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Abstract 

Accurate epilepsy diagnosis after a First-Time Unprovoked Seizure (FTUS) 

remains challenging as the epileptogenic abnormalities and epileptiform EEG 

abnormalities used for such diagnoses infrequently occur and are often missed or 

misinterpreted. Expanding the scope of diagnostic abnormalities to include cortical 

thickness changes could enhance diagnostic efficacy. This is because cortical thickness 

changes are a significantly prevalent pathophysiological change that occurs in cases of 

epilepsy progressively, independent of seizure frequency, drug load and age. These 

changes are theorised to be a product of epileptogenesis, the process in which brain 

networks undergo disruptions becoming epileptic. This study aims to investigate 

whether these changes can be used for epilepsy diagnosis by determining if 

epileptogenic brain network changes and cortical thickness changes are present as early 

as the FTUS of epilepsy. In this study, 16 healthy controls and 16 FTUS patients were 

recruited and underwent 7T structural Magnetic Resonance Imaging (MRI) scans; of 

the 16 FTUS patients, six were confirmed to be epileptic (CE). The participants' MRI 

scans were parcellated using the 17-network Schaefer 200 and 100 parcellation maps. 

Within these maps, the average cortical thicknesses per region were measured for each 

participant group and used for between-group comparisons. These comparisons 

contrasted the cortical thicknesses of the FTUS patients with their age- and sex-matched 

healthy controls (HC) and the cortical thicknesses of solely the CE patients with their 

age- and sex-matched HC. Each between-group comparison included both mixed-sex 

and sex-based comparisons. The cortical thickness measures were used for structural 

covariance analysis, with the calculated nodal and global measures undergoing the 

same set of between-group comparisons conducted for the cortical thickness measures. 

No statistically significant differences in cortical thickness were observed in any of the 

comparisons. At both parcellation levels, the CE patients displayed sex-dependent 

statistically significant differences in their structural covariance nodal measures. These 

differences indicate that brain network changes are present as early as the FTUS and 

support the theory that the cortical thickness changes observed in people with epilepsy 

are a byproduct of the network disruptions observed in epilepsy. Indicating that cortical 

thickness changes are not an ideal diagnostic symptom for epilepsy. 

Keywords: MRI, Epilepsy, Seizures, Cortical thickness, Structural covariance analysis 
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Summary for Lay Audiences 

When an individual experiences a seizure for the first time in their life, there is no 

guarantee that the seizure occurred due to epilepsy. As a result, individuals who have 

experienced a seizure undergo a series of medical exams and neuroimaging scans to 

determine if such seizures are due to epilepsy. However, accurate and prompt epilepsy 

diagnosis is still an ongoing issue as the current definitive indicators of epilepsy are not 

universal; as such, there is a need for additional epilepsy indicators that can be noticed 

as early as the first-time unprovoked seizure (FTUS). One such indicator could be 

cortical thickness changes, as past research on people with epilepsy (PWE) has shown 

it to occur progressively in PWE regardless of age and seizure frequency. This research 

study aims to investigate whether cortical thickness changes can be used as an 

observable epilepsy symptom for diagnosis by evaluating the cortical thicknesses of 

individuals who have experienced a first-time seizure. Additional research looking into 

the brain networks of the participants will be conducted as past research has indicated 

that the cortical thickness changes occurring in PWE are a product of brain network 

changes. The cortical thicknesses of individuals who have experienced a first-time 

seizure were measured via 7T MRI scans, the strongest human MRI scan available, and 

compared with healthy participants of the same age and sex as the patients. These 

comparisons were conducted once for all of the FTUS patients and then once again for 

the FTUS patients who were confirmed to have epilepsy. These cortical thickness 

measures were then used for structural covariance analysis, which uses the biological 

phenomenon of brain morphological features, like cortical thickness, reflecting brain 

networks to quantify and evaluate brain networks. This study's results indicated no 

cortical thickness changes could be detected at the FTUS stage. Still, the data did 

suggest that there were observable brain network changes in the FTUS patients who 

were confirmed to have epilepsy. 
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1. Chapter 1: Introduction and Background 

1.1. Introduction 

1.1.1. Epilepsy and Seizures  

Epilepsy is one of the most common neurological disorders in the world, affecting 

6.38 people per 1,000 persons with an incidence rate of 61.44 people per 100,000 

persons per year, for an estimated total of 50 million people with epilepsy (PWE) 

internationally (Beghi, 2019; Fiest et al., 2016; World Health Organization, 2019). Also 

known as a seizure disorder, epilepsy is characterised by recurrent and unprovoked 

seizures, temporary disruptions of neurological function occurring due to abnormal 

excessive or hypersynchronous firing of cortical neurons in abnormal patterns (Fisher 

et al., 2017). These unprovoked epileptic seizures can occur due to any number of 

reasons ranging from brain injuries such as head trauma and brain lesions to reasons 

currently unknown (Egesa et al., 2022). The underlying causes of these seizures 

significantly influence how they manifest as seizure type is dependent on onset location, 

propagation pattern, as well as the patient’s sleep cycle, brain maturity and medical 

history (Egesa et al., 2022; Fisher et al., 2017; Fisher et al., 2005). Seizure cause and 

type, in turn, influence their effect on PWE’s memory, behaviour, sensory perception, 

motor capabilities or automatic functions, emotional state, cognitive capacity or 

consciousness (Fisher et al., 2017; Fisher et al., 2005).   

As a disorder, epilepsy does not refer to a single disease but rather a complex 

network of numerous biological disorders and diseases centralised around the primary 

symptom of recurring seizures (Behr et al., 2016; Fisher et al., 2014). As a result, there 

is a wide array of epilepsy types, and it is due to this extreme variation that epilepsy 

diagnosis depends not on whether a seizure has occurred but rather on the chance of 

seizure recurrence. Cases of epilepsy in adults are typically identified and diagnosed 

following the occurrence of a First-Time Unprovoked Seizure (FTUS) through the use 

of the International League Against Epilepsy’s (ILAE) three diagnostic criteria (Fisher 

et al., 2014). These diagnostic criteria are used because although seizures are the 

primary symptom of epilepsy, epilepsy is not the sole reason a seizure can occur: after 

an FTUS, there is only a 30-50% chance of a second seizure occurring in the next five 

years (Berg, 2008; Pohlmann-Eden et al., 2006). It is only after the second seizure 
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occurs that the chance of subsequent seizures occurring drastically increases, and it can 

be said with confidence that the individual has epilepsy as there is a 70-80% chance of 

subsequent seizures occurring after the second unprovoked seizure (Berg, 2008; Fisher 

et al., 2014; Hauser et al., 1998; Neligan et al., 2023; Pohlmann-Eden et al., 2006). 

 

1.1.2. Epilepsy Diagnosis after a First-Time Unprovoked Seizure  

As stated earlier, epilepsy is diagnosed based on an individual meeting one of the 

ILAE’s three diagnostic criteria after experiencing an FTUS (Fisher et al., 2014) (Table 

1.1). The first of these diagnostic criteria is whether the patient has experienced two 

unprovoked seizures a minimum of 24 hours apart (Fisher et al., 2014). This 24-hour 

minimum is specified to ensure that subsequently observed seizures are not the product 

of seizure clusters and, thus, the seizure is not an isolated incident since there is a 

significantly higher chance of seizure recurrence after a second unprovoked seizure 

(Fisher et al., 2014; Hauser et al., 1998; Mesraoua et al., 2021; Neligan et al., 2023). 

The second criterion is whether the patient has experienced an FTUS and has at least a 

60% chance of subsequent seizures occurring in the next ten years, a probability 

threshold based on the seizure recurrence rate observed in the 1990 MESS study (Fisher 

et al., 2014; Shinnar et al., 1990).  

The seizure recurrence probability of FTUS patients is determined through an 

examination of their medical history, both individual and familial, and assessments of 

the patient’s neuroimaging for epileptiform abnormalities (Fisher et al., 2014; Kim et 

al., 2006; Pohlmann-Eden et al., 2006; Vergara López et al., 2021). Such evaluations 

allow for the detection of genetic predispositions towards epilepsy and secondary 

epileptogenic conditions, both of which indicate a higher chance for subsequent 

seizures to occur and contribute to the overall estimated probability of subsequent 

seizure occurrence (Ben-Ari & Dudek., 2010; Pohlmann-Eden et al., 2006; Vergara 

López et al., 2021). While the ILAE specify a recurrence probability threshold of 60% 

for epilepsy diagnosis, it is rarely utilised in clinical settings as, currently, there are no 

definitive frameworks or guidelines that assign probability quantifiers to specific risk 

factors (Fisher et al., 2014; Krumholz et al., 2015; Rizvi et al., 2017). Instead, epilepsy 

diagnoses utilising this diagnostic criterion are predominantly dependent on the 

diagnosing physician or epileptologist’s estimation of seizure recurrence risk based on 

the aforementioned medical evaluations (Fisher et al., 2014; Krumholz et al., 2015; 
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Rizvi et al., 2017). The third criterion is whether the patient has received an epilepsy 

syndrome diagnosis (Fisher et al., 2014). Epilepsy syndromes can be diagnosed after 

an FTUS when an individual is identified as possessing a specific cluster of clinical 

features and symptoms linked to a specific epilepsy syndrome, typically based on the 

patient’s seizure type, age of onset, seizure aetiology and medical history (Dreifuss et 

al., 1985; Fisher et al., 2014; Ono & Galanopoulou, 2012; Pohlmann-Eden et al., 2006). 

 

Table 1.1: ILAE Operational (Practical) Clinical Epilepsy Diagnostic Criteria 

1. At least two unprovoked (or reflex) seizures occurring more than 24 hours apart 

2. One unprovoked (or reflex) seizure and a probability of further seizures 

similar to the general recurrence risk (at least 60%) after two unprovoked 

seizures, occurring over the next 10 years 

3. Diagnosis of an epilepsy syndrome 

(Fisher et al., 2014) 

 

1.1.2.1. Categorisation and Treatment of Epilepsy Following Diagnosis 

After a case of epilepsy is diagnosed, it is classified according to the three levels of 

the ILAE epilepsy categorisation (Fisher et al., 2017). The first level of categorisation 

is seizure type, which is based on whether the seizure originates and remains in a 

specific hemisphere’s network (focal onset), propagates into bilaterally distributed 

networks (generalised onset) or originates from an unknown network (unknown onset) 

(Fisher et al., 2017; Scheffer et al., 2017). The second level of categorisation is epilepsy 

type, which is based on the patient’s electroencephalogram (EEG) activity; it is 

Generalized Epilepsy if generalised spike activity is present, Focal Epilepsy if the 

epileptiform activity is in specific regions, Combined Generalized and Focal Epilepsy 

if both are present, and Unknown Epilepsy if no abnormalities are detected or an EEG 

has not been taken (Scheffer et al., 2017). The final level of categorisation is 

determining the presence and type of epilepsy disorder/syndrome; this is based on the 

seizure types, EEG and imaging features, age of onset, awareness level, and seizure 

triggers (Riney et al., 2022; Scheffer et al., 2017).  

Once a formal epilepsy diagnosis is made, the clinical recommendation for adult 

patients is for them to undergo anti-epileptic drug/anti-seizure medication (AED/ASM) 

therapy; the type of AED/ASMs prescribed is based on lifestyle, medical history, and 
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patient preferences (Liu et al., 2017; Tomson et al., 2022). Treatment with AED/ASM 

is not considered for adult patients until after they have received a formal epilepsy 

diagnosis, as there is a 7-to-31% risk of AED/ASM patients experiencing adverse side 

effects, and the risk of experiencing such effects are only worthwhile when preventing 

the occurrence of further epileptic seizures (Liu et al., 2017; Tomson et al., 2022).  

 Unfortunately, while medical treatment with AED/ASM can help mitigate and 

prevent seizure occurrence, an estimated 30% of PWE are considered drug-resistant 

(Fattorusso et al., 2021; Liu et al., 2017; Kwan & Brodie, 2006). Once categorised as 

drug-resistant, PWE qualify for more invasive forms of epilepsy treatment, such as 

resective surgeries in which structural epileptogenic abnormalities are identified, 

located and removed through the use of extensive neuroimaging, including EEG, 

functional Magnetic Resonance Imaging (fMRI), positron emission tomography (PET), 

MRI scans and more (Guery & Rheims, 2021; Pittau et al., 2014). 

 

1.1.3. Quality of Life after First-Time Unprovoked Seizure  

The occurrence of an FTUS and an epilepsy diagnosis can be a major disruptive 

force to an individual’s life as it has been well-documented that such events can lead to 

a notable decrease in quality of life (QoL) due to their threatening the physical, mental 

and social well-being of the patient (Foster et al., 2019; Siebenbrodt et al., 2023). One 

of the first QoL challenges FTUS patients experience is the suspension of their driving 

privileges until they remain seizure-free for a specific duration, for fear of subsequent 

seizures occurring while driving (Abdennadher et al., 2021; Asadi-Pooya et al., 2022; 

Foster et al., 2019). Such worries are not limited to the doctors and lawmakers behind 

such legal restrictions as FTUS patients report feeling significantly diminished control 

over their lives and heightened anxiety about the prospect of experiencing another 

seizure at any point, not just when driving (Foster et al., 2019; Velissaris, 2007). These 

concerns are not unfounded as PWE, especially those who experience generalised 

tonic-clonic seizures, face increased risks of head and extremity injuries as well as 

possess a standardised mortality ratio of 2.3, indicating that they have a mortality rate 

2.3 times higher than the general population (Mesraoua et al., 2020; Nashef et al., 2011; 

Neligan et al., 2011).  

Due to the negative impacts an FTUS can have on an individual’s QoL, prompt 

epilepsy diagnosis is essential as it allows for swift medical intervention, which can 
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reduce the occurrence of seizures in the next two years, improving the patient's QoL 

(Marson et al., 2005). Quick epilepsy diagnosis might also encourage patients to start 

engaging in lifestyle changes that reduce seizure frequency, such as reducing alcohol 

intake and increasing sleep (Kobau & DiIorio, 2003; Velissaris, 2007). It has been 

shown that when PWE receive medical treatment and engage in lifestyle changes 

promptly after an FTUS and epilepsy diagnosis they display a notable QoL 

improvement (Jacoby et al., 2007; Velissaris, 2007). This is because such interventions 

help PWE redevelop their sense of control over their lives as well as reduce their seizure 

anxiety and depression (Jacoby et al., 2007; Velissaris, 2007). Furthermore, it is 

essential to note that 50-70% of FTUS cases are non-epileptic; thus, ruling out epilepsy 

as the cause of seizures allows for the exploration of alternative causes and facilitates 

prompt medical intervention (Berg, 2008; Pohlmann-Eden et al., 2006). As such, it is 

of significant importance that cases of epilepsy are identified and diagnosed as 

promptly as possible.  

 

1.1.4. Limitations of Current Epilepsy Diagnosis Standards 

1.1.4.1. First-Time Unprovoked Seizure Diagnostic Procedure 

The quickest way an individual can attain an epilepsy diagnosis and subsequent 

medical treatment after an FTUS is for them to meet either the second diagnostic 

criterion, via the diagnosing physician or epileptologist determining the patient to be at 

high risk of subsequent seizures occurring in the next ten years, or the third diagnostic 

criterion by being diagnosed with an epilepsy syndrome (Fisher et al., 2014; Krumholz 

et al., 2015; Rizvi et al., 2017; Vergara López et al., 2021). These epilepsy diagnoses in 

adult FTUS cases typically occur after an FTUS patient is admitted into a hospital and 

undergoes a series of diagnostic procedures (Pohlmann-Eden et al., 2006). These 

diagnostic procedures consist of physical examinations, medical history evaluations, 

cerebrospinal fluid assessments, drug screening, an assessment of the seizure’s features 

(seizure semiology) and clinical neuroimaging via EEG and/or MRI scans (Foster et al., 

2019; Galizia & Faulkner, 2018; Pohlmann-Eden et al., 2006). These diagnostic 

procedures are used to determine whether the patient’s FTUS is the product of a 

provoking factor or event, such as drug use or head trauma, or if the seizure is truly 

unprovoked and caused by something beyond an acute provoking factor/event 

(Pohlmann-Eden et al., 2006). An estimated 3-10% of first-time seizures are 
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attributable to the presence or occurrence of a seizure-provoking factor or event 

(Pohlmann-Eden et al., 2006). It is at this stage that an epilepsy diagnosis could first be 

made through the identification of specific symptoms, signs, and the patient’s medical 

history (Fisher et al., 2014; Panayiotopoulos, 2005; Dreifuss et al., 1985). 

 

1.1.4.2. Epilepsy Diagnosis after First-Time Unprovoked Seizure 

When neither an acute cause nor an epilepsy syndrome is recognised through the 

patient’s signs, symptoms and medical history examinations, clinical neuroimaging 

becomes especially crucial as it plays a significant role in determining whether an 

individual has epilepsy (Bernasconi et al., 2019; Pohlmann-Eden et al., 2006). As stated 

earlier, the second diagnostic criterion of epilepsy requires a diagnosing 

physician/epileptologist to determine that there is a high chance of subsequent seizures 

occurring, while the third criterion requires the presence of specific symptoms or 

abnormalities that can be used for an epilepsy syndrome diagnosis; either of these 

criteria can be met through the detection of epileptogenesis features (Bernasconi et al., 

2019; Fisher et al., 2014; Krumholz et al., 2015; Rizvi et al., 2017; Vergara López et 

al., 2021).  

Epileptogenesis refers to the process in which typical brain functions and networks 

are altered, disrupting the balance of excitation and inhibitory activity in an individual’s 

brain, resulting in increased seizure susceptibility and unprovoked recurrent seizures 

(Banerjee et al., 2014; He et al., 2020; Ono & Galanopoulou, 2012; Pitkänen et al., 

2015). Two significant indicators of epileptogenesis are EEG-detected epileptiform 

discharges and epileptogenic lesions identified in structural MRI scans, as their 

presence indicates underlying brain network dysfunction and disruption (Scharfman, 

2007; Stafstrom & Carmant, 2015; Britton et al., 2016). EEG-detected epileptiform 

discharges and abnormalities typically manifest as focal spikes or waves or diffuse 

bilateral spike waves and are theorised to reflect such network disruptions (Britton et 

al., 2016; Stafstrom & Carmant, 2015). Epileptogenic lesions refer to congenital or 

acquired structural abnormalities; they are typically identified through MRI scans and 

are theorised to be a driving force for the network disruptions and subsequent seizures 

observed in epilepsy (Adamczyk et al., 2021; Stafstrom & Carmant, 2015). The 

presence of either or both of these features can be used for an epilepsy diagnosis through 

the second criterion, as they are the strongest indicators for subsequent seizures 



 

 7 

occurring (Fisher et al., 2014; Pohlmann-Eden et al., 2006). While these features can 

also be used for an epilepsy syndrome diagnosis, such diagnoses can only be made 

when specific lesions or EEG patterns are identified (Ono & Galanopoulou, 2012; 

Panayiotopoulos, 2005; Riney et al., 2022; Smith et al., 2005). 

 However, neither the identification of epileptiform EEG abnormalities nor 

epileptogenic lesions are universal methods for epilepsy detection since they are not 

present in all cases of epilepsy (Bernasconi et al., 2019; Fisher et al., 2014; López-

Rivera et al., 2022; Pohlmann-Eden et al., 2006).  

