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Abstract 

Early brain injury in neonates is a common neurological complication associated with high 

mortality rates and long-term morbidities. Two common types of injury are intraventricular 

hemorrhage (IVH) and hypoxic ischemic encephalopathy (HIE). Currently used clinical 

neuroimaging tools for diagnosing or monitoring the injury have limitations, e.g., cranial 

ultrasound is not for continuous monitoring of the evolution of injury so it could miss the 

optimal timing for intervention, and magnetic resonance imaging (MRI) is not very accessible 

for infants in neonatal intensive care unit. Functional near-infrared spectroscopy (fNIRS) can 

be an alternative imaging technique as it can be used at the bedside for continuous monitoring. 

Previous research using functional MRI (fMRI) indicated that neonates with brain injury were 

reported to have altered resting-state functional connectivity (RSFC), which can be a potential 

biomarker for diagnosis. The current thesis examined and expanded upon the potential of 

fNIRS as a neuromonitoring tool for newborns with brain injury. Specifically, the goal was to 

determine if fNIRS can yield RSFC indices comparable to fMRI and whether differences in 

RSFC can be detected between neonates with and without brain injury. Also, predictive models 

based on machine learning were developed to address the cortical penetration depth of fNIRS, 

which is a major drawback limiting wider applications of the technology.  

Neonates diagnosed with IVH or HIE, and healthy newborns were recruited and scanned with 

fNIRS and fMRI. RSFC was calculated from both modalities and compared. Then RSFC 

patterns were compared between neonates with and without injury. fNIRS and fMRI yielded 

comparable RSFC indices, and fNIRS also identified altered RSFC patterns in both IVH and 

HIE groups compared to healthy newborns. Then, graph convolutional networks (a subtype of 

artificial neural networks) were applied to predict subcortical connectivity from cortical 

connectivity, using either neonatal or adult fNIRS data, and gave good performance.  In 

general, this thesis indicates that fNIRS has the potential to be a new tool for assessing brain 

injury and monitoring cerebral hemodynamics in neonates. 
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Summary for Lay Audience 

Early brain injury occurs in both term and preterm born babies and seriously affects their 

health. Current tools for diagnosing and monitoring brain injury are limited. Namely 

ultrasound needs to be done at specific times after the injury and can delay treatments.  Further, 

magnetic resonance imaging (MRI) cannot always be accessible for babies who are critically 

ill as time away from the intensive care unit can pose risks. Functional near-infrared 

spectroscopy (fNIRS) is a promising new tool that can monitor the impact of injury on blood 

flow to the brain as well as how brain regions are functionally connected, meaning how 

different brain regions communicate with one another. This thesis tested whether fNIRS can 

give us meaningful functional connectivity information and demonstrate differences between 

babies with and without brain injury. Also, fNIRS has a major limitation in that one cannot 

record from regions deep within the brain, which can be impacted by injury. To address this 

gap, computational methods were developed to infer brain connectivity in deep regions of the 

brain based on the connectivity in the outer regions of the brain (cortex). 

Newborns with early brain injury and healthy babies were recruited and scanned with fNIRS. 

Functional connectivity was calculated and compared between babies with and without injury. 

fNIRS identified altered brain connectivity patterns in the injury groups compared to healthy 

babies. Then, a computational method based on machine learning was applied to predict 

activity in the deep regions of the brain, and tested on newborn and adult fNIRS data, and 

showed good performance.  

In general, this study shows that fNIRS has the potential as a new tool for monitoring brain 

injury in newborns born critically ill. 
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Chapter 1  

1 Introduction 

This chapter provides a brief overview concerning neonatal brain injury and using 

functional near-infrared spectroscopy (fNIRS) as a clinical tool for monitoring and 

diagnosing early brain injury, which are key themes of the thesis. In this section, the 

rationale and objectives of this thesis will be presented and to demonstrate the potential 

utility of fNIRS to study the impact of neonatal brain injuries on functional connectivity. 

The goal of this dissertation is to develop novel methods to use fNIRS as a bedside brain 

monitoring technology to monitor brain injury in critically ill newborns. The use of fNIRS-

based biomarkers may be key indicators of brain health in newborn populations. These 

biomarkers may be used in future trials to assess the efficacy of interventions and improve 

counselling for families. 

1.1 Clinical rationale 

Neonatal brain injury is a serious health issue associated with adverse outcomes. Yet 

currently available clinical neuroimaging technologies such as cranial ultrasound or 

magnetic resonance imaging (MRI) for assessing or diagnosing brain injuries are currently 

limited, and have several shortcomings. FNIRS has several advantages that make it very 

advantageous for use in clinical settings.  

1.1.1 Neonatal brain injury 

Neonatal brain injury is a main contributor to mortality and later development of 

neurodevelopmental disorders, or motor or cognitive impairments [1]. Brain injuries can 

occur in both term and preterm born neonates and have short and long term effects in 

surviving neonates, and can also have several negative consequences on families in terms 

of losses of productivity. The prevalence of the injury varies depending on the exact type 

of injury [2], [3], [4], [5], [6], [7] and the outcome can be modulated by many factors 

including severity and therapies. [8], [9], [10], [11], [12], [13], [14]. Neonatal brain injuries 

may be resulted from various etiologies, from reperfusion events after ischemia to defected 
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metabolic pathways expressed after birth [15], [16]. Injury patterns revealed by 

neuroimaging technologies also largely depend on the types of injuries, severity, the age 

of the infant when the injury occurs as well as developmental outcomes [17], [18], [19]. 

Since there are many types of neonatal brain injury and as just mentioned they show 

inconsistencies in many terms, in this study, two types of injury that are rather common to 

newborns were focused on. One is intraventricular hemorrhage (IVH) and the other one is 

hypoxic ischemic encephalopathy (HIE).  

1.1.1.1 Intraventricular hemorrhage 

IVH is a common type of neonatal brain injury that occurs in preterm born infants, born 

before 37 weeks’ gestational age (GA). IVH, in simple words, is bleeding inside or around 

the ventricles [20]. In many cases, the term germinal matrix hemorrhage – IVH (GMH-

IVH) is used, as the IVH injury mostly initiates from the periventricular germinal matrix, 

which is highly vascular and therefore is specifically vulnerable to hemorrhage [20]. 

Disturbances in cerebral blood flow is another factor contributing to the development of 

IVH. Such disturbances can be a result of respiratory distress syndrome, low Apgar scores, 

hypoxia, or seizures [20]. IVH injury initiates and is detectable within a few hours after 

birth [21]. The severity of IVH injury is commonly categorized into 4 grades based on how 

perfused the hemorrhage is within or even outside of the ventricle, where the mildest grade 

I means the bleeding is only within germinal matrix, while the severest grade IV indicates 

that the hemorrhage permeates mostly the ventricles and into brain parenchymal 

(intraparenchymal hemorrhage) [22]. IVH occurs more in extremely preterm neonates, 

which means infants born at ≤28 weeks and has a prevalence of about 2-5‰ [23]. A recent 

meta-analysis shows that, among infants born at ≤ 28 weeks of GA, the prevalence of IVH, 

though various around the world, is 5-52% for grade III and IV, and 5-19% for grade II [5]. 

The early maturational trajectories of the brain can be seriously impacted by IVH. The 

germinal matrix contains precursor cells of neurons and glia. In severe cases (grade III or 

grade IV), IVH is strongly associated with other conditions, such as posthemorrhagic 

ventricular dilatation (PHVD), periventricular hemorrhagic infarction (PVHI) and 

periventricular leukomalacia (PVL), which further damage the white matter and disturb the 

maturation of neuronal fibers [24], [25], [26], [27]. In terms of long-term outcomes, infants 
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who survived IVH may suffer from various neurodevelopmental disabilities. It is reported 

that 5-10% of living newborns with IVH develop major motor deficiencies [26] and over 

50% develop cognitive, visual or language issues [28], [29], [30].  

1.1.1.2 Hypoxic ischemic encephalopathy 

HIE is another major neonatal brain injury that occurs in term-born neonates. As the name 

suggests, it is due to insufficient or disrupted cerebral oxygen or blood supply during the 

prenatal, intrapartum, or postnatal periods [16]. Risk factors of HIE include maternal 

thyroid disease, receipt of antenatal care, infection, aspects of the management of labour 

and delivery (e.g., placental abruption or uterine rupture) [3]. HIE injuries can show various 

spatial patterns depending on how acute the decrease of blood flow is. When the decrease 

is moderate, the cerebral arteries will modulate the blood flow to secure sufficient amounts 

for the brainstem, cerebellum and basal ganglia, so that the injury will appear more in the 

cortex and watershed areas (border regions between cerebral areas supported by different 

arteries). When the decrease is sudden, the injury will be more focused around the thalamus 

and basal ganglia [31]. Based on the Sarnat staging system [32], by which neonates are 

evaluated for consciousness, neuromuscular control, autonomic function, seizures, HIE 

newborns are categorized into stages 1-3, corresponding to mild, moderate and severe 

stages, respectively. The hypoxic-ischemic events usually occur within 6 hours after birth 

followed by development of injuries in only a few hours [16]. The prevalence of HIE is 

recently estimated to be 0.093% in the United States among term-born infants [33], yet the 

number can reach over 0.2% in developing countries [3]. HIE can lead to death and 

neurodevelopmental disabilities, including cerebral palsy, impairments of various 

cognitive functions. A recent trial [14] showed that 85% of infants with severe HIE and 

48% of those with moderate HIE either died or had intelligence quotients (IQ) below 70. 

Among surviving infants, only 41% had no observable disabilities. A standard treatment 

of HIE is therapeutic hypothermia (TH), during which either only head or full body of the 

infant will be cooled to 33-34°C for up to 72 hours followed by 6 to 12 hours of rewarming 

[34]. TH in general initiates within 6-24 hours after birth. Though not all infants with HIE 

can be eligible for TH [35], the treatment has shown benefits on lowering rates of mortality 

and severe disabilities [14].  
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1.1.2 Neuroimaging and monitoring of neonatal brain injury 

As neonatal brain injury has a high prevalence and is associated with high mortality along 

with profound neurodevelopmental sequalae, plus it can happen acutely within a few hours 

after birth and babies can deteriorate quickly in hours or days. Therefore, early diagnosis 

and monitoring are of vital importance.  

The two most common neuroimaging technologies for characterizing injury are cranial 

ultrasound (cUS) and magnetic resonance imaging (MRI). cUS is non-invasive, radiation-

free imaging tool, which can be used at the bedside. For preterm infants, cUS is 

recommended to be done at multiple time points after birth to capture the full process of 

evolution of the injury [36]. Protocols for serial cUS, typically include 3 scans at 0-14 days 

of life, 25-35 days of life and at term equivalent age (TEA), and have been adopted by 

many neonatal intensive care units (NICU) [37], [38]. Using serial cUS clinicians can 

detect and grade GMH-IVH. In more extreme cases, GMH-IVH can develop into PHVD, 

which typically occurs after 1-2 weeks of IVH. Using cUS PHVD can be monitored and 

followed along with the general growth of brain until TEA [36]. cUS can also identify 

cystic PVL, but this is less commonly seen in neonates due to advances in mechanical 

ventilation patterns. A key limitation of cranial ultrasound (cUS) is that it may not detect 

abnormalities in certain tissue types in neonates. This is because it typically uses the 

anterior fontanelle as an acoustic window, which can limit the field of view [39]. Also, 

cUS cannot be used for long-term continuous monitoring.  

For term-born infants with HIE, cUS is also used to identify intracranial hemorrhage, which 

is an exclusion criterion for TH. Major injuries of thalamus or basal ganglia are also 

detectable using cUS, but it can take 48-72 hours for injuries to develop, which may surpass 

the optimal timing for diagnosing HIE and subsequently initiating TH [40]. 

MRI is another common technique for characterizing neonatal brain injury. It is 

recommended that neonatal MRI should include a T1-weighted (T1w) sequence, a T2-

weighted (T2w) sequence, diffusion-weighted imaging (DWI) and susceptibility-weighted 

imaging (SWI). More details on scanning sequences can be found in section 1.3. For 

preterm born infants, MRI at TEA has become a clinical routine for very preterm ones. 
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Compared to cUS, SWI shows better sensitivity to low-grade IVH [41] and visualization 

of cerebellar hemorrhage [42], and DWI can indicate diffusive PVL patterns as abnormal 

diffuse signals [43]. For HIE infants, DWI can detect movement of water within cytotoxic 

cellular edema that occurs in various patterns of injury [44].  

Other MRI sequences used for characterization of neonatal brain injuries include diffusion 

tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and functional MRI 

(fMRI). Using DTI, alterations in diffusion parameters have been identified in premature 

infants with IVH, or who have mild white matter abnormalities [45]. DTI tractography, 

which maps the connectivity of neuronal fibers, is also a promising tool for studying white 

matter injury in the preterm brain [46]. MRS can identify cerebral metabolic changes that 

can occur after hypoxia-ischemia, which can aid in the better understanding of impaired 

cerebral energy metabolism in neonates with HIE [47].  

fMRI measures the blood-oxygen-level-dependent (BOLD) signal as an indication of level 

of neuronal activities. fMRI is widely used to explore the functional organization and 

connectome of brain, including newborns with brain injury. In general, preterm birth can 

lead to altered functional networks compared to healthy term born neonates [48]. Disrupted 

resting-state networks were seen in very preterm neonates with white matter injury 

compared to those without [49]. Alterations in functional connectivity have also been 

reported in other studies in preterm neonates who had various types of brain injuries [50]. 

Notably, fMRI is considered to be comparable to fNIRS in terms of measuring cerebral 

hemodynamics [51], which highlights the feasibility of using fNIRS for studying early 

brain injury.   

Electroencephalography (EEG) is commonly used in the HIE population for detecting 

seizures. Transcranial Doppler ultrasound provides real-time measures of cerebrovascular 

function; however, this technique requires operators to have extensive knowledge on 

cerebrovascular anatomy [52]. Other less commonly used imaging modalities to 

characterize injury in the neonate include computed tomography and positron emission 

tomography. Both techniques involve exposure to radiation. 
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In general, the limitations of current imaging technologies highlight the need for non-

invasive, easily operable and accessible imaging tools that is capable of continuous 

monitoring on bedside and offering robust biomarkers for characterizing and tracking 

neonatal brain injury. In the following sections and chapters, it will be demonstrated that 

fNIRS has the potential to be a new neuroimaging tool for such purposes.  

1.2 Functional near-infrared spectroscopy 

In general, there are 3 subtypes of fNIRS, namely continuous-wave fNIRS, frequency-

domain fNIRS and time-domain fNIRS. Though basic optical principles are shared among 

the 3 types, designs of the system, signals acquired and methods for processing vary 

significantly. As in this study, only continuous-wave fNIRS is used, this section focuses 

only on this fNIRS subtype, and if not specifically pointed out, term “fNIRS” means only 

continuous-wave type fNIRS in this chapter.  

1.2.1 Physics of fNIRS 

Functional NIRS is a non-invasive, radiation-free optical imaging technique that measures 

concentration changes of hemoglobin. It was first introduced by Jobsis in 1977 [53] for 

continuous monitoring of cerebral oxygenation. In a typical fNIRS system, there are light 

sources coupled to light detectors, which measure changes in light intensity. The derivation 

of hemoglobin concentration changes from light intensity differences between incident and 

detected lights relies on two phenomena of light propagation in tissues – absorption and 

scattering. 

Light absorption is the transfer of energy from photons to molecules (or atoms) when the 

two interact. In a non-scattering tissue, light absorption is characterized by Beer-Lambert 

law, which is defined as 

𝐼 = 𝐼0𝑒−𝜖𝜆𝑐𝑙, (1.1) 

where 𝐼0 is the intensity of incident light, 𝐼 is the intensity after absorption of molecules, 𝑙 

is the length light travels, 𝑐 is the concentration of a chromophore, and 𝜖 is the molar 

extinction coefficient which is an intrinsic property of a molecule describing how strongly 

the molecule absorbs light of a certain wavelength 𝜆. The molar extinction coefficients of 
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oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) are shown in Fig. 1.1. 

The incident light used in fNIRS falls within the wavelength range known as the "optical 

window," specifically ranging from 650 nm to 900 nm [54]. Inside the window, major 

tissue molecules (e.g., hemoglobin, water, lipid, melanin) have low intrinsic absorption so 

that light penetrates deep into the tissue. Absorption property of tissue is also and often 

denoted by the absorption coefficient 𝜇𝑎 = 𝜖(𝜆)𝑐, where 1/𝜇𝑎 can be considered as the 

average distance of a free path a photon travels between absorption events. 

 

Figure 1.1: Absorption spectrum of HbO and Hb. Data source: W. B. Gratzer, Med. 

Res. Council Labs, Holly Hill, London. 

Scattering of light, specifically elastic scattering which does not change the energy of light, 

refers to the change in the direction of propagation when a photon interacts with a molecule. 

Scattering is characterized by the scattering coefficient 𝜇𝑠 , which describes how often 

scattering events happen, and the asymmetry factor 𝑔, which ranges from -1 to 1 and 

describes the distribution of propagating directions after scattering events. Tissue 

molecules in general have large 𝜇𝑠  (𝜇𝑠 ≫ 𝜇𝑎) and 𝑔 (over 0.9), meaning the scattering 

events occur more frequently than the absorbing events, but are largely forward directed, 

which ensures that light can travel long enough within tissues. Yet a portion of the light 
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can still travel along a curved trajectory after multiple scattering events within tissues and 

connect sources and detectors on the same plane. 

To further calculate the concentration changes of HbO and Hb from raw light intensity 

signals, the modified Beer-Lamber law (MBLL) [55] becomes useful. Given two time 

points 𝑡1 and 𝑡2, the change in optical density of detected light, Δ𝑂𝐷, can be written as 

𝛥𝑂𝐷 = (𝑙𝑛
𝐼0,𝑡2

𝐼𝑡2

+ 𝐺𝑡2
) − (𝑙𝑛

𝐼0,𝑡1

𝐼𝑡1
 

+ 𝐺𝑡1
) , (1.2) 

where 𝐺 is the loss to scattering. Since 𝐺 relies on the geometry of tissue, which makes it 

exceedingly difficult to estimate, it is not feasible to directly calculate the concentration of 

hemoglobin from Eq. 1.2. Note that some fNIRS setup, e.g., time-resolved system, can 

estimate the scattering effect but not for continuous-wave system [56]. In MBLL, 𝐺 is 

assumed to be a constant over time, because absorption coefficient 𝜇𝑎 of hemoglobin is 

much more susceptible to change in concentration, compared to scattering coefficient 𝜇𝑆 

[57]. Then, 

𝛥𝑂𝐷 = 𝑙𝑛
𝐼0,𝑡2

𝐼𝑡2

− 𝑙𝑛
𝐼0,𝑡1

𝐼𝑡1
 

= 𝑙𝑛
𝐼𝑡1

𝐼𝑡2

= 𝜖𝜆𝑐𝑡2
𝑙 − 𝜖𝜆𝑐𝑡1

𝑙 = 𝜖𝜆𝑙(𝛥𝑐). (1.3) 

It is obvious that the tissue is a mixture of various molecules including mainly lipid, water, 

melanin and hemoglobin. In this setup, only hemoglobin is considered since it is a major 

absorber compared to other molecules and takes up a generous portion of the tissue. With 

both HbO and Hb, Eq. 1.2 can be rewritten as 

𝛥𝑂𝐷 = 𝜖𝐻𝑏𝑂,𝜆𝛥𝑐𝐻𝑏𝑂𝑙 + 𝜖𝐻𝑏,𝜆𝛥𝑐𝐻𝑏𝑙. (1.4) 

By using two wavelengths of light, Δ𝑐𝐻𝑏𝑂 and Δ𝑐𝐻𝑏 can be derived from 

𝛥𝑂𝐷𝜆1 = 𝜖𝐻𝑏𝑂,𝜆1
𝛥𝑐𝐻𝑏𝑂𝑙𝜆1

+ 𝜖𝐻𝑏,𝜆1
𝛥𝑐𝐻𝑏𝑙𝜆1

 

𝛥𝑂𝐷𝜆2 = 𝜖𝐻𝑏𝑂,𝜆2
𝛥𝑐𝐻𝑏𝑂𝑙𝜆2

+ 𝜖𝐻𝑏,𝜆2
𝛥𝑐𝐻𝑏𝑙𝜆2

(1.5) 

as 

𝛥𝑐𝐻𝑏𝑂 =

𝜖𝐻𝑏,𝜆1

𝛥𝑂𝐷𝜆2

𝑙𝜆2

− 𝜖𝐻𝑏,𝜆2

𝛥𝑂𝐷𝜆1

𝑙𝜆1

𝜖𝐻𝑏𝑂,𝜆2
𝜖𝐻𝑏,𝜆1

− 𝜖𝐻𝑏,𝜆2
𝜖𝐻𝑏𝑂,𝜆1

 

𝛥𝑐𝐻𝑏 =

𝜖𝐻𝑏𝑂,𝜆1

𝛥𝑂𝐷𝜆2

𝑙𝜆2

− 𝜖𝐻𝑏𝑂,𝜆2

𝛥𝑂𝐷𝜆1

𝑙𝜆1

𝜖𝐻𝑏𝑂,𝜆2
𝜖𝐻𝑏,𝜆1

− 𝜖𝐻𝑏,𝜆2
𝜖𝐻𝑏𝑂,𝜆1

, (1.6) 
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where Δ𝑂𝐷 can be directly measured from detectors of fNIRS system, and 𝑙 is estimated 

[58].  

Generally, the trajectory of a photon travelling from a source, through tissues, and not 

absorbed but end at a detector, is considered to be banana shaped, as shown in Fig. 1.2. 

The trajectory can be mathematically modelled as a photon hitting density function of 

possible locations that the photon travels through. The photon hitting density is 

proportional to the probability density of the photon at unit volume. Introduced in [59], 

given a photon initiated at location (0,0,0) and detected at (𝑑, 0,0), the hitting density 𝑃𝑛 

at location (𝑥, 𝑦, 𝑧) is defined as 

𝑃𝑛(𝑥, 𝑦, 𝑧) =
𝑧2 𝑒𝑥𝑝 (−𝑘 {(𝑥2 + 𝑦2 + 𝑧2)

1
2 + [(𝑑 − 𝑥)2 + 𝑦2 + 𝑧2]

1
2})

(𝑥2 + 𝑦2 + 𝑧2)
3
2[(𝑑 − 𝑥)2 + 𝑦2 + 𝑧2]

3
2

, (1.7) 

× [𝑘(𝑥2 + 𝑦2 + 𝑧2)
1
2 + 1] {𝑘[(𝑑 − 𝑥)2 + 𝑦2 + 𝑧2]

1
2 + 1} 

where 𝑘 is estimated by Sassaroli et al. as 0.23 [60]. Eq. 1.7 is derived from analyzing 

diffusive photon flux in homogeneous medium and achieves good correspondence with 

Monte-Carlo simulation [59]. Eq. 1.7 can be combined with a brain mask in, e.g., MNI 

space, to limit the domain of the function within cerebrum.  

 

Figure 1.2: A demonstration of Eq. 1.7 is provided. To enhance colour differentiation, 

the colourbar indicates the value of  𝒍𝒏(𝑷𝒏). For the figure, 𝒚 is set to 0, and domain 

of 𝒛 > 𝟎 is also omitted, because the equation is rotationally symmetric to 𝒙 axis.  

Based on the modelling, longer separations between light sources and detectors allows 

photons to reach deeper layers (e.g., cerebral cortex, while shorter separations are focused 

on extracerebral layers, Fig. 1.2). A coupling of a source and a detector is often referred to 

as a channel. A typical design of fNIRS system usually has approximately 3 cm separation 
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of channels targeted towards the cerebral cortex, and shorter ones (<1 cm) to acquire 

signals from superficial layers. 

 

Figure 1.3: Photon trajectories with different separations between light sources and 

detectors. CSF: cerebrospinal fluid. 

1.2.2 Preprocessing fNIRS signals 

The raw signals obtained with fNIRS will contain noise from various sources, including 

background environmental noise, system drift, motion, and systemic physiology. Therefore, 

preprocessing, or denoising, is essential for obtaining neurologically meaningful data. Note, 

there is no gold standard for the most appropriate denoising methods to use, but typically, 

a preprocessing pipeline includes some or all the following steps: data exclusion, motion 

correction, band-pass filtering, and removal of systemic physiology. In general, it is 

recommended to customize and optimize the preprocessing pipeline based on the dataset 

being analyzed [61]. 

