1.1 Materials 

Gelatin (Sigma Aldrich), Polyvinyl alcohol (Mol. wt – 26300 - 30000 g.mol
-1

, Sigma 

Aldrich), Polyvinyl pyrrolidone (Mol. wt- 2500 - 25000 g.mol
-1

, Sigma Aldrich), 

Titanium dioxide Degussa P25 (Sigma Aldrich), Methyl orange (Sigma Aldrich), Aspirin 

(Sigma Aldrich), Ammonium acetate (Sigma Aldrich), Acetonitrile (Sigma Aldrich), 

potassium phthalate (Sigma Aldrich), Solar simulator (Science tech Inc., SS-IK), UV 

lamp (Phillips), High performance liquid chromatography (Agilent technologies, G2175 

BA), LC/MS ( Shimadzu, 2010 EV), Fourier transform infra red (Bruker,Vector-22), 

Total organic carbon content (Mandel Scientific Inc., TOC-V), Optical microscopy 

(VWR), Scanning electron microscopy (Shimadzu), Vernier callipers.   

 

3.1.1.1   Polyvinyl alcohol 

Polyvinyl alcohol (synonyms, vinyl alcohol polymer, PVA) is a water-soluble synthetic 

resin, prepared by the polymerization of vinyl acetate, followed by partial or complete 

catalyzed hydrolysis. The primary raw material used in the manufacture of polyvinyl 

alcohol is vinyl acetate monomer. The physical characteristics of polyvinyl alcohol vary 

depending on the degree of polymerization and hydrolysis. It is also resistant to oil, 

grease and solvent [1]. It is odourless and nontoxic. It has high tensile strength and 

flexibility, as well as high oxygen and aroma barrier properties. However these properties 

are dependent on humidity, in other words, with higher humidity more water is absorbed. 

The water, which acts as a plasticiser, will then reduce its tensile strength, but increase its 

elongation and tear strength. PVA is fully degradable and is a quick dissolver. PVA has a 
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melting point of 230°C and 180 – 190°C for the fully hydrolysed and partially hydrolysed 

grades, respectively. It decomposes rapidly above 200°C as it can undergo pyrolysis at 

high temperatures. PVA is an atactic material but exhibits crystalline nature, as the 

hydroxyl groups are small enough to fit into the lattice without disrupting it. FDA has 

approved this polymer as additives in food and drugs. 

 

Figure 3.1: Structure of polyvinyl alcohol [2] 

Polyvinyl alcohol is classified into grades of partially and fully hydrolysed polymers with 

different intended functional uses. Polyvinyl alcohol has a history of use in cosmetic, 

food packaging materials, pharmaceutical and medical applications. Polyvinyl alcohol is 

used as a coating, binder, sealing and surface finishing agent in food products such as 

dairy-based desserts, confectionery and cereal products and dietary supplement tablets. 

Used in eye drops and hard contact lens solution as a lubricant. Used as a fixative for 

specimen collection, especially stool samples. When doped with iodine, PVA can be used 

to polarize light. 

 

3.1.1.2   Gelatin 

Gelatin is a protein produced by partial hydrolysis of collagen extracted from the boiled 

bones, connective tissues, organs and some intestines of animals such as domesticated 

cattle, pigs, and horses. The natural molecular bonds between individual collagen strands 

are broken down into a form that rearranges more easily. Together with water, it forms a 

semi-solid colloid gel. Gelatin forms a solution of high viscosity in water and its 

chemical composition is, in many respects, closely similar to that of its parent collagen. 

Gelatin solutions show viscoelastic flow and streaming birefringence. If gelatin is put into 

contact with cold water, some of the material dissolves. Gelatin is also soluble in most 
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polar solvents. Gelatin gels exist over only a small temperature range, the upper limit 

being the melting point of the gel, which depends on gelatin grade and concentration and 

the lower limit, the freezing point at which ice crystallizes. The mechanical properties are 

very sensitive to temperature variations, previous thermal history of the gel, and time.  

                                          

 

                                           Figure 3.2: Structure of Gelatin [3] 

known as a gelling agent in cooking, different types and grades of gelatin are used in a 

wide range of food and non-food products: Common examples of foods that contain 

gelatin are gelatin desserts, trifles, aspic, marshmallows, candy corn, and confectioneries 

such as Peeps, gummy bears and jelly babies. Gelatin may be used as a stabilizer, 

thickener, or texturizer in foods such as jams, yoghurt, cream cheese, and margarine. it is 

used, as well, in fat-reduced foods to simulate the mouth feel of fat and to create volume 

without adding calories. Gelatin is used for the clarification of juices, such as apple juice, 

and of vinegar. Isinglass, from the swim bladders of fish, is still used as a fining agent for 

wine and beer [80]. 

 

3.1.1.3   Polyvinyl pyrrolidone 

Polyvinylpyrrolidone (PVP), also called Polyvidone, is a water-soluble polymer made 

from the monomer N-vinylpyrrolidone. PVP is soluble in water and other polar solvents. 

In polar solvents like butanol, ethanol, methanol etc. the solubility increases. When dry it 

is a light flaky powder, which readily absorbs up to 40% of its weight in atmospheric 
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water. In solution, it has excellent wetting properties and readily forms films. This makes 

it good as a coating or an additive to coatings [4]. 

 

 

Figure 3.3: Structure of PVP [4] 

It is used as a binder in many pharmaceutical tablets; it simply passes through the body 

when taken orally. PVP added to iodine forms a complex called povidone-iodine that 

possesses disinfectant properties. This complex is used in various products like solutions, 

ointment, pessaries, liquid soaps and surgical scrubs. It is known for instance under the 

trade name Betadine. It is used in pleurodesis (fusion of the pleura because of incessant 

pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, 

and may be preferred because of easy availability and low cost. 

 

3.1.2   Methods 

3.1.2.1   Preparation of TiO2-polymeric film photocatalyst 

The photocatalyst film was synthesized in a 500 ml beaker. 24.3 % w/w of PVA and 11% 

w/w of Gelatin were dissolved properly in distilled water Next, 21.6 % w/w of PVP 

dissolved in the solution of ethyl alcohol and water (3:1) was added to the gelatin - PVA 

solution. The resulting solution was reacted for 15 minutes at 45°C, followed by 

dispersion of 43 % w/w TiO2 Degussa P25 powder in the mixture. This was followed by 

physical cross-linking at -2 °C for 5 hours. 
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3.1.2.2   Photodegradation of Methyl orange 

A 121 ml continuous flow reactor in Fig.3.4, containing the methyl orange, was exposed 

to UV lamp of light intensity 22 mW/cm
2
. The methyl orange solution was pumped from 

a 250 ml beaker into the reactor by a peristaltic pump at 82 ml/min, being a continuous 

flow system, the degraded methyl orange solution was pumped out of the reactor into the 

same beaker, and a magnetic stirrer was employed at the bottom of the beaker for mixing. 

The pH of the solution was 5.8-6.2. The pH increased with time because of the UV 

exposure. The polymeric-TiO2 photocatalyst was coated on the Pyrex glass bottom of the 

reactor. Following the photodegradation, samples were collected for pH measurement 

and UV-Vis spectrophotometer analysis. Studies were carried out by varying the flow 

rates, initial concentrations, pHs, catalyst loadings and light intensities of the 

experimental set up, to observe their effects on the degradation rate. The optimum light 

intensity and pH were selected by carrying out studies at different intensity and pH level. 
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Figure 3.4: Methyl orange photodegradation. Experimental conditions [Continuous 

flow reactor, light source- UV lamp, and pH-5.8-6.2] 
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3.1.2.3   Photodegradation of Aspirin 

Aspirin solution photodegradation was carried out in a batch reactor of 250 ml, in 

presence of the film photocatalyst, both under UV lamp and solar simulator. The 

photodegradation of aspirin was carried out both in the presence of slurry TiO2 and TiO2-

Polymeric film. The solution was stirred continuously, by a magnetic stirrer at the bottom 

of the reactor, during the degradation. The UV lamp was placed under the reactor, while 

the solar stimulator was placed above the reactor. The experiments under the UV lamp 

was carried out at light intensity of 22 mW/cm
2
, pH – 4.5, TiO2 loading of 1.5 g/L. On 

the other hand, the solar light experimentations were carried out at light intensity of 27 

mW/cm
2
, pH- 4.5, TiO2 loading 1.5 g/L. In case, of the degradation studies in presence of 

TiO2/polymeric film, the film thickness was 0.45 mm. The degraded samples were 

analysed in UV-Vis spectrophotometer. The effects of initial concentration, pH, light 

intensity, catalyst loading and film thickness on the degradation rate were studied.  The 

optimum pH and light intensity were determined by carrying out experimentations by 

varying each of the parameters. 
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Figure 3.5: Aspirin photodegradation. Experimental conditions [Batch reactor, light 

source- Solar simulator: I = 27 mW/cm
2
, UV lamp: I = 22 mW/cm

2
, pH-4.5, TiO2 

loading = 1.5 g/L, H = 0.45 mm] 
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3.1.2.4   Photodegradation of Methyl orange in large scale reactor 

Methyl orange was photo degraded under LED lights in a 5 Litres continuous flow 

reactor shown in the Fig.3.6, which consisted of two concentric cylinders with the LED 

lights supported on a plastic support hold outside the reactor. The radius of the space 

between two cylinders was 5 cm and the thickness of the cylindrical wall was 0.45 cm 

The methyl orange solution containing 0.00025 cm
2
 pieces of photocatalyst films was 

pumped by a peristaltic pump from a 7 Litres container into the reactor. After degradation 

the solution was pumped out of the reactor into another container. The pH of the system 

was 5.8 throughout the reaction and the light intensity was 4.1 mW/cm
2
. The degraded 

samples were collected in a container and analysed in UV-Vis spectrophotometer. The 

effects of initial concentrations and flow rates were studied. Methyl orange solutions of 

concentration 2, 10, 30, 100, 200 (ppm) were employed for degradation. The flow rate of 

the solution was varied by the regulating the speed of the peristaltic pump. The 

degradations were studied at flow rates of 45, 85, 200, 450, 650, 800 ml/min.
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Figure 3.6: Methyl orange photodegradation. Experimental conditions [LED lights, 

Continuous flow reactor, catalyst-polymeric/TiO2 film, and pH – 4.1] 
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3.1.2.5  Reactor setup 

Experiments (MeO degradation reactions under UV lamp) were conducted in a semi-

batch swirl-flow monolithic-type photoreactor. The reactor consisted of two circular glass 

plates (each of diameter 0.09m) separated by 0.01m, which were placed between soft 

padding housed within stainless steel and aluminum casings. Pyrex glass plates were used 

as it can cut-off UV light below 300 nm thereby eliminating direct photolysis of the 

organic compounds. The reaction solution, which was circulated by a peristaltic pump, 

was introduced tangentially between the two glass plates, and exited from the center of 

the top plate. The tangential introduction of liquid created a swirl-flow, thereby ensuring 

that the liquid solution was well mixed. A lamp was placed about 0.1 m underneath the 

bottom glass plate on a holder that could be moved to create a different angle of 

incidence of light. The light intensity was measured by a digital radiometer (UVP Model 

number UVX-36). Provision was made for placement of several metal screens of 

different mesh size between the lamp and the bottom glass plate to obtain variation in 

light intensity. The lamp and reactor were placed inside a wooden box painted black so 

that no stray light can enter the reactor. The lamp was constantly cooled by compressed 

air to protect the lamp from overheating. Teflon tubing was used to connect the reactor 

and the beaker. The schematic diagram of the setup is shown in Fig. 3.7. 

 

 

 

 

 

 

 

 

Figure 3.7. Schematic drawing of the monolithic swirl-flow photocatalytic Kinetic 

reactor. 
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3.1.2.6.   Advantages and disadvantages of reactor types used 

Batch reactor – The batch reactor was used for aspirin degradation showed the 

advantages of small instrumentation cost, flexibility of operation (may be easily shut 

down). Hence, we may generalize that batch reactor is well suited to produce small 

amounts of materials. Disadvantages of a batch reactor are poorer quality of product, high 

handling cost of labours in industries (refill, clean out). Therefore for industrial purpose 

continuous flow reactor is better. 

Continuous flow reactor – This reactor has been used for methyl orange large scale 

degradation under LED lights. This type of reactor is best for industrial purpose, when 

large scale quantities are to be processed and when rate of reaction is fairly high. 

Extremely good quality products can be produced by this reactor.  

Semibatch reactor – This reactor was used for MeO degradation under UV lights. This 

type of reactor is flexible to use but is more difficult to analyze. This reactor may offer 

good control of reaction speed because the reaction proceeds as reactants added.  

 

3.1.2.7.   Instrumental analysis  

UV-Vis spectrophotometer was used to analyze the concentration of the degraded 

samples of pollutants (MeO and aspirin). MeO was analyzed at wavelength of 465 nm, 

while aspirin analysis was done at wavelength of 298 nm. Total organic carbon content of 

each of the degraded samples were analyzed, to measure the carbon content before and 

after the degradation reactions. Fourier Transform Infrared analysis was carried out to 

detect the functional groups in the MeO and aspirin intermediates. The radiation 

containing all IR wavelengths ranges from 400 to 5000 cm
-1

. Results of 32 scans were 

combined to average out random absorption artifacts, and excellent spectra from very 

little amount of samples were obtained. High pressure liquid chromatography and Liquid 

chromatography Mass spectroscopy were carried out in C-18 column, to detect the 

intermediates formed during the degradation of aspirin molecules. Scanning Electron 
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Microscopy was carried out to study the topology of the TiO2-polymeric film 

photocatalyst produced. 

 

3.2 Nomenclature 

MeO – Methyl orange 

ASA - Acetyl salicylic acid 

TiO2 - Titanium dioxide 

ppm - parts per million 
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Chapter 4 

Preparation and characterization of the  
Polymeric-TiO2 film photocatalyst 

4.1   Introduction 

Pharmaceuticals in general enter the environment through different pathways, resulting in 

contamination of waste or fresh water, where bacteria are most likely the primarily 

affected organisms. Due to high intake of NSAIDs (non steroidal anti-inflammatory 

drugs), their presence in drinking water has been widely reported [1]. Aspirin belongs to 

this class of medications called (NSAIDs).  NSAIDs are the most frequently prescribed 

agents to treat fever, pain, arthritis etc.  In addition to its effects on pain, fever, and 

inflammation, aspirin also has an important inhibitory effect on platelets in the blood. 

This antiplatelet effect is used to prevent blood clot formation inside arteries, particularly 

in individuals who have atherosclerosis (narrowing of the blood vessels) of their arteries, 

or are otherwise prone to develop blood clots in their arteries preventing and treating heart 

attack and strokes. 

 

Figure 4.1: Structure of aspirin [2] 

 In aqueous solutions, they can undergo photochemical transformations with sunlight via 

direct or indirect photoreactions [2]. Such photochemical degradation can be one of the 

major transformation processes and one of the factors that control the fate of the organic 

pollutants in the environment. Various technologies are in use to purify aqueous 

municipal and industrial effluents containing pharmaceutical substances, before entering 

http://www.medicinenet.com/script/main/art.asp?articlekey=22122
http://www.medicinenet.com/script/main/art.asp?articlekey=15018
http://www.medicinenet.com/script/main/art.asp?articlekey=99124
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGY-5004R0R-1&_user=940030&_coverDate=06%2F10%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1403521230&_rerunOrigin=google&_acct=C000048763&_version=1&_urlVersion=0&_userid=940030&md5=7e80933761c8388f6b9cdf8e5f1883fc#bib22
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surface waters. Among them, advanced oxidation processes (AOPs) have been the subject 

of major interest in recent years. As one of the Advance Oxidation Processes (AOPs), 

TiO2 photocatalytic oxidation holds much promise to address this issue. TiO2 is largely 

used because of its low cost and its photocatalytic efficiency. It is also remarkably active, 

cheap, non-toxic and chemically stable over a wide pH range. In general, the goal of the 

application of photocatalysis in water treatment is the transformation, deactivation and 

finally mineralization of environmentally persistent compounds. The catalyst TiO2 is 

chemically stable and non-toxic and able to utilize sunlight and air to produce many 

reactive species, including the powerful and non-selective oxidant hydroxyl radicals, to 

destroy organic compounds but it’s one of the major drawback is expensive filtration 

technique needed to remove these slurry TiO2 from the purified water [3,4]. This problem 

has resulted in development of several kind of immobilization technique to immobilize 

the TiO2 powder which may reduce the post degradation expenses and time. TiO2 in 

anatase, Degussa form has been immobilized by following several method.The design 

and development of an immobilized thin catalyst film makes commercial-scale 

applications of TiO2-based photocatalytic processes for water treatment possible. The 

designs are more likely to be useful in commercial applications because they provide at 

least three important advantages. First, they eliminate the need for the separation of the 

catalyst particles from the treated liquid and enable the contaminated water to be treated 

continuously. Second, the catalyst film is porous and can therefore provide a large surface 

area for the degradation of contaminant molecules. Third, when a conductive material is 

used as the support, the catalyst film can be connected to an external potential to remove 

excited electrons to reduce electron-hole recombination, thereby significantly improving 

the process efficiency [6]. However, immobilization of TiO2 on supports also creates its 

own problems. Several researches have been carried out on immobilization of the TiO2 

[7-9]. Two obvious problems arising from this arrangement: the accessibility of the 

catalytic surface to the photons and the reactants and a significant influence of the 

external mass transfer particularly at low fluid flow rate, because of the increasing 

diffusional length of the reactant from bulk solution to the catalyst surface [10]. Several 

kinds of film photocatalysts have been formulated by researchers. Among which some 

researchers have investigated on the characterization and degradation efficiency of TiO2 
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loaded carbon fibres [11]. A new modified silicone-TiO2 polymeric composite has been 

studied for photodegradation by researchers [12]. Though, these immobilization 

techniques have been reported to reduce the cost of filtration, all these techniques being 

expensive their uses have become limited. In our studies, five different polymeric-TiO2 

films were synthesized by varying the cross linking methods. The polymeric film not 

only acts as a substrate for immobilization of TiO2 but also, had a synergistic effect on 

the catalytic efficiency. The morphologies of the films were studied by SEM. The 

degradation of aspirin solutions were carried out to measure the photocatalytic efficiency 

of the films. Though film catalysts were able to eliminate filtration process but on the 

other hand, with immobilization of TiO2 and increase of the catalyst film thickness, the 

internal mass transfer may play a dominant role, in decreasing the rate of reactions. All 

these phenomena, may lead to a lower overall degradation rate when the TiO2 was 

immobilized compared with the suspended system. This has also been observed and 

explained by several other researchers [10, 13].  

