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Abstract
This thesis investigates the application of Explainable Artificial Intelligence (XAI) tech-

niques to deep learning models in the field of protein analysis, specifically targeting protein
language models and protein interaction site prediction models. Despite the increasing adop-
tion of these sophisticated deep learning models in bioinformatics, their intrinsic complexity
often results in a black-box nature, obscuring the understanding of their decision-making pro-
cesses.

This research represents a thorough effort to integrate explanation methods within this con-
text. We analyze the resulting interpretations using biological-specific statistical tests to en-
hance the transparency and interpretability of the models. This work evaluates the efficacy of
current XAI methods applied to protein analysis through a comprehensive set of experiments.

Keywords: Deep Learning, Explainability, Protein Language Models
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Summary for Lay Audience
Deep learning models have demonstrated impressive success across various fields, and as their
performance improves in different applications, their architecture becomes more complex. De-
spite their marvellous performance, they are often referred to as ”black boxes” due to their
opaque decision-making processes. As their complexity increases, their interpretability tends
to decrease even as their performance increases. This lack of transparency becomes partic-
ularly critical in fields such as bioinformatics, where the consequences of their decision are
significant.

This necessity drives our research into interpretation methods specifically for proteins. We
have adapted existing interpretation techniques to our protein language models and protein
interaction site prediction problems to understand better what the model learned. This work
aims to ensure that the deep learning models used in bioinformatics are not only robust but also
comprehensible and trustworthy, helping experts make better decisions in their research. This
thesis presents a detailed examination of how effective current explainable artificial intelligence
methods are in making these sophisticated models more transparent and interpretable.
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Chapter 1

Introduction

The field of computational biology has experienced significant transformations with the ad-
vent of deep learning models. In particular, these models have revolutionized protein analysis,
providing unprecedented insights into protein structure prediction, function annotation, and
interaction dynamics. However, proteins are inherently complex molecules critical to almost
all biological processes, and errors in these models’ predictions of protein behaviours could
lead to incorrect conclusions and potentially harmful implications in applications such as drug
design.
Current deep learning models act as black boxes, transforming inputs into outputs with little
insight into the intervening processes. This black-box nature makes it difficult for researchers
to verify models’ predictions against known biological principles or to refine these models.
Therefore, explainability has emerged as a critical factor for researchers aiming to understand
what these models truly learn. This is even more challenging in biological contexts, where data
often consist of complex, imbalanced, and numerical datasets that even experts find challeng-
ing to interpret.
This thesis focuses on this challenge, discussing the interpretation methods employed for
protein-related deep learning models. Additionally, we will explore the relations between these
interpretations and amino acid properties.

1.1 Motivation

In recent years, deep learning has integrated with biology and revolutionized the field, includ-
ing understanding protein structures and functions. Due to their ability to learn complex pat-
terns from large datasets, these models have shown unprecedented success in predicting protein
folding, interactions, and functionality. However, deep learning models lack transparency and
interpretability because of their black-box nature. This prevents building trust with profession-
als and limits the potential for broader applications and innovations. This thesis has employed
explainable artificial intelligence (XAI) methods, specifically on deep learning models for pro-
teins, to fill the gap between these tools and users.

1



2 Chapter 1. Introduction

1.2 Problem Statement
We conduct an in-depth exploration of interpretations derived from applying existing explain-
able artificial intelligence (XAI) methods to protein language models and protein interaction
site prediction models. This analysis seeks to uncover the underlying mechanisms driving
model predictions, particularly in relation to known biochemical and structural characteristics
of amino acids. By examining how different XAI approaches interpret the predictions, we
aim to gain insights into the consistency and reliability of these models. Our ultimate goal is
to understand how the choice of model architecture and XAI technique influences the inter-
pretability of predictions, potentially leading to more robust and trustworthy applications in
protein science.

1.3 Thesis Contribution
The significant contribution of this thesis is applying explainable artificial intelligence methods
to protein-related deep learning models and analyzing their relation to amino acid properties.
This research focuses on understanding protein-related deep learning models to provide deeper
insights into how they work through comprehensive experiments. Such findings impact the
way computational biologists and chemists approach protein-related problems.

1.4 Thesis Outline
This thesis, comprising five chapters, begins with an introduction to the problem, setting the
stage for our research.
Chapter 2 is dedicated to providing the essential background knowledge, a prerequisite for
comprehending the concepts employed in this project.
These concepts include amino acids and proteins, deep learning, embedding models, protein
interaction site prediction models, and explainable artificial intelligence methods.
In Chapter 3, we discuss how we applied explainable artificial intelligence methods to models
and the techniques and tests used to analyze them. Chapter 4 contains the experiments, their
results, and their analyses.
Finally, in Chapter 5, we summarize our work and present some possible research that can be
done in this field to improve this research domain.



Chapter 2

Background

2.1 Proteins and Amino acids

2.1.1 Amino acids
Amino acids are building blocks of proteins that are linked by peptide bonds to form polypep-
tide chains. There are twenty different amino acids present in proteins as shown in Fig. 2.1:
Phenylalanine(F), Tryptophan(W), Isoleucine(I), Leucine(L), Methionine(M), Valine(V), Cys-
teine(C), Alanine(A), Tyrosine(Y), Histidine(H), Proline(P), Glycine(G), Threonine(T), Ser-
ine(S), Lysine(K), Arginine(R), Glutamic acid(E), Aspartic acid(D), Glutamine(Q) and As-
paragine(N). Amino acids have various properties [1]. Some of these properties are:

• Aromaticity: Aromaticity in amino acids refers to the presence of a specific type of
cyclic side chain. Aromatic side chains are often involved in interactions with proteins.
Phenylalanine(F), Tyrosine(Y), and Tryptophan(W) are aromatic amino acids [1].

• Acidity and Basicity: Acidity in amino acids refers to the presence and behaviour of the
acidic and basic groups within their structures. Aspartic acid(D) and Glutamic acid(E)
are acidic amino acids, while Histidine(H), Lysine(K), and Arginine(R) are basic amino
acids [1].

• Hydrophobicity: Hydrophobicity in amino acids refers to the tendency of certain amino
acids to avoid interaction with water and instead prefer interaction with other nonpolar
substances [1].

• Molecular Mass: Molecular mass, or molecular weight, of amino acids, refers to the sum
of the atomic masses of all the atoms in a single molecule of an amino acid [53].

• Van Der Waal Volume: Van der Waals volume, or molecular volume, measures the oc-
cupied space of an atom or molecule, including the area influenced by its electron cloud
[53].

• Dipole Moment: The dipole moment of an amino acid is a vector quantity that describes
the magnitude and direction of the separation of charge within the molecule [53].

3
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Quantitative values of these properties are shown in Table. 2.1

Figure 2.1: Amino acids and their structures [7]

Table 2.1: Quantitive values of amino acids’ properties.
Amino acid Hydrophobicity Molecular Mass Van der Waals Volume Dipole Moment
Glycine (G) -0.4 57 48 0.0
Alanine (A) 1.8 71 67 5.937
Serine (S) -0.8 87 73 9.836
Proline (P) -1.6 97 90 7.916
Valine (V) 4.2 99 105 2.692

Threonine (T) -0.7 101 93 9.304
Cysteine (C) 2.5 103 86 10.74
Isoleucine (I) 4.5 113 124 3.371
Leucine (L) 3.8 113 124 3.782

Asparagine (N) -3.5 114 96 18.89
Aspartic acid (D) -3.5 115 91 29.49

Glutamine (Q) -3.5 128 114 39.89
Lysine (K) -3.9 128 135 50.02

Glutamic acid (E) -3.5 129 109 42.52
Methionine (M) 1.9 131 124 8.589

Histidine (H) -3.2 137 118 20.44
Phenylalanine (F) 2.8 147 135 5.98

Arginine (R) -4.5 156 148 37.5
Tyrosine (Y) -1.3 163 141 10.41

Tryptophan (W) -0.9 186 163 10.73

2.1.2 Proteins

Proteins are large complex molecules that play many critical roles in the body. They are made
up of amino acids, which are attached to one another in long chains, which determine each
protein’s unique 3-dimensional structure and its specific function [1].
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2.1.3 Proteins Interactions
Protein interactions refer to the ways in which proteins communicate and bind with other
molecules within the cell. These interactions can include interactions with other proteins,
nucleic acids, lipids, and small molecules. These interactions are crucial for virtually all bi-
ological processes, from cellular signalling and structural support to immune responses and
enzymatic activity [1].

2.2 Machine Learning
Machine learning (ML) is a subfield of artificial intelligence that focuses on the development
of pattern recognition algorithms, also known as models, that learn from data without requiring
explicit programming [5]. Machine learning has been widely used for various tasks in different
fields, including biology [47, 52, 6]. Machine Learning systems can be classified into three
categories according to the amount and type of supervision they get during training.

2.2.1 Supervised Learning
In supervised learning, shown in Fig. 2.2, the model is provided with the desired solutions,
called labels, during training. In this framework, the dataset consists of input features and
corresponding target output. The goal of the learning algorithm is to map inputs to outputs by
minimizing the error between its predictions and the real labels so that it can predict correct
outputs on unseen data. Classification and regression are the two most common supervised
learning tasks [13].

Figure 2.2: Supervised learning example [35]

2.2.2 Unsupervised Learning
Unsupervised learning, shown in Fig. 2.3, focuses on finding hidden patterns within data
using only features without explicit feedback or guidance of target outputs. The goal is to
learn about the structure and properties of the data itself. Clustering, anomaly detection, and
dimensionality reduction are some of the applications of unsupervised learning [13].
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Figure 2.3: Unsupervised learning example [35]

2.2.3 Semi-supervised Learning

In semi-supervised learning, shown in Fig. 2.4, the model takes advantage of both supervised
and unsupervised learning. This approach provides the model with a large unlabelled and a
small labelled dataset. The objective is to leverage the pattern presented in unlabelled data to
improve performance on labelled data. Semi-supervised techniques are used when gathering a
large labelled dataset is inefficient [13].

Figure 2.4: Semi-supervised learning example [35]

2.3 Deep Learning

Deep learning is a subset of machine learning that uses artificial neural networks to learn com-
plex data patterns from raw, unstructured data.

2.3.1 Artificial Neural Networks

Inspired by the human brain and biological neural networks, artificial neural networks (ANN)
are built of layers of connected artificial neurons. Each neuron receives inputs, processes them,
and returns an output for another neuron [13].
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2.3.2 Perceptron

Perceptron is the simplest ANN architecture, composed of threshold logic units (TLU).
The TLU unit gets a vector x = [x1, x2, . . . , xn] as input and associates each input xi with a
weight wi to compute the weighted sum z = w1x1 + . . . + wnxn, then apple a step function to
that sum and outputs the result. The architecture is shown in Fig. 2.5.
A Perceptron is simply composed of a single layer of TLUs, with each TLU connected to all
the inputs as shown in Fig. 2.6 [13].

Figure 2.5: Threshold logic unit structure [13]

Figure 2.6: Perceptron structure [13]

2.3.3 Activation Functions

Activation functions are non-linear functions used in TLUs as step functions. The most com-
mon choices for activation functions are sigmoid, hyperbolic tangent (tanh), rectified linear
unit (ReLU), and softmax.

2.3.4 Multi-layer Perceptron

A Multi-layer Perceptron (MLP), shown in Fig. 2.7, is composed of an input layer, one or more
layers of TLUs, called hidden layers, and a final layer of TLUs called the output layer, where
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the output of each layer is used as the input for the next layer [13].