 

Epileptogenic Lesions 

The most common manifestations of epileptogenic lesions are hippocampal 

sclerosis, the occurrence of neuron loss and gliosis in the hippocampus, and 

malformations of cortical development (MCD): a range of cortical abnormalities that 

arise from molecular disruptions to brain development (Behr et al., 2016; Bernasconi 

et al., 2019; Desikan & Barkovich, 2016; Lopez-Rivera et al., 2022; Woermann et al., 

1999). In cases of adult focal epilepsy, an estimated 26-44% of individuals have 

hippocampal sclerosis, while an estimated 12-32% possess MCD (Behr et al., 2016; 

Lopez-Rivera et al., 2022; Thom, 2014). As stated earlier, the presence of epileptogenic 

lesions can be used for epilepsy diagnosis to a reliable degree in cases of FTUS, but 

they are not present in all cases of epilepsy (Behr et al., 2016; Lopez-Rivera et al., 2022; 

Thom, 2014). Moreover, even in cases in which epileptogenic lesions are present, there 

is a high probability that such lesions will go unnoticed as standard MRI protocols, 

which typically include only T1-weighted and T2-weighted sequences, are typically 

used in clinical settings instead of an epilepsy-dedicated MRI protocol such as the ILAE 

Harmonized Neuroimaging of Epilepsy Structural Sequences MRI (HARNESS‐MRI) 

protocol (Bernasconi et al., 2019; Spencer, 2014; Von Oertzen et al., 2002). When 

standard 1.5T MRI protocols are used, an estimated 30-57% of epilepsy cases go 

undiagnosed due to radiologists’ uncertainty or failure to detect the presence of 

epileptogenic lesions; this is especially the case among inexperienced radiologists 

(Bernasconi et al., 2019; Spencer, 2014; Ponnatapura et al., 2018; Von Oertzen et al., 

2002). This is also the case with 3T MRIs as demonstrated in the study by Ahmed et al. 

(2018), in which epileptogenic lesions were identified in 66% of PWE participants only 

when an epilepsy-dedicated MRI protocol was used. This finding contrasted with the 
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PWE participants’ initial epilepsy categorisation as MRI-negative, epilepsy with no 

epileptogenic abnormalities detected via MRI, when standard MRI protocols were used 

(Ahmed et al., 2018). This improved epileptogenic lesion detection was attributed to 

the epilepsy-dedicated MRI protocol increasing MRI sensitivity for epileptogenic 

lesions by 32.8% (Ahmed et al., 2018). 

   

Epileptiform Electroencephalogram Abnormalities 

Similar difficulties occur regarding the use of epileptiform EEG abnormalities for 

epilepsy diagnoses as such abnormalities are not pathogenic symptoms of epilepsy, nor 

are they reliably identified in FTUS patients. In 32.3% of FTUS cases, epileptiform 

EEG abnormalities remain undetectable until after three separate EEGs, while an 

estimated 10% of PWE never display any epileptiform abnormalities (Baldin et al., 

2014; Smith, 2005; Panayiotopoulos, 2005). These issues are even worse in cases of 

FTUS patients who possess EEG epileptiform abnormalities but whose medical 

histories do not indicate a predisposition for epilepsy, such as having experienced a 

stroke or possessing a genetic predisposition (Baldin et al., 2014; Smith, 2005; 

Panayiotopoulos, 2005). This is because in approximately 25-30% of such cases the 

observed epileptiform abnormalities are false positives, in which benign variant EEG 

patterns were misinterpreted as epileptiform abnormalities (Baldin et al., 2014; Smith, 

2005; Panayiotopoulos, 2005). These false positives can potentially exert significant 

negative impacts on patients' lives as they can lead to false positive epilepsy diagnoses 

resulting in delayed medical treatment for the underlying conditions that initially 

triggered their seizures as well as risk the patient enduring a substantial decline in their 

mental health and QoL as a result of the diagnosis (Benbadis, 2007; Foster et al., 2019). 

 

Second Seizure Occurrence 

Should a diagnosis of epilepsy not be possible through the diagnostic criteria 

discussed above, the remaining criterion that could be met is for the patient to wait 

upwards of 2 years for a second unprovoked seizure to occur, as the chance of 

subsequent seizures occurring afterwards significantly decreases (Berg, 2008). 

However, as stated earlier, such a wait for subsequent seizures to occur can lead to 

profound stress and anxiety while also running the risk of an individual failing to 

recognise subsequent seizures, as PWEs have been shown to fail to report 
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approximately 29.9-50.5% of their seizures (Hoppes et al., 2007; Schulze‐Bonhage et 

al., 2023).  

 

1.1.5. Structural Abnormalities in Epilepsy as a Network Disorder 

1.1.5.1. Epilepsy as a Network Disorder 

As stated earlier, MRIs are an essential tool in the clinical diagnosis and treatment 

of epilepsy as well as in the field of epilepsy research, investigating its symptoms and 

underlying causes. In recent years, epilepsy research using neuroimaging technologies 

have provided evidence that epilepsy is not a neurological disorder originating solely 

from a singular seizure focus but is instead a network disease in which brain networks, 

systems of cortical and sub-cortical brain regions connected bilaterally, functionally 

and/or structurally, experience disruptions which cause them to become epileptic 

(Bartolomei et al., 2017; Lehnertz et al., 2023; Sinha et al., 2022; Spencer, 2002; Van 

Diessen et al., 2013). The connections and dynamics between the brain regions of 

networks allow for the smooth communication and processing of information; such 

collaboration between both brain regions and brain networks allows for the generation 

of macro-level functions and behaviours, large-scale tasks and actions such as higher-

order cognitive functions, sensory processing and motor control (Bullmore & Sporns, 

2009; Lehnertz et al., 2023; Royer et al., 2021; Sinha et al., 2022; Suárez et al., 2020; 

Spencer, 2002; Van Diessen et al., 2013). These networks rely on stable synchronisation 

of neural activity because their interconnectedness allows the activity of any single 

brain region within a network to affect the activity of all the others (Lehnertz et al., 

2023; Royer et al., 2021; Sinha et al., 2022; Spencer, 2002; Suárez et al., 2020; Van 

Diessen et al., 2013). Thus, when network disruptions occur, brain networks become 

more susceptible to abnormal neural activity occurring within, propagating throughout 

and interrupting the network, resulting in a disruption of macro-level functions known 

as a seizure (Bartolomei et al., 2017; Lehnertz et al., 2023; Royer et al., 2021; Sinha et 

al., 2022; Spencer, 2002; Suárez et al., 2020). These network disruptions linked to 

seizures have been observed to manifest in ways beyond the expected abnormal patterns 

of neuroactivity, as PWE often display a multitude of neuroanatomical deviations, such 

as cortical thickness changes (Engel et al., 2013; Kramer & Cash, 2012; Pitkänen et al., 

2015; Royer et al., 2021; Van Diessen et al., 2013).  
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Cortical Thickness Changes in Epilepsy 

Changes in cortical thickness are well-documented in PWE, with early 1.5T MRI 

epilepsy research finding patterns of cortical thinning in the entorhinal cortex and 

temporal lobe cortex in individuals with Temporal Lobe epilepsy (TLE), one of the 

most common types of epilepsy (Behr et al., 2016; Bernasconi et al., 1999; Lee et al., 

1998). Bernasconi et al. (2004) further explored this pattern of cortical thinning by 

conducting a whole-brain voxel-based analysis, in which they identified cortical 

thinning occurring in the temporolimbic and frontal cortical regions of TLE patients. 

These findings were reiterated by the 1.5T MRI Bernhardt et al. (2010) study, which 

also found that individuals with TLE possessed significantly lower levels of cortical 

thickness in the frontocentral and temporolateral regions. 

The cortical thinning in PWE is not limited to TLE cases as cortical thickness 

changes have been observed to occur in cases of frontal lobe epilepsy (FLE) and 

idiopathic generalised epilepsy (IGE) (Galovic et al., 2019; Whelan et al., 2018). In the 

3T MRI study by Galovic et al. (2019), it was noted that in cases of focal epilepsy, FLE 

and TLE, PWE displayed bilateral progressive cortical thinning in their frontal and 

temporal brain regions, with the cortical thinning being more pronounced in regions 

ipsilateral to the seizure focus. The 2018 multi-site ENIGMA study showed similar 

thinning patterns in TLE and that IGE cases exhibit more significant bilateral precentral 

gyrus thinning (Whelan et al., 2018). Additionally, while both studies identified that the 

cortical thinning was progressive and increased with epilepsy duration, Galovic et al. 

(2019) highlighted that such progression was independent of the PWEs’ seizure status 

and frequency as well as their age and medication load.  

Epilepsy-linked cortical thinning being independent of seizure status and seizure 

frequency was also identified in the Coan et al. (2014) and Labate et al. (2010) studies, 

both of which noted that while seizure frequency influences the severity of the 

progressive cortical thinning, it is not the sole cause behind it as it was still present in 

seizure-free PWE. Due to these patterns of cortical thinning being independent of 

seizure frequency and medication intake, it was hypothesised that they are a product of 

the epileptogenic neurodegeneration of epilepsy rather than a product of the seizures 

(Galovic et al., 2019). This theory has been further supported by the 3T MRI 

longitudinal Gugger et al. (2023) study, which found that individuals with late-onset 

epilepsy displayed patterns of cortical thinning in their temporal and frontal regions 

prior to epilepsy onset (Gugger et al., 2023). This cortical thinning has also been shown 
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to be independent of the presence of epileptogenic lesions, such as hippocampal 

sclerosis, as Coan et al. (2014), Bernhardt et al. (2010), and Alvim et al. (2016) found 

that TLE cases present similar patterns of cortical thinning regardless of hippocampal 

lesion presence. It has also been found that cortical thickness changes in PWE are not 

limited to cortical thinning. The 3T MRI Ogren et al. (2018) study noted that PWE 

experiencing generalised tonic-clonic seizures displayed sex- and hemisphere-

dependent cortical thickening and thinning patterns. However, unlike the patterns of 

cortical thinning observed in past research, these patterns of cortical thickening were 

shown to be influenced by seizure frequency, as the insular cortical thickening was 

more pronounced in subjects with more frequent seizures, suggesting such thickening 

is potentially a compensatory response. Overall, past epilepsy research has indicated 

that while cortical thickness changes in PWE are influenced by seizure occurrence, with 

cortical thinning linked to seizure-induced excitotoxicity and cortical thickening linked 

to inflammatory responses and cell swelling, they are linked to epileptogenic changes 

to a greater degree (Bonilha et al., 2006; Coan et al., 2009; Coan et al., 2014; Ogren et 

al., 2018, Kemmotsu et al., 2011). 

 

Network Changes in Epilepsy  

As can be expected of a network disorder, the aforementioned patterns of epilepsy-

associated cortical thickness changes are not isolated from one another (Bartolomei et 

al., 2017; Bernhardt et al., 2011; Lehnertz et al., 2023; Spencer, 2002). When using 

structural MRI scans, these epileptic networks can be studied and analysed using graph 

theoretical analysis (Sporns, 2018). Graph theoretical analysis, graph theory, is a form 

of mathematical analysis that conceptualises the human brain as a connectome matrix, 

with nodes representing distinct brain regions and edges signifying anatomical or 

functional connections between these regions (Bassett & Sporns, 2017; Sporns, 2018). 

The use of graph theory to characterise and analyse brain networks has allowed for the 

development of comprehensive frameworks to understand the intricate network 

architecture of the human brain and how neurodegenerative diseases like epilepsy 

impact it (Bernhardt et al., 2011; Bernhardt et al., 2013; Larivière et al., 2022; van 

Diessen et al., 2013; Yasuda et al., 2015). One such way that graph theory has already 

been useful is in identifying small-world networks within the brain, which are networks 

consisting of brain regions highly interconnected with short paths and notable levels of 

clustering (Bernhardt et al., 2011; Bernhardt et al., 2013).  
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Structural Covariance Analysis 

One type of graph theory employed in epilepsy research is structural covariance 

analysis. Structural covariance refers to a morphological phenomenon in which specific 

brain regions co-vary in their morphological measures, reflecting neurodevelopmental 

patterns of synchronised anatomical changes as well as the functional and structural 

patterns of brain networks (Alexander-Bloch et al., 2013; Larivière et al., 2022). 

Structural covariance analysis uses these co-variations to identify and examine brain 

networks as well as the impact neurological diseases have on them (Alexander-Bloch 

et al., 2013; Bernhardt et al., 2013; Duan & Wen, 2023; Larivière et al., 2022).  

When used as a cross-sectional group-based analysis method, as it is in this study, 

structural covariance analysis requires the datasets of multiple participants to determine 

the correlation of structural changes across the group (Alexander-Bloch et al., 2013; 

Bernhardt et al., 2011; Bernhardt et al., 2013; Duan & Wen, 2023; Larivière et al., 2022). 

When using this form of analysis there is a risk of group datasets can obscure individual 

variations, and there are limitations to the types of statistical analyses that can be 

utilised as the most commonly used statistical analysis tests for structural covariance 

analyses utilise null distributions generated from randomised subject data (Alexander-

Bloch et al., 2013; Bernhardt et al., 2011; Bernhardt et al., 2013; Duan & Wen, 2023; 

Larivière et al., 2022). These null distributions must accurately reflect the distances 

between of brain regions as such distances heavily influence structural covariance, the 

closer two brain regions are the more they covary in morphological measures 

(Alexander-Bloch et al., 2013; Artzy-Randrup et al., 2004; Bernhardt et al., 2011; 

Bernhardt et al., 2013; Duan & Wen, 2023; Larivière et al., 2022). If this proximity is 

not properly accounted for there is a possibility that any observed statistically 

significant differences between the subject datasets and the null distributions may be 

due to randomised networks being implausible brain networks (Alexander-Bloch et al., 

2013; Artzy-Randrup et al., 2004). Despite this the utilisation of multiple datasets for 

group-based structural covariance analysis allows researchers to develop an 

understanding of the pathogenesis of neurological disorders like epilepsy by identifying 

brain network changes that occur in the subjects of interest, PWE (Alexander-Bloch et 

al., 2013; Artzy-Randrup et al., 2004; Bernhardt et al., 2011; Bernhardt et al., 2013; 

Duan & Wen, 2023; Larivière et al., 2022).  
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Epilepsy research using structural covariance analysis on the cortical thickness 

measures of PWE, researchers have provided evidence that PWE experience epilepsy-

type dependent disruptions and changes to their structural covariance brain networks 

when compared to their healthy counterparts (Bernhardt et al., 2011; Bernhardt et al., 

2013; Larivière et al., 2022). Individuals with TLE exhibit disruptions to their small-

world networks as changes in the distribution of their hubs- nodes with high levels of 

betweenness centrality- which shift from being evenly distributed to being more 

concentrated in the limbic, paralimbic and temporal cortices (Bernhardt et al., 2011; 

Bernhardt et al., 2013; Larivière et al., 2022; van Diessen et al., 2013; Yasuda et al., 

2015). Individuals with TLE also experience increases in the clustering coefficients and 

shortest path lengths of the orbitofrontal and temporal regions, as well as the average 

clustering coefficients and average shortest path lengths of the whole network 

(Bernhardt et al., 2011; Bernhardt et al., 2013; Larivière et al., 2022; van Diessen et al., 

2013; Yasuda et al., 2015). These changes were noted to represent a disruption to the 

participants’ small-world network and vary between right TLE (R-TLE) and left TLE 

(L-TLE), as L-TLE cases demonstrate increases in the occipital lobes while R-TLE 

cases demonstrate increases in the limbic and temporal regions contralateral to their 

seizure focus (van Diessen et al., 2013; Yasuda et al., 2015). Overall, the changes 

occurring in TLE increased local connectivity but interfered with network information 

flow, decreasing global efficiency and disrupting the small-world network (Bernhardt 

et al., 2011; Bernhardt et al., 2013; Larivière et al., 2022; van Diessen et al., 2013; 

Yasuda et al., 2015). Structural covariance brain network changes are not limited to 

cases of TLE. Those with IGE exhibit significant levels of small-world network 

disruptions, as they display notably lower local connectivity and global efficiency, 

especially in the temporal, frontal, and parietal cortices (Larivière et al., 2022; Pegg et 

al., 2020). Structural covariance brain network changes were also seen in the Liu et al. 

(2023) study on FLE. Individuals with FLE exhibited significant increases in the 

clustering and local efficiency of the pre-central gyrus in the frontal lobe but decreases 

in the temporal pole, as well as decreases in network hubs as they shifted away from 

the frontal lobe (Liu et al., 2023). 
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1.1.6. Research Motivation  

An epilepsy diagnosis can occur after an initial FTUS when the patient is 

determined by their physician/epileptologist to have a high chance of subsequent 

seizures occurring (Fisher et al., 2014; Krumholz et al., 2015; Rizvi et al., 2017; Vergara 

López et al., 2021). The probability estimations of the diagnosing 

physician/epileptologist are based on the patient’s medical examinations; this is 

especially the case for the patient’s neuroimaging scans as they can indicate the 

presence of epileptogenesis features (Amin & Benbadis, 2019; Fisher et al., 2014; 

Krumholz et al., 2015; Pohlmann-Eden et al., 2006; Rizvi et al., 2017; Vergara López 

et al., 2021). While the methods for detection of epileptogenesis indicators are effective 

to some degree, there are still a multitude of cases in which they either fail to correctly 

identify the indicators, resulting in a failure to diagnose epilepsy or, worse still, 

misidentify typical neuroactivity as epileptogenic, resulting in a false epilepsy 

diagnosis (Amin & Benbadis, 2019; Benbadis, 2007; Benbadis & Tatum, 2003). As 

such, there is a need for additional epilepsy indicators present as early as the FTUS that 

can be used as markers of an epilepsy predisposition (Fisher et al., 2014). One indicator 

that could be used is cortical thickness changes. Collectively, PWE have a long-

documented history of experiencing both cortical thickness increases and decreases 

independent of the typical age-related cortical thinning; moreover, such changes have 

been shown to be present prior to epilepsy onset, occurring progressively and at its most 

prominent in the first five years after the initial epilepsy diagnosis (Bernhardt et al., 

2010; Galovic et al., 2019; Gugger et al., 2023; Ogren et al., 2018). These PWE cortical 

thickness changes indicate that such changes can be identifiable as early as the FTUS, 

especially in those experiencing tonic-clonic seizures. This research study investigates 

the cortical thickness changes of individuals who have experienced an FTUS using 7T 

MRI scans, taking advantage of their higher signal-to-noise ratio (SNR). 

 

1.2. Background 

1.2.1. Magnetic Resonance Imaging Physics 

MRI is a non-invasive imaging method that uses powerful magnets and 

radiofrequency pulses to generate detailed anatomical images (Robitaille & Berliner, 

2006). When conducting an MRI scan, an initial strong magnetic field (B0) is 
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implemented to align the protons of the patient either parallel or anti-parallel to it, 

during which the protons precess either in a parallel spin-state or anti-parallel spin-state 

(Berger, 2002; McRobbie et al., 2017; Robitaille & Berliner, 2006). Both the strength 

of the B0 magnetic field and the frequency at which the protons precess are dependent 

on the strength of MRI magnets, the strength of which is measured in Tesla (T); with 

clinical MRIs typically ranging from 0.5T to 3T (Berger, 2002; McRobbie et al., 2017; 

Robitaille & Berliner, 2006). The summation of all the parallel aligned protons’ 

magnetic moments results in a net longitudinal magnetisation (Mz), the magnitude of 

which is dependent on the strength of the B0 magnetic field (McRobbie et al., 2017; 

Robitaille & Berliner, 2006). 

To generate MRI images, radiofrequency pulses (RF) are applied to the patient 

by transmit RF coils, generating a homogenous RF transmit field (B1
+) and tipping the 

longitudinal magnetisation into the transverse plane (MXY), at an angle dependent on 

the RF pulse’s strength, and causing it to precess (Gruber et al., 2018; McRobbie et al., 

2017; Robitaille & Berliner, 2006; Vaidya et al., 2016). The precession of the MXY 

magnetisation changes the magnetic field of the MRI machine and generates electrical 

currents in nearby coils, which are recorded as Nuclear Magnetic Resonance (NMR) 

signals (McRobbie et al., 2017; Redpath, 1998; Robitaille & Berliner, 2006). Upon the 

end of the RF pulse, the electrical currents generated by the MXY magnetisation begin 

to decline as it returns to its original Mz alignment in a process called ‘relaxation’ 

(McRobbie et al., 2017; Robitaille & Berliner, 2006). 