 

4.2 Materials and Methods 

4.2.1 Materials  

Gelatin (Sigma Aldrich), PVA (Sigma Aldrich),  PVP (Sigma Aldrich), TiO2 Degussa 

P25 (Evonik), UV-Vis Spectrophotometer (Agilent), Beaker (Chemistry store, UWO), 

pH-meter (Methrom), Magnetic stirrer (Chemistry store, UWO), Conical flask 

(Chemistry store, UWO). 

 

4.2.2   Methods 

4.2.2.1 Preparation of TiO2-PVP composite 

Polyvinylpyrrolidone solution of varying concentrations (33%, 50%, 66.6%, 75%, and 

80%) w/w in ethyl alcohol and water (1:2) were prepared. Followed by dispersion of 25% 

w/w TiO2. This was followed by drying at 100°C for 1 hour. Experimentations were 
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carried out by varying the temperature and the duration of drying. Among all of these 

solutions the 50% PVP solution formed the best coating on glass surface. Therefore, 

similar studies were carried out by storing the  solution at 50°C, 80°C, 90°C, 100°C for 

(1, 2, 3, 4, 5, 6, 7) hours. It has been observed that drying for 2 hours at 100°C formed the 

finest quality of coating among all. The film dried for more than 2 hours, formed 

coatings, which brittle and broke down easily to form powders in water. 

4.2.2.2   Preparation of TiO2-PVP coating 

50% w/w of Polyvinylpyrollidone dissolved in a solution of ethyl alcohol and   water 

(ratio of 1:2) at 35 °C. This was followed by the dispersion of 25 % w/w of TiO2P25 in 

the solution.  

4.2.2.3 Immobilization 

Glass plates of 14 cm
2
 were dipped in the TiO2/polymer solution and exposed to 100°C in 

an oven for 1 hour. As PVP degrades above 110°C, therefore the temperature was not 

raised beyond that limit. 

 

Figure 4.2: TiO2-PVP photocatalyst immobilized on a glass slide 

4.2.2.4   Preparation of polymeric/TiO2 films 

Gelatin, polyvinyl alcohol and polyvinylpyrrolidone were reacted at various ratios by trial 

and error methods. After, several studies, it has been observed that following percentages 

of polymers gave rise to a proper and efficient photocatalyst film. It was observed that 

higher than 11% of gelatin in the formulation made the film more hydrophilic which in 

turn produced a water soluble photocatalyst. On the other hand the optimum amount of 
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PVA was observed to be 24.3% w/w. Adding PVA above 24.3% produced a thick film 

photocatalyst, which in turn attenuated, the light penetration. Though, in our previous 

formulation 50% w/w PVP was found to be the optimum amount but, after several 

experimentations, it has been observed that a fine film can be produced by (21.6%) w/w 

of PVP, in combination with PVA and Gelatin.  

24.3 % w/w of PVA and 11 % w/w of Gelatin were dissolved and mixed properly in 

distilled water to get a transparent solution. Next, 21.6 % w/w of PVP dissolved in the 

solution of ethyl alcohol and water was mixed with gelatin-PVA solution at 45° C. The 

solution was reacted for 15 minutes followed by dispersion of 43 % w/w TiO2 Degussa 

P25 powder in the mixture. The polymeric solutions with dispersed TiO2 were cross-

linked by several physical and chemical methods.  

 

4.2.2.5   Cross-linking methods 

4.2.2.5.1   Freeze-dried (Physical CL) 

The polymeric solutions were stored at several low-temperatures ranging from zero-

degree to -10 degree centigrade for different time intervals [1, 3, 5, 7, 10, 15, 24 (hours)]. 

It has been observed that the samples stored for 5 hours shows best results under solar 

and UV lights. Solutions stored for less than 5 hours showed very soft and flexible films 

which got partially dissolved in water during the photodegradation reaction. While the 

one stored for longer period beyond 5 hours though forms mechanically strong catalyst 

film but shows lower degradation rates than the one at 5 hours. Therefore the freeze-dried 

film was cross-linked under following conditions:- 

The 43 % w/w of TiO2 dispersed polymeric solution was then physically cross-linked by 

storing the solution at -2° Centigrade for 5 hours. 
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Figure 4.3: Freeze-dried photocatalyst film 

 

4.2.2.5.2   Heat treated (Physical CL) 

Following the preparation of the polymeric/TiO2 solution by above mentioned process, it 

was cross-linked by heat treatment in an oven for several time intervals ranging from 10 

minutes to 120 minutes at several temperatures ranging from 70 degree to 105 °C. As 

beyond 108 °Centigrade, the polyvinylpyrrolidone starts degrading. Therefore the 

solution was treated below 108 °C. The solutions were exposed to 108 °C for 120 

minutes formed brittle film, while the ones stored at lower temperatures didn’t form a 

consistent catalyst film. It has been observed that the optimum conditions were, heating 

for 10 minutes at 105 °C. The heat-treated photocatalyst film was prepared by exposing 

the solution to 105 °C for 10 minutes. 
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Figure 4.4: Heat-treated film photocatalyst 

4.2.2.5.3   Acetaldehyde treated (Chemical CL) 

After the polymeric solution was prepared, it was treated with few drops of several 

percentages of acetaldehyde solutions ranging from 2 %-10 %, at room temperature. The 

optimum amount of was 2-3 drops of 2% acetaldehyde. The aldehyde cross-linked the 

polymeric solution and instantly formed a membrane which was dipped in milli Q water 

for a couple of minutes and washed 3 times to remove the unreacted aldehyde traces. 

 

                        Figure 4.5: Aldehyde treated photocatalyst film 
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4.2.2.5.4 UV treated (Chemical CL) 

Polymeric solutions with dispersed TiO2 were exposed of 275 nm wavelength for 

different time intervals (2min, 5 min, 7min, 10min, 20min, 30 min, and 60 min) to UV 

light. It has been observed that exposure for 10 min showed best results among all the 

samples. Samples exposed for 2-7 minutes did not form mechanically strong films, which 

in turn degrades in the aqueous system during the photodegradation. While the catalyst 

films formed by exposure of 20-60 minutes though formed mechanically strong films but 

due to high cross-linking effects, the TiO2 particles got intertangled within polymer 

matrices, which in turn made photodegradation difficult. The polymeric solution was 

prepared following same method as mentioned above and was exposed to UV lamp of 

275 nm wavelength for 10 mints to cure the polymeric membrane. 

 

 

Figure 4.6: UV treated film 

 

4.2.2.5.5   Freeze-dried and UV treated (Physico-chemical CL) 

The polymeric solution was prepared following same method as mentioned above and 

was kept at -2°C for 5 hours and then exposed to UV lamp of light intensity 4 mW/cm
2
 

for 10 mints to cure the polymeric membrane. 
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Figure 4.7: Freeze dried and UV treated 

 

4.2.2.5.6   Characterization of film catalyst  

Catalyst films were characterized by analysing under optical microscopy and scanning 

electron microscopy. For verification of a uniform topology of the dried membranes, 

photocatalyst films were exposed to scanning electron microscope (Hitachi F-4000). 

SEM studies of the film photocatalysts revealed the specific pore size and pore density. 

The measuring scale was 2.5 µm.  

 

4.2.2.5.7  Analysis of photocatalytic efficiency 

The photodegradation reaction was carried out in batch reactors in presence of both solar 

and UV light with five different kinds of polymeric-TiO2 catalyst films. Degradation 

reactions were carried out in batch reactors of 250 ml containing aspirin solution under 

UV lamp of intensity 22 mW/cm
2
 and the solar stimulator of light intensity 27 mW/cm

2
. 

The concentrations of the degraded aspirin solution were analysed in UV-Vis 

spectrophotometer Agilent at 298 nm. 
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4.3   Results and Discussions 

4.3.1   Analysis of optical microscopy 

The films were subjected to optical microscopy, to observe the porous structure. Fig. 4.8 

showed different topologies of the films. The freeze-dried film showed a spongy porous 

structure. While the heat treated films were observed to have a highly porous 3 D 

structure which makes the film to remain buoyant. The aldehyde and UV treated ones 

were solid matrices with very few pores. The UV-Freeze-dried treated showed a spongy 

structure similar to freeze-dried but with fewer number of pores. 

                                  

 [a] [b]                                    

 

                       [c] [d] 
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[e] 

Figure 4.8 : Optical microscopy of a) Freeze-drying film b) Heat treated film c) UV       

treated film d) UV-freeze-dried film e) Aldehyde treated film 

 

4.3.2 Analysis of scanning electron microscopy 

The film photocatalyst thickness ranges from 0.45 mm to 2mm in thickness. The cross-

section micrographs taken by scanning electron microscopy revealed a three-dimensional 

network structure which is typical for a porous material. In the Fig. 4.9 to Fig. 4.13,  the 

porous structures of the films have been depicted. From the figure with the highest 

magnification in particular, it can be seen that the freeze-dried membrane is built up 

homogeneously, interspersed with pores of various diameters ranging from 50 µm to 300 

µm.  The average pore area was found to be 2078 µm
2
. The pore density ranged from 7-

10 pores per square mm for freeze-drying film. While for heat dried 12-15 pores per 

square mm, were found. The aldehyde and UV treated showed almost no pores and the 

freeze-dried- UV treated film showed 3-5 pores per sq mm. 
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Figure 4.9: SEM of freeze-dried film (measuring scale 2.5 µm) 

 

 

Figure 4.10: SEM of heat treated film (measuring scale- 2.5 µm) 
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Figure 4.11: SEM of UV treated film (measuring scale- 2.5 µm) 

 

Figure 4.12: SEM of UV treated/freeze-dried film (measuring scale- 2.5 µm) 
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Figure 4.13: SEM of aldehyde treated composite membrane (measuring scale- 2.5 

µm)  

 

4.3.3 Degradation of Acetylsalicylic acid 

Degradation of aspirin was carried out in batch reactors (250 ml) both under UV and 

solar lights, to observe the  effect of cross-linkages on degradation rate. In the Fig. 4.14 

and  Fig. 4.15, the rate constants of each degradation reactions were calculated to 

compare the efficiencies of the film photocatalysts. These k (rate constants) values, were 

calculated from the initial degradation of aspirin solutions. The degradation rate in 

presence of slurry was observed to decrease in presence of solar light. While in the 

presence of freeze-dried film the degradation rate under the solar light was observed to be 

better than under the UV. Under the solar light freeze-dried film and slurry both showed 

almost similar degradation rate. The heat and UV treated films were discarded due to 

quite low degradation rates in comparison with freeze-dried. It has been observed that the 

freeze-dried catalyst was more efficient in degrading aspirin than the heat treated, UV 

treated, UV treated - freeze-dried and aldehyde treated catalyst in presence of solar light. 

Under UV light the efficiency of freeze-dried catalyst was observed to decrease with 

time. 
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Figure 4.14: Effect of cross-linking methods on degradation of aspirin under UV 

light. Experimental conditions [C0 = 2 ppm, I = 22 mW/cm
2
, pH = 4.5] 

The rate constants obtained are: ksl = 0.099, kf/d = 0.05, kh = 0.019, kuv = 0.017, kal =  

0.015,  kf/d-UV = 0.024 ( mg/L/min) 
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Figure 4.15: Effect of cross-linking methods on degradation of aspirin under solar 

light. Experimental conditions [C0 = 2 ppm, I = 27 mW/cm
2
, pH = 4.5] 

 

The rate constants obtained are: k sl = 0.08,  kf-d/uv =  0.027,  kf-d = 0.079 ,  kald =  0.017, 

kuv = 0.019, kh = 0.022 

This phenomenon can be explained because of cross-linkage formation of the membrane 

by UV light.  After few minutes of UV light exposure during the photodegradation of 

aspirin the films got cured making more TiO2 active sites unavailable for the 

photoreaction, which in turn decreased the reaction rate gradually with time. While on the 

other hand, though the heat treated catalyst was buoyant and did not show curing effects 

under UV lights, but the degradation rate of organic pollutants in presence of this film, 

was lower in comparison to the slurry TiO2 and freeze-dried catalyst films. The aldehyde 

treated catalyst was found to remain in submerged condition in the water during the 

reaction and also showed lower degradation rates as of heat treated catalysts. The UV 

treated catalyst film showed same morphological characteristics as that of UV-freeze-

dried catalyst and both the catalysts were observed to follow almost same rate of 

degradation in presence of solar light and UV light.  
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4.4   Conclusions 

From this study, it can be concluded that the freeze-dried catalyst was observed to have 

highest efficiency compared to heat treated, aldehyde treated, UV treated and UV-freeze-

dried photocatalysts. The freeze-dried membranes being highly porous showed better 

adsorption of the pollutants, in comparison with other film photocatalysts. The spongy 

3D structure of the catalysts made it capable of adsorbing organic pollutants on its 

surface, thereby increasing the degradation rate of the catalysts. From the degradation 

rate constant values obtained, (kf-d = 0.05 mg/L/min) under UV and (kf-d = 0.079 

mg/L/min) under the solar lamp, it can be concluded that, the freeze-dried films were 

more efficient under the solar light. This was due to the powerful cross-linking effects of 

the UV light on the polymeric film, which decreased the active sites availability for photo 

reaction. The UV treated and freeze-dried/UV treated, catalyst films showed very few or 

almost no pore from the SEM study and therefore showed lower degradation efficiency. 

Also, due to strong cross-linkages formation by UV light and heat treatment, covalent and 

ionic bonds were formed between polymer fibres and the TiO2. These strong bonds made 

interstitial TiO2 particles partially unavailable for photocatalysis. Therefore, these films 

had fewer active sites available for interacting with the photons. The toxic nature of 

acetaldehyde reduced the chances of using aldehyde treated catalyst films for drinking 

water purification. Thus, freeze-dried film catalyst being able to remove the ultra-

filtration step and efficient under solar light, it can be concluded that this film photo 

catalyst holds the potential of an economical and convenient water treatment process. 
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4.5 Nomenclature 

PVA     -      Polyvinyl alcohol 

PVP     -       Polyvinyl pyrrolidone 

TiO2 P25  -   Titanium dioxide Degussa P25 

SEM      -     Scanning Electron Microscopy 

CL        -    Cross link 
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Chapter 5 

Degradation of methyl orange by TiO2/polymeric film 
catalyst  under UV lamp 

 5.1   Introduction 

According to the World Health Organization more than 1 billion people in the world are 

suffering from the lack of access to clean potable water. Waterborne infections account 

for 80 percent of all infectious diseases in the world [1]. Disinfection power of ultraviolet 

light has opened a new era in water treatment and application of doped/composite titania 

(TiO2) has expanded the spectrum of light to visible light enhancing the efficiency of the 

operation. Removal of the non-biodegradable organic chemicals in water is of immense 

interest in recent years. Pharmaceutical compounds, pesticides and dyes are important 

groups of synthetic organic compounds which are being released in waste water on a 

daily basis.  Release of these organic compounds in wastewater is a serious threat to the 

environment. These compounds though present in very minute level but may affect 

human health on daily consumption. Among several synthetic dyes, methyl orange has 

been employed in many experiments due to its several side effects and unique properties. 

Methyl orange is one such dye, which is toxic and carcinogenic to human health. If 

consumed may cause nausea, vomiting, gastrointestinal irritation. Due to its complex 

aromatic structure conventional water treatment technologies are ineffective in removing 

these organic dyes completely from the wastewaters [1, 2]. Therefore, the so called 

Advanced Oxidation Processes (AOPs) have been proposed as the alternative methods for 

water purification. 