Figure 2.7: Multi-layer Perceptron structure [13]

2.3.5 Learning Algorithm
The learning algorithm, shown in Fig. 2.8, is as follows:

1. Weight Initialization. The weights of each TLU are randomly initialized. This provides
the model with a starting point for learning.

2. Forward Propagation. Input data is passed through the network from the input layer to
the output layer.

3. Loss Calculation. The error between the network’s output and the desired output is
calculated using a loss function. Usually, Cross Entropy is used for classification, and
Mean Square Error is used for regression.

4. Backward Propagation. The error calculated in the previous step is propagated back
through the network using the Backpropagation algorithm. This algorithm starts from
the output layer to the input layer and uses the chain rule to compute the gradient of the
loss function with respect to each weight in the network.

5. Weight Updating. Using the gradients calculated during backpropagation, the weights
are then adjusted to minimize the loss using an optimization algorithm. Optimizers are
algorithms used to minimize the loss. Optimizers have a learning rate parameter, which
indicates how big the steps that gradient descent should take should be in the direction of
the local minimum. Adam and Stochastic Gradient Descent (SGD) are the most common
optimizers used in deep learning.

6. Iteration. Steps 1 - 4 are repeated for a certain number of rounds or until loss converges.



2.3. Deep Learning 9

Figure 2.8: The learning process [48]

2.3.6 Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of neural network designed to handle grid-
like data, including images, videos, and spatial data. The architecture of CNNs, shown in Fig.
2.9, is characterized by the sequential arrangement of convolutional layers, pooling layers, and
fully connected layers. This setup enables the model to extract and learn features at various
levels of abstraction. In lower layers, the model tends to identify low-level features, like edges
in images. As the data progresses through the network, subsequent layers focus on more com-
plex, high-level features, allowing the network to understand broader aspects of the input data.
CNNs are widely employed in vision tasks like image classification, object detection, image
segmentation, etc. [13, 59].

Figure 2.9: Convolutional neural network architecture [44]

1. Convolutional Layer. These layers are the most prominent part of CNNs. Each con-
volutional layer uses several small filters, called kernels, that go over the input. These
filters perform a weighted sum between their values and subgrids of data. This process
results in a feature map highlighting patterns the filters have identified [59]. An example
of a convolutional layer is shown in Fig. 2.10.
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Figure 2.10: Convolutional layer [44]

2. Pooling Layer. These layers reduce the spatial size of feature maps, which makes the
model smaller and faster to compute. This size reduction also allows the model to extract
features independent of scale and orientation [59]. An example of a pooling layer is
shown in Fig. 2.11.

Figure 2.11: Pooling layer [44]

3. Fully Connected Layer. These layers have the same architecture as an MLP network,
allowing the model to map extracted features to target output. An example of a fully
connected layer is shown in Fig. 2.12.
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Figure 2.12: Fully connected layer [44]

2.3.7 Recurrent Neural Networks

Recurrent neural networks (RNNs) are another kind of neural network developed to process
sequential data where ordering matters. Unlike feedforward neural networks such as MLPs
and CNNs, RNNs have an internal memory unit that allows them to process previous inputs
and successive inputs (Bidirectional RNNs) and use their information to learn current input,
which makes them suitable for handling sequence-like data such as natural language and time
series. There are four types of RNNs: (i) One-to-One, (ii) Many-to-One, (iii) One-to-Many,
and (iv) Many-to-Many [59, 45].
Other than traditional RNNs, Gated Recurrent Units (GRUs) and Long Short-Term Memory
Units (LSTMs) are two other types of RNNs.

2.3.8 Attention Mechanism

The attention mechanism allows the model to dynamically focus on different parts of the input
and assign different weights depending on their relevance [27, 4, 50]. It maps a query vector
Q derived from input to a pair of key and value vectors K and V . The output is a weighted sum
of the value vector [50].
Self-attention is a type of attention that disambiguates words and learns semantics. A most
common self-attention technique is scaled dot-product, which is shown in Fig. 2.13 and is
computed as follows [50]:

Attention(Q,K,V) = so f tmax(
QKT

√
dK

)V

Where dK is dimension of vector K.
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Figure 2.13: Scaled dot-product attention layer architecture [50]

2.3.9 Transformers

Transformers [50] are another type of neural network which employs a self-attention mech-
anism to extract features. The self-attention mechanism allows transformers to capture both
dependencies between parts of data independent of their distance and based on the context.
Transformers have an encoder-decoder architecture, as shown in Fig. 2.15, which allows them
to process data in parallel and, therefore, use GPUs more efficiently.
The encoder maps an input sequence of symbol representations X = (x1, ..., xn) to a sequence
of continuous representations Z = (z1, ..., zn). Given Z, the decoder then generates an output
sequence Y = (y1, ..., ym) of symbols one element at a time [50].

1. Encoder. The encoder is built with N identical layers. Each layer combines a multi-
head self-attention mechanism with a fully connected layer with residual connections.
The encoder’s primary objective is to transform all input sequences into a continuous
representation of the learned information [50, 25].

2. Decoder. The decoder is also composed of N identical layers, each consisting of two
multi-head self-attention layers and a fully connected layer with residual connections.
The first self-attention layer is modified to employ a mask to prevent dependencies be-
tween the predictions for position i and outputs at positions greater than i. The decoder’s
output is passed through a softmax layer to compute probabilities of the next word in
sequence [50, 25].

3. Multi-Head Attention. Transformers use multiple attention instead of a single atten-
tion. Multi-head attention, shown in Fig. 2.14, allows the model to learn different
representations and combine their information [50, 25].
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Figure 2.14: Multi-head self-attention layer architecture [50]

4. Positional Encoding. Since the encoder and decoder fail to encode the relative position
of the tokens in a sentence, positional encoding is applied to both encode’s and decoder’s
output to inject some information about the relative or absolute position of the tokens in
the sequence. Positional encoding is two sinusoidal functions with different frequencies
[50, 25].

Figure 2.15: Transformer architecture [50]
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2.4 Embeddings

Neural networks are unable to understand texts by their nature. Therefore, numbers are re-
quired to represent text data to neural networks. Word embeddings are a technique where in-
dividual words are transformed into a numerical representation of the word, where each word
is mapped to one vector that captures various characteristics of that word with regard to the
overall text [51].

2.4.1 Word2Vec

Word2Vec [28] is the first embedding method which uses a feedforward neural network. There
are two methods that can be applied: (i) Continuous Bag of Words (CBOW) and (ii) Skip-gram.
Both models slide across sentences in the data, and for each word considered a current word,
a surrounding window of context words is defined. In CBOW, as shown in Fig. 2.16, a word is
predicted given a set of neighbouring left and right words’ distribution. In Skip-gram as shown
in Fig. 2.17, given a word, the most probable context is predicted by predicting probability
distributions for previous and next words [31, 38, 28].

Figure 2.16: Continuous Bag of Words [51]
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Figure 2.17: Skip-gram [51]

2.4.2 Global Vectors (GloVe)

GloVe [32] is another word embedding method. Unlike Word2Vec, GloVe takes both local
and global statistics of the word. GloVe operates on the principle that the probabilities of word
co-occurrences in a corpus contain potentially rich semantic information about the words and
their relationships. The model efficiently leverages this information by constructing a large
matrix that describes the frequency of words appearing together in a context within the corpus.
This co-occurrence matrix is then factored into a lower-dimensional space using singular value
decomposition (SVD) techniques. The resulting factors for each word represent its embedding
vector [31, 18, 32].

2.4.3 Embeddings from Language Model (ELMo)

ELMo, introduced by [33], was developed to obtain deeper and context-dependent embed-
dings using bidirectional LSTMs. The process, as shown in Fig. 2.18, begins with the creation
of character-based representations for each word. Then, each character is transformed into
embeddings through a convolutional neural network (CNN). The sequence of these word rep-
resentations is then processed by the LSTM network in both forward and backward directions,
enabling the model to grasp the contextual relationships of each word with its surrounding
words. In ELMo, the semantic and context-dependent information is captured primarily by the
higher-level states of the LSTM, whereas the lower-level states predominantly handle syntactic
elements [33, 31, 36].

Figure 2.18: ELMo architecture [36]



16 Chapter 2. Background

2.4.4 Bidirectional Encoder Representations from Transformers (BERT)

BERT [9] is a transformer-based model trained bidirectional, allowing BERT to weigh the
significance of each word based on its context, both preceding and succeeding. This context-
awareness imbues BERT with the ability to generate contextualized word embeddings, which
are representations of words considering their meanings within sentences [31]. Instead of pre-
dicting the next word in a sequence, BERT makes use of the Masked Language Model (MLM),
where it randomly masks words in the sentence and then tries to predict them. In the training
process, to understand the relationship between two sentences, BERT also receives pairs of
sentences as input and learns to predict if the second sentence in the pair is the subsequent
sentence in the original document [15, 21, 39]. BERT’s architecture is shown in Fig. 2.19.

Figure 2.19: BERT architecture [15]

2.4.5 Text-to-Text Transfer Transformer (T5)

Unlike traditional models that are designed for specific natural language processing (NLP)
tasks, T5 [34] reframes all NLP tasks to a text-to-text problem, allowing it to be applicable to
a wide range of problems with a single model architecture. T5 uses a standard encoder-decoder
transformer with minor changes to positional embedding [8, 29, 49].

2.5 Protein Embeddings

Inspired by embeddings and their performance in NLP tasks, protein embedding models rep-
resent proteins in a continuous vector space, capturing biological functional and structural re-
lationships between amino acid sequences in proteins. This is done by considering each amino
acid as a word. Several NLP language models are adapted for protein embeddings [11, 10].



2.5. Protein Embeddings 17

2.5.1 Protein Transformers (ProtTrans)

ProtTrans [11] proposed several transformer-based models for protein embeddings, including
ProtBERT and ProtT5, which are BERT and T5 trained on large protein datasets, respectively.
Fig. 2.20 shows how ProtTrans models are used to derive embeddings.

Figure 2.20: ProtTrans architecture [11]

2.5.2 Ankh

Ankh [10], the latest protein language model, uses the architecture shown in Fig. 2.21, which
its performance improved using protein-specific optimizations.

Figure 2.21: Ankh architecture [10]
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2.6 Protein Interactions Site Prediction Models

Protein interaction site prediction (PISP) is the task of predicting whether each amino acid in a
protein sequence interacts with any amino acid or other protein. The input for these models is
a protein sequence of length n, and the output is a binary sequence of the same length with ith
number showing whether ith amino acids have interactions. PISP models are either sequence-
based or structure-based [56, 58, 60, 23, 17, 16].

2.6.1 Seq-InSite

Seq-InSite is the state-of-the-art PISP model that is sequence-based and has outperformed
structure-based models [16]. Seq-InSite as shown in Fig. 2.22 is an ensemble of MLP and
LSTM components that get a symmetric window of size 4 of ProtTrans and MSA (Multiple
Sequence Alignment) embeddings as input.

Figure 2.22: Seq-InSite architecture [16]
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2.7 Explainability
Explainability is the ability to which a human can understand an artificial intelligence model,
how it makes decisions, and its biases. It involves a set of methods that allow users to com-
prehend and, therefore, trust the machine’s decision-making process. It helps build trust in
artificial intelligence, transparency, debugging, improvements, and knowledge discovery from
artificial black-box models [19].