The duration of this relaxation is measured in two ways: T1, the time it takes the 

Mz magnetisation to recover to approximately 63% of its initial M0 magnetisation, and 

T2, the time it takes the Mxy magnetisation to decay to approximately 37% of its initial 

value (McRobbie et al., 2017; Robitaille & Berliner, 2006). The MRI uses additional 

magnetic gradients to be able to localise the generated NMR signals in space; their 

location and intensity, calculated using the Fourier transformation, are then used to 

generate an image (McRobbie et al., 2017; Robitaille & Berliner, 2006). By varying the 

sequence of RF pulses, different types of MRI images can be generated (McRobbie et 

al., 2017; Robitaille & Berliner, 2006). These sequences are made by modifying the 

time between successive RF pulses (repetition time or TR) and adjusting the time 

between RF pulse delivery and the measurement of the resulting relaxation signal (Echo 

Time or TE) (McRobbie et al., 2017; Robitaille & Berliner, 2006).  
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1.2.2. Anatomical Imaging with T1-weighted and T2-weighted Images 

The most basic sequence types used for MRI image generation are T1-weighted 

(T1w) sequences and T2-weighted (T2w) sequences, both of which take advantage of 

tissue-specific relaxation times to generate images with varying contrasts (McRobbie 

et al., 2017; Robitaille & Berliner, 2006). These tissue-specific relaxation times occur 

due to the varying proton densities and their interactions, as such fatty tissues like 

myelin and white matter possess short T1 relaxation times while fluids such as 

cerebrospinal fluid possess longer T1 relaxation times (McRobbie et al., 2017; 

Robitaille & Berliner, 2006). T1-weighted images are generated by T1w sequences that 

use short TE and TR sequences for quick signal acquisition, emphasising signal 

acquisition from tissues with short T1 relaxation times over tissues and bodily fluids 

with longer T1 relaxation times (Kawahara & Nagata, 2021; McRobbie et al., 2017; 

Robitaille & Berliner, 2006). T2-weighted images are generated by T2w sequences 

using longer TE and TR sequences for more pronounced Mxy decay, emphasising signal 

acquisition from tissues with longer T2 relaxation times over tissues with shorter T2 

relaxation times (Kawahara & Nagata, 2021; McRobbie et al., 2017; Robitaille & 

Berliner, 2006).  

The most commonly used T1w sequences in clinical and research settings are 

the Magnetization Prepared-RApid Gradient Echo (MP-RAGE) sequence and the turbo 

field echo sequence (Bernasconi et al., 2019; McRobbie et al., 2017; Mugler & 

Brookeman, 1991). Both generate 3D T1w anatomical images with emphasised grey 

and white matter, allowing for efficient brain analysis (Bernasconi et al., 2019; 

McRobbie et al., 2017; Mugler & Brookeman, 1991; Wang et al., 2020a). 

 

1.2.3. Opportunities and Challenges with 7-Tesla MRI 

3T MRI scanners are becoming more commonly used in clinical and research 

settings, but more recently, 7T MRI scanners have become available for human 

scanning, although they are much less common (McRobbie et al., 2017; Viessmann & 

Polimeni, 2021). These 7T MRI scanners possess significantly stronger magnets than 

their 3T counterparts, resulting in stronger B0 magnetic fields aligning more protons, 

generating stronger Mz, and causing them to precess at higher frequencies (Redpath, 

1998; Viessmann & Polimeni, 2021). The higher B0 magnetic field strength and 
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resulting precessing frequencies allow for shorter T1 relaxation times, resulting in 

stronger NMR signals (Karamat et al., 2016; Redpath, 1998). These stronger NMR 

signals lead to a higher SNR, higher signal contrast and, thus, better spatial resolution 

and identification of unwanted noise artefacts (Barisano et al., 2019; McRobbie et al., 

2017; Redpath, 1998; Viessmann & Polimeni, 2021). Overall allowing for the 

generation of T1w images of significantly higher quality, resulting in better diagnostic 

confidence and identification of epileptogenic lesions (Isaacs et al., 2020; Springer et 

al., 2016; Wang et al., 2020b).  

 However, it should be noted that while 7T MRI scans allow for the generation 

of T1w images with higher spatial resolutions than their lower field strength 

counterparts, they are not without limitations (Karamat et al., 2016). Due to the strength 

of their B0 magnetic field, the RF transmit field wavelengths used are significantly 

smaller than those used in 3T MRI scans and thus, B1 inhomogeneities are much more 

likely to occur, causing abnormal variations in signal intensities and image contrast 

(Hwang et al., 2019; Karamat et al., 2016). Additionally, 7T MRI scans are much more 

susceptible to geometric distortions, either due to gradient coil non-linearities in head-

only systems, in which gradient coil imperfections cause spatial inaccuracies and image 

distortions, or due to magnetic susceptibility artifacts, in which image distortions occur 

due to changes in magnetic properties at tissue interfaces (Collins et al., 1998; Karamat 

et al., 2016; Lau et al., 2016). 

Despite these issues, 7T MRIs are still being turned to more and more for MRI 

research due to their higher spatial resolution, allowing for more in-depth investigation 

and analysis while compensating for these issues by implementing gradient non-

linearities corrective applications and using sequences less sensitive to B1
+ 

inhomogeneity (Eggenschwiler et al., 2012; Haast et al., 2018; Khan & Haast, 2020; 

Marques et al., 2010; Oliveira et al., 2021).  

 

1.2.4. Anatomical Imaging Sequences at 7 Tesla 

 The Magnetization Prepared 2-RApid Gradient Echo (MP2RAGE) sequence is 

an altered version of the 3D MP-RAGE sequence designed to mitigate B1 

inhomogeneities (Marques et al., 2010; McRobbie et al., 2017). In this MRI sequence, 

an initial magnetisation preparation pulse is implemented, followed by two separate RF 

pulses, each after a specific amount of time (inversion times), generating two gradient-
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recalled echo (GRE) images (Marques et al., 2010; Metere et al., 2017). The first GRE 

image is generated after a short inversion time to optimise the SNR, while the second 

GRE image has a longer inversion time to optimise tissue contrast (Marques et al., 2010; 

Metere et al., 2017). The GRE images are then combined to make a T1w uniform image 

(UNI) with optimised SNR and tissue contrast, both of which mitigate the impact of B1 

inhomogeneities (Marques et al., 2010; Metere et al., 2017). 

 

1.2.5. Quantifying Structural Abnormalities with T1w MRI 

As highlighted in the introduction, T1w MRI images have been extensively 

employed in epilepsy research to investigate the various structural abnormalities 

associated with epilepsy. These structural MRI research studies typically use one of 

three neuroimaging analysis methods: region of interest (ROI) based volumetry, voxel-

based morphometry, or cortical thickness analysis.  

ROI-based volumetry is an MRI analysis method in which ROIs are outlined 

and their volume measured on an MRI scan (Emerton et al., 2009). In voxel-based 

morphometry, the density or volume of brain regions, typically grey matter regions, is 

measured on a voxel-wise basis in a standardised space (Ashburner & Friston, 2000). 

In cortical thickness analysis, the cortical thickness is measured either through voxel-

based analysis or via surface-based analysis, in which the pial surface and white matter 

surfaces are identified, and the distance between the two is measured (Fischl & Dale, 

2000; Hutton et al., 2008). Cortical thickness analyses are often considered the more 

sophisticated MRI analysis method as they allow for more nuanced and comprehensive 

data collection and analysis in comparison to other MRI analysis methods (Hutton et 

al., 2009; Winkler et al., 2019). For this reason, cortical thickness measures have been 

the focus of several epilepsy studies, including this one. 

 

1.2.5.1. MRI Surface Processing Pipeline  

To measure cortical thickness, T1w images must undergo a series of image-

processing steps; some of the most commonly used processing pipelines are those of 

FreeSurfer (Dale et al., 1999). FreeSurfer is a software tool used to analyse and 

visualise structural and functional brain imaging data, and its Surface-based analysis 

pipeline is commonly used to reconstruct the cortical surface and measure cortical 
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features such as cortical thickness, surface area and curvature at each vertex of the 

cortex (Dale et al., 1999; Fischl, 2012). In this processing pipeline, the MRI image 

volumes are affine registered to the Montreal Neurological Institute (MNI) MNI305 

atlas, after which the image undergoes skull-stripping, in which the extra-cerebral 

voxels are identified and removed (Collins et al., 1994; Dale et al., 1999; Ségonne et 

al., 2004). Afterwards, the remaining voxels of the image are classified as either white 

matter or non-white matter based on their signal intensities, after which the hemispheres 

are separated based on the voxels’ signal intensities and the MNI305 coordinates of the 

corpus callosum and pons (Dale et al., 1999; Ségonne et al., 2004). Once the 

hemispheres are separated and classified, the pipeline generates the white matter 

surface by tessellating the edge between the white matter voxels and the non-white 

matter voxels with a triangular mesh generating a wall separating the two voxel types 

(Dale et al., 1999). Within the triangular mesh, each triangle consists of three coordinate 

points called vertices (singular vertex) (Dale et al., 1999). The pial surface is then 

generated by ‘pushing’, adjusting towards, the white matter surface towards the 

intensity gradients of the cerebrospinal fluid and grey matter (Dale et al., 1999). Once 

the white and pial surfaces are generated, they are then marked out on the original T1-

weighted image and used to determine cortical measures such as cortical thickness by 

measuring the distance between the pial and white matter surfaces (Dale et al., 1999; 

Fischl & Dale, 2000). Once the FreeSurfer Surface-based pipeline has generated the 

pial surface, it can be delineated to map every cortical region of the MRI brain image 

based on a predefined brain atlas in a process called brain parcellation (Fischl et al., 

2004; Schaefer et al., 2018).  

 

1.2.5.2. Cortical Parcellation with Brain Atlases  

 The brain atlases used to parcellate brain scans are created by researchers, with 

each distinct region designed to be homogenous regarding either their functional, 

architectural, connectivity or topographical features (Eickhoff et al., 2018). The regions 

of these atlases, known as parcels, are determined based on the brain's structural, 

functional, connectivity features or a combination of all three (Fischl et al., 2004; 

Schaefer et al., 2018). The default brain atlas used in FreeSurfer is the Desikan-Killiany 

atlas, which divides the cortex into 34 parcels per hemisphere based on the gyri and 

sulci structural landmarks of the brain (Desikan et al., 2006;). Other commonly used 
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brain atlases are the Human Connectome Project Multi-Modal Parcellation (HCP-MMP) 

map and the Schaefer 2018 parcellation map (Glasser et al., 2016; Schaefer et al., 2018). 

The HCP-MMP map delineates the cortex into 180 parcels per hemisphere, the borders 

of which are based on where acute changes in cortical architecture, function, 

connectivity or topography occur (Glasser et al., 2016). The Schaefer 2018 parcellation 

map is generated using the gradient-weighted Markov Random Field (gwMRF) model, 

which parcellates the cortex based on resting-state functional connectivity; patterns of 

resting-state fMRI (rs-fMRI) signal synchronisation between brain regions (Schaefer et 

al., 2018). Each parcel is then further classified into a functional network based on rs-

fMRI patterns, either using a 7-network or 17-network categorisation scheme (Schaefer 

et al., 2018; Yeo et al., 2011). The Schaefer 2018 map is unique from other parcellation 

maps as it can be generated at varying resolution levels, ranging from 50 to 500 parcels 

per hemisphere (Schaefer et al., 2018). 

This study uses the 50-parcels per hemisphere and 100-parcels per hemisphere 

Schaefer atlases, referred to respectively as the 100-parcel and 200-parcel Schaefer 

2018 parcellation maps at the 17-network categorisation level (Schaefer et al., 2018) 

(Figure 2.1.). The 200-parcellation Schaefer 2018 map will be used as Fürtjes et al. 

(2023) have indicated that more finely segmented cortical maps allow for superior 

detection of subtle inter-individual morphometric changes (Fürtjes et al., 2023). The 

100-parcel Schaefer 2018 parcellation map will be used as its coarser cortical 

segmentation is more in line with past epilepsy research, making it easier to compare 

the results with past research as well as potentially allowing for the identification of 

clearer distinctions between major brain areas in subjects (Fürtjes et al., 2023). 
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1.2.6. Structural Covariance Analysis 

As stated earlier, graph theory is an incredibly useful tool for analysing brain 

network disruptions and changes via structural MRI scans that has been used in several 

epilepsy research papers as it allows for the investigation of how neurological disorders 

impact brain networks (Bernhardt et al., 2011; Bernhardt et al., 2013; Duan & Wen, 

2023; Larivière et al., 2022; Liu et al., 2023; Yasuda et al., 2015).  

 

1.2.6.1. Structural Covariance Connectivity Matrix 

When conducting structural covariance analysis, the first step is to calculate the 

correlations of anatomical features measured via structural MRI scans- cortical 

thickness in this study- between brain regions (Alexander-Bloch et al., 2013). These 

correlations are used to generate a connectivity matrix (Aij), a two-dimensional matrix 

 

 

 

  

Figure 1.1 The Schaefer 2018 100-parcel map (top) and the Schaefer 2018 

200-parcel map (bottom)  

(Schaefer et al., 2018; Rieck et al., 2021) 
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in which each row and column component represents a specific node (Alexander-Bloch 

et al., 2013; Fornito et al., 2016). Within this matrix, the intersection of each row and 

column contains the measure of cortical thickness correlation between the row’s node 

(𝑖) and the column’s node (𝑗) (Alexander-Bloch et al., 2013; Fornito et al., 2016).  

 

1.2.6.2. Thresholding and Binarization 

Once the connectivity matrix is constructed, a filtering process known as 

thresholding is applied, in which a percentage of the weakest edges are excluded from 

further analysis (Fornito et al., 2016). Before the thresholding is implemented, the 

absolute value of each edge is calculated to generate an absolute connectivity matrix 

consisting of non-negative values (Bernhardt et al., 2011; Bernhardt et al., 2013; 

Fornito et al., 2016). This prevents strong inverse correlations between nodes from 

being excluded from further analysis due to their negative values (Bernhardt et al., 2011; 

Fornito et al., 2016).  

Thresholding is applied since mathematical calculations of correlations between 

brain regions will often generate non-zero correlation matrices between every off-

diagonal brain region, implying a fully interconnected brain network (Fornito et al., 

2016). However, such levels of interconnectedness are improbable as even simpler 

organisms, such as macaque monkeys, do not possess fully connected networks when 

investigated using viral tract tracing (Fornito et al., 2016). As such, it is theorised that 

a portion of the non-zero correlation matrices are spurious connections and, thus, should 

be labelled as noise (Fornito et al., 2016). To minimise the impact of this noise on 

subsequent evaluations and analyses, a threshold value () is selected and all edges in 

the connectivity matrices with values below the threshold are eliminated as ‘noise’ 

(Fornito et al., 2016). The threshold value implemented on a connectivity matrix is 

typically determined either through a weight-based or a density-based thresholding 

strategy (Fornito et al., 2016). In the weight-based thresholding strategy, the researcher 

determines  based on the correlation matrices’ weight, prior research, or adherence to 

statistical significance criteria (Fornito et al., 2016). This form of thresholding is 

straightforward and allows for the focus to be placed on the stronger edges of the matrix 

(Fornito et al., 2016). However, it has limitations when comparing connectivity 

matrices across different individuals or population groups, as it does not consider 

variations in connection densities between the groups (Fornito et al., 2016).  
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In density-based thresholding, the threshold varies between matrices to ensure 

all connectivity matrices possess the same specific connectivity density (Cd), the 

proportion of non-zero connections out of the total potential connections that could be 

made in the network (Fornito et al., 2016). The connectivity density is defined below:  

C𝑑 =
𝐸𝜏

𝑁(𝑁 − 1)
 

Where 𝐸𝜏is the total number of edges above the threshold 𝜏, and N is the total 

number of nodes in the network (Fornito et al., 2016). While this strategy prevents over-

filtering low connectivity density matrices, it does risk allowing more noise edges to be 

included in the final dataset (Fornito et al., 2016).  

After applying the threshold to the absolute connectivity matrix (Aij), the matrix 

is transformed into a binary graph (Fornito et al., 2016). In this graph, all values above 

the threshold (τ) are assigned the value one, while those below the threshold are 

designated as zero, as shown in the equation below:  

𝐴𝑖𝑗 {
𝑖𝑓 (𝐶𝑖𝑗 ≥  𝜏) = 1 

𝑖𝑓 (𝐶𝑖𝑗 <  𝜏) = 0
 (Fornito et al., 2016) 

Within this graph, the total number of edges connected to each node (𝑖 ) is 

represented by (𝐸𝑖) (Fornito et al., 2016). 

1.2.6.3. Nodal Measures of Graph Theory 

The generated binary matrix is then used to determine the topological properties 

of the brain networks and interrelatedness in the regions within that network. Within 

the generated binary matrix, the network properties of each node were evaluated 

individually through the nodal measures of degree, betweenness centrality, shortest path 

length, clustering coefficient and participation coefficient (Bernhardt et al., 2011; 

Fornito et al., 2016; Yasuda et al., 2015).  

 

Degree 

In graph theory, degree (𝑘𝑖) is a simple measure of connectivity between an 

individual node and all nodes in the network by calculating the sum of edges in the 

binary matrix connecting to the node ( 𝑖 ). The degree ( 𝑘 ) measure for node 𝑖  is 

calculated through the following equation:  

𝑘𝑖 = ∑ 𝐴𝑖𝑗

𝑗=𝑖
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 In this equation, 𝐴𝑖𝑗 represents the total binary matrix (Fornito et al., 2016). A 

high nodal degree indicates a node is highly connected and likely a network hub, while 

a low nodal degree indicates that a node has very few with other nodes (Fornito et al., 

2016).  

  

Shortest Path Length 

Shortest path length (Lij), like degree, is one of the simpler measures of 

connectivity as a measure of the shortest path between an individual node and all other 

nodes; this measure is based on the coordinates of the nodes that are connected by an 

edge in the matrix (Fornito et al., 2016). The following equation defines shortest path 

length (Lij):  

𝐿𝑖𝑗 = 𝑚𝑖𝑛𝑝𝑖𝑗
(∑ 𝑤𝑝𝑘,𝑝𝑘+1

𝑁−1

𝑘=1
) 

In which 𝑚𝑖𝑛𝑝𝑖𝑗
 represents the minimum paths (𝑝) that connect node 𝑖 to node 

𝑗, 𝑤𝑝𝑘,𝑝𝑘+1
is the weight of the edge connecting these nodes (Fornito et al., 2016). The 

shortest path length is typically interpreted as an indicator of information transfer 

efficiency in a network, as it is assumed that information will travel through the shortest 

possible path in a network (Fornito et al., 2016). Increases in the measured shortest path 

length are interpreted as increases in structural connectivity and efficient 

communication with a node in a network and vice versa for decreases in shortest path 

lengths (Fornito et al., 2016; Yasuda et al., 2015).  

 

Betweenness Centrality 

Betweenness centrality (𝐶𝐵) is a metric measuring the number of shortest paths 

that pass through a node (𝑖), quantifying the importance of the node in facilitating the 

flow of information in a network (Bernhardt et al., 2011; Yasuda et al., 2015). This 

measure is based on the aforementioned assumption that information will always travel 

through the shortest path; thus, should a node lay at the centre of several short paths, it 

is reasonable to presume the node to be a central or bottle-neck component of a network 

(Fornito et al., 2016). Betweenness centrality is calculated through the following 

equation.   

𝐶𝐵(𝑖) =  
1

(𝑁 − 1)(𝑁 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗
ℎ≠𝑖,ℎ≠𝑗,𝑗≠𝑖
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This equation determines the proportion of shortest paths between nodes 𝑗 and 

ℎ (𝜌ℎ𝑗) that connect through node 𝑖 (𝜌ℎ𝑗(𝑖)) (Fornito et al., 2016). 