 

Figure 5.1: Structure of Methyl orange (red form) [3] 

javascript:display_molecule('methylorangebasic','features/molecules');
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 Advanced oxidation processes (AOPs) show the potential to become a preferred future 

treatment technology, attributed to its capability of completely degrading almost all 

organic pollutants into the ultimate products (carbon-dioxide and water). Currently the 

main disadvantage of AOPs is their high cost among all AOPs, photo catalysis has been 

observed to be the most promising and emerging technology. Photocatalytic degradation 

offers certain advantages over the traditional water treatment technologies. TiO2 Degussa 

P25 is being widely used as semiconductor photocatalyst because of its non toxic nature, 

high corrosion resistance, and chemical stability, insolubility in water and excellent 

optical transparency in visible and infrared lights. Besides, TiO2 being cheap and 

effective in removing organic compounds has attracted attention of researchers [2-5]. The 

only drawback of TiO2 semiconductor is its band gap lies in the near-UV of 

electromagnetic spectrum (band gap -3.2 eV). TiO2 requires UV-A light of wavelength < 

388 nm for photo excitation giving rise to electrons and holes in the conduction and 

valence band respectively. The valence band holes are powerful oxidants (+1.0 to +3.5V), 

while the conduction band electrons are good reductants (+0.5 to -1.5V). Most organic 

photo degeneration reactions utilize the oxidizing power of the holes either directly or 

indirectly. When TiO2 is illuminated by UV light, electrons are promoted from the 

valence band to the conduction band to give electron-hole pairs. The holes in TiO2 will 

react with water molecules or hydroxide ions and produce hydroxyl radicals. The 

interaction of the Positive holes or the negative electrons with the absorbed organic 

pollutants can give rise to unstable intermediates which are further attacked by hydroxyl 

or peroxyl species occasioning a carbon-carbon  bond rupture ( or aromatic ring opening) 

with concomitant release of low molecular weight products which may in turn be further 

oxidized to CO2. The attacking hydroxyl radical presumably comes from the photo 

splitting of water by photo generated hole. Alternatively, the peroxyl radical may come 

from the protonation of a superoxide anion, O2 - produced from electron uptake of 

dissolved O2. Oxygen is usually supplied as an electron acceptor to prolong the 

recombination of electron-hole pairs during photocatalytic oxidation. The hydroxyl 

radical is a powerful oxidizing agent and attacks organic pollutants present at or near the 

surface of TiO2. It causes photooxidation of pollutants according to the following 

reactions [6-8]. 
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TiO2 + hν → ecb
-
 + hvb 

+
                                    (5.1) 
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+

+ H2O → OH
- 
+ H

+           
                          (5.2) 

hvb
+
 + OH

-
 → 

.
OH          (5.3) 

O2ads + ecb
−
 → 

.
O2−              (5.4) 

R + h
+
→

 
 
.
R

+
 →    oxidation of dye              (5.5) 

R + 
.
OH →   degradation of dye                    (5.6) 

 

Several researches have been carried out to develop the properties of TiO2 as 

photocatalyst by doping methods or by complexing with polymers. Recently, doping 

TiO2 with nonmetal atoms has received a lot of attention [9]. Researchers have reported 

that doping TiO2 with nitrogen or carbon can lower its band gap and shift its optical 

response to the visible region [10].  Narrowing the band gap helps TiO2 to act under light 

of longer wave length or under visible light.  A polymer–metal complex is composed of 

synthetic polymers and metal ions bound to the polymer ligand by a ionic bond. A 

polymer ligand contains anchoring sites like nitrogen, oxygen or sulphur obtained either 

by the polymerization of monomer possessing the coordinating site or by a chemical 

reaction between a polymer and a low molecular weight compound having the 

coordinating ability. In addition these TiO2-polymer complexes helps in ion selectivity in 

waste water treatment, recovery of trace metal ions [11]. Researchers investigated the 

photocatalytic degradation of methyl orange in aqueous TiO2 under different irradiation 

sources which showed better decolourization of MeO under solar than UV lamp [12]. 

Several researchers have studied the degradation of MeO with TiO2 as slurry under UV 

lamps. These processes having several disadvantages and requires expensive and time 

consuming procedures. Although the reaction rate may be high, the slurry systems require 

the separation of these small catalysts particles from the treated slurry, which has been 

found to be difficult to accomplish and hence reduce the economical viability [14]. To 
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avoid the separation problem, photo catalyst particles have been immobilized onto macro 

supports [15]. So far, most of the researchers carried out immobilisation of catalysts at 

high temperature which again requires expensive and complex procedures to be followed. 

Therefore, in our study investigations have been carried out to develop a novel composite 

for more efficient degradation of MeO in aqueous solution under UV lamp. 

Polyvinylpyrrolidone has been introduced in the preparation of the composite to make the 

composite act as a storage house of energy source over a long period of time and 

polyvinyl alcohol forms a strong film preventing crack formations on the photocatalyst 

composite. These polymers have been physically cross-linked to form a sponge like 

structure, which can be more efficient as a photocatalyst than TiO2 alone. Besides the 

catalyst immobilisation procedure has been carried out at very low temperature to avoid 

the disadvantages of high temperature processes. Also, the effects of initial dye 

concentration, flow rate, pH of methyl orange and irradiation time on photocatalytic 

degradation rate were investigated. Acidic pH has been observed to be more suitable for 

degradation of MeO by other researchers [16, 17].  

 

5.2 Experimental set up and procedure 

5.2.1 Materials and equipment 

The materials used in this study include; TiO2 Degussa P25 (Evonik), Polyvinyl alcohol 

and Polyvinylpyrrolidone (Sigma Aldrich), Methyl orange (VWR), Beaker (Chemistry 

store, UWO), UV-Vis spectrophotometer (Shimadzu), UV lamp (Phillips) and Methrom 

pH meter has been used to analyse the pH of the solutions. 

 

5.2.2 Preparation of TiO2-polymeric composite 

The polymers used to prepare the catalyst have been considered non-toxic by WHO and 

also have been proved to by toxicology researches [18, 19, and 20]. 24.3 % w/w of PVA 

and 11% w/w of Gelatin were dissolved and mixed properly in distilled water and to get a 
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transparent solution. Next, 21.6 % w/w of PVP dissolved in the solution of ethyl alcohol 

and water (1: 2) at 45° C. The solution was reacted for 15 minutes followed by dispersion 

of 43 % w/w TiO2 Degussa P25 powder in the mixture.  

 

5.2.3   Preparation of immobilized catalyst 

The support used in this research was a circular sand blast glass plate of 99 sq. cm areas. 

The TiO2/polymeric solution was poured on the sand blast side of glass plate and stored 

around -2 °C for 5 hours. The total mass of catalyst deposited per unit area was 

determined by weighing the glass plate before and after the catalyst coating. 

 

5.2.4   Photocatalyst composite activity test 

The TiO2-polymeric composite coated glass slide was dipped in an aqueous solution of 

0.1M AgNO3 and 10% C2H5OH. Next, the glass slide was illuminated by UV light. The 

Photo catalyst coating was found to change colour (turns brownish black) immediately 

due to formation of AgO [18]. This proved that the photocatalyst was effective under the 

UV light. 

 

5.2.5   Methyl orange photodegradation and analysis 

The photo reactor consists of one circular quartz glass plate placed in a stainless steel 

casing held between two steel plates. The TiO2-polymeric composite catalyst was 

immobilised on the glass plate. The reactor consisted of a single inlet and outlet system. 

The UV lamp (Philips) was placed under the reactor inside a wooden box with a small 

opening. The radiation intensity of the lamp was 275 nm. The lamp was constantly 

cooled by air circulation through a fan fitted to the wooden box. The whole system was 

covered by a box so that no stray light can enter the reactor.  
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The methyl orange solution was kept in a conical flask connected to a peristaltic pump 

from which the solution was pumped into the reactor. After photodegradation the solution 

was pumped out of the reactor into the same conical flask which was continuously stirred 

by a magnetic stirrer. The  concentration  change of  the  solutions  were  continuously  

examined  in  UV-Vis spectrophotometer  at  ( λ  = 465 nm). Also, arrangements have 

been made to measure the pH of the solutions directly after the photo degradation before 

reaching the original solution in the conical flask. To study the role of light intensity in 

degradation of the pollutant, wire mesh was placed between the lamp and the bottom 

plate of the reactor.  In this experiment the tr (residence time) of methyl orange in the 

reactor has been calculated. This residence time in the reactor was plotted against the 

concentration to measure the removal rate of the pollutant. 

 

 

5.3 Results and Discussions 

5.3.1 SEM analysis of the photocatalyst 

The Scanning electron microscopy was carried out to study the topographical 

morphology of the TiO2-PVA composite. For verification of a uniform structure 

micrographs of the dried membrane were taken using a scanning electron microscope 

(Hitachi F-4000). 

From SEM image in Fig. 5.2, it was observed that the TiO2-polymeric catalyst film have 

porous sponge like surface which in turn may helped to adsorb many organic compounds. 

Also the SEM study revealed the specific pore volume and pore density. SEM image of 

the morphology of the photocatalyst films have been shown in the following Figures. 

With the highest magnification in particular, the freeze-dried film has been observed to 

be homogenously interspersed with pores of various diameters ranging from 50 µm to 

300 µm.  The average pore area was found to be 572 µm2. The pore density ranged from 

7-10 pores per square mm. 
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Figure 5.2: SEM image of TiO2/polymeric film 

5.3.2 Blank experiment 

 Dark reaction was carried out to saturate the catalyst surface by dye adsorption so that 

during the reaction under UV light no more adsorption of dye occurs.  This experiment 

was carried out with photo catalyst but no illumination. Dark reaction was carried out 

with different  concentrations of methyl orange solutions (100 ppm, 50 ppm, 30 ppm, 15 

ppm and 5 ppm), and changes were observed in UV- Visible spectrophotometer.  The 

changes in concentrations observed, proved adsorption of methyl orange on the catalyst 

surfaces. 

Adsorption equilibrium constants were determined from both dark reaction and UV 

reaction. The small change in concentration of methyl orange in absence of light (dark 

reaction) in presence of a catalyst composite can be attributed to the adsorption of methyl 

orange onto the surface of the TiO2-polymeric composite. The concentration of MeO 

adsorbed on the catalyst was calculated from the difference between the initial and 

equilibrium concentrations. Having prepared the plot of 1/qe Vs 1/C0 (Fig.5.3), where qe 

is the amount of dye adsorbed on the catalyst surface and C0 is the initial concentration, 

qm and K were obtained. This reaction appeared to follow Langmuir adsorption isotherm: 
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qe = qmKC0/ (1+ KC0)                                   (7) 

qm and K are the saturation and adsorption equilibrium values respectively.   

 

Figure 5.3: Dark reaction of MeO degradation in presence of TiO2-polymeric 

photocatalyst. Experimental conditions [I = 22 mW/cm
2
, pH = 5.8 - 6.2 ] 

 From the plot in Fig.5.3, the value of K obtained was 0.065 L/mg and qm was obtained to 

be 0.25 mg/L. Here qm is the maximum amount of dye adsorbed and K is the adsorption 

constant. 

 

5.3.3 Effects of flow rates on the photodegradation of methyl orange 

Experiments were carried out at several flow rates (25 ml/min, 42 ml/min, 85ml/min and 

100 ml/min). In Fig. 5.4 the effects of different flow rates on the removal percentage of 

dye have been shown. From the figure it has been revealed that with the increase of flow 

rate the rate of removal of dye increased. Higher removal efficiency was observed at 

higher flow rate due to induced mixing and turbulence which reduced mass transfer 
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resistances. Therefore the flow rate of 85 ml/min was chosen as the optimum flow rate 

for  the rest of the experiments. 

 

Figure 5.4: Effects of flow rates on the photo degradation of MeO. Experimental 

conditions [I = 22 mW/cm
2
, pH = 5.8-6.2] 

It was also been observed that the effect of the increase of flow rate on the degradation 

rates was less for the higher concentrated solutions than for the low concentrated ones. 

This can be explained as at high concentration, the rate of degradation was independent 

of the mass transfer effects while the reverse for low concentrated solutions. 

 

5.3.4   Photodegradation of MeO 

For methyl orange solution (100 ppm), the photo degradation reaction was continued till 

140 minutes (tr = 112.9 min) (the residence time). The photo degraded samples were 

collected for spectrophotometric observations at very small intervals of time both at the 

beginning and also towards the end of the reaction.  
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Figure 5.5: Photodegradation of MeO. Experimental conditions [C0 = 100 ppm, I = 

22mW/cm
2
, pH - 5.8 -6.2, Flow rate - 85 ml/min]                                                                                                                                                                                                                                                                                                                                               

 

From the Figure 5.5 rate constant of the photocatalysis has been calculated, from the 

initial degradation of 100 ppm MeO solution. The rate constant was calculated to be 1.34 

mg/L/min. It was also observed that degradation rate was independent of the mass 

transfer effects at very high concentrations. It was found that TiO2-polymeric composite 

catalyst degraded 85% of the methyl orange under the UV light  in 140 minutes. 

€% = (C0 – C)/C0 x 100 = 85%                        (5.8) 

Although 90 - 95% decolourisation of methyl orange under different irradiations had 

been reported [12] it should be noted that methyl orange is light sensitive and 

decolouration does not necessarily mean carbon content reduction. Buffer solution was 

used to maintain pH at acidic level and higher degradation rates were observed.  
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5.3.5     Effects of initial concentration  

The initial MeO concentration in the solution affects the photo degradation rate. Short 

time was necessary to study initial concentration effect and therefore every experiment 

was carried out for 8 minutes. The experiments were carried out to calculate the intrinsic 

rate constant, which was independent of extrinsic and intrinsic mass transfer resistances. 

The organic dye concentrations in waste water usually range from 0.01- 0.05 g/dm
3
 [19]. 

Therefore, methyl orange solutions of different concentrations were used (100ppm, 50 

ppm, 30 ppm, 15 ppm, 5 ppm). The solutions were subjected to photo degradation at pH 

5.8 - 6.2 under UV lamp of 175 Watt and wavelength (λ = 275 nm) for 8 minutes to 

observe the initial degradation rate. The reactions were carried out at pH 5.8 - 6.2, 

without the addition of buffers. The graph of concentration vs. time shown in the Fig. 5.6 

explains that the degradation of MeO followed the model of Langmuir-Hinshelwood. It 

was observed that the degradation rate decreased with the decrease of initial 

concentration. With the increase of the initial concentration the probability of reaction 

between dye molecules and the photocatalyst also increased, which led to an 

enhancement in the degradation rate. 
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Figure 5.6: Effects of initial concentrations on the photocatalytic degradation of 

MeO. Experimental conditions [I = 22 mW/cm
2
, pH - 5.8-6.2, Flow rate - 85 ml/min] 

Interestingly, also in some other studies [20, 21] the photocatalytic degradation rate was 

shown to decrease with the increase of initial concentration. The decrease was claimed to 

be due to the increasing number of photon absorption by the catalyst in lower 

concentration. While a researcher has reported that degradation rate increased with the 

increase of dye concentration (upto 100 ppm) to a certain limit and further increase lead 

to a decrease in degradation rate, which is due to the reduction in generation of OH 

radicals on the catalyst surface [20]. Our studies also showed that the degradation 

increased with the increase of dye concentration up to 100 ppm. This was due to the 

effect of mass transfer resistances at lower concentration, which decreased the rate of 

degradation. While at higher concentration, the degradation rate remained independent of 

the mass transfer effects. Also, with the increase of concentration, the probability of 

reaction between pollutant molecules and the catalyst increased, thereby increasing the 

rate of reaction. Besides, high concentrated MeO solutions are more acidic than at lower 

concentrated ones and the UV exposure, also contributed in shifting the pH from acidic to 
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alkaline. Therefore, degradation rate was found to decrease with decrease of 

concentration. Thus combined effects of UV light and initial concentration decreased the 

degradation rate with time. 

 

5.3.6   Kinetics of photodegradation 

TiO2-PVA catalyst was observed to be efficient in degrading MeO solution. The 

degradation kinetics of methyl orange followed the Langmuir-Hinshelwood (L-H) model. 

 r = -dC/dt = kKCt/(1+ KCt)          (5.9)  

r is the photo catalytic degradation rate, k is the L-H rate constant, K is the Langmuir 

adsorption constant of the methyl orange in the photo catalytic degradation reaction. A 

linear plot of r0
-1

 Vs C0
-1

 is often obtained to estimate as the L-H rate constant and K as 

the Langmuir adsorption constant for methyl orange in the photo catalytic degradation 

reaction.  

r0 = kKC0/(1+KC0)                              (5.10)  

The equation is further expressed in a linear form 

1/r0 = 1/(kKC0)+ 1/k                    (5.11)  
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Figure 5.7:  Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [I = 22 mW/cm
2
, pH = 5.8-6.2, Flow rate = 85 ml/min] 

 

The rate constant was found from Fig. 5.7, to be k = 1.42 mg/L/min, which is close to hat 

obtained from the degradation of 100 ppm MeO (the k = 1.34 mg/L/min). K was found to 

be 0.23 Lmg
-1

. 