2.7.1 Gradient-based Methods
Various interpretability methods are designed to ascertain the gradient of a prediction or clas-
sification score in correlation with the input features. These techniques, collectively known as
gradient-based approaches, encompass an extensive array of methodologies. Each method’s
unique aspect lies in how it calculates this gradient. These approaches vary not only in their
computational strategies but also in their application contexts and the precision with which
they can pinpoint the influence of individual input features on the final prediction or classifica-
tion outcome. By employing these gradient-based methods, one can gain deeper insights into
how and why specific predictions or classifications are made, enhancing the transparency and
understanding of complex predictive models [30].

Saliency (Vanilla Gradients)

Initially proposed by Simonyan and others in 2013 [42], this technique is an early example
of pixel-attribution methods applied in convolutional neural networks (ConvNets) for image
categorization.
To understand it, envision a trained ConvNet designed for classification, where a specific class
is labelled as c. When an image, I, is fed into the ConvNet, the classification layer generates a
score, S c(I), indicating the likelihood of the image belonging to class c. The objective here is
to discover an L2-regularised image that achieves a high S c value for that image [42].
While S c(I) behaves as a highly non-linear function in deep ConvNets, we can approximate it
locally with a linear function around a specific image, I0, using a first-order Taylor expansion:

S c(I) ≈ wT I + b

Where w is the derivative of S c with respect to the image I at the point I0:

w =
∂S c

∂I

∣∣∣
I0

The magnitude of the class score derivative provides a sensitivity measure. Pixels with higher
values are the most sensitive ones, meaning minimal changes in their intensity can trigger
significant swings in the score for a specific class [42].
The algorithm for this method is as follows:

1. A forward pass of image I0 is performed.

2. A backward pass of image I0 is performed to obtain w. If activation of the neurons in a
layer below during backpropagation is negative, Vanilla Gradients sets the gradients to
zero.
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3. Visualize w as the explanation map.

The backward pass can cause a saturation problem when the activation is negative, and the
activation function is ReLU. In this case, the negative activations of neurons are capped at zero
and will not change anymore. Therefore, the Saliency map will say that these neurons are not
important [30]. Examples of Saliency map explanations are shown in Fig. 2.23.

Figure 2.23: Examples of Saliency map explanation for a CNN classification model. Green
pixels are pixels with positive influence in predicting the label of the pictures (Dogs and Cats)

Deconvolution Network (DeconvNet)

The DeconvNet model, introduced by Zeiler and Fergus (2014) [57], closely resembles the
Vanilla Gradient technique. A DeconvNet can be conceptualized as a ConvNet operating in re-
verse. While a standard ConvNet translates pixels into features using components like filtering
and pooling, a DeconvNet does the reverse: it maps features back to pixels [30].
To analyze a ConvNet, a DeconvNet is integrated with each layer of the ConvNet, as depicted
in Fig. 2.24. This integration creates a seamless path from the deep layers of the network back
to the original image pixels. The process begins by feeding an input image into the ConvNet,
which computes features across various layers. To focus on a specific activation within the
ConvNet, we isolate it by nullifying all other activations in the same layer. This isolated fea-
ture map is then used as the input for the corresponding DeconvNet layer [57].
The DeconvNet layer then undertakes a three-step reconstruction process: (1) ’unpooling’ to
reverse the pooling operation, (2) ’rectifying’ to apply non-linear transformations, and (3) ’fil-
tering’ to revert the convolution operation. This procedure is iteratively performed layer by
layer, retracing the steps back to the input pixel space. Through this method, an in-depth un-
derstanding of how specific features and activations within the ConvNet contribute to the final
output can be gained [57]. Examples of DeconvNet explanation are shown in Fig. 2.25.

• Unpooling. While the max pooling operation is non-invertible, it is possible to record
the locations of the maxima within each pool region and obtain an approximate inverse.
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• Rectification. The reconstructed signal is passed through a ReLU non-linearity to obtain
valid feature reconstructions at each layer.

• Filtering. To approximately reverse convolutional filters, transposed versions of the
same filters are applied on the rectified maps.

Figure 2.24: A DeconNet layer attached to a ConvNet layer. [57]

Figure 2.25: Examples of DeconvNet explanation for a CNN classification model. Green pixels
are pixels with positive influence and red ones are pixels with negative impact in predicting the
label of the pictures (Dogs and Cats).
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Guided Backpropagation

Guided Backpropagation is built upon the ideas of saliency maps and deconvolution. While
traditional backpropagation optimizes network parameters based on the overall loss function
and is valuable for optimization, it does not directly answer our question: ”Which pixels in
the image matter most for the predicted class?.” Guided Backpropagation is an extension of
the basic backpropagation algorithm. It modifies the backpropagation process to propagate the
gradients back through the network and selectively filter these gradients [12]. The process is
as follows [43]:

1. A forward pass of a desired image is performed, and class scores for all potential classes
are obtained.

2. The saliency map for the target class is computed.

3. A guided layer-wise deconvolution is computed by applying deconvolution to each in-
termediate layer using the element-wise product of the saliency map and the ReLU acti-
vations from the corresponding forward pass.

4. These steps are repeated for all layers to reconstruct the image iteratively.

Despite its efficacy, Guided Backpropagation has limitations. Sensitivity to network hyperpa-
rameters and initialization conditions can introduce noise and artifacts into the reconstructed
image. Furthermore, its focus on individual class explanations necessitates caution when ex-
trapolating insights to the broader model behaviour [12]. Examples of Guided Backpropagation
explanations are shown in Fig. 2.26.

Figure 2.26: Examples of Guided Backpropagation explanation for a CNN classification
model. Green pixels are pixels with positive influence and red ones are pixels with nega-
tive impact in predicting the label of the pictures (Dogs and Cats).
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Input X Gradient

The technique introduced by Shrikumar et al. (2016) [41] enhances the clarity of attribution
maps. In this approach, the attributions are calculated by first determining the partial derivatives
of the output in relation to the input and then multiplying these derivatives with the input
itself [2]. Examples of Input X Gradient explanation are shown in Fig. 2.27.

Figure 2.27: Examples of Input X Gradient explanation for a CNN classification model. Green
pixels are pixels with positive influence and red ones are pixels with negative impact in pre-
dicting the label of the pictures (Dogs and Cats).

2.7.2 Path-attribution Methods

Path-attribution methods break down the impact of an input on a model’s prediction by com-
paring it to a reference point. They take the difference in the original and reference input
predictions and then spread it across all the original input features. This shows how much each
feature contributed to the overall prediction [30].

DeepLIFT

DeepLIFT is a path-attribution backpropagation-based method that can propagate an impor-
tance signal even in situations where the gradient is zero.
Assuming t represents some target output neuron of interest, x1, x2, . . . , xn represent some neu-
rons in some intermediate layer or set of layers that are necessary and sufficient to compute t,
and t0 represent the reference activation of t, then ∆t = t − t0 is the difference-from-reference.
DeepLIFT assigns contribution scores C∆xi∆t to ∆xi such that [40]:

Σn
i=1C∆xi∆t = ∆t
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A neuron can have contributions to the output even if its gradient is zeros. However, C∆xi∆t

can be non-zero even if the gradient of t is zero, meaning DeepLIFT overcomes the shortcom-
ing of gradient-based methods. Moreover, difference-from-reference is continuous, allowing
DeepLIFT to address the issue of sudden jumps in gradients that are caused by discontinu-
ity [40].
Contribution scores are assigned based on the following rules [40]:

1. Linear Rule. This rule applies to dense and convolutional layers. Let y be a linear
function of its inputs xi such that y = b + Σiwixi, then ∆y = Σiwi∆xi. The positive and
negative parts of ∆y are defined as:

∆y+ = Σi1{wi∆xi > 0}wi∆xi

∆y− = Σi1{wi∆xi < 0}wi∆xi

This leads to the following choice for contributions:

C∆x+i ∆y+ = 1{wi∆xi > 0}wi∆x+i
C∆x−i ∆y+ = 1{wi∆xi > 0}wi∆x−i
C∆x+i ∆y− = 1{wi∆xi < 0}wi∆x+i
C∆x−i ∆y− = 1{wi∆xi < 0}wi∆x−i

2. Rescale Rule. This rule applies to non-linear transformations. Let y be a non-linear
transformation of its inputs xi such that y = f (x), then ∆y = C∆x∆y. The positive and
negative parts of ∆y are defined as:

∆y+ =
∆y
∆x
∆x+ = C∆x+∆y+

∆y− =
∆y
∆x
∆x− = C∆x−∆y−

Examples of DeepLIFT explanation are shown in Fig. 2.28.
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Figure 2.28: Examples of DeepLIFT explanation for a CNN classification model. Green pixels
are pixels with positive influence and red ones are pixels with negative impact in predicting the
label of the pictures (Dogs and Cats).

Integrated Gradients

This method was designed based on two fundamental axioms that every attribution method
should satisfy [46]:

1. Sensitivity.: An attribution method satisfies this axiom if, for every input and baseline
that differ in one feature but have different predictions, the differing feature is given a
non-zero attribution. Also, if the function implemented by the deep neural network does
not mathematically depend on some variable, then the attribution to that variable should
always be zero. DeconvNet, Guided Backpropagation, and Saliency violate this axiom.

2. Implementation Invariance. The attributions for two functionally equivalent networks
should always be identical. DeepLift breaks this axiom.

Given a function F : Rn → [0, 1] that represents a deep neural network, let x ∈ Rn and
x
′

∈ Rn be an input and the baseline input, respectively. The Integrated Gradients method
calculates the gradients at all points along the path from baseline x

′

to the input x. Integrated
gradients are defined as the path integral of those gradients along the path from the baseline
to the input. Specifically, the integrated gradient along the ith dimension for an input x and
baseline x

′

is defined as [46]:

IntegratedGradsi(x) B (xi − x
′

i) ×
∫ 1

α=0

∂F(x
′

+ α × (x − x
′

)
∂xi

dα

The integral part of the integrated gradient is computed by the Riemman approximation of
the integral [46].
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Integrated Gradients satisfies a third axiom called Completeness. Based on this axiom, the
attributions add up to the difference between the output of F at the input x and the baseline x

′

,
which is formalized by the following proposition [46]:

Proposition 2.7.1 If F : Rn → R is differentiable almost everywhere, meaning it is continuous
everywhere, and the partial derivative of F along each input dimension satisfies Lebesgue’s
integrability condition, then:

Σn
i=1IntegratedGradsi(x) = F(x) − F(x

′

)

Examples of Integrated Gradients explanation are shown in Fig. 2.29.

Figure 2.29: Examples of Integrated Gradients explanation for a CNN classification model.
Green pixels are pixels with positive influence and red ones are pixels with negative impact in
predicting the label of the pictures (Dogs and Cats).

2.7.3 Local Model-agnostic Methods
Local Interpretable Model-agnostic Explanations (LIME)

LIME locally explains the predictions of any deep neural network using an interpretable model
by treating the deep neural network as a complete black box [30].
Assume that f : Rd → R is the model being explained, where f (x) is the probability of x
belonging to a particular class. Let πx(z) denote a neighbourhood radius where an instance z
is defined as locally around x. Moreover, let g ∈ G be an interpretable model from a class of
interpretable models G. Finally, assume L( f , g, πx) to be a measure of the unfaithfulness of
g in approximating f in the locality defined by πx. Then, the explanation produced by LIME
is [30, 37]:

ξ(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (2.1)
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where Ω(g) is the complexity of the interpretable model g.
The algorithm for producing the explanation is as follows [30]:

1. Get the black box prediction of the desired instance.

2. Get black box predictions for the perturbed dataset.

3. Calculate the proximity of these new samples to the instance of interest and assign weight
to them based on their proximity.