 

Clustering Coefficient 

The clustering coefficient (𝐶𝑙) is a measure that quantifies the level of local 

clustering or transitivity in the network by measuring how interconnected a node is to 

its neighbours (Bernhardt et al., 2011; Fornito et al., 2016; Yasuda et al., 2015). This 

interconnectedness is measured by determining the probability of the nodes 

neighbouring the 𝑖  node being connected to each other through the equation below 

(Arora & Majumdar, 2022; Bhattacharya et al., 2023; Fornito et al., 2016; Kong et al., 

2019). In this equation 𝐸𝑖 represents the number of edges connected to node 𝑖 while 𝑘𝑖 

represents the degree of node 𝑖 (Arora & Majumdar, 2022; Bhattacharya et al., 2023; 

Fornito et al., 2016; Kong et al., 2019). 

𝐶𝑙(𝑖) =  
2𝐸𝑖

𝑘𝑖(𝑘𝑖 − 1)
 

 

Participation Coefficient 

The participation coefficient (𝑃) measures how distributed and diverse a node’s 

connections are to modules, which are the well-connected communities within a 

network (Fornito et al., 2016; Yasuda et al., 2015). It is calculated by determining the 

portion of node 𝑖’s connectivity that can be attributed to each module in the following 

equation:  

𝑃 = 1 −  ∑ (
𝑘𝑖

𝑘𝑖
)

2𝑀

𝑚=1

 

 In this equation, 𝑀 is the total number of modules in the network, 𝑘𝑖(𝑚) is the 

number of connections between the node 𝑖 and the other nodes in module 𝑚 (Fornito 

et al., 2016). In this measure, higher participation coefficients indicate higher levels of 

diverse structural connectivities as these regions are possibly becoming more connected 

with and integrated into the network (Fornito et al., 2016; Yasuda et al., 2015).  
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1.2.6.4. Global Measures of Graph Theory 

Once the nodal measures for each of the individual nodes are determined, the 

measures for the overall brain network are evaluated through the global measures of 

average clustering, average shortest path length, assortativity, modularity and global 

efficiency (Bernhardt et al., 2011; Fornito et al., 2016; Yasuda et al., 2015).  

 

Average Clustering Coefficient 

The average clustering coefficient (𝐶𝑙�̅�) is a measure of the average clustering 

within the network, quantifying how densely interconnected the nodes of the network 

are (Bernhardt et al., 2011; Fornito et al., 2016; Yasuda et al., 2015). It is calculated by 

determining the average clustering coefficient per node in the through equation: 

𝐶𝑙�̅� =  
∑ 𝐶𝑙(𝑖)𝑖∈𝑁

𝑁
=  

1

𝑁
(∑

2𝐸𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

) 

 

Average Shortest Path Length 

The average shortest path length (𝐿) is a measure of the average shortest length 

path in the network, reflecting information transfer efficiency within the network 

(Fornito et al., 2016). It is calculated through the following equation, in which 𝑑(𝑗, 𝑖) 

represents the distance between node 𝑖 and 𝑗:  

𝐿 =  
∑ 𝑑(𝑗, 𝑖)𝑖≠𝑗

𝑁(𝑁 − 1)
 

(Fornito et al., 2016). 

 

Assortativity 

Assortativity (𝑎) is a measure, in graph theory, of whether nodes with similar 

structural properties tend to connect more often; it is based on the tendency of high-

degree nodes to connect with other high-degree nodes and for low-degree nodes to 

connect with other low-degree nodes (Fornito et al., 2016). Similar to Pearson’s 

correlation coefficient, positive assortativity indicates that nodes within the network 

possess high connectivity with similar structures; it is calculated through the following 

equation:  
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𝑎 =
𝐸−1 ∑ 𝑗𝑖𝑘𝑖𝑖 − [𝐸−1 ∑

1
2 (𝑗𝑖𝑘𝑖)𝑖 ]

2

𝐸−1 ∑
1
2 (𝑗𝑖

2 +  𝑘𝑖
2) − 𝑖 [𝐸−1 ∑

1
2 (𝑗𝑖 + 𝑘𝑖)𝑖 ]

2 

 In the equation, 𝐸 are the network edges, 𝑗𝑖 and 𝑘𝑖 are the degrees of 

the nodes linked by 𝑖-th edge, and 𝑖 = 1, ... , 𝐸 (Fornito et al., 2016). 

 

Modularity 

Modularity (𝑄) is a graph theory measure of how divided the nodes of a network 

are into modules, communities of strongly interconnected nodes, with high levels of 

modularity indicating that the nodes are highly connected to other nodes within their 

modules but weakly connected with nodes outside of their module (Fornito et al., 2016). 

Modularity of a network is determined through the following equation:  

𝑄 =  
1

2𝐸
∑(𝐴𝑖𝑗 − 𝑒𝑖𝑗) 𝛿(𝑚𝑖, 𝑚𝑗)

𝑖𝑗

 

 In this equation, 𝛿 refers to the Kronecker delta function, which equals one if 

node 𝑖 and node 𝑗 belong to the same module (𝑚𝑖 =  𝑚𝑗) but zero otherwise (Fornito 

et al., 2016). Additionally, 𝑒𝑖𝑗represents the total number of edges between node 𝑖 and 

node 𝑗 that occur due to chance, as calculated in the following equation:  

𝑒𝑖𝑗 =
𝑘𝑖𝑘𝑗

2𝐸
 

Global Efficiency 

Global efficiency (𝐸𝑔𝑙𝑜𝑏) measures how efficiently the network communicates 

information by inferring how well the information is communicated through all node 

pairs in the network (Fornito et al., 2016). The global efficiency of a network is defined 

as the average of the inverse shortest path lengths between all pairs of nodes, which is 

calculated in the following equation:  

𝐸𝑔𝑙𝑜𝑏 =
1

𝐿′
=

1

𝑁(𝑁 − 1)
∑

1

𝑑(𝑗, 𝑖)
𝑖≠𝑗
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2. Chapter 2: Materials & Methods 

2.1. Participants and Scanning 

 FTUS patients were recruited after having experienced an FTUS and 

undergoing ancillary testing that involved a 1.5T or 3T clinical MRI scan. Patients were 

not recruited if they possessed any significant medical comorbidities that could be 

contributing factors to the seizure occurrence or if the patient’s ancillary testing led to 

a diagnosis of epilepsy due to the identification of epileptogenic lesions or by the 

patient’s EEG scans possessing epileptiform discharges. Healthy controls were 

recruited from the local London, Ontario community, excluding all individuals who 

knowingly possessed a neurological disorder. 

After being recruited into the research project, participants were requested to 

visit the University of Western Ontario’s Centre for Functional and Metabolic Mapping 

for a 7T MRI scan. FTUS patients were excluded from the research study if they 

experienced a second unprovoked seizure prior to undergoing the 7T MRI scan or if an 

epileptogenic lesion was identified in a participant’s 7T MRI scan.  

Participant recruitment began in August 2016 and ended in September 2022, 

during which 32 participants were recruited for this research project: 16 FTUS patients 

(27.7 ± 12.1 years, nine males) and 16 age- and sex-matched healthy controls (29.8 ± 

11.9 years, nine males). Of the 16 FTUS patients, six received a formal epilepsy 

diagnosis after their 7T MRI scan. 7T MRI scan data of 16 healthy participants age- 

and sex-matched to the FTUS patients was also collected; seven of these 16 healthy 

control participants were selected from the Khan Lab SNSX healthy control database 

(Table 2.1). 

All participants provided informed consent, and ethical approval was obtained 

from the Health Sciences Research Ethics Board of the University of Western Ontario 

and Lawson Health Research Institute (See Appendix B). 
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2.2. Imaging protocol 

 All participants were scanned with the Siemens MAGNETOM Terra 7T MRI at 

the University of Western Ontario’s Centre for Functional and Metabolic Mapping. 

High-resolution 3D T1-weighted sagittal anatomical images were obtained using the 

3D MP2RAGE sequence, with the parameters set to a 6000 millisecond (ms) TR, 2.73 

ms TE, 4° flip angle, 240x240 millimetre (mm) field of view (FoV), 0.8 mm isotropic, 

and 208 contiguous slices. 

 After the MRI scans were taken, two resting-state fMRI sessions were acquired 

using an echoplanar imaging sequence (1250 ms TR, 20 ms TE, 208 mm FoV, 45° flip 

angle), 2 mm isotropic, 60 slices, 300 volumes, with multiband acceleration factor of 3, 

GRAPPA acceleration factor of 3 and 7/8 phase partial Fourier. During the fMRI scans, 

the participants were instructed to remain awake with their eyes closed for the resting 

state sequences. These fMRI scans were acquired for other research; we analysed them 

as ethically approved secondary analysis.  

 

 

 

 

 

 

Table 2.1. Participant Demographic Data 

Displays the demographic data of the First-Time Unprovoked Seizure patient group, the 

FTUS sub-group of patients confirmed as epileptic (CE) as well as the age- and sex-matched 

healthy controls (HC) of both, in which Female = F and Male = M. 

Groups FTUS (CE) HC (CE-matching controls) 

F FTUS 

(F CE) 

M FTUS 

(M CE) 

F HC  

(F CE controls) 

M HC 

(M CE controls) 

n        16 (6) 16 (6) 

7 (3) 9 (3) 7 (3) 9 (3) 

Age 

(years) 

27.7 (23.7) 29.8 (25.8) 

29.3 (19.7) 26.9 (27.7) 31.4 (22.3) 28.6 (29.3) 
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2.3. MRI Image Processing 

 The 7T MRI-generated images were processed in an anatomical pre-processing 

pipeline called anat_preproc that combined several processing pipelines (Figure 2.1). 

In this processing pipeline, the first thing done is to gradcorrect the brain scan images; 

gradcorrect is a Brain Imaging Data Structure application that corrects the gradient non-

linearity image distortions of the T1w images (Khan & Haast, 2020). Afterwards, the 

3dMPRAGEise processing script is used to remove unwanted background signals from 

UNI, using the Analysis of Functional NeuroImages (AFNI) toolbox and the two 

gradient echo images (INV1 and INV2) images generated by the MP2RAGE MRI 

sequence as a guideline in a process called denoising (Choi et al., 2018; Cox, 1996; 

Kashyap, 2021). Once denoised, the signals from non-brain tissue are identified and 

removed from the image using the deep learning program Synthstrip in a process called 

skull stripping (Hoopes et al., 2022). After skull stripping, the fMRIprep anatomical 

processing pipeline corrects the non-uniformity of MRI signal intensity in the images 

and employs the FreeSurfer recon-all processing pipeline on the corrected images (Dale 

et al., 1999; Esteban et al., 2018). In the recon-all processing pipeline, the 3D reference 

image is affine registered with the MNI305 atlas (Collins et al., 1994; Dale et al., 1999). 

This registration ensures that the MRI images possess seed points that can be read and 

used by the FreeSurfer algorithm (Dale et al., 1999). Once registered, the brain images 

were segmented based on brain matter type and hemispheres (Dale et al., 1999). 

Subsequently, white matter and pial surfaces were generated and outlined on the 

original T1-weighted image. These surfaces were then used to measure cortical 

parameters, such as cortical thickness, at each point along the cortex (Dale et al., 1999). 

The FreeSurfer recon-all output is then fed into the ciftify_recon_all processing 

pipeline, which converts the FreeSurfer recon-all produced files from a FreeSurfer 

format to a CIFTI format as well as implements MNI inter-subject anatomy-based 

registration and resampling (Dickie et al., 2019). The outputs of the ciftify_recon_all 

are then put into the ciftify_vis_recon_all pipeline to generate quality assurance 

visualisations, which were then reviewed by the researcher (Dickie et al., 2019). 
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Figure 2.1 anat_preproc Processing Pipeline. The anat_preproc processing pipeline 

which utilises multiple programs and processing pipelines to process the 7T MRI scans 

of the FTUS and HC participants. 

 

2.4. Data and Statistical Analysis 

2.4.1. Group analysis  

In this study, two sets of cortical thickness comparisons were conducted. The 

first set of analyses focused on the 16 FTUS patients and their 16 age- and sex-matched 

healthy controls, while the second set focused on the subset of six FTUS patients 

confirmed to be epileptic (CE) and their six age- and sex-matched healthy controls.  

Both sets of cortical thickness analyses compared the average cortical thickness 

per brain region of the patient groups with those of their age- and sex-matched healthy 

controls. Afterwards, the patient group and their matched control group were separated 

based on sex, and the cortical thickness comparison process was repeated for each sex 

for a set of sex-based comparisons.  

These comparisons were conducted once using the 17 network 200 parcel 

Schaefer 2018 atlas and again using the 17 network 100 parcel Schaefer 2018 atlas 

(Schaefer et al., 2017). Each cortical thickness comparison was conducted using the 

independent two-sample t-test, comparing the patient groups with their age- and sex-

matched healthy controls with p-value significance adjusted using the false discovery 

rate (FDR) Benjamini-Hochberg procedure to control for type 1 statistical errors (p < 

0.05, FDR correction for multiple comparisons) (Benjamini & Hochberg, 1995). 
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2.4.2. Structural Covariance Analysis 

Structural covariance analysis was used to evaluate and characterise any 

changes to the patterns of cortical thickness covariance between brain regions and the 

overall patterns of interrelatedness within the brain, using the Whitaker Labs structural 

covariance brain network analyses (SCONA) Python toolkit (Fornito et al., 2016; 

Whitaker & Staden, 2018). Within each participant group, the participant’s cortical 

thicknesses, after accounting for the covariate variable of age, were used by the toolkit 

to generate a correlation matrix quantifying the inter-regional relationships within each 

group using Pearson correlation coefficients (Whitaker & Staden, 2018). The absolute 

of each Pearson correlation coefficient value in these correlation matrices were then 

used to generate weighted graphs (connectivity matrices) representing the cortical 

thickness correlations between brain regions (as shown in Figure 3.5) (Fornito et al., 

2016; Whitaker & Staden, 2018). 

The density-based thresholding method was then used to filter out the weakest 

edges of the matrices until the matrices’ densities reached the threshold value () of 

15%, removing any superfluous connections within the matrices (Fornito et al., 2016; 

Whitaker & Staden, 2018). The threshold value of 15% was selected as it has been 

shown to be the minimal density at which all networks are fully connected based on the 

Bernhardt et al. (2011) and He et al. (2008) studies. SCONA thresholding is guided by 

a minimum spanning tree, which ensures that a path can be found between all of the 

remaining edges, minimising the potential of isolated nodes resulting from the density-

based thresholding (Fornito et al., 2016; Whitaker & Staden, 2018). Once thresholded, 

the weighted graph was binarised into an adjacency (binary) graph with edges filtered 

out of the matrix represented as zeros and the remaining edges as ones (Fornito et al., 

2016; Whitaker & Staden, 2018) (as shown in Figure 3.6). These adjacency graphs were 

then used to calculate the participant groups' nodal and global measures (Fornito et al., 

2016; Whitaker & Staden, 2018). The nodal measures used in this study were 

betweenness centrality, shortest path length, clustering coefficient and participation 

coefficient, while the global measures used were assortativity, global efficiency, 

average clustering coefficient, and average shortest path length (Fornito et al., 2016; 

Whitaker & Staden, 2018).  
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Structural covariance global and nodal measures were compared in two sets of 

comparisons, with each set of comparisons using a non-parametric 1000 permutation 

test (Phipson & Smyth, 2010). For each permutation, the raw cortical thickness data of 

the participants were randomly assigned to one of the two groups, after which the nodal 

and global measures for each ‘new’ group were calculated using the SCONA toolkit. 

This was repeated 1000 times, with a new randomised assignment of cortical thickness 

measures in each repetition, to generate a null distribution of differences (Artzy-

Randrup et al., 2004; Phipson & Smyth, 2010). This form of randomisation was used 

to ensure the data accurately represented the spatial distance between brain regions, as 

the proximity of two brain regions to each other has been shown to correlate positively 

with their cortical thickness covariance (Alexander-Bloch et al., 2013; Artzy-Randrup 

et al., 2004; Phipson & Smyth, 2010). This is important as should brain region 

proximities not be accounted for during randomisation there is a risk of any statistically 

significant differences between the subject data and the null distribution being due to 

the null distribution inaccurately representing the correlations and covariances of brain 

regions’ cortical thicknesses (Alexander-Bloch et al., 2013; Artzy-Randrup et al., 2004; 

Phipson & Smyth, 2010).  

The differences in nodal and global measures between the patient groups and 

their age- and sex-matched healthy controls were then placed in their corresponding 

null distributions to determine their percentile position in the distributions. This 

percentile position was used to determine the p-value significance level of the two-

tailed group difference between the patient group and their age- and sex-matched 

healthy controls; based on past research, this significance was thresholded at a p-value 

of 0.05 (Bernhardt et al., 2011; He et al., 2008). These p-values were then adjusted 

using the FDR Benjamini-Hochberg procedure to control for false positive errors 

(Benjamini & Hochberg, 1995). 

  



 

 34 

3. Chapter 3: Results 

As stated earlier, the cortical thicknesses of the study’s participants were 

parcellated on two levels: the 17 network 200 parcel Schaefer 2018 parcellation atlas 

and the 17 network 100 parcel Schaefer 2018 parcellation atlas. As parcellation maps 

with high levels of delineation, the Schaefer 2018 Parcellation maps possess multiple 

sub-divisions for each brain region.  

Due to a data storage error, the data for three FTUS patients, two of whom were 

CE patients, was lost after analysing the 200 parcellation data but before the analysis 

of the 100 parcellation data. As such, the data of these three FTUS patients and their 

age- and sex-matched healthy controls are not included in the 100 parcellation map data 

analysis.  

 

3.1. Cortical Thickness Comparisons  

At each parcellation map, the cortical thicknesses of the FTUS patients were 

compared with those of their age- and sex-matched healthy controls; this comparison 

was then repeated for sex-dependent comparisons between the groups. These 

comparisons were repeated once more with only the CE patients. 

3.1.1. 200 Parcellation Map Analysis 

The cortical thicknesses of the mixed-sex FTUS patients showed no statistically 

significant differences from their age- and sex-matched healthy controls when multiple 

comparison correction p-value adjustments were made (p < 0.05, FDR correction for 

multiple comparisons). However, there were trends (p < 0.05 uncorrected) of cortical 

thickening in the mixed-sex FTUS patients’ right extra-striatal, 

somatosensory/sensorimotor/sensorimotor, insular and mid-cingulate cortices as well 

as the dorsal- and lateral-prefrontal cortices (Fig. 3.1A). Similarly, when conducting 

sex-based comparisons, neither the male nor the female patients displayed statistically 

significant differences in cortical thickness once corrected for multiple comparisons. 

However, they did display trends (p < 0.05, uncorrected) of sex-dependent cortical 

thickening and thinning. The female FTUS patients showed a trend of cortical thinning 

in their left somatosensory/sensorimotor/sensorimotor cortex as well as their right 

somatosensory/sensorimotor/sensorimotor and striate-calcarine cortices (Fig. 3.1B). 
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The male FTUS patients showed a cortical thickening trend comparable to the sex-

independent analysis (Fig. 3.1C). 

 

When the cortical thicknesses of the mixed-sex CE patients were compared with 

those of their age- and sex-matched healthy controls, it was found that there were no 

statistically significant differences after applying the FDR Benjamini-Hochberg 

procedure (p < 0.05, FDR correction for multiple comparisons) (Benjamini & Hochberg, 

1995). There were trends (p < 0.05, uncorrected) of cortical thinning in the left 

somatosensory/sensorimotor cortex (Fig. 3.2A). There were also trends (p < 0.05, 

uncorrected) of cortical thickening in the temporal and secondary 

somatosensory/sensorimotor cortices as well as the lateral and ventral lateral cortices 

(Fig. 3.2A). In the right hemisphere of the mixed-sex CE patients, there were trends (p 

< 0.05, uncorrected) of cortical thickening in the precuneus, precuneus posterior 

Figure 3.1. Cortical Thickness Differences between FTUS patients and Healthy 

Controls on the 200 parcel Schaefer 2018 Atlas. 