The degradation rate was observed to decrease with the decrease of concentration. This 

was due to the combined effect of mass transfer resistances and the pH shift during the 

reaction changed the degradation rate. The shift from acidic pH to alkaline lowered the 

degradation rate. At very high concentration the MeO showed acidic pH which changed 

towards alkalinity with time due to UV exposure, so the interaction between the TiO2 

surface and MeO molecules changed due to change in surface charges. The pH changed 

the surface charge on TiO2 particles which in turn varies the attraction force between 

TiO2 particles and methyl orange molecules.  Also, with the progress of experiment the 

catalyst gets cross-linked by the UV light which also affected the degradation rate. 
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Several researches have been carried out on photo degradation of organic dyes under UV 

lights in presence of immobilized TiO2 coatings or slurry, reporting the rate constants k 

and its dependence on different factors [12, 15, 20, and 21]. Our results cannot be 

compared with the rate constant datas reported by other researchers, mainly due to the 

differences in the nature of the photocatalysts and the light sources used but in our 

research it has been observed that the immobilised TiO2-polymeric film was able to 

degrade MeO under UV lamp at a rate of 1.42 mg/L min
-1

.  

 

5.3.7   Total organic carbon measurement 

The total organic carbon content was measured after the degradation of methyl orange 

under UV lamp in presence of the TiO2-polymeric photocatalyst. After photodegradation 

the total organic carbon content of methyl orange was observed to decrease with time. 

The decrease of carbon content signifies the degradation of the methyl orange into 

nontoxic decomposition compounds. Table 5.1., showed the decrease of TOC level after 

photodegradation reaction, at different time intervals. 

Table 5.1: Total organic carbon content measurement 

Time Carbon content (mg/L) 

0 1428 

10 952 

20 713 

                           30 522 

60 319 

90 230 

120                            90 

140 7.2 

 

5.3.8 Effects of pH on the degradation of methyl orange 

It is well known that pH value has an influence on the rate of degradation of some 

organic compounds in photocatalytic processes [16, 17]. The photodegradation of methyl 

orange was studied at three different pH values (4, 5.8, and 7.8). The pH was adjusted by 

the addition of 0.1 M potassium hydrogen phthalate (100 mls) + 0.1 M HCl (0.2 ml) at 
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varied ratio for acidic pH 4 and 5.8. For alkaline pH 7.8, 0.1 M KH2PO4 (100 ml) + 0.1 

M NaOH (7.2 ml) were used. The pH value is a complex parameter since it is related to 

the state of the photocatalyst surface, which affects the adsorption of MeO on the 

photocatalyst [20]. The pH shifted more towards alkalinity with time. Therefore, 

experiments have been carried out at different pH level, controlled by buffers. Methyl 

orange of different concentrations (100ppm, 50 ppm, 30 ppm, 15ppm, 5 ppm) were 

treated with acidic and alkaline buffer solutions and thereafter photo degradation were 

carried out at pH 4, pH 5.8 and pH 7.8. From the Fig. 5.8- Fig. 5.12, it was observed that 

the effect of pHs on the degradation of the pollutants were variable. Several researches 

have been carried out to explain the effects of pH on photodegradation of dyes. Our 

studies have been carried out at pH 4 - pH 7.8. This pH test has been performed to 

explain why and how the degradation rate decreases with time. The results indicated that 

the pH value of the pollutant was a key factor in dye degradation and changing the 

surface charge of the catalyst also influenced the photocatalytic reaction. pH changed the 

adsorption of dye molecules onto the TiO2 surface. For TiO2 P25 the pzc  is around pH 

6.2 [22]. So, when pH was less than 6 a strong adsorption of MeO on the TiO2 particles 

was observed as a result of electrostatic attraction of the positively charged TiO2 with the 

dye. At alkaline pH the MeO molecules are negatively charged and their adsorption was 

also expected to vary due to columbic repulsion. Some researchers [12, 15] have shown 

at acidic pH the degradation rates vary from depending upon the concentration. In this 

experiment at acidic pH of 4 the degradation rate was observed to be 2.6 mg/L/min
-1

, 

while at uncontrolled pH, the rate was 1.1 mg/L/min. 

 



 
 

 
80 

 

 

 

Figure 5.8: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 100 ppm, I = 22 mW/cm
2
, Flow rate = 85 ml/min] 

 

 

 

Figure 5.9: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 50 ppm, I = 22 mW/cm
2
, Flow rate = 85 ml/min] 
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Figure 5.10: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [ C0 = 30 ppm, I = 22 mW/cm
2
, Flow rate = 85 ml/min] 

 

 

 Figure 5.11: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental     

conditions [C0 = 15 ppm, I = 22 mW/cm
2
, Flow rate = 85 ml/min] 

0

10

20

30

0 5 10 15 20 25 30 35

[C
] 

(p
p

m
)

t (min)

pH-4

pH-5.8

pH-7.8

0

5

10

15

0 5 10 15 20 25 30 35

[C
] 

(p
p

m
)

t (min)

pH-4

pH-5.8

pH-7.8



 
 

 
82 

 

 

 

 

Figure 5.12: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 5 ppm, I = 22 mW/cm
2
, Flow rate = 85 ml/min] 

 

 

5.3.9 The effects of light intensity on the degradation of Methyl orange 

Light intensity plays a major role in photodegradation. To study the effect of light 

intensity on the degradation of MeO, the experiments were conducted at varying light 

intensity. MeO solutions of various concentrations were subjected to light intensity study, 

after dark reaction phenomenon was carried out. The intensity of the light was varied by 

placing different mesh screens between lamp and the reactor plate. From the Fig. 5.13-

Fig. 5-16, it can be explained that at lower intensities the rate increases linearly with the 

increase in light intensity. While at higher intensities, the rate remained unaffected. This 

reveals at higher intensities the rate is independent of light intensity. This phenomenon 

occurred due to electron hole recombination competitiveness on catalyst composite 

surface with varying light intensity [13]. Here, the k values are obtained from this 

equation:- (1+ kC)/kC (-dc/dt) 
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Figure 5.13: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 100 ppm, Flow rate = 85 ml/min, pH – 5.8-6.2] 

 

Figure 5.14: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 50 ppm, Flow rate = 85 ml/min, pH – 5.8-6.2] 
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Figure 5.15: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 15 ppm, Flow rate = 85 ml/min, pH – 5.8-6.2] 

 

Figure 5.16: Photodegradation of MeO with TiO2-polymeric catalyst. Experimental 

conditions [C0 = 100 ppm, Flow rate = 85 ml/min, pH – 5.8-6.2] 
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5.4 Conclusions  

The TiO2/polymeric composite catalyst developed in this experiment was observed to 

degrade MeO under solar rays and UV lamp. The degradation kinetics fitted into 

Langmuir-Hinshelwood model. The porous TiO2-polymeric catalyst coating was found to 

be efficient in degrading methyl orange under UV lamp. Also, the development of the 

porous sponge like nature of the catalyst composite contributed in the purification process 

by adsorption. In this experiment TiO2 has been incorporated in the network of polymers. 

PVA formed the matrix and also played a role to form smooth coating. Also, due to its 

economical preparation procedure and the non-toxic nature of its formulation ingredients, 

it can be concluded that the TiO2/polymeric film catalyst has high potential in 

photocatalysis field. Several other physical and chemical factors monitor the degradation 

rate which have been studied and discussed in this thesis. Besides, from the flow rate 

experiment results, it can be concluded that at higher flow rate the degradation was 

observed to be faster which can be attributed to external mass transfer resistance 

minimization. The degradation rates changed with the change of UV light intensities 

which proved the effect of light intensities on the degradation. At lower intensity, the 

degradation was proportional to light intensity. While at higher intensities the degradation 

rate remained unaffected. This was due to low light intensity reactions involving 

electron–hole formation are predominant and electron–hole recombination was 

negligible. However, at increased light intensity electron–hole pair separation competed 

with recombination, thereby causing lower effect on the reaction rate. The kinetics study 

revealed that methyl orange degradation followed L-H model. The degradation rate was 

observed to decrease with time, which can be explained as the combined effects of the 

UV cross-linking on the polymer matrix and the pH shift towards alkalinity with UV 

exposure. The TOC measurement showed the photodegradation reduced the carbon 

content of the methyl orange.  

 

 

 



 
 

 
86 

 

5.5 Nomenclature 

TiO2 - Titanium Dioxide                                                                                                              

SEM -  Scanning Electron Microscopy 

TOC -  Total Organic Carbon content 

PVA -  Poly Vinyl Alcohol 

PVP -  Poly Vinyl Pyrrolidone 

MeO -  Methyl Orange 
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Chapter 6 

Photodegradation of aspirin under both solar and UV 
light in presence of slurry TiO2 

6.1 Introduction 

Heterogeneous photocatalysis has received considerable attention in recent years as a 

viable treatment technology for handling industrial effluents and contaminated drinking 

water. The process couples low-energy ultraviolet light with semiconductors acting as 

photocatalysts. In this process, electron-hole pairs that are generated by the band-gap 

excitation carry out in situ degradation of toxic pollutants. The holes act as powerful 

oxidants to oxidize toxic organic compounds, while electrons can reduce toxic metal ions 

to metals, which can subsequently be recovered by solvent extraction [1]. Photocatalytic 

degradation offers certain advantages over traditional water treatment methods. Complete 

destruction of most contaminants is possible without the need of additional oxidizing 

chemicals such as hydrogen peroxide or ozone. Degussa P25 TiO2 is widely used as the 

photocatalyst, which requires UV-A light (wavelength < 380 nm) of intensity 1-5 W/m
2
 

for photo excitation. The catalyst is cheap and can also be activated with sunlight [2]. 

TiO2 catalyst has been used in two forms: freely suspended in an aqueous solution and 

immobilized onto a rigid inert surface. In the former case, a high ratio of illuminated 

catalyst surface area to the effective reactor volume can be achieved [3], and almost no 

mass-transfer limitation exists because the diffusional distance is very small, resulting 

from the use of ultrafine (< 30 nm) catalyst particles [4]. In large-scale applications, 

however, the catalyst particles must be filtered prior to the discharge of the treated water, 

even though TiO2 is harmless to the environment. Hence, a liquid-solid separator must 

follow the slurry reactor. The installation and operation of such a separator will raise the 

cost of the overall process because the separation of the ultrafine catalyst particles is a 

slow and expensive process. Besides, the penetration depth of the UV light is limited 

because of the strong absorption by TiO2 and dissolved organic species, particularly for 

dyes. All of these disadvantages render the scale-up of a slurry reactor very difficult [5]. 

The preceding problem can be eliminated by immobilizing the TiO2 catalyst over suitable 
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supports [6, 7]. The design and development of an immobilized thin catalyst film makes 

commercial-scale applications of TiO2-based photocatalytic processes for water treatment 

possible [8]. The designs are more likely to be useful in commercial applications because 

they provide at least three important advantages. First, they eliminate the need for the 

separation of the catalyst particles from the treated liquid and enable the contaminated 

water to be treated continuously. Second, the catalyst film is porous and can therefore 

provide a large surface area for the degradation of contaminant molecules. Third, when a 

conductive material is used as the support, the catalyst film can be connected to an 

external potential to remove excited electrons to reduce electron-hole recombination, 

thereby significantly improving the process efficiency [9]. However, immobilization of 

TiO2 on supports also creates its own problems [10, 11]. There were at least two obvious 

problems arising from this arrangement: the accessibility of the catalytic surface to the 

photons and the reactants and a significant influence of the external mass transfer 

particularly at low fluid flow rate, because of the increasing diffusional length of the 

reactant from bulk solution to the catalyst surface. On the other hand, with an increase of 

the catalyst film thickness, the internal mass transfer may play a dominant role by 

limiting the utilization of the catalyst near the support surface. All of these usually lead to 

a lower overall degradation rate when the catalyst is immobilized compared with the 

suspended system [12].  In this study Aspirin has been chosen as a model pollutant, as 

traces of aspirin have been detected in the drinking water of South-Western Ontario [13]. 

Slurry TiO2 Degussa P25 has been used as the photocatalyst to degrade aspirin both 

under UV and solar light. Its physico-chemical characteristics are as follows: BET 

surface area 55 ± 15 m
2
 g

-1
, average primary particle diameter is around 30 nm, purity 

above 98% and with anatase to rutile ratio as 80:20 [14]. Experiments are performed to 

determine the various rate constants. Experiments are also conducted to study the initial 

concentration, catalyst loading, effect of light intensity on the reaction rate constants for 

two different sources of lights under similar experimental conditions. 
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6.2   Materials and Methods 

6.2.1 Materials 

TiO2 Degussa P25 (Evonik), Beaker (Chemistry store), magnetic stirrer (Chemistry 

store), UV-Vis Spectrophotometer (Agilent), pH meter (Methrom), UV lamp (Phillips), 

Acetylsalicylic acid (Sigma Aldrich). 

 

6.2.2    Methods 

6.2.2.1  Blank reaction 

Primarily experiments were conducted in the presence of catalyst but in the absence of 

light (dark reaction), which showed a small decrease in the concentration of aspirin, 

because of the adsorption onto the catalyst surface, which reached an equilibrium value 

within 30 minutes. Hence, before the light was turned on, it was always ensured that 

adsorption equilibrium was reached.  

 

6.2.2.2    Photodegradation of aspirin under UV lamp 

After, the dark reaction the solution along with the 1.5 gm of dispersed slurry TiO2 

Degussa P25 was exposed to UV lamp of 275 nm wavelength. A batch reactor of 200 ml 

was used to photodegrade aspirin solution both under UV and solar light. A magnetic 

stirrer was placed at the bottom of the reactor for the proper mixing of the solution during 

the reaction. UV lamp was placed at the bottom of the reactor, inside a wooden box. 

Provision was made to put different screens in between UV lamp and the bottom of the 

reactor, to change the light intensities as required. The lamp was kept cool by a 

compressed fan attached to the box to avoid over-heating of the lamp. The pH was 4.5 

throughout the reaction. The change in concentration of the degraded solution was 

recorded by UV-Vis Spectrophotometer at 298 nm.  
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6.2.2.3     Degradation under solar simulator 

The experiment was carried out in a batch reactor of 200 ml under the solar simulator of 

light intensity 27 mW/cm
2
. The catalyst employed in this reaction was powdered TiO2 

Degussa P25. The reaction was carried out at pH- 4.5 (without addition of buffer). The 

light source was placed at the top the reactor. The solar simulator had a fan attached to 

control the heating of the instrument and systems were there to control the light intensity 

during the reaction. Samples were analysed at intervals in UV-Vis spectrophotometer at 

298 nm. 

 

6.3 Results and Discussions 

6.3.1 Photodegradation under UV lights 

6.3.1.1 Photodegradation rate constant 

Heterogeneous photocatalytic degradations often follow Langmuir–Hinshelwood 

kinetics:-  rxn = KkC/(1+ kKC). Here, k is reaction rate constant, K is adsorption constant 

and C is the concentration of the pollutant. 

The degradation of aspirin under UV lamp showed a k value of 0.13 mg/L/min  

 

Figure 6.1: Photodegradation of aspirin with TiO2 slurry. Experimental conditions 

[C0 = 10 ppm, pH - 4.5, I = 22 mW/cm
2
, H= 0.45 mm] 

0

2

4

6

8

10

0 50 100 150 200 250

[C
] 

(p
p

m
)

t (min)



 
 

 
93 

 

6.3.1.2   Effect of initial concentration 

The initial concentration of the pollutant is always an important parameter in any process 

water treatment and, therefore, it is essential to examine the effect of the initial 

concentration. The apparent k value of the reaction increased with the increase of initial 

concentration, up to certain limit, beyond that concentration k value was observed to 

decrease. The variation of k value with the variation of initial concentration has been 

shown in Fig.6.2. 

 

 

Figure 6.2: Effect of initial concentration. Experimental conditions [ I = 22 mw/cm
2
, 

pH - 5.8-6.2, H= 0.45 mm] 

k100 = 0.14 ppm/min, k15 = 0.11 ppm/min, k10 = 0.096 ppm/min,  k2 =0.052 ppm/min 

When, Concentration is much high i.e. KC>>1, then rate was independent of mass 

transfer effects. While, in case of low concentrations, rate was dependent on mass 

transfer effects, which decreased the degradation rate. With the increase of the initial 

concentration of the aspirin the probability of reaction between aspirin molecules and the 

photocatalyst also increased which led to an enhancement in the degradation rate up to 

100 ppm.  
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Figure 6.3:  Photodegradation of aspirin. Experimental conditions [ I = 22 mw/cm
2
, 

pH - 5.8-6.2, H= 0.45 mm] 

The plot of inverse of (initial concentration vs initial rate) 1/C0 vs 1/r0 showed 

approximately similar k value as obtained from the plot of concentration vs time for very 

high concentrated aspirin solution. The rate constant and adsorption constant values 

obtained from this equation 1/r = 1/kKC + 1/k, were k = 0.12 mg/L/min, K= 0.7 Lmg
-1

 

 

6.3.1.3    Effect of catalyst loading 

The variation in degradation rate of aspirin against the TiO2 amount was determined over 

the range of 0.5 gm - 3.5 gm/L (Fig. 6.3). The rate constant was found to increase with 

the increasing amount of TiO2 and approached a limiting value with further increase, 

beyond that specific amount. The optimum catalyst loading was 1 gm/L. The limiting 

amount was observed to be 1.5 gm/L, beyond which the degradation rate decreased 

because of the following assumed reasons a) the pollutant cannot reach some of the 

catalyst surface area because of agglomeration of the catalyst particles (internal mass-

transfer resistance), (b) light cannot reach some of the catalyst surface area because of 
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absorption and scattering (shielding effect) of light, (c) light cannot penetrate the 

agglomerates and activate the inner surfaces. 