4. Train a weighted interpretable model on these new samples.

5. The interpretation of the local model is the explanation for the prediction of the instance
of interest.

Examples of LIME explanation are shown in Fig. 2.30. The explanations in these examples are
all near zero; however, there are a few green and red pixels that are visible when zoomed.

Figure 2.30: Examples of LIME explanation for a CNN classification model. Green pixels are
pixels with positive influence and red ones are pixels with negative impact in predicting the
label of the pictures (Dogs and Cats).

Shapley Additive Explanations (SHAP)

Lundberg and Lee (2017) [24] introduced SHAP (SHapley Additive exPlanations), a frame-
work for explaining individual predictions of machine learning models based on Shapley val-
ues from coalitional game theory. In this context, the feature values of a specific data instance
are analogous to players in a coalition. The Shapley values provide a mechanism for equitably
allocating the ”payout”, which is the prediction, among the features. These players can be
either single feature values or groups of feature values [30].
Let f be the black box model, g be the explanation model, and x

′

be a simplified version of x
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produced using a mapping function hx. Local methods try to ensure g(z
′

) ≈ f (hx(z
′

) whenever
z
′

≈ x
′

[24].

Definition 2.7.1 (Additive feature attribution methods) These methods have an explanation
model that is a linear function of binary variables [24]:

g(z
′

) = ϕ0 + Σ
M
i=1ϕiz

′

i

where M is the number of simplified input features, z
′

∈ {0, 1}M, and ϕi ∈ R.

Methods with explanation models satisfying the definition 2.7.1 attribute an effect ϕ to each
feature, and summing the effects of all feature attributions approximates the output f (x) of the
original model [30].

Property 2.7.1 (Local accuracy) The explanation model matches the original model when
x = hx(x

′

), where ϕ0 = f (hx(0)) represents the model output with all simplified inputs toggled
off [24].

f (X) = g(x
′

) = ϕ0 + Σ
M
i=1ϕix

′

i

Property 2.7.2 (Missingness) Missingness constrains features where x
′

i = 0 to have no at-
tribute impact [24].

x
′

i = 0 =⇒ ϕi = 0

Property 2.7.3 (Consistency) Let fx(z
′

) = f (hx(z
′

)) and z
′

i denote setting z
′

i = 0. for any two models f and f
′

[24]:

(∀z
′

∈ {0, 1}M : f
′

x(z
′

) − f
′

x(z
′

i) ≥ fx(z
′

) − fx(z
′

i)) =⇒ ϕi( f
′

, x) ≥ ϕi( f , x)

Theorem 2.7.1 Only one possible explanation model g follows definition 2.7.1 and satisfies
all properties 2.7.1 to 2.7.3:

ϕi( f , x) = Σz′⊂x′
|z
′

|!(M − |z
′

| − 1)!
M!

| f
′

x(z
′

) − f
′

x(z
′

i)|

where |z
′

| is the number of non-zero entries in z
′

[24].

KernelSHAP

KernelSHAP is an alternative kernel-based estimation approach for SHAP that combines LIME
with a linear explanation model and Shapely values. Under definition 2.7.1 the specific forms
of πx′ , L and Ω that make the solution of equation 2.1 consistent with all properties 2.7.1 to
2.7.3 are [24]:

Ω(g) = 0

πx′ z
′

=
M − 1(

M
|z′ |

)
|z′ |(M − |z′ |)

L( f , g, πx′ ) = Σz′∈Z[ f (hx(z
′

)) − g(z
′

)]2πx′ (z
′

)

Examples of KernelSHAP explanation are shown in Fig. 2.31.
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Figure 2.31: Examples of KernelSHAP explanation for a CNN classification model. Green
pixels are pixels with positive influence and red ones are pixels with negative impact in pre-
dicting the label of the pictures (Dogs and Cats).

GradientSHAP

GradientSHAP, another alternative estimation approach for SHAP, assumes that the input fea-
tures are independent and that the explanation model is linear, meaning that the explanations
are modelled through the additive composition of feature effects. Under those assumptions,
SHAP values can be approximated as the expectation of gradients [22]. Examples of Gradi-
entSHAP explanation are shown in Fig. 2.32.

Figure 2.32: Examples of GradientSHAP explanation for a CNN classification model. Green
pixels are pixels with positive influence and red ones are pixels with negative impact in pre-
dicting the label of the pictures (Dogs and Cats).
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2.7.4 Evaluation

As shown in Fig. 2.33, explainability methods return highly different interpretations. They are
also different in space complexity, model passes they use, number of the passes, as shown in
Table. 2.2. Since the quality of explanations is crucial for understanding and trusting machine
learning models, evaluating these interpretations is highly important. There are two classes of
explanation evaluation measures: objective measures and subjective measures.
Subjective measures have been predominantly employed in evaluating explanations, reflecting
the inherently human-centric nature of explanatory concepts.
While subjective measures are crucial, objective measures are also required to improve expla-
nations by optimizing them. Two quantitative measures have been introduced by Yeh et al.
[55]: Infidelity and Sensitivity.
The concept of infidelity assesses the quality of an explanation by evaluating how well it re-
flects the predictor function’s response to important changes or disturbances in the input. Sen-
sitivity is derived from local Lipschitz continuity around the input.

Definition 2.7.2 (Infidelity) Given a black-box function f , explanation function Φ, a random
variable I ∈ Rd with probability measure µI, which represents meaningful perturbations of
interest, the explanation infidelity of Φ is defined as [55]:

INFD(Φ, f , x) = EI∼µI

[
(ITΦ( f , x) − ( f (x) − f (x − I)))2] (2.2)

Definition 2.7.3 (Sensitivity) Given a black-box function f , explanation function Φ, and a
given input neighborhood radius r, the max-sensitivity for explanation is defined as[55]:

S ENS MAX(Φ, f , x, r) = max
||y−x||≤r

||Φ( f , y) − Φ( f , x)||

Figure 2.33: Output of explainability methods for a CNN classification model for the same
image. Green pixels are pixels with positive influence and red ones are pixels with negative
impact in predicting the label of the picture.
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Table 2.2: Space complexity and number of passes of explainability methods.
Space Complexity Model Passes Number of Passes

Saliency Map O(# f eatures) Forward and Backward 1
Deconvolution Network O(# f eatures) Forward and Backward 1
Guided Backpropagation O(# f eatures) Forward and Backward 1

Input X Gradient O(# f eatures) Forward and Backward 1
DeepLIFT O(# f eatures) Forward and Backward 1

Integrated Gradients O(#steps × # f eatures) Forward and Backward #steps
LIME O(#samples ∗ # f eatures) Forward #samples

KernelSHAP O(# f eatures × #perturbations) Forward # f eatures2

GradientSHAP O(#samples × # f eatures + #baselines × # f eatures) Forward and Backward #samples
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Methodology

In this chapter, we explain how we have used explainability methods on protein language mod-
els and the Seq-InSite model and how we analyzed the results.

3.1 Explainability of Protein Embeddings
A protein language model gets a protein sequence of length n and outputs a n × ℓ matrix E
where ℓ is the length of embedding vectors and row Ei is the embedding vector for ith residue
in the protein sequence. The first layer in every protein language model is an Embedding layer.
This layer is a look-up table that outputs a n × ℓ matrix T , and it is not trainable. Thus, it
does not have a gradient, and it is not interpretable. Since this layer is set at the beginning
of training and is constant during training, we can calculate the interpretation of the protein
language model with respect to the output of this embedding layer.
As shown in Fig. 3.1, when we input element E ji of the protein language model’s output matrix
to the explanation method, the output is a n × ℓ matrix A, where Akp shows the influence of
Tkp on predicting the value of E ji. We iterate over E to obtain the whole explanation for the
sequence. The result is a 4-D matrix XE of size n × ℓ × n × ℓ. To get the effect of residue on
residue, we convert this matrix to a n × n array by calculating the sum along the second and
fourth dimensions as follows:

ExpE
i j =

ℓ∑
k=1

ℓ∑
p=1

XE
ik jp

The array ExpE measures the impact of each residue in computing the embedding vector of
any other residue. The element ExpE[i, j] gives the effect of the jth residue in computing the
embedding vector of the ith residue. Fig. 3.2 shows an example of the output of this process
for a protein using ProtT5 as the embedding method and DeepLIFT as the explanation method.
ExpE is normalized so that elements are between -1 and 1.

3.2 Explainability of Interaction Prediction
Seq-InSite gets a matrix of size (2w + 1) × ℓ of the embedding and outputs a single number,
where w is the size of the model’s window. Running explanation methods on this number, we

32
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Figure 3.1: Process of calculating interpretation for an embedding element

Figure 3.2: Example of embedding interpretation for a protein using ProtT5 as the embedding
method and DeepLIFT as the explanation method.
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get a (2w + 1) × ℓ matrix B, where Bkp shows the impact of pth element of the embedding
vector for kth residue in the window on the interaction prediction. If we sum over the second
dimension, we will have the impact of each residue in the window on the prediction.
We iterate over all windows to get interpretations of Seq-InSite for all residues. This results in
a 3-D n × (2 × w + 1) × ℓ matrix XS . Assuming ExpP is a n × n matrix that shows the impact
of each residue on other residues, then ExpP is calculated as follows:

ExpP
i j =

(2w+1)∑
k=1

ℓ∑
p=1

XS
ikp × (

ℓ∑
r=1

XE
(i+k−w−1)p jr)

The element ExpS [i, j] gives the effect of the jth residue in computing the interaction prediction
of the ith residue. Fig. 3.3 shows an example of the output of this process for a protein
using ProtT5 as the embedding method and DeepLIFT as the explanation method. ExpP is
normalized so that elements are between -1 and 1.

3.3 Evaluation of Explanations
As explained in Chapter 2, we can evaluate explanations using both subjective and objective
measurements. For qualitative evaluation, we defined several tests based on our expectations
from models and explanation methods. We only employed Explanation Infidelity for the ob-
jective evaluation, due to computation limitations that made Explanation Sensitivity infeasible.

3.3.1 Qualitative Evaluations
Comparison with Random Matrices

To prove that resulting explanations are not random and contain information, we trained an
SVM classifier using RBF kernel on 80% of the explanations and tested that on the remaining
20%. The classifier distinguishes between explanation maps and random matrices with 100%
accuracy. This means that there is a hyperplane that separates these explanations from random
matrices with a margin.

Distance Test

From a biological point of view, for each amino acid, those amino acids that are situated close
to it within the protein sequence have more effect on its interaction than farther ones. There-
fore, for each explanation method and for both embeddings and predictions, we calculated the
average impact score for amino acids that have i amino acids distance between them, where
0 ≤ i ≤ 20, and plot these scores by the distance. We expect that these plots have a decreasing
trend.