The differences in average cortical thickness between the FTUS participants and their 

age- and sex-matched healthy controls (HC) were statistically significant prior to 

multiple comparison correction (p-value < 0.05, uncorrected). A) Mixed-sex FTUS 

participants compared with HC. B) Female FTUS participants compared with HC. C) 

Male FTUS participants compared with HC. 
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C.
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Figure 3.1. Cortical Thickness Differences between FTUS patients and Healthy 

Controls on the 200 parcel Schaefer 2018 Atlas.  

The differences in average cortical thickness between the FTUS participants and their 

age- and sex-matched healthy controls (HC) were statistically significant prior to 

multiple comparison correction (p-value < 0.05, uncorrected). A) Mixed-sex FTUS 

participants compared with HC. B) Female FTUS participants compared with HC. C) 

Male FTUS participants compared with HC. 
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cingulate, secondary somatosensory/sensorimotor, inferior parietal lobule, parietal 

operculum, temporal-parietal cortex, temporal pole and orbitofrontal cortices, as well 

as the ventral-, lateral-, medial posterior-prefrontal cortices (Fig. 3.2A).  

When conducting sex-based comparisons, neither sex displayed statistically 

significant differences in cortical thickness once corrected for multiple comparisons. 

The female CE patients displayed trends (p < 0.05, uncorrected) of bilateral cortical 

thinning in the somatosensory/sensorimotor cortices as well as cortical thickening in 

the left temporal, secondary somatosensory/sensorimotor, extra-striate superior, dorsal- 

and lateral-prefrontal cortices (Fig. 3.2B). The male CE patients displayed trends (p < 

0.05, uncorrected) of cortical thickening in the somatosensory/sensorimotor, temporal 

parietal, extrastriate, precuneus and dorsal lateral- and medial-prefrontal cortices (Fig. 

3.2C).  

 

 

Figure 3.2. Cortical Thickness Differences between CE patients and Healthy Controls 

on the 200 parcel Schaefer 2018 Atlas. 

The differences in average cortical thickness between the FTUS participants and their age- 

and sex-matched healthy controls (HC) were statistically significant prior to multiple 

comparison correction (p-value < 0.05, uncorrected). A) Mixed-sex CE participants 

compared with HC. B) Female CE compared with HC. C) Male CE compared with HC. 
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Figure 3.2 Cortical Thickness Differences between CE patients and Healthy 

Controls on the 200 parcel Schaefer 2018 Atlas. 

The differences in average cortical thickness between the FTUS participants and 

their age- and sex-matched healthy controls (HC) were statistically significant prior 

to multiple comparison correction (p-value < 0.05, uncorrected). A) Mixed-sex CE 

participants compared with HC. B) Female CE compared with HC. C) Male CE 

compared with HC. 
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3.1.2. 100 Parcellation Map Analysis 

On the 100 parcellation map level of analysis, the cortical thicknesses of the 

mixed-sex FTUS patients showed no statistically significant differences from their age- 

and sex-matched healthy controls when multiple comparison correction p-value 

adjustments were made (p < 0.05, FDR correction for multiple comparisons). However, 

there were trends (p < 0.05 uncorrected) of cortical thickening in the mixed-sex FTUS 

patients’ right medial- and lateral-prefrontal cortices (Fig. 3.3A).  

Similarly, when conducting sex-based comparisons, neither the male nor female 

patients displayed statistically significant differences in cortical thickness once 

corrected for multiple comparisons. However, they did display trends (p < 0.05, 

uncorrected) of sex-dependent cortical thickening and thinning. The female FTUS 

patients displayed a trend of cortical thinning in the right somatosensory/sensorimotor 

and striate calcarine cortices (Fig. 3.3B). The male FTUS patients showed a trend of 

cortical thickening in the left intraparietal sulcus and extrastriate cortex, the right 

intraparietal sulcus, somatosensory/sensorimotor, precuneus posterior cingulate, 

temporal occipital cortices and the right dorsal-, lateral- and ventral-prefrontal cortices 

(Fig. 3.3C).  

When the cortical thicknesses of the mixed-sex CE patients were compared with 

those of their age- and sex-matched healthy controls, it was found that there were no 

statistically significant differences after applying the FDR Benjamini-Hochberg 

procedure (p < 0.05, FDR correction for multiple comparisons), with trends (p < 0.05, 

uncorrected) of cortical thickening in the left secondary somatosensory/sensorimotor 

and lateral prefrontal cortices (Fig. 3.4A) (Benjamini & Hochberg, 1995). When 

conducting sex-based comparisons, neither sex displayed statistically significant 

differences in cortical thickness once corrected for multiple comparisons. The female 

CE patients displayed trends (p < 0.05, uncorrected) of cortical thinning in the 

somatosensory/sensorimotor cortex (Fig. 3.4B). They also displayed trends of cortical 

thickening in the cortices of the left extra-striate superior and insula and the right 
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inferior parietal lobule, post-central and medial posterior prefrontal cortices (Fig. 3.4B). 

The male CE patients displayed a single trend (p < 0.05, uncorrected) of cortical 

thickening in the precuneus posterior cingulate cortex (Fig. 3.4C). 

 

  

A.

B.

C.

Figure 3.3. Cortical Thickness Differences between FTUS patients and Healthy Controls 

on the 100 parcel Schaefer 2018 Atlas. 

The differences in average cortical thickness between the FTUS participants and their age- 

and sex-matched HC were statistically significant prior to multiple comparison correction 

(p-value < 0.05, uncorrected). A) Mixed-sex FTUS participants compared with HC. B) 

Female FTUS participants compared with HC. C) Male FTUS participants compared with 

HC. 
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Figure 3.3 Thickness Differences between FTUS patients and Healthy Controls on 

the 100 parcel Schaefer 2018 Atlas 

The differences in average cortical thickness between the FTUS participants and their 

age- and sex-matched HC were statistically significant prior to multiple comparison 

correction (p-value < 0.05, uncorrected). A) Mixed-sex FTUS participants compared 

with HC. B) Female FTUS participants compared with HC. C) Male FTUS 

participants compared with HC. 
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3.2. Nodal Measures  

As stated earlier, the structural covariance measures of the FTUS patients were 

compared with those of their age- and sex-matched healthy controls. These measures 

were calculated using the cortical thickness measurements' absolute correlations and 

adjacency matrices, as shown in Figure 3.5-3.6. This comparison was done using a non-

parametric 1000 permutation test while using the FDR Benjamini-Hochberg procedure 

to adjust the p-values to correct for multiple comparisons. This method was repeated 

for the CE patients and their age- and sex-matched healthy controls.  

 

 

 

  

Figure 3.4. Cortical Thickness Differences between CE patients and Healthy Controls 

on the 100 parcel Schaefer 2018 Atlas. 

The differences in average cortical thickness between the CE participants and their age- 

and sex-matched HC participants were statistically significant prior to multiple 

comparison correction (p-value < 0.05, uncorrected). A) Mixed-sex CE participants 

compared with HC. B) Female CE compared with HC. C) Male CE compared with HC. 
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Figure 3.4 Cortical Thickness Differences between CE patients and Healthy 

Controls on the 100 parcel Schaefer 2018 Atlas. 

The differences in average cortical thickness between the CE participants and their 

age- and sex-matched HC participants were statistically significant prior to multiple 

comparison correction (p-value < 0.05, uncorrected). A) Mixed-sex CE participants 

compared with HC. B) Female CE compared with HC. C) Male CE compared with 

HC.   
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Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 

 

 

 

 

 

 

 

 

 

Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 

 

 

 

 

 

 

 

 

 

Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 

Figure 3.5 The Absolute Correlation Matrices of the FTUS and HC participants 

in the 100-parcel Schaefer 2018 parcellation map.  

The absolute cortical thickness correlations of the participant groups, measured 

using the 100-parcel Schaefer 2018 parcellation map and labelled by network name: 

(A) The FTUS (B) Age- and sex-matched healthy controls. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 

B. 
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Figure 3.6. Adjacency Matrices of the FTUS participants and Healthy Controls  

The thresholded ( = 15%) and binarised adjacency matrices of FTUS and HC 

participants, measured using the 100-parcel Schaefer 2018 parcellation map and 

labelled by network name: (A) FTUS participants (B) Age- and sex-matched healthy 

controls. 

A. 

B. 
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Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 

 

 

 

 

 

 

 

 

 

Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 

Figure 3.5 The Absolute Correlation Matrices of the CE and HC participants 

in the 100-parcel Schaefer 2018 parcellation map.  

The absolute cortical thickness correlations of the participant groups, measured 

using the 100-parcel Schaefer 2018 parcellation map and labelled by network 

name: (A) CE participants (B) Age- and sex-matched healthy controls. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Absolute Correlation Matrices of the participants in the 100-parcel Schaefer 2018 parcellation 

map 

The absolute cortical thickness correlations of the participant groups, measured using the 100-parcel Schaefer 

2018 parcellation map and labelled their network: 

(A) The First-Time Unprovoked Seizure (FTUS) and (B) their age- and sex-matched healthy controls.  

(C) The FTUS patients confirmed epileptic (CE) patients and (D) and their age- and sex-matched HC 

participants 
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Figure 3.8. Adjacency Matrices of the CE participants and Healthy Controls  

The thresholded ( = 15%) and binarised adjacency matrices of the participants, 

measured using the 100-parcel Schaefer 2018 parcellation map and labelled by 

network name: (A) CE participants (B) Age- and sex-matched healthy controls. 

A. 

B. 
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3.2.1. 200 Parcellation Map Analysis 

It was determined that at the 200-parcellation map level of analysis, statistically 

significant changes were only observed when looking at the betweenness centrality of 

the female CE patients and the male CE patients during sex-dependent analysis (p < 

0.05, FDR correction for multiple comparisons) (Fig. 3.7). There were no other 

statistically significant changes in the nodal measures of the FTUS patients and the CE 

patients once multiple comparison correction was conducted (p < 0.05, FDR correction 

for multiple comparisons). However, there were notable trends (p < 0.05, uncorrected) 

of differences in the nodal measures of all the FTUS and the CE subjects compared to 

their healthy control counterparts. All of these are further elaborated on below. 

 

Betweenness Centrality 

It should be noted that the female and male CE patients displayed statistically 

significant betweenness centrality changes. The female CE patients displayed bilateral 

increases in the somatomotor cortices, their left temporal, auditory and striate calcarine 

cortices, as well as their right frontal eye fields, dorsal- and lateral-prefrontal cortices 

(Fig. 3.7A). They also displayed decreases in their left temporal pole, precuneus 

posterior cingulate and ventral lateral prefrontal cortices, as well as their right insula 

and superior parietal lobule (Fig. 3.7A). The male CE patients displayed increases in 

the right superior parietal lobule and left precuneus posterior cingulate as well as 

decreases in their left midcingulate cortex and their right secondary 

somatosensory/sensorimotor, temporal, striate, extra-striate inferior, dorsal- and ventral 

prefrontal cortices (Fig. 3.7B). 

While the FTUS and mixed-sex CE patients did not display any statistically 

significant changes in betweenness centrality once correcting for multiple comparisons, 

there were trends of changes when uncorrected. The mixed-sex FTUS patients 

displayed trends of betweenness centrality increases in the right anterior temporal 

cortex as well as the left extrastriate, medial- and dorsal-prefrontal cortices and a 

decrease in the right orbitofrontal cortex. The female FTUS patients displayed trends 

of increases in the left intraparietal sulcus and the cortices of the left temporal and right 

precuneus posterior cingulate. The male FTUS patients displayed only a decrease in 

their orbitofrontal cortex. Similarly, the mixed-sex CE patients displayed a trend of 
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decreases in their right post-central cortex, right inferior parietal lobule and right 

intraparietal sulcus.  

 

 

Clustering Coefficient  

The patterns of clustering coefficient changes in the FTUS patients and CE 

patients were not statistically significant once corrected for multiple comparisons, but 

there were trends of changes when uncorrected.  

The mixed-sex FTUS patients displayed clustering coefficient increases in the 

left insula, right somatosensory/sensorimotor cortex and right intraparietal sulcus, as 

well as decreases in the left extrastriate cortex and right medial prefrontal cortex. The 

female FTUS patients displayed bilateral increases in their temporal pole cortices, their 

left somatomotor cortex, along with the right insula, post-central and medial posterior 

prefrontal cortices. The male FTUS patients displayed decreases in the right ventral 

prefrontal cortex and their left secondary somatosensory/sensorimotor cortex, 

precuneus and ventrolateral prefrontal cortices. The mixed-sex CE patients displayed 

A.

B.

Betweenness Centrality Differences

Figure 3.7. Statistically significant betweenness centrality differences between CE patients 

and Healthy Controls on the 200 parcel Schaefer 2018 Atlas. 

The statistically significant (p-value < 0.05, FDR corrected) differences betweenness centrality 

measures of the CE participants and their age- and sex-matched healthy controls (HC) once 

corrected for multiple comparisons. A) Differences between Female CE and HC participants. B) 

Differences between Male CE and HC participants.
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Figure 3.9. Statistically significant betweenness centrality differences between 

CE patients and Healthy Controls on the 200 parcel Schaefer 2018 Atlas. 

The statistically significant (p-value < 0.05, FDR corrected) differences betweenness 

centrality measures of the CE participants and their age- and sex-matched healthy 

controls (HC) once corrected for multiple comparisons. A) Differences between 

Female CE and HC participants. B) Differences between Male CE and HC 

participants. 
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an increase in the clustering coefficient of their left parahippocampal cortex. However, 

this difference did not persist when comparing the CE patients based on sex. 

 

Participation Coefficient 

None of the observed patterns of participation coefficient changes were 

statistically significant once corrected for multiple comparisons, but there were several 

trends of changes when uncorrected.  

The mixed-sex FTUS patients displayed trends of participation coefficient 

increases in the left lateral prefrontal cortex. They also displayed decreases in the right 

somatosensory/sensorimotor cortex and intraparietal sulcus as well as the left insula, 

orbitofrontal cortices and precuneus posterior cingulate cortices. The female FTUS 

patients displayed decreases in the left striate cortex and the right 

somatosensory/sensorimotor and post-central cortices. The female FTUS patients also 

displayed bilateral increases in their precuneus, right insula, and right temporal 

occipital cortex. The male FTUS patients displayed decreases in their left temporal pole 

and ventral prefrontal cortex as well as bilateral increases in their 

somatosensory/sensorimotor cortex and their right mid-cingulate cortex.  

The mixed-sex CE patients displayed bilateral increases in their 

somatosensory/sensorimotor and dorsal-prefrontal cortices. They also displayed 

increases in their left orbitofrontal, temporal pole, and dorsal prefrontal cortices, as well 

as their right central and extra-striate cortices. In comparison, the female CE patients 

displayed a decrease in their right temporal occipital cortex and an increase in their left 

post-central cortex. The CE male patients displayed no trends of differences in their 

participation coefficient. 

 

Shortest Path Length 

The observed patterns of shortest path length changes were not statistically 

significant once corrected for multiple comparisons in either group, but there were 

several trends of changes when uncorrected.  

The mixed-sex FTUS patients displayed increases in the shortest path lengths 

of the left superior extrastriate and left precuneus posterior cingulate cortices and a 

decrease in the right anterior temporal lobe. The female FTUS patients displayed 

bilateral decreases in their precuneus posterior cingulate cortex and left extra-striate. 

The male FTUS patients displayed an increase in their right inferior parietal lobule and 
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a decrease in their right inferior parietal lobule and somatosensory/sensorimotor cortex. 

None of the CE patients displayed trends of differences in their shortest path lengths. 

 

3.2.2. 100 Parcellation Map Analysis 

When analysing the nodal measures of the participants at the 100-parcellation 

map level of analysis, it was found that both the female and male CE patients displayed 

statistically significant differences from their healthy control counterparts in the 

betweenness centrality nodal measure (p < 0.05, FDR correction for multiple 

comparisons) (Fig. 3.8). Additionally, the female CE patients displayed statistically 

significant differences in the participation coefficient measure and clustering 

coefficient measures, while the males displayed statistically significant differences in 

shortest path lengths (p < 0.05, FDR correction for multiple comparisons) (Fig. 3.9 – 

3.10 & Fig. 3.11). Beyond the statistically significant differences in nodal measures, 

there were trends (p < 0.05, uncorrected) of nodal measure differences between the 

patient groups and their age- and sex-matched healthy controls. All of the statistically 

significant differences (p < 0.05, FDR correction for multiple comparisons) and trends 

(p < 0.05, uncorrected) are further elaborated on below. 

 

Betweenness Centrality  

The female and male CE patients displayed statistically significant (p < 0.05, 

FDR correction for multiple comparisons) changes in their betweenness centrality. The 

Female CE patients displayed decreases in the left precuneus and striate as well as the 

right temporal-parietal, temporal pole, orbitofrontal, and lateral prefrontal cortices (Fig. 

3.8A). They also displayed statistically significant (p < 0.05, FDR correction for 

multiple comparisons) increases in the left central, frontal medial, inferior extrastriate, 

temporal and ventral prefrontal cortices as well as the right insula, parietal occipital and 

secondary somatosensory/sensorimotor cortices (Fig. 3.8A). The male CE patients 

displayed statistically significant (p < 0.05, FDR correction for multiple comparisons) 

bilateral decreases in the insula, the left secondary somatosensory/sensorimotor cortex, 

as well as the right somatosensory/sensorimotor and lateral prefrontal cortices (Fig. 

3.8B). They also displayed statistically significant (p < 0.05, FDR correction for 

multiple comparisons) bilateral increases in the inferior parietal lobule and lateral 
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prefrontal cortex as well as the left posterior cingulate and precuneus cortices and the 

right parietal medial, dorsolateral- and medial-prefrontal cortices (Fig. 3.8B). 

All the FTUS patients and mixed-sex CE patients did not display statistically 

significant differences once corrected for multiple comparisons, but there were trends 

of changes when uncorrected. The mixed-sex FTUS patients displayed betweenness 

centrality increases in their left precuneus, extrastriate, and medial prefrontal cortices. 

The female FTUS patients displayed increases in the left retrosplenial, extrastriate and 

inferior extra-striate cortices. Similarly, the mixed-sex CE patients displayed a non-

statistically significant decrease in the left inferior extrastriate.  

  

Clustering Coefficient  

Only the female CE patients displayed statistically significant (p < 0.05, FDR 

correction for multiple comparisons) changes in their clustering coefficient measures. 

The female CE patients displayed decreases in the left secondary 

Figure 3.10. Statistically significant Betweenness Centrality differences between the 

CE patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas. 

The statistically significant (p-value < 0.05, FDR corrected) differences in nodal measures 

of the CE participants and their age- and sex-matched healthy controls (HC) once 

corrected for multiple comparisons. A) Betweenness centrality differences between 

Female CE participants and with HC. B) Betweenness centrality differences between Male 

CE participants and HC.  
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Betweenness Centrality Differences

Figure 3.8. Statistically significant Betweenness Centrality differences between the CE 

patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas. 

The statistically significant (p-value < 0.05, FDR corrected) differences in nodal measures 

of the CE participants and their age- and sex-matched healthy controls (HC) once corrected 

for multiple comparisons. 

A) Betweenness centrality differences between Female CE participants and with HC. B) 

Betweenness centrality differences between Male CE participants and HC. 

A.  

B. 



 

 49 

somatosensory/sensorimotor, extra-striate and striate calcarine, as well as the right 

parietal medial and ventral prefrontal cortices (Fig. 3.9). They also displayed 

statistically significant (p < 0.05, FDR correction for multiple comparisons) increases 

in the left striate, precuneus and precuneus posterior cingulate cortices as well as the 

right temporal-parietal and dorsal prefrontal cortices (Fig. 3.9).  