 

 

Figure 6.4: Effect of catalyst loading. Experimental conditions [C0= 100 ppm, I = 22 

mw/cm
2
, pH - 5.8-6.2] 

 

6.3.2   Photodegradation under solar lights  

6.3.2.1  Calculation of rate constant 

Degradation of a very high concentrated acetylsalicylic acid solution was carried out 

under similar conditions as that of UV lights, to determine the degradation and adsorption 

rate constant. As, at very high concentration, KC>>1, the degradation rate remained 

independent of the mass transfer resistance. 

 

 

0

0.04

0.08

0.12

0.16

0 0.5 1 1.5 2 2.5 3 3.5

k
 (

m
g
/L

/m
in

)

TiO2 (gm/L)



 
 

 
96 

 

 

Figure 6.5: Photodegradation of aspirin under solar light in batch reactor. 

Experimental conditions [C0 = 100 ppm, pH - 4.5, I – 27 mW/cm
2
, H=0.45 mm] 

The rate constant obtained from the above Fig. 6.5, was k= 0.1 mg/L/min 

 

6.3.2.2   Effect of Initial concentration 

Degradation rate was observed to increase with the increase of initial concentration of 

acetylsalicylic acid, in the Fig. 6.6. This can be explained as, at very high concentration, 

KC>>1- rate was independent of mass transfer effects. While at lower concentrations, 

rate was dependent on mass transfer effects. Also, with the increase of the initial 

concentrations of the aspirin the probability of reaction between aspirin molecules and 

the photocatalyst also increased, which led to an enhancement in the degradation rate up 

to a concentration of 100 ppm. In brief, rate increased with the increase of concentration 

up to a certain limit, beyond which it decreased due to two reasons i) As a result of 

decreasing number of photon absorption by the catalyst at higher concentration. ii) Due to 

the reduction in generation of  
.
OH  radicals on  the  catalyst surface, as pollutant 

molecules covered the active sites.  

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350

[C
](

p
p

m
)

t (min)



 
 

 
97 

 

 

 

Figure 6.6:  Effects of initial concentrations. Experimental conditions [pH - 4.5, I = 

27 mW/cm
2
, H=0.45 mm

 
]. k100 = 0.12 ppm/min, k15 = 0.09, k10 = 0.063, k2 = 0.042 

6.3.2.3  Kinetic study 

A graph of initial rates Vs initial concentration (r0
-1

 Vs C0 
-1

) was plot, which showed the 

k, K values. The rate constant value was observed to be approximately the same as that of 

the value obtained from the very high concentrated initial degradation rate in Fig. 6.5. 

 

Figure 6.7: A plot of 1/r0 Vs 1/C0 
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The adsorption constant and the reaction rate constants calculated from the inverse rate vs inverse 

concentration plot were:-K= 0.3 L/mg, k= 0.107 mg/L/min 

 

6.3.2.4   Effect of catalyst loading 

The rate constant was found to increase with the increase of the amount of TiO2. The 

optimum catalyst loading was 1 gm/L, as observed in Fig 6.8. The limiting amount was 

observed to be 2 gm/L, beyond which the degradation rate decreased, because of the 

following reasons: i) the pollutant could not reach some of the catalyst surface area 

because of agglomeration of the catalyst particles (internal mass-transfer resistance). ii) 

light was not reachable to some of the catalyst surface areas because of absorption and 

scattering (shielding effect) of light. iii) light was unable to penetrate and activate the 

agglomerates. 

 

 

Figure 6.8: Effect of catalyst loading on photodegradation of acetylsalicylic acid. 

Experimental conditions [C0 = 100 ppm, pH- 4.5, I = 27 mW/cm
2
] 
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6.4   Conclusions 

It was observed that the rate of degradation under the solar light was lower than that 

under the UV light, in presence of TiO2 slurry. This, was because the slurry form of TiO2 

has already been proved to have more efficiency under UV light as the band gap of TiO2 

is 3.2 eV. Therefore, the electrons in the valence band can only be excited by wavelength 

below 388 nm. Though, the solar lights contain that wavelength but since the percentage 

was less, therefore the degradation rate was lower than that under the UV illumination. 

The effects of initial concentration of aspirin, showed similar results  in both cases (under 

solar and UV light). The increase, in rate with increase of concentration, can be 

concluded as, the combined effect of minimization of mass transfer, OH radical 

producibility and proton absorption. It was observed that though the increase of TiO2 

concentration, increased the degradation rate initially but beyond the optimum amount 

(TiO2), the rate decreased. This, study showed similar results both under UV and solar 

lamp, as the catalyst agglomeration occurred in each case and the light shielding 

phenomenon took place due to this agglomeration of TiO2 particles. Thus, it can be 

concluded that slurry form of TiO2 can be more efficient as photocatalyst under UV light 

than under the solar. 

 

6.5 Nomenclature 

ASA – Acetylsalicylic acid 

T     -       Time 

[C]    -  Concentrations 
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                            Chapter 7 

Photodegradation of Aspirin under both UV and solar 

light in presence of polymeric-TiO2 film 

7.1  Introduction 

A vast array of pharmaceuticals including antibiotics, anti-convulsants, mood stabilizers 

and pain killers have been found in drinking water supplies, all over the world. Though, 

these have been detected in ppm and ppb level but long term consumption on a daily 

basis could be harmful [1]. Aspirin is one such drug which has been detected in the 

drinking water of south-western, Ontario. Aspirin, also known as acetylsalicylic acid 

(ASA), is an ester of salicylic acid. Aspirin is a commonly used Non-steroidal anti-

inflammatory drug (NSAIDs) to relieve minor aches and pains. It is also used as an 

antipyretic to reduce fever and as an anti-inflammatory medication. ASA can also be used 

during a heart attack to reduce the death risk. The main undesirable side effects of aspirin 

are gastrointestinal ulcers, stomach bleeding, and tinnitus, especially in higher doses [2, 

3]. In commercial aspirin products, a small amount of ASA (300 to 400 mg) is bound 

together with a starch binder and sometimes caffeine and buffers to make a tablet [4]. The 

basic conditions in the small intestine break down the ASA to yield salicylic acid, which 

is absorbed into the bloodstream [5]. The addition of a buffer reduces the irritation caused 

by the carboxylic acid group of the aspirin molecule. Aspirin degrades in aqueous 

medium [6]. Hydrolysis of the ester, generates acetic acid and salicylic acid, which 

further converts into several toxic intermediates causing environmental pollution and 

affect human health in several ways [7]. Researchers have carried out degradation of 

salicylic acid in presence of H2O2/O2/UV light and Pt/graphite as photocatalysts [8]. 

Acetic acid degradation has also been studied by several researchers in presence of TiO2-

Pt nanoparticle under UV light [9].  

In this study, a comparison between solar and UV lamp photodegradation has been 

depicted. Photodegradation was carried out in a batch reactor by TiO2-polymeric film 

photocatalyst. Effects of initial concentration, pH, light intensity and catalyst loading 

were studied. To the best of our knowledge, degradation kinetics of aspirin has not been 
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carried out in details, yet. Therefore, aspirin which has been detected in trace amounts in 

the drinking water of S-W Ontario has been taken up as a model compound [10].  

 

7.2   Materials and Methods 

7.2.1 Materials 

250 ml batch reactor (Chemistry store, UWO), UV lamp (175watt, Phillips), Solar 

simulator, UV-Vis Spectrophotometer (Agilent), 250 ml beaker (Sigma Aldrich), Beaker, 

magnetic stirrer and conical flask (Chemistry store, UWO), Gelatin, PVA and PVP 

(Sigma Aldrich), ethyl alcohol ( Chemistry store, UWO). 

 

7.2.2   Methods 

7.2.2.1   Photocatalyst preparation 

The polymers used to prepare the catalyst have been considered non-toxic by WHO  [18, 

19, and 20]. 24.3 % w/w of PVA and 11% w/w of Gelatin were dissolved and mixed 

properly in distilled water to get a transparent solution. Next, 21.6 % w/w of PVP 

dissolved in the solution of ethyl alcohol and water (1:2) at 45° C. The solution was 

mixed properly, followed by dispersion of 43 % w/w TiO2 Degussa P25 powder in the 

mixture and crosslinked at -2°C. 

 

7.2.2.2     Experimentation under UV lamp 

A batch reactor (250 ml) containing 150 ml of acetylsalicylic acid solution was used. The 

UV lamp (Philips) was placed under the reactor inside a wooden box with a small 

opening. The radiation intensity of the lamp used for photodegradation was 275 nm. The 

lamp was constantly cooled by air circulation by a fan fitted in the wooden box. The 

whole system was covered by a box so that no stray light can enter the reactor. After 
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photodegradation the concentrations  of  the  solutions  were  continuously  examined  in  

UV-Vis spectrophotometer  at  ( λ  = 298 nm). Also, arrangements were made to measure 

the pH of the solutions. To study the role of light intensity in degradation of the pollutant, 

a wire mesh was placed between the lamp and the bottom plate of the reactor.   

 

7.2.2.3   Experimentation under solar simulator 

A 250 ml batch reactor containing 150 ml of aspirin solution was exposed to solar 

simulator. A magnetic stirrer was introduced at the bottom of the reactor. This system had 

liquid-catalyst type of illumination. The degraded samples were analysed by UV-Vis 

spectrophotometer at 298 nm. TOC analysis was also carried out to measure the carbon 

content. 

 

7.3      Results and Discussions 

7.3.1    Photodegradation under UV lamp 

7.3.1.1   Effects of initial concentration 

Photodegradation of aspirin was carried out at different initial concentrations. From 

Fig.7.1, it was observed that the degradation rate increased with the increase of 

concentration. This can be explained as, at very high concentration, the degradation rate 

was independent of external mass transfer effects, so the rate increased at higher 

concentrations. The decrease of degradation rate with the decrease of concentration was, 

due to the mass transfer effects, which was more predominant at lower concentrations.  

 



 
 

 
104 

 

 

Figure 7.1: Photodegradation of MeO. Experimental conditions [I = 22 mW/cm
2
, pH 

4.5, H= 0.45 mm] 

k100 = 0.076 ppm/min, k50= 0.05 ppm/min, k10 = 0.032 ppm/min, k2 = 0.025 

Also, with the increase of the concentration, the probability of reaction between pollutant 

molecules and the photocatalyst increased. Therefore, increased the degradation rate.  

 

7.3.1.2  Kinetic study 

Photodegradation of a very high concentrated aspirin solution was carried out under the 

UV lamp, to calculate the rate constant which was independent of mass transfer effects. 

The initial rate constant value from this study was observed to be k = 0.068 mg/L/min. 
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Figure 7.2: Photodegradation of aspirin under UV lamp. Experimental conditions [ 

C0 = 100 ppm, pH - 4.5, I = 22 mW/cm
2
] 
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A graph of inverse of initial rate vs initial concentration was plot to calculate the rate 

constant and adsorption constant values. The k and K values obtained from this plot were 

observed to be approximately the same as that obtained from very high concentrared 

aspirin solution degradation. High concentration of Aspirin obeyed Langmuir-

Hinshelwood kinetics while at low concentration first order kinetics was followed.  

 

7.2.1.3   Effects of light intensities 

At low intensities degradation rate was observed to be quite low, however it increased 

with the increase of light intensity gradually. It was observed that degradation rate was 

proportional to the light intensities at lower intensity of light but at higher intensities, the 

degradation rate remained almost unaffected by variation of the light intensity.  This can 

be explained as the electron, holes formation increased with increase of light intensity at 

lower light intensities and the recombination phenomenon was negligible while at higher 

intensities, the electron hole recombination competes with electron hole separation. 

Therefore the effect of light on the degradation rate, decreased. 

 

Figure 7.4: Effect of light intensity on degradation rate. Experimental conditions 

[Light source = UV lamp, pH-4.5, C0 = 100 ppm] 
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Figure 7.5: Effect of light intensity on degradation rate. Experimental conditions 

[Light source= UV lamp, pH-4.5, C0 = 2 ppm] 

 

 

7.2.1.4  Effect of catalyst loading 

Photodegradation of aspirin solutions were carried out at different concentration of TiO2, 

(in the polymeric film) to study the effect of TiO2 concentration on the degradation rate. 

With the increase of the catalyst loading, the catalyst active sites increased, increasing the 

degradation rate. On further increase of TiO2 amount, the degradation remained constant 

due to the unchanged diffusional length across the grain boundary. Beyond 2.5 g/L of 

TiO2, decrease in degradation rate observed. This was because, the increased amount of 

TiO2, contributed to increase the thickness of the film which increased the probability of 

charge recombination  due to increased diffusional length through the grain boundaries. 
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Figure 7.6: Photodegradation of aspirin under UV light with TiO2/polymeric film. 

Experimental conditions [C0 = 100 ppm, pH – 4.5, I = 22 mW/cm
2
] 

 

7.2.1.5  Effect of film thickness 

A degradation study was carried out by varying the thickness of the catalyst film, ranging 

from 0.45 mm to 2.5 mm. In this case amount of TiO2 was kept constant. While, the 

amount of polymeric constituents were varied. It was observed in Fig. 7.7, that film 

thickness played an important role in the degradation of aspirin molecules. 
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Figure 7.7: Photodegradation of aspirin under UV light with TiO2/polymeric film. 

Experimental conditions [C0 = 100 ppm, pH – 4.5, I = 22 mW/cm
2
, TiO2 loading 1.5 

g/L] 

It was observed that with the increase in film thickness the photocatalytic reaction rate 

decreased. The increase of the catalyst loading though should increase the degradation 

rate, due to more available catalyst surface sites but at the same time there were two other 

factors within the catalyst films that restricted the presence of charge carriers at the 

interface. One of the reasons, was attenuation of light due to absorption by the catalyst, 

and the other was the increased probability of charge recombination due to the increased 

diffusional lengths through the grain boundaries and constrictions within the micro-

porous film. 

 

7.3.2    Photodegradation under solar light 

7.3.2.1    Effects of initial concentrations of acetylsalicylic acid on degradation 

Photodegradation of aspirin was carried out at different the initial concentrations. The 

initial concentrations ranged from 2 ppm to 100 ppm.  
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Figure 7.8: Photodegradation of aspirin under solar light with TiO2-polymeric film. 

Experimental conditions [I = 27 mW/cm
2
, pH - 4.5, H= 0.45 mm] 

k100 = 0.09 ppm/min, k50 = 0.06 ppm/min,  k10 = 0.05 ppm/min, k2 = 0.028 ppm/min 

At very high concentration, KC>>1- rate remained independent of mass transfer effects. 

Therefore, higher degradation rates were observed with the increase of concentration up 

to 100 ppm. At lower concentrations, rates were dependent on mass transfer effects. Also, 

with the increase of the initial concentrations of the aspirin the probability of reaction 

between aspirin molecules and the photocatalyst also increased which leads to an 

enhancement in the degradation rate up to 100 ppm.  

It can be observed from the above rate constants values, that the degradation rates under 

the solar light were higher than under the UV lamp. This can be explained due to the 

crosslinking effect of UV light on the polymer matrix, which made some TiO2 particles 

unavailable for photocatalysis. 
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7.3.2.2   Kinetic study 

Photodegradation of very high concentrated aspirin solution was, independent of mass 

transfer effects. Therefore, to obtain the intrinsic kinetic parameter, k value was 

calculated from a very high concentrated solution. The rate constant value obtained from 

the Fig. 7.9 was compared to the one obtained from Fig. 7.10. 

 

 

Figure 7.9: Photodegradation of aspirin under solar light with TiO2/polymeric film. 