Mann–Whitney U Test

The Mann-Whitney U-Test determines whether there is a difference between two sample groups,
even when the data is not normally distributed [26]. Mann-Whitney U test is a non-parametric
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Figure 3.3: Example of interpretation for interaction predictions for a protein using ProtT5 as
the embedding method and DeepLIFT as the explanation method.
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statistical test on the distribution of two random variables X and Y . The hypothesis is as fol-
lows:

• Null Hypothesis: Distributions of X and Y are equal.

• Alternative Hypothesis: Distributions of X and Y are not equal.

For each explanation method, we calculated the average of impacting amino acids, called
source, and being impacted amino acids, called target, scores of the following three groups
for both embeddings and predictions:

1. Interacting vs. Non-interacting amino acids

2. Aromatic vs. Non-aromatic amino acids

3. Acidic vs. Basic amino acids

We then applied the Mann-Whitney U test between two groups in each of the above cases. If
models have captured these properties, there will be a difference between the distributions of
two populations in each group.

Kendall’s τ Test

Kendall’s τ test is a non-parametric test that assesses the correlation between two variables and
how statistically significant it is. Assume that (x1, y1), . . . , (x1, y1) are observations of random
variables X and Y . A pair (xi, yi) and (xi, yi) where i < j called concordant if either both xi > x j

and yi > y j or xi < x j and yi < y j holds; otherwise they are discordant. Let C be the set of
concordant pairs and D be the set of discordant pairs. Then Kendall’s τ coefficient correlation
[20] is:

τ =
|C| − |D|
|C| + |D|

Kendall’s τ test is a non-parametric statistical test based on the τ’s value [20].

• Null Hypothesis: There is no correlation between X and Y . (τ = 0)

• Alternative Hypothesis: There is a correlation between X and Y . (τ , 0)

For each explanation method, we calculated the average of both the source and target score of
each amino acid in all proteins for both embeddings and predictions, which resulted in four
vectors of size 20. Then, for each of these four vectors, we used Kendall’s τ test between the
vector and the hydrophobicity, molecular mass, Van Der Waal volume, and dipole moment
values for amino acids. We expected that there should be a correlation between them if the
model captures the property.
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3.3.2 Objective Evaluations
Explanation Infidelity

To get infidelity scores for protein embeddings, we have to use Eq. 2.2 on each 2-D matrix
XE[i, j, :, :] for 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ, which give us an infidelity score for it. This results in
a n × ℓ matrix IE, where IE

i j is the infidelity score for the interpretation of element Ei j in the
embeddings. The infidelity score for the whole interpretation of embeddings is defined as the
mean of elements of IE.

INFDE =

∑n
k=1
∑ℓ

p=1 IE
i j

n × ℓ
To calculate infidelity scores for Seq-InSite, for each 1 ≤ i ≤ n, we get infidelity score for
XS [i, :, :] using 2.2. This results in a vector IS of length n.
We denote the infidelity score for the prediction interpretations as INFDP and define it as
follows:

S = (
n−w∑

i=w+1

e∑
j=1

IE
i j +

n−w∑
i=w+1

IP
i ) × (2 × w + 1) +

w∑
i=1

((
e∑

j=1

IE
i j +

e∑
j=1

Ie
(n−i+1) j + I p

i + I p
n−i+1) × (w + i))

INFDP =
S

(n − 2 ∗ w) × (2 × w + 1) + (
∑2×w

i=w+1 i)
=

S
(n − 2 ∗ w) × (2 × w + 1) + (w × (3 × w + 1))

Basically, this is a weighted average of embeddings and Seq-InSite infidelity scores, where
weights are the number of times each amino acid is used in predictions. For the window size
of w in Seq-InSite, each amino acid is used at least w + 1 and at most 2w + 1 times during
prediction.
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Results

4.1 Experimental Details
We explain and analyze results based on the protein language model that was used for embed-
dings. This study investigates the comparative performance of ProtBert, ProtT5, and Ankh
embeddings in protein interaction prediction using Seq-InSite. Our methodology employs
state-of-the-art computational tools, including Python 3.10.0, Huggingface transformers 4.31.0
[54], PyTorch 2.0.1 [3], and Captum 0.6.0 [22], to calculate and analyze protein embeddings.
All computations are done on the Graham cluster of the Digital Research Alliance of Canada
using T4 GPUs. Since calculating explanations takes between 1 to 5 days (depending on the
protein sequence, embedding model, and the method), we only computed them once and stored
them to further be used in the tests. This has resulted in 3.3 TB of data.
We utilize a modified dataset from previous research done in Seq-InSite paper [16]. The seq-
InSite paper took all proteins from the 2019 version of PiSite [14], removed all sequences
with no interactions and sequences with any similarity above 25%, and split them into training
(99%) and validation (1%) sets. Current implementations [22] of explanation methods require
the model to be on a single GPU and do not allow for model-parallel computations. Moreover,
computing embedding interpretations for one amino acid can take up to 40 minutes, depending
on the method. Due to both the high space and time complexity of these methods, our analysis
is limited to proteins with a maximum length of 44 amino acids. Since benchmark test datasets
do not contain short proteins, we have excluded 34 proteins, as shown in Table. 4.1, from the
training dataset for testing purposes.
We have performed the Distance test, seven statistical tests, and explanation infidelity, which
are explained in details in Chapter 3. In all statistical tests, the P-value threshold for rejecting
the null hypothesis is 0.05. Tests with rejected null hypotheses are shown in bold.
We conducted seven biology-specific statistical tests for each of the following properties, which
we defined in Chapter 2, on each explanation method, considering these as subjective evalua-
tions based on our hypotheses regarding the expected behaviour of explanations.

1. Interacting vs. non-interacting using Mann-Whitney U test

2. Aromatic vs. non-aromatic using Mann-Whitney U test

3. Acidic vs. basic using Mann-Whitney U test

38
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4. Hydrophobicity using Kendall’s τ test

5. Molecular Mass using Kendall’s τ test

6. Van der Waals Volume using Kendall’s τ test

7. Dipole Moment using Kendall’s τ test

There are 9 tables for each embedding method: 2 tables for Mann-Whitney U tests results for
embedding explanations, 2 tables for Mann-Whitney U tests results for explanations of the Seq-
InSite trained on the embedding, 2 tables for Kendall’s τ tests for embedding explanations, 2
tables for Kendall’s τ tests results for explanations of the Seq-InSite trained on the embedding,
and a table comparing results of subjective and objective evaluations.

Table 4.1: IDs and lengths of proteins in the test dataset
Protein ID Chain Length Protein ID Chain Length
2CCI F 30 1SGH B 39
1MZW B 31 6F4U D 40
1OQE K 31 2L9U A 40
5KQ1 C 31 5OM2 B 40
5JPO E 32 2XZE R 40
2L34 A 33 4LZX B 40
6B7G B 33 5TUV C 41
3MJH B 34 2XA6 A 41
4NAW D 34 2MOF A 42
3DXC B 35 2K9J B 43
2XJY B 35 2F9D P 43
2BE6 D 37 4GDO A 43
1IK9 C 37 6GNY B 43
5XJL M 37 6AU8 C 43
5FV8 E 38 2KS1 A 44
4UED B 38 3HRO A 44
5FV8 A 38 2L2T A 44

4.2 ProtBERT

Table. 4.2 provides a view of each method’s performance across ProtBERT embeddings and
Seq-InSite trained on them. Methods passing more than half of the tests are highlighted in
green, indicating superior performance, while those performing poorly are marked in red.

We calculated the mean explanation infidelity for each method. This objective measure
complements our subjective evaluations, with the lowest infidelities (best performance) high-
lighted in green and the highest in red.
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For ProtBERT, our analysis reveals that Saliency Map, Integrated Gradients, and Ker-
nelSHAP emerge as the top-performing methods based on statistical tests. However, an in-
teresting discrepancy emerges when considering explanation infidelity. While Integrated Gra-
dients and KernelSHAP maintain strong performance, the Saliency Map shows relatively high
explanation infidelity, ranking second worst for ProtBERT explanations.

The interpretability of Seq-InSite trained on ProtBERT embeddings shows notable similar-
ities to ProtBERT embeddings’ interpretations. Like the embeddings’ interpretations, Saliency
Map, Integrated Gradients, and KernelSHAP are the best performers in statistical tests for Seq-
InSite trained on these embeddings. There is a similar situation with infidelity scores, where the
Saliency Map shows higher infidelity for Seq-InSite explanations than the other two methods.

In the case of both ProtBERT and Seq-InSite trained on ProtBERT, LIME and Deconvolu-
tion Network are the worst methods based on statistical tests and infidelity, respectively.

These findings demonstrate significant consistency between the interpretability of Prot-
BERT embeddings and Seq-InSite trained on these embeddings, suggesting a transfer of inter-
pretability features.

Delving deeper into specific biological properties, our analysis of Tables. 4.3, 4.4, 4.5,
and 4.6 reveals that ProtBERT captures all tested properties to some degree, with at least
one explanation method passing each statistical test, except for Kendall’s τ test for Van der
Waals volume. However, we infer from Table. 4.10 that this property is indeed learned by
the model but missed by the explanation methods since this test is passed by one method. This
conclusion is based on the fact that Seq-InSite’s only input about the protein comes through
the embeddings, and one of its explanations passes Kendall’s τ test for Van der Waals volume,
which means that this information is in the embeddings. Tables. 4.7, 4.8, 4.9, and 4.10
show that at least one of the interpretations of Seq-InSite trained on ProtBERT passes each of
the seven statistical tests. This further shows the consistency between the interpretability of
ProtBERT embeddings and Seq-InSite trained on these embeddings.

Fig. 4.2 and Fig. 4.3 show examples of interpretations of ProtBERT and Seq-InSite
trained on ProtBERT embeddings for each method. Fig. 4.1 shows the results of the distance
test for them. We can see that KernelSHAP and Saliency Map have almost flat graphs and
are able to capture the importance scores even for distant amino acids, while for methods like
GradientSHAP, the graph immediately drops after the amino acid itself (distance = 0).

Table 4.2: Comparison of a number of passed statistical tests (Mann-Whiteney U tests and
Kendall’s τ tests) and explanation infidelity scores for ProtBERT embeddings and predictions
interpretations. The best methods are shown in green, and the worst method is shown in red.