The fNIRS signals may be saturated with noise and not yield any useful information. In 

such cases, the signals should be excluded from further analysis to avoid misinterpretations 

of the data. Visual inspection in either time or frequency domain of the signals can be an 

option. A signal filled with large spikes or cliffs should meet exclusion criteria. Also, 

cardiac signal comes at a fixed frequency, around 1 Hz. If such frequency is present in 
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frequency domain, it indicates that the signal is coupled with physiological hemodynamics, 

but not purely noise [62]. Visual inspection relies on the experience of operators on 

distinguishing noisy signals from the good, therefore, quantified metrics can also be used 

to evaluate the quality. Coefficient of variance (CV) is a simple measurement and is used 

by various commercialized fNIRS software. Also, there is a method introduced in [63] that 

can measure signal-to-noise ratio through automatically detecting cardiac frequency. 

Though fNIRS is known for its resistance to movements of tested subjects [64], motion 

artifacts may still appear in fNIRS signals as sharp spikes or drastic shifts in baseline, 

mostly due to disrupted contact between probes and skin. Numerous motion correction 

methods have been proposed. A common one, introduced in [65], identifies the motion 

artifacts by calculating standard deviation (STD) within a sliding window, then applies 

spline interpolation on those sections with STD over a threshold. Notably, this method 

sometimes combines with Savitzky-Golay filter [66] to further smooth signals. Another 

popular method is wavelet filtering [67], [68] which decomposes a signal into wavelets, 

removes the wavelets representing noise components, then re-assembles the whole signal. 

It is worth mentioning that spline interpolation combined with wavelet filtering is reported 

to be particularly good with very noisy data from infants [69]. For continuous monitoring 

of the neonatal brain, prioritizing methods that operate in real-time is important. This is 

particularly relevant because spline interpolation can promptly detect and rectify motion 

as soon as it happens. Other options include Kalman filtering [70], and independent 

component analysis (ICA) [71].  

Band-pass filtering is for removing very low-frequency system drift and high-frequency 

background noise and some types of systemic physiology such as cardiac dynamics. A 

recent study demonstrated that high-order finite impulse response filter works best [72] but 

it was never tested on resting-state or neonatal data. There are a few considerations to be 

taken into consideration when choosing the cutoff frequency of the filter. Firstly, cutoff 

frequency should not be close to the frequency of tasks in experimental paradigm to avoid 

task related response being filtered out. And the task frequency should be away from 

common physiological noise frequencies to avoid false positives and false negatives in 

hemodynamic responses to the task [73]. Also, for resting-state analysis, note that the 
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intrinsic fluctuation of brain hemodynamics is low-frequency (<0.1 Hz) [74], which allows 

a lower cutoff frequency for a low-pass filter, yet the signal may still be contaminated by 

Mayer waves (~0.1 Hz).  

The aforementioned steps can be applied either before or after calculating hemoglobin 

concentration change with the MBLL from raw optical density data.  

Light detected in fNIRS can contain photons from extracerebral layers (Fig. 1.2) which 

contributes to signal components irrelevant to cerebral hemodynamics. These extracerebral 

signals contain Mayer waves, respiration and cardiac cycles bringing more physiological 

noise and irrelevant scalp hemodynamics [75]. It has become increasingly popular to use 

short-distance channels (SDC) to address this issue. SDCs are from source-detector 

couplings of shorter separation (typically <1 cm) and mainly record extracerebral signals 

(Fig. 1.2). By regressing out SDC signals from regular channels, the extracerebral 

components within regular channels can be weakened. Note that such regression is 

typically done after the SDC and regular channel signals being corrected for motion, band-

pass filtered and applied with MBLL. One can use general linear models (GLM) for 

regression. GLM is defined as  

𝑌 = 𝑋𝛽 + 𝑅, (1.8) 

where 𝑋 contains single or multiple predictors, 𝑌 contains an outcome variable, 𝑅 is the 

residual or error, and entries of 𝛽 are scaling factors describing how much predictors in 𝑋 

contribute to the 𝑌. 𝛽 can be estimated as  

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. (1.9) 

For SDC regression, 𝑋 is the SDC signals, 𝑌 is regular channels, and the residual 𝑅 would 

be the signal without SDC components. Note there is no consensus on how to build 𝑋. For 

a regular channel, one can compose 𝑋  with geometrically close SDCs, all SDCs, 

average/median of all SDCs, etc. [76], [77]. Also, note that it is rather uncommon to use 

SDCs for neonates. Thinner scalps and skulls limit extracerebral components within 

regular channels, and make it too short for separations of SDCs to be realized within fNIRS 

hardware [75]. Usually, SDC regression is the last step of fNIRS preprocessing, but 

sometimes pre-whitening is also used to remove autocorrelation within the time series [78]. 

The denoised fNIRS signals can be used for a variety of analysis, which cannot be 
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exhaustively documented in this dissertation, but some which are related to this study will 

be introduced in section 1.4. 

1.2.3 Hemodynamic response 

The changes in hemoglobin concentration resolved through MBLL can reflect neural 

activity due to the mechanism of neurovascular coupling. Neural signaling processes in the 

brain, including generation and propagation of action potentials, synthesis, release, 

reception and scavenging of synaptic neurotransmitters need energy from adenosine 

triphosphate, which is primarily produced from oxygen and glucose transported by blood. 

For example, when neurons need to perform certain functions triggered by motor or 

cognitive tasks, neural signaling becomes more frequent and therefore consumes more 

energy. Various chemical signals are released by neurons or astrocytes through multiple 

pathways, which would lead to dilatation of nearby blood vessels [79]. While glucose 

concentration can be balanced between consumption and new arrivals to maintain a steady 

level, it is observed that HbO will be excessively supplied, creating an increase in HbO and 

decrease in Hb, which can be detected by fNIRS. Such a process is described as the 

hemodynamic response. Note that in fNIRS data, the neonatal hemodynamic response may 

show an increase in Hb [80], potentially due to immature neurovascular coupling 

mechanisms. 

1.3 Magnetic resonance imaging 

MRI is considered the gold standard for neonatal neuroimaging and is widely used for 

clinical diagnosis of neonatal brain injury. This study is focused on fNIRS, yet under many 

scenarios fNIRS data are compared to or validated by MRI data from the same group of 

subjects. Therefore, in this section, basics of MRI and some common scanning sequences 

will be introduced. 

1.3.1 Basics of MRI 

The contrast within MRI images comes from different rates of relaxation from excited 

magnetization to equilibrium among different tissue molecules [81]. During MRI 
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acquisition, tissues are placed in a constant magnetic field 𝐵0  so that protons (mainly 

hydrogen for tissues) are magnetized, and their spins follow the direction of 𝐵0, which is 

usually defined as longitudinal. Along the transverse plane perpendicular to 𝐵0 , an 

impulsive excitation magnetic field 𝐵1 of radiofrequency would tip the spins towards the 

transverse plane and start precession. Precessing spins can produce rotating magnetization 

then induce a tiny electric current (a signal) within a receiving coil nearby. These signals 

can be later processed into MRI images.  

If the protons are in a perfectly homogeneous magnetic field, they will all precess at the 

same rate. Yet in practice, distortions in magnetic field exist due to heterogeneity of tissues. 

To be specific, magnetic susceptibility varies among different molecules and protons are 

also magnetic and influencing each other. Therefore, precessions of spins will proceed at 

different rates gradually causing phase differences among them. Over time, the overall 

magnetization along the transverse plane will diminish exponentially, which is called T2* 

relaxation. T2* is the time it takes for the signal from rotating magnetization reduced to 

1/𝑒 of its maximum at the very beginning of the relaxation. Distortions in magnetic field 

can be decomposed into two components. The first one is spatially and temporally static 

and is induced by the magnetic susceptibility and design of the 𝐵0 magnet. And the second 

one is temporally heterogeneous and induced by interactions between protons and thermal 

changes of tissues. The two components can be separated by using a so-call “spin-echo” 

first proposed in [82], whereby a second impulsive magnetic field with direction of 

opposite 𝐵0 is applied shortly after T2* relaxation to compensate for T2’ relaxation so that 

an echo signal align with only T2 relaxation will present afterwards. Relaxation induced 

by temporally static distortion is called T2’ relaxation and the other one is called T2 

relaxation, where T2’ and T2 refer to the time for relaxation to 1/𝑒 of maximum. Note that 

T2* relaxation is the combination of T2 and T2’ relaxation so T2* time is shorter than T2. 

Relaxation not only happens in the transverse plane, but also along the longitudinal axis, 

because energy that spins absorb from impulsive 𝐵1  dissipates over time so that the 

magnetization along the longitudinal axis grows. T1 relaxation characterizes this process 

and T1 is the time for signal to reach (1 − 1/𝑒) of maximum. At one time point, different 
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tissues will have different signal magnitudes due to various relaxation rates so that imaging 

contrast can be formed. For tissues within or close to the brain, T1 is much larger than T2.  

T1w imaging and T2w imaging rely on two parameters: the repetition time (TR) and the 

echo time (TE). TE is the time between 𝐵1 and the peak of the echo signal, and TR is the 

time between two consecutive 𝐵1 pulses. T1w and T2w imaging rely on the selection of 

TR and TE respectively to maximize the signal differences between tissues focused on. For 

example, infarctions or inflammations are bright on T2w images while white matter 

appears darker, which makes it specifically useful for identifying diffusive injury patterns 

[36].  In general, T1w imaging has shorter TR and TE times while T2w has longer times 

for these parameters. Note that the neonatal brain has higher water content than the adult 

brain, due to lower myelin concentrations[83], so that the parameter settings should be 

optimized to have better imaging quality [84].  

During image acquisition, gradients are applied to 𝐵0 to achieve slice selection, frequency 

and phase encoding so that only protons in one slice can be excited at a time and the 

precessions of spins can have different frequencies and phases, to decompose the one signal 

detected into multiple signals corresponding to their geometrical origins [81]. Typical 

spatial resolution of T1w images is about 1 × 1 × 1 mm3 and can be improved by using a 

scanner with higher 𝐵0 (e.g., 3 Testa or higher) [85].  

1.3.2 Functional magnetic resonance imaging 

The BOLD signal measured by fMRI originated from the relative change between HbO 

and Hb. As mentioned in section 1.2.3, the hemodynamic response reflects increases in 

HbO and decreases Hb. Magnetic susceptibility of HbO and Hb can lead to different 

reactions to the 𝐵0 field. HbO being diamagnetic while Hb being paramagnetic creates 

local heterogeneity of the magnetic field further affecting T2* relaxation times of the 

tissues nearby and creating BOLD contrast. Such contrast depends on the amount of Hb 

due to its paramagnetism opposed to diamagnetism of most tissues [86]. Temporal 

sampling rate is determined by the TR, which is typically 2-3 s, yet with multi-slice 

acquisition where multiple slices along longitudinal axis are acquired simultaneously, the 
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TR can be reduced to below 1 s [87]. The spatial resolution is typically about 3 × 3 × 3 

mm3 for a voxel, lower than T1w imaging. 

Preprocessing of fMRI data has been integrated into many well developed and user friendly 

software (e.g., FMRIB Software Library, (FSL)) [88], Analysis of Functional NeuroImages 

(AFNI) [89]). A preprocessing pipeline can include all or some of the following steps: skull 

stripping, slice-timing correction, motion correction, spatial smoothing, temporal filtering 

(band-pass) and registration to a standard template. For some analytic routines, physiology 

regression is also applied using white matter or whole-brain averaged signals as nuisance 

regressors. Traditionally, fMRI studies are focused on grey matter where most neuronal 

activity occurs, yet recent findings suggest that white matter BOLD signal also contains 

meaningful hemodynamic responses, raising questions on using the signal as a regressor 

[90]. 

1.4 Functional connectivity and graph theory 

Functional connectivity (FC) of brain activity refers to the statistical dependency or 

temporal synchronization among cerebral regions. Such dependency or synchronization 

can be associated with cognitive or sensory functions. FC can be derived from functional 

imaging data including fMRI, fNIRS, EEG, or Magnetoencephalography, which yields 

time series obtained from different brain regions. This section is mainly focused on fNIRS 

and fMRI that both evaluate cerebral hemodynamics and methods for deriving and 

analyzing connectivity are mostly developed earlier for fMRI and expanded to fNIRS. The 

time sequences being studied, for fMRI, can be BOLD sequences extracted from individual 

voxels or as average over many voxels forming as large as an anatomical lobe. For fNIRS, 

they can be hemoglobin concentration signals from channels which correspond to cortical 

regions.  

1.4.1 Functional organization of brain and resting state 

FC can be used to reveal the functional organization of the developing brain. It is obvious 

that neurons interact with each other to perform certain cognitive functions, forming a 

network containing numerous of them. Multiple functional networks have been identified 
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from brain imaging, traditionally by inducing activation of brain regions from specifically 

designed tasks and stimuli.  

Resting-state functional connectivity (RSFC) has also been shown to provide 

organizational information on brain function [91], [92], [93], [94]. Resting-state functional 

imaging is captured when participants are performing no active tasks and remain still with 

eyes open or closed. External stimuli should be controlled for as much as possible. Early 

work from Biswal et al. [74] using fMRI demonstrated that during rest hemodynamic 

fluctuations still exist, and functional networks emerge. It is argued that such spontaneous 

processes originate from a combination of unconstrained conscious activity (e.g., mind 

wandering) and intrinsic neural activity, which is reflected by brain regions that recruit the 

same cognitive functions will have strong connections, and form functional networks [95].  

One functional network specifically emerges from RSFC analysis is the default mode 

network (DMN) which roughly expands around posterior cingulate cortex, lateral parietal 

cortex, and medial prefrontal cortex. The DMN is identifiable as it is more activated during 

resting state [96]. DMN is shown to be involved in multiple functions, such as mind 

wandering, memory recollection, theory of mind, which reflects the ability of 

understanding thoughts, emotions and intentions of others [97]. Other identified networks 

include visual, auditory, somatosensory, and the central executive network, among others. 

Notablely, Power et al. [98] detect multiple functional networks mentioned above using 

clustering methods with RSFC maps. 

RSFC can offer benefits when it comes to establishing significance in clinical contexts. It 

is estimated that spontaneous neural activity consumes most of the energy (about 80%) 

supplied to the brain [99]. Therefore, to have a comprehensive evaluation of cerebral 

hemodynamics and function, resting-state data is essential. Also, resting-state acquisition 

does not require active participation by the subjects, so it is better for patients who cannot 

be instructed or cope with tasks, including those with impaired cognitive ability, 

individuals with disabilities, young children and infants.  
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1.4.2 Variations of functional connectivity 

Numerous methods have been proposed to calculate FC, which are based on different 

perspectives on how to characterize the relationships amongst time sequences and cannot 

be listed exhaustively here. Some typical ones that are widely applied will be introduced 

in this section. 

Principal component analysis (PCA) is a data-driven technique that breaks down a data 

matrix into components, determined by the variance they explain. The construction of the 

data matrix can vary depending on the specific perspective intended to be explained. For 

example, in a given fMRI image, we can build the data matrix with all of the voxels on one 

axis and all time points on the other. Determining whether to analyze spatial or temporal 

variance depends on whether the voxels are arranged along rows or time points. The first 

component contains the direction along which the data matrix shows maximal variance. 

By projecting the data matrix onto the first component, one can obtain, for example, a 

spatial map where voxels with close values are considered to share similar temporal 

patterns therefore have strong FC between them. The strength of using PCA applied to FC 

data is that it does not rely on presumptive models of hemodynamic functions, yet one of 

the limitations is that it could split important features into multiple components [100]. 

Similar to PCA, independent component analysis (ICA) is another matrix decomposition 

method that identifies statistically independent components and common features shared 

within components [101]. ICA is considered to be more flexible than PCA as PCA can be  

constrained to identify either temporal or spatial variance, but does not consider both 

simultaneously [101]. With ICA, one can obtain various components such as time 

sequences corresponding to various task stimuli and noises from different sources, and how 

spatially the components are weighted.  

Pearson correlation coefficient (PCC) is probably the simplest way to calculate FC. Given 

two time sequences 𝑥1 and 𝑥2, PCC is defined as 

𝑃𝐶𝐶 =
∑ (𝑥1,𝜏 − 𝑥1̅̅̅)(𝑥2,𝜏 − 𝑥2̅̅ ̅)𝜏

√∑ (𝑥1,𝜏 − 𝑥1̅̅̅)
2

𝜏 √∑ (𝑥2,𝜏 − 𝑥2̅̅ ̅)
2

𝜏

, (1.10)
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where �̅� denotes the average of the time sequence. PCC tests for linear correlations and 

ranges from -1 to 1 where 1 means perfectly positively correlated. The time sequences can 

be extracted from single voxels, or as averages over larger brain regions. Single 

correlations between two specific voxels or regions can be examined. PCC can also be used 

for seed-based analysis, where a seed time sequence is selected from a voxel or region with 

certain known properties, and other voxels and regions are correlated with this one to test 

how much they share the same properties. In addition, correlational analysis can be done 

without seeds, but between many pairs of regions to form a connectivity map. Based on 

the map, topological properties can be evaluated and analyzed on different levels from local 

to global. Note that if two regions both have strong correlations with a third region, the two 

will be very likely to strongly correlated with each other. Therefore, to examine a more 

direct connection between two regions, partial correlations are proposed in order to remove 

any third-party effects on a connection [102]. The most straightforward way to calculate 

partial correlations is to regress out all other time sequences from the two being examined. 

A more statistically effective method has been proposed in [103]. Given 𝑖th and 𝑗th brain 

regions from a total of 𝑚, partial correlation 𝜌𝑖𝑗 can be calculated as 

𝜌𝑖𝑗 = −
𝑝𝑖𝑗

√𝑝𝑖𝑖𝑝𝑖𝑗

. (1.11) 

𝑃 = [𝑝𝑖𝑗] = [𝑐𝑜𝑣(𝑋)]−1  where 𝑐𝑜𝑣(𝑋)  is the covariance matrix of data matrix 𝑋 =

[𝑥1, 𝑥2, … , 𝑥𝑚]𝑇 and [𝑐𝑜𝑣(𝑋)]𝑖𝑗 = ∑ (𝑥𝑖,𝜏 − 𝑥�̅�)(𝑥𝑗,𝜏 − 𝑥�̅�)𝜏  where 𝑥 is time sequence. 

PCC and partial correlation are generally considered as undirected or bidirected 

connections where information flows both ways, yet there are also directed connections, a 

group of which is causality modelling. Such modelling is based on that neural signaling 

passes from one neuron to another then one region to another, forming time lag and 

causality. One common way to model causality is through Granger causality which is based 

on solving GLM models of representing future time sequences with weighted combinations 

of past ones. In practice, given a future time sequence, Granger causality can be calculated. 

By projecting the data matrix onto the first component, one can obtain, for example, a 

spatial map where voxels with close values share similar temporal patterns and therefore 

have strong FC between them [104]. Another causality model is dynamic causal modeling 
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where a nonlinear dynamic system describing interactions among neural states is 

predefined and tested with functional images [105]. 

FC obtained from fMRI and fNIRS is compared through various approaches. Sasai et al. 

[106] use seed-based correlation on HbO, Hb and BOLD recordings of adults and show 

good correspondence in functional networks identified, including dorsal attention, fronto-

parietal control and DMN. Duan et al. [107] present positive correlation between fMRI FC 

strength and fNIRS, and in general good similarity of connectivity maps. Bulgarelli et al. 

[108] apply dynamic causal modelling on data from one infant and show good 

correspondence of the causal models between the two modalities. However, comparisons 

are never tested on neonates on a larger scale. And due to the different hemodynamic 

response of infants compared to adults [109], fMRI, which focuses more on relative 

differences between HbO and Hb, could yield different functional connectivity patterns 

from newborns.  

1.4.3 Graph theory 

In general, relationships that are of interactive or inducive nature can be modeled as graphs, 

which are also referred to as networks, or connectivity maps in terms of brain FC. A graph 

comprises two fundamental components: nodes and edges that connect these nodes. The 

edges can be either directed or undirected. For brain FC, correlation-based connectivity is 

generally undirected and causality-based connectivity is directed. This section mainly 

focuses on undirected graphs as the methods in the subsequent chapters use correlation-

based connectivity. 

Mathematically, a graph 𝐺 can be defined as 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of all nodes and 

𝐸 is the set of all edges. Note that an edge can be a self loop connecting one node with 

itself. Fig. 1.3 shows a demonstration of a simple undirected graph where 𝑉 = {𝑣1, … , 𝑣5} 

and 𝐸 = {𝑒12, 𝑒13, 𝑒23, 𝑒24, 𝑒45}. A graph can be represented by the adjacency matrix 𝐴 =

[𝑎𝑖𝑗], where 𝑎𝑖𝑗 can be either binary for unweighted graphs, denoting the existence of an 

edge, or 𝑎𝑖𝑗 ∈ 𝑅 for weighted graphs. By analyzing a graph, topological information can 

be learned and interpreted with practical meanings. In general, a graph can be analyzed on 
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three levels – local, subgraph and global. Note that many metrics can only be applied to 

graphs with no negative weighted edges, including those applied in this study, plus the 

interpretation of negative edges are being argued widely [110]. Therefore, it will not be 

distinguished whether a method can be used with negative edges in this dissertation and 

graphic metrics used in this study are all calculated with negative edges removed, which is 

a common strategy adopted by researchers [98], [111], [112].  

 

Figure 1.4: An example of a simple graph. 

Local analysis focuses on properties of individual nodes or edges. The basic property of an 

edge is its existence or weight, but it can also be its importance within the graph. A classic 

metric for measuring the importance is edge betweenness centrality, which can be 

calculated as, given an edge 𝑒, 

𝐵𝐶𝐸(𝑒) = ∑
𝜎(𝑖, 𝑗|𝑒)

𝜎(𝑖, 𝑗)𝑖,𝑗∈𝑉,𝑖≠𝑗
, (1.12) 

where 𝜎(𝑖, 𝑗) is the number of shortest paths between node 𝑖 and 𝑗 while 𝜎(𝑖, 𝑗|𝑒) is the 

number of shortest paths between node 𝑖 and 𝑗 going through 𝑒. Note that Eq. 1.12 must be 

calculated on connected graphs where there is at least one path between any pairs of nodes. 

The shortest path, which can be identified by the classic Dijkstra’s algorithm [113], 

describes the most efficient pathway for information transmission. The brain is also a very 

efficient system for passing information therefore can be characterized by shortest paths. 

It is widely discussed that the brain is a small-world network where nodes are not all 

connected but the shortest paths between any pairs of them are short [114]. Node property 

can also be described as the importance or the centrality of a node. Given a node 𝑖, common 

centrality metrics of 𝑖 include degree centrality which is defined as  

𝐷𝐶(𝑖) = ∑ 𝑎𝑖𝑗
𝑗

, (1.13) 
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closeness centrality which is the distance (length of shortest path) between a node between 

all others, betweenness centrality which is similar to Eq. 1.12 but now counting the number 

of shortest paths going through a node, eigenvector centrality where the 𝑖th eigenvector of 

adjacency matrix 𝐴 contains the relative centrality of 𝑖 to other nodes, etc. Nodes with high 

centrality are often considered as hubs in the graph. Studying hubs in brain networks gives 

regions with central roles of interactive processes and neural communications [115]. 

Another type of nodal property is based on its involvement within a local community. For 

example, clustering coefficient of a node is defined as the proportion of edges among its 

neighbors over all possible edges. Clustering coefficient of node 𝑖 is 

𝐶𝐶(𝑖) =
1

𝐷𝐶(𝑖)[𝐷𝐶(𝑖) − 1]
∑ 𝑎ℎ𝑖𝑎𝑗𝑖𝑎ℎ𝑗

ℎ,𝑗
, (1.14) 

Efficiency of a node is calculated as the average of inversed distances between any pairs 

of other nodes neighboring the node being investigated (mathematically defined in Eq. 3.4). 

Such measurements are closely related to small-worldness of graph therefore widely 

adopted for studying brain FC [116].  