 

None of the patterns of clustering coefficient changes in all the FTUS patients, 

the mixed-sex CE patients and male CE patients were statistically significant once 

corrected for multiple comparisons, but there were trends of changes when uncorrected. 

The mixed-sex FTUS patients displayed a decrease in the clustering coefficient 

of the right ventral prefrontal cortex. The female FTUS patients displayed bilateral 

increases in the precuneus posterior cingulate cortex, the left precuneus, and the right 

parietal operculum. The male FTUS patients displayed a decrease in the right temporal 

pole cortex as well as increases bilaterally in the temporal parietal, the right superior 

parietal lobule, and the extra-striate cortex. The mixed-sex CE patients displayed no 

trends of clustering coefficient changes. The male CE patients also displayed trends of 

decreases in the left dorsal prefrontal cortex as well as the right orbitofrontal and 

somatosensory/sensorimotor cortices.  
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Clustering Coefficient Differences

Figure 3.9. Statistically significant Clustering coefficient differences between the 

Female CE patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas. 

The statistically significant differences (p-value < 0.05, FDR corrected) in the Clustering 

coefficient measures of the female CE participants and their age- and sex-matched 

healthy controls (HC) once corrected for multiple comparisons. 

Figure 3.11. Statistically significant Clustering coefficient differences between the Female 

CE patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas.  

The statistically significant differences (p-value < 0.05, FDR corrected) in the Clustering 

coefficient measures of the female CE participants and their age- and sex-matched healthy 

controls (HC) once corrected for multiple comparisons.  
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Participation Coefficient 

Similar to the clustering coefficient, only the female CE patients displayed 

statistically significant (p < 0.05, FDR correction for multiple comparisons) changes in 

their participation coefficient measures. The female CE patients displayed bilateral 

decreases in the superior extra-striate cortices and the right precuneus posterior 

cingulate cortex as well as the left insula, medial parietal and lateral prefrontal cortices 

(Fig. 3.10). The female CE patients also displayed increases in the right 

somatosensory/sensorimotor and central cortices (Fig. 3.10). 

None of the patterns of participation coefficient changes in all the FTUS patients, 

mixed-sex CE patients and male CE patients were statistically significant once 

corrected for multiple comparisons, but there were trends of changes when uncorrected. 

The mixed-sex FTUS patients displayed an increase in the participation coefficient of 

the dorsal prefrontal cortex as well as decreases in the striate, superior extra-striate, 

parahippocampal and ventrolateral prefrontal cortices. The female FTUS patients 

displayed a decrease in the left extra-striate, precuneus posterior cingulate and 

orbitofrontal cortices, as well as the right parietal operculum and dorsolateral prefrontal 

cortex. The male FTUS patients displayed decreases in the left frontal medial, extra-

striate, dorsal- and lateral-prefrontal cortices as well as the right post-central cortex. 

The mixed-sex CE patients displayed a decrease in the left inferior extra-striate 

and right inferior parietal lobule. Additionally, they displayed bilateral increases in the 

lateral prefrontal cortices, the left extra-striate, the right insula, auditory, secondary 

somatosensory/sensorimotor, orbitofrontal, and lateral prefrontal cortices. 
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Figure 3.10. Statistically significant Participation coefficient differences between the 

Female CE patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas. 

The statistically significant differences (p-value < 0.05, FDR corrected) in the Participation 

coefficient measures of the female CE participants and their age- and sex-matched healthy 

controls (HC) once corrected for multiple comparisons. 

Figure 3.12. Statistically significant Participation coefficient differences between 

the Female CE patients and Healthy Controls on the 100 parcel Schaefer 2018 

Atlas.  

The statistically significant differences (p-value < 0.05, FDR corrected) in the 

Participation coefficient measures of the female CE participants and their age- and 

sex-matched healthy controls (HC) once corrected for multiple comparisons. 
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Shortest Path Length 

Only the male CE patients displayed trends (p < 0.05, uncorrected) of shortest 

path length as well as statistically significant differences (p < 0.05, FDR correction for 

multiple comparisons); these large-scale patterns of differences can be seen in Fig. 3.11. 

The FTUS patients displayed non-statistically significant (p < 0.05, uncorrected) 

change trends, but neither the mixed-sex nor the female CE patients displayed any 

trends. The mixed-sex FTUS patients displayed an increase in the shortest path length 

of the right inferior parietal lobule. The female FTUS patients displayed increases in 

the cortices of the left insula and parietal operculum as well as the left extra-striate 

superior and post-central cortices. The male FTUS patients displayed a decrease in the 

right temporal and occipital cortex, as well as increases in the left insula and bilaterally 

in the somatosensory/sensorimotor and dorsal prefrontal cortices. 

 

3.3. Global Measures  

The patient groups, FTUS patients and CE patients, displayed no statistically 

significant differences (p < 0.05, FDR correction for multiple comparisons) in their 

global measures compared to their age- and sex-matched healthy controls. This lack of 

statistical significance persisted regardless of parcellation level, both 100 parcellation 

maps and 200 parcellation maps, and sex. No trends of differences trends (p < 0.05, 

uncorrected) were identified either.  
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Figure 3.11. Statistically significant Shortest path length differences between the Male 

CE patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas. 

The statistically significant differences (p-value < 0.05, FDR corrected) in the Shortest 

path length measures of the male CE participants and their age- and sex-matched healthy 

controls (HC) once corrected for multiple comparisons. 

Figure 3.13. Statistically significant Shortest path length differences between the 

Male CE patients and Healthy Controls on the 100 parcel Schaefer 2018 Atlas. 

The statistically significant differences (p-value < 0.05, FDR corrected) in the Shortest 

path length measures of the male CE participants and their age- and sex-matched healthy 

controls (HC) once corrected for multiple comparisons.  
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4. Chapter 4: Discussion 

4.1. Overview 

This case-control study investigated cortical thickness changes in FTUS 

patients by comparing their cortical thicknesses with those of age- and sex-matched 

healthy controls based on the comparison methods used in past epilepsy research 

(Bernhardt et al., 2009; Bernhardt et al., 2010; Galovic et al., 2019; Jber et al., 2020; 

Kemmotsu et al., 2011; Ogren et al., 2018). Based on past research, higher cortical 

thickness levels in patients relative to healthy controls would be interpreted as cortical 

thickening, and lower cortical thicknesses would indicate cortical thinning. The 

measured cortical thicknesses were used to conduct a structural covariance analysis to 

identify any neural network disruptions occurring in the patient groups (Bernhardt et 

al., 2011; Liu et al., 2023). These comparisons were conducted twice, employing two 

distinct levels of the 17-network Schaefer 2018 atlas: the 200-parcel atlas and the 100-

parcel atlas (Schaefer et al., 2017). 

 

4.1.1. Cortical Thickness  

In both the 200-parcel and 100-parcel atlases, there were no statistically 

significant patterns of cortical thickness changes after adjusting for multiple 

comparisons using the FDR Benjamini–Hochberg method (Benjamini & Hochberg, 

1995) 

 

4.1.2. Structural Covariance Analysis Nodal Measures  

In both the 200-parcel and 100-parcel atlases, the CE patients displayed 

statistically significant betweenness centrality changes but only when conducting sex-

dependent analyses. At the 200-parcel level, the female CE patients displayed bilateral 

betweenness centrality decreases in the frontal and temporal cortices, indicating that 

these regions are becoming less important to information transference in the network, 

while the increases in the parietal cortices indicating they are becoming more important 

(Fornito et al., 2016). The opposite occurred for the male CE patients as they displayed 
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increases in the prefrontal, occipital, temporal and parietal cortices, indicating such 

regions are becoming connection hubs networks (Fornito et al., 2016).  

At the 100-parcel level, these betweenness centrality changes shift as the female 

CE patients exhibited intriguing fluctuations. The female CE patients displayed both 

increases and decreases within the frontal, temporal and occipital cortices rather than 

solely an increase or decrease, with contrasting changes occurring within the 

contralateral brain region, showing an opposite change. Similar patterns of change 

occurred in the male CE patients in the prefrontal, frontal and parietal cortices, with 

slightly more increases occurring than decreases. Overall, these patterns of change 

indicate a disruption of inter-regional communication (Fornito et al., 2016).  

Additional sex-dependent statistically significant differences were present in the 

nodal measures of the CE patients at the 100-parcel level; the females exhibited 

clustering coefficient and participant coefficient changes, while the males displayed 

shortest path length changes. The female CE patients exhibited decreases in participant 

coefficients across the prefrontal, motor, occipital, parietal, and insula cortices, 

alongside an increase in the motor and central cortices of the frontal lobe. These 

alterations collectively suggest a reduction in the diverse structural connectivities 

within these regions, reinforcing the possibility of ongoing structural reorganisation 

(Fornito et al., 2016). The female CE patients’ clustering coefficients increased and 

decreased within the frontal, parietal and occipital cortices rather than solely increasing 

or decreasing, except for the parietal temporal cortex, which displayed a distinct 

increase. Such changes indicate complex structural connectivity reorganisation within 

these regions (Fornito et al., 2016). The male CE patients showed widespread changes 

in their shortest path lengths. Specifically, their frontal lobes displayed decreased 

structural connectivity and efficiency as their shortest path lengths increased. In 

contrast, their parietal and temporal cortices displayed shortest path length decreases, 

indicating increased structural connectivity and efficiency (Fornito et al., 2016). 

 

4.1.3. Structural Covariance Analysis Global Measures  

Despite statistically significant nodal measure differences observed in the CE 

patients at both parcellation levels, neither of the patient groups displayed any 

statistically significant differences in global measures, even when conducting sex-

dependent analyses. 
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4.2. Significance 

Cortical thinning and overall grey matter atrophy is a well-documented 

structural phenomenon in PWE, with several studies showing that PWE experience 

progressive widespread cortical thinning (Bernhardt et al., 2009; Bernhardt et al., 2010; 

Bernasconi et al., 2004; Coan et al., 2014; Galovic et al., 2019; Jber et al., 2020).  The 

progressive nature of this cortical thinning, especially that it is most prominent in the 

first five years following seizure onset, was the basis for this research study as it 

suggests the possibility of such changes being detectable as early as the first seizure 

onset (Bernasconi et al., 2004; Coan et al., 2014; Galovic et al., 2019; Jber et al., 2020). 

Further structural covariance analysis was conducted on the FTUS patients to 

investigate whether there were observable changes to the patients’ structural covariance 

brain networks (SCN), as past epilepsy research has determined that epilepsy is a 

network disorder (Bernasconi et al., 2004; Bernhardt et al., 2011; Larivière et al., 2022; 

Wang et al., 2023). In the Bernasconi et al. (2004) study, it was proposed that the 

observed patterns of grey matter volume atrophy in TLE were the product of decreasing 

the white matter projections in the TLE patients’ temporal and frontal lobes, disrupting 

their frontotemporal networks and resulting in their becoming epileptic. While the 

cause of epilepsy cortical thinning and network disruptions remain uncertain, there is 

increasing support for the explanation proposed in the Bernasconi et al. (2004) study. 

Several studies have provided evidence indicating that the network disruptions 

occurring in PWE are associated with a decline in neuronal-axonal connections and 

white matter fibre tracts, which in turn cause cortical thinning (Bernasconi et al., 2004; 

Bernhardt et al., 2011; Bernhardt et al., 2013; Bernhardt et al., 2009; Liu et al., 2017; 

Liu et al., 2023; Yasuda et al., 2015; Wang et al., 2023). 

This study revealed various sex-dependent patterns of SCN changes among the 

CE patients throughout the cortex. However, despite such changes, there was no 

statistically significant cortical thinning or thickening after FDR multiple comparison 

corrections. This indicates that the SCN alterations associated with epilepsy occur 

before statistically significant cortical thickness changes occur, supporting the notion 

that epilepsy-related cortical thinning is affected by network disruptions, as proposed 

by Bernasconi et al. (2004). In summary, the extensive changes in the nodal measures 

of the CE patients’ SCNs suggest that their small-world networks are significantly 

disrupted and reorganised.  
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As stated in the Introduction, past studies have documented patterns of brain 

network changes, determined via structural covariance analysis, occurring in patterns 

dependent on the type of epilepsy the patient is experiencing (Bernhardt et al., 2011; 

Bernhardt et al., 2013; Bernhardt et al., 2009; Larivière et al., 2022; Liu et al., 2023; 

van Diessen et al., 2013; Wang et al., 2023; Yasuda et al., 2015). Individuals with TLE 

exhibit disruptions to their small-world networks as their node hubs go from being 

evenly distributed to being predominantly concentrated in the limbic and temporal 

cortices, with these regions increasing in local connectivity while decreasing in global 

efficiency (Bernhardt et al., 2011; Bernhardt et al., 2013; Larivière et al., 2022; van 

Diessen et al., 2013; Yasuda et al., 2015). Such changes occur in a lateralised manner 

as the increases in connectivity occur ipsilateral to the seizure focus, TLE type, while 

the decreases occur contralateral to it (Bernhardt et al., 2011; Larivière et al., 2022; 

Wang et al., 2023; Yasuda et al., 2015). In comparison, those with FLE display overall 

reductions in their small-world network nodal measures, with the network hubs shifting 

towards the parietal lobes (Liu et al., 2023). Similarly, IGE cases, PWE displayed 

significant small-world network disruption as the nodal measures throughout the 

temporal, frontal and parietal cortices show a notable decrease (Larivière et al., 2022). 

While this study observed network changes in FTUS patients, the primary similarity 

between these changes and the patterns identified in previous research predominantly 

lies in their occurrence rather than in the specific patterns in which they occur. Such 

dissimilarity in this study’s findings from past research could be due to several factors, 

including, but not limited to, the fact that the data collection and analysis was focused 

on FTUS patients while past research was predominantly focused on diagnosed PWE. 

As such, the patients in this study and past research are at very different stages of 

epilepsy progression, an important factor as the aforementioned patterns of epilepsy-

type dependent brain network changes have been shown to be progressive and 

influenced by factors such as epilepsy duration, seizure frequency and AED/ASM load 

(Drenthen et al., 2018; Larivière et al., 2022; van Diessen et al., 2013). This suggests a 

possibility that the patterns of epilepsy-type dependent brain network changes become 

more evident and in line with expectations over time, possibly explaining the 

discrepancy between the patterns observed in this study and the patterns observed in 

past studies (Drenthen et al., 2018; Larivière et al., 2022; van Diessen et al., 2013). 

However, as there is no known cause behind the cortical thickness and SCN changes 
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observed in PWE, it is currently not possible to state definitively why such patterns of 

SCN changes are occurring in the CE patients.  

 

4.3. Limitations and Future Research 

This study noted that the CE patients displayed patterns of SCN changes distinct 

from any SCN patterns previously detected in PWE. While these patterns of SCN 

changes could be attributed to the early stage of epilepsy, an alternative explanation for 

the observed changes could be the study's parcellation maps, the current sample size, 

especially that of the CE participant group, as well as the technical and statistical issues 

regarding the processing and analysis of the MRI data.  

 

4.3.1. Parcellation Maps 

In this study, two parcellation maps were used: the 100-parcel and 200-parcel 

Schaefer 2018 parcellation maps, which could potentially contribute to the unique 

patterns of SCN changes observed (Fürtjes et al., 2023; Schaefer et al., 2018). Although 

more finely segmented, the Schaefer 2018 parcellation map is less commonly employed 

in epilepsy research. Many epilepsy studies prefer coarser parcellation maps, such as 

the 68 Desikan-Killiany atlas, risking more subtle SCN changes in PWE being 

overlooked (Fürtjes et al., 2023; Larivière et al., 2022). As a result, the distinctiveness 

of the SCN changes observed in this study could be attributed to such changes being 

overlooked in past research (Fürtjes et al., 2023). Furthermore, it is worth noting that 

differences in the layout of parcellation maps can impact the quantification of SCNs as 

they vary in their distribution and assignment of cortical regions, which, in turn, can 

affect the calculated cortical correlations as well as the global and nodal measurements 

(Fürtjes et al., 2023; Yao et al., 2015). Such variations were observed in the Pegg et al. 

(2020) IGE meta-analysis in which, of the 13 studies compiled and analysed, the only 

two that used different parcellation maps were also the only ones that displayed 

variations in their nodal measures. Currently, there is no definitive parcellation map 

that can be used for epilepsy research. However, future studies may benefit from 

employing multiple commonly used parcellation maps, akin to the approach adopted in 

this study. Such an approach would enable their findings to be compared to past and 

future research, enhancing the continuity and comparability of results. 
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4.3.2. Sample Size Issues  

The sample of this study was relatively small, with an initial sample of 16 

individuals who experienced an FTUS; of these individuals, six were diagnosed with 

epilepsy after undergoing a 7T MRI scan. As an incredibly heterogeneous neurological 

disorder, cases of epilepsy vary in how the seizures manifest and their site origin (Fisher 

et al., 2017; Scheffer et al., 2017). Due to the stage at which the CE patients were 

diagnosed with epilepsy, several lacked identified seizure-onset sites; this, combined 

with the already small sample of CE patients, led to this variable not being accounted 

for during the statistical analysis. Consequently, the cortical thickness and SCN 

analyses were performed on a group of CE patients that could hypothetically consist of 

various epilepsy types. This could be a contributing factor to the pattern of observed 

results, as several studies have shown that in PWE, the lateralisation of seizure onset 

influences the observed patterns of cortical thickness and SCN changes (Bernhardt et 

al., 2011; Drenthen et al., 2018; Larivière et al., 2022; van Diessen et al., 2013). Thus, 

the SCN changes observed could be due to the data representing a mixture of epileptic 

conditions. 

This is one of many issues regarding the patient group sample size, as the overall 

FTUS sample size is small, which limits sensitivity to differences between the FTUS 

patients and the healthy controls. The issue of small sample sizes in such epilepsy 

research is best illustrated in the study conducted by Dickey et al. (2022). Their analysis 

of 69 epilepsy surgery studies conducted from 1980 to 2020 revealed a median sample 

size of 39 subjects with a notably low statistical power of .24 (Dickey et al., 2022). 

Similarly, in the Bernhardt et al. (2010) and Carmon et al. (2020) studies, it was 

estimated that for a statistically significant difference to be identified between 

participant groups with a meaningful amount of statistical power, a considerably larger 

sample size would be required. However, the suggested sample size varied between the 

two studies, as the power analysis conducted by Bernhardt et al. (2010) suggested a 

sample size of 160 participants, while Carmon et al. (2020) suggested a minimum of 

30 participants. The challenge of small sample sizes is exacerbated in the case of the 

six CE patients in this study, especially when conducting sex-based group analyses. 

These analyses further reduced the sample size from six participants to three and 
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subsequently down to two when conducting the analyses using the 100-parcel 17-

network Schaefer 2018 atlas due to a data issue. 

Future 7T MRI research regarding cortical thickness changes of individuals 

experiencing a first-time unprovoked seizure should aim to use a larger sample size, 

ideally one closer to 160 patients, as estimated by Bernhardt et al. (2010) or at minimum 

30 patients, as indicated in Carmon et al. (2020). Moreover, for enhanced patient 

classification of FTUS patients as possessing epilepsy, future research should consider 

implementing a two-year minimum wait period after FTUS occurrence before 

analysing participant data. This timeframe allows multiple EEGs to be conducted, 

facilitating more reliable epileptiform abnormality detection (Baldin et al., 2014). 

Additionally, the likelihood of a second seizure and subsequent epilepsy diagnosis 

decreases significantly after two years, warranting this suggested waiting period (Berg, 

2008).  