Number of Passed Statistical Tests Explanation Infidelity
ProtBERT Embeddings Seq-InSite trained on ProtBERT Embeddings ProtBERT Embeddings Seq-InSite trained on ProtBERT Embeddings

Saliency Map 8 7 6.981E-08 5.027E-05
Deconvolution Network 3 4 7.031E-08 5.311E-05
Guided Backpropagation 3 3 6.949E-08 4.931E-05

Input X Gradient 2 4 5.151E-08 3.733E-05
DeepLIFT 3 3 4.608E-08 3.316E-05

Integrated Gradients 7 9 4.273E-08 3.215E-05
LIME 0 2 4.400E-08 3.216E-05

KernelSHAP 7 7 4.468E-08 3.246E-05
GradientSHAP 2 4 4.555E-08 3.032E-05
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Table 4.3: Resulted P-Values of Mann-Whitney U test on target scores of ProtBERT embed-
dings interpretations.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 6.09E-28 1.87E-82 8.98E-31

Deconvolution Network 5.05E-01 2.83E-01 2.79E-01
Guided Backpropagation 5.05E-01 2.83E-01 2.79E-01

Input X Gradient 6.16E-02 6.45E-01 6.98E-01
DeepLIFT 4.56E-01 3.48E-01 1.47E-02

Integrated Gradients 5.09E-01 9.09E-02 1.20E-08
LIME 3.82E-01 5.47E-01 3.93E-01

KernelShap 0.00E+00 3.74E-126 2.41E-20
GradientShap 2.79E-01 9.32E-01 8.37E-06

Table 4.4: Resulted P-Values of Mann-Whitney U test on source scores of ProtBERT embed-
dings interpretations.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 1.88E-21 1.21E-124 7.03E-22

Deconvolution Network 4.71E-02 1.53E-04 2.55E-01
Guided Backpropagation 4.71E-02 1.53E-04 2.55E-01

Input X Gradient 2.41E-02 1.86E-02 1.60E-01
DeepLIFT 3.28E-01 1.62E-03 2.15E-02

Integrated Gradients 2.28E-19 1.09E-05 2.92E-19
LIME 6.28E-01 3.55E-01 2.24E-01

KernelShap 3.95E-33 7.09E-17 1.01E-12
GradientShap 6.14E-01 2.35E-02 7.30E-01

Table 4.5: Resulted correlation and P-Values of Kendall’s τ test on target scores of ProtBERT
embeddings interpretations.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2995 0.0680 -0.2540 0.1190 -0.0213 0.8965 -0.4421 0.0059
Deconvolution Network -0.0642 0.6957 0.3915 0.0162 0.2873 0.0790 0.0947 0.5859
Guided Backpropagation -0.0642 0.6957 0.3915 0.0162 0.2873 0.0790 0.0947 0.5859

Input X Gradient 0.2246 0.1710 0.0741 0.6493 0.1383 0.3978 -0.1474 0.3859
DeepLIFT 0.1818 0.2678 -0.2011 0.2171 -0.1702 0.2980 -0.2842 0.0855

Integrated Gradients -0.4279 0.0091 0.3915 0.0162 0.2660 0.1039 0.5263 0.0008
LIME 0.2567 0.1177 -0.1799 0.2695 -0.2873 0.0790 -0.2000 0.2333

KernelShap -0.2032 0.2155 0.1164 0.4749 0.1064 0.5154 0.1895 0.2598
GradientShap -0.1711 0.2970 0.2434 0.1352 0.1915 0.2416 0.2211 0.1859
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Table 4.6: Resulted correlation and P-Values of Kendall’s τ test on source scores of ProtBERT
embeddings interpretations.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2781 0.0901 -0.2540 0.1190 -0.0426 0.7947 -0.3789 0.0198
Deconvolution Network 0.1177 0.4733 -0.0106 0.9482 -0.1064 0.5154 0.1368 0.4223
Guided Backpropagation 0.1177 0.4733 -0.0106 0.9482 -0.1064 0.5154 -0.1368 0.4223

Input X Gradient 0.0000 1.0000 -0.0317 0.8455 -0.1064 0.5154 -0.0632 0.7246
DeepLIFT 0.1711 0.2970 -0.2011 0.2171 -0.1809 0.2688 -0.1789 0.2884

Integrated Gradients -0.1818 0.2678 -0.0847 0.6033 -0.2660 0.1039 0.2316 0.1650
LIME -0.0856 0.6020 0.0423 0.7950 0.1489 0.3625 0.1158 0.5006

KernelShap 0.2888 0.0784 -0.1693 0.2987 0.0638 0.6963 -0.3789 0.0198
GradientShap -0.0107 0.9480 -0.1693 0.2987 -0.1064 0.5154 0.1263 0.4605

Table 4.7: Resulted P-Values of Mann-Whitney U test on target scores for interpretations of
Seq-InSite trained on ProtBERT embeddings.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 6.20E-52 1.04E-170 4.58E-38

Deconvolution Network 1.65E-02 1.29E-06 2.63E-01
Guided Backpropagation 6.56E-03 9.32E-01 4.12E-01

Input X Gradient 9.01E-01 8.19E-01 7.53E-01
DeepLIFT 7.11E-13 4.81E-01 3.41E-01

Integrated Gradients 6.86E-108 4.81E-01 4.23E-20
LIME 2.06E-01 7.92E-01 1.67E-01

KernelShap 3.96E-236 4.68E-157 1.12E-20
GradientShap 2.92E-01 2.87E-02 4.41E-05

Table 4.8: Resulted P-Values of Mann-Whitney U test on source scores for interpretations of
Seq-InSite trained on ProtBERT embeddings.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 7.43E-02 3.49E-219 1.90E-32

Deconvolution Network 7.41E-01 6.66E-09 8.29E-09
Guided Backpropagation 2.53E-01 3.52E-03 3.53E-01

Input X Gradient 2.88E-01 1.46E-02 4.90E-01
DeepLIFT 6.81E-06 4.63E-04 7.06E-02

Integrated Gradients 1.51E-02 9.82E-07 2.76E-07
LIME 4.45E-01 3.82E-01 1.91E-01

KernelShap 2.49E-29 2.97E-12 1.34E-07
GradientShap 9.66E-01 2.82E-02 8.91E-01
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Table 4.9: Resulted correlation and P-Values of Kendall’s τ test on target scores for interpreta-
tions of Seq-InSite trained on ProtBERT embeddings.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.3102 0.0587 -0.2116 0.1939 0.0000 1.0000 -0.4316 0.0073
Deconvolution Network -0.0535 0.7445 0.0635 0.6967 -0.1489 0.3625 0.1474 0.3859
Guided Backpropagation -0.2995 0.0680 0.0423 0.7950 -0.1383 0.3978 0.4421 0.0059

Input X Gradient 0.4386 0.0075 -0.0847 0.6033 -0.0532 0.7450 -0.4316 0.0073
DeepLIFT 0.2032 0.2155 -0.2434 0.1352 -0.1596 0.3292 -0.2632 0.1126

Integrated Gradients -0.1498 0.3614 0.1905 0.2423 -0.0426 0.7947 0.3368 0.0398
LIME 0.5027 0.0022 -0.2011 0.2171 -0.1702 0.2980 -0.4526 0.0047

KernelShap 0.1391 0.3968 -0.0847 0.6033 0.0000 1.0000 -0.2947 0.0740
GradientShap 0.0856 0.6020 -0.2434 0.1352 -0.0745 0.6489 -0.0842 0.6308

Table 4.10: Resulted correlations and P-Values of Kendall’s τ test on source scores for inter-
pretations of Seq-InSite trained on ProtBERT embeddings.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2674 0.1032 -0.2646 0.1044 -0.0532 0.7450 -0.3895 0.0164
Deconvolution Network 0.0107 0.9480 0.1270 0.4357 0.0319 0.8453 0.0211 0.9235
Guided Backpropagation -0.1177 0.4733 0.0106 0.9482 0.0106 0.9481 0.0737 0.6771

Input X Gradient -0.0963 0.5574 -0.2540 0.1190 -0.3830 0.0192 -0.0316 0.8728
DeepLIFT 0.2781 0.0901 -0.2540 0.1190 -0.2873 0.0790 -0.2842 0.0855

Integrated Gradients -0.5241 0.0014 0.3598 0.0272 0.2128 0.1933 0.4947 0.0018
LIME -0.2781 0.0901 -0.1270 0.4357 -0.1702 0.2980 0.1368 0.4223

KernelShap 0.2888 0.0784 -0.1799 0.2695 0.0532 0.7450 -0.3895 0.0164
GradientShap 0.3209 0.0505 -0.1905 0.2423 0.0106 0.9481 -0.5053 0.0014

Figure 4.1: Left: Results of distance test for ProtBERT embeddings interpretations, Right:
Results of distance test for interpretations of Seq-InSite trained on ProtT5 embeddings.
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Figure 4.2: Examples of ProtBERT embeddings interpretations for 2L2T protein chain A.
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Figure 4.3: Examples of interpretations of Seq-InSite trained on ProtBERT embeddings for
2L2T protein chain A.

4.3 ProtT5

Fig. 4.6 and Fig. 4.5 illustrate interpretations of ProtT5 and Seq-InSite (trained on ProtT5
embeddings) for various methods. Fig. 4.4 presents the distance test results. KernelSHAP and
Deconvolution Network demonstrate consistently high importance scores across amino acid
distances. In contrast, methods like GradientSHAP, Integrated Gradients, and DeepLIFT show
a sharp decline in importance scores for amino acids beyond the target position (distance > 0).
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An overview of each method’s performance on ProtT5 embeddings and Seq-InSite models
trained on them is shown in Table. 4.11.

Our analysis reveals that ProtT5, Saliency Map, Deconvolution Network, Guided Back-
propagation, and KernelSHAP are the top-performing methods based on statistical tests. How-
ever, while the Saliency Map performs well based on the infidelity score, KernelSHAP shows
relatively high explanation infidelity. This gets even more interesting as the Deconvolution
Network and Guided Backpropagation are the worst methods based on the infidelity score.

The interpretability of Seq-InSite models trained on ProtT5 embeddings exhibits significant
similarities to the interpretations of the ProtT5 embeddings themselves. Like the embeddings’
interpretations, Deconvolution Network, Guided Backpropagation, and KernelSHAP are the
best performers in statistical tests for Seq-InSite models trained on these embeddings. A sim-
ilar pattern is observed with infidelity scores, where the Deconvolution Network and Guided
Backpropagation have the two highest infidelity for Seq-InSite explanations compared to the
other methods.

In a deeper analysis of specific biological properties, Tables. 4.12, 4.13, 4.14, and 4.15
show that ProtT5 captures all tested properties to some extent, with at least one explanation
method passing each statistical test. However, Tables. 4.18 and 4.19 shows that Seq-InSite
trained on ProtT5 embeddings does not pass Kendall’s τ test for Van der Waals volume. Since
we know that this information was learned by the embedding model, failing these tests shows
that explanation methods fail to capture this information in the Seq-InSite model. Tables. 4.16,
4.17, 4.18, and 4.19 also highlights the consistency between the interpretability of ProtT5
embeddings and Seq-InSite models trained on these embeddings.

Figure 4.4: Left: Results of distance test for ProtT5 embeddings interpretations, Right: Results
of distance test for interpretations of Seq-InSite trained on ProtT5 embeddings.
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Figure 4.5: Examples of ProtT5 embeddings interpretations for 2L2T protein chain A.
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Figure 4.6: Examples of interpretations of Seq-InSite trained on ProtT5 embeddings for 2L2T
protein chain A.
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Table 4.11: Comparison of a number of passed statistical tests (Mann-Whiteney U tests and
Kendall’s τ tests) and explanation infidelity scores for ProtT5 embeddings and predictions
interpretations. The best methods are shown in green, and the worst method is shown in red.