Subgraphs of a graph, containing only a subset of 𝑉 and 𝐸, can be either manually defined 

based on certain known properties of nodes, such as anatomical locations of brain regions, 

or automatically identified with clustering algorithms. Multiple clustering algorithms have 

been applied to brain networks for identifying functional communities. Power et al. [98] 

use a Louvain-like algorithm which is also adopted in Chapter 3 of this study. Firstly 

introduced by Blondel et al. [117], Louvain algorithm is aimed optimized modularity. The 

modularity can change with how exactly a graph being clustered and is defined as  

𝑀𝑜𝑑(𝐶) =
1

∑ 𝑎𝑖𝑗𝑖,𝑗
∑ (𝑎𝑖𝑗 −

𝐷𝐶(𝑖)𝐷𝐶(𝑗)

∑ 𝑎𝑖𝑗𝑖,𝑗
)

𝑖,𝑗
𝛿(𝑖, 𝑗), (1.15) 

where 𝐶 = {𝑐1, … , 𝑐𝐾} given 𝐾 clusters in total, 𝑐𝑘 is a set containing nodes belonging to 

𝑘th cluster, and  𝛿(𝑖, 𝑗) is 1 if 𝑖 and 𝑗 are in the same cluster or otherwise 0. Intuitively, 

modularity measures the ratio of edges within clusters over those between clusters. The 

algorithm has a hierarchical structure, where every node will be assigned to its own cluster 

at first, followed by randomly inserting or removing nodes into or from clusters until 

modularity changes only insignificantly. Other clustering algorithms are also used on brain 

FC, e.g., matrix factorization, etc., with clustering results evaluated by modularity [118].  
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Global analysis captures the overall properties of a whole graph. It can be a simple average 

over local properties or calculated in a more macroscopic way. For example, global 

clustering coefficient can be the average over nodal one (Eq. 1.14) or be defined globally 

as in Eq. 3.3. Similarly, network efficiency of a graph can be an average of Eq. 3.4, or be 

defined as  

𝑁𝐸𝑔𝑙𝑜𝑏 =
1

|𝑉|(|𝑉| − 1)
∑

1

𝑑𝑖𝑗𝑖≠𝑗
, (1.16) 

where |𝑉| is number of nodes and 𝑑 is the distance between two nodes. 𝑁𝐸𝑔𝑙𝑜𝑏  can be 

further normalized, being divided by the efficiency of a randomly built graph with the same 

𝑉 but different 𝐸 [119], [120].  

1.4.4 Studying neonatal brain injury with functional connectivity 

To demonstrate RSFC can be a reliable approach for characterizing neonatal brain injury 

and potentially be biomarkers, this section will list some related studies showing altered 

FC within infants with brain injury. 

Preterm birth in general alters functional connectivity patterns, with or without significant 

injuries. Doria et al. [121] scanned preterm born infants, with no focal abnormalities 

detected on MRI, from early preterm to TEA and identify multiple functional networks 

using ICA and seed-based correlations. Compared to term-born healthy controls, most 

functional networks emerged early in development. However, differences exist when 

preterm babies reached TEA compared to healthy term newborns. For example, motor, 

somatosensory, executive control, and dorsal visual networks are clearly unilateral for 

preterm babies but bilateral for term-born neonates. Also, DMN is significantly larger in 

preterm infants. Smyser et al. [122] followed very preterm infants to TEA, excluding those 

with grade III and IV IVH, and found disrupted development of thalamus-cortex 

connectivity. They also found altered medial prefrontal cortex which is part of DMN. 

Another study from Smyser et al. [123] showed decreased correlation connectivity in 

several functional networks, including the DMN, frontal-parietal, and language networks, 

within preterm born infants without serious injuries, compared to healthy controls. Ball et 

al. [124] use machine learning to differentiate preterm from term infants and showed that 
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connections within the basal ganglia and frontal cortex are specifically powerful at 

distinguishing the two groups. An fNIRS study from White et al. [125] showed that 

functional correlation is weaker within occipital lobe. Fuchino et al. [126] also used fNIRS 

and showed significantly decreased connectivity over parietal lobe and some increased 

interhemispheric connectivity, compared to term-born controls. Combined with graph 

theory analysis, Cao et al. [127] describe a gradual segregation of functional networks from 

31 to 42 weeks postmenstrual age, demonstrating an increase in the clustering coefficients 

and characteristic path length. The presence of focal injury, such as PVL, can be a 

modulator of FC as well. Duerden et al. [49] compared preterm neonates with or without 

white matter injury and showed weaker bilateral connectivity in visual, somatosensory and 

parietal cortex in the injury group. Smyser et al. [128] reported decreased connectivity 

within motor, visual, thalamus and auditory cortices, which was associated with the 

severity of white matter injury. Lee et al. [129] examined neonates with PVL and also 

found decreased network efficiency in several functional networks. 

Term-born infants with HIE have also been examined by applying FC to functional 

imaging data, although not as many studies have been performed compared to preterm 

neonates. Overall, HIE is associated with altered brain connectivity. Tusor [130] scanned 

fifteen newborns with HIE after undergoing TH and identified auditory, somatomotor, 

visual and default mode networks, which were all altered compared to healthy controls. 

Further, Jiang et al. [131] showed that HIE newborns have reduced intra-hemispheric 

connectivity between primary motor regions and increased connectivity between motor 

regions and frontal, temporal and parietal cortices. Lastly, Zhang et al. [132] used fNIRS 

to scan HIE newborns before they receive TH and reported higher clustering coefficient, 

network efficiency and small-worldness compared to health newborns.  

Note that, in general, there are mixed findings on whether neonatal brain injury would lead 

to increased or decreased connectivity. While many studies show weakened connectivity 

within neonates with brain injury [122], [123], [125], [128], some other studies also show 

increased graph theory metrics [133], [134], or connectivity strength [126], [135]. 
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1.5 Machine learning 

Machine learning methods can be generally defined as a category of statistical algorithms 

designed to learn hidden information from data and perform certain tasks without explicit 

instructions [136]. During the last few decades, machine learning has been drawing 

increasing interest in areas such as clinical decision making, including diagnosis, outcome 

prediction, and treatment optimization. [137]. In this thesis, machine learning methods 

were used to classify two groups or regressing continuous values of dependent variables. 

Since there are numerous machine learning methods and variants developed that have been 

applied in countless scenarios, this section will introduce some related machine learning 

methods that were used in this thesis and some of the applications when combined with 

neuroimaging.  

1.5.1 Conventional methods 

In general, conventional methods are those without the concept of deep learning or the use 

of artificial neural networks (ANN). In a broad sense, matrix factorization methods such 

as PCA also fall into this category.  

Support vector machine (SVM) is one of the most commonly used machine learning 

methods. It is supervised so that labels of samples are to be provided for training. SVM for 

classification finds two parallel hyperplanes that separate the two classes (i.e., no instances 

between the two planes if the two classes are separable), and are as far away as possible 

from each other. Given a training dataset {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} where 𝑥  is the feature 

vector of an instance and 𝑦 is the label being either -1 or 1, if the two classes are separable, 

and the hyperplane can be written as  

𝑤𝑥 − 𝑏 = 0, (1.17) 

where 𝑤 and 𝑏 can be obtained by optimizing the following: 

𝑚𝑖𝑛‖𝑤‖2 , 𝑠. 𝑡. 𝑦𝑖(𝑤𝑥𝑖 − 𝑏) ≥ 1 (1.18) 

where ‖w‖ is the norm of 𝑤 and the distance between two hyperplanes. The constraint 

ensures the instances fall on the correct side of hyperplanes. Yet in practice, the two classes 
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are not always separable with given features. Therefore, instead, a so-called soft margin is 

calculated from a modified Eq. 1.18 is proposed as 

𝑚𝑖𝑛‖𝑤‖2 + 𝛹 ∑ 𝜙𝑖
𝑖

, 𝑠. 𝑡. 𝑦𝑖(𝑤𝑥𝑖 − 𝑏) ≥ 1 − 𝜙𝑖 , 𝜙𝑖 ≥ 0, (1.19) 

where 𝜙𝑖 determines if 𝑥𝑖 falls one the wrong side of hyperplanes and 𝜙𝑖 = max[0, 1 −

𝑦𝑖(𝑤𝑥𝑖 − 𝑏)], and Ψ is a penalty parameter for instances on the wrong side. Solving Eq. 

1.19 can yield some 𝑥𝑖 being chosen as support vectors so that hyperplanes will be exactly 

on these vectors. By slightly modifying Eq. 1.18, one can do support vector regression 

(SVR) 

min‖w‖2 , 𝑠. 𝑡. |𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏| ≤ 𝜖, (1.20) 

so that 𝑤𝑥 + 𝑏 can predict the exact value of 𝑦. 

1.5.2 Artificial neural network 

Artificial neural networks (ANN) are a loose approximation of the neural networks of the 

human brain, where a basic unit of ANN, or a node, takes a data input, processes it, then 

passes the output to other nodes connected to it. ANN is the foundation of deep learning 

where numerous nodes stacked up forming multiple layers, each of which also contain 

many nodes. Deep learning outperforms conventional methods in various applications. A 

typical ANN node can have the structure shown in Fig. 1.4. Given an input ℎ =

(ℎ1, … , ℎ𝑘) , the output is ℎ′ = 𝜎(∑ ℎ𝑖𝑤𝑖𝑖 )  where 𝜎  is an activation function always 

nonlinear since the relationship between input and expected output is not always linear. 

Some common activation functions include Sigmoid, Tanh, rectified linear unit (ReLU), 

etc. [138]. With many nodes, a typical fully connected feedforward ANN can be like Fig. 

1.5.  
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Figure 1.5: A typical structure of an ANN node. 

 

Figure 1.6: A simple demonstration of ANN structure. Each node corresponds to a 

unit in Fig. 1.4. 

ANN models can be used for both supervised and unsupervised learning. For supervised 

learning, the output of the model is evaluated by comparing it with the true values through 

a loss function. And the process of training the model is to optimize the loss function. For 

classification tasks, a common loss function is cross-entropy. To use cross-entropy, each 

node in the output layer should correspond to a class, and the outputs can be normalized 

typically with a softmax function. Given an output from one input instance 𝑌𝑝𝑟𝑒𝑑 =

(𝑦𝑝𝑟𝑒𝑑
1 , … , 𝑦𝑝𝑟𝑒𝑑

𝐾 ) for 𝐾-class classification, softmax is defined as 

[𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌𝑝𝑟𝑒𝑑)]
𝑘

=
𝑒𝑦𝑝𝑟𝑒𝑑

𝑘

∑ 𝑒
𝑦

𝑝𝑟𝑒𝑑
𝑞

𝐾
𝑞=1

, (1.21) 

so that ∑ 𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌𝑝𝑟𝑒𝑑)
𝑘

𝐾
𝑘=1 = 1 and 𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌𝑝𝑟𝑒𝑑)

𝑘
 is positive. The outputs can be 

referred as probabilities of the instance belonging to classes. Then, given 𝑁 instances in 

total, cross-entropy loss function 𝐿𝐶𝐸 can be calculated as 



28 

 

𝐿𝐶𝐸 = − ∑ (𝑌𝑡𝑟𝑢𝑒,𝑛)
𝑘

𝑙𝑜𝑔(𝑌𝑝𝑟𝑒𝑑,𝑛
′ )

𝑘

𝑁

𝑛=1
, (1.22) 

where 𝑌𝑝𝑟𝑒𝑑,𝑖
′ = 𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌𝑝𝑟𝑒𝑑,𝑛) is the output of 𝑛th instance, (Ytrue,n)

k
 is 1 meaning 

the 𝑛 th instance belongs to class 𝑘  and (𝑌𝑝𝑟𝑒𝑑,𝑛
′ )

𝑘
 is the 𝑘 th entrance of 𝑌𝑝𝑟𝑒𝑑,𝑛

′ . To 

minimize the loss function, gradient descent is commonly used to converge the function to 

a local minimum, while a global minimum of the function can be very difficult to find. The 

basic idea of gradient descent is to push the function for a small step at a time towards the 

opposite direction of the gradient at the current point to ensure the function is descending 

at the fastest rate. Given a fixed input dataset, the loss function 𝐿 can be considered as a 

function of trainable weights 𝑤 (Fig. 1.4), so that the gradient of 𝐿 is 

𝛻𝐿 = [
𝜕𝐿

𝜕𝑤0
,

𝜕𝐿

𝜕𝑤1
, … ,

𝜕𝐿

𝜕𝑤𝑄
] , (1.23) 

and change of 𝑤𝑞 at a time  

𝛥𝑤𝑞 = −𝜂
𝜕𝐿

𝜕𝑤𝑞
, (1.24) 

where 𝜂 is the learning rate which is usually a small positive constant that controls how 

much a step is. For example, for the network in Fig. 1.5 using cross-entropy function with 

softmax at the output layer, given ℎ𝑖𝑘 as the input from node 𝑖 of hidden layer and 𝑤𝑖𝑘 as 

the corresponding weight at the 𝑘th node of the output layer,  

Δ𝑤𝑖𝑘 = −𝜂
𝜕𝐿𝐶𝐸

𝜕𝑤𝑖𝑘
= −𝜂 [(𝑌𝑡𝑟𝑢𝑒,𝑛

′ )
𝑘

− (𝑌𝑝𝑟𝑒𝑑,𝑛)
𝑘

] ℎ𝑖𝑘 . (1.25) 

Eq. 1.25 renders the gradients for the weights at the output layer, yet the gradients at the 

hidden layers and the input layer remain unknown for now. Backpropagation is applied to 

solve the issue. If assuming there is no activation at hidden layer, given ℎ𝑗𝑖 as the input 

from node 𝑗 of input layer to hidden node 𝑖 and 𝑤𝑗𝑖  corresponding to ℎ𝑗𝑖  at node 𝑖, the 

gradient of 𝑤𝑗𝑖 is 

𝜕𝐿𝐶𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐿𝐶𝐸

𝜕ℎ𝑖𝑘

𝜕ℎ𝑖𝑘

𝜕𝑤𝑗𝑖
= ℎ𝑗𝑖 [1 − (𝑌𝑝𝑟𝑒𝑑,𝑛

′ )
𝑘

] 𝑤𝑖𝑘. (1.26) 

For regression, one can use the L1-loss as the loss function, which is defined as 

𝐿𝐿1 = ∑ |𝑌𝑡𝑟𝑢𝑒,𝑛 − 𝑌𝑝𝑟𝑒𝑑,𝑛|
𝑁

𝑛=1
, (1.27) 
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which is the mean absolute error between the true values and the predicted values. 

In practice, trainable weights are randomly initiated, therefore, the model can be trained 

for multiple times so it may reach different minimums from which one run can be chosen 

with a better performance.  

1.5.3 Validation and evaluation of performance 

It is a common practice to have separate training and testing datasets in case the machine 

learning models are overfitted to the training data [139]. For a smaller sample size, leave-

one-out validation is suitable, while for larger sample sizes, 𝑘-fold validation is more 

appropriate with 𝑘 ranging from 4 to 10, typically. Either method is based on using only a 

portion of data for training and the rest for validation. For example, for 𝑘-fold validation, 

the whole dataset will be separated into 𝑘 subsets with no overlapping. The model will be 

trained for 𝑘 times with the 𝑘th subset chosen for validation and the rest for training. The 

overall performance of the model will be the average over all validation sets. Note that 

there is no standard for choosing the 𝑘 . However, there is a trade-off between bias and 

variance. A larger 𝑘 gives low bias of the model, as more data are used for training but also 

there can also be very high amounts of variance in the validation errors and long processing 

times [139], [140]. Obviously, when 𝑘  is equal to the number of samples, 𝑘-fold becomes 

a leave-one-out validation. On some occasions, a third testing dataset are also separated to 

evaluate the model after it is trained and tuned based on k-fold validation as a final testing 

on the model, so that the performance evaluation is not biased towards the data being 

evaluated on. But for smaller sample sizes, further separating the dataset may raise the 

variance and lower the representing power of the model [140]. 

The performance of a machine learning model can be evaluated by various metrics. For 

binary classification, one can create a confusion matrix (as shown in Fig. 1.6) with 

corresponding numbers from the results on a group of samples. Many metrics can be 

calculated based on the confusion matrix, including accuracy as 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (1.28) 

f1 score as 
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𝐹𝑆 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(1.29) 

which can be regarded as a harmonic mean of precision (
𝑇𝑃

𝐹𝑃+𝑇𝑃
) and recall (

𝑇𝑃

𝑇𝑃+𝐹𝑁
), 

Matthews correlation coefficient as 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
, (1.30) 

etc. One can also draw the receiver operating characteristic (ROC) curve with recall on the 

𝑥 axis and FP rate (
𝐹𝑃

𝐹𝑃+𝑇𝑁
) on the 𝑦 axis over a range of thresholds for classification. 

Typically, ROC curve starts at (0,0) and ends at (1,1). Area under ROC curve (AUC) can 

be calculated as the integration of the curve from 0 to 1. Metrics like AUC is to test if the 

prediction is biased towards one class when the samples are unbalanced between two 

classes. For regression, one can choose L1-loss, L2-loss as  

𝐿𝐿2 = ∑ (𝑌𝑡𝑟𝑢𝑒,𝑛 − 𝑌𝑝𝑟𝑒𝑑,𝑛)
2𝑁

𝑛=1
, (1.31) 

or correlation-based metrics, etc., to measure the performance. 

 

Figure 1.7: The confusion matrix for binary classification therefore it is 2-by-2. For 

𝑲-class classification the matrix would be 𝑲-by-𝑲. 

1.5.4 Application of machine learning in neuroimaging 

Over the last two decades, there has been a wealth of studies combining neuroimaging and 

machine learning methods [141]. The applications of machine learning in clinical 

neuroimaging studies have been introduced to study numerous diseases and disorders to 

reveal abnormal patterns, guide diagnosis, and predict developmental outcomes [142], 

[143], [144]. More specifically, for neonatal brain injury, there are various applications as 

well. For instance, Raad et al. [145] used autoencoders to detect abnormalities on the MRI 

scans of infants with neonatal encephalopathy and reached over 80% of accuracy. They 
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also identified new abnormalities that were previously missed from the radiological 

readings. Pavel et al. [146] examined EEG data from infants with HIE for early prediction 

of development of seizures using random forest equations. Smyser et al. [147] 

distinguished fMRI connectivity features in preterm born infants from term born neonates 

using SVM. As for optical measurements, Ashoori et al. [148] extracted features from 

cerebral oxygen saturation measured by NIRS to predict IVH severity in preterm born 

neonates. In another study from Bili et al. [149], a piglet model is scanned with broadband 

fNIRS and diffusion correlation spectrometer to identify levels of hypoxia-ischemia (HI) 

insult severity, using PCA for dimension reduction and k-means clustering. Zhang et al. 

[132] used SVM with RSFC features to distinguish neonates with HIE from healthy 

newborns.  

1.6 Research objectives 

The general goal of this research was to determine the potential of fNIRS as a bedside 

neuroimaging tool for monitoring, neonatal brain activity, examine early brain injury and 

extend the clinical usage of fNIRS. The utility of RSFC obtained from fNIRS was  

examined and analyzed to characterize the injury. Specifically, there were three main 

objectives corresponding to Chapters 2, 3, and 4, respectively: 

1. To compare RSFC patterns obtained with fNIRS from a group of preterm-born 

neonates with IVH with those from healthy term born neonates. It was also tested 

whether RSFC patterns of fNIRS could distinguish between IVH infants and healthy 

controls. 

2. To examine whether RSFC obtained with fNIRS differed between term-born 

neonates with HIE. Graph theory metrics calculated from fNIRS RSFC were tested 

to show differences between HIE infants and controls. 

3. To ascertain test whether a predictive model based on machine learning could be 

used to predict cortico-thalamic connectivity using cortical connectivity. 
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1.7 Thesis outline 

This thesis has 5 chapters in total. Chapter 2 to 4 are adapted from previously published or 

submitted manuscripts. Chapter 5 is the final concluding chapter.   

1.7.1 Chapter 2: Altered functional connectivity in preterm neonates 

with intraventricular hemorrhage using functional near-infrared 

spectroscopy 

For a group of preterm born neonates with IVH, RSFC yielded from fNIRS and fMRI will 

be compared and the similarity will be quantified. Connectivity patterns will be compared 

between the IVH neonates and term-born healthy controls, and associated with severity of 

IVH. This chapter is adapted from the publication titled “Altered functional connectivity 

in preterm neonates with intraventricular hemorrhage using functional near-infrared 

spectroscopy” submitted to Heliyon in 2024 by Lilian M. N. Kebaya, Lingkai Tang (co-

first author), Talal Altamimi, Alexandra Kowalczyk, Melab Musabi, Sriya Roychaudhuri, 

Homa Vahidi, Paige Meyerink, Sandrine de Ribaupierre, Soume Bhattacharya, Leandro 

Tristao Abi Ramia de Moraes, Keith St. Lawrence, and Emma G. Duerden and is currently 

under review.  

1.7.2 Chapter 3: Altered resting state functional connectivity in 

newborns with hypoxic ischemic encephalopathy assessed 

using high-density functional near-infrared spectroscopy 

On a group of term-born neonates with HIE, RSFC will be compared between fNIRS and 

fMRI. Graph theory analysis will be applied to find differences between the HIE infants 

and healthy controls. A machine learning based classification will be applied with RSFC 

features to distinguish the two groups. This chapter is adapted from the publication titled 

“Altered resting state functional connectivity in newborns with hypoxic ischemic 

encephalopathy assessed using high-density functional near-infrared spectroscopy” 

published in Scientific Reports in 2024 by Lingkai Tang, Lilian M. N. Kebaya, Talal 

Altamimi, Alexandra Kowalczyk, Melab Musabi, Sriya Roychaudhuri, Homa Vahidi, 
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Paige Meyerink, Sandrine de Ribaupierre, Soume Bhattacharya, Leandro Tristao Abi 

Ramia de Moraes, Keith St. Lawrence, and Emma G. Duerden. 

1.7.3 Chapter 4: Predicting cortical-thalamic functional connectivity 

using functional near-infrared spectroscopy and graph 

convolutional networks 

In this chapter, a predictive model based on graph convolutional network which is a variant 

of artificial neural network will be proposed and applied to predict cortico-thalamic 

connectivity with cortical connectivity, using data from adults and NICU neonates. This 

chapter is adapted from the publication titled “Predicting cortical-thalamic functional 

connectivity using functional near-infrared spectroscopy and graph convolutional networks” 

submitted to Scientific Reports in 2024 by Lingkai Tang, Lilian M. N. Kebaya, Homa 

Vahidi, Paige Meyerink, Sandrine de Ribaupierre, Soume Bhattacharya, Keith St. 

Lawrence, and Emma G. Duerden and is currently under review. 

1.7.4 Chapter 5: Conclusion 

In this chapter, the main goals of this thesis will be revisited and the main findings will be 

generalized, for each chapter and for the whole thesis. The significance of this research 

will be stated, and limitations reviewed. Future directions will be discussed for further 

developing fNIRS towards clinical application for diagnosing and monitoring early brain 

injury. 
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Chapter 2  

2 Altered functional connectivity in preterm neonates with 
intraventricular hemorrhage using functional near-
infrared spectroscopy 

This chapter is adapted from the publication titled “Altered functional connectivity in 

preterm neonates with intraventricular hemorrhage using functional near-infrared 

spectroscopy” submitted to Heliyon in 2024 by Lilian M. N. Kebaya, Lingkai Tang (co-

first author), Talal Altamimi, Alexandra Kowalczyk, Melab Musabi, Sriya Roychaudhuri, 

Homa Vahidi, Paige Meyerink, Sandrine de Ribaupierre, Soume Bhattacharya, Leandro 

Tristao Abi Ramia de Moraes, Keith St. Lawrence, and Emma G. Duerden and is currently 

under review.  

2.1 Abstract  

2.1.1 Background 

Intraventricular hemorrhage (IVH) is a common neurological complication following very 

preterm birth. Resting-state functional connectivity (RSFC) using functional magnetic 

resonance imaging (fMRI) is associated with injury severity, yet fMRI is impractical for 

use in intensive care. Sensitive bedside neuroimaging biomarkers are needed to 

characterize injury. Functional near-infrared spectroscopy (fNIRS) measures RSFC 

through cerebral hemodynamics and has greater accessibility. The aims of this study were 

to determine the comparability of RSFC in preterm neonates with IVH using fNIRS and 

fMRI at term-equivalent age (TEA) and to examine fNIRS connectivity compared to 

healthy newborns and with IVH severity.  

2.1.2 Methods  

Sixteen very preterm born neonates were scanned with fMRI and fNIRS at TEA 

(postmenstrual age=37±0.92 weeks). Fifteen healthy newborns were scanned with fNIRS. 