Experimental conditions [C0 = 100 ppm, pH – 4.5, I = 27 mW/cm
2
] 

This reaction fitted into L-H kinetic model. The rate constant was 0.099 mg/L/min.  
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Figure 7.10: Photodegradation of aspirin under solar light [initial rate Vs initial 

concentration] 

k values (0.099 mg/L/min) obtained from 100 ppm solution degradation was 

approximately the same as the one obtained (0.089 mg/L/min) from the plot of 1/r0 vs 

1/C0 . Adsorption constant was Kads = 0.4 Lmg
-1

 

 

7.3.2.3    Effect of catalyst loading 

Initially with the increase of the amount of TiO2, the degradation rate was observed to 

increase up to a certain extent but on further increase, the degradation rate became 

constant up to certain extent and beyond that amount, the rate decreased. This was due to 

three following reasons: i) With the increase of the catalyst loading, the catalyst active 

sites increased, increasing the degradation rate. ii) On further increase of TiO2 amount, 

the degradation rate remained constant due to the unchanged diffusional length across the 

grain boundary. iii) Beyond 2.5 g/L of TiO2, increase of TiO2 amount increased the 

thickness of the film which increased the probability of charge recombination due to 

increased diffusional length through the grain boundaries of the catalyst film. 
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Figure 7.11: Photodegradation of aspirin under solar light with TiO2/polymeric film. 

Experimental conditions [C0= 100 ppm, pH – 4.5, I = 27 mW/cm
2
] 

 

7.3.2.4   Effect of film thickness 

Studies were carried out by varying the thickness of the TiO2-polymeric film. It was 

observed in Fig. 7.12 that with the increase in film thickness the decreased the 

photocatalytic degradation rate. 
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Figure 7.12: Photodegradation of aspirin under solar light with TiO2/polymeric film. 

Experimental conditions [C0 = 100 ppm, pH – 4.5, I = 27 mW/cm
2
, TiO2 loading 1.5 

g/L] 

There were two counteracting affects, which resulted in this decrease of rate. The 

increase of the catalyst loading though should increase the degradation rate, due to more 

available catalyst surface sites but at the same time there are two factors within the 

catalyst films that had restricted the presence of charge carriers at the interface. One was 

attenuation of light due to absorption by the catalyst, and the other was the increased 

probability of charge carrier recombination due to the increased diffusional lengths 

through the grain boundaries and constrictions within the micro-porous film. 

 

7.3.2.5   Effects of pH 

Studies were carried out at two different pHs- 3.2 and 9.1. Degradation rates at these two 

pHs were observed as, the TiO2 surface charges remain positive from pH 3.1- 6.2. While, 

beyond 6.2 it possess negative charge. At the lower concentrations, pHs had a substantial 

effects on the degradation rate of aspirin. While, on the other hand, at higher 
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concentrations level, differences in degradation rates with changing pH values were not 

as intense. These experiments also show that decreasing acetylsalicylic acid concentration 

increased the photodegradation at low values of pH, while an opposite trend was 

observed at high pH values. 

 

 

 

 

Figure 7.13: Photodegradation of Aspirin under solar light. Experimental conditions 

[C0 = 100 ppm, 10 ppm, pH – 3.2, 9.1, I = 27 mW/cm
2
] 

The decrease in acetylsalicylate degradation rate with increasing pH can be interpreted by 

considering, two different reaction pathways that took place under conditions of varying 
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pHs. It can be explained as the electron transfer and indirect hydroxyl radical attack were 

the predominant reaction mechanisms at low and high pH, respectively. At low pH, the 

positively charged titanium hydroxide offered a suitable surface for acetylsalicylate 

chemisorptions. This bond had a relatively high covalent character, and the oxygen atoms 

of the salicylate ions formed from break down of aspirin, being relatively strong electron 

donors, were able to direct interact with valence band holes. Increasing the pH reduced 

the adsorption and gradually increased the electrostatic repulsion between the 

acetylsalicylate anion (pKa = 2.914) and the catalyst surface [8]. The increased distance 

between the two reactants no longer allowed direct charge transfer. With only limited 

acetylsalicylate adsorption occurring, most of the decomposition was probably mediated 

by 
.
OH radicals formed at semiconductor surface sites. The decrease in 

photodecomposition rates at pH 9.1 was probably due to Coulombic repulsion between 

the organic anions and the highly negative charged oxide surface. Decomposition would 

thus depend on diffusion of surface-generated OH radicals to the low concentration of 

anion in the double layer, a slower process than direct charge transfer. Photodegradation 

experiments conducted at different initial acetylsalicylate concentrations also appeared to 

confirm that different reaction mechanisms control the photodegradation under different 

conditions than those observed with varying pH. Increasing the initial acetylsalicylate 

concentration produced opposite trends. At low pH, the initially photodegradation rate 

decreased compared to that of low concentrated solution degradation at same pH. While 

it increased at high pH. At low pH, the higher acetylsalicylate surface coverage led to 

displacement of 
.
OH and water ligands at the titanium centers, thus reducing the rate of 

photo formation of 
.
OH radicals. Slower degradation of non adsorbing species would 

have resulted due to above mentioned phenomenon. The decomposition of chemisorbing 

species would be affected as well at higher concentrations, because these species also 

compete at the catalyst surface with the initial reagent for the same active sites. Similar 

results have been observed by other researchers incase of photodegradation of other 

NSAIDs with TiO2 [8, 11]. 
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7.3.2.6 Effect of light intensity 

At low light intensities, the degradation rate was observed to be quite low which 

increased with the increase of light intensity gradually. It was observed that the rate was 

proportional to the light intensities at lower intensity of light but at higher intensities, the 

degradation rate remained almost unaffected by variation of the light intensity. This can 

be explained as the electron, holes formation increased with increase of light intensity at 

lower light intensities and the recombination phenomenon was negligible, while at higher 

intensities
, 
the electron hole recombination competes with electron hole separation.  

 

 

Figure 7.14: Effect of light on degradation rate. Experimental conditions [Light 

source = Solar simulator, pH - 4.5, C = 100 ppm] 
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Figure 7.15: Effect of light on degradation rate. Experimental conditions [Light 

source = Solar simulator, pH-4.5, C = 2 ppm] 

 

Incase of  the effect of light intensity, similar trends were observed under the UV lamp, 

excepting that the rates were lower than under the solar lights. 

 

7.4 Conclusion 

It can be concluded that the TiO2-polymeric film was more efficient under solar light than 

the UV lamp. This can be explained due to the cross linking effect of UV lamp on the 

polymeric film. Though solar light consist of 4% UV band but its intensity being lower 

did not show similar effects. When direct charge transfer occurs at low pH, the 

degradation was more efficient than the one at high pH. In this case, however, 

degradation rates decreased as the increase of adsorbate concentration, decreased OH 

radical production. At higher pH values, less chemisorptions occurred and indirect charge 

transfer predominated, thus decreased the rates. Initial concentrations were observed to 
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play an important role on the degradation rate. The degradation rate was observed to 

increase with the increasing concentration of aspirin. The increase of photocatalyst film 

thickness, decreased the degradation rates. This was because of the light attenuation. 

Also, the probability of charge carrier recombination increased due to the increased 

diffusional lengths through the grain boundaries within micro porous film. Besides, the 

increased diffusional length for diffusion of pollutants from bulk to catalyst surface even 

contributed in this decreasing degradation rate phenomenon. While the varying TiO2 

loading shows a different trend. Increase of TiO2 amount, increased the degradation rate 

initially. As, the active sites for photoreaction increased, therefore the rate of reaction 

increased initially but further increase, showed constant degradation rate. This was due to 

the diffusional length of charge carrier to catalyst-liquid interface remained unchanged. 

Beyond this certain thickness, the degradation rate decreased as the charge carriers 

generated relatively far from the liquid-catalyst interface, and consequently more 

susceptible to recombination loss. With the increase of light intensity, increase of 

photodegradation rate was observed at lower values of light intensities. While at very 

higher intensity level, the effect of light intensities on degradation rate was observed to be 

minimum. This was because, at low light intensities reactions involving electron–hole 

formation are predominant and electron–hole recombination was negligible. However, at 

increased light intensity electron–hole pair separation competed with recombination, 

thereby causing lower effect on the reaction rate.  

 

7.5 Nomenclature 

TiO2 – Titanium Dioxide 

ASA – Acetylsalicylic acid 

[C] – Concentration 

ppm – Parts per million 

mW – milli Watt 
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Chapter 8 

Mechanism of aspirin degradation under solar light in 

presence of a TiO2/polymeric film 

8.1 Introduction 

Aspirin, known as acetylsalicylic acid (ASA), is a commonly used Non-steroidal anti-

inflammatory drug (NSAIDs) to relieve minor aches and pains. It is also used as an 

antipyretic to reduce fever and as an anti-inflammatory medication. ASA can also be used 

during a heart attack to reduce the death risk. The main undesirable side effects of aspirin 

are gastrointestinal ulcers, stomach bleeding, and tinnitus, especially in higher doses [1, 

2]. Aspirin degrades in aqueous medium into several toxic intermediates causing 

environmental pollution and affect human health in several ways. Removal of these 

organic compounds by traditional techniques (charcoal adsorption, ozonization) is 

challenging and costly. These methods usually generate concentrated effluent streams, 

which are harmful to environment [3, 4]. Recent advanced technologies in photocatalytic 

oxidation of organic materials can be safely employed in treatment of organic wastes as 

the final products are mostly carbon dioxide and water. Titanium dioxide (TiO2) has been 

employed in photocatalytic oxidation processes due to its capability of producing 

hydroxyl radical (
.
OH) when exposed to ultraviolet/solar light.  

 Upon illumination of TiO2 by UV light, electrons are promoted from the valence band to 

the conduction band to give electron-hole pairs. The holes in TiO2 react with water 

molecules or hydroxide ions and produce hydroxyl radicals. The interaction of the 

positive holes or the negative electrons with the absorbed organic pollutants provide 

unstable intermediates, which are further attacked by hydroxyl or peroxyl species 

occasioning a carbon-carbon  bond rupture (or aromatic ring opening) with concomitant 

release of low molecular weight products which may in turn be further oxidized to CO2. 

Contradictory results have been reported for the contribution of TiO2 in degradation of 

organic materials. It was shown that at low pH the positive holes are considered as the 

major oxidizing species, whereas hydroxyl radicals are considered as the predominant 

species at neutral or high pH levels [4]. Interestingly it was claimed in another report that 
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holes are the major oxidizing species at pH=3, while below and above this pH the 

hydroxyl radicals are the major degrading agents [5]. Such a discrepancy is most 

probably due to the nature of the organic compounds and operating conditions. Therefore 

it can be concluded that aspirin undergoes the following reactions when exposed to the 

catalyst illuminated by solar light; 

Aspirin+ hvb
+
 → Oxidation products                                                                            (1) 

Aspirin + ecb 
-
 → reduction products                                                                            (2) 

Aspirin + 
.
OH → Oxidation products                                                                           (3) 

Several mechanisms have been proposed to account for the initial steps of 

semiconductor-mediated photodegradation of aliphatic and aromatic organics. The 

heterogeneous reaction mechanisms proposed are similar to their homogeneous 

counterparts [5-8]. These mechanisms can be summarized as; 

(i) Direct charge transfer from the semiconductor to the dissolved molecule. 

(ii) Generation of radicals from water decomposition, which then attack the aromatic 

ring. 

 Most of the studies on photocatalytic degradation of several drugs include a detailed 

examination of the so-called primary processes under different working conditions, while 

little information is available on the reaction mechanisms involved in the degradation 

process.   

In this study, degradation of aspirin in the presence of polymeric TiO2 under solar light 

was investigated.  The most probable reactions and the mechanisms were suggested based 

on the qualitative and quantitative measurement of intermediates and final products.  
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8.2   Materials and Method 

8.2.1 Materials 

TiO2-Degussa P25 (Evonik), LC/MS (Shimadzu) FTIR ( Bruker, V22), HPLC (Agilent, 

Polymeric/TiO2 membrane (Sigma Aldrich), polyvinyl alcohol, (Sigma Aldrich) 

polyvinyl pyrrolidone (Sigma Aldrich), solar simulator, pH meter (Mehtrom).  

 

8.2.2   Methods 

8.2.2.1  Photocatalyst preparation 

The catalyst was prepared by dissolving and mixing 24.3% w/w polyvinyl alcohol and 

11% w/w gelatin properly in distilled water to get transparent solutions. Next, 21.6 % 

w/w polyvinyl pyrrolidone dissolved in the solution of ethyl alcohol and water, which 

was mixed with PVA-gelatin solution. The solution was mixed and reacted properly at 45 

°C, followed by dispersion of 43% w/w of TiO2 Degussa P25 powder in the mixture. 

Thereafter, the polymeric/TiO2 solutions were cross linked by physical cross linking 

method while storing the solution at - 2 °C.  

 

8.2.2.2  Photodegradation and LC/MS analysis 

The photodegradation of 2 ppm aspirin solution was carried out in a batch reactor (250 

ml) at pH 3.5, under solar light of Intensity-77 mW/cm
2
. Samples were taken at various 

time intervals were analyzed by LC/MS (LCMS-2010 EV Liquid Chromatography Mass 

spectrometer, Shimadzu) to identify the intermediate compounds. A capillary column C-

18 (5 μm , 100 x 4.6  mm length) was used for separation of product intermediates. The 

mobile phase was a mixture of acetonitrile–water (70/30, v/v) with 0.04% glacial acetic 

acid to maintain an acidic pH. The flow rate of elute was 0.1 ml min
−1

 and the injection 

volume was 20 μl. The UV detection was at 298 nm. The eluent from the 

chromatographic column successively entered the UV–vis diode array detector, the ESI 

interface and the quadruple ion trap mass analyzer. MS analysis in the negative ions 
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mode was performed on a mass spectrometer equipped with an ESI ion source. The ESI 

probe tip and capillary potentials were set at 2.5 kV and 25 V, respectively. The mass 

range was 50–750 m/z. The heated capillary was set to 200 °C. 

 

8.2.2.3   Fourier Transform Infra Red (FTIR) 

Fourier transform infra red analysis of the aspirin solution and its degraded products were 

carried out in Bruker FTIR (model no- Vector 22) to analyse the intermediates formed at 

different time intervals. The analysis of one broad banded pass of radiation through the 

sample gives rise to a complete IR spectrum. The radiation containing all IR wavelengths 

ranges from 400 to 5000 cm
-1

. Results of 32 scans were combined to average out random 

absorption artifacts, and excellent spectra from very little amount of samples were 

obtained. 

 

8.2.2.4   High performance liquid chromatography 

HPLC (Agilent) used to analyse the intermediates. C18 column used with eluent 

acetonitrile and water (70:30) with flow rate of 0.1 ml/min. UV detection was at 298 nm. 

Peaks were observed within 15 minutes of retention time. A number of analytical 

techniques such as high performance liquid chromatography (HPLC), FTIR were 

employed for determination of several organic intermediates for several dyes degradation 

[7, 8]. The literature review reveals that no studies have been carried out to detect the 

intermediates during aspirin photo degradation. Aspirin molecules are non-volatile and 

highly soluble in hot water therefore cannot be analyzed by GC/MS. Therefore, liquid 

chromatographic techniques were employed for the analysis of mixtures of aspirin 

photodegradation and identification of their intermediates and degraded end products. 

The present study is focused on degradation of acetylsalicylic acid in the presence of 

solar light and TiO2/polymeric photocatalyst, and to identify degradation products of 

aspirin by LC/MS and FTIR for establishing the mechanism of photocatalytic 

degradation. 
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8.3   Results and Discussions 

Among hvb
+
, ecb

-
, and 

.
OH, based on the observed reactions pathway, it seems that 

hydroxyl radical is the most dominant factor in the degradation of aspirin in aqueous 

TiO2 suspension. On the basis of chemical structures and concentration profiles of 

identified intermediates, possible reaction pathways during the photocatalytic degradation 

have been explained. Concentration of the intermediates formed and their degradation 

time have also been studied, which reflects the rate of formation of each intermediate. 

Products formed during the photodegradation process were analysed by HPLC which 

reported formation of six new intermediates at different intervals. Most of the peaks were 

observed within 15 minutes of retention time. The concentrations of the intermediates 

were calculated from the area of the peaks. However it was not possible to detect the 

compounds directly, therefore, intermediates were further analysed by LC/MS.  

The components eluted having different retention time were subjected to mass 

spectrometry and identified by interpretation of their fragment ions in the mass spectra. 

The chromatographic and TOC data suggested that the entire components and their 

disappearance after 5 hours of photocatalytic treatment. The mass spectra of degraded 

products showed species at 59 m/z which was acetic acid and 137 m/z attributes to 

salicylic acid. Further, hydroxylation produced products at 110 m/z, which again formed 

species upon hydroxylation, showing fragments at 116 m/z (maleic acid) and at 90 m/z 

(oxalic acid). Further hydroxylation gave species at 104 m/z (malonic acid), which on 

hydroxylation formed products to show fragments at 59 m/z.  
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Table 8.1. Identification of intermediates 

Compounds Area of peaks Rxn.time (min) RT (min) Rates ppm/min 

Aspirin 
1520362 

100 

             0                      14.3 

20 
14.3 

 

Salicylic acid 
1398683 

136.8 

83.6 

20 
60 

130 

13.2 0.008 

Hydroquinone 
 

1091680 

 

60 13 0.006 

Muconic acid 
289863 

1052590 

60 

130 
12.5 0.009 

Maleic acid 
15455 

1000 

130 

220 
10.5 0.005 

Malic acid 
505 

14000 

130 

220 
6.2 0.004 

Oxalic acid 19005 130 1.5 0.008 

Malonic acid 588103 220 6.7 0.0065 

Acetic acid 

121579 
17000 

77 

117666 
196264 

20 
60 

130 

220 
260 

5.8 0.008 

 

Mass spectroscopy and the chromatograms showed the presence of only 8 intermediates. 