Number of Passed Statistical Tests Explanation Infidelity
ProtT5 Embeddings Seq-InSite trained on ProtT5 Embeddings ProtT5 Embeddings Seq-InSite trained on ProtT5 Embeddings

Saliency Map 8 6 5.76E-09 5.495E-06
Deconvolution Network 7 7 INF INF
Guided Backpropagation 8 9 1.14E+01 1.102E+04

Input X Gradient 1 3 6.49E-09 4.750E-06
DeepLIFT 4 4 8.42E-08 7.901E-05

Integrated Gradients 2 3 4.095E-09 3.500E-06
LIME 0 2 7.64E-09 6.98E-06

KernelSHAP 10 9 2.39E-07 3.51E-06
GradientSHAP 1 0 4.52E-08 4.209E-05

Table 4.12: Resulted P-Values of Mann-Whitney U test on target score of ProtT5 embeddings
interpretations.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 2.58E-09 5.67E-08 8.32E-02

Deconvolution Network 4.53E-15 7.06E-01 2.79E-02
Guided Backpropagation 5.25E-06 9.70E-01 7.20E-60

Input X Gradient 6.85E-02 7.12E-01 4.75E-01
DeepLIFT 5.95E-01 3.73E-01 5.07E-01

Integrated Gradients 2.19E-01 8.96E-02 8.56E-01
LIME 7.64E-01 1.58E-01 7.80E-01

KernelShap 1.17E-02 3.79E-67 5.89E-63
GradientShap 9.30E-02 7.30E-02 8.92E-01

Table 4.13: Resulted P-Values of Mann-Whitney U test on source scores of ProtT5 embeddings
interpretations.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 2.49E-152 1.19E-02 8.39E-61

Deconvolution Network 3.12E-02 4.96E-45 0.00E+00
Guided Backpropagation 3.57E-14 1.35E-35 9.16E-139

Input X Gradient 3.25E-01 9.18E-01 3.60E-01
DeepLIFT 3.82E-22 8.98E-30 1.41E-21

Integrated Gradients 9.56E-32 4.23E-04 3.23E-01
LIME 9.03E-01 4.18E-01 5.31E-01

KernelShap 2.84E-13 3.61E-05 6.75E-03
GradientShap 7.21E-02 1.23E-01 4.41E-01
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Table 4.14: Resulted correlations and P-Values of Kendall’s τ test on target scores of ProtT5
embeddings interpretations.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2460 0.1338 -0.1799 0.2695 0.0319 0.8453 -0.3684 0.0237
Deconvolution Network -0.2781 0.0901 0.1693 0.2987 -0.0638 0.6963 0.4000 0.0135
Guided Backpropagation 0.2567 0.1177 -0.2328 0.1530 -0.0319 0.8453 -0.3789 0.0198

Input X Gradient -0.0107 0.9480 -0.2751 0.0912 -0.3830 0.0192 -0.1158 0.5006
DeepLIFT -0.2139 0.1923 0.2011 0.2171 0.0532 0.7450 0.2737 0.0983

Integrated Gradients 0.2139 0.1923 -0.0212 0.8966 -0.1702 0.2980 -0.2105 0.2086
LIME -0.0642 0.6957 0.0635 0.6967 0.0745 0.6489 0.1474 0.3859

KernelShap -0.4920 0.0027 0.3704 0.0230 0.2234 0.1719 0.6947 0.0000
GradientShap -0.0107 0.9480 -0.1058 0.5160 -0.2766 0.0908 -0.0526 0.7732

Table 4.15: Resulted correlations and P-Values of Kendall’s τ test on source scores of ProtT5
embeddings interpretations.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.3637 0.0267 -0.2963 0.0689 -0.0638 0.6963 -0.4632 0.0038
Deconvolution Network -0.1711 0.2970 0.3386 0.0377 0.1064 0.5154 0.2947 0.0740
Guided Backpropagation 0.3423 0.0370 -0.1058 0.5160 0.0213 0.8965 -0.3895 0.0164

Input X Gradient -0.1070 0.5145 -0.0635 0.6967 -0.1064 0.5154 0.0842 0.6308
DeepLIFT 0.0000 1.0000 0.3810 0.0194 0.2766 0.0908 0.0737 0.6771

Integrated Gradients 0.1818 0.2678 0.0212 0.8966 0.0638 0.6963 -0.0632 0.7246
LIME 0.1925 0.2407 0.0635 0.6967 0.0745 0.6489 -0.0947 0.5859

KernelShap -0.2674 0.1032 0.1799 0.2695 -0.0532 0.7450 0.3895 0.0164
GradientShap -0.1711 0.2970 0.1799 0.2695 0.0319 0.8453 0.3263 0.0468

Table 4.16: Resulted P-Values of Mann-Whitney U test on target scores for interpretations of
Seq-InSite trained on ProtT5 embeddings.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 5.61E-02 1.29E-33 2.52E-01

Deconvolution Network 8.16E-69 5.95E-12 6.02E-01
Guided Backpropagation 5.26E-94 7.31E-02 8.84E-102

Input X Gradient 1.44E-01 4.54E-01 7.71E-01
DeepLIFT 1.12E-01 1.94E-01 2.13E-01

Integrated Gradients 1.09E-02 8.95E-01 9.01E-01
LIME 8.42E-01 1.42E-01 7.55E-01

KernelShap 1.62E-93 3.90E-07 6.22E-21
GradientShap 5.14E-01 7.91E-01 2.08E-01
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Table 4.17: Resulted P-Values of Mann-Whitney U test on source scores for interpretations of
Seq-InSite trained on ProtT5 embeddings.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 4.48E-132 6.03E-01 3.49E-127

Deconvolution Network 1.71E-14 9.20E-62 0.00E+00
Guided Backpropagation 9.26E-12 1.17E-61 9.02E-276

Input X Gradient 9.88E-01 6.27E-01 7.30E-01
DeepLIFT 2.27E-19 1.67E-22 2.37E-18

Integrated Gradients 4.77E-28 8.94E-01 9.82E-01
LIME 6.80E-01 6.38E-01 7.21E-01

KernelShap 3.40E-06 2.35E-03 1.77E-03
GradientShap 7.09E-02 3.88E-01 9.76E-01

Table 4.18: Resulted correlations and P-Values of Kendall’s τ test on target scores of interpre-
tations of Seq-InSite trained on ProtT5 embeddings.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2139 0.1923 -0.2222 0.1725 -0.0106 0.9481 -0.3684 0.0237
Deconvolution Network -0.2995 0.0680 0.2116 0.1939 0.0106 0.9481 0.4421 0.0059
Guided Backpropagation 0.3958 0.0159 -0.1587 0.3299 0.0106 0.9481 -0.4632 0.0038

Input X Gradient 0.2139 0.1923 -0.1693 0.2987 -0.1064 0.5154 -0.3263 0.0468
DeepLIFT 0.3423 0.0370 -0.0952 0.5588 0.0532 0.7450 -0.1895 0.2598

Integrated Gradients -0.1818 0.2678 0.3492 0.0321 0.1596 0.3292 0.2632 0.1126
LIME -0.3851 0.0189 0.2540 0.1190 0.1489 0.3625 0.3368 0.0398

KernelShap 0.2567 0.1177 -0.3915 0.0162 -0.2873 0.0790 -0.4211 0.0091
GradientShap -0.0642 0.6957 0.2540 0.1190 0.0319 0.8453 0.0947 0.5859

Table 4.19: Resulted correlations and P-Values of Kendall’s τ test on source scores of interpre-
tations of Seq-InSite trained on ProtT5 embeddings.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.3637 0.0267 -0.2963 0.0689 -0.0638 0.6963 -0.4632 0.0038
Deconvolution Network -0.1711 0.2970 0.3386 0.0377 0.1064 0.5154 0.2947 0.0740
Guided Backpropagation 0.3423 0.0370 -0.1058 0.5160 0.0213 0.8965 -0.3895 0.0164

Input X Gradient 0.4493 0.0062 -0.2646 0.1044 -0.1702 0.2980 -0.5789 0.0002
DeepLIFT 0.0214 0.8963 -0.0212 0.8966 0.0532 0.7450 0.0000 1.0000

Integrated Gradients -0.1177 0.4733 -0.1270 0.4357 -0.2553 0.1185 0.0842 0.6308
LIME 0.0000 1.0000 0.0423 0.7950 0.0213 0.8965 -0.1789 0.2884

KernelShap 0.2781 0.0901 -0.2222 0.1725 0.0319 0.8453 -0.3684 0.0237
GradientShap -0.0428 0.7943 0.0635 0.6967 0.0213 0.8965 0.1158 0.5006
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4.4 Ankh

Table. 4.20 provides a thorough outline of each explanation method’s performance across both
models.

For Ankh embeddings, our analysis identifies Integrated Gradients and KernelSHAP as
top performers in statistical tests. Unlike ProtBERT and ProtT5, both leading performers in
statistical tests also uphold strong performance in infidelity scores.

The interpretability of Seq-InSite models trained on Ankh embeddings shows remarkable
differences from the Ankh embeddings’ interpretations. Saliency Map and Guided Backprop-
agation emerge as the best performers in statistical tests for the trained Seq-InSite model.

Our in-depth analysis of specific biological properties is presented in Tables. 4.21, 4.22,
4.23, and 4.24, indicates that Ankh captures all tested properties to some degree, with at least
one explanation method passing each statistical test, except for Kendall’s τ test for molecular
mass. Table. 4.27 indicates that the molecular mass property, while not consistently detected
in Ankh embeddings by explanation methods, is indeed learned by the model. This conclusion
is supported by Seq-InSite’s ability to pass Kendall’s τ test for this property, demonstrating
that the information is encoded within the embeddings. These findings contribute to our under-
standing of the relationship between embedding model interpretability and the interpretability
of downstream prediction models in protein interaction prediction. Tables 4.25, 4.26, 4.27,
and 4.28 highlight the overall consistency in interpretability between Ankh embeddings and
the trained Seq-InSite model.

Fig. 4.8 and Fig. 4.9 illustrate examples of interpretations from Ankh and Seq-InSite
trained on Ankh embeddings for each method. Fig. 4.7 presents the results of the distance test
for these methods. It is evident that KernelSHAP produces almost flat graphs and is capable
of capturing importance scores even for distant amino acids. In contrast, methods like Gradi-
entSHAP, Deconvolution Network, and DeepLIFT show a steep drop in the graph immediately
after the amino acid itself (distance = 0).

Table 4.20: Comparison of a number of passed statistical tests (Mann-Whiteney U tests and
Kendall’s τ tests) and explanation infidelity scores for Ankh embeddings and predictions inter-
pretations. The best methods are shown in green, and the worst method is shown in red.