Connectivity maps of IVH infants were compared between fNIRS and fMRI using 
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Euclidean and Jaccard distances. The severity of IVH in relation to fNIRS-RSFC strength 

was examined using generalized linear models.   

2.1.3 Results  

fNIRS and fMRI RSFC maps showed good correspondence. At TEA, connectivity strength 

was significantly lower in healthy newborns (p-value = 0.023) and preterm infants with 

mild IVH (p-value = 0.026) compared to infants with moderate/severe IVH.   

2.1.4 Conclusions 

fNIRS has potential to be a new tool for assessing brain injury and monitoring cerebral 

hemodynamics and a promising biomarker for IVH severity in very preterm born infants. 

2.2 Introduction 

Germinal matrix-intraventricular hemorrhage (GMH-IVH) continues to be a major cause 

of morbidity amongst neonates born premature prior to 32 weeks of gestation [5], [20], 

[150]. Based on the severity, GMH-IVH is classified into four grades: grade 1, hemorrhage 

confined to the germinal matrix; grade 2, occupying <50% of the ventricle; grade 3, 

distending and occupying >50% of the ventricle, and grade 4 – IVH with intraparenchymal 

hemorrhage [22]. GMH-IVH directly or its consequence such as post-hemorrhagic 

ventricular dilatation (PHVD) may lead to injury to the developing periventricular white 

matter that can be seen on conventional imaging at TEA [36]. Furthermore, some of these 

effects persist later in life, impacting language, cognitive, behavioral, and motor domains 

[151]. 

More recently, the use of RSFC revealed with fMRI has been employed to gain a better 

understanding of brain injury and the impact on brain function, indicating this can be a 

promising biomarker [121], [128], [152], [153]. The BOLD signal, measured by fMRI, 

captures the relative change of HbO and deoxygenated hemoglobin (HHb) induced by 

neuronal activation through the mechanism of neurovascular coupling [79]. Yet it is also 

evident that during resting state, the brain remains active, and regions with similar 
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functions tend to have more synchronized BOLD signals, which forms the basis for 

analyzing RSFC [74]. RSFC has provided new perspectives for studying brain injury in 

preterm infants [49], [128], [153]. fMRI-based RSFC in neonates with perinatal brain 

injury was predictive of motor skills at 8 months of age [154]. Yet, the clinical utility of 

functional MRI is limited due to its accessibility. MRI may be impractical for some 

neonates with IVH who cannot be transported away from the NICU.  

Functional connectivity determined from fMRI shows signal alterations based on BOLD 

signal and is more reflective of HHb [155]. Functional NIRS is a non-invasive and light-

based brain imaging technique that can be used to map functional connectivity at the 

bedside. fNIRS also exploits the process of neurovascular coupling and measures the 

absorption of near-infrared light by hemoglobin [152]. Hence, oxygenation of the cerebral 

cortex is derived as an indirect measurement of neural activity. Both indices reflective of 

cerebral oxygenation, HHb and HbO along with total hemoglobin can be estimated using 

fNIRS. fNIRS is an extremely convenient neuromonitoring tool, that can be acquired at the 

bedside, within a short time period with minimal inconvenience to fragile neonates. 

GMH-IVH, regardless of grade, has been associated with disrupted functional connectivity 

in neonates [156], [157], [158]. RSFC has been demonstrated to be associated with 

ventricular volumes in very preterm born neonates with PHVD [158], indicating that this 

method can reliably be used at the bedside in the NICU. Given the strong need for bedside 

tools to monitor injury patterns in very preterm born neonates and evidence suggesting that 

fNIRS-based RSFC is comparable to fMRI in adults [107], we sought to compare the RSFC 

maps acquired using fNIRS and fMRI in very preterm neonates with IVH who were 

assessed at TEA. We also aimed to investigate whether fNIRS-based RSFC in preterm 

infants would be associated with the severity of IVH, compared to healthy term-born 

neonates. Our overall hypothesis was that fNIRS-based measures of RSFC would be 

comparable to that obtained with fMRI and that severity of injury would be associated with 

changes in RSFC patterns.  
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2.3 Methods 

2.3.1 Study design and settings 

This was a prospective observational cohort study. Study participants were recruited from 

the NICU at the London Health Sciences Centre (LHSC), London, Canada between 

January 2020, and December 2022. 

2.3.2 Participants 

Preterm neonates were eligible for inclusion based on the following criteria: ≤ 32 weeks’ 

gestational age (GA), born at, or referred to NICU, and admitted with a diagnosis of GMH-

IVH, made by the most responsible physician on the infant’s first routine cranial 

ultrasound. Exclusion criteria were the following: major anomalies of the brain or other 

organs, congenital infections, intrauterine growth restriction, metabolic disorder, and 

ultrasound evidence of a large parenchymal haemorrhagic infarction. Term-born infants 

with no reported brain injury were recruited as healthy controls. Participants were recruited 

from the LHSC Mother baby Care Unit (MBCU). Inclusion criteria were birth >36 weeks’ 

GA, born at LHSC, and admitted to MBCU. Exclusion criteria were the following: 

congenital malformation or syndrome, antenatal infections, antenatal exposure to illicit 

drugs, small for gestational age and intrauterine growth restriction.  

The study was approved by the Health Sciences Research Ethics Board at Western 

University (116142). Informed consent was provided by the parents/caregivers of the 

infants enrolled in the study. The study was conducted in accordance with the Declaration 

of Helsinki. 

2.3.3 Clinical variables 

The neonatal charts were reviewed by Neonatal-Perinatal Medicine Fellows (LMNK, TA, 

SR, MM), Paediatric Resident (AK), Research Associate (HV) or NICU Nurses (PM, CM) 

for demographic and clinical characteristics. The following postnatal events were included: 

days of mechanical ventilation, bronchopulmonary dysplasia, patent ductus arteriosus 
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requiring treatment, days of parenteral nutrition, culture proven sepsis, necrotizing 

enterocolitis.  

2.3.4 MRI acquisition & image analysis 

Anatomical and functional MRI images were acquired on a 1.5 T GE scanner at LHSC. 

Each infant underwent a clinical MRI scan consisting of a whole-brain T1-weighted 

structural image (TR=8.4–11.5 ms [depending on clinical requirements], TE=4.2 ms, flip 

angle=12/25°, matrix size 512 × 512, 99–268 slices, voxel size typically 

0.39 × 0.39 × 0.5 mm (0.31 × 31 × 5 to 0.43 × 0.43 × 0.6 for some infants), and a T2-

weighted structural image (TR=3517–9832 ms, TE=7.3–8.4 ms, flip angle = 90/160°, 

matrix size 256 × 256, 19–60 slices, 0.7 × 0.7 × 2–5 mm voxel resolution). BOLD fMRI 

data were acquired using an echo planar imaging sequence to examine resting-state 

functional connectivity (TR=3000ms, TE=50 ms, flip angle=70°, matrix size 64 × 64, 39 

slices, voxel size 3 x 3 x 3 mm, total volumes 35).  

Preprocessing of fMRI images was conducted with FMRIB Software Library 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). The pipeline included brain extraction, motion 

correction, spatial smoothing (full width at half maximum = 5 mm), band-pass filtering 

(0.01-0.1 Hz) and registration to a neonatal atlas [159]. Average BOLD sequences were 

extracted from frontal, parietal, temporal and occipital lobes of both hemispheres, and then 

correlated to build an 8-by-8 lobe-wise RSFC map for each infant.  

2.3.5 Brain injury characterization 

A Neuroradiology Fellow (LTARdM) scored the T1-weighted anatomical images for brain 

injury severity. These were verified by a Paediatric Neuroradiologist. IVH was graded 

(mild=1-2, and moderate-severe=3-4) using Papile’s method [22].  

2.3.6 fNIRS acquisition & analysis 

All participants (preterm infants with IVH and healthy newborns) were scanned with a 

NIRSport2 (NIRx, Berlin, Germany) unit with two emission wavelengths (760 and 850 

nm). We used an 8-by-8 set up with 20 channels covering the whole brain, and a sampling 
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rate of 10 Hz. For each hemisphere, there were 4 channels on the temporal, 2 on the parietal, 

frontal and occipital lobes. On average, scans lasted 487.46 seconds (with a standard 

deviation of 116.17 seconds) across all participants. For each infant, a 6-minute segment 

of high-quality data, determined through visual inspection, was selected for further 

analysis. 

 

Figure 2.1: Examples of (A) a 20-by-20 connectivity map and (B) an 8-by-8 map for 

the signals extracted from the fNIRS channels in the left and right hemispheres from 

the temporal, parietal, frontal and occipital lobes. The 8-by-8 map was obtained by 

averaging fNIRS signals from one lobe then correlating them with each other. (C) 

Lobe-based analysis of the fMRI data. A hemisphere was sectioned into temporal, 

parietal, frontal and occipital lobes. (D) Based on the section, a connectivity map was 

built from the fMRI image using averaged BOLD series from each region. All figures 

were obtained from the same participant of the IVH group. Colorbars indicate the 

value of Pearson correlation. 
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After data acquisition, for fNIRS recording of each infant, visual inspection was done to 

select a 6-minute segment with fewer motion artifacts and less white noise. A 

preprocessing pipeline, built within Homer 3 software, including spline interpolation for 

motion correction [65], Savitzky–Golay filtering with frame size of 10 [66], band-pass 

filtering of 0.01-0.1 Hz and modified Beer-Lamber law to convert optical density to 

concentration change of HbO and HHb, respectively [58]. Pearson correlation was used to 

calculate connectivity. To compare RSFC maps between fNIRS and fMRI, channels 

corresponding to one lobe were averaged then correlated with other cortices to create an 8-

by-8 lobe-wise connectivity maps for HbO and HHb, respectively (Fig. 2.1B,C,D). For 

lobe-wise maps of both fNIRS and fMRI, nodes were lobes and edges were weighted by 

Pearson correlation coefficients between sequences of the two lobes. 20-by-20 channel-

wise RSFC maps were also calculated for fNIRS (Fig. 2.1A), yet in this map, nodes were 

fNIRS channels.  

2.3.7 Statistical analysis  

Statistical analyses were performed using a combination of Matlab (R2020b, Natick, 

Massachusetts: The MathWorks Inc) and Statistical Package for the Social Sciences (v.29, 

Chicago, IL). 

To address our first aim, whether the RSFC maps rendered from the fNIRS and fMRI 

modalities were comparable, we calculated the Euclidean distances and Jaccard distances 

between the two lobe-wise maps at various levels of sparsity for each participant and for 

both weighted and binarized maps [160]. Both weighted and binarized maps were analyzed 

here because there was no indication on which one was preferred from previous studies. 

Both types showed various strengths in preserving topology of a map [161]. The sparsity 

was the percentage of non-zero connections in a RSFC map after all negative-weighted and 

some low-weighted connections were removed (set to zero). Sparsifying the maps has 

become widely accepted as negative connections are still under debate for their biological 

interpretations and low-weighted connections can result from noise [110], [162]. A 

common practice is to start from removing the lowest weighted connections, including 

negative ones, then continuing to remove the lowest weighted ones until the sparsity 
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reaches a desired percentage. Weighted maps were obtained in this way. Binarized maps 

were then calculated with non-zero connections set to 1. In general, there is no standard for 

choosing the sparsity [163], therefore, the range 0.2-0.4 was tested in this study. With 

sparsity of 0.4, negative connections were removed. And with 0.2, the maps became sparser 

but could still stay connected while a representational number of connections remained, as 

the maps were only 8-by-8. Given maps 𝐺𝑓𝑀𝑅𝐼(𝑉, 𝐸𝑓𝑀𝑅𝐼) and 𝐺𝑓𝑁𝐼𝑅𝑆(𝑉, 𝐸𝑓𝑁𝐼𝑅𝑆) obtained 

from the two modalities, where 𝑉 and 𝐸 denote node and connection set, respectively, and 

their adjacency matrices 𝐴𝑓𝑀𝑅𝐼 = [𝑎𝑖𝑗
𝑓𝑀𝑅𝐼

]  and 𝐴𝑓𝑁𝐼𝑅𝑆 = [𝑎𝑖𝑗
𝑓𝑁𝐼𝑅𝑆

] , respectively, where 

𝑖 and 𝑗 are nodes, Euclidean distance between two maps was defined as  

𝑑𝐸 = √∑ (𝑎𝑖𝑗
𝑓𝑀𝑅𝐼

− 𝑎𝑖𝑗
𝑓𝑁𝐼𝑅𝑆

)
2

 𝑖,𝑗
 

. (2.1) 

Jaccard distance for weighted maps was defined as  

𝑑𝐽𝑤 = 1 − 𝐽𝑤 ,

𝑤ℎ𝑒𝑟𝑒 𝐽𝑤 = {

∑ 𝑚𝑖𝑛(𝑎𝑖𝑗
𝑓𝑁𝐼𝑅𝑆

, 𝑎𝑖𝑗
𝑓𝑀𝑅𝐼

)𝑖,𝑗

∑ 𝑚𝑎𝑥 (𝑎𝑖𝑗
𝑓𝑁𝐼𝑅𝑆

, 𝑎𝑖𝑗
𝑓𝑀𝑅𝐼

)𝑖,𝑗

, 𝑖𝑓 ∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
𝑓𝑁𝐼𝑅𝑆

, 𝑎𝑖𝑗
𝑓𝑀𝑅𝐼

)
𝑖,𝑗

> 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.2)
 

while for binarized maps, Jaccard distance was defined as 

𝑑𝐽𝑏 = 1 −
|𝐸𝑓𝑁𝐼𝑅𝑆 ∩ 𝐸𝑓𝑀𝑅𝐼|

|𝐸𝑓𝑁𝐼𝑅𝑆 ∪ 𝐸𝑓𝑀𝑅𝐼|
. (2.3) 

One level of sparsity yielding the most similarity between two modalities was picked for 

following analyses. Based on this specific sparsity, we also calculated similarity maps for 

weighted and binarized RSFC maps. Similarity map was defined as 

𝑆 = [𝑠𝑖𝑗], 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑗 = 1 −
1

𝑁
∑ |𝑎𝑖𝑗

𝑓𝑁𝐼𝑅𝑆,𝑛
− 𝑎𝑖𝑗

𝑓𝑀𝑅𝐼,𝑛
|

𝑁

𝑛=1
, (2.4) 

where 𝑎𝑖𝑗
𝑓𝑁𝐼𝑅𝑆,𝑛

 and 𝑎𝑖𝑗
𝑓𝑀𝑅𝐼,𝑛

 are entries of individual adjacency matrices of 𝑛𝑡ℎ  subject 

from a total of 𝑁. Note that for weighted RSFC maps, 𝑠𝑖𝑗 was an index based on Euclidean 

distance, while for binarized maps, 𝑠𝑖𝑗  equals to the percentage of subjects sharing the 

connection. 
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We addressed our second aim, concerning whether fNIRS-based RSFC would predict IVH 

severity in very preterm born neonates compared to healthy newborns, in generalized linear 

models, which is more interpretable clinically with the 𝛽 values. Based on the connectivity 

maps at the sparsity level yielding the most similarity between fNIRS and fMRI, two 

generalized linear models were tested to associate IVH severity and RSFC strength. In the 

first model, the summation of all weighted connectivity values of the whole brain for HHb 

were entered as the dependent variable, with IVH grade (none [healthy newborns], mild, 

moderate-severe) as a factor, adjusting for biological sex, GA, and postmenstrual age 

(PMA) at scan. In the second model, HbO connectivity values were entered as the 

dependent variable, using the identical independent variables as in the first model. It was 

assumed the connectivity followed Gaussian distribution, and the tests among groups were 

corrected using the Bonferroni correction method.  

2.4 Results 

2.4.1 Participants 

Sixteen very preterm born neonates with GMH-IVH were enrolled (GA at birth = 

26.28±2.82 weeks). All preterm infants underwent MRI scanning at TEA (GA at scan = 

37.04±0.96 weeks). In eleven participants, fNIRS was also acquired.  A total of 15 term-

born infants were recruited from the LHSC MBCU with mean birth GA of 38.92±1.30 

weeks and fNIRS scans performed within 48 hours of life. None of the healthy newborns 

underwent MRI. Detailed demographics of participants can be found in Table 2.1. Clinical 

variables of the IVH group can be found in Table 2.2. Most of the infants were scanned 

during natural sleep for the fNIRS and fMRI scans. The IVH infants were in the incubators 

during fNIRS scans and healthy newborns were not controlled for this condition, i.e., some 

of them were held by caregivers. 

Table 2.1: Participant demographics 

  Neonates with IVH Healthy Newborns 

n 16 15 
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Male sex 12 6 

Birth GA (SD) (weeks) 26.1(2.8) 38.9(1.3) 

PMA at scan (SD) (weeks) 36.9(0.9) 38.9(1.3) 

IVH severity 
  

mild 7 - 

moderate/severe 9 - 

Note: Values represents counts for categorical variables and means for continuous 

variables. 

Table 2.2: Clinical variables of the IVH group 

Bronchopulmonary 

dysplasia [%] 

Necrotizing 

enterocolitis  

[%] 

Days of 

mechanical 

ventilation 

(SD) 

Patent 

ductus 

arteriosus  

[%] 

Early 

parenteral 

nutrition 

(within 4 weeks 

of life) [%] 

13 [81] 2 [12] 25.1 (18.4) 13 [81] 16 [100] 

2.4.2 Comparing fNIRS and fMRI 

Lobe-wise connectivity maps were obtained from fNIRS for both HbO and HHb. The 

fNIRS maps were then compared against fMRI RSFC maps at various levels of sparsity 

using metrices of Euclidean and Jaccard distances. Only large- and positive-weighted 

connections were kept when achieving a certain level of sparsity. Sparsity ranged from 0.2 

to 0.4.  At 38% of sparsity, for both weighted and binarized maps, for both HbO and HHb 

maps, least Euclidean and Jaccard distances were achieved (i.e., the fNIRS and fMRI 

yielded most similar RSFC maps, Fig. 2.2). Therefore, in the subsequent analyses, this 

level of sparsity was applied. 
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Figure 2.2: Similarity of RSFC maps between fNIRS and fMRI with sparsity, 

measured by Euclidean distance and Jaccard distance on weighted and binarized 

maps, respectively. Means and confidence intervals (CI) were estimated using a 

bootstrapping method. If the sparsity is near 0, the distances will also be close to 0. 

For sparsity values between 0.4 and 1, distances may fluctuate if all connections are 

positive. However, in practice, there are often negative connections, which we have 

not addressed due to uncertainties in their interpretation. 

Based on the sparsity of 38%, the similarity maps were calculated comparing every 

connection between fNIRS and fMRI. Similarity maps of HbO against fMRI and HHb 

against fMRI had good correspondence for both weighted and binarized cases (Fig. 2.3). 

This is largely a reflection of the anti-correlation between the two chromophores, yielding 

similar RSFC maps. Also, most connections demonstrating high correspondence were 

interhemispheric.  
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Figure 2.3: Lobe-wise similarity maps at sparsity of 38%. Higher values reflect 

greater similarity between the two modalities. Average values among channels are 

0.55 (upper left, standard deviation [SD]: 0.16, CI: 0.48-0.61), 0.66 (lower left, SD: 

0.18, CI: 0.59-0.73), 0.49 (upper right, SD: 0.16, CI: 0.43-0.55) and 0.63 (lower right, 

SD: 0.19, CI: 0.56-0.71). 

2.4.3 Connectivity and severity of IVH 

In a generalized linear model, the functional connectivity within the cortical network was 

examined in relation to IVH severity (none [healthy newborns], mild IVH, moderate/severe 

IVH). The weighted connectivity values for HHb were significantly lower in healthy 

newborns (B= -53.5, 95%, CI -94.61 - -12.39, p=0.011, Table 2.3, Fig. 2.4), and preterm 

neonates with mild IVH (B=-24.7, 95%, CI -42.7- -6.7, p=0.007) compared to preterms 

with moderate/severe IVH adjusting for birth GA, sex, and PMA at scan. No significant 

differences in HHb connectivity values were evident between the healthy newborns and 

very preterm born neonates with mild IVH (p=0.5, Bonferroni corrected for multiple 

comparisons). Similar results were found when examining HbO in a separate GLM, 

whereby healthy newborns (B=-42.6, 95%, CI -79.1- -6.0, p=0.023, Table 2.3, Fig. 2.4) 

and very preterm neonates with mild IVH (B=-18.2, 95%, CI -34.3- -2.2, p=0.026) 
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compared to very preterm born neonates with moderate/severe IVH. No differences were 

evident between the HbO sparsity values for healthy newborns and neonates with mild IVH 

(p=0.6, Bonferroni corrected for multiple comparisons). Similar analysis was done for 

fMRI data as well, with lobule-wise averaged BOLD signals for developing RSFC maps, 

yet we found no significant difference (p>0.05) on connectivity strength between mild and 

moderate/severe groups. 

Table 2.3: Results of a generalized linear model examining HHb and HbO 

connectivity relative to IVH severity 

 95% Confidence Intervals  

 
HHb HbO 

 B Upper Lower p value B Upper Lower p value 

Birth GA 3.2 0.19 6.22 0.038b 2.5 0.23 5.14 0.074 

PMA at 

scan -2.3 -7.93 3.42 0.436 -0.4 -5.49 4.61 0.865 

Male sex -1.0 -15.18 13.22 0.892 -1.6 -14.19 11.08 0.810 

Injury 

severity         

Healthy 

newborn  -53.5 -94.61 -12.39 0.011b -42.6 -79.15 -5.98 0.023b 

Mild 

IVH  -24.7 -42.72 -6.72 0.007a -18.2 -34.27 -2.23 0.026b 

Moderat

e/severe 

IVH ref - - - ref - - - 

aStatistically significant, p < 0.01. bStatistically significant, p < 0.05.  
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Figure 2.4: Very preterm born neonates scanned at term-equivalent age showed 

increased HbO (left) and HHb (right) connectivity values relative to healthy 

newborns and neonates with mild IVH. **p<0.01, * p<0.05. 

2.5 Discussion 

In a prospective cohort of very preterm born infants with IVH, we examined the predictive 

utility of fNIRS connectivity in assessing brain health. As expected, RSFC maps were 

comparable between fMRI and fNIRS in the very preterm born infants with IVH. Findings 

indicate that fNIRS can be used to study cortical RSFC at the bedside. We further examined 

whether the severity of injury could be predicted by functional connectivity metrics. We 

found that for both HHb and HbO, the connectivity values at TEA were increased in infants 

with moderate/severe IVH relative to healthy newborns and very preterm born infants with 

mild IVH. Overall, our results highlight the use of fNIRS as a bedside monitoring tool to 

examine brain-health metrics in very preterm born infants impacted by IVH. 

In the first aim, we saw good correspondence of the RSFC maps (HbO vs fMRI and HHb 

vs fMRI) between the two imaging modalities. Our findings are consistent with other 

studies. Duan et al., using fNIRS and fMRI data acquired from 21 adult subjects during 

resting state, demonstrated good correspondence between the two imaging modalities 

[107]. In another adult study, Sasai et al. also reported that fNIRS HbO and fMRI BOLD 

maps had a significant positive correlation for all brain regions investigated [106]. We were 

able to demonstrate similar results in our infant population. Second, except for the occipital 

region, the other regions (frontal, parietal and temporal) showed high similarity of RSFC 
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maps between the two imaging modalities. The discrepancy in the occipital region could 

be because of measurement errors, including thick hair, poor contact between optodes and 

scalp, cap fit, which are common in fNIRS studies in infants [152], [155], [164]. In 

addition, all our bedside fNIRS measurements were carried out with the infants laying 

supine in their cot or caregivers' arms which could explain the poor optode contact in the 

occipital region. Overall, our study adds to the body of literature showing that fNIRS 

indeed provides comparable RSFC measures to fMRI. This is especially important given 

the bedside availability of fNIRS for the vulnerable NICU population. 

RSFC of fMRI BOLD was compared to HbO and HHb maps, respectively. It is commonly 

considered that HHb is more similar to BOLD since the biophysical basis of fMRI relies 

on the magnetic properties of deoxygenated hemoglobin [165], yet in our comparisons, we 

showed that HbO RSFC was closer to fMRI with lower between-modality distances at 

various sparsity levels (Fig. 2.2) and higher averaged similarity (Fig. 2.3). Previous studies 

also gave inconsistent findings on this issue. Toronov et al. showed BOLD of motor cortex 

was more correlated with HHb than HbO [166], yet the same group later found that spatial 

localization of visual networks was more consistent between HbO and BOLD [51]. In 

terms of RSFC, Duan et al. reported higher correlations between BOLD and HbO 

compared to HHb [107], and they mentioned possible reason that HbO had higher signal-

to-noise ratio than HHb [167], and higher reliability of detecting RSFC [168]. Yet it was 

also pointed out by Abdalmalak et al. that HbO was more sensitive to systemic physiology 

than HHb [169]. Further analysis on whether HbO or HHb is more representational to true 

RSFC would be appreciated.  