 

4.3.3. Technical Considerations 

Several additional weaknesses of this study were due to the use of the relatively 

novel 7T MRI neuroimaging for structural data acquisition. The superior strength of the 

7T MRI magnets allows for the generation of T1w images with higher SNR and, thus, 

better spatial resolution. However, the positives of these stronger magnets do not come 

without negatives, as 7T MRIs are much more likely to experience B1+ transmit field 

inhomogeneities and geometric artefacts than MRIs of lower strength (Collin et al., 

1998; Haast et al., 2018; Karamat et al., 2016; Lau et al., 2018; Vaughan et al., 2001). 

While the gradient non-linearities were corrected for in the anat_preproc pipeline 

through the use of the gradcorrect application, there is no guarantee that the geometric 

artefacts present in the MRI images were not fully corrected (Khan & Haast, 2020; Lau 

et al., 2018). Future research would benefit from also implementing the field map 

correction methodology used by the Human Connectome Project (Glasser et al., 2013; 

Lau et al., 2018). 

B1
+ transmit field inhomogeneities manifest when the B1 field fails to be 

homogenous throughout the scanner, theses inhomogeneities have been noted to be 

more likely to occur in 7T MRI scans than in those of lower magnetic field strengths, 

such as 4T MRIs, due to their smaller RF transmit field wavelengths (Collin et al., 1998; 

Karamat et al., 2016; Vaughan et al., 2001). These B1
+ inhomogeneities cause MRI 
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image distortions, which can hinder brain tissue differentiation and the measurement of 

neuroimaging metrics, including cortical thickness measurements (Haast et al., 2018). 

Past 7T MRI research indicates that the ideal way to circumvent B1
+ inhomogeneity 

would be the use of the saturation-prepared with 2 rapid Gradient Echoes (SA2RAGE) 

sequence for post-hoc B1
+ inhomogeneity correction (Eggenschwiler et al., 2012; Haast 

et al., 2018; Marques & Gruetter, 2013). On the other hand, the MP2RAGE sequence 

parameters of the University of Western Ontario have been shown to produce T1w 

images with B1
+ inhomogeneity levels comparable to those of T1w images generated 

by Maastricht University’s MP2RAGE sequence with SA2RAGE post-hoc B1
+ 

inhomogeneity correction (Haast et al., 2021). However, it should be noted that these 

comparable levels of B1
+ inhomogeneity reduction without post-hoc correction were 

attained at the sacrifice of sub-cortical region contrast (Haast et al., 2021). As such, 

using the Maastricht sequence with SA2RAGE post-hoc B1+ inhomogeneity correction 

might be a better path for future research. Doing so would allow for accurate 

investigation of sub-cortical regions, such as the hippocampus, after an FTUS as several 

past epilepsy studies have indicated several sub-cortical regions undergo epilepsy-

linked volume reductions and network changes in PWE (Alvim et al., 2016; Bernasconi 

et al., 2004; Bernhardt et al., 2010; He et al., 2020; Lee et al., 1998; Larivière et al., 

2022). 

Moreover, even when corrected for B1
+ inhomogeneities, MRI T1w images 

have been shown to have reduced tissue contrast in low B1
+ regions, predominantly the 

frontal and temporal lobes (Haast et al., 2021). This allows potential mismeasurements 

of cortical thickness as B1
+ inhomogeneities have been shown to result in cortical 

thickness measurements being overestimated by approximately 70% around the frontal 

and temporal cortices (Haast et al., 2018; Haast et al., 2021). This could be a potential 

explanation for the lack of statistically significant cortical thickness changes observed 

in the FTUS patients of this study, especially considering past epilepsy research has 

indicated that the frontal and temporal cortices display significant epilepsy-linked 

cortical thickness and SCN changes (Bernasconi et al., 1999; Bernasconi et al., 2004; 

Bernhardt et al., 2010; Bernhardt et al., 2011; Galovic et al., 2019; Larivière et al., 2022; 

Lee et al., 1998; Ogren et al., 2018; van Diessen et al., 2013).  

An additional potential issue within this study pertains to the visual quality 

assurance methods used. While researcher-driven visual quality assurance could 

theoretically be efficiently implemented to mitigate any MRI image artefacts 
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influencing the research data and outcomes, it poses certain flaws. Relying solely on 

such a method with a single researcher lacking MRI image processing experience can 

risk observer error and bias. Future research using the anat_preproc processing pipeline 

would benefit from visual quality assurance being conducted by multiple researchers, 

with an emphasis on those with experience in epilepsy. 

 

4.3.4. Heterogeneity of Epilepsy and Associated Challenges 

As stated earlier, epilepsy is an incredibly heterogeneous neurological disorder 

that can manifest in a multitude of different ways, with each manifestation being 

accompanied by varying structural changes that reflect the underlying neural network 

changes (Bartolomei et al., 2017; Fisher et al., 2017; Lehnertz et al., 2023; Sinha et al., 

2022; Spencer, 2002; Van Diessen et al., 2013). Consequently, in a study focused on 

FTUS patients, there is a notable risk of the participants with epilepsy, both confirmed 

and potentially confirmed in the future, possessing different forms of epilepsy and thus 

displaying a multitude of epilepsy-type dependent structural changes (Bernhardt et al., 

2011; Drenthen et al., 2018; Larivière et al., 2022; van Diessen et al., 2013). These 

variations in structural changes can conceal each other as the structural changes present 

in one FTUS participant with a specific epilepsy-type may be concealed by the absence 

of such changes in other FTUS subjects with different forms of epilepsy that lack such 

changes (Bartolomei et al., 2017; Fisher et al., 2017; Lehnertz et al., 2023; Sinha et al., 

2022; Spencer, 2002; Van Diessen et al., 2013).  

Several issues in this study contributed to the possibility of these structural 

changes being undetected, one of which was the utilisation of density-based 

thresholding instead of weight-based thresholding. Density-based thresholding was 

used to prevent over-filtering of low-connectivity matrices; however, by doing so, there 

is a risk of more evident changes in connectivity, such as one subject group having more 

connectivities than the other, being overlooked (Fornito et al., 2016).  

Additionally, this study utilised group-based covariance analysis instead of an 

individual-based analysis, further underscoring the possibility of overlooking structural 

changes during data analysis. The heterogeneity of epilepsy-type-dependent structural 

changes can mask one another, as changes occurring in one epilepsy-type may be absent 

in another, compensating for each other in group-level analyses (Bartolomei et al., 2017; 

Fisher et al., 2017; Lehnertz et al., 2023; Sinha et al., 2022; Spencer, 2002; Van Diessen 
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et al., 2013). Consequently, when conducting a group-level analysis, there is a notable 

risk of epilepsy-type-specific changes being overlooked. This risk could be 

circumnavigated by conducting individual-based morphometric similarity analysis 

(King & Wood, 2020; Li et al., 2017; Seidlitz et al., 2018). Morphometric similarity 

analysis is a form of graph theory that, like structural covariance analysis, utilises 

morphometric features to reconstruct and quantify brain networks (King & Wood, 2020; 

Li et al., 2017; Seidlitz et al., 2018). However, unlike structural covariance analysis, 

morphometric similarity brain networks are generated using morphometric similarity 

mapping, in which inter-regional correlation matrices are generated using either five or 

ten micro-structural and macro-structural features measured via MRI scans (King & 

Wood, 2020; Li et al., 2017; Seidlitz et al., 2018; Zhang et al., 2021). These 

morphometric similarity correlation matrices can then be thresholded, binarised and 

used to calculate the nodal and global measures of the morphometric similarity network 

(King & Wood, 2020; Li et al., 2017; Seidlitz et al., 2018; Zhang et al., 2021). 

The morphometric similarity analysis method allows for both individual-based 

analysis, by using solely the morphometric measures of a single individual, and group-

based analysis, by using the average measures of each morphometric measure per group 

(King & Wood, 2020; Li et al., 2017; Seidlitz et al., 2018; Zhang et al., 2021). This 

flexibility in analysis levels would allow FTUS research to be utilised on two fronts. 

Individual-based analysis can be used to identify epilepsy-type specific structural 

changes better and make the results of future studies more applicable for epilepsy 

diagnosis. Meanwhile, group-based morphometric similarity analysis could ensure that 

whatever observed changes are not limited to the individual FTUS participants and 

allow for the development of a broader understanding of the general pathology of 

epilepsy after an FTUS. Future FTUS research would benefit from utilising 

morphometric similarity analysis over structural covariance analysis. 

4.3.5. Non-parametric Permutation Test Null Distribution Issues 

In addition to the issues linked to the graph theory analysis level and method, 

this study has an additional issue regarding the statistical analysis method. This is 

because while the intergroup randomisation utilised for the 1000-parametric 

permutation test preserves the impact of regional proximity on brain region structural 

covariances; it does not ensure consistent network degree distributions between each 

randomisation (Fornito et al., 2016; Rubinov & Sporns, 2010).  
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Degree distribution is a fundamental topological feature of networks in graph 

theory, akin to the number of edges and nodes, that represents the spread of nodal 

degrees within a network and is considered an indicator of network development and 

resilience (Bethlehem et al., 2017; Fornito et al., 2016; Rubinov & Sporns, 2010; Wang 

et al., 2021). Past research has shown that in humans, and several other biological 

networks, degree distribution typically presents in a scale-free network configuration 

(Fornito et al., 2016; Milo et al., 2002; Rubinov & Sporns, 2010). In such configurations, 

the array of degree distribution follows a power law in which the majority of nodes 

have low degrees, possessing few connections, while a minority of nodes are degree 

hubs, possessing high degrees and high amounts of connections (Fornito et al., 2016; 

Milo et al., 2002; Rubinov & Sporns, 2010). As nodal degrees are the measure of edges 

connected to a node, indicating the importance and connectivity of a node within the 

network, degree distribution changes can influence several nodal and global measures 

both directly and indirectly (Fornito et al., 2016; Milo et al., 2002; Rubinov & Sporns, 

2010). Thus, there is a risk that during the randomisation process for permutation tests, 

the observed differences in nodal and global measures are due to the intergroup 

randomisations producing new data sets with degree distributions different from the 

original data sets and the expected scale-free network configuration, resulting in type I 

errors (Fornito et al., 2016; Milo et al., 2002; Rubinov & Sporns, 2010). 

Using the randomisation method of Milo et al. (2002), degree distribution can 

be controlled during non-parametric permutation tests by randomly shuffling pairs of 

edges in the correlation matrices instead of randomly re-assigning participants' raw data 

prior to correlation matrix generation (Artzy-Randrup et al., 2004; Fornito et al., 2016; 

Milo et al., 2002). This randomisation process ensures no degree distribution changes 

as the edges are shuffled rather than re-calculated (Artzy-Randrup et al., 2004; Fornito 

et al., 2016; Milo et al., 2002). However, as stated in Artzy-Randrup et al. (2004), this 

method preserves degree distribution by ensuring that the edges of the randomised 

correlation matrices are entirely independent of the spatial distance between nodes, 

running contrary to the current scientific consensus that the structural covariance of 

brain regions positively correlate with spatial proximity (Alexander-Bloch et al., 2013; 

Fornito et al., 2016; Phipson & Smyth, 2010).   

Currently, there is no definitive randomisation method for non-parametric permutation 

tests that controls degree distribution and accounts for the impact of spatial proximity 

on structural covariance (Artzy-Randrup et al., 2004). Future research on the structural 
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covariance of FTUS patients could benefit from utilising both the spatial proximity-

preserving permutation tests, randomising subject groups, and the degree distribution-

preserving permutation test to identify changes that persist in both such tests. 

4.4. Conclusion 

The results of this study provide evidence that there are no statistically 

significant differences in cortical thickness in individuals who have experienced an 

FTUS, even in cases later diagnosed with epilepsy. This implies that the observed 

patterns of cortical thickening and thinning in PWE are not a causal factor for their 

experienced seizures, supporting the notion of epilepsy as a progressive condition. 

However, due to this study's small sample size, this cannot be stated definitively, and 

future research with larger samples is needed. Despite this, the data did indicate that 

FTUS patients later diagnosed with epilepsy do experience sex-dependent changes in 

their brain networks. While these brain network changes are not consistent with any 

pattern of network changes seen in past epilepsy research, their presence as early as the 

FTUS in PWE supports the Bernasconi et al. (2004) theory that the observed patterns 

of cortical thinning are a product of network connectivity changes occurring as a result 

of epilepsy.  
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Appendix A 

4.5. A.1. Schaefer 2018 200 Parcellation Label Glossary 

Network Name Parcellation Label Name Full Region Name 

Left Hemisphere 

1) Central 

Visual 

Network 
 

17Networks_LH_VisCent_ExStr_1 Extrastriate cortex 

17Networks_LH_VisCent_ExStr_2 Extrastriate cortex 

17Networks_LH_VisCent_Striate_1 Striate cortex 

17Networks_LH_VisCent_ExStr_3 Extrastriate cortex 

17Networks_LH_VisCent_ExStr_4 Extrastriate cortex 

17Networks_LH_VisCent_ExStr_5 Extrastriate cortex 

2) Peripheral 

Visual 

Network 
 

17Networks_LH_VisPeri_ExStrInf_

1 

Inferior extrastriate cortex 

17Networks_LH_VisPeri_ExStrInf_

2 

Inferior extrastriate cortex 

17Networks_LH_VisPeri_ExStrInf_

3 

Inferior extrastriate cortex 

17Networks_LH_VisPeri_StriCal_1 Striate Calcarine cortex 

17Networks_LH_VisPeri_ExStrSup

_1 

Superior Extrastriate 

17Networks_LH_VisPeri_ExStrSup

_2 

Superior Extrastriate 

3) 

Somatomotor 

A Network 
 

17Networks_LH_SomMotA_1 Somatomotor cortex 

17Networks_LH_SomMotA_2 Somatomotor cortex 

17Networks_LH_SomMotA_3 Somatomotor cortex 

17Networks_LH_SomMotA_4 Somatomotor cortex 

17Networks_LH_SomMotA_5 Somatomotor cortex 

17Networks_LH_SomMotA_6 Somatomotor cortex 

17Networks_LH_SomMotA_7 Somatomotor cortex 

17Networks_LH_SomMotA_8 Somatomotor cortex 

17Networks_LH_SomMotB_Aud_1 Auditory Cortex 

17Networks_LH_SomMotB_Aud_2 Auditory Cortex 
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4) 

Somatomotor 

B Network 
 

17Networks_LH_SomMotB_S2_1 Secondary somatosensory 

cortex 

17Networks_LH_SomMotB_S2_2 Secondary somatosensory 

cortex 

17Networks_LH_SomMotB_Aud_3 Auditory Cortex 

17Networks_LH_SomMotB_S2_3 Secondary somatosensory 

cortex 

17Networks_LH_SomMotB_Cent_1 Central sulcus cortex 

17Networks_LH_SomMotB_Cent_2 Central sulcus cortex 

5) Dorsal 

Attention A 

Network 
 

17Networks_LH_DorsAttnA_Temp

Occ_1 

Temporal Occipital cortex 

17Networks_LH_DorsAttnA_Temp

Occ_2 

Temporal Occipital cortex 

17Networks_LH_DorsAttnA_ParOc

c_1 

Parietal occipital cortex 

17Networks_LH_DorsAttnA_SPL_

1 

Superior parietal lobule 

17Networks_LH_DorsAttnA_SPL_

2 

Superior parietal lobule 

17Networks_LH_DorsAttnA_SPL_

3 

Superior parietal lobule 

6) Dorsal 

Attention B 

Network 
 

17Networks_LH_DorsAttnB_PostC

_1 

Post-central cortex 

17Networks_LH_DorsAttnB_PostC

_2 

Post-central cortex 

17Networks_LH_DorsAttnB_PostC

_3 

Post-central cortex 

17Networks_LH_DorsAttnB_PostC

_4 

Post-central cortex 

17Networks_LH_DorsAttnB_FEF_1 Frontal eye-fields 

17Networks_LH_SalVentAttnA_Par

Oper_1 

Parietal occipital cortex 
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7) 

Salience/Ventr

al Attention A 
 

17Networks_LH_SalVentAttnA_Ins

_1 

Insula 

17Networks_LH_SalVentAttnA_Fr

Oper_1 

Frontal Operculum 

17Networks_LH_SalVentAttnA_Fr

Oper_2 

Frontal Operculum 

17Networks_LH_SalVentAttnA_Par

Med_1 

Parietal medial cortex 

17Networks_LH_SalVentAttnA_Fr

Med_1 

Frontal medial cortex 

17Networks_LH_SalVentAttnA_Fr

Med_2 

Frontal medial cortex 

8) 

Salience/Ventr

al Network 
 

17Networks_LH_SalVentAttnB_IPL

_1 

Inferior parietal lobule 

17Networks_LH_SalVentAttnB_PF

Cl_1 

Lateral prefrontal cortex 

17Networks_LH_SalVentAttnB_Ins

_1 

Insula 

17Networks_LH_SalVentAttnB_PF

Cmp_1 

Medial posterier prefrontal 

cortex 

9) Limbic B 

Network 
 

17Networks_LH_LimbicB_OFC_1 Orbito frontal cortex 

17Networks_LH_LimbicB_OFC_2 Orbito frontal cortex 

10) Limbic A 

Network 
 

17Networks_LH_LimbicA_TempPo

le_1 

Temporal Pole 

17Networks_LH_LimbicA_TempPo

le_2 

Temporal Pole 

17Networks_LH_LimbicA_TempPo

le_3 

Temporal Pole 

17Networks_LH_LimbicA_TempPo

le_4 

Temporal Pole 

11) Control A 

Network 

17Networks_LH_ContA_Temp_1 Temporal cortex 

17Networks_LH_ContA_IPS_1 Intraparietal sulcus 

17Networks_LH_ContA_IPS_2 Intraparietal sulcus 
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17Networks_LH_ContA_IPS_3 Intraparietal sulcus 

17Networks_LH_ContA_PFCd_1 Dorsal prefrontal cortex 

17Networks_LH_ContA_PFClv_1 Ventrolateral prefrontal 

cortex 

17Networks_LH_ContA_PFCl_1 Lateral prefrontal cortex 

17Networks_LH_ContA_PFCl_2 Lateral prefrontal cortex 

17Networks_LH_ContA_PFCl_3 Lateral prefrontal cortex 

17Networks_LH_ContA_Cingm_1 Mid-cingulate cortex 

12) Control B 

Network 
 

17Networks_LH_ContB_Temp_1 Temporal cortex 

17Networks_LH_ContB_IPL_1 Intraparietal sulcus 

17Networks_LH_ContB_PFCl_1 Lateral prefrontal cortex 

17Networks_LH_ContB_PFClv_1 Ventrolateral prefrontal 

cortex 

17Networks_LH_ContB_PFClv_2 Ventrolateral prefrontal 

cortex 

13) Control C 

Network 
 

17Networks_LH_ContC_pCun_1 Precuneus 

17Networks_LH_ContC_pCun_2 Precuneus 

17Networks_LH_ContC_Cingp_1 Posterior cingulate 

14) Default A 

Network 
 

17Networks_LH_DefaultA_IPL_1 Intraparietal sulcus 

17Networks_LH_DefaultA_PFCd_1 Dorsal prefrontal cortex 

17Networks_LH_DefaultA_pCunPC

C_1 

Precuneus posterior 

cingulate cortex 

17Networks_LH_DefaultA_pCunPC

C_2 

Precuneus posterior 

cingulate cortex 

17Networks_LH_DefaultA_pCunPC

C_3 

Precuneus posterior 

cingulate cortex 

17Networks_LH_DefaultA_PFCm_

1 

Medial posterier prefrontal 

cortex 

17Networks_LH_DefaultA_PFCm_

2 

Medial posterier prefrontal 

cortex 

17Networks_LH_DefaultA_PFCm_

3 

Medial posterier prefrontal 

cortex 

17Networks_LH_DefaultB_Temp_1 Temporal cortex 
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15) Default B 