Number of Passed Statistical Tests Explanation Infidelity
Ankh Embeddings Seq-InSite trained on Ankh Embeddings Ankh Embeddings Seq-InSite trained on Ankh Embeddings

Saliency Map 5 7 2.054E-11 3.577E-06
Deconvolution Network 6 6 2.033E-11 6.172E-05
Guided Backpropagation 6 7 2.021E-11 1.626E-06

Input X Gradient 4 3 4.811E-10 2.086E-06
DeepLIFT 3 4 5.801E-10 2.075E-06

Integrated Gradients 7 3 1.358E-11 1.694E-06
LIME 1 4 4.342E-11 1.769E-06

KernelSHAP 7 5 1.609E-11 1.740E-06
GradientSHAP 3 4 3.105E-10 2.025E-06
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Table 4.21: Resulted P-Values of Mann-Whitney U test on target scores of Ankh embeddings
interpretations.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 5.59E-164 2.64E-05 7.14E-02

Deconvolution Network 5.00E-03 8.79E-01 6.77E-16
Guided Backpropagation 5.00E-03 8.79E-01 6.77E-16

Input X Gradient 6.45E-01 3.69E-03 6.14E-03
DeepLIFT 5.75E-08 2.57E-01 3.58E-01

Integrated Gradients 2.50E-01 3.29E-02 7.26E-08
LIME 2.18E-01 2.40E-01 3.04E-01

KernelShap 1.78E-21 3.01E-03 0.00E+00
GradientShap 1.51E-01 9.62E-01 3.46E-01

Table 4.22: Resulted P-Values of Mann-Whitney U test on source scores of Ankh embeddings
interpretations.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 9.23E-101 4.12E-01 1.81E-01

Deconvolution Network 5.95E-22 7.93E-01 5.57E-07
Guided Backpropagation 5.95E-22 7.93E-01 5.57E-07

Input X Gradient 3.01E-01 5.36E-05 2.88E-01
DeepLIFT 1.45E-01 2.65E-03 2.80E-02

Integrated Gradients 1.94E-27 2.51E-87 2.12E-288
LIME 4.60E-02 9.19E-02 6.05E-01

KernelShap 1.61E-04 1.54E-05 1.04E-11
GradientShap 5.43E-03 5.03E-03 2.45E-05

Table 4.23: Resulted correlations and P-Values of Kendall’s τ test on target scores of Ankh
embeddings interpretations.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2781 0.0901 -0.2116 0.1939 0.0000 1.0000 -0.3579 0.0283
Deconvolution Network -0.3530 0.0315 0.0423 0.7950 -0.0851 0.6028 0.3474 0.0336
Guided Backpropagation -0.3530 0.0315 0.0423 0.7950 -0.0851 0.6028 0.3474 0.0336

Input X Gradient 0.1604 0.3282 -0.1164 0.4749 -0.0106 0.9481 -0.0947 0.5859
DeepLIFT 0.2995 0.0680 -0.2540 0.1190 -0.0319 0.8453 -0.2947 0.0740

Integrated Gradients -0.2888 0.0784 0.0212 0.8966 -0.1489 0.3625 0.3263 0.0468
LIME -0.2139 0.1923 0.1270 0.4357 0.0426 0.7947 0.0632 0.7246

KernelShap 0.0107 0.9480 -0.1270 0.4357 -0.0213 0.8965 -0.1684 0.3189
GradientShap -0.2032 0.2155 0.0635 0.6967 -0.0213 0.8965 0.1368 0.4223
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Table 4.24: Resulted correlations and P-Values from Kendall’s τ test on source scores of Ankh
embeddings interpretations.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2246 0.1710 -0.3069 0.0596 -0.0958 0.5583 -0.3263 0.0468
Deconvolution Network -0.1818 0.2678 0.0741 0.6493 0.0106 0.9481 0.2947 0.0740
Guided Backpropagation -0.1818 0.2678 0.0741 0.6493 0.0106 0.9481 0.2947 0.0740

Input X Gradient 0.0214 0.8963 0.2328 0.1530 0.3617 0.0270 0.0000 1.0000
DeepLIFT 0.0749 0.6482 0.0212 0.8966 0.1809 0.2688 -0.1789 0.2884

Integrated Gradients -0.2460 0.1338 -0.1587 0.3299 -0.3298 0.0437 0.1789 0.2884
LIME 0.1284 0.4341 -0.1693 0.2987 -0.1702 0.2980 -0.1158 0.5006

KernelShap 0.2460 0.1338 -0.2116 0.1939 0.0426 0.7947 -0.3579 0.0283
GradientShap -0.2353 0.1515 -0.1799 0.2695 -0.2979 0.0686 0.2000 0.2333

Table 4.25: Resulted P-Values of Mann-Whitney U test on target scores of interpretations of
Seq-InSite trained on Ankh embeddings.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 0.00E+00 1.70E-29 8.82E-07

Deconvolution Network 3.97E-14 4.89E-05 6.77E-08
Guided Backpropagation 5.68E-06 9.42E-02 1.99E-06

Input X Gradient 6.42E-01 6.72E-02 1.75E-04
DeepLIFT 1.39E-09 1.93E-02 8.31E-07

Integrated Gradients 1.19E-01 9.03E-01 9.37E-03
LIME 2.02E-01 2.04E-01 1.02E-01

KernelShap 7.78E-11 7.89E-01 1.31E-213
GradientShap 1.17E-01 8.57E-02 5.02E-01

Table 4.26: Resulted P-Values of Mann-Whitney U test on source scores of interpretations of
Seq-InSite trained on Ankh embeddings.

Interacting vs. Non-Interacting Aromatic vs. Non-Aromatic Acidic vs. Basic
Saliency 2.22E-154 1.48E-01 7.43E-08

Deconvolution Network 1.59E-15 1.38E-12 5.22E-01
Guided Backpropagation 1.38E-51 4.74E-02 2.40E-04

Input X Gradient 4.05E-08 1.51E-07 3.39E-01
DeepLIFT 7.14E-02 8.33E-07 9.57E-01

Integrated Gradients 3.78E-15 4.92E-62 1.30E-01
LIME 7.91E-02 9.86E-02 5.28E-01

KernelShap 1.47E-02 3.41E-03 7.55E-09
GradientShap 3.98E-04 2.62E-09 4.35E-02
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Table 4.27: Resulted correlations and P-Values from Kendall’s τ test on target scores for inter-
pretations of Seq-InSite trained on Ankh embeddings.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2567 0.1177 -0.2116 0.1939 -0.0106 0.9481 -0.4000 0.0135
Deconvolution Network -0.2567 0.1177 0.2011 0.2171 0.0532 0.7450 0.3579 0.0283
Guided Backpropagation -0.2460 0.1338 0.1587 0.3299 -0.0851 0.6028 0.3895 0.0164

Input X Gradient 0.2032 0.2155 0.2011 0.2171 0.1915 0.2416 -0.0526 0.7732
DeepLIFT 0.0749 0.6482 -0.0741 0.6493 -0.1489 0.3625 0.0737 0.6771

Integrated Gradients 0.2888 0.0784 -0.0635 0.6967 -0.0638 0.6963 -0.2526 0.1284
LIME 0.3851 0.0189 -0.4550 0.0052 -0.3830 0.0192 -0.4421 0.0059

KernelShap 0.2567 0.1177 -0.0847 0.6033 -0.1809 0.2688 -0.2526 0.1284
GradientShap 0.1177 0.4733 0.1693 0.2987 0.1489 0.3625 0.0421 0.8227

Table 4.28: Resulted correlations and P-Values of Kendall’s τ test on source scores for inter-
pretations of Seq-InSite trained on Ankh embeddings.

Hydrophobicity Molecular Mass Van Der Waals Volume DipoleMoment
Correlation PValue Correlation PValue Correlation PValue Correlation PValue

Saliency 0.2567 0.1177 -0.3175 0.0513 -0.1064 0.5154 -0.3579 0.0283
Deconvolution Network -0.1925 0.2407 0.0529 0.7453 -0.0106 0.9481 0.2737 0.0983
Guided Backpropagation -0.4386 0.0075 0.1587 0.3299 0.0319 0.8453 0.5053 0.0014

DeepLIFT -0.0749 0.6482 -0.0529 0.7453 -0.2234 0.1719 0.1158 0.5006
Integrated Gradients 0.0214 0.8963 0.0847 0.6033 0.2341 0.1524 0.0000 1.0000

LIME 0.0428 0.7943 -0.1270 0.4357 -0.0426 0.7947 0.0316 0.8728
KernelShap -0.0749 0.6482 0.0847 0.6033 -0.1277 0.4350 0.1368 0.4223

GradientShap 0.4172 0.0110 0.0423 0.7950 0.0745 0.6489 -0.1895 0.2598
Input X Gradient -0.1604 0.3282 -0.0635 0.6967 -0.2128 0.1933 0.2421 0.1458

Figure 4.7: Left: Results of distance test for Ankh embeddings interpretations, Right: Results
of distance test for interpretations of predictions using Ankh embeddings.
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Figure 4.8: Examples of Ankh embeddings interpretations for 2L2T protein chain A.
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Figure 4.9: Examples of interpretations of predictions using Ankh embeddings for 2L2T pro-
tein chain A.

4.5 Discussion

Our results show that no single method consistently performs best across all models and met-
rics, and some methods, like Deconvolution Networks and Integrated Gradients, show high
variability in performance across different models. Table. 4.29 shows the total number of
passed statistical tests and mean infidelity score across all embedding models. We can see that
the Deconvolution Network and Guided Backpropagation perform poorly in terms of explana-
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tion infidelity despite passing many of the statistical tests. Meanwhile, despite low infidelity
scores, LIME and GradientSHAP perform poorly in statistical tests. KernelSHAP and Saliency
Map perform well in both statistical tests and infidelity scores.
In conclusion, choosing the best explanation method may depend on the specific protein anal-
ysis model and the preferred metric (statistical tests vs. infidelity). Some methods, like Ker-
nelSHAP and Saliency Map, show promise across multiple models and metrics. Our thorough
analysis indicates very clearly that a lot of further work is needed in this area.

Table 4.29: Comparison of total number of passed statistical tests (Mann-Whiteney U tests and
Kendall’s τ tests) and mean explanation infidelity scores.

Total Number of Passed Statistical Tests Mean Explanation Infidelity
Saliency Map 41 9.903E-06

Deconvolution Network 33 INF
Guided Backpropagation 36 1.839E+03

Input X Gradients 17 7.371E-06
DeepLIFT 21 1.906E-05

Integrated Gradients 31 6.232E-06
LIME 9 6.827E-06

KernelSHAP 45 6.332E-06
GradientSHAP 14 1.242E-05
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Conclusion and Future Work

In this thesis, we have employed existing explanation methods on protein language models
and protein interaction site prediction model, aiming to demystify their opaque, ”black-box”
nature. To the best of our knowledge, this integration of explainable AI techniques within these
specific domains represents a pioneering approach in the existing scientific literature. We have
not only utilized these methods but have also developed and introduced subjective biological-
specific evaluation metrics tailored to assess the quality of the interpretation maps generated
by these models.

Our evaluations have further augmented the interpretability, facilitating a clearer under-
standing for users to trace biological properties models have learned. Researchers and practi-
tioners can now trace the specific biological properties and patterns that these models learn and
consider significant, effectively linking high-level quantitative data analysis with biological in-
sights. This bridging of the gap is crucial for advancing the application of machine learning
in bioinformatics, providing a foundation upon which more intuitive and accessible analytical
tools can be developed.

Moreover, through detailed experiments and thorough analyses, this work has not only
demonstrated the current capabilities of explainable AI in protein modelling but has also illumi-
nated potential areas for further enhancement. Our findings suggest several avenues for future
research, including the refinement of explanation methods to capture more nuanced biological
phenomena and the integration of these methods into a broader array of bioinformatics applica-
tions. Additionally, this thesis underscores the need for more sophisticated interpretative tools
that can cater to the complex nature of protein interactions and the dynamic environments in
which they function.

The promising results of this thesis pave the way for several avenues of future research in
explainable AI for protein analysis:

• Further work could extend the applications of explainable AI to other areas of bioinfor-
matics, especially downstream tasks of protein language models. This area could benefit
significantly from enhanced model transparency.

• Explainable AI methods have a lot of room for improvement. As we show in the results,
these methods fail to capture the full interpretation of models in many cases. Future
research could focus on developing new explainable AI algorithms that provide even
more precise and granular explanations.
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• As mentioned in Chapter 3, current explainable AI techniques have many computational
limitations that prevent them from being employed properly on large models like protein
language models. Developing more efficient explainable AI methods is another impor-
tant direction for future research.

By addressing these areas, future research can continue to advance the field of explainable
AI in different areas, including protein modelling, ensuring that these sophisticated tools pro-
vide not only high accuracy but also the transparency needed for their widespread adoption in
scientific research and clinical decision-making.
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