Filtering connections that are either negative- or low-weighted is a common practice for 

RSFC research [170]. RSFC yielded from a series of sparsity levels were tested in previous 

studies, that demonstrated inconsistency among the results [171], [172], [173]. Recent 

studies have highlighted the necessity of choosing the proper sparsity value and have 

introduced various strategies [174], [175]. In the current work, we have addressed this issue 

by identifying a maximal similarity value for two imaging modalities (i.e., fNIRS and 

fMRI). For future research in fNIRS RSFC, this method may be impractical without access 

to another imaging modality such as fMRI. Yet, potentially this challenge can be overcome 
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through scanning larger number of neonates, as this will aid in identifying a sparsity level 

that could be more universally appliable for neonatal RSFC studies.    

Compared with their healthy counterparts, we found increased RSFC at TEA among infants 

with IVH, regardless of the severity. This was an unexpected finding, as most studies of 

very preterm infants with IVH have demonstrated reduced RSFC at TEA [156], [157], 

[176]. Reduced RSFC, especially in higher grades of IVH injury is attributed to disruptions 

to the periventricular white matter. However, some studies have also shown intact RSFC 

in infants with IVH [177]. The results from our study, while different from what is 

previously known in literature, could be explained by several plausible mechanisms. First, 

our study population was very preterm (mean GA 26.28 ± 2.82), with IVH already evident 

within the first week of life and our findings represent the RSFC 10-12 weeks post IVH. 

Thereafter, during their NICU stay and with ongoing surveillance, depending on the IVH 

severity, some of the study participants underwent neurosurgical interventions to divert 

cerebrospinal fluid. In tandem with the above-mentioned, over time the neonatal brain 

undergoes massive growth and reorganization, demonstrating a mature architecture by 

TEA [178], [179]. Moreover, some case studies have shown neural plasticity in infants 

with high grade IVH [180]. The immaturity of neurovascular coupling mechanisms could 

have influenced the increased connectivity seen in the IVH group. It was previously 

reported in animal models that newborns showed globally correlated hemodynamic 

fluctuations during resting state [109], likely due to the absence of hyperemia, which is 

typically present in adults in response to neuronal activity. Also, preterm neonates with 

IVH, compared to those without, lack vascular responses needed for the compensation of 

increased metabolism after neuronal activation [181]. Therefore, the IVH group could be 

also expected to have even lower hemodynamic responses than healthy term newborns, 

which may have led to less distinction among brain regions rather than reflect increased 

connectivity. Hence, all these factors could explain our findings. These questions are best 

addressed in longitudinal studies, correlating RSFC with neurodevelopmental outcomes. 

Disruptions in neonatal functional connectivity in children with perinatal brain injury have 

been associated with developmental outcomes, and in turn better characterization of these 

patterns is needed to improve early care practices [154]. In addition, we found no 
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significant differences of connectivity strength on our fMRI dataset between mild and 

moderate/severe groups. This could have resulted from some IVH participants and all 

controls having no fMRI scans. Another possible explanation is that fNIRS recordings were 

from more localized positions instead of whole lobules as in fMRI, i.e., some within-lobule 

disruptions could be overlooked by averaging the lobules. Also, level of localization (e.g., 

from voxel to anatomical regions) has been shown to have significant impact on network 

properties of RSFC [182], [183].  

Our study has several strengths, namely, both groups (infants with IVH and healthy 

controls) were recruited from and assessed at the same centre, using the same high-density 

fNIRS system and at similar postmenstrual ages. The above-mentioned measures ensure 

uniformity and eliminate potential bias. Second, compared to the clinical NIRS system that 

is now commonly used in most level III NICUs, high density fNIRS systems provide whole 

brain coverage and connectivity. Our study population (infants with IVH and healthy 

controls) was also well characterized. There are also some challenges and limitations that 

were associated with our study. Primarily, the sample size for our study population was 

small. This was due to difficulty acquiring excellent quality data, which is a challenge for 

fNIRS [164]. These challenges could potentially be addressed through the development of 

hardware specifically designed for neonates. Appropriate and effective hardware may also 

promote greater use in NICU-settings. Also, our eventual goal is to use fNIRS for clinical 

decision making in individual neonates at the bedside. Despite some signals of poor quality, 

we were still able to show comparable fNIRS and fMRI connectivity maps and 

discriminative fNIRS features for separating the groups. Second, more males than females 

were recruited, due to lack of competitive enrolment. However, sex differences were not 

evident in any analyses. Thirdly, including a group of preterm infants without brain injuries 

would enhance the study by clarifying the association between altered connectivity and 

brain injury. Previous research indicates that preterm newborns without known brain 

injuries can also display altered connectivity [184], [185]. Another limitation is that the 

positions of fNIRS optodes cannot be precisely located in MRI space, therefore, we cannot 

do more localized analysis on similarity between the two modalities and how severity of 

IVH affecting RSFCs of the two. As a compromise, we could only use the approximate 

lobules that covered the fNIRS channels. In addition, some potential covariates were not 
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analyzed (e.g., clinical variables, whether the neonates were scanned in incubators or 

caregivers’ arms). Calculating an appropriate sample size would enhance the statistical 

robustness of the results. However, estimating the effect size could be challenging as the 

data were not normalized. Finally, though the classic Papile’s method [22] for grading IVH 

was used for our population, it is acknowledged that there is a new and more detailed 

descriptive method for GMH-IVH categorization, with GMH localized and periventricular 

hemorrhagic infarction separately noted [186]. Despite the limitations, we believe that 

fNIRS offers promising avenues that can impact clinical care of infants with IVH. Larger 

prospective studies are needed to address these challenges. 

2.6 Conclusions 

In a heterogenous cohort of very preterm born neonates with IVH who underwent fNIRS 

and fMRI we report comparable RSFC maps between the two modalities. Findings indicate 

that in a small sample of neonates that bedside fNIRS can produce comparable results to 

that of fMRI. Secondly, fNIRS revealed distinct RSFC patterns between preterm infants 

with IVH at TEA and healthy infants. Larger prospective studies are needed to better 

characterize fNIRS-based functional connectivity changes over time and whether they are 

predictive of functional outcomes.  
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Chapter 3  

3 Altered resting state functional connectivity in newborns 
with hypoxic ischemic encephalopathy assessed using 
high-density functional near-infrared spectroscopy 

This chapter has been adapted from the publication entitled “Altered resting state 

functional connectivity in newborns with hypoxic ischemic encephalopathy assessed using 

high-density functional near-infrared spectroscopy” published in Scientific Reports in 

2024 by Lingkai Tang, Lilian M. N. Kebaya, Talal Altamimi, Alexandra Kowalczyk, 

Melab Musabi, Sriya Roychaudhuri, Homa Vahidi, Paige Meyerink, Sandrine de 

Ribaupierre, Soume Bhattacharya, Leandro Tristao Abi Ramia de Moraes, Keith St. 

Lawrence, and Emma G. Duerden. 

3.1 Abstract 

Hypoxic-ischemic encephalopathy (HIE) results from a lack of oxygen to the brain during 

the perinatal period. HIE can lead to mortality and various acute and long-term morbidities. 

Improved bedside monitoring methods are needed to identify biomarkers of brain health. 

Functional near-infrared spectroscopy (fNIRS) can assess resting state functional 

connectivity (RSFC) at the bedside. We acquired resting-state fNIRS data from 21 neonates 

with HIE (postmenstrual age [PMA]=39.59), in 19 neonates the scans were acquired post-

therapeutic hypothermia (TH), and 20 term-born healthy newborns (PMA=39.95). Twelve 

HIE neonates also underwent resting-state functional magnetic resonance imaging (fMRI) 

post-TH. RSFC was calculated as correlation coefficients amongst the time courses for 

fNIRS and fMRI data, respectively. We showed that the fNIRS and fMRI RSFC maps were 

comparable. RSFC patterns were then measured with graph theory metrics and compared 

between HIE infants and healthy controls. HIE newborns showed significantly increased 

clustering coefficients, network efficiency and modularity compared to controls. Using a 

support vector machine algorithm, RSFC features demonstrated good performance in 

classifying the HIE and healthy newborns in separate groups. Our results indicate the utility 

of fNIRS-connectivity patterns as potential biomarkers for HIE and fNIRS as a new 

bedside tool for newborns with HIE.  
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3.2 Introduction 

HIE results from insufficient cerebral oxygen delivery and disrupted blood supply during 

the prenatal, intrapartum, or postnatal periods [16]. HIE occurs in 1 to 2 per 1000 live births 

in developed countries [3]. HIE is one of the most serious birth complications affecting 

term-born neonates and a major cause of death and long-term disabilities, including 

cerebral palsy, epilepsy and impairments of various cognitive functions [13], [14]. 

Neonates with HIE are typically identified shortly after birth and deteriorate within the first 

days of life [16]. Therefore, early diagnosis and monitoring are key for TH, which is the 

standard treatment for moderate to severe HIE [187]. 

With high spatial resolution, magnetic resonance imaging (MRI) is widely considered the 

gold standard for diagnosing and characterizing neurological disorders and brain injuries, 

including HIE [19]. However, MRI is limited by its accessibility within the neonatal 

intensive care unit (NICU) and sensitivity to movements, requiring imaging preferably 

when neonates are either asleep or sedated. Cerebral monitoring is also commonly 

practiced, especially during TH. Electroencephalography (EEG) based modalities are used 

for detecting seizures; however, they may not provide all the necessary physiological 

information for a continuous assessment, considering that HIE injuries are closely related 

to cerebral oxygenation and oxidative metabolism [16], [155]. NIRS has been used to 

examine cerebral hemodynamics and oxygenation changes during the pre-TH period, as 

well as during and after rewarming[188]. In the first 6 hours of life following injury due to 

hypoxia-ischemia (HI), cerebral oxygenation decreases but recovers by 18 to 20 hours of 

life. Cerebral oxygenation changes are predictive of brain injury in this population [189]. 

Increased cerebral oxygenation during 24 to 36 hours of life significantly increased the 

likelihood of developing brain injury [190]. Increases in cerebral oxygenation may reflect 

mitochondrial changes due to decreased oxygen utilization. Cerebral perfusion may exceed 

metabolism demands reflected in increased cerebral oxygenation. 

RSFC offers new perspectives for examining early brain injuries. RSFC, typically derived 

from fMRI images, explores the functional synchronization among brain regions and 

reveals the organization of brain networks, for adults and infants [98], [179], [191], [192]. 
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RSFC has been widely introduced to study prematurity and early brain injuries [50]. 

Chiarelli et al. used multivariate analysis to find spatially diffused alterations of RSFC on 

neonatal cortices [193]. In preterm-born neonates with post-hemorrhagic infarction, 

reduced functional connectivity (FC) was reported [128]. In another cohort of preterm-born 

neonates with periventricular hemorrhage, reduced connectivity within the motor networks 

was also reported [194]. In newborns with HIE, functional networks have been explored 

with reported reduced inter- and intra-hemispheric connectivity strength [130], particularly 

in primary motor regions [131]. Also, functional connectivity and graph-theory 

measurements were positively associated with developmental outcomes [12]. 

Functional NIRS, similar to fMRI, can also yield cerebral RSFC for neonates. However, 

fNIRS is more accessible for the NICU population and insensitive to head motion. fNIRS 

measures the amount of near-infrared light absorbed by hemoglobin, which is converted 

into concentration changes of oxygenated and deoxygenated hemoglobin (HbO and Hbr), 

as an indirect measurement of neural activity [195]. RSFC derived from fNIRS and fMRI 

is comparable in several studies on adults [107] and a month-old infant [108]. Less is 

known about the comparability between fNIRS and fMRI in the newborn period. 

Considering the rapid growth and maturation of the brain during the early months of life 

[196], the penetration depth of fNIRS can vary, i.e., portions of white and grey matter 

covered by near-infrared light can be different during early development of the brain. As 

the key modulator of penetration depth, an optimal source-detector distance for infants is 

still being discussed [197]. Since fMRI RSFC is largely based on grey matter, RSFC of 

fNIRS may differ from fMRI in newborns. 

fNIRS RSFC has also been examined in previous studies with critically ill neonates to 

determine whether this analytic method can be used as a biomarker for brain health. In 

preterm-born neonates, altered FC was reported at term equivalent age compared to term-

born neonates [126]. Lower FC on short-range and inter-hemispheric connections has also 

been reported in the preterm population [198], associated with brain injury and larger 

ventricular volumes [158]. Few studies to date have examined RSFC using fNIRS to 

examine the impact of brain injuries after term birth. Zhang et al. [132] reported, in a small 

sample of newborns with HIE (n=13), who were examined with fNIRS in the pre-TH 
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period, that decreased RSFC patterns compared to a comparable number of healthy 

newborns. Reduced long-range connectivity was reported in the HIE cohort. Graph theory 

measures applied to the data indicated that newborns with HIE had an increased ability for 

local information transmission, reflected in higher local network efficiency. The findings 

could reflect compensation mechanisms. Further, graph theory-based measures such as 

small-worldness effectively distinguish HIE and healthy newborns. This study provided 

key evidence for altered FC at baseline before TH was initiated in the HIE population. 

The short-term effects of the injury associated with HI in newborns remain poorly 

understood. fNIRS-based RSFC is a promising avenue for biomarker identification in this 

vulnerable population. In the current work, we examined fNIRS-based RSFC in newborns 

with HIE, of whom the majority were assessed post-TH after rewarming. Our central 

hypothesis was that fNIRS-based RSFC would be decreased in newborns with HIE and 

that graph theory-based measures of these metrics would be viable metrics for classifying 

these newborns. Our first aim was to compare patterns of RSFC obtained using fNIRS and 

fMRI to determine whether similar findings would be obtained between the two modalities. 

As part of a subaim, we further examined FC obtained using both fNIRS and fMRI in 

relation to structural MRI-based volumes of grey and white matter as additional markers 

of brain health. The second aim of our study was to compare fNIRS-based RSFC between 

term-born neonates with HIE and healthy controls. We subsequently examined whether 

graph theory-based metrics would serve as useful indicators of an HIE diagnosis. Using a 

support vector machine model applied to the HIE and healthy newborn data, we determined 

whether graph theory measures would predict diagnostic group membership. 

3.3 Methods 

3.3.1 Participants 

This study was conducted as part of an ongoing study investigating brain injury in critically 

born neonates. Participants were recruited between April 2021 and August 2022. 

Participants with HIE were recruited from the NICU at the Children’s Hospital of South 

Western Ontario, London, Canada. Eligibility criteria for the patients with HIE included: 
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HIE diagnosis, gestational age ≥ 36 weeks, birth weight≥ 2000 g. HIE diagnosis was based 

on a cord gas pH of ≤7.0 and/or base deficit of ≥16 mmol per L; if pH was between 7.01 

and 7.15 or a base deficit was between 10 and 15.9 mmol per L, additional history of an 

acute perinatal event and an APGAR score at 10 minutes of ≤5, or need for assisted 

ventilation/resuscitation at birth, and the presence of seizures or evidence of moderate or 

severe encephalopathy based on a standardized neurological examination [34]. We 

excluded neonates if they had evidence of major anomalies of the brain or other organs, 

congenital infections (e.g., TORCH), intrauterine growth restriction (IUGR), identifiable 

metabolic disorder or ultrasound evidence of a large parenchymal hemorrhagic infarction.  

Term-born healthy newborns with no reported brain injury were also recruited to the study 

from the Mother Baby Care Unit (MBCU). Inclusion criteria were admission to the MBCU, 

birth >36 weeks’ GA, and inborn. Exclusion criteria were evidence of congenital 

malformation or syndrome, antenatal infections, antenatal exposure to illicit drugs, small 

for gestational age (SGA) and IUGR.  

The study was approved by the Health Sciences Research Ethics Board at Western 

University. Informed consent was provided by the parents/caregivers of the newborns. The 

study was conducted in accordance with the Declaration of Helsinki. 

3.3.2 Clinical and Demographic Variables 

Maternal and newborn health data were extracted from electronic medical records by a 

Paediatric Nurse, Paediatric Resident or NICU Fellow. For participants with HIE, the 

demographic data extracted included gestational age, birth weight, biological sex, HIE 

stage (based on Sarnat staging [32]), resuscitation details, Apgar scores and cord pH. We 

also collected the following data: 72 h treatment with TH, the presence of brain injury on 

MRI, and postnatal infections (clinical sepsis or positive culture infection, confirmed 

necrotizing enterocolitis). 
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3.3.3 MRI Image Acquisition 

Newborns with HIE underwent at least one MRI scan post-TH after rewarming. Healthy 

newborns did not undergo MRI scanning. Newborns with HIE were scanned on a 1.5 T GE 

MRI scanner. A T1-weighted structural image was acquired (TR=8.4–11.5 ms [depending 

on clinical requirements], TE=4.2 ms, flip angle=12/25°, matrix size 512 × 512, 99–268 

slices, voxel size typically 0.39 × 0.39 × 0.5 mm (0.31 × 31 × 5 to 0.43 × 0.43 × 0.6 for 

some neonates), as well as a T2-weighted structural image (TR=3517–9832 ms, TE=7.3–

8.4 ms, flip angle = 90/160°, matrix size 256 × 256, 19–60 slices, 0.7 × 0.7 × 2–5 mm voxel 

resolution). Additionally, an echo planar imaging sequence to measure Blood Oxygen 

Level–Dependent (BOLD) fMRI data was also acquired to examine RSFC (TR=3000ms, 

TE=50 ms, flip angle=70°, matrix size 64 × 64, 39 slices, voxel size 3 × 3 × 3 mm, total 

volumes 35). 

3.3.4 fMRI preprocessing and analysis 

The fMRI data were preprocessed using FMRIB Software Library [88] 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). The preprocessing pipeline included brain 

extraction, motion correction, spatial smoothing (full width at half maximum = 5 mm), 

band-pass filtering (0.01-0.2 Hz) and registration to a neonatal atlas [159]. From the frontal, 

parietal, temporal and occipital lobes of both hemispheres, we extracted the average BOLD 

sequences. Then, we calculated the Pearson correlation among them to build an 8-by-8 

RSFC map for each neonate (Fig. 3.1B). 

3.3.5 T1-weighted image processing and segmentation 

The T1 weighted scans were automatically segmented using infant FreeSurfer [199]. 

Automatic processing steps included intensity normalization, skull stripping, and 

segmentation of the cortex, white matter and subcortical structures [199]. A multi-atlas 

approach was employed for the segmentation. Multiple brain atlases of newborns were first 

registered to native space, and structure labels were transferred. The atlases were developed 

from neonatal MRI scans [200]. To initially create the atlases, manually segmented labels 

were developed using MRI scans from a representative sample of neonates (0-2 years of 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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age). In the current study, developmentally appropriate atlases for newborns were 

employed. Labels were fused into a single segmentation result, providing higher accuracy 

than single-atlas approaches [201]. Volumetric measurements for anatomical features 

could then be extracted [199]. Brain subcortical brain structure volumes were extracted, as 

well as cerebral white matter and cerebral cortex volumes, to compute total cerebral 

volumes (TCV). Each segmented T1-weighted image was visually inspected using 

Freeview software, available within FreeSurfer. Manual segmentation was employed to 

correct any segmentation errors (i.e., partial volume effects) using ITK-SNAP 

(http://www.itksnap.org/). 

3.3.6 Brain injury characterization 

A pediatric neuroradiology fellow (LTARdM) scored the T1-weighted anatomical images 

for brain injury severity. White matter injury (WMI) was defined as foci exhibiting T1 

hyperintensity without T2 hypointensity or by low-intensity T1 foci and was scored on a 

3-point scale (none=0, minimal=1, moderate-severe=2-3 combined) using the methods of 

de Vries[202]. Intraventricular haemorrhage (IVH) was graded (none=0, mild=1-2, and 

moderate-severe=3-4) using Papile’s method[22]. Only supratentorial injuries were scored. 

3.3.7 fNIRS acquisition and analysis  

fNIRS was acquired in newborns with HIE (within 3 days post-TH after rewarming) and 

healthy newborns using the same experimental setup. Participants were scanned using a 

NIRSport2 (NIRx, Berlin, Germany) system with 8 light sources and 8 detectors covering 

the whole brain. The system operates at two wavelengths of light (760 nm and 850 nm), 

and the sampling rate was 10.1725 Hz. For either hemisphere, 4 channels were located on 

the temporal, 2 on the parietal, frontal and occipital lobes (Fig. 3.1A). fNIRS scans lasted 

for a minimum of 6 minutes during rest or natural sleep with the neonates lying in the 

incubator, cot, or caregiver’s arms.   

http://www.itksnap.org/
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Figure 3.1: (A) Newborn wearing the fNIRS cap. Based on fNIRS recordings of 

oxygenated hemoglobin (HbO), 20-by-20 connectivity maps were created. (B) Atlas 

(lobe)-based analysis of the fMRI data. A hemisphere is sectioned into temporal, 

parietal, frontal and occipital lobes. 8-by-8 connectivity maps were built upon fMRI 

data. Colourbars indicate the Pearson correlation values. 

After data acquisition, Homer3 software [203] was used for preprocessing. The pipeline 

included spline interpolation for motion correction[66], band-pass filtering of 0.01-0.1 Hz 

and conversion to HbO and Hbr fluctuations with modified Beer-Lambert law [58]. For 

each neonate, two connectivity maps, sized differently, were calculated using Pearson 

correlation. Channels corresponding to one lobe were averaged and then correlated with 

other cortices to build lobe-wise connectivity maps (8 by 8). 20-by-20 channel-wise RSFC 

maps were also calculated with individual channels corresponding with each other. HbO 

and Hbr data were both used for building connectivity maps separately (Fig. 3.1A). 

3.3.8 Statistical Analysis 

Statistical analyses were performed using Matlab (R2020b, Natick, Massachusetts: The 

MathWorks Inc). 
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For the first aim, which was comparing the RSFC maps yielded from the fNIRS and fMRI, 

Euclidean distances and Jaccard distances were calculated between the two 8-by-8 maps at 

various levels of sparsity [160]. It is considered common practice to filter out negative or 

low-weighted (positive but smaller than certain threshold) connections when analyzing 

RSFC maps, where the percentage of connections remaining is the level of sparsity of a 

map, i.e., the thresholds for filtering vary among individual connectivity maps. For 

weighted maps, we kept the original weights of connections, while for binarized maps, the 

remaining connections after filtering were rounded to 1. Given adjacency matrices of two 

maps 𝐴1 = [𝑎𝑖𝑗
1 ] and 𝐴2 = [𝑎𝑖𝑗

2 ], where 𝑎𝑖𝑗 was the weight of connection between node 𝑖 

and 𝑗, Euclidean distance between the two was defined as  

𝑑𝐸 = √∑(𝑎𝑖𝑗
1 − 𝑎𝑖𝑗

2 )
2

 𝑖,𝑗
 

, (3.1) 

while Jaccard distance was defined as 

𝑑𝐽 = 1 − 𝐽, 𝑤ℎ𝑒𝑟𝑒 𝐽 = {

∑ 𝑚𝑖𝑛(𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 )𝑖,𝑗

∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 )𝑖,𝑗

, 𝑖𝑓 ∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 )
𝑖,𝑗

> 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (3.2) 

We also calculated similarity maps for weighted and binarized RSFC maps between fNIRS 

and fMRI. Note that similarity maps had the same dimension as connectivity maps. For 

weighted cases, entries of similarity maps were the average Euclidean distance among 

subjects for the corresponding connections. In contrast, for binarized cases, they were the 

percentage of subjects sharing the connection. Volume counts of cortical grey matter 

obtained from T1-weighted images were associated with overall fNIRS and fMRI 

connectivity strength, respectively, using linear regression, adjusted for GA at birth, 

postmenstrual age (PMA) at scan and sex. 