Few more compounds which have been assumed to have formed during the degradation, 

were not detected by the instrumental analysis. The absence of these compounds may be 

due to their unstable nature, which made them to degrade too fast to be detected. 

Benzoquinone, oxalo-acetic acid, formic acid were not detected in LC/MS. 

 

 

8.3.1 The reaction mechanism 

Based on the analysis, following reactions were most likely to have occurred during the 

degradation of aspirin. 
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ASA (aspirin) + H2O           SA(salicylic acid) + Ac (acetic acid)                                (4) 

SA (salicylic acid)            HQ (hydroquinone )                                                             (5) 

HQ + 
.
OH               BQ (benzoquinone)+H2O                                                               (6) 

BQ + 
.
OH                    Muconic acid                                                                             (7) 

Mc (Muconic acid) + 
.
OH             MA  (Maleic acid) + Oxalic acid                            (8)                   

MA + 
.
OH               Malic acid                                                                                      (9) 

MA + 
.
OH                     Oxaloacetic acid                                                                     (10) 

OA(Oxaloacetic acid)        
 decarboxylation    ML(Malonic acid) + CO2                               (11)           

ML + 
.
OH                      Ac + CO2                                                                               (12)                 

Ac       
dissociates

              CH3COO
-
 +H

+ 
                                                                        (13)               

CH3COO- +  hvb
+ 

          
.
CH3 + CO2                                                                           (14) 

.
CH3 + 

.
OH                    CH3OH                                                                                   (15) 

.
CH3 + H2O                      CH4 + 

.
OH                                                                           (16) 

.
CH3 + 

.
CH3                        C2H6                                                                                  (17)     

.
CH3 + 

.
OH                         CH3OH                                                                              (18) 

CH3OH + hvb
+
 + H

+
 
                       

CH2OH                                                                         (19) 

.
CH2OH +hvb

+
                       HCHO                                                                             (20) 

HCHO + 
.
OH + hvb

+
                HCOOH                                                                       (21) 

HCOOH    
photokolbe reaction 

          CO2 + H2O                                                                 (22) 
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Figure 8.1: FTIR spectra of degraded aspirin solution 

Aspirin solutions were subjected to Fourier transform infra red analysis before and after 

degradation. The band around 3000-3300 cm
-1

 attributed to the OH of COOH groups of 

aspirin. While the bands at 1000-1500 and 500-1000(cm
-1

) attributed to the presence of 

C=C of benzene ring and secondary cyclic alcohols respectively. Also, Aromatic 

hydrocarbons are represented by the absorptions in the regions 1600-1585 cm
-1

. 1500-

1400 cm
-1

 band attributed to C–C stretch (in-ring). Besides, C–H stretch has been 

represented by 3100-3000 cm
-1

 band. 

From the study of all spectra, the presence of salicylic acid, butanedioic acid, malic acid, 

malonic acid and acetic acid were concluded. Gradually with time these compounds 

degraded and finally the end product did not show any of those peaks except for few 

aliphatic groups around 500cm
-1

 which can be related to negligible amount of CH4 and 

C2H6 groups.  

 

 

 

OH [COOH] C=C [Aromatic] 
C-H[Arene] 
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8.3.2  Pathways of aspirin degradation 

 

 

+            CH3COOH                                                   (1) 

                              .OH        

           CH4 +CO2                 HCOOH  
.OH      CO2                                                                                                                   

COOH

OH                       

OH

OH                   

O

O

                                                        (2) 

HOOC-HC=CH-HC=CH-COOH  
.OH

         HOOC-HC=CH-COOH                                        (3) 

HOOC-HC=CH-COOH       
.OH

              HOOC-HC=CH-COOH                                            (4)                                                                                               

                                                                  +  HOOC-COOH                                                                                                    

 HOOC-COOH  
.OH

           HCOOH      +    CO2                           (5) 

  HOOC -CH2 –C(OH)-COOH    
 .OH

                      HOOC- CH2 -C -COOH                           (6)                                                                                                                                                                                                                                                                                                                                             

                        O  

  HOOC -CH2-C(O)-COOH  
.OH

           HOOC-CH2-CHO + CO2                                            (7)                                                          

  HOOC -CH2 -CHO   
.OH

           HOOC-CH2-COOH          H3C-COOH + CO2                      (8)                                                             

   H3C-COOH                     C2H6 +CO2 +H2O                                                                           (9)                  

   H3C-COOH              CH4 +CO2                                                                     (10) 

       

Generally the sites near double bonds are attacked first in the degradation process. 

Aromatic intermediates were identified at the initial stages of degradation. Intermediates 

were formed were most probably aromatic acids and aliphatic acids. In this degradation 

O

OHO

H2O
COOH

OH

CH3

O
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reaction, aspirin got hydrolysed in water by a mechanism involving an intramolecular 

generalised basis catalysis forming salicylic acid and acetic acid. Main products 

identified were salicylic acid, acetic acids, fumaric acid or maleic acid, malic acid and 

malonic. Salicylic acid got oxidised to 1, 2 dihydroxybenzene, which on further reaction 

•OH formed hydroquinone. While a part of salicylic acid also got oxidized to 2, 3 di 

hydroxybenzoic acid was less prominent than 1, 2 di hydroxy benzene formation reaction 

[8]. Hydroquinone hydroxylated to benzoquinone, which being unstable in aqueous 

solution underwent ring rupture followed by further oxidation forming muconic acid 

[8,9]. Addition of a hydroxyl radical to the double bond of muconic acid, yielded maleic 

acid and oxalic acid. Maleic/Fumaric acid then got oxidized to malic acid, which was a 

precursor of malonic acid. Malonic acid further produces acetic acid and carbon dioxide 

[10]. Oxalic acid got oxidized to CO2, through formation of formic acid. Acetic acid was 

observed to form both by hydrolysis of aspirin at the initial stage and also by oxidation of 

malonic acid. It was then oxidized to form CO2 through formation of CH4, C2H6 and 

H2O. The pathway of conversion of acetic acid to carbon dioxide [10-12] fitted well in 

degradation reaction pathway. The adsorbed CH3COOH dissociated to CH3COO
_
 

species, which reacted with photogenerated holes to form 
.
CH3 radicals and CO2 (known 

as photo-Kolbe reaction) [13]. The active 
.
CH3 radicals then reacted with H2O to release 

CH4, or with another 
.
CH3 radical to produce C2H6. In consequence, 

.
CH3 radicals reacted 

with 
.
OH radicals to generate CH3OH. Next, the photogenerated holes attacked the 

produced CH3OH to form HCHO, which further oxidized by both 
.
OH radicals and 

photogenerated holes to produce HCOOH [14]. At last step the HCOOH was 

decarboxylated by the photo-Kolbe reaction to release CO2. Decarboxylation of COOH 

group forms CO2 by ―photo-Kolbe’’ reaction [15]. Among most of the intermediates 

acetic acid was detected almost in larger amounts, compared to other aromatic acids. 

Formation of CO2 is generally related to the degree of mineralization occurred during the 

photodegradation. In general at low reactant levels, reactants disappear exponentially, but 

at higher reactant levels, mineralization is slower than the degradation of the parent 

compound [15]. TOC values decreased with the increase of the irradiation time. This can 

be explained as; with time the acetylsalicylic acid gets hydrolysed and oxidized to lower 

molecular weight compounds so the TOC content was observed to decrease with time. 
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The TOC values though does not reach zero at the end but becomes negligible as 

compared to the initial value of the solution before degradation. Towards the end of the 

reaction, the parent compound forms acetic acid, which gradually forms carbon dioxide 

through the formation of CH4 and C2H6. It can be assumed that some of these CH3 

radicals were unable to form CO2 at the end. These functional groups have also been 

identified in the FTIR spectrum at the end product. 

Table 8.2. TOC content of aspirin solutions 

 

Time (min) Carbon content (mg/L) 

0 1.19 

20 1.13 

180 0.35 

300 0.01 

 

 

8.4  Conclusion  

Degradation of acetylsalicylic acid by solar stimulator in presence of TiO2-polymeric film 

catalyst was studied, revealing valuable information about the complex reactions during 

the process. This study was carried out to detect if  the intermediates formed were more 

toxic than aspirin. The qualitative/quantitative analyses of the intermediates resulted in 

determination of the most probable reactions’ mechanism governing the degradation 

process. Although some of the intermediates were not identified due to their instability 

and fast degradation, they were determined through the reaction’s path. The results 

obtained corresponded well with the reported data on the degradation of acetic acid and 

phenolic compounds by other researchers. The resulting mechanism showed that salicylic 

acid, acetic acid, and muconic acid were the main components in the reactions. Major 

aliphatic acid like muconic, malic and malonic acids formation by the photocatalytic 

oxidation process explains the opening of the aromatic ring. The TOC results combined 
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with LC-MS and FTIR concluded that the products formed during the reactions 

decomposed into carbon dioxide and environmentally friendly non-toxic products. 

 

 

 

8.5 Nomenclature 

NSAIDs- Nonsteroidal anti-inflammatory drugs 

ASA- Acetylsalicylic acid 

SA-  Salicylic acid 

HQ- Hydroquinone 

BQ- Benzoquinone 

Mc- Muconic acid 

ML- Malonic 

Ac- Acetic acid 

LC/MS - Liquid chromatography/Mass spectroscopy 

FTIR - Fourier transform infra red 

HPLC - High performance liquid chromatography 

TOC - Total organic content 

OH - Hydroxyl ion 

hvb
+
- Holes in valence band 
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Chapter 9 

Photodegradation of methyl orange in a large scale 
continuous reactor under LED lights in presence of 

TiO2/polymeric film photocatalyst 

9.1 Introduction  

Approximately, 14,000 people die every day because of water pollution, all over the 

world [1]. According to official classification, 41.3% of the United States’ water is 

polluted. China is the latest victim of impure water tragedies [2]. The environment is 

extremely fragile. Recent pollution offenses include mountaintop mining in the 

Appalachians, oil drilling at both the Arctic and Antarctic poles which results in massive 

wildlife death, and oil spills that sicken people, as was recently the case in United States. 

Canada flushes some 200 billion liters of raw sewage directly into natural waterways 

every year, from the St. Lawrence River to the Strait of Juan de Fuca and the Pacific 

Ocean [3, 4]. Scientists detected the traces of several organic dyes and prescription drugs 

in the water that comes from many people's faucets. These organic dyes come from 

textile and printing industries sewage. To be sure, the concentrations of these chemicals 

are really low, measured in quantities of parts per billion or trillion. It has been proved by 

scientists that the traces of these chemicals can cause several health problems to both 

human and wild life [5]. These dyes besides being carcinogenic to human health, also 

causes kidney and liver damage [6].  

In our study, methyl orange has been taken up as the model organic pollutant. Methyl 

orange in Fig. 9.1 has been proved to be hazardous in case of skin contact (irritant), of 

eye contact (irritant), ingestion, inhalation. Severe over-exposure can result in death. 

 

Figure 9.1: Structure of methyl orange [7]. 
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These, organic pollutants though can be partially absorbed by charcoal or activated 

carbon but cannot be completely removed [8]. Also, the use of charcoal again pollutes 

our environment in several ways. Thus the traditional water treatment technologies can 

decolourize and absorb these chemicals but cannot degrade them completely. Distillation 

and reverse osmosis though remove a wide range of water supply contaminants but 

unable to degrade these aromatic functional groups containing dyes. The premier 

activated carbon water filter on the market, won't strip away these organic pollutants 

completely, either. Therefore, advanced oxidation processes have been introduced, to 

degrade these pollutants in water. Among all kind of advanced oxidation processes, 

photocatalytic oxidation is the most promising one. In recent years, photocatalytic 

degradation mediated by illuminated TiO2 has received considerable attention as an 

alternative for treating polluted water. It has been proved that this process can degrade 

many toxic compounds in waste water into carbon dioxide. The most suitable 

semiconductor for the photocatalytic reaction is TiO2 Degussa P25 [9, 10]. According to 

the proved theory of photocatalytic degradation of organic pollutants, the relevant 

reactions at the semiconductor surface causing the degradation of dyes can be expressed 

as follows: 

TiO2 + hv (UV)         TiO2 (ecb
−
 + hvb

+
)                                                                        (1) 

TiO2 (hvb
+
) + H2O         TiO2 + H

+
 + 

.
OH 

 
                                                                   (2) 

TiO2 (hvb
+
) + OH

−
         TiO2 + 

.
OH                                                                             (3) 

TiO2(ecb
−
) + O2             TiO2 + O2

•−
                                                                             (4) 

O2
•−

 + H
+
                      HO2

. 
                                                                                        (5) 

Dye + 
.
OH              degradation products                                                                     (6) 

 

The resulting 
.
OH radical, being a very strong oxidizing agent (standard redox potential 

+2.8 V) can oxidize most of methyl orange dye the mineral end-products. Substrates not 

reactive toward hydroxyl radicals are degraded employing TiO2 photocatalysis with rates 

of decay highly influenced by the semiconductor valence band edge position [11]. In our 
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study, a large scale continuous flow reactor has been employed to degrade methyl orange 

under LED lights in presence of TiO2/polymeric photocatalyst films. The effects of initial 

concentration and flow rates have been studied and analysed. Several researches have 

been carried out on degradation of methyl orange by slurry TiO2 under UV, solar and 

fluorescent lamps [12, 13]. In our studies almost similar trend has been observed for 

methyl orange degradation under visible lights. Effects of flow rate and initial 

concentrations, on the degradation rate, have been discussed. 

 

                         

9.2   Materials and Methods 

9.2.1 Materials 

Methyl orange (Sigma Aldrich), Gelatin (Sigma Aldrich), PVA (Sigma Aldrich), PVP 

(Sigma Aldrich), TiO2 Degussa 25 (Evonik), Beaker (Chemistry store, UWO), Conical 

flask (Chemistry store, UWO), LED lights, Continuous reactor, peristaltic pump 

 

9.2.2  Methods 

9.2.2.1 Photodegradation of MeO under LED lights 

A large scale continuous reactor of volume 5000 cc shown in Fig. 9.2, consisted of two 

concentric cylinders with the LED lights supported on a plastic support hold outside the 

reactor. The radius of the space between two cylinders was 5 cm and the thickness of the 

cylindrical wall was 0.45 cm. The light intensity measured was 7 mW/cm
2
. The methyl 

orange solution containing 0.00025 cm
2
 pieces of photocatalyst films was pumped by a 

peristaltic pump into the reactor. After photodegradation the solution was pumped out of 

the reactor into the same container which was continuously being stirred by a magnetic 

stirrer. The  concentration  change of  the  solutions  were  continuously  monitored by a  

UV-Vis spectrophotometer  at  ( λ  = 465 nm). 
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Figure 9.2: Experimental setup of methyl orange photodegradation under LED 

illumination. Experimental conditions [Large scale 5 L reactor, I = 4.1 mW/cm
2
, pH 

= 5.8-6, H= 0.45 mm, Flow rate = 800 ml/min] 

9.2.2.2    Preparation of TiO2-polymeric  composite 

The polymers used to prepare the catalyst have been considered non-toxic by WHO and 

also have been proved to by toxicology researches [18, 19, 20]. 24.3 % w/w of PVA and 

11% w/w of Gelatin were dissolved and mixed properly in distilled water and to get a 

transparent solution. Next, 21.6 % w/w of PVP dissolved in the solution of ethyl alcohol 

and water at 45° C. The solution was stirred for 15 minutes followed by dispersion of 43 

% w/w TiO2 Degussa P25 powder in the mixture. The photocatalyst film was cut into 

small pieces of area 0.00025 cm
2
.  
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9.2.2.3   Blank experiments 

This experiment was carried out with photo catalyst but no illumination. Dark reactions 

were carried out at different concentrations (100 ppm, 30 ppm, 15 ppm and 2 ppm). It 

was observed in UV-Vis spectrophotometer that the concentration has changed after 

some time. These changes in the concentration, proved the adsorption of methyl orange 

on the catalyst surfaces. This dark reaction was carried out to saturate the catalyst surface 

by dye adsorption so that during reaction under LED lights no more adsorption of dye 

occurs.  

 

9.3   Results and discussions 

9.3.1 Photocatalytic oxidation 

The detailed mechanism of MeO dye catalyzed degradation states that conduction band 

electrons (e•) and valence band holes (h
+
) are generated when aqueous TiO2 suspension is 

irradiated with light energy greater than its band gap energy (3.2 eV). The photo- 

generated electrons could reduce the dye or react with electron acceptors such as O2 

adsorbed on the photocatalyst surface or dissolved in water reducing it to superoxide 

radical anion O2•. The photogenerated holes can oxidize the organic molecule to form R
+
, 

or react with H2O forming 
.
OH radicals. Together with other highly oxidant species 

(peroxide radicals) they are reported to be responsible for the heterogeneous TiO2 

photodecomposition of organic substrates as dyes [11, 13]. 