Network 
 

17Networks_LH_DefaultB_Temp_2 Temporal cortex 

17Networks_LH_DefaultB_Temp_3 Temporal cortex 

17Networks_LH_DefaultB_Temp_4 Temporal cortex 

17Networks_LH_DefaultB_IPL_1 Inferior parietal lobule 

17Networks_LH_DefaultB_PFCd_1 Dorsal prefrontal cortex 

17Networks_LH_DefaultB_PFCd_2 Dorsal prefrontal cortex 

17Networks_LH_DefaultB_PFCd_3 Dorsal prefrontal cortex 

17Networks_LH_DefaultB_PFCd_4 Dorsal prefrontal cortex 

17Networks_LH_DefaultB_PFCv_1 Ventral prefrontal cortex 

17Networks_LH_DefaultB_PFCv_2 Ventral prefrontal cortex 

17Networks_LH_DefaultB_PFCv_3 Ventral prefrontal cortex 

17Networks_LH_DefaultB_PFCv_4 Ventral prefrontal cortex 

16) Default C 

Network 
 

17Networks_LH_DefaultC_IPL_1 Inferior parietal lobule 

17Networks_LH_DefaultC_Rsp_1 Retrosplenial cortex 

17Networks_LH_DefaultC_PHC_1 Parahippocampal cortex 

17) Temporal 

Parietal 

Network 
 

17Networks_LH_TempPar_1 Temporal parietal cortex 

17Networks_LH_TempPar_2 Temporal parietal cortex 

Right Hemisphere 

1) Central 

Visual 

Network 
 

17Networks_RH_VisCent_ExStr_1 Extrastriate cortex 

17Networks_RH_VisCent_ExStr_2 Extrastriate cortex 

17Networks_RH_VisCent_Striate_1 Striate cortex 

17Networks_RH_VisCent_ExStr_3 Extrastriate cortex 

17Networks_RH_VisCent_ExStr_4 Extrastriate cortex 

17Networks_RH_VisCent_ExStr_5 Extrastriate cortex 

2) Peripheral 

Visual 

Network 
 

17Networks_RH_VisPeri_ExStrInf_

1 

Inferior extrastriate cortex 

17Networks_RH_VisPeri_ExStrInf_

2 

Inferior extrastriate cortex 

17Networks_RH_VisPeri_StriCal_1 Striate Calcarine cortex 

17Networks_RH_VisPeri_ExStrSup

_1 

Superior Extrastriate 
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17Networks_RH_VisPeri_ExStrSup

_2 

Superior Extrastriate 

17Networks_RH_VisPeri_ExStrSup

_3 

Superior Extrastriate 

3) 

Somatomotor 

A Network 
 

17Networks_RH_SomMotA_1 Somatomotor cortex 

17Networks_RH_SomMotA_2 Somatomotor cortex 

17Networks_RH_SomMotA_3 Somatomotor cortex 

17Networks_RH_SomMotA_4 Somatomotor cortex 

17Networks_RH_SomMotA_5 Somatomotor cortex 

17Networks_RH_SomMotA_6 Somatomotor cortex 

17Networks_RH_SomMotA_7 Somatomotor cortex 

17Networks_RH_SomMotA_8 Somatomotor cortex 

17Networks_RH_SomMotA_9 Somatomotor cortex 

17Networks_RH_SomMotA_10 Somatomotor cortex 

17Networks_RH_SomMotA_11 Somatomotor cortex 

4) 

Somatomotor 

B Network 
 

17Networks_RH_SomMotB_Aud_1 Auditory Cortex 

17Networks_RH_SomMotB_Aud_2 Auditory Cortex 

17Networks_RH_SomMotB_S2_1 Secondary somatosensory 

cortex 

17Networks_RH_SomMotB_S2_2 Secondary somatosensory 

cortex 

17Networks_RH_SomMotB_S2_3 Secondary somatosensory 

cortex 

17Networks_RH_SomMotB_S2_4 Secondary somatosensory 

cortex 

17Networks_RH_SomMotB_Cent_1 Central sulcus cortex 

5) Dorsal 

Attention A 

Network 
 

17Networks_RH_DorsAttnA_Temp

Occ_1 

Temporal Occipital cortex 

17Networks_RH_DorsAttnA_ParOc

c_1 

Parietal occipital cortex 

17Networks_RH_DorsAttnA_SPL_

1 

Superior parietal lobule 
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17Networks_RH_DorsAttnA_SPL_

2 

Superior parietal lobule 

17Networks_RH_DorsAttnA_SPL_

3 

Superior parietal lobule 

17Networks_RH_DorsAttnA_SPL_

4 

Superior parietal lobule 

6) Dorsal 

Attention B 

Network 
 

17Networks_RH_DorsAttnB_PostC

_1 

Post-central cortex 

17Networks_RH_DorsAttnB_PostC

_2 

Post-central cortex 

17Networks_RH_DorsAttnB_PostC

_3 

Post-central cortex 

17Networks_RH_DorsAttnB_PostC

_4 

Post-central cortex 

17Networks_RH_DorsAttnB_FEF_

1 

Frontal eye-fields 

7) 

Salience/Ventr

al Attention A 
 

17Networks_RH_SalVentAttnA_Par

Oper_1 

Parietal operculum 

17Networks_RH_SalVentAttnA_Pr

C_1 

Precuneus 

17Networks_RH_SalVentAttnA_Ins

_1 

Insula 

17Networks_RH_SalVentAttnA_Ins

_2 

Insula 

17Networks_RH_SalVentAttnA_Fr

Oper_1 

Frontal Operculum 

17Networks_RH_SalVentAttnA_Fr

Med_1 

Frontal medial cortex 

17Networks_RH_SalVentAttnA_Par

Med_1 

Parietal medial cortex 

17Networks_RH_SalVentAttnA_Par

Med_2 

Parietal medial cortex 
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17Networks_RH_SalVentAttnA_Fr

Med_2 

Frontal medial cortex 

8) 

Salience/Ventr

al Attention B 

Network 
 

17Networks_RH_SalVentAttnB_IPL

_1 

Inferior parietal lobule 

17Networks_RH_SalVentAttnB_PF

Clv_1 

Ventrolateral prefrontal 

cortex 

17Networks_RH_SalVentAttnB_PF

Cl_1 

Lateral prefrontal cortex 

17Networks_RH_SalVentAttnB_Ins

_1 

Insula 

17Networks_RH_SalVentAttnB_Ins

_2 

Insula 

17Networks_RH_SalVentAttnB_PF

Cmp_1 

Medial posterier prefrontal 

cortex 

9) Limbic B 

Network 
 

17Networks_RH_LimbicB_OFC_1 Orbito frontal cortex 

17Networks_RH_LimbicB_OFC_2 Orbito frontal cortex 

17Networks_RH_LimbicB_OFC_3 Orbito frontal cortex 

17Networks_RH_LimbicB_OFC_4 Orbito frontal cortex 

10) Limbic A 

Network 
 

17Networks_RH_LimbicA_TempPo

le_1 

Temporal pole 

17Networks_RH_LimbicA_TempPo

le_2 

Temporal pole 

17Networks_RH_LimbicA_TempPo

le_3 

Temporal pole 

17Networks_RH_LimbicA_TempPo

le_4 

Temporal pole 

11) Control A 

Network 
 

17Networks_RH_ContA_IPS_1 Intraparietal sulcus 

17Networks_RH_ContA_IPS_2 Intraparietal sulcus 

17Networks_RH_ContA_PFCd_1 Dorsal prefrontal cortex 

17Networks_RH_ContA_PFCl_1 Lateral prefrontal cortex 

17Networks_RH_ContA_PFCl_2 Lateral prefrontal cortex 

17Networks_RH_ContA_Cingm_1 Mid-cingulate cortex 

17Networks_RH_ContB_Temp_1 Temporal cortex 
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12) Control B 

Network 
 

17Networks_RH_ContB_Temp_2 Temporal cortex 

17Networks_RH_ContB_IPL_1 Inferior parietal lobule 

17Networks_RH_ContB_IPL_2 Inferior parietal lobule 

17Networks_RH_ContB_PFCld_1 Dorsal prefrontal cortex 

17Networks_RH_ContB_PFCld_2 Dorsal prefrontal cortex 

17Networks_RH_ContB_PFClv_1 Ventrolateral prefrontal 

cortex 

17Networks_RH_ContB_PFClv_2 Ventrolateral prefrontal 

cortex 

17Networks_RH_ContB_PFCmp_1 Medial posterier prefrontal 

cortex 

17Networks_RH_ContB_PFCld_3 Dorsolateral prefrontal 

cortex 

13) Control C 

Network 
 

17Networks_RH_ContC_pCun_1 Precuneus 

17Networks_RH_ContC_pCun_2 Precuneus 

17Networks_RH_ContC_Cingp_1 Posterior cingulate 

14) Default A 

Network 
 

17Networks_RH_DefaultA_IPL_1 Inferior parietal lobule 

17Networks_RH_DefaultA_PFCd_1 Dorsal prefrontal cortex 

17Networks_RH_DefaultA_pCunP

CC_1 

Precuneus posterior 

cingulate cortex 

17Networks_RH_DefaultA_PFCm_

1 

Medial prefrontal cortex 

17Networks_RH_DefaultA_PFCm_

2 

Medial prefrontal cortex 

17Networks_RH_DefaultA_PFCm_

3 

Medial prefrontal cortex 

15) Default B 

Network 
 

17Networks_RH_DefaultB_Temp_1 Temporal cortex 

17Networks_RH_DefaultB_AntTem

p_1 

Anterior Temporal cortex 

17Networks_RH_DefaultB_PFCd_1 Dorsal prefrontal cortex 

17Networks_RH_DefaultB_PFCv_1 Ventral prefrontal cortex 

16) Default C 

Network 
 

17Networks_RH_DefaultC_IPL_1 Inferior parietal lobule 

17Networks_RH_DefaultC_Rsp_1 Retrosplenial cortex 
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17Networks_RH_DefaultC_PHC_1 Parahippocampal cortex 

17) Temporal 

Parietal 

Network 
 

17Networks_RH_TempPar_1 Temporal parietal cortex 

17Networks_RH_TempPar_2 Temporal parietal cortex 

17Networks_RH_TempPar_3 Temporal parietal cortex 

17Networks_RH_TempPar_4 Temporal parietal cortex 
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4.6. A.2. Schaefer 2018 100 Parcellation Label Glossary 

Network Name Parcellation Label Name Full Region Name 

                                                                    Left Hemisphere 

1) Central 

Visual Network 

 
 

17Networks_LH_VisCent_ExStr_1 Extrastriate cortex 

17Networks_LH_VisCent_ExStr_2 Extrastriate cortex 

17Networks_LH_VisCent_Striate_1 Striate cortex 

17Networks_LH_VisCent_ExStr_3 Extrastriate cortex 

2) Peripheral 

Visual Network 

17Networks_LH_VisPeri_ExStrInf_

1 

Inferior extrastriate 

cortex 

17Networks_LH_VisPeri_StriCal_1 Striate Calcarine cortex 

17Networks_LH_VisPeri_ExStrSup

_1 

Superior Extrastriate 

cortex 

3) Somatomotor 

A Network 

17Networks_LH_SomMotA_1 Somatomotor cortex 

17Networks_LH_SomMotA_2 Somatomotor cortex 

4) Somatomotor 

B Network 

17Networks_LH_SomMotB_Aud_1 Auditory cortex 

17Networks_LH_SomMotB_S2_1 Secondary 

somatosensory cortex 

17Networks_LH_SomMotB_S2_2 Secondary 

somatosensory cortex 

17Networks_LH_SomMotB_Cent_1 Central sulcus cortex 

5) Dorsal 

Attention A 

Network 

17Networks_LH_DorsAttnA_Temp

Occ_1 

Temporal Occipital 

cortex 

17Networks_LH_DorsAttnA_ParOc

c_1 

Parietal occipital cortex 

17Networks_LH_DorsAttnA_SPL_

1 

Superior parietal lobule  

6) Dorsal 

Attention B 

Network 

17Networks_LH_DorsAttnB_PostC

_1 

Post-central cortex 

17Networks_LH_DorsAttnB_PostC

_2 

Post-central cortex 

17Networks_LH_DorsAttnB_PostC

_3 

Post-central cortex 
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17Networks_LH_DorsAttnB_FEF_

1 

Frontal eye-fields 

7) Salience / 

Ventral 

Attention A 

Network 

17Networks_LH_SalVentAttnA_Par

Oper_1 

Parietal operculum  

17Networks_LH_SalVentAttnA_Ins

_1 

Insula 

17Networks_LH_SalVentAttnA_Ins

_2 

Insula 

17Networks_LH_SalVentAttnA_Par

Med_1 

Parietal medial cortex 

17Networks_LH_SalVentAttnA_Fr

Med_1 

Frontal medial cortex 

8) Salience / 

Ventral 

Attention B 

Network 

17Networks_LH_SalVentAttnB_PF

Cl_1 

Lateral prefrontal cortex 

17Networks_LH_SalVentAttnB_PF

Cmp_1 

Medial posterier 

prefrontal cortex 

9) Limbic B 

Network 

17Networks_LH_LimbicB_OFC_1 Orbito frontal cortex 

10) Limbic A 

Network 

17Networks_LH_LimbicA_TempPo

le_1 

Temporal pole 

17Networks_LH_LimbicA_TempPo

le_2 

Temporal pole 

11) Control A 

Network 

17Networks_LH_ContA_IPS_1 Intraparietal sulcus 

17Networks_LH_ContA_PFCl_1 Lateral prefrontal cortex 

17Networks_LH_ContA_PFCl_2 Lateral prefrontal cortex 

12) Control B 

Network 

17Networks_LH_ContB_PFClv_1 Ventrolateral prefrontal 

cortex 

13) Control C 

Network 

17Networks_LH_ContC_pCun_1 Precuneus 

17Networks_LH_ContC_pCun_2 Precuneus 

17Networks_LH_ContC_Cingp_1 Posterior cingulate 

14) Default A 

Network 

17Networks_LH_DefaultA_PFCd_1 Dorsal prefrontal cortex 

17Networks_LH_DefaultA_pCunP

CC_1 

Precuneus posterior 

cingulate cortex 
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17Networks_LH_DefaultA_PFCm_

1 

Medial prefrontal cortex 

15) Default B 

Network 

17Networks_LH_DefaultB_Temp_1 Temporal cortex 

17Networks_LH_DefaultB_Temp_2 Temporal cortex 

17Networks_LH_DefaultB_IPL_1 Inferior parietal lobule 

17Networks_LH_DefaultB_PFCd_1 Dorsal prefrontal cortex 

17Networks_LH_DefaultB_PFCl_1 Lateral prefrontal cortex 

17Networks_LH_DefaultB_PFCv_1 Ventrolateral prefrontal 

cortex 

17Networks_LH_DefaultB_PFCv_2 Ventrolateral prefrontal 

cortex 

16) Default C 

Network 

17Networks_LH_DefaultC_Rsp_1 Retrosplenial cortex 

17Networks_LH_DefaultC_PHC_1 Parahippocampal cortex 

17) Temporal 

Parietal 

Network 

17Networks_LH_TempPar_1 Temporal parietal cortex 

                                                                  Right Hemisphere 

1) Central 

Visual Network 

17Networks_RH_VisCent_ExStr_1 Extrastriate cortex 

17Networks_RH_VisCent_ExStr_2 Extrastriate cortex 

17Networks_RH_VisCent_ExStr_3 Extrastriate cortex 

2) Peripheral 

Visual Network 

17Networks_RH_VisPeri_StriCal_1 Striate Calcarine cortex 

17Networks_RH_VisPeri_ExStrInf_

1 

Inferior extrastriate 

cortex 

17Networks_RH_VisPeri_ExStrSup

_1 

Superior Extrastriate 

cortex 

3) Somatomotor 

A Network 

17Networks_RH_SomMotA_1 Somatomotor cortex 

17Networks_RH_SomMotA_2 Somatomotor cortex 

17Networks_RH_SomMotA_3 Somatomotor cortex 

17Networks_RH_SomMotA_4 Somatomotor cortex 

4) Somatomotor 

B Network 

17Networks_RH_SomMotB_Aud_1 Auditory cortex 

17Networks_RH_SomMotB_S2_1 Secondary 

somatosensory cortex 
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17Networks_RH_SomMotB_S2_2 Secondary 

somatosensory cortex 

17Networks_RH_SomMotB_Cent_

1 

Central sulcus cortex 

5) Dorsal 

Attention A 

Network 

17Networks_RH_DorsAttnA_Temp

Occ_1 

Temporal Occipital 

cortex 

17Networks_RH_DorsAttnA_ParOc

c_1 

Parietal occipital cortex 

17Networks_RH_DorsAttnA_SPL_

1 

Superior parietal lobule  

6) Dorsal 

Attention B 

Network 

17Networks_RH_DorsAttnB_PostC

_1 

Posterior cingulate 

17Networks_RH_DorsAttnB_PostC

_2 

Posterior cingulate 

17Networks_RH_DorsAttnB_FEF_

1 

Frontal eye-fields 

7) Salience / 

Ventral 

Attention A 

Network 

17Networks_RH_SalVentAttnA_Pa

rOper_1 

Parietal operculum  

17Networks_RH_SalVentAttnA_Ins

_1 

Insula 

17Networks_RH_SalVentAttnA_Pa

rMed_1 

Parietal medial cortex 

17Networks_RH_SalVentAttnA_Fr

Med_1 

Frontal medial cortex 

8) Salience / 

Ventral 

Attention B 

Network 

17Networks_RH_SalVentAttnB_IP

L_1 

Inferior parietal lobule 

17Networks_RH_SalVentAttnB_PF

Cl_1 

Lateral prefrontal cortex 

17Networks_RH_SalVentAttnB_PF

Cmp_1 

Medial posterier 

prefrontal cortex 

9) Limbic B 

Network 

17Networks_RH_LimbicB_OFC_1 Orbito frontal cortex 
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10) Limbic A 

Network 

17Networks_RH_LimbicA_TempPo

le_1 

Temporal pole 

11) Control A 

Network 

17Networks_RH_ContA_IPS_1 Intraparietal sulcus 

17Networks_RH_ContA_PFCl_1 Lateral prefrontal cortex 

17Networks_RH_ContA_PFCl_2 Lateral prefrontal cortex 

12) Control B 

Network 

17Networks_RH_ContB_Temp_1 Temporal cortex 

17Networks_RH_ContB_IPL_1 Inferior parietal lobule 

17Networks_RH_ContB_PFCld_1 Dorsal prefrontal cortex 

17Networks_RH_ContB_PFClv_1 Ventrolateral prefrontal 

cortex 

13) Control C 

Network 

17Networks_RH_ContC_Cingp_1 Posterior cingulate 

17Networks_RH_ContC_pCun_1 Precuneus 

14) Default A 

Network 

17Networks_RH_DefaultA_IPL_1 Inferior parietal lobule 

17Networks_RH_DefaultA_PFCd_1 Dorsal prefrontal cortex 

17Networks_RH_DefaultA_pCunP

CC_1 

Precuneus posterior 

cingulate cortex 

17Networks_RH_DefaultA_PFCm_

1 

Medial prefrontal cortex 

15) Default B 

Network 

17Networks_RH_DefaultB_PFCd_1 Dorsal prefrontal cortex 

17Networks_RH_DefaultB_PFCv_1 Ventrolateral prefrontal 

cortex 

17Networks_RH_DefaultB_PFCv_2 Ventrolateral prefrontal 

cortex 

16) Default C 

Network 

17Networks_RH_DefaultC_Rsp_1 Retrosplenial cortex 

17Networks_RH_DefaultC_PHC_1 Parahippocampal cortex 

17) Temporal 

Parietal 

Network 

17Networks_RH_TempPar_1 Temporal parietal cortex 

17Networks_RH_TempPar_2 Temporal parietal cortex 

17Networks_RH_TempPar_3 Temporal parietal cortex 
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