To address the second aim, which was identifying altered connectivity patterns between 

HIE neonates and healthy controls, we used graph theory-based measurements to quantify 

the patterns of 20-by-20 RSFC maps. On HbO and Hbr maps, we calculated the clustering 

coefficient of a map as 

𝐶𝑝 =
1

𝑁
∑

∑ 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘𝑗,𝑘

(∑ 𝑎𝑖𝑗𝑗 − 1) ∑ 𝑎𝑖𝑗𝑗𝑖
, (3.3) 



61 

 

where 𝑁 was the number of nodes in the map. Network efficiency was also calculated 

locally as 

𝑁𝐸 =
1

𝑁
∑ [

1

|𝐺𝑖|(|𝐺𝑖| − 1)
∑

1

𝑑𝑗𝑘𝑘≠𝑗∈𝐺𝑖

]
𝑖

, (3.4) 

where 𝑑𝑖𝑗 was the shortest distance 𝑁𝑖 between 𝑖 and 𝑗, 𝐺𝑖 the node set containing 𝑖 and its 

direct neighbors only, and |𝐺𝑖| the number of nodes of 𝐺𝑖. Modularity was defined as 

𝑀 = ∑ [𝑒𝑝𝑝 − (∑ 𝑒𝑝𝑞
𝑞

)

2

]
𝑝

, (3.5) 

where 𝑝 was one of communities identified by a Louvain-like algorithm [117] and 𝑒𝑝𝑞 

denoted the fraction of connections between community 𝑝 and 𝑞. Based on clustering, the 

between-subject variation was calculated using mutual information[204]. Given a 

confusion matrix 𝐶 = [𝑐𝑤𝑣], where 𝑐𝑤𝑣 was the number of nodes in both community 𝑤 

and community 𝑣  of two separate clusterings, respectively, mutual information was 

defined as 

𝑀𝐼 =
−2 ∑ (𝑐𝑤𝑣 𝑙𝑛

𝑐𝑤𝑣𝑁
∑ 𝑐𝑤𝑣𝑤 ∑ 𝑐𝑤𝑣𝑣

𝑤,𝑣 ) 

∑ (∑ 𝑐𝑤𝑣𝑣 𝑙𝑛
∑ 𝑐𝑤𝑣𝑣

𝑁
)𝑤 + ∑ (∑ 𝑐𝑤𝑣𝑤 𝑙𝑛

∑ 𝑐𝑤𝑣𝑤

𝑁
)𝑣

. (3.6) 

T-tests were used to determine if the two groups were significantly different over a 

measurement.  

To further demonstrate the distinctive power of connectivity measurements separating HIE 

neonates from healthy controls, we trained machine learning models of support vector 

machine (SVM) with several local metrics, including connectivity, clustering coefficient, 

nodal efficiency, degree centrality and closeness centrality, with 4-fold cross validation. 

The accuracies of classification were calculated, and receiver operating characteristic 

(ROC) curves were plotted. Areas under ROC curves (AUC) were also obtained.  
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3.4 Results 

3.4.1 Participants 

Twenty-one term-born neonates with HIE were enrolled (GA at birth = 38.92, SD=1.55 

weeks, Table 3.1). Nineteen (90.4%) of the HIE neonates underwent TH before they were 

scanned with MRI and fNIRS. Two newborns who did not undergo TH were diagnosed 

with mild or moderate HIE. All newborns with HIE underwent an fNIRS scan at a PMA 

of 39.96, SD=1.43 weeks. Twelve (57%) of the HIE neonates had MRI scans (PMA = 

39.94, SD=1.15 weeks). Detailed Characteristics for HIE participants can be found in 

Table 3.2. 

Table 3.1: Participant Characteristics. 

  

HIE participants 

N=21 

Healthy newborns 

N=20 

P-value 

Gestational Age, weeks 

[SD] 38.92 [1.55] 39.08 [1.21] 

 

0.7 

Sex, male n, (%) 12 (57.1) 9 (45) 0.4 

Birth Weight, kgs [SD] 3.13 [0.59] 3.49 [0.4] 0.08 

PMA at scan, weeks [SD] 39.96 [1.43] 39.93 [1.27] 0.1 

Note. The median values and interquartile ranges. Probability values provide results using 

the t-test for continuous measures and Chi-square tests for categorical measures.  

Table 3.2: Characteristics for HIE participants. 

 
 HIE newborns (n = 21) 

First pH (cord or 

peripheral) 

Mean = 6.98, SD=0.16  

Min = 6.8, Max = 7.4  
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 HIE newborns (n = 21) 

25th Percentile: 6.90 

50th percentile: 6.92 

75th percentile: up to 7.03 

Apgar 5 min Mean = 3.94, SD=2.6, 

Min = 0, Max = 9 

25th Percentile: 2.25 

50th percentile: 3.5 

75th percentile: 5.75 

Sarnat staging Mild: 3 (14.3%)      

Moderate: 15 (71.4%) 

Severe: 3 (14.3%) 

Therapeutic 

hypothermia 

19 (90.5%)        

 

Intubation at birth 10 (47.6%)         

Days of ventilation Mean = 4 days, SD = 7.0 

Min = 0 days, Max = 28 days, SD = 5.11 days 

25th Percentile: up to 0 days 

50th percentile: up to 1.0 days 

75th percentile: up to 5.3 days 

Twenty healthy term-born infants were recruited from the MBCU of LHSC with a birth 

GA of 39.08, SD=1.21 weeks, and fNIRS scans were performed within 48 hours of life 

(Table 3.1). None of the healthy newborns underwent an MRI.  

3.4.2 Brain Injury Characterization 

Most newborns with HIE (n=20, 95%) had white matter injury identified using MRI (Table 

3.3). Mild white matter injury was commonly seen in the neonates, regardless of HIE 

severity (n=19, 90%). Injury to the basal ganglia was identified in one (5%) neonate with 

severe HIE. The presence of IVH was only seen in one (4%) participant with severe HIE. 

No watershed injury was evident in any MRI scans of the newborns with HIE. 
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Table 3.3: Brain injury patterns in HIE participants. 

 HIE severity Grade 
Mild 

(n=3) 

Moderate 

(n=15) 

Severe 

(n=3) 

White matter injury, n [%] grade 1 3[67] 14[93] 2[67] 

 
grade 2 0 0 1[33] 

 
grade 3 0 0 0 

Intraventricular haemorrhage, n 

[%] grade 1 0[0] 0[0] 0[0] 

 
grade 2 0[0] 0[0] 1[33] 

 
grade 3 0[0] 0[0] 0[0] 

Basal ganglia, n [%] 
 

0[0] 0[0] 1[33] 

Watershed injury, n [%] 
 

0[0] 0[0] 0[0] 

Note. White matter injury was scored according to de Vries [202]. Intraventricular 

haemorrhage grade was scored using the method of Papile [22]; Positive = any 

morphological abnormality. 

3.4.3 Comparing fNIRS and fMRI 

Lobe-wise 8-by-8 connectivity maps were obtained from fNIRS for HbO and Hbr for 

neonates with HIE. Euclidean and Jaccard distances were used to compare fNIRS and 

fMRI connectivity maps at levels of sparsity (Fig. 3.2A). Means, standard deviations (SD) 

and 95% confidence intervals (CI) of the two metrics were calculated based on subject-by-

subject comparisons. Sparsity ranged from 0.2 to 0.46. We also calculated the similarity 

map (Fig. 3.2B) between the two modalities.  
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Figure 3.2: (A) Similarity of RSFC maps between fMRI with respect to HbO and Hbr, 

measured by Euclidean distance (right panel) and Jaccard distance (left panel). Both 

weighted and binarized maps were implemented. (B) Lobe-wise similarity maps at a 
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sparsity of 45%. Color bar denotes the value of similarity. Higher values reflect 

greater similarity between the two modalities. For weighted cases, entries of similarity 

maps were the average Euclidean distances among subjects for the corresponding 

connections. In contrast, for binarized cases, they were the percentage of subjects 

sharing the connection. 

We also showed the correlation between brain volume and FC (Fig. 3.3). Correlations were 

calculated with whole-brain grey matter or white matter volume against HbO, Hbr or fMRI 

connectivity. Connectivities were summed over all connections, which were weighted and 

not filtered. We showed that FC increases with either grey or white matter volume. HbO 

connectivity showed a significant positive correlation with grey and white matter volumes 

(p-values were 0.015 and 0.011, respectively.), adjusted for birth GA, PMA at scan and 

sex. While Hbr and fMRI connectivities were not significantly correlated with volumes, 

they still increased with volume growth.  

 

Figure 3.3: Brain volumes (in voxel count) and fNIRS- and fMRI-based functional 

connectivity strength. Total functional connectivity strength (y axis) of oxygenated 
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(HbO, blue lines and plus [+] signs), deoxygenated (HBr, black lines and open circles 

[o]) hemoglobin and fMRI-based functional connectivity (red lines and stars [*]) in 

relation to grey matter volumes (A, x axis) and white matter volumes (B, x axis). 

3.4.4 Altered RSFC patterns of neonates with HIE 

Based on the connectivity maps obtained from fNIRS data, graph theory-based metrics 

were calculated to characterize patterns of RSFC and identify differences between HIE and 

control groups (Fig. 3.4). It was shown that the HIE group had increased clustering 

coefficient, network efficiency and modularity compared to controls, but had lower 

consistency within the group. 

 

Figure 3.4: Graph theory-based metrics measuring the differences in fNIRS RSFC 

patterns between newborns with HIE (red) and healthy controls (blue). The metrics 

were calculated at various levels of sparsity (0.2-0.45). *p<0.05 

Local measurements, including connectivity, degree centrality, closeness centrality, 

clustering coefficient and node efficiency, were calculated and used as features for training 

SVM classifiers to distinguish the HIE group from the control. Note that only features 

showing significance in t-tests were selected to train SVM models. We achieved a maximal 
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accuracy of 75.61% and a maximal AUC of 0.75 with connectivity features (Fig. 3.5A) 

using 4-fold cross validation.  

 

Figure 3.5: A. ROC curves of SVM classifiers trained with connectivity features. In 

the order shown in the legend, maximal accuracies of individual feature sets were 

68.29%, 68.29%, 68.29%, 51.22% and 75.61%, respectively. AUCs were 0.71, 0.71, 

0.69, 0.36 and 0.75, respectively. B. The connections marked red were those showing 

significance in t-test and chosen to train SVM. 

3.5 Discussion 

Despite the wide adoption of TH along with other interventions, HIE remains a major cause 

of mortality as well as later physical and cognitive difficulties. In this study, we examined 

functional connectivity patterns in a heterogeneous cohort of newborns with HIE using 

multi-modal imaging methods. RSFC maps yielded from fNIRS and fMRI were 

comparable within the cohort of HIE newborns. Further, positive associations between grey 

and white matter volumes, a marker of brain health, and fNIRS and fMRI connectivity 

strength were evident. Our findings provide support for fNIRS to be a promising bedside 

monitoring method to be used alongside other imaging technologies, especially for 

newborns receiving care in the NICU. We also demonstrated altered fNIRS-based 

connectivity patterns in HIE neonates compared to healthy newborns and the distinctive 

power of these connectivity features with machine learning models. Results indicated that 

fNIRS-based RSFC may be a novel biomarker of brain health in HIE.  
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The RSFC maps derived from fNIRS (HbO or Hbr) were comparable to fMRI in newborns 

with HIE who underwent TH. Our findings align with previous studies demonstrating good 

correspondence between fNIRS and fMRI. In adults, Sasai et al. [106] reported good spatial 

correspondence between fNIRS and fMRI on several resting-state networks using seed-

based analyses. Further, Duan et al. [107] in an adult population reported positive 

correlations between fNIRS and fMRI connectivity strength as well as similar topological 

patterns at different levels of sparsity. Anwar et al. [205] recorded simultaneous fNIRS, 

fMRI and EEG in adults to show bi-directional connectivity that occurs within 

sensorimotor networks, using Granger causality. In infants, less work has focused on 

comparing resting-state networks using fNIRS and fMRI. However, Bulgarelli et al. [108] 

demonstrated a strong resemblance between fNIRS and fMRI connectivity using dynamic 

causal modeling in a 6-month-old infant.  

In the current work, we further examined fNIRS- and fMRI-based connectivity in relation 

to grey and white matter volumes as a separate marker of brain health. Previous MRI 

studies conducted during the early stages of brain development demonstrated positive 

associations between FC strength and brain volumes [122], [206], [207]. fNIRS-based 

connectivity was significantly associated with both grey and white matter volumes. Our 

findings indicate that in the hypoxic newborn, FC can be maintained while adapting to 

changes in brain volume. However, this finding was primarily driven by HbO-based 

connectivity. In contrast, fMRI- and Hbr-based connectivity only showed positive trends 

towards an association with brain volumes. The physiological basis of the BOLD and Hbr 

signals are comparable in that they are both sensitive to changes in Hbr and are coupled to 

underlying changes in neuronal activity. In turn, connectivity based on deoxygenation 

changes may show less association with grey and white matter development in the rapidly 

changing newborn brain, as these processes are supported by synaptogenesis and 

myelination and are highly dependent on oxygen and nutrient delivery. An additional 

consideration is that the temporal dynamics of RSFC have been widely documented [208], 

[209], and methodological differences in the fNIRS and fMRI acquisition and analyses 

could further explain the inconsistency in the results.  
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When comparing fNIRS-based RSFC between neonates with HIE and healthy controls, the 

HIE group showed increased clustering coefficients, network efficiency and modularity. 

These metrics are commonly considered to be indicative of the small-worldness of 

networks. Small-worldness is characterized by high clustering and short path length and is 

commonly seen in brain networks [114], [210]. Findings suggest that brain regions with 

similar functions demonstrated more synchronized activity and had more highly connected 

hubs that support efficient global communication. Similar findings were documented by 

Gozdas et al. [211], who reported increased modularity in preterm-born neonates, but using 

fMRI-based connectivity metrics. Additionally, using fNIRS, Zhang et al. [132] also 

reported increases in several small-world metrics in newborns with HIE. An increase in 

small-worldness in the HIE population may reflect disruptions in the underlying white 

matter fiber pathways that may be reflected in severed long-range connectivity but 

strengthened local connectivity through neural compensation and reorganization. These 

compensatory mechanisms may be a common feature in neonates born critically ill [180] 

that can even be seen later in adulthood [212] or neurological disease states [213]. 

Increased functional connectivity within local networks has been reported previously. For 

example, newborns scanned with fNIRS demonstrated positive associations between 

connectivity strength of homologous-interhemispheric networks as well as behavioral 

measures of negative emotionality [214]. In relation to the current study, our findings of 

increased functional connectivity could also partially be influenced by exposure to invasive 

NICU procedures (TH, tape removal, skin breaks, etc.) experienced by the newborns. 

Further, increased grey matter cerebral blood flow within sensorimotor networks has been 

reported in preterm born infants [215], which may have also been a contributing  factor to 

the increased functional connectivity within the networks seen in our study. Future studies 

could address whether these changes are related to underlying brain injuries associated with 

HIE and predict local changes in connectivity. Further, an increased variation of clustering 

among neonates with HIE was evident and could also be a result of variations in the severity 

of HIE, IVH, or be related to white matter injury or a combination of these factors. Given 

our sample size, we could not further assess whether the variations in clustering were 

related to clinical factors or variations in care practices, but this could be explored in future 

work. 
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Machine learning models were implemented in the current study to determine whether 

RSFC features can be potential biomarkers of HIE. Optimal performance was realized 

when using connectivity features that were a product of significant connections that were 

either interhemispheric or within the right hemisphere. Altered interhemispheric or long-

range connections have been reported in multiple studies [130], [131], which may be 

related to HIE-induced injury or inflammation localized to the white matter or even 

subcortical areas, which are key to long-range neuronal signal transmission. Connections 

within hemispheres were significantly different in the right but not the left hemispheres. 

Further examination as to whether there may be hemispheric vulnerability to HIE is 

needed. Massaro et al. [216] demonstrated that the magnitude of cerebral pressure in the 

right hemisphere was predictive of adverse outcomes detectable by MRI. Whether a similar 

lateralization effect due to changes in intracranial pressure occurred in the current sample 

remains unknown but could have been an underlying factor.  

The majority of the HIE participants were scanned after TH and rewarming. The two 

participants who had mild HIE were not candidates for TH. Given that these newborns 

represented a small fraction of the total dataset, they were unlikely to have unduly 

influenced the results. While TH is the standard of care for newborns with severe or 

moderate HIE, our findings demonstrating altered RSFC maps suggest that disrupted 

functional organization of the brains persists after TH. The persisting disrupted RSFC 

patterns could also contribute to adverse developmental outcomes in the first few years of 

life [217], [218]. The present study focused on RSFC patterns in newborns with HIE, and 

future studies should incorporate long-term developmental outcomes. This would be the 

next step to determine how fNIRS markers of brain health at the bedside can predict 

developmental abilities in newborns with HIE. 

The strengths of our study are grounded in several areas. Firstly, this was a single-centre 

study with a well-characterized cohort of newborns with HIE and healthy newborns. Also, 

a high-density fNIRS system offered coverage of the newborn brain's frontal, parietal, 

temporal and occipital areas. We also had the opportunity to characterize functional 

networks that were related to brain structure in the HIE population; however, not all 

participants had the same measures available. The MRI scans were conducted as part of 
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clinical care and after TH and rewarming. Given the timing of the MRI scans, some 

families could only consent to the fNIRS component of the study. While the goal of the 

study was to compare RSFC maps obtained using fNIRS and fMRI, these two modalities 

could not be obtained at the same time in our sample due to a lack of resources in a clinical 

imaging center. The duration of the fMRI scanning sequence was relatively short. 

However, the neonates underwent clinical imaging before the research sequences and could 

only be away from the NICU for a short period of time. The fMRI protocol was tested in 

an adult prior to scanning the newborns, further the networks were assessed in individual 

newborns to determine their robustness. Additionally, the fNIRS probes were not precisely 

located in the MRI space, and the fMRI data were analyzed using an atlas approach. In 

turn, the spatial correspondence between the fNIRS and fMRI data could be improved in 

future work. Another consideration is that the fNIRS data may have been influenced by 

physiological noise. In adults, short-distance channels are frequently implemented in 

fNIRS studies as a means to assess surface-artefacts, signal quality, source localization, 

and improve signal decomposition [77]. However, in neonates placing short distance 

channels on channels that already very close together is ineffective due to the smaller 

surface area of the head in neonates compared to adults [75]. Another approach for future 

studies with neonates would be to collect physiological measurements (i.e., heart rate) 

using external monitoring and use these measurements to improve signal decomposition. 

3.6 Conclusions 

In this study, we determined the utility of fNIRS to assess RSFC as a potential biomarker 

for brain health in term-born neonates with HIE. By incorporating a multimodal 

neuroimaging investigation using fNIRS, fMRI and structural MRI, we showed that 

fNIRS-based RSFC patterns were comparable to those seen with fMRI and that these 

metrics were predictive of brain volumes. We further demonstrated that fNIRS-based 

RSFC maps differed between HIE and healthy newborns. Lastly, fNIRS-based 

connectivity metrics performed well in machine learning models to determine diagnostic 

group membership. Overall, study findings indicate that altered fNIRS-based RSFC 

patterns can be potential biomarkers of HIE. fNIRS at the bedside could be complementary 

to other imaging modalities in terms of characterizing neonatal brain function. 
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Chapter 4  

4 Predicting cortical-thalamic functional connectivity using 
functional near-infrared spectroscopy and graph 
convolutional networks 

This chapter is adapted from the publication entitled “Predicting cortical-thalamic 

functional connectivity using functional near-infrared spectroscopy and graph 

convolutional networks” submitted to Scientific Reports in 2024 by Lingkai Tang, Lilian 

M. N. Kebaya, Homa Vahidi, Paige Meyerink, Sandrine de Ribaupierre, Soume 

Bhattacharya, Keith St. Lawrence, and Emma G. Duerden and is currently under review. 

4.1 Abstract 

Functional near-infrared spectroscopy (fNIRS) measures cortical changes in hemoglobin 

concentrations, yet cannot collect this information from the subcortices, such as thalamus 

which is involved in several key functional networks. To address this drawback, we 

propose a machine-learning-based approach to predict cortical-thalamic functional 

connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) 

on two datasets obtained from healthy adults and neonates with early brain injuries. Each 

dataset contained fNIRS connectivity data as input to the predictive models and 

connectivity of functional magnetic resonance imaging (fMRI) as training targets. GCN 

models performed better compared to conventional methods, such as support vector 

machine and feedforward fully connected artificial neural network, on both identifying the 

connections as binary classification tasks, and regressing the quantified strengths of 

connections. We also propose the addition of inter-subject connections into the GCN 

kernels could improve performance and the GCN models are robust against noise in fNIRS 

data. Our results show it is feasible to indicate subcortical activity from cortical fNIRS 

recordings and the study can potentially extend the use of fNIRS in clinical settings for 

monitoring brains of critically ill patients. 
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4.2 Introduction 

Functional NIRS measures changes in hemoglobin concentrations as an indirect measure 

of brain activity [195]. Functional NIRS has been successfully introduced in clinical 

settings in both adult and paediatric populations, as a bedside monitoring tool, particularly 

for patients impacted by critical illness, where minimizing invasive imaging procedures 

involving transport or exposure to radiation are key priorities [158], [164], [219], [220]. 

However, one major drawback is that fNIRS can only detect changes at the cortical level, 

as it is limited by penetration depth of near-infrared light. Consequently, fNIRS cannot 

collect hemodynamic information from deep brain regions, such as the thalamus, an 

important relay between the cortex and the nervous system that subserves key cognitive, 

motor, and sensory processes [221], [222], [223]. Further alterations in thalamocortical 

pathways due to clinical care or brain injury can lead to cognitive and motor deficits [224], 

[225], [226], [227]. At the same time, conventional clinical magnetic resonance imaging 

(MRI) approaches to study deep brain regions are limited by the accessibility of MRI 

scanners to patients who are critically ill and sensitivity to motion. fNIRS can be applied 

under many scenarios where MRI cannot such as at the bedside of patients for short- or 

long-term monitoring. Therefore, deriving deep brain, especially thalamic, connectivity 

pathways from cortical recordings with computational methods, would largely extend the 

range of fNIRS studies and clinical applications.  

Despite the strong need in fNIRS research for analytic tools to predict subcortical activation 

from that seen in the cortex, as far as we know, little research has focused on this issue 

[228]. A previous study implemented a supervised machine learning model, using support 

vector regression (SVR), to predict hemodynamic responses of several deep brain regions 

using simultaneously recorded fNIRS and fMRI in healthy adult participants. The SVR 

models were trained with subject-dependent cortical time series as inputs and fMRI 

subcortical recordings as ground truths for validation. Positive correlations between 

predicted and true sequences were evident, highlighting the feasibility of the method to 

predict subcortical activation from fNIRS-based cortical activation. 
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The popularization of machine learning methods over the last decade has opened up 

opportunities for the development of universal (subject-independent) models to predict 

subcortical activity from cortical activity. A specific type of artificial neural network, 

namely GCN, was recently introduced by Kipf et al. [229] Derived from convolutional 

neural networks, GCN is efficient for extracting high-level features from graphs by using 

the topology among samples as kernels. GCN models have been combined with 

neuroimaging technologies, where connectivity maps of brains were introduced as graph 

kernels for GCN. Zhao et al. combined GCN with functional connectivity maps from 

resting-state fMRI (rs-fMRI) to predict attention deficit hyperactivity disorder (ADHD) 

diagnosis and identify atypical connectomes [230]. Li et al. predicted infant age using rs-

fMRI data; yet, graph paths were incorporated into convolutional kernels to compensate 

for indirect paths between brain regions [231]. Functional NIRS data have been also used 

for training GCN models. Zhang et al. predicted autism diagnosis by combining GCN units 

with recurrent structures to capture both spatial and temporal dynamics of fNIRS functional 

connectivity [232].  

In the current work, we aimed to develop a universal model, that is not subject-dependent 

as in [228], using GCN methods to determine whether task-based and task-free cortical 

fNIRS connectivity would predict cortical-thalamic connectivity. The current study 

examined two heterogenous cohorts of adults and neonates. The models were developed 

from an fMRI-fNIRS dataset in healthy adults and infants born critically ill, respectively. 

The two cohorts were examined because firstly, the long-term goal of the research is to 

develop fNIRS based analytic tools to monitor brain function in infants in intensive care. 

In turn, better characterization of cortical and subcortical in the neonate are needed to 

evaluate a prediction model to use with fNIRS data recorded at the bedside. Secondly, 

inherent differences in connectivity patterns in adults and neonates were identified. 