 

9.3.2  Effects of flow rates on the photodegradation of methyl orange 

Experiments were carried out at several flow rates. In the graph below effect of the 

following flow rates [45, 85, 200, 450, 650, 800 (ml/min)] are depicted. The degradation 

rates increased with the increase of flow rates.  Due to limitations on experimental set up, 

experiment at higher flow rate was not possible.  The increase of degradation rate with 

the increase of flow rate, was due to the effect of external mass transfer. External mass 
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transfer played a significant role for the low flow rates. Therefore with increasing flow 

rates the degradation also increased but beyond this limit, the increment in flow rate does 

not affect the degradation anymore. Therefore 800 ml/min has been selected as ideal flow 

rate for the rest of the experiment. Also beyond this flow rate bubbles would be 

introduced in the reactor which would lead to experimental errors.  

 

Figure 9.3: Effects of flow rates on photodegradation of MeO under LED lights. 

Experimental conditions [C0= 10 ppm, pH - 5.8, I = 4.1 mW/cm
2
, H= 0.45 mm] 

 

9.3.3   Photodegradation of MeO 

After the dark reaction was carried out, methyl orange solution (C0 = 200 ppm, after dark 

reaction 198 ppm) was photo degraded till 300 minutes. The photo degraded samples 

were collected for spectrophotometric observations at very small intervals of time both at 

the beginning and also towards the end of the reaction. From Fig. 9.4 the rate constant of 
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the photocatalysis was calculated. The rate constant was calculated to be 0.071 mg/L/min. 

It was also observed that degradation rate was independent of the concentration at very 

high concentrations. It was found that TiO2-polymeric composite catalyst degraded 72% 

of the methyl orange under LED light. 

€% = (C0 – C)/C0 x 100 = 72%        

 

Figure 9.4: Photodegradation of MeO. Experimental conditions [C0 = 200 ppm, pH 

– 5.8, I = 4.1 mW/cm
2
, H=0.45 mm] 

Here C0 is the initial concentration of methyl orange and C is the final concentration after 

time T. 

 

 

9.3.4     Effect of initial concentrations  

The effect of initial concentrations of MeO was studied. To study the initial degradation 

rate the photodegradation was carried out for 30 minutes. The organic dyes 
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concentrations in waste water usually range from 0.01-0.05 g/dm
3 
[19]. Therefore, methyl 

orange solutions of different concentration were used ranging from 2 ppm to 200 ppm 

[200, 100, 30, 10, 2 (ppm)]. The solutions were subjected to photo degradation at pH 5.8 

under LED lights, for 30 minutes to observe the initial degradation rate. Fig. 9.5 

explained that the degradation of MeO followed the model of Langmuir-Hinshelwood. It 

was observed that the degradation rate decreased with the decrease of concentration. This 

phenomenon, can be explained as: i) Low concentrated solution degradation was affected 

by the mass transfer resistances. While at very high concentration the degradation rate 

remained independent of mass transfer effects. ii) With the increase of the initial 

concentration of the dye the probability of reaction between dye molecules and the 

photocatalyst also increased which lead to an enhancement in the degradation rate.  

 

 

 

Figure 9.5: Effect of initial concentrations on photodegradation of MeO. 

Experimental conditions [pH = 5.8, I = 4.4 mW/cm
2
, Flow rate= 800 ml/min, H= 0.45 

mm]. k200 = 0.1 ppm/min, k100 = 0.14 ppm/min, k50 = 0.07, k10 = 0.048, k2 = 0.03 

While researchers reported that degradation rate increased with the increase of dye 

concentration to a certain limit and further increase lead to a decrease in degradation rate, 

which was due to the reduction in generation of 
.
OH radicals on the catalyst surface [12, 
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13]. In this study the degradation increased with the increase of dye concentration up to 

100 ppm, beyond which degradation rate decreased. The decrease of dye degradation as 

the dye concentration increase beyond 100 ppm was due to the reduction of 
.
OH radicals 

formation on the catalyst surface (since the active sites were covered by the dye ions) 

[13]. Our results showed, that at irradiation of methyl orange by LED source, the 

degradation of the dye decreased as the dye concentration increased beyond a certain 

limit (100 ppm) [11-13]. This decrease in rate can be explained as, the result of decreased 

number of photon absorption by the catalyst at higher concentration [13]. 

 

9.3.5 Kinetic study 

Photodegradation of 200 ppm MeO was carried out for 30 minutes, for calculating the 

initial degradation rate constant. At very high concentration, the rate remained 

independent of mass transfer resistances. Therefore, the rate constant determined from 

this Fig. 9.6 was compared with the k value obtained from Fig. 9.7. 

 

Figure 9.6: Photodegradation of MeO under LED lights. Experimental conditions 

[C0 = 200 ppm, pH – 5.2, I = 4.1 mW/cm
2
, TiO2 loading = 1.5 g/L] 
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The rate constant obtained was k= 0.071 mg/L/min 

 

Figure 9.7: Photodegradation of MeO. Experimental conditions [C0 = 200, 100, 30, 

10, 2 (ppm), pH -5.2, I = 4.1 mW/cm
2
, TiO2 loading = 1.5 g/L] 

The rate constant and adsorption constant obtained from this plot were k = 0.067 

mg/L/min and K= 0.27 Lmg
-1

 

 

9.3.6  Total organic carbon measurement 

The total organic carbon content was measured after the degradation of methyl orange 

under LED lights and in presence of the TiO2-polymeric photocatalyst. After 

photodegradation the total organic carbon content of methyl orange was observed to 

decrease with time. The decrease of carbon content signifies the degradation of the 

methyl orange into nontoxic decomposition compounds.  
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Table 9.1: Total organic carbon content measurement 

Time Carbon content (mg/L) 

0 1007.1 

10 1000 

20 950 

60 900 

120 710 

240 325 

300 14 

 

 

 

9.4 Conclusions  

The porous TiO2/polymeric composite catalyst developed in this experiment was 

observed to degrade MeO under LED lights. At very high concentration, the degradation 

kinetics was observed to fit into Langmuir-Hinshelwood model, while at low 

concentration, the kinetics followed was first order. It can be concluded that at higher 

flow rate the degradation was observed to be faster than at lower flow rates, which can be 

attributed to minimization of external mass transfer resistances. The pH of the solution 

remained unaltered on LED lights exposure, unlike UV lights. The photo-catalytic 

processes were influenced by the initial concentrations of methyl orange. Color change 

from orange to colorless was irreversible. With the increase of concentration, the 

degradation rate increased. At very high concentration, the rate of reaction was 

independent of the mass transfer effects. While at lower concentration, the mass transfer 

resistances being dominant, decreased the degradation rate. Beyond 100 ppm, MeO 

degradation was observed to decrease which was due to the less production of OH 

radicals due to the coverage of active sites by the high concentrated MeO molecules. The 

degradation rate was lower than under UV lamp, due to very low light intensity. LED 

lights had very little or no cross-linking effects on the photocatalyst film, thereby not 

affecting the rate with time. More studies required in this case. Increase of light intensity 

can be assumed to increase the degradation rate. 
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9.5  Recommendations 

1) Studies can be carried out by increasing the intensity of the LED lights. 

2) Different visible or fluorescent lamps can be installed and supported to the setup. 

3) Slurry TiO2 can be coated on the inner wall of the reactor, to study the effects of 

different catalyst nature on the degradation rate. 

4) TiO2-polymeric photocatalyst can be immobilized on the inner wall of the reactor. 

 

  

 

 

 

 

9.5 Nomenclature 

MeO – Methyl orange 

ppm – Parts per million 

eV – Electron volt 

UV – Ultra violet 

TOC – Total organic carbon  
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10 Final Conclusions 

10.1 Conclusions 

A wide range of experiments were carried out at different conditions to study the 

degradation of pollutants using TiO2 photo-catalyst. Methyl Orange and Aspirin were 

selected as two model compounds. In order to avoid the costly process of 

filtration/ultrafiltration of photo-catalyst, the TiO2 particles were immobilized by a novel 

technique over a safe and environmentally friendly polymeric substance. The film 

photocatalyst were prepared by non-toxic polymers (approved by FDA and WHO), 

posing no threat to human health. It was concluded that the TiO2-polymeric film can be 

an efficient photocatalyst under both UV and solar lights but due to the cross-linking 

effects of the UV on the polymeric film, the rate changed with the progress of time under 

the UV lamp. This film showed best efficiency under solar light, since solar contains only 

4% of UV light. It was observed that variation of the film thickness plays an important 

role in degrading pollutants due to internal mass transfer effects, (increasing diffusional 

length across the grain of the micro porous film). The external mass transfer effects were 

minimized by controlling the flow rates and mixing. In both cases (Methyl orange and 

Aspirin degradation), with the increase of concentrations, the degradation rates increased 

up to a certain limit, beyond which it decreased. The combined effect of mass transfer, 

photon absorption and 
.
OH radical reproducibility were most probably the main reasons 

for such behaviour. Due to variation of the surface charge of TiO2 particles, the pH of the 

solution was a crucial factor. The acidic pH would be the best for organic dyes having 

similar properties as methyl orange and all NSAIDs. In, degradation studies under the UV 

light, the pH of MeO was observed to change drastically with time which also affected 

the degradation rate, but under LED lights such drastic changes in pH were not observed. 

Similar experiments on canola oil showed the applicability of this photocatalyst for oil 

spill remediation. Addition of the photo catalyst, which remains suspended at the water 

surface due to its high porosity, creates an ideal situation where solar radiation activates 

the catalyst on one side while spilled oil degradation occurs on the other side. In case of 

off shore oil spill, the waves create enough mixing to overcome mass transfer resistances. 
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Degradation mechanism of aspirin showed that a number of intermediates were formed 

and finally converted to carbon dioxide and water. Incomplete degradation may result in 

release of these intermediates which could be a source of contamination in surrounding 

environment.  

Experiments in larger scale reactor also showed the applicability of photocatalytic 

degradation in commercial sizes. The process undergoes different hydrodynamics in 

larger scales, which may affect the effectiveness of the degradation.  More studies are 

required to investigate the effects of scale up on photocatalytic degradation of pollutant in 

large scales.  

 In brief, this novel polymeric-TiO2 film photocatalyst holds the potential of an efficient, 

economical, photocatalyst of the future world for environmental detoxification. 
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Appendix I (Chapter 5) 

I Photodegradation of methyl orange in presence of 
TiO2/polymeric photocatalyst under UV lamp 

I.1 Calculation of residence time 

The photodegradation was carried out for 140 minutes but the resident time of methyl 

orange solution inside the reactor was taken into consideration. 

tr = texpt x Vr/ Vl, here [texpt = 140 minutes, Vr = 121 ml, Vl = 150 ml] 

Therefore the residence time of methyl orange in the reactor was 112 minutes. 

 

I.2 Calculation of total organic carbon content 

Molecular wt. of methyl orange (C14H14N3NaO3S) is 327.33 g. mol
-1

 

Amount of carbon in 1 mg/L of MeO = 14 x 12/ 327.33 = 0.51 mg 

Therefore, after 140 minutes of degradation under UV lights 7.5 mg of carbon 

corresponds to 15 ppm of MeO.  
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Appendix II (Chapter 6) 

II Photodegradation of Aspirin by slurry TiO2 both under UV 
and solar lights 

II.1 Dark reactions 

Before the carrying out the photocatalytic reactions, experiments were conducted to 

investigate whether there is any direct photolysis (in the presence of light but in the 

absence of any catalyst). It was observed that no direct photolysis took place for aspirin. 

When experiments were conducted in the presence of catalyst but in the absence of light 

(dark reaction), a small decrease in the concentration of aspirin was observed because of 

adsorption onto the catalyst surface, which reached an equilibrium value within 30 

minutes. Hence, before the light was turned on, it was always ensured that adsorption 

equilibrium was reached.  

 

 

 Figure II.1: Dark reaction of aspirin in presence of TiO2 slurry 
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The small change in concentration of aspirin in absence of light (dark reaction) in 

presence of a slurry TiO2 can be attributed to the adsorption of aspirin onto the surface of 

the TiO2. The concentration of aspirin adsorbed on the catalyst was calculated from the 

difference between the initial and equilibrium concentrations. Having prepared the plot of 

1/qe Vs 1/C0, where qe is the amount of dye adsorbed on the catalyst surface and C0 is the 

initial concentration, qm and K were obtained. This reaction appeared to follow Langmuir 

adsorption isotherm: 

qe = qmKC0/ (1+ KC0)     

qm and K are the saturation and adsorption equilibrium values respectively 

K = 0.2 Lmg
-1

, qm = 1.38 mg/L 

Here qm is the maximum amount of dye adsorbed and K is the adsorption constant. 
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Appendix III (Chapter 7) 

III Photodegradation of Aspirin under both UV and solar light 
in presence of polymeric-TiO2 film 

III.1 Dark reactions 

When experiments were conducted in the presence of catalyst but in the absence of light 

(dark reaction), a small decrease in the concentration of aspirin was observed because of 

adsorption onto the catalyst surface, which reached an equilibrium value within 30 

minutes. Hence, before the light was turned on, it was always ensured that adsorption 

equilibrium was reached. The small change in concentration of aspirin in absence of light 

(dark reaction) in presence of a TiO2/polymeric film catalyst can be attributed to the 

adsorption of aspirin onto the surface of the film photocatalyst. The concentration of 

aspirin adsorbed on the catalyst was calculated from the difference between the initial and 

equilibrium concentrations. Having prepared the plot of 1/qe Vs 1/C0, where qe is the 

amount of dye adsorbed on the catalyst surface and C0 is the initial concentration, qm and 

K were obtained. This reaction appeared to follow Langmuir adsorption isotherm: 

qe = qmKC0/ (1+ KC0)      
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Figure III.1 Dark reactions of methyl orange in presence of TiO2/polymeric 

photocatalyst 

K = 0.27 Lmg
-1

, qm = 1.17 mg/L 

Here qm is the maximum amount of dye adsorbed and K is the adsorption constant. 
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Appendix IV (Chapter 8) 

IV Mechanism of aspirin degradation under solar light in 
presence of a TiO2/polymeric film 

IV.1 LC/MS Analysis 

The photodegradation of 2 ppm aspirin solution was carried out in a batch reactor (250 

ml) at pH 3.5, under solar light of Intensity-77 mW/cm
2
. Samples were taken at various 

time intervals were analyzed by LC/MS (LCMS-2010 EV Liquid Chromatography Mass 

spectrometer, Shimadzu) to identify the intermediate compounds. A capillary column C-

18 (5 μm , 100 x 4.6  mm length) was used for separation of product intermediates. The 

mobile phase was a mixture of acetonitrile–water (70/30, v/v) with 0.04% glacial acetic 

acid to maintain an acidic pH. The flow rate of elute was 0.1 ml min−1 and the injection 

volume was 20 μl. The UV detection was at 298 nm. The eluent from the 

chromatographic column successively entered the UV–Vis diode array detector, the ESI 

interface and the quadruple ion trap mass analyzer. MS analysis in the negative ions 

mode was performed on a mass spectrometer equipped with an ESI ion source. The ESI 

probe tip and capillary potentials were set at 2.5 kV and 25 V, respectively. The mass 

range was 50–750 m/z. The heated capillary was set to 200 °C. 

The mass spectroscopy spectrums are as follows: 
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                                        [c] 

Figure IV.1: [a],[b], [c], MS spectra of the degradaed aspirin 
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  [e] 

Figure IV.2: [d,e], LC spectra of degraded aspirin 
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IV.2 Calculation of total organic carbon content 

Molecular wt of aspirin (C9 H8 O4) is 180.15 g.mol
-1

 

No. Of carbons present in 1 mg of aspirin is 9 x 12 = 108/180.15 = 0.59 mg 

2 ppm aspirin contains 1.19 mg of Carbon 

Therefore after 300 minutes of degradation 0.01 mg of carbon represents 0.016 ppm of 

aspirin 
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Appendix V (Chapter 9) 

V Photodegradation of methyl orange in a large scale 

continuous reactor under LED lights in presence of 

TiO2/polymeric film photocatalyst 

V.1 Residence time of methyl orange inside the reactor 

Photodegradation of MeO was carried out for 330 minutes in a 5000 cc continuous flow 

reactor under LED lights in presence of TiO2/polymeric film photocatalyst. 

tr = texpt x Vr/Vl , where Vr= 5 Litres and Vl = 5500 cc [ Vl and Vr are volume of liquid and 

volume of reactor respectively.] 

Therefore, the residence time of the MeO in the reactor was tr = 300 minutes 

 

V.2 Total organic carbon content 

Molecular wt. of methyl orange (C14H14N3NaO3S) is 327.33 g. mol
-1

 

Amount of carbon in 1 mg/L of MeO = 14 x 12/ 327.33 = 0.51 mg 

Therefore, after 300 minutes of degradation under LED lights 14 mg of carbon 

corresponds to 28 ppm of MeO. 
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