Imaging studies have demonstrated the rapid development of the infant brain during the 

first few years of life [133], [233]. Basic functional networks (default mode, somatomotor, 

visual, etc.) emerge at very early ages [191], [206], [234], [235]. Differences in the 

connectivity patterns are evident between infants and adults. For example, adult default 

mode networks integrate long- and short-range areas, while in the neonatal and infant brain, 

individual parts may demonstrate less synchronized organization [236]. Also, in a very 
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early study of resting-state connectivity, network hubs were localized differently in adults 

compared to infants [237]. 

To train the GCN models along with other machine learning models for comparison, we 

considered cortical fNIRS connectivity as input and cortical-thalamic fMRI connectivity 

for validation. Participants underwent both fMRI and fNIRS. Adult participants completed 

a resting-state scan along with a visually-guided finger-tapping task during simultaneous 

fMRI and fNIRS scanning, so that the predictive models could be examined in different 

brain states (i.e., task-based or task-free activity), and finger tapping can reliably activate 

primary motor cortex where fNIRS probes were located. We compared fully connected 

feedforward artificial neural networks (ANN), support vector machines (SVM), and GCNs, 

to identify the best method to predict deep brain connectivity from cortical fNIRS 

recordings in adults. The fNIRS-prediction method was also applied to data collected in a 

clinical population of neonates who were scanned using a task-free paradigm. The overall 

goal was to determine if the fNIRS-prediction method could be used in clinical settings, 

for patients who require brain-monitoring but whose access to conventional imaging 

methods such as MRI would be limited.  

4.3 Methods 

4.3.1 Participants 

A total of 20 healthy adult participants were recruited from the local London community 

for the study (average age: 25.6, standard deviation [SD]=3.1 years, male: 9). Neonatal 

participants with hypoxic ischemic encephalopathy (HIE) or intraventricular hemorrhage 

(IVH) were recruited from the neonatal intensive care unit (NICU) at the Children’s 

Hospital of South Western Ontario, London, Canada. A total of 21 HIE neonates 

(gestational age [GA] at birth: 39.27, SD=1.26 weeks, male: 9) and 16 IVH ones (birth 

GA: 27.08, SD=3.03 weeks, male: 10) were recruited. Neonates were excluded from the 

study if there was evidence of major anomalies of the brain or other organs, congenital 

infections (e.g., TORCH), intrauterine growth restriction (IUGR), identifiable metabolic 



77 

 

disorder or ultrasound evidence of a large parenchymal hemorrhagic infarction. Detailed 

severity of brain injuries can be found in Table 4.1. 

Table 4.1: Clinical scores of newborns with HIE and IVH. 

 HIE severity Mild Moderate Severe   

n [%] 3[14] 15[71] 3[14]   

IVH severity Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 

Left hemisphere, n [%] 
2[13] 

2[13] 
5[31] 

4[25] 3[19] 

Right hemisphere, n [%] 1[6] 2[13] 4[25] 7[44] 2[13] 

Note. HIE severity was categorized according to de Vries [202]. Intraventricular 

hemorrhage grade was using scored using the method of Papile [22]. The percentages were 

rounded therefore the summations were not 1. 

Studies were approved by the Health Sciences Research Ethics Board at Western 

University. Informed consent was provided by the adult participants or parents/caregivers 

of the newborns. The study was conducted in accordance with the Declaration of Helsinki.  

4.3.2 Experimental procedures 

Adult participants underwent simultaneous fMRI and fNIRS for 3 consecutive finger-

tapping sessions followed by a task-free session. All sessions were 6 minutes. Finger-

tapping sessions included repetitive 30-second tapping and 30-second rests. Participants 

were asked to tap sequentially with all fingers of their right hands. There were short breaks 

between sessions.  

Neonates were scanned at term equivalent age (age at fNIRS scan [HIE and IVH infants]: 

38.57, SD=2.00 weeks) for 6 minutes during natural sleep (i.e., task-free state). fNIRS and 

fMRI were not acquired simultaneously due to incompatibility of NICU fNIRS system 

with fMRI. The fNIRS and fMRI scans were 3.48 days away on average. 



78 

 

4.3.3 MRI Image Acquisition 

Adult participants were scanned on a 3T Biograph mMR PET-MR system (Siemens, 

Erlangen, Germany) (Fig. 4.1a). Anatomical T1 weighted images were acquired for each 

participant using an MPRAGE sequence (TR=2000 ms, TE=4.18 ms, Inversion time 

[TI]=900, flip angle=9°, matrix size 256 × 256, 176 slices, voxel size typically 1 × 1 × 1 

mm). An EPI (echo planar imaging) sequence was used to acquire blood oxygen level-

dependent (BOLD) fMRI data under the task-free (resting-state) condition as well as during 

the finger-tapping sessions (TR=3000 ms, TE=30 ms, flip angle=90°, matrix size 64 × 64, 

45 slices, voxel size 3 × 3 × 3 mm, total volumes 122). 

 

Figure 4.1: (a) An adult participant prepared for an fNIRS/fMRI scan. fNIRS optodes 

were connected to the console in the control room. (b) Adult fNIRS montage 

generated with NIRSite software (NIRx, Berlin, Germany). Only data from the right 

hemisphere is displayed, but the montage was symmetrical between left and right 

hemispheres. Light sources were marked in red and detectors in blue. Layout of probe 

locations followed the 10-10 system [238]. Coordinates of the fNIRS probes in MNI 
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space can be found in Table 4.2. (c) Example connectivity maps developed using 

Pearson correlations for fNIRS (left) and fMRI (right), respectively, from a 

participant. Numbers on the axes provide indexes for fNIRS channels (for HbO, Hb 

and Hbt), or the thalami and cortical regions that were covered by fNIRS channels 

(for fMRI). Colourbars indicate the Pearson correlation values. 

Newborns underwent MRI scans with a 1.5 T GE MRI scanner. A T1-weighted structural 

imaging volume was acquired (TR=8.4–11.5 ms [depending on clinical requirements], 

TE=4.2 ms, flip angle=12/25°, matrix size 512 × 512, 99–268 slices, voxel size typically 

0.39 × 0.39 × 0.5 mm (0.31 × 31 × 5 to 0.43 × 0.43 × 0.6 for some neonates), as well as 

T2-weighted structural image (TR=3517–9832 ms, TE=7.3–8.4 ms, flip angle = 90/160°, 

matrix size 256 × 256, 19–60 slices, 0.7 × 0.7 × 2–5 mm voxel resolution). Additionally, 

an EPI sequence was used to acquire resting-state functional connectivity data 

(TR=3000ms, TE=50 ms, flip angle=70°, matrix size 64 × 64, 39 slices, voxel size 3 × 3 × 

3 mm, total volumes 35).  

4.3.4 fMRI preprocessing and analysis  

The fMRI data were preprocessed using FMRIB Software Library  

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) [88]. The preprocessing pipeline included brain 

extraction, motion correction, spatial smoothing (full width at half maximum = 5 mm) and 

band-pass filtering (0.01-0.1 Hz). The adult fMRI images were registered to MNI152 space 

and average thalamic BOLD signals were extracted using Harvard-Oxford subcortical 

structural atlases [239] integrated within FSL. The cortico-thalamic connectivity, later used 

for training the machine learning models, was measured as the  BOLD correlations between 

thalami and cortical brain regions covered by fNIRS channels. To extract these BOLD 

sequences, firstly, the fNIRS optodes, which followed the 10/10 system of probe placement 

[238], were localized to MNI152 space following the work of Jurcak et al. (Table 4.2) [240]. 

Then, a banana-shaped photon-hitting density function introduced by Feng et al. was 

implemented to evaluate a probability density map corresponding to each fNIRS channel 

[59]. Finally, BOLD time-series were extracted from brain voxels weighted by the 

probability density map and averaged to obtain one sequence for a single fNIRS channel 
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[60]. This yielded 20 BOLD time-series in total, corresponding to 20 cortical regions 

covered by 20 fNIRS channels. For each session of each participant, Pearson and partial 

correlations were calculated amongst the BOLD signals from the thalami (i.e., both 

hemispheres) and 20 cortical regions covered by the fNIRS channels (Fig. 4.1c).  

Table 4.2: MNI coordinates of fNIRS probes (in mm). 

Source No.   X Coordinate  Y Coordinate   Z Coordinate  

1   30.30  -15.34   71.93  

2   54.14  -45.20   54.30  

3   68.27  -19.49   27.21  

4   50.28  15.11   46.81  

5   -28.42  -14.61   71.47  

6   -53.52  -45.00   55.10  

7   -66.97  -18.78   27.57  

8   -48.32  15.47   45.88  

Detector No.             

1   27.88  17.56   63.22  

2   27.84  -45.22   72.83  

3   56.09  -17.28   54.34  

4   63.63  9.02   21.85  

5   -25.97  16.31   62.52  

6   -27.72  -45.09   72.19  

7   -54.45  -17.14   54.73  
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8   -61.27  10.60   21.22  

The neonatal images were preprocessed with the same pipeline but were registered to a 

neonatal atlas [159]. From the frontal, parietal, temporal and occipital lobes, as well as 

thalamus of both hemispheres, we extracted the average BOLD sequences. Then, we 

calculated the Pearson and partial correlations among them to build a functional 

connectivity map for each neonate (Fig. 4.2b). 

 

Figure 4.2: (a) The NIRSport2 system used in this study (left) and a neonate wearing 

optodes in the NICU (Caregiver permission was obtained, right). Based on fNIRS 

data, 8-by-8 connectivity maps were built for participants. (b) Time series of 10 

regions (5 in each hemisphere) were extracted from fMRI images of neonates, then 

used to build the connectivity maps. Connectivity maps in this figure are from data 

collected from a single participant. Colorbars indicate the value of Pearson 

correlation. 

4.3.5 fNIRS acquisition and analysis   

Adult fNIRS was acquired using a NIRScout2 (NIRx, Berlin, Germany) system with 8 

light sources (laser, wavelengths of 785 and 850 nm) and 8 detectors (sampling at 7.81 Hz) 

yielding 20 channels covering parts of the frontal and parietal lobes (Fig. 4.1b). Neonatal 
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participants were scanned using a NIRSport2 (NIRx, Berlin, Germany) system with 8 light 

sources (LED, wavelengths of 760 and 850 nm) and 8 detectors (sampling at 10.17 Hz) 

covering the whole brain. For either hemisphere, 4 channels were over the territories of the 

temporal, 2 on the territories of the parietal, frontal and occipital lobes (Fig. 4.2a).  

Preprocessing both adult and neonate fNIRS data was done through Homer3 software [203]. 

The pipeline included spline interpolation for motion correction[65], band-pass filtering of 

0.01-0.1 Hz and conversion to concentration changes of three chromophores, which were 

oxygenated hemoglobin (HbO), deoxygenated hemoglobin (Hb) and total hemoglobin (Hbt) 

[58]. For each neonate, fNIRS channels corresponding to one lobe were averaged first to 

have lobe-wise sequences, since anatomically, we could not localize them more accurately. 

Pearson and partial correlations [102] were subsequently calculated between fNIRS 

sequences for adults (Fig. 4.1c) and neonates (Fig. 4.2a), respectively. The three 

chromophores were calculated separately. 

4.3.6 Graph convolutional networks 

We aimed to predict functional cortical-thalamic connectivity from cortical connectivity 

using machine learning models, particularly the GCN. The GCN is derived from an 

ordinary convolutional neural network, and uses connectivity maps as kernels [229]. Given 

the adjacency matrix 𝐴 of a connectivity map with 𝑛 nodes and the node attribute matrix 

𝐻𝑙, a convolutional block can be expressed as  

𝐻𝑙+1 = 𝜎 (𝐷−
1
2𝐴𝐷−

1
2𝐻𝑙𝑊𝑙) , (4.1) 

where 𝐷 is a diagonal matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 , 𝑊𝑙 is a linear transformation with trainable 

entries, and 𝜎 is an activation function which was rectified linear unit (ReLU) in this study. 

𝐷 also serves as kernels in the model.  

A recent development of GCN allowed multiple kernels to be introduced into the model 

[241]. A convolutional block corresponding to kernel 𝑘 that combines outputs from all 

kernels can be defined as 

𝐻𝑙+1
(𝑘)

= 𝜎 (∑ 𝐷(𝑚)−
1
2𝐴(𝑚)𝐷(𝑚)−

1
2𝐻𝑙

(𝑚)
𝑊𝑙

(𝑚𝑘)

𝑚
) , (4.2) 
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where 𝐷(𝑚)−
1

2𝐴(𝑚)𝐷(𝑚)−
1

2  denotes the kernel 𝑚  and 𝑊𝑙
(𝑚𝑘)

 denotes the linear 

transformation from kernel 𝑚 to kernel 𝑘. (Fig. 4.3). At the end to convolutional layers, 

the summation of output from all kernels is obtained as 

𝐻𝑙 = 𝜎 (∑ 𝐻𝑙−1
(𝑘)

𝑘
) , (4.3) 

which is then input to fully connected layers, so that the whole model can do either 

classification or regression. 

 

Figure 4.3: Structure of GCN models with multiple kernels with 𝑾 denoting the 

trainable weights of linear transformations. There could be more layers, but in our 

settings, we had only 2 convolutional layers. With fully connected layers attached, the 

model can do either classification or regression. In our settings, there were 3 kernels, 

each corresponding to HbO, Hb or Hbt. Each kernel was multiplied by a feature 

matrix of the corresponding chromophore.  

4.3.7 Implementation details 

In our setup, each cortical node from each session for each participant was considered as a 

sample, meaning for adults, the samples were fNIRS channels and for the neonates, the 

samples were combinations of several channels within the same neuroanatomical lobes.  
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Given the number of subjects as 𝑛𝑝𝑎𝑟, number of imaging sessions (finger tapping or task-

free) as 𝑛𝑠𝑒𝑠  and number of cortical nodes as 𝑛𝑛𝑜𝑑𝑒 , the number of samples 𝑁 =

𝑛𝑝𝑎𝑟𝑛𝑠𝑒𝑠𝑛𝑛𝑜𝑑𝑒. By this, we obtained 1200 samples for adult finger tapping sessions and 

400 for resting-state sessions. For neonates, there were 184 samples in total.  

For each node (or sample), its partial correlations with all other cortical nodes were 

calculated as features, respectively calculated with HbO, Hb and Hbt. Therefore, we 

obtained the input feature matrix 𝑋 ∈ ℝ𝑁×𝑛𝑛𝑜𝑑𝑒 . Convolutional kernels were calculated 

based on the Pearson correlations of HbO, Hb and Hbt, respectively. Such strategies for 

calculating features and kernels can be found previously in [230]. To match the dimensions 

of kernels and feature matrices, adjacency matrices of all sessions of all participants were 

concatenated on the diagonal (Fig. 4.4a), so that kernels ∈ ℝ𝑁×𝑁. For the multi-kernel 

models, kernels were applied to feature matrices of corresponding chromophores and all 

three chromophores were used. For mono-kernel GCN models, only one chromophore was 

applied. 

The Pearson correlation coefficients between cortical nodes and thalamus calculated with 

fMRI were targets for prediction. We used leave-one-out validation (LOOV), where all 

samples of all sessions of one subject were left out during training. The models were built 

for classification and regression, respectively. For classification, the target fMRI 

connectivities were binarized using a threshold yielding two balanced classes. The 

connectivities with thalamus of two hemispheres were predicted separately (i.e., training 

two models with the same set of features but different targets). The performances of the 

models were measured using accuracy, area under receiver operating characteristic curves 

(AUC) and f1 scores. For regression, the actual values of targets were predicted, with 

testing errors measured by L1-losses. The model was trained for both task-free (i.e., resting 

state) and task-based (i.e., finger-tapping) data, separately. We also compared our multi-

kernel and mono-kermel models with some commonly used machine learning methods, 

such as fully connected feedforward networks (ANN), which are the basic model of deep 

learning, and support vector machines (SVM), which are also widely adopted in many 

scenarios.  
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To improve the performance of GCN models, inter-subject connections (Fig. 4b) were 

added to the kernels. Two ways to calculate inter-subject connections were tested (Fig. 

4.4c). The 1st one was Pearson correlations between all samples. The 2nd one was 

geometrical meaning channels from different subjects, but at the same location in the 

fNIRS montage that were related to a coefficient 𝜆. Different choices of 𝜆 were tested. 

Also, considering that fNIRS data can be noisy, the models were trained and tested with 

noisy samples removed to see the robustness of the models against noise. The noise level 

of a sample was determined by its coefficient of variance (CV) of the raw optical density 

data of fNIRS from the corresponding cortical node.  

 

Figure 4.4: (a) An example of a concatenated adjacency matrix, serving as a kernel, 

with all participants’ individual ones on the diagonal. One adjacency matrix of this 

kind was derived from data of one chromophore. (b) Concatenated adjacency matrix 

with added inter-subject connections, which would be replaced by matrices in Fig. 4c. 

(c) Two inter-subject connections tested in this study, which were geometrical (left, 

with a coefficient 𝝀 on the diagonal) and Pearson (right). 
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4.4 Results 

4.4.1 Adult group 

The classification and regression results for both the resting state and finger tapping 

sessions are shown in Fig. 4.5. GCN models had, in general, better performances compared 

with ANN and SVM. Compared to GCN models, SVM could have comparable AUC or f1 

score for classification but lower accuracy, and higher L1-loss for regression, while ANN 

was better at classification (still with marginally higher loss than GCN), yet had lower 

accuracy, AUC and f1 score. Within GCN models, multi- or mono-kernel ones had 

comparable performances. As comparisons, fMRI features kernels and features were also 

calculated and applied for training GCN, yet the results were no better than using fNIRS 

based input.  
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Figure 4.5: Results of classification (left panel) and regression (right panel) from 

finger tapping and resting state sessions.  

With inter-subject connections, shown in Fig. 4.6, model performance was improved for 

both classification and regression. 𝜆 was kept at 0.5 for geometric connections. While 

Pearson connections did not always yield the best performance, the models were much 

improved geometric connections for all tasks. Also as shown in Table 4.3, the multi-kernel 

models especially benefited from geometric connections in terms of regression.  
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Figure 4.6: Performance of multi-kernel GCN models on classification (left panel) 

and regression (right panel) with inter-subject connections added to kernels. “Both” 

means geometric and Pearson connections were summed up then added to the kernels. 
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Table 4.3: Comparison between different GCN models with geometric kernels. 

   

Multi-Kernel 

GCN 

GCN 

(HbO) 

GCN 

(Hb) 

GCN 

(Hbt) 

Finger  Cl LH     

Tapping  Accuracy 0.7125 0.7071 0.6933 0.7066 

  AUC 0.6971 0.6626 0.6848 0.6733 

  f1 0.4882 0.4672 0.5961 0.6193 

  RH     

  Accuracy 0.6359 0.7400 0.7008 0.6950 

  AUC 0.5948 0.6670 0.6362 0.6130 

  f1 0.2847 0.5007 0.5006 0.4807 

 Re LH     

  L1-loss 0.1187 0.1347 0.1374 0.1222 

  RH     

  L1-loss 0.1188 0.1320 0.1326 0.1196 

Resting Cl LH     

State  Accuracy 0.8050 0.7675 0.7225 0.7325 

  AUC 0.7032 0.7800 0.7217 0.7256 

  f1 0.5657 0.7116 0.5939 0.6669 

  RH     



90 

 

  Accuracy 0.7259 0.6700 0.6600 0.6475 

  AUC 0.6975 0.7295 0.7216 0.6552 

  f1 0.6309 0.6761 0.7064 0.6619 

 Re LH     

  L1-loss 0.1066 0.1086 0.1230 0.1122 

  RH     

  L1-loss 0.1074 0.1069 0.1111 0.1058 

Note. Cl: classification, Re: regression. 

To further examine the effects of the geometric connection coefficient 𝜆, we tested a series 

of different values of it. The value of the coefficients yielding the best performances could 

vary based on the tasks (Fig. 4.7a and b), but usually fell into the range from 0.3 to 0.7. In 

Fig. 4.7c are significant linear correlations between true and predicted connectivities, 

providing yet another validation for our models. 
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Figure 4.7: Change of performances of multi-kernel GCN models with geometric 

connection coefficients 𝝀 ranging from 0.01 to 100, measured for classification (a) and 

regression (b). (c) Linear correlations between true fMRI connectivity and predicted 

connectivity obtained from the regression models using 𝝀 with lowest L1-loss.  

Since fNIRS signals can be noisy, we tested the models with noisy samples removed from 

training and testing datasets. 10%, 15%, and 20% of the noisiest samples were excluded, 

and thresholded by different values of CV. Removal of noisy samples did not yield better 

results (Table 4.4), for most of the tasks, which indicated the robustness of our models 

against noise. 

Table 4.4: Performance of multi-kernel models with or without noisy samples 

removed. 

   No 

Removal 

10% 

(CV>0.52) 

15% 

(CV>0.51) 

20% 

(CV>0.38) 

Finger 

Tapping 

 

 

LH     

Accuracy 0.7125 0.6987 0.7071 0.6846 
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Cl 

 

 

AUC 0.6971 0.6819 0.6626 0.6981 

f1-score 0.4882 0.4504 0.4672 0.4597 

RH     

Accuracy 0.6359 0.6137 0.6481 0.5902 

AUC 0.5948 0.5959 0.6291 0.6104 

f1-score 0.2847 0.2620 0.2879 0.2306 

 LH     

Re L1-loss 0.1187 0.1109 0.1129 0.1265 

 RH     

 L1-loss 0.1188 0.1265 0.1135 0.1144 

Resting 

State 

 

 

 

Cl 

 

LH     

Accuracy 0.8050 0.8110 0.7602 0.7320 

AUC 0.7032 0.7170 0.7175 0.7465 

f1-score 0.5657 0.6657 0.5616 0.6358 

RH     

Accuracy 0.7259 0.7160 0.7367 0.7062 

AUC 0.6975 0.7196 0.7450 0.7114 

f1-score 0.6309 0.6128 0.6753 0.6242 

 LH     
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Re L1-loss 0.1066 0.1015 0.1047 0.1101 

 RH     

 L1-loss 0.1074 0.1047 0.1054 0.1053 

4.4.2 Neonatal group 

We also used task-free (i.e., resting state) neonatal fNIRS and fMRI data to train the 

models. As shown in Fig. 4.8a, GCN based models outperformed ANN and SVM, yet there 

were no advantages for multi-kernel methods. Though not as good as they performed on 

adult data, for regression, GCN models could yield a significant linear regression between 

predicted values and ground truths (Fig. 4.8b). Also, in Table 4.5, we found no 

improvement by applying inter-subject connections.  

Table 4.5: Model performances with or without inter-subject connections. 

 No inter-subject connections Geometric inter-subject connections, 𝝀=0.5 

 

MultiKernel-

GCN GCN(HbO) GCN(Hb) GCN(Hbt) 

MultiKernel-

GCN GCN(HbO) GCN(Hb) GCN(Hbt) 

LH 
        

Accuracy 0.6141 0.6630 0.6702 0.6685 0.6032 0.6793 0.6902 0.6521 

AUC 0.5067 0.6040 0.6538 0.5777 0.4943 0.6732 0.6538 0.6297 

f1 0.0957 0.2703 0.3064 0.2622 0.0565 0.3965 0.3064 0.2420 

RH 
        

Accuracy 0.6064 0.6413 0.6467 0.6522 0.6059 0.6576 0.6359 0.6630 

AUC 0.5022 0.6708 0.6203 0.6509 0.5408 0.6483 0.5940 0.6283 

f1 0.0899 0.3939 0.4563 0.3730 0.2241 0.4098 0.3894 0.3890 

LH 
        

L1-loss 0.2081 0.1984 0.1821 0.1981 0.2115 0.2313 0.1900 0.1951 

RH 
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L1-loss 0.2081 0.1984 0.1821 0.1981 0.2115 0.2313 0.1684 0.1620 

 

Figure 4.8: (a) Performance of machine learning models on the neonatal dataset. (b) 

Linear correlations between true fMRI connectivity and predicted connectivity 

obtained from regression models for the neonatal dataset. 
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4.5 Discussion 

Despite the growing interest and involvement of fNIRS in clinical settings, even new 

fNIRS technology is still largely limited by the penetration depth and cannot offer critical 

information on subcortical areas. In this study, we proposed machine learning approaches 

using GCN models for predicting cortical-thalamic connectivity using cortical fNIRS data. 

The GCN models were examined on adult and neonatal populations, respectively, for either 

determining the existence of a connection (classification) or inferring the exact value of 

connectivity strength (regression). The performances of the models were mainly evaluated 

with accuracy, AUC and f1 scores for classification and L1-loss for regression. We showed 

that GCN models outperformed two conventional methods, ANN and SVM. Using multi-

kernel strategy, combined with inter-subject connections within kernels, can further 

improve the results.  

The strength of GCN models, compared to ANN and SVM, was robust in that when 

analyzing features of one sample, the features of its neighboring samples were taken into 

consideration, which made the models specifically suitable for studying brain networks. 

The brain is largely characterized by connectivity, ranging from individual neurons through 

synaptic connections to more broad widespread anatomical connectivity of short- and long-

range cortical and subcortical areas [242]. Representations, or features, of brain regions 

can be dependent on each other through connectivity in various terms such as 

neurophysiology, biochemistry, etc. [26]. Yet, the representations manually chosen or 

extracted automatically with algorithms might not be sufficient to encode connectivity on 

their own. GCN models enable connectivity to be represented by multiplying the 

connectivity matrices on every level of the models, yielding latent features of samples fully 

embraced with connectivity information. This was especially true for the adult data, where 

cortical regions, as samples, were densely located around the sensory cortices, which 

potentially strengthened connectivity among them [98]. In addition, in our setup, features 

were calculated as partial correlations between one region and all others, which were 

already connectivity measurements. Yet, the performance with ANN was poor, indicating 

that full correlations, potentially containing extra information through indirect connections, 

could also be vital [230]. 
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The multi-kernel strategy of GCN enabled us to take full advantage of three chromophores 

obtained from fNIRS and yielded better performances on some tasks, especially using 

regression. Though conventionally HbO and Hb signals are perfectly anti-correlated, and 

it was sufficient to report only one chromophore, recent developments pointed out some 

considerable heterogeneity amongst chromophores for adults and infants [244], [245]. 

While HbO is considered more sensitive to cerebral blood flow changes and activation 

induced changes [244], it is more susceptible to physiological noise than Hb [169]. In the 

current study, we considered the three chromophores to be complementary to each other, 

as HbO and Hb measured different molecules and Hbt corresponded more to blood volume. 

Yet this could also be a limitation of the study, whereby overlapping information could 

still be shared by the three chromophores leading to redundant input. It could explain that 

for some tasks, multi-kernel models were not as good as mono-kernel ones.  

Using short channels to remove superficial physiological noise is becoming a standard 

method for fNIRS data collection on adults. However, we did not include short channels 

in our protocols, which can be considered a limitation. In fact, results of Hb, which is less 

sensitive to systemic physiology [169], showed better performances than HbO and Hbt on 

many tasks, which could possibly be explained by the lack of short channels. Yet, the 

models were still shown to be robust to samples with higher CV, which was more related 

to background noise, system drift and motion artifacts. In neonates, since scalps and skulls 

are thinner than adults, superficial physiology might take up less of the portion of the whole 

signal. Also, to use short channels on newborns, their feasible separation would be too 

short (<5 mm) to be implemented on most available fNIRS caps [75]. 

The adult participants were asked to tap with their right hands only, therefore, it was likely 

to have laterality issues with different activation patterns between two hemispheres. Such 

issues were not examined, but we saw no consistent hemispheric differences from our 

classification and regression results. This potentially demonstrated that our models would 

work regardless of laterality.  

For both classification and regression, results from the neonatal data were not as optimal 

as in adults. This was possibly due to the limitations of this study concerning neonatal data 
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acquisition. Namely, fNIRS and fMRI date were not collected simultaneously for neonates. 

Temporal dynamics of BOLD signals and functional connectivity has been documented 

before [208], [209]. Plus, the awake status of neonates was not controlled during the two 

scans using objective measures. The second limitation was that the duration of the neonatal 

fMRI scans was potentially short for robust calculations of functional correlations [246]. 

In addition, the models were limited by the sample size for both adults and neonates. The 

samples were divided only into training and testing sets. However, including a third 

validation set, which was not used for training or testing, could provide a clearer 

assessment of model performance. Additionally, the variations in model-evaluating metrics 

were not recorded, which limits the ability to statistically compare the models. 

Also in the neonatal group, the inter-subject connections failed to improve model 

performances. The inter-subject connection was based on the functional similarity amongst 

the data collected from different sessions and different participants. Additionally, the 

neonates recruited for this study were from the NICU and were receiving clinical care, 

which could increase the variability within the whole population. Despite the limitations 

on neonatal data, our models still achieved binary classification results better than random, 

and strong linear correlations between the ground truths and predicted values for 

regression.  

The current study results are very promising for fNIRS to be used as a bedside monitoring 

tool. These results could be further validated by having longer fMRI scanning runs, 

including larger normative samples, and objective measures of sleep/awake state (i.e., 

electroencephalography). Additionally, a better understanding of alterations in functional 

connectivity measures in relation to brain health and outcomes in critically ill populations 

would further the clinical use of fNIRS as a biomarker. 
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Chapter 5  

5 Conclusions and future directions 

This chapter revisits the overall goals of the thesis and generalizes important findings and 

the significance of each chapter. Limitations of the whole thesis and of each chapter are 

discussed along with potential solutions. Future directions to further develop fNIRS for 

clinical applications are also discussed. 

5.1 Research objectives 

Neonatal brain injury is a serious threat to the long-term health of newborns. Brain injury 

in the neonatal period is associated with high rates of mortality and affect 

neurodevelopmental outcomes in survivors, including cerebral palsy, or other cognitive, 

visual, or language deficits [1]. Neonatal brain injury can happen to both term and preterm 

born neonates [15], [247]. For preterm born neonates, intraventricular hemorrhage (IVH) 

is a common complication that usually begins with a mechanical disruption to the germinal 

matrix then bleeds within or around ventricular systems. The early development of the 

brain can be seriously affected by IVH. The germinal matrix contains precursor cells of 

neurons and glia. Hemorrhage can lead to inflammations and fibrosis. Sequentially, IVH 

is also associated with other conditions, such as posthemorrhagic ventricular dilatation, 

periventricular hemorrhagic infarction and periventricular leukomalacia, which can 

damage the white matter and disturb the maturation of neuronal fibres [24], [25], [26], [27]. 

For term born infants, hypoxic ischemic encephalopathy (HIE) is a major neurological 

insult that typically results from hypoxia (i.e., birth asphyxia), which leads to inflammation, 

excitotoxicity, oxidative stress, and eventually cell death [16]. HIE injury can appear in 

various areas including thalamus, basal ganglia, and watershed areas of white matter. The 

prevalence of HIE is recently estimated to be 0.01% in the United States amongst term-

born infants [33]; yet, the incidence is much higher in developing countries [3]. 

Current clinical tools for diagnosing brain injury rely on imaging techniques, such as 

cranial ultrasound (cUS) and magnetic resonance imaging (MRI). Major disadvantages of 

cUS include that it cannot identify abnormalities in cerebral cortex, or diffusive injury 
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patterns in white matter [36]. Further, cUS cannot monitor the development of injury 

continuously to capture ventricular dilatation or white matter cysts and infarctions, for 

prompt interventions. cUS is not commonly used for HIE diagnosis as some abnormal 

patterns identifiable to cUS take days to develop. The optimal timing for initiating 

treatment (therapeutic hypothermia) is shortly after birth on the first day of life [40]. While 

MRI is more powerful in identifying injury patterns, it is mostly limited by its accessibility 

to newborns, cost and sensitivity to motion.  

Functional near-infrared spectroscopy (fNIRS) is an emerging technique that could be an 

alternative or complimentary tool for monitoring neonatal brain injury. As an optical 

measurement, fNIRS is non-invasive, radiation-free, and compared to cUS and MRI, it is 

fairly resistant to motion, cost friendly, easy to use and accessible in the neonatal intensive 

care unit (NICU) at the bedside. fNIRS measures concentration changes of oxygenated 

hemoglobin (HbO) and deoxygenated hemoglobin (Hb). Numerous studies have shown 

that alterations in cerebral hemodynamics related to neonatal brain injury can be picked up 

by NIRS [188], [248], [249]. In addition, resting-state functional connectivity (RSFC) 

derived from either functional MRI (fMRI) or fNIRS data shows differences between 

infants with brain injury and healthy controls, and associations with severity of the injury, 

indicating RSFC features can be potential biomarkers for characterizing the injury [49], 

[122], [123], [126], [132]. RSFC features are also used with machine learning based 

methods for automated diagnosis and identification of new markers [124], [132], [147], 

[193]. Therefore, it is believed that a combination of fNIRS and RSFC can be a promising 

innovative approach to monitoring neonatal brain injury.  

However, a major drawback of fNIRS is that it cannot provide information on deep brain 

regions, such as the thalamus, which is involved within several key functional networks, 

due to poor penetration depth of near-infrared light. A study from Liu et al. [228] 

demonstrated that it is possible to use computational methods to predict deep brain activity 

by cortical fNIRS recordings. Yet the models in this previous study were subject-dependent 

and were trained on a small sample. Another gap in the knowledge base is that though 

fNIRS and fMRI are comparable in adults and children [51], [106], [107], [166], [205], the 
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two modalities have rarely been studied in newborns, especially those with brain injuries 

who may have altered cerebral hemodynamics [245].  

Therefore, the general goal of this research was to test the potential of fNIRS as a bedside 

neuroimaging tool for monitoring neonatal brain activity and identifying biomarkers for 

early brain injury in order to extend the research and clinical use of fNIRS by addressing 

major drawbacks of the technology. RSFC obtained from fNIRS will be examined and 

analyzed to characterize the injury. To be more specific, there were three objectives under 

the overall goal: 

1. To examine RSFC obtained from fNIRS in a group of preterm born neonates with 

IVH and whether RSFC patterns of fNIRS can distinguish between neonates with 

and without IVH. 

2. The RSFC derived from fNIRS in a cohort of full-term neonates with HIE will be 

investigated. Graph theory metrics computed from fNIRS RSFC will then be 

analyzed to examine between newborns with HIE and control subjects. 

3. To ascertain whether a predictive model based on machine learning can be used to 

predict cortico-thalamic connectivity using cortical connectivity. 

5.2 Summary of findings 

5.2.1 Altered functional connectivity in neonates with IVH 

This chapter examined RSFC obtained from fNIRS in a group of preterm born neonates 

with IVH by comparing it with fMRI, which was considered as ground truth in this study. 

Also, it was tested whether fNIRS RSFC patterns can distinguish between IVH infants and 

healthy controls. Lastly, whether RSFC patterns are associated with severity of IVH was 

also assessed. Sixteen very preterm born neonates with IVH of various grades were 

scanned with fMRI and fNIRS at term equivalent age (TEA). Fifteen healthy newborns 

were scanned with fNIRS only. Correlation-based connectivity maps of IVH infants were 

compared between fNIRS and fMRI using Euclidean and Jaccard distances to measure how 

similar the modalities were in a global sense. The severity of IVH in relation to fNIRS-
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RSFC strength was examined using generalized linear models. Only large- and positive-

weighted connections were kept when achieving a certain level of sparsity ranging from 

0.2 to 0.4.  At a sparsity level of 0.38, with both weighted and binarized maps, and for both 

HbO and Hb maps, the least Euclidean and Jaccard distances were observed, indicating the 

most similarity between RSFC maps from fNIRS and fMRI. At this level of sparsity, some 

individual connections also showed good correspondence between the two modalities. 

Subsequently, the whole population was separated into 3 groups: healthy controls, 

mild/moderate IVH (grade I and II) and severe IVH (grade III and IV). It is also shown 

that, at TEA, connectivity strength was the lowest in healthy newborns, then preterm 

infants with mild IVH, while infants with moderate/severe IVH have the strongest, on both 

HbO and Hb maps. The differences between groups are tested to be significant either. In 

general, fNIRS yielded comprehensive RSFC maps and revealed distinct RSFC patterns 

between preterm infants with IVH and healthy newborns, showing its potential to 

characterize brain injury. 

5.2.2 Altered functional connectivity within neonates with HIE 

This chapter tested whether RSFC obtained with fNIRS from a group of term-born 

neonates with HIE post TH and rewarming is feasible. And graph theory metrics calculated 

from fNIRS RSFC will be tested for whether HIE infants and controls can be separated. 

Twenty-one term-born neonates with HIE were enrolled. Twenty healthy term-born infants 

were recruited from the MBCU with a birth GA of 39.08, and fNIRS scans were performed 

within 48 hours of life. Firstly, fNIRS RSFC was compared to RSFC fMRI to determine 

whether similar findings would be obtained from the two modalities. The study also 

investigated the association between RSFC obtained from both fNIRS and fMRI with the 

volumes of grey and white matter based on structural MRI. This was done to further 

illustrate the comparability between fNIRS and MRI. Euclidean and Jaccard distances were 

used to compare fNIRS and fMRI connectivity maps with different levels of sparsity 

ranging from 0.2 to 0.46. RSFC was associated with increased trends towards larger grey 

or white matter volumes. HbO connectivity also showed significant positive associations 

with grey and white matter volumes. Hb and fMRI RSFC also demonstrated trends towards 

positive associations with volumetric growth. This further demonstrated that fNIRS- and 
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fMRI- based connectivities were comparable to each other. An analysis was conducted on 

fNIRS-derived RSFC data, comparing term-born neonates with HIE to healthy controls 

using graph theory metrics. The findings revealed that the HIE group exhibited notably 

heightened clustering coefficient, network efficiency, and modularity compared to healthy 

newborns. However, there was lower consistency within the HIE group, suggesting that 

newborns affected by HIE demonstrated increased connectivity within functional 

networks, but the differences in injury patterns could possibly explain variability among 

individuals. Support vector machine (SVM) was applied to distinguish between the HIE 

and healthy newborn data, using nodal connectivity features. Through 4-fold cross-

validation, the highest achievable accuracy and area under the receiver operating 

characteristic curve (AUC) were reached. In general, we showed that fNIRS RSFC is 

comparable to fMRI and can be a potential indicator of brain health HIE in neonates. 

5.2.3 Predicting cortico-thalamic connectivity from cortical connectivity 

fNIRS is limited to measuring cortical hemodynamics and cannot capture information from 

the subcortices. To overcome this limitation, a computational approach was proposed in 

this thesis to predict cortical-thalamic functional connectivity using cortical fNIRS data. 

Specifically, a predictive model known as the graph convolutional network (GCN), a 

variant of the convolutional network, was utilized. In this model, samples are structured as 

networks, allowing for the calculation of high-level features based on the geometrical 

relationships within the network. 

The GCN models were applied to two datasets obtained from healthy adults and neonates 

with early brain injuries. Each dataset included fNIRS connectivity data as inputs to the 

predictive models, with the connectivity of fMRI serving as the training targets. Healthy 

adult participants and thirty-seven neonatal participants with HIE and IVH were tested. 

The GCN models were trained using individual fNIRS channels as samples, employing 

Pearson correlations among channels to construct the network and partial correlations 

between one channel and all others as features. The results were validated using fMRI 

cortico-thalamic connectivity data, with one subject's data left out for validation. 
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The performance of the GCN models was compared with feedforward fully connected 

artificial neural networks (ANN) and SVM for both classification (predicting binarized 

connections) and regression (predicting exact connection values). Evaluation metrics 

included accuracy, AUC, f1 score for classification, and L1-loss for regression. The study 

demonstrated that GCN models outperform ANN and SVM for both regression and 

classification on both adult and neonatal datasets, exhibiting higher accuracy, AUC, f1 

scores, and lower L1-loss. 

Multi-kernel GCN models, which can utilize all three chromophores of fNIRS, also showed 

improved performance compared to models using only one chromophore. Additionally, 

adding inter-subject connections enhanced model performance. Moreover, the robustness 

of GCN models against noise in fNIRS time series was tested by removing noisy channels, 

which showed no significant changes in model performance. Overall, the study highlights 

the potential of computational methods to predict deep brain connectivity, thereby 

extending the utility of fNIRS for clinical applications. 

5.3 Limitations 

5.3.1 Neonatal data 

Chapters 2-4 all involved neonatal datasets from infants in NICU with brain injury, 

collected with the same protocol. Therefore, some limitations are shared among the 

chapters. 

There is a disparity between fNIRS and fMRI RSFC when comparing these two modalities, 

and predicting subcortical connectivity produced poorer results in neonates compared to 

adults. A few possible reasons for this include measurement errors that can occur during 

data collection, whereby optodes lose contact between probes and skin, which are rather 

common in fNIRS studies in infants [152], [155], [164]. This is especially the case when 

whole-brain coverage is implemented whereby a cap holding all probes must be used, yet 

may not fit perfectly on the infants’ heads, instead of only one or two channels, which can 

be attached to skin. Plus during data collection infants are laying supine in their incubators 

or in their caregiver’s arms, which could further worsen optode contact, especially in the 
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occipital region where probes cannot keep perpendicular to the scalp. Also, movement can 

be an issue for both fNIRS and fMRI acquisition as the neonates are not sedated and are 

not always asleep during the limited time window for data collection (i.e., recording 

between feeds or handling). Secondly, discrepancies may have occurred due to inherent 

differences in the scanning protocols for fNIRS and fMRI. The two modalities could not 

be obtained simultaneously for neonates due to several reasons. Namely, acquisition of 

fNIRS during fMRI scanning would add time for the neonates to be away from the unit, 

posing some risks to their care. Additionally, the duration of the fMRI scanning sequence 

was relatively short. However, this was also to minimize the overall scan time as the 

neonates also had clinical sequences collected during MRI. The fMRI protocol was tested 

in an adult participant before scanning newborns. Though functional networks were 

identified for the adult, ideally it would have been assessed in a healthy infant. However, 

recruiting and testing healthy newborns in the first week of life on the same clinical scanner 

would pose many challenges. Thirdly, the localization of the fNIRS probes was not precise 

in MRI space. Therefore, an atlas-based analysis was applied where fNIRS channels or 

fMRI voxels within the same lobes were averaged, leading to some within-lobe 

discrepancies being potentially overlooked. Fourthly, not every participant was scanned 

with both fNIRS and fMRI. Given the timing of the MRI scans, some families would only 

consent to the fNIRS component of the study. This yielded even smaller sample size for 

comparing the two modalities, undermining the power of statistical analysis on the sample.  

There were also some cohort-specific limitations. Among IVH infants, certain subjects 

underwent neurosurgical interventions to divert cerebrospinal fluid in cases of severe IVH 

and ventricular dilatation. These interventions could impact overall brain development and 

were not controlled in the analysis. Regarding HIE infants, while most of the participants 

with HIE were scanned after TH and rewarming, two infants had only mild HIE and were 

not cooled. Additionally, the neonatal analysis was generally constrained by a small sample 

size. 
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5.3.2 Adult data 

In adults, short-distance channels are frequently implemented in fNIRS studies to assess 

extracerebral artifacts and improve signal quality. Yet they were not used in this study due 

to inaccessibility of the equipment. Also, for the finger-tapping portion of the protocol, the 

participants were asked to tap with the fingers on the right hand only; however, some of 

the participants were left-handed. Left-handed individuals are more likely to activate the 

cortex bilaterally [250], which could have influenced our dataset. However, there were no 

consistent hemispheric differences within the classification and regression results, 

potentially indicating that the predictive models perform well regardless of laterality. 

Another potential limitation of the multi-kernel GCN model, which has not been tested 

before, is the assumption that the three chromophores are completely independent of each 

other. However, in practice, fNIRS chromophores collected simultaneously in the same 

individual are always correlated to some degree. Therefore, the model relies on integrating 

the three chromophores and extracting distinct representations from them. In certain tasks, 

the multi-kernel model demonstrated superior performance compared to a single-kernel 

model, suggesting that it may not consistently integrate all the information from every 

chromophore effectively. Also, the whole dataset was separated into training and validation 

sets, but not testing sets, the performance potentially was in turn potentially biased towards 

the validation set. Yet, considering the sample size and the complexity of the model, an 

extra testing set could have undermined the representational power of the models since 

they would have been trained with even less data. 

5.4 Future directions 

The results of this study show the potential promise of fNIRS combined with RSFC as an 

indicator for characterizing neonatal brain injury at the bedside. Based on the current 

results, several directions for improving the distinguishing power of the models can be 

taken, as well as identifying new RSFC-based indicators and exploring more clinical and 

research applications. 
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Addressing certain limitations in fNIRS data collection for neonates can be challenging. 

Specifically, the utilization of short-distance channels is relatively uncommon in neonatal 

studies. This is because placing short-distance channels alongside regular channels that are 

already very close in close proximity is ineffective, given the smaller surface area of the 

head and the thin scalp in neonates [75]. Other approaches for addressing physiological 

noise could be potentially applied in future studies, using physiological monitoring and use 

these measurements to improve signal decomposition. Additionally, better characterization 

the of the sleep/wake states of the neonatal participants could be documented in greater 

detail. The inclusion of EEG in these protocols would also help to better characterize 

sleep/wake states. Further, the spatial correspondence between fNIRS and fMRI could be 

improved by introducing fiducial markers on the fNIRS caps during the MRI scans.  

Other indicators of neonatal brain injury based on RSFC could be explored, such as 

dynamic functional connectivity (DFC). DFC captures the constant reconfiguration of 

brain networks and adaptive adjustments in response to internal and external stimuli [251]. 

Previously, DFC has been introduced to study early development of brain on both term and 

preterm born infants. Franca et al. [252] explored state transitions (e.g., fluctuations in 

neural activity, connectivity patterns) using fMRI and examined the variations in brain 

dynamics between term-born and preterm-born infants. Wen et al. [253] reported increased 

temporal variability in infants from birth to 2 years of age, indicating the exponential 

functional flexibility of the human brain during development. Studies from Zhang and Zhu 

[134], and Li et al. [254] also demonstrated the feasibility of using fNIRS for extracting 

the dominant functional networks based on RSFC dynamics.  

DFC analysis was applied to the neonatal datasets used in this thesis and provided 

promising results. Utilizing amplitude of low frequency fluctuations (ALFF) and standard 

deviations (SD) as temporal variance metrics in a DFC model, the three groups of 

participants (IVH, HIE, and healthy newborns) exhibited distinct developmental 

trajectories (Fig. 5.1). Therefore, DFC-based measurements could be promising indicators 

for charactering neonatal brain injury in future work. 
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Figure 5.1: Temporal variance metrics on infants during early days of life. X-axis are 

the postmenstrual age at the time of the fNIRS scan. 

In this work, it was demonstrated that machine learning methods can be used for 

distinguishing functional connectivity data in neonates with brain injury compared to 

healthy controls and predicting subcortical connectivity. However, considering that the 

accuracy was generally about 70-80%, there is still room for improvement. The predictive 

models could potentially be modified using recent developments in deep learning. One 

deep learning method named transformer is attracting increasing attention partially due to 

the popularity of ChatGPT (generative pre-trained transformer). Transformer is based on 

recurrent neural networks, which are specifically designed for processing time series of 

data. Unlike traditional recurrent models, transformers utilize attention mechanisms that 

enable the model to assign importance to sequential inputs, replicating human cognitive 

attention. However, transformers lack the recurrent architecture, resulting in faster training 

times [255]. Transformer networks have been used on neuroimaging data for diagnosis 

[256], learning brain dynamics [257], [258], and optimizing image interpretation [259]. A 

recent work from Yun et al. [260] also combined transformer with GCN to model the 

dynamics of networks, which is another promising option for the data in this thesis. 

In upcoming research studies, a broader dataset will be incorporated regardless of the 

specific analytical approaches being employed. Presently, data collection efforts in the 

NICU and the mother baby care unit are ongoing. The aim is to include more participants 

with IVH, HIE, and healthy controls to enhance the statistical robustness of the analyses, 
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along with individuals from other relevant cohorts. Apart from IVH and HIE, various other 

neonatal brain complications, such as meningitis and hypoglycemia, which are anticipated 

to affect cerebral hemodynamics and could also potentially be characterized using fNIRS. 

It is envisioned that multi-class classification tasks could be explored by inputting data 

from all cohorts into machine learning models. 

5.5 Conclusions 

In summary, this research highlights the feasibility of leveraging fNIRS technology to 

characterize neonatal brain injury through the lens of RSFC, underscoring its potential as 

an innovative bedside monitoring tool for newborns facing neurological challenges. 

Furthermore, it suggests that computational methodologies could mitigate one of the 

primary limitations of fNIRS—penetration depth—by enabling the prediction of 

subcortical connectivity. This advancement has the potential to significantly broaden the 

applicability of fNIRS in both research and clinical settings. 
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